Library of the Museum

OF

COMPARATIVE ZOOLOGY,

AT HARVARD COLLEGE, CAMBRIDGE, MASS.

Founded by private subscription, in 1861.

DR. L. DE KONINCK'S LIBRARY.

No. /32/
Library of the Museum

of

COMPARATIVE ZOOLOGY,

AT HARVARD COLLEGE, CAMBRIDGE, MASS.

Founded by private subscription, in 1861.

DR. L. DE KONINCK'S LIBRARY.

No. 132
SITZUNGSBERICHTE
DER KAISERLICHEN
AKADEMIE DER WISSENSCHAFTEN.

MATHEMATISCH-NATURWISSENSCHAFTLICHE CLASSE.

DREIUNDREISSIGSTER BAND.

WIEN.
AUS DER K. K. HOF- UND STAATSDRUCKEREI.
IN COMMISSION BEI KARL GEROLD'S SOHN, BUCHHÄNDLER DER KAIS. AKADEMIE
DER WISSENSCHAFTEN.
1859.
INHALT.

Sitzung vom 4. November 1858.

Saafari, Beiträge zur Kenntnis der Vanadinarbindungen ... 3
Luschka, Der Musculus transversus colli des Menschen. (Mit 4 Tafeln.) ... 18
Blaserna, Über den induzierten Strom der Nebenbatterie ... 25
Kolenati, Beiträge zur Kenntnis der Arachniden. (Mit 4 Tafeln.) ... 69
Hlasovetz, Analyse der Mineralquelle „del Franco“ zu Recasro ... 90
Müller, Beiträge zur Theorie der Respiration 99
v. Biesiadecki und Herzig, Die verschiedenen Formen der quer-gestreiften Muskelfasern. (Mit 3 Tafeln.) ... 146
Löwy, Bestimmungen der Bahn des Kometen V 1858 ... 150
v. Lang, Über die Minimum-Ablehnung der Lichtstrahlen durch doppeltbrechende Prismen ... 155

Sitzung vom 11. November 1858.

Knochennauer, Über den elektrischen Zustand der Nebenbatterie während ihres Stromes ... 163
Wöhler, Über die Bestandtheile des Meteorsteines von Kaba in Ungarn ... 205
Unger, Der versteinerte Wald bei Cairo und einige andere Arten verkieselten Holzes in Ägypten. (Mit 3 Tafeln.) ... 209
Busch, Untersuchungen über das chylöpoetische und uropoetische System der Blatta orientalis. (Mit 5 Tafeln.) ... 234

Sitzung vom 18. November 1858.

Oehl, Sulla persistenza dell’ sorts destra nell’ uomo. (Con una tavola.) ... 261
Farkas-Vukotinović, Die Plitvica-Seen in der oberen Militär-grenze in Kroatien ... 268
Šimerka, Lösung zweier Arten von Gleichungen ... 277
Hyrtl, Berichtigung über die Ala parva Ingrassiae ... 284
Sitzung vom 2. December 1858.

Auszug aus einem Schreiben des Herrn Ludwig Justeles an das wirkliche Mitglied Herrn Dr. Ami Boué. 357

Weiss, Über die Bahn des Kometen VIII des Jahres 1858. 359

Langer, Über den Gelenkbau bei den Arthropoden. 365

Graßl und v. Lang, Untersuchungen über die physikalischen Verhältnisse krystallisirter Körper. (IV. Fortsetzung.). 369
SITZUNGSBERICHTE

DER

KAISERLICHEN AKADEMIE DER WISSENSCHAFTEN.

MATHEMATISCH-NATURWISSENSCHAFTLICHE CLASSE.

XXXIII. BAND.

SITZUNG VOM 4. NOVEMBER 1858.

№ 24.
Library of the Museum

of

COMPARATIVE ZOOLOGY,

AT HARVARD COLLEGE, CAMBRIDGE, MASS.

Founded by private subscription, in 1861.

DR. L. DE KONINCK'S LIBRARY.

No. 132.
SITZUNG VOM 4. NOVEMBER 1858.

Eingesendete Abhandlungen.

Beiträge zur Kenntniss der Vanadinverbindungen.

Von Adalbert Šafařík.

(Vorgelegt in der Sitzung vom 7. October 1858.)

I. Über Vanadchlorid und metallisches Vanadin.

Das bereits 1801 von Del Rio im Zimapener Braunbleierz gefunden, aber erst 1830 von Sefström im Taberger Stabeisen wieder entdeckte und von Wöhler mit Bestimmtheit als selbstständiger Körper nachgewiesene, Vanadin gehört durch seine zahlreichen und schönen Verbindungen zu den merkwürdigsten Körpern im Bereiche der Chemie; auch ist die Zahl von Mitteilungen in Fachwerken und Journalen, die sich auf dasselbe beziehen, gar nicht unbedeutend, da meine noch immer nicht vollständige Sammlung bereits über fünfzig verschiedene Titel nachweist. Indess überzeugt man sich bald, dass sich diese Mitteilungen fast alle nur auf das Vorkommen des seltenen Stoffes beziehen, neue Quellen für dasselbe nachweisen, aber zur Kenntniss des Vanadins selber und seiner Verbindungen wenig oder nichts hinzuthun. In der That ist buchstäblich alles, was in der letzten (5.) Ausgabe von Berzelius' Lehrbuche über das Vanadin mitgetheilt wird\(^1\), nur aus Berzelius' grosser und erschöpfender Arbeit\(^2\) entnommen, und neben dieser sind nur noch zu

\(^1\) Lehrbuch II, 322—344 und III, 1048—1059.
\(^2\) Pogg. 22, 1—67.
nennen: die von Johnston 1), welcher gleichzeitig mit und unabhän-
gig von Berzelius aus nur 7 Grammen schottischen Vanadin-
bleierz es die Oxyde, das geschmolzene Metall und die Chloride
darstellte und im Allgemeinen ganz richtig beschrieb; die von
Fritzsche 2), welcher aus Permschem Roheisen ein Pfund rohes
vanadinsaures Ammoniak und daraus 70 Gramme reine Säure gewann,
deren Schwefelsäureverbindungen untersuchte und beschrieb; end-
lich die schöne Arbeit des Herrn von Hauer 3) über die pracht-
voll kristallisierten Bivanadate der Alkalien und alkalischen Erden.
Hierzu kamen erst vor Kurzem Uhrlaub's 4) Mittheilungen über die
Stickstoffverbindungen des Vanadins.

Diese geringe Anzahl von Untersuchungen über einen so inter-
essanten und offenbar noch bei weitem nicht erschöpften Gegenstand
klärt sich einfach aus der Seltenheit des Materiales, welches zwar
gegenwärtig schon an vielen Orten und in vielen Mineralien und
Gesteinen aufgefunden ist, aber immer nur in so geringen Quantitäten
(meist nur Zehntel-Procente), dass seine Gewinnung mühsam und
kostspielig wird. Es war daher ein Glück zu nennen, dass Wöhler 5)
und Svaberg 6) den Vanadingehalt des unrenen Uranpecherzes
auffanden, eines Minerals, welches (wenigstens an einigen Orten)
massenhaft vorkommt und zugleich technisch verarbeitet wird, so
dass es nur galt, eine Verarbeitungsmethode zu finden, bei der das
costbare Vanadin nicht verloren ging. Dies ist denn auch den Be-
mühungen Paterta's zu Joachimsthal gelungen, und bereits verdanken
wir dem so gewonnenen Materiale Hauers Abhandlung. Herrn Ober-
medicinalrath Wöhler war durch die kaiserliche Akademie der
Wissenschaften ein nicht unbeträchtliches Quantum desselben Materials
zur Disposition gestellt worden, welches mir derselbe mit nicht genug
anzuerkennender Liberalität gänzlich zur Bearbeitung überliess, wofür
ich demselben hiermit meinen wärmsten Dank sage. Die ganze
Untersuchung wurde in Professor Wöhlers Laboratorium geführt.

Ich beschäftigte mich gleich vom Anfang an mit der Darstel-
lung des metallischen Vanadins, theils weil, nach den so glänzenden

4) Pogg. 1858, Jan.
5) Pogg. 54, 600.
6) Berzel. Jahresb. 22, 202 (deutsche Ausg.).

Salpeter in Menge fast unvermindert erschien, und alsdann nur kohlensauren Kalk, Thonerde und Eisenoxyd enthielt, also ursprünglich wohl unreiner vanadinsaurer Kalk.

Ich konnte die Gelegenheit nicht vorbeigehen lassen, die noch unbekannte Dichte und das Atomvolum der Vanadinsäure zu bestimmen: ich fand sie bei zwei Versuchen (mit 2·7 und 1·4 Grammen) resp. 3·472 und 3·510 bei \(+20^\circ\)C. im Mittel also 3·491. Die Säure aus reinem Superchlorid bereitet und prachtvoll krystallisiert, wurde fein gerieben und im Pyknometer ausgekocht. Da das Vanad in den meisten seiner chemischen Verhältnisse als ein Mittelglied zwischen Scheel und Molybdän erscheint, so war vorauszusetzen, dass die drei homologen Säuren dieser Gruppe dasselbe Atomvolum haben würden.

Nun besitzt die Scheelinsäure nach Karsten das Atomvolum \(\frac{118}{714} = 16\text{·}2\). Für die Dichte der Molybdänsäure ist mir nur die uralte
Angabe von Bergmann (3-46) bekannt, die offenbar viel zu niedrig ist, da sie das Atomvolumen \(\frac{70}{4\cdot04} = 20\cdot3 \) macht. Ich unternehm daher mit sehr schön krystallisirter und fein geriebener Säure zwei Bestimmungen, welche die Zahlen 4-423 und 4-370 bei +20° C. ergaben. Letztere Zahl ist genauer und gibt das Atomvolumen \(\frac{70}{4\cdot37} = 16\cdot0 \), also eine gute Übereinstimmung mit der Scheellsäure. Dagegen ergibt die oben gefunden Dichte der Vanadinsäure ihr Atomvolum zu \(\frac{92\cdot7}{8\cdot491} = 26\cdot5 \), also gänzlich abweichend. Nun aber stimmt diese Zahl genau mit dem Atomvolumen der dreiatomigen Sauerstoffverbindungen der Arsenreihe, wie folgende Zusammenstellung zeigt:

Arernige Säure AsO₃ Dichte: 3-72—3-70 Karsten Atomvolum: 26-6—26-7
Antimonoxyd SbO₃ 5-86 Mohs 25-9
Wismuthoxyd BiO₃ 8-17 Karsten, 8-97 Boullay 28-4—25-9

Wir haben also das merkwürdige Factum, dass das spezifische Volum der Vanadinsäure (auch das des Metalles, wie später gezeigt wird) die Vanadverbindungen anderswohin versetzt, als die sonstigen Analogien (namentlich der Formeltypus der Verbindungen), nämlich aus der Scheelgruppe in die Arsengruppe. Dieser Umstand gewinnt an Interesse dadurch, dass das Vanadinbleierz PbCl + 3Pb₃Ba mit den analogen Salzen der fünfatomigen Säuren der Arsenreihe (Apatit CaCl + 3Ca₃Ba, Kampylit PbCl + 3Pb₃As und Pyromorphit PbCl + 3Pb₃Bi) isomorph ist. Bekanntlich hat Kennegott 1) daraus, so wie aus dem 3-21 Pct. betragenden Verluste in Rammelsberg's Analyse des Obirer Vanadinites 2) den Schluss gezogen, dass in diesem Minerales eine Übervanadinsäure VO₅ angenommen werden müsse; aber, abgesehen davon, dass Isomorphismus und analoge Constitution gar nicht nothwendig zusammenhängen, wie ja Kalkspath und Natronsalpeter, Arragonit und Kalisalpeter, übermangansauerer Baryt und Glaubersalz u. m. a. beweisen, abgesehen davon, dass der erwähnte Verlust in Rammelsberg's eigener Bemerkung 3) seine

1) Pogg. 90, 95.
2) Pogg. 96, 249.
vollkommene Erklärung findet, bieten die merkwürdigen Brieglebschen 1) Duppelsalze, NaF + PO₃, 3NaO + 24HO und NaF + AsO₃, 3NaO + 24HO, welche mit Alaun NaO·SO₄ + Al₂O₃·3SO₃ + 24HO isomorph sind, eine Erscheinung, die schlagend auf unsern Fall passt, nämlich Isomorphismus von Sulfaten (3atomige Säure) und Phosphaten (5atomige Säure). Auch bietet das Atomvolum der Vanadsäure eine näher liegende Erklärung: Das Atomvolum der wasserfreien Arsensäure ist nach Karsten \(\frac{113}{2.754} = 30.8 \), eine Zahl, die vom Atomvolum der arsenigen Säure und Vanadsäure (26.5—26.7) nicht mehr abweicht, als auch sonst die Atomvolumina entschieden zusammengehöriger Stoffe differieren; und da der Isomorphismus des Vanadibleierzes mit den genannten Mineralien eigentlich blosser Homomorphismus ist 2), so darf man auch keine Gleichheit ihrer Atomvolumen weder im Ganzen noch in den Bestandtheilen erwarten. Entschieden gibt das nahe Zusammenfallen der Atomvolumen von Vanadsäure und Arsensäure, verbunden mit dem Factum der Brieglebschen Salze, wie misslich auch noch bei starren Körpern der Schluss von dem spezifischen Volumen der Bestandtheile auf die des Ganzen sein mag, immer eine einfachere und mit den Thatsachen mehr harmonirende Erklärung der Isomorphie von Vanadin mit der Apatitgruppe als die Annahme Kennotts.

Die Darstellung des Vanadinsuperchlorides aus der Säure, welche dazu nicht ganz rein zu sein braucht, ist eine ziemlich einfache und leichte Operation. Die möglichst rein geriebene und mit ihrem Gewichte an Kienruß gemengte Säure wird in einem Rohr aus hartem Glas zuerst in trockenum Wasserstoffgas geübt, hierauf der Wasserstoff durch Kohlensaure vertrieben, und endlich bei dunkler Rothgluth trockenes Chlorgas durchgeleitet; das Superchlorid entsteht mit der grössten Leichtigkeit und condensirt sich im kälteren Ende des Rohres. Dieses ist in eine Spitze ausgezogen, die durch einen Kork mit einem in Wasser, besser in Schnee oder Eis, gekühlten U-Rohre verbunden ist; um nichts von der im Gasströme ausserst

2) Rammelsberg I. C. Schabas Pogg. 100, 297. Grundkantenwinkel der Bipyramide beim Vanadinit 142° 30'Tamm. 143° 0'Schabas; Atomvolum 20.6 Ramm.
Kampylit 142° 7' G. Rose 20:7
Pyromorphit 142° 15' G. Rose 19:2
Apatit 142° 16' — 25' G. Rose 158—164

Das Vanadinsuperchlorid ist ein klares äusserst agiles goldgelbes Liquidum, das an der Luft heftig raucht und dicke zinnoberrothe Wolken von amorpher Vanadinsäure verbreitet; mit wenig Wasser gemischt, wird es dicklich und blutroth, beim Erhitzen schön blau, durch Bildung von Chlorid VCl_4; mit viel Wasser gibt es eine klare blassgelbe Lösung, die beim Eindampfen, ohne blau zu werden, rothe pulverige Vanadinsäure zurücklässt. Sein Siedepunkt liegt bei $\mp 127^\circ$; ich bestimmte denselben mit 10 Grammen reiner umdestillirter Substanz. Die Thermometerkugel reichte halb in die Flüssigkeit und das Quecksilber stand während des lebhaften Siedens bis zum letzten Tropfen fest auf 125°; die Correction für den Quecksilberfaden war $1^\circ54$ ($T = 125^\circ$ t = 30$^\circ$; N = 108$^\circ$ nach Köpp's Bezeichnung). Im Ölbaude hatte ich früher den Siedepunkt trotz aller Vorsicht um fast 10$^\circ$ zu hoch gefunden. Der Dampf des Superchlorides ist rein und intensivgelb wie der des Chlors. Die Dichte des Vanadinsuperchlorides ergab sich bei zwei Versuchen (mit 6·6 und 6·1 Grammen Substanz) resp. zu 1·763 und 1·765 bei $\mp 20^\circ$C. im Mittel = 1·764; daraus folgt das Atomvolum zu $\frac{110}{1764} = 99$·2. Mit den homologen Superchloriden des Scheels und Molybdäns ist kein Vergleich möglich, da dieselben fehlen, wohl aber mit den dreiato-
migen Chloriden der Arsengruppe. Allerdings wissen wir durch Kopps classische Untersuchungen, dass die Atomvolumina von Flüssigkeiten nur bei ihren Siedepunkten streng vergleichbar sind, und an einer Untersuchung über die Ausdehnung des Vanadinsupchlorids durch die Wärme, um daraus das Atomvolum beim Siedepunkt zu berechnen, fehlt es leider; indess reicht ein Blick auf Kopp's letzte Übersichtstafel 1) hin, ein merkwürdiges Verhältniss erkennen zu lassen, welches uns diese Lücke auszufüllen erlaubt, dass nämlich die flüssigen flüchtigen Chloride einfacher Radicale von annähernd gleichen Siedepunkten sich ohne Rücksicht auf ihre moleculare Zusammensetzung in gleichen Temperaturintervallen (von 0° bis zum Siedepunkt) fast gleich viel ausdehnen. Die Zahlen mögen sprechen:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Siedepunkt</th>
<th>Kopp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelchlorid S₂Cl</td>
<td>144°</td>
<td></td>
</tr>
<tr>
<td>Zinnchlorid SnCl₂</td>
<td>115° Pierre</td>
<td></td>
</tr>
<tr>
<td>Titanchlorid TiCl₃</td>
<td>136°</td>
<td></td>
</tr>
<tr>
<td>Arsenchlorür AsCl₃</td>
<td>134°</td>
<td></td>
</tr>
<tr>
<td>Antimonchlorür SbCl₅</td>
<td>223° Kopp</td>
<td></td>
</tr>
</tbody>
</table>

Ausdehnung vom 0°—144° = 0·159 (des Volums bei 0°)

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Ausdehnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°—115°</td>
<td>0·154</td>
</tr>
<tr>
<td>0°—136°</td>
<td>0·155</td>
</tr>
<tr>
<td>0°—134°</td>
<td>0·152</td>
</tr>
<tr>
<td>73°—223°</td>
<td>0·144</td>
</tr>
</tbody>
</table>

Es wird daher erlaubt sein, die Dichte des Vanadinsupchlorids durch die Ausdehnung des Arsenchlorürs auf 0° und auf 127° zu reduzieren; sie wird dann bei 0° = 1·799 und bei +127° = 1·573, und damit das Atomvolum des Vanadinsupchlorids bei seinem Siedepunkt = \(\frac{175}{1·573} = 111·2 \). Stellen wir damit das Atomvolumen der Chlorüré der Arsengruppe bei ihren Siedepunkten nach Kopp²) zusammen, so haben wir:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Dichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl₅</td>
<td>93·9</td>
</tr>
<tr>
<td>AsCl₅</td>
<td>94·8</td>
</tr>
<tr>
<td>SbCl₅</td>
<td>97·7 (wenn Sb = 122)</td>
</tr>
<tr>
<td>VCl₅</td>
<td>111·2</td>
</tr>
</tbody>
</table>

demnach allerdings das Atomvolum des Vanadinsupchlorids auch noch von dem höchsten der Gruppe, dem des Antimonchlorürs, zu sehr abweichend, um eine Zusammengehörigkeit annehmen zu können; indess beträgt die Differenz nur 0·14 des Ganzen, und ein Steigen

des Atomvolums mit dem Atommgewichte ist auch in anderer Reihe unverkennbar 1), so dass auch beim Vanadinsuperchloride eine Annäherung an den molekularen Charakter der Arsenreihe unverkennbar ist.

Eine nicht weniger interessante Zahl als das Atomvolum war die Dampfdichte des Vanadinsuperchlorides; ich bestimmte dieselbe nach der Dumas'schen Methode, da mir der Gaylussac-Natansonische Apparat nicht zu Gebote stand; um aber die kostbare Substanz nicht zu verlieren, ging ich folgendermassen zu Werke. Das Chlorid wurde durch einen Haarröhrenchentrichter möglichst rasch in den scharf getrockneten Ballon gebracht, dessen Hals schon knieförmig (im scharfen Winkel) gebogen, aber nicht zu einer scharfen Spitze ausgezogen war; die Knieröhre wurde hierauf durch einen Kork mit einem gutgekühlten U-Rohre verbunden und so tief als möglich (den Ballon nach unten) in ein Ölbad gesenkt, das langsam bis zur bestimmten Temperatur gebracht wurde; nachdem diese längere Zeit constant geblieben war, wurde der horizontale Arm der Knieröhre mit dem Löthrohre durchgeschmolzen. Nun wog ich den Ballon mit Dampf, nach dem Öffnen, Reinigen und Trocknen leer. Die Data sind folgende:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht des Ballons mit Dampf</td>
<td>22435</td>
</tr>
<tr>
<td>" " " Luft</td>
<td>21875</td>
</tr>
<tr>
<td>Temperatur des Bades beim Zuschmelzen</td>
<td>±247°</td>
</tr>
<tr>
<td>Barometerstand beim Zuschmelzen</td>
<td>748 Millim.</td>
</tr>
<tr>
<td>" " " Wägen</td>
<td>7444/4</td>
</tr>
<tr>
<td>Temperatur " "</td>
<td>+19°</td>
</tr>
<tr>
<td>Volum des Ballons</td>
<td>184,8 CC.</td>
</tr>
<tr>
<td>Rückständige Luft</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Daraus ergibt sich die Dampfdichte = 6,41 und da \(\frac{175}{6,41} = 27,3\), so folgt nach der so einfachen Köpp'schen Regel, dass ein Atom Vanadinsuperchlorid in Dampfgestalt vier Volumina erfüllt. Berechnet man daran die Dampfdichte theoretisch, so erhält man \(\frac{175}{35,78} = 6,06\), eine Abweichung von der Beobachtung, die einseitig in einer Unerheblichkeit ist, da ja hier nur zwischen 1, 2 und 4 Volumen zu entscheiden war, anderentheils ganz nach der Seite liegt, wo ich sie erwartet musste.

1) Man vergleiche in der Zinnreihe:

\[
\begin{align*}
\text{CCl}_3 & = 53,3 \text{ Riche.} \\
\text{SiCl}_4 & = 81,1 \text{ Pierre.} \\
\text{TiCl}_4 & = 63,0 \\
\text{SnCl}_4 & = 65,7
\end{align*}
\]
Beiträge zur Kenntnis der Vanadinverbindungen.

weil dort wo die Knieröhre des Ballons in der Klammer lag, etwas flüssiges Chlorid sich condensirte und auf keine Weise zu vertreiben war. Auch dieses Resultat ist insoferne interessant, als es die Regel bestätigt, dass alle flüchtigen Trichloride unorganischer Radicale vier Volumen Dampf geben (die Regel trifft zu bei BCl₄, PCl₅, PO₃ Cl₃, AsCl₅, BiCl₅, VCl₅ — ebenso bei den entsprechenden Bromiden und Fluoriden, während die Bichloride, bei der bisherigen Schreibung der Formeln, ebenso wie die Mono- und Sesquichloride zwei Volumina mit ihrem Dampf erfüllen: SiCl₄, TiCl₄, SnCl₄, ZrCl₂; S₈ Cl, CrO₃ Cl, Hg Cl; Al₄Cl₅, Fe₅ Cl₅). Diese allerdings empirische Regel dürfte es erlauben, Körpern von zweifelhafter Angehörigkeit ihren richtigen Platz in der oder jener Reihe anzuweisen. Man denke, z. B. an die Frage, ob Tantal und Niob zweiatomige Radicale seien (H. Rose) oder dreiatomige (Berzelius) oder anderthalbatomige (Hermann), mit andern Worten ob sie zur Zinn- oder zur Scheelgruppe gehören. Das Atomvolum der Metallsäuren der Zinnreihe ist 10—11, wie folgende Zahlen zeigen:

SiO₂ = 11·3 Dumass.
TiO₂ = 9·8—9·6 Mohs (Rutil).
SnO₂ = 11·3 Berzelius.
TaO₅ = 11·0 H. Rose (im Porzellanofen geglüht, wenn Ta = 69).
NbO₅ = 14·1 derselbe (ebenso; für Nb = 49).

Setzte man Ta = 103 und Tantalsäure = TaO₅, so würde das Atomvolum = 16·7 sehr stimmend mit dem der Scheel- und Molybdän säure (16·0—16·2). Allerdings stimmen alle Verbindungen des Tantals zu sehr für seine zweiatomige Natur, um einen Zweifel zu zulassen; dagegen ist die Abweichung des Niobs einem Zweifel in dieser Richtung wenigstens nicht ungünstig. Gewiss wäre eine Dampfdichtebestimmung des Tantachlorides sowie beider Niobchloride, nicht weniger auch die Bestimmung ihrer Atomvolumen, von hohem Interesse, auch wohl kaum sehr schwierig.

0.460 Grm. VCl₃ gaben 1.144 Grm. AgCl = 0.283 Grm. Cl = 61.32 pC. Cl.
1.2745 " VCl₃ " 3.159 " AgCl = 0.7815 " Cl = 61.32 " Cl.
0.3635 " VCl₃ " 0.192 " VO₂ = 0.1422 " V = 38.90 " V.

Berechnet:
V = 68.5
Cl = 106.5

Gefunden:
V = 39.14
Cl = 60.56

Das Vanadinsuperbromid (VBr₃) entsteht ganz wie das Supercloformid; es ist fest, sehr zerfließlich, leichtflüchtig, scheint vor dem Schmelzen zu verdampfen, und sublimirt in prächtvollen langen kaum durchsichtigen Nadeln von tiefgrünbrauner Körperfarbe und metallisch-diamantartigem blauem Flächenschiller. Die nähere Untersuchung desselben soll den Gegenstand einer nächsten Mittheilung bilden.

Hier will ich nur noch die Versuche besprechen, die ich gemacht habe, das metallische Vanadin darzustellen. Ich versuchte zuerst die Reduction der Vanadinsäure im Wasserstoffstrom. Zwar sagt Berzelius (Lehrbuch II, 336): „Von Wasserstoffgas wird das Suboxyd [VO] nicht bei der höchsten Temperatur zersetzt, bis zu welcher man eine Porcellanröhre in einem kleinen Windenofen erhitzen kann;“; allein ich nahm einen Flintenlauf, und glühte Vanadinsäure in groben Stücken auf Porzellanstifchen zwei Stunden lang bei der heftigsten Hitze eines Zugofens mit hohem Schornsteine. Die Säure war zum größten Theile rein schwarz und erdig, d. h. zu VO geworden; zum Theile zeigten sich Übergänge aus dem schwarzen erdigen Oxydul in eine graue Masse, die viel Ähnlichkeit mit Platinenschwamm hatte; endlich ein kleiner Theil war rein und licht grau, ziemlich hart, innen hohl und unter 25 maliger Vergrösseung prächtig kry-
stallinisch, ganz wie eine Probe durch Wasserstoff reducirten Scheels, nur mehr bräunlich. 0.221 Gramme rein schwarzer Masse wurden durch Verwandlung in Vanadinsäure (wiederholtes Befeuchten mit Salpetersäure und Glühen) zu 0.272 Grammen, nahmen also um 23.1 pCt zu, während 100 Theile reines Oxydul nur 120.9 Theile Vanadinsäure geben, waren also ein Gemische von 6 pCt. Metall und 94°/0 Oxydul. Eine Probe der schwarzgrauen Masse nahm durch vollständige Oxydation von 0.701 auf 0.871 Gramme zu, also um 24.2 pCt, was einem Gemenge von 24 pCt. Metall und 76 Oxydul entspricht. Die dritte Probe, von der rein grauen Substanz, welche offenbar nur Metall war, verunglückte leider bei der Analyse. Jedenfalls betrachtete ich es als sicher, dass die Vanadinsäure durch Wasserstoffgas bei Windofenhitze zu Metall reducir wird.

Die Reduction der Vanadinsäure durch Kohle bei sehr starker Hitze gibt zwar auch Metall, aber meist nur als graues Pulver; doch erhielt Johnston durch Glühen von Oxyd in Stücken, eingestampft im Kohlenpulver und Öl, bei heftiger Gluthitze ein sprödes glänzendes und äusserst hartes Metallkorn von Wismuthfarbe, unmagnetisch, aber Elektricität leitend. Ich habe diesen Versuch noch nicht gemacht, werde ihn aber nicht verabsäumen, wenn auch so nur Carburet erhalten werden kann. Fand ja doch Debray in so bereitem Molybdänmetall 4 Percent Kohlenstoff. Auch die Reduction der Vanadsäure durch Natrium liefert (wie schon Berzelius fand), das Metall als ein schweres schwarzes schimmerndes Metallpulver, das aber noch Oxydul enthalten dürfte; denn das von mir dargestellte verbrennt im Bromdampfe nur zum kleineren Theile.

Am leichtesten gelingt die Reduction des Vanadins nach der Methode, die von Uslar1) zur Darstellung von Scheel und Molybdän anwandte, d. h. beim Durchleiten von trocknem Wasserstoff, der mit dem Dampfe von Vanadin superchlorid beladen ist, durch roth glühende Glasröhren. Ich brachte 10 Gramme Superciorid in eine U-Röhre, die auf einem Drathroste lag, und deren Schnabel durch einen Kork in eine Röhre von hartem Glas mündete, welche, von Blechrinnen umhüllt, in einem Liebig’schen Verbrennungsofen rothglühend erhalten wurde. Ein

1) Ann. Ch. Pharm. 94, 256.
Beiträge zur Kenntniss der Vanadolverbindungen.

lungen, und in wenigen Minuten ist das Metall ganz zu schön blauem salpetersaurem Vanadinoxide gelöst. Auch das durch Wasserstoff reduzierte Metall, ebenso (nach Johnston) das im Kohlentiegel geschmolzene, werden durch Salpetersäure stürmisch ge-
löst, während Scheel und Molybdän, sowohl die durch Wasser-
stoff 1) als die durch Kohle reducirten, den stärksten Säuren wider-
stehen. 1·82 Gramme pulveriges Metall (aus VCl₃ durch H redu-
cirt) gaben nach der Oxydation durch concentrirte Salpeter-
säure (die explosionsartig vor sich ging) 2·43 Gramme reine

Der Musculus transversus colli des Menschen.

Von Dr. Hubert Luschka,
Professor der Anatomie zu Tübingen.

(Mit 1 Tafel.)

(Vorgelegt von Herrn Regierungsrath H y r t l.)

Durch vielfache, alle ihre Bestandtheile umfassende Zergliederungen der unteren mittleren Region des Halses wurde meine Aufmerksamkeit auf das ausnahmsweise Vorkommen eines Muskels gelenkt, welcher sich, wie es scheint, der Beobachtung bisher gänzlich entzogen hatte. Obschon dieser Gegenstand zur Zeit wenig geeignet ist, ein praktisches Interesse in Anspruch zu nehmen, so verdient derselbe doch wohl zur Kenntniss derjenigen gebracht zu werden, denen ein tieferes Verständniss für morphologische Forschung innewohnt, da er zu einer vergleichenden Betrachtung ohne Zweifel sehr merkwürdige Anhaltspunkte gewährt. Es lässt sich nämlich leicht erkennen, dass der in Rede stehende Muskel am Halse eine Wiederholung derjenigen Formation darstellt, welche am Bausche den Musc. transversus, und an der Brust den Musc. triangularis sterni ausmacht. Im höchsten Grade wahrscheinlich ist es ausserdem, dass diese am menschlichen Organismus verhältnissmässig selten und nur im kleinen Massstabe auftretende Bildung, da oder dort im Wirbelthiereiche, worüber ich leider nichts zu berichten vermag, zu einer ständigen und relativ mächtigen Ausprägung gediehen sein dürfte.

Der quere Halsmuskel hat eine sehr gebogene Lage, welche nebst seiner Kleinheit wohl die Ursache ist, warum er die Aufmerksamkeit so lange nicht auf sich gezogen hat. Er befindet sich zwischen dem unteren Ende des Musc. sterno-hyoideus und sterno-thyroideus und ist in wechselndem Grade der Ausbildung bald nur auf einer, bald in mehr oder weniger gleicher Art auf beiden Seiten vorhanden.

Um eine genügende Vorstellung von der unzweifelhaften Eigenthümlichkeit und Selbstständigkeit dieses Muskels zu gewinnen,
hervorgegangene oder ein gesondertes und vom eigentlichen unteren Ende des Musc. sterno-thyreoideus gedecktes Bündel setzt seinen Weg häufig nicht nach aufwärts fort, sondern endigt sich im Periost knapp unter der Incisura semilunaris superior der Brustbeinhandhabe, oder heftet sich auch wohl an die hintere Seite des Lig. interclaviculare an. Nach einer von M. Girardi, De re anatomica oratio, Parmae, 1781, p. 36) gemachten Wahrnehmung, hängen die Musc. sterno-thyreoidei bisweilen durch Querfasern zusammen. Der Musc. transversus coli läßt sich auf keine dieser Varietäten zurückführen, was nicht allein schon daraus hervorgeht, daß ich ihn im Vereine mit solchen Abweichungen angetroffen habe, welche noch am meisten auf denselben hätten bezogen werden können, sondern noch vielmehr aus der auffallenden Constanz der Form, Lage, Ursprungs- und Endigungsweise in allen von mir bis jetzt beobachteten Fällen seines Vorkommens.

Der quere Halsmuskul hat stets eine exquisit horizontale Verlaufsrichtung. Er ist platt und dünn; 3—4 Centimeter lang, und in Maximo 1 Centimeter breit. Sein sehnen-fleischiges Ursprungs-ende ist am schmalsten, meist nur 0,3 Centimeter breit und liegt ein wenig unter der Mitte des oberen Randes an der hinteren Seite des Knorpels der ersten Rippe. Die mittelst einer dünnen Zellstoffschichte, an die hintere Seite des Musculus sterno-hyoideus angelötheten Bündel, laufen meist fächerartig aus einander fallend, da über diesen Muskel hinweg, wo er an dem hinteren Umfange des Sterno-Claviculargelenkes anliegt. Die 3 bis 4. den Muskel constituirenden, lose zusammenhängenden Fleischbündel gehen schon frühzeitig in feine, sich mehrfach spaltende Sehnenfäden über, die in der Mittellinie theils von beiden Seiten her zusammentossen, theils sich durchkreuzen. Einzelne Sehnenfäden endigen meist im Gewebe des Lig. interclaviculare oder auch in der Faserkapsel am inneren Umfange des Brustbein-Schlüsselbeingelenkes. Wenn diese Sehnenfäden stark ausgebildet sind, dann lassen sich dieselben schon bei der Präparation von vorn her durch ihren Glanz und durch ihren horizontalen Verlauf von dem Gewebe der Fascia coli, in welches sie gewissermassen eingetragen sind, ohne Schwierigkeit unterscheiden. Zur Aufsuchung des Muskels ist jedoch die Präparation von vorn her wenig geeignet. Es ist ratsam, an dem mit der inneren Hälfte der Schlüsselbeine und des ersten Rippenpaares,
sowie mit dem Musc. sterno-hyoideus und sterno-thyreoideus im Zusammenhange belassenen Handgriffe des Brustbeines die Zergliederung von der Rückenseite aus so vorzunehmen, dass man zuerst das mittlere Blatt der Halsbinde entfernt, und dann mit grösster Vorsicht den Musc. sterno-thyreoideus bis zu seinem Ursprunge ablöst. Da der Transversus coli sehr schwach, blass und bei nicht ganz frischen Leichen bisweilen ausnehmend weich und zerreisslich ist, könnte es wohl geschehen, dass er bei unsichtsamer Zergliederung überschlagen oder bis zur Unkenntlichkeit verstümmelt würde. Einige Male zeigte dieser Muskel, welcher aber dann auf ein Minimum reducirt war, eine tiefe Lage, indem er nicht hinter, sondern unmittelbar unter dem Brustbein-Schlüsselbeingelenk angebracht war. In denjenigen Fällen, in welchen ein querer Halsmuskel nur auf einer Seite vorhanden war, verlor sich sein in dünne Sehnenfäden zerfallenes medianes Ende theils im Lig. interclaviculare, theils in dem Zellstoffe, welcher in der unteren Halsgegend zwischen das oberflächliche und mittlere Blatt der Fascia colli eingeschoben ist.

Wenn man bei der morphologischen Betrachtung dieses Muskels seine volle Ausbildung auf beiden Seiten im Auge behält, dann kann seine Deutung als Transversus coli gewiss nicht im mindesten beanstandet werden. Er hat in seiner ganzen äussern Gestaltung eine frappante Ähnlichkeit mit einer der obersten Zacken des queren Bauchmuskels. Gleich einer solchen verläuft er horizontal, entspringt schmal, verbreitet sich dann wie diese, und geht gleich ihr in sehnige Fäden über, welche, wenn auch keine dichte Linea alba constitüirend, doch zum Muskel der anderen Seite ganz verwandte Beziehungen zu erkennen geben.

Wie der Musc. triangularis sterni nach unten, indem seine Bündel mehr und mehr eine horizontale Richtung annehmen, allmählich zum Transversus abdominis wird, und durch seine unterste Zacke schon so sehr den Typus des letzteren annimmt, dass er mit der medianen Sehnensubstanz von dessen oberster Zacke in der Regel selbst continuirlich ist, so erkennen wir noch oben, nach einigen Unterbrechungen, seine, aber gewissere Massen im Erlöschen begriffene Wiederholung, in Form jenes queren in der unteren Region des Halses angebrachten Muskelbündels.

Durch die letzteren Betrachtungen wird man jedoch keineswegs zur Ansicht berechtigt, als stelle unser Muskel weiter nichts
als eine Varietät des *Triangularis sterni* dar; vielmehr haben wir es mit einer, wenn auch seltenen, doch gesetzmäßigen Bildung zu thun.

Der *Musc. supraclavicularis* hat nach dem Zeugnisse aller bisherigen Erfahrungen dagegen seine Lage ohne Ausnahme über dem Schlüsselbeine. Bei vollkommener Ausbildung besitzt dieser Muskel,

4) De corp. humani fabrica. Tom. VI. p. 76.

In der sogenannten Fossa sternalis bilden das oberflächliche und das mittlere Blatt der Binde des Halses eine Art von Diaphragma, welches schein über dem oberen Ende des sogenannten vorderen Mittelfellraumes liegt, und einigen passiven Antheil am Athmungsmechanismus nimmt. Blandin und Béclard haben denselben sehr hoch taxirt, indem sie die Befürchtung aussprachen, es möchten Halswunden, welche jene fibröse Scheidewand durchsetzen, bei heftiger und tiefer Inspiration durch Luft eintritt Athmung beschwerden herbeiführen. Da nun die aus dem Transversus colli hervorgehenden Sehnenfädien quer zwischen jenen Fascienblättern verlaufen und zum Theil in ihr Gewebe eingelagert sind, vermöchten sie wohl einiges zur Verstärkung jener Scheidewand beizutragen, ja bei starker Ausprägung des Muskels könnte durch ihn der Einwirkung des Luftrückens auf die unverletzte Fossa sternalis selbst ein activer Widerstand geleistet werden.

Jene beiden Blätter der Fascia colli berühren sich da nicht unmittelbar, wo sie an den oberen Rand des Brustbeines angrenzen, sondern sie weichen daselbst in der Dicke des Manubrii sterni aus einander. In dem so gebildeten Zwischenraume findet sich nebst lockerem, bei gesunden Menschen einiges Fett enthaltenden Zellstoffe,

gewöhnlich ein kurzes, horizontal liegendes, federkielstückiges Gefäßstück, welches die unteren Enden der Venae jugulares externae anteriores unter einander in Communication setzt. In die Mitte jener Ader senkt sich fast regelmässig eine dünnere subcutane Vena sternalis ein. Diese letztere tritt aber auch nicht selten mit kleineren Zweigen, welche vornehmlich das Blut aus dem Brustbein-Schlüsselbeingelenken zurückführen, zu einem Stämmchen zusammen, das unter dem Lig. interclaviculare sich in die linke ungenannte Vene begibt. Durch die Zusammenziehung des Transversus colli, von welchem meist einige Sehnenfäden an das Lig. interclaviculare gelangen, könnte jene Sehne vor dem Drucke bewahrt werden, den das Band bei gewissen Stellungen der Schlüsselbeine auf sie sonst notwendig ausüben muss.

Erklärung der Abbildung.

Die Handhabe des Brustbeines eines 40 Jahre alten Mannes ist von seiner inneren Seite her dargestellt. Sie wurde im Zusammenhange belassen mit dem ersten Rippenpaar (I, I), sowie mit den Schlüsselbeisen (a, a). Unter dem Ligamentum interclaviculare (b) bemerkt man die Mündung eines Venenstämmchens (c), welches im Begriffe ist, in die linke ungenannte Vene einzutreten. Das oberflächliche Blatt der Fascia colli (d) sowie der Musculus sternothyoides (e, e) sind erhalten worden. Hinter dem letzten verläuft jederseits der Musculus transversus colli (f, f), welcher schmal vom Knorpel der ersten Rippe entspringt, sich verbreitert und in Sehnenfasern übergeht, die sich theils durchkreuzen, theils mit jenen der anderen Seite zusammenfassen.
Über den inducirten Strom der Nebenbatterie.

Von Peter Blaserna,
Assistenten am k. k. physikalischen Institute in Wien.

(Vorgelegt in der Sitzung vom 22. Julii 1858.)

Wird zu einem geradlinig ausgespannten Theile des Schlies- sungsbogens einer Batterie — Hauptbatterie — ein Drath parallel ausgespannt und dessen Enden zu der äusseren und inneren Belegung einer isolirten Batterie — Nebenbatterie — geführt, so wird durch die elektrische Entladung der ersteren in diesem ein eigenthümlicher Strom inducirt. Herr Director Knoch en hauer, dem wir die Entdeckung desselben verdanken, nennt ihn den Strom der Nebenbatterie; er veröffentlichte darüber mehrere Versuche, die in den Sitzungsberichten dieser Akademie, sowie auch in Grunert's Archiv aufgenommen worden sind.

Nennt man den Schliesungsbogen der Hauptbatterie den Hauptdrath, jenen der Nebenbatterie den Nebendrath, so lässt sich oberwähntes Knoch en hauer'sches Gesetz kurz so zusammenfassen:

1. Die Intensität des inducirten Stromes ist bei einem und demselben Hauptdrath für verschieden lange Nebendräthe nicht constant, sondern nimmt bis zu einem bestimmten Punkte — Maximum — zu, und von da wieder ab.
2. Dieses Maximum tritt dann ein, wenn bei vollkommen gleichen Flaschen die Länge des Hauptdrathes sich zu jener des Nebendrathes so verhält wie die Anzahl der Flaschen der Nebenbatterie zu jener der Hauptbatterie.

Zur Prüfung dieses Gesetzes war es zuerst nöthig, die mir zu Gebote stehenden sechs Leidner Flaschen, die ich mit Nr. 1, 2, 3, 4, 5, 6 bezeichnen werde, zu prüfen und deren Stärke numerisch zu bestimmen. Zu dem Ende schaltete ich in den Schliessungsbogen der zu prüfenden Flasche das Funkenmikrometer, dessen Kugeln in constanter Entfernung erhalten wurden, und das Luftthermometer ein, und lud die Flasche mittelst eines starken Drathes vom Conductor der Elektrisirmaschine aus so lange, bis ein Funke über die Kugeln des Funkenmikrometers übersprang. Für den nun erfolgenden Ausschlag θ des Luftthermometers gilt unter der Bedingung, dass der Schliessungsbogen stets derselbe bleibe, die Relation

\[θ = a \cdot \frac{q^2}{s}, \]

wobei \(q \) die Elektricitätsmenge, \(s \) die Oberfläche der Flasche, \(a \) eine Constante, über deren Bedeutung die zahlreichen und schönen Arbeiten Riess' vollkommene Aufklärung geben, bedeutet.

Die Größe \(s \) konnte ich als constant ansehen, da die Oberfläche bei den Flaschen nahezu 25 Quadratdecimeter beträgt. Es ergibt sich somit

\[q = b \sqrt{θ}, \]

wo \(b \) abermals eine Constante bedeutet.

Als Einheit nahm ich bei dieser Bestimmung nach dem Vorschlage Herrn Knochenhauer's das arithmetische Mittel aus den sechs Flaschen an. Auf diese Weise ergaben sich für die einzelnen Flaschen folgende Daten:

<table>
<thead>
<tr>
<th>Flasche</th>
<th>θ in Pariser Linien</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.2</td>
<td>14.5</td>
</tr>
<tr>
<td>2</td>
<td>10.6</td>
<td>10.6</td>
</tr>
<tr>
<td>3</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>5</td>
<td>12.3</td>
<td>12.2</td>
</tr>
<tr>
<td>6</td>
<td>10.0</td>
<td>10.1</td>
</tr>
</tbody>
</table>
Zieht man aus diesen Zahlen die Quadratwurzel und reduziert sie auf die angenommene Einheit, so ergibt sich

<table>
<thead>
<tr>
<th>Flasche</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.16</td>
</tr>
<tr>
<td>2</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>0.85</td>
</tr>
<tr>
<td>5</td>
<td>1.07</td>
</tr>
<tr>
<td>6</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Es ist bekannt, dass der hygrometrische Zustand der Luft einen nicht unbedeutenden Einfluss auf die Werthe von \(\theta \), also auch auf jene von \(q \) hat, da die Luft an verschiedenen Tagen die Elektricität verschieden leitet und daher das Überspringen des Funkens je nach ihrem Wassergehalte entweder begünstigt oder erschwert. Ich unternehm daher an zwei verschiedenen Tagen noch zwei Bestimmungen von \(q \), um den Einfluss der Feuchtigkeit numerisch kennen zu lernen.

Die Beobachtungen dabei waren folgende:

<table>
<thead>
<tr>
<th>Flasche</th>
<th>(\theta) in Parisier Linien</th>
<th>Mittel</th>
<th>(q)</th>
<th>(\theta) in Parisier Linien</th>
<th>Mittel</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>14.0</td>
<td>11.4</td>
<td>13.8</td>
<td>13.9</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>10.3</td>
<td>10.4</td>
<td>0.97</td>
<td>10.3</td>
<td>10.3</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>10.7</td>
<td>10.7</td>
<td>0.99</td>
<td>10.5</td>
<td>10.5</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>7.9</td>
<td>8.0</td>
<td>0.85</td>
<td>7.9</td>
<td>7.9</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>11.8</td>
<td>12.1</td>
<td>1.05</td>
<td>11.9</td>
<td>11.9</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>10.2</td>
<td>10.1</td>
<td>0.97</td>
<td>10.0</td>
<td>10.0</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Ich erhielt somit schliesslich folgende Werthe für \(q \):

<table>
<thead>
<tr>
<th>Flasche</th>
<th>(q)</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.16</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>1.01</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>1.07</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Vergleicht man alle diese Daten, so ergibt sich daraus folgendes:
2. Die Werthe von \(\theta \) hängen allerdings davon ab, allein die Form der Abhängigkeit ist leicht anzugeben; es muss \(\theta \) einen Factor, den man den Feuchtigkeitcoefficienten nennen könnte, enthalten, also

\[
\theta = \frac{1}{p} \Theta
\]

sein, wobei \(\Theta \) den Ausschlag des Luftthermometers bei vollkommen trockener Luft bedeutet. Inwiefern dieser Coefficient mit dem Dispersionscoefficienten, dessen genaue Bestimmung Riess gelehrt, zusammenhängt, können nur Versuche mittelst der Coulomb'schen Drehwage lehren.

Dies alles vorausgesetzt, gehe ich nun zu den Inductionsversuchen selbst über. Vom Conductor \(C \) einer dreischibigen Winternischen Elektrisirmaschine wurde die Hauptbatterie \(H \) geladen. Der Schlussungsdrahth ging über das Funkenmikrometer \(F \). Die Nebenbatterie \(N \) befand sich auf dem Isolierschemel \(A \) und stand mit dem Luftthermometer \(L \) in Verbindung; \(p, p' \) sind die parallel ausgespannten Theile der Schließungsbögen, welche einander beliebig genähert werden konnten und deren Länge stets 12 Wiener Fuss betrug. Als Schließungsbogen diente ein 1 Millimeter dicker Kupferdrath, von welchem mittelst passender Gestelle beliebig viel aus- und eingeschaltet werden konnte.

Bei dem ersten Versuche betrug der Hauptdrath 32 Wiener Fuss, die Kugeln des Funkenmikrometers waren auf die Entfernung von 10 halben Linien gebracht, die Distanz der parallelen Dräthe betrug 6 Centimeter; als Hauptbatterie war die Flasche 6, als Nebenbatterie die Flasche 5 eingeschaltet. Es ergaben sich hierbei folgende Daten:
Über den inducirten Strom der Nebenbatterie.

I. Versuch.

<table>
<thead>
<tr>
<th>Länge des Nebendrathes in Wz. Fuss</th>
<th>0 in Pariser Linien</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>4·1 4·3</td>
<td>4·2</td>
</tr>
<tr>
<td>34</td>
<td>5·4 5·5</td>
<td>5·5</td>
</tr>
<tr>
<td>33</td>
<td>5·9 6·1</td>
<td>6·0</td>
</tr>
<tr>
<td>32</td>
<td>6·4 6·5</td>
<td>6·5</td>
</tr>
<tr>
<td>31</td>
<td>6·7 6·8</td>
<td>6·7</td>
</tr>
<tr>
<td>30</td>
<td>6·8 7·0</td>
<td>6·9</td>
</tr>
<tr>
<td>29</td>
<td>7·0 7·1</td>
<td>7·0</td>
</tr>
<tr>
<td>27</td>
<td>7·0 6·9</td>
<td>7·0</td>
</tr>
<tr>
<td>25</td>
<td>6·3 6·5</td>
<td>6·4</td>
</tr>
<tr>
<td>23</td>
<td>5·8 6·0</td>
<td>6·0</td>
</tr>
</tbody>
</table>

Construirt man eine Curve, indem man die Längen des Nebendrathes als Abscissen, die Werthe von 0 als Ordinaten ansieht (Fig. 2), so ergibt sich mit Leichtigkeit, dass diese Curve ein Maximum besitzt. Was die Stelle desselben betrifft, so findet es wegen der Ungleichheit der Flaschen nicht bei 32, sondern bei 28 statt. Dass die Länge des Nebendrathes im Maximum von der Stärke der Flaschen abhängt, wird besonders durch eine Versuchsreihe ersichtlich, die ich an demselben Tage bei ganz gleichen Umständen vornahm, wobei jedoch die Hauptbatterie zur Nebenbatterie, die Nebenbatterie zur Hauptbatterie gemacht wurde. Es ergaben sich dabei folgende Daten:

II. Versuch.

Hauptbatterie Flasche 5.
Nebenbatterie Flasche 6.

<table>
<thead>
<tr>
<th>Länge des Nebendrathes in Wz. Fuss</th>
<th>0 in Pariser Linien</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2·7 2·5</td>
<td>2·7</td>
</tr>
<tr>
<td>24</td>
<td>3·0 3·0</td>
<td>3·1</td>
</tr>
<tr>
<td>26</td>
<td>3·3 3·6</td>
<td>3·5</td>
</tr>
<tr>
<td>28</td>
<td>4·1 4·1</td>
<td>4·0</td>
</tr>
<tr>
<td>30</td>
<td>4·2 4·4</td>
<td>4·3</td>
</tr>
<tr>
<td>Länge des Neben-</td>
<td>θ in Pariser</td>
<td>Mittel</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>dreihauesa in Wr. Fuss</td>
<td>Linien</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>34</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>36</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>38</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>40</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>42</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>44</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>48</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>52</td>
<td>2.5</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Construirt man sich abermals eine Curve, so ersieht man, dass das Maximum jetzt bei 36' stattfindet, während es bei der vorigen Versuchsreihe bei 28' eintrat und der Hauptdrath constant 32' betrug. Das Maximum tritt also bei gleichen Flaschen an der von Herrn Knochauer bezeichneten Stelle ein.

Man ersieht zugleich, dass diese Curven vom Maximum ab symmetrisch gebaut sind. Bezeichnet man daher den Hauptdrath mit \(h \), den Nebendrath mit \(n \) und berücksichtigt, dass das Maximum bei \(h - kn = o \) eintritt, wobei \(k \) vorläufig eine noch unbekannte Grösse vorstellt, welche von der Stärke der betreffenden Flaschen abhängt und für gleiche Flaschen gleich 1 wird, so ergibt sich mit Leichtigkeit, dass das Verhältniss zwischen \(\theta \) und \(n \) sich allgemein durch folgende Formel geben lässt:

\[
\theta = \frac{a}{b + c(h - kn)^2 + d(h - kn)^4 + \ldots}
\]

wobei \(a, b, c, d \) durch Erfahrung zu bestimmende Constante bezeichnen. Für \(h = kn \) geht \(\theta \) in \(\frac{a}{b} \) über; setzt man daher diesen Maximumwerth gleich \(M \), und \(\frac{c}{b} = A \), \(\frac{d}{b} = B \) etc., so geht die Formel über in

\[
\theta = \frac{M}{1 + A(h - kn)^2 + B(h - kn)^4 + \ldots}
\]

Ich habe mich überzeugt, dass die kürzere Formel

\[
\theta = \frac{M}{1 + A(h - kn)^2}
\]

vollkommen genügt, weshalb ich die späteren Glieder vernachlässigen werde. Denn setzt man in der ersten Versuchsreihe:
Über den inducirten Strom der Nebenbatterie.

\[M = 7.1 \]
\[k = 1.14 \]
\[A = 0.0058 \, , \]

und in der zweiten

\[M = 5.0 \]
\[k = 0.88 \]
\[A = 0.0052 \, , \]

so ergibt sich folgende Zusammenstellung zwischen den beobachteten und berechneten Werthen von \(\theta \), deren Übereinstimmung sehr befriedigend ist:

I. Versuch.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta \text{ beob.})</th>
<th>(\theta \text{ berech.})</th>
<th>(n)</th>
<th>(\theta \text{ beob.})</th>
<th>(\theta \text{ berech.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>4.2</td>
<td>4.4</td>
<td>29</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>34</td>
<td>5.5</td>
<td>5.6</td>
<td>28</td>
<td>—</td>
<td>7.1</td>
</tr>
<tr>
<td>33</td>
<td>6.0</td>
<td>6.0</td>
<td>27</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>32</td>
<td>6.5</td>
<td>6.4</td>
<td>25</td>
<td>6.4</td>
<td>6.6</td>
</tr>
<tr>
<td>31</td>
<td>6.7</td>
<td>6.7</td>
<td>23</td>
<td>6.0</td>
<td>5.9</td>
</tr>
<tr>
<td>30</td>
<td>6.9</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Versuch.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta \text{ beob.})</th>
<th>(\theta \text{ berech.})</th>
<th>(n)</th>
<th>(\theta \text{ beob.})</th>
<th>(\theta \text{ berech.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2.6</td>
<td>2.7</td>
<td>36</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>24</td>
<td>3.0</td>
<td>3.1</td>
<td>38</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>26</td>
<td>3.5</td>
<td>3.5</td>
<td>40</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>28</td>
<td>4.1</td>
<td>4.0</td>
<td>42</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td>30</td>
<td>4.3</td>
<td>4.4</td>
<td>44</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>32</td>
<td>4.7</td>
<td>4.7</td>
<td>48</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>34</td>
<td>4.9</td>
<td>4.9</td>
<td>52</td>
<td>2.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zur Bestätigung dieses Gesetzes habe ich noch mehrere Versuchsreihen durchgeführt, die ich nun anführen will.

III. Versuch.

Hauptdrath 36'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Funkenmikrometer 10.
Distanz der parallelen Dräthe 4.
<table>
<thead>
<tr>
<th>n</th>
<th>θ beobacht.</th>
<th>Mittel</th>
<th>θ berech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>3.5</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>30</td>
<td>3.9</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>32</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>34</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>36</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>38</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>40</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>42</td>
<td>4.4</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>44</td>
<td>3.8</td>
<td>3.9</td>
<td>3.8</td>
</tr>
<tr>
<td>46</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>50</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>54</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Bei der Berechnung dieser Versuchsreihe wurde

$$M = 5.4$$

$$k = \frac{36}{37} = 0.97$$

$$A = 0.0074$$ angenommen.

IV. Versuch.

Hauptdrath 36' (wie im III. Versuch).
Hauptbatterie Flasche 3, Nebenbatterie Flasche 2.
Distanz der parallelen Dräthe 4 (wie früher).
Funkenmikrometer 10.
Für die Berechnung $M = 5.0$, $k = 0.95$, $A = 0.0079$.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobacht.</th>
<th>Mittel</th>
<th>θ berech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2.2</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>28</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>30</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>32</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>34</td>
<td>4.2</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>36</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>38</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>40</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>42</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>44</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>46</td>
<td>3.7</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>50</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>54</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

V. Versuch.

Hauptdrath 36'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Über den inducirten Strom der Nebenbatterie. 33

Funkenmikrometer 10.

Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
<th>(\theta) berech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2.5</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>28</td>
<td>3.0</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>30</td>
<td>3.6</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>32</td>
<td>4.0</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>34</td>
<td>4.6</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>36</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>38</td>
<td>4.8</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>40</td>
<td>4.6</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>42</td>
<td>3.8</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>44</td>
<td>3.3</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>46</td>
<td>2.7</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>52</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Für die Berechnung der Werthe von \(\theta\) wurde

\[k = 36 \]
\[k = 0.97 \]
\[M = 5.1 \]
\[A = 0.011 \] angenommen.

Für \(n = 26'\) finden sich zwei Beobachtungen angegeben, die eine zu Anfang, die andere am Ende der Reihe. Es ist dies eine Vorsicht, die ich bei grösseren Beobachtungsreihen in der Regel anwendete, um mich zu überzeugen, dass in den äusseren Verhältnissen keine störende Änderung eingetreten sei.

VI. Versuch. §

Hauptdrath 36' (wie im V. Versuch).

Hauptbatterie Flasche 2, Nebenbatterie Flasche 1.

Funkenmikrometer 10 (wie im V. Versuch).

Distanz der parallelen Dräthe 4 (wie im V. Versuch).

Für die Berechnung \(M = 6.1, \ k = 1.44, \ A = 0.0023\).

<table>
<thead>
<tr>
<th>n</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
<th>(\theta) berech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>22</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>24</td>
<td>6.8</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>26</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>28</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>30</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>32</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>34</td>
<td>4.4</td>
<td>4.5</td>
<td>4.4</td>
</tr>
</tbody>
</table>

VII. Versuch. †

Hauptdrath 36′ (wie früher).
Hauptbatterie Flasche 1, Nebenbatterie Flasche 3.
Funkenmikrometer 10 (wie früher).
Distanz der parallelen Dräthe 4 (wie früher).
Für die Berechnung $M = 3.6$, $k = 0.72$, $A = 0.0070$.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
<th>θ berech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>28</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>42</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>48</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>52</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>62</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Aus diesen Versuchen folgt also, dass sich die Relation zwischen θ und n durch die einfache Formel

$$\theta = \frac{M}{A(h - kn)^2 + 1}$$

Es ist nun zunächst meine Aufgabe, die Bedeutung der Grösse k etwas näher anzugeben.

k ist das Verhältniss der Länge des Hauptdrathes zu jener des Nebenrathes in dem Falle, wo der Ausschlag des Luftthermometers, also die Intensität des Inductionsstromes, ein Maximum ist. Es ist von
der Distanz der Kugeln des Funkenmikrometers unabhängig, wie folgende Versuchsreihen es ersichtlich machen.

VIII. Versuch.

Hauptdrath 30'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 10.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>5.7</td>
<td>6.8</td>
</tr>
<tr>
<td>28</td>
<td>6.6</td>
<td>7.1</td>
</tr>
<tr>
<td>30</td>
<td>7.0</td>
<td>7.1</td>
</tr>
<tr>
<td>32</td>
<td>6.8</td>
<td>6.9</td>
</tr>
<tr>
<td>34</td>
<td>5.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Es ist somit hier $k = 1.00$.

IX. Versuch.

Hauptdrath 30'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 7.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>28</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>30</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>32</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>34</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>36</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Also ist $k = 0.97$.

X. Versuch.

Hauptdrath 30'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 8.
Es ist somit \(k = 0.97 \).

Diese drei Versuche zeigen, dass, obwohl das Funkenmikrometer verändert wurde, \(k \) trotzdem constant blieb, da die kleinen Differenzen innerhalb der Beobachtungsfehler liegen.

Ganz dasselbe ergibt sich auch aus den drei folgenden Versuchen, die sich von den anderen nur dadurch unterscheiden, dass die Flasche 3 zur Hauptbatterie, Flasche 2 zur Nebenbatterie gemacht wurde.

XI. Versuch.

Hauptdrath 30'.

Hauptbatterie Flasche 3, Nebenbatterie Flasche 2.

Distanz der parallelen Dräthe 4.

Funkenmikrometer 10.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>28</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>30</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>32</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>34</td>
<td>4.4</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Folglich \(k = 0.94 \).

XII. Versuch.

Hauptdrath 30'.

Hauptbatterie Flasche 3, Nebenbatterie Flasche 2.

Distanz der parallelen Dräthe 4.

Funkenmikrometer 7.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td>28</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>30</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td>32</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>34</td>
<td>6.1</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Über den inducirten Strom der Nebenbatterie.

<table>
<thead>
<tr>
<th>n</th>
<th>6 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>28</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>30</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>32</td>
<td>4.0</td>
<td>4.1</td>
</tr>
<tr>
<td>34</td>
<td>3.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Es ergibt sich also \(k = 0.94 \).

XIII. Versuch.

Hauptdrath 30'.
Hauptbatterie Flasche 3, Nebenbatterie Flasche 2.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 8.

<table>
<thead>
<tr>
<th>n</th>
<th>6 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>28</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>30</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>32</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>34</td>
<td>4.8</td>
<td>4.7</td>
</tr>
<tr>
<td>36</td>
<td>4.3</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Es ist also \(k = 0.94 \).

Diese drei Beobachtungsreihen können nicht viel von den früheren differiren, da die Flaschen 3 und 2 nahe gleich sind. Allein es ist aus ihnen klar zu sehen, dass \(k \) von der Entfernung der Kugeln des Funkenmikrometers unabhängig ist.

Die drei folgenden Versuchsreihen werden dieses Gesetz für den Fall bestätigen, wenn die angewendeten Flaschen ungleich sind.

XIV. Versuch.

Hauptdrath 42'.
Hauptbatterie Flasche 4, Nebenbatterie Flasche 1.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 10.
<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta \text{ beobachtet})</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>8.0</td>
<td>5.1</td>
</tr>
<tr>
<td>28</td>
<td>6.8</td>
<td>6.7</td>
</tr>
<tr>
<td>26</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>24</td>
<td>9.9</td>
<td>10.0</td>
</tr>
<tr>
<td>22</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>20</td>
<td>8.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>

In diesem Versuche ist also \(k = 1.83 \).

XV. Versuch.

Hauptdrath 42°.
Hauptbatterie Flasche 4, Nebenbatterie Flasche 1.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 8.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta \text{ beobachtet})</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>28</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>26</td>
<td>6.2</td>
<td>6.1</td>
</tr>
<tr>
<td>24</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>22</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td>20</td>
<td>6.6</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Also ist \(k = 1.83 \).

XVI. Versuch.

Hauptdrath 42°.
Hauptbatterie Flasche 4, Nebenbatterie Flasche 1.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 6.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta \text{ beobachtet})</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>28</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>26</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>24</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>22</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>20</td>
<td>4.3</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Somit \(k = 1.83 \).
Über den induzierten Strom der Nebenbatterie.

Diese drei Versuche, welche an einem äußerst günstigen Tage angestellt wurden, beweisen also mit Evidenz, dass die Grösse k von der Distanz der Kugeln des Funkenmikrometers unabhängig ist.

Eben so leicht lässt es sich nachweisen, dass k von h unabhängig ist. Dies ergibt sich aus folgender Versuchsreihe:

XVII. Versuch.

Hauptdrath 34'.

Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.

Funkenmikrometer 10.

Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>30</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>32</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>34</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>36</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Darin ist $k = 1.03$.

XVIII. Versuch.

Hauptdrath 51'.

Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.

Distanz der parallelen Dräthe 4.

Funkenmikrometer 10.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>44</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>49</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>54</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>59</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Daraus ergibt sich $k = 0.98$.

Die Differenz von k fällt innerhalb der Grenzen der Beobachtungsfehler, es ist somit k von h unabhängig.

Die Distanz der parallelen Dräthe übt ebenfalls keinen Einfluss auf k, wie aus folgenden Versuchen erhellet.
XIX. Versuch.

Hauptdrath 31°.
Hauptbatterie Flasche 6, Nebenbatterie Flasche 5.
Distanz der parallelen Dräthe 6.
Funkenmikrometer 10.

\[
\begin{array}{|c|c|c|}
\hline
n & \theta \text{ beobachtet} & \theta \text{ Mittel} \\
\hline
22 & 6.2 & 6.2 & 6.2 \\
24 & 6.9 & 7.0 & 7.0 \\
26 & 7.7 & 7.6 & 7.7 \\
28 & 7.7 & 7.7 & 7.7 \\
30 & 7.0 & 6.8 & 6.9 \\
\hline
\end{array}
\]

Darin ist \(k = 1.15 \).

XX. Versuch.

Hauptdrath 31°.
Hauptbatterie Flasche 6, Nebenbatterie Flasche 5.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 10.

\[
\begin{array}{|c|c|c|}
\hline
n & \theta \text{ beobachtet} & \theta \text{ Mittel} \\
\hline
22 & 7.2 & 7.4 & 7.3 \\
24 & 8.4 & 8.4 & 8.5 \\
26 & 9.0 & 9.0 & 9.0 \\
28 & 9.0 & 9.0 & 9.0 \\
30 & 8.0 & 8.2 & 8.1 \\
\hline
\end{array}
\]

Es ist somit \(k = 1.15 \).

Diese zwei Versuche beweisen zur Genüge die Unabhängigkeit von \(k \) von der Distanz der parallelen Dräthe.

Aus den bisher angeführten Versuchen ist aber auch ersichtlich, dass \(k \) wesentlich eine Function der Flaschenstärken ist. Es ist jedoch von der absoluten Stärke derselben unabhängig, wie folgender Versuch dartut.

XXI. Versuch.

Hauptdrath 36°.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 10.
Hier ist \(k = 1.06 \).

XXII. Versuch.

Hauptdrath 36'.
Hauptbatterie Flaschen 1 und 4, Nebenbatterie Flaschen 5 und 6.
Distanz der parallelen Dräthe 4.
Funkenmikrometer 10.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>(\theta) Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>32</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>34</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>36</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>38</td>
<td>5.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Also ist \(k = 1.06 \).

Diese zwei Versuche zeigen zur Genüge, dass \(k \) bloß von den relativen Flaschenstärken abhängig ist. Denn bezeichnet man die Stärke der Hauptbatterie mit \(q \), jene der Nebenbatterie mit \(q' \), so ist im XX. Versuche

\[
q = 0.98; \quad q' = 1.00,
\]

also \(\frac{q'}{q} = 1.02 \),

und im XXI. Versuche

\[
q = 1.15 + 0.85 = 2.00,
\]

\[
q' = 0.97 + 1.06 = 2.03,
\]

somit

\[
\frac{q'}{q} = 1.02.
\]

Die Werthe von \(k \) bleiben daher so lange constant, als das Verhältniss der Flaschenstärken \(\frac{q'}{q} \) constant bleibt. Die Form der Abhängigkeit ist daher schon durch diese einfache Bemerkung gegeben. In den Versuchen I und II sind bloß die Flaschen umge-
tauscht worden, indem die Hauptbatterie zur Nebenbatterie und vice versa gemacht wurde. Vergleicht man die Werthe für \(k \), welche dort gefunden wurden, so ergibt sich für den I. Versuch:

Hauptbatterie Flasche 6, Nebenbatterie Flasche 5: \(k = 1.14 \),

für den II. Versuch:

Hauptbatterie Flasche 5, Nebenbatterie Flasche 6: \(k_1 = 0.88 \).

Nun ist aber \(k_1 = \frac{1}{k} \), da nämlich sehr nahe \(0.88 = \frac{1}{1.14} \). Es ergibt sich daraus, dass

\[
k = \left(\frac{q'}{q} \right)^m,
\]

wobei \(m \) ein noch zu bestimmender Exponent ist.

Aus den Versuchen VI und VII folgt für \(m = 2 \):

\[
k = 1.44: \frac{q'^2}{q^2} = 1.37,
\]

\[
k = 0.72: \frac{q'^2}{q^2} = 0.76.
\]

Es ist daher \(k = \frac{q'^2}{q^2} \).

Die Übereinstimmung dieser Formel mit den in den früheren Versuchen gefundenen Werthen von \(k \) ergibt sich aus folgender Tabelle:

<table>
<thead>
<tr>
<th>Versuch</th>
<th>(k)</th>
<th>(\frac{q'^2}{q^2})</th>
<th>Versuch</th>
<th>(k)</th>
<th>(\frac{q'^2}{q^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.14</td>
<td>1.19</td>
<td>XII</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>II</td>
<td>0.88</td>
<td>0.84</td>
<td>XIII</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>III</td>
<td>0.97</td>
<td>1.04</td>
<td>XIV</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>IV</td>
<td>0.95</td>
<td>0.96</td>
<td>XV</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>V</td>
<td>0.97</td>
<td>1.04</td>
<td>XVI</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>VI</td>
<td>1.44</td>
<td>1.37</td>
<td>XVII</td>
<td>1.03</td>
<td>1.04</td>
</tr>
<tr>
<td>VII</td>
<td>0.72</td>
<td>0.76</td>
<td>XVIII</td>
<td>0.98</td>
<td>1.04</td>
</tr>
<tr>
<td>VIII</td>
<td>1.00</td>
<td>1.04</td>
<td>XIX</td>
<td>1.15</td>
<td>1.19</td>
</tr>
<tr>
<td>IX</td>
<td>0.97</td>
<td>1.04</td>
<td>XX</td>
<td>1.15</td>
<td>1.19</td>
</tr>
<tr>
<td>X</td>
<td>0.97</td>
<td>1.04</td>
<td>XXI</td>
<td>1.06</td>
<td>1.04</td>
</tr>
<tr>
<td>XI</td>
<td>0.94</td>
<td>0.96</td>
<td>XXII</td>
<td>1.06</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Zur Bestätigung dieses Gesetzes habe ich noch viele Beobachtungen vorgenommen, von denen ich einige anführen will.

XXIII. Versuch.

Hauptdrrath 28'.

Hauptbatterie Flasche 6, Nebenbatterie Flasche 5.
Über den inducirten Strom der Nebenbatterie.

Funkenmikrometer 7.
Distanz der parallelen Dräthe 6.

<table>
<thead>
<tr>
<th>n</th>
<th>0 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>30</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>29</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>28</td>
<td>4.3</td>
<td>4.4</td>
</tr>
<tr>
<td>27</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>26</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>25</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>24</td>
<td>5.3</td>
<td>5.4</td>
</tr>
<tr>
<td>23</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>22</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>21</td>
<td>4.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Also ist \(k = 1.17; \frac{q^2}{q^2} = 1.19 \).

XXIV. Versuch.

Hauptdrath 32'.
Hauptbatterie Flasche 6, Nebenbatterie Flasche 5.
Funkenmikrometer 7.
Distanz der parallelen Dräthe 6.

<table>
<thead>
<tr>
<th>n</th>
<th>0 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>30</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>29</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>28</td>
<td>4.2</td>
<td>4.3</td>
</tr>
<tr>
<td>27</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>26</td>
<td>4.2</td>
<td>4.3</td>
</tr>
<tr>
<td>25</td>
<td>4.1</td>
<td>4.0</td>
</tr>
<tr>
<td>24</td>
<td>3.8</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Somit ist \(k = 1.19; \frac{q^2}{q^2} = 1.19 \).

XXV. Versuch.

Hauptdrath 30'.
Hauptbatterie Flasche 6, Nebenbatterie Flasche 5.
Funkenmikrometer 7.
Distanz der parallelen Dräthe 4.
Blaserna.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>24</td>
<td>4.9</td>
<td>5.1</td>
</tr>
<tr>
<td>26</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>28</td>
<td>4.6</td>
<td>4.5</td>
</tr>
<tr>
<td>30</td>
<td>4.2</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Also \(k = 1.20; \frac{q^n}{q^a} = 1.19. \)

XXVI. Versuch. *

Hauptdrath 30'.

Hauptbatterie Flasche 5, Nebenbatterie Flasche 6.

Funkenmikrometer 7.

Distanz der parallelen Drähte 4.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>26</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>28</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>30</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>32</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>34</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>36</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>38</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

\(k = 0.88; \frac{q^n}{q^a} = 0.84. \)

Diese Versuche führen daher zu der Formel

\[k = \frac{q^n}{q^a}. \]

Allein es ist klar, dass dieses Gesetz nur für den Fall richtig sein kann, wenn die Oberflächen der Haupt- und der Nebenbatterie gleich sind. Es bleibt daher noch der Fall ungleicher Oberflächen zu erörtern übrig.

XXVII. Versuch.

Hauptdrath 30'.

Hauptbatterie Flaschen 3 und 6, Nebenbatterie Flasche 2.

Funkenmikrometer 10.

Distanz der parallelen Drähte 4.
Über den inducirten Strom der Nebenbatterie.

<table>
<thead>
<tr>
<th>n</th>
<th>(q^a) beobachtet</th>
<th>(q^a) Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>31</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>34</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>40</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>46</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>52</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>56</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>60</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>64</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>68</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>78</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Aus diesem Versuche folgt \(k = 0.50 \), während \(\frac{q^a}{q^a} = 0.25 \) wird. Berücksichtigt man aber, dass die Oberfläche der Hauptbatterie doppelt so gross ist, als die der Nebenbatterie, so ergibt sich

\[
k = \frac{q^a}{q^a} \cdot \frac{s}{s'}
\]

wo \(s \) und \(s' \) die Oberflächen bezeichnen. Man hat somit in obigem Versuche

\[
k = 0.50; \quad \frac{q^a}{q^a} \cdot \frac{s}{s'} = 0.50.
\]

Dasselbe ergibt sich für folgenden Versuch:

XXVIII. Versuch.

Hauptdrath 50'.

Hauptbatterie Flasche 2, Nebenbatterie Flaschen 3 und 6. Funkenmikrometer 10.

Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>(\theta) beobachtet</th>
<th>(\theta) Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>22</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>24</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>25</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>26</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>28</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>30</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>32</td>
<td>3.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Darin ist

\[
k = 2.00; \quad \frac{q^a}{q^a} \cdot \frac{s}{s'} = 2.01.
\]
Es ergibt sich somit

\[k = \frac{q'^2}{q^2} \cdot \frac{s}{s'}.
\]

Das von Herrn Knochenhauer angegebene, am Anfange meiner Abhandlung citirte Gesetz findet hierin seine Erklärung. Es gilt dann für den speciellen Fall von vollkommen gleichen Flaschen. In der That ist für diesen Fall

\[q' = \mu Q \quad s' = \mu S, \]
\[q = \nu Q \quad s = \nu S,
\]
wo \(Q\) und \(S\) die angenommenen Einheiten der Flaschenstärke und der Oberflächen ausdrücken, somit

\[k = \frac{\mu}{\nu} \quad \text{und} \]
\[\frac{h}{n} = \frac{\mu}{\nu},
\]
d. h. der Hauptdrath verhält sich zum Nebendrath für's Maximum wie die Anzahl der Flaschen der Nebenspannung zu jener der Hauptspannung. Diese Untersuchungen bezüglich der Grösse \(k\) haben zur Genüge die Abhängigkeit der Werthe von \(\theta\) von den bezüglichen Flaschen darzustellen. Sie haben aber auch ersichtlich gemacht, dass allerdings die relativen Werthe von \(\theta\) zu ihrem Maximum sich genügend erklären lassen, nicht aber ihre absoluten Werthe. Sie haben gestattet aus dem Werthe des Maximums auf die Form der Curve zu schliessen, setzten aber die Kenntniss desselben voraus. Mit einem Worte, das Verhältniss

\[\frac{\theta}{M} = \frac{1}{A (h-kn)^2 + 1}
\]
lässt sich für jeden Werth von \(k = \frac{q'^2}{q^2} \cdot \frac{s}{s'}\), von \(h\) und \(n\) angeben, nicht aber die absolute Grösse von \(\theta\).

Ich werde daher noch diese zweite Abhängigkeit von \(\theta\) von den bezüglichen Flaschenwerthen näher erörtern. Diese Untersuchung lässt sich dadurch bedeutend vereinfachen, dass man für \(\theta\) jenen Werth nimmt, für welchen \(h-kn=0\) ist, d. h. dass man die Abhängigkeit des Maximums selbst von den Grössen \(q, s, q', s'\) aufsucht. Schon die Versuche I und II, welche bei ganz gleichen Umständen an demselben Tage angestellt wurden, geben einen deutlichen Beweis für die Abhängigkeit der Grösse \(M\) von den betref-
fenden Flaschen. In dem ersten Versuche ist nämlich \(M = 7 \cdot 1 \), in dem zweiten \(M = 5 \cdot 0 \), während sich die Versuchsreihen durch nichts anderes unterscheiden, als dass in der zweiten die Nebenbatterie zur Hauptbatterie, die Hauptbatterie zur Nebenbatterie gemacht wurde.

Ich muss jedoch gleich bemerken, dass, da es sich hier um die absoluten Werthe handelt, blos jene Versuche mit einander verglichen werden können, welche an demselben Tage, bei ganz gleichen Umständen, wobei also die atmosphärischen Einflüsse genau dieselben bleiben, angestellt wurden. Ich werde jene Versuche stets zusammenstellen und sie durch ein besonderes Zeichen, durch ein Sternchen (*) oder ein Kreuzchen (†) erkenntlich machen.

Die Versuchsreihen V, VI, VII geben ein einfaches Mittel an die Hand, von der Function \(M = f(q, q', s, s') \) für den Fall gleicher Oberflächen die Form anzugeben. Ist nämlich
\[
\text{in V } M = 5 \cdot 1,
\]
und in VI \(M_t = 6 \cdot 1 \), so folgt
\[
M : M_t = 5 \cdot 1 : 6 \cdot 1 = 0 \cdot 83.
\]

Da nun die Hauptbatterie bei beiden constant blieb, während die Nebenbatterie verändert wurde, so folgt, wenn im V. Versuche \(q' = 1 \cdot 00 \) (Flasche 3), im VI. \(q' = 1 \cdot 15 \) (Flasche 1) gesetzt wird:
\[
q' : q_1' = 100 : 115 = 0 \cdot 87, \text{ somit}
\]
\[
M : M_t = q' : q_1' \text{ oder }
\]
\[
M = m q',
\]
d. h. die absolute Grösse des Maximums ist der Stärke der Nebenbatterie direct proportional.

In den Versuchen V und VII hingegen ist die Nebenbatterie constant, die Hauptbatterie variabel und es ergibt sich
\[
M : M_t = 5 \cdot 1 : 3 \cdot 6 = 1 \cdot 42,
\]
\[
\frac{1}{q^2} : \frac{1}{q_1^2} = 132 : 96 = 1 \cdot 37.
\]

Dass diese Differenzen sich innerhalb der Beobachtungsfehler befinden, ergibt sich schon aus der Betrachtung, dass
\[
50 : 37 = 1 \cdot 35
\]
beträgt, während Fehler von 0 \cdot 1 bei jeder Beobachtung nicht zu vermeiden sind. Es ergibt sich daraus, dass
\[
M : M_t = \frac{1}{q^2} : \frac{1}{q_1^2} \text{ oder }
\]
Blaserns.

\[M = \frac{1}{q^3} \]

wobei \(m \) eine Constante bedeutet. Der absolute Werth des Maximums ist daher dem Quadrat der Flaschenstärke der Hauptbatterie verkehrt proportional. Es ist somit für den Fall gleicher Oberflächen

\[M = m \cdot \frac{q'}{q^3} \]

Ebenso folgt aus den Versuchen VI und VII

\[\frac{M : M_1}{q^2 : q_1^2} = 152 : 96 = 1.59. \]

Es ist nun leicht, die Versuche I und II in Bezug auf ihr Maximum zu prüfen. Bezeichnet nämlich \(q \) die Flasche 6, \(q' \) die Flasche 5, so muss

\[M : M_1 = \frac{q'}{q^2} : \frac{q}{q_1^3} = q' : q^3 \]

sein. In der That findet man

\[M : M_1 = 7.1 : 5.0 = 1.42, \]

\[q' : q^3 = 119 : 91 = 1.32. \]

Ich habe zur Prüfung dieses gewiss auffallenden Gesetzes noch mehrere Versuchsreihen vorgenommen, die ich nun anführen will.

XXIX. Versuch.

Hauptdrath 42'.

Hauptbatterie Flasche 1, Nebenbatterie Flasche 3.

Funkenmikrometer 10.

Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
<th>(\theta) her.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>4.1</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>52</td>
<td>4.6</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>56</td>
<td>4.8</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>60</td>
<td>4.5</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>64</td>
<td>4.1</td>
<td>4.2</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Dabei ist \(M = 4.8, k = 0.73 : \frac{q^3}{q^2} = 0.76. \)
XXX. Versuch.

Hauptdrath 42'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Funkennikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
<th>θ ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>34</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>36</td>
<td>5.9</td>
<td>6.0</td>
<td>5.9</td>
</tr>
<tr>
<td>38</td>
<td>6.2</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>40</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>42</td>
<td>6.3</td>
<td>6.2</td>
<td>6.3</td>
</tr>
<tr>
<td>44</td>
<td>5.8</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>48</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
</tr>
</tbody>
</table>

$M = 6.5; k = 1.05; \frac{q^2}{q^2} = 1.04.$

XXXI. Versuch.

Hauptdrath 42'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 1.
Funkennikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
<th>θ ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>5.1</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>26</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>28</td>
<td>7.0</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>30</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>32</td>
<td>7.0</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>34</td>
<td>6.2</td>
<td>6.4</td>
<td>6.3</td>
</tr>
</tbody>
</table>

$M = 7.5; k = 1.40; \frac{q^2}{q^2} = 1.37.$

Diese drei Versuchsreihen bestätigen das oben angeführte Gesetz. Denn nimmt man die zwei ersten, und wählt daraus die beobachteten Maxima, so folgt:

$M : M_t = 4.8 : 6.4 = 0.75$
$q_t^2 : q^2 = 96 : 132 = 0.73$

Ebenso folgt aus der zweiten und dritten Versuchsreihe
\[M : M_1 = 6.4 : 7.4 = 0.86 \]
\[q' : q'_1 = 100 : 115 = 0.87. \]
Aus der ersten und dritten
\[M : M_1 = 4.8 : 7.4 = 0.65 \]
\[q'q'^2 : q'^2 = 96 : 152 = 0.63. \]
Diese drei Versuche, welche an einem zu elektrischen Beobachtungen sehr günstigen Tage vorgenommen wurden, geben das Gesetz für gleiche Oberflächen
\[M = m \cdot \frac{q'}{q'^2} \]
mit grosser Genauigkeit an.

Nimmt man den ersten dieser drei Versuche als bekannt an, und berechnet daraus das Maximum für die übrigen, so folgt für den zweiten \(M = 6.5 \)

und dritten \(M = 7.5 \).

Diese Werthe sind in der Columnne für die berechneten \(\theta \) eingetragen. Die übrigen Werthe von \(\theta \) sind nach der Formel:
\[\theta = \frac{M}{A (h - kn)^2 + 1} \]
berechnet.

Diese Bemerkungen gelten auch für die nachfolgenden drei Versuchsreihen.

XXXII. Versuch. †

Hauptdrath 30°.
Hauptbatterie Flasche 1, Nebenbatterie Flasche 2.
Funkenmikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
<th>(\theta) her.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3.5</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>34</td>
<td>4.5</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>36</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>38</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>40</td>
<td>5.2</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>42</td>
<td>5.0</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>44</td>
<td>4.8</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>48</td>
<td>4.4</td>
<td>4.4</td>
<td>4.5</td>
</tr>
</tbody>
</table>

\[M = 5.2; \ k = 0.75; \ \frac{q'^2}{q^2} = 0.73. \]
XXXIII. Versuch. †

Hauptdrath 30'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Funkenmikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
<th>θ ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>5.5</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>26</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>28</td>
<td>6.9</td>
<td>6.6</td>
<td>6.7</td>
</tr>
<tr>
<td>30</td>
<td>7.0</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>32</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>34</td>
<td>6.4</td>
<td>6.3</td>
<td>6.4</td>
</tr>
<tr>
<td>36</td>
<td>5.5</td>
<td>5.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

\[M = 7.1; \quad k = 1.00; \quad \frac{q^3}{q^3} = 1.04. \]

XXXIV. Versuch. †

Hauptdrath 30'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 1.
Funkenmikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>θ beobachtet</th>
<th>Mittel</th>
<th>θ ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>5.5</td>
<td>5.4</td>
<td>5.5</td>
</tr>
<tr>
<td>26</td>
<td>6.5</td>
<td>6.8</td>
<td>6.7</td>
</tr>
<tr>
<td>24</td>
<td>7.6</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>22</td>
<td>8.3</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>20</td>
<td>8.2</td>
<td>8.4</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Diese Versuchsreihe musste unterbrochen werden, weil der Nebendrath schon zu kurz wurde; allein das Maximum ist klar ange deutet für \(n = 21 \); es ist somit

\[M = 8.4; \quad k = 1.43; \quad \frac{q^3}{q^3} = 1.37. \]

Aus dem ersten und dritten dieser Versuche folgt:

\[M : M_1 = 5.2 : 8.4 = 0.62 \]
\[q^3 : q^3 = 94 : 152 = 0.62 \]
also vollkommen übereinstimmend.
Eben so folgt aus dem ersten und zweiten
\[M : M' = 5.2 : 7.1 = 0.73 \]
\[q^2 : q'^2 = 94 : 132 = 0.71 \]
und aus dem zweiten und dritten
\[M : M' = 7.1 : 8.4 = 0.84 \]
\[q' : q'' = 100 : 115 = 0.87 \]
Es ist klar, dass diese Differenzen innerhalb der Beobachtungsfehler liegen.

XXXV. Versuch.

Hauptdrath 36'.
Hauptbatterie Flasche 1, Nebenbatterie Flasche 2.
Funkenmikrometer 10.
Distanz der parallelen Drähte 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>(\theta) Mittel</th>
<th>(\theta) ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>3.4</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>42</td>
<td>4.0</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>46</td>
<td>4.7</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>50</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>54</td>
<td>4.7</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>58</td>
<td>4.2</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>62</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

\[M = 5.0; \; k = 0.72; \; \frac{q'^2}{q^2} = 0.73. \]

XXXVI. Versuch.

Hauptdrath 36'.
Hauptbatterie Flasche 1, Nebenbatterie Flasche 4.
Funkenmikrometer 10.
Distanz der parallelen Drähte 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>(\theta) Mittel</th>
<th>(\theta) ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>42</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>52</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>62</td>
<td>4.2</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>72</td>
<td>3.4</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>82</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

\[M = 4.2; \; k = 0.58; \; \frac{q'^2}{q^2} = 0.55. \]
XXXVII. Versuch.

Hauptdrath 36'.
Hauptbatterie Flasche 4, Nebenbatterie Flasche 2.
Funkenmikrometer 10.
Distanz der parallelen Drähte 4.

<table>
<thead>
<tr>
<th>n</th>
<th>0 beobachtet</th>
<th>Mittel</th>
<th>0 ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>7.2</td>
<td>7.4</td>
<td>7.3</td>
</tr>
<tr>
<td>24</td>
<td>8.5</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>26</td>
<td>9.1</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>28</td>
<td>8.5</td>
<td>8.6</td>
<td>8.5</td>
</tr>
<tr>
<td>30</td>
<td>7.5</td>
<td>7.4</td>
<td>7.5</td>
</tr>
</tbody>
</table>

\[M = 9.2; \quad k = 1.38; \quad \frac{q'^2}{q^2} = 1.33. \]

XXXVIII. Versuch.

Hauptbatterie Flasche 4, Nebenbatterie Flasche 1.
Funkenmikrometer 10.
Distanz der parallelen Drähte 4.

<table>
<thead>
<tr>
<th>n</th>
<th>0 beobachtet</th>
<th>Mittel</th>
<th>0 ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>4.0</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>26</td>
<td>5.5</td>
<td>5.6</td>
<td>5.5</td>
</tr>
<tr>
<td>24</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>22</td>
<td>9.5</td>
<td>9.6</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Diese Reihe konnte nicht weiter fortgesetzt werden, weil der Nebendrath zu kurz wurde. Allein diese 4 Beobachtungen genügen, um daraus den Werth von \(M \) zu berechnen. Setzt man nämlich

\[k = \frac{q'^2}{q^2} = \frac{132}{72} = 1.83, \]

so ergibt sich für \(n = 28 \)

\[4.1 = \frac{M}{231 A + 1}, \]

für \(n = 24 \)

\[7.5 = \frac{M}{62.4 A + 1}, \]
und aus diesen zwei Gleichungen

\[
A = \frac{34}{4791} = 0.0071
\]

\[
M = 2.64 \cdot 4.1 = 10.8.
\]

Nimmt man hingegen die Beobachtungen für \(n = 26 \) und \(n = 22 \), so folgt:

\[
5.5 = \frac{M}{134.6 A + 1}
\]

\[
9.5 = \frac{M}{18.5 A + 1},
\]

und daraus

\[
A = \frac{400}{56435} = 0.0071
\]

\[
M = 10.7,
\]

eine wirklich auffallende Übereinstimmung, welche die Richtigkeit der zu Grunde gelegten Formeln:

\[
k = \frac{q'^2}{q^2}
\]

\[
\theta = \frac{M}{A (h - kn)^2 + 1}
\]

einerseits, andererseits die Verlässlichkeit der Beobachtungen beweist.

Aus diesen 4 Versuchen folgt das Gesetz mit grosser Genauigkeit. Denn vergleicht man die erste und zweite Versuchsreihe, so ergibt sich

\[
M : M_1 = 5.0 : 4.2 = 1.19,
\]

andererseits

\[
98 : 85 = 1.15.
\]

Aus der ersten und dritten Versuchsreihe hat man ebenso:

\[
M : M_1 = 5.0 : 9.2 = 0.54
\]

\[
q_1^2 : q^2 = 72 : 132 = 0.55,
\]
aus der dritten und vierten

\[
M : M_1 = 9.2 : 10.7 = 0.86
\]

\[
q' : q'_1 = 98 : 115 = 0.85
\]

und endlich aus der zweiten und vierten

\[
M : M_1 = 4.2 : 10.7 = 0.39
\]

\[
q^3 : q^3 = 61 : 152 = 0.41
\]
Alle diese Beobachtungen stimmen mit dem oben angeführten Gesetze überein. Berechnet man aus dem Maximum 5·0 für den ersten dieser vier Versuche jenes für die übrigen, so ergibt sich folgende Zusammenstellung zwischen den beobachteten und berechneten Werten:

<table>
<thead>
<tr>
<th></th>
<th>M beob</th>
<th>M berechnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Versuch</td>
<td>5·0</td>
<td>5·0</td>
</tr>
<tr>
<td>2.</td>
<td>4·2</td>
<td>4·3</td>
</tr>
<tr>
<td>3.</td>
<td>9·2</td>
<td>9·0</td>
</tr>
<tr>
<td>4.</td>
<td>-</td>
<td>10·7 nach (\theta = \frac{M}{4(h-\kappa n)^3 + 1})</td>
</tr>
<tr>
<td>4.</td>
<td>-</td>
<td>10·7 nach (M = m_0 \cdot \frac{q^3}{q^3})</td>
</tr>
</tbody>
</table>

Das eben gefundene Gesetz erfordert noch eine Verallgemeinerung hinsichtlich der Oberflächen, da es in der Form, in der es angeführt wurde, bloß für den Fall gleicher Oberflächen gilt.

XXXIX. Versuch. †

Hauptdrath 44'.
Hauptbatterie Flasche 2, Nebenbatterie Flaschen 3 und 6.
Funkenmikrometer 10.
Distanz der parallelen Drähte 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>0 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5·4</td>
<td>5·5</td>
</tr>
<tr>
<td>22</td>
<td>6·0</td>
<td>5·9</td>
</tr>
<tr>
<td>24</td>
<td>5·7</td>
<td>5·6</td>
</tr>
<tr>
<td>26</td>
<td>5·1</td>
<td>5·2</td>
</tr>
</tbody>
</table>

\(k = 2·00; \frac{q^2}{q^3} \cdot \frac{\theta}{\theta'} = 2·00. \)

XL. Versuch.

Hauptdrath 44'.
Hauptbatterie Flaschen 3 und 6, Nebenbatterie Flasche 2.
Funkenmikrometer 10.
Distanz der parallelen Drähte 4.
<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>78</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>88</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>98</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>108</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\[k = 0.49 ; \quad \frac{q' \cdot s}{q^2 \cdot s'} = 0.50. \]

Aus diesen zwei Versuchen folgt sich mit Leichtigkeit, dass

\[M = \frac{q'}{q^2} \cdot \frac{s}{\sqrt{s'}} \cdot m \]

ist. Denn unter dieser Voraussetzung ist

\[M : M_1 = \frac{q'^2}{q^2} \cdot \frac{s' \sqrt{s'}}{s \sqrt{s}}, \]

und da

\[\frac{q'^2}{q^2} = 8 \]
\[\frac{s' \sqrt{s'}}{s \sqrt{s}} = \sqrt{8}, \]

sofort

\[8 : \sqrt{8} = 2.83 \quad \text{und} \]
\[M : M_1 = 2.81 \]

was sehr befriedigend ist.

Berechnet man \(M_1 \) aus \(M \), so ergibt sich nach dieser Formel

\[M_1 = 2.1. \]

XLI. Versuch 1).

Hauptdrath 30'.
Hauptbatterie Flaschen 3 und 6, Nebenbatterie Flasche 2.
Funkenmikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>60</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>64</td>
<td>3.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

1) Aus dem XXVII. Versuche wiederholt.
Über den induzierten Strom der Nebenbatterie.

XLII. Versuch.*

Hauptdrath 30'.
Hauptbatterie Flasche 2, Nebenbatterie Flaschen 3 und 6.
Funkenmikrometer 10.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>n</th>
<th>6 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>24</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>21</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>20</td>
<td>6.6</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Diese Beobachtungsreihe konnte nicht fortgesetzt werden, weil der Neben-Drath zu kurz wird. Allein, setzt man \(k = 2 \), und berechnet das Maximum nach der Formel

\[
\theta = \frac{M}{A (h - kn)^2 + 1}
\]

so ergibt sich folgende Rechnung:

für \(n = 28 \): \(M = (1 + 676 \ A) \cdot 2.6 \)

» für \(n = 21 \): \(M = (1 + 144 \ A) \cdot 6.1 \),

woraus

\[
A = 0.0040 \quad \text{und} \quad M = 9.6
\]

folgt.

Ebenso hat man für \(n = 24 \)

\[
M = (1 + 324 \ A) \cdot 4.1
\]

und für \(n = 20 \)

\[
M = (1 + 100 \ A) \cdot 6.7
\]

woraus

\[
A = 0.0041 \quad \text{und} \quad M = 9.4
\]

sich ergibt.

Man kann somit \(M = 9.5 \) setzen und in die Rechnung einführen. Es muss nun sein

\[
M : M_1 = 1 : 2.83
\]
aber

\[1 : 2.83 = 0.35 \]
\[M : M_1 = 0.38 \]

was sehr befriedigend ist.

Diese letzte Rechnung muss zugleich als ein sehr schlagender Beweis für die Richtigkeit der bisher aufgefundenen Gesetze angesehen werden.

Es ergibt sich daraus, dass

\[\theta = \frac{q^2}{q^2} \cdot \frac{s}{\sqrt{r}} \cdot \frac{m}{A (h - q^2 \cdot \frac{s}{\sqrt{r}} n)^2 + 1}. \]

Bei allen diesen Versuchen diente das im HauptdRACThe eingeschaltete Funkenmikrometer blos dazu, stets ein und dasselbe Quantum Elektricität (bei denselben Flaschen) durch den Schliessungsbogen zu leiten. Die Distanz der Kugeln des Funkenmikrometers ist aber von wesentlichem Einflusse. Um den Einfluss desselben auf die Ausschlüge des Luftthermometers kennen zu lernen, hat man nur zu berücksichtigen, dass in der bisher gefundenen Formel blos \(m \) davon abhängig erscheint, und dass daher bei sonst gleichen Umständen \(\theta \) proportional zu \(m \) ist. Bei dieser Untersuchung wird es daher nicht nötig sein, das Maximum für jede einzelne Beobachtungsreihe aufzufinden, um erst aus den Werthen desselben das betreffende Gesetz abzuleiten.

Was die Grösse \(A \) anbelangt, so bin ich nicht in der Lage, über sie etwas Bestimmtes anzugeben. Sie hat an verschiedenen Tagen verschiedene Werthe; aber die Schwierigkeit, sie genau zu definiren, liegt darin, dass die Art und Weise der Versuche, wie ich die angestellt habe, sich bei weitem nicht jener Genauigkeit erfreut, die besonders für diesen Zweck nötig ist. Man könnte somit den Einwurf erheben, dass möglicherweise \(A \) von der Entfernung der Kugeln des Funkenmikrometers abhängig ist, und somit \(\theta \) nicht \(m \) proportional gesetzt werden dürfte. Diesem Einwurfe habe ich dadurch zu begegnen gesucht, dass ich eine solche Länge des Nebendrathes einführte, für welche \(\theta \) nahe gleich \(M \), d. h. für welche nahe

\[h - kn = 0, \]
somit um so mehr

\[A (\hbar - kn)^2 = 0, \]

also eine zu vernachlässigende Größe wurde.

Nennt man die Distanz der Kugeln des Funkenmikrometers \(d \), so ergab sich folgender Versuch:

XLIII. Versuch.

Hauptdrath 34'.

Nebendrath 32'.

Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.

Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\theta) beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>8</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>12</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Man ersieht schon aus dieser kurzen Beobachtungsreihe, dass \(\theta \) weder \(d \) selbst noch \(d^2 \) proportional gesetzt werden kann. Allein nimmt man

\[\theta = a \cdot \sqrt{d^2} \]

an, wobei \(a \) eine Constante bedeutet, so ergibt sich eine befriedigende Übereinstimmung; denn es müsste dann

\[8 : 22 = 1 : 2.83 \]

und

\[16 : 48 = 1 : 2.83 \]

sein, was in der That hinlänglich eintritt, da

\[8 : 22 = 0.35 \]

\[16 : 48 = 0.33 \]

\[1 : 2.83 = 0.35 \]

ist.

Hauptdrath 34'.
Nebendrath 32'.
Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Distanz der parallelen Dräthe 4.

<table>
<thead>
<tr>
<th>d</th>
<th>9 beobachtet</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3·3</td>
<td>3·3</td>
</tr>
<tr>
<td>3</td>
<td>5·5</td>
<td>5·5</td>
</tr>
<tr>
<td>4</td>
<td>8·2</td>
<td>8·2</td>
</tr>
<tr>
<td>6</td>
<td>13·6</td>
<td>13·6</td>
</tr>
<tr>
<td>8</td>
<td>20·1</td>
<td>20·0</td>
</tr>
<tr>
<td>9</td>
<td>22·7</td>
<td>22·9</td>
</tr>
<tr>
<td>10</td>
<td>27·7</td>
<td>26·8</td>
</tr>
<tr>
<td>12</td>
<td>33·0</td>
<td>33·5</td>
</tr>
</tbody>
</table>

Ist nun obige Formel richtig, so sollten allgemein die Ausschläge für d und $2d$ sich so verhalten, wie $1 : 2·83 = 0·35$; allein man erhält statt dessen:

$$33 : 82 = 0·40$$
$$55 : 136 = 0·40$$
$$82 : 200 = 0·41$$

etc.,

Zahlen, welche alle zu gross sind, und mit einander auffallend übereinstimmen.

Der Grund dafür liegt in dem Umstande, dass bei dem Funkenmikrometer, welches ich benützte, der Nullpunkt der Scala fehlerhaft angegeben war; denn setzt man z. B.

$$\sqrt{(2 + x)^2} : \sqrt{(4 + x)^2} = 33 : 82,$$

so ergibt sich

$$x = 0·62.$$

Ebenso folgt aus der Proportion

$$\sqrt{(3 + x)^3} : \sqrt{(6 + x)^2} = 55 : 136$$

$$x = 0·61;$$

und in der That, eine genauere Prüfung des Instrumentes ergab

$$x = 0·50 \text{)}.$$

\text{)} Diese Correction ist allen früheren Angaben für das Funkenmikrometer beizufügen, namentlich den Versuchen VIII — XVI, welche auch hierher gehören.
Über den inducirten Strom der Nebenbatterie.

Fügt man also diese Correction zu allen Werthen von \(d \), so erhält man folgende Zusammenstellung zwischen den beobachteten und berechneten Werthen von \(\theta \):

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\theta) beob.</th>
<th>(\theta) ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>3.5</td>
<td>5.5</td>
<td>5.4</td>
</tr>
<tr>
<td>4.5</td>
<td>8.2</td>
<td>7.9</td>
</tr>
<tr>
<td>6.5</td>
<td>13.6</td>
<td>13.7</td>
</tr>
<tr>
<td>8.5</td>
<td>20.0</td>
<td>20.6</td>
</tr>
<tr>
<td>9.5</td>
<td>22.9</td>
<td>24.3</td>
</tr>
<tr>
<td>10.5</td>
<td>26.9</td>
<td>28.2</td>
</tr>
<tr>
<td>12.5</td>
<td>33.5</td>
<td>36.7</td>
</tr>
</tbody>
</table>

Dabei wurde \(a = 0.83 \) angenommen, und die Rechnung nach der Formel

\[
\theta = a \sqrt{d^5}
\]

geführt.

Man sieht, dass die berechneten Werthe von \(\theta \) mit den beobachteten so lange stimmen, als diese nicht zu gross werden. Sind diese aber gross genug, so bleiben die beobachteten hinter den berechneten zurück. Der Grund davon kann ein doppelter sein; entweder ist die obige Formel nur approximativ, und die genaue

\[
\theta = a \sqrt{d^5} \cdot \{1 - d\lambda + \ldots\};
\]

oder die Werthe von \(\theta \) hören auf, verlässlich zu sein, wenn sie eine gewisse Grösse überschreiten. Ich will in diese beiden Fälle etwas genauer eingehen.

Nimmt man an, dass sich die Relation zwischen \(\theta \) und \(d \) durch die Formel

\[
\theta = a \sqrt{d^5} \cdot \{1 - d\lambda + \mu d^2 - \ldots\}
\]

ausdrücken lasse, wobei \(\lambda, \mu, \ldots \) sehr rasch abnehmende, erst zu bestimmende Coeffizienten bezeichnen, so überzeugt man sich leicht, dass zwischen den berechneten und beobachteten Werthen von \(\theta \) eine befriedigende Übereinstimmung eintritt. In der That hat man, wenn man das dritte Glied der Reihe

\[
1 - \lambda d + \mu d^2 - \ldots
\]

nicht mehr berücksichtigt, für \(\lambda = 0.0090, a = 0.855 \) folgende Zusammenstellung zwischen den beobachteten und berechneten Werthen von \(\theta \):
Diese Tabelle zeigt eine befriedigende Übereinstimmung zwischen den Resultaten der Beobachtung und der Rechnung. Durch Hinzufügung des Gliedes \(\mu d^2 \) könnte man die Genauigkeit noch weiter treiben.

Dieselben Bemerkungen gelten auch für die nachfolgenden Beobachtungsreihen, in welchen die Correction \(x = 0.5 \) für das Funkenmikrometer schon mit einbegriffen ist.

XLV. Versuch.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\theta) beobachtet</th>
<th>(\theta) mittel</th>
<th>(\theta) ber. nach (\theta = a \sqrt{d^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>7.9</td>
<td>8.0</td>
<td>7.7</td>
</tr>
<tr>
<td>5</td>
<td>11.0</td>
<td>10.9</td>
<td>10.7</td>
</tr>
<tr>
<td>6</td>
<td>14.3</td>
<td>14.4</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>21.8</td>
<td>21.7</td>
<td>21.6</td>
</tr>
<tr>
<td>9</td>
<td>25.5</td>
<td>25.3</td>
<td>25.8</td>
</tr>
<tr>
<td>10</td>
<td>29.0</td>
<td>29.2</td>
<td>30.2</td>
</tr>
</tbody>
</table>

Für die Berechnung wurde \(a = 0.954 \) angenommen. In dieser Beobachtungsreihe ist die kürzere Formel \(\theta = a \sqrt{d^2} \) schon hinreichend. Die Beobachtung konnte nicht fortgesetzt werden, weil in Folge der feuchten Witterung das Funkenmikrometer keine größeren Funken gab.

XLVI. Versuch.

Hauptdrath 34'.
Nebendrath 32'.
Über den inducirten Strom der Nebenbatterie.

Hauptbatterie Flasche 2, Nebenbatterie Flasche 3.
Distanz der parallelen Drähte 4.

\[a = 0.675. \]

<table>
<thead>
<tr>
<th>(d)</th>
<th>0 beobachtet</th>
<th>Mittel</th>
<th>(\theta) ber. nach (\theta = a \sqrt{d^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>5.5</td>
<td>5.3</td>
<td>5.4</td>
</tr>
<tr>
<td>5</td>
<td>7.7</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>6</td>
<td>9.5</td>
<td>9.7</td>
<td>9.6</td>
</tr>
<tr>
<td>8</td>
<td>13.9</td>
<td>14.1</td>
<td>14.1</td>
</tr>
<tr>
<td>9</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>10</td>
<td>19.3</td>
<td>19.3</td>
<td>19.3</td>
</tr>
<tr>
<td>12</td>
<td>25.0</td>
<td>25.2</td>
<td>25.2</td>
</tr>
<tr>
<td>14</td>
<td>30.4</td>
<td>30.9</td>
<td>30.6</td>
</tr>
<tr>
<td>15</td>
<td>34.2</td>
<td></td>
<td>34.2</td>
</tr>
</tbody>
</table>

Berechnet man hingegen nach der Formel

\[\theta = a \sqrt{d^2} \cdot \{ 1 - \lambda d \}, \]

so hat man

\[a = 0.696 \]
\[\lambda = 0.011, \]

somit folgende Zusammenstellung:

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\theta) beob.</th>
<th>(\theta) ber.</th>
<th>(d)</th>
<th>(\theta) beob.</th>
<th>(\theta) ber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.0</td>
<td>1.9</td>
<td>9</td>
<td>17.3</td>
<td>16.9</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>10</td>
<td>19.3</td>
<td>19.6</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>5.3</td>
<td>12</td>
<td>25.2</td>
<td>25.1</td>
</tr>
<tr>
<td>5</td>
<td>7.8</td>
<td>7.5</td>
<td>14</td>
<td>30.6</td>
<td>30.8</td>
</tr>
<tr>
<td>6</td>
<td>9.6</td>
<td>9.6</td>
<td>15</td>
<td>34.2</td>
<td>33.8</td>
</tr>
</tbody>
</table>

Es gibt jedoch noch einen zweiten Standpunkt, von dem aus sich die oben erwähnten Differenzen erklären lassen.

R i e s s hat in seinem classischen Werke: „Die Lehre von Reibungselektricität“, so wie auch in den Annalen von P o g g e n d o r f f, Band 41, die Theorie des Luftthermometers für den Fall gegeben, wo das Niveau in dem Weingeistbehälter als constant betrachtet und die Wärmeausstrahlung während des eine messbare Zeit dursten buscocisches vernachlässigt werden darf. Diese Beschränkungen sind offenbar für die meisten Fälle statthaft, wenn nämlich die Werthe
von θ eine gewisse Größe nicht übersteigen, müssen aber für diesen letzten Fall etwas genauer untersucht werden.

Bedeutet nämlich b den Barometerstand, t die Temperatur der Luft und des Platindrathes vor der Erwärmung, p' den Druck, t' die Temperatur der Luft, T die Temperatur des Drathes nach der Erwärmung, φ den Neigungswinkel der Thermometeröhre gegen eine verticale Linie (Fig. 3), so wird der durch die Erwärmung der Luft um t' - t hervorgebrachte Luftdruck durch die Weingeistsäule AB gemessen, wenn das Niveau in A als constant betrachtet wird.

Es ist dann bekanntlich

\[p' - b = b \cdot \frac{t' - t}{a}, \]

wobei a eine Constante bedeutet, und

\[p' = \left(b + \frac{\cos \varphi}{n} \theta + \frac{r^2}{R^2} \cdot \frac{1}{n} \theta \right) \left(1 + \frac{\theta}{v}\right), \]

worin v das Volumen des Thermometers, n das Verhältniss des specifischen Gewichtes des Quecksilbers zu jenem des Weingeistes bedeutet.

Berücksichtigt man aber die Änderung des Niveaus AA', so hat man offenbar den Druck der kleinen Säule AA' noch hinzuzufügen, und es ergibt sich

\[p' = \left(b + \frac{\cos \varphi}{n} \theta + \frac{r^2}{R^2} \cdot \frac{1}{n} \theta \right) \left(1 + \frac{\theta}{v}\right), \]

wenn man nämlich den Halbmesser der thermometrischen Röhre mit r, jenen des Gefässes mit R bezeichnet. Daraus folgt

\[\left(b + \frac{\cos \varphi + \frac{r^2}{R^2}}{n} \theta \right) \left(1 + \frac{\theta}{v}\right) - b = b \cdot \frac{t' - t}{a}, \]

oder wenn man der Kürze halber

\[\frac{\cos \varphi + \frac{r^2}{R^2}}{u} = f \]
setzt, und die Gleichung für \(\theta \) auflöst

\[
\theta = -\frac{vf + b}{2f} + \frac{vf + b}{2f} \left(1 + \frac{4vb}{f} \cdot \frac{4f^2}{(vf + b)^2} \cdot \frac{t - t'}{a} \right)^{1/2};
\]

entwickelt man diese Potenz in eine unendliche Reihe, so wird diese sehr convergiren und man hat

\[
\theta = \frac{4vb}{(4f + b)} \cdot \frac{1}{a} \cdot (t' - t).
\]

Behält das Luftthermometer beständig dieselbe Neigung, so ist \(f \) eine constante Grösse; man weiss ferner aus den Untersuchungen von Riess, dass \(b \) und \(a \) als constant betrachtet werden können, somit ist der ganze zu \(t' - t \) gehörige Factor constant und \(\theta \) der Erwärmung der Luft proportional. Die Erwärmung des Platins \(T - t \) ist aber der Erwärmung der Luft proportional, so lange man an dem Apparate nichts ändert. Es folgt daraus, dass

\[
\theta = C \cdot (T - t);
\]

wobei \(C \) eine Constante ausdrückt. Der Ausschlag des Luftthermometers ist daher selbst in dem Falle, wo man eine Niveauveränderung annimmt, der Erwärmung des Platindrathes proportional.

Es hat somit dieser Umstand keinerlei Einfluss auf die beobachteten Werthe von \(\theta \), auch wenn diese sehr gross werden, so lange man blos ihre relativen Werthe untersucht. Anders verhält es sich mit dem Wärmeverluste während der Verschiebung des Weingeistes in der Thermometerrohre.

Man kann annehmen, dass der in einem kleinen Zeittheilchen eintretende Wärmeverlust der Zeit und der vorhandenen Wärme proportional ist. Daraus ergibt sich die Bedingungsgleichung

\[
d \theta = -\beta \theta dt
\]
oder integriert

\[
I \theta = -\beta t + \text{Const.}
\]

Für \(t = 0 \) sei \(\theta = \Theta \), wo also \(\theta \) die gesamte durch Induction erzeugte Wärme bedeutet, mithin

\[
I \Theta = \text{Const.}
\]
und

\[
I \left(\frac{\theta}{\Theta} \right) = \beta t.
\]

Daraus ergibt sich

\[
\theta = \Theta \cdot e^{\beta t} = \Theta \left(1 + \beta t + \frac{\beta^2 t^2}{1 \cdot 2} + \ldots \right).
\]

Die Bestimmung des Coefficienten für den Wärmeverlust bietet grosse Schwierigkeiten. Nimmt man nach wahrscheinlichen Werthen in einem speciellen Falle

\[\frac{t}{= 5}, \theta = 30 \]
\[t = 95, \theta = 2, \]
so ergibt sich

\[l = 30 = - 5\beta + C \]
\[l = 2 = - 95\beta + C, \]
und daraus

\[\beta = 0.030. \]

Es ist somit

\[\theta = \theta \cdot e^{0.030 \cdot t} = 1.172 \theta \]
und für \(\theta = 30 \) sofort

\[\theta = 35.2. \]

Vergleicht man diesen so corrigirten Werth von \(\theta \) mit jenem im XLVI. Versuche vorkommenden, nach der Formel \(\theta = a \sqrt{d^2} \) berechneten Werth 35.4, so ergibt sich eine befriedigende Übereinstimmung; denn für

\[\theta = 30 \cdot 6 \]

wäre unter gleichen Umständen

\[\theta = 35.9, \]
und es würde somit die ganze auffallende Differenz auf die Correction entfallen. Es folgt daraus, dass man wenigstens innerhalb der Grenzen der Genauigkeit, die man hier erreichen kann

\[\theta \cdot e^{\alpha t} = a \sqrt{d^2}, \]
d. h.

\[\theta = a \sqrt{d^2} \]
und

\[e^{\alpha t} = 1 + d\lambda \]
setzen darf.

Der in Bezug auf den Wärmeverlust corrigirte Werth von \(\theta \) ist somit der Quadratwurzel aus der dritten Potenz der Entfernung der Kugeln des Funkenmikrometers direct proportional.

Bezüglich des Coefficienten \(\beta \) kann ich vorläufig nur Unbestimmtes aussagen; er ist für kleine Ausschläge sehr klein; somit fällt für diese die Correction weg.
Die vorhergehenden Versuche haben dargethan, dass sich die Grösse \(\lambda \) mit hinreichender Schärfe bestimmen lässt; daher kann der corrigirte Werth \(\theta \) mittelst der Formel

\[
\theta = \theta \cdot (1 + d\lambda)
\]

bestimmt werden. Es wird jedoch ratsam sein, die Werthe von \(\theta \) nicht so gross werden zu lassen, weil denn doch diese Bestimmungsweise noch schwankend ist. Für kleinere Werthe von \(\theta \) gilt übrigens die Relation

\[
\theta = a \cdot \sqrt{d^s}
\]

hinreichend scharf.

Faßt man nun das Problem des inducirten Stromes der Nebenbatterie ganz allgemein auf, und bezeichnet die parallelen Drähte mit \(p, p' \), ihre Distanz mit \(a \), so folgt, wenn durchgehends nur einerlei Drath angewendet wird:

\[
\theta = f(p, p', a, q, q', s, s', h, n, d).
\]

Die Form dieser Function habe ich theilweise bestimmt; wenn nämlich noch das von Hrn. Knochenauer angegebene Gesetz 1), dass die Maxima sich umgekehrt verhalten wie die angewendeten Hauptdrähte, hinzugefügt wird, so ergibt sich

\[
\theta = \frac{q'}{q^2} \cdot \frac{s}{s'} \cdot \frac{1}{h} \cdot \frac{a}{\left(h - \frac{q'^2}{q^2} \cdot \frac{s}{s'} \cdot n \right)^2 + 1} \cdot \sqrt{d^s},
\]

wobei \(a \) noch die Grössen \(p, p', a \) und den Feuchtigkeitsscoefficienten enthält.

Diesen noch übrigen Theil der Aufgabe habe ich auf diesem Wege nicht zu lösen versucht, weil ich die Form der Function keineswegs für so einfach halte, als dass sie sich empirisch auffinden lüsse. Denn, bezeichnet \(r \) die Distanz zweier Stromtheilchen \(dp, dp' \), \(\varphi \) den Winkel, den sie mit ihrer Verbindungslinie bilden, \(\frac{di}{dt} \) die entsprechende Änderung der Intensität, so ist diese Function durch die Form

\[
\int \int \frac{dp \cdot dp'}{r^m} f(\varphi) \cdot \frac{di}{dt}
\]

1) Vergl. Versuch XVII, XVIII.
angegeben. Dieses Doppelintegral gibt aber selbst für die einfachsten Werthe von m und $f(\varphi)$ eine viel zu verwickelte Form, als dass man sie durch blosse Versuche in dem Sinne, welcher dieser Abhandlung zu Grunde liegt, auffinden könnte.

Ich hoffe indess, auf einem andern Wege zur Kenntniss dieser Function zu gelangen.

Es gereicht mir schliesslich zum Vergnügen, meinen Freunden, den Herren E. Mach und J. Peterin, Eleven am kais. kön. physikalischen Institute, für die thätige Hilfe, die sie mir bei der Durchführung dieser Arbeit leisteten, meinen wärmsten Dank öffentlich aussprechen zu können.
Beiträge zur Kenntniss der Arachniden.

Von Prof. Dr. F. A. Kolenati.

(Mit 4 Tafeln.)

(Vorgelegt in der Sitzung vom 20. Mai 1838.)

OHR-EIMILBEN.

Genus: Otonyssus Kolenati.

Der Körper hochgewölbt cylindrisch, an beiden Enden abgerundet, sehr weich, im Leben lebhaft, meist roth gefärbt, die Färbung nicht vom durchsechenden Blute herrührend, der Leibesinhalt immer milchig weiss, die Haut durchaus mit feinen Querriffen versehen und mit wenigen scharfschnittigen, starken, an der Spitze stumpfen Gliederborsten besetzt, ohne Schildchen und ohne Verdickungen, der After endständig, die Genitalienöffnung in der Richtungslinie des dritten fehlenden Fusspaares, der Kopf kurz kegelförmig, hinter demselben an der Rückenseite zwei und an demselben an der Unterseite zwei einfache Augen, die Fühler länglich, cylindrisch-kegelförmig, viergliedrig, das Endglied gespalten und dessen innerer Theil abziehbar (scheerenartig, antennae apice chelae), die Fühler und Füsse in ihren Gliederungen mit kranzartig gestellten zweiseits gefiederten Spitzborsten besetzt, der Saugapparat verkehrt kegelförmig (mit dem breiteren Ende nach vorne gerichtet), das Ende haftscheibenartig mit einem Kranze feiner Häckchen besetzt, darin die Saugorgane, Palpen und Maxillen verborgen, die Füsse alle in der vorderen Hälfe des Körpers eingelenkt, das fehlende dritte Fusspaar lässt zwischen dem zweiten und vierten eine Lücke, die Füsse überall gleich stark, achtgliedrig, die Glieder fast rosenkrantzformig, die Klauen einfach und bogig, zwischen und etwas oberhalb denselben eine lange, ebenso bogige kluenartige, rückschlagbare
Pelotte. Bewohnen vorwaltend die inneren Ohrräder, seltener die Körperhaut kleiner Säugethiere, als der Rosoren und Chiroptern, sitzen festgeklammert mit fast senkrecht aufgerichtetem Leibe in zierlichen, dichtgedrängten Colonien, zu 50—60 neben einander, und sehen abgelegten Eierchen täuschend ähnlich; nur die an der Körperhaut oder Flughaut vorkommenden sind weniger gehäuft, sondern mehr zerstreut.

1. Art Otonyssus flavus Kolenati, die umschuhte Ohrelilbe.

Taf. 1, Fig. 1 und 2.

1. Von der Rückenseite.
2. Die Leibesborste.

Marillengelb, der Körper in der Mitte der Quere umschuht, vorne und hinten breit zugerundet, an der Oberseite sehr schütter siebenreihig beborstet, in der Analgegend 5 kurze und jederseits in einer Grube eine längere Borste, an der Unterseite in der hinteren Leibeshälfe nur jederseits 4 in einem Bogen stehende kurze Borsten, die Borsten sächelförmig gebogen, an der Basis nicht verengert, nicht sehr vortretend schieß gliederschnittig, die Schnitte an der convexen Seite etwas spitzwinkelig vorstehend, die Borstenspitze einfach, etwas zugestumpft.

Länge des Körpers 0.0007 Pariser Meter.

1. Art. Otonyssus puniceus Kolenati, die purpurrote Ohrelilbe.

Taf. 1, Fig. 3 und 4.

Purpurroth, glänzend, der Körper lang, fast cylindrisch, vorne und hinten eiförmig zugerundet, an der Oberseite mit drei Reihen und nach hinten mit vier langen Gliederborsten, am Rande des Körpers mit zehn Borsten, zwei äusseren längeren und zwei inneren kürzeren Analborsten, an der Unterseite mit fünf Querreihen Gliederborsten, die Borsten etwas sächelförmig gekrümmt, an der Basis verschmälert, nicht bis an die Wurzel, sondern nur drei Viertheile querglieder-
schnittig, die Schnitte an der convexen und concaven Seite mit län-
gen Spitzen versehen, die Borstenspitze einfach spitz.

Länge des Körpers 0·0006 Pariser Meter.

Vorkommen. An den Ohren oder auch dem Dactylopatagium des *Cateorus serotinus* D a u b., doch immer selten, in Österreich, Böhmen, Mähren.

Taf. I, Fig. 5 u. 6.

Orangegelb oder safrangelb, glänzend, der Körper fast cylindrisch, kurz, vorne und hinten stumpf zugerundet, an der Ober- und Unterseite mit zerstreut stehenden, am Rande mit etwas dichter stehenden langen Gliederborsten besetzt, die Borsten sächsformig gekrümmt, an der Basis nicht verschmälert, bis an die Basis tie-

Länge des Körpers 0·00065 Pariser Meter.

Vorkommen. In ganz Europa, an den Ohren des *Plecutos auritus* Linné, des *Synotus barbastellus* D a u b. und des *Brachyotus mystacinus* Leisl., sehr häufig an ersteren zwei genannten Arten.

Typen in der Originalsammlung des Verfassers, im k. k. Hof-

Taf. II, Fig. 1 u. 2.

Licht kirschroth, glänzend, der Körper vorne eiförmig-, hinten abgestumpft-zugerundet, an den Seiten gerade, an der Ober- und Unterseite mit 5 Querreihen schütter stehender, am Rande etwas
Beiträge zur Kenntniss der Arachniden.

dichter stehender langer Gliederborsten, die Borsten gerade, an der Basis nicht verengert, bis an die Basis etwas schief quergliederschnittig, die Schnitte etwas winkelig vorstehend, die Borstenspitze stumpf.

Länge des Körpers 0.0007 Pariser Meter.

Vorkommen. An den Ohren des *Rhinolophus clivosus* Cretschm. in Ägypten, sehr selten.

Typen in der Originalsammlung des Verfassers.

Anmerkung. Hier wäre der *Otonyssus macrotrichus* Kolenati.

(Ent. Monatschr. 1858, Nr. 3, S. 88, Fig. 5—11) einzuschalten.

Taf. II, Fig. 3 u. 4.

Citronengelb, wenig glänzend, der Körper lang, vorne spitz-eiförmig-, hinten kugelförmig-zugerundet, an den Seiten etwas flach ausgeschweift, an der Oberseite mit zerstreut, am Rande mit sehr schüttür stehenden langen Gliederborsten, an der Unterseite in der Mitte mit kurzen, in drei nahen Bogenreihen und dann hie und da zerstreut stehenden längeren Gliederborsten, die Borsten stark sabel-förmig gekrümmt, an der Basis verschmälert, bis an die Basis, doch gegen dieselbe zunehmend höher quergliederschnittig, die Schnitte nach der concaven Seite der Borste vorgezogen spitzwinkelig, die Borstenspitze abgestumpft.

Länge des Körpers 0.0007 Pariser Meter.

Vorkommen. An den Ohren des *Rhinolophus hippocidersos* Bechst. in ganz Europa, nicht häufig, dagegen wenn er vorkommt oft zu 100 Stück in einer Colonie.

Typen in der Originalsammlung des Verfassers und im k. k. Hofnaturalien-Cabinet zu Wien, dann zu Berlin und Kopenhagen. (Kolenati)

Taf. I, Fig. 7—11.

8. *vergrößerten chelirten Fühler.

Tief kirschrot, matt, der lange Körper vorne eiförmig-, hinten kugelförmig-zugerundet, an den Seiten fast gerade, fast gar nicht
ausgebaucht, an der Ober- und Unterseite mit vier Querreihen langer, am Seitenrande mit weit von einander abstehenden, am Hinterrande mit gezweiten langen Gliederborsten besetzt, die Borsten sabelförmig gekrümmt, an der Basis verschmälert, bis an die Basis etwas schief quer gliederschnittig, die Schnitte wenig vorstehend, die Borstenspitze wenig stumpf.

Länge des Körpers 0·0006 Pariser Meter.

Typen in der Originalsammlung des Verfassers und im k. k. Hof-Naturalien-Cabinet zu Wien. (Kolenati!)

DIE KREISELMILBEN.

Genus: Peplomyssus Kolenati.

Der Körper kriiseliformig, brodlaibartig oder münzenförmig weich, meist dunkelroth oder rothbraun, die Färbung vom durchscheienden Blute herrührend, die Haut durchaus mit feinen Querrissen versehen und mit sehr wenigen, meist nur am Leibesrande sitzenden, gliederschnittigen, sehr starken, an der Spitze stumpfen und gespaltenen Borsten besetzt, ohne Kopfschildchen, mit einer Hautverdickung, der After fast central, die Genitalienöffnung etwas über die Richtungslinie des dritten stets anwesenden Fusspares hinaus, das vierte Fusspaar fehlt, der Kopf breit kegelig-dreieckig, an demselben oben und unten jederseits ein einfaches Auge, die Fühler länglich, fast cylindrisch, am Ende spitz, viergliedrig, das letzte Glied nicht chelirt, sondern nur zwei genäherte Borsten tragend, die Fühler und Füsse in ihren Gliederungen mit kranzartig angeordneten gleichartig mit den Körperborsten organisierten steifen Borsten besetzt, der Saugapparat stumpf-kegelförmig (mit dem schmäleren Ende nach vorn gerichtet), an den Seitenrändern gesägt, mit verschwungenen Palpen, die Füsse alle im vorderen Drittel des Leibes eingelenkt, ohne eine Lücke zwischen den drei Fusspaaren, die Füsse überall gleich stark, schlank, achtgliedrig, nicht rosenkranzartig, die Klauen einfach und bogig, dazwischen breite, kurze dreieckige, weiche Pelotten. Bewohnen nur die Körperhaut
kleiner Säugethiere, namentlich der Chiroptern, sitzen festgeklammert zerstreut.

Anmerkung. Die Körperhaut der Kreiselmilben ist vertical wenig ausdehnbar, dagegen horizontal nach allen Richtungen, die Fühler sind wenig länger als der Saugkegel und stehen von demselben ab, die Blinddärme sind sichtbar, sie laufen meist strahlenförmig aus einander, reichen aber nicht in die Füsse, ja erreichen sogar den Körpersaum nicht, die Hautverdickung ist oft vom Kopf entfernt. Die Kreiselmilben bilden das Übergangsglied von den Ohreimilben zu den Zecken. Ich habe noch nie eine achtbeinige Kreiselmilbe beobachtet, obgleich ich hunderte gesammelt.

Taf. III, Fig. 1 — 2.

1. Von der Rückenseite.
2. = Bauchseite.
3. Die Borste.

Linsenförmig, gelbbraun, oben höher gewölbt, mit ziemlich scharfen Rändern, die kleine obere cirkelrunde Hautverdickung nahe am Centrum, von welcher wellige Falten auslaufen und die Vertheilung der Blinddärme andeuten, an der Unterseite in derselben Region zwei solche Hautverdickungen, von welchen ebenfalls wellige Falten, besonders zwei nach hinten verlaufen, der Körperrand mit 9 Borsten besetzt, die Borsten nur an der Spitze mit einer einzigen Gliederung, das Endglied der Borste dreispitzig.

Länge des Körpers: 0.002 Pariser Meter.

Typen in der Originalsammlung des Verfassers.

Taf. III, Fig. 4 — 6.

Münzenförmig, nach vorne etwas über das Kreiselförmige hinaus, mit erhabenen, dicken Rändern, dunkel-kirschroth, oft auch im Leben weiss, an der Oberseite zu jeder Seite des Kopfes eine in einer andern Richtung in der Substanz kerbsfaltige Wulst, sonst keine
Hautverdickeung mehr, die Blinddarmfalten laufen oben und unten von einer centralen Kreuzfalte nach dem Rande strahlenförmig aus und gabeln sich am Ende, der Körper oben, nicht weit vom Rande, in der Richtungslinie aller Fussseilkenkungen jederseits mit 4, am Rande selbst mit 10 Borsten, an der Unterseite um die centrale Analöffnung 14 in einem nach hinten convexen Bogen stehende sehr kurze Borsten, die Borsten bis an die Basis mit 4 spitzigen Gliederschnitten, das stumpfe Ende der Borste ist dreispitzig.

Länge des Körpers: 0·0015 Pariser Meter.

Taf. III, Fig. 7—9.

Kreiselrund, rothbraun, mit weissem scharfen Rande, der Körper gegen den Kopf etwas vorgezogen und der Quere nach abgestutzt, an der Oberseite in der Richtungslinie zwischen dem dritten Fusspaar eine länglich-ovale schildartige Hautverdickeung, oben und unten vom Centrum des Körpers 26 strahlig auslaufende Blinddarmrunzeln, welche hie und da am Ende gabelig sind und nicht bis zum Rande reichen, an der Rückenseite nur nach vorne nahe am Rande, jederseits 4, am übrigen Rande 6 Borsten, an der Bauchseite um die fast centrale Analöffnung 12 kurze im Kreise gestellte Borsten und daselbst ein breiter hufeisenförmiger weisser Fleck, die Borsten gegen die Spitze etwas verdickt, schief quer-gliederschnittig ohne Seitenspitzen, das stumpf abgerundete Ende der Borste fünfsptzig.

Länge des Körpers 0·00018 Pariser Meter.

Vorkommen. An der Körperhaut des Rhinolophus hipposideros Bechst. der mährischen Höhlen, immer sehr selten.

Typen in der Originalsammlung des Verfassers.

Taf. III, Fig. 10—12.

Kreiselförmig, blutroth, gegen den Kopf etwas vorgezogen und der Quere nach gerade abgestutzt, an der Oberseite hinter der Richtungs-linie des dritten Fusspaares eine länglich-ovale schildartige Hautverdickung, von welcher oben und auch aus diesem Punkte unten, einfache Blinddarmsalten mehr nach hinten strahlig auslaufen, welche den Rand oben nicht, unten dagegen erreichen, an der Rücken- und Bauchfläche keine Borsten, nur um die fast centrale Analöffnung 6 bis 8 kurze und am Körperrande 10 lange Borsten, die Borsten gegen die Spitze zu etwas verdickt, an der Seite nicht bis an die Wurzel säge-zähnig, das stumpfe Ende der Borste dreispitzig.

Länge des Körpers: 0·0013 Pariser Meter.

Vorkommen. An der Körperhaut des *Nannugo Ursula* Wag. in Dalmatien.

Typen in der Originalsammlung des Verfassers.

Taf. I, Fig. 13—14.

Oval-kreiselförmig, licht-blutroth, gegen den Kopf allmählich verengt und der Quere nach breit abgestutzt, hinten flach und breit zu gerundet, am Hinterrande wellig gekerbt, an der Rückenseite in der Richtungslinie des dritten Fusspaares mit einer ovalen schild-artigen Hautverdickung, von welcher die Blinddarmsalten strahlig auslaufen und den Rand, besonders nach hinten erreichen, nur um die centrale Analöffnung 9 im Kreise gestellt, kurze, und am Körperrande 10 lange Borsten; die Borsten gegen die Spitze etwas verdickt, an der unteren Hälfte quer-gliederschnittig, an der oberen mit stumpfen Zähnen, das quer-abgestutzte breite Borstenendemit vier Spitzen.

Länge des Körpers: 0·0018 Pariser Meter.

Vorkommen. An der Körperhaut des *Myotus murinus* Schreb. in den mährischen Höhlen sehr selten.

zu St. Petersburg, im Naturalien-Cabinet der k. Universität zu Moskau. (Kolenati!)

 Taf. I, Fig. 15 und 16.

Halbkreiselförmig, hinten der ganzen Breite nach quer-abgestützt, gelbbraun, an der Rückenseite hinter dem Kopfe eine ovale vorne querabgestützte, an der Bauchseite hinter dem Kopfe eine quere, schildartige Hautverdickung, der Körper glatt, nicht kerbfaltig, oben nicht weit vom Rande mit ungefähr 20, der Hinterrand mit 4 langen Borsten; die Füsse lang.

Länge des Körpers: 0·0008 Pariser Meter.

Typen in der Originalsammlung des Verfassers, im k. k. Hof-Naturalien-Cabinet zu Wien. (Kolenati.)

DIE KLEBE- UND SCHARFRANDMILBEN.

Genus: Perigltischrus Kolenati (Klebrandmilbe).

der Plattmilbeu (Gamasida), welcher ich den Namen Pteroptida beigelegt und durch folgende Charaktere von den übrigen Gamasiden unterschieden habe: Die Fühler fünfgliedrig, mehr als doppelt so lang wie die Saugorgane, die Maxillen nach innen, die Mandibeln nach aussen sägezähnig, die Zunge zweiborstig, die Borsten nach aussen zahnkerbig, alle zusammen geschlagen und von gleicher Länge einen Stachel bildend, die Füsse stark, kegelförmig, achtgliedrig, mit langen steifen Borsten besetzt, die Haftlappen gross, verkehrt kegelförmig, klebrig, vorne eingebuchtet, in welchen zwei kleine Klauen; sowohl die Haftlappen, als Klauen sind abwechselnd einschlagbar; die Blinddärme reichen in die Anfänge der Vorderfüsse; vier Augen, wovon zwei am Vorderrande des Körpers, zwei an der Unterseite des Kopfes liegen. Bewohnnen die Flughaut der Chiroptern, einige nur die Augenlider derselben.

Taf. IV, Fig. 1 — 3.

1. Von der Rückenseite.
2. „ „ Bauchseite.
3. Die Borste.

Blassgelb, die Blinddärme in unregelmässigen zerstreuten Flecken durchscheinend, der Körper länglich oval, hinten spitz, der Analklebrand fast doppelt so breit als der Vorderkörper, hinten bogig zu gerundet, an den Seiten scharf eckig, vor den Ecken flach ausgeschweift, das vordere obere Schildehen fast quer-elliptisch, das hintere obere länglich abgerundet-elliptisch, das vordere untere etwas verkehrt breit eiförmig, das hintere untere länglich zu gerundet
elliptisch, die Haftscheeren von der Basis der Füße bedeckt, die Borsten nur in ihrem oberen Drittheile spiralig-rissig.

Länge des Körpers: 0.0011 Pariser Meter.

Vorkommen. An der Flughaut der *Glossophaga amplexicaudata* Geoffr. in Brasilien und Surinam.

Typen in der Originalsammlung des Verfassers.

Taf. IV, Fig. 4 — 7.

4. Das Weibchen von der Rückenseite.
5. " " " Bauchseite.
7. Die Borste.

Gelb, die Blinddärme in kettenförmig zusammenhängenden Flecken durchscheinend und nur um das hintere Schildden sichtbar, der Körper breit, seitlich und hinten wellenförmig ausgebissen, der Analklebrand etwas breiter als der Vorderkörper, hinten fast gerade quer zuerundet, an den Seiten mit abgerundeten Ecken, vor denselben flach ausgeschweift, das vordere obere Schildden fast rund, das hintere obere verkehrt herzförmig, das vordere untere verkehrt breit herzförmig, fast abgerundet dreieckig, das hintere untere breit verkehrt eiförmig, die Haftscheeren gross, mit einfachen Spitzen, die Borsten durchaus gedrängt querrissig.

Länge des Körpers: 0.0005 Pariser Meter.

Taf. IV, Fig. 8 — 10.

Weissgelb, die Blinddärme gegen die Mitte des Leibes zusammenlaufend, der Körper breit eiförmig, hinten abgerundet abgestutzt, mit einer stumpfen Spitze und seitlichen verlorenen Randhältern, der
Anaklebrand etwas breiter als der Vorderkörper, in zugerundeter Form den Hinterkörper umfassend, so dass er mit derselben eine etwas spitz rechtwinkelige Einbuchtung bildet, der Klebrand fein gekörnt, das vordere obere Schildchen klein, vorne spitz zugerundet, hinten abgestutzt, das hintere obere abgerundet dreieckig, das vordere untere abgerundet dreieckig, das hintere untere fast rund, die Haftscbeeren kurz aber breit, mit einfachen Spitzen, die Borsten durchaus spiralg rissig.

Länge des Körpers: 0·00055 Pariser Meter.

Typen in der Originalsammlung des Verfassers, im k. k. Hof-Naturalien-Cabinet zu Wien. (Kolenati!)

Taf. IV, Fig. 11 — 14.

11. Das Weibchen von der Rückenseite.
12. " " " " Unterseite.

Weissgelb, die Blinddärme bilden nur um die Rückenschilder weisse Binden, der Körper breit, seitlich scharf wellig ausgeschnitten, hinten wellig, der Anaklebrand nicht breiter als der Vorderkörper, hinten flach zugerundet, an den Seiten mit abgerundeten Ecken, das vordere Rückenschildchen verkehrt landherzförmig mit abgestutzter vorderer Spitze, das hintere Rückenschildchen birnförmig, mit abgestutzter vorderer Spitze, das vordere Bauchschildchen verkehrt breit herzförmig, das hintere Bauchschildchen wie das gleichnamige Rückenschildchen, die Haftscbeeren wenig vorstehend, einfach spitzig, die Borsten bombirt querrissig.

Länge des Körpers: 0·0006 Pariser Meter.

Vorkommen. Am Patagium des Rhinolophus Ferrum equi- num Daub. in ganz Europa.

Typen in der Originalsammlung des Verfassers.

Taf. IV, Fig. 13—18.

15. Das Weibchen von der Rückenseite.
16. " " " " Bauchseite.
17. " " " " Männchen von der Rückenseite, blos die Blinddärme gezeichnet.
18. Die Borste.

Gelb, die Blinddärme um die Schildchen doppelt hufeisenförmig gelagert, in der Mitte quer verbunden, schwarzfleckig, der Körper breit oval, schwach Wellig am Rande, der Anaiklebrand in gleicher Breite des Körpers, hinten flach abgerundet mit etwas stumpf vorstehender Analgegend, das vordere Rückenschildchen verkehrt länglich, oval, das hintere Rückenschildchen binnförmig, das vordere Bauchschildchen undeutlich abgegrenzt oval, das hintere Bauchschildchen breit, die Haftscheeren doppelt, an den Hinterfüssen dreispitzig, die Borsten querrissig, mit kleinen Längsspaltungen.

Länge des Körpers: 0·00052 Pariser Meter.

Genus Tinoglischrus Kolenati (Scharfrandmilbe).

Der Körper breit rhombisch, bei beiden Geschlechtern gleich, vorne und hinten verschmäler, von einem scharfen doch nicht erweiterten Klebrande umgeben, welcher vom endständigen After durchbohrt ist, die Füße wenig kürzer als der Leib und sehr gedrungen kegelförmig, alle gleich gebildet, in ihren Einlenkungen und Gliederungen kurzborstig, die vorderen zwei Fusspaare in ihrer Einlenkung den hinteren in der Mittellinie des Körpers zusammen stossenden ganz genähert (und sonach alle Füsse um das isolirte Bauchschildchen central
gelagert), und an der Basis der Einlenkung ohne Haftsccheere-
chen, die obere Fläche des Leibes mit einem grossen, die untere
mit einem kleinen nicht skulptirten Schilden, die Augen an der
Unterseite des Kopfes wenig seitlich. Bewohnen die Flughaut der
Klappnasen.

Anmerkung. Auch diese sehr ausgezeichnete Gattung, welche sich
an die vorige anreibt, dürfte mit der Zeit noch ihre Vertreter
finden.

1. Art. Tinoglischrus punctolyla Kolenati, die leyertragende
Scharfrandmilbe.

Taf. II, Fig. 5 u. 6.

Lichtgelb, das Rückenschild von der Form des Leibes, wenig
glanzend, fast glatt, mit leierförmig durchscheinenden, oft schwarz-
braun punktierten Blinddärmen, das Bauchschildchen fast rund herz-
formig, verkehrt, ohne Herzeinschnitt, fein schuppig gekörnt, der
Aftcr unbeborstet, die Borsten einfach, mit deutlichem Markcanale.

Länge des Körpers: 0.0008 Pariser Meter.

Vorkommen. Am Patagium des Rhinopoma microphyllum
Geoffr., in Ägypten.

Typen in der Originalsammlung des Verfassers.

DIE THEILSCHILD- UND DREISCHILDBORSTENMILBEN.

Genus Meristaspis Kolenati (Theilschildmilbe).

Der Körper oval, bei beiden Geschlechtern gleich,
ohne Klebrand, die Füsse fast so lang als der Leib, die
Vorderfüsse doppelt so stark, normal bekrallt, lang kegel-
förmig, in ihren Einkerbungen und Gliederungen langborstig, die
vorderen zwei am vorletzten Endgliede mit einer langen Borste
besetzten Fusspaare in ihrer Einlenkung den hinteren, von der Mit-
tellinie des Körpers abstehenden nicht ganz genähert, an der
Basis der Einlenkung ohne Haftsccheerehen, von der Oberseite
des ersten Fusspaares nach hinten gerichtet e Lange Borsten, die
Rückenfläche des Leibes mit einem grossen, skulptirten, der
Quere nach getheilten Schilden, die Bauchseite mit einem
kleineren ungetheilten Schildchen versehen, die Augen an der Unterseite des Kopfes ganz seitlich unten; zwischen dem zweiten und dritten Fusspaare an der Seite des Körpers eine lange abstehende Borste. Bewohnen die Flughaut der Frugivoren Chiroptern.

1. Art. Meristaspis lateralis Kolenati, die gleichgrößige Thell- schildmilbe.

Taf. II, Fig. 7—10.

7. Das Weibchen von der Rückenseite.
8. " " " " Bauchseite.
9\1\2. Das Männchen.
10. Das Rückenschild mit den Erosionsgruben.

Citronengelb, glänzend, gelbborstig, die Blinddärme beim Weibchen um den Rand des Schildes, zwischen dem zweiten und dritten Fusspaare etwas einwärts gerückt, beim Männchen fast in der Form eines Achters, der Körper oval, beim Weibchen hinten mit vorstehender Afterwarze und jederseits mit zwei
kurzen Borsten, beim Männchen mit noch zwei Borsten unmittelbar neben der Analwarze, das Rückenschild sehr lang, am Vorderrande dicht beborstet, zweimal der Quere nach getheilt, mit 16 fast in zwei Längsreihen stehenden gleichgrossen runden Gruben, das untere Schilddchen verkehrt herz-eiförming, mit abgestutzter Spitze und sechs nach hinten gerichteten Randborsten, fein gekörnt, in der Mitte mit einer breiten und langen Grube, die Borsten von der Wurzel bis zur Spitze mit sehr scharfrandigen Spiralumgängen.

Länge des Körpers: 0.0009 Pariser Meter.

Vorkommen. Am Patagium der Xantharpyia aegyptiaca Geoffr.,. aus Ägypten.

Ts. II, Fig. 11—15.

11. Das Weibchen von der Rückenseite.
12. " " " Bauchseite.
15. Das Rückenschild mit den Erosionsgruben.

Lichtgelb, glänzend, braunborstig, die Blinddärme bilden ein doppeltes Hufeisen, indem sie in der Mittelquerlinie des Körpers beim Männchen vollkommen, beim Weibchen durch genäherte Fortsätze mit einander verbunden sind, der Körper länglich oval, beim Weibchen hinten mit stark vorstehender Analwarze und jederseits mit zwei kurzen Borsten, an den Seiten vor diesen Borsten winkelig ausgeschnitten, beim Männchen in der Analgegend keine Warze, jederseits 7 Borsten, das Rückenschild länglich oval, am Vorderrande unbeborstet, einmal der Quere nach getheilt, mit 6 runden Gruben im Vordertheile und 4 langen Gruben im Hintertheile, das untere Schilddchen breit, doch etwas länger, vorne und hinten der Quere nach gleich abgestutzt, mit 6 nach hinten gerichteten...
Kolenati.

Randbors en, quer nadellässig, die Borsten von der Wurzel bis zur Spitze mit sehr scharfrandigen, winkelig eingeschnittenen Spiralumgängen.

Länge des Körpers: 0.0007 Pariser Meter.

Typen in der Originalsammlung des Verfassers, im k. k. Hof-Naturalien-Cabinet zu Wien, im zoologischen Cabinet der kaiserlichen Akademie der Wissenschaften zu St. Petersburg, in der Universitäts-Sammlung von Moskau. (Kolenati)

Anmerkung. Ich habe diese ausgezeichnete Art nach dem bekannten wissenschaftlichen Lepidopterologen Herrn Julius Müller benannt, welcher die Abbildungen aller Arten direct aus dem Mikroskope anfertigte.

Genus Tristaspis Kolenati (Dreischildmilbe).

Der Körper eiförmig, bei beiden Geschlechtern gleich ohne Klebrand, die Füße fast so lang als der Leib, die Vorderfüße mit den übrigen gleich stark und normal bekrallt, lang kegelförmig, in ihren Gliederungen langborstig, die vorderen zwei am vorletzten Endgliede nicht mit einer langen Borste besetzten Fusspaare in ihrer Einlenkung den hinteren, von der Mittellinie des Körpers am weitesten abstehenden, ganz genähert, an der Basis der Einlenkung ohne Haftscheerchen, von der Oberseite des ersten und zweiten Fusspaares nur eine nach hinten gerichtete massig lange Borste, die Rückenfläche des Leibes mit einem kleinen, skulptirten, der Quere nach getheilten Schilde, die Bauchseite mit einem ziemlich grossen Schilde versehen, die Augen an der Unterseite des Kopfes ganz seitlich unten, zwischen dem zweiten und dritten Fusspaare an der Seite des Körpers keine abstehende Borste. Bewohnen die Flughaut der Hohlnasen, Nycteris.

Anmerkung. Diese Gattung bildet ebenso das Übergangsglied von den Theilschildmilbeu, Meristaspis, zu den Zweischildmilben Diplostaspis, wie die Gattung Leiostaspis (Ancistropus) das vermittelnde Glied zwischen Meristaspis und Periglischrus ist. Es dürfte sich später, wenn von mehreren Hohlnasen und den
ihnen zunächst stehenden Gattungen *Nyctophilus* und *Lophostoma* derartige Arachniden species bekannt sein werden, die Repräsentanz des von mir aufgestellten Genus *Tristaspis* besser als gegenwärtig herausstellen.

Taf. IV, Fig. 19—23.

20. " " " Bauchseite.
22. Die Borste.
23. Das Rückenschild.

Lichtgelb, glänzend, gelbborstig, der Körper eiförmig, die Blinndärme beim Weibchen eine gedoppelte Leier bildend, indem sie gegen die Quertheilung des Rückenschildchens einander genähert und von da geschweißt nach vorne und hinten offen auslaufen, beim Männchen das Rückenschild umfassend und nur nach vorne gegen die Vorderfüße zwei Fortsätze ausschickend, die Analgegend bei beiden Geschlechtern etwas ausgerandet abgestutzt, jederseits mit vier Borsten beim Weibchen, mit 5 Borsten beim Männchen, bei letzterem noch in der Mitte mit drei Borsten, bei ersterem mit zwei Borsten, das Rückenschild fast länglich abgerundet sechseckig, in seiner Grundsculptur rundlich gekörnt, die vordere grösseere Theilungshälfte mit 6 grossen runden Gruben, von denen die vorderen zwei kleiner sind, das Schildchen der Unterseite gross, nach hinten breiter und der Quere nach abgestutzt, nach vorne zu den Seiten etwas ausgeschweißt und hierauf verengt, in der Sculptur rund gekörnt, die Borsten von der Wurzel bis zur Spitze schuppig rissig.

Länge des Körpers: 0·00035—0·0007 Pariser Meter.

Typen in der Originalsammlung des Verfassers und im k. k. Hof-Naturalien-Cabinet zu Wien. (Kolenat i !)
Erklärung der Tafeln.

TAFEL I.

Fig. 1. *Otonyssus flavus* Klti.

2. " " " Borste.

4. " " " Borste.

5. *Otonyssus aurantiacus* Klti.

6. " " " Borste.

7. *Otonyssus sticholasius* Klti.

8. " " " die chelirten Fühler.

9. " " " Fühlerborste.

10. " " " Körperborste.

11. " " " Klaue mit der Pelotte.

13. " " " Bauchseite.

14. " " " Borste.

16. " " " Unterseite.

TAFEL II.

Fig. 1. *Otonyssus orthotrichus* Klti.

2. " " " Borste.

3. *Otonyssus pinnipes* Klti.

4. " " " Borste.

5. *Tinoglischrus punctolychra* Klti.

6. " " " Unterseite.

8. " " " Unterseite.

8½ " " " Männchen.

9. " " " Borste.

10. " " " Schildchen.

12. " " " Unterseite.

13. " " " Männchen.

14. " " " Borste.

15. " " " Schildchen.

TAFEL III.

Fig. 1. *Peplonyssus seminulum* Klti.

2. " " " Unterseite.
Aus d. k. k. Hof u. Staatsdrucker
Beiträge zur Kenntniss der Arachniden.

89

Fig. 3. *Peplonyssus seminulum* Kliti. Borste.

5. " " " " Unterseite.

6. " " " " Borste.

8. " " " " Unterseite.

9. " " " " Borste.

11. " " " " Unterseite.

12. " " " " Borste.

TAFEL IV.

Fig. 1. *Periglischrus Calicus* Kliti.

2. " " " " Unterseite.

3. " " " " Borste.

5. " " " " Unterseite.

6. " " " " Männchen.

7. " " " " Borste.

9. " " " " Unterseite.

10. " " " " Borste.

12. " " " " Unterseite.

13. " " " " Männchen.

14 " " " " Borste.

16. " " " " Unterseite.

17. " " " " Männchen.

18. " " " " Borste.

20. " " " " Unterseite.

21. " " " " Männchen.

22. " " " " Borste.

23. " " " " Schildchen.
Analyse der Mineralquelle „del Franco“ zu Recoaro.

Von H. Hlasiwetz.

(Vorgelegt in der Sitzung am 21. October 1838.)

1) Notizia sopra la nuova fonte minerale acidulo ferruginosa del Franco in Recoaro, da Dr. Jacopo Bologna. Venezia 1838.
2) Eigentum des Herrn Apothekers Trattenero, auf dessen Wunsch auch die vorliegende Analyse ausgeführt wurde.
Übereinstimmend mit den dort angeführten qualitativen Reactionen fand ich als Bestandtheile des Wassers

<table>
<thead>
<tr>
<th>Magnesia</th>
<th>Kohlensäure,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalk</td>
<td>Schwefelsäure,</td>
</tr>
<tr>
<td>Eisenoxydul</td>
<td>Kieselsäure,</td>
</tr>
<tr>
<td>Kali</td>
<td>Chlor,</td>
</tr>
<tr>
<td>Natron</td>
<td>Phosphorsäure { deutliche Spuren,</td>
</tr>
<tr>
<td>Thonerde,</td>
<td>Jod</td>
</tr>
<tr>
<td>Lithion</td>
<td>Brom, zweielsfähige Spuren.</td>
</tr>
<tr>
<td>Mangan }</td>
<td>Spuren,</td>
</tr>
</tbody>
</table>

Es war mir das Wasser in sorgfältig verschlossenen Glasflaschen überschickt worden, und die äusseren Eigenschaften waren dieselben wie die oben angegebenen; das Verhalten beim Stehen und Erhitzen natürlich ebenso. Beim langer Aufbewahren beschlagen sich die Gefäßwände mit einem eisenhaltigen Absatz.

Die Proben auf die, nur in kleiner Menge vorhandenen Bestandtheile wurden mit dem festen Rückstande von 75 Litres Wasser gemacht. Dabei war der Gang eingeschlagen worden, der in der neuesten Auflage des Werkes von Fresenius aufgenommen ist.

Herr Dr. v. Gilm hat mich in der Ausführung von Controlbestimmungen wesentlich unterstützt.

Quantitative Versuche.

Da das Wasser beim Kochen einen beträchtlichen Absatz liefert, so war, um die nöthigen Anhaltspunkte für die Zusammensetzung zu gewinnen, es nothwendig, auch dessen Totalmenge und seine einzelnen Bestandtheile zu bestimmen.

Eine Reihe von Controlen für die sub X, XI, XII, VII, VIII angeführten Bestimmungen bestätigte die daselbst erhaltenen Resultate und liess so die weiter unten angeführte Zusammensetzung als gerechtferigt erscheinen.

I. Bestimmung des spezifischen Gewichtes.

Temp. 13° C.

\[\frac{260.7678}{260.8432} = 0.999710. \]

\[\frac{260.9885}{260.8700} = 1.000443. \]
II. Bestimmung der Gesamtmenge der Bestandtheile.

Gewogene Mengen Wasser wurden in einer Platinschale vorsichtig eingedämpft und der Rückstand bei 150° getrocknet, bis keine Gewichtsabnahme mehr zu bemerken war.

\[
\begin{array}{l}
\text{a) } 1000 \text{ Grm. Wasser gaben } 0.8638 \text{ Grm. Rückstand } = 0.8638, \\
\text{b) } 1000 \quad \quad \quad 0.8492 \quad \quad \quad = 0.8492, \\
\text{c) } 2000 \quad \quad \quad 1.7100 \quad \quad \quad = 0.8550, \\
\text{Mittel } 0.8560.
\end{array}
\]

III. Bestimmung der Schwefelsäure.

Eine gewogene Menge Wasser wurde mit Salzsäure angesäuert, in bedecktem Gefässe sehr allmählich erwärmt, und endlich mit Chlorbaryum die Schwefelsäure gefällt.

\[
\begin{array}{l}
\text{a) } 1000 \text{ G. Wasser gaben } 0.8226 \text{ G. schwefels. Baryt } = 0.2822 \text{ G. Schwefelsäure,} \\
\text{b) } 1000 \quad \quad \quad 0.8026 \quad \quad \quad = 0.2735 \quad \quad \quad \\
\text{Mittel } 0.2787 \text{ G. Schwefelsäure.}
\end{array}
\]

IV. Bestimmung der Kieselsäure.

\[
\begin{array}{l}
\text{a) } 642.5 \text{ Grm. Wasser gaben } 0.0371 \text{ Grm. Kieselsäure } = 0.0377, \\
\text{b) } 634 \quad \quad \quad 0.0365 \quad \quad \quad = 0.0376, \\
\text{Mittel } 0.0376.
\end{array}
\]

V. Bestimmung des Chlors.

Eine gewogene Wassermenge wurde zur Trockne abgedampft, der Rückstand mit heissem Wasser ausgezogen und nach Zusatz von neutralem chromsaurem Kali titrirt.

Dabei verbrauchten:
Analyse der Mineralsquelle „del Franco“ zu Recaro.

a) 1000 Grm. Wasser 1:77 CC. Silberlösung = 0:00267 Grm. Chlor,
b) 1000 " " 1:73 " " = 0:00261 " "
Mittel 0:00264 Grm. Chlor.

VI. Bestimmung des Eisens und der Thonerde.

Der gekannte Inhalt je einer Flasche wurde mit Salzsäure ange-
säuret, die entleerte Flasche mit verdünnter Salzsäure nachgespült, das Ganze vorsichtig zur Trockne gebracht und wie bei IV die Kiesel säure abgeschieden. Die abfiltrirte Flüssigkeit wurde mit Sal-
petersäure versetzt, zum Kochen erhitzt, mit kohlensäurefreiem Ammoniak gefällt und rasch filtrirt. Der Niederschlag (Eisenoxyd und Thonerde) wurde gegluht und gewogen.

Bei einem andern Versuch wurde er noch feucht mit Kalilauge behandelt und die Thonerde gelöst, der Rest an Eisenoxyd wieder in Salzsäure aufgenommen und mit Ammoniak gefällt. Die Differenz ergab die Thonerde. Sie ist in zu kleiner Menge vorhanden, als dass sie sich direct genauer bestimmen liesse.

\[
\text{Eisenoxyd + Thonerde in 1000 Theilen} \\
a) 642:5 Grm. Wasser gaben 0:0810 Grm. = 0:0280 Grm. \\
b) 634 " " 0:0175 " " = 0:0275 " \\
\text{Mittel 0:0277 Grm. Eisenoxyd + Thonerde,} \\
c) 660 " " 0:0175 Grm. = 0:0265 " \\
\text{Thonerde 0:0012 Grm.}
\]

VII. Bestimmung des Kalks.

Die von Eisenoxyd und Thonerde befreite Flüssigkeit von VI wurde mit reiner Oxalsäure versetzt und nach einigem Stehen der Niederschlag abfiltrirt.

\[
\text{In 1000 Theilen} \\
a) 634 Grm. Wasser gaben 0:2335 Grm. kohlens. Kalk = 0:2063 Grm. Kalk, \\
b) 660 " " 0:2389 " " = 0:2026 " " \\
\text{Mittel 0:2044 Grm. Kalk.}
\]

VIII. Bestimmung der Magnesia.

Sie geschah aus der von Eisen, Thonerde und Kalk befreiten ammoniakalischen Flüssigkeit mit phosphorsaurem Natron auf die gewöhnliche Weise.
IX. Bestimmung der Alkalien.

Die Menge des Natrons ergab sich aus dem Verluste.

\[
\begin{align*}
 a) & \quad 2000 \text{ Grm. Wasser gaben } 0.1278 \text{ Grm. Chloralkalien,} \\
 b) & \quad 2000 \text{ } \text{ } \text{ } 0.1240 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \\
 a) & \quad \text{gab } 0.0781 \text{ Kaliumplatinchlorid, und dieses } 0.0324 \text{ Grm. Platin,} \\
 b) & \quad 0.0879 \text{ } \text{ } \text{ } 0.0388 \text{ } \text{ } \text{ } \text{ } \text{ } \\
\end{align*}
\]

Daraus berechnet sich an Kali und Natron:

\[
\begin{align*}
 \text{In } 1000 \text{ Theilen} \\
 a) & \quad 0.0077 \text{ Kali und } 0.0274 \text{ Natron,} \\
 b) & \quad 0.0035 \text{ } \text{ } \text{ } 0.0257 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \\
 \text{Mittel } & \quad 0.0081 \text{ Kali und } 0.0265 \text{ Natron.} \\
\end{align*}
\]

X. Bestimmung des beim Kochen entstehenden Niederschlages.

Die gewogene Menge Wasser wurde durch eine Stunde im Kochen erhalten und das verdampfte immer wieder durch destillirtes ersetzt. Der Niederschlag wurde dann abfiltrirt und bei 100° getrocknet.

\[
\begin{align*}
 a) & \quad 1000 \text{ Grm. Wasser gaben } 0.3208 \text{ Grm. Rückstand,} \\
 b) & \quad 1000 \text{ } \text{ } \text{ } 0.3172 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \\
 \text{Mittel } & \quad 0.3188 \text{ Grm. in } 1000 \text{ Theilen.} \\
\end{align*}
\]
XI. Bestimmung der Bestandtheile in dem durch Kochen erhaltenen Niederschlage.

(A. Kalk.) Ein durch Kochen von 1000 Grm. Wasser erhaltenen Niederschlag gab:

\[
\begin{array}{l}
a) \ 0.03064 \ \text{Grm. kohlens. Kalk} = 0.1716 \ \text{Grm. Kalk}, \\
b) \ 0.02952 \ \Rightarrow \ \text{Mittel} \ 0.3008 \ \text{Grm. kohlens. Kalk} = 0.1684 \ \text{Grm. Kalk}.
\end{array}
\]

(B. Eisenoxyd.) Ein durch Kochen von 1000 Grm. Wasser erhaltenen Niederschlag gab:

\[
\begin{array}{l}
a) \ 0.0125 \ \text{Grm. Eisenoxyd}, \\
b) \ 0.0143 \ \Rightarrow \ \text{Mittel} \ 0.0134 \ \text{Grm. Eisenoxyd in} \ 1000 \ \text{Theilen}.
\end{array}
\]

(C. Magnesia.) Der Niederschlag von 1000 Grm. Wasser gab 0.0056 Grm. b. phosphors. Magnesia = 0.0020 Grm. Magnesia in 1000 Theilen.

Controle I. Als Mittel der durch Kochen von 1000 Grm. Wasser gefallten Bestandtheile wurden erhalten:

\[
\begin{array}{l}
A. \ 0.3008 \ \text{Grm. kohlens. Kalk}, \\
B. \ 0.0134 \ \text{Eisenoxyd}, \\
C. \ 0.0042 \ \text{kohlens. Magnesia}, \\
\text{Summe} \ 0.3184 \ \text{Grm.} \\
\text{Nach Bestimmung X} \ 0.3188 \ \Rightarrow \ \text{Mittel aus} \ 1000 \ \text{Theilen}.
\end{array}
\]

XII. Bestimmung der Bestandtheile im gekochten Wasser.

(A. Kalk.) Das bei X vom Niederschlag getrennte Wasser gab:

\[
\begin{array}{l}
a) \ 0.0673 \ \text{Grm. kohlens. Kalk} = 0.0377 \ \text{Grm. Kalk}, \\
b) \ 0.0596 \ \Rightarrow \ \text{Mittel} \ 0.0355 \ \text{Grm. Kalk},
\end{array}
\]

durch Kochen nicht fallbar.

(B. Magnesia.) Die vom Kalk befreite Flüssigkeit gab:

\[
\begin{array}{l}
a) \ 0.3159 \ \text{Grm. b. phosphors. Magnesia} = 0.1135 \ \text{Grm. Magnesia}, \\
b) \ 0.3129 \ \Rightarrow \ \text{Mittel} \ 0.1125 \ \text{Grm. Magnesia},
\end{array}
\]

durch Kochen nicht fallbar.

(C. Eisen.) Spuren.
Controle II.

Nach Bestimmung XI wurde als Mittel des durch Kochen von 1000 Grm. Wasser fällbaren Kalks erhalten ... 0.1884 Grm. Kalk.
Nach Bestimmung XII beträgt der durch Kochen von 1000 Grm. Wasser nicht fällbare Kalk 0.0355 »
Summe 0.2039 Grm. Kalk.

Nach Bestimmung VIII wurde als Totalmenge des Kalks in 1000 Grm. Wasser gefunden (im Mittel) 0.2044 Grm. Kalk.

Controle III.

Nach Bestimmung XI C wurde gefunden in 1000 Theilen Wasser durch Kochen fällbare Magnesia 0.0020 Grm.
Bestimmung XII B ergab in 1000 Theilen Wasser durch Kochen unfallbare Magnesia 0.1125 »
Summe 0.1145 Grm.

Bestimmung VIII ergab als Totalmenge der Magnesia in 1000 Theilen 0.1160 »

XIII. Bestimmung der Kohlensäure 1).

a) Eine Flasche, enthaltend 662 Grm. Wasser, gab mit Ammoniak und Chlorbaryum gefällt 8.1314 Grm. kohlensaure Erden. Davon enthielten:

1. 0.5 Grm. ... 0.1193 Grm. Kohlensäure }
2. 0.5 0.1160 »
Mittel 0.1191 Grm.

Auf die Gesammtmenge berechnet = 1.9377 Grm., in 1000 Theilen = 2.9270 Grm.

b) Eine Flasche, 684 Grm. Wasser enthaltend, gab in gleicher Weise behandelt 8.4071 Grm. kohlensaure Salze. Davon enthielten:

1. 0.5 Grm. ... 0.1257 Grm. Kohlensäure }
2. 0.5 0.1279 »
Mittel 0.1268 Grm.

1000 Gewichtstheile Wasser enthalten:

* a) In wägbarer Menge.*

<table>
<thead>
<tr>
<th>Salze</th>
<th>Schwefelsäure</th>
<th>Chlor</th>
<th>Kohlensäure</th>
<th>Kieselsäure</th>
<th>Eisenoxyd</th>
<th>Thonerde</th>
<th>Kalk</th>
<th>Magnesia</th>
<th>Kali</th>
<th>Natron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsaure</td>
<td>0.3375</td>
<td>0.2250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesia</td>
<td></td>
</tr>
<tr>
<td>Schwefels. Kalk</td>
<td>0.0862</td>
<td>0.0807</td>
<td></td>
<td></td>
<td></td>
<td>0.0355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwefels. Kali</td>
<td>0.0065</td>
<td>0.0030</td>
<td></td>
<td></td>
<td></td>
<td>0.0035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlens. Kali</td>
<td>0.0073</td>
<td></td>
<td>0.0027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlens. Natron</td>
<td>0.0488</td>
<td></td>
<td>0.0216</td>
<td></td>
<td></td>
<td>0.0046</td>
<td></td>
<td></td>
<td></td>
<td>0.0242</td>
</tr>
<tr>
<td>Kohlens. Kalk</td>
<td>0.3008</td>
<td></td>
<td>0.1324</td>
<td></td>
<td></td>
<td>0.1689</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlens. Eisenoxydul</td>
<td>0.0384</td>
<td></td>
<td>0.0146</td>
<td>0.02651)</td>
<td></td>
<td>0.0035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlens. Magnesia</td>
<td>0.0073</td>
<td></td>
<td>0.0038</td>
<td></td>
<td></td>
<td>0.0035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlornatrium</td>
<td>0.0043</td>
<td>0.00264</td>
<td></td>
<td></td>
<td></td>
<td>0.0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiesels. Thonerde</td>
<td>0.0039</td>
<td></td>
<td></td>
<td>0.0027</td>
<td>0.0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kieselsäure</td>
<td>0.0549</td>
<td></td>
<td></td>
<td>0.0549</td>
<td></td>
<td>0.0549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.8929 0.2787 0.00264 0.1751 0.0376 0.0265 0.0012 0.2044 0.1160 0.0081 0.0265

Freie und halbgebundene Kohlensäure: 2.8469.
Summe der Salze: 0.8929.
Nach Bestimmung II Gesamtmenge der Bestandtheile 0.8560.

* b) In Spuren vorhanden.*

Phosphorsäure, Jod, Lithion, Mangan. (Organische Substanz fehlt fast ganz.)

1) Auf Eisenoxydul berechnet = 0.0238.
In einem Medicinalpfund = 7680 Gran sind enthalten:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>In Gran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsäure</td>
<td>2.1404</td>
</tr>
<tr>
<td>Kieselsäure</td>
<td>0.4424</td>
</tr>
<tr>
<td>Chlor</td>
<td>0.0203</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>23.2099</td>
</tr>
<tr>
<td>Eisenoxydul</td>
<td>0.1828</td>
</tr>
<tr>
<td>Thonerde</td>
<td>0.0092</td>
</tr>
<tr>
<td>Kalk</td>
<td>1.5698</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.8909</td>
</tr>
<tr>
<td>Kali</td>
<td>0.0622</td>
</tr>
<tr>
<td>Natron</td>
<td>0.2035</td>
</tr>
<tr>
<td>Phosphorsäure</td>
<td></td>
</tr>
<tr>
<td>Lithion</td>
<td></td>
</tr>
<tr>
<td>Mangan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spuren.</td>
</tr>
</tbody>
</table>

Als Salze berechnet:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>In Gran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsaure Magnesia</td>
<td>2.5920</td>
</tr>
<tr>
<td>Schwefelsaurer Kalk</td>
<td>0.6620</td>
</tr>
<tr>
<td>Schwefelsaures Kali</td>
<td>0.0499</td>
</tr>
<tr>
<td>Kohlensaures Kali</td>
<td>0.0560</td>
</tr>
<tr>
<td>Kohlensaures Natron</td>
<td>0.3517</td>
</tr>
<tr>
<td>Kohlensauarer Kalk</td>
<td>2.3101</td>
</tr>
<tr>
<td>Kohlensaures Eisenoxydul</td>
<td>0.2949</td>
</tr>
<tr>
<td>Kohlensaure Magnesia</td>
<td>0.0561</td>
</tr>
<tr>
<td>Chloratium</td>
<td>0.0330</td>
</tr>
<tr>
<td>Kieselsaure Thonerde</td>
<td>0.0299</td>
</tr>
<tr>
<td>Kieselsäure</td>
<td>0.4216</td>
</tr>
</tbody>
</table>

6.8372 Gran

Freie und halbgebundene Kohlensäure 21.8642 Gran.
Vorträge.

Beiträge zur Theorie der Respiration.

Von Wilhelm Müller aus Erlangen.

(Vorgelegt in der Sitzung vom 7. Oktober 1888 vom Hrn. Prof. Ludwig.)

Für die Theorie der Respiration war es wichtig, die Meyer'schen Versuche auf das lebende Blut zu übertragen, und auf dem Wege des Versuches zu prüfen, ob bei der Atmung die von ihm aufgestellte Beziehung zwischen dem Blute einerseits und Sauerstoff und Kohlensäure andererseits wirklich volle Geltung hat. Ich versuchte diese Frage durch eine Reihe von Untersuchungen, welche ich im physiologischen Institut der k. k. Josephs-Akademie anstellte, ihrer Lösung näher zu bringen, und freue mich, dem Vorstande dieses Instituts, Herrn Professor Ludwig, für die aufs liberalste

gestattete Benützung der gebotenen Hilfhilfsmittel hiemit öffentlich meinen Dank aussprechen zu können.

Es liess sich dieser Forderung jedoch genügen dadurch, dass die Lufröhre des zu untersuchenden Thieres geöffnet und mit einer vollkommen luftdicht eingebundenen Canule versehen wurde. Die Operation der Tracheotomie lässt sich an allen Thieren sehr leicht und ohne irgend welchen bemerkenswerthen Blutverlust ausführen; die Wunde selbst ist nur sehr klein, so dass kein Grund zu der Annahme gegeben ist, dass durch diesen Eingriff eine nachweisbare Alteration im Befinden des Thieres verursacht werde.

Nächstdem erforderten die Versuche eine möglichst vollkom- mene Mischung der angewandten Gase. Ich hoffte sie in einigen zu diesem Zweck angestellten Vorversuchen einfach dadurch zu erreichen, dass ich die Tracheacanule durch einen Kautschukschlauch der durch Imprägniren mit heissem Fett luftdicht gemacht worden war, geradezu mit dem als Atmungsraum dienenden Behälter in
Beiträge zur Theorie der Respiration.

Verbindung setzte. Allein es zeigte sich, dass die Athembewegungen des Thieres allein nicht hinreichend, die verdorbene und die zum Athmen noch brauchbare Luft hinreichend zu mischen; es stellten sich jedesmal auch bei grossem Athmungsraume in unverhältnismässig kurzer Zeit alle Erscheinungen der beginnenden Erstickung ein.

dagegen sehr merklich werden bei schwächeren Thieren und bei öfterem Experimentiren an demselben Thiere.

Für die in Rede stehenden Versuche war aber dritte Bedingung die Kenntniss des vorhandenen Partiadrucks der angewandten Gase. Diese Bedingung war erfüllt, wenn Luft von bekannter Zusammensetzung und bekanntem Drucke im abgeschlossenen Raume mit der Lungenfläche in Berührung gebracht wurde.

Da wir wissen, dass bei Pflanzenfressern in den Geweben sich aller oder doch nahezu aller eingeatmete Sauerstoff in Kohlensäure verwandelt, so muss die abgeschlossene Luft in ihrer Zusammensetzung durch den Athemprozess in der Weise sich ändern, dass mit dem Sinken des Partiadrucks vom Sauerstoff eine Erhöhung des Partiadrucks der Kohlensäure stattfindet. Würden auch noch Spuren von Sauerstoff hinreichen, das Leben zu unterhalten, so müsste, die Geltung des Meyer'schen Satzes angenommen, letzterer vollständig aus dem Athmungsräum verschwinden. Dies ist aber erfahrungsgemäss nicht der Fall. Wir müssen demnach das Leben betrachten als eine Funktion von der Geschwindigkeit des Sauerstoffeintritts in das Blut, und letztere ist offenbar abhängig von der Dichtigkeit des Sauerstoffs im Athmungsraum insofern, als ein Sinken derselben unter eine gewisse Grenze die Aufnahme der zur Erhaltung des Lebens nothwendigen Menge in der Zeiteinheit nicht mehr gestattet; dabei ist aber zu bedenken, dass das Leben nicht momentan zu Grunde geht, wenn der Sauerstoffgehalt des Blutes oder des Athmungsräums unter einen gewissen Werth herabsinkt, weil die tierischen Gewebe stets noch eine gewisse Menge disponiblen Sauerstoffs enthalten, welche ihre Lebensäußerungen für kurze Zeit zu erhalten im Stande ist. Genügt nun diese Zeit, um während derselben alle Luft des Athmungsräumes, wenn sie die zum Leben nothwendige Sauerstoffmenge auch nicht mehr besitzt, bei gegebener Athemfolge und Athemtiefe mit dem Blut in Berührung zu bringen, so ist die Möglichkeit vorhanden, dass aller Sauerstoff aus dem Athmungsräume verschwindet, während im andern Fall nur ein Herabsinken seines Werthes bis zu einer gewissen Grösse zur Beobachtung kommen kann.

Einen sehr wichtigen Einfluss müssen nach dem eben Erörterten auf letztere Grösse haben einmal die Grösse des Athmungsraumes und zweitens die allenfallsige Ermüdung des Thieres.
Der Einfluss von beiden springt in die Augen. Je grösser das Volum der zur Erhaltung des Lebens untauglichen Luft, um so weniger wird das Thier im Stande sein, sie noch vollständig durch seine Lungen zu treiben; je grösser die Ermüdung, um so unvollkommener werden die Athemzüge und damit um so kleiner die Berrührungsfläche zwischen Luft und Blut. Endlich kommt für die in Rede stehende Untersuchung noch in Betracht der Partiadruck der gebildeten Kohlensäure im Luftraum. Bei gegebenem Sauerstoffvolum ist er, die Richtigkeit des Meyer'schen Satzes auch für die Kohlensäure angenommen, da der Sauerstoff sich innerhalb der Beobachtungsfehler vollständig in Kohlensäure umsetzt, abhängig von dem der gebildeten Kohlensäure (des verschwundenen Sauerstoffes) zur jeweiligen Kohlensäurespannung im Blute. Letztere ist aber, wie wir durch die Versuche von Vierordt und Becker wissen, nach Zeit und Umständen eine variable; dasselbe wird mithin bei gleichem Sauerstoffvolum für den Athmungsraum der Fall sein müssen. Eine notwendige Consequenz der Annahme, dass die Kohlensäure einfach dem Absorptionsgesetz gehorchte, ist ferner, dass die Kohlensäurespannung im Blute steigen muss, wenn bei fortlaufender Neu- bildung ihr Austritt aus dem Blute durch einen entsprechenden Druck in der äusseren Luft gehindert wird, dass endlich Kohlensäure aus dieser in das Blut übertritt, wenn der Partiadruck der Kohlensäure in der Luft den im Blute überwiegt.

In wie weit diese Folgerungen durch den Versuch bestätigt wurden, zeigen die sogleich mitzuteilenden Resultate. Es erübrigt nur noch, vorher über die Versuchsmethode und über die Ausführung das Nöthige mitzuteilen.

Als Athmungsraum dienten cylindrische Gläser oder Flaschen von verschiedenen Rauminhalt. Der Hals tauchte in das als Sperrflüssigkeit dienende Quecksilber. Der Boden des Gefäßes wurde mit zwei Öffnungen durchbohrt und in jede dieser Öffnungen eine Glasröhre möglichst genau eingeschlossen und eingekittet; die Verbindungsstelle überdies äusserlich mit Siegellack umgeben. Das ausserhalb des Gefäßes befindliche Ende der Glasröhre war wie bei den Ventilen rechtwinklig gebogen und wurde mit den Ventil-

2) Studien über Respiration. Züricher Mittheilungen. 1853.
dagegen sehr merklich werden bei schwächlichen Thieren und bei
älterem Experimentiren an denselben Thiere.

Für die in Rede stehenden Versuche war aber dritte Bedingung
die Kenntniss des vorhandenen Partiärdrucks der angewandten Gase.
Diese Bedingung war erfüllt, wenn Luft von bekannter Zusammensetzung
und bekanntem Drucke im abgeschlossenen Raume mit der
Lungenfläche in Berührung gebracht wurde.

Da wir wissen, dass bei Pflanzenfressern in den Geweben
sich aller oder doch nahezu aller eingeeathmte Sauerstoff in
Kohlensäure verwandelt, so muss die abgeschlossene Luft in
ihrer Zusammensetzung durch den Athemprocess in der Weise
sich ändern, dass mit dem Sinken des Partiärdrucks vom Sauerstoff
eine Erhöhung des Partiärdrucks der Kohlensäure statt-
findet. Würden auch noch Spuren von Sauerstoff hinreichen, das
Leben zu unterhalten, so müsste, die Geltung des Meyer'schen
Satzes angenommen, letzterer vollständig aus dem Athmungsraum
verschwinden. Dies ist aber erfahrungsgemäss nicht der Fall. Wir
müssen demnach das Leben betrachten als eine Function von der
Geschwindigkeit des Sauerstoffeintritts in das Blut, und letztere ist
offenbar abhängig von der Dichtigkeit des Sauerstoffs im Athmungs-
raum insofern, als ein Sinken derselben unter eine gewisse Grenze
die Aufnahme der zur Erhaltung des Lebens nothwendigen Menge in
der Zeiteinheit nicht mehr gestattet; dabei ist aber zu bedenken,
 dass das Leben nicht momentan zu Grunde geht, wenn der Sauer-
stoffgehalt des Blutes oder des Athmungsraums unter einen gewissen
Wert herabsinkt, weil die tierischen Gewebe stets noch eine ge-
wisse Menge disponiblen Sauerstoffs enthalten, welche ihre Lebens-
äußerungen für kurze Zeit zu erhalten im Stande ist. Genügt nun
diese Zeit, um während derselben alle Luft des Athmungsraumes,
wen sie die zum Leben nothwendige Sauerstoffmenge auch nicht
mehr besitzt, bei gegebener Athemfolge und Athemtiefe mit dem
Blut in Berührung zu bringen, so ist die Möglichkeit vorhanden,
 dass aller Sauerstoff aus dem Athmungsraume verschwindet, während
im andern Fall nur ein Herabsinken seines Werthes bis zu einer ge-
wissen Grösse zur Beobachtung kommen kann.

Einen sehr wichtigen Einfluss müssen nach dem eben Erörter-
ten auf letztere Grösse haben einmal die Grösse des Athmungs-
raumes und zweitens die allenfallsige Ermudung des Thieres.
Der Einfluss von beiden springt in die Augen. Je grösser das Volum der zur Erhaltung des Lebens untauglichen Luft, um so weniger wird das Thier im Stande sein, sie noch vollständig durch seine Lunge zu treiben; je grösser die Ermüdung, um so unvollkommener werden die Athemzüge und damit um so kleiner die Bereitungsfläche zwischen Luft und Blut. Endlich kommt für die in Rede stehende Untersuchung noch in Betracht der Partiadruck der gebildeten Kohlensäure im Luftraum. Bei gegebenem Sauerstoffvolum ist er, die Richtigkeit des Meyer'schen Satzes auch für die Kohlensäure angenommen, da der Sauerstoff sich innerhalb der Beobachtungsfehler vollständig in Kohlensäure umsetzt, abhängig von dem der gebildeten Kohlensäure (des verschwundenen Sauerstoffes) zur jeweiligen Kohlensäurespannung im Blute. Letztere ist aber, wie wir durch die Versuche von Vierordt 1) und Becher 2) wissen, nach Zeit und Umständen eine variable; dasselbe wird mithin bei gleichem Sauerstoffvolum für den Athmungsraum der Fall sein müssen. Eine notwendige Consequenz der Annahme, dass die Kohlensäure einfach dem Absorptionsgesetze gehorchet, ist ferner, dass die Kohlensäurespannung im Blute steigen muss, wenn bei fortlaufender Neubildung ihr Austritt aus dem Blute durch einen entsprechenden Druck in der äusseren Luft gehindert wird, dass endlich Kohlensäure aus dieser in das Blut übertritt, wenn der Partiadruck der Kohlensäure in der Luft den im Blute überwiegt.

In wie weit diese Folgerungen durch den Versuch bestätigt wurden, zeigen die sogleich mitzutheilenden Resultate. Es erübrigt nur noch, vorher über die Versuchsmethode und über die Ausführung das Nöthige mitzutheilen.

Als Athmungsraum dienten cylindrische Gläser oder Flaschen von verschiedenem Rauminhalt. Der Hals tauchte in das als Sperrflüssigkeit dienende Quecksilber. Der Boden des Gefässes wurde mit zwei Öffnungen durchbohrt und in jede dieser Öffnungen eine Glasröhre möglichst genau eingeschlossen und eingekittet; die Verbindungsstelle überdies äusserlich mit Siegellack umgeben. Das ausserhalb des Gefässes befindliche Ende der Glasröhre war wie bei den Ventilen rechtwinklig gebogen und wurde mit den Ventil-

2) Studien über Respiration. Züricher Mittheilungen. 1853.

Diese Vorrichtungen wurden zu jedem Versuche vollständig zusammengestellt, die Kautschukverbindungen nach Art der Elementaranalyse mit Seidenfäden befestigt und das Ganze auf luftdichten Schluss geprüft. Die Luft im Gefäss wurde durch einige Tropfen Wasser mit Wasserdampf gesättigt, das Gefäss senkrecht in Quecksilber gestellt und das Volum aus der Entfernung abgelesen. Hierauf wurde dem Thiere die Trachea geöffnet, die Canule luftdicht einge- bunden und das Thier an den Apparat gebracht. Zur bestimmten Zeit wurde das Metallrohr mittelst eines dickwandigen Kautschuk-
rohrs mit der Canule in Verbindung gesetzt und das Thier atmen gelassen.

werden; auf Quecksilberdruck bei 0° reduziert und zu dem jeweiligen Barometerstand addirt gab er den Druck, unter welchem das Gas gemessen wurde.

Von der zu Gebote stehenden Luft wurden, soweit es Zeit und Raum gestatteten, Doppelanlysen ausgeführt, die wo möglich verschiedenen Tiefen des Gefäßes entnommen waren. Die miztuthreibenden Zahlen zeigen, dass auch bei einzelnen Analysen die gefundene und die wahre Zusammensetzung der Luft sich höchstens innerhalb der unvermeidlichen Fehlergrenzen unterscheiden kann.

Die Versuchsreihe, welche ich zuerst mittheilen werde, bezieht sich hauptsächlich auf das Verhalten des Sauerstoffs und auf die Grenze, bis zu welcher er in einem gegebenen Luftvolum durch den Atmungsprozess herabgedrückt werden kann. Es sind diese Versuche dem Prinzip nach nicht neu; Berthollet 1), Schübler 2), Legallois 3), Allen und Pepys 4) und in jüngster Zeit Bernard 4) haben sich mit dieser Frage beschäftigt. Eine Prüfung und Bestätigung der von diesen Forschern gewonnenen Resultate war wünschenswerth, wegen der weniger vollkommenen analytischen Hilfsmittel der früheren Zeiten; die Versuche Bernard's, bieten leider sowohl hinsichtlich der Methode als hinsichtlich der Ausführung der Analysen zu wenig Garantien für ihre Zuverlässigkeit, als dass sie eine experimentelle Prüfung für überflüssig könnte erscheinen lassen.

Die Erscheinungen, welche die Thiere bei diesen Versuchen darboten, waren stets dieselben und nur der Zeit nach verschieden je nach der Grösse des Atmungsräumes. Die Thiere atmeten anfangs eben so ruhig fort wie in atmosphärischer Luft; nach einiger Zeit wurden sie unruhig und die Respiration häufiger; diese Unruhe wurde bald von convulsivischen Bewegungen der Respirations- und Extremitätenmuskeln gefolgt. Sobald diese eintraten, wurden die sichtbaren Schleimhäute mehr und mehr bläulich, zugleich nehmen die Athembeschwerden mehr und mehr an Intensität zu und mit ihnen die allgemeinen klonischen Krämpfe, bis letztere die höchste Höhe erreicht hatten, worauf die Respiration immer langsamer, aussetzen-

1) Schweigger's Journal. Band I.
der wurde, bis sie endlich ganz aufhörte zugleich mit dem Verschwinden des Herzschlags und der Reflexe bei Berührung der Cornea. Sobald dieser Zeitpunkt eingetreten war, wurden die Kautschukröhren, welche die beiden Ventile mit dem Atmungsraum verbanden, durch die oben angegebenen Klemmen rasch abgeschlossen, hierauf die Verbindung des Apparats der Tracheacanule unterbrochen und versucht, durch künstliche Respiration das Thier wieder zum Leben zu bringen. Bei einiger Übung gelingt letzteres fast ohne Ausnahme, wie Bernard ganz richtig angibt, indem zuerst an den Muskeln des Halses einzelne Bewegungen sichtbar werden, die sich in Form leichter Zuckungen weiter verbreiten und der Herzschlag fühlbarer wird, worauf dann erst langsamer, dann immer rascher erfolgende Athemzüge sich einstellen, die sich in kurzer Zeit von normalen Athembewegungen in nichts mehr unterscheiden.

Bei allen diesen Versuchen beobachtet man keine wesentliche Verminderung des Luftvolums, eine von fast allen Beobachtern constatirte That'sache. Der schädliche Einfluss auf die Leichtigkeit der Atmung, den diese Verminderung ausüben könnte, muss natürlich eliminiert werden entweder durch Nachgießen von Quecksilber in das als Wanne dienende Gefäss, in welches der Luftbehälter gesetzt wird, oder dadurch, dass man letzterem von vorne herein eine solche Stellung gibt, dass er durch sein eigenes Gewicht bei eintretender Verkleinerung des Atmungsraums tiefer in das Quecksilber eintaucht.

Der Inhalt des Luftraums hatte im Anfang aller nachstehenden Versuche die Zusammensetzung der atmosphärischen Luft. Das Übrige wird bei den einzelnen Versuchen angegeben werden.

Versuch 1. 25. Februar 1858.

Erwachsenes Kaninchen, im abgeschlossenen Raume von 125 CC. athmend bis zu heftigen Suffocationszufällen. Dauer des Versuchs 4 Minuten. Die Analyse der Endluft gibt folgende Resultate:

<table>
<thead>
<tr>
<th>Absorptionsrohr I.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>174·35</td>
<td>682·96</td>
<td>11·6</td>
<td>114·23 1)</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>176·68</td>
<td>685·14</td>
<td>15·4</td>
<td>114·55</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>159·52</td>
<td>667·76</td>
<td>8·4</td>
<td>103·83</td>
</tr>
</tbody>
</table>

1) Die Correctionen des Meniscus, der Calibrirungstablette, des Druckes etc. sind in den Zahlen schon enthalten; die Anfangsvolumen in den Absorptionsröhren sind als trockenes Gas berechnet.
Müller.

Absorptionsrohr IV.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 116·7</td>
<td>730·77</td>
<td>11·6</td>
<td>81·89</td>
</tr>
<tr>
<td>Mit ClCa getrocknet 118·4</td>
<td>738·30</td>
<td>15·4</td>
<td>82·70</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ . . . 197·3</td>
<td>716·41</td>
<td>8·4</td>
<td>74·57</td>
</tr>
</tbody>
</table>

Eudiometer I.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 144·096</td>
<td>506·43</td>
<td>9·8</td>
<td>70·44</td>
</tr>
<tr>
<td>Nach Zusatz von Wasserstoff 283·764</td>
<td>639·89</td>
<td>8·8</td>
<td>175·91</td>
</tr>
<tr>
<td>Nach Zusatz von Knallgas 359·4</td>
<td>702·41</td>
<td>13·1</td>
<td>240·90</td>
</tr>
<tr>
<td>Nach der Explosion 286·19</td>
<td>627·159</td>
<td>15</td>
<td>170·15</td>
</tr>
</tbody>
</table>

Die Zusammensetzung der Luft ist:

<table>
<thead>
<tr>
<th>CO₂</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>9·79</td>
<td>2·45</td>
<td>87·72</td>
</tr>
</tbody>
</table>

Das Tier wurde hierauf mit einem reinen Sauerstoffgas enthaltenen Luftraum von etwa 300 CC. in Verbindung gesetzt. Es erholte sich hier sehr rasch und brachte etwa 3/5 der enthaltenen Luft zum Verschwinden. Der Versuch musste sodann wegen eines Fehlers am Apparat unterbrochen werden. Das Tier wurde kurze Zeit an freier Luft atmen gelassen und hierauf neuerdings mit dem vorigen Raum, dessen Luft erneuert war, in Verbindung gesetzt, bis es vollständig erstickte, was nach fünf Minuten eingetreten war.

Versuch 2. Endluft.

Absorptionsrohr I.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 148·9</td>
<td>729·47</td>
<td>11·6</td>
<td>104·20</td>
</tr>
<tr>
<td>Mit ClCa getrocknet 149·3</td>
<td>737·39</td>
<td>15·4</td>
<td>104·22</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ . . . 134·8</td>
<td>717·16</td>
<td>8·4</td>
<td>93·79</td>
</tr>
</tbody>
</table>

Absorptionsrohr III.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 126·4</td>
<td>667·10</td>
<td>11·6</td>
<td>80·88</td>
</tr>
<tr>
<td>Mit ClCa getrocknet 126·6</td>
<td>678·66</td>
<td>15·4</td>
<td>81·346</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ . . . 113·8</td>
<td>661·23</td>
<td>8·4</td>
<td>73·004</td>
</tr>
</tbody>
</table>

Eudiometer III.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 272·66</td>
<td>543·50</td>
<td>9·4</td>
<td>143·27</td>
</tr>
<tr>
<td>Nach Zusatz von Wasserstoff 383·25</td>
<td>644·59</td>
<td>8·6</td>
<td>239·50</td>
</tr>
<tr>
<td>Nach Zusatz von Knallgas 448·57</td>
<td>693·96</td>
<td>13·1</td>
<td>297·03</td>
</tr>
<tr>
<td>Nach der Explosion 385·71</td>
<td>634·97</td>
<td>11·8</td>
<td>234·77</td>
</tr>
</tbody>
</table>

Die Luft enthält;
Erwachsenes Kaninchen, mit demselben Luftraum. Die Luft des ersten Versuchs geht beim Umfüllen verloren.

Absorptionsrohr I.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. °C u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet 125.346</td>
<td>649.72</td>
<td>22.6</td>
<td>75.214</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ 115.067</td>
<td>640.41</td>
<td>22.2</td>
<td>68.047</td>
</tr>
</tbody>
</table>

Eudiometer I.

Anfangsvolum 150.0	503.77	23.1	69.674
Nach Zusatz von Wasserstoff 204.11	557.39	23.7	104.69
Nach Zusatz von Knallgas 307.92	630.39	20.4	178.80
Nach der Explosion 198.85	551.01	24.1	100.73
Nach Zusatz von Luft 224.40	673.86	24.5	200.62
Nach Zusatz von Knallgas 370.2	692.43	25.0	234.85
Nach der Explosion 268.80	617.79	26.0	181.27

Absorptionsrohr II.

| Anfangsvolum getrocknet 106.04 | 644.92 | 22.6 | 62.818 |
| Nach Absorption der CO₂ 94.90 | 646.59 | 22.2 | 56.754 |

Eudiometer II.

Anfangsvolum 80.8	423.36	23.7	31.476
Nach Zusatz von Wasserstoff 115.0	457.57	24.5	48.291
Nach Zusatz von Knallgas 179.82	521.52	24.8	85.98
Nach der Explosion 111.8	453.87	24.5	46.465
Nach Zusatz von Luft 223.26	564.07	24.8	115.46
Nach Zusatz von Knallgas 261.67	602.70	24.8	144.66
Nach der Explosion 189.88	531.48	25.1	92.426

Die Endluft enthält:

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. °C u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ 9.52</td>
<td>9.65</td>
<td>9.53</td>
<td></td>
</tr>
<tr>
<td>O 1.71</td>
<td>1.74</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>N 88.77</td>
<td>88.63</td>
<td>88.69</td>
<td></td>
</tr>
</tbody>
</table>
Müller.

Versuch 4.

Dasselbe Thier wird nach viertelstündiger Ruhe an denselben Luftraum gebracht. Nach 2 Minuten beginnende Suffocation; nach 4 Minuten Aufhören der Respiration, Unempfindlichkeit der Cornea. Das Thier wird durch künstliche Respiration wieder belebt.

<table>
<thead>
<tr>
<th>Absorptionsrohr III</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol.b.0°C.u.1M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>166-8</td>
<td>739-92</td>
<td>22-5</td>
<td>114-04</td>
</tr>
<tr>
<td>Nach Absorption der CO_2</td>
<td>152-1</td>
<td>740-51</td>
<td>22-1</td>
<td>104-21</td>
</tr>
<tr>
<td>Eudiometer III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>177-77</td>
<td>534-45</td>
<td>23-1</td>
<td>87-602</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>235-42</td>
<td>591-88</td>
<td>23-7</td>
<td>128-22</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>345-50</td>
<td>722-62</td>
<td>23-4</td>
<td>223-16</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>228-72</td>
<td>584-97</td>
<td>24-1</td>
<td>122-93</td>
</tr>
</tbody>
</table>

Die Luft enthält:

- CO_2 8-62%
- O 1-82%
- N 89-56%

Versuch 5.

Dasselbe Thier wird nach 20 Minuten nochmals an den Luftraum gebracht. Dauer abermals 4 Minuten. Längere Zeit fortgesetzte künstliche Respiration stellt auch diesmal das Thier wieder her.

<table>
<thead>
<tr>
<th>Absorptionsrohr IV</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol.b.0°C.u.1M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>66-2</td>
<td>668-51</td>
<td>22-5</td>
<td>42-127</td>
</tr>
<tr>
<td>Nach Absorption der CO_2</td>
<td>61-4</td>
<td>661-26</td>
<td>22-5</td>
<td>38-680</td>
</tr>
<tr>
<td>Eudiometer III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>180-94</td>
<td>525-78</td>
<td>24-5</td>
<td>87-307</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>230-75</td>
<td>575-86</td>
<td>24-8</td>
<td>121-305</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>307-9</td>
<td>651-74</td>
<td>24-8</td>
<td>184-06</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>224-23</td>
<td>568-13</td>
<td>25-1</td>
<td>116-67</td>
</tr>
</tbody>
</table>

Die Luft enthält:

- CO_2 8-18%
- O 1-61%
- N 90-21%

Versuch 6. 11. Juni 1858.

Erwachsenes Kaninchen an denselben Luftraum. Dauer des Versuchs 5 Minuten.
Beiträge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th>Absorptionssrohr I.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>195.7</td>
<td>701.6</td>
<td>23.5</td>
<td>126.43</td>
</tr>
<tr>
<td>Mit CaC2 getrocknet</td>
<td>193.0</td>
<td>717.49</td>
<td>24.7</td>
<td>126.34</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>170.505</td>
<td>712.87</td>
<td>25.4</td>
<td>111.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>176.75</td>
<td>634.08</td>
<td>25.3</td>
<td>99.33</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>257.92</td>
<td>596.36</td>
<td>25</td>
<td>133.51</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>371.78</td>
<td>716.47</td>
<td>26.1</td>
<td>243.48</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>238.89</td>
<td>587.99</td>
<td>25.3</td>
<td>128.56</td>
</tr>
<tr>
<td>Mit Luft</td>
<td>337.01</td>
<td>684.98</td>
<td>25.6</td>
<td>210.94</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>310.2</td>
<td>720.32</td>
<td>25.7</td>
<td>250.91</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>254.08</td>
<td>631.23</td>
<td>25.9</td>
<td>163.79</td>
</tr>
</tbody>
</table>

Dies ergibt die Zusammensetzung:

CO₂ 11.82%
O 2.07
N 86.11

Versuch 7.

<table>
<thead>
<tr>
<th>Absorptionssrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>216.6</td>
<td>700.92</td>
<td>23.5</td>
<td>139.79</td>
</tr>
<tr>
<td>Mit CaI2 getrocknet</td>
<td>212.9</td>
<td>715.79</td>
<td>24.7</td>
<td>139.76</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>183.2</td>
<td>747.22</td>
<td>25.4</td>
<td>125.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer I.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>67.7</td>
<td>492.81</td>
<td>25.3</td>
<td>30.488</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>103.6</td>
<td>450.49</td>
<td>25</td>
<td>42.759</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>157.3</td>
<td>501.27</td>
<td>26.1</td>
<td>80.209</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>99.8</td>
<td>431.25</td>
<td>27.2</td>
<td>39.958</td>
</tr>
</tbody>
</table>

Die Luft enthält:

CO₂ 10.39%
O 2.74
N 86.87

Versuch 8.

Absorptionsrohr III.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 179·4</td>
<td>717·00</td>
<td>23·5</td>
<td>117·51</td>
</tr>
<tr>
<td>Mit ClCs getrocknet 175·4</td>
<td>730·56</td>
<td>24·7</td>
<td>117·51</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ . 160·7</td>
<td>732·78</td>
<td>25·4</td>
<td>107·74</td>
</tr>
</tbody>
</table>

Eudiometer l.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 128·8</td>
<td>472·68</td>
<td>26·3</td>
<td>55·53</td>
</tr>
<tr>
<td>Mit Wasserstoff 187·77</td>
<td>534·67</td>
<td>25·6</td>
<td>91·89</td>
</tr>
<tr>
<td>Mit Knallgas 230·41</td>
<td>548·20</td>
<td>21·0</td>
<td>115·34</td>
</tr>
<tr>
<td>Nach der Explosion . . . 182·14</td>
<td>527·93</td>
<td>26·5</td>
<td>87·65</td>
</tr>
</tbody>
</table>

Die Luft enthält:

CO₂ 8·31%
O 2·27
N 89·42

Versuch 9.

Absorptionsrohr I.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 190·024</td>
<td>725·43</td>
<td>18·2</td>
<td>129·71</td>
</tr>
<tr>
<td>Mit ClCs getrocknet 190·084</td>
<td>738·64</td>
<td>22·9</td>
<td>129·55</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ . 167·345</td>
<td>733·54</td>
<td>23·45</td>
<td>113·08</td>
</tr>
</tbody>
</table>

Eudiometer III.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 189·04</td>
<td>630·21</td>
<td>23·3</td>
<td>109·82</td>
</tr>
<tr>
<td>Mit Wasserstoff 226·88</td>
<td>661·78</td>
<td>24·1</td>
<td>137·95</td>
</tr>
<tr>
<td>Mit Knallgas 284·3</td>
<td>680·53</td>
<td>24·2</td>
<td>177·74</td>
</tr>
<tr>
<td>Nach der Explosion . . . 215·38</td>
<td>650·54</td>
<td>24·1</td>
<td>128·75</td>
</tr>
</tbody>
</table>

Die Luft enthält:

CO₂ 12·71%
O 2·43
N 84·86

Versuch 10.

Dasselbe Thier an demselben Luftraum, nach 7 Minuten. Dauer des Versuchs 5 Minuten 15 Sekunden.

Absorptionsrohr III.

<table>
<thead>
<tr>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. l M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum 175·2</td>
<td>751·13</td>
<td>18·2</td>
<td>123·38</td>
</tr>
<tr>
<td>Mit ClCs getrocknet 175·0</td>
<td>764·48</td>
<td>22·9</td>
<td>123·43</td>
</tr>
<tr>
<td>Nach Absorption der CO₂ . 163·6</td>
<td>745·49</td>
<td>23·45</td>
<td>112·17</td>
</tr>
</tbody>
</table>
Beiträge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th>Eudiometer I</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>155.8</td>
<td>579.44</td>
<td>21.7</td>
<td>83.63</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>226.48</td>
<td>650.85</td>
<td>21.6</td>
<td>136.6</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>290.1</td>
<td>670.43</td>
<td>21.6</td>
<td>186.09</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>210.57</td>
<td>634.83</td>
<td>21.6</td>
<td>123.88</td>
</tr>
</tbody>
</table>

Die Luft enthält:

- CO₂: 9.12%
- O: 4.62%
- N: 56.26%

Versuch II.

Derselbe Versuch wird mit demselben Thier noch fünfmal wiederholt; es gelingt jedesmal, durch künstliche Respiration das Thier wieder zu beleben, doch muss sie bei den letzten Versuchen längere Zeit angewendet werden.

Im 7. Versuche, der 5 Minuten dauert, stirbt das Thier.

<table>
<thead>
<tr>
<th>Absorptionsrohr I</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 8°C. u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>162.2</td>
<td>714.90</td>
<td>22.7</td>
<td>107.05</td>
</tr>
<tr>
<td>Mit CaCl₂ getrocknet</td>
<td>158.5</td>
<td>730.19</td>
<td>22.1</td>
<td>107.07</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>148.1</td>
<td>715.03</td>
<td>22.8</td>
<td>97.705</td>
</tr>
</tbody>
</table>

Eudiometer I.

Anfangsvolum	205.02	652.23	23.3	133.29
Mit Wasserstoff	280.37	720.65	24.1	185.67
Mit Knallgas	352.10	740.31	24.1	239.53
Nach der Explosion	248.83	689.58	25.1	157.68

Absorptionsrohr II.

Anfangsvolum	140.2	718.04	22.7	93.013
Mit CaCl₂ getrocknet	139.5	720.21	22.1	92.95
Nach Absorption der CO₂	129.5	709.37	22.8	84.863

Eudiometer I.

Anfangsvolum	216.85	659.41	22.2	132.25
Mit Wasserstoff	258.93	730.97	22.1	195.39
Mit Knallgas	332.72	746.23	22.0	243.58
Nach der Explosion	255.64	697.41	21.7	164.92

Die Zusammensetzung der Luft ist:

<table>
<thead>
<tr>
<th>CO₂</th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.74</td>
<td>8.70</td>
<td>8.72</td>
</tr>
<tr>
<td>O</td>
<td>6.90</td>
<td>7.00</td>
<td>6.95</td>
</tr>
<tr>
<td>N</td>
<td>84.36</td>
<td>84.30</td>
<td>84.33</td>
</tr>
</tbody>
</table>

Versuch 12.

Erwachsenes Kaninchen; im Curs von Professor Ludwig an denselben Apparat gebracht. Dauer des Versuches 4 Minuten.

<table>
<thead>
<tr>
<th>Absorptionsrohr I.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>220.9</td>
<td>716.46</td>
<td>21.2</td>
<td>146.87</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>219.1</td>
<td>733.43</td>
<td>20.5</td>
<td>147.43</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>207.8</td>
<td>702.73</td>
<td>25.2</td>
<td>133.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>

Die Luft enthält:

- CO₂ 9.31%
- O 2.44%
- N 88.52%

Versuch 13. 5. Juli 1853.

<table>
<thead>
<tr>
<th>Absorptionsrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>146.88</td>
<td>665.03</td>
<td>22.5</td>
<td>90.24</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>142.51</td>
<td>683.17</td>
<td>18.7</td>
<td>91.119</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>133.43</td>
<td>667.11</td>
<td>24.4</td>
<td>81.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>

Die Luft enthält:
Beiträge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>10·31</td>
<td>10·29</td>
<td>10·30</td>
</tr>
<tr>
<td>O</td>
<td>3·42</td>
<td>3·50</td>
<td>3·46</td>
</tr>
<tr>
<td>N</td>
<td>86·27</td>
<td>86·21</td>
<td>86·24</td>
</tr>
</tbody>
</table>

Versuch 14.

Die Analyse der Endluft ergibt:

<table>
<thead>
<tr>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorptionsrohr III.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>141·4</td>
<td>88·62</td>
<td>22·5</td>
<td>89·96</td>
</tr>
<tr>
<td>Mit CaCl getrocknet</td>
<td>136·4</td>
<td>706·02</td>
<td>18·7</td>
<td>90·04</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>130·56</td>
<td>693·49</td>
<td>24·4</td>
<td>83·11</td>
</tr>
</tbody>
</table>

Eudiometer III.

<table>
<thead>
<tr>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>149·79</td>
<td>546·54</td>
<td>23·1</td>
<td>75·583</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>189·70</td>
<td>582·79</td>
<td>22·95</td>
<td>102·904</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>228·23</td>
<td>603·82</td>
<td>23·0</td>
<td>127·11</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>196·49</td>
<td>569·61</td>
<td>22·8</td>
<td>92·896</td>
</tr>
</tbody>
</table>

Dies gibt

CO₂ 7·69%
O 3·72
N 88·59

Versuch 15.

<table>
<thead>
<tr>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorptionsrohr VII.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>84·64</td>
<td>600·56</td>
<td>23·7</td>
<td>46·77</td>
</tr>
<tr>
<td>Mit CaCl getrocknet</td>
<td>82·6</td>
<td>617·89</td>
<td>22·2</td>
<td>47·202</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>76·5</td>
<td>611·7</td>
<td>22·3</td>
<td>43·256</td>
</tr>
</tbody>
</table>

Eudiometer I.

<table>
<thead>
<tr>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>76·383</td>
<td>446·82</td>
<td>23·5</td>
<td>31·428</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>117·49</td>
<td>481·16</td>
<td>23·8</td>
<td>52·002</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>178·19</td>
<td>522·13</td>
<td>23·8</td>
<td>85·58</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>111·36</td>
<td>474·87</td>
<td>24·0</td>
<td>48·612</td>
</tr>
</tbody>
</table>

Absorptionsrohr VIII.

<table>
<thead>
<tr>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>188·02</td>
<td>641·89</td>
<td>23·7</td>
<td>111·06</td>
</tr>
<tr>
<td>Mit CaCl getrocknet</td>
<td>183·12</td>
<td>657·25</td>
<td>22·2</td>
<td>111·31</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>171·48</td>
<td>645·38</td>
<td>22·7</td>
<td>102·00</td>
</tr>
</tbody>
</table>

8°
Müller.

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol.b.0°C. u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>179.99</td>
<td>534.26</td>
<td>23.6</td>
<td>88.231</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>219.09</td>
<td>583.43</td>
<td>23.7</td>
<td>118.11</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>281.42</td>
<td>624.23</td>
<td>24.1</td>
<td>167.17</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>210.163</td>
<td>560.94</td>
<td>23.6</td>
<td>108.515</td>
</tr>
</tbody>
</table>

Die Luft enthält:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>8.35</td>
<td>8.28</td>
<td>8.31</td>
</tr>
<tr>
<td>O</td>
<td>3.29</td>
<td>3.31</td>
<td>3.30</td>
</tr>
<tr>
<td>N</td>
<td>88.36</td>
<td>88.41</td>
<td>88.39</td>
</tr>
</tbody>
</table>

Die folgenden Versuche wurden mit einem grössern Luftbehälter ausgeführt, welcher eine Theilung von 5 zu 5 Kubikcentimetern am Halse trug und das Volum der Atmungsluft vor und nach dem Versuche mit hinreichender Genauigkeit abzulesen gestattete.

Versuch 16. 20. Juli 1858.

<table>
<thead>
<tr>
<th>Absorptionsrohr III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol.b.0°C. u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>161.0</td>
<td>809.66</td>
<td>24.5</td>
<td>104.86</td>
</tr>
<tr>
<td>Mit CICa getrocknet</td>
<td>157.4</td>
<td>728.47</td>
<td>24.5</td>
<td>105.23</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>142.25</td>
<td>715.501</td>
<td>24</td>
<td>93.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol.b.0°C. u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>161.60</td>
<td>526.73</td>
<td>23.95</td>
<td>76.802</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>211.37</td>
<td>578.04</td>
<td>24.0</td>
<td>122.32</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>293.2</td>
<td>607.92</td>
<td>24.0</td>
<td>163.85</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>198.84</td>
<td>561.16</td>
<td>24.0</td>
<td>102.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr VII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol.b.0°C. u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>160.36</td>
<td>709.86</td>
<td>24.5</td>
<td>104.47</td>
</tr>
<tr>
<td>Mit CICa getrocknet</td>
<td>156.48</td>
<td>728.05</td>
<td>24.5</td>
<td>104.25</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>141.76</td>
<td>716.83</td>
<td>24</td>
<td>93.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol.b.0°C. u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>149.30</td>
<td>593.41</td>
<td>24.2</td>
<td>81.389</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>254.14</td>
<td>697.20</td>
<td>24.2</td>
<td>162.75</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>322.6</td>
<td>720.42</td>
<td>34.1</td>
<td>206.95</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>241.94</td>
<td>688.34</td>
<td>24.2</td>
<td>152.54</td>
</tr>
</tbody>
</table>

Die Anfangsluft enthielt in 750 CC.

O 157.2 CC.
N 592.8
Die Endluft ergab

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>11.09</td>
<td>10.65</td>
<td>10.87</td>
</tr>
<tr>
<td>O</td>
<td>3.76</td>
<td>3.73</td>
<td>3.75</td>
</tr>
<tr>
<td>N</td>
<td>85.15</td>
<td>85.62</td>
<td>85.39</td>
</tr>
</tbody>
</table>

und in absoluter Menge

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2</td>
<td>77.829 CC.</td>
</tr>
<tr>
<td>O</td>
<td>28.850 CC.</td>
</tr>
<tr>
<td>N</td>
<td>611.321 CC.</td>
</tr>
<tr>
<td></td>
<td>718.000 CC.</td>
</tr>
</tbody>
</table>

Die Dauer des Versuches war 10 Minuten. Das Thier verzehrte während dieser Zeit 130.35 CC. Sauerstoff, was für eine Minute 13.03 CC. ergibt. In der Endluft waren aber nur enthalten 77.829 CC. Kohlensäure, mithin fehlten vom verzehrten Sauerstoffvolum 52.52 CC., welche als Kohlensäure im Thier blieben. Zugleich fand sich aber in der Endluft ein Überschuss von 18.521 CC. Stickstoff.

Versuch 17. 20. Juli 1858.

Erwachsenes Kaninchen, schwächer, mit starker Conjunctivabilennorröhe, überhaupt anscheinend leidend. Dauer des Versuchs 6 Minuten 50 Secunden, Das Thier wird durch künstliche Respiration rasch wieder belebt. Volum der Anfangsluft 750 CC., der Endluft 730 CC.

<table>
<thead>
<tr>
<th>Absorptionsrohr IV.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C.u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>125.6</td>
<td>705.27</td>
<td>24.1</td>
<td>81.402</td>
</tr>
<tr>
<td>Mit CaCl getrocknet</td>
<td>122.6</td>
<td>824.39</td>
<td>23.4</td>
<td>81.693</td>
</tr>
<tr>
<td>Nach Absorption der CO_2</td>
<td>112.6</td>
<td>714.95</td>
<td>22.6</td>
<td>74.351</td>
</tr>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>220.15</td>
<td>578.23</td>
<td>24.2</td>
<td>116.952</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>334.72</td>
<td>691.22</td>
<td>24.2</td>
<td>212.54</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>388.4</td>
<td>730.43</td>
<td>24.2</td>
<td>260.96</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>312.3</td>
<td>671.20</td>
<td>24.2</td>
<td>192.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr IX.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C.u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>203.07</td>
<td>685.83</td>
<td>24.1</td>
<td>126.72</td>
</tr>
<tr>
<td>Mit CaCl getrocknet</td>
<td>197.87</td>
<td>702.07</td>
<td>23.4</td>
<td>126.65</td>
</tr>
<tr>
<td>Nach Absorption der CO_2</td>
<td>182.27</td>
<td>691.72</td>
<td>22.6</td>
<td>115.17</td>
</tr>
<tr>
<td>Eudiometer III.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>164.16</td>
<td>566.03</td>
<td>24.2</td>
<td>85.46</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>266.56</td>
<td>661.54</td>
<td>24.2</td>
<td>162.12</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>322.4</td>
<td>702.04</td>
<td>24.2</td>
<td>207.93</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>250.0</td>
<td>646.10</td>
<td>24.2</td>
<td>148.52</td>
</tr>
</tbody>
</table>
Die Anfangsluft enthält in 750 CC.

O 157·2 CC.
N 592·8 CC

Die Endluft ergab

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>8·99</td>
<td>9·08</td>
<td>9·03</td>
</tr>
<tr>
<td>O</td>
<td>5·18</td>
<td>4·82</td>
<td>5·00</td>
</tr>
<tr>
<td>N</td>
<td>85·83</td>
<td>86·10</td>
<td>85·97</td>
</tr>
</tbody>
</table>

und in absoluter Menge

CO₂ 65·91 CC.
O 36·50 CC.
N 627·59 CC.

Die Dauer des Versuchs beträgt 6·8 Minuten.

Das Kaninchen verzehrte während dieser Zeit 120·7 CC. Sauerstoff, was für die Minute 17·7 CC. gibt. Die Endluft enthält nur 65·91 CC. Kohlensäure, mithin blieben von dem verzehrten Sauerstoff 54·79 CC. in Form von Kohlensäure im Thiere. Zugleich enthält aber die Endluft ein Plus von 34·79 CC. Stickstoff.

Versuch 18. 28. Juli 1858.

<table>
<thead>
<tr>
<th>Absorptionsrohr VII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>180·49</td>
<td>709·65</td>
<td>24·6</td>
<td>117·505</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>176·01</td>
<td>727·43</td>
<td>23·6</td>
<td>117·86</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>152·0</td>
<td>721·06</td>
<td>19·4</td>
<td>102·33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>129·24</td>
<td>538·67</td>
<td>19·3</td>
<td>65·023</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>159·58</td>
<td>566·29</td>
<td>18·8</td>
<td>84·659</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>237·07</td>
<td>602·43</td>
<td>18·8</td>
<td>133·62</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>143·67</td>
<td>537·15</td>
<td>18·7</td>
<td>72·314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr VIII.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>257·5</td>
<td>727·99</td>
<td>24·6</td>
<td>171·97</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>251·9</td>
<td>745·29</td>
<td>23·6</td>
<td>172·81</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>220·1</td>
<td>729·73</td>
<td>19·4</td>
<td>149·96</td>
</tr>
</tbody>
</table>
Beiträge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>86·02</td>
<td>505·32</td>
<td>19·3</td>
<td>40·674</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>118·80</td>
<td>537·00</td>
<td>19·3</td>
<td>89·686</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>106·95</td>
<td>560·23</td>
<td>19·3</td>
<td>87·35</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>106·62</td>
<td>523·49</td>
<td>19·3</td>
<td>82·229</td>
</tr>
</tbody>
</table>

Die Anfangsluft enthält in 750 CC:

O 157·2 CC.
N 592·8 CC.

Die Endluft ergibt:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>13·17</td>
<td>13·22</td>
<td>13·195</td>
</tr>
<tr>
<td>O</td>
<td>5·29</td>
<td>5·49</td>
<td>5·39</td>
</tr>
<tr>
<td>N</td>
<td>81·84</td>
<td>81·29</td>
<td>81·415</td>
</tr>
</tbody>
</table>

und in absoluter Menge:

<table>
<thead>
<tr>
<th>CO₂</th>
<th>95·27 CC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>38·96 CC.</td>
</tr>
<tr>
<td>U</td>
<td>587·77 CC.</td>
</tr>
</tbody>
</table>

Der Versuch dauerte 10 Minuten. Während dieser Zeit verzehrte das Kaninchen 118·24 CC. Sauerstoff, mithin in 1 Minute 11·8 CC. Dafür erschienen blos 95·27 CC. Kohlensäure in der Endluft. Es fehlen mithin von dem verzehrten O 22·97 CC., welche im Thier blieben. Ferner ergibt sich ein Minus von 5·03 CC. Stickstoff.

Die vier folgenden Versuche betreffen zwei Kaninchen, bei welchen vor dem Versuche Blut aus der Vena jugularis genommen wurde, um zu sehen, ob mässige Blutentziehungen einen Einfluss auf die Sauerstoffabsorption nachweisen liessen. Die benutzten Apparate erwiesen sich aber als unzureichend. Einmal durfte das entzogene Blutvolum nicht zu gross sein, weil sonst bei der herbeigeführten Schwäche des Thieres ein rascheres Ersticken wegen zu schneller Ermudung zu fürchten war, andererseits war bei einer mässigen Blutentziehung die Verminderung der in der Zeiteinheit durch die Lungencapillaren strömenden Blutkörperchenmenge eine zu unbedeutende, als dass ihr Einfluss für die kurze Dauer der vorliegenden Versuche sehr merklich hätte sein können. Wir können daher ohne Fehler die folgenden Versuche als an normalen Thieren angestellt betrachten.
Versuch 10. 11. August 1858.

<table>
<thead>
<tr>
<th>Absorptionsrohr III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.0°Ccm. l.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>174·4</td>
<td>756·32</td>
<td>22·2</td>
<td>121·99</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>156·3</td>
<td>736·60</td>
<td>22·4</td>
<td>106·41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr VII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>

Die Anfangsluft enthielt in 750 CC.
O 157·2 CC.
N 592·8

Die Endluft enthielt:

<table>
<thead>
<tr>
<th>CO₂</th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>12·77</td>
<td>12·85</td>
<td>12·81%</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3·30</td>
<td>3·32</td>
<td>3·31</td>
</tr>
<tr>
<td>N</td>
<td>83·93</td>
<td>83·83</td>
<td>83·88</td>
</tr>
</tbody>
</table>

und in absoluter Menge:

<table>
<thead>
<tr>
<th>CO₂</th>
<th>94·28 CC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>24·43</td>
</tr>
<tr>
<td>N</td>
<td>617·29</td>
</tr>
</tbody>
</table>

738·00 CC.

Der Versuch dauerte 10 Minuten; während derselben Zeit wurden aufgenommen 132·77 CC. Sauerstoff, was für die Minute 13·27 ergibt.

Dafür erschienen 94·28 CC. Kohlensäure in der Exspirationsluft, es fehlen mithin vom verzehrten Sauerstoff 38·49 CC., welche in dem Thier blieben. Zugleich findet sich ein Plus von 24·49 CC. Stickstoff.
Versuch 20.

<table>
<thead>
<tr>
<th>Absorptionsrohr VIII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>224·6</td>
<td>709·37</td>
<td>21·3</td>
<td>147·80</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>223·6</td>
<td>708·20</td>
<td>21·5</td>
<td>146·80</td>
</tr>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>201·68</td>
<td>565·70</td>
<td>22·4</td>
<td>105·45</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>248·37</td>
<td>619·79</td>
<td>22·8</td>
<td>142·08</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>303·00</td>
<td>640·07</td>
<td>22·7</td>
<td>178·48</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>210·59</td>
<td>583·20</td>
<td>22·7</td>
<td>113·40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>99·562</td>
<td>751·135</td>
<td>22·2</td>
<td>59·99</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>99·762</td>
<td>751·83</td>
<td>22·4</td>
<td>60·08</td>
</tr>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>130·81</td>
<td>498·56</td>
<td>22·6</td>
<td>60·35</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>230·24</td>
<td>596·72</td>
<td>22·6</td>
<td>127·20</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>291·40</td>
<td>630·42</td>
<td>22·6</td>
<td>151·21</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>208·96</td>
<td>575·61</td>
<td>22·6</td>
<td>111·40</td>
</tr>
</tbody>
</table>

Die Luft enthält:

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0·00</td>
<td>0·07</td>
</tr>
<tr>
<td>O</td>
<td>8·69</td>
<td>9·06</td>
</tr>
<tr>
<td>N</td>
<td>91·31</td>
<td>90·27</td>
</tr>
</tbody>
</table>

Versuch 21. 17. August 1858.

\[M \text{ ü} \text{l} \text{ e} \text{ r} . \]

<table>
<thead>
<tr>
<th>Absorptionsrohr VII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>192.53</td>
<td>722.54</td>
<td>23.5</td>
<td>128.10</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>173.51</td>
<td>703.79</td>
<td>21.9</td>
<td>114.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>

Die Anfangsluft enthält:

\[
\begin{align*}
O & \quad 148.82 \text{ CC.} \\
N & \quad 561.18 \text{ } \\
\end{align*}
\]

Die Endluft zeigte

\[
\begin{align*}
\text{CO}_2 & \quad 10.72\% \\
O & \quad 3.72 \text{ } \\
N & \quad 85.56 \text{ } \\
\end{align*}
\]

und in absoluter Menge

\[
\begin{align*}
\text{CO}_2 & \quad 74.504 \text{ CC.} \\
O & \quad 25.854 \text{ } \\
N & \quad 594.642 \text{ } \\
\end{align*}
\]

Versuch 22.

Dasselbe Thier an denselben Lufträume; jedoch waren die beiden Quecksilberventile durch zwei Kaliventile ersetzt. Der letztere Umstand gestattete auch hier keine genaue Bestimmung des Volums. Dauer des Versuches 7 Minuten.

<table>
<thead>
<tr>
<th>Absorptionsrohr IV.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>125.6</td>
<td>727.05</td>
<td>23.5</td>
<td>84.08</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>120.6</td>
<td>720.04</td>
<td>21.9</td>
<td>80.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
</tr>
<tr>
<td>Mit Knallgas</td>
</tr>
<tr>
<td>Nach der Explosion</td>
</tr>
</tbody>
</table>
Dies gibt folgende Zusammensetzung:

\[
\begin{align*}
\text{CO}_2 & \quad 4\cdot39\% \\
\text{O} & \quad 4\cdot93 \quad " \\
\text{N} & \quad 90\cdot68 \quad " \\
\end{align*}
\]

Auch hier war entsprechend der Menge von absorbirter Kohlensäure das Luftvolum zu Ende des Versuches sehr beträchtlich vermindert.

Der in den bisher mitgetheilten Versuchen in die Augen springende Einfluss der Grösse des Atemungsraumes auf den rückständigen Sauerstoffgehalt liess es wünschenswerth erscheinen, auch noch den möglichst kleinsten Atemungsraum, in dem ein Thier ersticken kann, auf seinen Sauerstoffgehalt zu untersuchen. Dieser ist aber offenbar der Lungenraum selbst. Mit anderen Worten musste also noch zur Vervollständigung die Lungenluft eines Thieres untersucht werden, das in einem den Lungenraum wenig vergrössernden Luftbehälter erstickt war.

An Kaninchen liess sich dies nicht ausführen, da ihr Lungenraum zu klein ist, um eine genaue Analyse mit der darin enthaltenen Luft, auch wenn man sie nahezu vollständig bekäme, ausführen zu können.

vorhergegangenen Druckes auf die Lunge eine beträchtliche Spannung zwischen Thorax und Lungenwand bestehen musste.

In den Pleuraraum wurde rasch so viel Quecksilber eingegossen als nötig schien, die Öffnung in der Brustwand wieder geschlossen, und es gelang nun durch eine mässig starke Compression den grössten Theil der in der Lunge enthaltenen Luft in das vorgelegte Absorptionsrohr zu füllen. Dass hierauf die Lunge auf ihre Integrität sorgfältig untersucht wurde, versteht sich von selbst. Der Fehler, den möglicherweise eine eingetretene Diffusion des Lungengases und der atmosphärischen Luft während der kurzen Zeit des Quecksilbereneinflusses herbeiführen konnte, kann kein messbarer sein, da die Lunge nur mit einer sehr geringen Oberfläche blosslag und die Diffusion der Gase durch die Lungenwand nicht so rasch vor sich geht, um hier auch nur annähernd in Betracht zu kommen.

Die Analyse der so gewonnenen Luft lieferte die folgenden höchst überraschenden Resultate, an deren Richtigkeit die Genauigkeit der analytischen Methode keinen Zweifel zulässt.

Versuch 23.

Kleiner Hund, im abgeschlossenen Raume von 30 CC. erstickt.

A. Luft des vorgelegten Rohres.

<table>
<thead>
<tr>
<th>Absorptionsrohr III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>179·1</td>
<td>770·50</td>
<td>18·6</td>
<td>120·20</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>189·4</td>
<td>737·04</td>
<td>19·2</td>
<td>112·74</td>
</tr>
</tbody>
</table>

Eudiometer III.

Anfangsvolum	169·61	610·79	18·9	96·892
Mit Wasserstoff	189·91	632·94	18·9	112·41
Mit Knallgas	246·20	662·37	19·2	152·36
Nach der Explosion	184·92	628·64	19·6	108·47

Die Luft enthält:

CO₂ 12·74%
O 1·18
N 86·08

B. Luft aus der Lunge.

<table>
<thead>
<tr>
<th>Absorptionsrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>224·5</td>
<td>767·58</td>
<td>18·6</td>
<td>161·34</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>196·5</td>
<td>740·29</td>
<td>19·2</td>
<td>135·91</td>
</tr>
</tbody>
</table>
Seitiräge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th>Eudiomometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.0°C u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>221.02</td>
<td>607.54</td>
<td>19.1</td>
<td>125.49</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>266.35</td>
<td>651.79</td>
<td>19.0</td>
<td>162.31</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>340.0</td>
<td>680.24</td>
<td>19.0</td>
<td>216.24</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>266.22</td>
<td>651.61</td>
<td>19.0</td>
<td>162.18</td>
</tr>
</tbody>
</table>

Das Gas enthält:

CO₂ 15.76%
O Spuren
N 84.24

Versuch 24.

Ein zweiter Hund von nahezu derselben Grösse, mit derselben Vorrichtung erstickt.

A. Luft des vorgelegten Rohres.

<table>
<thead>
<tr>
<th>Absorptionsrohr VIII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.0°C u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>181.08</td>
<td>694.15</td>
<td>18.6</td>
<td>117.68</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>164.56</td>
<td>679.20</td>
<td>19.2</td>
<td>104.43</td>
</tr>
</tbody>
</table>

Reeudiometer II.

Anfangsvolum	173.56	559.06	18.9	90.75
Mit Wasserstoff	190.95	577.11	18.9	103.07
Mit Knallgas	295.42	596.34	19.2	164.60
Nach der Explosion	186.48	571.33	19.6	99.41

Die Luft enthält:

CO₂ 11.26%
O 1.19
N 87.55

B. Luft aus der Lunge.

<table>
<thead>
<tr>
<th>Absorptionsrohr VII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b.0°C u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>56.8</td>
<td>633.65</td>
<td>18.6</td>
<td>33.696</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>48.8</td>
<td>627.56</td>
<td>19.2</td>
<td>28.613</td>
</tr>
</tbody>
</table>

Eudiometer III.

Anfangsvolum	43.525	490.08	19.1	19.936
Mit Wasserstoff	69.475	516.43	19.0	33.545
Mit Knallgas	90.04	539.20	19.0	45.39
Nach der Explosion	69.03	516.01	19.0	33.303

Die Luft enthält:

CO₂ 15.08%
O 0.34
N 84.58
Zur leichteren Übersicht stelle ich die Versuche in nachfolgender Tabelle zusammen.

<table>
<thead>
<tr>
<th>Volum des Atmungsraumes</th>
<th>Nr. des Versuches</th>
<th>CO₂ %</th>
<th>O %</th>
<th>N %</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 CC.</td>
<td>23</td>
<td>12.74</td>
<td>1.18</td>
<td>86.08</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>23</td>
<td>15.70</td>
<td>1.19</td>
<td>84.24</td>
<td>Lungenluft</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>11.26</td>
<td>0.34</td>
<td>84.38</td>
<td>Lungenluft</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>9.81</td>
<td>2.45</td>
<td>87.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.12</td>
<td>0.99</td>
<td>88.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.58</td>
<td>1.73</td>
<td>88.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.62</td>
<td>1.82</td>
<td>89.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.18</td>
<td>1.61</td>
<td>90.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11.82</td>
<td>2.07</td>
<td>86.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10.39</td>
<td>2.74</td>
<td>86.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.31</td>
<td>2.27</td>
<td>89.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>12.71</td>
<td>2.43</td>
<td>84.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.12</td>
<td>4.62</td>
<td>86.24</td>
<td>5 Min. später</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8.72</td>
<td>6.95</td>
<td>84.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9.31</td>
<td>2.44</td>
<td>85.52</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>13</td>
<td>10.30</td>
<td>3.46</td>
<td>86.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.69</td>
<td>3.72</td>
<td>88.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.31</td>
<td>3.30</td>
<td>88.39</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>16</td>
<td>11.87</td>
<td>3.75</td>
<td>85.38</td>
<td>schwächer. Tier</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.03</td>
<td>5.00</td>
<td>88.97</td>
<td>war schon in O ⅓ St.</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>12.81</td>
<td>3.31</td>
<td>83.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.33</td>
<td>8.68</td>
<td>90.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>10.72</td>
<td>3.72</td>
<td>85.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.39</td>
<td>4.93</td>
<td>90.68</td>
<td></td>
</tr>
</tbody>
</table>

Die gefundene prozentische Sauerstoffmenge steht mit den Angaben der früheren Forscher ziemlich in Einklang. Dass die Zahlen fast durchweg niedriger sind, erklärt sich aus der geringern Grösse des angewandten Luftvolums, aus der vollkommenen Mischung der Luft im Atmungsraume, endlich aus der erst beim Aufhören der Respiration vorgenommenen Beendigung der Versuche.

Die Verminderung des Sauerstoffgehaltes bis zu 1 Procent und noch darunter könnte auffallend erscheinen, wenn man bedenkt, wie rasch das Blut an oxygenfreier Luft Sauerstoff abgibt; es verliert sich das Auffallende, wenn man sich erinnert, dass das lebende Blut fortwährend mit Substanzen in Berührung ist, welche seinen Sauerstoff begierig aufnehmen und in feste Verbindungen überführen, ein Prozess, der während des Lebens mit grosser Energie vor sich geht und erst einige Zeit nach dem eingetretenen Tode sein Ende erreicht. Dagegen gestatten die grösseren Mengen rückständigen Sauerstoffs den Schluss, dass die zur Erhaltung des Lebens nothwendige Grenze dieses Gases höher liegen muss als die hier gefundenen Zahlen.

Die in allen Versuchen constante Verminderung der Atmungs-luft entspricht einer gewissen Menge von aufgenommenem Sauerstoff, welcher in der Exspirationsluft als Kohlensäure nicht wieder zum Vorschein gekommen ist. Wir können ohne erheblichen Fehler annehmen, dass bei unseren Thieren dieser Sauerstofftheil sich gleich dem übrigen im Körper des Thieres in Kohlensäure verwandelt hat und in dieser Form von ihm zurückgehalten wird; da nun die Kohlen-säurespannung im Atmungsraume abhängig ist von der jeweiligen des Blutes, so beweist dieses constante Factum, dass die ursprüngliche Kohlensäurespannung im Blute der untersuchten Thiere tiefer lag als die zu Ende des Versuches im Luftraume vorhandene, indem sonst eine Zurückhaltung von Kohlensäure im Blute nicht denkbar wäre. Es zeigt dies übrigens, dass alle das Verhältniss zwischen aufgenommenem Sauerstoff und exspirierter Kohlensäure betreffenden Untersuchungen mit Vorsicht aufzunehmen sind, wenn nicht für die möglichst vollständige Entfernung der gebildeten Kohlensäure in dem betreffenden Apparat gesorgt wird, oder wenn nicht, wie dies in den classischen Untersuchungen von Regnault und Reiset 1) der Fall war, die Menge der im Thiere bleibenden Kohlensäure

1) Annales de chimie et physique. Bd. 36.
gegenüber der während des Versuches ausgegebenen verschwindet. Ein Druck der Kohlensäure in der äussern Luft von nur 2—3 Pro-
cent muss bereits nachweisbare Fehler in die Berechnung des gegen-
seitigen Verhältnisses dieser Gase einführen.

Constant findet sich ferner eine Abnahme der Kohlensäure-
spannung im Athmungsraume bei wiederholten Erstickungsversuchen
an demselben Thiere. Bei gleichzeitiger Erhöhung des Sauerstoff-
rückstandes beweist dies am Ende nichts als einen geringeren Ver-
brennungsprocess überhaupt (Versuch 10 und 11): dagegen bietet
sich bei gleichbleibendem Sauerstoffverbrauch, angenommen dass
auch jetzt noch aller Sauerstoff sich zu Kohlensäure umsetzt, hiefür
keine andere Erklärung als die Annahme einer Verminderung der
Kohlensäurespannung im Blute, resp. den Geweben des Thieres, zur
Zeit als dieses mit den Apparat in Verbindung gesetzt wurde.
Worauf diese Abnahme beruht, ob sie durch die Folgen der heftigen
Muskelbewegungen 1), welche das Thier während der Suffocation
macht, ob durch andere Ursachen bedingt wird, lässt sich a priori
nicht mit Sicherheit entscheiden.

Der Stickstoffgehalt des Athmungsräumes zeigte sich in allen
Versuchen vermehrt, und zwar in höherem Grade, als dass diese
Vermehrung einfachen Beobachtungsfehlern sich zuschreiben liesss.
Die einzige Ausnahme macht der Versuch 18; dieses Thier war aber
vorher längere Zeit in einer an Stickstoff ärmeren Luft.
Worauf diese Stickstoffausgabe beruht, lässt sich aus dem, was wir
bis jetzt über den Gaswechsel bei der Respiration wissen, nicht ein-
mal annähernd ableiten.

Durch die mitgetheilte Versuchsreihe war am lebenden Thiere
das erreicht, was hier überhaupt innerhalb der Grenzen der Mög-
llichkeit liegt; sie zeigen für das Verhalten des Sauerstoffes, dass er
bis auf geringe Spuren aus der Athmungsluft durch das lebende Blut
entfernt werden kann und diese Entfernung geschiedt so rasch, das
sie die Erklärung durch chemische Anziehung mindestens anehmbarer
erscheinen lässt als die durch einfache Absorption, während die
Aufnahme einer gewissen Menge von Kohlensäure in die Säftemasse
des Thieres bei gesteigertem Drucke dieses Gases in dem Athmungs-
raume am einfachsten aus dem Absorptionsgesetz sich ableitet.

1) Vergl. hierüber Pro ut: Über die Menge der CO₂ bei der Ausathmung zu verschiedenen

Zum Verschwinden muss das Luftvolum kommen, wenn die absolute Kohlensäuremenge zu gering ist, um auf das Leben des Thieres einzuwirken; im anderen Falle liess sich blos eine Vermin-}

1) A. a. O. p. 128.

welche ein Thier bei hiureichender Sauerstoffzufuhr aufzunehmen im Stande ist, und ferner die Wirkungen, welche eine grosse Menge gasförmiger Kohlensäure auf den thierischen Organismus ausübt.

Die Erscheinungen, welche diese Versuchsweise zur Beobachtung bringt, sind verschieden mit der Grösse des angewandten Atmungsraumes.

Wählt man als Sauerstoffbehälter ein Glas oder eine Flasche, welche nicht mehr als 300 CC., am besten zwischen 150 und 250 CC. fasst, so treten am Thiere selbst keine besonders auffallenden Erscheinungen ein. Höchstens erscheinen im Beginne der Sauerstoffatmung die sichtbaren Schleimhäute etwas lebhafter geröthet und der Respirationssact selbst als ein etwas lebhafterer. Doch dauert dies nur kurze Zeit; alsdann lässt sich kein wesentlicher Unterschied

Dieses überraschende Resultat wurde in vielfach wiederholten Versuchen stets in gleicher Weise gewonnen; es gibt keinen Versuch, welcher die Hauptmomente des Gaswechsels bei der Respiration so augenscheinlich an den Tag legte wie dieser.

Es erklärt sich am einfachsten und natürlichsten durch die Annahme, dass, während der Sauerstoff trotz seines stetig abnehmenden Partiadruckes bis zum letzten Rest durch chemische Affinität von dem Blute angezogen wird, die Kohlensäure in Folge ihres durch die fortlaufende Neubildung stetig gesteigerten Partiadruckes im Athmungsraume den im Blute vorhandenen übertrifft und auf dem Wege der einfachen Absorption in das letztere übertritt.

Wesentlich anders gestalten sich die Erscheinungen am Thiere, wenn das als Sauerstoffbehälter dienende Gefass einen Raum fasst, welcher gross genug ist, um die volle Wirkung der Kohlensäure auf den tierischen Organismus zur Wahrnehmung zu bringen. Schon bei einem Volum der angewandten Luft von etwa 500 CC. scheint das Thier in einen leicht narkotischen Zustand zu gerathen. Wendet man vollen Sichtbarwerden der Wirkungen der Kohlensäure auf ein erwachsenes Kaninchen nothwendig ist, so beginnt das Thier, nachdem es einige Zeit im abgeschlossenen Raume geatmet hat, unruhig zu werden, und schon ziemlich leichte Reize rufen lebhafe Reflexbewegungen hervor. Dies ist jedoch nur vorübergehend; nach und nach wird das Thier ruhiger, die Respirationsbewegungen gehen ruhig und ungehindert wie beim gewöhnlichen Athmen von Statt; die Reflexbewegungen werden immer spärlicher
und weniger intensiv, bis sie endlich ausser an den Augen an keinem Theile des Körpers selbst durch starke Einwirkungen mehr hervorgebracht werden können. Bis dieser Zeitpunkt eintritt, scheint das Thier etwa den dritten Theil seines Volums an gasförmiger Kohlensäure aufgenommen haben.

Setzt man die Atmung in dem Raume noch ferner fort, so beginnt die Kohlensäure geradezu giftige Eigenschaften zu entfalten. Die Extremitäten werden dann allmählich kühl, die Abkühlung schreitet langsam über den Körper weiter; die Respiration wird nach und nach langsamer, während der Herzenschlag sich mehr und mehr beschleunigt und die einzelnen Schläge weniger fühlbar werden; endlich bietet das Thier das vollendete Bild einer ruhigen Agonie dar, wie man sie an Menschen, die "eines ruhigen Todes" sterben, so vielfach zu beobachten Gelegenheit hat. Der Tod findet hier statt bei einem Procentgehalt der Atmungsluft an Sauerstoff, welcher dem der atmosphärischen Luft gleichkommt oder ihn noch beträchtlich übertrifft. Es ist mithin nicht der Mangel an Sauerstoff; es ist der directe Einfluss der Kohlensäure, welcher diese Erscheinungen hervorbringt. Sie lassen sich mit nichts besser vergleichen als mit den ganz analogen der Chloroformnarkose. Wie dort, so findet sich hier ein Stadium der Aufregung, welches von einem Stadium tiefer Depression gefolgt wird; in beiden Fällen erfolgt der Tod, wenn er durch ein Übermass der Narkose herbeigeführt wird, vollkommen ruhig und ohne auffallende Erscheinungen. Es genüge hier auf diese Analogie hingewiesen zu haben.

Da die Versuche mit kleineren Gefässen immer dasselbe Resultat ergaben, so ist es unnöthig, sie einzeln aufzuzählen; die mit einem grösseren Lufträume angestellten, waren folgende:

Versuch 1. 25. Februar 1858.

Das Kaninchen vom Versuche 1 der vorigen Reihe wurde, nachdem es in atmosphärischer Luft nahezu erstickt war, rasch an einen Sauerstoffbehälter von etwa 300 CC. gebracht, wo es sich schnell erholte. Es brachte etwa 7/8 des enthaltenen Gases zum Verschwinden, worauf der Versuch abgebrochen werden musste, weil das Exspirationsrohr in Quecksilber tauchte. Die Analyse der Endluft gab folgende Zahlen:
<table>
<thead>
<tr>
<th>Absorptionsrohr III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>81.4</td>
<td>670.19</td>
<td>11.6</td>
<td>52.33</td>
</tr>
<tr>
<td>Mit CICa getrocknet</td>
<td>81.9</td>
<td>680.70</td>
<td>14.5</td>
<td>52.94</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>66.9</td>
<td>652.80</td>
<td>8.4</td>
<td>42.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr VII.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>143.41</td>
<td>642.14</td>
<td>11.6</td>
<td>88.33</td>
</tr>
<tr>
<td>Mit CICa getrocknet</td>
<td>143.8</td>
<td>651.03</td>
<td>15.6</td>
<td>88.56</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>118.41</td>
<td>615.05</td>
<td>8.4</td>
<td>70.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>117.42</td>
<td>386.41</td>
<td>9.9</td>
<td>43.78</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>304.33</td>
<td>563.29</td>
<td>8.6</td>
<td>166.20</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>210.36</td>
<td>472.76</td>
<td>10.9</td>
<td>95.638</td>
</tr>
</tbody>
</table>

Die Luft enthält:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>19.96</td>
<td>20.23</td>
<td>20.09%</td>
</tr>
<tr>
<td>O</td>
<td>—</td>
<td>42.85</td>
<td>42.85</td>
</tr>
<tr>
<td>N</td>
<td>—</td>
<td>36.92</td>
<td>37.06</td>
</tr>
</tbody>
</table>

Versuch 2. 14. Juni 1858.

<table>
<thead>
<tr>
<th>Absorptionsrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>166.91</td>
<td>689.53</td>
<td>21.8</td>
<td>106.59</td>
</tr>
<tr>
<td>Mit CICa getrocknet</td>
<td>163.23</td>
<td>705.83</td>
<td>20.3</td>
<td>106.88</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>95.506</td>
<td>638.74</td>
<td>22.9</td>
<td>56.294</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>131.85</td>
<td>497.34</td>
<td>22.9</td>
<td>60.503</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>278.75</td>
<td>641.67</td>
<td>22.9</td>
<td>165.033</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>77.73</td>
<td>445.68</td>
<td>23.0</td>
<td>31.954</td>
</tr>
<tr>
<td>Mit Luft</td>
<td>187.22</td>
<td>553.17</td>
<td>23.2</td>
<td>95.24</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>151.47</td>
<td>516.62</td>
<td>24.3</td>
<td>72.10</td>
</tr>
</tbody>
</table>

Die Endluft enthält:

- CO₂ 47.33%
- O 38.61%
- N 14.06%

und in absoluter Menge:

- CO₂ 37.86 CC.
- O 30.89%
- N 11.25%
Eine Analyse der Anfangsluft verunglückte; sie war genau wie in den folgenden Versuchen dargestellt, daher wir die Zusammensetzung von diesen ohne Gefahr übertragen können, nämlich mit 98.5% O und 1.5% N; dies gibt für 520 CC.

\[
\begin{align*}
O & \quad 512.2 \text{ CC.} \\
N & \quad 7.8 \\
\hline
\text{Gesamt} & \quad 620.0 \text{ CC.}
\end{align*}
\]

Das Thier verzehrte in 48 Minuten 481.31 CC. Sauerstoff, was für eine Minute 10:00 CC. ergibt. In der Endluft waren bloß enthalten 37.86 CC. Koblenzsäure; mithin blieben in dem Thiere 443.45 CC. von verzehrten Sauerstoff. Zugleich findet sich in der Endluft ein Plus von 3.45 CC. Stickstoff.

Versuch 8. 20. Juli 1858.

Das schwächliche Thier vom Versuche 17 der vorigen Reihe wurde an einen Sauerstoffraum von 1460 CC. gebracht. Es atmete im geschlossenen Raume von \(3^b\) 17' — \(3^b\) 46' 30'', wo es starb. Das Luftvolum hatte während dieser Zeit um etwa 500 CC. abgenommen.

Die Analyse der Endluft gab folgendes Resultat:

<table>
<thead>
<tr>
<th>Absorptionsrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u.1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>193.28</td>
<td>712.90</td>
<td>24.5</td>
<td>126.43</td>
</tr>
<tr>
<td>Mit CICs getrocknet</td>
<td>189.3</td>
<td>732.07</td>
<td>24.15</td>
<td>127.32</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>150.80</td>
<td>695.24</td>
<td>24.0</td>
<td>92.261</td>
</tr>
</tbody>
</table>

Eudiometer III.

<table>
<thead>
<tr>
<th>Anfangsvolum</th>
<th>185.69</th>
<th>581.56</th>
<th>23.95</th>
<th>99.279</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit Wasserstoff</td>
<td>336.91</td>
<td>723.56</td>
<td>24.0</td>
<td>224.09</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>75.52</td>
<td>480.13</td>
<td>24.0</td>
<td>33.33</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>231.84</td>
<td>622.74</td>
<td>24.2</td>
<td>132.63</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>165.35</td>
<td>558.86</td>
<td>24.8</td>
<td>84.72</td>
</tr>
</tbody>
</table>

Die Luft enthält 1):

\[
\begin{align*}
\text{CO}_2 & \quad 27.53 \% \\
O & \quad 58.538 \\
N & \quad 13.902
\end{align*}
\]

1) Die Analyse ist nur annähernd richtig; aus Versuchen wurde dem Gas zu wenig Wasserstoff im Eudiometer zugesetzt, so dass reichliche Salpetersäure-Bildung eintrat; die O-Bestimmung ist mithin wahrscheinlich zu niedrig. Es wurden deshalb hier keine Berechnungen der absoluten Mengen angestellt.
Müller.

Versuch am 30. Juli 1858.

Kräftiges, männliches Kaninchen im Sauerstoffraum von 1500 CC. Beginn 10 Uhr 15'. Die Lunge wird mit 5000 CC. Sauerstoff durchgewaschen. 10 Uhr 30' wird abgeschlossen. Um 11 Uhr 15' ist die Narkose bereits ausgebildet; das Thier reagirt auf Reflexe nicht. Um 12 Uhr 10' deutliche Agonie. Der Tod erfolgt um 12 Uhr 33'. Das Volum der Endluft beträgt 570 CC. Das Gewicht des Kaninchens ohne Haare = 1676 Grm., sein spezifisches Gewicht = 102,7; mithin das Volum 1631 CC. (natürlich nicht absolut genau).

<table>
<thead>
<tr>
<th>Anfangsluft</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>116,65</td>
<td>476,02</td>
<td>19,5</td>
<td>51,833</td>
</tr>
<tr>
<td>Mit Wasserox</td>
<td>380,54</td>
<td>733,52</td>
<td>19,7</td>
<td>260,303</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>204,48</td>
<td>562,27</td>
<td>20,1</td>
<td>107,095</td>
</tr>
</tbody>
</table>

Dies ergibt:

O 98,565%
N 1,435

und in absoluter Menge:

O 1478,48 CC.
N 21,52

1500,00 CC.

Endluft:

<table>
<thead>
<tr>
<th>Absorptionsrohr III.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum getrocknet</td>
<td>194,83</td>
<td>765,22</td>
<td>18,2</td>
<td>136,944</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>92,338</td>
<td>666,99</td>
<td>20,2</td>
<td>57,347</td>
</tr>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>102,78</td>
<td>482,71</td>
<td>19,3</td>
<td>46,339</td>
</tr>
<tr>
<td>Mit Wasserox</td>
<td>259,62</td>
<td>636,77</td>
<td>19,3</td>
<td>134,414</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>78,77</td>
<td>460,18</td>
<td>19,3</td>
<td>33,857</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorptionsrohr II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>195,78</td>
<td>685,15</td>
<td>18,2</td>
<td>132,63</td>
</tr>
<tr>
<td>Mit Cl₂ getrocknet</td>
<td>193,9</td>
<td>737,34</td>
<td>20,2</td>
<td>133,12</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>92,364</td>
<td>641,05</td>
<td>18,8</td>
<td>55,39</td>
</tr>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>110,06</td>
<td>487,29</td>
<td>18,55</td>
<td>50,231</td>
</tr>
<tr>
<td>Mit Wasserox</td>
<td>297,54</td>
<td>669,15</td>
<td>18,5</td>
<td>156,47</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>119,12</td>
<td>495,72</td>
<td>18,5</td>
<td>55,305</td>
</tr>
</tbody>
</table>

Die Endluft enthält:
Beiträge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>58.12</td>
<td>58.39</td>
<td>58.23%</td>
</tr>
<tr>
<td>O</td>
<td>36.31</td>
<td>36.21</td>
<td>36.26</td>
</tr>
<tr>
<td>N</td>
<td>5.57</td>
<td>5.40</td>
<td>5.48</td>
</tr>
</tbody>
</table>

und in absoluter Menge:

CO₂ 332.05 CC.
O 206.68 CC.
N 31.26 CC.

Der Versuch dauerte 123 Minuten. Während dieser Zeit verzerzte das Thier 1271.8 CC. Sauerstoff, was für die Minute 10.3 CC. ergibt. Dafür erschienen in der Endluft bloß 332.05 CC. Kohlensäure, während im Thier 939.75 CC. blieben = 0.567 vom Volum des Thieres. Zugleich findet sich in der Endluft ein Plus von 9.74 CC. Stickstoff.

Versuch 5. 3. August 1858.

Erwachsenes, kräftiges Kaninchen am Sauerstoffraume von 1500 CC. Beginn des Versuches 2h 11'.

Die Lunge wird mit 9000 CC. Sauerstoff durchgewaschen. Der Raum wird abgeschlossen 2h 21'. Das Studium der Unruhe ist 2h 50' ausgebildet. 3h 12' sind bereits 500 CC. der Luft verschwunden. 3h 21' 550 CC. absorbiert. Die Narkose beginnt sich einzustellen. Reflexe finden noch an Pfoten und Augen Statt. 3h 36' 600 CC. absorbiert. Reflexe sind nur noch an den Augen vorhanden. Extremitäten werden kühl und deshalb mit Wolle bedeckt. 3h 59' die Respiration wird langsang; es erfolgen in 1 Minute 9 Athemzüge und 100 Herzschläge. Der Tod erfolgt 4h 12'. Volum der Endluft 550 CC.

Anfangsluft vor und nach dem Versuch.

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C. Vol. b. °C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>123.48</td>
<td>395.75</td>
<td>19.6</td>
<td>45.599</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>341.85</td>
<td>607.06</td>
<td>19.6</td>
<td>193.63</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>150.24</td>
<td>421.42</td>
<td>19.7</td>
<td>50.048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eudiometer III.</th>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C. Vol. b. °C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>139.08</td>
<td>411.45</td>
<td>19.9</td>
<td>53.328</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>384.55</td>
<td>633.77</td>
<td>19.7</td>
<td>215.498</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>148.17</td>
<td>419.92</td>
<td>21.3</td>
<td>57.735</td>
</tr>
</tbody>
</table>

Die Luft enthält;
und in absoluter Menge:

\[
\begin{align*}
\text{O} & = 1477.4 \text{ CC} \\
\text{N} & = 22.6 \text{ CC} \\
\text{Gesamt} & = 1500.0 \text{ CC}
\end{align*}
\]

Die Analyse der Endluft ergab folgende Zahlen:

<table>
<thead>
<tr>
<th></th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorptionsrohr II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>218.4</td>
<td>740.86</td>
<td>19.6</td>
<td>150.97</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>214.9</td>
<td>757.97</td>
<td>19.9</td>
<td>151.834</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>82.124</td>
<td>620.36</td>
<td>21.7</td>
<td>47.197</td>
</tr>
<tr>
<td>Eudiometer III.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>90.275</td>
<td>830.89</td>
<td>21.1</td>
<td>44.449</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>200.02</td>
<td>641.26</td>
<td>21.0</td>
<td>119.113</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>64.35</td>
<td>507.11</td>
<td>20.5</td>
<td>30.357</td>
</tr>
<tr>
<td>Absorptionsrohr VII.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>181.83</td>
<td>736.92</td>
<td>19.6</td>
<td>125.02</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>178.92</td>
<td>751.50</td>
<td>19.9</td>
<td>124.568</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>66.3</td>
<td>636.21</td>
<td>21.7</td>
<td>39.076</td>
</tr>
<tr>
<td>Eudiometer II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>83.131</td>
<td>450.18</td>
<td>21.5</td>
<td>34.729</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>231.65</td>
<td>196.13</td>
<td>21.0</td>
<td>128.322</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>128.019</td>
<td>494.57</td>
<td>21.0</td>
<td>39.076</td>
</tr>
<tr>
<td>Absorptionsrohr III.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>170.4</td>
<td>728.44</td>
<td>19.6</td>
<td>115.81</td>
</tr>
<tr>
<td>Mit ClCa getrocknet</td>
<td>168.4</td>
<td>742.74</td>
<td>19.9</td>
<td>115.874</td>
</tr>
<tr>
<td>Nach Absorption der CO₂</td>
<td>62.958</td>
<td>631.02</td>
<td>21.7</td>
<td>36.804</td>
</tr>
<tr>
<td>Eudiometer III.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsvolum</td>
<td>55.425</td>
<td>498.64</td>
<td>20.3</td>
<td>25.725</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>164.185</td>
<td>604.49</td>
<td>20.2</td>
<td>92.566</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>78.700</td>
<td>521.29</td>
<td>20.1</td>
<td>41.637</td>
</tr>
</tbody>
</table>

Dies gibt die Zusammensetzung:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>68.91</td>
<td>68.63</td>
<td>68.23</td>
<td>68.59%</td>
</tr>
<tr>
<td>O</td>
<td>20.69</td>
<td>20.96</td>
<td>20.96</td>
<td>20.87%</td>
</tr>
<tr>
<td>N</td>
<td>10.50</td>
<td>10.41</td>
<td>10.81</td>
<td>10.54%</td>
</tr>
</tbody>
</table>

und in absoluter Menge:

\[
\begin{align*}
\text{CO₂} & = 397.82 \text{ CC} \\
\text{O} & = 121.05 \text{ CC} \\
\text{N} & = 61.13 \text{ CC} \\
\text{Gesamt} & = 580.00 \text{ CC}
\end{align*}
\]
Der Versuch dauerte 111 Minuten; während dieser Zeit ver-
zehrte das Thier 1356·35 CC. Sauerstoff, was für 1 Minute 12·3 CC.
ergibt. Dafür erschienen in der Endluft bloß 397·82 CC. Kohlen-
säure; von dem verzehrten Sauerstoff blieben mithin im Thier
958·53 CC.; das Volum dieses Thieres gleich dem vorigen ange-
nommen, was bei der anscheinend gleichen Größe beider ohne sehr
beträchtlichen Fehler geschehen kann, ergibt dies 0·584 vom Volum
des Thieres. Die Endluft zeigt ferner ein Plus von 38·53 CC.
Stickstoff.

Zur leichteren Übersicht stelle ich auch die Zusammensetzung
der Endluft in dieser Versuchsreihe in folgender Tabelle zusammen.

| Nummer des Ver-
| Raum |
| des Ver-
| O-Saum |
| CO₂ % |
| O % |
| N % |
| des Ver-
| -saum |
| CO₂ |
| O |
| N |
1	300	20·09	42·85	37·06
2	520	47·33	38·61	14·06
3	1460	27·53	58·83	13·90
4	1500	58·255	36·26	5·485
5	1500	68·59	20·8	10·4

Die nähere Betrachtung zeigt auch für diese Versuchsreihe die
Unabhängigkeit der aufgenommenen Sauerstoffmengen vom Partiär-
druck dieses Gases in der Luft. Die Berechnung der in 1 Minute in
der ersten Versuchsreihe aufgenommenen Sauerstoffmengen ergab
11·8, 12·7, 13·03, 13·27 CC., mithin Größen, welche höchstens
innerhalb der gewöhnlichen individuellen Grenzen schwanken. Dabei
athmeten die Thiere sehr bald in einer sauerstoffarmen Luft. Merk-
würdiger Weise ergaben die Thiere bei der zweiten Versuchsreihe fast
genau dieselben Zahlen, nämlich 10·0, 10·3, 12·3 CC. für 1 Minute,
Zahlen, welche mit den obigen so gut als nur immer möglich über-
einstimmen, während die Thiere bis zum letzten Augenblicke in einer
die atmosphärische an Sauerstoffreichthum übertreffende Luft ath-
meten. Es stimmt dies vollkommen mit den analogen Beobachtungen
von Regnault und Reiset, welche sie an Thieren machten, die in
einer sauerstoffreichen Luft athmeten. Die abweichenden Resulta-
tate, welche Allen und Pepys erhielten, rühren also wohl von
analytischen Fehlern her, was um so wahrscheinlicher wird, wenn
man die enorm hohen Kohlensäurezahlen sieht, welche diese Beob-
achter erhielten, Zahlen, wie sie von keinem andern Beobachter
Müller.
auch nur annähernd erreicht wurden. Überdies erstrecken sich
die Versuche von Allen und Pepys nur auf die kurze Zeit von 8
bis 10 Minuten, und sie geben selbst an, dass der Athmende im
zweiten Versuche vorher 5 Stunden lang starke Anstrengung gehabt
hatte, was an sich schon nach Vierordt's und Scharling's
Beobachtungen die Menge der gebildeten Kohlensäure steigert.

Für die Kohlensäure andererseits lässt sich aus den Versuchen
der letzten Reihe ihre Abhängigkeit vom Absorptionsgesetz in Bezie-
hung auf das Blut direct ableiten; das Verschwinden einer steigen-
den Menge derselben mit ihrem steigenden Partiardruck im Athmungs-
raume lässt sich auf eine andere Weise nicht wohl erklären.

Außer dieser Thatsache erlaubten die Versuche noch einige
andere nicht uninteressante Beobachtungen zu machen. Sie zeigen
zunächst, dass selbst bei eingetretener Narkose durch Kohlensäure
die Sauerstoffaufnahme im Körper fortwährend vor sich geht, so
dass eine Widerlegung des gegenteiligen prophetischen Ausspruches
von Bernard 1) überflüssig erscheint.

Sie zeigen aber ferner, dass die Kohlensäure im Thierkörper
in gehöriger Dosis die Wirkungen eines narkotischen Giftes entfaltet,
welches bei einer Sättigung des Thieres acuten Tod zu erzeugen im
Stande ist. Damit erstere Wirkungen deutlich zum Vorschein kommen,
scheint es nöthig, dass ein Thier etwa den dritten Theil seines
Volums an gasförmiger Kohlensäure aufnimmt, während die abso-
lute Menge, welche es aufnehmen kann, bis es zu Grunde geht, in
drei Fällen etwas über die Hälfte von seinem Volum, 0·567 und
0·584 beträgt.

Die Beobachtungen gestatten endlich den Schluss, dass nicht die
Anhäufung der Kohlensäure in den Geweben und dem Blut es ist, was
die Verlangsamung der Athembewegungen nach Durchschneidung des
Vagus und die krampfhaften Zufälle beim Erstickungstod hervorruft;
denn auch ein sehr beträchtlicher Kohlensäuregehalt des Blutes er-
zeugt keine Reizung des verlängerten Markes und der Kohlensäure-
gehalt der Lungenluft keine Reflexe. Vielmehr ist es bei den letzteren
Zufällen geradezu der Mangel an nothwendigen Sauerstoff, welchem
sie ihre Entstehung verdanken, und eben diesem Mangel müssen wir
die ersten und alle folgenden Athemzüge zuschreiben, welche der

1) A. a. O. 8. lecon. pag. 133 ff.

Die Versuche der ersten Reihe zeigten, dass es gelingt, durch das Athmen einem gegebenen Luftvolum seinen Sauerstoff bis auf sehr geringe Quantitäten zu entziehen, ehe der Tod eintritt. Sie liessen aber die Frage eigentlich unbeantwortet, bei welchem Prozentgehalt an Sauerstoff die Luft untauglich wird, das Leben zu erhalten. Ich versuchte, auch diese Frage noch durch eine Reihe von Versuchen zu erledigen. Leider gestatteten es mir Zeit und Umstände nicht, auch diese Versuchsserie in ihrem vollen Umfange durchzuführen, so dass die gewonnenen Resultate mehr als Anhaltspunkte für zukünftige Untersuchungen gelten müssen.

Der Gasometer wurde durch einen Kautschukschlauch mit einem der früher beschriebenen Ventile in Verbindung gesetzt, durch welches das Thier einathmete, während durch ein zweites Ventil die Exspirationsluft ungehindert in das Freie entweichen konnte. Die Ventile standen auch hier mit der Trachea in unmittelbarer Verbin-
dung; ebenso wurde die Dichtigkeit der Luft auch hier durch eine entsprechende Schraubenvorrichtung am Gasometer constant erhalten. Der Inhalt des letzteren erlaubte es nicht, die einzelnen Versuche über eine Viertelstunde auszudehnen.

Die Analysen der Luft wurden ohne Benützung des Wasserbehälters für constante Temperatur ausgeführt. Das benützte Zimmer war zu dieser Zeit fortwährend leer und die Schwankungen in der Temperatur desselben nur unbedeutend; vor jeder Ablesung wurde etwa 1 Stunde gewartet, um die Temperaturdifferenzen ausgleichen zu lassen. Die analytischen Fehler können daher in den folgenden Fällen nicht über ein bis höchstens zwei Zehntel eines Procents betragen, wenn solche überhaupt bedingt waren; diese Grössen kommen bei der vorliegenden Untersuchung aber nicht in Betracht, da die Individualität der Thiere viel grössere Differenzen in den Beobachtungen mit sich bringt.

Die nur in beschränkter Zahl angestellten Versuche waren folgende:

Versuch 1. 7. September 1858.

Das Thier athmet 13 Minuten lang aus dem Gasometer ein. Die Atemzüge erscheinen nach einiger Zeit etwas tiefer und ausgiebiger als gewöhnlich, ohne dass sich sonst irgend bemerkenswerte Zufälle einstellen. Die Analyse der Luft ergibt folgende Zahlen:

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. °C. u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>212,029</td>
<td>492,317</td>
<td>20,5</td>
<td>97,09</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>278,75</td>
<td>556,60</td>
<td>20,7</td>
<td>144,22</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>310,00</td>
<td>572,42</td>
<td>20,7</td>
<td>164,95</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>215,76</td>
<td>405,39</td>
<td>20,7</td>
<td>99,35</td>
</tr>
</tbody>
</table>

Die Zusammensetzung der Luft ist somit:

O 15,40 %
N 84,60 %

Versuch 2. 9. September 1858.

Das Thier wird an den Gasometer gebracht 11h1'. Nach 30 Secunden stellt sich bereits starke Unruhe ein, die in weiteren 30 Secunden bis zu heftigen Suffocationerscheinungen sich steigert. Dasselbe Resultat wird erhalten bei einer Wiederholung des Versuches nach einer halben Stunde.

Die Analyse der Luft ergibt:
Beiträge zur Theorie der Respiration.

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>182.69</td>
<td>468.208</td>
<td>19.4</td>
<td>79.86</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>250.73</td>
<td>533.59</td>
<td>20.0</td>
<td>124.66</td>
</tr>
<tr>
<td>Mit Kaallgas</td>
<td>320.4</td>
<td>562.40</td>
<td>20.0</td>
<td>167.90</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>240.74</td>
<td>524.12</td>
<td>19.9</td>
<td>117.61</td>
</tr>
</tbody>
</table>

Die Zusammensetzung ist mithin:

O 2.94 %
N 97.06 %

Versuch 3.

Weitere Erscheinungen traten nicht ein.

Die Analyse ergibt folgende Zahlen:

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>164.9</td>
<td>449.29</td>
<td>19.9</td>
<td>69.02</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>255.25</td>
<td>508.17</td>
<td>20.1</td>
<td>106.62</td>
</tr>
<tr>
<td>Mit Kaallgas</td>
<td>270.04</td>
<td>524.32</td>
<td>20.0</td>
<td>131.93</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>201.28</td>
<td>485.35</td>
<td>20.0</td>
<td>91.02</td>
</tr>
</tbody>
</table>

Dies gibt die Zusammensetzung:

O 7.53 %
N 92.47 %

Versuch 4. 10. September 1858.

Ein erwachsenes Kaninchen wird mit dem Gasometer in Verbindung gesetzt und athmet 12 Minuten lang ohne bemerkliche Beschwerden.

Die Analyse gibt folgende Zahlen:

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C.</th>
<th>Vol. b. 0°C u. 1M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>249.83</td>
<td>521.25</td>
<td>21.9</td>
<td>120.56</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>406.33</td>
<td>673.07</td>
<td>22.0</td>
<td>253.11</td>
</tr>
<tr>
<td>Mit Kaallgas</td>
<td>435.92</td>
<td>682.12</td>
<td>22.0</td>
<td>275.19</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>349.08</td>
<td>617.17</td>
<td>22.0</td>
<td>199.37</td>
</tr>
</tbody>
</table>

Dies ergibt die Zusammensetzung:

O 14.85 %
N 85.15 %
VERSUCH A. 11. September 1858.

Der Versuch beginnt 11 h 15'. Nach Verlaufs einer Minute ist die heftigste Suffocation ausgebildet. Eine Wiederholung des Versuchs nach einer halben Stunde gibt das gleiche Resultat.

Die Analyse ergibt folgendes:

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>202.81</td>
<td>488.43</td>
<td>19.6</td>
<td>92.42</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>264.29</td>
<td>547.71</td>
<td>19.6</td>
<td>136.97</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>330.34</td>
<td>566.00</td>
<td>20.6</td>
<td>174.22</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>288.49</td>
<td>541.30</td>
<td>20.2</td>
<td>130.14</td>
</tr>
</tbody>
</table>

Die Zusammensetzung ist:

O 1.74 %
N 68.28 %

VERSUCH B.

Die Analyse gibt folgende Zahlen:

<table>
<thead>
<tr>
<th>Eudiometer II.</th>
<th>Volum</th>
<th>Druck</th>
<th>°C</th>
<th>Vol. b. 0°C u. 1 M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsvolum</td>
<td>216.99</td>
<td>499.51</td>
<td>20.6</td>
<td>100.79</td>
</tr>
<tr>
<td>Mit Wasserstoff</td>
<td>288.94</td>
<td>569.81</td>
<td>20.6</td>
<td>153.10</td>
</tr>
<tr>
<td>Mit Knallgas</td>
<td>340.82</td>
<td>582.31</td>
<td>20.6</td>
<td>184.65</td>
</tr>
<tr>
<td>Nach der Explosion</td>
<td>271.72</td>
<td>552.53</td>
<td>20.5</td>
<td>139.65</td>
</tr>
</tbody>
</table>

Dies gibt die Zusammensetzung:

O 4.48 %
N 95.52 %

Ich stelle auch diese Versuchsreihe in eine Tabelle zusammen.

<table>
<thead>
<tr>
<th>Dauer des Versuches</th>
<th>Nummer</th>
<th>O %</th>
<th>N %</th>
<th>Erscheinungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>5</td>
<td>1.74</td>
<td>98.26</td>
<td>Rasche Suffocation</td>
</tr>
<tr>
<td>1'</td>
<td>2</td>
<td>2.94</td>
<td>97.06</td>
<td></td>
</tr>
<tr>
<td>15'</td>
<td>6</td>
<td>4.48</td>
<td>95.52</td>
<td>Beschwer. Respiration</td>
</tr>
<tr>
<td>15'</td>
<td>3</td>
<td>7.53</td>
<td>92.47</td>
<td>Tiefe Athemzüge</td>
</tr>
<tr>
<td>15'</td>
<td>4</td>
<td>14.85</td>
<td>85.15</td>
<td>Keine besonderen Ersc-</td>
</tr>
<tr>
<td>15'</td>
<td>1</td>
<td>15.40</td>
<td>84.60</td>
<td>haeinungen.</td>
</tr>
</tbody>
</table>
Diese Versuche zeigen, so weit die kurze Beobachtungsdauer uns Schlüsse gestattet, dass eine Minderung des Sauerstoffgehaltes der Luft, um \(\frac{1}{3} \) von dem normalen Gehalt, ohne wesentlichen Einfluss auf die Vorgänge der Respiration ist. Sie zeigen ferner dass der Sauerstoffgehalt der Atmungsluft bis zum dritten Theil von dem der atmosphärischen Luft herabgedrückt werden kann, bis überhaupt ein merklicher Einfluss dieser Verminderung auf die Ausgiebigkeit des Luftwechsels in den Lungen zur Beobachtung kommt. Hier scheint jedoch auch die Grenze zu liegen, bei welcher das Leben noch durch längere Zeit erhalten bleiben kann. Ein weiteres Herabsinken des Sauerstoffgehaltes bis zu 4 oder 5\% hat bereits Erscheinungen zu Folge, wie sie nur bei beträchtlichen Störungen der Sauerstoffaufnahme in das Blut zur Beobachtung kommen, während ein Herabsinken unter 3\% die zur Erhaltung des Lebens nöthige Sauerstoffmenge dem Blute nicht mehr aufzunehmen gestattet und raschen Tod unter den ausgesprochenen Erscheinungen der Suffocation herbeiführt. Die Beobachtungen stehen mit den Erfahrungen über das Athmen auf hohen Bergen vollkommen in Einklang. Überall so weit der Mensch bis jetzt vorzudringen vermochte, befindet er sich in einer Atmosphäre, welche ihm den nöthigen Sauerstoff in hinreichender Menge liefert, und der Organismus selbst besitzt durch die Möglichkeit einer Vergrößerung der Berührungsfläche zwischen Gas und Blut und der rascheren Lüftung bis zu einem gewissen Grade noch die Fähigkeit, den Mangel an der zum Leben notwendigen Sauerstoffmenge in der äusseren Luft zu ersetzen.

Die beschriebene Versuchsmethode würde noch zur Erörterung mancher interessanten Fragen sich anwenden lassen. So viel sich bis jetzt absehen lässt, sind erhebliche Fehler in derselben nicht begründet; bei den vielsachen Modificationen, deren sie fähig ist, und bei der leichten Handhabung, welche sie gestattet, dürfte ihre ausgedehntere Anwendung zu manchen sowohl für die Physiologie als namentlich auch für die experimentale Pathologie wichtigen That- sachen führen.
Die verschiedenen Formen der quergestreiften Muskelfasern.

(Mit 3 Tafeln.)

(Aus dem physiologischen Institute der Wiener Universität.)

(Vorgelegt durch das w. M. Herrn Prof. Brücke in der Sitzung vom 32. Juli 1858.)

Natürliche Enden quergestreifter Muskelfasern suchte man lange Zeit nur dort, wo ein Muskel an eine Sehne grenzt und sah daselbst die Muskellaser stumpf abgerundet aufhören.

Später wurden spitz zulaufende freie Enden quergestreifter Muskelfäden im Innern der Muskel durch Rollett bekannt 1).

Funke 2) gab darnach Nachricht, dass Ernst Heinrich Weber ein solches Verhalten der Muskelfasern gleichfalls beobachtet habe und die spindelförmige Gestalt derselben als normal betrachtet.

Da ausser dieser Angabe nichts über derlei Elemente bekannt wurde, so veröffentlichte der eine von uns, als es ihm gelang 3 bis 4 Centimeter lange spindelförmige quergestreifte Muskelfasern zu isolieren, eine kurze Notiz darüber 3).

Mit zu Grundelegung dieser Thatsachen konnte man sich die Frage stellen, in welchen verschiedenen Formen allseitig von natürlichen Grenzen eingefasste Elemente des quergestreiften Muskelgewebes erscheinen.

Eine gemeinschaftlich von uns ausgeführte Untersuchung erlaubt uns auf diese Frage Antwort zu geben, indem es uns gelungen ist aus den verschiedensten Muskeln einer Anzahl von Wirbeltieren quergestreifte Muskelfasern in ihrer Totalität zu isolieren.

Die Methode, deren wir uns dazu bedienten, war wieder die des Einlegens gekochter Fleischstücke in Glycerin.

2) Lehrbuch der Physiologie. Leipzig 1858, Pag 649.
Die verschiedenen Formen der quergestreiften Muskelfasern.

Wir werden nun die beobachteten Faserformen beschreiben, indem wir gleichzeitig auf die beigegebenen Zeichnungen verweisen.

Muskelfasern, die beiderseits stumpf abgerundet endigten, haben wir aus dem extensor digit. com. longus, aus dem tibialis anticus und dem extensor hallucis vom Menschen, ferner aus dem extensor digit. com., dem biceps und triceps brachii, dem gastrocnemius und soleus des Kaninchens, dann aus dem gastrocnemius, Bi-femoro-plantaire (Dugès), aus dem intra-ilio-femoral, ex-ilio-trochanterien und add. capulo-humeral (Dugès) des Frosches isolirt (Fig. 1).

An diese Form schliesst sich eine zweite, wo die Enden unter dem Mikroskop durch seichte Einschnitte gekeilt erscheinen, so dass sie nicht einfach stumpf abgerundet, sondern mit mehreren kegelförmigen Spitzen endigen.

Diese Form isolirten wir aus dem extensor digit. com., dem tibialis anticus vom Menschen, aus dem gastrocnemius des Frosches und aus vielen Muskeln des Kaninchens (Fig 2.).

Solche in Zacken getheilte Faserenden werden auch von Kölliker für den Schwanz der Froschlarven angegeben 1).

Die beschriebenen Endigungsweisen trifft man auch an ein und derselben Faser.

Solche Fasern enden dann auf der einen Seite stumpf abgerundet, auf der anderen Seite mit kegelförmigen Zacken, und sind in den angeführten Muskeln mit den zwei zuerst beschriebenen Formen gemengt.

Ganz verschieden von den aufgezählten Formen sind die von einem von uns schon früher beschriebenen spindelförmigen Muskelfasern, von welchen wir hier eine Abbildung beifügen (Fig. 3).

Muskelfasern die einerseits stumpf abgerundet, andererseits spitz endigten, isolirten wir aus dem adductor brevis cruris und dem Beuger des Unterschenkels vom Kaninchens, aus den musculis vastis vom Menschen, aus dem Pferdefleisch und endlich aus dem Froschfleische (Fig. 4), wo sie schon von Rollett beobachtet wurden 2).

Alle bis jetzt beschriebenen Muskelfaserformen fanden wir, wie aus unsern obigen Anführungen hervorgeht, meist in ein und demselben Muskel neben einander. Während aber die spindelförmigen

1) Mikroskop. Anat. II. Bd. I. Hälfte, pag. 224, Fig. 65.
2) L. c. pag. 180.
Elemente die Mitte des Muskelbauches einnehmen, laufen von den beiderseitigen Sehnen Muskelfasern aus, die an der Sehne entweder ein stumpf abgerundetes oder ein in kegelförmige Spitzen ausgehendes Ende, an der gegenüberliegenden Seite aber ein spitz zulaufendes Ende besitzen, welches sich zwischen die spindelförmigen Fasern einschiebt. Solche Combinationen isolirten wir z. B. aus dem pubio-thoracique (Dugès) vom Frosche, in welchem übrigens auch um vieles längere von Sehne zu Sehne laufende beiderseits stumpf abgerundete Muskelfasern vorkommen.

An den spitz zulaufenden und frei im Innern des Muskels endigenden Fasern sahen wir beim Pferde von den Seiten der Faser dünne, kurze, hakensförmig gekrümmte, oder dickere, gerade verlaufende Fortsätze ausgehen, welche zugespitzt endigten.

Die kleineren erscheinen wie Anhängsel des Muskelfadens, während die stärker entwickelten kurze Äste einer dichotomisch verzweigten Muskelfaser darstellen (Fig. 5 und 6).

Die Zeichnung (Fig. 5) wurde uns nebst einigen Präparaten zur Benützung von Dr. Rollett überlassen.

Wir sahen auch, dass zwei aus der dichotomischen Theilung einer Muskelfaser hervorgegangenen Äste durch eine Brücke mit einander in Verbindung traten und so eine wirkliche Anastomose zu Stande kam (Fig. 7).

So wie in der Stamm-Musculatur des Pferdes fanden wir auch in dem ex-ilio-trochanterien (Dugès), in dem gastrocnemius des Frosches und in dem Muskelfleische der Lota vulgaris dichotomisch getheilte Muskelfasern.

In der Musculatur der Zunge, die wir der dort schon längst beobachteten baumförmig verzweigten Muskelfasern halber einer besonderen Untersuchung unterworfen, stiessen wir auf eine weitere Form der quergestreiften Muskelfasern, nämlich auf Fasern, die beiderseits ein in zahlreiche Verästelungen zerfahrendes Ende darboten, solche beiderseits baumförmig verzweigte Muskelfasern isolirten wir aus der Zunge des Frosches (Fig. 8).

Ausser den baumförmigen Endigungen kommen aber an den Muskelfasern der Zunge, wie wir uns durch die Untersuchung zahlreicher Objecte ¹) überzeugten, auch noch stumpf abgerundete

¹) Mensch, Kalb, Kaninchen, Meerschweinchen, Hund, Schildkröte, Lota vulgaris.
Biestadecki u. Herzig. Die verschiedenen Formen der quer gestreiften Muskelfasern.

Fig. 1.

Fig. 2.

Die verschiedenen Formen der quergestreiften Muskelfasern.

wie in der Menschenzunge (Fig. 9), in der Hunds-, Meerschweinchen- und Kaninchenzunge (Fig. 10), oder in mehrere kegelförmige Spitzen getheilte Enden vor (Fig. 11), wie in der Kalbszunge.

Aus der Zunge des Pferdes isolirten wir Fasern mit ähnlichen hakenförmigen Anhängen, wie aus der Stamm-Musculatur dieses Thieres (Fig. 12).

Nachdem wir nun die verschiedenen von uns beobachteten Formen beschrieben haben, ergibt es sich von selbst, dass durch unsere Untersuchung die Analogien zwischen dem quergestreiften und glatten Muskellgewebe gestützt werden, indem die quergestreifte Muskelfaser ebenso als ein allseitig begrenztes Formelement aufzufassen ist, wie das spindelförmige Formelement des glatten Muskelgewebes.

Auch die bisher oft angeregte Frage über den Zusammenhang zwischen Muskel- und Sehnengewebe scheint uns dadurch erledigt zu sein, indem diejenigen mikroskopischen Bilder, welche bis jetzt noch einige Histologen zur Annahme eines directen Überganges zwischen Sehnen und Muskellgewebe veranlassten, sich daraus erklären, dass in solchen Fällen eine Muskelfaser nicht mit einem stumpfen Ende, sondern mit mehreren kegelförmigen Spitzen in das Sehnengewebe hineinragte.

So haben wir namentlich aus dem Intercostalmuskel des Menschen, aus dem Kölliker 1) scheinbar direct in das Sehnengewebe übergehende Muskelfasern abgebildet, in grosser Anzahl die oben angegebenen mit mehreren kegelförmigen Spitzen endigenden Fasern isolirt.

1) Mikroskopische Ant. Bd. II, 1. Hälfte, pag. 218, Fig. 62.
Bestimmung der Bahn des Cometen V 1858.

Von Moritz Löwy.

(Vorgelegt in der Sitzung vom 7. October, durch das w. M. Hrn. Director v. Littrow.)

Ich habe die verschiedenen Bahnbestimmungen, die ich im Verlaufe durchgeführt, in den astronomischen Nachrichten veröffentlicht. Ich hatte dabei immer den parabolischen Charakter der Bewegung vorausgesetzt. Die übrig bleibenden Fehler der Normalörter, obwohl sie immer in grössem Betrage waren, als dies von guten Beobachtungen zu erwarten war, berechtigten mich doch vor der Hand nicht,
bestimmung der bahn des kometen v 1858. 151

obwohl ich in den berichten darüber immer die möglichkeit der ellipticität andeutete, dies mit bestimmtheit vorauszusetzen. ich habe deshalb auch in der vorliegenden rechnung vorerst versucht, ob die beobachtungen nicht durch eine parabel genügend dargestellt werden könnten. allein es zeigte sich bald die unmöglichkeit dieser voraussetzung. nachdem die abweichungen zwischen beobachtung und rechnung der geocentrischen länge auf ein minimum gebracht waren, zeigten sich noch in den breiten differenzen von 70°.

ich ging daher von der parabel unmittelbar zur bestimmung der wahrscheinlichsten ellipse über. die methode, nach welcher ich dies durchführte, wurde von herrn dr. hornstein in den sitzungsberichten der kaiserl. akademie der wissenschaften (märzheft des jahrganges 1854) bei der bahnbestimmung des ersten cometen 1847 bekannt gegeben. ich rechnete bloß noch mit einem kleinen augenommenen werthe des bruches 1/α (wenn α die halbachse der ellipse bedeutet), bei unverändertem werthe des verhältnisses der curtirten distanzen δ'/δ, eine dritte hypothese und mit benützung der beiden parabolischen hypotesen, nachdem die correctionszahlen x und y so ermittelt waren, wie dies gewöhnlich bei verbesserung elliptischer elemente nach der methode der curtirten distanzen geschieht, erhielt ich die neuen elliptischen elemente aus der verbesserung der ersten parabolischen hypotehe.

ich habe acht geprüfte beobachtungen vom 14. juni bis 29. september als grundlage für die vorliegende rechnung verwendet; es sind die folgenden:

<table>
<thead>
<tr>
<th>datum in mittlerer zeit der beobachtungsörter</th>
<th>beobachtungs- ort</th>
<th>rectascension</th>
<th>declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858, juni 14. 10° 35' 37"</td>
<td>berlin</td>
<td>9° 25' 39' 70"</td>
<td>25° 5' 48' 6"</td>
</tr>
<tr>
<td>" 14. 10 55 21</td>
<td>wien</td>
<td>9 25 40 86</td>
<td>25 5 54 3</td>
</tr>
<tr>
<td>" 9. 10 8 3</td>
<td>"</td>
<td>9 35 42 14</td>
<td>27 26 42 3</td>
</tr>
<tr>
<td>" 9. 9 17 49</td>
<td>washington</td>
<td>9 35 50 40</td>
<td>27 27 52 8</td>
</tr>
<tr>
<td>" 10. 8 57 0</td>
<td>"</td>
<td>9 36 27 30</td>
<td>27 33 14 3</td>
</tr>
<tr>
<td>aug. 17. 8 47 30</td>
<td>wien</td>
<td>10 13 8 04</td>
<td>31 48 18 4</td>
</tr>
<tr>
<td>" 29. 7 16 8</td>
<td>"</td>
<td>12 58 52 71</td>
<td>31 17 14 1</td>
</tr>
<tr>
<td>" 29. 8 13 22</td>
<td>"</td>
<td>12 59 17 30</td>
<td>31 14 25 0</td>
</tr>
</tbody>
</table>

woraus sich dann die elliptischen elemente folgendermassen ergeben haben:
Perihelzeit 1858, Sept. 29-99670 mittlere Berliner Zeit

\[\begin{align*}
\alpha & = 165^\circ 18'57'1' \\
\varpi & = 36^\circ 13'18'6' \\
i & = 63^\circ 01'46'8'
\end{align*} \] Mittl. Äq. 1858, 0. Jähn.

\[\begin{align*}
\log q & = 9.7623012 \\
e & = 0.9968585 \\
\log a & = 2.2647514
\end{align*} \]

Umlaufszeit 2495-32 Jahre

\[\mu = 1.421923 \]

Heliocentrische Bewegung retrograd.

Mit den nachstehenden übrig bleibenden Fehlern:

<table>
<thead>
<tr>
<th>Normalort</th>
<th>Datum</th>
<th>(\delta \lambda)</th>
<th>(\delta \beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1858, Juni 14</td>
<td>0'0</td>
<td>0'0</td>
</tr>
<tr>
<td>2</td>
<td>„ Juli 9</td>
<td>0'2</td>
<td>10'9</td>
</tr>
<tr>
<td>3</td>
<td>„ Aug. 17</td>
<td>0'0</td>
<td>-5'3</td>
</tr>
<tr>
<td>4</td>
<td>„ Sept. 29</td>
<td>0'0</td>
<td>0'0</td>
</tr>
</tbody>
</table>

Die Untersuchung, in wie weit die angegebene Umlaufszeit der Wahrheit nahe kommt, zeigt die noch starke Unbestimmtheit dieser Zahl. Obwohl sich dies zum Theile aus der Natur der Sache selbst erklärt, so wird doch die Unbestimmtheit sich stark vermindern, sobald die Berechnung auf alle über die Dauer der Sichtbarkeit bekannten Beobachtungen sich gründen wird.

Stellt man die übrig bleibenden Fehler als Function der Correctionszahl \(y \) dar, durch welche man unmittelbar aus der Gleichung \(a = \frac{1164}{y} \) die Halbaxe der Ellipse findet, so bekommt man für die Fehler die folgenden Gleichungen:

<table>
<thead>
<tr>
<th>Normalort</th>
<th>Datum</th>
<th>(\delta \lambda)</th>
<th>(\delta \beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Juli 9</td>
<td>8'83—1'35y</td>
<td>42'34—4'97y</td>
</tr>
<tr>
<td>2</td>
<td>Aug. 17</td>
<td>3'28—0'54y</td>
<td>63'92—10'92y</td>
</tr>
</tbody>
</table>

Die folgende Übersicht enthält für verschiedene Werthe von \(y \) die entsprechenden Umlaufszeiten mit den dazu gehörigen Summen der Fehlerquadrate.
15.

Wak
Obse
so w
Bere
dend
tions
a =
Fehlu

von 4
Sumn
<table>
<thead>
<tr>
<th>Breite (cm)</th>
<th>Lichtstärke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1723,0</td>
<td>0,46</td>
</tr>
<tr>
<td>914,0</td>
<td>0,80</td>
</tr>
<tr>
<td>392,6</td>
<td>0,89</td>
</tr>
<tr>
<td>139,3</td>
<td>0,70</td>
</tr>
<tr>
<td>146,0</td>
<td>0,75</td>
</tr>
<tr>
<td>213,5</td>
<td>0,88</td>
</tr>
<tr>
<td>355,8</td>
<td>0,66</td>
</tr>
<tr>
<td>1186,2</td>
<td>0,04</td>
</tr>
<tr>
<td>2404,1</td>
<td>0,98</td>
</tr>
</tbody>
</table>

Umlaufweise den mittleren Wert der Umlaufweise der Lichtsäule, die Lichtstärke mit Berücksichtigung der Breite zu ermitteln.
Wall
Obse
so w
Bere
dend

ions
a =
Fehlt

von 3
Sunn
<table>
<thead>
<tr>
<th>y</th>
<th>a</th>
<th>Umlaufzeit</th>
<th>d α</th>
<th>d β</th>
<th>Länge</th>
<th>Breite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Norm. I.</td>
<td>Norm. II.</td>
<td>Norm. I.</td>
<td>Norm. II.</td>
<td>Summe der Fehlerquadrate</td>
</tr>
<tr>
<td>3</td>
<td>388</td>
<td>7642</td>
<td>+4*8</td>
<td>+1*6</td>
<td>+27*4</td>
<td>+31*2</td>
</tr>
<tr>
<td>4</td>
<td>291</td>
<td>4964</td>
<td>-3*4</td>
<td>+1*1</td>
<td>+22*5</td>
<td>+20*2</td>
</tr>
<tr>
<td>5</td>
<td>233</td>
<td>3554</td>
<td>-2*1</td>
<td>+0*6</td>
<td>+17*5</td>
<td>+9*3</td>
</tr>
<tr>
<td>6</td>
<td>194</td>
<td>2702</td>
<td>-0*7</td>
<td>0*0</td>
<td>+12*5</td>
<td>+1*6</td>
</tr>
<tr>
<td>6*3271</td>
<td>184</td>
<td>2495</td>
<td>-0*2</td>
<td>0*0</td>
<td>+10*9</td>
<td>-5*1</td>
</tr>
<tr>
<td>7</td>
<td>166</td>
<td>2144</td>
<td>-0*6</td>
<td>-0*5</td>
<td>+7*6</td>
<td>-12*5</td>
</tr>
<tr>
<td>8</td>
<td>146</td>
<td>1755</td>
<td>-2*0</td>
<td>-1*1</td>
<td>+2*6</td>
<td>-23*4</td>
</tr>
<tr>
<td>9</td>
<td>129</td>
<td>1471</td>
<td>-3*3</td>
<td>-1*6</td>
<td>-2*4</td>
<td>+7*4</td>
</tr>
<tr>
<td>10</td>
<td>116</td>
<td>1256</td>
<td>-4*7</td>
<td>-2*1</td>
<td>-7*4</td>
<td>+45*3</td>
</tr>
</tbody>
</table>

Man erkennt aus dem aufgestellten Schema, dass die Umlaufszeiten von 2702, 2495, 2144 beinahe auf gleiche Weise den Beobachtungen entsprechen, daher die oben angeführte Zahl der Umlaufszeit noch auf einige Jahrhunderte unsicher erscheint.

Lichtstärke vom 14. September = 1 für 0° mittlere Berliner Zeit.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Rect- ascension</th>
<th>Declination</th>
<th>Log J</th>
<th>Log y</th>
<th>Lichtstärke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858, Oct. 5</td>
<td>14° 4 13</td>
<td>20°32.6</td>
<td>9.77070</td>
<td>9.77041</td>
<td>4.46</td>
</tr>
<tr>
<td>6</td>
<td>16 41</td>
<td>17 47.6</td>
<td>9.74735</td>
<td>9.77787</td>
<td>4.80</td>
</tr>
<tr>
<td>7</td>
<td>29 14</td>
<td>14 46.9</td>
<td>9.74735</td>
<td>9.77787</td>
<td>4.80</td>
</tr>
<tr>
<td>8</td>
<td>41 47</td>
<td>11 34.0</td>
<td>9.73357</td>
<td>9.78335</td>
<td>4.89</td>
</tr>
<tr>
<td>9</td>
<td>54 15</td>
<td>8 11.0</td>
<td>9.73116</td>
<td>9.79857</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>15 6 33</td>
<td>4 41.4</td>
<td>9.73116</td>
<td>9.79857</td>
<td>4.70</td>
</tr>
<tr>
<td>11</td>
<td>18 34</td>
<td>1 8.8</td>
<td>9.74022</td>
<td>9.81119</td>
<td>4.25</td>
</tr>
<tr>
<td>12</td>
<td>30 16</td>
<td>-2 24.1</td>
<td>9.74022</td>
<td>9.81119</td>
<td>4.25</td>
</tr>
<tr>
<td>13</td>
<td>41 34</td>
<td>-5 51.7</td>
<td>9.74022</td>
<td>9.81119</td>
<td>4.25</td>
</tr>
<tr>
<td>14</td>
<td>52 27</td>
<td>-9 12.8</td>
<td>9.74022</td>
<td>9.81119</td>
<td>4.25</td>
</tr>
<tr>
<td>15</td>
<td>16 2 53</td>
<td>-12 23.5</td>
<td>9.75902</td>
<td>9.82490</td>
<td>3.86</td>
</tr>
<tr>
<td>16</td>
<td>12 50</td>
<td>-15 23.5</td>
<td>9.78482</td>
<td>9.83941</td>
<td>3.04</td>
</tr>
<tr>
<td>18</td>
<td>31 19</td>
<td>-20 46.6</td>
<td>9.81489</td>
<td>9.85446</td>
<td>2.47</td>
</tr>
<tr>
<td>19</td>
<td>39 50</td>
<td>-23 9.6</td>
<td>9.81489</td>
<td>9.85446</td>
<td>2.47</td>
</tr>
<tr>
<td>20</td>
<td>47 54</td>
<td>-25 20.8</td>
<td>9.81489</td>
<td>9.85446</td>
<td>2.47</td>
</tr>
<tr>
<td>Datum</td>
<td>Rect-ascension</td>
<td>Declination</td>
<td>Log. Δ</td>
<td>Log. γ</td>
<td>Lichtstärke</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1888, Oct. 22</td>
<td>17h 2° 45'</td>
<td>-29° 10' 8"</td>
<td>9.87951</td>
<td>9.88538</td>
<td>1.59</td>
</tr>
<tr>
<td>23</td>
<td>9 35</td>
<td>-30 51' 2"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16 3</td>
<td>-32 22' 8"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>22 11</td>
<td>-33 46' 6"</td>
<td>9.91145</td>
<td>9.90093</td>
<td>1.28</td>
</tr>
<tr>
<td>26</td>
<td>27 59</td>
<td>-35 3' 2"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>33 29</td>
<td>-36 13' 6"</td>
<td>9.94226</td>
<td>9.91639</td>
<td>1.03</td>
</tr>
<tr>
<td>28</td>
<td>38 42</td>
<td>-37 18' 4"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>43 41</td>
<td>-38 17' 9"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>48 26</td>
<td>-39 13' 1"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>52 59</td>
<td>-40 3' 1"</td>
<td>9.97947</td>
<td>9.94671</td>
<td>0.76</td>
</tr>
<tr>
<td>Nov. 1</td>
<td>57 19</td>
<td>-40 19' 7"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18 1 28</td>
<td>-41 53' 2"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5 29</td>
<td>-42 43' 7"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9 17</td>
<td>-42 51' 6"</td>
<td>0.05052</td>
<td>9.97593</td>
<td>0.48</td>
</tr>
<tr>
<td>5</td>
<td>12 58</td>
<td>-43 46' 6"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16 31</td>
<td>-43 49' 6"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19 58</td>
<td>-44 40' 8"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23 16</td>
<td>-44 49' 5"</td>
<td>0.09576</td>
<td>0.00381</td>
<td>0.34</td>
</tr>
<tr>
<td>9</td>
<td>26 28</td>
<td>-45 46' 4"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29 35</td>
<td>-45 52' 2"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>32 37</td>
<td>-46 16' 5"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>35 35</td>
<td>-46 39' 7"</td>
<td>0.13595</td>
<td>0.03089</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>38 28</td>
<td>-47 1' 3"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>41 15</td>
<td>-47 22' 0"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>44 0</td>
<td>-47 41' 3"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>46 41</td>
<td>-48 0' 2"</td>
<td>0.17177</td>
<td>0.05537</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Über die Minimum-Ablenkung der Lichtstrahlen durch
doppeltbrechende Prismen.

Von Dr. Viktor v. Lang.

1. Die Hauptbrechungsquotienten doppelt brechender Medien
werden gewöhnlich mittelst Prismen bestimmt, welche parallel einer
Elasticitätsaxe geschnitten sind, so dass wenigstens die senkrecht
zur brechenden Kante polarisirte Welle sich mit constanter Ge-
schwindigkeit fortpflanzt. Sé-narmont 1) hat vor nicht langer Zeit
gezeigt, wie man bei also geschnittenen Prismen auch die zweite,
parallel zur brechenden Kante polarisirte Welle mit variabler Ge-
schwindigkeit zur Messung der Hauptbrechungsquotienten benützen
könne. Es tritt hiebei der Umstand ein, dass die Wellennormale bei
dem Durchgänge der Lichtstrahlen durch das Prisma nicht mehr
gleiche Winkel mit den Seiten desselben einschliesst, wie es der
Fall ist wenn die Welle sich nach allen Richtungen mit constaurer
Geschwindigkeit fortpflanzt. Indem Sé-narmont die Orientirung
der Prismenseiten gegen die Elasticitätsaxen als bekannt voraussetzt,
entwickelt er die Gleichung, welche die Abhängigkeit der beiden
Hauptbrechungsquotienten, zwischen denen die Geschwindigkeit der
Welle variiert, von der Grösse der brechenden Kante und der
Minimum-Ablenkung angibt. Diese Gleichung vereinfacht sich noch
sehr, wenn die Halbierungslinie des brechenden Winkels mit einer
Elasticitätsaxe zusammenfällt, oder wenn, was dasselbe bedeutet, die
beiden Prismenflächen gleich gegen die Elasticitätsaxen orientirt sind.
In diesem einzigen Falle nämlich schliesst die hindurchgehende
Wellennormale gleiche Winkel mit beiden Seiten des Prisma’s ein.

Dieser Satz gilt aber nicht allein für Wellen, deren Geschwin-
digkeit durch den Radius einer Ellipse gegeben sind, wie in dem von
Sé-narmont untersuchten Falle, sondern allgemein für beliebig

1) Note sur quelques formules propres à la détermination des trois indices principaux
daus les cristaux biréfringentes. Nouv. Ann. de Mathématique, t. XVI.

Bevor ich es aber versuche, den Beweis hiefür zu geben, werde ich noch einige Worte über die Bestimmung der Hauptbrechungsquotienten mittelst zweier beliebig orientirter Krystallflächen (oder überhaupt mittelst Flächen, deren Neigungen gegen die Krystall-axen bekannt sind) voranschicken.

2. Es bezeichne

\(a, b, c\) die Grössen der drei Elastizitätsaxen;

\(\alpha, \beta, \gamma\) die drei Hauptbrechungsquotienten;

\(P\) die Normale auf die erste Prismenfläche;

\(P'\) die Normale auf die zweite Fläche;

\(\xi, \eta, \zeta\) die Winkel, welche \(P\) mit den drei Elastizitätsaxen einschliesst;

\(\xi', \eta', \zeta'\) die entsprechenden Winkel in Bezug auf \(P\);

\(A\) die Grösse der brechenden Kante;

\(i\) den Winkel des einfallenden Lichtstrahles, welcher rechtwinklig zur brechenden Kante vorausgesetzt wird, mit der Normale \(P\);

\(i'\) den Winkel des austretenden Strahles mit \(P'\);

\(r, r'\) die Winkel, welche die Wellennormale im Prisma mit \(P\) und \(P'\) einschliesst;

\(V\) die Geschwindigkeit in der Luft;

\(p\) die Geschwindigkeit der Welle im Krystalle;
μ, ν, π die Winkel der Wellennormale im Krystalle mit den Elasticitätsaxen;

$n = \frac{v}{p}$ der Brechungsquotienten für die durch u, ν, π gegebene Richtung;

D die Gesammtablenkung des Lichtstrahles.

Mittelst sphärischer Trigonometrie findet man leicht folgende Beziehungen:

\[
\begin{align*}
\cos \mu &= \frac{\cos \xi \sin (A - r) - \cos \xi' \sin r}{\sin A} \\
&= \frac{\cos \xi \sin i' - \cos \xi' \sin i}{n \sin A} \\
\cos \nu &= \frac{\cos \eta \sin (A - r) - \cos \eta' \sin r}{\sin A} \\
&= \frac{\cos \eta \sin i' - \cos \eta' \sin i}{n \sin A} \\
\cos \pi &= \frac{\cos \xi \sin (A - r) - \cos \xi' \sin r}{\sin A} \\
&= \frac{\cos \xi \sin i' - \cos \xi' \sin i}{n \sin A}
\end{align*}
\]

(1)

4. In Bezug auf die Wellennormale hat man nun

\[A = r + r' \]
\[D = i + i' - r - r' = i + i' - A \]
\[\sin i' = \sin \frac{i'}{\sin r'} = n \]

Hieraus findet man, falls die Winkel \(A, D, i \) bekannt sind, den Werth von \(n \) aus folgenden Formeln:

\[\tan \left(\frac{A - r}{2} \right) = \tan \frac{A}{2} \cot \frac{A + D}{2} \tan \left(i - \frac{A + D}{2} \right) \]
\[n = \frac{\sin i}{\sin r} \]

Die Geschwindigkeit einer Welle ist aber andererseits gegeben durch die Gleichung

\[\frac{\cos \mu^2}{p^2 - a^2} + \frac{\cos \nu^2}{p^2 - b^2} + \frac{\cos \pi^2}{p^2 - c^2} = 0 \]

oder die Nenner durch \(V \) dividiert

\[\frac{\cos \mu^2}{\frac{1}{\sigma^2} - \frac{1}{c^2}} + \frac{\cos \nu^2}{\frac{1}{\nu^2} - \frac{1}{b^2}} + \frac{\cos \pi^2}{\frac{1}{\pi^2} - \frac{1}{c^2}} = 0. \]

Setzt man hierin für \(\cos \mu, \cos \nu, \cos \pi \) die Werthe aus Gleichung (1), so hat man

\[\frac{(\cos \xi \sin i' - \cos \xi' \sin i)^2}{\frac{1}{\nu^2} - \frac{1}{c^2}} + \frac{(\cos \eta \sin i' - \cos \eta' \sin i)^2}{\frac{1}{\pi^2} - \frac{1}{b^2}} \]
\[+ \frac{(\cos \zeta \sin i' - \cos \zeta' \sin i)^2}{\frac{1}{\nu^2} - \frac{1}{c^2}} = 0 \]

In dieser Gleichung finden sich ausser den unbekannten Grössen \(\alpha, \beta, \gamma \), erstens die Grössen \(n, i, i' \), welche nach Gleichung 2 und 3 durch die Beobachtung ermittelt werden können; zweitens die Winkel der Prismenflächen mit den Elastizitätsaxen \(\xi, \eta, \zeta, \xi', \eta', \zeta \). Fallen, wie im rhombischen Systeme, die Krystallachsen mit den Elastizitätsaxen zusammen, so sind die Werthe dieser Winkel, falls die Prismenseiten von Krystallflächen gebildet werden, leicht aus den krystallo-
graphischen Constanten zu ermitteln. In der Gleichung 8 finden sich alsdann nur mehr die drei Unbekannten \(\alpha, \beta, \gamma \). Indem man nun die Incidenz des auffallenden Lichtstrahles zweimal ändert, so erhält man im Ganzen drei Gleichungen von der Form der Gleichung 8, aus welchen die Werthe von \(\alpha, \beta, \gamma \) bestimmt werden können.

Im monoklinösärischen Systeme, wo die Lage der Elasticitäts-axen in der Symmetriebene erst zu ermitteln ist, tritt in die Grössen \(\xi, \eta, \zeta, \xi', \eta', \zeta \) noch eine unbekannte Grösse (welche eben die Lage der Axen in der Symmetriebene bestimmt) hinein und es sind daher wenigstens 4 Gleichungen nöthig.

Im triklinösärischen Systeme würde sich die Gesammtzahl der Unbekannten auf sechs belaufen.

Obwohl nun diese Methode der Ermittelung der Hauptbrechungsquotienten etwas längere Rechnungen erfordert, so kann sie doch, falls ein oder zwei Brechungsquotienten auf die gewöhnliche Weise bestimmt wurden, gute Dienste leisten.

5. Gehen wir nun zur Betrachtung der Minimum-Ablenkung über. Aus den Gleichungen 2 erhalten wir

\[
\begin{align*}
\frac{\sin \theta}{\sin \varphi} = \frac{\sin \theta'}{\sin \varphi'} = n \\
D = \theta + \varphi - \varphi' = \varphi' - \varphi
\end{align*}
\]

\[6)\]

\[
D = \arcsin \left\{ \frac{n \sin \varphi}{\sin \varphi'} \right\} + \arcsin \left\{ \frac{n \sin (\varphi' - \varphi)}{\sin \varphi'} \right\} - \varphi
\]

In der letzten Gleichung ist die einzige variable Grösse \(\varphi \), mit welcher auch der Brechungsquotient \(n \) sich ändert. Man hat also für das Minimum der Ablenkung folgende Bedingungsgleichung:

\[
\frac{dD}{dr} = \frac{\frac{dn}{dr} \sin \varphi + n \cos \varphi}{\sqrt{1 - n^2 \sin^2 \varphi}} + \frac{\frac{dn}{dr} \sin (\varphi' - \varphi) - n \cos (\varphi' - \varphi)}{\sqrt{1 - n^2 \sin^2 (\varphi' - \varphi)}} = 0
\]

\[7)\]

und aus dieser Gleichung bestimmt sich der specielle Werth von \(\varphi \), für welchen das Minimum stattfindet.

In Bezug auf die Gleichungen 6 ist es ersichtlich ganz gleichgiltig, ob man \(\theta \) oder \(\varphi' \) als Einfallswinkel annimmt; dasselbe gilt in Bezug auf den aus Gleichung 7 resultirenden Werth von \(\varphi \). Bei dem Minimum der Ablenkung wird also die Wellen-
Normale im Krystalle immer dieselbe Richtung haben, welche Fläche man auch zur Einfallsebene macht; ersichtlich wird auch dann die Richtung in der Luft dieselbe sein.

Denken wir uns nun ein Prisma, dessen beide Seiten gleich orientiert gegen die Elasticitätsaxen sind. Die Winkel, welche die Wellennormale bei der Minimum-Ablenkung mit den beiden Flächenormalen einschliesst, seien wieder r und r'. Da aber die beiden Flächen sich gleich gegen die Elasticitätsaxen verhalten, was also für die eine Fläche Geltung hat, auch für die andere Fläche gilt, so muss in diesem Falle

$$r = r'$$

sein, d. h. die Wellennormale ist gleich geneigt gegen beide Prismenseiten.

Dass dies jedoch der einzige Fall ist, in welchem $r = r'$ wird, lässt sich auf folgende Art beweisen.

6. Wir nehmen an, die Wellennormale schliesse bei dem Minimum ihrer Ablenkung gleiche Winkel mit den Prismenseiten ein. und suchen nun die Bedingungen, welche $\xi, \eta, \zeta, \xi', \eta'$. ζ' erfüllen müssen, dass obige Annahme wirklich stattfindet.

Wir setzen also

$$r = r' = \frac{A}{2}.$$

Dieser Werth in die Gleichung 7 gesetzt, gibt nun die gesuchte Bedingungsgleichung. Da der Werth von $\frac{dn}{dr}$ noch nicht näher bekannt ist, so können wir die Substitution in diesem Ausdrucke vorläufig nur anzeigen. Man erhält auf diese Weise nach einfacher Reduction:

$$\left(\frac{dn}{dr}\right)_\mu = \frac{A}{2} \cdot \sin \frac{A}{2} = 0$$

und da $\sin \frac{A}{2}$ nicht gleich Null sein kann

$$\left(\frac{dn}{dr}\right)_{r=\frac{A}{2}} = 0$$

8)
Um den Werth von \(\frac{dn}{dr} \) zu finden, differentiiren wir die Gleichung 4 nach \(r \). Man erhält, da die Winkel \(\mu, \nu, \pi \) ebenfalls mit \(r \) variiren, folgende Gleichung

\[
\frac{dn}{dr} = -\frac{d}{dr} \left(\frac{d}{dr} \cos \frac{n^2}{a^2} + \frac{d}{dr} \cos \frac{\nu^2}{b^2} + \frac{d}{dr} \cos \frac{\pi^2}{c^2} \right) \]

\[
= \frac{2n}{\cos \mu^2 \left(\frac{1}{a^2} - \frac{1}{a^2} \right)^3 + \cos \nu^2 \left(\frac{1}{b^2} - \frac{1}{b^2} \right)^3 + \cos \pi^2 \left(\frac{1}{c^2} - \frac{1}{c^2} \right)^3} \]

9)

Dieser Ausdruck soll nach Gleichung 8 gleich Null sein; da der Nenner als eine Summe lauter positiver Grössen nicht gleich Null sein kann, so hat man

\[
\left(\frac{d}{dr} \cos \frac{\nu^2}{b^2} + \frac{d}{dr} \cos \frac{\pi^2}{c^2} \right) = 0.
\]

Die Zähler in dieser Gleichung hängen von den Grössen \(\xi, \eta, \zeta, \xi', \eta', \zeta' \) und \(r = \frac{A}{2} \) ab; sie können daher für Prismen aus verschiedenen Krystallen gleich bleiben, während die Nenner auf die mannigfaltigste Weise variiren. Soll aber trotzdem die Summe dieser Brüche gleich Null sein, so kann dies nur geschehen, wenn jeder einzelne Bruch gleich Null ist. Anstatt der letzten Gleichung hat man also folgende drei neue Gleichungen:

\[
\left(\frac{d}{dr} \cos \mu^2 \right)_{r = \frac{A}{2}} = 0; \quad \left(\frac{d}{dr} \cos \nu^2 \right)_{r = \frac{A}{2}} = 0; \quad \left(\frac{d}{dr} \cos \pi^2 \right)_{r = \frac{A}{2}} = 0.
\]

10)

Setzt man hierin für \(\cos \mu, \cos \nu, \cos \pi \) die Werthe aus Gleichung 1, so hat man

\[
\left(\frac{d}{dr} \cos \mu^2 \right)_{r = \frac{A}{2}} = 0,
\]

\[
\frac{2 \left[\cos \xi \sin (A - r) - \cos \xi' \sin r \right] \left[\cos \xi \cos (A - r) + \cos \xi' \cos r \right]}{\sin A}_{r = \frac{A}{2}} = 0.
\]

und hierin die Substitution \(r = \frac{A}{z} \) ausgeführt, gibt

\[-2 \left[\cos \xi + \cos \xi' \right] \left[\cos \xi - \cos \xi' \right] \frac{\sin \frac{A}{z} \cos \frac{A}{z}}{\sin A} = 0 \]

\[\left[\cos \xi + \cos \xi' \right] \left[\cos \xi - \cos \xi' \right] = 0. \]

Damit diese Gleichung erfüllt sei, muss

\[\cos \xi = \pm \cos \xi' \text{ sein; auf gleiche Weise} \]

\[\cos \eta = \pm \cos \eta' \text{ und} \]

\[\cos \zeta = \pm \cos \zeta'. \]

Diesen Gleichungen entsprechen die Werthe

\[\xi = \pm \left\{ \xi' \middle| 180^\circ - \xi \right\} \]

\[\eta = \pm \left\{ \eta' \middle| 180^\circ - \eta \right\} \]

\[\zeta = \pm \left\{ \zeta' \middle| 180^\circ - \zeta \right\}. \]

Diese Gleichungen müssen also erfüllt sein, soll bei dem Minimum der Ablenkung die Wellennormale gleichgeneigt gegen beide Prismenflächen hindurchgehen. Sie bedeuten, dass die beiden Prismenseiten gleich orientiert sein müssen gegen die Elasticitätsaxen. In diesem Falle entfällt die Halbirungslinie des brechenden Winkels in einen der optischen Hauptschnitte.
Vorgelegte Druckschriften.

Nr. 24.

Annales des Mines. Tome XII, livr. 5, 6. T. XIII, livr. 1. 8o.

Archiv für die holländischen Beiträge zur Natur- und Heilkunde.
Band I, Heft 5. Utrecht, 1858; 8o.

Austria. X. Jahrgang, Heft 44.

Belli, G., Sulle induzioni eletrostatiche. 8o (Separatabdruck aus dem Nuovo Cimento, Vol. VII.)

Dudley Observatory, The. An Address to the citizens of Albany, and the donors and freinds of the D. O., on the recent proceedings of the trustees; from the committee of citizens appointed at a public meeting held in Albany, on the 13th of Juli 1858. Albany, 1858; 8o. — Defence of Dr. Gould by the scientific council of the — Second edition. Albany, 1858; 8o.

Gewerbe-Verein, nieder-österreichischer. Verhandlungen und Mittheilungen. Jahrgang 1858; Heft 7, 8. 8o.

Mittheilungen aus Justus Perthes’ geographischer Anstalt. Heft 8.

Rennie, George, On the quantity of Heat developed by Water when rapidly agitated.

Schmidt, Dr. Jul., Untersuchungen über das Erdbeben am 15. Jänner 1858. Wien; 4o.
Vorgelegte Druckschriften.

Verein der Freunde der Naturgeschichte in Mecklenburg. XII Jahrgang. Neubrandenburg, 1858; 8°.

SITZUNG VOM 11. NOVEMBER 1858.

Eingegossene Abhandlungen.

Über den elektrischen Zustand der Nebenbatterie während ihres Stromes.

Von K. W. Knochenhauer.

(Vorgelegt in der Sitzung vom 21. October 1858.)

Meine Versuche begannen mit einer getheilten Hauptbatterie. Die aus den beiden Flaschenpaaren \((A)\) und \((B)\) gebildete Batterie war nicht isolirt aufgestellt und wurde vom Conductor aus durch einen Zuleitungsdrath geladen. Von der inneren Belegung des Flaschenpaares \((A)\) gingen 5' Kupferdrath \((K)\) bis zu einem isolirten Quecksilbernapf \((C)\), dann 4' bis zur Schraube \((D)\) des Ausladers, dessen andere Schraube durch 1' \((K)\) mit der Aussenseite der Batterie ver-
bunden war. Den Auslader zu 1' gerechnet, hatte also der ganze Drath eine Länge von 11'. Von der innern Belegung von (A) ging ferner ein 3 1/4' langer Kupferdrath nach einem isolirten Quecksilbernafp und von der Innenseite von (B) ein ebenso langer Drath nach einem andern isolirten Quecksilbernafp; beide wurden hierauf durch einen nach und nach immer längeren Kupferdrath verbunden. Zur Befestigung der Dräthe im Innern der Flaschen hatte ich an ihre Enden schwere Zinkkugeln angiessen lassen, was die Aufstellung des Apparates sehr erleichterte.—Die mit ihren Aussenseiten verbundenen Flaschenpaare (A) und (B) bilden, wie man leicht einsehen wird, eine getheilte Batterie; beide Theile haben den gemeinsamen Stamm von 11', der Zweig von (B) ist von variabler Länge, der Zweig von (A) dagegen ist auf Null reducir. Dies letztere schien mir räthlich, um bei der Erklärung der Beobachtungen nicht mit diesem Zweige unnütze Verwicklungen herbeizuführen; später erhielt auch (A) einen besonderen Zweig. Noch bemerke ich, dass die Stellung des Ausladers nahe am Ende des Stammes ohne allen Einfluss auf die Thatsachen ist, wie ich dies nachher belegen werde. Die Kugeln des Ausladers standen so weit von einander entfernt, dass die Schlagweite nach meiner bisherigen Bezeichnungsweise 40·0 betrug, d. h. ihre Entfernung betrug 1·84 Linien. In die Nähe dieser Batterie wurde der Funkenmesser so gestellt, dass die eine Kugel desselben durch einen starken Zuleitungsdrath mit der Innenseite von (B) oder mit Bi, die andere auf gleiche Weise nach einander mit der Innenseite von (A) oder mit Ai, mit dem Napf C, mit der Schraube D und mit der Aussenseite von (B) oder mit Ba verbunden werden konnte. Während die Batterie geladen wurde, schlug, mit Ausnahme der Verbindung zwischen Bi und Ba, wie nahe auch die Kugeln des Funkenmessers gegen einander standen, niemals ein Funke über, was natürlich ist, da die Ladung beider Batterietheile gleichmässig wuchs; in dem Moment dagegen, wo sich die Batterie entlud, fanden Funkenübergänge über den Funkenmesser Statt, deren grösste Weite beobachtet wurde. Ich habe schon früher nachgewiesen, dass bis auf geringfügige Differenzen diese Funken unter constanten Verhältnissen gleich lang bleiben, auf welche Weise man auch die Verbindungsdräthe zwischen den Kugeln und den zu untersuchenden Stellen der Batterie und ihres Schliessungsdrathes abändert, so dass die Funkenlänge nicht etwa durch den neuen Weg, den die Elektricität über die Kugeln nimmt, bedingt
wird, sondern allein durch den elektrischen Zustand, in welchen die
Kugeln versetzt werden, d. h. durch den elektrischen Zustand der
beiden Stellen des Apparates, mit welchen die Kugeln in Verbindung
stehen. Würden z. B. hier die Innenseiten von (A) und (B) während
der ganzen Dauer der Entladung durchweg in gleichem Zustande
bleiben, sämte also in beiden Batterietheilen die Ladung ganz gleich-
mässig herab, so würde von Bi nach Ai über den Funkenmesser
niemals ein Funke herüberspringen können; sinkt dagegen die Ladung
schneller in (A) als in (B) oder umgekehrt, so muss die Differenz
durch die Funkenlänge bezeichnet werden. Die sämmtlichen nach-
folgenden Versuchsreihen werden diesen Satz so genügend bestätigen,
dass ich Weiteres hier hinzuzufügen nicht für nöthig erachte 1).

Reihe 1. Stamm: 5' (C) 4' (D) Ausl. 1' = 11'.

<table>
<thead>
<tr>
<th>Zu. in</th>
<th>Bi—Ai</th>
<th>Bi—C</th>
<th>Bi—D</th>
<th>Bi—Ba</th>
<th>Differenz im Stamm auf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zw. B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'</td>
</tr>
<tr>
<td>8'</td>
<td>35'5</td>
<td>41'0</td>
<td>47'5</td>
<td>48'5</td>
<td>+ 5'5</td>
</tr>
<tr>
<td>24</td>
<td>34'5</td>
<td>52'2</td>
<td>51'0</td>
<td>50'0</td>
<td>- 2'3</td>
</tr>
<tr>
<td>40</td>
<td>61'7</td>
<td>53'7</td>
<td>48'0</td>
<td>46'0</td>
<td>- 8'0</td>
</tr>
<tr>
<td>56</td>
<td>59'2</td>
<td>45'5</td>
<td>41'2</td>
<td>42'5</td>
<td>-10'7</td>
</tr>
<tr>
<td>64</td>
<td>58'0</td>
<td>45'0</td>
<td>38'5</td>
<td>—</td>
<td>-13'0</td>
</tr>
<tr>
<td>72</td>
<td>59'2</td>
<td>45'5</td>
<td>41'5</td>
<td>41'2</td>
<td>-10'7</td>
</tr>
<tr>
<td>80</td>
<td>66'0</td>
<td>54'2</td>
<td>45'0</td>
<td>43'0</td>
<td>-11'8</td>
</tr>
<tr>
<td>125</td>
<td>70'5</td>
<td>56'5</td>
<td>45'5</td>
<td>42'7</td>
<td>-14'0</td>
</tr>
<tr>
<td>160 2</td>
<td>72'0</td>
<td>57'0</td>
<td>44'5</td>
<td>41'7</td>
<td>-15'0</td>
</tr>
<tr>
<td>200 2</td>
<td>72'0</td>
<td>55'2</td>
<td>41'2</td>
<td>—</td>
<td>-16'8</td>
</tr>
</tbody>
</table>

Die beiden Striche in der Column Bi—Ba bedeuten, dass bei
40'5 noch kein Funke von Bi zu Ba überging; dies fand erst bei 40'0
Statt, bis wohin die ursprüngliche Ladung von (B) steigt, weshalb
diese Funkenlänge keine Bedeutung für die Zustände während der
Entladung hat. Bleiben wir bei dieser Columnen zunächst stehen, so
bemerken wir, dass bei 24' Zusatz in Zweig B die Funkenlänge bis
auf 50'0 steigt, bei 64' sich nicht über 40'0 erhebt, bei 90' wieder
auf 43'0 kommt, und später abermals auf 40'0 zurücksinkt. Die mit
der Aussenseite der Batterie verbundene Kugel des Funkenmessers
bleibt durchweg auf Null; wächst also die Funkenlänge über 40'0.

1) S. Näheres später nach den Reihen 18—24.
2) Diese beiden letzten Längen sind nur annähernd richtig, da zu Spiralen gewundene
 Drähte eingeschaltet wurden, deren äquivalente Längen mir nicht ganz genau
 bekannt waren.
die Schlagweite der Batterie, hinaus, so kann der Grund nicht darin liegen, dass (B) über den Funkenmesser einen bequemern oder kürzern Weg der Entladung findet, als über seinen Zweig, über (A) und den Stamm, denn in diesem Fall müsste schon die Funkenlänge continuirlich mit dem Zusatz in B wachsen, und sie könnte sicher bei 64' nicht wieder ganz auf 40·0 zurückgehen, um hinterher noch einmal zu steigen, sondern der Grund kann allein darin liegen, dass die Innenseite von (B) während der Entladung eine grössere Intensität der Ladung als 40·0 erlangt. Noch klarer wird dies, wenn man gerade so wie bei (B) Ai mit Aa durch den Funkenmesser verbindet; hier geht ebenso wenig wie bei einer einfachen Batterie, möge der Schliessungsdraht auch noch so lang sein, irgend ein Funke von einer Länge über 40·0 hinüber. Endlich wird die gesteigerte Ladung in (B) noch durch die nach Nr. 1 und Nr. 2 der cit. Abh. p. 208 vermehrte Wärme in Zweig B (dort in FS + FS) bestätigt. Wenn nun der Funkenmesser eine Ladung von (B) bis zu 50·0 anzeigt, so ist freilich damit noch nicht entschieden, zu welchem Momente der Entladung diese gesteigerte Ladung eintritt, sondern es ist damit nur allgemein ausgedrückt, dass (B) diese Ladung zu irgend einem Momente erlangt.

Betrachten wir bierauf die Zahlen in der ersten Columne, so springen zwischen Bi und Ai Funken von einer Länge bis zu 72·0 über; diese Funkenlänge wächst im Allgemeinen mit dem Zusatz in Zweig B, geht indess bei 64' auch wieder etwas zurück. Da nach den Beobachtungen bei 200' Zusatz z. B. weder (A) noch (B) während des ganzen Verlaufes der Entladung in irgend einem Momente eine über + 40·0 steigende Intensität der Ladung erlangt, so wird man die beobachtete Funkenlänge offenbar nicht anders erklären können, als wenn man in irgend einem Momente die eine innere Belegung positiv, die andere negativ annimmt und zwar der Art, dass die Differenz beider Elektricitäten = 72·0 ist. Es könnte zwar die Funkenlänge auch durch den Stoss, den die Elektricität bei dem momentanen Auftreten erlangt, um etwas gesteigert werden, wie spätere Beobachtungen dies innerhalb gewisser Schranken wahrscheinlich machen, allein dass die positive Elektricität in (B), um nach (A) zu gelangen, eine grössere Schlagweite gewinnt, als wenn sie auf C oder auf D oder endlich nach der Aussenseite der Batterie übergeht, das kann jedenfalls nicht anders möglich sein, als wenn
in (A) mehr negative Elektricität als in C und hier wieder mehr als in D vorhanden ist. Von der andern Seite lässt sich aber nicht absehen, wie (B) in (A) negative Elektricität erzeugen soll, wenn dieselbe nicht eben so bei der Entladung einer gewöhnlichen einfachen Batterie vorhanden ist; denn wenn auch die Ladung in (B) wächst, so geht doch wohl von (A) keine positive Elektricität dahin und zwar um so weniger, als bei 200' Zusatz sich die Ladung von (B) nicht einmal steigert; zweitens würde selbst der Fortgang von positiver Elektricität von (A) nach (B) noch keine negative Ladung erzeugen. An ein Einströmen negativer Elektricität von der Aussen-seite der Batterie zu denken, die neben der austretenden positiven fortgeht, führt zu keiner Klarheit; ja es nützte diese Ansicht auch hier zu den Beobachtungen nichts, da in (A) mehr negative Elektricität sein muss als in C, und hier wieder mehr als in D. Ziehen wir die Thermometerbeobachtungen herbei, die ich in der angeführten Abhandlung mitgetheilt habe, so müssen sich wegen der Wärme im Stamm (A) und (B) bei den grösseren Zusätzen im Zweig B hinter einander entladen, also wenn (B) hinter (A) folgt, so würde (B) noch nahe seine ganze positive Ladung besitzen, während (A) auf eine nahe ebenso starke negative Ladung zurückgegangen ist. So angesehen verträgt sich dies unmöglich mit einer einfachen Batterie, die am Ende ihrer Entladung sich sicher nicht negativ laden und wieder entladen kann, weil dann einmal aus einer mit dem Schliessungsdrath verbundenen Spitze negative Elektricität ausströmen müsste, was ich niemals gefunden habe, auch das Residuum von negativer Elektricität gebildet sein würde, was gleichfalls den Beobachtungen widerspricht. Ich finde hier keine andere Auskunft, als wenn ich die Entladung einer Batterie, wie dies Rieß zuerst gethan hat, aus vielen Partialentladungen mit dazwischen liegenden Pausen bestehen lasse. Ich habe mich bisher von dieser Ansicht fern gehalten, da mir die dafür geltend gemachten Gründe nicht völlig genügend erschienen, namentlich hatten die Pausen für Rieß ihre Hauptbedeutung beim Nebenstrom, der doch nach allen meinen Beobachtungen mit dem Hauptstrom zu gleicher Zeit auftritt und aufhört, somit nicht in den Pausen verlaufen kann; erst die Beobachtungen über die Lichterscheinungen im Funken machten mir ernstere Bedenken, die indessen auch keinen rechten Ausschlag geben konnten, weil in diesen Beobachtungen zu vieles noch unklar ist, und anderes
als Beleg der Ansicht hingestellt wurde, was gar nicht damit zusam-
menhängt. Nehme ich jetzt Partialentladungen der Batterie an, setze
ich also voraus, dass wegen der durch das Glas hindurch gebundene-
nen Elektricitäten nicht die ganze Ladung auf einmal in Thätigkeit
kommen kann, und verbinde damit die Ansicht, dass jede Partial-
entladung in einer Molecularschwingung besteht, so liegt es im
Wesen der Schwingung, welcher Art sie übrigens auch sein mag,
dass das schwingende Theilchen nicht an dem Orte der Gleich-
gewichtslage, also dann, wenn die Flasche im Innern auf Null-
Elektricität gekommen ist, zur Ruhe gelangt, sondern vielmehr, dass
es eben so weit nach der entgegengesetzten Seite hinausgeht und
somit das Innere der Flasche in einen negativen Zustand hinüber-
führt. Von diesem Orte wird es wieder in die erste Lage zurück-
gebracht, indem die gebundene positive Elektricität der Flasche von
neuem zu einer Ladung hervortritt. So lange die positiv geladenen
Theilchen die erste Schwingung vollenden, geben sie nach der
gewöhnlichen Ausdrucksweise, denn diese möchte jetzt, wo wir das
Wesen der elektrischen Schwingungen noch gar nicht kennen, doch
am verständlichsten sein, positive Elektricität über den Schliessungs-
drath ab und erzeugen einen positiven Strom; von dem negativen
Zustande dagegen kehren die Theilchen zum positiven nicht durch
Abgabe negativer Elektricität zurück, die einen negativen Strom
bilden würde, sondern durch Aufnahme neuer positiver Elektricität
aus der Flasche; während der Rückschwingung tritt demnach eine
Pause in der Streuung ein. Dass der negative Zustand der Batterie
nicht einen Strom liefert, macht also einen entschiedenen Gegensatz
gegen ihren positiven Zustand; die negative Elektricität entzieht
den Leitern, mit welchen sie in Berührung kommt, wohl die positive
Elektricität und macht sie negativ, denn sonst könnte die Kugel des
Funkenmessers nicht negativ werden, allein weil sie nicht strömt,
kann sie nicht in einem Funken überspringen, ihr fehlt die Schlag-
weite. Auf diese Weise erklärte ich es mir, warum ich aus Spitzen,
die mit dem Schliessungsdrath verbunden sind, niemals negative,
sondern immer nur positive Elektricität erhalten habe, wogegen
andere auch negative nachwiesen, wo Berührungen mit Nichtleitern,
mit Harzplatten, stattfanden. Die vorgetragene Ansicht über die
Entladung einer Batterie schliesst sich der von Rie ss insofern an,
as sie durch Pausen getrennte Partialentladungen annimmt, Entla-
Über den elektrischen Zustand der Nebenbatterie während ihres Stromes. 169
dungen, die natürlich fortwährend an Stärke abnehmen; sie weicht
von ihr nur darin ab, dass sie die einzelnen Partialentladungen mit
dem Übergang in einen negativen Zustand der Batterie und somit
auch des mit ihr verbundenen Schliessungsrathes endigen lässt und
die Pausen mit dem Übergang in einen positiven Zustand der Batterie
und des Schliessungsrathes ausfüllt, welcher Übergang indess ohne
Strom also auch ohne Wärme-Entwickelung erfolgt 1). — Diese ver-
änderte Ansicht hat auf meine früheren Beobachtungen über die freie
Spannung der Elektricität auf dem Schliessungsrathe einer Batterie
keinen Einfluss; denn wenn ich aus ihnen folgerte, dass auf einem
homogenen Schliessungsrathe die freie Spannung von der innern
zur äussern Belegung der Batterie gleichmassig abnimmt, so bleibt
dies für jede einzelne Partialentladung ebenso giltig, als wenn nur
eine totale Entladung stattfände; der Funkenmesser, der die grössten

1) Wenn nach der oben angegebenen Theorie das Innere der Flasche dadurch in einen
negativen Zustand übergeht, dass die Molecule in irgend welche Schwingung
gerathen, die nicht am Orte des Gleichgewichtes zur Ruhe kommt, sondern die
Theilchen nach der entgegengesetzten (negativen) Seite überfährt, so dürfte in
der un ses bis jetzt freilich noch unbekannten Art dieser Schwingungen auch der
Grund liegen, warum die Theilchen je nach dem Grade der ursprünglichen
Ladung, also je nach dem Grade, wie die Gasmoleculae der Flasche gespannt
sind, ebenfalls wieder nach der positiven Seite gelangen müssen, ehe eine neue
Partialentladung erfolgt. Denn die Annahme einfacher Pausen während der Ent-
ladung hatte gerade deshalb für mich etwas so sehr Widerstreben des, weil ich
nicht einsehen konnte, warum nach dem Übergange der ersten Partialentladung,
also nachdem die isolirnde Luftschicht durchbrochen ist, die Flasche mit einer
neuen Partialentladung so lange zögern müsse, bis das Innere wieder nahe auf
denselben Grad gelad sei. Denn nämliche man während der Pause ein vollständi-
giges Zusammenfallen der zerstreuten Luft an, was schon der im Vergleichhe
zu der unendlich kurzen Zeit, in der die Partialentladungen einander folgen,
böhat langsamen Bewegung der Lufttheilchen widerspricht, so würde schon die
zweite Partialentladung, als von etwas geringerer Intensität als die erste, nicht
mehr über den Auslander kommen können. Gehen dagegen, wie es die Erfahrung lehrt,
on Partialentladungen über, die von der ursprünglichen Ladungs-Intensität etwa
nur den achten Theil besitzen (die Intensität des Residuums), so ist nicht wohl
abzusehen, wodurch die der ersten Partialentladung unmittelbar folgenden länger
zurückgehalten werden können als bis dahin, wo sie etwa den achten Theil der
ursprünglichen Intensität erlangt haben. Bestee dagegen die Ladung der Flasche
in einer Spannung der Gismoleculae, die sich durch Schwingungen löst, so
müssen diesel die ihnen je nach der Stärke der Spannung zukommende Weite
erlangen, können also eben so wenig auf der negativen als auf der positiven
Seite in ihrem Laufe beschränkt werden. Die Pausen würden hiernach auch
bleiben, selbst wenn, was natürlich nicht ausführbar ist, die Kugeln des Aus-
laders mit der ersten Partialentladung bis zur vollständigen Berührung an einander
führen.
Spannungsunterschieden angibt, liefert die Schlagweite in dem Momente, wo die ersten Partialentladungen beginnen.

Gehen wir auf unsere Reihe zurück, so lehrt sie, dass jede Partialentladung aus \((B)\), offenbar weil anders keine gleichmäßige Vertheilung der Spannungen auf dem Schliessungsdrathe eintreten kann, später als die entsprechende Partialentladung aus \((A)\) erfolgt und zwar desto später, je länger der Zweig \(B\) wird; zuletzt treten sie ganz aus einander, d. h. die eine tritt in die Pause der andern, wie es die Thermometerbeobachtungen gleichfalls verlangen. Wenn es hierbei auffallen kann, dass die Schwingungen von \((B)\) weiter, als man es erwarten sollte, hinter denen von \((A)\) zurückbleiben, so liegt ein Grund wohl darin, dass die Molecularschwingungen gerade in der Mitte ihres Laufes am stärksten und schnellsten sind, langsam am Anfang und am Ende, es dürfte indess noch ein anderer bis jetzt nicht nachweisbarer Grund vorhanden sein; denn dass noch besondere Verhältnisse obwaltten, zeigt der Rücksprung in der Ladung von \((B)\) bei 64' Zusatz, den ich mir bis jetzt noch nicht zu erklären weiss. An eine zufällige Störung ist um so weniger zu denken, als dadurch alle Beobachtungen über den ganzen Stamm, wie dies die in den drei letzten Columnen berechneten Differenzen zeigen, alterirt werden. — Wenn \((B)\) soweit hinter \((A)\) zurückbleibt, dass beim Eintritt seiner Partialentladungen der elektrische Zustand in \((A)\) = Null ist, erlangt \((B)\) seine grösste Schlagweite, hier zwischen 8' und 24' Zusatz oder mit Einschluss des constanten Theils bei einer Länge des Zweiges \(B\) zwischen 15' und 31', d. h. etwa bei der doppelten Länge des Stammes. Damit stimmen auch die Thermometerbeobachtungen überein, welche im Zweig \(B\), wenn er etwa doppelt so lang als der Stamm ist, die grösste Wärme angeben (s. Nr. 1 und 2 in der cit. Abb.). Das Minimum der Ladung in \((B)\) findet bei einer Länge des Zweiges von nahe 73' (Zusatz 64') statt, der 6- bis 7fachen des Stammes.

Ich will mir noch erlauben, einige Worte über die gesteigerte Ladung in \((B)\) hinzuzufügen. Dass von \((A)\) positive Elektricität nach \((B)\) ströme, wird sicher jedem unwahrscheinlich vorkommen; natürlicher ist es, dass die Elektricität in \((B)\), deren Entladung durch \((A)\) auf die eine oder andere Weise zurückgehalten wird, sich aus dem gebundenen Zustand mehr löst, gerade so, als wäre der Batterietheil \((B)\) von dickerem Glase, das bei gleicher Ladung eine
größere Intensität der freien Elektricität im Innern liefert. Ob die Schlagweite in (A) umgekehrt zurückgeht, ist mir nach den folgenden Beobachtungen und den Thermometerangaben, wenn auch nicht ganz sicher, doch höchst wahrscheinlich.

Reihe 2. Stamm: 7' (C) 1' Ausl. 6' = 15'

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>Bi—Ai</th>
<th>Bi—C</th>
<th>Bi—Ba</th>
<th>Diff. 7'</th>
<th>Diff. 8'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'</td>
<td>26.5</td>
<td>35.5</td>
<td>46.0</td>
<td>+ 9.0</td>
<td>+ 10.5</td>
</tr>
<tr>
<td>24</td>
<td>47.5</td>
<td>48.0</td>
<td>49.0</td>
<td>+ 0.5</td>
<td>+ 1.0</td>
</tr>
<tr>
<td>40</td>
<td>58.5</td>
<td>53.0</td>
<td>48.0</td>
<td>- 4.5</td>
<td>- 5.0</td>
</tr>
<tr>
<td>56</td>
<td>60.7</td>
<td>52.5</td>
<td>45.5</td>
<td>- 8.2</td>
<td>- 7.0</td>
</tr>
<tr>
<td>90</td>
<td>55.5</td>
<td>43.0</td>
<td></td>
<td>-12.5</td>
<td>- 3.0</td>
</tr>
</tbody>
</table>

Die größte Ladung erhält (B) wiederum, wenn Zweig B ungefähr die doppelte Länge des Stammes hat, und das Minimum zeigt sich bei der 6—7fachen. Bei dieser Reihe war es zuerst, wo ich auf das Minimum aufmerksam wurde. Ich änderte, um nicht durch Zufälligkeiten getäuscht zu werden, die Drähte im Zweige, doch ohne Erfolg; ich schaltete an einem der folgenden Tage den Auslader bis auf einen Fuss vor dem Ende des Stammes ein, aber es blieb bei Zusatz 90' Ai — Bi 56.5, bei Zusatz 125' 66.0. Eine noch spätere Reihe, wo sich der Stand des Ausladers in Folge des Temperaturwechsels wohl ein wenig geändert hatte, gab

Zusatz: 56' 72 90 98 108 125 160 200

Bi — Ai: 62.0 60.0 57.0 57.5 60.5 66.0 68.0 71.5.

Dass durch die Stellung des Ausladers im Stamm die Beobachtungen nicht geändert werden, belegt noch die folgende schon früher angestellte Reihe

Stamm: 3' Ausl. 11' = 15'

Zusatz in B: 0' 8 16 24 32 40 56 64 90

Bi — Ai: 11.5 26.0 43.0 48.0 54.5 59.2 61.5 61.0 56.0.

Reihe 3. Stamm: 3' (C) 16' (D) 1' Ausl. 6' = 27'

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>Bi—Ai</th>
<th>Bi—C</th>
<th>Bi—D</th>
<th>Bi—Ba</th>
<th>Ai—D</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'</td>
<td>12.5</td>
<td>14.0</td>
<td>30.0</td>
<td>—</td>
<td>24.2</td>
</tr>
<tr>
<td>24</td>
<td>30.2</td>
<td>30.5</td>
<td>42.0</td>
<td>47.5</td>
<td>23.5</td>
</tr>
<tr>
<td>40</td>
<td>43.5</td>
<td>43.0</td>
<td>47.5</td>
<td>50.2</td>
<td>21.7</td>
</tr>
<tr>
<td>56</td>
<td>52.5</td>
<td>51.7</td>
<td>50.5</td>
<td>50.2</td>
<td>22.5</td>
</tr>
<tr>
<td>90</td>
<td>60.2</td>
<td>58.0</td>
<td>50.5</td>
<td>48.0</td>
<td>22.5</td>
</tr>
</tbody>
</table>
Die Reihe entspricht in Bezug auf das Maximum der Ladung in (B) den früheren. Die Beobachtungen in der letzten Columne stellen offenbar den Moment dar, wo (A) sich allein entlädt und (B) noch zurück ist; die Zahlen sind etwas kleiner, als wenn (B) ausgelöst ist, wo ich 25·0 erhielt; wenn sie beim Maximum in (B) am meisten sinken, so dürfte man ein Zurückgehen der Ladungsintensität in (A) annehmen, wofür auch die Thermometerbeobachtungen sprechen. — Ich habe hier auch auf dem Zweig B die Schlagweite in verschiedenen Distanzen gemessen, und eine continuirliche Abnahme der freien Elektricität von Bi nach Ai gefunden.

Um zu sehen, ob die Ladung in (B) noch mehrere Minima habe, ward der Stamm auf 5' reduciert, dies gab

Reihe 4. Stamm: 3' Ausl. 1' = 5'.

Zusatz in B: 0' 8 16 24 40 56 72
Bi — Ai: 39·5 57·5 57·7 67·5 68·5 68·5
Bi — Ba: 48·5 48·5 41·2 40·2 — 41·2 40·5
90 108 125 160 200
68·2 70·5 71·5 71·0 71·5

Bei 24' und 90' Zusatz scheinen Minima zu sein, allein sie treten nicht deutlich genug hervor. Deshalb

Reihe 5. Stamm 6' (C) Ausl. 1' = 8'.

<table>
<thead>
<tr>
<th>Zusatz in Zwi. B.</th>
<th>Bi — Ai</th>
<th>Bi — C</th>
<th>Bi — Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'</td>
<td>47·0</td>
<td>48·0</td>
<td>49·0</td>
</tr>
<tr>
<td>24</td>
<td>61·0</td>
<td>47·5</td>
<td>45·5</td>
</tr>
<tr>
<td>40</td>
<td>56·0</td>
<td>37·0</td>
<td>—</td>
</tr>
<tr>
<td>56</td>
<td>65·0</td>
<td>43·2</td>
<td>42·0</td>
</tr>
<tr>
<td>90</td>
<td>70·5</td>
<td>46·0</td>
<td>41·0</td>
</tr>
<tr>
<td>125</td>
<td>70·5</td>
<td>43·5</td>
<td>—</td>
</tr>
<tr>
<td>160</td>
<td>67·5</td>
<td>40·0</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>70·5</td>
<td>43·5</td>
<td>—</td>
</tr>
</tbody>
</table>

Das Vorhandensein mehrerer Minima kann nach dieser Reihe keinem Zweifel unterliegen.

Da bei den Thermometerbeobachtungen Platindräthe P eingefügt werden, so kam es zur Sicherstellung der Vergleiche noch darauf an, die Abweichungen zu beobachten, welche durch diese Zusätze entstehen. Der Stamm blieb wie vorher; der Zweig B ent-
Über den elektrischen Zustand der Nebenbatterie während ihres Stromes.

hielt entweder nur Kupferdrath, oder 2' Kupferdrath wurden durch P ersetzt. Dies gab:

Zus. in Zw. B: 8' 24 40 56 90 125 160 200

$Bi - Ai$

| ohne P: | 45.5 57.5 52.5 64.0 68.5 67.5 67.0 68.0 |
| mit P: | 43.5 54.5 52.5 64.5 68.5 66.5 67.5 68.0 |

Die Differenzen sind unbedeutend. Wenn übrigens diese Reihe von der vorigen ihrer entsprechenden etwas abweicht, so liegt der Grund zumeist in dem namentlich im Frühjahr leicht etwas veränderlichen Stand des Ausladers, dessen beide Glassäulen nur auf einer Holzplatte stehen. Späterhin habe ich diese Veränderlichkeit mehr beachtet und wo es nöthig war, den Stand durch Beobachtungen ermittelt.

Natürlich sind, wie bei allen meinen früheren derartigen Versuchen, sämtliche Zahlen proportional zur Schlagweite des Ausladers veränderlich. Zum Belege diene die bei unverändertem Stamm folgende Reihe.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B</th>
<th>Bi — Ai</th>
<th>Ausl. = 39.5</th>
<th>Ausl. = 50.0</th>
<th>Ausl. = 30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'</td>
<td>44.5</td>
<td>57.5</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>58.5</td>
<td>73.5</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>53.5</td>
<td>69.0</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>62.5</td>
<td>79.5</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>68.0</td>
<td>86.0</td>
<td>51.0</td>
<td></td>
</tr>
</tbody>
</table>

Nach diesen Reihen, deren Verlauf klar ist, gab ich den beiden Batterietheilen Zweige von 7'1/2' und machte den Stamm = 8' und = 14'; später war Zweig $A = 5'1/2'$, Zweig $B = 8'$ und der Stamm = 2'.

Reihe 6. Zweige = 7'1/2'. Stamm: (C) 6' (D) Ausl. 1' = 8'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B</th>
<th>Bi — Ai</th>
<th>Bi — C</th>
<th>Bi — D</th>
<th>Bi — Ba</th>
<th>Ai — C</th>
<th>C — D</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'</td>
<td>31.0</td>
<td>29.5</td>
<td>44.0</td>
<td>46.5</td>
<td>41.0</td>
<td>15.0</td>
</tr>
<tr>
<td>24</td>
<td>52.2</td>
<td>44.5</td>
<td>46.5</td>
<td>46.5</td>
<td>12.5</td>
<td>12.0</td>
</tr>
<tr>
<td>40</td>
<td>63.5</td>
<td>49.0</td>
<td>45.5</td>
<td>45.0</td>
<td>13.5</td>
<td>12.0</td>
</tr>
<tr>
<td>56</td>
<td>66.2</td>
<td>48.2</td>
<td>41.5</td>
<td>41.5</td>
<td>14.5</td>
<td>12.0</td>
</tr>
<tr>
<td>90</td>
<td>64.0</td>
<td>40.5</td>
<td>40.2</td>
<td>—</td>
<td>14.5</td>
<td>12.0</td>
</tr>
<tr>
<td>125</td>
<td>58.0</td>
<td>42.0</td>
<td>36.5</td>
<td>—</td>
<td>14.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

1) Durch besondere Beobachtung hier festgestellt.
Reihe 7. Zweige = 7 1/4'. Stamm: (C) 6' (D) 6' (E) Ausl. 1' = 14'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B</th>
<th>Bi—Ai</th>
<th>Bi—C</th>
<th>Bi—D</th>
<th>Bi—E</th>
<th>Bi—Ba</th>
<th>Ai—D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0′</td>
<td>7·0</td>
<td>17·0</td>
<td>32·0</td>
<td></td>
<td>19·5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14·5</td>
<td>18·0</td>
<td>29·5</td>
<td>40·5</td>
<td>42·5</td>
<td>17·5</td>
</tr>
<tr>
<td>24</td>
<td>40·5</td>
<td>35·5</td>
<td>42·5</td>
<td>45·5</td>
<td>48·0</td>
<td>15·5</td>
</tr>
<tr>
<td>40</td>
<td>57·5</td>
<td>48·5</td>
<td>48·0</td>
<td>47·0</td>
<td>48·0</td>
<td>16·5</td>
</tr>
<tr>
<td>55</td>
<td>65·5</td>
<td>54·5</td>
<td>51·5</td>
<td>47·0</td>
<td>48·0</td>
<td>17·5</td>
</tr>
<tr>
<td>90</td>
<td>65·5</td>
<td>54·5</td>
<td>50·0</td>
<td>43·5</td>
<td>43·0</td>
<td>18·0</td>
</tr>
<tr>
<td>125</td>
<td>62·5</td>
<td>52·0</td>
<td>47·5</td>
<td>41·0</td>
<td>40·5</td>
<td>19·0</td>
</tr>
</tbody>
</table>

Reihe 8. Zw. A = 5 1/4'. Zw. B = 8'. Stamm: (C) Ausl. 1' = 2'.

Zusatz in Zw. B: 8′ 24 40 56 90 125 160 200

<table>
<thead>
<tr>
<th>Bi—Ai</th>
<th>65·5 64·5 62·5 64·5 68·5 66·5 68·0 70·5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi—C</td>
<td>42·5 40·0 38·0 39·5 42·0 40·0 41·0 42·0</td>
</tr>
<tr>
<td>Bi—Ba</td>
<td>Durchweg nicht über 40·0.</td>
</tr>
</tbody>
</table>

Diese Reihen stimmen mit den früheren im Allgemeinen überein; der Hauptunterschied liegt nur darin, dass auf Zweig A, also auch in (A) die negative Elektricität schneller als auf dem Stamm hervortritt. Die Beobachtungen von Ai aus und von C—D geben wieder den Moment, wo sich (A) allein entladet; doch bei 8′ Zusatz in Reihe 6 und bei 0 und 8′ Zusatz in Reihe 7 zeigt sich die ziemlich zu gleicher Zeit erfolgende Entladung von (B). War (B) ausgelöst, so gab C—D 12·5 und Ai—D in Reihe 7 21·0. Auch das Maximum der Ladung erhält (B) an derselben Stelle wie früher, doch bleibt es länger bestehen, womit die entsprechenden Thermo meterbeobachtungen in Nr. 1 der citirten Abhandlung übereinstimmen. Der Ort der Minima scheint durch die Länge des Zweiges gleichfalls bedingt zu werden. Später in Reihe 29 und 30 werde ich Gelegenheit haben, noch einige Beobachtungen anzuführen, wo der Zweig A bedeutend länger ist.

Nach diesen Beobachtungen an einer getheilten Hauptbatterie, welche mich zur Annahme von Partialentladungen derselben geführt hatten, ging ich mit besonderem Interesse an die Untersuchung des elektrischen Zustandes der Nebenbatterie während ihres Stromes, da meine früheren Beobachtungen einstheils die That sache festgestellt hatten, dass dieser Strom von seinem Anfange an bis zu

1) = bedeutet, dass bei 0·1 Linie Schlagweite noch kein Funke erschien.
seinem Ende gleichartig bleibt, also nicht in zwei von einander getrennte Theile, einen sogenannten Ladungs- und Entladungsstrom zerfallen können, anderntheils aber in der Abhandlung über die gemeinsame Wirkung zweier Ströme (Sitzungsber. Bd. XVIII. p. 143) bewiesen hatten, dass der Nebenbatteriestrom dennoch nicht gleicher Art mit dem Hauptstrom ist, dass man also den ersteren doch nicht als eine einfache Strömung von der Nebenbatterie aus ansehen dürfte. Bei Partialentladungen der Hauptbatterie ward es jetzt recht wohl möglich, dass sich die Nebenbatterie während jeder solcher Partialentladung lade und wieder entlade, indem auf solche Weise der Strom in seinem ganzen Verlaufe sowohl gleichartig als auch vom Hauptstrom verschieden sein würde. Nur müssen diese Nebenbatterieströme je nach dem Längenverhältniss des Neben- und Hauptdrathes wieder von einander verschieden sein, weil die Beobachtungen über die gemeinsame Wirkung zweier Nebenbatterieströme total verschiedene Resultate geliefert hatten, je nachdem die Nebendräthe kürzer, gleich oder länger als der Hauptdrath waren. — Anfänglich hatte ich mit den Versuchen, die ich anstellen wollte, viele Schwierigkeiten, so dass ich eine grosse Zahl Reihen ohne recht deutlichen Erfolg durchführte; es lag dies darin, dass ich bisher die Nebenbatterie bei allen meinen Beobachtungen über die Schlagweite und die Wärmeentwicklung isolirt aufgestellt hatte. Diese Beobachtungen gaben also wohl die Ladung der Nebenbatterie an, nämlich die Spannungs-differenz der Innen- und Aussenseite in dem Momente, wo der Funke überschlägt, allein sie liessen völlige Ungewissheit darüber bestehen, ob die Innenseite positiv oder negativ sei; sie gaben ferner keine Entscheidung darüber, ob die beiden Belegungen in gleichem Grade entgegengesetzt elektrisch werden, wenn man bei constanter Länge des Nebendrathes die einzelnen Theile desselben vom gespannten Drathe aus gerechnet mehr nach der Innenseite zu oder umgekehrt mehr nach der Aussenseite zu einschaltet. Die Schlagweiten (wie die Thermometerangaben) blieben zwar bei einem solchen Wechsel constant, aber diese gleiche Differenz konnte aus ganz verschiedenen Intensitäten freier Elektricität auf den beiden Belegungen entstehen. Noch übler ward es, wenn ich die Ladung einer andern Batterie z. B. der Hauptbatterie auf die innere oder äussere Belegung überspringen lassen wollte. Da die Hauptbatterie nur die beiden Metallflächen der Nebenbatterie
mit Elektricität anfüllte, ohne dass durch Binden die Aufnahme von viel Elektricität ermöglicht wurde, so sprang natürlich nur ein schwacher Funke über, der, wie meine Versuche über das Abspringen von einem gewöhnlichen Schliessungsdraht erwiesen haben, gar leicht zu kurz ausfällt. Sicherheit der Beobachtungen erlangte ich erst, als ich bemerkt hatte, dass man die innere oder die äussere Belegung der isolirten Nebenbatterie durch einen Drath mit der Aussenseite der Hauptbatterie, also ableitend zum Erdboden verbinden könne, ohne dass hierdurch mit Ausnahme eines einzigen, später vorkommenden Falles die Schlagweite der Nebenbatterie unter sonst constanten Verhältnissen geändert werde. Dies Resultat gab mir einmal das Mittel, die Elektricität der einen Belegung auf Null, und somit die freie Elektricität der andern Belegung auf die volle Intensität zu bringen, welche die beobachtete Schlagweite angibt; zweitens fand in dem überspringenden Funken einer andern Batterie eine vollständigere Entladung derselben Statt, die demgemäss in einem hellen kräftigen Funken erfolgte.

Ich werde die Versuche in solcher Reihenfolge zusammenstellen wie sie am leichtesten in die Verhältnisse einführen. Die Hauptbatterie bestand aus dem Flaschenpaar (A) und war nicht isolirt; ihren Schliessungsdraht bildeten von innen an 2 1/4" K., der Auslader 1 1/4', die in dem senkrecht stehenden Rahmen ausgespannten 24', dann zur Aussenseite hin 2 1/2'. Als Nebenbatterie diente die dem Paare (A) ziemlich gleiche Flasche 4, die ich hier der Kürze wegen nur mit (4) bezeichnen werde; sie war vollkommen isolirt und hatte als Schliessungsdraht von innen ab 3', die andern in einer Distanz von etwa 1 Zoll ausgespannten 24' und dann noch 3'. Der Hauptdrath war somit 31 1/4', der Nebendrath 30' lang; nur bei der letzten Beobachtung wurde der Hauptdrath um 24' verlängert. Während der Nebendrath verlängert wurde; beobachtete ich zuerst die Schlagweite der Nebenbatterie, indem ich einen etwa 5' langen und von der Aussenseite der Hauptbatterie ausgehenden Drath V erst mit den innern (i), dann mit den äussern Belegung (a) verband. Hierauf leitete ich von der innern Belegung von (A) also von Ai aus einen starken Drath nach der einen Kugel des hinter der Nebenbatterie stehenden Funkenmessers, und brachte V mit der andern Kugel in Verbindung; während jetzt (A) sich entlud, schlug bei 41·5 kein Funke mehr über die Kugeln, wohl aber bei 41·0,
welche Zahl somit die gegenwärtige Schlagweite der Batterie an-
gibt. Endlich verband ich die zweite Kugel erst mit der Innenseite
der Flasche 4 oder mit 4i, dann mit der Aussenseite derselben oder
mit 4a, während die andere Belegung mit V ableitend berührte war,
was ich mit a_0 und i_0 bezeichnen werde. Sprang nun während der
Entladung von (A) kein Funke bei einem Abstand der Kugeln = 41.5
über (denn Funken von 41.0 gibt die Ladung), so notierte ich dies
mit —, zeigten sich dagegen hier Funken, so ermittelte ich ihre
großte Länge. Die Resultate stelle ich in den folgenden Reihen und
unter den Bezeichnungen, die nach den bisherigen Angaben deut-
lich sein werden, zusammen.

Reihe 9. (A) Hptdr. 21/2. Ausl. 11/2 24'. 21/2 = 31/2.

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th></th>
<th>a_0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hptdr. + 0'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nbdbr. + 24'</td>
<td>50.5</td>
<td></td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>hinten</td>
<td></td>
<td></td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>+ 24 vorne</td>
<td>50.5</td>
<td></td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>+ 16 hinten</td>
<td>49.0</td>
<td></td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>+ 8</td>
<td>43.0</td>
<td></td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46.0</td>
<td></td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.0</td>
<td></td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>Hptdr. + 24'</td>
<td></td>
<td></td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>Nbdbr. + 0'</td>
<td></td>
<td></td>
<td>34.5</td>
<td></td>
</tr>
</tbody>
</table>

(4) + (1). Nbdbr. + 9.

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hptdr. + 0'</td>
<td>49.0</td>
</tr>
<tr>
<td>Nbdbr. + 24'</td>
<td>47.5</td>
</tr>
<tr>
<td>+ 16</td>
<td>45.0</td>
</tr>
<tr>
<td>+ 8</td>
<td>43.0</td>
</tr>
<tr>
<td>+ 0</td>
<td>44.5</td>
</tr>
<tr>
<td>Hptdr. + 24'</td>
<td>51.0</td>
</tr>
<tr>
<td>Nbdbr. + 24'</td>
<td>51.0</td>
</tr>
<tr>
<td>+ 8</td>
<td>52.0</td>
</tr>
<tr>
<td>+ 0</td>
<td>28.5</td>
</tr>
</tbody>
</table>

In der letzteren Reihe wurden die beiden Flaschenpaare (A)
und (B) in die Hauptbatterie und dem entsprechend Flasche 4 und 1
in die Nebenbatterie genommen; die Überschriften in den Columnen
habe ich jedoch der Kürze wegen so gelassen, als wenn nur je eine
Flasche da gewesen wäre. — Die beiden letzten Columnen in Reihe 9
zeigen zunächst, dass die Schlagweite der Nebenbatterie unverändert

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 25. 13
blieb; man mochte ihre äussere oder innere Belegung ableitend verbinden; da dies bei allen ähnlichen Reihen der Fall war, so habe ich später nur eine Columne ausgefüllt. Die Zahlen in den zwei ersten Columnen beider Reihen geben folgendes Resultat: 1. Sind beide Schliessungsdrähte, der Haupt- und Nebendrath, gleich lang, so ist am Funkenmesser kein Funke über 41·0, d. h. über die Schlag- weite der Hauptbatterie zu erlangen; 2. wenn man den Nebendrath länger als den Hauptdrath macht, so springen während der Entladung nur auf die Innenseite der Nebenbatterie längere Funken als 41·0 über; 3. wenn man den Nebendrath kürzer macht, so gehen längere Funken nur auf die Aussenseite über. Für gleich lange (oder äquivalent gleich lange) Schliessungsdrähte ergänzt sich bei grösserer Schlagweite der Nebenbatterie der erste Satz dahin, dass über die Schlagweite gehende Funken auch nach beiden Belegungen springen können. So in der folgenden Reihe, worin die Hauptbatterie aus (A) + (B), die Nebenbatterie nur aus (4) bestand, und demnach zur Gleichheit der Schliessungsdräthe oder zum Maximum der Nebenbatterieladung ein doppelt so langer Nebendrath verlangt wurde.

Reihe 11. (A) + (B). Hptdr. 2½' Ausl. 1½' 24' 2½' = 31½'.
(4). Nbdr. 3' 24' 3 = 30'.

<table>
<thead>
<tr>
<th></th>
<th>((A+B) \frac{i - 4i}{a_0})</th>
<th>((A+B) \frac{i - 4a}{a_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hptdr. + 0' Nbdr. + 75'</td>
<td>54·0</td>
<td></td>
</tr>
<tr>
<td>+ 48</td>
<td>58·0</td>
<td></td>
</tr>
<tr>
<td>+ 40</td>
<td>56·0</td>
<td></td>
</tr>
<tr>
<td>+ 32</td>
<td>49·0</td>
<td></td>
</tr>
<tr>
<td>+ 24</td>
<td>45·0</td>
<td></td>
</tr>
<tr>
<td>+ 16</td>
<td>57·0</td>
<td></td>
</tr>
<tr>
<td>+ 8</td>
<td>60·0</td>
<td></td>
</tr>
<tr>
<td>+ 0</td>
<td>60·0</td>
<td></td>
</tr>
<tr>
<td>Hptdr. + 24' Nbdr. + 0</td>
<td>54·0</td>
<td></td>
</tr>
</tbody>
</table>

Damit über die Giltigkeit der Zahlen kein Bedenken obwalte, bemerke ich noch, dass die Länge des Drathes \(V \) durchaus gleichgültig ist; ich hatte \(V \) um 16' verlängert und zwar so, dass diese für sich isolirt angereiht waren, erhielt aber genau dieselben Schlagweiten.

Nach meinen Beobachtungen über den Nebenstrom geht der selbe in dem gespannten Drathe entgegengesetzt zum Hauptströme,
und somit wird sich hier die Innenseite der Nebenbatterie positiv laden. Ich will dies zunächst als richtig annehmen, um zu einem bestimmten Ausdruck zu gelangen, denn der Beweis kann erst später gegeben werden; wäre es nicht so, so drehen sich nur die Fälle mit zu kurzem und zu langem Nebendrath gegenseitig um. Die Nebenbatterie erlangt also im Inneren positive, somit bei i_0 auf der äußern Belegung eine ihrer Schlagweite gleich intensive negative Ladung, so ist zunächst bei einem gegen den Hauptdrath zu kurzen Nebendrath ersichtlich, dass die volle Ladung nicht gleich in den ersten Momente da ist, sondern erst dann, wenn die erste Partialströmung schon eine kurze Zeit gedauert hat. Dem Anscheine nach ist dies gegen meine früheren Behauptungen; allein da ich bisher die Entladung der Hauptbatterie als eine ununterbrochene angenommen hatte, so konnte der aus den Beobachtungen gezogene Satz, dass die ganze Schlagweite sogleich im Anfange da ist, nur die Bedeutung haben, dass die Nebenbatterie schon zu der Zeit, wo die Ladung der Hauptbatterie noch voll ist, ihre ganze Stärke erlangt. Dies ist aber auch der Fall, wenn diese ganze Stärke während der ersten Partialentladung eintritt, indem deren ganzer Verlauf so zu sagen noch während der vollen Ladung der Hauptbatterie stattfindet. Nehmen wir Reihe 10, wo der Hauptdrath um 24' verlängert ist, so ist in dem Momente, wo die Nebenbatterie ihre volle Ladung hat, bei einem gegen die Gleichheit ungefähr um 8' zu kurzen Nebendrath die freie Elektricität der Hauptbatterie während ihrer Partialschwingung auf 16,0, d. i. 44·5—28·5, bei einem um 16' zu kurzen auf 26·0, bei dem um 24' zu kurzen auf 31·0 gesunken (nach Reihe 9 auf 34·0); nehmen wir Reihe 11, so ist bei unverändertem Hauptdrath die Intensität der Hauptbatterie für einen um 8' zu kurzen Nebendrath auf 9·5 und für einen um 16', 24', 33' zu kurzen auf 14·0, 21·0, 24·5 gesunken. Können zwar die Fälle mit ungleich langen Hauptdräthen nicht mit einander verglichen werden, so folgt doch aus beiden Reihen dasselbe Resultat, dass während der ersten Partialentladung der Hauptbatterie und offenbar ebenso während der folgenden nur in abnehmendem Grade die Nebenbatterie zu dem Maximum ihrer Ladung desto früher gelangt, je kürzer der Nebendrath im Verhältniss zum Hauptdrath ist. Sind darauf beide Schliessungsdräthe gleich lang, so tritt das Maximum der Nebenbatterieladung erst ein, wenn die Partialentladung der Hauptbatterie gerade ihre Mitte erreicht hat,
also wenn die innere Belegung der Hauptbatterie auf Null gekommen ist. Hier findet für gewöhnlich kein Funkenüberschlag Statt, welcher länger als 41·0 wäre; nur in dem Falle, dass die Nebenbatterie eine sehr starke Ladung erlangt, die offenbar einen Moment andauert, ehe die Ladung in Entladung übergeht, kann die wenn auch schwache positive Elektrizität in der Hauptbatterie kurz vor Null noch auf die sehr starke negative Ladung der äussern Fläche oder umgekehrt diese auf jene in einem langer Funken als 41·0 überspringen. Ist endlich der Nebendrath länger als der Hauptdrath, so gehen die Funken auf die innere Belegung der Nebenbatterie. Sicher wird man die Erklärung zurückweisen, dass jetzt die innere Belegung negativ geladen werde, denn dann würde beim Übergang von zu kurzem auf zu langem Nebendrath ein Übergang von positiver in negative Ladung, d. h. eine Null-Ladung eintreten, was den Beobachtungen über die Schlagweite völlig widerspricht. Der consequente Gang kann nur der sein, dass bei zu langem Nebenrath das Maximum der Nebenbatterieladung erst nach der Vollendung der halben Partialentladung eintritt, also zu einem Momente, wo die innere Belegung der Hauptbatterie schon in den negativen Zustand übergegangen ist. So gibt dann bei dem unveränderten Hauptdrath die Reihe 10 z. B. die Grösse der negativen Elektrizität bei einem um 8' zu langen Nebendrath zu 15·0, bei 16' zu lang zu 21·5, bei 24' zu lang zu 27·0 an, also wieder in der Weise, dass die volle Nebenbatterieladung desto später eintritt, je mehr der Nebendrath den Hauptdrath an Länge übertrifft. Die ähnlichen Überschläge bei der Gleichheit der Dräthe erklären sich daraus, dass die etwas andauernde starke Ladung der Nebenbatterie auch noch ein wenig über die Mitte der Partialentladung der Hauptbatterie übergeht.

Trägt man nach den oben mitgetheilten Beobachtungen an der Hauptbatterie kein Bedenken, jede Partialschwingung auf einen negativen Zustand der innern Belegung übergehen zu lassen, so dürfte die vorstehende Erklärung über die Ladung der Nebenbatterie allen Ansprüchen genügen. Wir finden, dass diese Ladung während jeder Partialströmung der Hauptbatterie wächst und wieder abnimmt; denn sonst müssten noch grössere Schlagweiten hervortreten; wir haben also von der einen Seite eintretende und austretende Partialladungen, wir haben aber auch von der andern Seite gleich vom Anfang der Entladung der Hauptbatterie an die volle und durchweg

Reihe 12. (A). Hptdr. 2½' Ausl. 1½' 24' 2½' = 31½'.
(4). Nbldr. 3' 24' 5' = 32'.

<p>| Zusatz zum | Ai — 4i | Ai — 4a | 4i — 4a | Zusatz zum | Ai — 4i | Ai — 4a | 4i — 4a |</p>
<table>
<thead>
<tr>
<th>Nbrdr.</th>
<th>a₀</th>
<th>i₀</th>
<th>a₀</th>
<th>Nbrdr.</th>
<th>a₀</th>
<th>i₀</th>
<th>a₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>0'</td>
<td>—</td>
<td>42·5</td>
<td>34·0</td>
<td>56'</td>
<td>48·0</td>
<td>—</td>
<td>10·0</td>
</tr>
<tr>
<td>8</td>
<td>41·5</td>
<td>—</td>
<td>23·0</td>
<td>90</td>
<td>43·0</td>
<td>—</td>
<td>6·0</td>
</tr>
<tr>
<td>16</td>
<td>47·5</td>
<td>—</td>
<td>28·0</td>
<td>125</td>
<td>41·0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>49·5</td>
<td>—</td>
<td>24·0</td>
<td>160</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>48·0</td>
<td>—</td>
<td>18·5</td>
<td>200</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Nach diesen Beobachtungen wandte ich mich zu der Untersuchung, wie zwei Nebenbatterienströme auf einander Funken geben. Als Apparat dienten die Sitzungsber. Bd. XXII, p. 342 beschriebenen in einem gläsernen Gestell liegenden drei Doppelspiral. Die Hauptbatterie bestand aus (A) + (B); ihr Schliessungsdraht war 3' Ausl. 1', die innere mittlere Spirale, 5'; die Schlagweite des Ausladens betrug nur 37·0. Der in der äusseren mittlern Spirale errigte Nebenstrom theilte sich gleichmassig in die beiden andern äusseren Spiralen, und diese gaben durch die innern Spiralen die beiden Nebenbatterienströme. Nebenbatterie (1) + (4) oder kürzer bezeichnet 1, war mit der untern innern Spirale, Nebenbatterie (2) + (3) oder kürzer 2 war mit der obern innern Spirale verbunden; die vollständigen Nebenröhre will ich in der Tabelle so aufführen, dass zuerst die Dräthe stehen, welche von den Innenseiten zu den Spiralen S führten, hinten die andern, welche zu den äussern Belegungen gingen.
Auch hier war jedesmal je eine der Belegungen ableitend verbunden, so dass ich, wo es an sich klar ist, welche Belegungen auf Null gebracht waren, dies nicht besonders bemerken werde. In den Funkenüberschlägen fanden ebenso wie vorhin vollständigere Entladungen Statt, weshalb die Funken hell und deutlich waren.

Reihe 13.

<table>
<thead>
<tr>
<th>Hptdr.</th>
<th>Nbdr. 1</th>
<th>Nbdr. 2</th>
<th>$1i - 1a$</th>
<th>$2i - 2a$</th>
<th>$1i - 2i$</th>
<th>$1a - 2a$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0</td>
<td>i_0</td>
<td>a_0</td>
<td>i_0</td>
<td>a_0</td>
<td>i_0</td>
</tr>
<tr>
<td>1. Hptdr. + 0'</td>
<td>3 1/2 S 4'</td>
<td>3 1/2 S 4'</td>
<td>18 0 19 0</td>
<td>17 0 18 0</td>
<td>= 37 0 38 5</td>
<td></td>
</tr>
<tr>
<td>2. n +18</td>
<td>2 1/2 S 26</td>
<td>3 1/2 S 25</td>
<td>14 0 16 0</td>
<td>15 0 17 0</td>
<td>= 33 5 33 0</td>
<td></td>
</tr>
<tr>
<td>3. n +18</td>
<td>2 1/2 S 2</td>
<td>3 1/2 S 25</td>
<td>15 0 17 5</td>
<td>15 0 17 0</td>
<td>= 33 5 32 0</td>
<td></td>
</tr>
<tr>
<td>4. n +18</td>
<td>3 1/2 S 4</td>
<td>3 1/2 S 4</td>
<td>12 0 12 0</td>
<td>12 5 13 0</td>
<td>= 27 5 27 0</td>
<td></td>
</tr>
<tr>
<td>5. n +0</td>
<td>2 1/2 S 26</td>
<td>3 1/2 S 25</td>
<td>9 5 11 0</td>
<td>9 0 11 0</td>
<td>= 23 5 23 0</td>
<td></td>
</tr>
<tr>
<td>6. n +0</td>
<td>2 1/2 S 2</td>
<td>3 1/2 S 25</td>
<td>10 0 11 0</td>
<td>9 0 11 0</td>
<td>= 25 0 22 5</td>
<td></td>
</tr>
<tr>
<td>7. n +18</td>
<td>5 1/2 S 2</td>
<td>3 1/2 S 49</td>
<td>8 5 10 0</td>
<td>7 0 9 0</td>
<td>= 20 0 17 0</td>
<td></td>
</tr>
<tr>
<td>8. n +18</td>
<td>3 1/2 S 4</td>
<td>3 1/2 S 49</td>
<td>9 0 10 5</td>
<td>11 0 14 0</td>
<td>16 5 13 0</td>
<td></td>
</tr>
<tr>
<td>9. n +18</td>
<td>3 1/2 S 4</td>
<td>3 1/2 S 25</td>
<td>8 5 10 0</td>
<td>21 0 22 0</td>
<td>17 0 30 5 29 0</td>
<td></td>
</tr>
<tr>
<td>10. n +0</td>
<td>3 1/2 S 4</td>
<td>3 1/2 S 25</td>
<td>18 0 19 0</td>
<td>16 0 16 5</td>
<td>34 5 20 5 21 0</td>
<td></td>
</tr>
</tbody>
</table>

Diese Art von Beobachtungen bietet den schon oben erwähnten Ausnahmefall dar, dass die Schlagweite der Nebenbatterie sich etwas ändert, je nachdem die Innen- oder Aussenseite ableitend verbunden ist. Die Störungen kommen sicher daher, dass der erregende Strom sich teilt, und beide Theile nicht unabhängig von einander wirken. Die Störungen sind indess nicht der Art, dass sie eine Benutzung der beobachteten Zahlen ausschliessen, nur darf man keine zu genauen Werthe verlangen. In den drei ersten Zeilen sind die Nebendräthe nahe so lang als der Hauptdrath, doch ist einmal die Länge des letzten verschieden, und dann ist die Vertheilung des Nebendrathes auf die vordere und hintere Seite in 2 und 3 ungleich. Alle drei Zeilen geben dennoch dasselbe Resultat. Sind die Kugeln des Funkenmessers mit den inneren Belegungen verbunden, so erhält man keinen Funken (keinen über 0·1 Linie Schlagweite); verbindet man dagegen eine innere Belegung mit einer äusseren, so ist die Schlagweite gleich der Summe der beiden einzelnen Ladungen. Diese Thatsachen sind an sich klar. Beide innere Belegungen haben, wenn man die äusseren ableitend berührt, zu gleicher Zeit gleich starke positive Ladungen; wird dagegen die innere Belegung der einen Batterie und die äussere der andern ableitend verbunden, während
(doch darüber später), dann tritt die volle positive Ladung gegen Ende der Partialentladung der Hauptbatterie hervor, und führt die Innenseite auch schnell in den negativen Zustand über, der sich nach und nach verliert. Wenden wir dies auf die beobachteten Zahlen an, so ist in Zeile 8 1 schnell positiv geladen, diese Ladung fällt langsam ab, und wird am Ende etwas negativ; 2 ladet sich langsam und die Ladung fällt dann schnell ins Negative herab. Bei der Verbindung der Innenseiten schlägt also die positive Ladung in 2 = 14·0 auf den schwach negativen Zustand (etwa — 2) der inneren Belegung von 1 über; bei der Verbindung von Innen- und Aussenseite schlägt für 1_{10} die positive Ladung in $2 = + 14·0$ auf $+ 2$ in 1 oder für 2_{10} die äussere negative Ladung dieser Batterie — $14·0$ auf $— 2$ in 1. In Zeile 9 wird 1 eher als 2 geladen; bei der Verbindung beider Innenseiten schlägt $+ 22·0$ in 2 auf etwa $+ 5$ in 1 über; bei der andern Verbindung je nach 1_{10} oder 2_{10} entweder $+ 22·0$ auf $— 5$ oder $— 22·0$ auf $+ 5$. In Zeile 10 wird 1 eher geladen und die Innenseite tritt schnell in den negativen Zustand über; 2 dagegen ladet sich später und anfänglich langsam; somit schlägt, wenn beide inneren Seiten verbunden werden, $+ 16·0$ auf $— 19·0$ über; werden dagegen Innen- und Aussenseite zusammengebracht, so schlägt entweder $+ 19·0$ auf $— 2·0$ in 2 oder $— 19·0$ auf $+ 2·0$. Es bieten also diese Beobachtungen keine Schwierigkeit dar, und geben über den Verlauf der Ladung in der Nebenbatterie nähern Aufschluss 1) — Was die Wärmeentwicklung betrifft, so habe ich früher Sitzungsber. Bd. XVIII, p. 143 und Bd. XXII, p. 331, die Wärme bei der gemeinsamen

1) Aus den hier übergangenen Reihen, in denen die Nebenbatterien auf beiden Seiten isolirt waren, die Verlängerungen und Versetzungen in den Nebenräthen aber gerade wie in Reihe 13 durch 24' bewirkt wurden, lässt sich über die Ladung einer Nebenbatterie, wenn man das Maximum auf 12 reducir, ungefähr folgendes Schema entnehmen:

<table>
<thead>
<tr>
<th>Nebenrath gleich Hauptrath:</th>
<th>Ladung der Nebenbatterie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Innen.</td>
</tr>
<tr>
<td>a) Nebenrath vorn länger + 12</td>
<td>0</td>
</tr>
<tr>
<td>b) „ auf beiden Seiten gleich . + 9</td>
<td>— 3</td>
</tr>
<tr>
<td>c) „ hinten länger + 5</td>
<td>— 7</td>
</tr>
<tr>
<td>Nebenrath auf beiden Seiten gleich . + 13</td>
<td>+ 1</td>
</tr>
</tbody>
</table>

| Nebenrath kürzer als Hauptrath: |
| Nebenrath auf beiden Seiten gleich . + 13 | + 1 |

| Nebenrath länger als Hauptrath: |
a) Nebenrath vorn länger + 5	— 7
b) „ auf beiden Seiten gleich . + 1	— 11
c) „ hinten länger — 2	— 14

Da in dem Folgenden oft längere Dräthe und gegen einander unter sehr ungleichen Verhältnissen in den Nebenbatterien vorkommen, so hatte es Interesse diese Art von Versuchen noch zu erweitern. So entstanden die folgenden Reihen, in denen als Hauptbatterie nur das Flaschenpaar (4) diente. In der ersten Reihe war der Schliessungsdraht 2½', Ausl. (Schlagweite 40-8') 1', mittlere innere Spirale 3', in der andern war er um 20' verlängert. Zu Nebenbatterien, die wiederum einzeln isolirt standen, wandte ich Flasche 4 oder (4) und Flasche 1 oder (1) an; die constanten Nebendräthe, ungefähr von

Reihe 14. Hptdr. 2½' Ausl. 1' S. 3'.

<table>
<thead>
<tr>
<th>Nbdr. 4</th>
<th>Nbdr. 1</th>
<th>4i - 4a</th>
<th>4i - 1a</th>
<th>4i - 1i</th>
<th>4i - 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 0'</td>
<td>+ 0'</td>
<td>23.5</td>
<td>22.5</td>
<td>20.5</td>
<td>22.0</td>
</tr>
<tr>
<td>+ 8</td>
<td>+ 22.0</td>
<td>22.0</td>
<td>27.0</td>
<td>27.0</td>
<td>22.0</td>
</tr>
<tr>
<td>+ 24</td>
<td>+ 22.0</td>
<td>22.0</td>
<td>22.0</td>
<td>21.0</td>
<td>30.0</td>
</tr>
<tr>
<td>+ 40</td>
<td>+ 24.0</td>
<td>24.0</td>
<td>12.5</td>
<td>14.0</td>
<td>37.0</td>
</tr>
<tr>
<td>+ 90</td>
<td>+ 27.0</td>
<td>27.5</td>
<td>=</td>
<td>=</td>
<td>31.0</td>
</tr>
</tbody>
</table>

+ 16

+ 16	+ 16.0	19.0	18.5	15.0	16.0	40.0
+ 24	+ 18.5	19.0	15.0	16.0	12.0	36.0
+ 40	+ 20.0	20.0	11.5	12.5	28.0	28.0
+ 90	+ 24.5	24.5	=	=	29.0	22.5

+ 24

| + 24 | + 24.0 | 17.0 | = | = | 21.0 | 16.0 |

In dieser Reihe sind die Differenzen zwischen den Zahlen der ersten und zweiten Columne, ebenso der dritten und vierten Columne nicht bedeutend, und können füglich als zufällige angesehen werden. Die Zahlen unter 4i - 1i entstehen durch Überschläge von (1) auf die sinkende Ladung in (4); die Zahlen unter 4i - 1a durch Überschlag von (4) auf die wachsende negative Ladung der äussern Belegung von (1), da 1i ableitend verbunden ist. Nur die Zahlen mit Nbdr. 1 = 90' machen Bedenken. Sind die innern Seiten beider Flaschen in Wechselwirkung, dann dürfte die bisherige Erklärung genügen, eben so auch noch für die Zahlen 22.5 und 16.0 unter 4i - 1a, da die Ladung in (1) sich so langsam bilden könnte, dass sie noch Null ist, wenn (4) bereits sein Maximum erreicht hat; die kleine Differenz 22.5 gegen 24.5 könnte Störungen zugeschrieben werden; allein bei Nbdr. 4 = 0 ist 21.0 gegen 27.0 doch zu klein. Ich bin nicht ganz sicher, ob hier nicht eine andere Erklärung zu wählen sei, die dann auch auf die andern ähnlichen Fälle zu übertragen wäre. Später werden wir nämlich finden, dass bei zweien mit einander in Zusammenhang stehenden Nebenbatterie-
Über den elektrischen Zustand der Nebenbatterie während ihres Stromes. 187

strömen derjenige, dessen Ladung sich schnell steigert, in dem andern schwächeren die Ladung herabzieht und selbst bis ins Negative überführt, so dass diese Batterie eine kleine zwischen eintretende Schwimgung vollendet. Da nun hier durch die Theilung des Stromes in die zwei äussern Spiralen auch ein Zusammenhang beider Nebenbatterieströme stattfindet, so dürfte vielleicht, während 4 i sich schnell positiv ladet, 1i schwanken und negativ werden; dann könnte für den Fall 4i—1i (4) auf die etwas negative Fläche in (1) schlagen und für den Fall 4i—11a ginge dem entsprechend der Funke von (4) auf die etwas positive äussere Belegung von (1) über. Ich werde nachher noch einmal hierauf zurück kommen.

Reihe 15. Hptdr. 2 1/2' Ausl. 1' S. 23'.

<table>
<thead>
<tr>
<th>Nbdr. 4</th>
<th>Nbdr. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 24'</td>
<td>+ 0'</td>
</tr>
<tr>
<td>26.5</td>
<td>26.5</td>
</tr>
<tr>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>a₀</td>
<td>i₀</td>
</tr>
<tr>
<td>20.0</td>
<td>32.5</td>
</tr>
<tr>
<td>+ 8</td>
<td>+ 25.5</td>
</tr>
<tr>
<td>25.5</td>
<td>27.0</td>
</tr>
<tr>
<td>8.0</td>
<td>12.5</td>
</tr>
<tr>
<td>+ 16</td>
<td>+ 27.0</td>
</tr>
<tr>
<td>27.0</td>
<td>27.5</td>
</tr>
<tr>
<td>10.0</td>
<td>15.5</td>
</tr>
<tr>
<td>+ 24</td>
<td>+ 25.5</td>
</tr>
<tr>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td>15.0</td>
<td>18.0</td>
</tr>
<tr>
<td>+ 16</td>
<td>+ 20.0</td>
</tr>
<tr>
<td>20.0</td>
<td>23.0</td>
</tr>
<tr>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>+ 8</td>
<td>+ 22.5</td>
</tr>
<tr>
<td>22.5</td>
<td>25.0</td>
</tr>
<tr>
<td>9.5</td>
<td>13.5</td>
</tr>
<tr>
<td>+ 16</td>
<td>+ 20.5</td>
</tr>
<tr>
<td>20.5</td>
<td>22.5</td>
</tr>
<tr>
<td>17.0</td>
<td>18.0</td>
</tr>
<tr>
<td>+ 24</td>
<td>+ 17.0</td>
</tr>
<tr>
<td>17.0</td>
<td>19.0</td>
</tr>
<tr>
<td>21.0</td>
<td>22.5</td>
</tr>
<tr>
<td>+ 40</td>
<td>+ 13.0</td>
</tr>
<tr>
<td>13.0</td>
<td>19.0</td>
</tr>
<tr>
<td>22.5</td>
<td>28.0</td>
</tr>
<tr>
<td>+ 90</td>
<td>+ 16.5</td>
</tr>
<tr>
<td>16.5</td>
<td>21.5</td>
</tr>
<tr>
<td>=</td>
<td>8.0</td>
</tr>
<tr>
<td>+ 8</td>
<td>+ 17.0</td>
</tr>
<tr>
<td>17.0</td>
<td>20.0</td>
</tr>
<tr>
<td>8.0</td>
<td>10.5</td>
</tr>
<tr>
<td>+ 16</td>
<td>+ 17.0</td>
</tr>
<tr>
<td>17.0</td>
<td>19.0</td>
</tr>
<tr>
<td>13.5</td>
<td>15.0</td>
</tr>
<tr>
<td>+ 40</td>
<td>+ 13.0</td>
</tr>
<tr>
<td>13.0</td>
<td>17.0</td>
</tr>
<tr>
<td>20.0</td>
<td>21.5</td>
</tr>
<tr>
<td>+ 90</td>
<td>+ 12.0</td>
</tr>
<tr>
<td>12.0</td>
<td>17.0</td>
</tr>
<tr>
<td>=</td>
<td>9.0</td>
</tr>
<tr>
<td>+ 0</td>
<td>+ 40</td>
</tr>
<tr>
<td>6.5</td>
<td>11.0</td>
</tr>
<tr>
<td>22.0</td>
<td>28.0</td>
</tr>
<tr>
<td>+ 90</td>
<td>+ 6.0</td>
</tr>
<tr>
<td>6.0</td>
<td>10.5</td>
</tr>
<tr>
<td>=</td>
<td>9.0</td>
</tr>
</tbody>
</table>

In dieser Reihe ist es sehr auffallend, wie weit bisweilen die Zahlen der ersten und zweiten Column, ebenso der dritten und vierten aus einander gehen; vornehmlich ist dies der Fall, wenn die eine Batterie einen gegen den Hauptdrath zu kurzen Schliessungsdrath hat. Noch lässt sich bemerken, dass die Ströme, wo der Nebendrath zu kurz ist, von denen, wo der Nebendrath zu lang ist, unterdrückt werden, während die letztern sich steigern; am deutlichsten ist es bei Nebendrath 4 + 8' und Nebendrath 1 + 40'. Unter so störenden Einwirkungen ist es schwierig,
einige Zahlen der beiden letzten Columnen richtig zu deuten. Für die Columne 4s—1s schlägt bei Nebendr. 4 + 24', der ungefähr eben so lang als der Hauptdrath ist, (4) auf die langsam sinkende Ladung in (1); bei Nbdr. 4 + 16', der um 8' etwa gegen den Hauptdrath zu kurz ist, schlägt bis Nbdr. 1 + 16' ebenfalls (4) auf die fallende Ladung in (1), dann (1) auf die sinkende Ladung in (4); bei Nbdr. 4 + 8', der um 16' kürzer als der Hauptdrath ist, haben wir dieselben Verhältnisse, nur dass der Wechsel bei Nbdr. 1 + 8' eintritt; bei Nbdr. 4 + 0 endlich schlägt (1) auf (4). Allein die drei Zahlen bei Nbdr. 1 + 90' machen abermals Bedenken; die letzte 12:0 möchte durchgehen, aber 23:0 und 18:0 würden die Annahme bedingen, dass die innere Belegung von (4) stark negativ geworden sei, und zwar viel stärker, als man es sonst bei der langsam abfallenden Ladung einer mit zu kurzem Nebendrath versehenen Batterie bemerkt. Auch hier möchte ich glauben, dass die schnell aufsteigende Ladung in (4) durch ihren Strom die Ladung in (1) zum Rückgang bringt, so dass, wenn (4) sein Maximum erreicht, die innere Belegung von (1) in den negativen Zustand übergegangen ist. Auf andere Weise möchten sich auch die Zahlen 11:5 und 9:0 in der letzten Columne kaum herleiten lassen. Die übrigen Zahlen in dieser Columne (also Nbdr. 1 + 90' ausgeschlossen) erklären sich dadurch, dass bei Nbdr. 4 + 24', bei Nbdr. 4 + 16' bis Nbdr. 1 + 16', bei Nbdr. 4 + 8' bis Nbdr. 1 + 8' die Ladung in (4) auf (1) überspringt, und in den andern Zeilen dadurch, dass die negative Ladung auf 1a auf (4) übergeht.

Um für den Fall des um 90' verlängerten Nebendrathes Klarheit zu gewinnen, und überhaupt auch um ganz sicher zu werden, dass die vorhandenen Störungen nicht etwa von einer zufällig fehlerhaften Aufstellung der Nebenbatterien abhingen, repetirte ich später die Reihen noch einmal und namentlich gerade diejenigen Verbindungen, wo die bedenklichen Zahlen am schärfsten sich ausprägten, also wenn der Drath von (4) etwas länger und etwas kürzer als der Hauptdrath ist. Die Flaschen 4 und 1 wurden hierzu mit der größten Sorgfalt jede für sich isolirt aufgestellt und die Dräthe, welche die innern und die äussern Belegungen mit dem Funkenmesser verbinden, aufs zweckmässigste geleitet. Dies gab, als die Schlagweite des Ausladers etwas über 40:0 war.
Über den elektrischen Zustand der Nebenbatterie während ihres Stromes.

Reihe 16. Hptdr. 2 1/2’ Ausl. 1’ S. 3’.
Nbdr. 4:11’ S. 1 1/2’. Nbdr. 1:3 1/2’ S. 1 1/2’.

<table>
<thead>
<tr>
<th>Zusatz in Nbdr. 1</th>
<th>4i – 4a</th>
<th>4i – 1a</th>
<th>4i – 1i</th>
<th>4i – 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₀</td>
<td>i₀</td>
<td>a₀</td>
<td>i₀</td>
<td></td>
</tr>
<tr>
<td>8’</td>
<td>22.5</td>
<td>22.5</td>
<td>19.5</td>
<td>21.5</td>
</tr>
<tr>
<td>24</td>
<td>21.0</td>
<td>23.0</td>
<td>19.5</td>
<td>20.5</td>
</tr>
<tr>
<td>40</td>
<td>25.0</td>
<td>26.0</td>
<td>13.5</td>
<td>15.0</td>
</tr>
<tr>
<td>90</td>
<td>30.5</td>
<td>30.0</td>
<td>33.0</td>
<td>28.0</td>
</tr>
<tr>
<td>125</td>
<td>31.0</td>
<td>31.0</td>
<td>32.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Reihe 17. Hptdr. 10 1/2’ Ausl. 1’ S. 3’.
Nbdr. 4:3’ S. 1 1/2’. Nbdr. 1:3 1/2’ S. 1 1/2’.

<table>
<thead>
<tr>
<th>Zusatz in Nbdr. 1</th>
<th>4i – 4a</th>
<th>4i – 1a</th>
<th>4i – 1i</th>
<th>4i – 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₀</td>
<td>i₀</td>
<td>a₀</td>
<td>i₀</td>
<td></td>
</tr>
<tr>
<td>0’</td>
<td>20.0</td>
<td>20.5</td>
<td>18.0</td>
<td>18.5</td>
</tr>
<tr>
<td>8</td>
<td>14.0</td>
<td>16.0</td>
<td>27.0</td>
<td>28.0</td>
</tr>
<tr>
<td>24</td>
<td>13.0</td>
<td>16.0</td>
<td>26.0</td>
<td>29.0</td>
</tr>
<tr>
<td>40</td>
<td>15.0</td>
<td>17.0</td>
<td>16.0*</td>
<td>22.5</td>
</tr>
<tr>
<td>90</td>
<td>17.0</td>
<td>20.5</td>
<td>=</td>
<td>7.5</td>
</tr>
<tr>
<td>125</td>
<td>17.0</td>
<td>21.0</td>
<td>=</td>
<td>=</td>
</tr>
</tbody>
</table>

Wir finden also wieder dieselben Störungen. Bei der mit * versehenen Zahl 16-0 machte ich, da bisher die andere Batterie auf beiden Seiten isolirt geblieben war, zugleich 4a und dann 4i gleich Null, ohne jedoch dadurch eine Änderung herbeizuführen. Während die beiden letzten Beobachtungen in Reihe 16 sich wohl noch eben so wie die drei ersten deuten liessen, sind die Zahlen 13-0 und 12-0 in der letzten Columne von Reihe 17 wieder recht bedenklich und scheinen sich nur zu erklären, wenn die Ladung im Innern von (1) ins Negative zurückspringt, während (4) im Innern seine volle Ladung erhält; als wahre Schlagweite von (4) würde dann 17-0 gelten.

Ich gehe jetzt zu dem neuen Fall über, wo die Hauptbatterie (4) einfach, die Nebenbatterie dagegen aus (4) und (1) bestehend eine getheilt ist. Die Induction erfolgte mittelst der im Rahmen ausgespannten 24’ und der Hauptdrath blieb constant = 2 1/2’ Ausl. 1 1/2’, die gespannten 24’, 3 1/2’ = 32 1/2’; in der Nebenbatterie wurde der Zweig von (1) nach und nach verlängert, (4) dagegen hatte zuerst keinen, darauf einen Zweig von wechselnder Länge. Nach einigen nicht hinreichend genügenden Reihen fand ich, um
über die Ladung der Nebenbatterie während des Stromes soweit als nur möglich Auskunft zu erhalten, folgende Aufstellung der Nebenbatterie als die zweekmässigste. Die Flaschen 4 und 1 standen beide auf derselben isolirten Metallsfläche, so dass ihre äussern Belegungen mit einander unmittelbar in leitender Verbindung waren. Von dieser Metallsfläche ging 1' Kpfdth. zu den gespannten 24' und, wenn (4) keinen Zweig bekam, so führten von ihrer inneren Belegung 2', dann 20', dann 36' zu dem andern Ende der 24', wodurch der Stamm = 28' = 46' = 62' ward. Von der inneren Belegung in (4) und ebenso von der Innenseite in (1) gingen Dräthe von je 3½' nach isolirten Quecksilbernäpfen, die als Zweig 1 durch nach und nach längern Drath verbunden wurden. Hatte (4) einen Zweig, so ging von dem Ende desselben statt von der inneren Belegung aus ein Drath von 3½' Länge nach dem einen Quecksilbertropf. Diese Aufstellung machte es möglich, sowohl 4i und 1i, als 4a oder 1a 1) auf Null durch Ableitung zur äussern Belegung der Hauptbatterie zu bringen. Ich will sämtliche Versuche, die ich mit der getheilten Nebenbatterie angestellt habe und bei denen (A) eine Ladung = 40:0 erhielt, auf einmal mitteilen.

<table>
<thead>
<tr>
<th>Zusatz in Zwi. 1</th>
<th>4i - 4a</th>
<th>1i - 1a</th>
<th>4i - 1i</th>
<th>A1 - 4i</th>
<th>A1 - 1i</th>
<th>A1 - a1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0</td>
<td>i0</td>
<td>a0</td>
<td>i0</td>
<td>a0</td>
<td>i0</td>
<td>a0</td>
</tr>
<tr>
<td>(1) offen</td>
<td>32:8</td>
<td>32:5</td>
<td>22:5</td>
<td>22:5</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>0'</td>
<td>18:5</td>
<td>18:0</td>
<td>22:5</td>
<td>22:5</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>8</td>
<td>16:0</td>
<td>15:5</td>
<td>23:0</td>
<td>23:5</td>
<td>6:0</td>
<td>=</td>
</tr>
<tr>
<td>16</td>
<td>11:0</td>
<td>11:0</td>
<td>23:5</td>
<td>24:0</td>
<td>11:0</td>
<td>=</td>
</tr>
<tr>
<td>24</td>
<td>10:0</td>
<td>10:0</td>
<td>22:0</td>
<td>22:5</td>
<td>=</td>
<td>47:0</td>
</tr>
<tr>
<td>40</td>
<td>12:8</td>
<td>12:5</td>
<td>21:5</td>
<td>21:0</td>
<td>30:0</td>
<td>=</td>
</tr>
<tr>
<td>56</td>
<td>18:0</td>
<td>16:0</td>
<td>18:0</td>
<td>18:0</td>
<td>34:0</td>
<td>=</td>
</tr>
<tr>
<td>90</td>
<td>21:0</td>
<td>18:5</td>
<td>18:0</td>
<td>13:5</td>
<td>39:5</td>
<td>=</td>
</tr>
<tr>
<td>125</td>
<td>25:0</td>
<td>25:0</td>
<td>10:0</td>
<td>10:0</td>
<td>40:5</td>
<td>=</td>
</tr>
<tr>
<td>160</td>
<td>26:0</td>
<td>27:0</td>
<td>=</td>
<td>=</td>
<td>38:0</td>
<td>=</td>
</tr>
</tbody>
</table>

1) Da 4a und 1a mit einander metallisch verbunden sind, also sich in derselben elektrischen Zustand befinden, so werde ich beide mit derselben Zeichen a bezeichnen.

2) | Zusatz in Zwi. 1 | 4i - 1i |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a0</td>
<td>i0</td>
</tr>
<tr>
<td>90'</td>
<td>40:5</td>
</tr>
<tr>
<td>125</td>
<td>40:0</td>
</tr>
<tr>
<td>160</td>
<td>38:5</td>
</tr>
</tbody>
</table>

Digitized by Google

<table>
<thead>
<tr>
<th>Zusatz in</th>
<th>4(i)-4(a)</th>
<th>4(i)-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zw. 1</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(1) offen</td>
<td>31·0</td>
<td>31·0</td>
<td>46·0</td>
<td>46·0</td>
<td>46·0</td>
<td>46·0</td>
<td>46·0</td>
<td>46·0</td>
</tr>
<tr>
<td>8'</td>
<td>8·5</td>
<td>12·0</td>
<td>42·0</td>
<td>42·0</td>
<td>42·0</td>
<td>42·0</td>
<td>42·0</td>
<td>42·0</td>
</tr>
<tr>
<td>24</td>
<td>=</td>
<td>14·0</td>
<td>10·5</td>
<td>14·0</td>
<td>10·5</td>
<td>14·0</td>
<td>10·5</td>
<td>14·0</td>
</tr>
<tr>
<td>40</td>
<td>=</td>
<td>16·5</td>
<td>19·5</td>
<td>49·5</td>
<td>56·0</td>
<td>49·5</td>
<td>56·0</td>
<td>49·5</td>
</tr>
<tr>
<td>56</td>
<td>=</td>
<td>16·0</td>
<td>32·0</td>
<td>46·5</td>
<td>62·5</td>
<td>46·5</td>
<td>62·5</td>
<td>46·5</td>
</tr>
<tr>
<td>90</td>
<td>27·5</td>
<td>13·5</td>
<td>41·5</td>
<td>60·0</td>
<td>44·0</td>
<td>60·0</td>
<td>44·0</td>
<td>60·0</td>
</tr>
<tr>
<td>125</td>
<td>30·5</td>
<td>11·5</td>
<td>43·5</td>
<td>53·5</td>
<td>53·5</td>
<td>53·5</td>
<td>53·5</td>
<td>53·5</td>
</tr>
<tr>
<td>160</td>
<td>32·5</td>
<td>9·0</td>
<td>42·5</td>
<td>47·0</td>
<td>47·0</td>
<td>47·0</td>
<td>47·0</td>
<td>47·0</td>
</tr>
<tr>
<td>200</td>
<td>32·0</td>
<td>6·0</td>
<td>39·0</td>
<td>45·0</td>
<td>45·0</td>
<td>45·0</td>
<td>45·0</td>
<td>45·0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zusatz in</th>
<th>4(i)-4(a)</th>
<th>4(i)-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zw. 1</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(1) offen</td>
<td>20·5</td>
<td>6·0</td>
<td>30·0</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
</tr>
<tr>
<td>8'</td>
<td>=</td>
<td>10·0</td>
<td>6·0</td>
<td>44·5</td>
<td>44·5</td>
<td>44·5</td>
<td>44·5</td>
<td>44·5</td>
</tr>
<tr>
<td>24</td>
<td>=</td>
<td>13·5</td>
<td>16·0</td>
<td>46·5</td>
<td>51·0</td>
<td>46·5</td>
<td>51·0</td>
<td>46·5</td>
</tr>
<tr>
<td>40</td>
<td>=</td>
<td>14·0</td>
<td>27·0</td>
<td>45·5</td>
<td>59·0</td>
<td>43·5</td>
<td>59·0</td>
<td>43·5</td>
</tr>
<tr>
<td>56</td>
<td>=</td>
<td>16·0</td>
<td>44·5</td>
<td>54·0</td>
<td>54·0</td>
<td>54·0</td>
<td>54·0</td>
<td>54·0</td>
</tr>
<tr>
<td>90</td>
<td>28·5</td>
<td>11·0</td>
<td>43·0</td>
<td>51·0</td>
<td>51·0</td>
<td>51·0</td>
<td>51·0</td>
<td>51·0</td>
</tr>
<tr>
<td>125</td>
<td>26·0</td>
<td>8·5</td>
<td>35·0</td>
<td>44·0</td>
<td>44·0</td>
<td>44·0</td>
<td>44·0</td>
<td>44·0</td>
</tr>
<tr>
<td>160</td>
<td>27·5</td>
<td>8·5</td>
<td>35·0</td>
<td>53·5</td>
<td>53·5</td>
<td>53·5</td>
<td>53·5</td>
<td>53·5</td>
</tr>
<tr>
<td>200</td>
<td>26·0</td>
<td>=</td>
<td>32·5</td>
<td>47·0</td>
<td>52·0</td>
<td>52·0</td>
<td>52·0</td>
<td>52·0</td>
</tr>
</tbody>
</table>

Reihe 21. Hptdr. = 32\(\frac{1}{6}\)°. Nbdr. Stamm = 26'. Zweig 4 = 10'.

<table>
<thead>
<tr>
<th>Zusatz in</th>
<th>4(i)-4(a)</th>
<th>4(i)-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
<th>Ai-4(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zw. 1</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(1) offen</td>
<td>24·0</td>
<td>=</td>
<td>=</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
</tr>
<tr>
<td>0'</td>
<td>20·0</td>
<td>17·5</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
</tr>
<tr>
<td>8</td>
<td>16·5</td>
<td>19·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
</tr>
<tr>
<td>16</td>
<td>41·5</td>
<td>23·5</td>
<td>12·5</td>
<td>48·5</td>
<td>48·5</td>
<td>48·5</td>
<td>48·5</td>
<td>48·5</td>
</tr>
<tr>
<td>24</td>
<td>10·5</td>
<td>25·0</td>
<td>20·0</td>
<td>51·0</td>
<td>46·0</td>
<td>46·0</td>
<td>46·0</td>
<td>46·0</td>
</tr>
<tr>
<td>40</td>
<td>16·0</td>
<td>25·0</td>
<td>38·0</td>
<td>60·0</td>
<td>40·0</td>
<td>60·0</td>
<td>40·0</td>
<td>60·0</td>
</tr>
<tr>
<td>56</td>
<td>22·5</td>
<td>21·5</td>
<td>44·5</td>
<td>64·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
<td>41·0</td>
</tr>
<tr>
<td>90</td>
<td>29·0</td>
<td>13·5</td>
<td>45·5</td>
<td>58·0</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
</tr>
<tr>
<td>125</td>
<td>31·5</td>
<td>11·0</td>
<td>43·0</td>
<td>53·0</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
<td>42·5</td>
</tr>
<tr>
<td>160</td>
<td>33·0</td>
<td>7·5</td>
<td>41·0</td>
<td>51·0</td>
<td>42·0</td>
<td>42·0</td>
<td>42·0</td>
<td>42·0</td>
</tr>
<tr>
<td>200</td>
<td>33·5</td>
<td>=</td>
<td>39·0</td>
<td>48·0</td>
<td>41·5</td>
<td>41·5</td>
<td>41·5</td>
<td>41·5</td>
</tr>
</tbody>
</table>

1) Zusatz in Zw. 4\(i\)-4\(i\) | 4\(i\)-4\(i\) | 4\(i\)-4\(i\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90'</td>
<td>41·0</td>
<td>41·5</td>
</tr>
<tr>
<td>125</td>
<td>43·5</td>
<td>42·5</td>
</tr>
<tr>
<td>160</td>
<td>41·5</td>
<td>41·5</td>
</tr>
</tbody>
</table>
Reihe 22. Hptdr. = 32 1/8'. Nbdr. Stamm = 26'. Zweig 4 = 20'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. 1</th>
<th>4i-4a</th>
<th>1i-1a</th>
<th>4i - 1i</th>
<th>Ai - 4i</th>
<th>Ai - 1i</th>
<th>Ai - a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>1i₀</td>
<td>a₀</td>
</tr>
<tr>
<td>(1) offen</td>
<td>30.5</td>
<td>30.5</td>
<td>10.5</td>
<td>46.5</td>
<td>46.5</td>
<td>46.5</td>
</tr>
<tr>
<td>0'</td>
<td>21.0</td>
<td>14.0</td>
<td>10.5</td>
<td>46.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20.0</td>
<td>11.5</td>
<td>6.5</td>
<td>46.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14.5</td>
<td>16.0</td>
<td></td>
<td>41.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>11.5</td>
<td>19.0</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>23.5</td>
<td>23.5</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>29.5</td>
<td>17.0</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>30.0</td>
<td>12.0</td>
<td>42.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>8.0</td>
<td>40.5</td>
<td>42.5</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>31.5</td>
<td>37.5</td>
<td>43.5</td>
<td>50.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>31.5</td>
<td>35.0</td>
<td>45.0</td>
<td>48.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reihe 23. Hptdr. = 32 1/4'. Nbdr. Stamm = 26'. Zweig 4 = 36'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. 1</th>
<th>4i-4a</th>
<th>1i-1a</th>
<th>4i - 1i</th>
<th>Ai - 4i</th>
<th>Ai - 1i</th>
<th>Ai - a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>1i₀</td>
<td>a₀</td>
</tr>
<tr>
<td>(1) offen</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>49.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0'</td>
<td>21.0</td>
<td>11.0</td>
<td>26.0</td>
<td>48.0</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>21.5</td>
<td>14.0</td>
<td>30.0</td>
<td>47.5</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>22.5</td>
<td>18.0</td>
<td>32.0</td>
<td>44.0</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>17.0</td>
<td>19.5</td>
<td>27.5</td>
<td>43.0</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>40</td>
<td>13.5</td>
<td>11.0</td>
<td>6.0</td>
<td>41.0</td>
<td></td>
<td>43.0</td>
</tr>
<tr>
<td>56</td>
<td>15.5</td>
<td>10.5</td>
<td>18.0</td>
<td>44.0</td>
<td>47.5</td>
<td>41.0</td>
</tr>
<tr>
<td>90</td>
<td>15.5</td>
<td>7.5</td>
<td>25.0</td>
<td>45.0</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>18.0</td>
<td>18.0</td>
<td>25.0</td>
<td>47.5</td>
<td>53.5</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>19.0</td>
<td>19.0</td>
<td>23.5</td>
<td>48.0</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>20.0</td>
<td>20.0</td>
<td>23.5</td>
<td>48.5</td>
<td>50.0</td>
<td></td>
</tr>
</tbody>
</table>

Reihe 24. Hptdr. = 32 1/8'. Nbdr. Stamm = 26'. Zweig 4 = 44'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. 1</th>
<th>4i-4a</th>
<th>1i-1a</th>
<th>4i - 1i</th>
<th>Ai - 4i</th>
<th>Ai - 1i</th>
<th>Ai - a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>1i₀</td>
<td>a₀</td>
</tr>
<tr>
<td>(1) offen</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0'</td>
<td>20.0</td>
<td>14.0</td>
<td>32.0</td>
<td>47.5</td>
<td>60.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23.0</td>
<td>21.0</td>
<td>36.0</td>
<td>44.0</td>
<td>69.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20.5</td>
<td>24.5</td>
<td>41.0</td>
<td>44.0</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16.5</td>
<td>23.5</td>
<td>33.5</td>
<td>41.5</td>
<td></td>
<td>40.5</td>
</tr>
<tr>
<td>40</td>
<td>9.5</td>
<td>9.0</td>
<td></td>
<td>42.5</td>
<td></td>
<td>43.0</td>
</tr>
<tr>
<td>56</td>
<td>9.5</td>
<td>8.0</td>
<td>6.0</td>
<td>41.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>12.0</td>
<td>6.5</td>
<td>17.0</td>
<td>45.0</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>13.5</td>
<td>18.0</td>
<td></td>
<td>47.0</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>15.0</td>
<td>18.0</td>
<td></td>
<td>48.0</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>15.5</td>
<td>19.0</td>
<td></td>
<td>48.0</td>
<td>50.0</td>
<td></td>
</tr>
</tbody>
</table>
Über die Zeichen in den vorstehenden Tabellen bemerke ich noch, dass gerade wie früher bei den Überschlägen von Δf auf die Nebenbatterie dann, wenn kein Funke bei 40.5 erschien, wohl aber bei 40.0, der Stärke der Batterieladung, ein — eingetragen worden ist, und ebenso ein —, wenn der Funke keine Länge von wenigstens 0.1 Linie erreichte.

Die Zahlen in den beiden ersten Columnen geben zunächst die vollen Ladungen der beiden Nebenbatterietheile (4) und (1) an, so mit also auch die davon abhängige Stärke des Stromes, der von ihnen ausgeht. Da es nach Reihe 18 keinen Unterschied macht, ob man die innere oder äussere Belegung ableitend verbindet, so habe ich in den folgenden Reihen nur die Werthe bei a_0 beobachtet. Diese Zahlen bieten zunächst ein Mittel dar, sie mit meinen früheren Thermometerbeobachtungen (Sitzb. Bd. XXVII, p. 207) zu vergleichen, wenn schon dort als Hauptbatterie $(A) + (B)$ und als Nebenbatterietheile $F_1 + F_3$ und $F_2 + F_4$ dienten, der Hauptdrath eine Länge von 35' hatte, und endlich die Schliessungsdräthe Platindräthe enthielten, die jedenfalls einen geringen Einfluss ausübten. Eine solche Vergleichung wenn auch nur von sich annähernd entsprechenden Reihen wird sicher erspriesslich sein, da über den Gebrauch des Funkenmessers die Ansichten nicht durchgängig ganz klar zu sein scheinen. In der cit. Abb. pag. 243 und 244 leitete ich aus den Beobachtungen die beiden Resultate her, dass die kleinste Wärme im ersten Batterietheil, dessen Zweig constant aber kürzer als der Hauptdrath ist, hier in (4), an der Stelle eintritt, wo der Zweig des andern Batterietheiles, der verlängert wird, hier von Flasche 1, dem Hauptdrath an Länge gleich kommt, und dann, dass in beiden Batterietheilen (den Fall der gleich langen Zweige ausgeschlossen) gleiche Wärme entsteht, wenn beide Zweige zusammen die doppelte Länge des Hauptdrathes haben. Hier finden wir in den Reihen 18 bis 22 ebenfalls die kleinste Schlagweite in (4) bei einem Zusatz in Zweig 1 = 24', also bei einer Länge von Zweig 1 = 31', da der constante Theil 7' beträgt. Die gleichen Schlagweiten in (4) und (1) sind in Reihe 18, 19, 20, abgesehen davon, dass sie sich sehr wenig verschieben, bei einem Zusatz von 56' in Zweig 1, also richtig bei der Summe beider Zweige = 63', da (4) keinen Zweig hat. Reihe 21 gibt die gleiche Wärme bei einem Zusatz von 40' bis 56', also bei der Summe der Zweige = 57' bis 73' und Reihe 22 bei einem

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 25.
Zusatz von 40', also bei der Summe der Zweige = 67'. Ausser dieser Übereinstimmung können wir noch das Verhältniss der Schlagweiten in (4) und (1) mit dem Verhältniss der Wärme in \(F_1 + F_6 \) und \(F_2 + F_5 \) vergleichen, da die Reihen 18 und 21 wenig auseinandergehen; es also nur einen geringen Unterschied macht, ob (4) einen kurzen oder gar keinen Zweig besitzt; nur bei Zusatz 0 werden die Verhältnisse dadurch am ungleichsten. Von meinen Thermometerbeobachtungen ist die Doppelreihe Nr. 41, p. 236 am nächsten mit Reihe 18 und 21 zu vergleichen; wir wollen also unter Berücksichtigung des Satzes, dass die Wärme im Quadrat der Stromstärke wächst, das Verhältniss der Stromstärken (der Schlagweiten) von (1) zu (4) oder \(\frac{(1)}{(4)} = m \) mit \(\sqrt{\frac{F_2 + F_5}{F_1 + F_6}} = m' \) zusammenstellen. Dies gibt:

\[
\begin{array}{cccc}
\text{Zusatz in (1) od. } F_2 + F_5 & \text{Reihe 18} & \text{Reihe 21} & \text{Nr. 41} \\
& m & m' & m' \\
0' & 0.87 & 1.25 & 0.95 & 0.95 \\
8 & 1.18 & 1.48 & 1.30 & 1.38 \\
16 & 2.02 & 2.15 & 1.70 & 1.90 \\
24 & 2.38 & 2.22 & 2.19 & 2.28 \\
32 & & & 2.05 & 2.14 \\
40 & 1.56 & 1.70 & 1.48 & 1.50 \\
56 & 0.95 & 1.12 & 0.83 & 0.80 \\
90 & 0.45 & 0.63 & 0.47 & 0.43 \\
\end{array}
\]

Noch lässt sich Reihe 22 mit der Doppelreihe Nr. 43, p. 240 vergleichen.

\[
\begin{array}{cccc}
\text{Zusatz in (1) od. } F_2 + F_5 & \text{Reihe 22} & \text{Nr. 43} \\
& m & m' & m' \\
0' & 0.66 & 0.85 & 0.49 \\
8 & 0.57 & 0.70 & 0.68 \\
16 & 1.08 & 0.96 & 0.98 \\
24 & 1.65 & 1.57 & 1.68 \\
32 & & & 1.34 & 1.43 \\
40 & 1.00 & 0.88 & 0.89 \\
56 & 0.87 & 0.55 & 0.81 \\
90 & 0.40 & 0.33 & 0.30 \\
\end{array}
\]

Berücksichtigt man die vielen kleinen Ungleichheiten in der Anordnung der Apparate, so wird man eine grössere Übereinstimmung
nicht erwarten, und den Gebrauch des Funkenmessers neben Thermometer-Beobachtungen gerechtfertigt finden. — Die Schlagweiten \(4i - 1i \) bleiben übrigens nach den Anmerkungen zu Reihe 18 und 12 unverändert, wenn man \(a \) oder \(4i \) oder \(1i \) ableitend verbindet. Bei den Schlagweiten von \(Ai \) nach \(4i \) und \(1i \) macht es dagegen einen Unterschied, ob \(a \) oder \(1i \), ebenso ob \(a \) oder \(4i \) mit dem Erdboden in Verbindung steht. Stellt man nämlich eine im Innern positiv geladene Flasche isoliert auf, so ist die innere Belegung positiv, wenn die äussere, und umgekehrt die äussere gleich stark negativ, wenn die innere eine Ableitung hat. Stehen zwei Flaschen (4) und (1) auf derselben Metallfläche, und hat die erste in demselben Momente auf der inneren Belegung \(E' \), während die andere daselbst \(E'' \) hat (\(E' \) und \(E'' \) hier unentschieden ob positiv oder negativ, und die äussern Belegungen Null-elektrisch vorausgesetzt), so ist die freie Elektricität bei \(4i_a \) auf \(a = -E' \) und auf \(1i = E' - E' \), ebenso bei \(1i_a \) auf \(a = -E' \) und auf \(4i = E' - E' \). Die Schlagweite \(4i - 1i \) ist demnach immer \(E - E' \), mag \(a, 4i \) oder \(1i \) = Null sein, denn man erhält sie in den drei Fällen \(E' = E = 0 = (E' - E) = E = E'' \). Nun aber richtet sich die Belegung nach der Zahl der beiden Zahlen in Columne \(A_i - 4i \), so wird nach den Beobachtungen gerade in dem Momente, wo der Funke überspringt, (1) im Innern um so viel entgegengesetzt elektrisch oder umgekehrt um so viel gleich elektrisch mit (4) im Innern sein, als die Zahl bei \(1i_a \) grösser oder umgekehrt kleiner als die ihr entsprechende bei \(a \). Derselbe Fall ist es mit der Schlagweite \(A_i - 1i \); in dem Momente, wo der Funke überspringt, ist \(4i \) um so viel entgegengesetzt oder gleich elektrisch mit \(1i \) als die Zahl unter \(4i_a \) gröszer oder kleiner als die zu ihr gehörige unter \(a \). Schlagen endlich Funken von \(A_i \) auf \(a \) über, so hat \(a \) bei \(4i_a \) die entgegengesetzte Elektricität von \(4i \) und bei \(1i_a \) die entgegengesetzte von \(1i \).

Nach diesen vorläufigen Erörterungen kann es nicht schwer sein, den Gang der Ladung in (4) und (1) im Allgemeinen zu verfolgen. In
Reihe 18, wo der Stamm des Nebendrathes etwas kürzer als der Hauptdrath ist, und Zweig 1 bald länger als derselbe wird, geht die Ladung von (4) so in die Höhe, dass sie ihr Maximum anfänglich etwa in der Mitte der Partialentladungen aus (4) erhält, dann von Zusatz 40' in (1) an noch etwas früher; diese Ladung fällt scharf ab und das Innere von (4) geht in den negativen Zustand von gleicher Intensität über. Der Gang der Ladung in (1) ist anfänglich nur wenig von dem vorigen unterschieden, doch erreicht sie ihr Maximum etwas später; bei 16' Zusatz beträgt dieses Zeitintervall schon so viel, dass (4) bis auf + 5 (47·5 — 42·5) herabgekommen ist; bei den größern Zusätzen von 56' an ist (4) bereits vollständig in den negativen Zustand übergetreten. Wenn am Ende der Reihe die Schlagweiten unter 4 i — 1 i und ebenso die Differenzen zwischen den Zahlen der beiden Spalten unter A i — 1 i etwas zu gross werden, so liegt dies wohl in dem momentanen Auftreten der Elektricität, die dadurch gewissermassen stossweise wirken. — In der Reihe 19, in welcher der Stamm des Nebendrathes um 18' verlängert ist, erreichen (4) und (1) das Maximum ihrer Ladung anfänglich etwas nach der Mitte der Partialentladung aus (4); dann tritt das Maximum in (4) wieder weiter nach vorn zurück und kommt bei 56' und 90' Zusatz vor die Mitte, gleichsam als wäre der Nebendrath von (4) kürzer als der Hauptdrath; später geht es wieder etwas hinter die Mitte hinaus. Die Ladung von (1) hat ihr Maximum immer nach der Mitte der Partialentladungen aus (4), allein wegen der Zahlen 43·0 und 45·0 unter A i — 4 i muss diese Ladung gerade in dem Momente, wo (4) zum Maximum gelangt, etwas zurückspringen und die innere Belegung selbst in den negativen Zustand überführen; dann steigt sie schnell wieder auf, während (4) scharf ins Negative übergeht. Ähnlich ist der Verlauf in Reihe 20, wo der Nebendrath im Stamm um 34' verlängert ist; selbst bei dieser Länge tritt noch bei 56' Zusatz das Maximum der Ladung in (4) vor die Mitte der Partialentladung aus (4), nur geht es etwas früher wieder hinter die Mitte zurück. Auch hier macht (1), während die Ladung in (4) ihr Maximum erreicht, eine bis ins Negative zurückgehende Schwingung. — Der bemerkenswerthe Umstand, dass bei der vorliegenden Anordnung des Apparates (4) sich so ladet, als ob der Nebendrath dem Hauptdrathe an Länge nahe gleich wäre, begründet offenbar die starken Ladungen in (4) und demgemäss die von mir in der citirten Abhandlung pag. 245 unter
Nr. 49, 50, 51 besonders hervorgehobenen, so grossen Erwärmungen im Zweige des ersten Batterietheiles. Zu gleicher Zeit erklärt sich aus dem Ladungsgang in (4) und (1) die so auffallend niedrige Temperatur im Stamme des Nebendrathes sowohl an der Stelle, wo beide Batterietheile wieder gleiche Wärme erlangen, als auch weiterhin bei den grösseren Zusätzen in (1). Während nämlich von 56' Zusatz an (4) und (1) anfänglich steigende Ladungen empfangen, also beide Ströme sich etwas verstärken, geht die Ladung von (1) plötzlich zurück, während sie in (4) am schnellsten steigt; dann fällt die Ladung in (4) scharf ab und umgekehrt steigt sie in (1); beide im Stamm vereinten Ströme haben sich also bei 56' Zusatz in diesen Zeitintervallen ganz auf, und der Stamm kann somit nur die anfängliche Wärmeentwicklung und am Ende die von (1) zeigen, wenn anders die letztere durch eine schnellere Rückkehr des negativen Zustandes in (4) zur Null-Ladung nicht auch noch wenigstens teilweise aufgehoben wird. Je mehr die Ladung in (1) zur Zeit des Maximums in (4) zurückgeht, also vornehmlich in Reihe 20, desto geringer muss bei 56' Zusatz die Wärme im Stamm gegen die in den Zweigen sein und desto mehr muss bei den grösseren Zusätzen die Wärme im Zweig des ersten Batterietheiles gerade so wie die Wärme in einem Stamm gegen die Wärme im Zweig des zweiten Batterietheiles und im Stamm des Nebendrathes als in seinen Zweigen erscheinen. Man vergleiche hierzu in der citirten Abhandlung Nr. 41 mit Nr. 50, wo dies aufs deutlichste ausgeprägt ist. — Die Reihe 21, wo (4) einen Zweig von 10' hat, weicht bis auf die Zeile bei 0 Zusatz, welche: Ausnahme natürlich ist, nur sehr wenig von Reihe 18 ab, so dass sie einer besonderen Erläuterung nicht bedarf. — In Reihe 22, wo Zweig 4 eine Länge von 20' hat, geht die Ladung von (1) ebenfalls ganz ins Negative über, wenn (4) am stärksten positiv ist; dagegen ist es abweichend, dass die Ladung in (1) nicht mehr so bedeutend wie früher oder wenigstens nicht so schnell nach dieser Nebenschwingung aufsteigt; sie hat bei 40' Zusatz ihr Maximum erreicht, wenn (4) auf — 3'5 (47'5 — 44'0), und bei 56' Zusatz wenn (4) eben auf Null gekommen ist. Daher findet zwischen 4 i und 11 der Überschlag des Funkens nicht mehr von (1) auf die gesunkene Ladung in (4), sondern von (4) im Maximum auf den durch die Nebenschwingung erzeugten negativen Zustand in (1) Statt. Die Wärme im Stamm kann unter solchen Verhältnissen nicht mehr
so stark wie vorher sinken, weil die entgegengesetzten Ströme in (4) abwärts und in (1) aufwärts nicht mehr so entschieden in einander eingreifen. Vergl. die citirte Abhandlung p. 235 und p. 240, Nr. 41 und 43 mit einander. Noch mehr schwächt sich die Strömung in (1) ab und geht, wie es scheint, fast ganz mit der besprochenen Nebenschwingung zu Ende, wenn Zweig 4 länger als der Stamm ist; denn abgesehen davon, dass (1) und (4) nach dem Orte, wo beide Zweige gleich lang sind, nicht wieder zum zweiten Male eine gleiche Ladung erlangen, finden wir auch in (1) keine positive Ladung mehr, wenn (4) im Innern negativ geworden ist; beide Ladungen mögen nahe zu gleicher Zeit niedersinken, weshalb die Wärme im Stamm noch weniger zurückgeht. Vergl. die citirte Abhandlung p. 245, Nr. 50 und 51. Die Zahlen in Reihe 23 vor 32' Zusatz und in Reihe 24 vor 40' Zusatz erklären sich nach den Reihen 21 und 22, indem (1) den kürzeren Zweig hat. Wegen der Zahlen 42·0 und 44·0 unter $Ai-a$ bei 1i_o berücksichtige man Reihe 21 bei 24—40' Zusatz, indem man (4) mit (1) vertauscht.

Ich habe noch einige Beobachtungen angestellt, wo die Hauptbatterie eine in (A) und (B) getheilte war, die Nebenbatterie dagegen nur aus Flasche 4 bestand. Die Resultate sind der Art, dass ich den Gang der Ladung bis jetzt noch nicht überall mit voller Sicherheit verfolgen kann. Der Stamm des Hauptsdrathes bestand aus 2½' Ausl. (der eine Schlagweite von 41·0 hatte) 1½', den gespannten 24' und 2½' = 30½', dann nach Einfügen von 18' aus 48½', wobei der constante Theil des Zweiges B 7' war, und der Nebendrath hatte nach einander eine Länge von 30', 48' und 65'.

Reihe 25. Hptdr. Stamm = 30½'. Nbdr. = 30'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>4$i-4a$</th>
<th>$Ai-4i$</th>
<th>$Bi-4a$</th>
<th>$Bi-4a$ geschl.</th>
<th>$Bi-Ba$ (4) geschl.</th>
<th>$Bi-Ai$ (4) geschl.</th>
<th>$Bi-Ai$ (4) offen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) offen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0'</td>
<td>34·5</td>
<td>—</td>
<td>46·0</td>
<td>—</td>
<td>12·0</td>
<td>11·5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>29·5</td>
<td>—</td>
<td>55·0</td>
<td>—</td>
<td>13·0</td>
<td>12·5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>26·5</td>
<td>—</td>
<td>57·0</td>
<td>—</td>
<td>14·0</td>
<td>13·5</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>14·5</td>
<td>—</td>
<td>68·0</td>
<td>45·0</td>
<td>27·0</td>
<td>26·0</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>10·0</td>
<td>—</td>
<td>69·0</td>
<td>49·0</td>
<td>41·0</td>
<td>41·5</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>21·0</td>
<td>—</td>
<td>70·0</td>
<td>49·0</td>
<td>48·0</td>
<td>55·0</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>23·0</td>
<td>—</td>
<td>60·0</td>
<td>71·0</td>
<td>53·5</td>
<td>69·0</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>25·5</td>
<td>—</td>
<td>69·5</td>
<td>65·0</td>
<td>47·0</td>
<td>59·5</td>
<td>72·0</td>
</tr>
</tbody>
</table>
Reihe 26. Hptdr. Stamm = 30 ¹/₄'. Nbdr. = 48'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>4i — 4a</th>
<th>Ai — 4i</th>
<th>Bi — 4i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
</tr>
<tr>
<td>(B) offen</td>
<td>28·0</td>
<td>50·0</td>
<td>—</td>
</tr>
<tr>
<td>0'</td>
<td>42·5</td>
<td>—</td>
<td>61·0</td>
</tr>
<tr>
<td>8</td>
<td>41·0</td>
<td>—</td>
<td>60·0</td>
</tr>
<tr>
<td>24</td>
<td>34·0</td>
<td>—</td>
<td>56·5</td>
</tr>
<tr>
<td>40</td>
<td>27·5</td>
<td>—</td>
<td>52·5</td>
</tr>
<tr>
<td>56</td>
<td>18·0</td>
<td>—</td>
<td>43·0</td>
</tr>
<tr>
<td>90</td>
<td>12·0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>125</td>
<td>12·5</td>
<td>—</td>
<td>45·0</td>
</tr>
<tr>
<td>160</td>
<td>14·5</td>
<td>—</td>
<td>55·0</td>
</tr>
</tbody>
</table>

Reihe 27. Hptdr. Stamm = 30 ¹/₄'. Nbdr. = 65'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>4i — 4a</th>
<th>Ai — 4i</th>
<th>Bi — 4i</th>
<th>Bi — Ai</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
</tr>
<tr>
<td>(B) offen</td>
<td>19·0</td>
<td>48·5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0'</td>
<td>44·5</td>
<td>48·0</td>
<td>45·0</td>
<td>51·0</td>
</tr>
<tr>
<td>8</td>
<td>44·5</td>
<td>44·5</td>
<td>49·5</td>
<td>48·0</td>
</tr>
<tr>
<td>24</td>
<td>41·0</td>
<td>—</td>
<td>52·5</td>
<td>48·0</td>
</tr>
<tr>
<td>40</td>
<td>33·5</td>
<td>—</td>
<td>55·5</td>
<td>47·5</td>
</tr>
<tr>
<td>56</td>
<td>25·0</td>
<td>—</td>
<td>52·0</td>
<td>44·5</td>
</tr>
<tr>
<td>90</td>
<td>14·0</td>
<td>—</td>
<td>—</td>
<td>65·5</td>
</tr>
<tr>
<td>125</td>
<td>8·0</td>
<td>—</td>
<td>—</td>
<td>59·0</td>
</tr>
<tr>
<td>160</td>
<td>9·0</td>
<td>—</td>
<td>—</td>
<td>57·0</td>
</tr>
</tbody>
</table>

Reihe 28. Hptdr. Stamm = 48 ¹/₄'. Nbdr. = 27'.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>4i — 4a</th>
<th>Ai — 4i</th>
<th>Bi — 4i</th>
<th>Bi — Ai</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
<td>a₀</td>
</tr>
<tr>
<td>(B) offen</td>
<td>18·0</td>
<td>—</td>
<td>54·0</td>
<td>—</td>
</tr>
<tr>
<td>0'</td>
<td>16·5</td>
<td>—</td>
<td>55·0</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>13·5</td>
<td>—</td>
<td>52·0</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>11·5</td>
<td>—</td>
<td>52·0</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>10·5</td>
<td>—</td>
<td>44·0</td>
<td>—</td>
</tr>
<tr>
<td>56</td>
<td>13·0</td>
<td>—</td>
<td>44·0</td>
<td>61·0</td>
</tr>
<tr>
<td>90</td>
<td>18·0</td>
<td>—</td>
<td>44·0</td>
<td>60·0</td>
</tr>
<tr>
<td>125</td>
<td>18·0</td>
<td>—</td>
<td>42·5</td>
<td>59·0</td>
</tr>
<tr>
<td>160</td>
<td>16·5</td>
<td>—</td>
<td>42·5</td>
<td>51·5</td>
</tr>
<tr>
<td>200</td>
<td>15·5</td>
<td>—</td>
<td>42·5</td>
<td>70·5</td>
</tr>
</tbody>
</table>

Die Hauptschwierigkeit für die Erklärung liegt in den Schlagweiten 4i — 4a. Bei dem Zusatz o in Zweig B sieht man noch
deutlich, wie die Hauptbatterie eine einzige Batterie von zwei Flaschen repräsentiert, welche die eine Flasche 4 ladet. Da diese zur Gleichheit der Schliessungsrathe einen Nebendarth von der doppelten Länge des Hauptdrathes fordert, so ist die Schlagweite in Reihe 27 am größten, kleiner in Reihe 26, 25 und am kleinsten in Reihe 28. Diesem Verhältniss entsprechen die Funken von A_i und B_i nach $4i$ und $4a$ vollkommen. Dann treten (A) und (B) etwas aus einander, allein der Hauptdrath wird länger, und die Schlagweite in (4) sinkt. Darauf scheint die Ladung mehr und mehr von (A) allein abzuhängen; das Maximum tritt mehr nach der Mitte oder noch hinter die Mitte der Partialentladungen aus (A) zurück und scheint von dem aus (B) eintretenden Ströme unterdrückt zu werden, da von dem Momente an, wo dieser eintritt, die Ladung ins Negative überschlagen dürfte. So erklärt es sich wahrscheinlich, warum die kleinste Ladung in (4) immer weiter auf die grösseren Zusätze in Zweig B zurückgeht, je länger der Nebendarth im Verhältniss zum Stamm oder dem Schliessungsrath von (A) wird; denn, je länger er wird, desto später erfolgt das Maximum der Ladung, und kann somit noch später von dem eintretenden Strom aus (B) erfasst werden. Besonders schwierig ist es, über die am Ende der Reihen wieder wachsenden Ladungen in (4) klar zu werden, indem man darüber ungewiss sein kann, ob sie vom Strom (A) oder von (B) bewirkt werden. Gegen (B) spricht indess die Länge des Schliessungsrathes in diesem Theile, und dann besonders die folgende Reihe, in welcher der Nebenbatteriestrom durch den Zweig A inducirtr wurde. Es bestand nämlich Zweig A aus $3'$, den gespannten $24'$ und $1\frac{1}{4}'$, der constante Theil von Zweig B war $4\frac{3}{4}'$ und der mit dem Auslader beginnende Stamm hatte eine Länge von $20\frac{1}{4}'$. Der Nebendarth 4, der die andern gespannten $24'$ enthielt, war $46'$ lang, entsprach also so ziemlich dem Schliessungsrath A, wenn Zweig B offen blieb; die Verhältnisse waren demnach ungefähr wie in Reihe 25 gewählt, nur dass hier, wie bemerkt, der Zweig A, nicht der Stamm inducirte.
Über den elektrischen Zustand der Nebenbatterie während ihres Stromes. 201

Reihe 29.

<p>| Zusatz in | $4i - 4a$ |</p>
<table>
<thead>
<tr>
<th>Zw. B.</th>
<th>a_0</th>
<th>a_0</th>
<th>i_0</th>
<th>i_0</th>
<th>i_0</th>
<th>i_0</th>
<th>i_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) offen</td>
<td>31.5</td>
<td>50.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33.5</td>
<td>44.5</td>
<td>68.5</td>
<td></td>
<td>50.5</td>
<td>34.0</td>
<td>39.0</td>
</tr>
<tr>
<td>8</td>
<td>33.5</td>
<td>44.0</td>
<td>68.0</td>
<td></td>
<td>50.5</td>
<td>27.5</td>
<td>33.5</td>
</tr>
<tr>
<td>16</td>
<td>30.0</td>
<td>46.5</td>
<td>66.5</td>
<td></td>
<td>48.5</td>
<td>18.0</td>
<td>15.0</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>16.5</td>
<td>58.0</td>
<td></td>
<td></td>
<td>54.0</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td>61.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Berücksichtigt man, dass in dieser Reihe Zweig A anfangs länger als Zweig B ist, und dass demnach bis etwa 32' Zusatz andere Verhältnisse stattfinden, so hat die Reihe die grösste Ähnlichkeit mit Reihe 23. Hier kann aber (4) unmöglich von (B), sondern nur von (A) allein geladen werden. Halten wir dies als begründet fest, so werden wir annehmen müssen, dass wenn jede Partialentladung aus (A) so weit jeder Partialentladung aus (B) vorangeht, dass die Ladung in (4) erst hinter ihrem Maximum von dem Strom aus (B) ergriffen werden kann, dass dann die Ladung in (4) sich wiederum steigert, als wenn Zweig (B) geöffnet wäre. Misslich bleiben nur die am Ende wieder etwas abnehmenden Zahlen in Reihe 28. — Die Schlagweiten, die von Ai ausgehen, bieten nichts Auffälliges dar; so lange die Theile der Hauptbatterie noch nahezu eine einzige Batterie bilden, also so lange der Nebendrath zu kurz oder dem Hauptdrathe nahe gleich ist, finden nur Überschläge nach 4a Statt; darauf, wenn (A) mehr allein wirkt, ist entweder die Zahl des Maximums der Ladung gering, oder es fällt um die Mitte der Partialentladung aus (A) ein, daher erscheinen weder nach 4i noch nach 4a Funken von einer Länge über 41.0. Nur in Reihe 28, wo der Nebendrath im Verhältniss zum Hauptdrath sehr kurz ist, tritt das Maximum der Ladung sehr zeitig und dabei stark genug ein, um Funkenüberschläge nach 4a zu geben. — Die Zahlen unter $Bi - 4i$ und $Bi - 4a$ erregen an einigen Stellen wieder Bedenken. Klar ist es, dass anfänglich, wo beide Batterietheile noch
nahezu wie eine Batterie wirken, nur Überschläge auf 4a beobachtet werden können, die nach und nach größer werden, je später der Strom aus (B) eintritt oder je länger (B) seine volle Ladung bewahrt. Wirkt darauf (A) mehr allein und führt der eintretende Strom aus (B) die Ladung in (A) stark und schnell ins Negative zurück, so schlägt die positive Elektrizität in Bi sowohl auf diesen negativen Zustand in (A), als auf die durch iα auf a übergeführte negative Ladung in einem längern Funken als 41·0 über. Sonderbar erscheinen nur die kleinen Zahlen 59·0, 57·5, 56·5 unter Bi—4a in Reihe 28. Wenn nämlich Ai auf die negative Ladung in 4a in Funken = 42·5 überschlagen kann, d. h. zu einer Zeit überschlagen kann, wo die Elektrizität in (A) nur 42·5—18·0, 42·5—16·5, 42·5—15·5 oder 24·0, 26·0, 27·0 ist, so sollte man meinen, dass die noch volle Ladung in (B), die nach Columne Bi—Ba = 56·5, 55·5, 52·5 ist, in Funken von der Länge 56·5 + 18·0, 55·5 + 16·5, 52·5 + 15·5 oder von der Länge 73·5, 71·5 und 68·0 überschlagen müsste. Ich weiss hier keine andere Auskunft, als dass man annimmt, die gesteigerte Ladung in (B) trete nicht augenblicklich, sondern nach und nach, und zwar erst voll in dem Momente auf, wo die Strömung aus (B) beginnt. Wäre dann zur Zeit, wo der Funkenüberschlag auf 4a erfolgt, der bald nach dem Anfange der Strömung aus (A) stattfindet, die Ladung in (B) noch nahe 41·0, so genügten für Bi—4a die Zahlen 59·0, 57·5 und 56·5, womit zwei übereinstimmen. Die Abweichung 51·5 müsste aus einer derartigen Störung entstehen, welche früher bei der Entladung einer geteilten Hauptbatterie nachgewiesen wurde, und wie sie in dieser Reihe bei Zusatz 2a' vorkommt, wo die Ladung in (B) unter Bi—Ba (A) offen zurückgeht; freilich wird bei 160' Zusatz keine solche Anomalie nachgewiesen. Wenn die Funken zwischen Bi und 4i bei den grössten Zusätzen sehr lang werden, so kann dies nicht auffallen, weil der negative Zustand in (A) mit dem Eintritt des Stromes aus (B) oder kurz nach demselben vorhanden ist, also dann, wenn (B) die grösste Intensität seiner Ladung erlangt hat. — Über die Columnae Bi—Ai bemerke ich nur, dass es anfänglich keinen wesentlichen Unterschied macht, ob der Nebendrath geschlossen oder geöffnet ist: erst bei den längeren Zweigen B werden bei (A) geschlossen, die Schlagweiten merklich kleiner. — Merkwürdig ist es noch, dass in Reihe 29 die Schlagweite Ai—Bi, wenn Zweig B
einen Zusatz von 32' hat, also dem Zweig A nahezu gleich ist [(B) ist an Capacität kleiner als (A)], nur bei geöffneter Nebenbatterie nicht aber bei geschlossener auf Null zurückgeht. Diese Erscheinung dürfte sich auf folgende Weise erklären. Jeder Nebenbatteristrom hemmt nach bekannten früheren Beobachtungen den Hauptstrom, somit wird hier Strom (A) mehr als Strom (B) gehemmt; beginnen nun beide bei gleich langen Zweigen zu gleicher Zeit ihre Strömung, so eilt der von (B) etwas voran und der von (A) bleibt zurück; dies gibt an der Stelle, wo sie am weitesten aus einander kommen, eine Schlagweite von 15'0 oder etwas mehr, denn das Minimum dieser Schlagweiten dürfte erst vorhanden sein, wenn der Anfang der Strömung aus (B) schon etwas gegen den Anfang der Strömung aus (A) zurückgeht. — Das Resultat der ganzen Untersuchung möchte sein, dass die vorstehenden Reihen nichts so Auffälliges enthalten, dass es mit den aus den früheren einfachen Reihen gewonnenen Thatsachen gerade in Widerspruch stünde; die Annahme einiger Störungen bei besonderen Längen der Schliessungsräthe könnte als Auskunftsmittel bei einzelnen Zahlen genügen.

<table>
<thead>
<tr>
<th>Zusatz in Zw. B.</th>
<th>$4i - 4a$</th>
<th>$Ai - 4i$</th>
<th>$4i - 4a$</th>
<th>$Bi - 4i$</th>
<th>$Bi - 4a$ (4) geschl.</th>
<th>$Bi - Ai$ (4) offen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) offen</td>
<td>35·0</td>
<td>47·5</td>
<td>63·0</td>
<td>52·0</td>
<td>59·5</td>
<td>60·5</td>
</tr>
<tr>
<td>0'</td>
<td>37·5</td>
<td>49·0</td>
<td>62·5</td>
<td>69·5</td>
<td>61·0</td>
<td>73·5</td>
</tr>
<tr>
<td>8</td>
<td>39·5</td>
<td>49·5</td>
<td>52·5</td>
<td>67·0</td>
<td>72·5</td>
<td>70·0</td>
</tr>
<tr>
<td>12</td>
<td>60·0</td>
<td>62·5</td>
<td>50·0</td>
<td>44·5</td>
<td>70·0</td>
<td>67·0</td>
</tr>
<tr>
<td>16</td>
<td>69·0</td>
<td>46·0</td>
<td>42·0</td>
<td>42·0</td>
<td>67·0</td>
<td>67·0</td>
</tr>
<tr>
<td>20</td>
<td>71·5</td>
<td></td>
<td></td>
<td>40·0</td>
<td>67·0</td>
<td>67·0</td>
</tr>
<tr>
<td>24</td>
<td>36·0</td>
<td>49·5</td>
<td>69·0</td>
<td>50·0</td>
<td>50·0</td>
<td>63·5</td>
</tr>
<tr>
<td>28</td>
<td>58·0</td>
<td>58·5</td>
<td>58·5</td>
<td>64·0</td>
<td>35·5</td>
<td>58·0</td>
</tr>
<tr>
<td>32</td>
<td>48·5</td>
<td>69·0</td>
<td>53·0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>33·5</td>
<td>48·5</td>
<td>42·5</td>
<td>73·5</td>
<td>43·5</td>
<td>41·0</td>
</tr>
<tr>
<td>40</td>
<td>34·5</td>
<td>48·5</td>
<td>42·5</td>
<td>73·5</td>
<td>43·5</td>
<td>41·0</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>76·5</td>
<td>27·5</td>
<td>57·0</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>77·0</td>
<td>27·5</td>
<td>64·0</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>76·0</td>
<td>27·5</td>
<td>71·0</td>
</tr>
<tr>
<td>56</td>
<td>35·0</td>
<td>45·5</td>
<td>53·5</td>
<td>75·0</td>
<td>52·0</td>
<td>73·0</td>
</tr>
<tr>
<td>50</td>
<td>34·5</td>
<td>45·5</td>
<td>53·5</td>
<td>75·0</td>
<td>52·0</td>
<td>73·0</td>
</tr>
<tr>
<td>125</td>
<td>35·0</td>
<td>45·5</td>
<td>68·5</td>
<td>65·0</td>
<td>68·0</td>
<td>70·0</td>
</tr>
<tr>
<td>160</td>
<td>35·0</td>
<td>46·0</td>
<td>76·0</td>
<td>58·0</td>
<td>59·0</td>
<td>81·0</td>
</tr>
</tbody>
</table>
Über die Bestandtheile des Meteorsteines von Kaba in Ungarn.

Von dem c. M. Prof. F. Wöhler in Göttingen.

gemengt sein muss. Das folgende analytische Resultat bezieht sich also nur auf den erdigen dunkelgrauen Theil dieses Steines. In 100 Theilen desselben wurden gefunden:

Kohle 0·58
Eisen 2·88
Nickel 1·37
Kupfer 0·01
Chromeesenstein 0·89
Magnetkies 3·55
Eisenoxydul 20·20
Magnesia 22·39
Thonerde 5·38
Kalk 0·66
Kali (und Natron?) 0·30
Manganoxydul 0·05
Kieselsäure 34·24
Kobalt \in unbestimm-
Phosphor \barer Menge
Unbekannte Materie \n
98·50

Dieser Stein enthält also die gewöhnlichen Bestandtheile der nicht metallischen Meteoriten, er ist ein Gemenge von einem durch Salzsäure leicht zersetzbaren Magnesia-Eisenoxydul-Silicat und von Silicaten, die durch diese Säure nicht zersetzt werden; er enthält außerdem kobalt- und phosphorhaltiges Nickeleisen, Schwefeleisen, Chromeesenstein und als ungewöhnlichen Bestandtheil schwarze, amorphe Kohle. Was die unbekannte Materie betrifft, so will ich weiter unten noch einige Worte darüber sagen.

Es wurden zwei Analysen von dem Steine gemacht, die eine mit 2·827 Grm. durch Aufschliessung mit kohlensaurer Kali-Natron, die andere mit 3·008 Grm. durch Flüsssäure. Die erstere gab den obigen Kieselsäuregehalt, die andere, bei welcher der Verlust als Kieselsäuregehalt genommen werden musste, gab gerade 1 Procent mehr.

Der Gehalt an metallischem Eisen konnte nicht direct bestimmmt werden, sondern wurde nach der Menge des Nickels berechnet, mit der Annahme, dass der Stein das den Meteoriten gewöhnliche, in Salzsäure schwer lösliche Nickeleisen enthalte. Denn er entwickelt

Der erste Versuch der Art misslang, weil die gleichzeitige Bildung von schwefliger Säure nicht vorausgesehen war. Aber bei beiden Versuchen erschien im Rohr jedesmal etwas Wasser, so sorgfältig auch das Pulver zuvor getrocknet war, und zugleich ein weisser Rauch, der sich zu einem weissen, deutlich krystallinischen Sublimat verdichtete, das sich von einer Stelle zur andern sublimiren liess. Es war nicht zu erkennen, was es war. Es erschien auch, neben dem gebildeten Wasser, als eine andere kleine Menge des Steines in
reinem Wasserstoffgas zum Glühen erhitzt wurde. Da sich das Sublimat in einem Tropfen Alkohol löste und nach dessen Verdunstung wieder kristallinisch zurückblieb, so wurde mit dem letzten Stückchen Stein noch der Versuch gemacht, die flüchtige Substanz durch sorgfältig gereinigten heissen Alkohol auszuziehen. Nach dem Verdunsten hinterliess dieser dann, freilich nur in sehr kleiner Menge, eine farblose, weiche, nicht deutlich kristallinische Substanz, die sich beim Erhitzen an der Luft in unbestimmt riechenden weissen Dämpfen verflüchtigte, und die, in das Ende eines kleinen Rohres gebracht und erhitzt, schmolz, sich teilweise deutlich verkohlte, teilweise sich ölförmig an der Wand des Rohres hinaufzog, ohne nachher beim Erkalten zu erstarrn. Als das Rohr dann an einer Stelle zum Glühen erhitzt und der kleine Tropfen an die glühende Stelle getrieben wurde, zersetzte sich die Substanz unter Abscheidung schwarzer Kohle, während zugleich deutlich ein empyreumatischer Geruch zu bemerken war. Die zu diesen Versuchen angewandten Steinsplagmente hatten ein zu frisches Ansehen und waren zu sorgfältig aufbewahrt, als dass man diese Erscheinungen einer zufällig hineingekommenen Verunreinigung zuschreiben könnte.

1) Poggendorff's Annalen. XXXII. p. 114.
Verbindung enthalten könnten, steht das Feuerphänomen bei dem Herabschleppen und ihre geschmolzene Rinde in keinem Widerspruch, wenn man als sehr wahrscheinlich annimmt, dass diese Körper nur ganz momentan einer ausserordentlich hohen Temperatur ausgesetzt gewesen sind, die nur die Oberfläche zu schmelzen, nicht aber die ganze Masse zu durchdringen vermocht.

Vorträge.

Der versteinerte Wald bei Cairo und einige andere Lager verkieselten Holzes in Ägypten.

Von dem w. M. Dr. F. Unger.

(Mit 3 Tafeln.)

(Vorgelegt in der Sitzung vom 21. October 1858.)

Nur sehr uneigentlich bezeichnet man mit dem Ausdrucke „versteinerner Wald“ eine Ablagerung verkieselten Holzes in der Wüste östlich von Cairo. Wenn auch die Ausdehnung dieses Lagers bedeutend, und die Menge des da vorkommenden Holzes nicht unbeträchtlich zu nennen ist, so gibt es doch auf der ganzen Erstreckung des versteinerten Waldes weder einen aufrecht stehenden Stamm, noch einen Baum, der mit seinen Ästen oder auch nur mit den Wurzeln erhalten wäre.

Kaum hat man in der besagten Richtung Cairo etwa eine Meile im Rücken, und die Wüste, welche diese Stadt im Osten begrenzt, betreten, so findet der aufmerksame Beobachter unter den Geschieben und Gesteinsbrümmern, welche den vegetationslosen Boden bedecken, bald einzelne Stücke von dem versteinerten Holze. Diese anfänglich faustgroßen Trümmer werden bei der Entfernung von dem Ausgangspunkte immer zahlreicher und größer, und so gelangt man endlich auf Stellen, wo die ganze Bedeckung der Wüstenoberfläche fast ausschliesslich aus grösseren oder kleineren Stücken desselben Holzes besteht. An diesen Orten, oder wenigstens nahe daran, wird endlich die Menge des Holzes so beträchtlich und die Trümmer so umfangreich, dass es gelingt, mehrere Fuss lange und beträchtlich dicke Stücke zu finden; dieselben liegen nicht selten über einander.

Sitzb. d. mathem.-natürw. Cl. XXXIII. Bd. Nr. 25.
und würden sie nicht vom Wüstensand bedeckt sein, so möchte es nicht schwer werden, ganze Haufwerke solcher Trümmer zu bemer-
ken. Damit hat man aber bereits das Revier des versteinerten Waldes selbst betreten, welcher sich jedoch durch noch viel grös-
sere Masse eines Holzes auszeichnet. Es sind Stämme von vielen Klaftern Länge und 1 bis 2 Fuss im Durchmesser, welche über den eichen oder hügeligen Boden zerstreut daliegen, nicht selten von zwei so grossen Stämmen in gleicher oder in anderer Richtung bedeckt. Keiner dieser Stämme besitzt einen Ast, keiner auch nur eine Spur von Wurzeln. Sie scheinen gleich überständigem Holze eines Urwaldes aus Stämmen zu bestehen, die einen Theil ihrer Äste durch Alter abgeworfen haben, und sowohl der Krone als des Wurzel-
stockes durch Vermorschung beraubt worden sind. Mag es auch man-
chem flüchtigen Beobachter gedünkt haben, dass solche Stämme noch ihre Rinde besass, so kann ich dagegen versichern, dass bei sorgfäl-
tiger Durchmusterung vieler hundert Trümmer mir es niemals gelang, auch nur eine Spur eines Rinden-Körpers an diesen Stämmen wahr-
zunehmen, wie ich überhaupt noch nie eine Rinde an versteinertem Holze, selbst an übrigens wohl erhaltenen Stämmen, zu entdecken im
Stande war. Auf solche Lager ganzer Stämme verkieselten Holzes stösst man, sowohl wenn man über Wadi el Musse oder den sogenannten Mosesbrunnen hinaus in die Wüste sich verliert, als wenn man das
dem ehemaligen Schurfe auf Braunkohlen naheliegende hügelige Ter-
rain im Nordwesten von Wadi el Th betrüge. Trémeau (Voyage
dans le Soudan) hat von einer Partie versteinerten Waldes eine gute
Abbildung gegeben. Solche und ähnliche Stellen mögen wohl viele auf
diesem und dem sich nach Osten in der Richtung von Suez fort-
ziehenden Terrain vorkommen, jedoch durch den um solche Trümmer-
haufen sich ansammelnden Wüstensand häufigen Veränderungen unter-
worfen, ja viele derselben vielleicht nunmehr gänzlich von demselben
begrauben worden sein.

Gehen wir etwas näher in eine Betrachtung dieses verkieselten
Holzes ein, so fällt zunächst dessen Structur, die Oberfläche und Farbe
auf. Im Allgemeinen kann man sagen, dass die Structur des Holzes
porös, stellenweise ausgezeichnet faserig ist. Im ersteren Falle sieht
dasselbe unstreitig wie angefressen aus, ganz so wie morsches, ver-
rottetes Holz unserer Laubwälder. Ausgefaulte grössere oder kleinere
Aststücke geben nach Umständen grössere oder kleinere Vertiefungen.
Ist die Verrottung noch nicht so weit fortgeschritten, so tritt die faserige Structur mehr hervor, wie solches auch gegenwärtig bei mehreren unserer Holzarten im Beginne der Vermorschung zu bemerken ist. Durch oberflächliche Untersuchung verleitet, hat man die oft sehr deutlich hervortretende Faserbildung für ein Kennzeichen der Palmenstructur angesehen, woran bei genauer Beobachtung nicht im Entferntesten gedacht werden kann. Alle Reisebeschreiber, die des versteinerten Waldes von Cairo Erwähnung thun, sprechen von verkieselten Palmenstämmen und selbst der sonst so genaue und verlässliche Gardner Wilkinson 1) sagt unter der Aufschrift „the petrified wood“, nachdem er pag. 171 die Localität des versteinerten Waldes beschreibt: „where besides thornbearing trees and palms are some jointed stems resembling bamboos, one of which is about 15 feet long, broken at each of the knots.“ Natürlich ist hier weder an Palmen, noch weniger an Bambus zu denken, da von Knoten auch nicht im Mindesten irgendwo eine Spur vorkommt.

Besonders auffallend gestaltet sich die Oberfläche des versteinerten Holzes, dasselbe mag grosse Stücke oder kleine Trümmer bilden. In jedem Falle ist die Oberfläche selbst, eines ehedem unebenen Bruches, abgeglättet, glänzend und wie mit einem Finsisse überzogen. Macht man sich mit dem Hammer eine frische Bruchfläche, so ist dieselbe stets matt. Ich werde auf die Ursache dieser seltsamen Erscheinung noch zurückkommen.

Auch die Farbe des versteinerten Holzes bietet manches Eigenthümliche dar. In der Regel ist die Farbe dunkel rothbraun, auch wohl roth, seltener licht und nicht selten an einem füssliangen Stücke der Art wechselnd, dass alle Nüancen der einen und anderen Farbe stellenweise zum Vorschein kommen. Es kann dies wohl nur von der Beschaffenheit des Holzes abgeleitet werden, während es den Versteinerungsprozess einging und das gewiss verschiedene Grade der Auflösung und der dabei stattfindenden Farbenveränderung an sich trug.

Bevor ich in die mikroskopische Untersuchung des Holzes und dessen systematische Bestimmung eingehe, muss ich noch der merkwürdigen Thatsache erwähnen, dass alle grösseren Stämme des be-

1) Handbook for travellers in Egypt. 1848.
sagten Holzes nie ganz, sondern durch Querspalten in grössere oder kleinere Trümmer getrennt sind. Mr. Rochet d'Hericourt spricht 1) von 18 Meter langen nicht in Stücke zerbrochenen Hölzern. St. John gibt ihre Länge zu 40—52 Fuss, Newbold 2) zu 48—61 Fuss an. Stämme von 8 bis 10 Klafter (die längsten welche ich sah), waren der Quere nach in so viele Stücke zerspalten, dass die Mehrzahl derselben selten 1 bis 2 Fuss übertraf. Die einzelnen Stücke lagen jedoch häufig so nahe an einander und ihre unebenen Bruchflächen passten so genau zusammen, dass man sie nothwendig als Theile eines zusammengehörigen Ganzen ansehen musste. Selbstverständlich ist es, dass mit den Querspalten auch Theilungen der Länge nach, so wie nach anderen Richtungen vorkamen. Eben diesen vielfältigen Zerkümmungen der ganzen Stämme ist das enorm grosse Trümmerwerk zuzuschreiben, welches die Oberfläche der Wüste an manchen Stellen bedeckt und welches namentlich nördlich von Wadi el Tib, im Wadi Ansari, Asserak u. s. w. seine grössste Anhäufung zeigt. An der verschiedenen Glätte und Politur, welche einzelne Flächen eines Stückes vor den anderen auszeichnen, glaubte ich auch ein verschiedenes Alter der Trennung vermuten zu dürfen, so dass, je abgeschliffener und glänzender eine Bruchfläche erschien, dieselbe eine um so längere Einwirkung äusserer Agentien und daher ein um so grösseres Alter zu haben schien.

2) On the geol. position of the silicified Wood of the Egyptian ant Libyan deserts with a description of the petrified Forest near Cairo. Quart. Journ. of the geol. soc. Vol. IV. (1848), pag. 349
Species benannte ich nach dem Lande des Vorkommens mit dem Beinamen „aegyptiaca“. Mit Ausnahme eines kleinen Querdurchschnittes, welcher l. c. Tab. 1, Fig. 7 beigefügt ist, fehlten bisher noch Abbildungen der anatomischen Verhältnisse. In meinen Gen. et spec. pl. foss. pag. 523 habe ich nur die oben gegebene Diagnose wiederholt.

Das erste mir zur Untersuchung in die Hände gekommene Exemplar mit der Bezeichnung „Asserin in Ägypten“, rührt aus der Petrefactensammlung der Universität in München her, wo es als Palmenholz galt. Es trägt die Spuren starker Zerstörung in den Elementartheilen, doch liessen sich daran die wenig deutlichen Jahresringe und an den grossen Gefässe die sehr kleinen Tüpfel derselben hie und da nicht undeutlich wahrnehmen. Holzzellen und noch mehr die Zellen der Markstrahlen waren in einem Zustande grosser Zerstörung durch vorhergegangene Auflösung, so dass ihre Form kaum bestimmt werden konnte.

Ein zweites, nicht viel besser erhaltene Exemplar wurde mir durch Herrn Grafen Piccolomini mitgetheilt. Wie bei dem ersten waren die weiten Spiralgefäße auch hier mit einer dunkeln von aussen eingedrungenen fremden Masse erfüllt, dagegen waren die Holzzellen besser erhalten.

Ein drittes Exemplar, aus unbekannter Hand über Triest erhalten, äusserlich zwar sehr porös und angefressen, innerlich aber bei weitem besser conservirt, liess sowohl die Holzzellen als die Markstrahlen und ihre Elemente auf das deutlichste wahrnehmen; weniger gut waren die Gefässe erhalten, die meist einfach, selten zu zween und mehreren vereinigt erschienen. Dabei konnte man die Jahresringe des Holzes kaum wahrnehmen.

Aus allen diesen einzelnen Wahrnehmungen konnte folgende Diagnose von Nicolia aegyptiaca als massgebend aufgestellt werden.

Nicolia Ung.

Ligni strata concentrica, inconspicua. Radii medullares uniformes, confertissimi, undulatim excensi, corpore tenui, humili e cellulis uni-triseriatisibus parenchymatosis, majoribus formato. Vasa porosa ampla (0·10″) impleta, rariora copiosioraque, aequabiliter disposita saepius per paria vel per pluria connata. Cellulae ligni prosenchymatosae angustissimae subpachytychae.

Formatio tertiaria in pluribus locis propre Cairo Aegypti.

Die dieser Charakteristik hier beigegebenen Abbildungen Taf. I, Fig. 1 und 2 stellen die Nicola aegyptiaca im Quer- und im Längenschnitt parallel der Rinde in hundertfacher Vergrößerung dar.

Um die sich nun zunächst ausdrängende Frage über die Analogien dieser Holzstruktur in der Flora der Gegenwart beantworten zu

2) Ich führe zu Belege dieser Vermuthung G. Wilkinson l. c. p. 171 an, wo er sagt: „Other specimens of palms are met with on the Suez road; and the same kinds of agatized wood occur again inland on the other side of the Nile, on the borders of Wad Fargh evidently once imbedded in a similar stratum.“ und noch mehr

Ich habe früher des Umstandes erwähnt, dass das Holz des versteinerten Waldes zwar viele Klafter lange, aber keineswegs unverletzte Stämme darbiete. Da diese Stämme, als sie in den Sandstein eingebettet wurden, ohne Zweifel unzerbrochen und unver-
letzten waren, denn sonst müssten die Zerküpfungen derselben ebenso durch Sandstein ausgefüllt sein wie die Vertiefungen ihrer Oberfläche, so kann ihre Zertrümmerung nur später, und zwar entweder so lange sie noch von Sandstein umschlossen waren, oder nachdem sie bei Verwitterung desselben frei wurden, erfolgt sein. Im ersteren Falle könnte wohl keine andere Ursache der Zertrümmerung aufgefunden werden, als Bewegungen der Felsmasse in Folge von Erschütterung der Erdrinde, wobei natürlich der Sandstein, so wie seine organischen Einschlüsse denselben Grad der Zertrümmerung notwendig erfahren mussten. Von einer Zertrümmerung des Sandsteins, der mit Holzstämmen zugleich betroffen wurde, gewahren wir jedoch nichts. Wir sehen im versteinerten Walde nur losen Sand und Kiesel aber durchaus keine Sandsteintrümmer, die eine Übereinstimmung mit den Trümmern des versteinerten Holzes zeigten; und gesetzt auch, die Sandsteintrümmer seien nunmehr zu ihren Constituenten verwittert, so wäre doch kaum begreiflich, wie sich nicht doch ein oder das andere Sandsteinstück unverändert erhalten hätte. Es ist daher viel wahrscheinlicher, die Zertrümmerung der verkieselten Holzstämme erst in jene Zeit zu versetzen, als dieselben lose und frei den Boden der Wüste bedeckten. Schon der vorher erwähnte Umstand, dass die Bruchflächen der Holzträumer häufig eine ungleiche Beschaffenheit zeigen, weiset entfernt darauf hin, dass die Zertrümmerung derselben nicht mit einem Schlage, sondern nach und nach erfolgt sein müsse. Während eine Bruchfläche bereits Jahrzehende lang den Einwirkungen der Atmosphäre ausgesetzt war, hat eine andere Bruchfläche jene Wirkung in einer bei weitem kürzeren Zeitdauer erfahren und daher die ursprüngliche Beschaffenheit noch mehr als jene erhalten. An einer Zerküpfung durch Erdböhe, deren häufige Aufeinanderfolge als notwendig angenommen werden müsste, ist hier um so weniger zu denken, als frei auf dem bewegten Boden liegende, selbst bedeutend schwere Massen nicht leicht zertrümmert werden können, gesetzt auch die Bewegungen würden stossweise und sehr heftig erfolgen. Bei viele hundert Centner schweren Baumstämmen liessen sich allenfalls wohl einzelne Querbrüche, allein keineswegs Spaltungen der Länge nach erklären, welche wir jedoch ebenso häufig als jene an unseren fossilen Baum-

1) Ich übergehe die hierüber ausgesprochenen mitunter seltsamen Meinungen mit Gültigkeitweigen.

Es fiel mir auf, dass eine grosse Menge jener Geschiebe nicht ganz, sondern durch einen oder mehrere Anbrüche verletzt waren. Die Bruchflächen waren bald mehr bald minder matt, in einigen Fällen so, als ob sie erst kürzlich zu Stande gebracht worden wären. Wer sollte hier diese harten Steine zerschlagen haben? Einige Male gelang es mir die Bruchstücke einer und derselben Jaspiskugel noch neben einander liegend, ja sich noch berrührend zu finden, ganz so wie viele Trümmer der verkieselten Baumstämme. Dass in diesem Falle der Bruch nicht durch eine von aussen auf den Körper wirkende Gewalt erfolgt ist, liegt auf der Hand, er muss also in der Masse desselben selbst erfolgt sein, und was liegt hier näher als grosse Unterschiede im raschen Temperaturwechsel als die Ursache der Trennung des Zusammenhanges, als Ursache der Entstehung von Haarspalten anzunehmen. Dass bedeutende Unterschiede der Temperatur rasch, ja selbst plötzlich in diesen Gegenden auf einander folgen, darüber haben Beobachtungen längst hinlängliche Belege an die Hand gegeben. Wenn die Temperatur der Luft in den Sommermonaten in der Regel 30° R. im Schatten übersteigt, so lässt sich bei unmittelbarer Einwirkung der Sommerstrahlen auf dunkle Gesteine der Wüste wohl eine Erwärmung desselben auf 40—50° R. annehmen. Fallen auf ein so stark erwärmtes Gestein nur einige Tropfen Regenwasser, wie das zuweilen geschieht, oder wirken nach einer kühl Winternacht die brennenden Strahlen der Sonne auf die Oberseite eines so dichten Gesteines ein, so muss durch ungleiche Ausdehnung und Zusammenziehung auf dieselbe Weise eine Trennung des Zusammenhanges erfolgen, wie das bei Glas und Glaströssen der Fall ist, die wir oft so zu sagen von selbstzerspringen sehen. Eine Reihe Beobachtungen mit solchem Wüstenkiesel unter verschiedenen Umständen angestellt, würde uns ohne weiters zeigen, welche der oben angegebenen Ursachen die Haupt-
rolle bei Zertrümmerung der Wüstensteine spielt. Für uns genügt es indess darauf aufmerksam gemacht zu haben, dass die Zertrümmerung der Stämme des versteinerten Waldes in nichts anderem als in den fort und fort noch gegenwärtig thätigen Einflüssen der Temperatur zu suchen sei.

und einige andere Lager verkieselten Holzes in Ägypten.

Beobachtungen hervorzugehen, dass an einen Vulcanismus im ange nommenen Sinne hier um so weniger zu denken sei, als sämtliche Erscheinungen der Beschaffenheit der in Rede stehenden Felsart so wie deren Lagerungsverhältnisse sich auf eine ganz andere und ungezwungener Weise erklären lassen.

Folgt man zur Erklärung des geologischen Alters den organischen Einschlüssen, so haben wir hier zuerst eine Helix zu erwähnen, die nur als Steinkern erhalten, keine weitere Bestimmung zulässt, der Grösse nach aber unserer Helix pomatia nahe gekommen ist. Ein zweites Petrefact sah ich in der Sammlung des Herrn Pastor Lüders in Cairo; es ist eine Bivalve, gleichfalls undeutlich und nur theilweise im Jaspis abgedruckt, vielleicht eine Cyclas. Diese beiden Petrefacte sind hinreichend, um diesen Sandstein für eine Süsswasserbildung zu erklären, dessen Alter, da auch das versteinerte Holz, das bisher andernwo noch nicht gefunden wurde, hierüber keine nähere Auskunft gibt, den tertiären Ablagerungen parallel oder doch nicht viel jünger angenommen werden muss.—

Fassen wir nun die einzelnen Thatsachen zusammen, so werden wir im Stande sein, uns von der Bildungsweise des versteinerten Waldes eine ziemlich detaillirte Vorstellung zu machen.

Die morsche Beschaffenheit des Holzes geht einestheils aus dem sehr zerstörten Gefüge und den sehr unkenntlich gewordenen Elementartheilen desselben, besonders aber aus dem Umstande hervor, dass dasselbe wie unser morsesches Holz von Pilzfäsern durchdrungen ist. Man vergleiche hierüber die in meiner Chloris protogaea p. 8, Tab. 1
Fig. 7, gegebene Beschreibung und Abbildung dieses Pilzes, welchen ich *Nectomyces entoxylinus* genannt habe.

Die Trockenlegung dieses Beckens erfolgte erst nach Änderung des Flusslaufes nach Versiegung der Quellen u. s. w. vielleicht in einer sehr späten Zeit. Aber erst nach dieser Periode ging die Zerrümmerung der Holzstämme vollends vor sich, und kleinere Theile konnten nun wohl durch Winde und durch Regenbüche, wie sie dann und wann in der Wüste entstehen, über ein noch grösseres Feld verbreitet werden.

und einige andere Lager verkieselten Holzes in Ägypten.

Aussser dem versteinerten Walde besitzt Ägypten mit Einschluss von Nubien auch noch an andern Orten und in andern geognostischen Formationen Sammlungen versteinerten Holzes.
Vere Monro fand in der nubischen Wüste ein ähnliches Lager von versteinertem Holze wie das bei Cairo. Die dort herrschenden Sandsteine und Conglomerate sind dunkelfarbig und erheben sich zu eigentümlich gestalteten kegelförmigen Hügeln und Bergen. Eine diesem Sandsteine untergeordnete Breccie in der Nähe von Ipsambul enthält Fragmente von Holz, die nicht über einen Zoll lang sind 1). Auf gleiche Weise spricht sich Lefèvre über verkieselte Hölzer in Nubien aus, die in der Nähe des Brunnen der Bayoudah-Wüste vorkommen und die er auf der Oberfläche jenes Sandsteines frei liegend fand 2). „En sortent d'Ambou-kol a l'E. on trouve un terrain de transport identique avec celui de l'Egypte composé en grand partie de galets de quartz de différents couleurs et de quelques fragments arrondis de roches feldspathiques et de grès; on y trouve en outre de bois dicotyledones silicifié“.

2) Lettre adressé a Mr. Cordier. Bulletin de la soc. géol. de france Tom. X (1839), pag. 144.
5) L. c. p. 306.
gewaltige Zerstörung vorangegangen zu sein. — Das ähnliche oder vielmehr gleiche Vorkommen solcher in eine kieselige Masse umgewandelten Dicotyledonenstämmé in den Ablagerungen des Diluvial-
sandsteines von Ägypten ist wahrscheinlich nur ein secundäres. Die
Reste ausgedehnter Dicotyledonenwälder gehören in jenem Lande aus-
schliesslich den Sandsteinen, die unter der Kreide liegen und dem
Grün-, Quadersandsteine und dem Wealdertthon parallel stehen dür-
ten, der Kreide selbst und den auf ihr liegenden Ablagerungen des
Nummuliten- und Grobkalkes, als primäre Einschlüsse an. Die Dilu-
ivialzeit scheint zerstörenden Einfluss auf die Oberfläche der älteren
Felsgebilde ausgeübt zu haben. Die Kalksalzen und Kalkkerne der
fossilen Meeresthiere verschwanden zum grossen Theile, die kiese-
lige Masse der Dicotyledonenstämmé aber widerstand, und sie
wurden von dem aus dieser Periode als Resultat hervorgehenden
Sandstein neuerdings umhüllt und eingeschlossen."

Diese Ansicht, welche alle fossile Hölzer des Meeresdiluvium
von Ägypten (nach Russegger) aus älteren Formationen namentlich
des Grünsandes oder Quadersandes so wie der Kreide ableitet, und
jene im Sandsteine Unterägyptens nur auf secundärer Lagerstätte
erscheinen lässt, setzt voraus, dass die auf der primären und secundären
Lagerstätte vorkommenden Fossilien identisch sind. Ich werde aber im
Nachstehenden das Gegentheil beweisen und zeigen, dass zwischen den
Hölzern der ober- und unterägyptischen Sandsteine ein grosser Unter-
schied obwaltet, daher sowohl die einen, wie das bereits im Vor-
stehenden näher auseinander gesetzt wurde, als die andern auf ihrer
primären Lagerstätte liegen, wo wir sie finden.

Herr Russegger hält den Sandstein Oberägyptens, in welchem
jene Lager fossilen Holzes zumeist vorkommen und der sich in mäch-
tiger Ausdehnung durch mehr als 10 Breitgrade bis zu den Grenzen
von Kordofan und Sennaar verbreitet, dem deutschen Quadersandstein
entsprechend, somit für ein Glied der in Afrika ungem ein weit um
sich greifenden Kreideformation. Wenn ich diese Ansicht auch nicht
geradezu zu widerlegen im Stande bin, so glaube ich eben durch
die Betrachtung der Beschaffenheit der genannten vegetabilischen
Einschlüsse dieselbe sehr zu erschüttern, und der Meinung mehr
Eingang zu verschaffen, den genannten Sandstein für älter zu halten.

Bei dem Umstande, dass der in Rede stehende Sandstein sogganz und
gar bar jedes organischen Restes ist, hat natürlich eine sorgfältige

Sitab. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 25. 16
auf Vergleichung gestützte Untersuchung einer Holzart so viel Bedeutung, dass man ohne wiederholte Prüfung eine jedenfalls sicherer als früher begründete Meinung nicht sogleich von der Hand weisen kann.

Der Querschnitt (Fig. 3) lässt unbezweifelt erkennen, dass dieses Holz im Allgemeinen nur aus einer Art der Länge nach verlaufender Elementartheile, aus Prosenchymzellen oder nach der
früheren Ansicht, aus Gefäßen zusammengesetzt ist. Obgleich eine
Stratification derselben nach verschiedenen Grössen in Streifen
kaum merkbar ist, so war es mir doch möglich solche Jahresringe in
diesem Holze zu erkennen und ich habe, um das deutlich zu
machen, eben einen solchen Theil in Fig. 3 abgebildet, welcher
der Grenze zweier Jahresringe entspricht. Auffällig durch den
röthlich gefärbten Inhalt sind gewisse Elementartheile, welche ver-
mischt unter den Prosenchymzellen vorkommen. Sie sind nichts anderes
als langgestreckte dünnwandige, mit Harz erfüllte Zellen.

Ein Schnitt parallel der Rinde belehrt uns über die Zusammensetzung, Grösse und Frequenz der Markstrahlen. Es ergibt sich
hieraus, dass dieselben nur aus einer geringen Anzahl (1—6) über
einander gestellten Prosenchymzellen zusammengesetzt sind, dass
aber ihre Vertheilung zwischen den Prosenchymzellen auf eine
grosse Menge in einem kleinen Raum hindeutet. Auch eine mit Harz-
tropfen erfüllte Zelle lässt sich in ihrem Verlaufe auf diesem Bilde
wahrnehmen. Endlich zeigt uns ein dem Radius parallelser Schnitt,
Fig. 5, von welcher Beschaffenheit die Wand der Prosenchymzellen
in dieser Richtung beschaffen ist. Während die Vorder- und Hinter-
seite dieser Elementartheile ohne alle Zeichnungen sind (Fig. 4), ge-
wahren wir hier an den Seitenwänden die unverkennbarsten Spuren
einer sehr zart ausgeführten Tüpfelung. Da das Holz alle Spuren
starker Zerstörung an sich trägt, so liess sich nicht erwarten, dass
die bei Nadelhölzern hier vorkommenden Tüpfeln vollständig erhal-
ten sind. In der That sind hier auch die meisten Zellwände ohne
Zeichen einer Structur, nur an einzelnen Stellen gewahrt man hie
und da Gruppen von Feldern und an anderen einzeln die wahrscheinlichen
Tüpfeln. Es unterliegt keinem Zweifel, dass die mit * bezeich-
neten Prosenchymzellen die regelmässigen Begrenzungsfächen
der sich berührenden Tüpfel zeigen, während diese selbst durch
Auflösung bereits verschwunden sind. Es ist dies jedoch genügend
um zu entnehmen, dass die Zellwand mit mehreren Reihen kleiner
sich unmittelbar berührender Tüpfeln versehen war. Die Mark-
strahlen sind bis auf wenige Lineamente verwischt, die harzführen-
den Zellen sind hier mit mehr flüssigem Harze erfüllt gewesen, als sie
versteinert wurden.

Vergleicht man die so fort auseinander gesetzten Eigenthümlich-
keiten dieses Holzes mit dem Gattungscharakter von Dadoxylon, so

Dadoxylon aegypticum Ung.

Fig. 2—5.

D. Ligni stratis concentricis inconspicues, cellulis prosenchymatosis (vasis) magnis pachytichis, poris bi-triseriatricibus contiguous minimis, radiis medullaribus simplicibus e cellulis 1—6 superpositis formatis crebris, ductibus resiniferis simplicibus crebris.

ausgezeichneten Reisenden, die er. in Ägypten und Syrien zu
Stande brachte, nunmehr sich in der k. k. geologischen Reichs-
anstalt in Wien befinden, so habe ich mich bemüht von dem
Holze von Korosco etwas aufzufinden und dasselbe einer mikro-
skopischen Untersuchung zu unterziehen. In der That gelang es in
dem grossen Magazine einige von Herrn Russegger gesammelte
Hölzer aufzufinden. Mehrere waren ohne Etiketten und daher von
jeder Untersuchung auszuschliessen; ein anderes hatte die ohne
Zweifel dazu gehörige Bezeichnung „Kieselige Concretion des Keu-
pers. Gebbe el Korosco in Nubien.“ Ein davon verfertigtes mikrosko-
pisches Präparat wies die vollkommene Identität mit dem Holze von
Um-Ombos aus. Auch der Zustand der Erhaltung dieser Holzart
war jener des Holzes von obiger Localität gleich, so dass man wohl
behaupten kann, sie gehören nicht nur einer und derselben Forma-
tion, sondern wahrscheinlich auch einem und demselben Processe
der Zerstörung und Erhaltung an. Da uns aber die Vorkommensver-
hältnisse fast gänzlich unbekannt sind, ist es dermalen unmöglich
über jene Vorgänge irgend eine Ansicht festzustellen. Dagegen sind
wir jedoch im Stande, aus der Beschaffenheit der Holzart einige
Schlüsse auf die Formation zu machen, in der dieselbe enthalten ist.

Wie bereits erwähnt, hält Russegger den Sandstein von
Assuan und Nubien für Quadersandstein und stützt diese Ansicht so-
wohl auf die Beschaffenheit der Gesteinsart, die unserem Quader-
sandsteine in allen Punkten gleich kommt, als auf die Lagerungs-
verhältnisse, die einen Wechsel der untersten Kreideschichten mit
den Schichten dieses Sandsteines zeigen sollte. Über letztern Punkt
cann ich nichts sagen, da mir die Gelegenheit Erfahrungen zusammeln
bei ganz anderen Reisezwecken mangelte. Da jedoch die Gesteinsbe-
schaffenheit bei dem Mangel aller organischen Einschlüsse keinen Auf-
schluss über die Formation gibt, so sind wir in diesem Falle auf das
diesem Sandsteine ohne Zweifel angehörige fossile Holz angewiesen.

Nach der oben gegebenen näheren Erörterung gehört dasselbe be-
stimmt der Gattung Dadoxylon an. Dieses unseren Araucarien in Bezug
auf Structur zunächst kommende Holz ist bisher nur in älteren Forma-
tionen, von dem Kohlenkalke und der Steinkohle angeliefert bis zur
Keuper-Formation gefunden worden. Wir kennen mehrere Arten, und
eine davon, das Dadoxylon Stigmolíthus, scheint eine ausserordent-
lliche Verbreitung im Rothliegenden gefunden zu haben. Ich bin in
der angenehmen Lage zwei bisher noch unbekannte Formen von Dadoxylon, die eine aus dem Roth-, die andere aus dem Weiss-Lie-
genden hier vergleichungshalber anführen und näher beschreiben zu können.

Im vergangenen Jahre erhielt ich durch Herrn Dr. Rolle einige Stücke fossilen Holzes aus dem Rothliegenden von Erbstadt bei Bön-
stadt in der Wetterau. Sie waren Holzsteine von hellbräunlicher Farbe und von der Härte des Quarzes. Die davon verfertigten mikro-
skopischen Präparate zeigten ein Holz von ausgezeichneter Erhal-
tung bis in die kleinsten Elementartheile, dabei aber Zerreissungen, Quetschungen und Verschiebungen in einzelnen Theilen, wie man sie nur zu häufig bei verkieselten Hölzern antrifft. Von Jahresringen war keine Spur zu bemerken, ebenso wenig von harzführenden Gängen, im übrigen war die Structur, wie sie der Gattung Dadoxylon zukommt, unverkennbar ausgesprochen. Ich nannte dieses Holz, den Auffinder und Geber in Erinnerung zu behalten, Dadoxylon Rollei, und gebe davon folgende Diagnose und Abbildung.

Dadoxylon Rollei Ung.

Fig. 6—8.

D. Ligni stratis concentricis plane obsoletis, cellulis prosenchym-
matosis (vasis) amplis subpachytichis poris cellularum bi-tri-
serialibus stricte contiguis minimis, radiis medullaribus simplicibus vel partim e duabus seriebus compositis crebris,
cellulis superpositis 2—40, ducibus resiniferis nullis.

In psamite rubro Rothliegendes dicto ad Erbstadt prope Bönstadt
Wetteraviae.

Eine zweite Art von Dadoxylon, mir vor einiger Zeit von Herrn
Reinh. Richter zugeschickt, eine Kalkversteinerung, bewährte sich
bei genauerer Untersuchung gleichfalls als eine bisher unbekannte
Art von Dadoxylon, die ich gleichfalls mit dem Namen des Finders
bezeichnen will, und davon folgende Diagnose und Abbildung gebe.

Dadoxylon Richteri Ung.

Fig. 9—11.

D. Ligni stratis concentricis plane obsoletis, cellulis prosenchym-
matosis (vasis) angustis pachytichis, poris uni-bi-v. triseria-
libus subcontignis minimis, radiis medullaribus simplicibus
e cellulis 1—18 superpositis formatis.
In psamite albo Weisliegendes dicto.

In Bezug auf Verwandtschaft steht dieses fossil Holz dem
Dadoxylon stellare am nächsten. Von Dadoxylon cupreum U.
(Araucarites cupreus Göpp.) der permischen Formation Russlands
unterscheidet sich sowohl diese als die vorhergehende Art merklich.

Wenn aus dem Vorhergehenden ersichtlich ist, dass unser
Dadoxylon aegyptiacum seine nächsten Anverwandten im Roth- und
Weissliegenden hat, und dass selbst im bunten Sandsteine und im
Keuper mit Ausnahme von Dadoxylon Keuperianum Ung. bisher
noch kein Dadoxylon gefunden wurde, so möchte ich wohl
gerechtes Zweifel in die richtige Bestimmung des älteren
ägyptisch-nubischen Sandsteins setzen. Um meinen Zweifel über die
Quadersandstein-Natur dieses Sandsteines zu unterstützen, erlaube
ich mir hier auf ein ähnliches Fossil aus dem deutschen Quader hin-
zuweisen, welches zwar gleichfalls den Coniferen angehört, jedoch
wie die mikroskopische Untersuchung lehrt, einer ganz anderen Ab-
theilung derselben zugezählt werden muss. Ich habe dieses Fossil
schon vor langer Zeit aus Amberg erhalten, und da es noch nicht
gezeichnet und beschrieben wurde, so schlage ich vor, es mit dem
Namen Taxoxylon cretaceum zu belegen.

Obwohl der Querschnitt dieses fossil Holzes eine grosse Ähn-
llichkeit mit dem Dadoxylon aegyptiacum hat, so zeigt doch die
Vergleichung der analogen Längenschnitte zu grosse Abweichungen,
alss dass sie nicht selbst schon dem Laien auffallen müssen. Der
Charakter dieser Taxoxylonart lautet wie folgt:

Taxoxylon cretaceum Ung.

Fig. 12—14.

F. Ligni stratis concentricis vix distinguendis latis, cellulis pros-
enchymatosis poroso-spiralibus subaequalibus amplis pachy-
tichis poris disciformibus minutis uniserialibus approxi-
matis, radiis medullaribus simplicibus e cellulis 1—20 super-
positis formatis, ductibus resiniferis nullis:
In arenaceo quadrato ad Amberg Germaniae.
Soll ich demnach meine Meinung über die Natur des in Frage gestellten ägyptisch-nubischen Sandsteins in wenigen Worten zusammenfassen, so möchte ich für viel wahrscheinlicher halten, dass dieser Sandstein, wenn gleich die nähere Parallelstellung noch nicht anzugeben ist, der permischen Formation angehöre, als dass er als ein Glied der Trias oder der Kreide-Formation angesehen werden könne.

Dieses ist aber auch, wie ich aus einer Arbeit von Nasq. Esq.1) ersehe, die Ansicht dieses englischen Geologen, der Ägypten vorzüglich in dessen östlichen, wüsten Theilen bereiste. Indem er darauf aufmerksam macht, dass der fragliche Sandstein einen verhältnissmässigen Reichthum an Quellen besonders salzhaltigen Wassers besitzt, ist er geneigt, denselben für ein Äquivalent des „New red or saliniferous sandstone“ zu erklären.

Erklärung der Abbildungen.

Dieselben sind durchaus in 100facher Vergrösserung mit dem Sommering'schen Spiegel gezeichnet.

TAFEL I.

Fig. 1. Querschnitt des Holzes von Nicolia aegyptiaca U. Man gewahrt mehrere durchschnittene Spiralgefässe c, mit ihren undeutlichen Füllzellen.

a, a, a Holzzenlen.
b, b, b Markstrahlen.

a Holzzenlen.
b Harzgänge.
c Markstrahl.

4. Längenschnitt derselben Pflanze parallel der Rinde.

gesteckte Erstellung Sand und gebe ein einziges Fachwerk, dass verhindern kann, dass das Wasser eines der Zylinder eingeleitet wird.
Inhalt erfüllt und end. Bezeichnung

Holz zeigt keine

keine Jahresringe.

Jahresringe nicht
Fig. 5. Längenschnitt der gleichen Pflanze parallel dem Radius.
 a Holzzellen häufig mit einem dunklen, undeutlichen Inhalt erfüllt und
 nur stellenweise die mehrreihigen Täpfeln (*), zeigend. Bezeichnung
 wie oben.

 TAFEL II.
 6. Querschnitt des Holzes von Dadoxylon Rolléi U. Das Holz zeigt keine
 Jahressringe.
 a Holzzellen.
 b Markstrahlen.
 7. Längenschnitt parallel der Rinde.
 8. Längenschnitt parallel dem Radius.
 In beiden die Bezeichnung wie oben.
 10. Längenschnitt parallel der Rinde.
 11. Längenschnitt parallel den Markstrahlen.
 Bezeichnung wie früher.

 TAFEL III.
 12. Querschnitt des Holzes von Taxoxylon cretaceum U. Jahressringe nicht
 undeutlich.
 a Holzzellen.
 b Markstrahlen.
 Bezeichnung wie oben.

Untersuchungen über das chylopoetische und uropoetische System der Blatta orientalis.

(Angestellt im physiologischen Institute der Wiener Universität.)

Von Samuel Basch.

(Mit 3 Tafeln.)

Theile des Darmcanals.

Zunächst hinter dem Mundkauapparat, also noch in der Kopfhöhle eingeschlossen, findet man den weiten trichterförmigen Schlund (faux) (Fig. 1 a a). Er liegt nicht wie der übrige Darm frei, sondern ist durch Muskeln und Bindegewebe an seine Umgebung angeheftet. An seinem unteren, vorderen Ende münden die Speicheldrüsen. Diese scheint weder Ramdohr 1), noch Marcel de Serres 2) gekannt zu

1) Ramdohr's Abhandlung über die Verdauungsorgane der Insecten. Halle 1811, Taf. I, Fig. 2.
haben, denn in ihrer Beschreibung von *Blatta orientalis* geschieht davon nirgends Erwähnung. Burmeister 1) beschreibt bei *Blabera trapezoidea* conglomerirte, aus 8—10 Gruppen von Drüsensalben bestehende Speicheldrüsen, deren einzelne Drüsenkörperchen sich nach und nach zu zwei Ausführungsgängen verbinden, die ihrerseits wieder zu einem Stamme sich vereinen, der in den Mund unter der Zunge einmündet. Diese Form gibt er auch überdies als bei allen Orthopteren im Allgemeinen vorkommend an. Auch Leon Dufour 2) beschreibt dieselben, unterscheidet aber schon an ihnen zwei Hauptbestandtheile, u. z. die eigentlichen Speicheldrüsen und das Speichelereservoir. Doch kennt er das Verhältniss der Ausführungsgänge der beiden Bestandtheile zu einander nicht genau. Folgendes beobachtete ich bloß mit einfacher Loupe: Die Speicheldrüsen liegen zwei an der Zahl an der unteren Wand des Ösophagus. Die von den Thoraxstigmen kommenden Tracheen, welche zunächst den Ösophagus vielfach umspinnen, geben auch sehr viele Äste an die Speicheldrüsen ab, und bewirken dadurch dass diese ziemlich fest an den Ösophagus angeheftet werden. Man kann deutlich an ihnen zwei Hauptbestandtheile wahrnehmen: 1. einen eigentlichen drüsigen (Fig. 1 c) und 2. einen blasigen (Fig. 1 d), den, wie schon bemerkt, Leon Dufour Speichelereservoir nennt.

Ersterer besteht aus vielen kleinen theils rundlichen, theils dreieckigen Läppchen, deren Ausführungsgänge, nachdem sie sich zuvor vielfach dichotomisch verästelt haben, jederseits zu einem Ausführungsgang (Fig. 1 c') sich vereinen. Diese beiden grösseren Ausführungsgänge vereinigen sich ebenfalls, um einen grossen gemeinsamen Stamm (Fig. 1 c'') zu bilden. Der zweite, die Speichelblase (Fig. 1 d), besteht aus einem äusserst zartwandigen birnförmigen Säckchen mit oberen schmalen und unteren erweiterten Enden, liegt gleichsam im Drüsenparenchym eingebettet, ragt nur mit seinem unteren Ende frei hervor, und die vorderen schmalen und röhrigen Enden desselben treten ebenfalls in einen gemeinschaftlichen Ausführungsgang, (Fig. 1 d') zusammen, der, nachdem er den Hauptausführungsgang der eigentlichen Speicheldrüsen aufgenommen, in den Schlund einmündet.

2) Leon Dufour, Recherches sur les Orthoptères etc. 334.
Dem Schlunde folgt nun jene Partie des Darms, die die Brust- und Bauchhöhle grösstentheils erfüllt, deren erster Abschnitt der Ösophagus ist (Fig. 1 a). Diesen kann man in zwei Theile trennen, einen oberen röhrigen mit dem Schlunde in Verbindung stehenden, den Ösophagus (Fig. 1 a) im engeren Sinne des Wortes, und einen unteren an den Magen grenzenden erweiterten Theil, den Kropf (*inguivies*). (Fig. 1 b).

Der erstere reicht vom Kopf bis in die Gegend des Metathorax, der zweite von da bis in die obere Hälfte des Abdomen.

Die Gestalt und Consistenz des Ösophagus ist, wie schon Leon Dufour 3) angibt, nicht constant, sondern sie wechselt je nach der Menge und Beschaffenheit des Inhalts. Im mässig gefüllten Zustande sind seine Wände dick und zusammengezogen und es zeigen sich an seiner Oberfläche deutliche Längsfalten; dunn und beinahe durchsichtig sind aber jene Wände, wenn sie von Speisen überfüllt, oder von Luft ausgedehnt werden. In einem solchen Zustande ist keine Längs-, sondern eine leichte Querstreifung sichtlich.

Der nächstfolgende Abschnitt ist der Kaumagen 4) (*proventriculus*) (Fig. 1 e). Dieser hat die Form eines abgestützten Kegels, der jedoch an der Abstützungsfläche abgerundet erscheint. Er ist so zwischen den Ösophagus und den ihm folgenden Darmabschnitt, dem Chylusmagen (Fig. 1 o) eingeschaltet, dass seine Basis mit dem Ösophagus und die Abstützungsfäche mit dem Chylusmagen in Verbindung steht. Die Wände desselben sind

1) L. c. Tab. 1, fig. 2.
2) L. c. 367.
3) L. c. 369.
4) Cardia nach Posselt, Faustmagen nach Ramdoehr, Gesier nach Leon Dufour, Lacordaire und überhaupt alten Franzosen.
im Vergleiche mit denen des übrigen Darms auffallend dick und von einer sehr derben und festen Consistenz.

Trennt man ihn an der Verbindungsstelle mit dem Kropfe, und beobachtet man ihn an der dem letzteren zugekehrten Fläche, so erhält man das Bild einer secheinigen und rothbraunen Rosette, deren Radian, wenn man den Kaumagen öffnet und in der Fläche ausbreitet, als sechs zahnartige Vorsprünge (Fig. 2 a) erscheinen. Mit ihrer breiten Basis sind dieselben an die Innenwand angeheftet, während die schnabelartig zugespitzten Enden, die mit einander convergiren, frei in die Höhle des Kaumagen-Lumens hineinragen 1). Diese sechs Zähne sind durch eben so viele Zwischenräume von einander getrennt, die von zwölfe leistenartigen Vorsprüngen in folgender Anordnung besetzt sind (Fig. 2). In der Mitte eines jeden Zwischenraumes befindet sich eine grosse breite Leiste (Fig. 2 b), die so lang als der Zahn ist und in ein abgerundetes löffelförmig erweitertes Ende ausgeht. Zu beiden Seiten derselben befinden sich fünf kleinere (Fig. 2 c), die mit ihren Enden sich der erwähnten grossen Leiste zuneigen. Ausserdem laufen noch zu beiden Seiten des Zahnes Längsleisten (Fig. 2 f) herab, die mit demselben convergiren, und an welche sich unterhalb der Zähne gelegene Taschen anheften. Diese Taschen (Fig. 2 d und e) stehen kreisförmig je zu sechs in zwei unter einander liegenden parallelen Reihen. Die der ersten, zunächst unter den Zähnen liegenden Reihe angehörigen Taschen (Fig. 2 d) sind ziemlich gross, beinahe mit freiem Auge sichtbar und an die erwähnten Leisten angeheftet. Die der zweiten Reihe dagegen sind viel kleiner und stehen mit keinen Leisten im Zusammenhange. Beide sind mit braunen Härchen von 0.01—0.02 Millim. Länge besetzt. Diesen Zahnapparat beschreiben schon Ramdohr 2), Leon Dufour 3) und Menzel 4), doch was die Taschen betrifft, so kannte Ramdohr selbe gar nicht, Leon Dufour und Menzel hingegen nur die erste Reihe derselben.

Vom Kaumagen geht eine in mannigfache Längsfalten gelegte Einstülpung in den Anfang des Chylusmagens, die, wenn man den

1) Burmeister, ii. Bd. 8. 47, beschreibt in ähnlicher Weise den Kaumagen von Blaberus trapesoides.
2) L. c. p. 74, Taf. 1, Fig. 9, 10, 11.
3) L. c. p. 388.
4) Menzel, Die Chitinegebilde im Thierkreise der Arthropoden.
Kaumagen vorsichtig vom Chylusmagen zu entfernen sucht, als
eine dünne zarte Röhre aus dem letzteren hervorgezogen wird,
wobei man deutlich die scharfe Grenze zwischen dieser Einstülpung
und dem Chylusmagen wahrnehmen kann.

Der Chylusmagen (ventriculus) (Fig. 1 o), bildet eine
gleichmässig cylindrische Röhre, deren Wandungen nicht, wie
Ramdohr (a) angibt, undurchsichtig, sondern vielmehr stark durch-
scheinend sind, was man aus der Farbe, die sich genau nach der
der Darmcontenta richtet, ersehen kann.

In sein vorderes Ende münden acht Blinddärmschen (Fig. 1 f).
Diese sind kurze, an ihrem vorderen in den Magen einmündenden
Ende offene, an ihrem hinteren Ende geschlossene röhrlige Schläuche,
die nicht alle gleich lang sind, und deren Grösse als solche,
je nach den verschiedenen Resorptionszuständen, in denen das Thier
sich gerade befindet, einem vielfachen Wechsel unterworfen ist. So
sieht man oft Blinddärme, die beinahe so lang sind als der Magen,
während sie gewöhnlich nur den dritten bis vierten Theil der Länge
desselben betragen. Nach hinten grenzt der Chylusmagen an ein
kurzes und dünnen Darmstück (Fig. 1 h), welches Leon Dufour (b)
zuerst beobachtete und Dünndarm (intestinum tenue) nannte.
Ramdohr (c), der den Magen spitz zulaufen lässt, begreift wahr-
scheinlich unter diesem schmalen Darmstücke die Spitze des Chylus-
magens, doch gehört es aus später anzuführenden Gründen durch-

Sein oberes Ende umgeben die malpighischen Gefässe (Fig. 1 g),
die in grosser Anzahl (d) im Kreise darum gelagert sind. Sie sind sehr

1) Ventricule chylifque, nach Leon Dufour, duodenum nach J. Müller, Chylus-
bildner nach Burmeister.
2) L. c.
3) Marcel de Sorres. Observations etc. nennt sie "vaisseaux hepaticues superieurs".
4) L. c. p. 369.
5) L. c.
6) L. c. p. 369.
7) Ramdohr, I. c. gibt deren 100, Leon Dufour, l. c. nur 60 an.
dünn von grünlichgelber Farbe, und verlaufen fadenförmig geschlängelt mit ihren vorderen Einden theils frei flottirend, theils im Fettkörpere eingebettet. Die hinteren Enden desselben münden, nachdem sie sich zuvor zu drei Gruppen vereinigt haben, in den Anfang des Dünnarms ein.

An seinem hinteren Ende ist derselbe von einem kaum bemerkbaren wulstigen Reifen (Fig. 1 a) umgeben 1). Diesem entsprechend liegt nach Innen eine in das Lumen des Darms weit vorspringende kreisförmige Klappe 2), die jedoch nur bei ziemlich starker Vergrößerung wahrgenommen werden kann, daher ich sie erst unten beschreiben will. Durch den erwähnten Reif ist der Dünnarm von dem folgenden Darmabschnitte dem Dickdarm 3) (intestinum crassum) (Fig. 1 e) nach aussen und durch die Klappe nach innen scharf abgegrenzt. Er ist etwas länger als der Chylusmagen, verläuft aber nicht wie dieser gerade, sondern macht eine Windung um sich selbst. Was seine Gestalt betrifft, so ist diese theils gleichmässig cylindrisch, theils in der Mitte erweitert; sehr oft sind auch an seiner Oberfläche Querfalten wahrzunehmen.

Der Dickdarm geht gewöhnlich bloß unmerklich in das letzte Darmstück, den Mastdarm (rectum), über. In sehr vielen Fällen ist er aber deutlich von ihm abgegrenzt, ja man sieht oft den Dickdarm bei seinem Übergange in das Rectum eine Art Cocccum (Fig. 1 k) bilden. Der Mastdarm (Fig. 1 l) verläuft ganz gerade ohne irgend eine Windung zu machen und bildet unmittelbar vor dem Anus ein aufgetriebenes Ende (Fig. 1 m), an welchem sechs Längswülste herablaufen.

Soviel über die Anatomie des Darmcanals von Blatta orientalis, so weit man sie mit freiem oder nur schwach beaufschlagtem Auge verfolgen und studiren kann. Es erübrigt nun noch den Bau und die Gewebesbestandtheile genau zu erörtern. Bevor ich jedoch in die Histologie der einzelnen Darmabschnitte näher eingehe, will ich erst einen kurzen Überblick von dem geben, was über den Bau derselben

1) Leon Dufour, l. c.
2) Burmeister (Handbuch der Entomologie, II. Bd., S. 472) nennt ihn den Chylusmagneter.
3) Leon Dufour nannte diese Klappe, die er aber bloß erwähnt ohne sie zu beschreiben, valvula ileo-coccale. Tervirianus (vermischte Schriften, S. 105) entdeckte dieselbe zuerst.
bei den Insecten im Allgemeinen bekannt ist. Swammerdam 1) gibt Folgendes über die Struktur des Darmschlauchs an: ventriculus autem tribus et tunicis constat, prima nimium tenuissima in qua decurrunt fistulae pulmonales; altera musculosa, tandemque tertia iterum subtilissima ingentes cicios proxime ambiente.

Nach Ramdohr 2) besteht der Darmkanal aus zwei Häuten, einer inneren und einer äußeren, zwischen denen die „flockige Lage“ befindlich sein soll. Marcel de Serres 3), Straus-Dürkheim 4) und nach ihm Lacordaire 5) und Burmeister 6) nehmen drei Hälte an und nennen die innere analog der innersten Darmhaut der Wirbeltiere die Schleimhaut (membrana mucosa, membrane muqueuse), die mittlere membrana propria und die äußerste tunica serosa membra muscularis.

v. Siebold 7) beschreibt vier Hautschichten: 1. eine äußere strukturlose Peritonealhaut, 2. eine Muskelhaut, 3. eine Zellenschicht, die oft drüsige Beschaffenheit annimmt und 4. eine chitinähnliche homogene Epithelschicht, die sich durch den ganzen Darmkanal fortsetzt und nur im mittleren Theile desselben äußerst zarthäutig erscheint.

Morawetz 9) beschreibt vier Schichten im Darmkanal von Blatta germanica: 1. tunica vitrea interna, 2. Epithelium, 3. tunica muscularis, 4. tunica vitrea externa.

2) L. e. \S 7.
3) L. e. p. 61.
4) Straus-Dürkheim, Considerations générales sur l'anatomie comparée des animaux articulés.
7) Siebold, Lehrbuch der vergleichenden Anatomie.
8) L. e.
9) Quae dam ad anatomiam blatta germanica pertinentia. Dissertatio. Dorpat, 1833.
Nach Frei, Leukart und Leydig sind die Verhältnisse der Schichtung im Darmkanal der Insecten folgende: Zuerst liegt eine zarte durchsichtige Epithelialhaut, tunica intima, dieser folgt eine Zellenschicht, und als Trägerin derselben eine structurlose membrana propria, ferner eine die membrana propria verstärkende Muskelschicht und endlich eine nicht immer als vollständige Membran zu verfolgende Peritonealschicht.

Bau des Darmkanals, Osophagus Ingluvies.

Die Wandungen dieser beiden Darmabschnitte sind mit einander übereinstimmend, aus vier (Fig. 3) über einander liegenden Schichten zusammengesetzt, und zwar: 1. einer Muskelhaut, 2. einer membrana propria, 3. einer Zellenschicht und 4. einer Chitinschicht.

Die erstere, nämlich die Muskelhaut, besteht aus zwei Lagen, einer äusseren aus Ringsfasern und einer inneren aus Längsfasern zusammengesetzt. In beiden liegen die einzelnen Muskelfasern nicht eng nebeneinander, sondern sie lassen zwischen sich Zwischenräume übrig; ausserdem verzweigen sie sich, anastomosieren vielfältig mit einander und bilden auf diese Weise ein maschenartiges Gewebe, wie dies schon Ramdohr, Lacordaire, Stein bei anderen Insecten und in anderen Organen beschrieben haben.

Bei Blatta germanica beschreibt Morawetz Fettröpfchen die in den erwähnten Intervallen liegen sollen, die zu sehen mir aber nicht gelungen ist.

Was den morphologischen Charakter der Muskeln betrifft, so sind dieselben wie im ganzen Darm, und bei den Insecten durchwegs quergestreift, und tragen in ihre Substanz eingeschaltete Kerne und kernhaltige Zellen.

Der Muskelhaut folgt eine membrana propria. Diese ist eine structurlose, hyaline Membran, die der Muskelhaut eng anliegt und so fest mit ihr verbunden ist, dass man sie für sich nur sehr schwer darstellen kann.

Auf dieser sitzt ein Epithelium, bestehend aus blos einer Lage von Zellen. Diese Zellenlage ist ebenfalls sehr eng mit der membrana

1) Lehrbuch der Zootomie der wirbellosen Thiere.
2) Leydig, Lehrbuch der vergleichenden Histologie.
3) L. o.

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 25. 17
propría verbunden, so zwar, dass man beim Präpariren die drei schon erwähnten Schichten Muskelmembran, membrana propria und die Zellenschicht meistens nur als einzige, gemeinschaftliche und sehr schwer in ihrer weiteren Bestandtheile zu zerlegende Membran darstellen kann.

Diese bei den Arthropoden allgemein 1) vorkommende Schicht, die immer da besteht wo ihr eine Cuticula folgt, bezeichnet Häckel 2) beim Flusskrebs, weil er annimmt, dass die chitininhaltige Cuticula ein Absonderungsprodukt der Zellen sei, als Chitinogengewebe. Wir wollen später untersuchen, in wie weit nach meinen Untersuchungen diese Bezeichnung richtig ist.

Die Zellen dieser Schicht sind hell, theils rundlich, theils oval, haben einen deutlichen Nucleus und ein oder mehrere Nucleole und betragen im Durchmesser 0·009—0·01 Millim. Ihre Wandungen liegen nicht an einander, sondern sie sind durch schmale Zwischenräume geschieden, die mit einander zusammenfiessende polygonale Felder einschliessen. In die Zwischenräume selbst ist die membrana propria faltenartig ausgestaltlt (Fig. 5).

Viele Autoren beschreiben die beiden eben beschriebenen Schichten, die membrana propria und die Zellenschicht, als eine einzige. So Ramdohr 3), der sie als „flockige Lage“ bezeichnet, worunter er Alles begreift, was zwischen Muskelhaut und Intima liegt. Straus-Dürkheim 4) und Burmeister 5) erwähnen zwareiner glatten, in der Regel dünnen, häufig structurlosen, mitunter gezeichneten membrana propria, verstehen aber nichts anderes darunter, als Ramdohr unter seiner „flockigen Lage.“ Lacordaire 6) nennt sie „membrane papillaire et celluleuse“ und gibt über ihre Struktur folgendes an: „la membrane papillaire est mince, ordinairement blanche et quoique d’une nature spongeuse ne présente presque jamais des fibres Observée avec de forts verres ampliants elle offre quelquefois dans son tissu de globules ou granulations d’une extrême petitesse.“ Aus

1) Nur Leydig (Lehrbuch der vergl. Hist. §. 299) leugnet sie im Ösophagus.
2) Häckel (Müller’s Archiv, 1837) über die Gewebe des Flusskrabses.
3) L. c. p. 6, §. 7.
5) L. c.
6) L. c. p. 7.
dieser Beschreibung ist leicht zu ersehen, dass Lacordaire schon zwei Schichten beschreibt, ohne jedoch die eine derselben, nämlich die Zellenschicht, die er nicht als eine besondere beschreibt, sondern nur in seinen „globules et granulations“ andeutet, ihrer Structur nach als eine besondere erkannt zu haben.

Eben so wie Siebold führt Morawetz keine membrana propria, sondern auch nur eine aus hellen kernlosen Zellen bestehende Zellenschicht an.

Menzel beschreibt unter dem Namen Schleimhaut eine glas- helle structurlose Haut, über welcher an verschiedenen Stellen die Zellenschicht auftritt.

Die die Zellenschicht nach innen begrenzende und mit dem Darminhalt in unmittelbaren Contact kommende Membran ist die Cuticula oder Intima, die man ihres Chitingehaltes wegen auch Chitinmembran nennen kann (Fig. 3 e).

Sie bildet nach Burmeister bei Insecten und nach Haeckel bei Krebsen eine continuirliche Fortsetzung der äusseren, ebenfalls chitinisierten Körperhülle und ist ihrem histologischen Charakter nach eine zarte structurlose hyaline, völlig durchsichtige Membran, die in der Ausdehnung des ganzen Ösophagus und Kropfes mit Erhöhungen (Stacheln, Borsten, Härchen, Fig. 6, 7) von folgender Beschaffenheit und in folgender Anordnung besetzt ist. Im vorderen Theile, dem eigentlichen Ösophagus, sind die Stacheln braun, mit runder breiterer Basis, im Durchmesser von 0·002 Millim. und scharfspitzig zulaufendem Ende. Die Länge desselben beträgt im Mittel 0·04 Millim. Sie sind mit ihren Basen auffallig wellenförmigen Linien (Fig. 7), die so beschaffen sind, dass die Wellenberge einander gegenüber stehen, zu 4—8 nebeneinander (Fig. 6) gestellt. Ihre Enden convergiren mit einander und die Stacheln selbst sind nach hinten zu umgeschlagen, daher die Ansicht Lacordaires's, dass sie das Zurüktreten der Speisen verhindern.

Weiter nach hinten, gegen den Ösophagus und im Kropf selbst nehmen die Stacheln immer an Grösse ab, werden immer weniger

1) L. c.
2) L. c.
convergent und endlich parallel, die Wellenberge und Wellenthäler werden tiefer und höher, sind aber nicht bogenförmig gekrümmt, sondern bilden stumpfe Winkel, die immer kleiner werden, so dass die Wellenberge sich einander immer mehr nähern, in einander zusammenfliessen und auf diese Weise das Zustandekommen von polygonalen Feldern, deren vordere und hintere Seiten von Stacheln, die 0·005—0·006 Millim. lang besetzt sind, veranlasst wird.

Sowohl unter den durch das Gegenüberstehen der Wellenberge und Wellenthäler entstehenden, nicht völlig abgeschlossenen, als unter den durch das Zusammenfliessen der Wellenberge entstandenen, völlig abgeschlossenen Feldern der Chitinmembran, sitzen die Zellen der Zellenmembran. Die früher 1) erwähnten, von den zwischen den Zellen vorkommenden Zwischenräumen begrenzten Felder (Fig. 5) haben, wie man beobachten kann, genau die Gestalt der Felder auf der Chitinmembran (Fig. 2 g). Durch diese Beobachtung gelangt man zur Überzeugung, dass letztere nicht der Abdruck der Zellen 2), denn diese sind rund, sondern der erwähnten Felder, oder was dasselbe ist, der membrana propria seien, da diese es doch eigentlich ist, die, indem sie sich in die zwischen den Zellen bestehenden Zwischenräume einstülpt, die Felder begrenzt.

Die Chitinmembran beschreibt schon Ramdohr *) als eine pergamentartige, zarte, durchsichtige, mit Härchen und Borsten besetzte Haut.

Burmeister und Lacordaire beschreiben sie bei den Insekten im Allgemeinen als membrana mucosa (membrane mucueuse) auf dieselbe Weise.

H. Meckel hält die Intima für ein Pflasterepithel, das oft aus zackig in einander greifenden Zellen besteht. Auch Menzel *) betrachtet sie als ein sehr oft aus Zellen zusammengesetztes Epithelium von äusserst compliciertem Bau; ebenso Siebold, der sie als ein Epithelium (also aus Zellen zusammengesetzt), das durch Chitinehalt eine sehr feste Beschaffenheit erhält, beschreibt; nur Frei, Leukart und Leydig beschreiben sie als homogene structurlose

1) S. S. 9.
2) Leydig spricht an zwei Orten, in seinem Lehrbuch der vergleichenden Histologie und in Müller's Archiv 1856, die Ansicht aus, dass die bei den Insekten, Crustaceen etc. auf der Intima des Darmes vorkommenden Zeichnungen der Abdruck der darunter gelegenen Zellen seien.
3) L. c. §. 16.
4) L. c.
Intima, vor allen aber tritt Leydig der Ansicht, dieselbe für ein Epithelium gelten zu lassen, entgegen.

Kauermagen (proventriculus), Fig. 2.

Dieser tritt uns als ein vollkommen abgeschlossenes Gebilde entgegen, indem er durch seinen äusserst complicirten Bau von dem übrigen Darm sich wesentlich unterscheidet. Von innen nach aussen gehend, bemerken wir an demselben folgende Schichten (Fig. 8): 1. eine stark entwickelte Chitinschicht, 2. eine Zellschicht (Chitinogenschicht), 3. eine membrana propria, 4. eine Muskellage und 5. eine Peritonealschicht.

Die erste derselben, nämlicb die Chitinschicht, haben wir schon bei der Formbeschreibung des Kauermagens kennen gelernt, denn sie ist es, welche die zahnartigen Vorsprungs-Leisten bildet. Über die feinere Struktur kann man Folgendes sagen. Der Chitinüberzug bildet eine Fortsetzung der im Ösophagus und im Kropfe beschriebenen Chitinmembran, die in dieselbe unmittelbar mit Bildung von bogenförmigen, zwischen den Leisten und Zähnen ausgespannten Falten übergeht, und ist wie diese vollkommen homogen und structurlos.

Die zahnartigen Vorsprünge und Leisten, die Morawetz bei Blatta germanica lamina rostrata nennt, sind so wie gewöhnlich jedes dickere chitinhaltige Gewebe von brauner Farbe, während die dazwischen ausgespannte Membran farblos und durchsichtig ist.

An ihrer äusseren Fläche sind die zahnartigen Vorsprünge (rostra) glatt, an der Innenseite dagegen bieten sie das Ansehen einer in lauter polygonale Felder getheilten, gleichsam facettirten Fläche dar. Die Leisten hingegen sind durchwegs an ihrer Oberfläche mit Schüppchen und nur die Hauptleiste noch ausserdem an ihrem hinteren Ende mit Härcchen besetzt (Fig. 2 b und c).

Was nun die Taschen der beiden Reihen, deren äussere Umhüllung ebenfalls die allgemeine Chitinmembran ist, betrifft, so sind dieselben dicht mit braunen Härchen besetzt, daher auch die braune Farbe. Die Härchen an den Taschen der ersten Reihe sind 0·02 — 0·03 Millim., an denen der zweiten Reihe 0·01 — 0·02 Millim. lang.

Wenn der Kauermagen einen Tag in verdünntem Alkohol gelegen ist, so kann man leicht nachdem man ihn zuvor aufgeschnitten und in die Fläche ausgebreitet hat, die ganze Chitinhülle abziehen, worauf dann Wulste, die genau die Form und Grösse der sie umkleidenden Vorsprünge (Zähne, Leisten und Taschen) haben, zum Vorschein kommen.
Diese zwischen Chitinschicht und *membrana propria* gelegene Masse ist bloß eine stärkere entwickelte Zellenschicht, die wir schon im Ösophagus und Kropf kennen gelernt haben (Fig. 8 c). Dieselbe zeigt aber hier in der Chitinsubstanz anliegenden und der äusseren auf der *membrana propria* ruhenden Schicht eine verschiedene Beschaffenheit. In der erstenen nämlich sind die Zellen viel näher an einander gerückt und mit einander verschmolzen, die zweite dagegen besteht aus einer Schicht von mehrfach über und neben einander gelagerten kernhaltigen Zellen, die ebenfalls nicht einander berühren, sondern Zwischenräume zurücklassen, die von einer structurlosen hyalinen Bindesubstanz (Fortsätze der *membrana propria*) ausgefüllt werden, und es verhält sich demnach die erste Schicht zur zweiten wie die Epidermis zur malpighischen Schicht.

Die *membrana propria* ist so wie im ganzen Darm eine structurlose, aus homogenem hyalinen Bindegewebe bestehende Membran, die sich in die Zellenschicht hinein fortsetzt und dort als Stütz- und Bindegewebe fungirt.

Ihr folgt die Muskelschicht 1). Die Fasern derselben sind nicht so einfach angeordnet, wie im übrigen Darme, sondern sie nehmen verschiedene Richtungen an und dienen, indem sie sich unmittelbar an die Wand der Wülste, also mitteilsbar an die Zähne selbst anheften, zur Bewegung eines Mechanismus, der in der Form eines Zahnapparates das Zerkleinern der Speisen bewerkstelligt.

Es sind ihrer folgende: Ein starker, aus mehreren parallel über einander liegenden Muskelfaserlagen bestehender, ziemlich dicker Ringsmuskel (Fig. 8 a), der eine Fortsetzung der Ringmuskelfaser- schicht im Ösophagus, nach vorn am breitesten ist und nach hinten gegen den Chylusmagen immer schmäler wird. Die nach aussen liegen- den Fasern desselben sind vollkommen kreisförmig und in sich abgeschlossen, an der Innenfläche dagegen lösen sich ganze Faserzüge ab, die bogenförmig gekrümmt und je zwei mit einander convergirend sich an den Seiten der Basis der Zahnwülste und der diesen zunächst anliegenden Leistenwülste, und zwar an die *membrana propria* mit stumpfen Enden inseriren. Diese Muskeln sind als Radialmuskeln aufzufassen, als welche ich sie auch bezeichnen will (Fig. 8 b).

1) Barmsteiner, Handbuch der Entom. Bd. II, Fig. 3, spricht ebenfalls von zur Bewegung der Zähne dienenden der äusseren Darmhaut angehörenden Muskeln, die er aber nicht näher beschreibt.
Den Rings- und Radialmuskeln folgt nach innen eine andere Muskelage, die ebenfalls eine Fortsetzung der Längsmuskelfaserschicht im Ösophagus ist 1). Diese bildet eine im Allgemeinen weniger dicke Lage, doch gehen von derselben mehrere Muskeln ab, und zwar entspringen am hinteren Ende der Kaumagenwand, dort wo die Zahnwülste aufsitzen, 6 Muskeln, die von unten und hinten nach vorn und oben verlaufen und sich an die vordere obere Wand der Zahnwulst inserieren (Fig. 8 c). Etwas tiefer, aber noch an derselben Stelle, entspringen noch sechs Muskel, die bogenförmig gekrümmt, mit ihrer Convexität nach aussen und der Concavität nach innen verlaufen, und sich an die untere und vordere Wand der Taschenwülste ebenfalls an die membrana propria mit stumpfen Enden inserieren (Fig. 8 d). Die Wirkungen der genannten Muskel werden folgende sein: Die Ringsmuskelfasern verengern indem sie sich zusammenziehen, das Lumen des Kaumagens, zu gleicher Zeit verkürzen sich aber auch die in die Taschen und Zähne gehenden Längsmuskel, und dadurch werden die ersteren nach unten, die letzteren nach oben gezogen. Durch Zusammenziehung aller dieser Muskel wird also folgender Effekt hervorgebracht. Die Zähne bewegen sich nach innen und unten, wirken daher reibend; die Taschen dagegen bewegen sich nach innen und oben und bewerkstelligen auf diese Weise einen ihrer Form vollkommen entsprechenden Klappenverschluss, durch welchen zeitweilig die Communication der Höhle des Kaumagens mit der des folgenden Darmabschnittes unterbrochen werden kann.

Was die Radialmuskeln betrifft, so haben dieselben eine der früheren entgegengesetzte Bestimmung, nämlich die, die Zähne nach aussen zurückzuziehen, auf diese Weise die Höhle des Kaumagens zu erweitern und den Speisen einen freien Durchgang zu verschaffen.

Was die Structur des vom Kaumagen abgegenden und in den Chylusmagen eingestülpten Darmstückes betrifft, so ist darüber folgendes zu bemerken.

Es fehlt die äusserste, nämlich die Muskelage, und es sind demnach nur folgende Schichten vorhanden: Eine structurlose membrana propria als äusserste Begrenzung, ferner eine Zellenschicht und eine Chitinmembran. Die Charaktere derselben stimmen im
Wesentlichen mit den früher angeführten überein. Die Zellen der Zellenschicht sind rundlich-oval, haben einen deutlichen Kern und einen fein granulirten Inhalt. Nur ist zu bemerken, dass nach vorn die Zellenschicht zarter, heller und durchsichtiger ist, während nach hinten, gegen den Chylusmagen, die Wände der Zellen an Dicke zunehmen, und zugleich der Inhalt ein gröberer wird. Von der Chitinmembran ist zu bemerken, dass dieselbe in der oberen Hälfte mit Stacheln, die 0,004 Millim. lang sind, besetzt ist, die aber nicht wie im Ösophagus nach einem bestimmten Plane angeordnet, sondern unregelmässig zerstreut aufsitzen.

Das oben erwähnte Verhalten der Zellenschicht steht mit dem der Chitinmembran im verkehrten Verhältnisse, indem diese nämlich vorn viel dichter ist, nach hinten hingegen an Dicke abnimmt und zarter wird.

Chylusmagen.

Den Chylusmagen beschreiben die Autoren ganz so wie den übrigen Darmcanal, nur mit der Ausnahme, dass sie die mittlere Schicht als mehr entwickelt annehmen. So Ramdohr1), der die flockige Lage im Chylusmagen als eine besondere Haut bestehen lässt, die mit sehr kleinen hellen Kugelchen besetzt und von hellen quer- und längsparallelen Furchen durchzogen ist. Die schon oben erwähnte von Lacordaire und Straus-Dürkheim so benannte membrana papillaria mit ihren granulations und globules soll ebenfalls nach Ersterem besonders, in der „portion estomacale“ entschiedener ausgesprochen sein. Straus-Dürkheim nennt die granulations in diesem Darmabschnitt „glandes gastriques destinées à sécréter quel-que liqueur gastrique.2 So sprechen auch Frei und Leukart3) von drüsenaaripher Gebilden, die aus einer Aggregation von Zellen bestehen, und auch Siebold4) beschreibt in dem ganzen mittleren Darmabschnitt des Verdaungscanal's der Insecten eine aus dichtgedrängten

1) L. e. §. 22.

2) Lehrbuch der Zootomie von W a g n e r. II. Band.

3) L. e.

Auf diese Weise bin ich belehrt worden, dass der Chylusmagen nach dem allgemeinen Grundplan 3) des Insectendarms gebaut sei, und demnach aus einer homogenen *membrana propria* bestehe, der nach Innen ein Epithel, das jedoch hier sehr starke Veränderungen erlitten hat, aufsitzt und die nach aussen durch Auflagerung einer *muscularis* verstärkt wird.

Die Muskelhaut, die, wie wir gesehen haben, dem in den Chylusmagen eingestülpten Theil des Kaumagens abging, ist wieder im Chylusmagen vorhanden und besteht hier ebenfalls aus zwei Schichten (Fig. 9 a), einer äusseren Längsfaser- und einer innern Querfaser- schicht. Die Fasern der ersten liegen dicht an einander und bilden

1) L. c. S. 207.
2) L. c. p. 61.
3) Leydig, L. c. S. 298
eine dicht geschlossene Membran, während die der zweiten durch
anastomotische Verzweigungen, wie dies schon im Ösophagus
beschrieben wurde, ein netzartiges Gewebe bilden, dessen einzelne
Maschen jedoch grösser sind als im Ösophagus. Die der muscularis
folgende membrana propria ist leichter isolierbar und auf ihrer
Innenseite in Falten ausgestülpt, die wabenartige Vertiefungen ein-
schliessen. Von der Fläche angesehen haben diese Falten das Aussehen
eines faserigen Maschengewebes, doch überzeugt man sich leicht an
Durchschnitten von Falten und Wabenbildung. Das der membrana
propria aufsitzende Epithelium zeigt eine zweifache Beschaffenheit.
Erstens findet man unregelmässige Zellen, welche das Enchym
napförmiger Gruben der membrana propria darstellend, wahrschein-
lich die Bildner des hier angesonderten alkalisichen Secretes sind.
(Fig. 9 c). Ich will sie mit den Namen der Krypten belegen.

Unter dem einfachen Mikroskopie sieht man, wie schon Ramdohr
angibt, helle quer und längslaufende Furchen, die, wie leicht einzu-
sehen, nichts anderes sind, als die zwischen den drüsenartigen Gebilden
bestehenden, von den Falten der membrana propria ausgefüllten
Zwischenräume.

Moraetz, der so wie im ganzen Darm, auch im Chylusmagen
keine membrana propria beschreibt, spricht nur von durch die
Muskelfasern gebildeten viereckigen Feldern, über deren Inhalt er
folgendes angibt: massa invenimus peculiarem subtilissime
granulatam globulis cocacervatis constantem peripheria irregulari
et circulata. Diese eigenthümliche Masse, welche wahrscheinlich
mit den von mir beschriebenen Gebilden übereinstimmt, erklärt er, da
er keine Struktur an ihr wahrnehmen kann, mit Ramdohr für Chylus.
Zweitens finden wir zwischen den Krypten wurzelnd und sich über
dem Inhalte derselben zusammenschliessend lange bis zur membrana
propria herabreichende Cylindercellen (Fig. 9 d). Ihre Länge
beträgt 0.04 Millim. und die Breite ihres oberen Endes 0.004 Millim.
An ihrem oberen Ende tragen sie einen Saum (Fig. 9 e) von 0.005 —
0.004 Millim. Breite, der eine leichte Querstreifung zeigt. Bei starker
500—600 maliger Vergrösserung sieht man dass diese Streifung wie
an dem Epithelium der Darmzotten der Wirbeltiere von dem hier von
Breitauer und Steinach beschriebenen Stäbchenorgan herrührt.
Es ist dasselbe schon an frischen Präparaten deutlich, behandelt man
über den Darm mit Holzessig, so tritt es besonders klar und deutlich
hervor, denn es kommen dadurch Formen (Fig. 10) zur Anschauung, die im Stande sind jede andere Ansicht über die Ursachen der Streifung des Zellensaumes zu annulliren.

Leydig1) und in neuester Zeit Kölliker beobachteten ebenfalls am Magenepithel verschiedener Insecten einen Saum, dessen Streifung doch von genannten Autoren mit Unrecht für den Ausdruck von Porenkanälen, die die Cuticula durchbohren, angegeben wird, wie sie ja bekanntlich auch den gestreiften Saum an den Cylinderzellen der Darmzotten der Wirbeltiere für poröse Zellendeckel halten.

Dieses so eigenthümlich charakterisierte Epithel, dessen Zellen ich oft derart von vielen Fettöträpfchen erfüllt sah, dass ich wirklich eine Resorption derselben anzunehmen im Stande sein konnte, das bei Saugethieren nur im Dünndarm vorkommt, und dort ebenfalls die Fettresorption zu besorgen hat, kommt bei \textit{Blatta orientalis} nur im Chylusmagen vor. Durch diese Thatsache gelangt man zur Ansicht, dass besonders hier die Resorption, zum allerwenigsten Fettresorption zu Stande kommen müsse, und in dieser Ansicht wird man um so mehr bestärkt, wenn man bedenkt, dass die Auskleidung des ganzen übrigen Darms eine Chitinmembran ist, also eine Membran, die ihrer bedeutenden Resistenz und geringen Permeabilität wegen, wohl nicht im Stande sein wird Fettöträpfchen hindurch zu lassen, aber leicht fähig sein kann, thierischen Flüssigkeiten den Durchtritt zu gestatten.

\textbf{Blinddärme.}

Die Blinddärme stimmen in ihrem Bau ganz mit dem des Chylusmagens überein; bilden also, wie dies schon Leon Dufour ganz richtig bemerkt, eine unmittelbare Ausstolzung desselben und dienen dazu, die Resorptions- und Secretionsfläche zu vergrößern. Ihre Wände sind im Allgemeinen dünn und zarter als die des Chylusmagen; die Grössenverhältnisse der Drüsen und Epithelzellen weichen jedoch nicht viel ab und sind folgende: Länge der Epithelzellen 0·03—0·04 Millim., Breite des Saumes 0·002 Millim., Durchmesser der Drüsen 0·02 Millim.

\textbf{Dünndarm, Dickdarm, Rectum.}

Die Structur der Darmabschnitte, die hinter dem Chylusmagen liegen, ist der, der vordemselben gelegenen ganz gleich. Wir begegnen also hier ebenfalls zwei Muskellagen, einer \textit{membrana propria}, einer

1) L. c. \textit{s.} 303.
chitinogenen Zellenschicht und einer innersten Chitinmembran. Letztere ist vorzüglich in dem so von Leon Du four benannten Dünn darm entwickelt, die mit Härchen von der Länge von 0·005—0·008 Millim. besetzt, und in gegen das Darmlumen vorspringende Falten gelegt. Eine noch größere Ausbildung erhält sie am hinteren Ende, wo sie, ähnlich wie im Kaumagen, eine Klappe bildet (Fig. 13). Der Bau derselben ist dem des Kaumagens ähnlich, aber nicht so complicirt, da dieselbe auch einer einfachen Funktion, nämlich der der Bildung eines Verschlusses zwischen dem Dünn- und Dickdarm vorsteht. Wir finden also bei derselben folgende Schichten: 1. Eine äussere Ringmuskulatur, 2. eine Längsmuskelschicht (beide Fortsetzungen der Muskelschicht im Chylusma gen). Von der letzteren lösen sich ebenfalls Muskelfasern ab, die in die Klappe hineingehen und sich in derselben inseriren. Die Verrichtung dieser Muskelfasern ist klar, nämlich ein blosses Ausdehnen und Zusammenziehen der Klappe und demzufolge eine Erweiterung und Verengerung des Darmlumens. Der Muskellage folgt wie immer eine structurlose membrana propria, und dieser die chitinogene Zellenschicht, die auch hier nicht einfach ist und sich in die Klappe fortsetzt. Die nun folgende Chitinmembran ist es, welche die Klappe selbst bildet. Diese ist eine ziemlich weit in das Darmlumen hineinragende Ringsfalte (Fig. 13 b), die auf ihrer vorderen Flä che sechs Zipfel (Fig. 13 a) trägt, deren jeder mit braunen Stacheln von 0·008—0·02 Millim. Länge besetzt ist, so zwar, dass die an der Spitze befindlichen am grössten sind.

Vom Bau des Dickdarms ist nichts Wesentliches zu bemerken, als dass die Chitinmembran ebenfalls in sehr ausgesprochene Längsfalten gelegt und mit zerstreut liegenden Stacheln besetzt ist, die eine Länge von 0·01—0·02 Millim. haben. Die Zellen der Zellenschicht sind rundlich oval, liegen ziemlich dicht an einander und betragen im Durchmesser 0·008—0·01 Millim. Das dem Dickdarm folgende Rectum ist ebenso gebaut wie jener, doch verdient sein hinteres birnförmig erweitertes Ende eine nähere Beachtung. Es laufen nämlich in der Wand desselben parallel mit der Längenaxe sechs Wülste herab, die auch in das Lumen des Rectums hineinragen. Der Bau derselben ist klar. Man findet nämlich auch hier zu äusserst die Muskellagen, dann die membrana propria, einen hohen Grad von Entwicklung erreicht aber besonders die Zellenschicht, die es auch vornehmlich ist, welche das Material zur Bildung der Wülste abgibt. Die Zellen
in derselben sind rundlich, gekörnt und betragen 0-009 Millim. im Durchmesser. Solche Wülste sind bei den Insecten schon lange bekannt und schon Swammer dam 1), Suk ow 2) und andere haben schon dieselben ihrer Form nach beschrieben. Leon Dufour 3) bezeichnet sie als rubans musculeux und lässt sie eine wichtige Rolle beim Hinausschaffen der Excremente übernehmen. Morawetz 4) will auch hier eine Ansammlung von Chylus gesehen haben, was ich aber nicht bestätigen kann, so wie überhaupt die Function dieser Organe noch gänzlich im Unklaren ist.

Adnexe Drüsen des Intestinal-Tractus.

1. Speicheldrüsen. (Fig. 11.) Zu den adnexen Drüsen des Darmcanals, solchen nämlich die ihr Secret in seine Höhlen ergiessen, gehören vor allem die Speicheldrüsen (glandulae sativales). Von dem Gewebe derselben im Allgemeinen gilt ganz dasselbe, was Häckel 5) über das Drüsegewebe des Flusskrebses angibt, nämlich, dass es von dem allgemeinen Überzugsgewebe der äusseren und inneren Decken nicht zu trennen ist, mit derselben in ununterbrochener Continuität steht, und eigentlich nur Einstülpungen in das darunter gelegene Körperparenchym darstellt. An den Ausführungsgängen, sowohl den der eigentlichen Drüsen, als des Speichelreservoirs wiederholen sich nämlich mit Ausnahme der Muskel genau dieselben Gewebe wie im Darmkanal; sie bestehen demnach aus einer äusseren, aus homogenem Bindegewebe bestehenden, strukturlosen hyalinen membrana propria (Fig. 11 a), auf welcher ein Epithelium (Fig: 11 b), bestehend aus rundlichen, ovalen, kernhaltigen Zellen, aufsitzt. Dieses Epithelium gehört jedenfalls, so wie das im Darmcanale auf der membrana propria sitzende, in die Classe der Chitinogengewebe, und in der That sitzt auch auf derselben eine chitinhaltige Cuticula (Fig. 11 c). Diese ist quergestreift und hat ganz das Aussehen von Tracheen, von denen man es an Präparaten, bei denen das Epithel durch Behandlung mit Reagentien zerstört wurde, nicht leicht unterscheiden

1) Biblia natural.
2) H e u s i n g e r's Zeitschrift für organische Physik. Bd. III.
3) Recherches etc.
4) L. e.
5) L. e. p. 523.
chitinogenen Zellenschicht und einer innersten Chitinmembran. Letztere ist vorzüglich in dem so von Leon Dufour benannten Dünn darm entwickelt, dicht mit Härcchen von der Länge von 0,005—0,008 Millim. besetzt, und in gegen das Darmlumen vorspringende Falten gelegt. Eine noch größere Ausbildung erhält sie am hinteren Ende, wo sie, ähnlich wie im Kaumagen, eine Klappe bildet (Fig. 13). Der Bau derselben ist dem des Kaumagens ähnlich, aber nicht so complicirt, da dieselbe auch einer einfachen Function, nämlich der der Bildung eines Verschlusses zwischen dem Dünn und Dickdarm vorsteht. Wir finden also bei derselben folgende Schichten: 1. Eine äussere Ringmuskulatur, 2. eine Längsmuskelschicht (beide Fortsetzungen der Muskelschicht im Chylusmagen). Von der letzteren lösen sich ebenfalls Muskelfasern ab, die in die Klappe hineingehen und sich in derselben inseriren. Die Verrichtung dieser Muskelfasern ist klar, nämlich ein blosses Ausdehnen und Zusammenziehen der Klappe und demzufolge eine Erweiterung und Verengerung des Darmlumens. Der Muskellage folgt wie immer eine structurlose \textit{membrana propria}, und dieser die chitinogene Zellenschicht, die auch hier nicht einfach ist und sich in die Klappe fortsetzt. Die nun folgende Chitinmembran ist es, welche die Klappe selbst bildet. Diese ist eine ziemlich weit in das Darmlumen hineinragende Ringfalte (Fig. 13 b), die auf ihrer vorderen Fläche sechs Zipfel (Fig. 13 a) trägt, deren jeder mit braunen Stacheln von 0,008—0,02 Millim. Länge besetzt ist, so zwar, dass die an der Spitze befindlichen am grössten sind.

Vom Bau des Dickdarms ist nichts Wesentliches zu bemerken, als dass die Chitinmembran ebenfalls in sehr ausgesprochene Längsfalten gelegt und mit zerstreut liegenden Stacheln besetzt ist, die eine Länge von 0,01—0,02 Millim. haben. Die Zellen der Zellenschicht sind rundlich oval, liegen ziemlich dicht aneinander und betragen im Durchmesser 0,008 — 0,01 Millim. Das dem Dickdarm folgende Rectum ist ebenso gebaut wie jener, doch verdient sein hinteres birnförmig erweitertes Ende eine nähere Beachtung. Es laufen nämlich in der Wand derselben parallel mit der Längenaxe sechs Wülste herab, die auch in das Lumen des Rectums hineinragen. Der Bau derselben ist klar. Man findet nämlich auch hier zu äusserst die Muskellagen, dann die \textit{membrana propria}, einen hohen Grad von Entwicklung erreicht aber besonders die Zellenschicht, die es auch vornehmlich ist, welche das Material zur Bildung der Wülste abgibt. Die Zellen
in derselben sind rundlich, gekörnt und betragen 0·009 Millim. im Durchmesser. Solche Wülste sind bei den Insecten schon lange bekannt und schon Swammerdam 1), Sukow 2) und andere haben schon dieselben ihrer Form nach beschrieben. Leon Dufour 3) bezeichnet sie als rubans musculueux und lässt sie eine wichtige Rolle beim Hinausschaffen der Excremente übernehmen. Morawetz 4) will auch hier eine Ansammlung von Chylus gesehen haben, was ich aber nicht bestätigen kann, so wie überhaupt die Function dieser Organe noch gänzlich im Unklaren ist.

Adnexe Drüsen des Intestinal-Tractus.

1. Speicheldrüsen. (Fig. 11.) Zu den adnexen Drüsen des Darms canals, solchen nämlich die ihr Secret in seine Höhlen ergießen, gehören vor allem die Speicheldrüsen (glandulae sativales). Von dem Gewebe derselben im Allgemeinen gilt ganz dasselbe, was Hæckel 5) über das Drüsengewebe des Flusskreb ses angibt, nämlich, dass es von dem allgemeinen Überzugsgewebe der äusseren und inneren Decken nicht zu trennen ist, mit demselben in ununterbrochener Continuität steht, und eigentlich nur Einstülpungen in das darunter gelegene Körperparenchym darstellt. An den Ausführungsgängen, sowohl den der eigentlichen Drüsen, als des Speichelreservoirs wiederholen sich nämlich mit Ausnahme der Muskel genau dieselben Gewebe wie im Darmkanal; sie bestehen demnach aus einer äusseren, aus homogenem Bindegewebe bestehenden, structurlosen hyalinen membrana propria (Fig. 11 a), auf welcher ein Epithelium (Fig. 11 b), bestehend aus rundlichen, ovalen, kernhaltigen Zellen, aufsitzt. Dieses Epithelium gehört jedenfalls, so wie das im Darmkanale auf der membrana propria sitzende, in die Classe der Chitinogengewebe, und in der That sitzt auch auf derselben eine ehitionhaltige Cuticula (Fig. 11 c). Diese ist quergestreift und hat ganz das Aussehen von Tracheen, von denen man es an Präparaten, bei denen das Epithel durch Behandlung mit Reagentien zerstört wurde, nicht leicht unterscheiden.

1) Biblia natural.
2) H e u s i n g e r's Zeitschrift für organische Physik. Bd. III.
3) Recherches etc.
4) L. c.
5) L. c. p. 523.
kann. Sie erreicht einen desto größeren Grad von Entwicklung, je mehr die Ausführungsgänge sich den Einmündungsstellen in den Darmcanal nähern, während sie nach hinten zu in den feineren Ausführungsgängen immer zarter und feiner wird, und endlich gar nicht mehr zu beobachten ist. Das Epithelium in den Ausführungsgängen setzt sich als Enchym in den Drüsenort und bildet dort die runden kernhaltigen, mit gekörntem Inhalte versehenen Secretionszellen (Fig. 11 e). Auch die membrana propria setzt sich von den Ausführungsgängen über die einzelnen Acini, zwischen denen sie brückenartig ausgespannt ist, als eine homogene, structurlose Bindegewebshülle fort.

Was nun die Structur des Speichelsackes, den Morawetz als aus Vereinigung der hinteren Acini entstanden beschreibt, den ich aber sowohl bei Blatta germanica als bei Blatta orientalis als ein vollkommen isolirtes Organ kennen lernte, so ist darüber zu bemerken, dass wir auch hier drei, die Wände desselben constituirende Schichten unterscheiden, nämlich die schon so oft charakterisirte membrana propria, die Zellenschicht und die Chitinmembran. Letztere bietet keine besonderen Charaktere dar, sondern ist nur am Halse des Speichelsackes wie in den oberen Ausführungsgängen der eigentlichen Drüsen tracheenartig quergestreift.

1) Müller's Archiv 1846, Mikrographie einiger Drüsensapparate.
2) L. c.
sind; 2. helle weisse Kugeln, die Kölliker ¹) (in neuester Zeit) so wie
die gelblichen bei den malpighischen Gefassem der Insecten angibt;
3. nadelförmige in Kugeln angehäufte harnsaure Krystalle.

Wenn die kleinen starkbrechenden gelblichen Kugelchen in
großer Menge vorhanden sind, so erscheinen die malpighischen Gefäße
unter dem Mikroskope schwarzbraun und undurchsichtig, während
sie sonst ganz hell und durchsichtig sind, und schwach gelblichgrün
erscheinen. Nichtsdestoweniger konnte ich nie zweierlei malpighische
Gefäße, die nach Leydig bei den Insecten vorkommen sollen, und
von denen er die Einen als Gallen-, die Anderen als Harngefäße
betrachtet, unterscheiden. Dieselbe Behauptung hat schon Kölliker
gegen Leydig ausgesprochen. Nach meinen Untersuchungen be-
stimmen mich vorzüglich zwei Gründe die malpighischen Gefäße nur
für Harngefäße zu halten: 1. bemerke ich oft (wenn man schon die
hellen und dunklen malpighischen Gefäße als zwei verschiedene
Formen gelten lassen wollte) beide Arten in einander übergehen; ich
nah nämliche solche, deren unteres Ende mit den stark lichtbrechenden
Kugelchen erfüllt also dunkel erschien, während im oberen Ende blos
die Secretionszellen und die erwähnten hellen Kugeln sich vorhanden
und die malpighischen Gefäße daher auch dort durchsichtig und hell
waren; 2. haben alle malpighischen Gefäße dieselbe Einmündungs-
stelle, d. h. sie münden sämtlich unterhalb des Chylusmagens ein, was
mit den bei anderen Arthropoden sicher als gallenbereitend erkannten
Organen, so viel ich weiss, niemals der Fall ist; es steht dagegen
nichts der Ansicht entgegen, dass die malpighischen Gefäße (wie
dies schon Rengger, Wurzer u. a. vor einer Reihe von Jahren
dargethan haben) Harngefäße sein, und um dies zur Genüge zu
bestätigen, war Professor Brücke so gütig dieselben aus Harnsäure
chemisch zu prüfen, welche er auch und zwar in grosser Menge
darin fand.

Physiologisches über die Verdauung.

Unsere bisherigen Kenntnisse über die Verdauung bei den In-
secten beschränken sich im Wesentlichen auf Vermuthungen, die man
aus der Analogie derselben mit den Wirbelthieren schöpfte. So nahm
man an, dass die Verdaung der Speisen blos in dem Abschnitt stattfinde

¹) Würzburger Verhandlungen.
den wir mit Chylusmag en bezeichnet haben, und auch R um d o h r erwähnt, dass die Verrichtung des Magens in der Verdaulung der Speisen und der Absorptions der nährenden Säfte (?) besteht. Nach B ur m e i s t e r ist der Ventrikel der eigentliche chylopoetische Darm und vereinigt demnach die Funktion eines Magens und Dünnarmes der Säugethiere; Kropf und Kamagen hingegen sind dem Kropfe der Vögel analog. Die Zellenschicht im Kropfe betrachtet er zudem als Drüsen, deren Secret die Function eines zubereitenden Saftes übernimmt. Auch L e y d i g 1) gibt über die Physiologie der Verdaulung einige Andeutungen, in denen er vorzüglich dem Secrete der Speichelrüsen eine grösere physiologische Bedeutung als die einer blossen Erweichung der Speisen zuschreibt, und im Darm (ventriculus) den Speisebrei noch mancherlei Umänderungen erfahren, hauptsächlich aber die Aufsaugung der gelösten Stoffe in die Blut- und Chylusgefässse (?) vor sich gehen lässt.

Alle diese Angaben sind bloß aufgestellte Vermuthungen, und entbehren jeder physiologischen experimentellen Begründung.

Von der Ansicht ausgehend, dass in jenen Darmabschnitten, in denen eine Chitinmembran vorkommt, die darunter gelegenen Zellen bloß eine chitinogene Bedeutung haben, durchaus aber nicht als einen Verdaugungssaa ß absondernde Drüsen zu betrachten seien, muss sich vor Allem der Gedanke Einem aufdrängen, ob nicht vielleicht etwa andere Organe da seien, deren Secret eine verdaunnde Wirkung auszuüben im Stande ware. Da waren es nun vor Al lem die Speicheldrüsen, die mir wegen ihrer verhältnissmassig bedeutenden Grösse und Entwicklung auffielen. Die Untersuchung des Secretes derselben und des Inhaltes des Öosphagus, Kropfes und Chylusmagens zeigte nun dass das Secret der Speichelrüsen, so wie der Öosphagus- und Kropfinhalt sauer, während des Chylusmagens im oberen Theile gewöhnlich neutral und im unteren alkalis ch war. Die morphologische Untersuchung hatte aber gezeigt, dass im Chylusmagen gewisse drüs enartige Gebilde vorkommen; man muss daher, wenn man weiss, dass im Öosphagus der Inhalt ein saurer ist und im Chylusmagen neutral oder alkalis ch wird, doch daraus schliessen, dass, da keine anderen Organe mehr vorhanden sind, die beschriebenen Gebilde Drüsen seien, die eine alkalis ch Flüssigkeit absondern. Durch diese

1) L. c. §. 333.

Die zweite Versuchsreihe war folgende: In eine schwache Lösung von gekochtem Amylum gab ich das erste Mal die Chylusmagen und Blinddärme, die ich zuvor ihres Inhaltes sorgfältig entleert hatte, von fünf, das zweite Mal von einem, und das dritte Mal von sechs Thieren, und liess das Ganze bei dem ersten Versuche sechs, beim zweiten vier und beim dritten bloß drei Stunden ebenfalls bei gewöhnlicher Zimmertemperatur und ungehemmtem Luftzutritt stehen. Nach Verlauf dieser Zeit zog ich mit Alkohol aus, dampfte diesen dann ab und die durch Güte des Herrn Professor Brücke mit dem Rückstande angestellten Proben erwiesen Folgendes: In jedem Rückstande war Zucker nachweisbar, im zweiten zwar nur in geringeren aber sicheren Spuren, im ersten und dritten aber in beträchtlicher Menge. Man thut also gut, wenn man zu diesem Versuch immer eine grössere Menge von Chylusmagen nimmt. Die angestellten Gegenversuche bestanden darin, dass ich eine gleich grosse Menge Stärkekleister bei derselben Temperatur eben so lange stehen ließ, um zu sehen ob nicht etwa durch freiwillige Zersetzung sich Zucker bilde, was aber nicht geschah.

Auf dieselbe Weise wie mit dem Chylusmagen verfuhr ich mit den Speicheldrüsen, bei denen auch ganz so wie früher Gegenver-
suche angestellt und auch dieselben Resultate erzielt wurden. Aus diesen Versuchen gehen nun folgende Thatsachen mit Sicherheit hervor: Das Secret der sogenannten Speicheldrüsen verdaut geronnenes Fibrin nach Art der Magensaftdrüsen der Wirbeltiere, es kann aber auch zur Verdaunung des Stärkemehles mitwirken, so dass sich nicht entscheiden lässt, in wie weit die letztere sein Werk oder das Werk des alkalischen Secretes des Chylusmagens sei.

Fassen wir nun alle wichtigen Ergebnisse im Allgemeinen zusammen, so sind diese folgende:

1. Die Chitinmembran ist im ganzen Darm mit Ausnahme des Chylusmagens vorhanden.

3. Das Epithel des Chylusmagens ist ein resorbierendes, nur die an der Wand des Chylusmagens sitzenden Gebilde sind ein alkalisches Secret absondernde Drüsen.

4. Es gibt nur einerlei Art malpighischer Gefässe und diese sind Harngefäße.

5. Das Secret der Speicheldrüsen verdaut Stärke, und in mit CIH angesäuertem Wasser auch Fibrin.

1) Um zu sehen ob sich nicht in irgendeinem Theile des chylopoetischen Systems gallenbereitende Organe auffinden liessen, beaufsichtigte ich einen ganzen Darmkanal mit seinen Anhängen mit verdünnter Salpetersäure und liess ihn längere Zeit an der Luft liegen, um abzuwarten, ob sich etwa die eine oder die andere Partie grün färben würde, aber es geschah nicht.
Erklärung der Abbildungen.

Fig. 1. Der ganze Intestinal-Tractus.

aa Schlund (fauks),
aa Ösophagus,
bb Kropf,
c c eigentliche Speicheldrüsen,
d d Speicheldreservoir,
e e Kauamagen,
f f Blinddärme,
o o Chylusmagen,
g g Malpighische Gefässe,
h h Dünn darm,
i i Dickdarm,
j j Coecum,
k k Rectum,
m m birnförmige Auftreibung desselben,
 n Wülste,
s s ringswulst am Dünn darm.

a' Ausführungsgänge der Speicheldrüsen und des Speicheldreservoirs,
c' Ausführungsgänge der Speicheldrüsen,
a'' des Speicheldreservoirs,

2. Stück des Kaumagens, aufgeschnitten und stark vergrössert, von innen angesehen.
a a Zähne,
b b Hauptide,
c c Nebenleisten,
d d Taschen der ersten Reihe,
e e zweiten f
f f Leisten die sich an die Taschen inseriren,
g g Felder der Chitinmembran des Ingluvies, von kleineren Stacheln begrenzt.

3. Durchschnitt vom Ösophagus senkrecht auf die Längsaxe geführt.
a a Eine Trache,
b b Durchschnitt vom Quer- und Längsmuskel,
c c Membrana propria,
d d Zellenschicht,
e e Chitinmembran,
f f Stacheln,

Fig. 5. Zellschicht der Ösophagus mit der dazwischen und darunter liegenden Membrana propria.

6. a u. b Stacheln im Ösophagus, sehr stark vergrößert.
8. Durchschnitt eines Zahnes vom Kaumagen, nachdem die Chitinöhle abgelöst worden ist.
 a Römischemusk,
b Radialmuskel,
c Längenmuskel, die sich an den Zahn inseriren,
d " " " " die Tasche inseriren,
e Zellschicht.
 a Muskelschicht,
b Membrana propria,
c Drüsen,
d Cylinderepithel,
e Stäbchen.
10. Eine isolierte Zelle aus dem Cylinderepithel des Chylusmagens.
 a Membrana propria) des Ausführungsganges,
b Epithelium
 c Chitinmembran,
d Membrana propria) der Acini.
e Zellen
 a Klappenslippe,
b eigentliche Klappe.
<table>
<thead>
<tr>
<th>Tag</th>
<th>Max.</th>
<th>Minimum</th>
<th>Beobachtungsort</th>
<th>Mittlere Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>+0°3</td>
<td>-18°6</td>
<td>Cairo</td>
<td>+8°19</td>
</tr>
<tr>
<td>3.</td>
<td>+2°6</td>
<td>-10°1</td>
<td>Curzola</td>
<td>+4°71</td>
</tr>
<tr>
<td>1.</td>
<td>+2°3</td>
<td>-13°8</td>
<td>Vaiona</td>
<td>+4°45</td>
</tr>
<tr>
<td>20.</td>
<td>+1°8</td>
<td>-9°0</td>
<td>Ragusa</td>
<td>+4°41</td>
</tr>
<tr>
<td>7.</td>
<td>+0°2</td>
<td>-10°4</td>
<td>Athen</td>
<td>+4°19</td>
</tr>
<tr>
<td>2.</td>
<td>+8°3</td>
<td>-1°6</td>
<td>Triest</td>
<td>+0°84</td>
</tr>
<tr>
<td>14.</td>
<td>+2°7</td>
<td>-10°4</td>
<td>Villa Carlotta</td>
<td>+0°66</td>
</tr>
<tr>
<td>20.</td>
<td>+4°9</td>
<td>-7°5</td>
<td>Venedig</td>
<td>-1°17</td>
</tr>
<tr>
<td>3.</td>
<td>+4°3</td>
<td>-7°1</td>
<td>Luino</td>
<td>-1°38</td>
</tr>
<tr>
<td>2.</td>
<td>+3°6</td>
<td>-10°0</td>
<td>Trient</td>
<td>-1°56</td>
</tr>
<tr>
<td>20.</td>
<td>+2°0</td>
<td>-8°0</td>
<td>Botzen</td>
<td>-1°66</td>
</tr>
<tr>
<td>8.</td>
<td>+4°1</td>
<td>+2°6</td>
<td>Bologna</td>
<td>-1°68</td>
</tr>
<tr>
<td>16.</td>
<td>+2°5</td>
<td>+10°5</td>
<td>Meran</td>
<td>-1°69</td>
</tr>
<tr>
<td>3.</td>
<td>+0°9</td>
<td>-16°7</td>
<td>Verona</td>
<td>-2°04</td>
</tr>
<tr>
<td>21.</td>
<td>+5°2</td>
<td>-14°8</td>
<td>Bodenbach</td>
<td>-2°39</td>
</tr>
<tr>
<td>21.</td>
<td>+9°6</td>
<td>0°0</td>
<td>Wien</td>
<td>-2°55</td>
</tr>
<tr>
<td>1.</td>
<td>+3°0</td>
<td>-14°6</td>
<td>Prag</td>
<td>-2°60</td>
</tr>
<tr>
<td>2.</td>
<td>+1°0</td>
<td>-9°8</td>
<td>Salzburg</td>
<td>-2°71</td>
</tr>
<tr>
<td>1.</td>
<td>+2°1</td>
<td>-8°6</td>
<td>Pressburg</td>
<td>-2°77</td>
</tr>
<tr>
<td>1.</td>
<td>+2°2</td>
<td>-9°6</td>
<td>Fünfkirchen</td>
<td>-2°84</td>
</tr>
<tr>
<td>1.</td>
<td>+2°3</td>
<td>-7°1</td>
<td>Platt</td>
<td>-2°87</td>
</tr>
<tr>
<td>20.</td>
<td>+0°1</td>
<td>-8°9</td>
<td>Piaierbach</td>
<td>-2°91</td>
</tr>
<tr>
<td>21.</td>
<td>-0°9</td>
<td>-13°5</td>
<td>Agram</td>
<td>-2°99</td>
</tr>
<tr>
<td>16.</td>
<td>+3°0</td>
<td>-9°2</td>
<td>Ofen</td>
<td>-2°99</td>
</tr>
<tr>
<td>1.</td>
<td>+1°7</td>
<td>-11°8</td>
<td>Mailand</td>
<td>-3°02</td>
</tr>
<tr>
<td>2.</td>
<td>+1°9</td>
<td>-11°8</td>
<td>Wiener-Neustadt</td>
<td>-3°06</td>
</tr>
<tr>
<td>1.</td>
<td>+2°1</td>
<td>-12°0</td>
<td>Martinsberg</td>
<td>-3°10</td>
</tr>
<tr>
<td>1.</td>
<td>+1°0</td>
<td>-12°4</td>
<td>Marienberg</td>
<td>-3°20</td>
</tr>
<tr>
<td>20.</td>
<td>+3°2</td>
<td>-13°3</td>
<td>Brünn</td>
<td>-3°26</td>
</tr>
<tr>
<td>2.</td>
<td>+0°4</td>
<td>-10°5</td>
<td>Gran</td>
<td>-3°27</td>
</tr>
<tr>
<td>20.</td>
<td>+2°4</td>
<td>-10°5</td>
<td>Schössl</td>
<td>-3°30</td>
</tr>
<tr>
<td>3.</td>
<td>+1°1</td>
<td>-9°0</td>
<td>Korneuberg</td>
<td>-3°33</td>
</tr>
<tr>
<td>1.</td>
<td>+0°5</td>
<td>-9°0</td>
<td>Ternau</td>
<td>-3°36</td>
</tr>
<tr>
<td>3.</td>
<td>-0°4</td>
<td>-10°0</td>
<td>Pilsen</td>
<td>-3°44</td>
</tr>
<tr>
<td>20.</td>
<td>+2°0</td>
<td>-17°0</td>
<td>Troppau</td>
<td>-3°48</td>
</tr>
<tr>
<td>3.</td>
<td>-0°4</td>
<td>-19°0</td>
<td>Kremsier</td>
<td>-3°48</td>
</tr>
<tr>
<td>1.</td>
<td>+3°8</td>
<td>-10°0</td>
<td>Szegedin</td>
<td>-3°49</td>
</tr>
<tr>
<td>1.</td>
<td>+3°8</td>
<td>-10°0</td>
<td>Melk</td>
<td>-3°53</td>
</tr>
<tr>
<td>Secundäre Extreme der Temp.</td>
<td>Tag</td>
<td>Max.</td>
<td>Tag</td>
<td>Minimum</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>NW. 1.</td>
<td>+2°0</td>
<td>9°</td>
<td>+1°</td>
<td>-14°</td>
</tr>
<tr>
<td>SW. 2.</td>
<td>+2°9</td>
<td>9°</td>
<td>+1°</td>
<td>-10°</td>
</tr>
<tr>
<td>W. 3.</td>
<td>+2°1</td>
<td>8°</td>
<td>+0°</td>
<td>-9°</td>
</tr>
<tr>
<td>V. W. 4.</td>
<td>+2°5</td>
<td>7°</td>
<td>+0°</td>
<td>-8°</td>
</tr>
<tr>
<td>NW. 5.</td>
<td>+2°7</td>
<td>6°</td>
<td>+0°</td>
<td>-7°</td>
</tr>
<tr>
<td>SW. 6.</td>
<td>+2°8</td>
<td>5°</td>
<td>+0°</td>
<td>-6°</td>
</tr>
<tr>
<td>W. 7.</td>
<td>+2°9</td>
<td>4°</td>
<td>+0°</td>
<td>-5°</td>
</tr>
<tr>
<td>V. W. 8.</td>
<td>+2°0</td>
<td>3°</td>
<td>+0°</td>
<td>-4°</td>
</tr>
<tr>
<td>NW. 9.</td>
<td>+2°1</td>
<td>2°</td>
<td>+0°</td>
<td>-3°</td>
</tr>
<tr>
<td>SW. 10.</td>
<td>+2°2</td>
<td>1°</td>
<td>+0°</td>
<td>-2°</td>
</tr>
<tr>
<td>W. 11.</td>
<td>+2°3</td>
<td>0°</td>
<td>+0°</td>
<td>-1°</td>
</tr>
<tr>
<td>V. W. 12.</td>
<td>+2°4</td>
<td>9°</td>
<td>+0°</td>
<td>0°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beobachtungsart. (Nach der mittl. Temp. geordnet.)</th>
<th>Mittlere Temperatur</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komorn</td>
<td>3°66</td>
<td></td>
</tr>
<tr>
<td>Bludenz</td>
<td>3°71</td>
<td></td>
</tr>
<tr>
<td>Mauer</td>
<td>3°75</td>
<td></td>
</tr>
<tr>
<td>Czaslau</td>
<td>3°78</td>
<td></td>
</tr>
<tr>
<td>Buchenstein</td>
<td>3°82</td>
<td></td>
</tr>
<tr>
<td>Lins</td>
<td>3°82</td>
<td></td>
</tr>
<tr>
<td>Ödenburg</td>
<td>3°89</td>
<td></td>
</tr>
<tr>
<td>Frauenberg</td>
<td>3°90</td>
<td></td>
</tr>
<tr>
<td>Jaslo</td>
<td>4°03</td>
<td></td>
</tr>
<tr>
<td>Kremsmünster</td>
<td>4°09</td>
<td></td>
</tr>
<tr>
<td>Oderberg</td>
<td>4°13</td>
<td></td>
</tr>
<tr>
<td>Alt-Aussee</td>
<td>4°18</td>
<td></td>
</tr>
<tr>
<td>Gresten</td>
<td>4°28</td>
<td></td>
</tr>
<tr>
<td>Neutitschein</td>
<td>4°31</td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td>4°38</td>
<td></td>
</tr>
<tr>
<td>Unter-Tillach</td>
<td>4°40</td>
<td></td>
</tr>
<tr>
<td>Zavalje</td>
<td>4°45</td>
<td></td>
</tr>
<tr>
<td>Kirchdorf</td>
<td>4°65</td>
<td></td>
</tr>
<tr>
<td>Lemberg</td>
<td>4°65</td>
<td></td>
</tr>
<tr>
<td>Deutschbrod</td>
<td>4°67</td>
<td></td>
</tr>
<tr>
<td>Schemnitz</td>
<td>4°72</td>
<td></td>
</tr>
<tr>
<td>Krakau</td>
<td>4°76</td>
<td></td>
</tr>
<tr>
<td>Markt Aussee</td>
<td>4°77</td>
<td></td>
</tr>
<tr>
<td>Rzeszow</td>
<td>4°77</td>
<td></td>
</tr>
<tr>
<td>Bad Gastein</td>
<td>4°78</td>
<td></td>
</tr>
<tr>
<td>Lölling</td>
<td>4°80</td>
<td></td>
</tr>
<tr>
<td>Qersowonitz</td>
<td>4°96</td>
<td></td>
</tr>
<tr>
<td>Neustadtl</td>
<td>5°00</td>
<td></td>
</tr>
<tr>
<td>Semlin</td>
<td>5°05</td>
<td></td>
</tr>
<tr>
<td>Craijowa</td>
<td>5°21</td>
<td></td>
</tr>
<tr>
<td>Spenstenland</td>
<td>5°37</td>
<td></td>
</tr>
<tr>
<td>Kaschau</td>
<td>5°40</td>
<td></td>
</tr>
<tr>
<td>Wilten</td>
<td>5°41</td>
<td></td>
</tr>
<tr>
<td>Ragusa</td>
<td>4°41</td>
<td></td>
</tr>
<tr>
<td>Ragagberg</td>
<td>5°44</td>
<td></td>
</tr>
<tr>
<td>Pragratten</td>
<td>5°44</td>
<td></td>
</tr>
<tr>
<td>Mürzzuschlag</td>
<td>5°47</td>
<td></td>
</tr>
<tr>
<td>St. Jakob II</td>
<td>5°53</td>
<td></td>
</tr>
<tr>
<td>Steinbühel</td>
<td>5°54</td>
<td></td>
</tr>
<tr>
<td>Stelzing</td>
<td>5°55</td>
<td></td>
</tr>
<tr>
<td>Semering</td>
<td>5°83</td>
<td></td>
</tr>
<tr>
<td>St. Jakob I</td>
<td>5°91</td>
<td></td>
</tr>
<tr>
<td>Debrezenin</td>
<td>5°94</td>
<td></td>
</tr>
<tr>
<td>St. Magdalena</td>
<td>5°94</td>
<td></td>
</tr>
</tbody>
</table>

Olling wurde die Temperatur um 6 Uhr Morg. und 2 Uhr Ab. beobachtet, das nach dem Minim.-Thermometer —15°8, Luftdruck: secundäres Max. um 8-4 353°04. von Obir III ebenso tief.
<table>
<thead>
<tr>
<th>Tag</th>
<th>Max.</th>
<th>Tag</th>
<th>Minimum</th>
<th>Beobachtungsort</th>
<th>Mittlere Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>-0.3</td>
<td>27.</td>
<td>-18.4</td>
<td>Reichenau</td>
<td>5.97</td>
</tr>
<tr>
<td>1.</td>
<td>+0.2</td>
<td>27.</td>
<td>-17.0</td>
<td>St. Johann</td>
<td>5.97</td>
</tr>
<tr>
<td>15.</td>
<td>+1.0</td>
<td>11.</td>
<td>-5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>+0.2</td>
<td>28.</td>
<td>-14.1</td>
<td>Admont</td>
<td>6.12</td>
</tr>
<tr>
<td>20.</td>
<td>+1.6</td>
<td>9.</td>
<td>-10.0</td>
<td>Weisbrüche</td>
<td>6.14</td>
</tr>
<tr>
<td>1.</td>
<td>+3.0</td>
<td>4.</td>
<td>-9.9</td>
<td>Leutschau</td>
<td>6.29</td>
</tr>
<tr>
<td>1.</td>
<td>-0.1</td>
<td>7.</td>
<td>-11.8</td>
<td>Althofen</td>
<td>6.32</td>
</tr>
<tr>
<td>1.</td>
<td>+1.0</td>
<td>7.</td>
<td>-12.0</td>
<td>Hofgastein</td>
<td>6.35</td>
</tr>
<tr>
<td>1.</td>
<td>+0.6</td>
<td>9.</td>
<td>-10.3</td>
<td>Rosenau</td>
<td>6.42</td>
</tr>
<tr>
<td>2.</td>
<td>+0.8</td>
<td>27.</td>
<td>-18.8</td>
<td>Cilli</td>
<td>6.50</td>
</tr>
<tr>
<td>20.</td>
<td>+2.0</td>
<td>29.</td>
<td>-11.0</td>
<td>Laibach</td>
<td>6.63</td>
</tr>
<tr>
<td>21.</td>
<td>+2.8</td>
<td>11.</td>
<td>-9.6</td>
<td>Obir I.</td>
<td>6.65</td>
</tr>
<tr>
<td>30.</td>
<td>+1.0</td>
<td>30.</td>
<td>-9.0</td>
<td>St. Peter</td>
<td>6.60</td>
</tr>
<tr>
<td>20.</td>
<td>+2.0</td>
<td>29.</td>
<td>-11.0</td>
<td>Kalkstein</td>
<td>6.69</td>
</tr>
<tr>
<td>21.</td>
<td>+2.8</td>
<td>11.</td>
<td>-9.6</td>
<td>Mediasch</td>
<td>7.07</td>
</tr>
<tr>
<td>24.</td>
<td>+4.0</td>
<td>9.</td>
<td>-7.0</td>
<td>Gurgl</td>
<td>7.30</td>
</tr>
<tr>
<td>12.</td>
<td>+7.0</td>
<td>5.</td>
<td>-3.0</td>
<td>Lienz</td>
<td>7.55</td>
</tr>
<tr>
<td>21.</td>
<td>+0.4</td>
<td>27.</td>
<td>-21.8</td>
<td>Obervellach</td>
<td>7.73</td>
</tr>
<tr>
<td>20.</td>
<td>+3.9</td>
<td>5.</td>
<td>-11.2</td>
<td>Nikolsburg</td>
<td>7.78</td>
</tr>
<tr>
<td>21.</td>
<td>+3.9</td>
<td>5.</td>
<td>-11.2</td>
<td>Inner-Villgratten</td>
<td>7.80</td>
</tr>
<tr>
<td>21.</td>
<td>+3.9</td>
<td>5.</td>
<td>-11.2</td>
<td>Kesmark</td>
<td>7.87</td>
</tr>
<tr>
<td>20.</td>
<td>+3.9</td>
<td>5.</td>
<td>-11.2</td>
<td>Obir LL</td>
<td>7.90</td>
</tr>
<tr>
<td>21.</td>
<td>+3.9</td>
<td>5.</td>
<td>-11.2</td>
<td>Schüssberg</td>
<td>8.03</td>
</tr>
<tr>
<td>11.</td>
<td>+11.5</td>
<td>19.</td>
<td>-0.5</td>
<td>Kronstadt</td>
<td>8.09</td>
</tr>
<tr>
<td>4.</td>
<td>+3.0</td>
<td>11.</td>
<td>-1.5</td>
<td>Innichen</td>
<td>8.19</td>
</tr>
<tr>
<td>3.</td>
<td>+4.7</td>
<td>9.</td>
<td>-2.8</td>
<td>Saalfitz</td>
<td>8.60</td>
</tr>
<tr>
<td>2.</td>
<td>-0.2</td>
<td>28.</td>
<td>-12.4</td>
<td>Sachsenburg</td>
<td>8.72</td>
</tr>
<tr>
<td>1.</td>
<td>+1.0</td>
<td>28.</td>
<td>-12.4</td>
<td>Wallendorf</td>
<td>9.12</td>
</tr>
<tr>
<td>1.</td>
<td>+3.9</td>
<td>10.</td>
<td>-9.6</td>
<td>St. Paul.</td>
<td>9.50</td>
</tr>
<tr>
<td>26.</td>
<td>+3.3</td>
<td>10.</td>
<td>-11.8</td>
<td>Klagenfurt</td>
<td>9.89</td>
</tr>
<tr>
<td>7.</td>
<td>+1.8</td>
<td>8.</td>
<td>-11.2</td>
<td>Sexten</td>
<td>10.06</td>
</tr>
<tr>
<td>2.</td>
<td>+0.4</td>
<td>8.</td>
<td>-8.4</td>
<td>Tröpolach</td>
<td>11.20</td>
</tr>
</tbody>
</table>

Wien gefunden: Magnetische Declination 12°35'08' Horizon-

Schnee am 3. und 4., am 5. stürmisch aus W., am 22. 23. 24.

20., Schnee am 3., 14. 15. 16. 17. 18. 21. 22. 23. 29. 31. —
30. — Am 5. Eisdecke der Schwarza 5 Zoll, am 8. 6 Zoll. —
36° 20' Ab. zweimal von SW. bis SO., am 19. Morgens Sturmecke am 23. 2. 1/₂ Zoll.

wacher Regen, am 14. vor Sonnenaufgang Reif im Garten, ebensogut war die Luft voll Staub. — Bereits am 29. wurde hier der erste sich am 30. nach SW., und am 31. mit der Stärke SW²

Schnee am 3. 13. bis 18. 21. 22. 23. 31., am 15. 1° 80, am 16.

misch aus W.

Schnee bis unter die Hälfte der Berge am 9. 21. 22., am 18. 10. und 31. Eis im Wasser gefäss des Psychrometers.

Schnee am 2. 3. 6. 15. 16. 17. 18. 25. 27. 28. 29., Nebel am 7. 11. am 22. Mondhoch, stürmisch aus NW.

am 19. 3° 80, Nebel am 1. 2. 14. 15.

21. 31., Schnee am 3. 4. 6—23., am 31. 3° 10 mit Regen.

Schnee am 3. 16. 17. 19. 22. — Nebel am 1. 2. 3. 8. 9. 27. 29. 30. 32. — Das Erdbeben vom 15. wurde hier zwischen den beiden Erkelen, aber schwach wahrgenommen. — Am 22. Mittag stürzte 28. aus NO.

Der Eisstoss ein.

Schnee am 14. 15. 16. 19. 20. 22. 23.

Kräftigen stand, habe ich in der Umgebung Wiens, namentlich um
zumale, welche mir die Überzeugung verschafften, dass die Wärme-
ingslicher Beziehung eine grosse Rolle spielt.

der kälteren und schwereren Luftströmung bei Windstille von
Thäler ist hierbei in Betracht zu ziehen. — Man wird an heiteren
Übergange von einem Hügel ins Thal den auffallenden, oft 5°
unterschied allsogleich wahrnehmen; an windigen Tagen da-
Unerschied wegen den vom Winde gleichförmiger zugeführten
sehr. Solche Punkte mit so auffallender Thal- und Hügel-Tempe-
wien unter anderem: Giesshübel und das Thal der Brühl, die
Liesing und Mauer, dann zwischen Mauer und Lainz und die
ichen Berge bis zum Kahlenberge.

Burkhardt.

d. Bei den haussäugthieren Katarrhe des Respiration- und Inte-

ankheiten: Entzündliche Affectationen der Hals- und Brustorgane,
neumonien, Gastro-intestinal-Katarrhe, vereinzelte Typhen, Wech-
schweife Haut-Erkrankungen, als Scariatica, modifizierte Variola, Rubeola,
er entzündlich-katarrhalische Epidemien und Episomien keine.
Kohlmayr berichtet: In Folge der zu Monatsanfang so plötzlich
durch zwei Tage unterbrochenen Kälte blieben unter 500 Per-
z. gesund, fast jeder litt an Grippe. Katarrhal- und Nervenleber,
viele Frostbeulen vor. Verstorben sind 10 Personen.

Kntner schreibt: Es herrschten viele Krankheiten, Grippe, Lun-
phus u. s. w.

endet durch den Beobachter Herrn P. Bernhard Voook, Gymnasial-
ene Beobachtungen ein.

die Bemühung des Herrn Professor Fritzsch eine vollständige

den vom Herrn B. Dörer, Administrator der k. Villa dasselbe,
ätzbar Beobachtungen eingeleitet und ausgeführt.
a Kunst
pflicht
Erheb.
Un
lich

ank
and
er
du
ant

nde
ne
nd
der
näz

Digitized by Google
SITZUNGSBERICHTE

DER

KAISERLICHEN AKADEMIE DER WISSENSCHAFTEN.

MATHEMATISCH-NATURWISSENSCHAFTLICHE CLASSE.

XXXIII. BAND.

SITZUNG VOM 18. NOVEMBER 1858.

N° 26.
SITZUNG VOM 18. NOVEMBER 1858

Eingesendete Abhandlung.

Sulla persistenza dell'aorta destra nell'uomo.

Di E. Oehl.

(Con 1 tavola.)

(Vorgelegt durch Hrn. Regierungsrath H y r t l in der Sitzung vom 7. October 1858.)

Fra i cadaveri di bambini, dei quali, per gentilezza del mio Collegha, Dr. Obicini, Aggiunto alla Direzione di questo Ospitale, ho potuto intraprendere la sezione nel corso delle presenti ferie autunnali, uno mi si offerse in verso la metà di Settembre, dell'età di 21 giorni 1), il quale per un’insolita proporzione nel volume delle sue parti, presentava un’aspetto generale non osservabile a questa età. Nel mentre infatti riscontrasi nei neonati una rimarchevole piccolezza degli arti, specialmente inferiori, ed un volume della testa, che in rapporto alle altre parti del corpo è maggiore che nelle età successive, avea il cadavere, di cui parlo, assai più dei superiori sviluppati gli arti inferiori, e la testa, benché perfettamente formata, pure si piccola, da riuscirne, relativamente agli altri organi del cadavere, invertito, in quanto al volume il rapporto normale.

Erano bensì queste condizioni bastevoli a richiamare la mia attenzione, ma non tali da determinarmi a conservare il cadavere, essendo sì frequenti e sì evidenti i casi di microcefalo raccolti nei varj Musei (fra i quali di bellissimi nel Museo anatomico diretto dal Prof. Consigliere H y r t l a Vienna) da scomparire quasi, in loro

1) Figura nei Registri dell’Ospitale sotto il nome di Zanatti Gaetano decesso i 16 Settembre alle 9-30 antimeridiane.
confronto, il microcefalismo da me osservato; non a ricercarne un'anatomica spiegazione, poiché colle poche cognizioni che si hanno in fatto di teratologia, non osava trascurare altri studi pressanti per darmi ad una gretta e minuta indagine anatomica il cui risultato d'altronde poteva essere assai problematico.

Limitatomi adunque a rimarcare questa deficienza nel volume del capo e degli arti superiori, procedeva sul piccolo cadavere alle ricerche che mi era prefisse e per le quali doveva estrarre in una sola massa gli organi del torace che faceva portare nel mio piccolo laboratorio.

Ma la istituita ricerca anatomica degli organi toracici testè menzionate, rivelava la esistenza di un' assai rilevante anomalia, ch' io credo influisse non poco sulla rimarcata deficienza di volume della testa e degli arti superiori.

Fra i vasi arteriosi emergenti dal cuore, avea prevalente calibro l'arteria polmonare. Essa dopo breve decorso rigonfiavasi in una specie di bulbo e non si decomponeva quindi nei rami ai due polmoni, ma somministrati questi, che avevano la significazione di rami secondari, continuavasi come tronco principale (ridotta a due terzi del diametro primitivo) nell'aorta toracica, di cui egualmente il lume, rappresentando per tal modo quell' aorta destra che è nell'embrione costituita dal tronco dei due archi aortici primitivi posteriori.

Al suo emergere dal cuore tenea la vera aorta i suoi normali rapporti anatomici, differendone solo per il lume che era minore di quello dell'arteria polmonare. Dalla convessità della sua curva partivano, come di norma, il tronco brachio-cefalico a destra, la carotide e la suclavia a sinistra e l'aorta quindi, ridotta ad un diametro eguale a quello della suclavia sinistra, dopo brevissimo decorso metteva nell'aorta toracica, laddove quest'arteria continuavasi nel tronco principale dell'arteria polmonare.

Il foro del Botal esisteva tuttora, rappresentato da una fenditura elittica, il cui massimo diametro, doppio del trasverso, si estendeva in una linea quasi parallela all'asse del cuore.

Benché dall'esame dell'unita figura si possa rilevare a colpo d'occhio la qualità e il grado dell'anomalia in discorso, pure non esitai di prendere le più esatte misure, le quali, paragonate con quelle ottenute in cadaveri della stessa età facessero meglio valutare l'importanza anatomica e fisiologica del caso ch'io vado descrivendo.
In varj bambini dell’età di uno a quattro mesi, misurava l’ aorta alla sua origine una circonferenza compresa fra i 32 e i 36 millimetri e quindi un diametro, compreso lo spessore delle pareti \(^1\), di 10, 6 a 12 millimetri.

L’ arteria polmonare invece, sotto una circonferenza di 20 a 26 millimetri, dava per diametro da 6,6 a 8,6 millimetri. Facendo una media degli undici cuori di bambini presi in esame, ottenni 33 millimetri per la circonferenza dell’aorta e 23 millimetri per quella dell’ arteria polmonare; un diametro quindi di 11 millimetri per la prima di 7,6 millimetri per la seconda.

Anche nei bambini appena nati esiste fra il lume dei due vasi una differenza, poiché in uno di essi era di 18 millimetri la circonferenza dell’ aorta e di 15 quella dell’ arteria polmonare, ed erano quindi i diametri rispettivi di 6 e di 5 millimetri. Calcolando quindi sui dati precedenti, il diametro dell’ arteria polmonare sta a quello dell’ aorta come 1 : 1,04, mentre nel neonato abbiamo il rapporto di 1 a 1,02, dovuto al diametro rispettivamente maggiore dell’arteria polmonare.

La prevalenza infatti nel diametro dell’arteria polmonare va sempre crescendo coll’ avvicinarsi che facciamo al cuore dei feti, nel quali l’aorta è in modo assoluto più piccola dell’arteria polmonare. Procedendo invece verso l’epoca della nascita e verso il cuore degli adulti vanno a poco a poco questi rapporti invertendosi, talché la minima proporzione fra l’arteria polmonare e l’aorta è negli adulti di 1 : 1,5.

Questo doveva essere, poiché al formarsi dell’ aorta e dei suoi rami, non che dell’ arteria polmonare e del condotto arterioso dagli archi aortici primitivi, l’ aorta sinistra non comunica colla futura aorta toracica se non per un ramo d’ ordine secondario, mentre invece colla medesima è in diretta comunicazione l’arteria polmonare, che costituisce a quest’ epoca assai remota della vita fetale l’aorta destra.

Nell’ aorta sinistra adunque non entra a quest’ epoca se non il sangue destinato alla testa ed agli arti superiori e solo una piccola porzione passa da essa nell’aorta destra, alla quale proviene dal cuore

\(^1\) Nelle misure dei flumi dei vasi che andrò successivamente citando s’intenderà sempre compreso lo spessore delle pareti, avendo io calcolato il diametro dalla misura della circonferenza e valutatolo per tutti i vasi ad un terzo di quest’ ultima.
la maggior massa di sangue destinato a tutte le altre parti del corpo ed alla placenta. Era necessario quindi che fino a tanto che non si restringe il lume del condotto arterioso, fino a tanto che non si amplifica quello che viene in comunicazione l’aorta sinistra colla toracica, era necessario, dico, che l’aorta destra funzionante ad un tempo da arteria respiratoria e nutritizia superasse nel diametro l’aorta permanente, e ciò vediamo infatti avvenire in un lungo periodo della vita etale. Avvicinandosi il termine di questa vita però, il cuore stesso assume condizioni organiche favorevoli a che l’onda sanguigna venendo più favorevolmente diretta al cuore sinistro invada di preferenza l’aorta permanente, onde disporla a quel grado di sviluppo che la conduca a superare in diametro l’arteria polmonare.

È noto infatti agli anatomici, come negli ultimi tempi della vita fetale assuma un gigantesco sviluppo e quale non ancora osservato nelle epoche anteriori la valvola d’Eustachio.

L’arresto di sviluppo però del condotto arterioso e la rapida evoluzione del tronco di comunicazione fra l’aorta sinistra e la toracica, sono fenomeni che incominciano ad un’epoca assai remota della vita fetale (vedi anche Bischoff: Entwicklungsgeschichte des Menschen etc.) talché all’epoca della nascita arrestossi a tal grado di piccoliezza il condotto arterioso e tanto sviluppossi il tronco di comunicazione fra l’aorta sinistra e la toracica da esigersi per la prima un lume superiore a quello dell’arteria polmonare. Nel neonato infatti non arriva ai 2 millimetri il diametro del condotto arterioso, mentre s’avvicina invece ai 4 millimetri il diametro del tronco di comunicazione fra l’aorta sinistra e la toracica.

Formato che sia l’aorta sinistra, stabilitisi i rami che dalla sua curva si dirigono alla testa ed agli arti superiori, deve la massa del sangue che l’attraversa aumentare quando lo sviluppo del suo tronco di comunicazione coll’ aorta toracica proceda più rapido che non lo sviluppo del condotto arterioso. Risultando poi dalle leggi embriologiche e morfologiche: essere una delle cause determinanti lo sviluppo dei vasi la quantità del sangue che per essi trascorre (circolazione collaterale nei casi di legatura delle arterie), così lo sviluppo del tronco di comunicazione dell’aorta sinistra colla toracica dev’essere contemporaneo ad una maggior copia di sangue che dall’orecchietta destra entri pel foro di Botal nel cuore sinistro e da esso nell’aorta. L’ampiezza del foro di Botal e il conveniente sviluppo della val-
vola d’Eustachio saranno quindi le condizioni necessarie a che venga spinta nel cuore sinistro copia di sangue sufficiente a determinare lo sviluppo dell’ aorta sinistra e del suo tronco di comunicazione coll’ aorta toracica. Chè se una condizione organica sfavorevole al passaggio del sangue nell’ orecchietta sinistra, diminuisse alla medesima la massa di questo liquido, dovremmo avere un arretrato sviluppo dell’ aorta sinistra e del suo tronco di comunicazione coll’ aorta toracica ed una relativamente esagerata evoluzione invece dell’ arteria polmonare e del condotto arterioso che permarranno sotto la forma di aorta destra. Una tale permanenza dell’ aorta destra adunque potrebbe essere in ultima analisi collegata ad un deficit passaggio di sangue per l’ aorta sinistra e quindi ad una deficitaria irrigazione sanguigna della provincia arteriosa brachio-cefalica, la quale se non nello sviluppo morfologico delle sue parti, dovrà risentirne nell’ acquisto di un conveniente volume delle medesime.

Parrebbe a prima giunta contraddittorio applicare una tale spiegazione al caso che io vado descrivendo, nel quale era benissimo sviluppata la valvola d’Eustachio e persistente dopo 21 giorni di vita extraterina il foro del Botal. Per poco si pensi però che i vasi maggiori emergenti dal cuore rappresentavano, per la stazionarietà di loro sviluppo relativo, un’ epoca assai remota della vita intrauterina, facilmente si comprende come dalla istessa inerzia potesse essere dominato il processo di chiusura del foro ovale e come la sua massima dimensione di 6 millimetri, minore della metà di quella che si riscontra solitamente nel feto, anziché dovuta allo sviluppo della valvola di questo foro, valvola di cui non vi avea traccia, non altro indicasse che la esistenza di un foro ovale più piccolo.

Ho premesso queste considerazioni che io credo strettamente basate alle leggi anatomo-fisiologiche perché mi parvero valvoli a determinare la esistenza di un nesso fra la descritta anomalia e il riscontrato microcefalismo. Passo ora alla precisa indicazione del diametro dei vasi nel caso da me preso in esame.

Massimo diametro trasverso del cuore 5 centimetri
Diametro longitudinale dalla punta del cuore all’ origine dell’ arteria polmonare 3·8 "
Diametro dell’ aorta 6·66 millimetri
Della stessa dopo dati i tre tronchi alla sua curva 2·66 "
Dell'arteria polmonare ... 10 millimetri
Diametro del condotto arterioso 6.35 "
" tronco brachio-cefalico 4 "
" della carotide sinistra ... 2.66 "
" suclavia sinistra ... 2.66 "
Lunghezza massima dell' aorta dall' emergenza della suclavia sinistra allo sbocco nell' aorta toracica ... 4 "
Lunghezza del condotto arterioso ¹) 2 centimetri
" del foro ovale ... 6 millimetri
Larghezza del medesimo ... 3 "

La grande anomalia del caso è tosto rilevata se si pensi, che mentre nello stato normale a questa età il diametro dell' arteria polmonare sta a quello dell' aorta come .. 1 : 1.04 nel caso presente invece sta come .. 1 : 0.7

Questo rapporto nel diametro dei vasi emergenti dal cuore, non che la persistenza del foro di Botal, bastano a dimostrare, come i vasi cardiaci siano rimasti, in quanto alle loro metamorfosi reciproche, ad uno degli stadi della più arretrata vita fetale. I tronchi che dall' aorta mettevano alla testa ed agli arti superiori avevano pel tronco brachio-cefalico la proporzione normale di 1 : 1.90, per la carotide e per la suclavia sinistra quella pure normale di 1 : 3. Lo sviluppo di questi vasi era dunque regolarmente proceduto in relazione allo sviluppo dell' aorta, la quale però aveva un diametro minore di quello dell' arteria polmonare.

L' aorta adunque, dall' epoca in cui erasi stabilito questo rapporto dei vasi fino a 21 giorni dopo la nascita aveva ammessa una copia di sangue minore di quella che avrebbe dovuto, eppoi dovevano risentire nel loro sviluppo gli organi sottoposti al dominio della sua irrigazione. Io non dubito quindi di ammettere che, preseindendo anche dalla permanenza del foro del Botal, nella vita extrauterina, la persistente prevalenza nel diametro dell' arteria polmonare e del condotto arterioso sul diametro dell' aorta e del tronco di comunicazione della medesima coll' aorta toracica, debbano

¹) Questa lunghezza assai marcata in confronto a quella di 8 millimetri, normale in questa età, è ad evidenza dovuta al dificiente sviluppo dell' aorta laddove avviene lo sbocco del condotto arterioso.
Oehl. Sulla persistenza dell'aorta destra nell'uomo.
Sulla persistenza dell’ aorta destra nell’ uomo.

essere causa per la quale la testa e gli arti superiori del neonato presentansi meno sviluppati che quando la metamorfosi dei vasi procedette con tanta regolarità da essere all’ epoca della nascita invertiti i rapporti di diametro fra i due sistemi di vasi.

Se la presenza di tali condizioni, oltrechè sul volume della testa e degli arti superiori, sia capace di spiegare un’ influenza sulle facoltà psichiche dell’ individuo, io non oserei affermarlo, benchè si possa sospettarlo se si pensi al rapporto che esiste fra lo sviluppo di queste ultime ed il volume di un cervello sano. Credo però valga la pena l’ indagine, la quale potrebbe forse condurre più sollecitamente ad un’ esito affermativo o negativo se istituita sui cadaveri di neonati cretini.

Non sarebbe del resto infruttuosa ricerca, per chi è favorito dall’ occasione di poter disporre di molti cadaveri di bambini e di feti, quella di stabilire il rapporto che passa fra il peso della testa e l’ ampiezza del condotto arterioso.

Oltre al disegno, che qui fedelmente produco, del cuore e de’ suoi vasi, tengo il pezzo naturale a mia disposizione e garanzia e solo mi duole di non aver conservato l’ intiero cadavere, il quale, quand’ io scoperta l’ anomalia, cercai, era già dato alla terra.

Spiegazione della tavola.

Il disegno è fatto sopra una scala di poco maggiore del naturale: i rapporti però sono fedelmente mantenuti.

a specie di bulbo dell’ arteria polmonare dopo la sua origine.
b ramo al polmone destro.
c ramo al polmone sinistro.
d condotto arterioso.
e aorta e suoi rami brachio cepalici.
f tronco di comunicazione col
g l’aorta toracica isolata e spostata per dimostrare il suo passaggio diretto nel condotto arterioso.
Die Plitvica-Seen in der oberen Militärgrenze in Kroatien.

(Vorgelagt in der Sitzung vom 14. October 1888.)

Betrachtet man die Beschaffenheit des Landes weiter, so gewahrt man es, dass ebenso, wie die erwähnten ungeheuren Felsmassen zur Quantität des Erdreiches in einem äusserst ungünstigen Verhältnisse stehen, auch die Vertheilung des Wassers eine sehr ungleiche, im Ganzen genommen aber eine sehr stießnützliche ist; wir sehen daher an einigen Punkten bedeutende Wassermassen angehäuft, während an anderen Orten Pflanzen, Thiere und Menschen nach einem erfrischenden Tropfen lechzen. Die nähere Begrenzung, die
Die Plitvica-Seen in der oberen Militärgrenze in Kroatien.

ich dieser Monographie feststelle, fasst bls die nächste Umgebung von Otočac und die Gebirgszüge bei Vrhovina und Leskovac in sich, wo sich die Plitvica-Seen befinden.

Die nächste Umgebung vom Stabsorte Otočac (wohin seit neuerer Zeit das Brigade-Commando von Gospić verlegt wurde) ist gegen Süden, Osten und Norden größtenteils aus kahlen unbewaldeten Gebirgszügen zusammengesetzt, wo im Ganzen genommen mehr oder weniger ein Mangel an Quellen vorherrscht. Die nackten Wände der Kalkfelsen sind nicht im Stande die atmosphärischen Niederschläge aufzufangen und sachte weiter zu führen, sondern es sinken die Wasser rasch in die Tiefen, wohin sie die zahllosen Klüfte, Spalten und Aushöhlungen mit brausender Eile führen, um sie dann anderen Ortes in bedeutenderen Quantitäten als reiche Quellen zu Tage hervorbrechen zu lassen; in Folge dessen herrscht in den Sommermonaten gewöhnlich Dürre, welche auf die durch einen seichtgründigen und sandigen Boden ohnehin nicht begünstigte Vegetation einen nachtheiligen Einfluss ausübt. Die Abstöckung der Wälder war in diesen felsigen GegendeneineSünde, an deren Folgen die kommenden Generationen leiden müssen.

Das Thal, in welchem Otočac liegt, wird auch das Gaška-Thal genannt, vom Bache Gaška, der es durchschneidet. Die Gaška entspringt bei Lešće am Fusse des Berges Kremen, der das Thal an der Südseite umgibt; die ganze Fläche ist amphithéatralisch gestaltet, nur beim Stabsorte selbst macht sie eine seitliche Wendung mit einer Thalverengung gegen Westen; das Flussbett der Gaška — eine Felsenwand — ist vielfach gekrümmt und gegen Westen mit einem schwachen Fall geneigt; aber eben auf dieser Seite wo die Einmündung in das adriatische Meer stattfinden sollte, erhebt sich ein mächtiges Gebirge: Senjsko bilo, bei 4000 Fuss hoch, und verhindert das weitere Abfriessen des Baches; bei Švica, einem beiläufig eine Stunde von Otočac entfernten Orte, bildet die Gaška einen schönen Wasserfall, und hier ist es, wo die Natur auf sonderbare Weise sorgte, dass das Wasser seinem Laufe folgen und das Meer erreichen könne; es befindet sich in der Nähe, unter dem Wasserfalle, ein grosser Trichter, durch dessen unsichtbare Öffnungen das Wasser versinkt und jenseits der Gebirge dem Meere zugeführt wird, früher aber, wie man allgemein dort behauptet, auf der gegenüber liegenden
Insel Pago als reiche Quelle zu Tage tritt. Das Gačka-Thal leidet viel an den Übeln einer versumpften Gegend; bei jeder Anschwellung des Wassers tritt der Bach aus; was immer mehr zunehmen wird, weil sich das Gačka-Bett ober dem Švicer Wasserfall von Jahr zu Jahr, — wenn auch nur unmerklich — durch die reichlichen Tuffablagerungen hebt und der Wasserfall zurückgedrängt wird; andererseits wird der Trichter durch Absätze verschlummert und der Abfluss der zugeführten Wasser erschwert.

Die vorerwähnten Felsgebilde bestehen aus Jurakalken und Dolomiten, die ausser einigen in geringer Mächtigkeit eingelagerten Mergelschichten mit der grössten Gleichförmigkeit jedes andere Gestein ausschliessend auftreten. Die Flächen in den Thälern sind mit lockerer sandhältiger Erde bedeckt, die von den kahl dastehenden Nachbarbergen herabgeschwemmt, aber selten tiefer hineingetragen wurde; daher ist an diesen für jene Gegend hesten und ergiebigsten Erdanhäufungen, am Fusse nämlich oder an den unteren Theilen der Bergabhänge, die üppigste Vegetation zu sehen; die Ebenen stehen häuser- und baumlos; die Äcker und Wiesen, was in ihnen liegen, haben ein weles, kränkelndes Aussehen, und im Juni wo der angehende Sommer in all seiner Kraft und Fülle glänzen sollte, hat die trockene, dunstleere Luft und die heisse Sonne beinahe schon alles pfannzliche Leben zu Tode gebrannt. An den Rändern des Thales liegen die Bauernhöfe Haus an Haus; sie bilden rundum mit ihren Pflanzungen einen grünen Kranz und über den Häusern starren die weisslichen, ausgestorbenen, kahlen Felsgipfel und zerklüfteten Bergrücken hoch empor; um die Häuser stehen kräftige Eichen, Buchen, Linden, Ahornbäume, an die sich gewöhnlich Zwetschken, Birnen und Äpfel anreihen, so dass die Wohnungen wie aus Verstecken heraussehen; die Gegend trägt etwas von Traurigkeit an sich; man wird unwillkürlich durch die Lage der Häuser an die vielen bitteren Kämpfe der Vorzeit erinnert und muss darauf schliessen, dass die um ihre Sicherheit besorgten Bewohner sich diese Wohnplätze wählten, wo sie im Falle eines plötzlichen Angriffes hinter ihre Felsen flüchten und sich erfolgreicher vertheidigen konnten. In den kleineren buchtartigen und kesselförmigen Thälern ist der Boden mit einer rothbraun gefärbten lehmigen Erde bedeckt, die vom Bolus herkomm, der stellenweise ganz rein zu finden ist; so im Thale Vinica bei Otačac.
Gegen Vrhovina zu — zwei Meilen östlich von Otačac — erhebt sich das Land um 150—200 Fuss; wenn man die Höhe des Gačka-
Thales bei Otačac mit 1800′ annimmt, so ist die Wasserscheide, die bei Vrhovina und Babinpotok den grössten Höhepunkt erreicht,
zwischen Otačac und den Plitvica-Seen auf 2000′ zu berechnen. Sobraß man das von Vrhovina bis Babinpotok eine bis anderthalb
Stunde lange Hochplateau betritt, lachen einem von wellenförmigen,
abgerundeten Hügeln üppige Triisten entgegen; die kahlen Felsen
sind verschwunden, und wir treten aus dem Kreis der sterilen Jura-
kalkere heraus; die Kreide zeichnet sich zwar auch nichts weniger als
durch eine Begünstigung des vegetativen Lebens aus, stellenweise
jedoöch, wo sich mergel- und sandhaltige Gebilde befinden (wie es
hier der Fall ist), findet eine Ausnahme Statt; diese freundliche
Gegend dehnt sich jedoch über keines weite Strecke aus, sie bildet
nur einen hochgelegenen Rücken und läuft am nordöstlichen Abhänge
dem grossen Gebirgszuge der Mala Kapela zu; die Mala Kapela ist
zwar durchgehends bewaldet, aber in unzählige Schluchten und
Abgründe getrennt, aus welchen kahle Spitzen und Felstrümmer
zwischen den Bäumen hervorragen; es umgibt uns hier ein düsteres
in schwarzes Dunkel eingehülltes Bild. Wir kommen in die Region
eines lichten Kalksteines, der zum Theil Hippuriten führend ist, und
nähern uns den Plitvica-Seen; diese gehören zur Korenicer Cordons-
Compagnie und sind gewöhnlich unter dem Namen der sieben
Plitvica-Seen bekannt; es sind aber genauer gerechnet ihrer
zwölff, und wenn man das abseits gelegene Wasserbecken Bakinovac
(das von nirgends Zufluss erhält) dazu rechnet, sind es im Ganzen
dreizehn kleinere und grössere Wasserreservoirs; den Haupt-
ursprung der Seen bildet die Crna Rieka (schwarzer Bach), der bald
nach seinem Erscheinen ober Leskovac von unterirdischen Höhlungen
verschoben wird, bald wieder noch wasserreicher hervorbricht und
dann dem obersten See zulaufs; man kann aber als gewiss annehmen,
dass trotz des Reichthums der aus der Crna Rieka und Mala Riečina
zufließenden Gewässer auch andere Zuflüsse auf unsichtbaren Wegen
stattfinden müssen, weil man sich sonst die ansehnliche und niemals
abnehmende Wassermenge der Seen nicht erklären könnte.

Der Eindruck, den dies seltene Schauspiel der Natur beim ersten
Anblick hervorbringt, ist jedenfalls angenehm; er ist aber nicht so
effectvoll, als man sich es vorstellt; die Seebecken ziehen sich in
einer gekrümmten Linie, und diese wird auf einem größeren Theil
derselben noch obendrein durch Bäume, Gebüsche und Felsen ver-
deckt, so dass der Zuschauer keinen Überblick über das Ganze
gewinnen kann; geschickte Führer können jedoch solche Punkte
herausfinden, wo man zwei, drei Seen und 5 bis 7 Wasserfälle über-
sehen kann; es liess sich übrigens mit nur etwas Verwendung
manches Hinderniss wegräumen und ein wahres Bellevue herrichten,
was diese jedenfalls seltene Naturschönheit um vieles erhöhen würde.

Die Plitvica-Seen müssen reihenweise, einer nach dem andern,
besehen werden; sie bieten in ihren Einzelheiten so viel Schönes
— stellenweise auch Imposantes — dar, und der Gesamteindruck
wird gewiss nicht leicht vergessen. Die Seen liegen in tiefen Becken,
deren Ränder mit Kalkwänden eingefasst sind, in einer stillen, Öden
von Gebirgen und Wäldern weithin umschlossenen Gegend; kein
Geräusch arbeitender Menschenhände stört jemals dies einsame Thal,
und ausser einer Sägemühle, die ihr Klappern hören lässt, und einem
Grenzhause, wo einiges Leben herrscht, ist in der ganzen Umgebung
wenig von Cultur zu bemerken; es ist ein hartes Reich, das Reich
der Felsen! Das Rauschen und Platschern der schäumenden Wasser-
fälle, das Blöcken der Schafe und Ziegen, höchstens ein Ruf des
Hirten oder die Klänge seiner Sviralica (Schalmei) sind etwa noch
Laute, welche die Einsamkeit und Stille unterbrechen; düster und
ernst, ein einfaches Bild der einfachen und doch so grossen und
erhabenen Natur, stehen die Plitvica-Seen einzig in ihrer Art da:
wild, beinahe schauerlich schön.

Das Wasser der Seen ist sehr kalkhaltig; es setzt Kalktuff an
mehreren Stellen, wo es langsamer abfliesst, in grosser Quantität
ab; dadurch wurden an einigen Orten ganze Hügel dieser neogenen
Formation gebildet; da und dort bricht sich das Wasser durch die
Höhlungen des Tuffes einen Ausweg, den es hier erweiternd ander-
wärts wieder verschlämmmt; auf diese Weise findet in diesem kleinen
Wasserreiche eine fortwährende Revolution statt, die geeignet ist,
uns einen — wenn auch im vorliegenden Falle nur kleinen — Beweis
dem zu geben, welchen Einfluss das Wasser auf die Gestaltung
und stete Umstaltung unserer Erde ausübt. Die am Boden liegenden
Gegenstände: Steine, Hölzer, Conchylien, Pflanzen sind mit einer
weislichen Kalkkruste überzogen, die an der häufig vorkommenden
Melanis so dick ist, dass man von der Form des Gewindes, der
Die Plitvice-Seen in der oberen Militärgrenze in Kroatien.

273

Farbe des Gehäuses und der Mundöffnung gar nichts wahrnehmen kann; das Wasser ist übrigens kristallrein; es hat eine grünliche Farbe, die an tieferen Stellen ins Bläuliche zieht; Lachsförellen kommen in beträchtlicher Menge vor, sie erreichen oft die Schwere von 12—14 Pfund.

Der Kalk, der die Ufer und die Umgebung der Seen bildet, gehört in die Gruppe der Kreidekalke; und zwar ist es derselbe Kreidekalk, der sich von den Kreidegebirgen Dalmatiens und der angrenzenden Lika und Krbava herüberzieht, und hier wie dort stellenweise ganze Lager von versteinerten Hippuriten enthält, nach welchen man ihn Hippuritenkalk nannte. Wie ich es in meiner Abhandlung: „Das Lika- und Krbava-Thal“, Sitzb. der math.-naturw. Classe der k. Akademie der Wissenschaften Bd. XXV, p. 522, J. 1857, angeführt habe, kommen auf der Plisivica-Alpe gegen den Gipfel in zunehmender Menge Hippuriten vor, während sie gegen die Tiefe hinab abnehmen; von hier aus setzt der Hippuritenkalk bis zu den Plitvice-Seen durch, wo er sich dann weiter in der Mala kapela ausdehnt; ich konnte aber in der ganzen nächsten Umgebung der Seen kaum einige Hippuriten-Fragmente auflinden, durch welche es mir möglich wurde, den Plitvirer Kalkstein ganz genau zu erkennen; das Gestein ist im Ganzen sehr arm an Petrefacten. Nicht so leicht ist es zu erklären und zu bestimmen, auf welche Art die Tausende ja Millionen von trichterartigen Vertiefungen entstanden sind, die stellenweise und dann regelmässig an einander gereiht dastehen; ein scheinbar gleiches, ebenses mit schönen Bäumen bewachsenes Terrain zeigt sich uns, und wenn wir näher treten, sehen wir es undurchdringlich; aus einer langen Kette unzähliger Felsentrichter gähnen uns dunkle Tiefen entgegen, die mit Bäumen umkränzt sind; der Boden der Trichter ist mit etwas Erde, Gerölle, Schutt und Gehölz angefüllt; ob hier Versenkungen oder Gasausströmungen stattgefunden haben mögen, ist nicht leicht zu ermitteln; im ersteren Falle könnte dies nur geschehen sein, so lange sich die Kalkmassen noch in einem weicheren, schlammartigen Zustande befanden, wo sie aber dann, wenn wir ihre spätere Erhebung annehmen, in keiner solchen Regelmässigkeit dastehen könnten; dies dürfte auch für den zweiten Fall seine Geltung haben, denn bei einer Gasausströmung muss man jedenfalls eine Gewalt voraussetzen, deren Spuren sichtbar sein müssten; da aber gerade
in jenen Gegenden, wo sich die besprochenen Kesseln und Trichter befinden, keine besonders Störungen zu bemerken sind, vielmehr im Grossen genommen diese Trichterbildungen das Gepräge der Gleichförmigkeit tragen, so scheinen diese Erklärungsweisen nicht annehmbar. Ich beabsichtige bei meiner nächsten Bereisung der so sehr interessanten oberen Militär-Grenze diesem Gegenstände eine grössere Aufmerksamkeit zu widmen, denn es ist mir nicht bekannt, dass diese räthselhafte Erscheinung irgendwo beschrieben oder erklärt worden wäre.

Die folgende Tabelle gibt die Grösse der einzelnen Seen, das Gefälle des Wassers und die Höhe der Wasserfälle genau an:

<table>
<thead>
<tr>
<th>Name des Sees</th>
<th>Länge</th>
<th>Breite</th>
<th>Gefälle</th>
<th>Höhe des Wasserfalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosečansko jezero</td>
<td>666° 4'</td>
<td>233° 2'</td>
<td>3' 2''</td>
<td>5° 3' 10''</td>
</tr>
<tr>
<td>Ciginovac</td>
<td>168° 2'</td>
<td>80°</td>
<td>2''</td>
<td>5° 2' 10''</td>
</tr>
<tr>
<td>Okruglajk goraji</td>
<td>233°</td>
<td>76°</td>
<td>3'</td>
<td>3° 4' 10''</td>
</tr>
<tr>
<td>Crno jezero</td>
<td>126° 4'</td>
<td>2° 2'</td>
<td>4''</td>
<td>5° 4' 10''</td>
</tr>
<tr>
<td>Vir</td>
<td>76° 4'</td>
<td>30° 2'</td>
<td>6''</td>
<td>5° 4' 10''</td>
</tr>
<tr>
<td>Galovac</td>
<td>400°</td>
<td>310°</td>
<td>1'</td>
<td>(Fall in drei Etagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ober 2°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mittlere 7° 1' 6''</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>untere 5° 5''</td>
</tr>
<tr>
<td>Gradinsko jezero</td>
<td>344°</td>
<td>183°</td>
<td>2°</td>
<td>(Fall in zwei Etagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ober 3° 4'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>untere 5° 5'</td>
</tr>
<tr>
<td>Kozjak</td>
<td>1622°</td>
<td>323° 2'</td>
<td>2'</td>
<td>1° 5' 9''</td>
</tr>
<tr>
<td>Milanovo jezero</td>
<td>224° 2'</td>
<td>100°</td>
<td>2'</td>
<td>(Fall in zwei Etagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ober 3°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>untere 2°</td>
</tr>
<tr>
<td>Okruglajk dolnji</td>
<td>124°</td>
<td>66°</td>
<td>6''</td>
<td>(Fall in drei Etagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ober 2°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mittlere 1°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>untere 2°</td>
</tr>
<tr>
<td>Kaludjerovo jezero</td>
<td>150°</td>
<td>34°</td>
<td>1'</td>
<td>(Fall in drei Etagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ober 3° 2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mittlere 4°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unterer 8° 3'</td>
</tr>
</tbody>
</table>

Diese zwölf Wasserbecken sind etagenmässig über einander gestellt, so dass der unterste das Wasser von dem oberen
Die Plitvica-Seen in der oberen Militärgrenze in Kroatien.

empfängt, und es wird auf diese Weise dem Zuschauer die seltene Gelegenheit geboten, eine Reihe von zwanzig Wasserfällen wenn auch nicht von einem Standorte so doch in geringer Entfernung sehen zu können; die Ufer — wie schon bemerkt wurde — bilden schroffe Felsen, die bei den niederer liegenden Seen als hohe senkrechte Wände dastehen, bei den oberen aber abnehmen, so dass Prosečansko jezero einem gewöhnlichen Teiche gleich sanft einlaufende erdige Ufer und am Boden viel Schlamm hat; die Höhe des obersten Sees beträgt bei 2500'. Aus dem untersten See: Novakovića brod entspringt die Korana, die bald zu einem Fluss anschwillt und bei Karlstadt sich in die Kulpa ergiesst. Nordwestlicherseits stürzt sich der Bach Plitvica in zwei Absätzen in die Korana und bildet zwei schöne Wasserfälle, deren erster 28° 2', der zweite 12° 4' hoch ist; mithin beträgt die Gesamthöhe der Felsenwand, über welche die Plitvica in die Korana fällt, 41°; die Höhe aber des obersten Sees. des Prosečansko jezero über den Ursprung der Korana beträgt 80° 5' 4''.

Der passendste Punkt, den man sich bei der Beschauung der Plitvica-Seen wählen soll, ist die vor dem See Galovac gelegene Wiese, von da aus kann man sieben Wasserfälle und die Sägemühle übersehen; es ist eine hübsche Landschaft, die durch diese Staffage ein Leben erhält; der zweite Punkt, den ersteren an Schönheit über treffend, ist am Ursprung der Korana, wo man die schäumenden Silberfluten der Plitvica über eine 41°, jene der Seen aber über eine 15° 5' hohe, steile Wand mit immerwährendem Brausen hinabfallen und dann im tiefen felsigen Bette rasch dahineilen sieht. Ich erlaube mir hier zu bemerken, dass man diese Naturschönheiten, wenn sie im fremden Lande wären, vielmehr beachten würde. Vor der Hand ist einem jeden anzuempfehlen, der die Seen besuchen will, sich mit Lebensmitteln zu versehen, denn es ist in einer Umgebung von mehreren Meilen selbst um das theuerste Geld nichts zu erhalten.

Die Flora dieser Gegend hat ausser zweier Pflanzen durchaus nichts besonderes aufzuweisen; die eine ist die Spiraea cana WK. die an den Felsenwänden bei Milanovo jezero vorkommt, man kann sie aber jetzt durchaus nicht erreichen; es sagen schon WK. in ihrem werthvollen Werke „Plantae variores Hungariae, pag. 253. Habitat in altis et praeruptis rupibus calcareis, que sinistro lateri
Lösung zweier Arten von Gleichungen.

Von Wensel Šimerka,
Gymnaasiallehrer zu Budweis.

1. Bestimmte Gleichungen des ersten Grades mit n Unbekannten gelöst mittelst der Permutationslehre.

Die \(n \) Gleichungen, die bei dieser Aufgabe vorkommen, kann man durch nachstehendes Schema darstellen:

\[
\begin{align*}
A_1^1 x_1 + A_1^2 x_2 + A_1^3 x_3 + \ldots + A_1^n x_n &= G_1 \\
A_2^1 x_1 + A_2^2 x_2 + A_2^3 x_3 + \ldots + A_2^n x_n &= G_2 \\
A_3^1 x_1 + A_3^2 x_2 + A_3^3 x_3 + \ldots + A_3^n x_n &= G_3 \\
& \vdots \\
A_n^1 x_1 + A_n^2 x_2 + A_n^3 x_3 + \ldots + A_n^n x_n &= G_n
\end{align*}
\]

Hierbei sind \(x_1, x_2, x_3, \ldots, x_n \) die \(n \) Unbekannten, \(G_1, G_2, G_3, \ldots, G_n \) die bekannten Gleichungglieder, und \(A_{i}^{\alpha} \) bedeutet im Allgemeinen den \(\alpha^{\text{ten}} \) Coefficienten in der \(i^{\text{ten}} \) Gleichung. Kommen in einer Gleichung nicht alle Unbekannten vor, so sind die Coefficienten der fehlenden \(= 0 \) zu nehmen.

Bei diesen Untersuchungen wird man es mit Producten aus je \(n \) Coefficienten der obigen Gleichungen zu thun haben. Jedes solcher Produkte enthält je einen Coefficienten aus jeder Zeile und zugleich auch einen aus jeder Columnne des obigen Schema als Factor, so dass, wenn es durch \(A_1^1 A_1^2 A_1^3 \ldots A_1^n \) dargestellt wird, sowohl die Zeiger \(\alpha, \beta, \gamma, \ldots, \mu \) als auch \(a, b, c, \ldots, m \) alle natürlichen Zahlen von 1 bis \(n \) sind. Man kann demnach die Factoren dieses Produkte derart versetzen, dass es die Gestalt \(A_1^1 A_2^1 A_3^1 \ldots A_n^1 \) erlangt, welche Grösse, wenn es die Deutlichkeit zulässt, mit \(A_1 A_2 A_3 \ldots A_n \), oder noch kürzer mit \(a, b, c, \ldots, m \) bezeichnet werden kann.
Unter den Permutationsformen, welche \(A_1 A_2 A_3 \ldots A_n \) oder kurz \(123 \ldots n \) gibt, ist es nebstdem noch nöthig positive und negative zu unterscheiden. Als Grundsatz dient hier, dass zwei Permutationen mit ungleichen Vorzeichen zu unterscheiden sind, wenn sie alle Stellen ausser zwei gleich besetzt haben. So sind \(bcade \) und \(bcaed \) entgegengesetzt, weil die Elemente \(bde \) ihre früheren Stellen behalten, \(ac \) sie aber ändern. Hieraus folgt, dass durch die Verschiebung dreier Elemente, d. h. durch Versetzungen wie etwa \(123, 231, 312 \), das Vorzeichen nicht geändert wird, indem so eine Verschiebung für zwei einfache Versetzungen gilt. Ebenso sieht man, dass es im Ganzen eben so viele negative als positive Permutationen gibt, da durch die Versetzung der letzten zwei Elemente jede Form ihr Zeichen ändert.

Auch erheilt es aus dem mathematischen Schreibgebrauch, dass die Form \(A_1 A_2 A_3 \ldots A_n \) positiv zu nehmen ist, indem man keinen Grund für das Gegentheil hat.

Nach diesen Bemerkungen kommen bei

\[
\begin{align*}
\text{n = 2:} & \quad 12, - 21, \\
\text{n = 3:} & \quad 123, 231, 312, - 132, - 213, - 321, \\
\text{n = 4:} & \quad 1234, 1342, 1423, 2143, 2314, 2431, 3124, 3241, 3412, 4132, 4213, 4321, - 1243, - 1324, - 1432, - 2134, - 2341, - 2413, - 3142, - 3214, - 3421, - 4123, - 4231, - 4312 \\
\end{align*}
\]

u. s. w. als wohlgeordnete Permutationsformen vor.

Die Summe aller so entstandenen Permutationsformen der Grössen \(A_1 A_2 \ldots A_n \) mit Berücksichtigung ihrer Vorzeichen kann man, wie Ähnliches bei den Combinationen und Variationen zu geschehen pflegt, mit

\[\mathfrak{P} (A_1, A_2, A_3 \ldots A_n) \]

bezeichnen, und wird anstatt eines dieser Elemente, z. B. anstatt \(A_i \) stets \(G \) gesetzt, welches dann seinen Zeiger in jeder Form von der Stelle erhält, die \(A_i \) einnimmt, so kann das Resultat füglich durch

\[\mathfrak{P} (A_1, A_2, \ldots A_r \ldots A_n) \]

(d) dargestellt werden. So hat man z. B.
Lösung zweier Arten von Gleichungen.

\[\{ (A_1, A_2, A_3) = A_1 A_2 A_3 + G_1 A_2 A_3 + A_2 A_3 A_1 \]

oder vollständig

\[\{ (A_1, A_2, A_3) = A_1 A_2 A_3 + G_1 A_1 A_2 A_3 + A_2 A_3 A_1 \]

Wird nun hierauf \(N = \{ (A_1, A_2, \ldots, A_n) \) \]

\[Z_1 = \{ (A_1, A_2, \ldots, A_n) \}, \quad Z_2 = \{ (A_1, A_2, A_3 \ldots A_n) \} \]

und überhaupt

\[Z_r = \{ (A_1, A_2, \ldots, A_r \ldots A_n) \} \]

gesetzt, so ergibt sich

\[x_1 = \frac{Z_1}{N}, \quad x_2 = \frac{Z_2}{N}, \quad \ldots \quad x_r = \frac{Z_r}{N}. \]

Beweis.

Hier ist nur nötig zu zeigen, dass die obigen Gleichungen für die angeführten Werthe der Unbekannten bestehen, indem bei bestimmten Gleichungen des ersten Grades jede Unbekannte nur einen Werth hat. Rücksichtlich der ersten Gleichung soll daher dargehalten werden, dass \(A_1 Z_1 + A_2 Z_2 + A_3 Z_3 + \ldots A_n Z_n = G_1 N \) sei.

Summiert man zu diesem Zwecke

\[A_1 Z_1 + A_2 Z_2 + A_3 Z_3 + \ldots A_n Z_n \]

nach den Größen \(G_1, G_2, G_3 \ldots G_n \), so ergibt sich \(N \) als Coefficient von \(G_1 \), die Coeffizienten von \(G_2, G_3, \ldots G_n \) sind aber sämmtlich Null.

In ersterer Beziehung ist nämlich \(G_1 \) in

\[Z_1 = \{ (A_1, A_2, \ldots, A_n) \} \]

blos aus der Ersetzung von \(A_1 \) entstanden, wobei die übrigen Elemente beliebig versetzt werden können; daher liefert das Product \(A_1 Z_1 \) die Größe \(A_1 \{ (A_2, A_3, \ldots A_n) \} \) als Coeffizienten von \(G_1 \). Ebenso kommt \(G_1 \) in

\[Z_n = \{ (A_1, A_2, A_3, \ldots A_n) \} \]
aus der Ersetzung von A_i^i zum Vorschein, so dass man im Producte $A_i^i Z_a$ die Zahl $A_i^i \not\in (A_1, A_2, \ldots, A_n)$ als Factor von G_i erhält. Auf dieselbe Art liefert $A_i^i Z_a$ den partiellen Coefficienten

$$A_i^i \not\in (A_1, A_2, A_3, \ldots, A_n) \text{ u. s. w.}$$

Dem zufolge ist die fragliche Grösse

$$= A_i^i \not\in (A_1, A_2, A_3, \ldots, A_n) + A_i^i \not\in (A_1, A_2, \ldots, A_n)$$
$$+ A_i^i \not\in (A_1, A_2, A_3, \ldots, A_n) + \ldots$$

was offenbar $\not\in (A_1, A_2, A_3, \ldots, A_n) = N$ gibt.

Rücksichtlich der Coefficienten von G_1, G_2, \ldots entspricht jeder Permutationsform von der Gestalt $A_i^1 A_i^2 \ldots A_i^n$, wo ϕ alle Werthe ausser 1 erhalten kann, die Form

$$= A_i^1 A_i^2 \ldots A_i^n.$$

Aus der ersteren dieser Formen erhält man zu $A_i^i Z_a$ das Glied $A_i^1 A_i^2 A_i^3 \ldots G_i^n \ldots A_i^n$, wo die zweite bei $A_i^i Z_a$ das Product

$$= A_i^1 A_i^2 A_i^3 \ldots G_i^n \ldots A_i^n$$

liefer. Da sich diese Grössen heben, so ist der Coefficient von G_i stets Null.

Die oben angeführten Werthe genügen daher der ersten Gleichung; sie genügen aber auch der zweiten, d. i.

$$A_i^i x_1 + A_i^2 x_2 + A_i^3 x_3 + \ldots A_i^n x_n = G_i,$$

indem sich hier dieselben Schlüsse wiederholen lassen, da letztere Bedingungsgleichung aus der ersteren entsteht, wenn sämtliche Zeiger um 1 erhöht werden, und man $A_i^{n+1} x_{n+1}$ für $A_i^i x_i$ anseh."
Lösung zweier Arten von Gleichungen.

\[x_1 = \frac{cb' - c'b}{ab' - a'b}, \quad x_2 = \frac{ac' - a'c}{ab' - a'b}. \]

Bei \(n = 3 \) kann man dem Nenner \(N \) auch die Gestalt

\[A_1^1 A_2^1 A_3^1 + A_1^2 A_2^2 A_3^2 + A_1^3 A_2^3 A_3^3 - A_1^4 A_2^4 A_3^4 \]

geben, und dann lässt sich die Bildung von \(N, Z_1, Z_2, Z_3 \) als die Summe von wechselnden Querprodukten in den vier Paradigmen

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(Z_1)</td>
<td>(Z_2)</td>
<td>(Z_3)</td>
</tr>
<tr>
<td>(A_1^1 A_2^1 A_3^1)</td>
<td>(G_1 A_1^1 A_3^1)</td>
<td>(A_1^1 G_1 A_3^1)</td>
<td>(A_1^1 A_2^1 G_1)</td>
</tr>
<tr>
<td>(A_1^2 A_2^2 A_3^2)</td>
<td>(G_2 A_1^2 A_3^2)</td>
<td>(A_1^2 G_2 A_3^2)</td>
<td>(A_1^2 A_2^2 G_2)</td>
</tr>
<tr>
<td>(A_1^3 A_2^3 A_3^3)</td>
<td>(G_3 A_1^3 A_3^3)</td>
<td>(A_1^3 G_3 A_3^3)</td>
<td>(A_1^3 A_2^3 G_3)</td>
</tr>
<tr>
<td>(A_1^4 A_2^4 A_3^4)</td>
<td>(G_4 A_1^4 A_3^4)</td>
<td>(A_1^4 G_4 A_3^4)</td>
<td>(A_1^4 A_2^4 G_4)</td>
</tr>
</tbody>
</table>

versinnlichen.

Was \(n = 4 \) anbelangt, kann man sich die 24 Produkte von je 4 Factoren, aus denen \(N \) besteht, unter der Figur

\[
\begin{pmatrix}
 A_1^1 & A_2^1 & A_3^1 \\
 A_1^2 & A_2^2 & A_3^2 \\
 A_1^3 & A_2^3 & A_3^3 \\
 A_1^4 & A_2^4 & A_3^4 \\
\end{pmatrix}
- \begin{pmatrix}
 A_2^1 & A_3^1 & A_4^1 \\
 A_2^2 & A_3^2 & A_4^2 \\
 A_2^3 & A_3^3 & A_4^3 \\
 A_2^4 & A_3^4 & A_4^4 \\
\end{pmatrix}
+ \begin{pmatrix}
 A_3^1 & A_4^1 & A_1^1 \\
 A_3^2 & A_4^2 & A_1^2 \\
 A_3^3 & A_4^3 & A_1^3 \\
 A_3^4 & A_4^4 & A_1^4 \\
\end{pmatrix}
- \begin{pmatrix}
 A_4^1 & A_1^1 & A_2^1 \\
 A_4^2 & A_1^2 & A_2^2 \\
 A_4^3 & A_1^3 & A_2^3 \\
 A_4^4 & A_1^4 & A_2^4 \\
\end{pmatrix}
\]

leichterer Berechnung halber darstellen; wobei die eingeklammerten Größen je sechs wechselnde Querprodukte geben. Um hieraus den Zähler \(Z \) zu erhalten, ist statt \(A_1^1, A_2^1, A_3^1, A_4^1 \) beziehungsweise \(G_1, G_2, G_3, G_4 \) zu setzen.

Anmerkung. Den ersten Gedanken zu dieser immerhin schönen Anwendung der Permutationslehre gaben mir meine Untersuchungen über die trinären Zahlformen.
II. Unbestimmte Gleichungen des ersten Grades mit zwei Unbekannten
gelöst mittelst der Congruenlehre.

Der Gleichung \(nx = my + r \), wobei \(m, n \) prim zu einander
sind, wird Genüge geleistet bei \(x = mt + \phi, y = nt + \psi \), wo
t eine beliebige ganze Zahl vorstellt, \(\phi \) und \(\psi \) aber unter dessen
unbestimmt sind. Werden diese Werthe in die gegebene Gleichung
substituirt, so liefern sie \(n \phi = m \psi + r \).

Wäre hier \(\phi = mk + \psi' \), so kann das Produkt \(mk \) in Folge
der Werthes von \(x \) zu \(mt \) bezogen werden; daher braucht man nur
einen einzigen Werth von \(\phi \), d. i. etwa jenen, der ohne Rücksicht
auf das Vorzeichen \(\leq \frac{1}{m} \) ist, zu kennen, man findet dann

\[
\phi = \frac{n \phi - r}{m}.
\]

Um nun \(\phi \) zu erhalten, betrachte man die zwei Congruenzen
\(m \phi \equiv 0, n \phi \equiv r \) (Mod. \(m \));
die erste ist an sich klar, die zweite entsteht aus obiger Gleichung.
und es kann darin, wenn dies noch nicht der Fall wäre, \(n \) und
\(r \leq \frac{1}{m} \) gemacht werden; auch ist es erlaubt die Vorzeichen bei
\(n \) und \(r \) zu verändern, um etwa ein negatives \(n \) positiv zu machen.

Ist nun \(n < \frac{1}{m} \), so suche man die grösste in \(\frac{m}{n} \) enthaltene ganze
Zahl auf; ist sie \(d \), so erhält man \(m = dn + n' \), wo \(n' < n \)
sein wird. Dann gibt die zweite Congruenz \(dn \phi \equiv dr \); wird dies
von der ersten abgezogen (\(m - dn \) \(\phi \equiv -dr \), oder \(n' \phi \equiv -dr \),
und wenn \(r' \equiv -dr \) (Mod. \(m \)) den kleinsten Rest von \(-dr \)
bedeutet, \(n' \phi \equiv r' \). Heisst ferner \(d' \) die grösste in \(\frac{n}{n'} \) vorkommende
ganze Zahl, so kann abermals \(n = n'd' + n'' \), wo \(n'' < n' \),
gesetzt werden, und man erhält aus der zweiten und letzten
Congruenz
\[
(n - n'd') \phi \equiv r - d'r' \text{ oder } n' \phi \equiv r''.
\]

Verfährt man auf diese Weise fort, so muss man, weil von den
Grössen \(m, n, n', n'' \), . . . jede nachfolgende kleiner ist als die halbe
vorhergehende, schliesslich 1 zum Coeffizienten von \(\phi \) erhalten, wo
aus der Congruenz \(\varphi \equiv \rho \equiv \text{r} \mod m \) \(\rho \) als der gesuchte Werth von \(\varphi \) hervorgeht, wodurch sich auch \(\varphi \) ergibt.

Man hätte z. B. \(9451 \cdot x = 5263 \cdot y + 29 \) zu lösen. Hier ist \(m = 5263 \) und die erste Congruenz

\[
5263 \varphi \equiv 0; \quad \text{da ferner} \quad 9451 - 2m = -1075 \text{ist, daher} \quad -1075 \varphi \equiv 29, \text{so erhält man die 2. Cong.}
\]

\[
1075 \varphi \equiv -29. \quad \text{Hier ist} \quad d = 5, \text{also} \quad 112 \varphi \equiv 145 \text{oder} \quad 112 \varphi \equiv -145; \text{dann} \quad d' = 10, \text{und} \quad 45 \varphi \equiv 1421, \text{d. i.} \quad 45 \varphi \equiv -1421; \text{ferner} \quad d'' = 2 \text{gibt} \quad 22 \varphi \equiv 2697 \equiv -2566
\]

\[
22 \varphi \equiv -2566; \text{wo dann} \quad d''' = 2, \varphi \equiv 3711 \text{oder} \quad \varphi = -1552 \text{also} \quad \varphi = -2787 \text{hervorgeht, so dass}
\]

\[
x = 5263 \cdot t - 1552 \text{ und } y = 9451 \cdot t - 2787
\]
die vollständigen Werthe der Unbekannten sind.

Wer sich mit diophantischen Gleichungen befasst, wird die Arbeiterpamniss, welche diese Methode im Vergleiche gegen die Euler'sche und gegen die Lösung mittelst der Kettenbrüche gewährt, bald einsehen. Überdies kann man hier zwei oft vorkommende Umstände mit Vortheil benützen, und zwar:

a) Haben in Congruenzen von der Gestalt \(n' \varphi \equiv r' \mod m \) die Größen \(n', r' \) oft einen gemeinschaftlichen Theiler, wodurch sie, vorausgesetzt dass \(m, n \) prim zu einander sind, gekürzt werden können. Noch öfters geschieht es, dass \(n' \) zu Factoren Potenzen von 2, 3 oder 5 hat; würde \(r' \) diese Factoren nicht besitzen, so kann es, um sie zu erhalten, um \(m \) oder \(2m \) vermehrt oder vermindert werden.

So gibt z. B. die Gleichung \(2160 \cdot x = 937 \cdot y - 53 \) bei \(m = 937, 2160 \varphi \equiv -53 \equiv -990 \); dies durch 90 gekürzt. \(24 \varphi \equiv -11 \equiv -948 \), was abermals durch 12 gekürzt \(2 \varphi \equiv -79 \equiv 858 \) oder \(\varphi = 429 \) und \(\varphi = 989 \) liefert.

b) Häufig, besonders bei dem eben angeführten Verfahren, geschieht es, dass das \(n' \) der schliesslich resultirenden Congruenz \(n' \varphi \equiv r' \mod m \) gegen den Coëfficienten \(n \) der zunächst vorhergehenden Congruenz \(n \varphi \equiv r \) bedeutend klein ausfällt, dadurch würde \(d' \) gross und die Zwischenrechnung beschwerlich werden. Man kann jedoch die Congruenz \(n' \varphi \equiv r' \mod m \) in die Gleichung \(n' \varphi = m \varphi' + r' \), und diese wieder in die Congruenz \(m \varphi' + r' \equiv 0 \)
(Mod. \(n\)) oder \(m \varphi' = - r'\) verwandeln, woraus sich \(\varphi'\) somit auch
\[\varphi = \frac{m \varphi' + r'}{n}\]
leicht berechnen lässt. So kommt man z. B. bei der
Verrechnung von \(6336x = 9419y + 1\) nach \(a\) zu \(11 \varphi = -3712\)
(Mod. 9419), was in \(3 \varphi' = 5 = -6\) (Mod. 11) übergeht, so dass
man \(\varphi' = -2\), \(\varphi = -2050\) und \(\varphi = -1379\) erhält.

Vorträge.

Berichtigung über die Ala parva Ingrassiae.

Von dem w. M. Regierungsrath Hystl.

Fast in allen Beschreibungen des Keilbeins wird eine *Ala parva Ingrassiae* angeführt. Einige Autoren gebrauchen den Ausdruck im Plural, und bezeichnen mit diesem Namen kleine Knochenplättchen, welche öfters auf der *Spina angularis* des Keilbeins aufsitzen sollen. So z. B. Arnold 1), Blumenbach 2) sagt ausdrücklich, dass die *Alae parvae Ingrassiae* an der hinteren Seite der *Spina sphenoidalis s. angularis* anliegen, und citirt für die Berechtigung dieser *Alae*, pag. 75 des Commentars von *Ingrassias*. Andere gebrauchen das Wort im Singular, und verstehen unter ihm einen einfachen Fortsatz des Keilbeinstachels 3).

J. Phil. *Ingrassias* (nicht Ingrassia, wie er bei Burggraefe 5) heisst), zu Rachalbuto in Sicilien im Jahre 1510 geboren, wurde

2) Geschichte und Beschreibung der Knochen, p. 160.

förmige Flügel nennen, war den Alten gleichfalls zu unbedeutend, um sich mit Auffindung von Benennungen für sie zu plagen. Ingrasia scheute diese Mühe nicht. Er erwähnt der schwertförmigen Flügel, aber nicht unter diesem Namen, sondern setzt sie den Fledermausflügeln (*Processus pterygoidei*) entgegen, vergleicht sie ihrer horizontalen Lage, und ihrer glatten Flächen wegen, mit ausgespreizten Vogelflügeln, und nennt sie zwar nicht *Alae pareae*, wohl aber *Processus aliformes intrinsecos*. Die Stelle lautet: *Imprimis enim praedictos, avium alis simillimos processus videmus, quos non temere πτερυγοειδεῖς nuncupare possimus, latine aliformes, addento interim dictionem: intrinsecos s. superiores, ad aliorum processum πτερυγοειδῶν extrinsecorum inferiorumque differentiam, quae non volucrum aviumque sed vespertilionum alis similes sunt* 1).

Wenn also schon ein Ding im Schädel dazu beitragen soll, den Namen Ingrassias zu verewigen, so kann dieses nichts anderes sein, als der schwertförmige Flügel.

1) Comment. sext. pag. 78.
2) s. B. Cruveilhier, Traité d’anat. Tom. I. p. 121.
Prospectus helminthum, quae in parte secunda prodromi faunae helminthologicae Venetae continentur.

Auctore Raphæle Molin, Jadrensi,
in e. r. Universitate Patavina historiae naturalis p. o. professore.

(Auszug aus einer für die Denkschriften bestimmten Abhandlung.)

(Vorgetragen in der Sitzung vom 14. October 1858.)

Ordo. MYZELMINTHA.

SUBORDO. TREMATODA.

Tribus. Acotylea.

I. Genus. DIPLOSTOMUM.

1. Diplostomum auriflavum Molin.

Caput planum, obcordatum, magnum, antrorum trilobum, lobo medio majori utrinque auriculis flavis, semilunarisbus; margine basilaris inflexo; os variabile, nunc orbiculare, nunc ovale. subterminale, anticum; apertura mascula orbicularis, minor, haud prominula; apertura feminea major, in papilla fungiformi, pedicellata; corpus fusiforme, capiti æquilongum; porus excretorius in apice caudali. Longit. 0·003. Lat. cap. 0·001.

II. Genus. HOLOSTOMUM.

2. Holostomum Cornucopia Molin.

Caput ovatum, apice truncatum, margine exciso; corpus gibbosum, semicirculariter recurvatum, postice attenuatum; apertura feminea bursa protractilis, magna, cornucopias
mis, centro extremitatis posterioris truncata extans. Longit. verm. 0·008; capit. 0·002; crassit. 0·002.

Habitaculum. Strix flammea (?): in intestino tenui, Junio, Patavii (Molin).

Tribus. Monocotilea.

III. Genus. DISTOMUM.

3. Distomum follaceum Molin.

Corpus ovatum, planum, inerme; os subterminale, anticum; acetabulum sessile, ore parum majus. Longit. 0·002; lat. 0·0007.

4. Distomum Atomen Rudolphi.

5. Distomum singulare Molin.

Corpus inerme, planum, ovatum; os anticum, subterminale, apertura circulari; acetabulum ore majus, subterminale. posticum, apertura circulari, annulo elevato cineta; apertura genitalis in anteriori corporis parte, lateralis; penis inermis, obclavatus, prominulus. Longit. 0·0045; lat. 0·002.

Habitaculum. Ibis Falcinellus: in intestino tenui, Majo, Patavii (Molin).

Corpus obovatum, planum, inerme; os terminale, orbicularare; acetabulum ore majus, sessile, ellipticum, prominulum. superum, apertura rimaeformi; apertura genitalis media inter os et acetabulum; penis inermis cylindricus, semicirculariter inflexus, ad basim haud incrassatus; porus excretorius in extremitate appendicis caudalis, brevis, retractilis, campanulata. Longit. 0·00015 — 0·003. Lat. 0·001.
Habitaculum. Chrysophris aurata: in intestinis, Julio, Patavii (Molin).

7. Distomum Fabenii Molin.

Corpus sincerme, planum, obovatum; os terminalis, orbicularis; acetabulum ore majus, superum, ellipticum, apertura transverse rimaformi; apertura genitalis media inter os et acetabulum; penis cylindricus, crassus, sygmoideus, inermis. Longit. 0.002 — 0.004; crassit. 0.001 — 0.0015.

Habitaculum. Caantharvs vulgaris: in intestinis, Julio, Patavii (Molin).

Corpus depressiusculum, inermis, inflexum, antice truncatum, postice soleaforme dilatatum; os terminalis, magnum; acetabulum sessile, eadem oris magnitudine, apertura circularis; apertura genitalis in centro papillarum cylindricarum, magnum, mediam inter acetabulum et porum excretorium. Longit. 0.009; lat. 0.002.

Corpus teres, crenatum, cauda attenuata retractilis; col- lum breve, conicum; os anticum, globosum; acetabulum ore fere duplo majus, ad colli basim, globosum; apertura genitalis pone os; penis breviter prominulus, longissimus, flexuosus basi magnopere incrassatus. Longit. 1 — 2.5; crassit. 0.5.

Habitaculum. Alosa vulgaris: in ventriculo, Junio, Patavii (Molin.)

Corpus teres, inermis; os terminalis, globosum; colli antrorum attenuatum; acetabulum ore majus, prominulum, ad colli basim; apertura genitalis ante acetabulum; penis retortaformis; porus excretorius in apice appendicis brevis, campanulata, retractilis. Longit. 0.5 — 1.

Corpus teres, subcylindricum, crenatum, antrorsum incras-satum, retrorsum attenuatum (adultorum), cauda longa, retrac-tili; os terminale, orbiculare, emarginatum, labio ventrali; col-lum cylindricum, crassum; acetabulum ore duplo minus, ad colli basim; apertura genitalis ori proxima, ad labii ventralis bas-im; penis longissimus, cylindricus, postice flexuosus, basi mag-nopere incrassatus. Longit. 0·003 — 0·010; crassit. 0·0002 — 0·001.

Habitaculum. Scobmer Scobmer: in ventriculo et intesti-nis, Julio, Patavii (Molin).

12. Distomum gibbosum Rudolphi.

Corpus teretiusculum, medio retroflexum; collum longiusculum; os terminale; acetabulum ore majus, pedicellatum, ad colli basim, apertura rimaformi, transversali. Longit. 0·002.

Corpus planum, inerme, longe ellipticum; os terminale, papillis quatuor cinctum; acetabulum prominulum, ori æquale, apertura rimaformi, transversali; apertura genitalis laterali-s, media inter os et acetabulum; penis ovatus, transverse obli-quus. Longit. 0·0035; lat. 0·007.

15. Distomum echinatum Zeder.

17. Distomum Polonii Molin.

Corpus spinulis minimis armatum, depressum, oblongo-ovatum; os terminale; acetabulum superum, sessile, eadem oris magnitudine; apertura genitalis ante acetabulum. Longit. 0·0002 — 0·004; lat. 0·0003 — 0·0008.

IV. Genus. GARTEROSTOMUM Siebold.

18. Gasterostomum armatum Molin.

Corpus teretiusculum, fusiforme, antice truncatum, spinulis exquis armatum; acetabulum cornucopiæforme, terminale, anticum; os centrale, apertura rimaformi; penis irregulariter inflexus in vagina obovata. Longit. 0·004 — 0·006; crassit. maxima 0·0015 — 0·002.

Ordo. CEPHALOCOTYLEA.

Section. Paramecotylea.

SUBORDO. APROCTA.

Tribus. Agamoarhynchobothria.

V. Genus. SCOLEX.

19. Scolex (Gymnoscolex) triqueter Molin.

Corpus obconicum, quandoque fusiforme, antice truncatum; caput subtrigastrium, acetabulis quatuor orbicularibus, cruciatim oppositis et acetabulo terminali antico ex quo haustellum inermce. Longit. 0·0015 — 0·002.

Sitab. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 35.
20. Scolex (Gymnocephalo) Cornucopia Molin.

Caput breviter fusiforme, bothriis quatuor longitudinaliter ellipticis; haustellum inerme, retrorsum vir constrictum, alveolo cornucopiaformi instructo; corpus obconicum, cellulis embryonalibus repletum. Longit. 0.001.

Habitaculum. Carce trachurus: in intestinis, Julio, Patavii (Molin).

Tribus. Gamoarhynchobothria.

VI. Genus. TRIAENOPHORUS.

21. Triaenophorus nodulosus Rudolphi.

Habitaculum. Tinea italica: in cistibus ad peritoneum, Julio, Patavii (Polonio).

VII. Genus. TETRABOTHRIUM.

Caput bothriis cyathiformibus, undulato-crispis, breve pedicellatis, cruciatim oppositis; articuli supremi bacillares, sequentes subquadrati. ultimi elongati; aperturae genitalium marginales, vaga alternae in foveola margini posteriori propingua. Longit. 4 — 12'; lat. ultra 1'.

Habitaculum. Torpedo marmorata: in intestino crasso, Majo, Patavii (Molin).

VIII. Genus. ONCHOBOTHRIUM.

23. Onchobothrium (Calliobothrium) verticillatum Rudolphi.

Habitaculum. Mustelus equestris: in intestino crasso, Majo, Patavii (Molin).

24. Onchobothrium (Acanthobothrium) coronatum Rudolphi.

Habitaculum. Torpedo marmorata: in intestino, Majo, Patavii (Molin).
Tribus. Gamorhynchobothria.

IX. Genus. RHYNCHOBOTHRIUM.

Caput antice truncatum, bothriis duobus marginalibus, ovatis, apice truncatis, convergentibus, centro scrobiculatis; col- lum longissimum, depressiusculum, postice dilatatum; corpus antice capitelliforme incrassatum; articuli supemri rugaeformes, marginibus rotundatis, postremi transversae parallelogrammici, marginibus convexis; penes marginales, vage alterni, cylindrici, leves, basi incrassati, e papilla maxima mediana prominuli; aperturae genitales feminine laterales, in medio lateris postici. Longit. cap. 0·001; colli 0·010; corporis ad 0·025. Lat. cap. 0·001; colli 0·008; corporis 0·003.

Habitaculum. Mustelus equestris: in intestino crasso, Majo, Patavii (Molin).

Sectio. Cyclocotylea.

SUBORDO. APROCTA.

Tribus. Gamocyclocotylea.

X. Genus. TAENIA.

27. Taenia Malleus Goeze.

28. Taenia multiforis Creplin.

Ordo. RHYNGODEA.
SUBORDO. APROCTA.
Tribus. Acanthocephala.
XI. Genus. ECHINORHYNCHUS.

29. Echinorhinynchus incrassatus Molin.

Proboscis medio incrassata, aculeorum seriebus 10, anticis 6 aculeorum majorum, 4 posticis ab illis disjunctis aculeorum minorum; collum breve, inerme; corpus inerme, vix inflexum, antice elliptice incrassatum; bursa maris medio plica funiculi undulati ad instar cincta, limbo laciniato; penis lanceolatus, e centro bursae apice prominulo. Longit. mar. 0·003; crassit. 0·0005.

30. Echinorhinynchus flavus Molin.

Proboscis cylindrica, uncirorum seriebus 11, anticis 8 uncirorum majorum, 3 posticis uncirorum minorum; collum brevissimum, inerme; corpus inerme, subcylindricum, flavum; bursa maris hemisphaerica. Longit. mar. 0·008; crassit. 0·0008 Long. fem. . . .

31. Echinorhinynchus de Visiani Molin.

Proboscis cylindrica, uncirorum seriebus 12, anticis 8 majorum, 4 posticis minorum; collum inerme, conicum, breve; corpus inerme, flavum, antice incrassatum, postice attenuatum. Longit. mar. 0·003 — 0·004; crassit. 0·0008. Longit. fem. 0·007 — 0·008; crassit. 0·001.

32. Echinorhinynchus contortus Molin.

Proboscis medio constricta, antice ovata, apice truncata, postice conica, uncirorum seriebus 31 armata, 7 anticis uncirorum
majorum, reliquis minorum; collum nullum; corpus cylindricum, inerme, irregulariter contortum, albidum, retrorsum attenuatum. mar. 0·019; fem. 0·026; crassit 0·001.

Habitaculum. Strix flammea (?): in intestino tenui, Junio, Patavii (Molin).

33. Echinochryseus lateralis Molin.

Proboscis clavata, uncinorum seriebus circiter 40, inflexa; collum breve, inerme; corpus semicirculariter inflexum, antrosum armatum, retrorsum valde attenuatum; a per tura genitalis ante apicem caudalem obtusum, coronulis 4 spinularum brevisimarum armatum; bursa maris subspherica, apertura stellaris. Longit. mar. 0·003; fem. 0·004; crassit. 0·0005.

34. Echinochryseus solitarius Molin.

Proboscis cylindrica, basi reflexa, uncinorum seriebus 12, anticus 8 uncinorum majorum, 4 posticus minorum; collum breve, inerme; corpus clavesforme, aculeis minimis, facillime deciduis, postice evanescentibus armatum. Longit. mar. 0·006; fem. 0·005 — 0·010; crassit. 0·0005 — 0·001.

35. Echinochryseus Proteus Westrumb.

Habitaculum. Leuciscus caedanus: in ventriculo et intestino, Junio, Patavii (Molin).

36. Echinochryseus roseus Molin.

Proboscis fusiformis, apicerotundata, basi reclinata, uncinorum seriebus 36, seriebus 3 uncinorum majorum medio interruptis; collum fusiforme, inflexum, basi rugosum, antice inerme, hinc seriebus circiter 30 uncinorum minorum echinatum; corporis pars anterior ellipsoidice magnopere incrassata, lineis duabus roseis lateralisibus signata, pars posterior longa, cylindrica, filiformis. Longit. prob. 0·0015; coll. 0·003; crassit.
0·0006. Longit. part. incras. 0·002; crassit. 0·001. Longit. part. filif. 0·010; crassit. 0·0002.

Habitaculum. Cantharus vulgaris: in ventriculo, Julio, Patavii (Molin).

Species inquirenda.

37. Echinorhynchus Putorii (abdominalis) Molin.

Habitaculum. Mustela Putorius: inter tunicas arteriae in cavo abdominis, Decembri, Patavii (Molin).

Ordo. NEMATOIDEA.

SUBORDO. PROCTUCA.

Tribus. Gamonematoidea.

Sectio. Hypophallii.

XII. Genus. OXYURIS.

38. Oxyurus mueronata Molin.

Caput epidermide inflata; os orbiculare; corpus utrinque attenuatum, antice truncatum; extremitas caudalis maris...; vagina penis...; extremitas caudalis feminæ acutæ conica, apice mueronato; apertura vulvae in posteriore (? corporis parte. Longit. fem. 0·011 — 0·015; crassit. 0·0002.

XIII. Genus. ASCARIS.

Caput nudum, epidermide stricte adnata; os labiis in conum centralem collectis, singulum papilla marginali noduliformi; corpus utrinque attenuatum (maris), spiraliter tortum (feminæ), inflexum; extremitas caudalis maris longe subulata, papillis longitudinaliter biserialibus, noduliformibus utrinque 7; vagina penis dipetalata, cruribus liguliformibus, arcuatis, brevibus; extremitas caudalis feminæ acutæ conica, longe subulata; apertura vulvae in medio corporis sita. Longit. mar. 2½ ; fem. 3 — 4 ; crassit. ½ .
Habitaculum. *Bufo vulgaris*: in intestino recto, Martio, Patavii (Polonio).

40. **Ascaris minuta** Molin.

_Caput apterum, epidermide stricte adnata; os trilabiatum, labiiis exquisi, singulum papilla centrali; corpus antrorsum attenuatum; extremitas caudalis maris...; vagina penis...; penis...; extremitas caudalis feminæ apice mucronata, vesicula pone ani hiatum. Longit. fem. 0·010; crassit. 0·0002.

41. **Ascaris compar** Schrank. Char. emend.

_Caput nudum; os labiiis rotundatis, singulum papilla centrali; corpus tenuissime transversim striatum, utrinque equaliter attenuatum, subrectum; extremitas caudalis maris recta, oblique truncata, papilla magna fungiformi, annulo calloso basilaris, et circulo externo papillarum minorum cincta, seriebus duabus lateribus, singula 4 papillarum, papillaque 1 intermedia pone aperturam genitalem epidermide transparenti obtectis; apertura genitalis prominula, circulo papillarum minorum cincta; vagina penis dipetala, cruribus brevibus, linearibus; extremitas caudalis feminæ conica, recta; apertura vulvae... Longit. mar. 1¼ — 2; fem. 3¼ — 4; crassit. ad 1°.

42. **Ascaris adunca** Rudolphi.

43. **Ascaris Acus** Bloch.

44. **Ascaris nigrovenosa** Rudolphi.

XIV. Genus. HETERACIS.

45. Heteracis vesicularis Dujardin.

XV. Genus. DISPHARAGUS.

46. Dispharagus contortus Molin.

Os bilabiatum, labis papilliformibus, exiguis; corpus subcylindricum, utrinque attenuatum, densissime transversim annulatum, irregulariter contortum; extremitas anterior plica epidermoidals in funiculus 4 parallelos, rectos, longitudinaliter dispositos, binis antice et postice alternatim conjunctis inflata; extremitas caudalis maris inflexa, apice obtuso, utrinque limbis amplis semilunaribus, transversim striatis, singulus in posteriori tertia parte papillis 7 filiformibus apicibus incrassatis; vagina penis monopetala, brevis, subcylindrica, apice incrassato uncinato; penisfiliformis, longus; extremitas caudalis feminæ appendice brevi, obtuso-conica, laterali; hiatus ani in apice caudali obtuso; hiatus vulvae ante anum, in extrema posteriori corporis parte, appendici caudali oppositus. Longit. mar. 0·007 — 0·008; crassit. 0·0002. Longit. fem. 0·019; crassit. 0·0004.

Habitaculum. Ibis Falcinellus: in ventriculo musculari sub epidermide, Aprili, Patavii (Molin).

XVI. Genus. TROPIDOCERCA.

47. Tropidocerea gynecaphila Molin.

Os terminale, minimum, papillosum; caput corpore continuum; corpus maris circumflexum, utrinque, antrorum valde attenuatum, apice truncatum; extremitas anterior nodulis duobus lateralibus, singulis spinula centrali retroflexa; caudalis maris acuminata, apice truncato; organa genitalia externa nulla; corpus feminæ sphærice incrassatum. Longit. mar. 0·010; crassit. 0·001.

Habitaculum. Ardea Nycticorax: in cistibus externe ad echinum, Aprili, Patavii (Molin).
Prospect. helminth. quae in prodr. sanae helminthol. Venet. contin. 209

XVII. Genus. CUCULLANUS.

Caput papillis 4 obsitum, incrassatum, valvulis ellipticis, longitudinaliter striatis; corpus retrorsum attenuatum, transversim vittatum, papilla sphærica centrali infra caput præditum; extremitas caudalis maris...; caudalis feminae attenuata, apice mucronata; apertura vulvae in posteriori corporis parte, labiis magnis prominulis, labium anterius majus. Longit. mar....; fem. 0·017; crassit. 0·0008.

XVIII. Genus. DACNITIS Dujardin. Char. emend.

Caput corpore continuum; os papillosum, bilabiatum, labiis magnis; extremitas caudalis maris seriebus duabus papillarum; vagina penis dipetala; apertura genitalis feminae bilabiata, in posteriori corporis parte. — Piscium endoparasita.

49. Daenitis attenuata Molin.

Corpus subcylindricum, antrorsum attenuatum, leve; extremitas anterior truncata; os papillis 6 noduliformibus; extremitas caudalis maris...; vagina penis...; penis...; extremitas caudalis feminae conica, apice breviter mucronato; apertura vulvae in posteriori corporis parte, labiis maximis, salientibus; hiatus ani lateralis, labio postico magnulo, prominulo. Longit. mar....; crassit.... Longit. fem. 0·007; crassit. 0·0004.

Habitaculum. Leuciscus cavedanus: in intestino, Junio, Patavii (Molin).

XIX. HYSTRICHIS Dujardin. Char. aucto.

Caput discretum, caesticilliforme, incrassatum, echinatum, et corpus filiforme, antrorsum echinatum, spinulis retroflexis imbricatis; os terminale, orbiculare, inerme vel armatum; ex-
tremitas caudalis maris...; vagina penis...; penis...
extremitas caudalis feminae apice increassato, obtuso; anus terminalis, orbicularis; apertura vulvae in extrema posteriori corporis parte, lateralis, ante anum. — Avium endoparasita.

50. Hystrichis orispinus Molin.

Caput discretum, caesticilliforme, increassatum, spinulis triangularibus, longis, imbricatis echinatum; os orbiculare, in apice coni truncati protractilis, inermis, spinulis quatuor brevissimis, cruciatim appositis armatum; corpus subcylindricum, utrinque sensim attenuatum; extremitas anterior echinata spinulis triangularibus longis, antice crebris imbricatis, retrorsum sensim evanescentibus; extremitas posterior densissime transversim annulata, inflexa, apice increassata, truncata; anus orbicularis, terminalis; apertura vulvae in extrema posteriori corporis parte, lateralis. Longit. fem. 0·025 — 0·044; crassit. 0·0005 — 0·001.

XX. Genus. LECANOCEPHALUS. Diesing Char. aucto.

 Corpus subcylindricum, spinulosum, antice truncatum; caput structura in qua annulus corneus a reliquo corpore discretum, patelliforme; os terminale, retractile, trilabiatum, labis patentiibus, depressis; extremitas caudalis maris conica, inflexa; vagina penis tubulosa; penis duplex, cruribus ensiformibus; extremitas caudalis feminae recta, rotundata; apertura vulvae in anteriori corporis parte. — Piscium endoparasita.

51. Lecanocephalus Kollari Molin.

 Corpus subrectum, spinulosum, spinulis conicis, antice minimis, postice increcentibus, antrosum attenuatum, truncatum, retrorsum increassatum; caput patelliforme, annulo corneo in strictura a reliquo corpore discretum; os retractile, trilabiatum, labis depressis, levibus, antice excisiis; extremitas caudalis maris inflexa, conica, spinulis minoribus, apice mucronata; vagina penis brevis, tubulosa, ante apicem caudalem; penis
Prospect. helminth. quae in prodr. faunae helminthol. Venet. contin. 301
duplex, cruribus longis recurvatis; extremitas caudalis
feminae recta, rotundata, spinulis decrescentibus, apice mu-
cronato mucrone valido, basi incrassato; apertura vulvae
in anteriori corporis parte, prominula. Longit. mar. 0·011;
crassit. 0·002. Longit. fem. 0·008; crassit. 0·0015.

Habitaeculum. Chrysophris aurata: in ventriculo, Julio,
Patavii (Molin).

XXI. Genus. TRICHOSOMUM.

52. Trichosomum spirale Molin.

Corpus capillare, spiraliter tortum, antice sensim attenua-
tum, retrorsum increscens; os terminale, orbiculare, minimum,
annulo saliente cincto; extremitas posterior attenuata;
caudalis maris...; vagina penis...; penis...; extre-
mitas caudalis feminae apice obtuso; apertura vulvae
prominula, in anteriori corporis parte. Longit. fem. 0·013.

Habitaeculum. Ibis Falcinellus: in ventriculo (?) Majo,
Patavi (Molin).

XXII. Genus. FILARIA.

53. Filaria quadrispina Molin.

Caput corpore continuum, spinulis & retroflexis circa os
orbiculare, minimum, cruciatim dispositis armatum; corpus
subcylindricum, subrectum, densissime transversim annulatum,
urtinqve attenuatum; extremitas caudalis maris inflexa. u-
urtinqve alata, alis semilunaribus latis sed brevibus, transversim
striatis, singula paribus 6 papillarum minimarum; vagina
penis monopetala, longa, filiformis, acuminata; penis longis-
simus, filiformis; extremitas caudalis feminae sensim
attenuata, apice obtuso, uncinato; hiatus ani lateralis;
apertura vulvae in anteriori corporis parte (?). Longit.
mar. 0·007; crassit. 0·0001. Longit. fem. 0·010; crassit.
0·0002.

Habitaeculum. Ibis Falcinellus: sub epidermide ventri-
culi, Aprili et Majo, Patavii (Molin).
Sectio. Aerophalli.

XXIII. Genus. TRICOCEPHALUS.

§ 4. Trichocephalus dispar Rudolphi.

XXIV. Genus. CALODIUM.

§ 55. Calodium caudinflatum Molin.

Corpus capillare, maris utrinque, feminae retrorsum attenuatum; extremitas caudalis maris epidermide in bullam magnam ellipsoidicam, transparentem inflata; vagina penis tubulosa, transversim striata, penisque filiformis longissimi e bursa terminali in apice caudali sursum excisa mucroni brevi opposita extantisque; extremitas caudalis feminae apice rotundato; hiatus ani subterminalis, lateralis; aperture vulvae bursa prominent in anteriori corporis parte, hiatus bili- biato, labio interno longiori. Longit mar. 0.017; fem. 0.025.

Botanische Streifzüge auf dem Gebiete der Culturgeschichte.

Von Dr. Fr. Unger.

(Vorgetragen in der Sitzung vom 11. November 1858.)

III. Die Pflanze als Zaubermittel.

Wer weiss es nicht, dass Zauberei noch immer, selbst in unseren Tagen, kein leeres Wort ist, nicht nur bei rohen Völkern in Ansehen steht, sondern selbst bei gebildeten Nationen ausgeübt wird und Anklang findet.

Zwar hat die Wissenschaft von der einen, der Glaube an eine vorausgehende Weltregierung von der anderen Seite fort und fort gegen diesen abstrusen Feind der Aufklärung gekämpft, aber derselbe hat zu mächtige Anhaltspunkte in der Brust des Menschen, um ihn so leicht zu schwächen und vollends zu vernichten.

Das Festhalten an Zauberei beruht im letzten Grade sicherlich auf zwei freilich ganz irrigen, aber eben nicht so leicht widerlegbaren Vorstellungen, nämlich auf der Vorstellung, dass den Körpenn ausser den bekannten physicalischen Kräften auch noch andere Naturkräfte, die wir nicht kennen und auch nicht zu erkennen vermögen, zukommen, und zweitens, dass moralische Kräfte auf physische Kräfte directen Einfluss zu nehmen im Stande sind und diese in ihren Wirkungen zu bestimmen vermögen.

Nicht Dinge und Begebenheiten, die wir täglich wahrnehmen, wohl aber solche, die sich seltener ereignen und von ungewöhnlicher Natur sind, sind von je her als Träger besonderer Kräfte und für ausserordentliche Wirksamkeiten angesehen worden. Als solche können Meteoriten, seltsame Gewächse, Missbildungen ungewöhnlicher
Art, Gestirne durch ihre Lichterscheinungen und Constellationen
die Aufmerksamkeit erregend, im Allgemeinen bezeichnet werden.

Nicht weniger hat sich aber auch die Überzeugung festgestellt,
dass besonders begabte Menschen im Besitze übernatürlicher Kräfte
stehen, welche geltend zu machen in ihrer Willkür liegt, und die
sie auch auf sonst wirkungslose Substanzen zu übertragen die Macht
besitzen. Die Propheten, die Magier und Zauberer, die durch die
Macht des Wortes, durch Berührung, ja selbst durch die gewissen
Dingen (Stäben, Amuletten, Liebestränken u. s. w.) mitgetheilten
Kräften Wirkungen hervorbringen, welche von den Wirkungen
bekannter Kräfte ganz und gar abweichen, sind es, denen eine
solche Begabung zugestanden wurde.

Die Ablenkung des Blitzes von dem Hause, worauf der Donner-
bart wächst, die Sicherung von feindlichen Waffen durch das Amulet,
das Hervorrufen von Quellen aus dürren Felsen durch den Stab
(Rhea, Moses) 1) die Erweckung der Todten durch die Macht des
Wortes u. s. w. sind durchaus Wirkungen, die weder in der
bekannten und möglichen Wirkungsweise der Natur- noch der
Willenskräfte liegen.

Ziehen wir die Geschichte der Völker, vorzüglich das in den
Sagen aufbewahrte Gemüthsleben derselben zu Rathe, so kann uns
nicht entgehen, dass Zauberei und Wundergläube dort am meisten
blüht, wo sich die Cultur kaum über die ersten Stufen erhebt, oder
wo sie von einer höheren Stufe wieder auf eine tieferere niederge-
sunken ist. Da aber die Ausbildung des Geistes bei einem bereits in
höherer Entwicklung begriffenen Volke nicht ebenmässig vor sich
geht, auch nicht ohne Oscillationen erfolgt, und stets durch die
individuelle Anlage und durch verschiedene äussere Einwirkungen
bestimmt wird, so ist es nicht zu wundern, wenn die ursprüngliche
Hinneigung zum Wundergläuben und zur Zauberei sich auch bei soge-
nannten gebildeten Nationen findet und selbst mit den kräftigsten
Hebeln der Cultur nicht ganz ausgerottet werden kann. Wie lange
ist es her, dass unter unseren Augen das leblose Holz schrieb und
die Schicksale der Menschen und Weltbegebenheiten verkündete,
und wo ist irgend eine grössere Gemeinschaft von Menschen in den

1) Den Quell Neda am Lyksion und den Quell am Sinai.
cultivirtesten Theilen der Erde zu finden, die nicht öffentlich oder geheim ihre Orakel in dieser oder jener Form besässe.

Hat der einfache, rohe Mensch ein Bestreben, sich die Macht der Gottheit anzumassen und werkthätig in die Begebenheiten seiner Geschichte einzugreifen, so ist es natürlich, dass er auch einen eben
solchen Drang der Vorhersehung der Schicksale besitzt, um sich über dieselben zu stellen und sie somit beherrschen zu können. Zauber und Orakel reichten sich immer die Hände.

Erfahrungsgemäß hat indess weder der eine noch das andere ihre Wirksamkeit ohne Anwendung besonderer Mittel bewerkstelligt. Ist es der Blick, die Miene, die Geberde und die Rede einerseits, durch welche besonders die inneren ungewöhnlichen Erregungszustände ihre höhere Macht beurkundeten, so wurden nichts desto weniger häufig auch äussere Gegenstände als Träger besonderer Kräfte oder als Mittel bei Hervorrufung und Unterstützung ekstatischer Zustände in Anwendung gebracht und je nach der individuellen Anschauungsweise von höherer oder niederer Wirksamkeit erachtet.

Unter diesen zaubermächtigen Substanzen und Mitteln spielen die Pflanzen eine nicht unbeträchtliche, in mancher Beziehung sogar hervorragende Rolle. Viele derselben haben diesfalls einen ausgezeichneten Ruf erlangt und sich in gewissen Schichten selbst gebildeter Nationen noch bis jetzt erhalten. Ich möchte nicht zweifeln, dass der Grund davon wenigstens zum Theil in der Eigenthümlichkeit der Pflanzennatur, so wie in der ursprünglichen Auffassungsweise derselben liegt, die sich bei näherer Betrachtung als eine höchst naive und tiefesinnige darstellt.

Von allen Wesen, welche den Menschen umgeben, zeichnen sich bei tiefer eingehender Betrachtung die Gewächse durch ihre allmählich und unvermerkt vor sich gehende Grösse- und Gestaltveränderung der Art aus, dass sie selbst dem Unkundigsten als eine gesetzmässig fortschreitende, von einem Prinzip beherrschte und an feste Normen gebundene erscheinen muss. Was ist natürlicher als den Grund dieser Erscheinung einer inneren Einheit, einer Besseelung zuzuschreiben, und dieselbe für nichts anders als für die Wirkung eines im Verborgenen thätigen Waltens — als eine sinnvolle Erscheinung eines tiefesinnigen bewussten Lebens zu betrachten. Denn der Mensch ist ursprünglich viel mehr geneigt, seine Natur überall ausser sich wieder zu finden, sich mit derselben zu identifizieren, als sich von dieser abzusondern und dem Wesen nach für verschieden zu halten. Aus dieser in unserer Natur und Anschauungsweise liegenden Eigenthümlichkeit entsprang nicht nur die bei allen Völkern mehr oder minder klar hervortretende Ansicht von der
Beseelung der Pflanzen, sondern selbst von einer höhern Begeistigung derselben; ja sie galt als der sprechendste Ausdruck unerforschlich mächtigen Lebens und Wirkens. Die sich in die stille Pflanzengestalt kleidende und durch sie wirksame Gottheit wurde daher bald ein Gegenstand der Verehrung, und so entstand ein Cultus der Pflanzen, der vorzüglich auf die durch ihre Masse und Lebensdauer imponirendenbaumartigen Gewächse überging. Welch Umfang der Baumcultus bei allen begabteren Nationen des Alterthums hatte, die sich durch höhere Culturzustände hervorhatten, hat C. Bötticher auf umfassende Weise dargethan 1). Es geht daraus hervor, wie die ursprünglich naiven Anschauungen sich allmählich erweiterten und ausbildeten, der Religion und Kunst ihren eigenthümlichen Charakter ertheilten und so eine der tiefsten und ergiebigsten Quellen des Wunderglaubens und der Zauberei wurden.

Diese wenigen Fingerzeige auf das Allgemeine mögen genügen, um auf die Bedeutung der Pflanze als Zaubermittel hinzuweisen, als welche sie von den ältesten Zeiten bis auf unsere Tage gedient hat,

1) Der Baumcultus der Hellenen. Berlin 1856.
3) Zornentbrannt schüttet Hoses über seines Volkes Sündenschande, Orakel aus Bäumen zu erforschen, indem er sagt: „Mein Volk fragt sein Holz und sein Stab soll ihm weissagen.“
und daran die Frage zu knüpfen, in welcher Weise wohl die Beschaffenheit derselben mit der vermeintlichen Zauberkraft in Verbindung stehen mochte.

Die Pflanzenwelt, welche dem Menschen nach so vielen Seiten hin unentbehrlich ist, welche sich in dessen verschiedenste Verhält-
nisse auf die mannigfaltigste Weise verflochten hat, sehen wir hier wie am Gitter einer Todtengruft emporklettern und selbst in die Nacht-
seite seines Lebens hineinranken. Wie ist ihr sonst so freundliches
Wesen hier auf einmal den dunkeln Mächten unterthan? Wie
lässt sich dieser düstere Charakter aus ihren lieblichen, segenbrin-
genden Eigenschaften ableiten?

Ohne Zweifel ist es nur eine gewisse Summe von Pflanzen, die
sich als Zauberpflanzen Geltung verschafft hat. Diese kennen zu lernen,
wollen wir in der Geschichte zuerst Umschau halten, aber darauf
gefasst sein, nicht immer sicheren Spuren zu folgen, die uns über
ihre Natur, ihre Anwendung und ihre Bedeutung die nötige
Aufklärung verschaffen. Ist in der Geschichte der Pflanzen, die
dem Menschen als Gefährten und Heber der Cultur vom Anbeginn
seines Daseins an zur Seite standen, so vieles zweifelhaft und in
einen undurchdringlichen Nebel gehüllt, so dürfen wir auch hier
nicht erwarten, leicht durch den Schleier zu blicken, der um so
undurchdringlicher geworden ist, je sorgfältiger man das Myste-
rion zu verhüllen bemüht war.

Beginnen wir mit den frühesten Zuständen des Alterthumes,
so treten uns zwei Frauen als vorzügliche Kennerinnen und Macht-
haberinnen von Zauberpflanzen zuerst entgegen: Medea, die Tochter
der gefüchsteten Hekate, die Regentin der Unterwelt und Vorste-
herin aller bösen Dämonen und die zaubersclic Circe (ξυρης), die
mit beithörenden Sätten und ihrem Stabe was sich ihr naht, in Wölfe,
Löwen und Schweine verwandelt 1). Den Zaubergarten der ersteren
in welchem viele giftige Kräuter und Arzneipflanzen angebaut wur-
den, kennen wir nicht näher und was die Säfte betrifft, deren sich
letztere, welche noch in späterer Zeit als Königin aller Zauberinnen
gilt, bediente, so ist es mehr als zweifelhaft, ob wir dieselbe von

1) Odys. X. 212. — Die Weiber der Buschmänner in Afrika verstehen die Kunst sich
selbst in Löwen, Hyänen und andere Raubthiere zu verwandeln (Anderson).
einer später näher zu betrachtenden Pflanze — der Mandragora — abzuleiten haben.

Gegen Circe's Zauberereien, die wahrscheinlich in nichts anderem als in der Anwendung von narkotischen, trunkenmachenden Pflanzen bestanden, war schon im Alterthume im Moly (Allium magicum L.) ein Gegenmittel bekannt, welches Odysseus empfahl und das sich später sogar den Ruf einer Panacea erwarb, nach Theophrast zur Abhaltung vieler Krankheiten diente 1), ja diesen Ruf noch bis heutigen Tages in Griechenland bewahrt.

Mit dem Moly war aber auch der Knoblauch (Allium sativum) im alten Griechenlande als Mittel gegen Zaubererei, gegen neidische Augen, gegen Unglück u. s. w. in Anwendung; Kindern wurde er als Amulett eingebunden, Schiffer bewahrten ihn in Säckchen bei sich.

Neben den thessalischen Zauberkräutern, deren sich jene Zauberinnen vorzugsweise als Mittel ihrer geheimen Macht bedienten, finden sich bei ältern Schriftstellern auch colchische und iberische Zauberkräuter am meisten erwähnt. Sollten die pontischen Iberien, die ihre Abkunft aus Thessalien herleiten, auch ihre Zauberkräuter von da mitgenommen haben?

1) Mῶλο ἄπο τοῦ παλλεύν τας νόσους.
2) Von ἄξων doloа.
Weder von diesen noch von andern Zauberwuchschen, deren Plinius erwähnt, hat es bisher geglückt, sie auf bisher bekannte Pflanzenarten zurückzuführen; noch viel weniger war man im Stande aus andern, noch unbestimmter Angaben, wie z. B. aus dem äthiopischen Kraute, welches Flüsse zu trocknen und Schlösser zu öffnen im Stande ist, oder von der Pflanze, durch welche nach Juba in Arabien ein todter Mensch ins Leben zurückgerufen worden sei, irgend eine bestimmte Pflanze zu erkennen.

Indess hat auch die Zauberei der Römer unter welchen gleichfalls wieder Frauen, wie Canidia, Pamphile u. s. w. als Koryphäen erscheinen, zur Salbenbüchse und Kräutersäften gegriffen, und der Flug auf Liebesabenteuer kommt auch bei diesen vor. —

Kein Zeitalter war jedoch so reich an Zauberwirkungen als das alexandrinische, welches mit dem Verfall der Wissenschaft sich ganz besonders durch ein Haschen nach Ausserordentlichem, Wunderbarem, Zauberaftem, nach allem, was die Macht des Menschen über die Natur und seine Mitmenschen zu steigern versprach, auszeichnet. „Nur das in der Natur, was durch seine Seltenheit oder durch die Merkwürdigkeit seiner Wirkung überraschte, Staunen erregte, fand man der Beachtung werth, ohne nach den Ursachen seines Daseins oder seines Einflusses zu fragen.“ Es war dies das ergiebigste Feld für Zauberei und die zahlreichen Werke über Naturmerkwürdigkeiten παράδοξα, θαυμάσια, ἔδιωφυ π konnten nicht anders als den fruchtbarsten Samen für das spätere Mittelalter liefern, wo sich die Zauberei als eine von der Heilkunst abgelöste besondere Kunst ausbildete.

Mit der Ausbreitung des Christenthums war der Zauberei keineswegs der Lebensfaden abgeschnitten, sie erhielt nur eine andere Devise. Vorzüglich waren, namentlich in unseren Ländern, die Verehrung heiliger Bäume und die mit dem Cultus derselben zusammenhängenden Sitten zu bekämpfen, und in der That hieben die eisernen Apostel des neuen Glaubens nicht nur mit eigener Hand dergleichen heiligtge Bäume um und zerstörten die Haine der Götter, sondern erliessen in Predigten und Schriften scharfe Drohungen gegen jeglichen Zauber (incantatio) der mit allerlei Pflanzen und Bäumen getrieben wurde. Auch Fürsten und Kirchenversammlungen liessen es nicht fehlen durch strenge Gesetze diesen Aberglauben auszurotten. Was war aber natürlicher als, wodurch früher Wodan,

1) Circa hoc tempus quidam nobilis Theutonice nationis ex Kariathia, de partibus transmarinis ubi dixi exulaverat rediens, dixit so in ulteriori Orienti vidisse arbores excellentis stilitudinis anno tricesimo tantum fructiferares, que protulerunt poma pulcherrima et grossa iocondissimi saporis et odoris, que secta per medium ostenderunt in se effigiem imaginis Crucifixi. Johannes Victorienensis bei Böhmer: Fontes l. 409.

Die in der Religion der alten Germanen so hoch gepriesene Eichenmistel, welche nur Priester, und diese nur mit goldener Sichel abschneiden durften, wurde zum heiligen Kreuzholz (lignum sancti crucis).

2) Der quer durchschnittene Wedelstiel von Pteris aquilina zeigte den Buchstaben H (Heiland) oder JC (Jesus Christus), daher er auch Jesus Christus-Wurzel genannt wurde.

3) Im Liebenfrauen-Dorn, Marienmantel, Frauenhandschuh, Liebfrauenhütetäsch u. s. w.

4) In der Johannisrad, d. i. der handförmigen Knollwurzel mehrerer Orchis- und Gymnadenia-Arten.

5) Ideo per eum, qui dat herbas servituti, sicut has herbas N. et N. benedice; sanctifico et fugando Daemonem ad destruendum omne maleficium et ad annihilandum incantamentum ligamen etc. — Benedictio herbarum v. rose v. rutae v. absynthii v. simulum mutatis mutandis. (Nucleus contineat benedictione rerum diversarum item Exorcismos ad varia malefica depellenda et Impressus Constantiae deinæ Linzii apud Heredes G. Kyner MDCLX.)
der strengsten Gesetze dagegen (vota ad arbores facere aut ibi candellam seu qualibet munus conferre) fortgedauert, und was ist unser Christbaum anders als ein in christliche Sitte übergegangener heidnischer Gebrauch?

Unter den mannigfaltigen Zauberpflanzen, welche zu jener Zeit in Anwendung kamen, ist eine nicht geringe Zahl als vollkommen wirkungslos zu bezeichnen, obgleich dieselben sich nicht selten eines eben so ausgezeichneten Rufes zu erfreuen hatten, als jene, welche zugleich als Heilkräuter dienten. Die einen wie die andern kennen zu lernen, ihre Geschichte sowie ihre Anwendung einer näheren Betrachtung zu unterziehen, soll der Gegenstand der folgenden Blätter sein. Hiebei dürfte es nicht unzweckmässig erscheinen, die Geschichte der wichtigsten Zauberpflanzen vorauszuschicken.

Vor allen ist hier die Alraunwurzel oder Mandragora zu nennen. Die Bekanntschaft des Menschen mit dieser allerdings nicht wirkungslosen Pflanze zieht sich in das früheste Alterthum zurück, und nur durch die grosse geographische Verbreitung derselben war es möglich, dass auch das Abendland eben so wie der Orient Kenntniss von ihrer Wunderkraft erlangte.

Ob das Dudaim der Hebräer, das Jabruchin der Chaldäer die Mandragora sei oder die persische Gurke (Cucumis Dudaim L.), ist nicht leicht mit Gewissheit zu eruiren, doch ist es sehr wohl mög- lich, dass Rachel durch die Wirksamkeit derselben ihren Wunsch erreichte oder zu erreichen glaubte. Auch Pythagoras kennt dieses Gewächs schon und nennt es wegen der fleischigen zuweilen gespaltenen und dadurch seltsam geformten Wurzel, die mit der Gestalt des Menschen eine entfernte Ähnlichkeit hat — ἀνθρωπομορφος, was mit der heut zu Tage üblichen persischen Benennung Merdum-Giah (Menschenpflanze) vollkommen übereinstimmt. Bei Theophrast heisst sie μανθραγόρας — die Heerdensammelnde — (von μανθρα Hürde und αγελτρων versammeln), nicht weil sie durch ihre Kraft im Stande ist, das weidende Vieh zusammuzuhalten, sondern wahr- scheinlich vielmehr, weil sie in Griechenland in der Nähe der Hür- den wächst. Schon dieser bemerkt bei der Erzählung der wunder- lichen Gebräuche, welche die Wurzelgraber (βιζωτόμοι) bei der

1) Plinius (Hist. nat. XXV. 130) sagt von den Früchten der Mandragora: „Grave dinem offerunt etiam olfactu.“
Einsammlung von Arzneigewächsen u. s. w., wahrscheinlich um ihr Gewerbe desto sicherer ausschliesslich betreiben zu können, verrichten, dass man die Mandragoras mit nach Abend gekehrtem Gesichte dreimal mit einem Schwerte umkreise, während ein zweiter Wurzelgräber ringsum den ersten tanze und dabei viel von Liebeswerken rede.

Diese wahrlich höchst abenteuerliche Gewinnungsweise der Mandragora ist im ganzen Orient bekannt, wo noch gegenwärtig die Meinung herrscht, dass die Pflanze durch menschliche Hand aus der Erde gezogen alle ihre Heil- und Zauberkraft verliere.

Dieselbe Meinung finden wir auch bei Plinius, der diese Pflanze der berühmten Zauberin Circe zu Ehren Circaen nennt 2).

Dieosecorides unterscheidet zwei Arten: μανδραγόρας ἄρρενος, in welcher Bertoloni die Mandragora vernalis und Μανδραγόρας ηλως, in welcher er Mandragora autumnalis zu erkennen glaubt, die jedoch wahrscheinlich beide nur Varietäten einer und derselben Pflanzenart — Mandragora officinalis Mill. — sind.

Begreiflicher Weise hat das Mittelalter diese durch das Alterthum so gefeierte Pflanze mit Begierde in den Kreis seiner Zauber-

mittel aufgenommen und selbst ins Abendland, wo sie ausser den östlichen Ländern des Mittelmeeerbeckens nicht wild wächst, gebracht. Der deutsche Name „Alraun“ ist offenbar ein übertragener, so wie der Name „Heckenmännchen“, und kommt daher, dass die Wurzel der *Mandragora* möglicht ist menschliche Form gebracht und zugeschnitten allenhalben durch Geheimnisskrämer, Landstreicher und andere verdächtige Personen verbreitet wurde. Da es z. B. in Deutschland schwer hielt, sich ein solches Wundermännchen zu verschaffen, so bezahlte man eine für jene Zeit ungeheure grosse Summe (50—60 Thaler) dafür, und die Betrügerei erlangte dabei durch Verfälschung einen ganz ansehnlichen Gewinn und wurde dadurch sehr anlockend.

Statt der wahren Alraunwurzel wurde die in Deutschland überall wildwachsende Zaunrübe (*Bryonia alba und dioica*) dafür ausgegeben. Man suchte nämlich dieser gleichfalls fleischigen und manigfach gestalteten Wurzel, indem man sie noch jung in Modelle steckte, eine Menschengestalt zu geben, oder ihr dieselbe durch geschicktes Bescheiden u. s. w. zu ertheilen. Schon Tragus (1552) spricht von diesen Betrügereien und beklagt sich, dass denselben niemand Einhalt thue oder sie auszurottten suche „qui illi se opponat eamque e medio tolli curet“.

gesündiget hat, zu mir, damit meine sündige Erde (Fleisch) jenen Frieden, den dieselbe ursprünglich besass, wieder erlange ¹).

Viel abenteuerlicher und sinnlicher hat sich vielleicht zur selben Zeit die Ansicht über die Wirksamkeit der Alraunwurzel und die Bedingungen derselben ausgebildet. Aus menschlichem Samen entstanden, wachse sie nur unter Hochgerichten und bewirke dem Besitzer Liebe, Gunst und Glück, den unfruchtbaren Weibern Fruchtbarkeit. Geheimgehalten und zu Zeiten mit Wein gewaschen, an jedem Neumond mit einem frischen weissleinernen Hemdchen angekleidet, lasse sie sich zu einem *Homunculum* brauchen, welcher auf Begehren Geld und andere Kostbarkeiten, auch das ihm täglich dargebote Geld verdopple, jedoch dürfe er damit nicht zu sehr angestrengt werden, damit er nicht zu bald absterbe. Nur mit Lebensgefährt und mit Hilfe eines schwarzen Hundes könne sie ausgegraben werden. Beim Ausreissen schreie sie so jämmerlich, dass man sich die Ohren verstopfen müsse.

¹) *Mandragora caliqa est aliquantulum aquosa et de terra, de qua Adam creatus est, dilatata est, et propter similitudinem hominis suggestio diaboli huic plus quam alia herbis insidiatur et adest. — Et si aliquid homo in natura sua complexionis hujus est, quod tria est et in aerumnae semper, mandragoram cum jam de saliente fonte ablatam, ut praedictum est, in lectum suum juxta se ponat, ut de sudore suo adem herba incalset, et ut ipse calorem suscipiat et dicat: Domine, qui hominum de lino teraeh abaque dolore fecisti, terram istam quam nunguam praevicineata est, juxta me ponuo, ut etiam terra mea pacem illam sentiat sicut eam creasti. Lib. phys. de Mandragora.*

²) *Kurze Betrachtung der Mandragora oder Alraunwurzel, des Fahrenkrautes nebst seinen Samen, so wie auch anderer sogenannter magischer Kräuter. Cosmo-poli 1703. 12.*
hinführt, um ihn an sie zu binden, daneben eine im Thierkreise
sitzende Figur nebst der drastischen in den Lüften schwebenden
Devise „qui facile credit, facile decipitur“ erläutern diese populäre
Schrift.

Gegenwärtig wird die Wurzel der Mandragora vernalis
(\textit{Mandragora verna}) in demselben Lande, von wo aus einst ihr Ruf als
Zaubermittel über ganz Europa und das westliche Asien sich ver-
breitete, als schmerzstillendes Heilmittel, namentlich in der Proso-
palgie angewendet, nichts desto weniger aber vom Volke noch immer
als besonders wirksam gegen das Verhexen gepriesen 1).

Wie die Alraunwurzel als die erste und wichtigste morgen-
ländische Zauberpflanze betrachtet werden kann, so ist das Farn-
kraut als die vorzuglichste abendländische anzusehen.

Von höchst indifferenten Natur und nur den Helminthen wider-
wärtig, musste das Farnkraut, worunter man gewöhnlich den sehr
verbreiteten gemeinen Waldfarn (\textit{Nephrodrium flix mas R. Br.})
verstand, durch seine Form und Vegetation auch dem unverständi-
gsten Menschen auffallend erscheinen. Während alle Pflanzen nach
seiner Meinung blühen und Samen bringen, erscheint hier auf der
Rückseite des ganz fremdartig gebildeten Laubes zuweilen ein braunes
Pulver. Was ist natürlicher, als dieser absonderlichen Naturerschei-
nung auch ganz besondere, magische Kräfte zuzuschreiben. Und da
es mit der ganz unschuldigen Wirkung dieses braunen Pulvers eben-
falls nicht recht gehen wollte, so musste dessen Wirksamkeit von
gewissen Ceremonien bei der Einsammlung abhängig gemacht werden.
Auf solche Weise hat sich diese Pflanze \textit{molens volens} einen ganz
besonderen Cultus in der Magie erworben und denselben weitgehend
verbreitet. Wird der Strunk an seiner breiteren Spitze im Frühjahr,
wo er die ersten seltsam eingerollten Wedeln treibt, dazu benützt,
um daraus eine Menschenhand zuzuschneiden, so bildet dies das
ehemals so berühmte Glücks- oder Johannishändchen, welches in allen
Unternehmungen Glück und Segen bringt und sich vorzüglich bei
Bereitung der alles treffenden Freikugeln als wirksam beweist.

Auch vom Farnkraute (\textit{flick}) weiss die heilige Hildegardis
mancherlei Tugenden anzugeben, namentlich aber jene, dass es der

1 Neues Jahrbuch für Pharmacie etc. von Wals und Winkler. Speyer, 1856. Bd. VI,
Heft 1, p. 28.
Teufel ganz besonders fliehe. Er wagt es nicht in dessen Nähe sein Unwesen zu treiben und meidet daher alle Orte, wo sich dasselbe befindet oder wo es hingebraucht wird. Blitz, Donner und Hagel als die vorzüglichsten Erscheinungswesen desselben werden an solchen Orten nur selten beobachtet. Trägt der Mensch das Farnkraut bei sich, so hat er dadurch ein sicheres Schutzmittel gegen Zaubererei, Geisterbannungen, Teufelsbeschwörungen und anderes Gaukelwerk.

Man unterschied wie bei der Mandragora auch bei diesen Farn Männchen und Weibchen (ganz richtig, indem das sogenannte Weibchen unser Aspidium flīx fæmina ist), beide von ungleicher Kraft und Wirkung.

Auch der Farnkrautsame — die Sporen — werden in der Johannisnacht an gewissen Orten, namentlich auf Kreuzwegen, mit Gefahr des Leibes und der Seele nackt gesammelt, indem das Farnkraut nur in dieser Nacht (nach anderen auch zu Christi Geburt und Johannis Enthauptung) zwischen 11 und 12 Uhr blühe, Blüthe und Samen jedoch alsogleich wieder verschwänden.

Anders ist es mit dem Glück im Spiele und in der Liebe. „Was ich oben von dem Fahrenkrautsamen — so erzählt der vorerwählte Ungenannte — und dessen falschen Imposturen gemeldet, will ich dem Herrn deutlicher bekräftigen mit einem Exempel aus meiner eigenen Erfahrung, durch welche ich befunden, dass alles, was vom gedachten Kraut erzählt wird, falsch sei.“

„In dem vergangenen Jahre 1702, eben um den Johannistag des Täufers, habe ich einen guten Freund, schon gelährten und vornehmen Mann, besucht, bei welchem denn allerhand Tischgespräche vorfielen, und ist derselbe endlich auf den Fahrensamen und dessen superstitieuze Collection gekommen, welches alles ein an dem Tisch sitzender Officier mit angehört, hernach sich resolvirt, dieses, welches von vielen von diesem Kraute erzählt, und vor die Wahrheit ausgegeben wird, zu versuchen, welches er auch am nächstkommenden
Johannistag gethan; wir aber wollten unterdessen gerne sehen, ob etwas dieser Samen zu Hauss, oder in einem Garten, ohne solche Weitläufigkeit und Aberglauben zu bekommen wäre, und hat gedachter Freund seinen Gärtner hinausgeschickt, die Fahrenstaude zu holen, und in ein Scherbel setzen lassen. Endlich kam der Johannistag heran, an welchem sich obengenannter Officier samt seinem Diener in der Nacht hinaus begab, um das Werk mit dem Fahren-Samen vorzunehmen, und, wie er sagte, *si credere fas est*, hätte er allerhand Phantasmata gesehen. Weil aber seine Relation mit des Dieners nicht übereinkam, welcher gar nichts gesehen haben wollte, so glaube ich, dass er auf dem Kreuzweg eingeschlafen und ihm also geträumt habe; keine Blüthe, keine feurige Funke hätte er nicht gesehen, bis früh endlich auf den Blättern einen ungewachsenen Samen, wie Mohnkörner observirt, welchen er mit grossen Freuden nach Hause brachte, mit Intention, unsere Ungläubigkeit zu confundiren; der Freund aber, nachdem er sein im Scherbel eingesetztes Farenkraut beschaut, so hat er eben solchen und noch mehr Samen gefunden, welches er dem Officier zur Nachricht meldete und sagte, dass er solchen Samen zu Hause bekommen könnte und desswegen nicht hinaus mit Gefahr Leibes und der Seelen solchen zu suchen gehen dürfe."

"Der Saame war ihm nun sehr lieb, und also zweifelte er nicht, dass er damit Universalglück haben würde, trug derohalb solche Blätter fleissig bei sich, liess sie in die Hosen einnähern, nahm allerhand Proben damit vor. Allein er hat damit kein Glück bei Frauenzimmer, kein Glück im Spielen gehabt, in *summa* gar nichts daran wahr gefunden." —

Nach diesen Proben dürfte es nicht uninteressant sein, die Verirrungen des menschlichen Geistes noch weiter in dieser Richtung zu verfolgen und uns mit dem gesammten Schatze der Zauberpflanzen und ihrer Wirkungsweise bekannt zu machen, um so mehr, als ein nicht geringer Theil davon noch gegenwärtig in Ansehen und Anwendung steht und den Beweis liefert, wie zähe und unverwüstlich die Wurzel ist, aus der der Aberglaube fortwährend seine Schösslinge treibt.

Zur bequemen Übersicht wollen wir die Zauberpflanzen nach ihrer Wirkungsweise in Abtheilungen bringen und dieselben mit folgenden Überschriften versehen.
Botanische Streifzüge auf dem Gebiete der Culturgeschichte.

Es stellt sich bei genauerer Betrachtung heraus, dass ein guter Theil von Zauberpflanzen sich vorzugsweise gegen absichtliche und zufällige schädliche Einwirkungen wirksam beweiset, dagegen ein anderer direct Glück und Segen herbeizuführen im Stande ist. Unter die ersteren, die ich mir als Schutzpflanzen zu bezeichnen erlaube, gehören diejenigen, die sich gegen den bösen Willen und angedrohte Übel Anderer, namentlich gegen das durch Zauber vorbereitete Unglück wirksam beweisen. Es sind die eigentlichen Berufkräuter. Eine zweite Abtheilung ist gegen äussere elementare Einwirkungen wie z. B. gegen Blitz, gegen Trockenheit, Misswuchs, Raupenfrass u. s. w. schützend. Es sind die Wetterkräuter.

Diejenigen Zauberpflanzen, welche sich direct durch ihre Wirkung dem Menschen wohlthätig erweisen und ihn eines ungemessenen Glückes theilhaftig machen, lassen sich ebenfalls wieder in zwei Abtheilungen bringen. Es sind die glückbringenenden Pflanzen überhaupt, in deren Gefolge Reichthum, Liebesgenuss, Macht, Ansehen, Ehre u. s. w. sich stets befinden. Wir wollen sie Glückspflanzen nennen. Die anderen, die ihm Feinde zu entdecken und Schätze aufzuschliessen vermögen, — Wunderschlüssel.

Wollen wir nun in der Gallerie der Berufskräuter, Wetter sicherer, Glücksverheisser und Wunderschlüssel Umschau halten, wie wir etwa mit dem grossen Linneus oft schon auf der Himmelsleiter der Monandria, Dianthera u. s. w. in den grossen Räumen des Pflanzentempels herumgeklettert sind.

Ich werde, um mich kurz zu fassen, nur das Wesentlichste von ihrer Geschichte ansführen und den bei weitem grösseren Theil davon den Kindermärchen überlassen. —

Wir treten zuerst in den Saal der Berufskräuter; ihre Zahl ist verhältnissmässig gross. Einst im grossen Ansehen, haben sie sich durch ihre Wetterwendigkeit um alles Vertrauen gebracht, so dass nur noch der Pöbel etwas auf sie hält.

Das Beschreikraut (Stachis recta L.), ein vollkommen schuldloses, krautartiges Gewächs aus der Ordnung der Lippen blüthigen, durch ganz Deutschland an sonnigen Anhöhen, Felsen, Äckern und Waldrändern verbreitet.

Wie dasselbe ins Geschrei kam, gegen das Verschreien wirksam zu sein, ist mir nicht bekannt. Dieses Beschrei- oder Berufskraut, in
manchen Gegenden Deutschlands noch dermalen zu abergläubischen Zwecken unter die Thürschwelle vergraben, ist in den mir genauer bekannten Ländern bereits verschollen.

„Modelgeer (Geerkrat, Gentiana cruciata L.) ist aller Wurzel ein eer.“ J. Grimm zieht Basilicum und Senecio mit einem Fragezeichen hiefer. Bei Seuchen unter dem Borstenvieh wurde ehedem diese Wurzel unter den Frass gemischt. In der Steiermark hängt man dafür ein Fläschchen mit Fennichgries in Schweineställen auf, weil der böse Geist (genius morborum epidemicus?) die zahlreichen kleinen Sämen nicht zählen will, und lieber davon geht.

Teufelsabbiss (Scabiosa succisa L.) ist vom Eindrucke der Zähne so genannt, den man an der Wurzel dieser Pflanze zu gewahren glaubte und den man dem bösen Geiste zuschrieb. Er biss die Wurzel ab, weil er ihre Heilkraft dem Menschen nicht gönnne. Wer sie bei sich trägt, den vermag der Teufel und böse Weiber (Hexen) nicht zu schaden. Unter den Tisch geworfen, müssen sich die Gäste zanken und schlagen.

Wohlgenuth — Dosten (Origanum vulgare L.). Im Hause aufgehängen ist er ein vorzügliches Mittel gegen Zauberei und Hexerei, verbüffet Diebstähle u. s. w. „Vor Dosten und Dorant (Origanum und Antirrinum) fliehen Wichtel und Nixen.“

Hauhechel (Ononis spinosa L.) an den Hals gehängt macht sicher gegen alle martialischen Anstösse, gegen Räuber und Diebe, gegen Verwundung durch Eisen u. s. w.
Wacholder, Quekholder (*Juniperus communis L.*). Ehemals im heidnischen Alterthum zum Verbrennen der Leichen benützt, wurde später ein allgemein übliches Zaubermittel. Der Rauch vertreibt Ungeziefer, Schlangen und böse Geister, ein Getränk aus den Beeren erhellt den Blick in die Zukunft und wirkt gegen den Einfluss böser Mächte, so wie der Blüthenstaub der männlichen Kätzchen allerlei Wunderdinge zu Stande bringt.

Ginster (*Spartium scoparium L.*). Wer durch Zaubersprüche in eine Krankheit verfallen ist, muss durch einen umgekehrten Ginsterbesen von oben herab sein Wasser lassen.

Erle, Eller (*Alnus*). In der nordischen Mythologie bekannt: die Innenrinde in Wein gekocht ein Heilmittel gegen Zaubertränke (*Philtra*). Der auf den Blättern zuweilen vorkommende Honigthau wird zu Zauberwerken angewendet.

Eibenbaum, Todtenbaum (*Taxus baccata L.*). Ein Stückchen Holz auf dem blassen Leibe getragen, ist das beste Präservativ gegen alle Zauberwirkung.

Eberesche, Rönn, Drachenbaum (*Sorbus aucuparia* L.). Vor die Stallthüre gepfanzt und Zweige davon gesteckt, sichern vor Drachen und Ungethüm. In Schweden glaubt man noch heute, dass ein Stab von Rönn gegen Zauber sichere.

Mondraute (*Botrychium Lunaria* Sw.) ihres dem wachsenden Monde ähnlichen Blattes wegen als Zauberpflanze berühmt. Joannes Wierus (*De præstig. daemon. I*, 18) erzählt, dass die Alchemisten daraus Gold und Silber, ja selbst den Stein der Weisen mit geringen Beigaben zu bereiten im Stande sind. —

Es folgen nun die **Wetterkräuter**, die vor Erfindung der Blitzableiter, der meteorologischen Gesellschaften und der Institute für Meteorologie und Erdmagnetismus begreiflich eine grosse Rolle spielten. Hieher gehören:

Albaspina Hagedorn (*Crataegus oxyacantha* L.) gleichfalls ein Schutzmittel wider den Blitz.

Herba britanica Plin. (Hist. nat. XXV, 21.) „Florem vibones vocant, qui collectus priusquam tonitrua audiantur et
devoratus securos (a fulminibus) in totum reddit. Es ist nicht zu errathen, was das für eine Pflanze ist.

Donnerbesen. Eine buschartige Missbildung an Tannen hervorgebracht durch einen Blattpilz dem Aecidium elatinum. Durch seine Seltsamkeit und Seltenheit merkwürdig, und daher gegen Blitz ein Schutzmittel.

„Doste, harten, weisse heid thun dem Teufel alles leid."

Auch zum Schatzgraben wird Hartheu verwendet, als Amulet am Halse getragen, und soll noch überdies im Stande sein, Liebe und Gunst zu erwecken. Am Niederrhein machen die Kinder noch Kränze davon am Johannismorgen, und werfen sie auf die Hausdächer unter besonderen Liedern. Auch tragen solche Johanniskronen, alle die um das Johannisfeuer tanzen. — Um die Wahrheit zu erfahren, gab man ehemend den Hexen und Zauberern vor der Tortur davon ein. Die Drüsen der Blätter dieser Pflanze brachten die Sage, dass der Teufel den Menschen die Heilkräfte derselben missgönne, und sie nötzlicher Weile mit Nadeln zersteche. (Montanus.)

Eine ähnliche Wirkung besitzt auch die Zaunrübe Körßchewurzel (Bryonia alba L.). Nach Karrichter wird sie zum Schutze

An die Wetterkräuter schliesse ich noch die Bilisa und ein unbekanntes Kraut an, welches sich gegen Beschädigungen der Saaten durch Hagel wirksam erwies.

Das ungenannte Kraut wird von Plinius (Hist. nat. XVIII.160) auf folgende Weise als zauberisch bezeichnet. „Pestem a milio atque panico, sturnorum passerumque agmina, scio abigi herba cuius nomen ignotum est, in quatuor angulis segetis defossa, mirum dictu ut omnino nulla avis intret“.

Auf diese Wetterkräuter folgen nun noch einige Vegetabilien, die den allgemeinen Zweck hatten, das Haus vor Ungemach zu bewahren. Es sind dies durch ihre Entstehung und durch das Wachsthum jedenfalls ausgezeichnete Gewächse, welche die Aufmerksamkeit jedes Menschen nicht blos auf sich lenken, sondern die ihm auch durch ihre Sonderbarkeit mit besonderen Kräften ausgerüstet erscheinen mussten. Hieher gehören die Galläpfel, ein krankhaftes Erzeugniss von Insecten (Gallwespen), und die Mistel, ein Schmarotzerwächs auf Bäumen.

Die Galläpfel wurden hie und da zur Sicherung des Hauses an den Küchenbalken aufgehängen, und die Mistel, besonders die auf Haselstauden wachsende wurde gesucht. Stäbchen daraus verfertiget dienten zur Festhaltung der Diebe. Die Eichenmistel
(Loranthus europaeus L.) spielte im Religionscultus der Celten und Germanen eine so hervorragende Rolle 1), dass es uns nicht Wunder nehmen darf, wenn man in Wallis noch heutigen Tages Mistelzweige zu Weihnachten über die Thore der Häuser aufstecken sieht.

Aber auch verschiedene Kräuter und Pflanzenteile in Bündel vereint stehen gegenwärtig noch im Ansehen gegen Blitz, Hagel und Unwetter wirksam zu sein; dahin gehören die Krautwische am Niederrhein, und die Palmbüsche im übrigen Deutschland. Zu den Krautwischen werden genommen inula Helienum, Galium verum, Eupatorium canabinum, Solanum Dulcamara (Alfranke, Alfrebe), Valeriana officinalis und Tanacetum vulgare; die Bestandtheile der letzteren bilden blühende Weidenruthen, Wachholder, Sebenbaum, Stechpalme u. s. w. —

Wir gelangen nun zu den eigentlichen Glücksplanten, deren Besitz schon in den meisten Fällen hinreichend war, den Menschen auf das Mannigfaltigste zu beglücken.

Die beiden hervorragendsten Glückskräuter des Alterthums und des Mittelalters, die Alraunwurzel und das Farnkraut, haben wir bereits kennen gelernt. Es erübrigt uns noch einen Blick auf die übrigen Kräuter der Art zu werfen. Sie sind folgende:

Allermansharnisch, Siegzwurz (*Allium Victoriae* L.),
eine Gebirgsplane Österreichs, der Schweiz, der Vogesen und Sude-
ten, welche ihren Namen und ihre Bedeutung wohl sicherlich der mit
einer gitter- oder panzerförmigen Tunica bedeckten Zwiebel verdankt.

Eine der Art geschützte Zwiebel muss nach der gemeinen
Auffassung sicher ein passendes Symbol des Sieges im Kampfe sein,
die gleiche Vorstellung ist auch auf ähnliche Zwiebeln anderer Pflan-
zen z. B. der von *Gladiolus communis* von *Lilium Martagon* u. s. w.
übertragen worden.

Nixenblume, Mummelkrone (Nymphaea alba L.). Die zu wissen Stunden mit verstopften Ohren (um die Wasserjungfer nicht zu
hörten) und nach bittweiser Besprechung der Pflanze abgerupfte Blume ist ein kräftiges Zaubermittel.

Sinau (*Alchemilla vulgaris* L.), von den Alchemisten zum Goldmachen verwendet.

Schlafapfel, Schlafkunz — svestnorn (Schlafdorn). Eine durch eine Gallwespe (*Cynips rosea*) auf Dornrosensträuchern erzeugte Excrencenz. Legt man ihn unter das Kissen, so bringt er Schlaf. Bei Kindern noch gegenwärtig dort in Anwendung, wo man die Wirkung der Mohnkapseln noch nicht kennt.

Widertan, Jungferhaar (*Adiantum Capillus veneris*) und Abetan (*Saxifraga*?). Mit Hilfe der erstern können alte Weiber Liebe zubringen, durch letzte dieselbe wegnnehmen. Sie müssen jedoch dazu am Freitage gepflückt werden.

Endlich haben wir noch die Wunderschlüssel der Pflanzenwelt zu betrachten, die wie keine anderen, Thüren zu öffnen, Schätze aufzudecken und Gold und Reichthümer herbeizuschaffen im Stande sind. Dahin gehören die Springwurzel, die Schlüssel- und andere dem Botaniker unerforschbare Wunderblumen und zum Theil auch die Wünschelruthe.

Frauenschlössl (Primula veris L.), so genannt, weil sie verborgene Schätze zu öffnen vermöge.

An diese unbekannte Wunderblume füge ich noch eine zweite, die mir selbst vor einigen Jahren aufstieß und deren Geschichte ich hier mitzuteilen mich nicht enthalten kann.

1) Hist. nat. X. 40.
Der beigefügte Holzschnitt zeigt einen Fichtenzweig in 6facher Verkleinerung, mit beinahe vollkommen ausgebildeten Zapfen, deren Gestalt, seltsam genug Kreuze bilden. Eine solche Missbildung, wofür sie auf den ersten Anblick gelten könnte, reiht sie ohne weiteres zu den wundersamsten und bedeutungsvollsten Bildungen, die es geben kann. Zu jeder andern Zeit als zu der unsrigen, wo man auch in den Missbildungen bestimmte Gestaltungsgesetze gefunden hat, würde dieser Zweig gewiss als ein sichtliches Wunderzeichen gegolten haben.

Die Sache verhielt sich indess ganz anders, und es ist mir bald gelungen, dieses morphologische Rätsel zu lösen, und dadurch derselben ihren wunderbaren Anstrich zu nehmen. Dieser merkwürdige Fichtenzweig wurde vor mehreren Jahren noch im frischen grünen Zustande, einem eben so kenntnissreichen als

Im hohen Grade bei dem Anblicke desselben überrascht, denn diese Bildung trug nicht den geringsten Anschein einer künstlichen Zusammensetzung, erkannte ich jedoch, dass von den drei Endtheilen eines jeden Kreuzzapfens zwei in ihre natürlichen Spitzen ausliefen, einer jedoch, und zwar der mittlere, deutlich den Grund eines Zapfens zeigte.

Dies war mir genug, um diese Gestaltung ohne weiteres für eine morphologische Unmöglichkeit zu erklären und dahinter einen frommen Betrug zu vermuten, der sich auch bei näherer Untersuchung sogleich herausstellte.

Eines der Kreuze auf 1/2 der natürlichen Größe reduciert. — Die Pfeile zeigen die Biegung jeder der beiden Zapfen.

Jedes Kreuz war aus zwei halb geknickten und in einander gewachsenen Zapfen zusammengesetzt, was nur durch absichtliche Verstümmelung von Seite eines Menschen bewerkstelligt werden konnte. Nach Berücksichtigung aller Umstände ging mit Zuver-

Hier würde nun noch von der Wünschelruthe, diesem merk- würdigen Werkzeuge, Gold und Schätze in der Tiefe der Erde aufzuspüren, die Rede sein, wenn diese Kraft einer bestimmten Pflanzenart zukäme. Dazu sind aber bald von diesem, bald von jenem Baume oder Strauche (Haselnuss, Kreuzdorn, Erlen u. s. w.) gabelige Zweige (Zwiesel) benützt worden, und es lag also mehr in der Handhabung dieses Werkzeuges als in diesem selbst, wodurch es sich in den Ruf der Wunderkraft brachte und zum Theile noch bis jetzt erhielt.

Die Operationen, die ich von einem in der Handhabung der Wünschelruthe kundigen Schweizer vor mehreren Jahren in Wien damit vornehmen sah, haben mir nur ein mitleidiges Lächeln ent- ockt.

Die bisher namhaft gemachten Pflanzen sind zwar die vorzüg- lichsten und am meisten bekannten, jedoch keineswegs sämtliche Zauberpflanzen. Bevor wir zu den wenigen noch einer ausführlichen Betrachtung würdigen übergehen, wollen wir die von Heucher und Fabricius 1) aufgeführten nicht geradezu übergehen, obgleich wir darunter eine Menge für den Botaniker unenträthselter Dinge bemerken.

1) De vegetabilibus magicis. Wittebergae 1700.
Hier kommen als Dämonen verscheuchend *Salvia, Veratrum, Juniperus*; als zauberlösend *Adianthus, Ruta* und *Sideritis*; als geisterbannend *Absinthium, Ricinus, Cnebison, Scorditis*; Seelen der Abgestorbenen herbeirufend *Asphodelus, Osirite*; für Weis­sagungen *Laurus, Theangelis, Halicaccabi, Bellonaria, Vatica* u. s. w.; für Traumbilder *Strichnon, Thalassegle, Gelo­tophyllis, Sesamum, Nectanebi*; zu Liebeszauber *Oliva, Mandragora, Catana­sance, Cemos, Anacampserotis* und zu mehreren andern Zweeken noch die Kräuter *Myops, Zoolus, Adamantis, Cariacesia, Achaemenidon, Latace, Victorialis* u. s. w. vor, unter denen sich jeder denken kann was er will.

Überblickt man diesen oder den andern Zauber­garten, so er­sieht man nicht undeutlich, dass es bei allen Pflanzen, die wir hier kennen lernten, weniger die Beschaffenheit der Natur war, wodurch sie eine Bedeutsamkeit erlangten, als die Nebenumstände, die bei ihrer Entstehungs- und Entwicklungweise, so wie bei der Art und Weise der Einsammlung stattfanden. Die Tage, wenn die Aus­grabung einer Zauberpflanze geschehn soll, die Stellung der Pla­neten, der Apparat und eine Menge zu beobachtender Rücksichten verleihen denselben so gut wie den Heilpflanzen erst ihre erwünschte Wirksamkeit.

„Von Menschen und Gestirnen ungesessen, ungesprochen und ungehört soll der Sammler sich den heiligen Kräutern nahen.“

Wer erkennt daraus nicht, auf welche kindische Weise sich der Mensch selbst täuschte und andere zu täuschen suchte, und wie er sich von dem eingewurzelden Aberglauben nicht eher loszu­machen im Stande war, als bis ihn eine gründliche Kenntniss der Natur und Ausbildung des Geistes eines bessern belehrte.

Allem Zauberwesen liegt, wie gesagt, die Ansicht einer höheren Beseeelung der Natur, einer Beherrschung der gemeinen Kräfte derselben durch die Geisteskräfte zum Grunde. Jene ihrem Wesen nach in den verschiedenen Körpern ausfindig zu machen, der Naturkräfte sich zu bemächtigen und sie nach eigener Willkür zu lenken, bildet die Basis aller Magie, die in der sogenannten Geisterbeschwörung am grellsten hervortritt. Die Theurgie so wie die Demonurgie sind
nur nach der Beschaffenheit der gerufenen geistigen Wesen verschieden.

Wie jedem Dinge gewisse Zeichen als Darstellung ihrer leitenden Geister eingeprägt sind, die man in besonderen Charakteren als Signakeln, Pentakeln, Insigneln u. s. w. zu erkennen glaubte, so war man der Meinung, dass auch jede Pflanze von einem besonderen Geiste besetzt und regiert werde. Diese beherrschenden Geister sind die Gestirne. „Quot coelo stella, tot terrae herba. Sicut quaelibet stella suum spiritum, sic quaelibet herba suam stellam habet.“

„Die Sympathie der sieben Planeten, sagt ein mit der orphi- sehen Magie der Neuzeit Vertrauter, mit sieben Kräutern und sieben Steinen haben auch ethische kluge Philosophi naturales und zwar aus der Erfahrung oberswirr; dahin gehören die sich nach der Sonne wendenden Blumen (Sonnen-Wirbel), die nur einen Monat wachsende (Lunatica), ferner Capillus veneris“ u. s. w.

Die Erschliessung dieser verborgenen Geister zu göttlichen, höheren Zwecken (Wunder) oder zu profanen (Zauberei) ist allein durch das jedem Wesen eingeprägte Zeichen, durch die Macht des Wortes (Zauberformeln) und durch die Beihilfe von Düften, Salbungen u. s. w. möglich. Nur auf solche Weise vermag der gebun- dene Geist sich loszumachen und sich zur Verfügung des Rufsenden zu stellen.

Die höchste Macht des Zauberers stellt sich daher ohne Zweifel in der Geisterbeschwörung dar. Ausser dem lächerlichen cabalistischen Wortmysticismus, den eben so unfruchtbaren Signaturen sind Räucherungen und Salben als die einzigen hierbei wirksamen Mittel nicht zu überschauen. Es unterliegt keinem Zweifel, dass hier narkotische und erregend narkotische Substanzen, die in dieser oder jener Form angewendet, Betäubungszufälle, Phantasmagorien aller Art u. s. w. hervorbringen, die Hauptholle spielten, obgleich wir über die Beschaffenheit dieser Kräuter und vegetabilischen Substanzen gänzlich in Unkenntniss geblieben sind.

Es ist begreiflich, dass es einerseits das Interesse der leitenden Personen erheischte, über die angewendeten Mittel vollkommenes Stillschweigen zu bewahren, andererseits die Furcht vor Strafen jeden andern Betheiligten zur Geheimhaltung des ganzen Actes, den er als Neuling in seinen Einzelnheiten selten zu durchschauen vermochte, zu verbinden. Von den so zahlreichen im Munde des Volkes
herumlaufenden Geschichten von Geisterbeschworungen, deren sich die darstellende Kunst sogar als eines der ergiebigsten und interessantesten Gegenstände bemächtigte, wissen wir so wenig über die dabei wesentlich wirksamen Mittel, dass wir kaum mehr als Muthmassungen zu äussern im Stande sind.

Die ausführlichste und schauernichteste Beschreibung einer Teufelsbeschwörung ist in Goethe's Benvenuto Cellini (Buch 2, Cap. 1) mitgetheilt. Ein Priester nimmt dieselbe im Jahre 1533 im Coliseum zu Rom vor. Der Teufel mit seinem ganzen Gefolge erscheint in furcibarster Weise. Es ist hier ausdrücklich die Rede, dass ausser Zaffetica (Assa foetida?) kostbares Räucherwerk und auch böses Räucherwerk angewendet wurde, auch fehlte der Pentakel nicht 1).

Auch die Hexerei ist nicht selten durch Vermittlung von Zauberpflanzen und durch gewisse vegetabilische Substanzen getrieben worden. Diese, so weit dies möglich ist, etwas näher zu erschaffen, ihren Einfluss auf die der Hexerei zum Grunde liegende Sinneswirrung zu ermitteln, mag den Schluss unserer Abhandlung über die Zauberpflanzen bilden.

Vorzüglich sind es Gebräue und Salben, welche hiebei benützt worden sind, deren Bestandtheile häufig ganz wirkungsmässige, zuweilen jedoch solche Pflanzen bildeten, welche besonders auf das Sensorium

1) Man führt an, dass der Erdrauch oder Elfenrauch (Fumaria officinalis L.) ehem. gleichfalls den Zaubern und Hexen diente, um Geister der Verstorbenen erscheinen zu lassen und sich selbst unsichtbar zu machen.
wirkten, Fröhlichkeit, wüste Träume, flüchtigen Wahnsinn, ja selbst wuthartige Anfälle hervorbringen. Zu den ersteren gehören Pflanzen wie Inula Helium, Artemisia vulgaris, und Artemisia Absinthium, Achillea Millefolium u. s. w., welche als Hauptbestandtheile des sogenannten Neuerlei-Krautes gelten, oder Lycopodium clavatum, Beeren von Viscum, Ilex u. s. w., welche noch wirklöser als erstere sind; unter den letzteren sind einige Pflanzen zu nennen, welche durch ihre narkotischen Wirkungen ausgezeichnet sind, wie Hyoscyamus niger, Atropa Belladona, Aconitum Camarum. Merkwürdig sind die Rezpte zu solchen Gebräuen, welche zum guten Theile immerhin auf Selbsttäuschungen hinauslaufen, denn die dazu verwendeten Kräuter, wie Botrychium Lunaria, Verbena officinalis, Mercurialis perennis, Sempervivum tectorum, Lycopodium clavatum, Hyoscyamus niger, Heliotropium europaeum mussten an bestimmten Wochentagen vom Montage an gesammelt werden, wenn sie wirksam sein sollten.

Aus dem nie zu Ende geführten Kampfe des Christenthums mit dem Heidenthume hervorgegangen und so auf einem lange und wohl vorbereiteten Boden entstanden, hat das Hexenwesen im Mittelalter und in der Neuzeit endlich eine solche Ausbildung erlangt, dass sie füglich als der Culminationspunkt des in dieser Richtung fortgespennen Aberwitzes angesessen werden kann, der in der Geschichte der Menschheit so weit getrieben werden musste, um der gesammten Zauberei und dem Wunderglauben den Todesstoss zu versetzen.
Nicht die Naturwissenschaften, wie Schleiden richtig bemerkt, haben hier zuerst aufgeräumt, "indem sie selbst vor Kurzem noch den Lederbalg mit tauben Kleinen gefüllt, für den Stein der Weisen hielten," sondern die Philosophie, die nach langem katalaptischem Schlummer, in welchen sie Geistesarmuth und Willensagonie versetzte, erwachte und mit dem kraftvollen Cartesius es wagte den Gedanken, wenn auch nicht auf die Folter zu spannen, doch der schärfsten bis aufs Mark gehenden Analyse zu unterwerfen.

Wenn man in den Teufelsbeschworungen und Hexengeschichten, die uns wenn gleich nur bruchstückweise die Geschichte erhalten hat, liest, was für Gutachten Ärzte abgaben ¹), mit welchen Kenntnissen Urtheile gefällt ²) und Untersuchungen angestellt wurden ³),

ferner welches Spiel die Habsucht und der Eigennutz bei allen diesen Untersuchungen hatten 1), endlich mit welcher Grausamkeit und mit welchem Blutdurst die Strafjustiz verfuhr 2), so muss man über den so gepriesenen Fortschritt der Cultur, den die europäischen Staaten seit dem finstern XII. Jahrhundert bis auf unsere Tage gezeigt haben, nur sehr kleinlaut werden, da er vor den Wirkungen des fallen-
den Tropfens auf dem Steine nicht viel voraus hat.

Zur Hexerei bediente man sich allenhalben Salben, Getränke und Pulver; mittelst der ersteren beschmierte man sich entweder am ganzen Leib oder an einzelnen Theilen, vorzüglich an solchen, die sich durch die grösste Menge aufsaugender Gefässe auszeichnen, wie z. B. die Achselhöhlen. Nur die verirrte Phantasie hat auch die

1) Landgraf Ludwig III. von Thüringen setzte ein Gehöfte als Belohnung für denjenigen aus, der ihm über die Seele seines verstorbenen Vaters Ludwig des Eisenernen Nachricht bringen würde. Ein in der Neokantische erfahrene Geistlicher rief den Teufel und stellte ihm die Seele vor; dieser gab sein Wort, den Clericus nicht in Gefahr zu bringen, trug ihn rittlings an eine Art von Braunschauch, aus dem die höllischen Flammen schlugen und wo er ihn gegen die Angriffe der andern Teufel schützte. Jetzt erschen die Seele des Landgrafen im Feuer und verordnete zu ihrer Erlöscherung die Rückgabe der mit Unrecht der Kirche entzogenen Güter. Der Clericus brachte die Sache zurück, war aber durch den Anblick der Höllenstrafen so erschüttert worden, dass er sich bekehrte und in den Orden der Cistercienser trat. Illustrium miraculorum et historiarum memorabilium ib. XII ante annos fere CCCa a Caesario Heisterbachensi, ordinis Cisterciensis — de ilia qua sua setate memoratu digna conterunt accurate conscripta ex Colon. 1599. —

Der Canonicus Loos, dem die Freimütigkeit, mit welcher er gegen solchen Unfug auftrat, mehrmals Kerscherstrafe zuog, nannte die Hexenprozesse eine neu erfundene Alchemie, durch welche man aus Menschenblut Gold und Silber mache. Vierzig Jahre später sagte Friedrich Spee, dass Viele nach den Verurtheilungen der Zauberer hungrten, als die Brocken, davon sie fette Suppen essen wollten.

Nach den Merseburger Hexenprozessacten wurde in der That sogar mit dem Fette der verbrannten Hexen Handel getrieben.

Stöcke und Besen worauf die Hexe reitend durch die Lüfte flog, mit der Hexensalbe beschnürt. Tränke, Räucherwerk und Pulver erscheinen viel seltener.

Aus den von verschiedenen Richtern über die Beschaffenheit, die Bestandtheile und die Zubereitung der Hexensalbe erlangten Aussagen sind nur meist sehr widersprechende Angaben erzielt worden. Sie wird bald von grüner, weisser, bald von blauer oder schwarzer Farbe angegeben; sie ist geruchlos oder stinkt, sie ist giftig oder unschädlich oder beides zugleich, je nachdem sie im Besitze der Hexe oder in der Hand des Gerichtes ist ¹). In Spanien sahlte sich eine Hexe vor den Augen der Richter an verschiedenen Theilen ihres Körpers, um auf Aufforderung derselben eine Probe ihrer Luftfahrt abzulegen ²).

Die 36 Jahre alte Ursula Kollarin, welche am 10. Dec. 1661 in Gutenhag (Steiermark) als Hexe erdrosselt und verbrannt wurde, bekannte, nachdem sie den Hexensabat genau beschrieb. „Nach vollbrachtem Essen hatte die alte Wollwertkhin sie allesamt mit einer schwarzen Salbe unter den Jaxen (Achseln) angeschmiert, auf welches allen der Leib fedrig geworden und alsbald am Rohitscherberg gleichsam wie Storchen geflogen.“ Sie gibt zugleich an, dass sie beim Beginn des Hexengelages von dem ihr zugebrachten Wein gekostet habe, worauf „ihr der Kopf gleichsam ohne Vernunft gewesen sei ³).“

Die 70jährige Elisa Plainacher, welche wegen überwiesener Zauberei und Hexfahren am Ötscher (Österreich) an einen Pferdeschweif gebunden, nach Erdberg (Vorstadt von Wien) geschleppt und dort lebendig verbrannt wurde, sagte aus: „Wenn sie ausgefahren, so habe ihr der Teufel allezeit die rechte Seiten ab und ab

¹) Nicolaus Remigius, Daemonolatria p. 42.
²) Solden i. c. p. 330.
³) Original-Achter im Archiv d. hist. Vereins in Steiermark Nr. 80.
⁴) Idem Nr. 81.

mit einer stinkenden salb geschmiert, allein den Kopf nit." Fern
ner: "der Teufel hab sie mit einer Salmb an der rechten Seiten ge
schmiert. Dass aber ihre Khüeh vill milch geben hab ihr der Teufel
etlich Khrüutter zeigt, die sie ann einem Sambstag da ihr Losnacht
ist, hat müssen abbrechen, und dem Vieh unterlegen, da es darüber
gangen. Dieser Kräuter ains ist formirt wie die Hunndtsklaettl".¹)

Der 40 Jahre alte Jacob Pugel sagt am 17. Mai 1674 vor Ge
richt aus, dass der damals bereits justifizierte Jacob Kropf zu ihm
ins Haus gekommen sei, als er eben vom Weinberge dahin zurück
kehrte, "habe ihm beschmiert, waren sodann mit Einander zu
der Compagnie gegangen und alle samt dem Pfarrer in den Schies
selberg gefahren".

Der 70jährige Michael Zotter erzählt von dem Gelage am
Kreuz: "Wehre maistentheils rauschig gewessen vnd nicht" (beim
Fliegen) "nachher komben mögen ²).

Von der berühmten Maria Renata (1749) erzählt der Abt: ³)
"Wir erhielten aber nichts von ihr, als eine gute Portion Maushaar
und Kräuter, welche sie zur Hexerei annoch im Kerker reservirt
zn haben eingestanden.«

Nähere über die Zusammensetzung der Hexensalbe erhalten
Auf die Frage, woraus die Hexensalbe gemacht wurde, erfolgte die
Antwort: "Aus den Hostien, welche sie und alle Hexen beim Abendt
mal in der Kirchen aus dem Mundt genommen, in der Hand behalten,
dem Teuffel beim Hexendanz geopfert und solche nachgehends wie
der von Ihme bekommen, den heiligen Wein empfangen sie in der
Kirche in gedanken auch ins Teuffels nahmen. Sie P. Beklagt in seye
da bevor umb ein Kindt kommen, das habe sie auch dazu gebraucht
die Scheiden Möllerin, die Butsch, dess Herrn Fraw haben die
Salben helfen kochen.«

Die vorerwähnte Emerenzia Pichler will zur Bereitung der
Zaubersalbe, womit sie sich nie, wohl aber die Ofenschaufel, Stäb
chen u. a. w. beschmierte, mittelst welcher sie aufflog, die Asche
ermordeter Kinder verwendet haben ⁴).

¹) J. E. Schlager l. c. p. 106.
³) Soldan l. c. p. 462.
⁴) Pfullner l. c.

1) J. Wierus, de praestigiis Daemonum. Lib. III. C. 17.
erfolgten wachen Zustände mehr oder minder deutlich erinnerten, will ich nicht in Abrede stellen.

Aus der Gleichartigkeit des Geständnisses lässt sich sogar auf vorher articulirte Fragen mit Bezeichnung bestimmter Personen schliessen, die ebenso den grellen Unverstand und die raffinirteste Grausamkeit, so wie die Blutgierde der Strafjustiz beurkunden.

Es ist für unseren Zweck nicht unwichtig, diese Geständnisse, so vag und unbestimmt sie auch sind, zu vernehmen.

Alle diese Unglücklichen bekennen fast einmütig, dass, indem sie auf dem Felde oder beim Laubrechen und Schwammsuchen im Walde beschäftigt waren, der Teufel zu ihnen gekommen sei. Die Veranlassung zu dieser Begegnung ist entweder ein blosses Ungefährt oder Traurigkeit, Noth, Elend, Kummer und Sorgen. Misshandlung von Seite der Männer lässt die Weiber im Teufel einen Tröster
finden, so wie Mittellosigkeit in demselben einen stets bereitwilligen Gönner. Immer tritt der Teufel zuerst als Tröster auf, verspricht den Betrübbten alles was sie nur immer wünschen, verspricht ihnen das angenehmste, sorgenloseste Leben und führt dann im Nebel (nepl) mit ihnen fort.

Der Teufel wird einmal als schmucker Bauernbursche, meist als seiner Herr im schwarzen oder braunen, sammttenen Kleide, seltener als ein in Lumpen gekleideter Bettler oder Bauer geschildert. Nur einige Male ist er eine schmucke Bauerndirne und ein kleines Mädchen mit schwarmem Hute. Seine Hand verunstalten stets „Hundsoder sperber-Khrampel“ Gar nicht selten nimmt er die Gestalt eines schwarzen Hundes oder einer einschmeichelnden Katze an, verwandelt sich aber bald in einen vornehmen Herrn. Seine Stimme ist stets eine undeutliche Nasenstimme „er schnoffelt“, woraus man ihn auch am besten erkennt. Es ist merkwürdig, dass die als Hexe hingerichtete Ursula Grindlin, eine Bauersfrau von 50 Jahren, über die Gestalt des ihr erschienenen Teufels geradezu angibt, dass er so ausgesehen habe, „wie Er zu Trautmannsdorf (an der Kirche) angemallener aussieht“.

Auf jene Versprechungen folgen nun sogleich die Forderungen des Teufels, denn umsonst thut er nichts. Unter diesen steht jedesmal zuerst die Leugnung der heiligen Dreifaltigkeit und Verschreibung der Seele oder, wenn dies nicht, die Zusicherung der Seele eines Kindes, was auch stets ohne viele Umstände bewilligt wird. Manchmal vergessen die zu Sklaven des Teufels Gewordenen ihres Eides und nennen zufällig die heilige Dreifaltigkeit, aber urplötzlich empfangen sie mit dem Aussprechen dieses Namens von unsichtbarer Hand sogleich eine „Taschen“ (Ohrfeige).

In der Regel werden alle diese Personen im Nebel an irgend einen Ort „Kreuzweg oder Kreuz“ 1) geführt, wo getafelt und getanzt wird, auch fehlt es selten an Unzucht. Nach einigen Stunden befinden sie sich aber wieder an einem ihnen bekannten Ort und gehen allmählich zu Hause. In andern Fällen, was häufiger geschieht, werden sie auf einen nahe gelegenen Berg geführt oder getragen. Sie reiten dabei auf einem schwarzen Pferde, das der Teufel mitgebracht, sitzen mit demselben in einem Wagen oder fliegen in

1) Hier jedes Heiligenhäuschen so genannt.

Die Speisen bestehen aus verschiedenen Braten, namentlich Hühner- und Kalbsbraten, manchmal Enten- oder Gänsebraten, Rindfleisch, Würsten, Fischen, Krebsen, Krapfen, Kraut, Rüben, Knödel und Sterz, gebackenen Schwämmen, Sauce, alles auf zinnernen Geschirren (den vornehmsten zu jener Zeit) aufgetragen und nach der Örtlichkeit ihrer Anschauungen und Erfahrungen. Statt gegessene Mahlzeit wird „Passah“ gesagt. Der Wein, an welchem Überfluss ist, wird stets aus dem Stamme einer Buche oder Eiche gelassen und in schönen Krügen oder gewöhnlich in silbernen Bechern kredenzt. Dabei sind Männer beschäftigt, während die Küche immer und zwar meist bekannte Weiber besorgen. Alle Speisen sind gut, aber, was höchst merkwürdig, sie sättigen nicht; 2) ebenso ist der Wein zwar berauscheid, aber er ist sehr häufig wässerig, nicht besonders gut oder wohl gar mit einem besonderen Geschmack „ärtlichen Geruch“ versehen.

1) Der häufig schon Morgens betrunke Schlosser Änderl bekannt: dass, als er nach dem Geigen um 9 Uhr Vormittags aus dem Hause wegging, ihm der Teufel begegnete und beim Wandern durch den Wald von Stein ihm ein Nebel vor die Augen gekommen sei. Er befand sich sodann auf dem Gleichenerberger Kogel mit mehr als 200 Personen. „Auf einer Potting seyn Brot und Wein dargestanden, er habe geigen müssen, wären etwa ein stund lang beisammen geweset, hernach wären alle voneinander, und wie er wider zu sich selbst und sein Sön khumen wäre er in Kholsterolf went geweset und seye von dorh haimgangen beylieff vnb ein Uhr nachmittag haikhumber.“

2) Das gewöhnliche Gefühl aller Gastmäler im Traume.

Bezeichnend für die ursprüngliche Bedeutung dieser Lustge-
lage ist es, dass der Teufel die Weiber nicht selten zur Unzucht

\(^1\) Der Mössl Schuester und der Schlosser Änderl, die bekannten Geiger dieser Gegend, müssen auch hier aufspielen.

Dass der Teufel nur ein Phantom, sollte für die Unglücklichen schon daraus hervorgegangen sein, weil er sein Versprechen nie hält, und was er auch Angenehmes und Gutes wie z. B. Geld darbrachte, dasselbe immer nur eine unvollständige Äfferei zum Zwecke hatte.

Die Hexengelage finden zwar vorzüglich im Sommer zur Erntezeit „Thraidtschnidt“, aber auch zu anderen Zeiten Statt, ja selbst im Winter und im Fasching; dabei wird zwar nicht Hagelwetter gemacht, allein Unzucht in aller Weise getrieben, wobei der Teufel sich den Weibern Nachts im Bette oft an der Seite ihrer Männer nahet. —

Es ist schwer, aus diesem sonderbaren Gemische von Wahrheit und Täuschung in’s Reine zu kommen und den Faden zu finden, der bei Erklärung dieser Thatsachen aus dem Labyrinth führen kann. Ich will es hier versuchen.

So viel ist indess sicher, dass moralische Verwahrlosung und der von der Priesterschaft oft genug grell und eindringlich dargestellte Glaube an die Persönlichkeit des Teufels, so wie andererseits die Verführung, die namentlich von den Landgeistlichen selbst ausging, wesentlich dazu beitrug, die eingeblendete und thatsächliche Wirksamkeit der Hexen festzustellen.

Grobe Unsittlichkeit, selbst Sodomie steht dabei im Vordergrunde. Ohne Trunk, Vollerei und Beischlaf geht es niemals ab. Die Buhlerei mit dem Teufel verwirrt gewöhnlich ihre Sinne und die grösse Empfänglichkeit des Weibes bringt es mit sich, dass die Mehrzahl der Hexen weiblichen Geschlechtes sind 1). Bei diesem moralisch verwahrlosten Zustande und bei der häufig damit ver-

bundenen Noth war es den Verführern leicht, zu obigen Resultaten zu gelangen.

Allein ohne allgemeine über ganz Europa wirksame Ursachen anzunehmen, wird es bei allem dem noch immer unerk fürlich, wie Einwirkungen durch Verführung auf rohe, moralisch verwahrloste Menschen diesen seltsamen Effect hervorbringen konnte.

Hierüber kann nur ein Umstand Licht verbreiten, nämlich das Fortleben heidnischer Sitten und Gebräuche in einer keineswegs noch ins Blut aufgenommenen christlichen Weltanschauung. Mit Recht bemerkt K. Simrock, dass im Volksglauben die deutschen Priesterinnen noch fortleben nicht blos als Hexen, sondern auch als Wahrsagerinnen und Ärztinnen. Sich zu feindseligen Wirkungen zu bekennen konnten sie von jeher nur gezwungen werden, aber das Gewerbe des Besingens und Wunderbeschreibens, gewöhnlich Ratzen oder Böten (Büssen, bessern) genannt, die Anwendung der Zauberei auf die Heilkunst, treiben unsere weisen Frauen neben der Weissagung ziemlich unbeschadet fort. Demnach stellt sich das Hexenwesen als ein allgemeiner Kampf des christlichen Principes mit dem aus der Urzeit herausgebildeten und im Volksleben noch überall erhaltenen.
Heidenthum dar, der insofern als wahnwitzig zu bezeichnen ist, als er grösstenthals gegen einen der Art nach selbst geschaffenen Feind geführt wurde und anderseits durch Waffen, die ihn jedenfalls erfolglos machen mussten.

Dem Zigeuner als Wahrsager und Zauberer sind alle Mittel bekannt gewesen, deren sich Menschen zur Betäubung der Sinne, zur Aufregung einer zügellosen Phantasie von jeher bedienten. Mit dem Gebrauche des Opiums musste er von seinen ursprünglichen Stammsitzen am Indus aus bekannt sein, und in der That ist es nur zu bekannt, dass Opium stets zu den Artikeln gehört, die der obdachlose Zigeuner mit sich führt und, wo das durch eine geregelte Polizei nicht gehindert ist, sogar damit Handel treibt.

Inwiefern nun die Anwendung des Stechapfels für sich allein oder in Verbindung mit andern Narcoticus zu den vorerwähnten Zwecken beitrag, bezeugen die klarsten Angaben jener Unglücklichen und Verirrten vom Gebrauche eigener Salben, welche sie selbst Hexensalben nannten.

Peter Fossett, der am 20. Mai 1689 in Gleichenberg hingerichtet wurde, sagt: „er hab Sich wan ihme der Lust anchumen,
mit der hexensalben Geschmiert, und wehren allezeith in habichgestalt aintweder am khönnigs: Stradner oder gleichenberger khogel geflogen"

Die Anwendung der Salbe hat sie stets entweder zu Habichten oder Raben, so wie zu Störchen gemacht.

Gewöhnlich — und was noch mehr für obige Ansicht spricht — hat sie der Teufel (Mändl, Kasperl, Riepl u. dgl.), nachdem er mit ihnen eine Zeit lang gegangen, "vnter den Jaxnen angeschiemt" und wo das nicht ausdrücklich bemerkt wird, heisst es oft: "hab ihr den Sinn benumben". Jener 28jährige Fosselt gibt über die Salbe noch Nähreres an, indem er beifügt: "Eben im besagten Holz (der Mörkendorfer Gemeinde) habe der bese ihnen (ihm und seinem Weibe beim Schwämmesuchen) auch damallen in einen schwarzen Tögel ein plau grienes Sälben geben, damit Sye sich vnter dem Jaxnen geschiemt, darauf Er und sein Weib also bald in Habich: der bese aber in Rabengestalt auf den Stradner-Kogel geflogen, da selbst Sich der bese widumben in eines Schenen herrn gestalt verkhor, so Casperl geheissem, hab mit einer Timperen Stimb, als wann Er Hayser war gerödt u. s. w."

1) Gera Gregorischka, Anna Loghaiza, Bora Adieschitschin Suppanin, Nescha Schulzin, Anthana Weib, so wie Cathiza Volletkha waren sicher alle Zigeunerinnen.
numm speziellert und im Bett gelegt, worauf er

in die höchste wahrscheinlich zur

in Bensberg immense Nachtwarte hier zu Lände auch

er sah, von denen zu erwähnen, obgleich der

nur so waren, wo und was der beim Vorkommen so verkleinert und fast nie wie ein anderer Wein

erscheinen könnte, dass der vielleicht hier und da zur Be-

n für die von gebräuchlichen alkoholischen Beigaben

wenn es aufs genaueste fehlen, jedoch hierüber gänzlich.

wenn eine historische Begründung scheint mir

zu diesem ungewöhnliche Weisheit und der Vorstellung

nicht anwendung gefunden habe.

und unsere Anschauungen über die Bestandtheile der in den

in angemessen angewandten Herzentrauben in den darüber

wurden wir aber auch

nach des Geschlechts und der lokaler, nicht einmal waren, wenn nicht durch unmittelbare Versuche

wenn es von ungenügenden Schöpfungen zu kommen, war der

gewagteren Auffassung auftreten und dabei natürlich

von dem Herde der Zauberer

nach den ihm angewidmeten Ländern, so wie vom nörd-

in andere Erscheinungs, so sehen wir nach dem

sich, dass der unter verschiedenen Graden in

wir ihn in jedem Lande spionen.

an der Zaubererheit zu nennen, vielleicht der

sich in Indien, Asien, Europa und

noch von Asien, Europa und

ist uns noch die Sprache

und Sorge abzuwenden.
Gelingen und Glück herbeizuführen suchte. „Diese Segen und Fläche — sagt Dr. R. Roth 1) — streifen allerdings oft an das religiöse Gebiet, denn sehr häufig werden die Götter ebenso dabei angerufen wie in jedem andern Gebete, aber die Richtung des menschlichen Willens ist dennoch eine grundverschiedene. Das Gebet des Frommen stellt es den Göttern anheim, für ihn zu handeln; der Beschädiger nimmt die göttliche Macht für seinen Willen und sein Handeln in Anspruch; sie soll gleichsam an ihn, den Menschen, abgetreten werden“. Noch jetzt sind die Brahmanen im Besitze eigener Zaubermittel, und indische Gaukler sind im Stande, die wunderbarsten Dinge hervorzubringen.

Eben so ist es bei den Finnen, wo der erste Held der Kalevala ein Gott und Heros, Wainämöinen, zugleich der grösste Zauberer ist. Das Zaubersingen der Finnen beschränkt sich nicht blos auf das Bannen schädlicher Einflüsse, sondern erstreckt sich sogar auf das Herbeiführen freundlicher, hilfreicher Mächte.

2) De Candolle im Dictionnaire raisonné et universel d'agriculture.
teufischen Salben angeschmiert und in das Bett gelegt, worauf er krank wurde, sie sogar starb.

Aber ganz ohne sichere historische Begründung scheint mir die Annahme des Herrn von Hammer, dass die Schaukel und das Ringelspiel zur Hervorbringung des Schwindels und der Vorstellung des Fliegens hiebei eine Anwendung gefunden habe.

Leider sind nähere Angaben über die Bestandtheile der in den besprochenen Processen angewendeten Hexensalben in den darüber vorhandenen Protokollen nicht zu finden. Sie würden uns aber auch bei den mangelhaften Kenntnissen der Richter und der Ignoranz der zur Gerichtspflege beigezogenen Ärzte und Bader sicherlich wenig Erspriessliches geliefert haben, wenn nicht durch unmittelbare Versuche mit der Anwendung derselben ihre narkotisirende Wirkung erprobt worden wäre. Doch zu so einfachen Schlüssen zu kommen, war der befangene Geist des Jahrhunderts noch nicht reif.

Werfen wir nun noch schliesslich von dem Herde der Zaubererei den das östliche Mittelmeer umgebenden Ländern, so wie vom nördlichen Europa, einen Blick auf andere Erdtheile, so sehen wir nach dem mannigfaltigen Charakter und den verschiedenen Culturstufen der Völker die Zaubererei auch in verschiedenen Formen und Graden in grösserer oder geringerer Ausbreitung auftreten und dabei natürlich auch einige Gewächse eine Rolle spielen.

Begreiflicher Weise ist hier Indien zuerst zu nennen, vielleicht der eigentliche Ausgangspunkt der Zaubererei für ganz Asien, Europa und den Norden von Afrika. Im Atharva Veda sind uns noch die Sprüche und Beschworungsformeln aufbewahrt, womit der Inder in unverdanklicher Zeit durch Zaubermacht Unglück und Sorge abzuwenden
Gelingen und Glück herbeizuführen suchte. "Diese Segen und Fläche — sagt Dr. R. Roth 1) — streifen allerdings oft an das religiöse Gebiet, denn sehr häufig werden die Götter ebenso dabei angerufen wie in jedem andern Gebete, aber die Richtung des menschlichen Willens ist dennoch eine grundverschiedene. Das Gebet des Frommen stellt es den Göttern anheim, für ihn zu handeln; der Beschworer nimmt die göttliche Macht für seinen Willen und sein Handeln in Anspruch; sie soll gleichsam an ihn, den Menschen, abgetreten werden". Noch jetzt sind die Brahmanen im Besitze eigener Zaubermittel, und indische Gaukler sind im Stande, die wunderbarsten Dinge hervorzubringen.

Eben so ist es bei den Finnen, wo der erste Held der Kalevala ein Gott und Heros, Wainamöinen, zugleich der grösste Zauberer ist. Das Zauber singen der Finnen beschränkt sich nicht bloss auf das Bannen schädlicher Einflüsse, sondern erstreckt sich sogar auf das Herbeiführen freundlicher, hilfreicher Mächte.

Auch Ägypten und Arabien bewahren noch manche Reste alter Zauberei und Wunderglaubens, die im Zusammenhange mit ihren Religionsgebrüchen stehen. Durch ganz Ägypten wird man über den Hausthoren Krokodilbälge und lebende Aloepflanzen aufgehängt finden; letztere ist *Aloe socotrina* L. a., dieselbe Art, welche die Bekenner des Isams auch auf den Gräbern pflegen. E. W. Lane 3) setzt die Ursache dieses Gebrauches in den Glauben, dass diese in der That ohne Nahrung lang lebende Pflanze den Bewohnern des Hauses langes Leben und letzterem selbst Dauerhaftigkeit verleihe. Er setzt ferner hinzu dass die Weiber den Glauben hegen, dass, wo

2) De Candolle im Dictionary raisonné et universel d'agriculture.

Überdies wurde Dr. Barth im Innern von Afrika oft um Zauberformeln angegangen, sowohl gegen Krankheiten als zu andern Zwecken. In Yola kamen eine Menge Leute, um Leias (Zauberformeln) und Arznei zu bitten. Am Tschadsee trugen die Bewohner kleine Ledertäschchen auf der Brust mit beschriebenen Zauberformeln.

In gleichem Sinne äussert sich auch Anderson 1) über mehrere Völker von Süd-Afrika. „Wie alle in Barbarei versunkenen Völker glauben die Namaquas (ein Volk der Südwestküste zwischen 23 und 27° s. B.) an Hexerei und Zaubererei; sie wird von Männern (Kiaobs) und Weibern (Kiaobs) ausgeübt, die sich dadurch ein grosses Ansehen zu verschaffen wissen. Diese Zauberer und Zauberinnen können, wie man glaubt, Regen bewirken, Kranke gesund machen, die Ursache des Todes der Menschen auffinden und andere merkwürdige Dinge ausführen. Sie sind schlau und listig und verstehen es, die Unkenntniss ihrer Landsleute auszubeuten. Selbst gebildete Leute sind durch ihre Künste getäuscht worden“, — und l. c. pag. 207:

„Unter den Betjuanen (am Ngama-See) hat die Zaubererei gleichfalls sehr zahlreiche Anhänger, welche auf die Worte und Vorschriften der Zauberer das höchste Vertrauen setzen. Namentlich gilt dies von der Classe der Hexenmeister, die sich mit dem Regenmachen abgeben“. Jeder Stamm hat einen, zuweilen mehrere Regen-

1) Reisen in S. W. Afrika II. p. 65.

Bei den Grönländern werden die der Hexerei bezichtigten alten Weiber gesteiniget, erstochen und zerschnitten oder in das Meer gestürzt (I. Cranz, pag. 217).

Alle die Zaubermittel, deren sich diese und andere rohe Völker bedienen, anzuführen, würde uns zu weit von unserem Thema entfernen. Wir bemerken nur so viel, dass dabei immer auch Pflanzen und Substanzen und Theile derselben eine Anwendung finden. So werden z. B. von den Macassaren, um Glück im Kriege zu erlangen, die Samen von Mimosa scandens in einen kupfernen Ring gefasst um den Leib getragen, und tausend ähnlicher nichts sagenden Zierathen

und Amulette bedienen sich die Menschen aller Farben und, leider muss ich hinzusetzen, auch aller Culturstufen.

Überall ist die diesen Zaubermitteln zugeschriebene Kraft von der Art, das sie von der Wirkungsweise anderer bekannter Kräfte abweicht und dadurch aussergewöhnliche Effecte hervorbringt.

Gehören auch nicht alle als Zaubерinnen verschrieenen und verurteilten Weiber und Mädchen dem betrüblichen Geschäfte der Zauberei an, so hängen doch ihre ekstratischen, magnetischen, odischen oder wie man diese Zustände immer nennen will, mit der Endbestreubung derselben auf das innigste zusammen. Wer wird es verkennen, dass die lebhaftere Phantasie, ein so schönes Geschenk der weiblichen Natur, am meisten zu solcher Verirrung beitrug, namentlich wo mangelhafte physische Entwicklung und gehemmte Ausbildung der Verstandeskräfte mit der zugelassenen Herrschaft der ersteren, Hand in Hand ging.

Nimmt man nun noch die Sucht nach Sonderbarem und Geheimnisvollem, wodurch dem natürlichen Triebe nach Herrschsucht einigermassen Ersatz versprochen wird, so hat man ohne Zweifel die
wichtigsten Signaturen, die dem Zaubergürtel des Weibes in der Geschichte so viele Geltung aber leider auch so viele traurige Berühmtheit verschafften.

Wir möchten jedoch die Macht des Weibes keineswegs auf diese wahnwitzige Basis gebaut sehen, die jedermann verlachen und jede geordnete Staatsverwaltung verpönen muss, in der Überzeugung dass uns nur ein reifes, tief gehendes, unausgesetztes und mit vereinten Kräften wirksames Studium der Natur und des Geistes zu jener süßen und erträumten Herrschaft über jene führen wird.

Nicht das weibliche Geschlecht ist dazu berufen, uns den Apfel der Erkenntniss und mit ihm alle höheren Genüsse des Lebens zu überbringen. Er darf nicht zu früh gepflückt werden, sondern er muss reif von selbst uns in den Schoss fallen, er, der zuvor durch Schweiss tropfen der Jahrtausende ernährt worden ist.

Zu diesem Behufe ist dem Menschen, vorzüglich aber dem Mann, die ernste Kunste der Wissenschaften als die edelste Gage des Geistes Gottes verliehen worden. Ihre Cabala kennen zu lernen ist die grösste, schönste und hervorragendste Aufgabe seines Daseins.

Literatur.

Friedericus Merz, De plantis quas ad rem magicam veteres erediderunt. Lipsiae 1705. 4.

Mir unbekannt geblieben.

Enthält nur eine allgemeine Einleitung ohne specielle Auseinandersetzungen.

Jesuane Wierl, De praestigiis daemonum, et incantationibus ac veneficis Libri VI. Basiae 1577. 4.

Sitzb. d. mathem.-naturalw. Cl. XXXIII. Bd. Nr. 26. 25
Hieronimi Cardanii, De substantia libri XXI. Basileae 1582. Fol.
Keyssler, Antiquitates septentrionales et celticae. Hanoverae 1720.
Nachricht und Abbildung der Alraunwurzel.
L. Arnaud, Dissertatio de Verbena. Jenae 1721. 4.
Mir unbekannt geblieben.
Horst, Daemonologie oder Geschichte des Glaubens und der Zauberei etc.
Frankfurt 1818.
Ausgezeichnet.
Weitschweißig.
Reichhaltig.
Vorgelegte Druckschriften.

Nr. 26.

— of Science of St. Louis, The Transactions, 1858; 8o.
Quaestiones quae in anno 1858 proponuntur a Societate R. Danica.

Astronomische Nachrichten, Nr. 1168.
Breslau, Akademische Gelegenheitsschriften.
Bronn, G. H., Die Entwicklung der organischen Schöpfung.
Göttingen, akademische Gelegenheitsschriften.
Hall, Jonathan, Register of the Thermometer for 36 years.
Holmes, Fr., Remains of domestic animals discovered among Post-Pleiozene Fossils in South Carolina. Charlestown, 1858; 8o.
Report of explorations and surveys, to ascertain the most practicable and economical route for a railroad from the Mississippi river to the pacific Ocean. Vol. II — VIII. Washington, 1858; 4o.
Wiener medicinische Wochenschrift, Nr. 1168.
SITZUNGSBERICHTE

DER

KAISERLICHER AKADEMIE DER WISSENSCHAFTEN.

MATHEMATISCH-NATURWISSENSCHAFTLICHE CLASSE.

XXXIII. BAND.

SITZUNG VOM 2. DECEMBER 1858.

N° 27.
SITZUNG VOM 2. DECEMBER 1858.

Der Secretär legt die zweite vermehrte und umgearbeitete Auflage der „Anleitung zu den magnetischen Beobachtungen“ von Herrn Director Kreil vor. Das Heft wird dem XXXIII. Bande der Sitzungsberichte als Anhang beigegeben.

Auszug aus einem Schreiben des Herrn Ludwig Jeitteles an das wirkliche Mitglied Herrn Dr. Ami Boué.

Troppau, den 22. November 1858.

Herr John Cary, Gutsbesitzer in Visnyove bei Sillein, hatte schon am 20. August um 10 Uhr Abends eine Wiederholung des Erdbebens in seinem ganz nahe am Gebirge gelegenen Hause verspürt. Am 13. Oktober wurden zwei Erderschütterungen von vielen Personen in Sillein deutlich wahrgenommen; die erste fand um 11 Uhr vor, die zweite um 4 Uhr nach Mitternacht Statt. Am 24. Oktober um 4 1/4 Uhr Nachmittags wurde eine bedeutende Erschütterung in Sillein und in der Nähe der Stadt bemerkt. Der Befund der Bevölkerung in Sillein galt als Beweis für die Wirklichkeit der Erschütterung...
terung in Sillein, Budalin, Bitschitsch, Visnyove und Banova allgemein wahrgenommen, welche die Bewohner dieser Orte sehr beunruhigte. Der Bewegung ging ein unterirdisches Getöse voraus. Dieses sowohl als die ihm später folgende Erderschütterung kam von SO. und ging nach NW.; die Bewegung war undulirend. Das unterirdische Getöse hörte zugleich mit den Oscillationen auf. Vor und nach der Erschütterung war es vollkommen windstill. Der Himmel war stark bewölkt; der Barometer zeigte zwei Stunden früher auf Regen.

In Visnyove fühlte es Herr John Cary gleichfalls sehr lebhaft. Er schreibt unterm 10. November: The shock was tolerably severe, originating as usual from Minschov-Mountain direct...

Auch in Strecsno, an der Grenze des Thuroczer Comitates, verspürte man die Erschütterung am 24. Oktober. Herr Pfarrer Zaborski schrieb: „Literas scribere incepī... observo infra pedes motum terrae et horologii (stantis) tinnitum... pallidus excurro foras ad domesticos, unus eorum affirmat, se etiam observasse et pedes ejusdem tremuisse; moxque vicini aliqui accurerunt dicentes se terrae motum observasse etc.“ Herr Pfarrer Zaborski setzt hinzu, dass eine ausserordentliche Kälte herrsche, Flüsse und selbst Brunnen ausgetrocknet seien.

Herr Cary, der die Witterung ebenfalls als ungewöhnlich bezeichnet, spricht zugleich die Furcht vor einer nochmaligen heftigen Erneuerung aus, und ich muss gestehen, dass ich selbst eine solche bedeutende und weit ausgedehnte Wiederholung für wahrscheinlich halte. Heftige und weitreichende Erschütterungen pflegen immer durch längere Zeit nachzuziehern. Dann trat ein solcher Fall schon einmal in diesem Theile Ungarns und des angrenzenden Mährens und Schlesiens ein. In der Chronik aller ungarischen und schlesischen Erdbeben, welche ich nächstens der k. Akademie über-

Vorträge.

Über die Bahn des Kometen VIII des Jahres 1858.

Von Edmund Weiss,
Assistenten der k. k. Sterwarte zu Wien.

(Vorgelegt durch das w. M. Herrn Director v. Littrow.)

Der am 5. September von Horace Tuttle in Cambridge (Mass.) entdeckte Komet wurde erst Anfangs October in Europa beobachtet, als er eben seine größte Helligkeit erreichte. Er erschien als ein rundlicher, etwa 6' im Durchmesser haltender Nebel, von körnigem Ansehen, mit Spuren eines Schweifes, aber ohne deutlich abgegrenzten Kern. In der letzten Zeit der Sichtbarkeit dieses Himmelskörpers nahm ich eine Bahnbestimmung desselben vor, und legte dabei folgende Beobachtungen zu Grunde:

<table>
<thead>
<tr>
<th>Datum in mittlerer Zeit der Beobachtungsörter</th>
<th>Beobachtungsort</th>
<th>Rektascension</th>
<th>Declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858, 5. September 16b 5 24-7</td>
<td>Cambridge (Mass.)</td>
<td>4o 41 0-24</td>
<td>+ 44o 46 57-4</td>
</tr>
<tr>
<td>1858, 7. October 9 52 1-5</td>
<td>Wien</td>
<td>22 34 8-86</td>
<td>+ 23 29 37-3</td>
</tr>
<tr>
<td>1858, 14. October 8 15 12-3</td>
<td>Wien</td>
<td>21 28 25-61</td>
<td>+ 5 36 4-7</td>
</tr>
<tr>
<td>1858, 2. November 6 29 44-0</td>
<td>Wien</td>
<td>20 23 51-73</td>
<td>- 15 37 45-3</td>
</tr>
</tbody>
</table>

Ich suchte aus diesen Positionen jene parabolischen Elemente, welche, die beiden äussersten Orte vollkommen darstellend, auch den beiden mittlern so genau als möglich entsprechen; es sind dies folgende:

<table>
<thead>
<tr>
<th>Datenpunkt</th>
<th>Beob.</th>
<th>Rechn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858, October 7.</td>
<td>+0.2"</td>
<td>+3.4"</td>
</tr>
<tr>
<td>1858, October 14.</td>
<td>-7.9"</td>
<td>+0.7"</td>
</tr>
</tbody>
</table>

Für 0 h mittlere Greenwicher Zeit.

<table>
<thead>
<tr>
<th>1858</th>
<th>Scheinbare</th>
<th>Log. der Entfernung von der Erde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rectascension</td>
<td>Declination</td>
</tr>
<tr>
<td>September 5.</td>
<td>70° 55' 39.2"</td>
<td>+44° 33' 3.4"</td>
</tr>
<tr>
<td>6.</td>
<td>70° 8 10.5</td>
<td>44° 49 11.9</td>
</tr>
<tr>
<td>7.</td>
<td>69° 16 37.8</td>
<td>45° 5 48.3</td>
</tr>
<tr>
<td>8.</td>
<td>68° 20 37.3</td>
<td>45° 22 51.0</td>
</tr>
<tr>
<td>9.</td>
<td>67° 19 42.3</td>
<td>45° 40 17.5</td>
</tr>
<tr>
<td>10.</td>
<td>66° 13 22.8</td>
<td>45° 58 4.1</td>
</tr>
<tr>
<td>11.</td>
<td>65° 1 6.0</td>
<td>46° 16 6.1</td>
</tr>
<tr>
<td>12.</td>
<td>63° 42 14.9</td>
<td>46° 34 16.7</td>
</tr>
<tr>
<td>13.</td>
<td>62° 16 9.0</td>
<td>46° 52 27.3</td>
</tr>
<tr>
<td>14.</td>
<td>60° 42 3.2</td>
<td>47° 10 26.3</td>
</tr>
<tr>
<td>15.</td>
<td>58° 59 8.6</td>
<td>47° 27 59.0</td>
</tr>
<tr>
<td>16.</td>
<td>57° 6 32.3</td>
<td>47° 44 46.2</td>
</tr>
<tr>
<td>1858</td>
<td>Scheinbare</td>
<td>Log. der Entfernung von der Erde</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rectascension</td>
<td>Declination</td>
</tr>
<tr>
<td>September 17...</td>
<td>55° 3' 17.3''</td>
<td>48° 0' 23.6''</td>
</tr>
<tr>
<td>" 18...</td>
<td>52 48 24.2</td>
<td>48 14 20.4</td>
</tr>
<tr>
<td>" 19...</td>
<td>50 20 53.2</td>
<td>48 25 58.6</td>
</tr>
<tr>
<td>" 20...</td>
<td>47 39 45.7</td>
<td>48 34 31.3</td>
</tr>
<tr>
<td>" 21...</td>
<td>44 44 9.1</td>
<td>48 39 0.6</td>
</tr>
<tr>
<td>" 22...</td>
<td>41 33 21.7</td>
<td>48 38 17.8</td>
</tr>
<tr>
<td>" 23...</td>
<td>38 6 59.2</td>
<td>48 31 2.4</td>
</tr>
<tr>
<td>" 24...</td>
<td>44 25 2.5</td>
<td>48 15 42.0</td>
</tr>
<tr>
<td>" 25...</td>
<td>30 28 7.1</td>
<td>47 50 35.1</td>
</tr>
<tr>
<td>" 26...</td>
<td>26 17 29.3</td>
<td>47 13 54.7</td>
</tr>
<tr>
<td>" 27...</td>
<td>21 55 11.4</td>
<td>46 23 54.3</td>
</tr>
<tr>
<td>" 28...</td>
<td>17 24 1.2</td>
<td>45 18 57.8</td>
</tr>
<tr>
<td>" 29...</td>
<td>12 47 25.7</td>
<td>43 57 49.0</td>
</tr>
<tr>
<td>" 30...</td>
<td>8 9 17.2</td>
<td>42 19 43.8</td>
</tr>
<tr>
<td>October 1...</td>
<td>3 33 35.9</td>
<td>40 24 40.7</td>
</tr>
<tr>
<td>" 2...</td>
<td>359 4 10.1</td>
<td>38 13 26.1</td>
</tr>
<tr>
<td>" 3...</td>
<td>354 44 18.9</td>
<td>35 47 37.5</td>
</tr>
<tr>
<td>" 4...</td>
<td>350 36 40.2</td>
<td>33 9 37.6</td>
</tr>
<tr>
<td>" 5...</td>
<td>346 43 6.1</td>
<td>30 22 23.6</td>
</tr>
<tr>
<td>" 6...</td>
<td>343 4 43.0</td>
<td>27 19 13.1</td>
</tr>
<tr>
<td>" 7...</td>
<td>339 41 57.6</td>
<td>24 33 28.2</td>
</tr>
<tr>
<td>" 8...</td>
<td>336 34 44.7</td>
<td>21 38 10.9</td>
</tr>
<tr>
<td>" 9...</td>
<td>333 42 35.0</td>
<td>18 46 11.4</td>
</tr>
<tr>
<td>" 10...</td>
<td>331 4 43.4</td>
<td>15 59 40.7</td>
</tr>
<tr>
<td>" 11...</td>
<td>328 40 15.3</td>
<td>13 20 17.7</td>
</tr>
<tr>
<td>" 12...</td>
<td>326 28 11.0</td>
<td>10 49 9.4</td>
</tr>
<tr>
<td>" 13...</td>
<td>324 27 30.2</td>
<td>8 26 53.9</td>
</tr>
<tr>
<td>" 14...</td>
<td>322 37 13.4</td>
<td>6 13 48.2</td>
</tr>
<tr>
<td>1858</td>
<td>Scheinbare</td>
<td>Log. der Entfernung von der Erde</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rectascension</td>
<td>Declination</td>
</tr>
<tr>
<td>October 15...</td>
<td>320° 56' 24.7''</td>
<td>+ 4° 9' 44.1''</td>
</tr>
<tr>
<td></td>
<td>319 24 11.7'</td>
<td>2 14 31.3'</td>
</tr>
<tr>
<td></td>
<td>317 59 45.8'</td>
<td>+ 0 27 44.0'</td>
</tr>
<tr>
<td></td>
<td>316 42 23.0'</td>
<td>- 1 11 7.8'</td>
</tr>
<tr>
<td></td>
<td>315 31 24.0'</td>
<td>2 42 35.9'</td>
</tr>
<tr>
<td></td>
<td>314 26 12.5'</td>
<td>4 7 13.5'</td>
</tr>
<tr>
<td></td>
<td>313 26 16.0'</td>
<td>5 25 32.8'</td>
</tr>
<tr>
<td></td>
<td>312 31 5.9'</td>
<td>6 38 5.4'</td>
</tr>
<tr>
<td></td>
<td>311 40 16.2'</td>
<td>7 45 20.5'</td>
</tr>
<tr>
<td></td>
<td>310 53 23.9'</td>
<td>8 47 45.6'</td>
</tr>
<tr>
<td></td>
<td>310 10 8.2'</td>
<td>9 45 45.9'</td>
</tr>
<tr>
<td></td>
<td>309 30 10.8'</td>
<td>10 39 44.5'</td>
</tr>
<tr>
<td></td>
<td>308 53 14.7'</td>
<td>11 30 2.6'</td>
</tr>
<tr>
<td></td>
<td>308 19 5.0'</td>
<td>12 16 59.2'</td>
</tr>
<tr>
<td></td>
<td>307 47 28.6'</td>
<td>13 0 51.8'</td>
</tr>
<tr>
<td></td>
<td>307 18 13.4'</td>
<td>13 41 55.8'</td>
</tr>
<tr>
<td></td>
<td>306 51 8.1'</td>
<td>14 20 25.6'</td>
</tr>
<tr>
<td>November 1...</td>
<td>306 26 3.2'</td>
<td>14 56 34.0'</td>
</tr>
<tr>
<td></td>
<td>306 2 49.7'</td>
<td>15 30 32.5'</td>
</tr>
<tr>
<td></td>
<td>305 41 19.7'</td>
<td>16 2 31.5'</td>
</tr>
<tr>
<td></td>
<td>305 21 25.6'</td>
<td>16 32 40.7'</td>
</tr>
<tr>
<td></td>
<td>305 3 0.5'</td>
<td>17 1 8.6'</td>
</tr>
<tr>
<td></td>
<td>304 45 58.8'</td>
<td>17 28 2.8'</td>
</tr>
<tr>
<td></td>
<td>304 30 14.3'</td>
<td>17 53 30.7'</td>
</tr>
<tr>
<td></td>
<td>304 15 42.3'</td>
<td>18 17 38.6'</td>
</tr>
<tr>
<td></td>
<td>304 2 17.9'</td>
<td>18 40 32.3'</td>
</tr>
<tr>
<td></td>
<td>303 49 57.1'</td>
<td>19 2 17.2'</td>
</tr>
<tr>
<td></td>
<td>303 38 35.6'</td>
<td>19 22 58.1'</td>
</tr>
<tr>
<td></td>
<td>303 28 9.6'</td>
<td>- 19 42 39.6'</td>
</tr>
</tbody>
</table>
Über die Bahn des Kometen VIII des Jahres 1858.

Berechnet man die Helligkeit nach der Formel

\[H = \frac{C}{r^n \Delta^2} \]

so erhält man, wenn man von derjenigen am Entdeckungstage als Einheit ausgeht, für dieselbe folgende Werthe:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Helligkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858, September 5.</td>
<td>1.00</td>
</tr>
<tr>
<td>" 13.</td>
<td>1.69</td>
</tr>
<tr>
<td>" 21.</td>
<td>3.13</td>
</tr>
<tr>
<td>" 29.</td>
<td>5.65</td>
</tr>
<tr>
<td>October 7.</td>
<td>6.51</td>
</tr>
<tr>
<td>" 15.</td>
<td>4.10</td>
</tr>
<tr>
<td>" 23.</td>
<td>2.24</td>
</tr>
<tr>
<td>" 31.</td>
<td>1.31</td>
</tr>
<tr>
<td>November 8.</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Die Übereinstimmung obiger Ephemeride mit den Beobachtungen ist während der ganzen Dauer der Sichtbarkeit eine ziemlich gute, wie folgende vorläufige Vergleichung mit einigen der bisher publicirten Beobachtungen beweist. Es ist nämlich:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Datum</th>
<th>Beobachtungsort</th>
<th>Beob. — Rechn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1858, September 9.</td>
<td>Cambridge (Mass.)</td>
<td>+ 1.7" + 12.5"</td>
</tr>
<tr>
<td>2</td>
<td>October 3.</td>
<td>Altona</td>
<td>- 13.2 + 1.8</td>
</tr>
<tr>
<td>3</td>
<td>" 6.</td>
<td>Berlin</td>
<td>- 9.9 + 9.2</td>
</tr>
<tr>
<td>4</td>
<td>" 12.</td>
<td>Göttingen</td>
<td>- 8.8 + 1.7</td>
</tr>
<tr>
<td>5</td>
<td>" 27.</td>
<td>Kopenhagen</td>
<td>+ 6.8 - 7.9</td>
</tr>
<tr>
<td>6</td>
<td>" 27.</td>
<td>"</td>
<td>- 21.7 + 12.9</td>
</tr>
<tr>
<td>7</td>
<td>" 30.</td>
<td>"</td>
<td>- 10.7 + 6.5</td>
</tr>
<tr>
<td>8</td>
<td>" 30.</td>
<td>"</td>
<td>- 2.4 - 16.7</td>
</tr>
<tr>
<td>9</td>
<td>November 9.</td>
<td>Wien</td>
<td>- 28.8 - 16.7</td>
</tr>
<tr>
<td>10</td>
<td>" 10.</td>
<td>"</td>
<td>- 5.5 - 39.6</td>
</tr>
</tbody>
</table>

Mit der oben mitgeteilten Ephemeride werde ich die Beobachtungen, so wie dieselben nach und nach veröffentlicht werden vergleichen, und dann aus allen vorhandenen den wahrscheinlichsten Kegelschnitt, in welchem dieser Komet die Sonne umkreist, zu ermitteln suchen.
Über den Gelenkbau bei den Arthrozoen.

Von dem c. M. Prof. Dr. Karl Langer.

(Auszug aus einer größeren für die Denkschriften bestimmten Abhandlung.)

Diese Abhandlung ist der vierte Beitrag zur vergleichenden Anatomie und Mechanik der Gelenke und zerfällt in zwei Abschnitte. Der erste Abschnitt behandelt die anatomischen Verhältnisse der einzelnen Gelenke bei den decapoden Crustaceen und mehreren Gattungen grösserer Käfer, mit Berücksichtigung einzelner Genera der anderen Ordnungen der Insecten; der zweite Abschnitt untersucht die Combinationen der Gelenke ganzer Leibestheile, mit Bezug auf die resultirende Beweglichkeit derselben.

Die anatomische Untersuchung hat ergeben, dass die bei der Locomotion betheiligten Gelenke durchaus nur einaxige Gelenke sind; die sogenannten freien Gelenke, à tête perforée nach Strauss-Durkheim verdienen nur selten diesen Namen, indem auch sie meist Charniere werden; rein erhalten sie sich nur an den Antennen, seltener an der Verbindung des Kopfes mit dem Prothorax. Sie sind nur trichterformige Einstülpungen zweier durch weiches Integument, sogenannte Gelenkhäute, verbundener Segmente harten Integumentes.

Strenge Charniere mit genau vorgezeichnetener Excursionsrichtung kommen erst dann an den in einander geschobenen Gliedern zu Stande, wenn die beiden harten Glieder axial fixirt sind.

Diese Fixirung wird dadurch bewerkstelligt, dass die beiden Glieder meist nur an den Axenenden sich berühren, und durch straffe Gelenkhaut verbunden werden, während die Gelenkhaut, um der Excursion Raum zu geben, beuge- und streckwärts lang und schlaff ist. Die Haltbarkeit der Verbindung hängt in diesem Falle nur ab von der Resistenz der Gelenkhaut an diesen Stellen. Durch Faltungen des harten Integumentes in der Axenrichtung
sowohl nach aussen, als auch in's Innere der Röhren, werden die axialen Berührungspunkte beider Glieder vermehrt, die Haltbarkeit der Verbindung vergrössert, ohne die Excursion zu beeinträchtigen.

In anderen Fällen geschieht die Fixirung der Glieder durch axiale in Pfannen des anderen Gliedes eingelagerte hohle Zapfen, oder durch Falze, wo dann ringförmige Leisten oder kuglige Zapfen, und kreisförmige Rinnen oder Gruben wechselseitig in einander eingreifen. Bei dieser Charnier-Form kommt es zu Flächencontact und damit zu Gelenkflächen.

Walzen-Charniere mit Pfannen finden sich nur an den Coxae der meisten Käfer und einiger Hymenopteren (am zweiten Beine der Bienen-Gattungen); doch sind auch diese Coxae axial durch Zapfen oder Falze in den Pfannen des Thorax fixirt.

Auf das Schema der Zapfen- und Falz-Charniere mit axialer Faltung und Buchtung des harten Integumentes lassen sich alle anderen Formen von Charniergelenken der Arthrozoen zurückführen.

Besonderes Interesse gewährt das Coxo-Femoral-Gelenk an den Vorderbeinen vieler Käfer, da hier die Einfügung des Gelenkstückes vom Schenkel, des Trochanters, in die Coxa so geschieht, dass die Axen der Hütte und des Schenkels sich durchkreuzen, nicht blos überkreuzen.

An diesem Gelenke, so wie auch an mehreren Hüft- und Kniegelenken hat sich die Schraube wiedergefunden. Sie tritt in der Form von Kegelschrauben auf, ist öfter an den Axenenden symmetrisch, so dass ein und dasselbe Gelenksstück einerseits links, andererseits rechts gewundene Elemente besitzt, weshalb sie dann mehr als Arretirungs-, denn als Gansapparat fungiren kann. Im Knie hat sich die Schraube erst bei stärkeren Vergrösserungen nachweisen lassen, und dürfte deshalb mehr eine morphologische als mechanische Bedeutung haben.

Der Trochantinus (Audouin) bedingt am zweiten Coxa-Gelenke von Hydrophilus einen eigenthümlichen beweglichen Klappenapparat zum Verschlusse der Thorax-Pfanne.

 Zwischen dem ersten und zweiten Beine, derselben Seite, tritt Symmetrie auf.

 Dieselbe Bedeutung, welche für die Form der Knochen die Gelenkenden haben, haben bei den Arthrozoen die Gelenköffnungen der Glieder mit ihren bald symmetrischen, bald assym-
metrischen Contouren, Vorsprüngen und Einschnitten. Ihre Modifikationen konnten hier bei den einfachen Bewegungsverhältnissen der einzelnen Gelenke leicht bestimmt und gedeutet werden. Ebenso sind auch die zur Berührung der zusammengebogenen Glieder bestimmten Abflachungen der Wände (die Axelflächen) ganz mit den Bewegungsverhältnissen und der Gliederungsweise der Beine in Causalnexus zu bringen, so dass die Formen der einzelnen Skeletstücke ganz leicht gedeutet, und aus der cylindrischen Grundgestalt abgeleitet werden können.

Die Untersuchung der Gelenke und ihrer Combinationen bei den Arthrozoen war auch deshalb von besonderem Interesse, weil an einer grösseren Reihe formverwandter Thiere bei verschiedenen Leistungen ihrer Beine und der einfachsten Gelenkform die volle Bedeutung der Combination der Gelenke leicht ersichtlich wird.

Indem ich zunächst von der Vorstellung ausgegan, dass der mechanische Effect der Beweglichkeit eines Beines zunächst von der Situation seines Endgliedes abhänge, versuchte ich, um einen bestimmten Ausdruck für die Beweglichkeit eines Beines zu gewinnen, das Terrain abzugrenzen, in welchem das Endglied desselben, sei es in der Ebene oder im Raume, in jeder Linie oder continuirlichen Linear-Complexion zu verkehren vermog. Ich suchte ferner die Bedingungen festzustellen, von denen Form und Grösse dieses Terrains abhängig sind.

Es ergab sich, dass nebst der Zahl Glieder (Gelenke) bei gegebener Länge des Beines, dann der Excursions-Richtung und Grösse der einzelnen Gelenke zunächst die Situation der Charnier-Axen massgebend ist. So lange diese unter einander parallel stehen, kann das Endglied natürlich nur in der Ebene verkehren; Verkehr im Raume gewinnt das Endglied erst, wenn sich die Axen in mehreren Raumrichtungen überkreuzen. Vollkommen freib aber wird die Bewegung eines Beines erst dann zu nennen sein, wenn das Endglied den ganzen Raum eines Kugelsegments beherrscht, dessen Radius die ganze Länge eines Beines ist; wenn also der Verkehrsräum den Raum dieses Kugelsegmentes vollkommen ausfüllt, wie dies z. B. mit der menschlichen Hand wirklich der Fall ist. Diese freie Beweglichkeit ist zunächst durch ein an der Wurzel des Beines situirtes
Kugelgelenk, oder eine Durchkreuzung zweier Charnier-axen unter rechtem Winkel möglich, wie dies wieder bei den höheren Käferformen am ersten und zweiten Beine der Fall ist.

Unter dieser Grundbedingung könnte bereits das Ende des zweiten Gliedes schon vollkommen frei beweglich sein, wenn seine Länge gleich wäre der des ersten Gliedes und sein Charnier um 180° excurrierte; Bedingungen, die aber wegen der räumlichen Ausdehnung der Skelet- und Muskelmassen nicht ausführbar sind, und deshalb auch eine dritte Gliederung nötig machen.

Die Gelenks-Combination eines Krebsbeines gestattet dem Scherengliede zwar in allen Raumrichtungen zu verkehren, doch erfüllt ihr Verkehrsräum nicht vollkommen das Kugelsegment, welches die Gesamtlänge des Beines als Radius beschreiben würde.

In dem einfachsten Falle von Gelenks-Combination, wie sie am Abdomen der langschwänzigen Krebse zu finden, wo alle Axen unter sich parallel situiert sind, alle Gelenke gleiche Excursionsrichtung haben und die Glieder ziemlich gleich lang sind, wird die Verkehrsfläche der Endflosse einerseits von einer Abwicklungslinie, andererseits von einer Art cycloider Curve begrenzt.

Untersuchungen, in dieser Richtung fortgesetzt, würden die Lehre von der thierischen Bewegung wesentlich fördern; sie würden schliesslich eine Geometrie der thierischen Bewegung begründen lassen.
Untersuchungen über die physikalischen Verhältnisse kristalliner Körper.

4. Über die Beziehungen zwischen Krystallform, Substanz und physikalischen Verhalten.

Von J. Grailltch und V. v. Lang.

(Vorgetragen in der Sitzung am 7. October 1838.)

Eine jede Theorie, welche die Eigenthümlichkeiten der Krystalle unter einen Gesichtspunkt zu fassen sucht, muss auf die Grundthatsachen, welche diese Körper darbieten, Rücksicht nehmen. In diesem Sinne fehlt es aber bis jetzt an jedem befriedigenden Versuche. Denn was Poisson in der *Théorie des corps cristallisés* 1) gegeben, ist einerseits zu allgemein, andererseits zu speziell, um der genannten Aufgabe zu entsprechen. Zu allgemein; denn es passt auch auf ellipsoidische oder, allgemein gesprochen, auf alle von geschlossenen Flächen des 2^{*} Grades begrenzten Körper; das, was aber den Krystall charakterisirt: die ebenflächige Begrenzung, die ebenflächige Spaltbarkeit, das Gesetz der rationalen Verhältnisse in der gegenseitigen Abhängigkeit der Flächen, ist darin weder ausgeschieden, noch nach der ganzen Anlage des Calculs wohl ausscheidbar. Zu speziell; denn bei der Discussion der Summen, welche zur Vereinfachung der in allgemeiner Form angelegten Analyse dient, wird angenommen dass die grösste Mannigfaltigkeit in der Symmetrie dadurch bezeichnet sei, dass man annimmt, der Körper sei bezüglich dreier aufeinander rechtwinkligen Ebenen symmetrisch gebaut; dies ist aber offenbar blos die Symmetrie der holoëdrischen Abtheilung des rhombischen Systems und es fehlt somit die ganze grosse klinoëdrische Gruppe, so wie die Abtheilung der hemimorphen und enantio-morphen Formen aller Systeme. Die späteren Arbeiten, wie z. B. Haughton's schöne Untersuchungen über flüssige und feste Körper 2)

1) Mém. de l'Acad. XVIII.
2) Transact. Dublin. R. S. XXI.
berühren das Wesen krystallisirter Körper ebenso wenig. Nur Professor Neumann hat einmal das Problem in seiner scharfsinnigen und auf vollster Sachkenntniss beruhenden Weise vorgenommen, freilich auch mit Beschränkungen, von denen er aber vollständig Rechenschaft gibt; leider hat er die Arbeit nicht weiter geführt.

Außer den genannten einen Krystall charakterisirenden Verhältnissen ist noch eines anzuführen, dessen bis jetzt nicht Erwähnung geschehen ist, das aber gerade für die theoretische Bearbeitung Berücksichtigung verdient. Der Umstand nämlich, dass bei allen Krystallen das Gesetz der einfachen rationalen Verhältnisse der Ableitungszahlen der einzelnen Formen stattfindet, weist darauf hin, dass diese Verhältnisse von der Temperatur unabhängig sein müssen. Denn da die einfachen Zahlen nicht nach einer unendlichen Reihe in einander stetig übergehen, sondern von einer zur andern immer ein Sprung um die Einheit stattfindet, kann die Erwärmung, welche die Dimensionen der Körper nach unendlich kleinen Intervallen stetig abändert, keinen Einfluss auf jene Verhältnisszahlen nehmen.

Es lässt sich die Bedingung dieser Unabhängigkeit durch eine einfache Formel ausdrücken, welche somit das allgemeinste Gesetz der durch Temperaturveränderung möglichen Gestaltveränderung fester Körper ausspricht. Wir bezeichnen dieses Gesetz als das der Erhaltung der Zonen.

Verbindet man diesen Satz mit einem zweiten Erfahrungssätze dem gemäss durch die stetigen Dimensionänderungen welche Temperaturveränderungen hervorrufen, das Krystallsystem nicht affizirt wird, so gelangt man zu einer Reihe von Relationen, welche das Gesetz aussprechen, dem die möglichen Formänderungen eines Krystalles unterworfen sind, Formänderungen, welche sich ergeben, wenn auf den Krystall durchaus gleichartige Druck- oder Zugkräfte einwirken.

Man kann die in den erwähnten Relationen enthaltenen Bestimmungen auch unter einem anderen Gesichtspunkte auffassen. Während in Gasen die Bewegungen der Moleküle, welche durch die Erwärmung bedingt wird, keinem aus der Natur der Gase folgenden Gesetze unterworfen sind, indem sie, sobald man von den zufälligen Grenzen der Behälter in welchen sich das Gas eingeschlossen findet absieht, nach jeder Richtung hin stattfinden können; müssen in tropf-
baren Flüssigkeiten die der Richtung nach noch immer völlig unbestimmten Excursionen bereits so geschehen, dass das ursprüngliche, irgend einer als Ausgangspunkt gewählte Temperatur entsprechende Volum, für stetige Temperaturzunahmen, selbst stetig sich ändert. In festen Körpern kommt nun zu den stetigen Änderungen des Volums noch eine gesetzmäßige, in der Natur der Substanzen begründete stetige Änderung der Form. Die Relation, welche die Erhaltung der Zonen ausspricht, ist der allgemeinste Ausdruck für die Formänderung, und jede Moleculartheorie, insofern sie die Verhältnisse fester Körper berücksichtigt, muss sich dieser Relation als einer Bestimmungsgleichung für die im allgemeinen unbestimmten Constanten bedienen.

Mit Hilfe des Satzes der Erhaltung der Zonen lässt sich die Frage leicht lösen, ob es in Krystallen der klinödrischen Systeme drei unter einander rechtwinklige thermische Axen gibt. Bekanntlich hat Neumann die Existenz rechtwinkliger thermischer Axen in der Symmetrieebene der monoklinödrischen Krystalle im allgemeinen behauptet und im speciellen am Gyps durch die Berechnung der Messungen Mitscherlich's angegeben. Wir haben die Rechnung in etwas veränderter Form durchgeführt und gezeigt, 1. dass sich die Möglichkeit rechtwinkliger thermischer Axen in der Symmetrieebene monoklinödrischer Krystalle allgemein nicht behaupten lässt, und 2. dass sich im Gyps die Existenz derselben aus Mitscherlich's Messungen nicht darthun lässt, dass diese im Gegenteil auf die Nichtexistenz rechtwinkliger Axen hinweisen.

Es ist bisher der Theorie der Doppelbrechung, wie sie von Cauchy hergestellt wurde, vorgeworfen worden, dass sie von den optischen Verhältnissen klinödrischer Krystalle nicht Rechenschaft zu geben vermöge. Der Grund dieser Unzulänglichkeit war leicht aufzufinden. Es ist bisher in allen Theorien immer als die mannigfaltigste symmetrische Anordnung von Molekülen diejenige betrachtet worden, welche wir oben bei der Erwähnung von Poisson's Theorie angegeben haben. Indem Cauchy in der Theorie der Doppelbrechung eine ähnliche Anordnung vor Augen hatte, konnte er natürlich nur zu den optischen Verhältnissen der rhombischen Krystalle gelangen. Wir nahmen nun Rücksicht auf die mehr und mehr sich lösenden Symmetrieverhältnisse der klinödrischen Krystall-Systeme, und indem wir eine solche Anordnung der
Moleküle voraussetzten, wie sie der Symmetrie der Flächenvertheilung entspricht, gelangten wir zu Gleichungen, welche die Hauptschwingungsrichtungen als Functionen der Wellenlänge darstellen.

Es haben zwar auch Mac Cullagh und Ångström die Dispersion in klinöedrischen Krystallen abzuleiten gesucht; aber die Theorie der ersteren ist unbefriedigend, wie näher dargehan werden wird, die Analyse des letztern ohne eigentliche Beziehung zur Dispersion, indem nur der Nachweis geliefert wird, dass die untereinander rechtwinkligen Hauptschwingungsrichtungen mit den schiefwinkligen Elasticitätsaxen Winkel einschliessen.

Indem wir die Action der Äther- und Körpertheilchen trennten, gelangten wir zu Dispersionsgliedern, die nur von der Action der während der vibratorischen Ätherbewegungen ruhenden Körpertheilchen abhängen. Es wird dadurch die Fresnel'sche Definition der Elasticitätsaxen conservirt, während gleichzeitig die Dispersion, sowohl der optischen Axen als auch der Hauptschwingungsrichtungen ihre Erklärung findet. Nich minder ergibt sich hieraus eine Erklärung der sonderbaren Erscheinung, welche manche Krystalle zeigen, in denen die Ebenen der optischen Axen für rothes und violetes Licht sich rechtwinklig durchkreuzen.

Es geht aber daraus zugleich hervor, dass die Messung der Brechungsexponenten nicht dazu hinreichet die relativen Werthe der Elasticität in verschiedenen Richtungen der Krystalle zu bestimmen. Man kann bei Krystallen von sehr beträchtlicher Dispersion und geringer Doppelbrechung aus den Beobachtungen nicht einmal die Orientirung der wahren Elasticitätsaxen erhalten, und sollte sich darum überhaupt statt des Ausdruckes Elasticitätsaxen, in so fern man auf die Farbe Rücksicht nimmt, lieber des von Ångström gewählten Wortes „Polarisationsaxen“ oder wie wir es nennen „Hauptschwingungsrichtungen“ bedienen.

Aus dem Studium der isomorphen Körper scheint sich nicht minder, als aus der Vergleichung der verschiedenen physikalischen Eigenschaften eines und desselben Krystalles zu ergeben, dass die optische Orientirung, d. i. die Lage der Hauptschwingungsrichtungen nicht von der Anordnung, sondern von der Beschaffenheit der Moleküle abhängt; die Elasticitätsaxen des Äthers können daher als die Axen der Moleküle, die akustischen Elasticitätsaxen, so wie die thermischen Axen als die Axen des Krystalldes, d. i. die wahren Kry-
stallaxen betrachtet werden. Die beiden Ordnungen von Elasticitäts-
axen können aber nun dann gleich orientirt sein, wenn sie recht-
winklige Systeme bilden; bei schiefwinkligen Systemen kann eine
Übereinstimmung der Richtungen nicht erwartet werden, da diese bei
den ersten (Moleculaxen) von der Anordnung und Beschaffenheit
der Atome, in den letzten (Krystallaxen) von der Anordnung und
Beschaffenheit der Moleküle abhängt. Atome können ausdehnungslos
gedacht werden; darum fällt die Schwierigkeit ellipsoidischer Mas-
selemente für die optische Untersuchung weg.

Zum Schlusse theilen wir die Ergebnisse unserer Beobachtungen
über die magnetische Orientirüng rhombischer Krystalle mit,
welche zu der Ansicht leiten, dass die magnetische Axenwirkung der
Krystalle von der Anordnung, der magnetische Charakter aber von
der Beschaffenheit der ponderablen Moleküle abhängt.

Über die Formänderung der Krystalle durch die Veränderung der
Temperatur.

1. Erhaltung der Zonen. Es seien \(A, B, C \) die Punkte, in
welchen bei einer gegebenen Temperatur die Durchschnittslinien (Kanten)
von drei durch
einen beliebigen Punkt des Krystalls gelegten
Krystallflächen eine Kugeltreffen, welche mit
dem Halbmesser 1 um diesen Punkt beschrie-
ben worden; ferner \(A', B', C' \) die entsprechen-
den Punkte bei irgend einer andern Tempe-
ratur. Eben so seien bei der ursprünglichen Temperatur \(P, Q \) die Pole
von zwei anderen Krystallflächen, d. i. die Orte, wo die aus dem Mittelpunkt
der Kugel auf diese Flächen gerichteten Normalen die Fläche
der Kugel schneiden, \(P', Q' \) die entsprechenden Punkte bei erhöhter
Temperatur. Zwischen den 10 Orten \(A, A', B, B', C, C' \ldots \) besteht eine
allgemeine Relation, welche das Gesetz der unter dem Einflusse der
Temperatur stattfindenden Formänderung der Krystalle ausspricht.

Es ist bekannt, dass, wenn irgend eine Krystallfläche \(M \), welche
die drei Kanten \(A, B, C \) in den Punkten \(A_0, B_0, C_0 \) schneidet, zur
Bestimmung der Parameter längs der drei Kanten \(A, B, C \) benützt
wird, so dass

\[
O A_0 = a \quad O B_0 = b \quad O C_0 = c
\]

(1)
ist, jede beliebige andere Fläche P des Krystalles die Gleichung

\[\frac{a}{k} \cos PA = \frac{b}{k} \cos PB = \frac{c}{l} \cos PC \]

in solcher Weise erfüllt, dass h, k, l einfache, rationale Zahlen werden. Man bezeichnet daher auch P durch das Symbol (hkl). In ähnlicher Weise muss der Relation für Q

\[\frac{a}{p} \cos QA = \frac{b}{q} \cos QB = \frac{c}{r} \cos QC \]

durch einfache rationale Zahlen p, q, r entsprochen werden können und (pqr) ist das Symbol für Q.

Das Gesetz der einfachen rationalen Indices ist eine Tatsache der Erfahrung. Wenn man nun erwägt, dass es durchaus allgemein nachgewiesen ist, für Krystalle jeder Art, also für Körper, die sich in den verschiedensten Entfernungen von ihren Erstarrungspunkten befinden, so ergibt sich von selbst der Schluss, dass es von der Temperatur unabhängig sein, dass es bei jeder Temperatur, bei welcher der Krystall sich als solcher behaupten kann, bestehen muss. Müssen aber die einzelnen Indices immerfort rationale Werthe behaupten, so muss auch das Verhältniss

\[h : k : l \]

für jede Fläche ein unveränderliches sein. Denn da die Volumänderungen, welche durch eine Zu- und Abnahme der Temperatur bedingt werden, nach unendlich kleinen Intervallen vor sich gehen, die Bögen AB, BC, CA und somit auch die Parameter a, b, c und die Bögen AP, BP, CP stetig sich ändern, so könnten die in den angeführten Gleichungen ausgesprochenen Relationen, falls h, k, l veränderlich wäre, nur bestehen, wenn die Werthe von h, k, l selbst eine stetige Änderung zuließen. Eine solche widerspricht aber der Bedingung des Rationalbleibens; es muss somit auch das Verhältniss

\[h : k : l \]

von der Temperatur unabhängig sein.

Dies erlaubt es zwischen den oben geschriebenen für eine gegebene Temperatur geltenden und den irgend einer anderen Temperatur entsprechenden Ausdrücken.
über die physikalischen Verhältnisse krystallisirter Körper.

\[
\frac{a'}{h} \cos P'A' = \frac{b'}{k} \cos P'B' = \frac{c'}{l} \cos P'C' \\
\frac{a'}{p} \cos Q'A' = \frac{b'}{q} \cos Q'B' = \frac{c'}{r} \cos Q'C'
\]

(2)
die Indices \(h, k, l, p, q, r \) zu eliminiren, wodurch wir

\[
\frac{a}{a'} \cdot \frac{\cos PA}{\cos P'A'} = \frac{b}{b'} \cdot \frac{\cos PB}{\cos P'B'} = \frac{c}{c'} \cdot \frac{\cos PC}{\cos P'C'} \\
\frac{a}{a'} \cdot \frac{\cos QA}{\cos Q'A'} = \frac{b}{b'} \cdot \frac{\cos QB}{\cos Q'B'} = \frac{c}{c'} \cdot \frac{\cos QC}{\cos Q'C'}
\]

(3)
erhalten. In dieser Form drückt jede dieser Gleichungen in gleicher Weise das Verhältniss aus, das zwischen der Änderung der Axenlängen und der Kantenwinkel stattfinden muss: durch die Elimination der Quotienten \(\frac{a}{a'}, \ldots \) findet man hieraus

\[
\frac{\cos AP \cdot \cos A'Q}{\cos A'P' \cdot \cos AQ} = \frac{\cos BP \cdot \cos B'Q'}{\cos B'P' \cdot \cos BQ} = \frac{\cos CP \cdot \cos C'Q'}{\cos C'P' \cdot \cos CQ}
\]

(4)

Da die Punkte \(A, B, C \) auch als die Pole der Normalen der drei Flächen betrachtet werden können, welche die Kanten \(OA, OB, OC \) rechtwinkelig schneiden, so stellt die Gleichung ganz allgemein die Form des Gesetzes dar, welchem die Änderung der gegenseitigen Lage von fünf Krystallflächen

\(A, B, C, P, Q \)

bei der Zu- oder Abnahme der Temperatur unterworfen ist.

Um sämtliche Änderungen deutlich hervortreten zu lassen, ist es nothwendig die Pole \(A, B, C, A', B', C' \ldots \), auf ein unveränderliches Raumcoordinatensystem zu beziehen. Es seien \(X, Y, Z \) die Punkte, in welchen ein rechtwinkliges durch den Mittelpunkt der Kugel gelegtes Coordinatensystem die Oberfläche der Kugel trifft und

\[
\cos AX = \lambda \quad \cos BX = \mu \quad \cos CX = \nu \\
\cos AY = \lambda' \quad \cos BY = \mu' \quad \cos CY = \nu' \\
\cos AZ = \lambda'' \quad \cos BZ = \mu'' \quad \cos CZ = \nu''
\]

\[
\cos PX = \alpha \quad \cos QX = \beta \\
\cos PY = \alpha' \quad \cos QY = \beta' \\
\cos PZ = \alpha'' \quad \cos QZ = \beta''
\]
so ist

\[
\begin{align*}
\cos AP &= \alpha \lambda + \alpha' \lambda' + \alpha'' \lambda'' \\
\cos BP &= \alpha \mu + \alpha' \mu' + \alpha'' \mu'' \\
\cos CP &= \alpha \nu + \alpha' \nu' + \alpha'' \nu'' \\
\cos AQ &= \beta \lambda + \beta' \lambda' + \beta'' \lambda'' \\
\cos BQ &= \beta \mu + \beta' \mu' + \beta'' \mu'' \\
\cos CQ &= \beta \nu + \beta' \nu' + \beta'' \nu''
\end{align*}
\]

Bezeichnet man nun eben so die der veränderten Temperatur entsprechenden Bögen durch

\[
\begin{align*}
\cos A'X &= \lambda, & \cos B'X &= \mu, & \cos C'X &= \nu, \\
\text{etc.} & & \text{etc.} & & \text{etc.}
\end{align*}
\]

\[
\begin{align*}
\cos P'X &= \alpha, & \cos Q'X &= \beta, \\
\text{etc.} & & \text{etc.} & & \text{etc.}
\end{align*}
\]

so wird (3) in

\[
\begin{align*}
\frac{a}{a'} &= \frac{\alpha \lambda + \alpha' \lambda' + \alpha'' \lambda''}{\alpha' \lambda + \alpha' \lambda' + \alpha'' \lambda''} \\
\frac{b}{b'} &= \frac{\alpha \mu + \alpha' \mu' + \alpha'' \mu''}{\alpha' \mu + \alpha' \mu' + \alpha'' \mu''} \\
\frac{c}{c'} &= \frac{\alpha \nu + \alpha' \nu' + \alpha'' \nu''}{\alpha' \nu + \alpha' \nu' + \alpha'' \nu''}
\end{align*}
\]

(5)

und (4) in

\[
\begin{align*}
\frac{\beta \lambda + \beta' \lambda' + \beta'' \lambda''}{\beta' \lambda + \beta' \lambda' + \beta'' \lambda''} &= \frac{\beta \lambda + \beta' \lambda' + \beta'' \lambda''}{\beta' \lambda + \beta' \lambda' + \beta'' \lambda''} \\
\frac{\beta \mu + \beta' \mu' + \beta'' \mu''}{\beta' \mu + \beta' \mu' + \beta'' \mu''} &= \frac{\beta \mu + \beta' \mu' + \beta'' \mu''}{\beta' \mu + \beta' \mu' + \beta'' \mu''} \\
\frac{\beta \nu + \beta' \nu' + \beta'' \nu''}{\beta' \nu + \beta' \nu' + \beta'' \nu''} &= \frac{\beta \nu + \beta' \nu' + \beta'' \nu''}{\beta' \nu + \beta' \nu' + \beta'' \nu''}
\end{align*}
\]

(6)

übergehen. Dabei bestehen die Gleichungen

\[
\begin{align*}
\lambda^s + \lambda'^s + \lambda''^s &= 1 \\
\mu^s + \mu'^s + \mu''^s &= 1 \\
\nu^s + \nu'^s + \nu''^s &= 1 \\
\alpha^s + \alpha'^s + \alpha''^s &= 1 \\
\beta^s + \beta'^s + \beta''^s &= 1
\end{align*}
\]

(7)

Es beruht auf der Unveränderlichkeit der Indices \(h k l\) die Unabhängigkeit der Zonen von der Temperatur. Man hätte auch von
über die physikalischen Verhältnisse kristallisirter Körper. 377

der Existenz der Zonen in der Ableitung der Relationen 5) und 6) ausgehen können; doch schien es einfacher, unmittelbar mit den Flächensymbolen zu beginnen. Da der Pol \((uvw)\) der Zonenaxe der beiden Flächen \(P\) und \(Q\) durch

\[u = kr - lg \quad v = lp - hr \quad w = hq - kp \]

gegeben ist, so folgt, dass auch die Zone \([uvw]\) von der Temperatur unabhängig ist; d. h. ein System von Krystallflächen, das bei irgendeiner Temperatur eine Säule bildet, bleibt unveränderlich bei jeder anderen Temperatur zu einer Säule verbunden, die Kantenwinkel mögen sich ändern wie immer.

Wir bezeichnen nach diesem Satze das in 5) und 6) enthaltene Gesetz der Formänderung als das der Erhaltung der Zonen.

Der Ausdruck dieses Satzes für unendlich kleine Dimensionsänderungen ist

\[\frac{1}{h} \left[a (ad\lambda + \alpha' d\lambda' + \alpha'' d\lambda'' + \lambda d\alpha + \lambda' d\alpha' + \lambda'' d\alpha'') \right. \]
\[\left. + (\alpha \lambda + \alpha' \lambda' + \alpha'' \lambda'') \, da \right] = \]

\[\frac{1}{k} \left[b (ad\mu + \alpha' d\mu' + \alpha'' d\mu'' + \mu d\alpha + \mu' d\alpha' + \mu'' d\alpha'') \right. \]
\[\left. + (\alpha \mu + \alpha' \mu' + \alpha'' \mu'') \, db \right] = \]

\[\frac{1}{l} \left[c (ad\nu + \alpha' d\nu' + \alpha'' d\nu'' + \nu d\alpha + \nu' d\alpha' + \nu'' d\alpha'') \right. \]
\[\left. + (\alpha \nu + \alpha' \nu' + \alpha'' \nu'') \, de \right] \]

wozu noch die Gleichungen 7) und die Relationen

\[ad\alpha + \alpha' d\alpha' + \alpha'' d\alpha'' = 0 \]
\[\lambda d\lambda + \lambda' d\lambda' + \lambda'' d\lambda'' = 0 \]
\[\mu d\mu + \mu' d\mu' + \mu'' d\mu'' = 0 \]
\[\nu d\nu + \nu' d\nu' + \nu'' d\nu'' = 0 \]

treten.

2. Erhaltung des Systems. Die Beobachtung zeigt, dass die Symmetrie der Anordnung der kleinsten Körpertheilchen durch die Temperatur nicht geändert wird. Es ist zwar keine Untersuchung anzuführen, welche dies unmittelbar darthut, aber indirect wird der
Beweis durch die optischen Phänomene geliefert, deren Symmetrie sich durchwegs als eine Funktion der Symmetrie des Krystallaubes kund-gibt. Durch die Erwärmung erfährt die Richtung der Hauptschwingungen, sobald sie mit Symmetrieaxen des Körpers zusammenfallen, durchaus keine Änderung, nur die relative Größe derselben wird durch eine Veränderung der Temperatur affizirt. Da aber das Krystallsystem durch die Existenz bestimmter Symmetrieaxen charakterisirt ist, so muss es im allgemeinen als von der Temperatur unabhängig angesehen werden. Wenn man blos die Axenverhältnisse berücksichtigt, so scheint es zwar auf den ersten Blick nicht unmöglich, dass bei einer gewissen Temperatur ein rhombischer Krystall ein tetragonales Axensystem erhalten mag; aber sowohl die Kleinheit der durch Erwärmung bedingten Änderung in den Axenlängen, als auch der jedem System eigenthümliche Combinationshabitus weisen eine solche Annahme sogleich als unmöglich zurück, wenn man auch nicht im Stande ist, dieselbe aus einem der Molecularreaction entnommenen Grunde zu widerlegen. So wird auch nie ein triklinöedrischer Krystall in einen monoklinöedrischen, ein monoklinöedrischer in einen rhombischen durch die durch stetige Erwärmung bedingte Änderung der Dimensionen übergehen. Fälle, wo eine vollständige und dann jederzeit sprungweise Paramorphose eintritt, kommen hier, wegen der dabei stattfindenden Unterbrechung der Stetigkeit, nicht in Betracht; denn wenn auch in der Thatzache der Isomerie (im weitesten Sinne) der Beweis vorliegt, dass derselbe Stoff mehrerer stabiler Gleichgewichtszustände fähig ist, so hat doch der durch die Wärme vermittelte Übergang von dem einen in den andern nichts gemein mit den Änderungen, welche innerhalb einer einzelnen dieser Gleichgewichtslagerungen möglich sind, die hier allein der Betrachtung unterzogen werden. Man kann somit als zweiten Satz den der Erhaltung des Krystallsystems aussprechen, d. i. die durch die Wirkung der stetig veränderten Temperatur bedingten stetigen Dimensionsänderungen krystallisirter Körper finden immer so statt, dass dabei das Krystallsystem unverändert bleibt.

Die Krystalle des tetragonalen Systems unterscheiden sich von denen des tesseractalen nicht blos dadurch, dass die beiden Queraxen \(a, a \) gleiche, aber von der Hauptaxe \(e \) verschiedene Werthe haben, sondern der Quotient

\[
\frac{a}{e}
\]
ist auch immer eine irrationale Größe; ebenso verhält es sich mit dem Quotienten
\[
\frac{a}{c} \quad \frac{c}{b} \quad \frac{b}{a}
\]

Eine weitere Folgerung ist die Unmöglichkeit rechtwinkliger thermischer Axen in den Krystallen der klinodödrischen Systeme. Denn fassen wir nur den einfachsten Fall, den des monoklinodödrischen Systems, ins Auge, so ist klar, dass wegen Abgang rechtwinkeliger Symmetrieaxen in der Symmetriebene die Theilchen in dieser bei ihren durch die Erwärmung bedingten Verschiebungen durchaus an keine unter rechtem Winkel conjugierte Richtungen gebunden sein können. Neumann hat zwar aus Mitscherlichs Messungen am Gyps die Existenz thermischer Axen in diesem System berechnet; wir haben aber bei Wiederholung der Rechnung ein anderes Resultat gefunden, wie im nächsten Paragraph gezeigt werden wird.

Fassen wir nun die beiden Sätze von der Erhaltung der Zonen und der Erhaltung des Kristallsystems zusammen, so erhalten wir für die in dem vorigen Paragraph mitgetheilten Formeln bedeutend einfachere, je nach der Zunahme der in den einzelnen Kristallsystemen herrschenden und bindenden Symmetrie.

Nehmen wir zunächst an, es werde eine der Krystallkanten während der Erwärmung in ihrer Richtung festgehalten und lassen wir diese Richtung mit der Coordinaten-Axe der X zusammenfallen. Es ist dann, wenn A diese Kante bezeichnet

\[
AX = 0 \quad AY = 90^\circ \quad AZ = 90^\circ
\]
folglich \[\lambda = \lambda', = 1 \quad \lambda'' = 0 \quad \lambda'' = \lambda'' = 0 \]

und es wird 5) 6) und 8)

\[
\begin{align*}
\frac{a}{\alpha} \cdot \frac{\alpha}{\alpha} = & \frac{b}{\beta} \cdot \frac{\alpha + \alpha' + \alpha''}{\beta + \beta' + \beta''} = \frac{c}{\gamma} \cdot \frac{\alpha + \alpha' + \alpha''}{\gamma + \gamma' + \gamma''} \\
\frac{\alpha}{\gamma} \cdot \frac{\beta}{\beta} = & \frac{\alpha + \alpha' + \alpha''}{\beta + \beta' + \beta''} = \frac{\alpha + \alpha' + \alpha''}{\gamma + \gamma' + \gamma''} \\
\frac{1}{h} [a d \alpha + a d \alpha] = & \frac{1}{k} [b (\alpha + \mu) d (\alpha + \mu) + (\alpha' + \mu') d (\alpha' + \mu')] \\
& + (\alpha'' + \mu'') d (\alpha'' + \mu'') + (\alpha' + \mu' + \mu'') d (\alpha' + \mu'') d \beta] \\
& - \frac{1}{l} [c (\alpha + \nu) d (\alpha + \nu) + (\alpha' + \nu') d (\alpha' + \nu') \\
& + (\alpha'' + \nu'') d (\alpha'' + \nu'') + (\alpha'' + \nu') d (\alpha'' + \nu') d \nu] \\
\end{align*}
\]

der Ausdruck für die Erhaltung der Zonen im triklinödrischen System.

Lassen wir \(A \) mit \(X, B \) mit \(Y \) zusammenfallen, wird also noch \(\mu = \mu_0 = 0 \; \mu' = \mu_0' = 1 \; \mu'' = \mu_0'' = 0 \),

so finden wir die Bedingungsgleichungen

\[
\begin{align*}
\frac{\alpha}{\alpha} \cdot \frac{\beta}{\beta} = & \frac{\alpha'}{\alpha'} \cdot \frac{\beta'}{\beta'} = \frac{\nu \alpha + \nu' \alpha' + \nu'' \alpha''}{\nu \beta + \nu' \beta' + \nu'' \beta''} = \frac{\nu \alpha + \nu' \alpha' + \nu'' \alpha''}{\nu \gamma + \nu' \gamma' + \nu'' \gamma''} \\
\frac{\alpha}{\gamma} \cdot \frac{\beta}{\beta} = & \frac{\alpha'}{\alpha'} \cdot \frac{\beta'}{\beta'} = \frac{\nu \alpha + \nu' \alpha' + \nu'' \alpha''}{\nu \gamma + \nu' \gamma' + \nu'' \gamma''} \\
\frac{1}{h} [a d \alpha + a d \alpha] = & \frac{1}{k} [b d \alpha' + a d \beta] = \frac{1}{l} [c (\alpha + \nu) d (\alpha + \nu) \\
& + (\alpha' + \nu') d (\alpha' + \nu') + (\alpha'' + \nu'') d (\alpha'' + \nu'') \\
& + (\nu + \alpha' + \nu'') d \nu] \\
\end{align*}
\]

für die Formänderungen der diklinödrischen Krystalle.

Tritt hierzu noch die Bedingung dass \(C \) auf \(B \) rechtwinklig bleibt, und heisst \(\varphi \) der Winkel, den \(C \) mit \(A \) einschliesst, so wird

\[
\begin{align*}
v = \cos \varphi \quad v' = 0 \quad v'' = \sin \varphi \\
v' = \cos \varphi' \quad v'' = 0 \quad v''' = \sin \varphi' \end{align*}
\]
und es sind die entsprechenden Gleichungen für das monoklines System

\[
\frac{a}{a_i} \cdot \frac{a}{a_i} = \frac{b}{b'}, \quad \frac{\alpha}{\alpha_i} = \frac{c}{c_i} \cdot \frac{\alpha \cos \varphi + \alpha'' \sin \varphi}{\alpha_c \cos \varphi + \alpha'' \sin \varphi},
\]

\[
\frac{\beta}{\beta_i} = \frac{\alpha'}{\alpha_i} \cdot \frac{\beta'}{\beta_i} = \frac{\alpha \cos \varphi + \alpha'' \sin \varphi}{\beta_c \cos \varphi + \beta'' \sin \varphi},
\]

\[
\frac{\gamma}{\gamma_i} = \frac{\alpha'}{\alpha_i} \cdot \frac{\beta'}{\beta_i} = \frac{\alpha \cos \varphi + \alpha'' \sin \varphi}{\alpha \cos \varphi + \alpha'' \sin \varphi}.
\]

\[
\frac{1}{h} [\alpha d\alpha + \alpha d\alpha] = \frac{1}{k} [b\alpha' + \alpha' d\beta] = \frac{1}{i} \left\{ c [\sin \varphi (d\alpha'' + \alpha d\varphi)] + (\alpha \cos \varphi + \alpha'' \sin \varphi) d\varphi \right\}
\]

Im rhombischen System kann A, B, C mit X, Y, Z coindiren, folglich

\[\nu = \nu, = 0 \quad \nu' = \nu', = 0 \quad \nu'' = \nu'', = 1\]

gesetzt werden; dadurch erhält man

\[
\frac{a}{a_i} \cdot \frac{a}{a_i} = \frac{b}{b'}, \quad \frac{\alpha}{\alpha_i} = \frac{c}{c_i} \cdot \frac{\alpha'}{\alpha_i'}, \quad \frac{\alpha}{\alpha_i} = \frac{\alpha'}{\alpha_i'} \cdot \frac{\beta}{\beta_i} = \frac{\alpha''}{\alpha_i''},
\]

\[
\frac{1}{h} [\alpha d\alpha + \alpha d\alpha] = \frac{1}{k} [b\alpha' + \alpha' d\beta] = \frac{1}{i} [c\alpha'' + \alpha'' d\varphi]
\]

Wird \(a = b, a, = b,\) gesetzt, so erhält man für das tetragonale System

\[
\frac{\alpha}{\alpha_i} = \frac{\alpha'}{\alpha_i'} = \frac{\alpha'}{\alpha_i'} \cdot \frac{\alpha''}{\alpha_i''},
\]

\[
\frac{1}{h} (\alpha d\alpha + \alpha d\alpha) = \frac{1}{k} (\alpha d\alpha' + \alpha' d\alpha) = \frac{1}{i} (c\alpha' + \alpha'' d\varphi),
\]

durch eine einfache Transformation erhält man, wenn \(\theta, \theta,\) die Winkel sind, welche die Normale von Q mit c einschließt

\[
\frac{a}{a_i} = \frac{\alpha}{\alpha_i} = \frac{\alpha'}{\alpha_i'} = \frac{\alpha''}{\alpha_i''} \cdot \frac{tg \theta}{tg \theta},
\]

Im tesseralen System endlich wird, wegen \(a = b = c,\)

\(a, = b, = c,\)
\[\frac{1}{\hbar} (a \alpha + a \alpha') = \frac{1}{k} (a \alpha' + a' \alpha) = \frac{1}{l} (a \alpha'' + a'' \alpha) \]

und dies gibt unmittelbar
\[\alpha = \alpha', \quad \alpha' = \alpha'', \quad \alpha'' = \alpha''' \]

d. i. die Kantenwinkel bleiben unverändert; die tesseraLen Krystalle bleiben sich bei jeder Temperatur ähnlich.

Für das rhomboedrische System hat man wegen der Gleichheit der drei unter gleichen aber schiefen Winkeln geneigten Parameter

\[a = b = c, \quad a', \quad b, = c, \]
\[\lambda'' = \mu'' = \nu'' = \delta, \quad \lambda, \mu'' = \mu, = \nu, = \delta, \]
\[\lambda \mu + \lambda' \mu' = \mu \nu + \mu' \nu' = \nu \lambda + \nu' \lambda', \]
\[\lambda \mu, + \lambda' \mu', = \mu, \nu, + \mu', \nu', = \nu \lambda, + \nu' \lambda', \]
\[\frac{\alpha \lambda + \alpha' \lambda'}{\alpha, + \alpha' \lambda'} = \frac{\alpha \mu + \alpha' \mu'}{\alpha, + \alpha' \mu'} = \frac{\alpha \nu + \alpha' \nu'}{\alpha, + \alpha' \nu'} = \frac{\alpha' \delta}{\alpha, + \alpha' \delta} \]

man in der Symmetriebene keine rechtwinkligen Elasticitätsaxen hat.

Die Bedingungen der Existenz rechtwinkliger thermischer Axen lassen sich in ihrer allgemeinsten Form folgendermassen darstellen. Es seien P, Q, R die Punkte, in welchen die Normalen von drei Flächen, die durch die Gleichungen

\[
\begin{align*}
\frac{a}{k^a} \cos PA &= \frac{b}{k^b} \cos PB = \frac{c}{k^c} \cos PC \\
\frac{a}{k^a} \cos QA &= \frac{b}{k^b} \cos QB = \frac{c}{k^c} \cos QC \\
\frac{a}{k^a} \cos RA &= \frac{b}{k^b} \cos RB = \frac{c}{k^c} \cos RC
\end{align*}
\]

gegeben sind, die Sphäre der Projection treffen. Die Lage der Punkte P, Q, R sei gegeben durch

\[
\begin{align*}
\cos PX &= \alpha \\
\cos QX &= \beta \\
\cos RX &= \gamma \\
\cos PY &= \alpha' \\
\cos QY &= \beta' \\
\cos RY &= \gamma' \\
\cos PZ &= \alpha'' \\
\cos QZ &= \beta'' \\
\cos RZ &= \gamma''
\end{align*}
\]

Die Grössen $\alpha, \alpha', \alpha'' \ldots \alpha, \alpha', \alpha''$ (indem wieder die einer höheren Temperatur entsprechenden Bögen wie oben bezeichnet werden) müssen nun den Bedingungen 5) und folgenden weiteren

\[
\begin{align*}
\alpha \beta + \alpha' \beta' + \alpha'' \beta'' &= \alpha \beta' + \alpha' \beta + \alpha'' \beta', + \alpha'' \beta, = 0 \\
\beta \gamma + \beta' \gamma' + \beta'' \gamma'' &= \beta \gamma' + \beta' \gamma + \beta'' \gamma, + \beta'' \gamma, = 0 \\
\gamma \alpha + \gamma' \alpha' + \gamma'' \alpha'' &= \gamma \alpha' + \gamma' \alpha + \gamma'' \alpha, + \gamma'' \alpha, = 0
\end{align*}
\]

entsprechen. Den Bedingungen 5) wird entsprochen, indem man an die Stelle von $\alpha \ldots$ erst $\beta \ldots$ und dann $\gamma \ldots$ setzt.

Diese Formeln sollen auf das monoklinödrische System angewendet werden. Es sei Y die Symmetrieaxe; mit Y coincidire B und B', mit X dagegen A und A', so dass der Krystall in der Ebene AB festgehalten gedacht wird. Die Symmetrieaxe ist wegen der Unveränderlichkeit des Krystallsystems nothwendig eine thermische Axe bezüglich der Symmetriebene. Lassen wir somit Q mit Y zusammenfallen, so müssen die beiden andern rechtwinkligen Axen, falls sie existiren, in der Symmetriebene gesucht werden, und es ist
Graßlisch und v. Lang. Untersuchungen

\[\alpha' = 0 \quad \alpha'' = 0 \]
\[\beta = 0 \quad \beta' = 0 \quad \beta'' = 0 \quad \beta_1 = 0 \quad \beta_1' = 1 \quad \beta_1'' = 0 \]
\[\gamma' = 0 \quad \gamma'' = 0 \]

Die Gleichungen zur Bestimmung der Lage von \(P \) und \(R \) werden demnach

\[\frac{a}{a} \cdot \frac{a}{c} = \frac{c}{c} \cdot \frac{v\alpha + v''\alpha'}{v\alpha + v''\alpha'} ; \quad \frac{a}{a} \cdot \frac{\gamma}{\gamma} = \frac{c}{c} \cdot \frac{v\gamma + v''\gamma'}{v\gamma + v''\gamma'} \]
\[\alpha \gamma + \alpha'' \gamma'' = 0 \quad \alpha \gamma' + \alpha'' \gamma'' = 0 \]

Nennen wir nun

\[\alpha = \cos \theta \quad \gamma = \cos \phi \quad v = \cos \varphi \]
\[\alpha_1 = \cos \theta_1 \quad \gamma_1 = \cos \phi_1 \quad v_1 = \cos \varphi_1 \]

so wird

\[\alpha'' = \sin \theta \quad \gamma'' = \sin \phi \quad v'' = \sin \varphi \]
\[\alpha_1'' = \sin \theta_1 \quad \gamma_1'' = \sin \phi_1 \quad v_1'' = \sin \varphi_1 \]

Die Doppelzeichen der Sinus können vernachlässigt werden, sobald man den Sinn, in welchem die Bögen gezählt werden, im Auge behält. Durch Substitution in 11) erhält man

\[\Pi \frac{\cos \theta}{\cos (\varphi - \theta)} = \Pi, \quad \frac{\cos \theta_1}{\cos (\varphi_1 - \theta_1)} \]
\[\Pi \frac{\cos \phi}{\cos (\varphi - \phi)} = \Pi, \quad \frac{\cos \phi_1}{\cos (\varphi_1 - \phi_1)} \]
\[1 + \cot \theta \cot \phi = 0 \quad 1 + \cot \theta_1 \cot \phi_1 = 0 \]

wo der Kürze halber

\[\Pi = \frac{a}{c} \quad \Pi_1 = \frac{a_1}{c} \]

gesetzt wurde. Die erste der Gleichungen 12) ist der Ausdruck eines durch die Beobachtung gewonnenen Naturgesetzes; die zweite enthält eine Frage an die Natur, deren Beantwortung möglich oder unmöglich sein kann, was nur durch die Vergleichung von Beobachtungen mit dem Resultate der Rechnung entschieden werden kann.

Wir nennen nun

\[\frac{\Pi \cos \theta}{\cos (\varphi - \theta)} = \frac{1}{m} \quad \frac{\Pi \cos \phi}{\cos (\varphi - \phi)} = \frac{1}{\nu} \]
Die Werthe von m und μ werden aus den am Eingange dieses Artikels angeführten Gleichungen erhalten. Man hat nämlich:

\[
\frac{a}{h_r} \alpha = \frac{c}{l_r} (v\alpha + v''\alpha'') \quad \frac{a}{h_r} \gamma = \frac{c}{l_r} (v\gamma + v''\gamma'')
\]

folglich auch

\[
\frac{\mathcal{A} \cos \theta}{\cos (\varphi - \theta)} = \frac{\mathcal{A}_r \cos \theta_r}{\cos (\varphi_r - \theta_r)} = \frac{h_r}{l_r}
\]

\[
\frac{\mathcal{A} \cos \psi}{\cos (\varphi - \psi)} = \frac{\mathcal{A}_r \cos \psi_r}{\cos (\varphi_r - \psi_r)} = \frac{h_r}{l_r}
\]

Dies gibt

\[
m = \frac{l_r}{h_r} \quad \mu = \frac{l_r}{h_r}
\]

Durch die Einführung dieser Grössen in der ersten Reihe von 12) wird

\[
tg \theta = m \frac{\mathcal{A}}{\sin \varphi} - cotg \varphi \quad tg \psi = \mu \frac{\mathcal{A}}{\sin \varphi} - cotg \varphi
\]

\[
tg \theta_r = m \frac{\mathcal{A}_r}{\sin \varphi_r} - cotg \varphi_r \quad tg \psi = \mu \frac{\mathcal{A}_r}{\sin \varphi_r} - cotg \varphi_r
\]

was in die zweite Gleichung substituirt zu den Relationen

\[
1 + \left(m \frac{\mathcal{A}}{\sin \varphi} - cotg \varphi \right) \cdot \left(\mu \frac{\mathcal{A}}{\sin \varphi} - cotg \varphi \right) = 0
\]

\[
1 + \left(m \frac{\mathcal{A}_r}{\sin \varphi_r} - cotg \varphi_r \right) \cdot \left(\mu \frac{\mathcal{A}_r}{\sin \varphi_r} - cotg \varphi_r \right) = 0
\]

(13)

führt, welche den von Neumann gegebenen entsprechen, mit dem Unterschiede dass bei uns die Richtung OA bei Neumann die Richtung OC festgehalten gedacht wird.

In den Formeln 13) bezeichnet φ die Neigung zweier Kanten, die von der Fläche (101) in den Abständen a und c geschnitten werden; es sind somit a und c die Parameter in der Symmetrieebene, m und μ sind die Bestimmungstücke jener (wirklichen oder möglichen) Krystallkanten, welche für jede Temperatur dieselbe Beziehung zu den Parametern besitzen und dabei rechte Winkel unter einander einschliessen.
Löst man 13) auf, so findet man

\[m \mu = \frac{\underline{a}_1 \cos \varphi - \underline{a}_2 \cos \varphi}{\underline{a}_1 \cos \varphi - \underline{a}_2 \cos \varphi} \]

\[m + \mu = \frac{\underline{a}_1^2 - \underline{a}_2^2}{\underline{a}_1 \cos \varphi - \underline{a}_2 \cos \varphi} \]

und hieraus

\[(14) \quad (m - \mu)^2 = \frac{\underline{a}_1^4 - 4 \underline{a}_1^2 \cos \varphi \cos \varphi, (\underline{a}_1^2 + \underline{a}_2^2) - 2 \underline{a}_1 \underline{a}_2 [1 - 2(\cos \varphi^2 + \cos \varphi^2)] + \underline{a}_2^2}{\underline{a}_1^2 \cos \varphi - \underline{a}_2 \cos \varphi} \]

Es ist nun klar, dass, so lange nicht weitere theoretische oder empirische Relationen gefunden werden, die über die Gesetze der angulären und linearen Änderungen durch die Erwärmung etwas feststellen, es unmöglich ist, die Existenz rechtwinkliger thermischer Axen in der Symmetrieebene im Allgemeinen nachzuweisen. Denn die Gleichung 14) steht auf Grundlage alles dessen was die Beobachtung bis jetzt ergeben hat. Es lässt sich aber aus der Form derselben nicht angeben, ob sie unter allen Umständen einen reellen Werth behält; ist der Zähler des Bruches positiv so existiren in der Symmetrieebene die gesuchten rechtwinkligen Axen; ist er negativ so fehlen sie.

Wir führen nun die Beobachtungen Michaels am Gips ein, um die Frage zu entscheiden. Neumann hat aus Veranlassung der Messungen Michaels bei erhöhter Temperatur 1) die genaue Bestimmung der krystallographischen Elemente des Gypses bei den gewöhnlichen mittleren Wärmegraden ausgeführt 2). Wenn man die Angaben der beiden Physiker zu Grunde legt, so erhält man

<table>
<thead>
<tr>
<th>für gewöhnliche Temperatur</th>
<th>für 100° C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(101) (101) = 20° 16′</td>
<td>23° 15′ 18″</td>
</tr>
<tr>
<td>(101) (100) = 52° 16′</td>
<td>52° 8′ 34″</td>
</tr>
<tr>
<td>(100) (110) = 34° 19′</td>
<td>34° 13′ 35″</td>
</tr>
<tr>
<td>(111) (100) = 54° 25′</td>
<td>54° 18′ 37″</td>
</tr>
<tr>
<td>(111) (010) = 71° 51′</td>
<td>71° 55′ 12″</td>
</tr>
<tr>
<td>(111) (001) = 33° 11′</td>
<td>33° 7′ 27″</td>
</tr>
<tr>
<td>(111) (101) = 18° 9′</td>
<td>18° 4′ 47″</td>
</tr>
</tbody>
</table>

1) Pogg. X, 151. XXI, 213.
2) Pogg. XXVII, 240. §. 3.
und hieraus 1) berechnen sich nach der bekannten Relation (Mille r's Krystallographie, deutsche Übersetzung S. 131)

\[b \cot (111.010) = a \sin (101.100) = c \sin (101.100) \]

die Parameter in beiden Fällen

\[\varphi = 80^\circ 32', \quad \varphi' = 80^\circ 23'52'', \]

\[a : b : c = 0.6922 : 1 : 0.4145, \quad a : b' : c = 0.6896 : 1 : 0.4135 \]

und es ist

\[\log \mu = 0.222714, \quad \log \mu' = 0.222150 \]

Substituirt man diese Werthe in 14), so wird

\[m - \mu = \pm \frac{0.133}{\sqrt{\mu}(\mu, \cos \varphi - \mu \cos \varphi)} \]

Sitzb. d. mathem.-natürw. Cl. XXXIII. Bd. Nr. 27.
Es gibt daher in der Symmetrieebene des Gypses keine rechtwinkligen thermischen Axen.

Wir untersuchten nun, ob es nicht wenigstens Linien von konstanter Winkeldifferenz gibt, die etwa zu den Theilungsrichtungen in der Symmetrieebene eine constante Beziehung haben.

Die Richtung der einen secundären Spaltbarkeit ist die der Orthopinakoidfläche (100). Setzt man demnach

\[P = (100), \quad m = \frac{l_r}{h_r} = 0 \]

so wird

\[\tan \theta \tan \varphi + 1 = 0 \quad \tan \theta, \tan \varphi, + 1 = 0 \]

als Bedingung der Beständigkeit der Zonen bezüglich \(P \);

\[\psi - \theta = \text{Const.} \quad \psi, - \theta, = \text{Const.} \]

als Bedingung der Beständigkeit des Winkels \(PR \). Die Bedingung der Unveränderlichkeit des Indices von \(R \) gibt

\[\frac{\tan \psi \tan \varphi + 1}{\tan \psi, \tan \varphi, + 1} = \frac{a \cos \varphi}{a, \cos \varphi} \]

Führt man in den Gleichungen für \(P \) den constanten Winkel \(C \) ein, so wird

\[\tan (\psi + C) \tan \varphi + 1 = 0 \quad \tan (\psi, + C) \tan \varphi, + 1 = 0 \]

was aufgelöst

\[\tan \psi \tan \varphi + 1 + \tan C \tan \varphi = \tan C \tan \psi \]
\[\tan \psi, \tan \varphi, + 1 + \tan C \tan \varphi, = \tan C \tan \psi, \]

gibt, woraus man durch die Elimination von \(C \)

\[\frac{\tan \psi - \tan \varphi}{\tan \psi, - \tan \varphi,} = \frac{\tan \psi \tan \varphi + 1}{\tan \psi, \tan \varphi, + 1} \]

erhält. Es ist aber

\[\tan \psi = \mu \frac{a}{\sin \varphi} - \cotg \varphi, \quad \tan \psi, = \mu \frac{a,}{\sin \varphi,} - \cotg \varphi, \]

folglich unter Berücksichtigung der beiden Gleichungen zwischen \(\psi \) und \(\varphi \)
Über die physikalischen Verhältnisse krystallisirter Körper.

\[
\frac{\mu \cos \varphi}{\mu \cos \varphi} = \sin \varphi, \quad \frac{\mu \cos \varphi}{\mu \cos \varphi} = \sec \varphi
\]

Woraus

\[
\mu = \frac{\mu_0 \sin \varphi - \mu_1 \sin \varphi}{\mu_0 \sin \varphi}
\]

(15)

gefunden wird. Dies gibt \(\mu = \frac{\pi}{4} \), also nahezu \(\frac{\pi}{\sqrt{2}} \). Es scheint also die Trace der Ebene der dritten Spaltungsebene, welche der Richtung (101), also \(\mu = -1 \) entspricht, mit der Änderung der Temperatur veränderliche Winkel mit 100 einzu- schliessen. Es liegt aber auch auf der Hand dass, so lange nicht genaue Messungen an einem und demselben Krystallindividuum bei verschiedenen Temperaturen gegeben sind, etwas Bestimmtes über die wahre Lage und den Winkel der Elastizitätssachen nicht ausgesagt werden kann.

Der Nachweis, dass es unmöglich ist, aus den bisherigen Ergebnissen der Beobachtung die Existenz rechtwinkeliger thermischer Axen im Allgemeinen zu erschliessen, lässt sich auch in folgender Weise führen.

Es sei \(OC \) die Richtung einer (möglichen oder wirklichen) Kante in der Symmetrieebene, bei gewöhnlicher Temperatur; \(OC' \) die Richtung derselben Kante bei erhöhter Temperatur. Die Kante \(OA \) werde während der Erwärmung in ihrer Richtung festgehalten; dabei liegen \(OC, OA \) in der Symmetrieebene. \(MM' \) und \(NN \) seien zwei andere Kanten, welche die \(OC \) und \(OA \) in den durch die Punkte \(c, d, a, e \) bezeichneten Verhältnissen schneiden; bei erhöhter Temperatur rücke \(a \) nach \(a' \), \(e \) nach \(e' \), \(c \) nach \(c' \), \(d \) nach \(d' \), folglich \(MM \) nach \(MM' \), \(NN \) nach \(NN' \).

Ist \(NN \) parallel der Geraden, welche den Punkt \(c \) mit einem zweiten Punkte \(c'' \) verbindet, den man erhält, wenn man durch \(a \) eine Parallele mit \(MM' \) bis zum Durchschnitt mit \(OC \) zieht, so wird der Winkel \(NN', OA \) gleich dem Winkel \(NN', OA \), d. i. \(NN' \) bleibt parallel \(NN \).
Beweis. Man ziehe ed' parallel NN'. Nun ist

\[Oc : Od = Oc' : Od' \]
\[Oa : Oe = Oa' : Oe' \]

wegen der Erhaltung der Zonen; aber zugleich

\[Oc' : Oc'' = Oa' : Oa \]
\[Od' : Od'' = Oe' : Oe \]

Schreiben wir das zweite Verhältniss in der Form

\[Oa' : Oa = Oe' : Oe \]

so gibt es mit den beiden letzten

\[Oc' : Oc'' = Od' : Od'' \]
\[d. i. \quad Oc' : Od' = Oc'' : Od'' \]

dies aber gibt mit dem ersten Verhältniss

\[Oc : Od = Oc'' : Od'' \]

woraus folgt, dass dd'' parallel cc'' ist. Aber der Voraussetzung nach ist NN parallel cc'', folglich fällt d' in die Linie NN und NN' ist parallel NN, was zu beweisen war.

Man sieht hieraus, dass für jede gegebene Linie im Krystall eine zweite conjugirte 1) vorhanden ist, welche ihre Richtung gegen die erstere im Verlaufe der Erwärmung nicht ändert; aber auch zugleich dass es nach den bis jetzt bekannten Thatssachen durchaus nicht notwendig ist, dass die mit einer Krystallkante conjugirte Gerade selbst wieder eine (mögliche oder wirkliche) Krystallkante (d. i. dass

\[Oc : Od \quad \text{durch einfache rationale Zahlen ausdrückbar} \]
\[Oa : Oe \]

durch einfache rationale Zahlen ausdrückbar) sei, und dass

in der Symmetrieebene zwei solche Richtungen mit einander rechte Winkel einschliessen, denn dies hängt ganz von den Ausdehnungs-

Coefficienten $\frac{Oc'}{Oc}, \frac{Oa'}{Oa}$ und dem Winkelverhältniss $\frac{COA}{COA}$ ab, über deren Werthe a priori nichts zu bestimmen ist.

Die Ermittlung der Lage und des Winkels der wahren thermischen Axen in monoklinoödrischen Krystallen durch Beobachtung

1) Es ist angenommen, dass der Gang des Punktes C durch eine gerade Linie dargestellt werden kann, was bei der Kleinheit der Änderungen bis auf kleine Grössen zweiter Ordnung streng richtig ist.
wird eine unserer nächsten Aufgaben sein. Es ist zu erwarten, dass die Maxima und Minima der Ausdehnung rechtwinklig auf einander stehen und ihrer Lage nach Functionen der Temperatur sind.

Über die Dispersion der Hauptschwingungsrichtungen in Krystallen der klinoödrischen Systeme.

Bekanntlich war Nörrenberg 1) schon 1832, und gleichzeitig Herschel 2) darauf aufmerksam geworden, dass sich die Ebenen der optischen Axen für verschiedene Farben im Borax durchkreuzen; zugleich entdeckte Nörrenberg 3), dass die Axen im Gyps zwar in einer Ebene liegen, dass aber die erste Mittellinie für verschiedene Farben eine verschiedene Lage hat; Neumann 4) bestätigte dies und bestimmte die Lage der Axen näher, indem er zugleich die von Mitscherlich 5) beobachtete Thatsache constatierte, dass der Winkel der optischen Axen des Gyps für verschiedene Temperaturen sich ändert. Brewster 6) fand eine ganz ähnliche Erscheinung am Glauberit. Miller 7) beobachtete bald darauf, dass in einigen Substanzen (chlorsaures Kali, Feldspat) die Tracen der Ebenen der optischen Axen parallel erscheinen, und nur die zweite Mittellinie für alle Farben dieselbe Richtung hat 8).

1) Pogg. XXVI, 309. XXXV, 382.
2) Pogg. XXVI, 308.
3) Pogg. XXXV, 81.
4) Pogg. XXXV, 81, 203.
5) Pogg. VIII, 519.
6) Pogg. XXI, 607. XXVII, 480.
7) Pogg. XXXVII, 366. LV, 624.
8) Die nach diesen Beobachtungen constatirten verschiedenen Dispositionen der Ebenen der optischen Axen hat zuerst Ångström (Act. Ups. 14, 354) dargestellt; später wurden sie von Beer der Aufzählung der optischen Constanten der monoklinödrischen Krystalle in seiner trefflichen Einleitung in die höhere Optik (S. 391) vorgestellt. In der deutschen Bearbeitung von Miller's Krystallographie findet sich Taf. XIV und XV die graphische Darstellung, und zwar repräsentirt Fig. 160 die Verhältnisse des Borax, Fig. 161 die des Adulares, Fig. 162 die des Gyps.
Es wurde bald erkannt, wie diese Verhältnisse mit der Fresnel'schen Theorie im Widerspruch stehen. Bei Fresnel sind die Elasticitätsaxen stets rechtwinklig und ihrer Lage und Grösse nach von der Farbe unabhängig. Es ist darum weder eine Dispersion der Strahlen noch eine Dispersion von Vibrationsrichtungen daraus abzuleiten. Dadurch dass Cauchy in der Entwicklung der Reihen, welche die Differenzen der Verschiebungen angeben, bis zu Grössen der vierten Ordnung aufstieg, wurde zwar für die Dispersion in doppelbrechenden Substanzen, insofern sie in das rhomboedrische, tetragonale und rhombische System gehören, ein Ausdruck gewonnen, der durch ein Eliminationsverfahren zu allgemeinen Relationen zwischen den Brechungsexponenten und Wellenlängen führt; die Dispersion der Elasticitätsaxen aber blieb unerklärt. Neumann 1) war der erste, der auf den Widerspruch zwischen der Theorie und dieser Erscheinung aufmerksam machte; auch Mac Cullagh 2) entdeckte darin eine unüberwindliche Schwierigkeit, die durch seinen späteren Versuch einer Theorie nicht gehoben ist; Radicke 3), der Cauchy's Dispersionscalcül auf rhombische Krystalle mit Erfolg anwandte, glaubte für die klinoeidrischen Substanzen annehmen zu müssen, dass im Zustande des Gleichgewichts die Wirkungen auf einen Punkt in genau entgegengesetzten Richtungen sich nicht vollständig aufheben. Erst Ångström 4) gelangte durch die Annahme schiefwinkliger Elasticitätsaxen zu Formeln, welche wenigstens auf eine Abhängigkeit der Hauptschwingungsrichtungen von der Temperatur schliessen lassen.

Abhandlungen die Rechnung durchzuführen. Mac Cullagh geht
nämlich von der allgemeinen Bewegungsgleichung
\[\iiint dx
dy
dz \left(\frac{d^2 \xi}{dx^2} \frac{d \xi}{dx} + \frac{d^2 y}{dt^2}
\frac{d \eta}{dt} + \frac{d^2 \zeta}{ds^2} \frac{d \zeta}{ds} \right) = \iiint dx
dy
dz \delta V \]
aus, wo \(V \) eine Funktion des zweiten Grades ist, welche von der
Formänderung eines Ätherparallelepipeds im Verlaufe der vibrato-
rischen Bewegung abhängig ist, wobei noch die Voraussetzung ge-
macht wird, dass die Dichte des Äthers weder durch die Einwirkung
der Körpertheilchen noch auch durch die Wellenbewegung verändert
werden kann, also
\[\frac{d^2 \xi}{dx^2} + \frac{d \eta}{dy} + \frac{d \zeta}{dz} = 0 \]

ist. Zur Bestimmung der Form von \(V \) führt Mac Cullagh eine
Hypothese ein: er nimmt nämlich an, dass es als eine quadratische
Function von
\[X = \frac{d \eta}{dz} - \frac{d \xi}{dy} \quad Y = \frac{d \xi}{dz} - \frac{d \zeta}{dx} \quad Z = \frac{d \zeta}{dy} - \frac{d \eta}{dx} \]
\[X', = \frac{d Y}{dz} - \frac{d Z}{dy} \quad Y', = \frac{d Z}{dz} - \frac{d X}{dx} \quad Z', = \frac{d X}{dy} - \frac{d Y}{dx} \]
\[X'', = \frac{d Y'}{dz} - \frac{d Z'}{dy} \quad Y'', = \frac{d Z'}{dz} - \frac{d X'}{dx} \quad Z'', = \frac{d X'}{dy} - \frac{d Y'}{dx} \]
betrachtet werden kann. Krystalle ohneCircularpolarisation sollen
durch die Funktion von
\[X \ Y \ Z \quad X', \ Y', \ Z' \quad X'' \ Y'' \ Z'' \]
repräsentirt werden, während im Quarz und ähnlichen Körpren noch
die abwechselnden ungeraden Derivaten
\[X, \ Y, \ Z \quad X', \ Y', \ Z' \quad X'', \ Y'', \ Z'' \]
hinzutreten. Wir haben nach diesen Andeutungen, auf welche sich Mac
Cullagh beschränkt, die Analyse durchgeführt, und theilen sie in der
Note am Schlusse dieser Abhandlung (S. 443) mit. Da es sich zunächst
nur um die Dispersion in klinoödrischen Krystallen handelt, haben wir
die Glieder, welche die Circularpolarisation betreffen, übergangen.

Man ersieht daraus:
1) dass im Allgemeinen jeder ebenen Welle zweierlei Fortpflan-
zungs geschwindigkeit entspricht;
2) dass die Schwingungen dabei rechtwinklig gegen einander gerichtet sind;
3) dass die Schwingungsrichtung von den durch die Buchstaben a_1, b_1, c_1 ausgedrückten Molekularconstanten und von $\frac{1}{\lambda^6}$, $\frac{1}{\lambda^8}$ abhängt. Mac Cullagh gibt zwar an, dass die Coefficienten die Form

$$A_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4} + \frac{A_3}{\lambda^6} + \ldots$$

erhalten; doch verschwinden mit den Derivaten der n-ten Ordnung nothwendig auch die Coefficienten A_n;

4) dass die Fresnel'sche Construction für homogenes Licht nach diesem Werth ausführbar ist und nur für jede Farbe die Elasticitätsfläche andere Dimensionen und andere Lage erhält.

über die physikalischen Verhältnisse kristallisirter Körper.

Dies ist möglich, man mag von der Annahme unveränderlicher Dichte oder unveränderlicher Elasticität ausgehen; würde in Neumann's Theorie der Doppelbrechung die Voraussetzung eingeführt, dass die Anziehungsfunktion variiert, nach der Form des Combinationshabitus monoklinöödrischer Krystalle, so müste diese ebenso zur Dispersion in der Symmetriebene führen.

In MacCullagh's Theorie ist durch die Einführung unbestimmter Coefficienten der geforderte Zusammenhang verhüllt. Es ist kein Zweifel, dass man durch eine schliessliche Gruppierung der Coefficienten zu Bedingungsgleichungen die Verhältnisse der Krystalle nachahmen kann; aber diese Gruppierung lehrt immer noch nichts über den möglichen Sinn der Constanten, und wenn MacCullagh einen besondern Vorzug seiner Theorie darin sieht, dass sie über die völlig unbekannte Anordnung der Theilchen und die Anziehungsfunction nichts auszusagen braucht, so können wir nicht beipflichten; denn das, was eine Theorie unfurchtbar macht, was sie der Fähigkeit beraubt in Beziehung zu andern, gleichzeitig existirenden Verhält- nissen zu treten, kann kein Vorzug derselben sein. Sie verliert dadurch den wesentlichen Charakter einer physikalischen Theorie. —

2) Pflanzen die Körpertheilchen diese Bewegung nach aussen fort, so entsteht Wärme; übertragen sie dieselbe wieder auf den sie umhüllenden Äther, so erscheint Fluores- cenz. Auf diese Weise, scheint es, kann man die rathselhafte Erscheinung der dyna- mischen Theorie einreihen. Vergl. kristallographisch-optische Untersuchungen, S. 66.
Indem Ångström von der ersten Art der Perturbation absieht, untersucht er die letztere näher. Man bestimmt die Wirkung, welche die Körperteilchen von ihrer Ruhelage aus üben, gewöhnlich dadurch, dass man die Summen

\[A\xi + P\eta + Q\zeta, P\xi + B\eta + R\zeta, Q\xi + R\eta + C\zeta \]

bildet, wo \(A, B, C \ldots \) die bekannten Molekularsummen, \(\xi, \zeta \) die Verschiebungen des Äthertheilchens bezeichnen. Dies ist nach Ångström nicht hinreichend. Denn dadurch wird zwar der Einfluss bestimmt, den die Körperteilchen direct auf das in seiner Bewegung betrachtete Äthertheilchen ausüben, so wie der Einfluss den sie dadurch indirect auf die Bewegung der übrigen Äthertheilchen nehmen, insofern diese, sobald das erste sich unter dem Einfluss der Körperteilchen bewegt, in anderer Weise durch dasselbe affeirt werden, als wenn die Körperteilchen nicht vorhanden wären. Aber man bestimmt dadurch nicht den Einfluss, den die Körperteilchen auf die durch die Perturbation des ersten Theilchens bewegten übrigen Ätherpartikel direct ausüben, folglich auch nicht die indirecte Einwirkung der letzteren auf das erste Ätherpartikel. Es sind nämlich, wenn wegen der Verschiebung \(\xi, \eta, \zeta \) ein zweites Äthertheilchen um \(\xi', \eta', \zeta' \) verschoben wird, auch hier die perturbirenden Kräfte

\[A\xi' + P\eta' + Q\zeta', P\xi' + B\eta' + R\zeta', Q\xi' + R\eta' + C\zeta' \]

thätigt. Man hat somit, wenn man nur die Verschiebungs differenzen sämtlicher Theilchen innerhalb der Wirkungssphäre betrachtet,

\[S\Delta\xi + S\Delta\eta + S\Delta\zeta, S\Delta\xi + S\Delta\eta + S\Delta\zeta \]
\[S\Delta\xi + S\Delta\eta + S\Delta\zeta \]

als den Ausdruck der Perturbationsglieder dieser Ordnung.

Diese Grössen, die in Cauchy's Calcul vernachlässigt werden, können durch die Summierung sehr beträchtlich werden; wie es schon von Neumann in der Theorie der gekühlten Gläser nachgewiesen worden. Indem nun Ångström auch die perturbirende Wirkung der Körperteilchen als eine Funktion der Entfernung der Ätherpartikel einführt, wird, wenn \(f(r) \) die reine Ätherfunction, \(\psi(r) \) die Perturbationsfunction bezeichnet, der Ausdruck der gegenseitigen Action zweier Äthertheilchen \(= mn[f(r) - \psi(r)] \). Der Einwurf Broeh's, dass die Cauchy'sche Dispersionstheorie unzulässig sei, da die
relativen Verschiebungen innerhalb der Wirkungssphäre eines Ätheratoms niemals so gross werden können, um die Entwicklung von \(\Delta \xi, \Delta \eta, \Delta \zeta \) nach mehr als zwei Gliedern zu rechtfertigen, darf nun auf diese zusammengesetzte Function nicht angewendet werden; denn es ist gewiss die Wirkungssphäre eines ponderablen Atoms weit grösser als die eines Äthertheilchens, und wenn ihr Durchmesser einen merklichen Bruchtheil einer Wellenlänge ausmacht, müssen auch die höheren Glieder jener Entwicklung von Einfluss werden. Wenn nun aber Ångström trotzdem nur die ersten Glieder der Entwicklung beibehält, schliesst er selbst die Dispersionsglieder wieder aus. Dass in den Gleichungen, welche die Geschwindigkeit der beiden Strahlen ausdrücken, die Summen

\[
S m \frac{d \varphi(r)}{r dr} \cdot \frac{x^2 y^2}{2}, S m \frac{d \varphi(r)}{r dr} \cdot \frac{x^2 y^2}{2}, S m \frac{d \varphi(r)}{r dr} \cdot \frac{y^2 z^2}{2}
\]

vorkommen (wo \(\varphi(r) = \frac{f(r) - \psi(r)}{r} \) ist, und \(x', y', z' \) die relativen Coordinaten der Ätherpunkte sind, also \(r^2 = (x-x')^2 + (y-y')^2 + (z-z')^2 \)), macht sie noch nicht von der Wellenlänge abhängig; denn die Änderung von \(\varphi(r) \), respective \(\psi(r) \), welche noch in Betracht kommt, erstreckt sich zwar über Punkte, die um einen merklichen Bruchtheil einer Wellenlänge von einander entfernt sein können, aber sie selbst ist keine Function der Wellenlänge. Die Einführung eines schiefwinkligen Elasticitäts-Axensystems kann daher nur dazu führen, für eine homogene gegebene Farbe die Lage der Hauptschwingungsrichtungen zu bestimmen; aber es gibt nicht die Glieder, welche die Änderung dieser Richtungen als Function der Änderung der Farbe ausdrücken.

Wenn Cauchy's Dispersionformeln durch die Beobachtung bestätigt werden, so hat dies seinen Grund in dem Eliminationsverfahren, durch welches alle Molecularconstanten entfernt und dadurch die unterscheidenden Merkmale der beiden Ansichten beseitigt werden. So lange es sich um allgemeine Relationen handelt, kann der Weg der Elimination eingehalten werden; er führt zu empirischen Formeln, die eine Vergleichung mit der Beobachtung zulassen; soll aber die Dispersion als das, was sie ist, als Function der Wirkung der Körpertheilchen dargestellt werden, so wird man die Berücksichtigung der Function \(\psi(r) \) nicht unterlassen dürfen. Leider fehlt
aber bisher jeder Anhaltspunkt zu einer Vermuthung über die Natur der beiden mit \(f(r) \) und \(\phi(r) \) bezeichneten Funktionen; man kann darum auch nicht wohl von einer Theorie der Doppelbrechung sprechen, insofern bis jetzt alles auf die Discussion gewisser Symmetriebedingungen hinausläuft, die wirkenden Molekularkräfte seien welcher Art immer.

2. Wir haben es versucht auf einem Wege, der sich genau den Thatsachen der Erfahrung anschliesst, die Dispersionsverhältnisse klinoëdrischer Krystalle abzuleiten.

Man kann einen Krystall als das Ergebniss des Zusammenwirkens der anziehenden und abstossenden Kräfte betrachten, welche zwischen dem Äther und Körpertheilchen walten. Wie auch immer die ebenflächige Begrenzung und Spaltbarkeit mit der eigentlichen Lagerung der Atome und Moleküle zusammenhängen mag, so muss doch diese Lagerung nach solchen Symmetriegesetzen statthaben, wie sie im Combinationshabitus des Krystalles ausgesprochen sind. Da aber Äther und Materie sich in ihrer Anordnung gegenseitig bedingen, so muss nothwendig dieselbe Symmetrie, welche in der Anordnung der Körpertheilchen waltet, auch in der Vertheilung der Äthertheilchen wieder zu finden sein. Es sind zwar sorgfältig zweierlei Systeme zu unterscheiden: das der complexen Moleküle, die aus den Atomen als den letzten Masseneinheiten sich zusammensetzen, und das des Krystallkörpers, dessen nächste Bestandstücke die complexen Moleküle bilden; die Stabilität des ersten Systemes ist in dem Massse grösser als die chemischen Kräfte die mechanischen übertreffen. Die optischen Verhältnisse hängen aber, wie im nächsten Abschnitte bewiesen werden wird, wesentlich und zunächst von der Constitution des Moleküles ab, und es ist nicht unwahrscheinlich, dass die Elasticitätsaxen des Äthers zugleich die des Moleküles, dagegen die thermischen Axen die Elasticitätsaxen des zweiten Systemes, des Krystallganzen sind. Da die Krystallform durch die Form der Moleküle bedingt ist, so muss man in dem Bau der Moleküle eine ähnliche Symmetrie vermuten, wie sie an dem Krystallganzen beobachtet wird, und man muss daher auch annehmen, dass die Äthertheilchen im Molekül eine ähnliche Anordnung besitzen. Dass diese Annahme zu naturgemässen Folgerungen führt, werden die folgenden Paragraphen beweisen.

Wir wissen aber nichts von der wahren Lage der Elasticitätsaxen; weder die des ersten noch die des zweiten Systems sind bis
jetzt ermittelt. Die Krystallisation selbst bietet eine gewisse Schwierig-keit dar, welche bis jetzt unlösbar erscheint; die Hemiödrie. Wenn in der Symmetrieebene der monoklinödrischen Krystalle zwei schiefwinklige Elasticitätsaxen \(x, \ z \) sind, so sollte bezüglich dieser jedes Orthodoma vier Flächen haben, da

\[
S^m \varphi (r) \ x' \ z'
\]

gleich Null ist, d. i. für jeden der Punkte \(x, \ z \) drei andere Punkte
\(- x, \ z; \ x, - z; \ - x - z\) coexistirem. Und doch kommt häufig nur ein halbes Orthodoma vor, und man wird zur Erklärung an die Hemiödrie der orthogonalen Systeme verwiesen, welche selbst wieder aus demselben Grunde mit den Grundeigenschaften eines stabilen Systems in Widerspruch scheinen. Wir haben daher die Vertheilung der Ätheratome nicht auf Elasticitätsaxen bezogen, wodurch die Rechnung zugleich um ein Bedeutendes vereinfacht wird, ohne dass die Allgemeinheit der Resultate beeinträchtigt würde.

Die Differentialgleichungen für die unendlich kleinen Verschiebungen eines Systems von Punkten die sich gegenseitig anziehen oder abstossen, sind bekanntlich

\[
\frac{d^2 \xi}{dt^2} = L \xi + R \eta + Q \zeta
\]
\[
\frac{d^2 \eta}{dt^2} = R \xi + M \eta + P \zeta
\]
\[
\frac{d^2 \zeta}{dt^2} = Q \xi + P \eta + N \zeta
\]

wo \(L, M, N \ldots \) Operationszeichen sind, von folgender Bedeutung

\[
L = S \left\{ \varphi (r) + \frac{x'^2}{r} \cdot \frac{d \varphi (r)}{dr} \right\} \left(\frac{d}{dx} x' + \frac{d}{dy} y' + \frac{d}{dz} z' - 1 \right)
\]
\[
M = S \left\{ \varphi (r) + \frac{y'^2}{r} \cdot \frac{d \varphi (r)}{dr} \right\} \left(\frac{d}{dx} x' + \frac{d}{dy} y' + \frac{d}{dz} z' - 1 \right)
\]
\[
N = S \left\{ \varphi (r) + \frac{z'^2}{r} \cdot \frac{d \varphi (r)}{dr} \right\} \left(\frac{d}{dx} x' + \frac{d}{dy} y' + \frac{d}{dz} z' - 1 \right)
\]
\[P = S \left\{ \frac{\varphi'(r)}{r} \cdot \frac{d\varphi(r)}{dr} \left(e^{\frac{d}{dr}} + \frac{x'}{a} + \frac{y'}{b} + \frac{z'}{c} - 1 \right) \right\} \]
\[Q = S \left\{ \frac{x'}{r} \cdot \frac{d\varphi(r)}{dr} \left(e^{\frac{d}{dr}} + \frac{y'}{b} + \frac{z'}{c} - 1 \right) \right\} \]
\[R = S \left\{ \frac{y'}{r} \cdot \frac{d\varphi(r)}{dr} \left(e^{\frac{d}{dr}} + \frac{z'}{c} + \frac{z}{d} - 1 \right) \right\} \]

\(r \) ist die Entfernung zweier Äthertheilchen, deren rechtwinkelige Koordinaten \(x, y, z \) und \(x' + x', y' + y', z' + z' \) sind; die Summierung bezieht sich auf alle \(x', y', z' \), die noch für die Funktion \(\varphi \) in Betracht kommen.

Die Masse \(m \) eines Äthertheilchens ist dabei gleich eins gesetzt.

Da
\[\varphi(r) = \frac{f(r) - \Psi(r)}{r} \]
so wird
\[\frac{d\varphi(r)}{dr} = \frac{1}{r} \left(\frac{\psi(r)}{r} - \frac{d\psi(r)}{dr} \right) - \frac{1}{r} \left(\frac{f(r)}{r} - \frac{df(r)}{dr} \right) \]
Setzen wir
\[\frac{1}{r} \left(\frac{\psi(r)}{r} - \frac{d\psi(r)}{dr} \right) = \Psi(r), \quad \frac{1}{r} \left(\frac{f(r)}{r} - \frac{df(r)}{dr} \right) = F(r) \]
so werden bei der Entwicklung der Exponentiellen in Reihenform für \(f(r) \) und \(F(r) \) nur die ersten Glieder in Betracht kommen können, während für \(\psi(r) \) und \(\Psi(r) \) auch noch die höheren Bedeutung haben.

Werden in den Differentialgleichungen die partiellaren Integrale
\[\left(\frac{2\pi}{\lambda} (ux + vy + wz) - s \right) \int \frac{1}{r} \]
\[\xi = A e \]
\[\left(\frac{2\pi}{\lambda} (ux + vy + wz) - s \right) \int \frac{1}{r} \]
\[\eta = B e \]
\[\left(\frac{2\pi}{\lambda} (ux + vy + wz) - s \right) \int \frac{1}{r} \]
\[\zeta = C e \]
eingeführt, so erhält man die Substitutions-Gleichungen
\[A s = \xi A + \Re B + \Im C \]
\[B s = \Re A + \Im B + \Re C \]
\[C s = \Im A + \Re B + \Im C \]
welche durch die Elimination von \(A, B, C \) eine cubische Gleichung für \(s^2 \) liefern. Die deutschen Buchstaben bedeuten nicht ferner symbolische Operationszeichen, sondern es ist

\[
\mathfrak{C} = S \left\{ \left(\varphi \left(\frac{r}{s} \right) + \frac{z}{r} \right) \cdot \frac{d}{dr} \left(e^{\frac{2\pi}{\lambda} \left(ux' + vy' + wz' \right)} - 1 \right) \right\}
\]

\[
\mathfrak{N} = S \left\{ \left(\varphi \left(\frac{r}{s} \right) + \frac{y}{r} \right) \cdot \frac{d}{dr} \left(e^{\frac{2\pi}{\lambda} \left(ux' + vy' + wz' \right)} - 1 \right) \right\}
\]

u. s. f.

Die Coeffizienten \(\mathfrak{C}, \mathfrak{N} \ldots \) der cubischen Gleichung ordnen sich genau in derselben Form, wie die gleichnamigen Coeffizienten der Gleichung des Ellipsoides

\[
\mathfrak{C}x^2 + \mathfrak{N}y^2 + \mathfrak{R}z^2 + 2 \mathfrak{Q}yz + 2 \mathfrak{Q}zx + 2 \mathfrak{R}xy = 1 \tag{1}
\]

sobald man die Grösse und Richtung der Hauptachsen aufsucht. Es werden somit die drei Werthe von \(s^2 \) den reciproken Werthen der Längen der Hauptachsen dieses Ellipsoides entsprechen, und durch die obigen Substitutionsgleichungen solche Werthe von \(A, B, C \) liefern, die drei unter einander rechtwinkligen Richtungen entsprechen.

Da nun \(s = \frac{2\pi}{r} \), so werden die reciproken Werthe der Hauptachsen, multipliziert mit \(\left(\frac{\lambda}{2\pi} \right)^2 \) zugleich die Quadrate der Fortpflanzungsgeschwindigkeit geben. Das Ellipsoid (1) kann deshalb dazu dienen die Schwingungsrichtungen und Fortpflanzungsgeschwindigkeiten zu bestimmen, welche einer gegebenen ebenen Welle

\[
ux + vy + wz = 1
\]

entsprechen; es ist Cauchy's Polarisationssphäroid.

Wird in \(\mathfrak{C}, \mathfrak{N} \ldots \) die Exponentielle entwickelt, so zerfällt jeder dieser Coeffizienten in eine Reihe von Summen, von denen einige wegen der Symmetrie der Anordnung der Äthertheilchen für sich gleich Null sind. Wir wollen zunächst die Bedingungen dafür untersuchen, sehen dabei aber sowohl von der enantiomorphen als auch hemimorphen Hemiedrie ab.

Den allgemeinsten Fall bietet dann das triklinödrische System dar. Indem hier eine Fläche immer nur eine parallele Gegen-
flächen und gar keine Nebenfläche bedingt, so entspricht jedem Punkte ein Gegenpunkt und weiter nichts. Es müssen also die Punkte $x' y' z' - x' - y' - z'$ coexistieren.

Nehmen wir an, dass die Axe y mit der Symmetrieaxe des monoklinödrischen Systemes zusammenfällt, so haben wir, da in diesem Systeme jeder Fläche eine parallele Gegenfläche entspricht und zugleich Symmetrie rechts und links von der Symmetrieebene herrscht, die conjugirten Punkte

$$x' y' z' - x' - y' - z'$$

$$x' y' z' - x' - y' - z'$$

$$x' y' z' - x' - y' - z'$$

Im rhombischen Systeme wird wegen der drei auf einander rechtwinkligen Krystallachsen das Coordinatensystem mit diesen zusammenfallen können, und es ergeben sich hieraus die schon von Cauchy und Poisson berücksichtigten conjugirten Systeme

$$x' y' z' - x' - y' - z'$$

$$x' y' z' - x' - y' - z'$$

$$x' y' z' - x' - y' - z'$$

Hieraus folgt, dass jede Summe $S A x^n y^n z^n$ Null ist

1) im triklinödrischen Systeme, wenn $m + n + p$ ungerade;
2) im monoklinödrischen Systeme, wenn $m + n + p$ ungerade oder $m + n + p$ gerade, aber n ungerade;
3) im rhombischen Systeme, wenn $m + n + p$ ungerade oder $m + n + p$ gerade, aber entweder m, oder n, oder p ungerade ist.

Aus dieser Betrachtung ergibt sich, dass in der Entwicklungs der Exponentiellen

$$e^{2\pi ith} (ux' + vy' + wz')$$

$$= \sum_{n=0}^{\infty} \frac{2\pi}{\lambda} (ux' + vy' + wz')$$

$$+ \frac{1}{2} \left(\frac{2\pi}{\lambda}\right)^2 (ux' + vy' + wz')^2 + \frac{1}{1 \cdot 2 \cdot 3} \left(\frac{2\pi}{\lambda}\right)^3 (ux' + vy' + wz')^3$$

$$+ \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \left(\frac{2\pi}{\lambda}\right)^4 (ux' + vy' + wz')^4 + \ldots$$

die Glieder mit ungeraden Exponenten bei der Substitution in die Summen Ausdrücke vom Werthe Null liefern; es bleibt somit, wenn
wir uns mit der zweiten Approximation begnügen, nur das zweite und vierte Glied übrig. In triklinoödrischen Krystallen würde keine weitere Vereinfachung mehr eintreten; im monoklinoödrischen Systeme ist dies jedoch der Fall und wir gehen auf die nähere Untersuchung der Verhältnisse dieses Systems über.

3. Setzt man

\[
\begin{align*}
\varphi(r) + \frac{x^2}{r} \cdot \frac{d\varphi(r)}{dr} &= X \\
\varphi(r) + \frac{y^2}{r} \cdot \frac{d\varphi(r)}{dr} &= Y \\
\varphi(r) + \frac{z^2}{r} \cdot \frac{d\varphi(r)}{dr} &= Z \\
\end{align*}
\]

\[
\frac{m}{2} Sx'x^2 = \alpha \quad \frac{m}{2} Sy'x^2 = b \quad \frac{m}{2} Sz'x^2 = c \quad mSx'x'z' = \alpha \\
\frac{m}{2} Sx'y^2 = \alpha' \quad \frac{m}{2} Sy'y^2 = b' \quad \frac{m}{2} Sz'y^2 = c' \quad mSy'x'z' = \beta \\
\frac{m}{2} Sx'z^2 = \alpha'' \quad \frac{m}{2} Sy'z^2 = b'' \quad \frac{m}{2} Sz'z^2 = c'' \quad mSz'x'z' = \gamma
\]

\[
\begin{align*}
\frac{m\pi^2}{6} Sx'x' = d & \quad \frac{m\pi^2}{6} Sy'x' = e \quad \frac{m\pi^2}{6} Sz'x' = f \\
\frac{m\pi^2}{6} Sx'y^2 = d' & \quad \frac{m\pi^2}{6} Sy'y^2 = e' \quad \frac{m\pi^2}{6} Sz'y^2 = f' \\
\frac{m\pi^2}{6} Sx'z^2 = d'' & \quad \frac{m\pi^2}{6} Sy'z^2 = e'' \quad \frac{m\pi^2}{6} Sz'z^2 = f''
\end{align*}
\]

\[
\begin{align*}
\frac{2m\pi^2}{3} Sx'x'z' = \delta & \quad \frac{2m\pi^2}{3} Sy'x'z' = \epsilon \quad \frac{2m\pi^2}{3} Sz'x'z' = \zeta \\
\frac{2m\pi^2}{3} Sx'y^2z' = \delta' & \quad \frac{2m\pi^2}{3} Sy'y^2z' = \epsilon' \quad \frac{2m\pi^2}{3} Sz'y^2z' = \zeta' \\
\frac{2m\pi^2}{3} Sx'z^2z' = \delta'' & \quad \frac{2m\pi^2}{3} Sy'z^2z' = \epsilon'' \quad \frac{2m\pi^2}{3} Sz'z^2z' = \zeta''
\end{align*}
\]

\[
\begin{align*}
mm^2 Sx'x^2z'z' = g & \quad mm^2 Sy'x^2z'z' = h \quad mm^2 Sz'x^2z'z' = i \\
mm^2 Sx'y^2z^2 = g' & \quad mm^2 Sy'y^2z^2 = h' \quad mm^2 Sz'y^2z^2 = i' \\
mm^2 Sx'z^2y^2 = g'' & \quad mm^2 Sy'z^2y^2 = h'' \quad mm^2 Sz'z^2y^2 = i''
\end{align*}
\]

\[
\begin{align*}
\frac{m}{2} S\bar{Y}x' = \mu & \quad \frac{m}{2} S\bar{X}y' = n \quad \frac{m\pi^2}{6} S\bar{Y}x' = \nu \\
\frac{m}{2} S\bar{Y}y' = \mu' & \quad \frac{m}{2} S\bar{X}y' = n' \quad \frac{m\pi^2}{6} S\bar{Y}y' = \nu' \\
\frac{m}{2} S\bar{Y}z' = \mu'' & \quad \frac{m}{2} S\bar{Z}y'x' = n'' \quad \frac{m\pi^2}{6} S\bar{Y}z' = \nu''
\end{align*}
\]

Sitzb. d. mathem.-natürw. Cl. XXXIII. Bd. Nr. 27.
\[\frac{2m^2}{3} \bar{S} \bar{X} x^2 z^2 y^2 = \theta \quad \frac{2m^2}{3} S \bar{Y} x^2 z^2 = \rho \quad \frac{2m^2}{3} \bar{S} \bar{Z} x^2 y^2 = \eta \]
\[2m^2 \bar{S} \bar{X} x^2 z^2 y^2 = \theta' \quad 2m^2 S \bar{Y} x^2 z^2 y^2 = \rho' \quad 2m^2 S \bar{Z} x^2 z^2 y^2 = \eta' \]
\[\frac{2m^2}{3} S \bar{X} x^2 y^2 = \theta'' \quad \frac{2m^2}{3} S \bar{Y} x^2 z^2 = \rho'' \quad \frac{2m^2}{3} S \bar{Z} x^2 y^2 = \eta'' \]

\[\frac{2m^2}{3} \bar{S} \bar{X} z^2 y^2 = \chi \quad \frac{2m^2}{3} S \bar{Y} z^2 z^2 = \sigma \quad \frac{2m^2}{3} S \bar{Z} z^2 y^2 = \xi \]
\[2m^2 \bar{S} \bar{X} z^2 x^2 y^2 = \chi' \quad 2m^2 S \bar{Y} z^2 x^2 z^2 = \sigma' \quad 2m^2 S \bar{Z} z^2 x^2 y^2 = \xi' \]
\[\frac{2m^2}{3} S \bar{X} x^2 y^2 = \chi'' \quad \frac{2m^2}{3} S \bar{Y} y^2 z^2 = \sigma'' \quad \frac{2m^2}{3} S \bar{Z} y^2 x^2 = \xi'' \]

so erhält man für die Coefficienten des Polarisationsellipsoides, indem man zugleich jedes Glied mit \(\left(\frac{\lambda}{2\pi} \right)^3 \) multipliziert.

\[\Xi = a u^2 + a' v^2 + a'' w^2 + \alpha u w \]
\[+ \frac{1}{\lambda^3} \left[d u^4 + d' v^4 + d'' w^4 + g v^2 w^2 + g' u^2 w^2 + g'' u^2 v^2 \right. \]
\[+ u w (d u^2 + d' v^2 + d'' w^2) \]

\[\mathcal{M} = b u^2 + b' v^2 + b'' w^2 + \beta u w \]
\[+ \frac{1}{\lambda^3} \left[e u^4 + e' v^4 + e'' w^4 + h v^2 w^2 + h' u^2 w^2 + h'' u^2 v^2 \right. \]
\[+ u w (e u^2 + e' v^2 + e'' w^2) \]

\[\mathcal{N} = c u^2 + c' v^2 + c'' w^2 + \gamma u w \]
\[+ \frac{1}{\lambda^3} \left[f u^4 + f' v^4 + f'' w^4 + i v^2 w^2 + i' u^2 w^2 + i'' u^2 v^2 \right. \]
\[+ u w (f u^2 + f' v^2 + f'' w^2) \]

\[\Psi = n \cdot w v + \frac{1}{\lambda^3} \left[u v (\theta u^2 + \theta' w v + \theta'' v^2) \right. \]
\[+ v w (\chi v^2 + \chi' w v + \chi'' v^2) \]

\[\Theta = \mu u^2 + \mu' v^2 + \mu'' w^2 + \mu' u w \]
\[+ \frac{1}{\lambda^3} \left[\nu u^4 + \nu' v^4 + \nu'' w^4 + \sigma v^2 w^2 + \sigma' u^2 w^2 + \sigma'' u^2 v^2 \right. \]
\[+ u w (\rho u^2 + \rho' v^2 + \rho'' w^2) \]
über die physikalischen Verhältnisse krystallisirter Körper.

\[R'' = n'' \cdot uv + \frac{1}{\lambda^2} \left[uv (\eta u^2 + \eta' uw + \eta'' v^2) + uv (\xi w^2 + \xi' uw + \xi'' v^2) \right] \]

Das Ellipsoid

\[\xi x^2 + \eta y^2 + \zeta z^2 + 2 \psi_{yz} + 2 \Omega_{x}x + 2 \Xi_{xy} + 2 \Xi_{xx} = 1 \quad (2) \]

hat nun die Eigenschaft, dass seine drei Hauptachsen die Schwingungsrichtungen anzeigen, welche einer ebenen, einen monoklinen oder einen Krystall durchschreitenden Welle zukommen, und dass die Grössen dieser Axen zugleich die reciproken Werthe der Quadrate der Fortpflanzungsgeschwindigkeiten der entsprechenden Wellen sind.

Es ist zu bemerken, dass hier sämtliche Coefficienten in der Form \(A + \frac{1}{\lambda^2} B \) auftreten; die Schwingungsrichtung und Fortpflanzungsgeschwindigkeit ist somit als Function der Wellenlänge gegeben. Da die mit griechischen Buchstaben bezeichneten Summen für rhombische Krystalle verschwinden, so übersicht man leicht den Unterschied zwischen den Coefficienten der beiden Systeme.

Wäre die Entwicklung der Exponentiellen zu höheren Potenzen geführt worden (was bei der Natur der Function \(\psi \) nicht unstatthaft wäre), so würden die Coefficienten die Form

\[A_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4} + \frac{A_3}{\lambda^6} + \ldots \]

erhalten haben; bei dem gegenwärtigen Stande der Beobachtungsmittel kann man aber wohl kaum über die zwei ersten Glieder hinausgehen. Man wird hier an die Verschiedenheit zwischen der Theorie des Lichtes und des Erdmagnetismus erinnert. In der ersten ist die Anziehungsfunktion unbekannt, dagegen das Gesetz der Anordnung bekannt; in der letzteren findet das Umgekehrte statt: wie nun in dieser durch fortgesetzte Beobachtungen zu höheren Gliedern in der Reiheentwicklung des Potentials fortgeschritten und dadurch das Gesetz der idealen Vertreibung der Magnetismen über die Erdoberfläche allmählich ermittelt werden soll, so muss umgekehrt in der Lichttheorie durch die Beobachtung die weitere Reiheentwicklung der Exponentiellen möglich gemacht werden, woraus dann durch die Vermehrung der Molecularrelationen das Gesetz der Molecularaction selbst in immer mehr genäherten Werthen erhalten werden soll.
4. Wir übergehen nun die sehr weitläufigen Rechnungen, durch welche wir von der Gleichung des Polarisationsellipsoides zu einer allgemeinen Relation zu gelangen versuchten, in welcher die Hauptschwingungsrichtungen und die ihnen entsprechenden Fortpflanzungsgeschwindigkeiten enthalten sind. Man erreicht dies nur durch willkürliche Annahmen über das gegenseitige Verhältniss der Molecularsummen, welche man so wählen kann, dass die Longitudinal-
komponenten ausgeschieden werden. Die geeignete Discussion des Polarisationsellipsoides reicht hin, die bis jetzt durch die Beobachtung gebotenen Thatssachen abzuleiten. Diese sind:

a) Von den beiden homogenen Wellen, welche parallel der Symmetrieaxe den Krystall durchschreiten, besitzt die eine constante Geschwindigkeit;

b) die Schwingungsrichtungen der beiden Wellen, welche den Krystall parallel mit der Symmetriebene durchschreiten, sind je nach der Farbe verschieden orientirt.

Betrachten wir nun zunächst den ersten Fall. Die Wellennormale ist in der Symmetriebene, also \(n = 0 \). Es wird

\[
\mathcal{S}_\alpha = au^2 + a'w^2 + \alpha uw + \frac{1}{\lambda^2} \left[du^2 + d'w^2 \right. \\
\left. + uw \left(d u^2 + g' uw + d' w^2 \right) \right]
\]

\[
\mathcal{M}_\alpha = bu^2 + b'w^2 + \beta uw + \frac{1}{\lambda^2} \left[eu^2 + e'w^2 \right. \\
\left. + uw \left(e u^2 + h' uw + e' w^2 \right) \right]
\]

\[
\mathcal{R}_\alpha = cu^2 + c'w^2 + \gamma uw + \frac{1}{\lambda^2} \left[fu^2 + f'w^2 \right. \\
\left. + uw \left(f u^2 + i' uw + f' w^2 \right) \right]
\]

\[
\mathcal{P}_\alpha = 0 \quad \mathcal{Q}_\alpha = \mu u^2 + \mu'w^2 + \nu uw + \frac{1}{\lambda^2} \left[\nu u^2 + \nu' w^2 \right. \\
\left. + uw \left(\nu u^2 + \sigma' uw + \sigma' w^2 \right) \right] \quad \mathcal{R}_\alpha = 0
\]

folglich das Polarisationsellipsoid

\[
\mathcal{S}_{\alpha} x^2 + \mathcal{M}_{\alpha} y^2 + \mathcal{R}_{\alpha} z^2 + 2 \mathcal{Q}_{\alpha} x z = 1
\]

Welche Richtung immer die Wellennormale in der Symmetriebene haben mag, so wird dieser Gleichung gemäss doch immer eine
Schwingungsrichtung in die Symmetrieaxe entfallen und die Schwingungen dieser Welle fallen in die Wellenebene selbst. Der Beobachtung entsprechend wird, wenn die Fresnel'sche Ansicht über die Richtung der Schwingungsebene angenommen wird, \mathfrak{M}_n von u oder ω unabhängig sein müssen; da zwischen den beiden Cosinussen die Relation
\[u^2 + \omega^2 = 1 \]
besteht, so reducirt sich dies auf die Bedingungen
\[b = \beta'' \quad c = \epsilon'' \quad h' = 2e \quad \beta = \epsilon = \epsilon'' = 0 \]
und dies gibt
\[\mathfrak{M}_n = b + \frac{1}{\lambda^2} e. \]

Die zweite Welle schwingt in der Symmetrieebene. Setzt man
\[x = x \cos \psi - z \sin \psi \]
\[z = x \sin \psi + z \cos \psi \]
so geht (3) durch die Annahme
\[\tan 2\psi = \frac{2 \mathfrak{M}_n}{\mathfrak{M}_n - \mathfrak{M}_n} \]
in
\[L_n x^2 + \mathfrak{M}_n y^2 + N_n z^2 = 1 \]
über, wo
\[L_n = \mathfrak{L}_n \cos \psi^2 + \mathfrak{M}_n \sin \psi^2 + 2 \mathfrak{M}_n \sin \psi \cos \psi \]
\[N_n = \mathfrak{E}_n \sin \psi^2 + \mathfrak{N}_n \cos \psi^2 - 2 \mathfrak{M}_n \sin \psi \cos \psi \]

ist. Die Hauptaxe X schliesst somit mit der ursprünglichen Abscissenrichtung den Winkel φ ein; sie ist die Normale der Vibrationen, welche parallel Z vor sich gehen. Die Wellennormale schliesst mit x einen Winkel ein, dessen Cosinus u, mit z einen Winkel dessen Cosinus ω ist; nennt man $\varphi_1 = \arccos u$, so ist
\[\tan 2\psi_1 = \frac{2u\omega}{u^2 - \omega^2}. \]
folglich wird die Winkel-Differenz zwischen der Normalen der Welle und der Normalen der Vibration, also auch zwischen der Wellenebene und der Oscillationsebene durch die Differenz
\[\Delta = tg \ 2\psi - tg \ 2\psi, \]
gemessen werden können. Man kann hieraus die Bedingungen auffinden, an deren Erfüllung das Zusammentreffen der Vibrations- und der Wellenebene geknüpft ist. Es muss
\[\Delta = 0 \]
\[\frac{\varrho''}{\varrho'' - \varrho''} = \frac{\omega\nu}{\nu^2 - \omega^2} \]
sein. Wird das Coordinatensystem ursprünglich so gewählt, dass für \(\nu = 0 \) oder für \(\omega = 0 \) die Differenz \(\Delta \) verschwindet, so hat man im ersten Falle
\[\nu = 0 \quad \omega = 1 \quad \varrho'' = \mu'' + \frac{\nu''}{\lambda^2} = 0 \]
im zweiten Falle
\[\nu = 1 \quad \omega = 0 \quad \varrho'' = \mu + \frac{\nu''}{\lambda^2} = 0 \]
In beiden Fällen ist \(\phi = 0 \). Es geht hervor, dass eine strenge Coincidenz der Vibrationen mit der Wellenebene in zwei auf einander rechtwinkelig richtende Richtungen in der Symmetrieenebene möglich ist, sobald eine solche Wahl der Coordinatenachsen getroffen werden kann, dass gleichzeitig
\[\mu + \frac{\nu}{\lambda^2} = 0 \quad \mu'' + \frac{\nu''}{\lambda^2} = 0 \]
wendet. Im rhombischen Systeme wird diese Bedingung unabhängig von der Wahl der Farbe erfüllt, da \(\mu = \mu'' = \nu = \nu'' = 0 \) ist; im monoklinëdrischen Systeme wird die Lage dieser Richtungen von der Farbe abhängen, wie es auch nach der Thatsache der Dispersion der Hauptvibrationsrichtungen in der Symmetrieenebene nicht anders zu erwarten war.

5. Die Wellen mögen nun parallel mit der Symmetrieenebene den Krystall durchschreiten. Dann ist \(\nu = \omega = 0 \), \(\nu = 1 \) und
über die physikalischen Verhältnisse krystalallisirter Körper.

\[\mathcal{Q}_{ii} = a' + d' \frac{1}{\lambda^2} \]
\[\mathcal{M}_{ii} = b' + c' \frac{1}{\lambda^2} \]
\[\mathcal{R}_{ii} = c' + f' \frac{1}{\lambda^2} \]
\[\mathcal{P}_{ii} = 0 \]
\[\mathcal{Q}_{ii} = \mu' + y' \frac{1}{\lambda^2} \]
\[\mathcal{R}_{ii} = 0. \]

Die Gleichung des Polarisationsellipsoides wird

\[\mathcal{Q}_{ii} x^2 + \mathcal{M}_{ii} y^2 + \mathcal{R}_{ii} z^2 + 2 \mathcal{Q}_{ii} xz = 1. \] \quad (4)

Da die Transversalcomponenten in die Symmetrieebene entfallen, so schliessen die Vibrationen in diesem Falle keinen Winkel mit der Wellenebene ein. Die Ellipsenachsen in der Symmetrieebene sind die gesuchten Hauptschwingungsräichtungen. Transformirt man auch hier, indem

\[x = x \cos \theta - z \sin \theta \]
\[z = x \sin \theta + z \cos \theta \]

gesetzt wird, so erhält man, wenn

\[\operatorname{tg} 2\theta = 2 \frac{\mu' + \frac{1}{\lambda^2} y'}{(a' - c') + \frac{1}{\lambda^2} (d' - f')} \] \quad \ldots \ldots (4')

und

\[s = a' \cos \theta \cos \theta + c' \sin \theta \cos \theta + \mu' \sin \theta \cos \theta \]
\[s' = d' \cos \theta \cos \theta + f' \sin \theta \cos \theta + v' \sin \theta \cos \theta \]
\[t = a' \sin \theta \sin \theta + c' \cos \theta \sin \theta - \mu' \sin \theta \cos \theta \]
\[t' = d' \sin \theta \sin \theta + f' \cos \theta \sin \theta - v' \sin \theta \cos \theta \]

bedeutet, die Gleichung des Polarisationsellipsoides bezüglich der Hauptachsen

\[x^2 \left(s + \frac{s'}{\lambda^2} \right) + y^2 \left(b' + \frac{f'}{\lambda^2} \right) + z^2 \left(t + \frac{t'}{\lambda^2} \right) = 1. \] \quad (5)

Aus diesen Gleichungen sieht man
a) dass (wegen $4'$) die Hauptschwingungsrichtungen in der Symmetrieebene dispergiert sein müssen; und

b) dass diese Dispersion unabhängig ist von der Ansicht die man über die Richtung der Schwingungen gegen die Polarisations-
ebene sich bilden mag.

Denkt man sich für eine gegebene Wellenlänge die Gleichung

$$\mu' + \frac{\nu'}{\lambda'} = 0$$

erfüllt, d. i. das Coordinatensystem ursprünglich so gewählt, dass es mit den Ellipsoidaxen zusammenfällt, so wird die Fortpflanzungs-
geschwindigkeit Ω einer Welle, die parallel x vibriert, durch

$$\alpha' + \frac{d'}{\lambda'} = \Omega$$

bestimmt; es ist aber $\frac{1}{\lambda'} = -\frac{\mu'}{\nu'}$, folglich

$$\alpha' - \frac{d'\mu'}{\nu'} = \Omega$$

und wenn τ die Fortpflanzungsgeschwindigkeit

$$\lambda = \tau \sqrt{\alpha' + \frac{d'\mu'}{\nu'}}$$

Man kann auch auf einem anderen Wege zur Kenntniss des Werthes von θ gelangen. Durch die Transformation der Coordinaten des Ellipsoides sind die Punkte desselben auf die Hauptaxen bezogen worden, dabei aber sind die Molecularsummen immer noch im Sinne des ursprünglich willkürlichen Coordinatensystems ausge-

*drückt. Man kann nun von der Transformation der Molecularsummen ausgehen. Setzen wir zu dem Ende

$$\mu' + \frac{\nu'}{\lambda'} = 0$$

und

$$x' = x \cos \psi - \delta \sin \psi$$

$$x' = x \sin \psi + \delta \cos \psi$$
so gibt dies

\[\mu' = \frac{m}{2} S \frac{d^2 \varphi}{r \, dr} y'^2 (x \cos \psi + \dot{y} \sin \psi) (x \sin \psi + \dot{y} \cos \psi) \]

\[\nu' = \frac{m \pi^2}{6} S \frac{d^2 \varphi}{r \, dr} y'^4 (x \cos \psi + \dot{y} \sin \psi) (x \sin \psi + \dot{y} \cos \psi) \]

und da das Summenzeichen sich auf \(\psi \) nicht bezieht

\[\mu' = \frac{m}{4} \sin 2 \psi S \frac{d^2 \varphi}{r \, dr} y'^2 (x^2 + \dot{y}^2) + \frac{m}{2} \cos 2 \psi S \frac{d^2 \varphi}{r \, dr} y'^2 \dot{\psi} \]

\[\nu' = \frac{m \pi^2}{12} \sin 2 \psi S \frac{d^2 \varphi}{r \, dr} y'^4 (x^2 + \dot{y}^2) + \frac{m \pi^2}{6} \cos 2 \psi S \frac{d^2 \varphi}{r \, dr} y'^4 \dot{\psi} \]

folglich

\[\tan 2 \psi = 2 \frac{S \frac{d^2 \varphi}{r \, dr} y'^2 \dot{\psi} + \frac{1}{3} \left(\frac{\pi}{\lambda} \right)^2 S \frac{d^2 \varphi}{r \, dr} y'^4 \dot{\psi}}{S \frac{d^2 \varphi}{r \, dr} y'^2 (x^2 + \dot{y}^2) + \frac{1}{3} \left(\frac{\pi}{\lambda} \right)^2 S \frac{d^2 \varphi}{r \, dr} y'^4 (x^2 + \dot{y}^2)} \]

ein Ausdruck, der vollkommen mit dem für \(\tan 2 \theta \) gefundenen übereinstimmt.

Soll somit schon das ursprüngliche Coordinatenystem mit dem der Hauptschwingungsrichtungen übereinstimmen, so muss es so gewählt werden, dass

\[S \frac{d^2 \varphi}{r \, dr} y'^2 x' x' + \frac{1}{3} \left(\frac{\pi}{\lambda} \right)^2 S \frac{d^2 \varphi}{r \, dr} y'^4 x' x' = 0 \]

ist. Da im rhombischen System beide Summen für sich gleich Null sind, so gibt es in demselben keine Dispersion der Hauptschwingungsrichtungen; diese fallen vielmehr mit den Elasticitätsaxen zusammen.

Fassen wir zusammen was in diesem und dem vorigen Paragrafe bezüglich der unterscheidenden Merkmale des rhombischen und monoklinesdrischen Systems gefunden wurde, so erhalten wir im rhombischen System

\[\mu = \mu' = \mu'' = \nu = \nu' = \nu'' = 0 \]

im monoklinesdrischen Systeme

\[\frac{\mu}{\nu} = \frac{\mu'}{\nu'} = \frac{\mu''}{\nu''} = - \frac{1}{\lambda^2} \]

das ist
als Bedingung für die Richtung der Coordinatenachsen, auf dass die Hauptaxen der Polarisationsellipsoide in die Hauptschwingungsrichtungen entfallen. Es lässt sich bei der gänzlichen Unwissenheit, in der wir uns über die Funktion φ und folglich auch über die Summe S befinden, allerdings kein Beweis für die Möglichkeit dieser Relationen herstellen; aber derselben Unmöglichkeit begegnet man, wenn man von vorne herein Bedingungsungleichungen zwischen den Summen aufstellt durch welche die Elimination der Longitudinalkomponenten bewerkstelligt wird.

Man kann nun von dem Polarisationsellipsoide zu einem anderen Ellipsoid unmittelbar übergehen, dessen Halbaxen durch die Quadratwurzeln der Grössen

\[a' + \frac{d}{\lambda_3}, \quad b + \frac{e}{\lambda_3}, \quad c' + \frac{f'}{\lambda_3} \]

bestimmt sind. Dies wird, ebenso wie im rhombischen System, der Berechnung der optischen Axen, der conischen Refraction u. s. w. zu Grunde gelegt werden können, nur ändert sich die Richtung der Axen \(x \) und \(z \) mit der Wellenlänge, da für jede Farbe ein anderer Winkel \(\vartheta \) erforderlich ist, der die Größen \(L_{\vartheta}, N_{\vartheta} \) auf die angegebene einfache Form reduziert.

Da die Hauptschwingungsrichtungen in der Symmetrieebene nicht mit den nothwendigen schiefwinkelig, von der Farbe unabhängigen Elasticitätsaxen zusammenfallen, so wählen wir für den Fall, als von der Grösse der Fortpflanzungsgeschwindigkeit der Vibrationen in den Hauptschwingungsrichtungen die Rede sein soll, den Ausdruck Hauptschwingungsaxen.

Je nachdem die Ebene der grössten und kleinsten Hauptschwingungsaxe mit der Symmetrieebene coindicirt oder nicht, werden die optischen Axen in der Symmetrieebene liegen oder nicht; im letzteren Falle können die ersten Mittellinien für alle Farben entweder in der Symmetrieebene liegen oder nicht, und es ergeben sich hieraus die in der Note Seite 391 angedeuteten drei verschiedenartigen Dispositionen der Ebenen der optischen Axen.

Obschon die Summen, unter welchen das Product \(xx' \) vorkommt, von der Null verschieden sind, so können sie doch im Vergleich
zu jenen welche bloss Grössen der zweiten, vierten oder sechsten Potenz enthalten, niemals beträchtlich werden; erstens weil in ihnen neben additiven Grössen auch subtraktive vorkommen und zweitens weil, wie auch immer die wirkliche Anordnung in monoklinödrischen Krystallen beschaffen sein mag, doch stets einem jeden Punkte ein Nebenpunkt bezüglich der Axen \(x \) und \(z \) nahezu entsprechen wird. Darum ist auch der Betrag der Dispersion der Hauptschwingungsrichtungen in Krystallen von entschieden schiefwinkeligem Charakter wenig verschieden von dem in Krystallen, die ein nahezu rechtwinkliges Parametersystem im Symmetrieschnitte zulassen. Datolith und Gyps sind sich in Bezug auf diese Dispersion höchst ähnlich, obschied über Datolith längere Zeit eine Discussion geführt werden konnte, welchem System er einzureihen sei, dem rhombischen oder dem monoklinödrischen 1). Man wird daher keinen Fehler begehen, wenn man die Grössen \(\mu' \) und \(\nu' \) im Vergleich zu \(a' \) und \(c' \), \(d' \) und \(f' \) sehr klein setzt. Andererseits wird auch \(\mu' \) jedenfalls grösser als \(\nu' \), \(a' - c' \) grösser als \(d' - f' \) ausfallen, denn in \(\nu' \), \(d' - f' \) ist jeder Summand mit der Grösse \(y'' \), in \(\mu' a' - c' \) mit der Grösse \(y'' \) behaftet: da aber \(y' \) im allgemeinen kleiner als \(r \), und \(r \) selbst eine sehr kleine Grösse ist, so müssen die Glieder mit höheren Potenzen von \(y' \) notwendig beträchtlicher klein sein. Man kann somit

\[
\frac{1}{(a' - c')} + \frac{1}{\lambda^2 (d' - f')} = \frac{1}{\alpha' - c'} \left(1 - \frac{d' - f'}{\alpha' - c'} \cdot \frac{1}{\lambda^2} \right)
\]

setzen und es wird

\[
tg 2 \theta = 2 \left(\mu' + \frac{\nu'}{\lambda^2} \right) \left(1 - \frac{d' - f'}{\alpha' - c'} \cdot \frac{1}{\lambda^2} \right) \cdot \frac{1}{\alpha' - c'}
\]

\[
= 2 \left\{ \frac{\mu'}{\alpha' - c'} + \frac{1}{\lambda^2} \left[\frac{\nu' (a' - c') - \mu' (d' - f')}{(a' - c')^2} \right] \right\}
\]

Da nun die Dispersionswinkel der Beobachtung gemäss nur sehr geringe Differenzen für die verschiedenen Farben zeigen, so kann man, wenn das Coordinatensystem so gewählt worden, dass \(\theta \) für die

1) Eigentlich hätte darüber kein Zweifel walten sollen, da das Charakteristische der Combinationshabitus ist; dieser lässt nie irren. Eine bemerkenswerthe und für eine künftige Theorie sehr wichtige Thatsache ist es aber immer, dass dem hemiprisma-

ischen Combinationscharakter nirgends ein rechtwinkliges Parametersystem streng entspricht.
äusserste Grenze von Roth gleich Null ist, für die sämtlichen Farben
statt der Tangente in erster Näherung den Bogen setzen und hat
dann, wenn
\[
\frac{2\mu'}{a' - c'} = A, \quad \frac{v' (a' - c') - \mu' (d' - f')}{(a' - c')^2} = \frac{B}{2}
\]
genannt wird, für die verschiedenen Stellen des Spectrum die Trans-
formationswinkel
\[
\theta_s = A + \frac{B}{\lambda_s^3} \quad \theta_s = A + \frac{B}{\lambda_s^3} \ldots
\]
was durch Elimination der Molecularconstanten zu der einfachen Relation
\[
\theta_s - \theta_s : \theta_s - \theta_s : \theta_s - \theta_s : \ldots = \frac{1}{\lambda_1^3} - \frac{1}{\lambda_2^3} - \frac{1}{\lambda_3^3} - \frac{1}{\lambda_4^3} - \frac{1}{\lambda_5^3} - \ldots
\]
führt, welche zeigt, dass die Dispersionswinkel in erster
Approximation demselben Gesetze folgen wie die Brechungsexponenten und die Rotationswinkel circular
polarisierender Substanzen.

Diese Relation kann mit der Beobachtung verglichen werden,
und wir hoffen bald in der Lage zu sein, die betreffenden Unter-
suchungen anzustellen.

Führt man die Bögen statt der trigonometrischen Functionen in
5') ein, indem man die Quadrate von \(\theta \) vernachlässigt, so erhält diese
Gleichung die Form
\[
ax^3 \left[a' + \mu' \theta + \frac{d' + v' \theta}{\lambda^3} \right] + y^3 \left(b' + \frac{e'}{\lambda^3} \right) + z^3 \left[c' + \mu' \theta + \frac{f' - v' \theta}{\lambda^3} \right] = 1
\]
Sie kann in dieser Form in erster Approximation zur Bestimmung der
Fortpflanzungsgeschwindigkeiten der parallel mit der Symmetrieebene
schwingenden Wellen dienen.

Es ist zu bemerken, dass die beiden mit
\[
\frac{1}{\lambda^2}
\]
multipartierten Glieder
im Ausdrucke von \(\tan 2\theta \) die Bedeutung
\[
v' = \frac{1}{6} m \pi^2 S \frac{d^p (r)}{dr} \quad a' \quad z' \quad y'^3
\]
\[
d' - f' = \frac{m \pi^2}{6} S \frac{d^p (r)}{dr} (x'^3 - z'^3) \quad y'^3
\]
haben, d. i. dass sie Glieder der sechsten Ordnung sind. Nun ist nach dem, was §. 1 und §. 2 bemerkt worden,

\[\frac{d\psi(r)}{dr} = \Psi(r) - F(r) \]

wo \(\psi(r) \) den perturbirenden Einfluss der Körpertheilchen ausdrückt und \(F(r) \) nicht mehr mit den höheren Gliedern der Entwicklung von \(\Delta \xi \) behaftbar ist, da im freien Äther die beiden ersten Glieder genügen.

Es folgt hieraus, dass die Dispersion der Hauptschwingungsrichtungen bloß auf Rechnung der Perturbationen kommt, welche durch die ruhenden Körperatome in den Bewegungen der Aetheratome bewirkt werden.

\[\tan 2\alpha = \frac{\mu^2 \sin 2\alpha}{\nu^2 + \mu^2 \cos 2\alpha} \]

\(\alpha \) ist hier gleichbedeutend mit unserem \(\theta \);

\(\alpha \) der Winkel den die conjugirten Elasticitätsachsen in der Symmetrieeneben unter einander einschliessen;

\[\mu^2 = Sm \frac{d\psi(r)}{dr} \frac{\Delta y^2 \Delta z^2}{r \, dr} \]

\[\nu^2 = Sm \frac{d\psi(r)}{dr} \frac{\Delta x^2 \Delta y^2}{r \, dr} \]

(bei Ångström ist \(z \) der Symmetrieaxe parallel, bei uns \(y \); wir schreiben die Formeln wie sie unserm Coordinatensystem entsprechen).

Setzen wir nun den Fall, unsere Axe \(x \) falle mit einer der Elasticitätsachsen zusammen, so ist

\[x' = \Delta x + \Delta z \cdot \cos \alpha \]

\[z' = \Delta z \sin \alpha. \]

Nun ist für uns

\[\mu' = \frac{1}{2} \cdot m \cdot S \frac{d\psi(r)}{dr} \Delta y^2 \left(\Delta x + \Delta z \cos \alpha \right) \Delta z \sin \alpha \]

\[a' = c' = \frac{1}{2} \cdot m \cdot S \frac{d\psi(r)}{dr} \Delta y^2 \left([\Delta x + \Delta z \cos \alpha]^2 - [\Delta z \cdot \sin \alpha]^2 \right) \]
Berücksichtigt man, dass jede Summe welche das Produkt $\Delta x \Delta z$ enthält, Null ist, sobald x und z die Richtungen der Elasticitätsachsen bezeichnen, so wird

$$
\mu' = \frac{1}{2} m S \frac{\partial p}{\partial r} \frac{\Delta z^2 \Delta y^2}{2} \cdot \sin 2a
$$

$$
a' - c' = \frac{1}{2} m S \frac{\partial p}{\partial r} \left(\Delta x^2 + \Delta z^2 \cos 2a \right) \Delta y^2
$$

folglich

$$
\frac{2\mu'}{a' - c'} = \frac{S m \frac{\partial p}{\partial r} \frac{\Delta z^2 \Delta y^2}{2} \sin 2a}{S m \frac{\partial p}{\partial r} \frac{\Delta x^2 \Delta y^2}{2} + S m \frac{\partial p}{\partial r} \frac{\Delta z^2 \Delta y^2}{2} \cos 2a}
$$

Man sieht dass Angström's Formel genau die unsre ist, in der die Dispersionsglieder vernachlässigt wurden.

Berücksichtigt man die Dispersion, so erhält man unter der Voraussetzung schiefwinkliger Elasticitätsachsen

$$
\tan 2\theta = \frac{\left(\frac{1}{2} S \frac{\partial p}{\partial r} \cdot \frac{\Delta z^2 \Delta y^2}{2} \left(\frac{\pi}{\lambda} \right) \frac{1}{6} S \frac{\partial p}{\partial r} \frac{\Delta z^2 \Delta y^2}{2} \cdot \right) \sin 2a}{\frac{1}{2} S \frac{\partial p}{\partial r} \left(\Delta x^2 + \Delta z^2 \cos 2a \right) \Delta y^2 + \left(\frac{\pi}{\lambda} \right) \frac{3}{6} S \frac{\partial p}{\partial r} \left(\Delta x^2 + \Delta z^2 \right) \cos 2a \Delta y^2}
$$

und es ist ersichtlich, nach welchem Gesetze die Zusatzglieder dieser Formel gebildet werden müssten, falls in der Entwicklung von $\Delta \xi$ über das sechste Glied hinausgegangen würde.

Da die Anordnung der Aetherteilchen von der Anordnung der wägbaren Atome und diese von der Temperatur abhängig ist, so muss nothwendig auch der Dispersionswinkel diese Abhängigkeit theilen und es wird, da die Grössen

$$
\mu', \nu', (a' - c'), (d' - f')
$$

im allgemeinen nicht nach gleichen Verhältnissen sich ändern, auch der Einfluss der Erwärmung für verschiedene Farben ein verschiedener sein.

6. Im diiklnoeôdrischen System verschwinden die Summen $SA x^m y^n z^p$, in welchen

$$
m + n + p \text{ ungerade}
$$

oder $m + n + p \text{ gerade}$, aber m und n ungerade und p gerade ist.
Im triklinödrischen System verschwinden nur die Summen, in denen

\[m + n + p \] ungerade

ist. Ohne die Summen, welche durch diese successive Lösung der Symmetrie in ihrem Bestehen erhalten werden, einzeln aufzuführen, ist es an sich klar, dass die Gleichung des Polarisationsellipsoides die Form

\[+ x^2 \left[f, (u,v,w,S) + \frac{1}{\lambda^2} F_s (u,v,w,S) \right] + y^2 \left[f, (u,v,w,S) + \frac{1}{\lambda^2} F_s (u,v,w,S) \right] + \]

\[+ z^2 \left[f, (u,v,w,S) + \frac{1}{\lambda^2} F_s (u,v,w,S) \right] + 2yz \left[\varphi, (u,v,w,S) + \frac{1}{\lambda^2} \Phi, (u,v,w,S) \right] + 2zx \left[\varphi, (u,v,w,S) + \frac{1}{\lambda^2} \Phi, (u,v,w,S) \right] + 2xy \left[\varphi, (u,v,w,S) + \frac{1}{\lambda^2} \Phi, (u,v,w,T) \right] = 1 \]

erhält, wo im allgemeinen keine der mit \(f, F, \varphi, \Phi \) bezeichneten Funktionen durch die Hypothesen \(u = 1 \), oder \(v = 1 \) der Null gleich wird.

Man kann aber die Coordinaten immer so transformiren, dass

\[\varphi, (1,0,0, S) + \frac{1}{\lambda^2} \Phi, (1,0,0, S) = 0 \]

\[\varphi, (1,0,0, S) + \frac{1}{\lambda^2} \Phi, (1,0,0, S) = 0 \]

\[\varphi, (1,0,0, S) + \frac{1}{\lambda^2} \Phi, (1,0,0, S) = 0 \]

\[\varphi, (0,1,0, S) + \frac{1}{\lambda^2} \Phi, (0,1,0, S) = 0 \]

\[\varphi, (0,1,0, S) + \frac{1}{\lambda^2} \Phi, (0,1,0, S) = 0 \]

\[\varphi, (0,1,0, S) + \frac{1}{\lambda^2} \Phi, (0,1,0, S) = 0 \]

\[\varphi, (0,0,1, S) + \frac{1}{\lambda^2} \Phi, (0,0,1, S) = 0 \]
\[\varphi_s (0,0,1, S) + \frac{1}{\lambda^s} \psi_s (0,0,1, S) = 0 \]

\[\varphi_s (0,0,1, S) + \frac{1}{\lambda^s} \psi_s (0,0,1, S) = 0 \]

wird. Durch diese und die drei Gleichungen, welche die Bedingung aussprechen, dass das neue Coordinatensystem rechtwinklig sein muss, erhält man (wenn \(x, y, z \) das alte und \(X, Y, Z \) das neue den Hauptachsen des Ellipsoids parallele Coordinatensystem ist) die Bögen \(xX, xY, xZ, yX, yY, yZ, zX, zY, zZ \)

als Funktionen der Wellenlänge und der verschiedenartigen die Molecularfunctionen in sich schliessenden Summen. Da man auch hier (wegen der erfahrungsmässig sehr geringen Dispersion der Hauptschwingungsrichtungen in den Krystallen der unsymmetrischen Systeme) die ursprünglichen Coordinatenachsen so gewählt denken kann, dass für eine bestimmte Wellenlänge die Hauptschwingungsrichtungen mit den Coordinatenachsen zusammenfallen und für die übrigen Wellenlängen die Bögen den trigonometrischen Functionen derselben substituirt werden können; da ferner die höheren Potenzen von \(\frac{1}{\lambda^s} \)

vernachlässigt werden, so tritt auch jeder dieser Bögen in der Form

\[P + \frac{Q}{\lambda^s} \]

auf. Es werden somit, da die Zahl der aus den oben geschriebenen Gleichungen bestimmmbaren Bögen 6 beträgt, die Coefficienten von \(x^2, y^2, z^2 \) von der Form

\[L = (a + b) + A\psi_t + B\psi_s + C\psi_t + D\psi_s + E\psi_t + F\psi_s \]

\[+ \frac{1}{\lambda^s} \left[(e + f) + A'\psi_t + B'\psi_s + C'\psi_t + D'\psi_s + E'\psi_t + F'\psi_s \right] \]

also vorherrschend die charakteristischen Summen des rhombischen Systems, modifizirt durch kleine der Dispersion der Hauptschwingungsrichtungen entsprechende Zuwachsglieder. Diese Form macht es möglich die Erscheinungen, welche Platten zeigen, die rechtwinklig gegen die optische Mittellinie geschnitten sind, so wie die Phänomene der konischen Refraction, auf einfache Weise zu berechnen, da es sich nur darum handelt, die der Dispersion der
über die physikalischen Verhältnisse krystallisirter Körper.

Hauptschwingungsaxen entsprechenden kleinen Zusatzglieder den bekannten, für rhombische Krystalle entwickelten Formeln einzufügen.

Man sieht endlich, dass in optischer Beziehung, insofern wir nur die allgemeine Form der Erscheinungen berücksichtigen, kein Unterschied zwischen diklinoeödrischen und triklinoeödrischen Krystal- len besteht. Die Theorie, wie die Beobachtung zeigt, dass in den optisch zweiaxigen Systemen nur folgende Kategorien unterschieden werden können:

a) Drei schiefwinklige Elasticitätsaxen: sämtliche Hauptschwingungsrichtungen dispergirt (triklinoeödrisches System).

b) Zwei schiefwinklige Elasticitätsaxen, die dritte normal auf der Ebene der beiden ersten: zwei von den Hauptschwingungsrichtungen in der Ebene der schiefen Elasticitätsaxen dispergirt, die dritte für alle Farben in der Richtung der normalen Elasticitätsaxe (monoklinoeödrisches System).

c) Drei rechtwinklige Elasticitätsaxen: die Hauptschwingungsrichtungen in Coincidenz mit den Elasticitätsaxen, somit keine Dispersion derselben (rhombisches System).

Isomorphie und optische Orientierung.

1. Wir wollen in diesem Abschnitte diejenigen Thatsachen zusammenordnen, welche einen Einblick in die gegenseitige Relation zwischen Form, Substanz und optischem Verhalten gestatten. Strenge genommen können hiezu vorerst nur die Beobachtungen an isomorphen Körpern dienen; bevor wir dieselben jedoch aufzählen, wollen wir zwei andere Thatsachen erwähnen, die für den Schluss, zu welchem wir führen wollen, von Wichtigkeit sind.

2. Aus Mitscherlich's Messungen am Aragonit 1) bei gewöhnlicher und höherer Temperatur ergibt sich für ein Temperaturintervall von 100° C.

\[\frac{a}{b} : \frac{c}{c} = 1 : 0.7208 : 0.6225, \]
\[a, : b, : c, = 1 : 0.7220 : 0.6217 \]

1) Pogg. 10, 144.

Sitab. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 27. 30
\[\varphi_s (0,0,1, S) + \frac{1}{\lambda^3} \Phi_s (0,0,1, S) = 0 \]
\[\varphi_s (0,0,1, S) + \frac{1}{\lambda^3} \Phi_s (0,0,1, S) = 0 \]

wird. Durch diese und die drei Gleichungen, welche die Bedingung aussprechen, dass das neue Coordinatensystem rechtwinklig sein muss, erhält man (wenn \(x, y, z \) das alte und \(X, Y, Z \) das neue den Hauptachsen des Ellipsoïds parallele Coordinatensystem ist) die Bögen
\[xx, xy, xz, yx, yz, zx, oz, zy, zz \]
als Functionen der Wellenlänge und der verschiedenartigen die Molecularfunctionen in sich schliessenden Summen. Da man auch hier (wegen der erfahrungsmässig sehr geringen Dispersion der Hauptschwingungsrichtungen in den Krystallen der unsymmetrischen Systeme) die ursprünglichen Coordinatenachsen so gewählt denken kann, dass für eine bestimmte Wellenlänge die Hauptschwingungsrichtungen mit den Coordinatenachsen zusammenfallen und für die übrigen Wellenlängen die Bögen den trigonometrischen Functionen derselben substituirt werden können; da ferner die höheren Potenzen von \(\frac{1}{\lambda^3} \) vernachlässigt werden, so tritt auch jeder dieser Bögen in der Form
\[P \pm \frac{Q}{\lambda^3} \]
auf. Es werden somit, da die Zahl der aus den oben geschriebenen Gleichungen bestimmmbaren Bögen 6 beträft, die Coefficientsen von \(x^2, y^2, z^2 \) von der Form
\[L = (a + b) + A\psi_1 + B\psi_2 + C\psi_3 + D\psi_4 + E\psi_5 + F\psi_6 \]
\[+ \frac{1}{\lambda^3} [(c + f) + A'\psi_1 + B'\psi_2 + C'\psi_3 + D'\psi_4 + E'\psi_5 + F'\psi_6] \]
also vorherrschend die charakteristischen Summen des rhombischen Systems, modifizirt durch kleine der Dispersion der Hauptschwingungsrichtungen entsprechende Zuwachsglieder. Diese Form macht es möglich die Erscheinungen, welche Platten zeigen, die rechtwinklig gegen die optische Mittellinie geschnitten sind, so wie das Phänomene der konischen Refraction, auf einfache Weise zu berechnen, da es sich nur darum handelt, die der Dispersion der
Hauptschwingungssachsen entsprechenden kleinen Zusatzglieder den bekannten, für rhombische Krystalle entwickelten Formeln einzufügen.
Man sieht endlich, dass in optischer Beziehung, insofern wir nur die allgemeine Form der Erscheinungen berücksichtigen, kein Unterschied zwischen diklinoödrischen und triklinoödrischen Krystallen besteht. Die Theorie, wie die Beobachtung zeigt, dass in den optisch zweiaxigen Systemen nur folgende Kategorien unterschieden werden können:

a) Drei schiefwinklige Elasticitätsachsen: sämtliche Hauptschwingungsrichtungen dispergiert (triklinoödrisches System).

b) Zwei schiefwinklige Elasticitätsachsen, die dritte normal auf der Ebene der beiden ersten: zwei von den Hauptschwingungsrichtungen in der Ebene der schiefen Elasticitätsachsen dispergiert, die dritte für alle Farben in der Richtung der normalen Elasticitätsaxe (monoklinoödrisches System).

c) Drei rechtwinklige Elasticitätsachsen: die Hauptschwingungsrichtungen in Coincidenz mit den Elasticitätsachsen, somit keine Dispersion derselben (rhombisches System).

Isomorphie und optische Orientierung.

1. Wir wollen in diesem Abschnitte diejenigen Thatsachen zusammenordnen, welche einen Einblick in die gegenseitige Relation zwischen Form, Substanz und optischem Verhalten gestatten. Strenge genommen können hiezu vorerst nur die Beobachtungen an isomorphen Körbern dienen; bevor wir dieselben jedoch aufzählen, wollen wir zwei andere Thatsachen erwähnen, die für den Schluss, zu welchem wir führen wollen, von Wichtigkeit sind.

2. Aus Mitscherlich's Messungen am Aragonit 1) bei gewöhnlicher und höherer Temperatur ergibt sich für ein Temperaturintervall von 100° C.

\[a : b : c = 1 : 0.7208 : 0.6225, \]

\[a' : b' : c' = 1 : 0.7220 : 0.6217 \]

1) Pogg. 10, 144.
Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 27.
Nennt man \(a, \frac{\overline{a}}{b}, \frac{\overline{c}}{c} \) die Ausdehnungs-Coëffizienten, so erhält man unter der Berücksichtigung der Angabe Kopp's 1) für die kubische Ausdehnung (0·000065 für 1° C.) nach den Formeln

\[
a, = a(1 + a t), \quad b, = b(1 + b t), \quad c, = c(1 + c t)
\]

\[
\overline{a} + \overline{b} + \overline{c} = 0·00010
\]

folgende Werthe für die Ausdehnungs-Coëffizienten

\[
\overline{a} = 0·000020 \quad \overline{b} = 0·000035 \quad \overline{c} = 0·000010.
\]

Rudberg 2) hat die Brechungsexponenten bei höherer Temperatur mit denen bei gewöhnlicher verglichen. Er fand für die Linie \(F \) (wenn die Fortpflanzungsgeschwindigkeit des Lichtes in der Luft = 1 und die der Schwingungen im Krystall = \(a, b, c \) gesetzt wird)

\[
\frac{1}{a} \quad \frac{1}{b} \quad \frac{1}{c}
\]

bei 16° C. \(1·53478 \quad 1·69058 \quad 1·69510 \)

\(\overline{80° C.} \quad 1·53416 \quad 1·69876 \quad 1·69421 \)

also

\[
\frac{a}{b} : \frac{c}{c} = 1 : 0·90784 : 0·90542
\]

\[
a, : \frac{b}{b} : \frac{c}{c} = 1 : 0·90710 : 0·90553
\]

Da die Fortpflanzungsgeschwindigkeit in der Luft eine unveränderliche Einheit gibt, insofern sämtliche Brechungsexponenten auf die Geschwindigkeit des Lichtes in der Luft bei gewöhnlicher Temperatur reducirt sind, so kann man aus diesen Beobachtungen die Werthe der Accelerations-Coëffizienten \(\overline{a}, \overline{b}, \overline{c} \) aus

\[
a, = a(1 + a t), \quad b, = b(1 + b t), \quad c, = c(1 + c t)
\]

bestimmen und findet

\[
\overline{a} = 0·000065 \quad \overline{b} = 0·000077 \quad \overline{c} = 0·000085
\]

Das Schema der optischen Orientirung des Aragonits ist aber

\[
c \parallel b
\]

1) Lieb. und Kopp's Jahresbericht 1851, 55.
2) Pogg. 26, 300.
d. i. die grösste Elasticitätsaxe fällt mit der mittleren Krystallaxe, die kleinste Elasticitätsaxe mit der grössten Krystallaxe zusammen. Man hat somit, wenn man die der Richtung nach einander entsprechenden Coëfficienten unter einander schreibt:

für die Ausdehnung durch die Wärme . . 20 35 10
Fortpflanzungsgeschwindigkeit

der Lichtvibrationen 47 41 54

Dem grössten Ausdehnungs-Coëfficienten entspricht somit zwar der kleinste Beschleunigungs-Coëfficient; doch in den andern Rich-
tungen findet keine entsprechende Beziehung statt, da der kleinste
Ausdehnungs-Coëfficient jener Richtung entspricht, in welcher der
mittlere Zuwachs der Elasticität, und der mittlere Ausdehnungs-
Coëfficient jener Richtung, in welcher der grösste Zuwachs der
Elasticität sich zeigt. Hieraus geht hervor, dass zwischen den
Änderungen, welche die Wärme in den Dimensionen des Krystals
und der Elasticität des Äthers bewirkt, keine einfache Beziehung
stattfindet.

3. Es ist eine Anzahl von Krystallen bekannt, in welchen die
Ebenen der optischen Axen für verschiedene Farben sich kreuzen.
Diese sind

a) im rhombischen Systeme.

Weinsaures Natron-Ammoniakkali. Séarmacot1) liess
das Kali und Ammoniaksalz in variablen Mengen zusammen krystalli-
sieren; da in beiden die Differenz der Axen für verschiedene Farben
sehr beträchtlich ist, sie also eine bedeutende Dispersion der opti-
schen Axen besitzen und ausserdem die Elasticitätsaxen ganz abwei-
chend orientirt sind, so war es möglich, solche Verhältnisse der
Mischung herzustellen, in welchen die Individuen für eine mittlere
Farbe einaxig, für die übrigen aber zweiaxig erscheinen, und zwar
so, dass sich die Axenebenen für roth und violet kreuzten.

Brookit2) absorbirt das violette Ende des Spectrums bei
einer Dicke vollständig, zeigt aber schon im rothen und grünen
Licht den vollständigsten Gegensatz. Die erste Mittellinie ist zwar
für alle Farben normal auf der Richtung des herrschenden Pinakoids
und entspricht immer der kleinsten Elasticitätsaxe; für rothes Licht

1) Annales de phys. et de chim. 1831. 33, 423.
2) Sitzh. d. k. Ak. 27, 10.
aber liegt die größte Elasticitätsaxe rechtwinklig, für grünes parallel zur Streifung der Platten.

Melithsaures Ammoniak 1). Die rasch verwitternde Substanz ist bei gewöhnlicher Temperatur einaxig für grünes, zweiaxig für alles übrige Licht; die Axenebenen sind so gekreuzt, dass die kleinste Elasticitätsaxe für roth in die Makrodiagonale, für violet in die Brachydiagonale des Krystalles entfällt. Die größte Elasticitätsaxe hat für alle Farben dieselbe Richtung und entspricht der Axe des herrschenden Prisma. Wir versuchten, da die Krystalle höhere Temperatur nicht vertragen, sie bis zu — 10° abzukühlen, ohne jedoch eine merkliche Änderung wahrzunehmen.

b) Im monoklinoiädrischen Systeme.

Gips zeigt nach Mitscherlich 4) ähnliche Verhältnisse; nur liegen hier bei gewöhnlicher Temperatur sämtliche Axen in der Symmetriebene, und der Winkel derselben nimmt durch Erwärmung ab, bis er der Reihe nach für alle Farben durch Null geht und endlich alle Axenebenen normal zur Symmetriebene geordnet sind. Dabei bleibt die kleinste Elasticitätsaxe fortwährend in der Symmetriebene und es sind die größten Elasticitätsachsen, welche bei der mittleren Übergangstemperatur so orientiert sind, dass die Axe für rothes Licht noch in der Symmetriebene ist, während die für violetes Licht schon in die Symmetrieaxe entfällt. Bei Glauberit wird daher durch die Erwärmung die kleinste und mittlere, bei Gips die mittlere und größte vertauscht.

1) Sitzb. d. k. Ak. 27, 48.
2) Pogg. 21, 607; 27, 480.
3) Ann. des mines, 11.
4) Pogg. 8, 820.
Chromsaures Magnesia-Ammoniak zeigt schon bei gewöhnlicher Temperatur die Dispersion der Ebenen der optischen Axen in zwei auf einander rechtwinkligen Richtungen in hohem Grade. Denn während bei Gyps und Glauberit im Momente der Durchkreuzung der Axenwinkel für alle Farben nur sehr klein ist, schliessen hier die optischen Axen für rothes Licht (in der Ebene rechtwinklig zur Symmetriebene), so wie die für grunes Licht (in der Symmetriebene) einen bedeutenden Winkel ein; der scheinbare Winkel für die eine wie für die andere Farbe ist gewiss nicht unter 30°. Für gelbes Licht ist der Krystall einaxig.

Desclizeaux hat, nach einer schriftlichen Mittheilung die wir ihm danken, noch an einer andern monoklinoëdrischen Substanz diese Kreuzung der Axenebenen beobachtet.

Da nach dem, was im vorigen Abschnitte besprochen worden, die Dispersion durchwegs auf Rechnung des perturbirenden Einflusses kommt, den die ruhenden Körperteilchen auf die Bewegung der schwingenden Äthertheilchen nehmen, dieselbe also zunächst von der Elasticität des Äthers unabhängig ist, so sollte man wohl die Benennung Elasticitätsaxen auch bei rhombischen Kristallen nur auf den Fall anwenden, wo die Axenebenen sich nicht durchkreuzen. Es ist deutlich und bemerkenswerth, wie in den hier aufgezählten Krystallen die eigentlichen Elasticitätsverhältnisse des bewegten Äthers durch die Wirkungen der ruhenden Körperteilchen völlig gedeckt werden. Denn es ist allerdings möglich, und den Beobachtungen nach sogar höchst wahrscheinlich, dass durch die Erwärmung die Elasticitätsaxen des Äthers in ihrer absoluten wie relativen Grösse affizirt werden können; aber dabei bleibt noch immer die Erscheinung, dass der Übergang der kleinsten in die mittlere oder der mittleren in die grösste Elasticitätsaxe für verschiedene Farben nicht gleichzeitig geschieht, blos aus den Verhältnissen des Äthers unerklärlich. Es ändert auch nichts, wenn wir alles auf Bewegung reduciren, und das was man als Elasticitätsaxe definiert, nur als die Erfüllung bestimmter Bedingungen in einem bewegten System auffassen. Da nun aber die Stabilität des Krystallganzen in den beobachteten Substanzen weit grösser ist, insofern die Ausdehnung durch die Wärme bei den geringen Winkeländerungen gewiss keinen Umtausch in den rela-

1) Sitzb. d. k. Ak. 27.
tiven Grössen der Elasticitätsaxen der ponderablen Materie hervorrufst, so muss das System, von dessen Bewegungen die beschriebenen optischen Phänomene abhängen, notwendig andere Bedingungen in sich tragen als das Molecular system, welches den Krystall constituiert und die abnorme Form jener Bewegungen bedingt. Es ist übrigens bemerkenswerth, dass von den aufgezählten Substanzen das mellithsaure Ammoniak schon bei gewöhnlicher, Gyps, Glauberit, chromsaures Magnesia-Ammoniak und weinsaures Natron-Kali-Ammoniak bei erhöhter Temperatur zerlegt wird; Brookit aber die rhombische Form der Titansäure ist und bekanntlich alle bis jetzt in der Paramorphose beobachtete Substanzen ein Streben aus der minder symmetrischen in die mehr symmetrische Form überzugehen zeigen 1). Dies alles deutet auf eine geringere Stabilität der chemischen Constitution, also auch des complexen Moleküls.

Wir glauben, dass der eigentliche Grund dieser Erscheinungen sich folgendermassen darstellen lässt. Die Richtung der Elasticitätsaxen des Äthers, so wie ihre Grösse ist von der Wellenlänge unabhängig. Fresnel's Darstellung genügt zwar dadurch, dass in ihr die Bewegungen der benachbarten Ätherpartikeln während der Verschiebung eines einzelnen unberücksichtigt bleiben, nicht allen Anforderungen einer strengen Analyse; es ist aber gar kein Grund anzunehmen, dass bei der Berücksichtigung der Bewegungen der Äthertheilchen die Wellenlänge in den Ausdruck für die Elasticität des Äthers eintreten sollte 2). Die Elasticitätsaxen sind jene Richtungen, in welchen der durch die Verschiebung geweckte Widerstand in die Richtung der Verschiebung selbst fällt; als die Grösse derselben

1) Monoklines oder Schwefel geht allmählich in rhombischen, rhombisches Quecksilberjodid in tetragonales über; rhombischer Aragonit verwandelt sich durch Erwärmung in rhombischen Calcit. Es ist darum zu vermuten, dass durch directe Einwirkung Graphit in Diamant verwandelt werden kann aber nicht das umgekehrte, Brookit in Anatas oder Rutill aber nicht das umgekehrte. Es scheint somit, dass unter den zwei Krystallformen die eine Substanz annehmen kann, die mehr symmetrische das stabile Molecular system charakterisirt.

2) In der strengeren Darstellung Mac Cullagh's ist der Beleg für den obigen Satz gegeben. Cauchy, der sowohl unter der Annahme der Ruhe der benachbarten Äthertheilchen, als auch bei Berücksichtigung ihrer Theilnahme an der Bewegung die allgemein Bewegungsgleichungen abgeleitet, kommt zu dem gleichen Schluss.

\[a + \frac{a'}{\lambda^2}, \quad b + \frac{b'}{\lambda^2}, \quad c + \frac{c'}{\lambda^2} \]

gemessen wird, wo \(a, b, c \) sich auf die Elasticität des Äthers sowohl als auch auf die perturbirende Wirkung der ruhenden Körpertheilchen, \(a', b', c' \) allein auf die die Bewegung modifizierende Einwirkung der Körpertheilchen bezieht. Setzen wir nun den Fall des mellithsauren Ammoniaks: wenn wir hier durch \(a_p, b_p, c_p \) die Elasticitätsaxen nach dem bisherigen Sprachgebrauch für rothes, durch \(a_v, b_v, c_v \), für violetes Licht (wo \(a > b > c \) bezeichnen, so ist offenbar (da die \(a, b, c \) bestimmten, von der Farbe unabhängigen Richtungen entsprechen)

\[a_p = a + \frac{a'}{\lambda^2_p}, \quad a_v = a + \frac{a'}{\lambda^2_v} \]
\[b_p = b + \frac{b'}{\lambda^2_p}, \quad c_v = b + \frac{b'}{\lambda^2_v} \]
\[c_p = c + \frac{c'}{\lambda^2_p}, \quad b_v = c + \frac{c'}{\lambda^2_v} \]

da \(b_p > c_p, b_v > c_v \) so ist auch

\[b + \frac{b'}{\lambda^2_p} > c + \frac{c'}{\lambda^2_p}, \quad c + \frac{c'}{\lambda^2_v} > b + \frac{b'}{\lambda^2_v} \]

der oder

\[\frac{c' - b'}{\lambda^2_v} > b - c > \frac{c' - b'}{\lambda^2_p} \]

d. i. die Differenz zwischen den beiden (wahren) Elasticitätsaxen ist so klein, dass die Differenz der Wellenlänge einen Umsturz in
der Lage der Ebenen der optischen Axen bewirken kann. Dem entspricht auch die Beobachtung, welche eine sehr geringe Doppelbrechung bei beträchtlicher Dispersion nachweist 1).

Sobald $b-c$ und $b'-c'$ wächst, so nimmt der Einfluss der Wellenlänge auf die relative Ordnung der Größen ab; nun ist aber $b-c$, $b'-c'$ nothwendig von der Anordnung und Distanz der Äthertheilchen sowohl, als auch der Körpertheilchen abhängig; folglich muss die Temperatur Einfluss auf die Stellung der Ebenen der optischen Axen nehmen.

Es ist jedenfalls zu beachten, dass eine Kreuzung dieser Ebene immer nur bei Krystallen beobachtet wird, welche geringe Doppelbrechung und beträchtliche Dispersion besitzen, d. i. wo $b-c$ (oder $a-b$) und $b'-c'$ (oder $a'-b'$) einen geringen Betrag haben; ist aber selbst die Doppelbrechung kräftiger (wie z. B. in den Platineyanverbindungen), so kann durch eine entsprechende Abnahme von ($b'-c'$) immer noch eine beträchtliche Dispersion der optischen Axen, wenn auch keine Kreuzung der Ebenen derselben bewirkt werden. Im Natriumkaliumplatin cyanur ist die Doppelbrechung sehr gering; darum auch nahezu schon das Verhältniss des Glauberit hergestellt.

4. Wir führen nun die isomorphen Gruppen der Reihe nach auf, für welche die Orientirung der optischen Verhältnisse bekannt geworden ist; wir befolgen dabei dieselbe Reihenordnung, welche in dem Lehrbuch der physikalischen und theoretischen Chemie von Buff, Kopp und Zaminer eingehalten worden.

1. Gruppe. Schwefel, Selen, Mangan, Chrom 2.

Die optische Untersuchung ist noch sehr dürftig. Die bekannten correspondirenden Beobachtungen gehören drei von den sechs bis jetzt festgestellten isomorphen Reihen an.

1) Sitzb. 27, 50.
2) In der folgenden Aufzählung sind die Angaben von Sénarmont (Ann. de phys. et chim. 33, 425) und Desclœzeaux (Annales des mines XI, 261) benutzt, wo unsere eigenen Beobachtungen (Sitzb. 27, 3 und 31, 83) nicht ausreichen. Die Orientirung der ersten Reihe der Acetate und der zweiten und dritten Reihe der Sulphate der zweiten Gruppe, so wie der Doppelverbindungen der zweiten Gruppe ist der im dritten Abschnitte dieser Untersuchungen enthaltenen Arbeit von Murmann und Rotter entnommen.
über die physikalischen Verhältnisse krystallisirter Körper.

Erste Reihe. KO$_2$SO$_4$. Rhombisch. $a:b:c = 1:0.7:0.5$.

<table>
<thead>
<tr>
<th>\mathfrak{S}</th>
<th>S</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierung</td>
<td>$\alpha\beta\gamma$</td>
<td>$\alpha\beta\gamma$</td>
</tr>
<tr>
<td>Scheinbarer Axenwinkel</td>
<td>$100^\circ 52'$</td>
<td>92°</td>
</tr>
</tbody>
</table>

Die Elasticitätsaxen sind zwar gleich orientirt, der wirkliche Axenwinkel aber bei der chromsauren Verbindung um so viel grösser, dass die ersten Mittellinien vertauscht erscheinen.

Zweite Reihe. MgO$_2$SO$_4$ + 7HO. Rhombisch. $a:b:c = 1:0.99:0.57$.

<table>
<thead>
<tr>
<th>\mathfrak{S}</th>
<th>S</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierung</td>
<td>$\alpha\beta\gamma$</td>
<td>$\alpha\beta\gamma$</td>
</tr>
<tr>
<td>Scheinbarer Axenwinkel</td>
<td>$78^\circ 40'$</td>
<td>70°</td>
</tr>
</tbody>
</table>

Dritte Reihe. MgO, AmO, 2SO$_4$ + 6HO. Monoklinödrisch. $a:b:c = 0.7$ bis $0.8:1:0.48$. $ac = 71$ bis 73°.

$\mathfrak{S} = S, Cr$. In beiden ist die erste Mittellinie nicht beträchtlich von der Normale des Klinopinakoides abweichend. Aber während im schwefelsauren Salze die optischen Axen für alle Farben in die Symmetrieebene entfallen, sind im chromsauren Salze die Axen für rothes Licht in einem zur Symmetrieebene normalen Schnitt, und nur die für grunes befinden sich in der Symmetrieebene. Für gelb ist der Krystall demnach scheinbar einaxig.

Fluoride. 3 (RF, SiFl$_3$) + HO. Romboedrisch. Die Kobalt- und Nickelverbindung negativ.

Chloride. Von den vier bekannten isomorphen Reihen sind correspondirende optische Beobachtungen aus einer einzigen bekannt.

1) Da sich die Orientirung (das Schema der Elasticitätsaxen) auf die Krystallaxe bezieht, indem die Elasticitätsaxen in der Folge aufgezählt werden, in welcher sie der Richtung der grössten mittleren und kleinsten Krystallaxe entsprechen, so setzen wir die Krystallaxe bei, jedoch nur in mittleren Werten, da bekanntlich die einzelnen Glieder einer isomorphen Reihe nicht vollständig in ihren relativen Dimensionen übereinstimmen.
Es sind die Doppelchloride von der Form $RCl + 2CdCl + 12HO$. Rhombisch $a:b:c = 1:0.9:0.3$.

$R = \begin{array}{ccc} Mg & Co & Ni \\
\text{Orientierung} & \text{abc} & \text{abc} & \text{abc} \\
\end{array}$

Der scheinbare Axenwinkel ist nach einer Schätzung am grössten in der Magnium-, am kleinsten in der Nickelverbindung.

$Sulphate$. Unter den acht bekannten isomorphen Reihen sind drei mit entsprechenden optischen Beobachtungen.

Erste Reihe. $RO,SO_{4} + BO_{3}. Rhombisch; a:b:c = 1:0.99:0.5$

$R = \begin{array}{cccc} Mg & Zn & Ni, Zn & Ni \\
\text{Orientierung} & \text{acb} & \text{acb} & \text{acb} & \text{acb} \\
\text{Scheinbarer Axenwinkel} & 79^\circ & 71^\circ 20' & 65^\circ 15' & 64^\circ 12' \\
\text{Wirklicher Axenwinkel} & 50^\circ 52' & 44^\circ 2' & 42^\circ 4' \\
\end{array}$

Zweite Reihe. $RO, KO, 2SO_{4} + 6BO_{3}. Monoklinödrisch. a:b:c = 0.7:1:0.5. ac = 72—75^\circ$.

$R = \begin{array}{ccc} Mg & Fe & Ni \\
\text{Orientierung (001) bc} & 89^\circ & 86^\circ & 84^\circ 34' \\
\text{Scheinbarer Axenwinkel} & 74^\circ 2' & 111^\circ 56' & 131^\circ 45' \\
\text{Wirklicher Axenwinkel} & 48^\circ 21' & 68^\circ 4' & 75^\circ 30' \\
\end{array}$

$R = \begin{array}{ccc} Co & Zn & Cu \\
\text{Orientierung (001) bc} & 85^\circ 19' & 85^\circ 17' & 94^\circ 23' \\
\text{Scheinbarer Axenwinkel} & 110^\circ 10' & 114^\circ 14' & 76^\circ 12' \\
\text{Wirklicher Axenwinkel} & 66^\circ 56' & 69^\circ 5' & 48^\circ 53' \\
\end{array}$

Dritte Reihe. $RO, AmO, 2SO_{4} + 6BO_{3}. Isomorph der vorigen Reihe ac = 72—74^\circ$.

$R = \begin{array}{ccc} Mg & Mn & Fe & Ni \\
\text{Orientierung (001) bc} & 78^\circ 0' & 81^\circ 34' & 82^\circ 03' & 79^\circ 2' \\
\text{Scheinbarer Axenwinkel} & 77^\circ 30' & 113^\circ 45' & 135^\circ 42' & 00^\circ 00' \\
\text{Wirklicher Axenwinkel} & 50^\circ 23' & 69^\circ 9' & 76^\circ 52' & 86^\circ 26' \\
\end{array}$

1) Wir bedienen uns zur Bezeichnung der Orientierung derselben Schemata, welche die Herrn Murmann und Rotter in ihrer oben citirten Arbeit über die opt. Verhältnisse monoklinödrischer Krystalle gebrauchen.
über die physikalischen Verhältnisse krystallisierte Körper.

\[R = \quad \text{Co} \quad \text{Zn} \quad \text{Cu} \]

Orientierung (001) \(b\gamma = \ldots 78^\circ 0' \quad 81^\circ 20' \) (001) \(b\gamma = 2^\circ 33' \)
Scheinbarer Axenwinkel \ldots 155^\circ 12' \quad 141^\circ 45' \quad 121^\circ 39' \]
Wirklicher Axenwinkel \ldots 81^\circ 39' \quad 78^\circ 35' \quad 71^\circ 21' \]

Carbonate. Eine einzige Reihe \(\text{RO,CO}_2 \); ausser dem Kalkspath keines der Glieder bisher näher studirt, doch sind alle optisch negativ. Das isomorphe \(\text{NaO,NO}_2 \) zeigt schwächere mittlere Brechung und fast gleiche Doppelbrechung; es ist nämlich

\[
\begin{align*}
\frac{\nu_{w} + \nu_{s}}{2} & = 1.461 \quad 1.572 \quad \text{Differenz} = 0.111 \\
\frac{\nu_{w}}{\nu_{s}} & = 1.180 \quad 1.116 \quad \text{Differenz} = 0.064.
\end{align*}
\]

Acetate. Aus sämtlichen drei isomorphen Reihen liegen entsprechende Beobachtungen vor.

Erste Reihe. \(\text{RO,Ac}_2 + 4\text{H}_2 \). Monoklinoëdrisch. \(a : b : c = 0.7 : 1 : 0.4 \). \(ac = 85—86^\circ \).

\[R = \quad \text{Mg} \quad \text{Co} \]

Orientierung (001) \(b\gamma = \ldots \ldots 132^\circ 34' \quad 121^\circ 55' \)
Scheinbarer Axenwinkel \ldots \ldots 89^\circ 54' \quad 48^\circ 12' \]
Wirklicher Axenwinkel \ldots \ldots 56^\circ 34' \quad 30^\circ 43' \]

Zweite Reihe. \(\text{RO,2U}_2\text{O}_3,3\text{Ac}_3 + 6\text{H}_2 \). Rhombisch. \(a : b : c = 1 : 0.6 : 0.4 \).

\[R = \quad \text{Mg} \quad \text{Mn} \quad \text{Cd} \]

Orientierung \ldots \ldots \ldots cb\gamma \quad cb\gamma \quad cb\gamma
Scheinbarer Axenwinkel \ldots 10—13^\circ \quad 54—57^\circ \]

Dritte Reihe. \(\text{RO,2U}_2\text{O}_3,3\text{Ac}_2 + 7\text{H}_2 \). Rhombisch. \(a : b : c = 1 : 0.9 : 0.8 \).

\[R = \quad \text{Ni} \quad \text{Co} \quad \text{Zn} \]

Orientierung \ldots \ldots \ldots \ldots abc \quad abc \quad abc
Scheinbarer Axenwinkel \ldots \ldots \ldots 100^\circ \quad 103^\circ 38' \quad 110^\circ \]

Die merkwürdigsten Reihen gehören dem tesseralen System an. Von den übrigen besitzen wir correspondirende optische Beobachtungen aus der Reihe des rothen Blutlaugensalzes. 3 KO₃,R₆,C₃₅. Rhombisch. \(1 : 0.7 : 0.6\).

<table>
<thead>
<tr>
<th>(R =)</th>
<th>Fe</th>
<th>Mn</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierung</td>
<td>αβγ</td>
<td>αβγ</td>
<td>αβγ</td>
</tr>
<tr>
<td>Scheinbarer Axenwinkel</td>
<td>70° 30'</td>
<td>32° 30'</td>
<td></td>
</tr>
</tbody>
</table>

Subsulphate. \(RO₃S₆O₃ \rightarrow 4HO\). Hexagonal. Das Strontian- und das Kalksalz optisch negativ. Das Bleisalz positiv.

Sulphate. \(RO₃SO₃\). Rhombisch. \(a : b : c = 1 : 0.7 : 0.6\).

<table>
<thead>
<tr>
<th>(R =)</th>
<th>Ca</th>
<th>Ba</th>
<th>Sr</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierung</td>
<td>βαγ</td>
<td>αβγ</td>
<td>αβγ</td>
<td>αβγ</td>
</tr>
<tr>
<td>Wirklicher Axenwinkel</td>
<td>43° 32'</td>
<td>36° 48'</td>
<td>50° circa 90° circa</td>
<td></td>
</tr>
</tbody>
</table>

Carbonate. \(RO₃CO₃\). Rhombisch. \(a : b : c = 1 : 0.7 : 0.6\).

<table>
<thead>
<tr>
<th>(R =)</th>
<th>Ca</th>
<th>Ba</th>
<th>Sr</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierung</td>
<td>δαβ</td>
<td>βαγ</td>
<td>αβγ</td>
<td>βαγ</td>
</tr>
<tr>
<td>Scheinbarer Axenwinkel</td>
<td>30°</td>
<td>20°</td>
<td>10°</td>
<td>16°</td>
</tr>
<tr>
<td>Wirklicher Axenwinkel</td>
<td>17° 50</td>
<td>9° circa 6° 56'</td>
<td>8° 3'</td>
<td></td>
</tr>
</tbody>
</table>

Phosphate. Als Apatit und Pyromorphit \(RCl + 3(3RO₃PO₄)\). Hexagonal. Negativ.

Acetate. \(RO₃Ac₂O₆ \rightarrow 3HO\). Monoklinoidisch. Es wird mit dem Bleizucker isomorph ein Zink- und Barytsalz beschrieben. Doch kann man kaum mehr von Isomorphie sprechen, wo Kantenwinkel und Axenlängen so different werden und letztere nur sehr gezwungen auf einander bezogen werden können. In optischer Beziehung stimmt das Blei- und Zinksalz insoferne überein, als die Ebene der
über die physikalischen Verhältnisse krystallisirter Körper.

optischen Axen für beide in die Symmetrieebene entfällt und die erste Mittellinie mit der Normale auf a einen Winkel von etwa 35° ein- schliesset.

Formiate. $RO FO_2$. Rhombisch. $a : b : c = 1 : 0.7 : 0.4$

R = Ca Ba
Orientirung $b\gamma a$ $b\gamma a$
Scheinbarer Axenwinkel . . . $39-44^\circ$ $168-170^\circ$

Die drei folgenden Gruppen sind noch nicht hinlänglich in optischer Beziehung untersucht. Dagegen besitzen wir zahlreiche Daten aus der

$$\frac{\mu_\omega + \mu_\sigma}{2} = 1.625$$ $$\frac{\mu_\omega}{\mu_\sigma} = 1.01$$

K Am

Die Doppelbrechung bei beiden nahezu gleich, der mittlere Brechungsexponent grösser bei K als bei Am.

Zweite Reihe. $R Cl, Hg Cl + 2 HO$. Rhombisch. $a : b : c = 1 : 0.77 : 0.71$

R = K Am
Orientirung $c\beta a$ $c\beta a$
Scheinbarer Axenwinkel an der Kaliumverbindung so gross, dass die Axenstrahlen nicht mehr in die Luft austreten; in der Ammoniumverbindung $79^\circ 24'$.

Sulphate. Erste Reihe. $RO SO_2$. Rhombisch. $a : b : c = 1 : 0.7 : 0.5$

R = K Am
Orientirung $a\gamma b$ $b\alpha c$
Scheinbarer Axenwinkel . . . $100^\circ 52'$ $85^\circ 30'$
Wirklicher Axenwinkel . . . $66^\circ 54'$ $49^\circ 42'$
Zweite Reihe. \(\text{RO, MgO, } 2\text{SO}_3 + 6\text{HO} \)
Dritte Reihe. \(\text{RO, MnO, } 2\text{SO}_3 + 6\text{HO} \)
Vierte Reihe. \(\text{RO, CoO, } 2\text{SO}_3 + 6\text{HO} \) Sigee oben zweite
Fünfte Reihe. \(\text{RO, NiO, } 2\text{SO}_3 + 6\text{HO} \) Gruppe
Sechste Reihe. \(\text{RO, FeO, } 2\text{SO}_3 + 6\text{HO} \)
Siebente Reihe. \(\text{RO, CuO, } 2\text{SO}_3 + 6\text{HO} \)

Nitrate. \(\text{RO,NO}_3 \). Rhombisch. \(a:b:c = 1:0.7:0.5 \).

\[
\begin{array}{ccc}
\text{R} & \text{K} & \text{Am} \\
\text{Orientierung} & \text{cab} & \text{abc} \\
\text{Scheinbarer Axenwinkel} & 7^\circ 39' & 59^\circ 30'
\end{array}
\]

Phosphate. \(\text{RO, } 2\text{HO, PO}_3 \). Tetragonal. \(a:c = 1.4:1 \).
Beide Verbindungen negativ.

\[
\begin{array}{ccc}
\frac{\mu_\omega + \mu_\pi}{2} & 1.49 & 1.50 \\
\frac{\mu_\omega}{\mu_\pi} & 1.03 & 1.03
\end{array}
\]

Also Doppelbrechung und mittlerer Brechungsexponent nahezu gleich.

\[
\begin{array}{ccc}
\frac{\mu_\omega + \mu_\pi}{2} & = 1.56 & 1.55 \\
\frac{\mu_\omega}{\mu_\pi} & = 1.03 & 1.03
\end{array}
\]

Ähnlich den vorigen.

Trinitrophenate. \(\text{RO} + \text{C}_3\text{H}_2\text{NO}_3(\text{NO}_3)\), O. Rhombisch. \(a:b:c = 1:0.69:0.36 \).

\[
\begin{array}{ccc}
\text{R} & \text{K} & \text{Am} \\
\text{Orientierung} & \text{cbg} & \text{cga}
\end{array}
\]

1) Nach brieflichen Mittheilungen vom Descloizeaux 154.
über die physikalischen Verhältnisse krystalallisierter Körper.

Tartrate. \(\text{RO}_\text{T} + \text{NaO}_\text{T} + 8\text{HO} \). Rhombisch. \(a:b:c = 1:0.8:0.4 \).

R = K Am
Orientierung b\(\alpha\) c\(\alpha\) c\(\beta\)
Scheinbarer Axenwinkel . . 133—89° 100—70°
Wirklicher Axenwinkel . . 76—56° 62—46°

Die wenigen isomorphen Reihen dieser Gruppe sind noch nicht einer vergleichenden Untersuchung unterzogen worden. Eine Natronverbindung zeigt sich isomorph der Reihe \(\text{MgO}_\text{SO}_3 + 7\text{HO} \).

\(\text{NaO}_2\text{S}_2\text{O}_5 + 2\text{HO} \). \(\text{MgO}_\text{SO}_3 + 7\text{HO} \).

Orientierung a\(\beta\) \(\alpha\) \(\beta\) \(\beta\)
Scheinbarer Axenwinkel . 126—134° 79°

Das salpetersaure Silberoxyd hat gleiche Abmessungen mit salpetersaurem Kali und Aragonit.

\(\text{AgO}_\text{NO}_3 \) \(\text{K}_2\text{O}_\text{NO}_3 \) \(\text{CaO}_\text{CO}_3 \)

Orientierung b\(\alpha\) c\(\alpha\) c\(\beta\)

Aus der

10. Gruppe, Ag, Au

besitzen wir keine Beobachtungen.

Ausser den bereits unter der achten Gruppe angeführten Verbindungen ist noch der Mimetit \(\text{PbCl} + 3 (3\text{PbO}, \text{AsO}_3) \) neben den Phosphaten der vierten Gruppe zu nennen. Er ist, wie diese, hexagonal, optisch negativ. Das phosphorsaure und das arsensaure Natron \(2\text{NaO}, \text{HOSO}_4 + 2\text{HO} \) stimmt ebenfalls.

Nur die triklinödrische Doppelverbindung des \(\text{BaCl}_2\text{Br} \) mit \(\text{CdCl}_2\text{Br} \) näher untersucht. Es zeigt sich, die Orientierung übereinstimmend. Die erste Mittellinie fällt nahezu in die Normale von 110.

Eswären nun noch einige Lithion-, Silber-, Blei-, und Quecksilber-Verbindungen so wie mehrere Silicate anzuführen, die wir aber übergehen, da die Isomorphie der Gruppen, in welche sie eintreten sollen, erst noch weiterer Untersuchungen bedarf.

Anders ist es in der Gruppe Kalium, Ammonium. Wenige sind so vollständig untersucht, so sicher gestellt als diese. Sind auch die Formen von salpetersaurem Ammoniak dem Habitus nach noch ziemlich unterschieden von denen des salpetersauren Kali, so ist die Beziehung der einen Form auf die andere doch ganz ungezwungen. Nun findet sich aber die optische Orientirung fast durchgehends verschieden für die Kalium- und die Ammoniumverbindungen, und zwar im Allgemeinen um so verschiedener, je einfacher die Verbindung, d. i. je geringer die Menge der gemeinschaftlichen Bestandtheile und je geringer die Anzahl der gemeinschaftlichen Radicale ist. Man sieht dies aus folgender Zusammenstellung:

<table>
<thead>
<tr>
<th>Reihe</th>
<th>Verhältnis der gemeinschaftlichen Äquivalente zu den unterscheidenden Äquivalenten</th>
<th>Orientierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>110.110; 011.011</td>
</tr>
<tr>
<td>Am${}$ K ${}$ O$_3$SO$_3$</td>
<td>48 : 18 = 100 : 38 48 : 39,2 = 100 : 82 b(_)c 72° 20' 75° 20' 90° 0'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62 : 18 = 100 : 29 62 : 39,2 = 100 : 63 a(_)c 69° 14' 80° 48' 90° 0'</td>
<td></td>
</tr>
<tr>
<td>Am${}$ K ${}$ O,N$_3$O$_5$</td>
<td>188 : 18 = 100 : 9 188 : 39,2 = 100 : 21 c(_)b 75° 34' 85° 20' 90° 0'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170 : 18 = 100 : 11 170 : 39,2 = 100 : 23 (001) b(_)c 78° 0' 109° 38' 50° 6' 72° 54'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>178 : 18 = 100 : 10 178 : 39,2 = 100 : 22 (001) b(_)c 82° 55' 107° 53' 52° 42' 75° 44'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 : 18 = 100 : 10 180 : 39,2 = 100 : 22 (001) b(_)c 78° 0' 109° 28' 51° 0' 73° 4'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>181,7 : 18 = 100 : 10 181,7 : 39,2 = 100 : 21 (001) b(_)c 81° 27' 108° 40' 52° 20' 74° 33'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>182 : 18 = 100 : 9 182 : 39,2 = 100 : 21 (100) b(_)c 2° 33' 107° 35' 50° 16' 71° 56'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>228 : 18 = 100 : 8 228 : 39,2 = 100 : 17 c(_)b 66° 20' 55° 29' 69° 45' 53° 54' 90° 0'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235 : 18 = 100 : 8 235 : 39,2 = 100 : 16 c(_)b 78° 56' 54° 4' 79° 33' 54° 38' 90° 0'</td>
<td></td>
</tr>
</tbody>
</table>

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 27.
Mit Ausnahme der letzten Verbindung sieht man die Übereinstimmung zwischen den Kalium- und Ammoniakverbindungen zunehmen, in dem Maasse als die gemeinschaftlichen Bestandtheile im Verhältniss zu den unterscheidenden sich vermehren, und was auch immer der Grund der Abweichung von dieser Regel, welche die Seignettesalze zeigen, sein mag, so viel ist gewiss, dass sie nur dazu helfen, die allgemeine Ansicht, welche man sich schon aus den übrigen Reihen bilden konnte, zu bestätigen, dass der krystallographischen Isomorphie der Kalium- und Ammoniumverbindungen keine optische Ähnlichkeit entspricht, dass vielmehr der Grund der optischen Ähnlichkeit der complicirten Verbindungen in der Menge der gemeinschaftlichen Bestandtheile zu suchen ist, welche die Verschiedenartigkeit der Wirkungen von Kalium und Ammonium decken.

[Es scheint dass der Grund der Abweichung der beiden Seignettesalze sich folgendermassen auffassen lässt:

Bezeichnet a, b, c die Elasticitätsaxen im gewöhnlichen Sinne (wobei also auf die Farbe Rücksicht genommen ist) für die Kali-, a, b, c, für die Ammoniakverbindung, so hat man (vergl. den Schluss des vorigen Paragraphen) für diese die Werthe

\[
a + \frac{a'}{\lambda^2} = b + \frac{b'}{\lambda^2} = c + \frac{c'}{\lambda^2}
\]

\[
a, + \frac{a'}{\lambda^2} = b, + \frac{b'}{\lambda^2} = c, + \frac{c'}{\lambda^2}
\]

Nimmt man nun an, dass die Elasticitätsverhältnisse des Äthers in beiden Verbindungen nicht wesentlich verschieden sind, so dass sie etwa in der Orientirung der Grössen übereinstimmen, so müsste bei dem angegebenen Schema der Orientirung

\[
b + \frac{b'}{\lambda^2} > c + \frac{c'}{\lambda^2} = c, + \frac{c'}{\lambda^2} > b, + \frac{b'}{\lambda^2}
\]

\[
b - c > \frac{c' - b'}{\lambda^2} = c', - b' > b, - c,
\]

Wenn nun die Substanzen, wie es hier der Fall ist, nur sehr geringe Doppelbrechung aufweisen (von beiden Salzen kann man fast zolldicke Platten im Polarisationsmikroskop beobachten, ohne
dass die Farbenringe sehr häufig würden, was das sicherste Zeichen geringer Doppelbrechung ist, vergl. Airy, Pogg. Ann. 23), so werden die Differenzen \(b - c, \quad b' - c, \) wenig beträchtlich und die Lage der optischen Axen wird verschieden orientirt, genau wie es die Beobachtung fordert, wenn

\[
c' - b' > \left(\frac{\lambda_s (b - c)}{\lambda_s (b' - c)} \right) > c' - b'
\]

d. i. wenn die Dispersionsglieder grössere Differenzen aufweisen als die Glieder, welche das Maass der Doppelbrechung geben. In der That ist in den beiden Verbindungen die geringe Doppelbrechung mit starker Dispersion verbunden.

Wir werden, um in dieser Richtung zu einer bestimmten Erklärung zu gelangen, die beiden weinsauern Doppelverbindungen zum Gegenstand einer eingehenden Untersuchung machen.]

Nicht bloss in der Kalium-Ammoniumgruppe zeigt sich dieser Einfluss der gemeinschaftlichen Bestandtheile. Schon die erste Gruppe gibt einen entsprechenden Beleg. Wir haben das Verhältniss der gemeinschaftlichen Bestandtheile zu den unterscheidenden im

\[
\begin{array}{cccc}
\text{KO} & S & \text{O} & \ = \ 71 : 16 \ = \ 100 : 22 \\
\text{Cr} & & & \ = \ 71 : 26.7 \ = \ 100 : 38 \\
\text{AmO}_2\text{MgO}_2 & S & \text{O} & \ = \ 140 : 32 \ = \ 100 : 23 \\
\text{Cr} & & & \ = \ 140 : 53.4 \ = \ 100 : 38 \\
\text{MgO}_2 & S & \text{O} & \ = \ 107 : 16 \ = \ 100 : 15 \\
\text{Cr} & & & \ = \ 107 : 26.7 \ = \ 100 : 25
\end{array}
\]

und wieder zeigen sich die Glieder der ersten und zweiten Reihe verschieden orientirt und erst die der dritten übereinstimmend.

Ein ähnliches Verhältniss ist auch in Betreff der Isomorphie (vergl. Buff, Kopp und Zamminer, pag. 600) nachgewiesen worden; so kann das Alkali in den Alaunen zum Theil durch Natron oder Magnesia ersetzt sein, unbeschadet der octaedrischen Kristallform: doch ist die Empfindlichkeit in der optischen Orientirung ungleich grösser.

Nur die Glieder der Magnesiumgruppe zeigen Übereinstimmung, aber auch hier deuten die beträchtlichen Unterschiede in den optischen Axen darauf hin, dass von einer optischen Isomorphie nicht
die Rede sein kann. Als optisch isomorph müsste man nämlich jene doppelbrechenden Substanzen bezeichnen, wo, wenn \(a, b, c, a', b', c' \) die Elasticitätsachsen zweier Krystalle sind, das Verhältniss

\[
\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}
\]

Dass durch äusseren Druck nicht bloß die Moleküle einander genähert werden, zeigt schon die einfache Thatscache dass explosive Substanzen durch Druck ihre atomistische Aggregation ändern, so wie dass andere (Schwefel, arsenige Säure, Quecksilberjodid) ihre Krystallform gegen eine neue umtauschen, indem sie zugleich ein bis in die kleinsten Partikel gleichsam zerstäubtes Ansehen erhalten. Die Nähcrung der Moleküle kann nicht statthaben, ohne auch die gegenseitige Stellung der Atome zu ändern, folglich nicht ohne auf die optische Constitution einzuwirken. Man sieht zugleich, wie nothwendig aus dieser Ansicht folgt, dass ein ungleichformig comprimirter Körper zum künstlichen Krystall wird.

Der Schluss, zu dem alle diese Betrachtungen führen, ist nun der, dass die optischen Verhältnisse viel näher durch die atomistische Beschaffenheit bedingt sind als die morphologischen. Verschiedene Grundstoffe können sich im Molecul vertreten ohne die Form desselben, von welcher die Krystallgestalt abhängt, wesentlich zu ändern; aber dabei wird der optische Charakter um so tiefer affizirt, je grösser die Änderung in der Constitution des Molecüls ist. Wir glauben daher wegen aller in diesem Abschnitte angeführten Thatsachen zu dem Schlusse berechtigt zu sein, dass der Grund der Doppelbrechung nicht in der Anordnung der wägbaren Moleküle, sondern in der Disposition der Ätherpartikel innerhalb des Molecüls zu suchen sei. Diese muss zwar ähnliche Symmetrie wie der Krystallkörper zeigen, denn die Symmetrie
des letzter hängt von der Form seiner Moleküle ab; aber es kann gar kein direkter Zusammenhang bestehen zwischen den optischen und solchen Verhältnissen, die nur auf der verschiedenartigen Vertheilung der Moleküle beruhen wie Spaltbarkeit, Härte, magnetische Orientirung.

Isomorphie und magnetische Orientirung.

1. Dass die magnetische Orientirung, d. i. die dem magnetischen Charakter der Substanz widersprechende Einstellung der Kristalle zwischen den Polen kräftiger Magnete, von der Anordnung der wägbaren Materie und zwar zunächst von der Disposition der Moleküle abhängt, haben schon Knoblauch und Tyndall aus ihren Versuchen mit verschiedenartig comprimirten Massen geschlossen. Einen weiteren Beleg dafür geben die isomorphen Körper.

Es sind bis jetzt sechs isomorphe Gruppen bezüglich der magnetischen Orientirung untersucht. Es zeigt

\[
\begin{align*}
\text{Mg} & \quad \text{Cl} + 2\text{CdCl} + 12\text{HO} \quad \text{die Orientirung} \quad \pi \\
\text{Ni} & \quad \pi \\
\text{Co} & \\
\text{Am} & \quad \text{O}_4\text{SO}_4 \quad \delta \\
\text{K} & \quad \delta \\
\text{KO, CrO}_4 & \quad \delta \\
\text{Ba} & \quad \text{O}_4\text{SO}_4 \quad \delta \\
\text{Sr} & \quad \delta \\
\text{Mg} & \quad \text{O}_4\text{SO}_4 + 7\text{HO} \quad \delta \\
\text{Zn} & \quad \delta \\
\text{Ni} & \\
\text{CaO, CO}_2 & \quad \text{O}_4\text{NaO}, 2\text{T} + 8\text{HO} \quad \delta \\
\text{KO, NO}_3 & \quad \delta \\
\text{K} & \quad \delta \\
\text{Am} & \quad \delta \\
\end{align*}
\]

d. i. alle bis jetzt untersuchten, gut krystallisirten Körper des rhombischen Systems besitzen, sobald sie in eine isomorphe Gruppe gehören, dasselbe Schema der Orientirung.

Das bedeutet aber nicht, dass die Glieder einer Gruppe sich durchaus gleich einstellen. Denn während in diamagnetischen Krystallen das Schema
anzeigt, dass bei der Aufführung nach a sich die Richtung b äquatorial stellt u. s. w., besagt für paramagnetische Krystalle das Schema $\pi (bac)$, dass bei derselben Aufführung b die axiale Richtung sucht u. s. f. (Sitzb. 32, 45.)

Der Sinn des gleichen Schema ist daher der, dass, wenn in einer isomorphen Gruppe para- und diamagnetische Substanzen neben einander stehen, alle von gleichem magnetischem Charakter sich gleichmassig einstellen, aber die paramagnetischen genau umgekehrt wie die diamagnetischen.

Da nun der magnetische Charakter von der Substanz, d. i. der atomistischen Beschaffenheit der Moleküle abhängt und das einzige Gemeinsame der isomorphen Körper in der gleichartigen Lagerung ihrer Moleküle (die Substanz derselben sei welche immer) besteht 1), so muss auch die magnetische Orientirung allein von der Anordnung der Moleküle abhängen. Es geht dies so weit, dass Krystalle, deren chemischer Isomorphismus bis jetzt ganz unerklärlich ist, wie rothes Blutlaugeosalz, Aragonit und Salpeter, bei morphologischer Gleichartigkeit auch gleiche magnetische Orientirung aufweisen. Wenn man die optische Desorientirung der beiden weinsauren Doppelverbindungen des Natron mit Kali und Ammoniak, so wie die des schwefelsauren Kali und Ammoniak mit der übereinstimmenden Orientirung des magnetischen Verhaltens vergleicht, so kann man darüber nicht im Zweifel sein, dass den relativen Verhältnissen der Doppelbrechung und der magnetischen Axenwirkung ganz verschiedene Ursachen zu Grunde liegen.

Die optischen Verhältnisse stehen ausser aller Beziehung zur Theilbarkeit. Die magnetischen scheinen dagegen, wie auch schon von Tyndall bemerkt worden, um so inniger an diese gebunden zu sein. So finden wir in Krystallen mit ausgezeichneter pinakoidischer Spaltbarkeit

<table>
<thead>
<tr>
<th>Calciumplatincyanur</th>
<th>$\delta (bac)$</th>
<th>Theilbarkeit 010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsaures Kali</td>
<td>$\delta (cab)$</td>
<td>010</td>
</tr>
<tr>
<td>Ammoniak</td>
<td>$\delta (cab)$</td>
<td>010</td>
</tr>
</tbody>
</table>

1) Dafür spricht die gleichmassige Theilbarkeit und die Fähigkeit bei nahezu gleicher Löslichkeit nach variablen Verhältnissen zusammen zu krystallisiren.
über die physikalischen Verhältnisse krystallisirter Körper.

Anhydrit δ (abc) Theilbarkeit 100
Baryt und Coelestin . . δ (bca) . . . 001
also überall die Normale auf die Spaltungsrichtung als die Richtung der kräftigsten magnetischen Action. Doch bildet hier die Gruppe der schwefelsauren Verbindungen aus der Magnesiareihe eine Ausnahme.

2. Es ist nun zwar nicht zu behaupten, dass die Richtung der kräftigsten magnetischen Action auch die Richtung der grössten Dichtigkeit sein muss, gewiss aber wird, insofern unsere Grundanschauung die richtige ist, die magnetische Orientirung auf sehr einfache Weise mit der nach verschiedenen Richtungen hin verschiedenen Dichtigkeit im Zusammenhang stehen.

Wir denken uns die Massenmittelpunkte der Moleküle der Krystalle so vertheilt, dass sie insgesammt in Ebenen zu liegen kommen, welche durch die Indices der beobachteten Krystall- und Spaltungsflächen bestimmt sind. Im rhombischen System werden diese Ebenen symmetrisch in den 8 orthogonalen Raumoctanten vorkommen, welche durch die drei Hauptschnittebenen gebildet werden. (Diese Ebenen werden zugleich die geometrischen Orte der Ruhelage sein, um welche die Theilchen unter dem Einflusse der Wärme oscillieren, und die einzige Bedingung welche sie zu erfüllen haben, ist, dass die relativen Dimensionen nach den drei Hauptidektions hin verschiedene von der Gestalt und Beschaffenheit der Moleküle abhängige Änderungen erfahren können.)

Was auch immer die Ursache der magnetischen Erscheinungen sein mag, so ist sie doch immer einer anziehenden oder abstossenden
Wirkung des Magnetismus auf die Massenmoleküle äquivalent zu setzen und da die magnetischen Kräfte der Newton'schen Anziehungsfunktion entsprechen, so lassen sich hier alle die bekannten Sätze vom Potential in Anwendung bringen.

Denkt man sich aus dem Krystalle eine Kugel geschnitten, welche zwischen zwei unendlichen Ebenen aufgehängt wird, von welcher aus magnetische Anziehung geübt wird, so lässt sich das Drehungsmoment auf zweierlei Art berechnen. Entweder man reduziert die Wirkung der Masse, unter der Annahme der angegebenen Molecularvertheilung auf die Wirkung einer andern über die Oberfläche der Kugel vertheilten magnetischen Materie, was nach einem bekannten Lehrsatz von Gaußs immer möglich ist. Man erhält dann eine Oberflächenvertheilung, die im Allgemeinen durch eine homogene Gleichung des zweiten Grades repräsentiert wird, aber in erster Näherung auf eine Gleichung des zweiten Grades gebracht werden kann. Das ist, statt der Wirkung der Masse des Krystalles ergibt sich die Wirkung einer Massenschicht, welche continuirlich zwischen zwei Flächen der zweiten Ordnung, nämlich der Kugelfläche und einem dreiaxigen Ellipsoid enthalten ist. Man erhält dann die Wirkung auf einen äussern Punkt durch die Differentiation des Potentials

\[V = \frac{2k\mu}{\pi} \int \int \int \frac{dxdydz}{(x^2 + y^2 + z^2)} \int_0^\infty \frac{\sin \varphi}{\varphi} \cos \varphi \int_0^{\varphi'} \frac{\sin \varphi'}{\varphi'} U \varphi' d\varphi' \]

wo

\[k \] der constante Dichtigkeitsfactor der Schicht,
\[\mu \] die specifische (para- oder dia-) magnetische Intensität der Substanz;

\[U = \frac{r^2}{x^2 + y^2 + z^2}, \text{ und } r \text{ der Radius der Kugel}, \]

\[U' = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}, \text{ und } a, b, c \text{ die Halbachsen der äussern ellipsoidischen Grenzfläche sind; die Bogen } \varphi \text{ und } \varphi' \text{ verschwinden durch die Integration innerhalb der angegebenen Grenzen. Es ist das bekannte Dirichletsche Integral für die Anziehung der Ellipsoide angewandt auf eine sphärisch-ellipsoidische Schicht.} \]

Die zweite Methode besteht darin, das Potential für parallele, auf der Ebene der unendlichen magnetischen Flächen normale Linien zu berechnen. Ist nämlich
l die Entfernung zweier Massenmittelpunkte;
μ die spezifische (para- oder dia-) magnetische Masse eines Moleküls;
d die Entfernung des Endpunktes der mit Materie belegten Linie vom
nächsten magnetischen Punkte der einen unendlichen Ebene;
k die Anzahl der Moleküle auf der mit Materie besetzten Linie;
so wird

$$V = \frac{\mu}{l} \int_0^l \frac{d - t}{x} \left(1 - \frac{k + d}{l} \right) dx$$

Wir werden, sobald wir die von uns beabsichtigten Messungen
durchgeführt haben, zeigen, wie diese beiden Formeln sich Schwin-
gungsversuchen anpassen lassen und wie sie zugleich dazu dienen
können, die relativen Dichten in Krystalilen zu bestimmen.

Note zu Seite 393.

Setzt man

$$V = k + AX + BY + CZ + DX^2 + EY^2 + FZ^2 + GYZ$$
$$+ HZX + JXY + AX'' + BY'' + CZ'' + DX''^2$$
$$+ EY''^2 + FZ''^2$$

(indem eine solche Wahl der Koordinatenachsen gedacht wird, dass die
Coefficienten von X', Y', Z', Z', Z', Z' verschwinden), so findet man
unter der Berücksichtigung, dass δV für $\zeta = 0 \ \eta = 0 \ \zeta = 0$
unabhängig von den Variationen $\delta \xi$, $\delta \eta$, $\delta \zeta$ und folglich auch unabhängig
von δX, δY, δZ und $\delta X''$, $\delta Y''$, $\delta Z''$ der Nulle gleich werden muss

$$V = k + DX^2 + EY^2 + FZ^2 + GYZ + HZX + JXY$$
$$+ DX''^2 + EY''^2 + FZ''^2$$

Schreibt man nun hier der Bequemlichkeit halber $- \frac{1}{2} a$ für
D, $- \frac{1}{2} b$ für E, $- d$ für G, $- e$ für H, $- \frac{1}{2} a$, für D, \ldots
so wird

$$\delta V = -(A \delta X + B \delta Y + C \delta Z + aX'' \delta X'' + bY'' \delta Y'' + eZ'' \delta Z'')$$
wo
\[A = aX + fY + eZ \]
\[B = fX + bY + dZ \]
\[C = eX + dY + cZ \]

ist. Substituirt man dies in die allgemeine Bewegungsgleichung, und vertauscht die Differential- und Variationszeichen, so erhält man

\[
\iint
dx\ dy\ dz \left(\frac{d^2\delta}{dt^2} + \frac{d^2\eta}{dt^2} + \frac{d^2\zeta}{dt^2} \right) =
\iint
dx\ dy\ dz \left[A \left(\frac{\partial y}{\partial x} - \frac{\partial \delta}{\partial y} \right) + B \left(\frac{\partial \delta}{\partial x} - \frac{\partial \delta}{\partial x} \right) + C \left(\frac{\partial \delta}{\partial y} - \frac{\partial \delta}{\partial x} \right) \right]
+ a, X_{\nu} \left(\frac{d}{dt} \left[\frac{d^2\eta}{dx^2} + \frac{d^2\eta}{dy^2} + \frac{d^2\eta}{dz^2} \right] - \frac{d}{dy} \left[\frac{d^2\eta}{dx^2} + \frac{d^2\eta}{dy^2} + \frac{d^2\eta}{dz^2} \right] \right)
+ b, Y_{\nu} \left(\frac{d}{dx} \left[\frac{d^2\zeta}{dx^2} + \frac{d^2\zeta}{dy^2} + \frac{d^2\zeta}{dz^2} \right] - \frac{d}{dy} \left[\frac{d^2\zeta}{dx^2} + \frac{d^2\zeta}{dy^2} + \frac{d^2\zeta}{dz^2} \right] \right)
+ c, Z_{\nu} \left(\frac{d}{dy} \left[\frac{d^2\zeta}{dx^2} + \frac{d^2\zeta}{dy^2} + \frac{d^2\zeta}{dz^2} \right] - \frac{d}{dx} \left[\frac{d^2\zeta}{dx^2} + \frac{d^2\zeta}{dy^2} + \frac{d^2\zeta}{dz^2} \right] \right)

Wird hier theilweise integrirt, um die \(\delta \) aus den Differentialquotienten auszuscheiden, und berücksichtigt man, insofern es sich hier nur um die Fortpflanzung innerhalb eines möglicher Weise unbegrenzten Mediums handelt, nur die dreifachen Integrale, so gelangt man zu folgenden Relationen zwischen den Coefficienten der Variationen:

\[
\frac{d^2\delta}{dt^2} = \frac{d}{dy} \left[C + c, \left(\frac{d^2Z_{\nu}}{dx^2} + \frac{d^2Z_{\nu}}{dy^2} + \frac{d^2Z_{\nu}}{dz^2} \right) \right]
- \frac{d}{dx} \left[B + b, \left(\frac{d^2Y_{\nu}}{dx^2} + \frac{d^2Y_{\nu}}{dy^2} + \frac{d^2Y_{\nu}}{dz^2} \right) \right]
\]

\[
\frac{d^2\eta}{dt^2} = \frac{d}{dx} \left[A + a, \left(\frac{d^2X_{\nu}}{dx^2} + \frac{d^2X_{\nu}}{dy^2} + \frac{d^2X_{\nu}}{dz^2} \right) \right]
- \frac{d}{dy} \left[C + c, \left(\frac{d^2Z_{\nu}}{dx^2} + \frac{d^2Z_{\nu}}{dy^2} + \frac{d^2Z_{\nu}}{dz^2} \right) \right]
\]

\[
\frac{d^2\zeta}{dt^2} = \frac{d}{dx} \left[B + b, \left(\frac{d^2Y_{\nu}}{dx^2} + \frac{d^2Y_{\nu}}{dy^2} + \frac{d^2Y_{\nu}}{dz^2} \right) \right]
- \frac{d}{dy} \left[A + a, \left(\frac{d^2X_{\nu}}{dx^2} + \frac{d^2X_{\nu}}{dy^2} + \frac{d^2X_{\nu}}{dz^2} \right) \right]
\]
Wir führen nun ein neues Coordinatensystem ein, indem wir die Ebene einer beliebigen Welle als die Ebene $x'\ y'$ setzen; nennt man die Winkel, die

\[
\begin{align*}
x' & \text{ mit } x\ y\ z \text{ einschliesst } \alpha \beta \gamma \\
y' & \text{ mit } x\ y\ z \text{ einschliesst } \alpha' \beta' \gamma' \\
z' & \text{ mit } x\ y\ z \text{ einschliesst } \alpha'' \beta'' \gamma''
\end{align*}
\]

und sind beide Coordinatensysteme rechtwinklig, so ist

\[
\begin{align*}
cos\alpha &= cos\beta' cos\gamma' - cos\beta'' cos\gamma' \\
cos\beta &= cos\gamma' cos\alpha'' - cos\gamma'' cos\alpha' \\
cos\gamma &= cos\alpha' cos\beta'' - cos\alpha'' cos\beta' \\
cos\alpha' &= cos\beta'' cos\gamma - cos\beta cos\gamma'' \\
cos\beta' &= cos\gamma'' cos\alpha - cos\gamma cos\alpha'' \\
cos\gamma' &= cos\alpha'' cos\beta - cos\alpha cos\beta'' \\
cos\alpha'' &= cos\beta' cos\gamma - cos\beta cos\gamma' \\
cos\beta'' &= cos\gamma cos\alpha' - cos\gamma' cos\alpha \\
cos\gamma'' &= cos\alpha cos\beta' - cos\alpha'' cos\beta
\end{align*}
\]

\[X = X' cos\alpha + Y' cos\alpha' + Z' cos\alpha'' \text{ etc.}\]

\[X_1 = X', cos\alpha + Y', cos\alpha' + Z', cos\alpha'' \text{ etc.}\]

\[X' = X' cos\alpha + Y' cos\beta + Z' cos\gamma \text{ etc.}\]

\[X_1' = X_1 cos\alpha + Y', cos\beta + Z, cos\gamma \text{ etc.}\]

Ist die Verschiebung ξ, η, ζ nur von einer der Grundvariablen abhängig, wie z. B. in dem Falle, wo das Coordinatensystem parallel der Wellenebene ist, indem hier die Verschiebungen nur nach der dritten Coordinat z' bestimmt werden, so wird

\[
\begin{align*}
X &= \frac{dx'}{dz'} cos\alpha - \frac{d\xi}{dz'} cos\alpha' \\
Y &= \frac{dy'}{dz'} cos\beta - \frac{d\xi'}{dz'} cos\beta' \\
Z &= \frac{d\eta'}{dz'} cos\gamma - \frac{d\xi'}{dz'} cos\gamma'
\end{align*}
\]

\text{etc.}
Werden diese Formeln auf unsere Gleichungen angewandt, so hat man zunächst, indem man alles auf \(x' \) bezieht,

\[
\frac{d^2\xi}{dt^2} = \frac{d}{ds'} \left[(C + c, \frac{d^2Z''}{ds'^2}) \cos \beta'' - \frac{d}{ds'} \left[(B + b, \frac{d^2Y''}{ds'^2}) \cos \gamma'' \right. \right.
\]
\[
\frac{d^2\eta}{dt^2} = \frac{d}{ds'} \left[(A + a, \frac{d^2X''}{ds'^2}) \cos \gamma'' - \frac{d}{ds'} \left(C + c, \frac{d^2Z''}{ds'^2} \right) \cos \alpha'' \right)
\]
\[
\frac{d^2\zeta}{dt^2} = \frac{d}{ds'} \left(B + b, \frac{d^2Y''}{ds'^2} \right) \cos \alpha'' - \frac{d}{ds'} \left(A + a, \frac{d^2X''}{ds'^2} \right) \cos \beta''
\]

Berücksichtigt man ferner, dass

\[
\frac{d^2\xi'}{dt^2} = \frac{d^2\xi}{dt^2} \cos \alpha' + \frac{d^2\eta}{dt^2} \cos \beta' + \frac{d^2\zeta}{dt^2} \cos \gamma'
\]
\[
\frac{d^2\eta'}{dt^2} = \frac{d^2\xi}{dt^2} \cos \alpha' + \frac{d^2\eta}{dt^2} \cos \beta' + \frac{d^2\zeta}{dt^2} \cos \gamma'
\]
\[
\frac{d^2\zeta'}{dt^2} = \frac{d^2\xi}{dt^2} \cos \alpha'' + \frac{d^2\eta}{dt^2} \cos \beta'' + \frac{d^2\zeta}{dt^2} \cos \gamma''
\]

so erhält man durch Substitution, indem die oben mitgeteilten Relationen in Anwendung gebracht werden

\[
\frac{d^2\xi'}{dt^2} = -\frac{d}{ds'} \left(A + a, \frac{d^2X''}{ds'^2} \right) \cos \alpha' - \frac{d}{ds'} \left(B + b, \frac{d^2Y''}{ds'^2} \right) \cos \beta'
\]
\[
- \frac{d}{ds'} \left(C + c, \frac{d^2Z''}{ds'^2} \right) \cos \gamma'
\]
\[
\frac{d^2\eta'}{dt^2} = \frac{d}{ds'} \left(A + a, \frac{d^2X''}{ds'^2} \right) \cos \alpha + \frac{d}{ds'} \left(B + b', \frac{d^2Y''}{ds'^2} \right) \cos \beta
\]
\[
+ \frac{d}{ds'} \left(C + c, \frac{d^2Z''}{ds'^2} \right) \cos \gamma
\]
\[
\frac{d^2\zeta'}{dt^2} = 0
\]

Die Vibrationsebene fällt somit in die Wellenebene selbst, wie es auch in der einfachen Theorie Mac Cullagh's stattfindet; hier ist also das Verschwinden des kleineren Winkels keine Folge der ersten Approximation, sondern gilt streng nur für jede beliebige Nähерung. Man sieht aber ein, dass dies eine notwendige Folge der
Voraussetzung ist, nach welcher ξ, η, ζ nur von z' abhängig und $x'y'$ die Wellenebene selbst sein soll. — Entwickelt man nun X'', Y'', Z'' als Funktionen von z', so ergibt sich nach zahlreichen Reduktionen mit Hilfe der Transformationsgleichungen

$$X'' = \frac{d^2}{dz'^2} \left[\left(\frac{d\eta}{dz'} \cos \gamma - \frac{d\xi}{dz'} \cos \gamma' \right) \cos \alpha'' \cos \gamma'' - \left(\frac{d\eta}{dz'} \cos \alpha - \frac{d\xi}{dz'} \cos \alpha' \right) \sin \alpha'' z
+ \left(\frac{d\eta}{dz'} \cos \beta - \frac{d\xi}{dz'} \cos \beta' \right) \cos \alpha'' \cos \beta'' \right]$$

$$Y'' = \frac{d^2}{dz'^2} \left[\left(\frac{d\xi}{dz'} \cos \alpha - \frac{d\zeta}{dz'} \cos \alpha' \right) \cos \beta'' \cos \alpha'' - \left(\frac{d\xi}{dz'} \cos \beta - \frac{d\zeta}{dz'} \cos \beta' \right) \sin \beta'' z
+ \left(\frac{d\xi}{dz'} \cos \gamma - \frac{d\zeta}{dz'} \cos \gamma' \right) \cos \beta'' \cos \gamma'' \right]$$

$$Z'' = \frac{d^2}{dz'^2} \left[\left(\frac{d\zeta}{dz'} \cos \beta - \frac{d\xi}{dz'} \cos \beta' \right) \cos \gamma'' \cos \beta'' - \left(\frac{d\zeta}{dz'} \cos \gamma - \frac{d\xi}{dz'} \cos \gamma' \right) \sin \gamma'' z
+ \left(\frac{d\zeta}{dz'} \cos \alpha - \frac{d\xi}{dz'} \cos \alpha' \right) \cos \gamma'' \cos \alpha'' \right]$$

Führt man dies in den obigen Gleichungen ein, indem man zugleich auch die Differentialquotienten der mit \mathfrak{A}, \mathfrak{B}, \mathfrak{C} bezeichneten Summen entwickelt, so erhält man schliesslich nach allen Reduktionen

$$\frac{d^2\xi'}{dz'^2} = \left(a \cos \alpha' z^2 + b \cos \beta' z^2 + c \cos \gamma' z^2 + 2 d \cos \beta' \cos \gamma'
+ 2 e \cos \alpha' \cos \gamma' + 2 f \cos \alpha' \cos \beta' \right) \frac{d\xi'}{dz'^2}$$

$$- \left(a \cos \alpha \cos \alpha' + b \cos \beta \cos \beta' + c \cos \gamma \cos \gamma'
+ d \left(\cos \beta \cos \gamma' + \cos \beta' \cos \gamma \right)
+ e \left(\cos \gamma \cos \alpha' + \cos \gamma' \cos \alpha \right)
+ f \left(\cos \alpha \cos \beta' + \cos \alpha' \cos \beta \right) \right) \frac{d\eta}{dz'^2}$$
\[+ (a, \cos \alpha z + b, \cos \beta z + c, \cos \gamma z) \frac{d^2 \xi'}{dz'^2} - (a, \cos \alpha \cos \alpha'
+ b, \cos \beta \cos \beta' + c, \cos \gamma \cos \gamma') \frac{d^2 \eta'}{dz'^2}\]

\[\frac{d^2 \eta'}{dz'^2} = (a \cos \alpha z + b \cos \beta z + c \cos \gamma z + 2 d \cos \beta \cos \gamma
+ 2 c \cos \gamma \cos \alpha + 2 f \cos \alpha \cos \beta) \frac{d^2 \xi'}{dz'^2}\]

\[- (a \cos \alpha \cos \alpha' + b \cos \beta \cos \beta' + c \cos \gamma \cos \gamma'
+ d (\cos \beta \cos \gamma' + \cos \beta' \cos \gamma)
+ e (\cos \gamma \cos \alpha' + \cos \gamma' \cos \alpha)
+ f (\cos \alpha \cos \beta' + \cos \alpha' \cos \beta) \frac{d^2 \eta'}{dz'^2}\]

\[+ (a, \cos \alpha z + b, \cos \beta z + c, \cos \gamma z) \frac{d^2 \xi'}{dz'^2} - (a, \cos \alpha \cos \alpha'
+ b, \cos \beta \cos \beta' + c, \cos \gamma \cos \gamma') \frac{d^2 \eta'}{dz'^2}\]

Da über die Richtung, welche die Axen \(x, y\) in der Wellenebene \(x', y'\) einnehmen, bis jetzt nichts bestimmt worden, so kann man die Bedingungsgleichungen

\[- M \frac{d^2 \eta'}{dz'^2} + P \frac{d^4 \xi'}{dz'^4} - Q \frac{d^4 \eta'}{dz'^4} = 0\]

\[- M \frac{d^2 \xi'}{dz'^2} + N \frac{d^4 \eta'}{dz'^4} - Q \frac{d^4 \xi'}{dz'^4} = 0\]

setzen, wo

\[M = a \cos \alpha \cos \alpha' + b \cos \beta \cos \beta' + c \cos \gamma \cos \gamma' + d (\cos \beta \cos \gamma'
+ \cos \beta' \cos \gamma) + e (\cos \gamma \cos \alpha' + \cos \gamma' \cos \alpha) + f (\cos \alpha \cos \beta'
+ \cos \alpha' \cos \beta)\]

\[N = a, \cos \alpha z + b, \cos \beta z + c, \cos \gamma^2\]

\[P = a, \cos \alpha z + b, \cos \beta z + c, \cos \gamma^2\]

\[Q = a, \cos \alpha \cos \alpha' + b, \cos \beta \cos \beta' + c, \cos \gamma \cos \gamma'\]

Die Verschiebungen werden im Allgemeinen einer Exponentiellen mit imaginärem Exponenten proportional sein; berücksichtigt man noch, dass sie nur von \(z'\) abhängen, so wird
über die physikalischen Verhältnisse krystallisirter Körper.

\[
\begin{align*}
\xi' &= a \ e^{\left(\frac{2\pi}{\lambda} \ z' - \frac{2\pi}{\tau} \ t\right)\sqrt{-1}} \\
\eta' &= b \ e^{\left(\frac{2\pi}{\lambda} \ z' - \frac{2\pi}{\tau} \ t\right)\sqrt{-1}}
\end{align*}
\]

\[
\frac{d^2 \xi'}{dz'^2} = -\left(\frac{2\pi}{\lambda}\right)^2 \xi'
\]

\[
\frac{d^2 \eta'}{dz'^2} = -\left(\frac{2\pi}{\lambda}\right)^2 \eta'
\]

Substituirt man dies in obigen Gleichungen, so wird

\[
\begin{align*}
-M \ b + (P \ a - Q \ b) \left(\frac{2\pi}{\lambda}\right)^4 &= 0 \\
-M \ a + (N \ b - Q \ a) \left(\frac{2\pi}{\lambda}\right)^4 &= 0
\end{align*}
\]

Eliminiert man hier \(a\) und \(b\), so ergibt sich

\[
M^2 + 2 \ M \ Q \left(\frac{2\pi}{\lambda}\right)^4 + (Q^2 - N \ P) \left(\frac{2\pi}{\lambda}\right)^8 = 0
\]

das ist

\[
M^2 + MQ \left(\frac{2\pi}{\lambda}\right)^4 - (a, b, \cos \gamma^2 + b, c, \cos \alpha^2 + c, \cos \beta^2) \left(\frac{2\pi}{\lambda}\right)^8 = 0
\]

Durch diese Gleichung ist das Axensystem fixirt; führt man die daraus resultirenden Werthe in den Differentialgleichungen ein, so wird

\[
\begin{align*}
\frac{d^2 \xi'}{ds^2} &= (a \ \cos \alpha^2 + b \ \cos \beta^2 + c \ \cos \gamma^2 + 2 \ d \ \cos \beta^2 \ \cos \gamma' \\
&\quad + 2 \ e \ \cos \gamma' \ \cos \alpha' + 2 \ f \ \cos \alpha' \ \cos \beta') \frac{d^2 \xi'}{ds^2} \\
\frac{d^2 \eta'}{ds^2} &= (a \ \cos \alpha^2 + b \ \cos \beta^2 + c \ \cos \gamma^2 + 2 \ d \ \cos \beta \ \cos \gamma \\
&\quad + 2 \ e \ \cos \gamma \ \cos \alpha + 2 \ f \ \cos \alpha \ \cos \beta) \frac{d^2 \eta'}{ds^2}
\end{align*}
\]

Da nun, nach dem Werthe des particulären Integrales,

\[
\left(\frac{2\pi}{\tau}\right)^2 = s^2 \left(\frac{2\pi}{\lambda}\right)^2
\]
wird, und $\lambda = \sigma \tau$, also σ die Fortpflanzungsgeschwindigkeit ist, so sind die beiden Factoren

$$s_1^2 = a \cos \alpha^2 + b \cos \beta^2 + c \cos \gamma^2 + 2 d \cos \beta \cos \gamma + 2 e \cos \gamma \cos \alpha + 2 f \cos \alpha \cos \beta$$

$$s_2^2 = a \cos \alpha'^2 + b \cos \beta'^2 + c \cos \gamma'^2 + 2 d \cos \beta' \cos \gamma' + 2 e \cos \gamma' \cos \alpha' + 2 f \cos \alpha' \cos \beta'$$

die Quadrate der Fortpflanzungsgeschwindigkeit der beiden rechtwinklig auf einander polarisirten Vibrationen, die jeder Wellenebene entsprechen. Da aber die $\alpha, \beta \ldots$ im Allgemeinen wegen der obigen Substitutionsgleichungen von der Wellenlänge abhängen, so muss auch die Schwingungsrichtung eine Function der Wellenlänge werden.
Vorgelegte Druckschriften.

Nr. 27.

Association, american, for the advancement of science. Proceedings. Tenth and eleventh meeting. Cambridge, 1857/8; 8°.

Reports of the commissioner of patents for the year 1856. Agriculture I. Mechanics I, II. Washington, 1857; 8°.

— l. d’Agriculture etc. de Lyon. Annales des sciences physiques et naturelles etc. 2° sér.: Tome VIII, 3° sér.: Tome I. Lyon, 1856, 57; 8°.

Zeitschrift für die gesammten Naturwissenschaften. Jahrgang 1858; Bd. XI. Berlin, 1858; 8°.
SITZUNG VOM 9. DECEMBER 1858.

Vorträge.

Über die Bedeutung der in den Schalen von manchen Acephalen und Gasteropoden vorkommenden Canäle.

Von dem c. M. Prof. Dr. C. Wedel.

(Mit 3 Tafeln.)

(Vorgelegt in der Sitzung am 14. October 1858.)

Es haben sich vor Allen englische Naturforscher wie Bowebank, Carpenter, Gray, Quekett u. A. mit dem Studium der Strukturverhältnisse von Molluskenschalen abgegeben, und es hat insbesondere Carpenter ¹), der dem Gegenstande nähere Aufmerksamkeit geschenkt hat, gefunden, dass die Schalen von Bivalven zuweilen von Röhren oder Canälen durchsetzt werden, die ihrem äusseren Ansehen nach nicht unpassend mit den Zahnkanälchen verglichen werden können. Ihre Richtung und Vertheilung fand er sehr veränderlich in den verschiedenen Gattungen. Er bildet ein unregelmässiges Netzwerk von Röhren ab, das er an der gelben Aussenschichte parallel der Oberfläche bei Anomia Ephippium gefunden hatte (Fig. 415). Solche Röhren, welche übrigens auch einen geradlinigen Verlauf annehmen können, traf er bei Cleidothaerus chamoides, Lima scabra und bei verschiedenen Arten von Arca, Pectunculus, Chama. Schliesslich drückt er sich folgendermaassen aus: „Dass diese

¹) Cyclopaedia of anatomy and physiology edited by R. Todd, art. shell. Volum. VI pag. 561.
Röhren nicht blosse Canäle oder Aushöhllungen in der Schalen-
substanz sind, wird durch den Umstand bewiesen, dass sie häufig in
der entkalkten Schale sehr deutlich zu sehen sind. Sie bieten oft
bei ihrem rosenkranzartigen Ansehen Anzeichen eines zellenartigen
Ursprunges, als ob sie durch Verschmelzen von in einer geraden
Richtung an einander gereihnten Zellen gebildet worden wären. Sie
sind im Allgemeinen sehr zahlreich in Schalen, deren Aussenseite
ein blätteriges oder geriffetes Ansehen hat. Sie sind übrigens keines-
wegs an derartig gestaltete Schalen gebunden, auch sind sie nicht
allgemein in denselben anzutreffen. Queckett¹) findet, dass die
vielverzweigten Röhrenchen sehr das Ansehen von Conserven dar-
bieten, und unterscheidet zweierlei Arten von Röhrenchen, dickere
dund dünnere. Auch weist er darauf hin, dass Conserven sehr oft in
dem Skelette der Korallen vorkommen (I. c. S. 153, Fig. 78).
Nichts desto weniger schliesst er sich aber der Ansicht Carpenter's
an, dass die Canälichen in irgend einem Zusammenhange mit der
Ernährung der Schale stehen, und in der That eine ähnliche Ver-
richtung wie die Zahnkanälichen haben (I. c. S. 277).

C. Th. von Siebold²) erwähnt die Canälichen bei einigen
Bivalven und vergleicht sie einerseits mit den Zahnkanälichen des
Zahnbeins, anderseits mit den Knochenkörperehen. Kölliker³)
findet, dass die röhrigen Bildungen in gewissen Muschelschalen sehr
an die Porencanälichen der Chitingebilde der Gliedertiere erinnern.
"Ich meine, sagt er, hier nicht die Röhren der Terebrateln, die
offenbar eine ganz andere Bedeutung haben, wohl aber die Röhrenchen
von Lithodoma, Arca, Pectunculus, Nuculas, Cardium u. a., die
wie ich aus eigener Erfahrung weiss, sehr an diejenigen anderer
Cuticulargebilde erinnern, nur dass sie spärlicher sind, so dass kaum
mehr als ein Röhrenchen auf dem Bereich der von einer Zelle aus-
geschiedenen Substanz fällt. Diese Röhrenchen, die Flüssigkeit ent-
halten, und deren Durchmesser zwischen \(\frac{1}{5000} \) bis \(\frac{1}{50000} \) Zoll schwankt,
setzen entweder nur durch gewisse Lagen oder durch die ganze
Schale (Arcaceae) und öffnen sich ganz deutlich an einer oder
beiden Flächen. Dagegen weiss ich von meinem Standpunkte aus

¹) Lectures on histology. Volum. II. pag. 276.
²) Lehrbuch d. vergl. Anatomie der wirbellosen Thiere. S. 244.
die anastomosirenden, horizontal ausgebreiteten feinen Canälichen
der Schalen von Chama, Lima, Anomia und Cleidothaerus vorläufig
nicht zu deuten." Auch Leydig 1) scheint die Canälichen den
Porenkanälichen zu parallelisieren.

In der vorliegenden Abhandlung soll nun gezeigt werden,
dass die in manchen Muschelschalen vorkommenden sogenannten
Canäle (ein Ausdruck, den ich übrigens im Laufe der Abhandlung
beibehalten habe) etwas Accessorisches, nicht der Struktur der
Schale Angehöriges seien, mit anderen Worten, eine parasitische
Bedeutung haben, und zwar ein sehr zartes Tanggewebe vor-
stellen. Es sind nicht blos noch lebende Bivalven, sondern auch
Univalven, ebenso wie fossile Muscheln und Schnecken in das
Bereich der Untersuchung bezogen worden.

Durch die Güte der Herren Directoren Dr. Hörmes und Regie-
 rungsrath V. Kollars und des Herrn Pareys war ich in die Lage
versetzt, eine ziemliche Anzahl von Schalthieren in Beziehung der
Canalisation zu untersuchen. Ich werde mich vorzugsweise auf diese
Richtung beschränken, anderseits aber nicht umhin können, auf die
Structurverhältnisse hinzuweisen, da mit diesen die Art und Weise
der Vertheilung der Canäle, ja vielleicht zum Theil das Vorkommen
der letzteren überhaupt im Zusammenhange steht. Das Eingehen in
die Structurverhältnisse ist namentlich bei den fossilen Schalthieren
notwendig, da die Vertheilung, das stellenweise Fehlen der Canäle,
deren ungleichförmiger und unregelmässiger Verlauf die Momente
sind, welche bei den meisten fossilen Schalthieren den alleinigen
Anhaltspunkt abgeben, dass man es auch hier mit parasitischen Bil-
dungen zu thun habe. Die organische Grundlage der Schalen, also
auch die Membran der Algenzellen ist meist zu Grunde gegangen,
und somit eine Isolirung der letzteren in den meisten Fällen zur
Unmöglichkeit geworden.

Was die Untersuchungsmethode anbelangt, so habe ich nur zu
erwähnen, dass es vorteilhaft ist, die herausgeschnittenen Plättchen
von der Fläche aus langsam zuättzen, was mit einem auf einer Glas-
platte ausgebreiteten Tropfen 4—6 fach verdünnter Salzsäure leicht
auszuführen ist. Man gewinnt hiebei den doppelten Vorteil, einmal

1) Lehrbuch der Histologie. S. 108.
die vom Schleifen anhängenden Kalktheile und die durch das Schleifen erzeugten feinen Riffe wegzuschaffen, und zweitens eine genauere Einsicht in die Schichtungen zu erhalten. Die Ätzung an den Schalen theils lebender, theils fossiler Mollusken wurde von Leydolt 1) in Anwendung gebracht, um das rhomboedrische und prismatische Kalkhaloid daselbst nachzuweisen; er hat hiervon concentrirtes Essigsäure empfohlen. Es wurde dieselbe auch von mir zu besonderen Zwecken mit Nutzen verwendet.

Ich will nun gleich zum speziellen Theile übergehen und mit den Schalen noch lebender Muscheln beginnen. Betrachtet man einen Flächenschnitt, von der Innenseite einer Arca Noae entlehnt, so ist man von der grossen Menge der in mannigfacher Richtung sich durchkreuzenden Canäle überrascht. Der Querdurchmesser derselben schwankt zwischen 0:002 — 0:006 Millim. Es lassen sich hauptsächlich zweierlei Canäle unterscheiden, solche, welche in ihrem mehr geradlinigen Verlaufe mit schwach angedeuteten seitlichen Excursionen eine beträchtliche Strecke lang keine Dichotomirungen zeigen, und andere, die sich in einer kurzen Strecke mehrmals dichotomiren (Fig. 1) und meist auch stärkere wellenförmige Biegungen machen. Die Canäle sind stets sehr scharf contourirt mit einer gewöhnlich hellen Lichtung. Bei der mannigfachen Richtung ihres Zuges trifft man sie an einem Schnitte der Länge und der Quere nach verlaufend. Ihre Vertheilung kann man keine regelmässige nennen, da sie an verschiedenen Stellen betrachtlichen Variationen unterliegt. Eine netzförmige Anordnung ist nur bei niederer Vergrösserungen scheinbar und löst sich bei stärkeren in sich theilweise deckende, vielfach dichotomirte Zweige auf; von einer Maschenbildung konnte ich nichts beobachten.

Eine bloss durch Ätzung präparirte Lamelle einer solchen Schale präsentirt sich als ein System von verschiedenartig abgestutzten Krysrallen, welche bei durchgehendem Lichte ein blätteriges Gefüge zeigen (Fig. 2). Diese Systeme von Kristallplättchen liegen in den Hohlräumen einer nach Ko st chitinisierten Membran mit areolarischem Typus (Fig. 3). Derartige areolirte Membranen wechseln mit bloss in der Fläche ausgebreiteten ab, und es sind letztere insbesondere gegen die Innenseite der Schale mehr vertreten. Diese Mem-

branen geben, wenn sie in mehrfachen Schichten über einander gelagert sind, ein Hinderniss ab, um an der entkalkten Schale die zwischengelagerten organischen Gebilde mit Präcision allenthalben verfolgen zu können. Fertigt man sich jedoch einen saftsam dünnen Schnitt an oder zerlegt man den entkalkten dickeren Schnitt, so hält es durchaus nicht schwer, sich eine klare Einsicht in die besagten organischen Gebilde zu verschaffen. Es sind deren mehrerelei, und zwar vorerst birn- oder keulensförmige, auf einem gemeinschaftlichen Stamme seitlich aufsitzende Zellen (Fig. 4 a), welche wohl auch solitäir mit einem kürzeren oder längeren Stiele vorkommen. Derartige Zellen, die ich als gestielte Zellen bezeichnen möchte, mit Jodtinctur behandelt, zeigen eine ganz eclatante Amylumreaction. Eine solche lässt sich auch mit Jodtinctur an feinen entweder gar nicht oder nur theilweise entkalkten Durchschnitten wahrnehmen. Die gestreckten rechteckigen Zellen grösseren Calibers (d) stecken in einem gemeinschaftlichen cylindrischen Schlauce, reihen sich kettenartig an einander und enthalten nicht selten in ihrem Innern eine oder zwei Gruppen von Körnern, die jedoch meist im geschumpften Zustande sich befinden und statt der grünlichen Färbung meist eine tiefgelbe, braungelbe oder braunröthliche angenommen haben. Die gestreckten Zellen schmalen Calibers (c) verfolgen, wie die vorigen, einen mehr geradlinigen Verlauf und erreichen einen so kleinen Querschnitt, dass die Querabteilungen entschwinden. Endlich ist noch einer vierten Reihe von vielfach dichotomirten, wurzelähnlichen Ausläufern zu gedenken (d), welche einen sehr geschlängelten Verlauf zeigen und abgerundet endigen. Sämtliche Zellengebilde nehmen mit Jodtinctur behandelt eine auffällig braune Färbung, leisten Schwefelsäure und Ätzkaliösung Widerstand. Ich konnte nie anastomisierende, zu einem Maschenwerke sich vereinigende Zweige beobachten.

Diese in der Schale befindlichen organischen Gebilde, deren Algennatur nach dem Gesagten wohl keinen Zweifel übrig lässt, unterliegen an manchen Stellen einer retrograden Metamorphose oder Nekrose. Es giebt sich dieselbe an senkrecht auf die Oberfläche geführten Schnitten durch undeutlich begrenzte, braunröthliche oder braunschwarze Fleckchen zu erkennen, welche gegen die Aussenseite der Schale zu Tage treten und bei der mikroskopischen Analyse sich als eine Pigmentmetamorphose des Inhaltes der Algenzellen erweisen. Es sind die gestreckten Zellen entweder ganz oder
teilweise mit zu dunkel braungelben Klumpchen verklebten Pigmentkörnern erfüllt. Es liegt übrigens ein solches Pigment auch frei, d. h. nicht in Zellen eingeschlossen zu Tage, und dürfte wohl durch den Zerfall der nekrotisch gewordenen Zellen frei geworden sein. Es sind derartige Pigmentierungen der Schale nicht zu verwechseln mit jenem ihrem physiologischen Zustande zukommenden.

Das Zustandekommen einer Nekrose der Algenzellen ist übrigens bei *Arca Noae* leicht begreiflich, da eine solche colossale Menge von derartigen parasitären Pflanzen mit ihren reichlich verzweigten Ausläufern in der Schale eingebettet vorkommt, dass hier wohl der selbe Fall eintritt wie bei vielen anderen parasitären Bildungen; es ist das Missverhältniss zwischen Productivität und Ernährung der Zelle, welches das Absterben der letzteren herbeiführt.

In der Schale von *Pecten Jacobaeus* finde ich die Canäle weniger zahlreich als bei *Arca*; auch sind sie dünner und erreichen kaum einen Querdurchmesser von 0,004 Millim. Sie sind von aussen bis gegen die innere Oberfläche hin zu verfolgen und durchkreuzen sich, wie aus der Zeichnung (Fig. 5) hervorgeht, ohne Rücksicht auf die Lamellensysteme des kohlensauren Kalkes, in verschiedenen Richtungen. Zieht man mit Salzsäure die Kalksalze aus, so lassen sich leichter gegen die äussere geriffte Fläche hin die wurzelnählichen Endigungen der Alge darstellen (Fig. 6), während gegen die Innenseite hin die aereoläre und streifig lamellöse Membran der Isolirung der Algen ein Hinderniss in den Weg legte.

lamellen zusammengesetzt ist, von welchen Systemen jedes von einer derben Membran umzogen ist 1).

Die Schalen von Gasteropoden scheinen ein reichhaltigeres Material in Bezug der parasitischen Algen zu bieten. So finde ich bei einem Murex die sogenannten Canäle in erstaunlicher Menge; es sind dieselben bis gegen die innere Oberfläche der Schale in der Fig. 7 angegebenen Weise zu verfolgen. Im Allgemeinen sind sie etwas schmäler als bei Arca Noae; man misst viele mit einem Querdurchmesser von kaum mehr als 0,0015 Millim. Ihr scharfer Contour deutet schon darauf hin, dass die röhrenförmig eingeschlossene Substanz mit einem Kalkcyliner umgeben sei. Zieht man zur näheren Erforschung der Sachlage an einem sehr dünnen zugeschlossenen Plättchen die Kalsalze mit stark verdünnter Salzsäure oder mit Essigsäure langsam aus, so lässt sich die Lösung des Kalkcyinders und das Hervortreten der Algenzellen verfolgen. Es sind wieder mehr weniger birnförmige gestielte Zellen (Fig. 8 a), welche nicht selten eine (a') oder mehrere buckelartige Hervorragungen und einen mit Jodlinetur sich violett färbbenden Inhalt zeigen; sie sitzen gleichfalls auf gestreckten, kettenartig an einander gereihten Zellen, die häufig an einer Stelle eine papillöse Excrencenz als eine seitliche Verlängerung besitzen. Diese Excrencenz erscheint nach und nach als ein schlauchartiger Fortsatz mit abgerundetem Ende, der für sich

1) Man vergleiche was über die Structur der Säulen von Carpenter (l. c. S. 558 und 559) mitgetheilt ist.
wieder papillen- oder knospenähnliche Fortsätze treibt. Durch das Hervorwachsen von vielen derartigen Fortsätzen in kurzen Zwischenräumen entstehen jene ramifizirten Formen, wie sie in Fig. 8 b und Fig. 4 d abgebildet sind.

Die mützenförmige Schale von *Fissurella graeca* ist von einer Unzahl von Canälen in ihrer ganzen Dicke durchzogen. Dieselben sind ohne ein besonderes System durch einander geworfen. Dies wird sehr übersichtlich bei niederer Vergrößerung (Fig. 9). Man beobachtet auch schmutzig braune, irreguläre, undeutlich begränzte Flecken (*a*), welche sich bei näherer Analyse als Agglomerate von feinkörnigem Pigment erweisen. Es sind daselbst zuweilen Gruppen von platten Zellen mit einem hellen Kerne nachzuweisen, welche wohl den pflanzlichen Parasiten beigezählt werden dürften. Die Canäle sind meist feinere Calibers und übersteigen kaum einen Durchmesser von 0,002 Mm.; ihre Vertheilung steht ohne allen Zusammenhang mit der Lagerung der Lamellen der Schale; mit anderen Worten ihr Lauf ist ganz unabhängig von den Lagerungsschichten, wie dies sehr feine, schwach geätzte Schnitte darthun.

Gegen die äusseren Schichten der Schale, also in der Substanz der letzteren finde ich sowohl bei *Arca*, als auch bei *Murex* und *Fissurella* grössere incrustirte Algenschläuche, welche ich jedoch nicht in die Abbildungen aufgenommen habe, da es mir nicht gelungen ist, einen directen Zusammenhang zwischen ihnen und den so genannten Canälen der Schalen nachzuweisen. Es sind jene grossen Algenschläuche gleichfalls parasitische Gebilde, die an manchen Stellen gänzlich fehlen, während sie an anderen in Gruppen beisammenstehen.

Ein sehr dankbares und instructives Object geben die dick-schaligen Coni ab. Die einfache Betrachtung der Bruchfläche der Schale gewährt schon die Überzeugung, dass ihre Struktur von innen bis aussen wesentlich dieselbe ist, d. h. aus asbestartig glänzenden an einander gefügten Fäden besteht, deren äussere und innere Lagen mehr parallel gestellt sind, während die mittlere Lage schieft gegen die Axe des Conus gerichtet ist. Ein senkrechter Querschnitt eines solchen aus dem rothen Meere ist, ungefähr von der Mitte des Kegels entlehnt, in Fig. 10 bei niederer Vergrösserung abgebildet. Es lässt sich hier die Anzahl, Richtung, Verbreitung der Canäle von aussen gegen innen mit einem Blicke in den verschiedenen Schichten überschen; wie in der Rindenschichte (a) ihre Anzahl am dichtesten ist, so zwar, dass jene als Beet für die Schmarotzeralgen betrachtet werden kann, wie sie in die äusseren Schichten (b, b) unter den mannigfaltigsten Richtungen eindringen, die mittlere Schichte (c) durchsetzen, die sich zwischen die Schichten b und d einschiebt, um endlich die innersten Schichten (c) zu durchdringen und knapp an die innere Oberfläche zu gelangen. Die genauere Beobachtung lehrt nun hierüber Folgendes: Die hie und da büschelförmig gruppierten Algenröhren (Fig. 11 a) besitzen einen Querdurchmesser von 0.004 — 0.005 Mm. im Durchschnitt, sind scharf contouriirt und endigen gegen innen zu abgerundet, nicht selten mit einer knopfförmiigen Anschwellung. Querabteilungen, entsprechend den an einander gereibten Zellen, lassen sich an den noch inerustirten Algenröhren nur unter günstigen Umständen wahrnehmen. Von besonderem Interesse sind die der ovalen (b) rundlichen Form sich nähernden, mit mehreren höckerartigen Hervorragungen häufig versehenen Zellen, die von der einen oder anderen Seite oder von beiden Seiten lange Fortsätze aussenden. Die ovalen Zellen haben einen Längendurchmesser von 0.008 — 0.02 Mm. und darüber, die mehrfach höckerigen erreichen nicht selten einen Durchmesser von 0.06 Mm. Bei entsprechender Anwendung von verdünnter Salzsäure oder von Essigsäure lässt sich die Zellenmembran mit eingeschlossenen saturirt gelben Körnern wahrnehmen, welche Membran jedoch leicht bei der Entwicklung von Kohlensaureblasen herstet. Die lang-sam einwirkende Essigsäure dient auch zur Darstellung des Zellen-kernes. Der Zug von den aus den soeben beschriebenen Zellen entspringenden röhrenartigen Bildungen erfolgt wohl hauptsächlich in
Ebenen, welche mehr weniger senkrecht auf die äussere Oberfläche des Conus stehen, es ziehen jedoch auch Canäle parallel mit der letzteren und senden dabei unter einem rechten Winkel abgebende Zweige gegen aussen und innen (c).

Nebst jenen Zellen mit den Ausläufern habe ich auch polygonale, in Häuschen beisammen stehende Zellen in der Corticalsubstanz durch Anwendung verdünnter Salzsäure gefunden, welche nach Einwirkung von Jodtinctur eine blaugraue bis violette Färbung erhielten.

Die Lagerungsschichten der Krystalle des kohlensauren Kalkes sind, wie in der Corticalsubstanz aus der Abbildung ersichtlich ist, unter senkrecht auf einander liegenden Ebenen gestellt und lassen sich, wie eben Leydolt (l. c.) nachgewiesen hat, mittelst Essigsäure am schönsten zur Anschauung bringen. Es nehmen sich die in Etagen über und in einander geschobenen Systeme von Krystallen wie ein Geflecht aus und werden in ihren Lagerungsverhältnissen am besten im polarisirten Lichte studirt.

Von dem weiteren Verlaufe der Canäle ist nur hervorzuheben, dass dieselben unter verschiedenen Winkeln mit der perpendicular gestellten Schichte sich kreuzen, ja dass man sogar solche, wiewohl selten, antrifft, welche querüber, also unter einem rechten Winkel gegen die letztere gestellt sind. Die Systeme von Krystalplättchen, welche in senkrecht auf einander liegenden Ebenen sich in einander schieben, erscheinen je nach ihrer verschiedenen Lagerung bei durchgehendem Licht dunkler (Fig. 11 d) oder heller (d'), ähnlich wie die sehr platten Epidermiszellen der Haut im senkrechten Durchschnitt bald helle, bald dunkle Strata bilden, je nachdem sie mit ihrer flachen Seite gegen den Beobachter gekehrt sind oder in einer mehr weniger geneigten Stellung sich befinden. Im polarisirten Lichte gewähren die verschiedenen Lagerungsverhältnisse der Krystalplättchen eine überraschende Varietät von Farben.

Die in den scheinbaren Säulen eingeschobenen helleren Schichten (Fig. 10 b'), die jene unter einer senkrechten Ebene durchsetzen, zeigen dieselbe Schichtung und Stellung der Krystalplättchen-Systeme wie die Corticalsubstanz (Fig. 11 a), und es ist allerdings auffällig, dass der Verlauf der Canäle mit zahlreichen kurzen Zweigen hier vorzugsweise nach der Horizontalebene geschieht. In den oben genannnten inneren Schichten (Fig. 10 c und e) bleiben die
Lagerungsschichten der Krystallplättchen wesentlich dieselben wie in der Corticalsubstanz; die horizontale Streifung erscheint nur desshalb schärfer, weil die Masse im Allgemeinen compacter ist.

Bei genauerer Durchforschung der innersten Schichten tauchen auch dickere, mehrfach ramifizirte Canäle auf, so dass es allen Anschein hat, es dringen nicht bloss, wie schon vorhin erwähnt, die Canäle von der äusseren Oberfläche gegen die innere, sondern es wachsen die verkalkten Algenröhren auch von innen gegen aussen. Bei einem nachher zu beschreibenden fossilen Conus tritt übrigens der letztere Umstand ganz deutlich hervor.

Von Gasteropoden mit glänzender, porcellanartiger Schale habe ich bloss Cypraea pantherina einer Untersuchung unterzogen, jedoch, wie es von vorne herein zu erwarten war, hinsichtlich der Algenröhren ein negatives Resultat erhalten.

In den Schalen der Süßwasserschnecken scheint das Vorkommen von parasitischen Algen geringer zu sein; ich habe nämlich von solchen bei Lymnaeus stagnalis, Paludomus acuminate (Reeve), Planorbis bruneus (Gray), Planorbis corneus (Drap), Melanopsis buccinoidea (Fer.), Physa castanea (Lam.), Planorbis marginatus (Drap), Melania spinulosa (Lam.) nichts vorgefundun, Melania Hollandrii (Fer.) und Neritina croatica (Par.) besitzen wohl die Parasiten, allein soweit meine Beobachtungen reichen, nur in der Rindensubstanz der Schale. In einem äusseren Flächenschnitte von den zwei letztgenannten Schnecken- schalen sehe ich die Röhren von einer gleichmassigen Dicke, kaum einen Durchmesser von 0·002 Millim. erreichen und ohne Dichotoomirungen in der Substanz der Schale, jedoch nur bis zu einer gewissen Tiefe verlaufen. Lässt man verdünnte Salzsäure bis dahin einwirken, dass ein Theil der peripheren Substanz des zugeschliffenen Stückes aufgelöst ist, so hängen die Algenfaden von dem nicht aufgelösten Stücke der Schale heraus, wie es in Fig. 12 von Melania Hollandrii gegeben ist. Man kann sodann leicht sich überzeugen, dass das in der Schale verlaufende Canälichen mit seinem scharf markirten Contour sich unmittelbar in den heraushängenden Faden fortsetzt, der blass contournirt und hier und da mit wahrnehmbaren Querabtheilungen, den Kettenreihen der Zellen entsprechend, versehen ist. Die melanotischen Körner sind gruppenweise in der Substanz der Schale vertheilt, bald mehr, bald weniger vertreten und gewähren
der letzteren schon für das blosse Auge besonders in manchen Exemplaren die dunkelgraue, bis ins Schwarze hinüberziehende Färbung.

Es haften an der Aussenseite der Schalen von Süßwasserschnecken zuweilen grosse Mengen von Algenzellen, ohne dass sie in die Substanz der Schale eindringen; so sehe ich an der Aussenseite der Schale eines Planorbis marginatus (Drap.) weit verbreitete Gruppen von abgeplatteten, polygonalen Zellen und strahlenförmige Büschel von zarten aus Kettenreihen von Zellen bestehenden Fäden, während es mir nicht gelungen ist, dieselben in das Innere der Schale zu verfolgen.

Die von den Autoren benannten Canäle haben in den fossilen Acephyalen eine grosse Verbreitung. Aus der Ordnung der Brachiopoden habe ich Leptaena lepis (Übergangsformation) einer genauer Untersuchung unterzogen. Die schon für das blosse Auge sichtbaren bekannten Poren werden von concentrisch verlaufenden Schichten umschlossen, die nicht unähnlich den Knochenlamellen eine helle Kalkmasse einschliessen (Fig. 13 a, a). Diese Poren stehen in gleichmässigen Abständen, dringen schein in die Substanz der Muschel, ohne sie jedoch zu durchdringen; sie scheinen mir blind zu endigen. Ohne mich in ein nicht hieher gehöriges Detail einzulassen, will ich bloss bemerken, dass zwischen den Poren an manchen Stellen sehr zahlreiche, an anderen Orten fehlende Canäle sich durchkreuzen (Fig. 13 b), die bei einem Querdurchmesser von 0.006 — 0.008 Mm. hie und da Querabtheilungen zeigen und häufig in ihrer Lichtung ein oder mehrere ovale braunrothe bis braunschwarze Körner beherbergen. Ich habe mir viele Mühe gegeben, die Canäle auf ihre organische Grundlage zu prüfen, es ist mir jedoch nicht gelungen, eine solche nachweisen zu können, ich glaube aber dessen ungeachtet keinen Anstand nehmen zu dürfen, jene als parasitisches Tanggewebe zu erklären, und zwar 1) wegen der Ungleichförmigkeit der Vertheilung, ja des stellenweisen gänzlichen Fehlens der Canäle, 2) wegen der vorhandenen Querabtheilungen, 3) wegen der Art und Weise ihres Verlaufes, ähnlich einem Mycelium; 4) selbst die pigmentirten grossen Körner in ihrem Innern erinnern ganz an die nekrotisch gewordenen Algenröhren in den Schalen von noch lebenden Muschelarten. Auch in der inneren Lage von Productus horridus beobachtet man schon bei niederer Vergrösserung nett abgegrenzte, schmutzig braungelb gefärbte, häufig sich dichotomirende Streifen.
in der Substanz der Schale, welche Streifen sich bei näherer Betrachtung als Reihen von gelbbraunlich tingirten Körnern erwiesen.

Eine grössere Schwierigkeit hat es mit der Deutung der feinen Canäle von der inneren oder Perlmutterschichte einer fossilien Nucula. Fertigt man sich einen dünnen Flächenschnitt von dieser Schichte an, so ist man von der gleichmässigen Vertheilung von sehr feinen Canälen überrascht. Dieselben haben im Durchschnitt einen Durchmesser von 0.001 Mm. und gehören zu den feinsten, welche ich überhaupt in Schalen angetroffen habe; sie lassen kaum mehr eine Lichtung wahrnehmen. Die Innenseite der Schale wird von ihnen durchbohrt und zwar nicht bloss die helleren, kreisförmig abgegrenzten Substanzen, sondern auch die zwischengelagerten werden manngfach von ihnen durchsetzt (Fig. 14). In den ungemäßen zarten Säulenschichten, welche als kleine Polygone im Querschnitt erscheinen, nehmen sie ihren zickzackförmigen Verlauf, hie und da einen Zweig abschickend. Sie sind jedoch nur eine Strecke weit in die Schalenubstanzen von innen her zu verfolgen und an der dicken äusseren gerifften Schichte gar nicht anzutreffen.

In der äusseren Schichte einer fossilien Arca sehe ich eine grosse Menge von geradlinig verlaufenden Röhren, welche von aussen nach einwärts ziehen, wie dies ein senkrechter Längenschnitt darthut (Fig. 16); sie durchkreuzen die streifenartigen Lager des kohlensauren Kalkes und sind nicht selten theils mit solitären, ovalen oder agglomerirten braunschwarzen Pigmentkörnern, eben wie bei Leptaena, streckenweise erfüllt. Sie haben einen Querdurchmesser von 0.006—0.007 Mm. und sind (wenigstens an dem untersuchten Exemplar) gegen die innere Seite der Schale nicht mehr vorfindlich; hier machen sie Canälchen feinsten Calibers Platz, die in den verschiedensten Richtungen sich durchkreuzen, oft eine lange Strecke weit mit ihren unregelmässigen, seichten, wellenförmigen Excursionen ohne oder mit wenigen Dichotomirungen zu verfolgen und im Allgemeinen weniger zahlreich als die dickeren vertreten sind. Die letzteren kommen übrigens auch in den reibenweise geordneten Schlosszähnen vor, wo sie wegen der nothwendigen Dünne des Schliffes nur in kurzen Strecken zu beobachten sind, jedoch vorkommen die Eigenschaften der Canäle der äusseren Schalenschichten an sich tragen.
An der Schale von *Spondylus crassicosta* (Lam.) unterscheidet man zweierlei Substanzen, eine äussere, dickere, im Bruche knorrig aussehende und eine innere dünnere, streifig lamellöse. Die erstere Substanz besteht aus Krystallbüscheln von kohlensaurem Kalk, welche gegen die eine Seite divergiren, gegen die andere convergiren und dachziegelartig über einander geschoben sind. Zwischen diese Systeme von Krystallen schieben sich nun die Canäle, welche von sehr differentem Volumen sind. Ihr Querdurchmesser wächst bis 0,010 — 0,014 Mm.; sie sind dabei mit einer braunschwarzen zuweilen körnigen oder verschwommenen Masse erfüllt. Bifurcationen unter spitzen Winkeln scheinen nur selten vorzukommen. Canäle feineren Calibers befolgen wesentlich denselben Verlauf (Fig. 17). Sehr feine Schnitte der inneren Schalenfläche zeigen, wenn sie mit Essigsäure behandelt werden, unter rechten Winkeln in einander geschobene Systeme von Krystallnadeln, zwischen welchen Systemen die Canäle in verschiedenen Richtungen ihren gestreckten Verlauf nehmen. Mit der letztbenannten Säure lässt es sich auch deutlich, da sie langsam einwirkt als die Salz- säure, nachweisen, wie die entwickelten Gasblasen von Kohlensaure aus den Canälen hervorschlüpfen, nachdem sie in der Lichtung des Canales gegen dessen Schnittöffnung vorwärts gedrängt worden sind. Es unterliegt somit wohl keinem Zweifel, dass der kohlensaure Kalk auch in die Canäle abgelagert wird. Dieselben durchziehen auch und zwar bis zum dicksten Caliber die Schlosszähne (Fig. 18). Es wird sich bei ausgedehnteren Untersuchungen hinsichtlich der dickeren Algenstämme wohl ermitteln lassen, ob dieselben nicht der Gattung *Saprolegnia* (Nees a b. Esenbeck) einzuverleiben sind.

Ein belebendes Beispiel von unordentlichem Durcheinander- geworfenensein der Canäle gibt ein von der Aussen- und Innenfläche zugefeiltes und weiterhin präparirtes Stück eines fossilen *Pectunculus* (Fig. 19). Die wellenförmigen scharfen Begrenzungen werden durch die in kurzen Abständen dachziegelartig über einander geschobenen Systeme von sehr feinen nadelförmigen Krystallen gebildet, die mit büschelförmig angeordneten Systemen sich durchkreuzen. Zwischen den benannten Systemen liegen nun die Canäle unter den mannigfachsten Richtungen die ersteren durchsetzend; sie überschreiten kaum einen Querdurchmesser von 0,003 Mm., sinken jedoch auch unter die Hälfte dieses Durchmessers. Dichotomirungen sind häufig.
Acephalen und Gasteropoden vorkommenden Canäle.

In einer fossilen Venusschale finde ich ein colossales Gewirre von Canälen, das insbesondere in der äusseren oder gerifferten Schichte vertreten und gegen die innere horizontal-lamellöse in der Abnahme begriffen ist. Bei der mannigfaltigen Durchkreuzung der Canäle habe ich auch spiralige Drehungen von ihnen gesehen (Fig. 20). Was die gegen die Corticals substanz der Schale eingestreuten melanotischen Körner anbelangt, so habe ich nur zu erwähnen, dass sie es sind, die die dunkelgraue Färbung der Schale bedingen. Sie liegen theils solitär, theils agglomerirt zu rundlichen Plaques eingestreut vor. Herr Privatdocent Dr. Schauenstein, den ich um chemische Prüfung dieser Körnermasse ersuchte, sprach sich dahin aus, dass sie als tierisches Pigment zu betrachten sei.

Einen schönen Beweis, dass die Canalisation sich nur auf die Rindenschichte der Schale beschränken kann und ganz und gar in den übrigen Schichten vermisst wird, liefert Lucina Columbella (Lam.). Auch bei einer grösseren nicht näher bestimmten Art von Lucina sehe ich bei einer stark entwickelten inneren Säulenschichte daselbst keine Canäle.

Cardita zeigt ein ähnliches Verhalten der Canäle wie Pectunculus.

Ein negatives Resultat in Bezug der Canäle liefert die Aussenschichte der Brachiopoden Terebratula reticularis Gmel. = Spirigerina reticularis, die von einem sehr zarten Lamellensysteme gebildet wird.

Von fossilen Lamellibranchiaten, bei denen ich keine Canäle nachweisen konnte, sind eine Ostrea, Gryphaena navicularis, Congeria subglobsa (Partsch) und Cardium plicatum (Goldf.) untersucht worden. Es ist hierbei von Interesse, dass auch Carpenter bei frischen Ostreæ nichts von Canälen erwähnt, und dass in Bezug der zwei letztbenannten Süßwassermuscheln eine Übereinstimmung mit den lebenden fünf untersuchten Arten herrscht, die, wie oben erörtert, keine Canäle enthalten.

Bei den fossilen Gasteropoden haben sich die Canäle gleichfalls zahlreich vorgefunden und zwar bei Conus, Ancillaria glandiformis (Lam.), Ranella marginata (Sowerby), Turbo rugosus, Buccinum, Neritopsis. Die Canäle sind meist an der Rindenschichte am häufigsten, können übrigens auch von der Innenseite der Schale ihren Ausgangspunkt nehmen. Ein senkrechter

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 28. 33
Längendurchschnitt eines Conus zeigt im Vergleich mit dem vorhin beschriebenen, in Fig. 10 abgebildeten senkrechten Querschnitten ein entgegengesetztes Verhalten, d. h. die an der Bruchstelle unterscheidbaren Streifen sind gegen aussen (a) und gegen innen (c) in den Schnitt gefallen, während die mittleren (b) unter einem rechten Winkel getroffen wurden. Es gewinnt die Vorstellung dadurch an Wahrscheinlichkeit, dass die Schale aus bandartigen, in einander gefügten Streifen von krystallisirtem kohlensaurem Kalke bestehe, welche in den Mittellagen der Schale eine Drehung erleiden, so dass bald ihre breite, bald ihre schmale Seite je nach der Schnittrichtung dem Beobachter zugekehrt ist.

Es sind an diesem Präparate schon bei niederer Vergrösserung gegen die Aussen- und Innenseite dunkle Flecken wahrzunehmen, die sich bei stärkerer Vergrösserung als netz abgegrenzte, runde, ovale mit einer stielartigen Verlängerung oder mit mehrfachen Ausbuchtungen versehene dunkle Räume zu erkennen geben und, was insbesondere wichtig ist, die Ausgangspunkte der Canäle sind, gerade so wie dies früher von dem noch lebenden Conus dargethan wurde (vergl. Fig. 11 b). Die Canäle begeben sich weiters in ihrem unregelmässigen Verlaufe in die mittleren Schichten der Schale von aussen und innen.

Von der Canalisation sind auch die Deckel der Gastropoden schalen nicht ausgenommen; so finde ich in dem Deckel von Turbo rugosus ein buntes Gewirre von Canälen.

Es wurden die Canäle vermisst bei einer Aporrhais, einem Vermetus und zwei Süßwasserschnecken, Melanopsis Martiniana (Fer.) und Melanopsis Bouei (Fer.). Es war jedoch für den Verlauf meiner Untersuchungen von Belang, dass es mir bei Vermetus gelungen ist, an dem mit verdünnter Salzsäure bis zu einem gewissen Punkte behandelten Schnitte ramifizirte und kettenförmig an einander gereihte Zellen hie und da wahrzunehmen, welche Säuren und Alkalien Widerstand leisten und in ihrem morphologischen Verhalten auch ganz mit den bei Arca, Pecten, Murex isolirten Algen übereinstimmen (Fig. 21). Es fehlt wohl freilich bei dieser Beobachtung das eine wichtige Moment, nämlich die Fortsetzung der isolirten Algenstämmchen in die Canälichen, da aber diese, wenn sie nicht in ziemlicher Anzahl vorhanden sind, insbesondere bei den verkreideten Thierresten, wegen der leichten Zerreißlichkeit schwer
darzustellen sind, so glaubte ich dessen unerachtet diese Beobachtung aufnehmen zu sollen.

Es schliesst sich an die letztere eine ganz analoge an, die nicht an einem Gasteropoden, sondern an *Nullipora* gemacht wurde. Auch hier sieht man bei derselben Manipulation aus den concentrisch geschichteten Kalkmassen zuweilen an vielen Stellen ramiificirte Zellenketten herausgehängen, die mit kleinen knopfförmigen Anschwellungen endigen (Fig. 22). Es sind dies feine 0·001 — 0·002 Mm. breite Fäden. Unger 1) beschreibt regelmässig angeordnete Ketten von grösseren Pflanzenzellen in *Nullipora ramosissima* (Reuss), welche ihn wegen ihrer anderweitigen Eigenschaften bestimmten, die *Nullipora* als Alge ebenso wie *Philippi* 2) zu erklären.

Die allgemeinen Gesichtspunkte, unter welche die mitgetheilten Untersuchungen zu stellen sind, lassen sich in Folgendem zusammenfassen.

Bedenkt man, dass mikroskopische parasitische Algen kein seltener Befund in den dem Luftzutritt zugänglichen thierischen

Häuten sind und auch in Pflanzenzellen sich einnisten nach den Beobachtungen von A. Braun, Pringsheim, Schenk u. m. a., so ist es gerade nicht befremdend, dass in der Schale von Muscheln und Schnecken Pflanzenparasiten wuchern. Abgesehen davon, ob in der Schale selbst Zellen existiren, wie englische Forscher Bowerbank, Carpenter, Queckett behaupten, oder ob die Molluskenschalen bloss durch eine Ausscheidung von Epithelzellen gebildet werden, welche die Aussenfläche des Mantels bedecken und somit den Cuticulargebilden angehören würde, wie Kölliker im Einklange mit C. Schmidt vorträgt, so steht doch so viel fest, dass ein sehr geregelter organischer Stoffwechsel hier stattfinde, dessen Endprodukte einerseits die organische Grundlage der Schale, die chitinähnliche Substanz 1), anderseits die lamellenweise angeordneten Krystalle von kohlensaurem Kalk sind. Der Gehalt an Wasser und atmosphärischer Luft in und zwischen den organischen und anorganischen Substanzen wird wohl hinreichen, um den zarten mikroskopischen Algen bei der Proliferation ihrer Zellen Nahrungsstoff zu gewähren.

Bei dem Wachsthum der parasitischen Algen muss auch die Frage discutirt werden: Wachsen dieselben hinein auf eine selbstständige Weise oder werden sie beim Wachsthum der Schale durch die sich verschiebenden Schichten eingeschlossen? Obwohl die Möglichkeit, dass der Aussenwand der Schale angelagerte Algenzellen von den überwachsenden Schalenschichten überdeckt werden können, meines Erachtens namentlich für grössere Algen nicht gänzlich negirt werden kann, so sprechen doch mehrere Umstände dafür, dass ein Hineinwachsen der Conferven stattfinde und zwar:

a) das Zerfallen eines Algenstammes in feinere und feinere Zweigchen, wobei die letzteren, jüngeren Formationen tiefer in die Substanz der Schale eindringen,
b) das zeitweilige Vorkommen von vielfach ramifizirtem Tanggewebe auf einem kleinen Raume, unabhängig von den Lagerungsschichten,
c) die Thatsache, dass man ein und dasselbe Algenstammchen ungeachtet des Wechsels der Schichten, also im Durchtritte durch dieselben verfolgen kann.

1) Schlossberger (allg. u. vergleich. Thierchemie S. 246) widerspricht der Ansicht von Kost, dass die organische Grundlage der Muschelschalen Chitin sei,
Es wird von allen bisherigen Beobachtern hervorgehoben, dass manche Gattungen von Molluskenschalen, und zwar deren nicht wenige, durchaus keine Canälchen besitzen. Obwohl ich zu demselben Resultate gekommen bin, glaube ich doch erinnern zu sollen, dass es nothwendig sei, mehrere Exemplare derselben Species von verschiedenen Standorten zu prüfen, um zu erfahren, inwiefern die letzteren einen Einfluss auf das Vorkommen und die Verbreitung der Algen, alias Canälchen haben. Es ist immerhin denkbar, dass Repräsentanten des einen Standortes parasitische Algen aufweisen, während sie in denen eines anderen Ortes fehlen. Obwohl also über das Ausgeschlossensein von manchen Gattungen noch vielfältigere Untersuchungen zu pflegen sind, so erlaube ich mir doch einige Andeutungen zu geben. Es scheinen ausgeschlossen zu sein:

a) die glatten Molluskenschalen, welche bei der spiegelnden Glasur ihrer Oberfläche den Algenzellen keinen Anheftungspunkt gewähren;

b) die mit einer dichteren chitinartigen Haut nach aussen hin überzogenen oder mit stark entwickelten horizontalen oder säulenförmigen Lagen von solchen Hauten versehenen Schalen.

Ein bemerkenswerther Umstand bleibt es ferner, dass bei lebenden und fossilen Süßwassermollusken das Vorkommen von Schmarotzeralgen in ihren Schalen ein seltenes, wenigstens nach den von mir bis jetzt vorliegenden Untersuchungen, ist.

Es lassen sich schon bei der einfachen Besichtigung der Aussenseite der Schale die Phytoparasiten vermuten, wenn dieselbe eine schmutzig graue, grau grünliche, grau bräunliche Verfärbung zeigt, welche durch Waschen, Bürsten u. s. w. nicht zu entfernen ist. Ein blosser derartig gefärbter Beleg kann täuschen.

Wenn die Algen in sehr grosser Menge vorhanden sind, so erzeugen sie verschwommene Flecken in der Schale und zuweilen eine Art molekulären Detritus mit schmutzig brauner Färbung; geringere Mengen haben keine weiteren Structureinänderungen der Schale zur Folge.

Bei dem Hineinwachsen der Algenzellenketten zwischen die Schichten der Schale incrustirt sich ihre Oberfläche, und es treten deshalb die Gliederketten in der Schale mit scharfen Contouren hervor, welche Schärfe in den Umrissen bei den fossilen Schalen mit derselben Prägnanz erhalten ist. Es lassen sich daher bei letzteren
Studien über das Vorkommen und die Verbreitung der schmarotzenden Conferven ausführen, wenn es auch nicht mehr gelingt ihre Zellenmembranen darzustellen, indem dieselben ebenso wie das organische Schalengerüste in dem Versteinerungsprocesse untergegangen sind. In manchen Tertiärformationen sind übrigens die Confervenfäden nach Entfernung des kohlensauren Kalkes noch vorzufinden.

Es incrustiren sich auch die eine Amylumreaction zeigenden grösseren gestielten Zellen der Algen, wie dies leicht an frischen Schalen nachzuweisen ist, und dienen, wie dies auch an fossilen vorliegt, zum Ansatzpunkte für die Algenröhren.

Der Durchmesser der Röhren nimmt zuweilen bei den fossilen Muscheln ansehnlich zu; Querabtheilungen, den Algenzellen-Reihen entsprechend, lassen sich selten wahrnehmen, hingegen weisen die häufig in den dickeren Röhren liegenden braunrothen und braunschwarzen Körner auf eine Pigmentmetamorphose des Zelleninhaltes hin. In den Röhren der fossilen Schale ist kohlensaurer Kalk abgelagert.

Es ist endlich auch, namentlich bei den fossilen Schalen, in Erwägung zu ziehen, dass ein Hineinwachsen der Algen auch nach dem Tode des Thieres, wie z. B. bei Saprolegnia ferox (Kütz.) stattfinden kann.
Erklärung der Abbildungen.

Fig. 1. Flächenschnitt von der Innenseite der Schale einer Area Noae mit den gestreckten und vielfach ramifizierten Canälen. Vergrösserung = 350.

10. Senkrechter Querschnitt ungebühr von der Mitte eines Conus aus dem rothen Meere; a) Corticalischicht mit zahlreichen Canälen, die bis an die Innenseite zu verfolgen sind; b b) bandartige, in einander geschobene, mit ihrer breiten Seite dem Beobachter zugekehrte Streifen; b 1) Demareationssäule für die im Schnitt getroffenen Systeme; c) mittlere Schichten aus scheibenformigen horizontalen Lamellen bestehend, welche durch die Drehung der bandartigen Streifen um 90° gebildet werden; d) eingeschobene die Lage von b b einfallende Schichten; e) innerste Schichten. Vergr. = 40.

11. Der äussere Theil desselben Schnittes: a) büschelförmig gruppierte Algenröhren; b) gestielte inerstirt Zelle mit dem nach innen zu verlaufenden Canale; c) horizontaler Ast, mit unter rechten Winkeln beiderseits abgehenden Zweigen; d) dunklere, d 1) hellere Strata der Krystallplättchen des kohlensauren Kalkes je nach ihrer Stellung; e) Drehungszone. Vergr. = 350.
Fig. 12. Äusserer, theilweise entkalkter Flächenschnitt mit den aus den Canälen heraushängenden Conferen von *Melania Hollandri* (Fer.) Vergr. = 350.

13. Flächenschnitt gegen die Innenseite eines fossilen Brachiopoden *Leptaena leptis* (Übergangsformation); a a) Poren mit den sie umgebenden concentrischen Lagen; b) sich durchkreuzende Canäle mit Querabtheilungen und braunrothen bis braunschwarzen eingelagerten Körnern. Vergr. = 350.

15. Senkrechter Längenschnitt eines fossilen Conus: a) äussere Schichte mit dunklen Hohlräumen, aus denen die Canäle entspringen; b) mittlere Schichten; c) innere Schichte mit gleichnamigen Hohlräumen wie in der äusseren. Vergr. = 40.

17. Flächenschnitt von der Aussenseite eines Spondylus crassicornis L.am. (Fossil) mit kleineren und grösseren, theilweise pigmentirten Canälen. Vergr. = 100.

Bdellideen 4).

8.)

etucha.

stipatus.

artim.

enchymatosum,

ciliis vibrate-
u latum, raris-
geanter pictum.

inerme v. arma-

Caput corpore

dumale, ut plurimum

maxillis internis,

1—10. Tractus

diluculentis lateralibus

calis, rarissime

subcutaneae, poris

ato scatenis in

spiratoriae, rarius

sticulares. Sy-
nis longe plurimis

moica, rarissime

uris genitalibus

tone filiformi

sub copulatione

Magabriechte, Nr. 23.
Revision der Myzheleminthen. Abtheilung: Bdellideen 1).

Von dem w. M. Dr. L. H. Diesing.

(Vorgelegt in der Sitzung am 24. Juni 1858.)

Subordo II. Myzhelemintha proctueha.

Tractus intestinalis uniruris s. simplex, ano stipatus.

TRIBUS II. BDELLIDEA Btainville partim.

1) Die Abtheilung: Trematoden ist im XXXII. Bd. der Sitzungsberichte, Nr. 23. S. 307—390 enthalten.
2) Confer notam characteri generis Malsocobdellae adjetam.
individua 2—3, imo plura inter se juncta. — Polycotylea monoica aperturis genitalibus masculis duabus ventralibus, una versus medium marginis lateralis dextris, altera sinistri sita, pene nullo instructa, oviductu in cloacem inserito. Ovipara. — In Bdellideis cheilostomis nonnullis ovula singula aut plura (10—16) involucro subcorneo-spongioso, e corporis superficie exsudato, demum exuto primum tubuloso, postea depositis ovulis subgloboso utrinque clauso (cocco), excepta. Bdellidea numquam metagenesi, paucissima metamorphosi incompletae subjecta. Bdellidea sunt animalia aquaticum, praecipue verteratorum, ectoparasita, nunc ea numquam deserentia, nunc tandem ea derelinquentia, tunc in aqua marina aut dulci, v. supra terram humidam libere vagantia, ovulaque coco inclusa ibidem abscondentia, imo arboricola 1).

Status metamorphosis incompletae in Bdellideis polycotyleis: larva animalculo materno similis, nec organis genitalibus, nec acetabulis, sed solummodo ambulaebris 4 v. 10 instructa. Tam in statu larvae quam perfecto Comatularum ectoparasita (Myzostomum).

In Bdellideis monocotyleis: larva animalculo materno dissimilis, nec acetabulo, nec ocellis instructa; cum adultis simul in eodem loco degens (Clepsine).

Conspectus dispositionis Bdellideorum, adjectis simul generum characteribus essentialibus.

Subtribus I. Bdellidea polycotylea.
Corpus acetabulis et ambulaebris pluribus instructum.
1. Myzostomum. Corpus acetabulis 8 et ambulaebris 10 ventralibus instructum.

Subtribus II. Bdellidea monocotylea.
Corpus acetabulo uno, nec ambulaebris instructum. Anus dorsalis supra acetabulum aut in centro acetabuli situs.

Sectio I. Excentroprocta.
Anus dorsalis supra acetabulum situs, rarissime in spicis corporis postico. — Branchiata aut ebranchiata.

Familia I. Branchiobdellae.
Corpus branchiatum. — Androgyna.
2. Osobranus. Corpus branchiis ramosis instructum.

1) Confer habitaculum Hirudinis Tagallae hujus loci.

FAMILIA II. ABRANCHIOBDELLÆ.

Corpus ebranchiatum. — Androgyna aut sexus discreti.

SUBFAMILIA I. CEPHALOSTOMAE.

Caput explanatum v. acetabuliforme; os excentricum aut in margine capitis. Anus dorsalis supra acetabulum situs, aut terminalis posticus. — Androgyna.

5. Ichthyobdella. Caput explanatum, ore excentrico.

1. Maxillata.

2. Emaxillata.

Acetabulum sessile aut pedicellatum.

SUBFAMILIA II. SIPHONOSTOMÆ.

Os circulare v. obsolete bilabiatum in apice haustelli protrætilis. — Anus dorsalis supra acetabulum situs. Sexus discreitus aut androgyna.

* Sexus discreitus.

** Androgyna.

14. Gyrocotyle. Acetabulum intus multoties plicatum,
SUBFAMILIA III. CHEILOSTOMAE.
Os uni- v. bilabiatum emaxillatum v. maxillis internis instructum. Anus dorsalis supra acetabulum situs. — Androgyna.
* Os maxillis nullis. — Coeca aut ocellata.
† Ocelli nulli.
16. Liostomum. Os plicis internis nullis.
†† Ocellata.
** Os maxillis instructum. — Coeca aut ocellata.
† Ocelli nulli.
†† Ocellata.
α. Ocelli 8.
20. Trocheta. Os maxillis haud crenulatis et plicis oesophageis tribus.
β. Ocelli 10.
1. Plicis oesophageis.
2. Plicis oesophageis nullis.
Genus insufficierter cognitum.
SECTIO II. CENTROPROCTA.
Anus in centro acetabuli situs.
27. Centropygos. Limbus acetabuli spinulosus.
Genus extinctum.
Subtribus I. Bdellidea polycotylea.
Corpus acetabulis et ambulacris pluribus instructum.

I. MYZOSTOMUM LEUCKART. Charact. reform.

Systema vasorum nullum observatum. Systema nervorum distinctissimum.
Genus hoc haustelli et appendiculorum ventriculi praesentia nec non metamorphosi incompletae cum Cleopins quam maxime congruit.

Status metamorphosis incompletae: Larva animaculo materno similis, sed nec organis genitalibus nec acetabulis instructa, ambulacris 10, interdum solummodo 4; etiam in hoc statu Comatularum ectoparasita.

I. MYZOSTOMUM glabrum LEUCKART. Charact. aucto.

Status metamorphosis incompletae: Larvae corpus margine papillis nullis cinctum; acetabula nulla; ambulacra 10.

De acetabulorum praesentia confer Siebold et M. Schultze infra e.

Habitaculum. Comatula mediterranea: in superficie disci (Leuckart), ibidem prope Cattaro (Siebold), Tergesti, haud raro, Augusto (M. Schultz), ibidem aestate (O. Schmidt).

2. Hystostomum tuberculorum SEMPER.

Status metamorphosis incompletae: Larva 1/₁₀—1/₁₅"" longa, organis genitalibus nullis; acetabula nulla (?); ambulacra 10, uncinulis brevissimis instructa.

Habitaculum. Comatula mediterranea, praesertim var. variegata: ad discum, Octobri, Tergesti (Semper).

3. Hystostomum Thompsoni DIESING.

Status metamorphosis incompletae: Larva 1"" longa, acetabulis nullis; ambulacra 10.

Parasit of Comatula Thompson: in Edinburgh new philos. Journ. XX. (1836) 295. Tab. II. 9, 10; vera. germ. in diei 1838. Tab. I. 9, 10 icon. Thompsoni (statu larvae).

Revision der Myzehminthen. 479

Handlingar for år 1840 et in Wiegmann’s Arch. 1842. I. 306. Tab.
VIII. (status perfecto). — Diesing: Syst. Helm. II. 337.

Habitaculum. Comatula (europaea) mediterranea: ad super-
fiem corporis, ad oras Scotiae (Thompson) ibidem, frequenter,
ad littora Sueciae occidentalis (Lovén).

Corpus subcirculare depressiusculum, passim ciliis vibrantibus
in fasciculis dispositis obsessum, margine cirræ 20 sub tus canalicu-
latis, apice ciliis longis haud vibrantibus penicillatis cinetum, supra
glabrum. Haustellum cylindricum, ore papilis cineto. Acetabula
circularia, intus ex centro obsolete radiata. Ambulacra uncinis plu-
ribus conformibus, retractoribus, longitudine diversis, longissimo ex-
sertili, altero apice cupuliformi, instructa. Anus posticus dorsalis.
— Animalceula agilia. Longit. ultra 1’’.

Status metamorphosis incompletae: Larva, 1/30’’ longa, ab ani-
maleculo materno differt corpore elongato, antrorum magis angustato,
retrorsum rotundato, acetabulis nullis (?), ambulacris solummodo 4,
uncinulis instructis.

Myzostoma cirriferum M. Schultze nee Leuckart: in Verhandl. d. phys-
medic. Gesellsch. Würzburg IV. (1854) 225—227 (cum anatom.) — O.
(1857) 361 et 366 (cum anatom.) Tab. IV. 11. — Semper: in
Zeitschr. f. wissensch. Zool. IX. (1857) 49, var. al. loc. et 146 (cum
anatom.) Tab. III. 2, 4, 9. Tab. IV. 1, 4—6 (status larvae et status
perfecto).

Habitaculum. Comatula mediterranea: ad corporis super-
fiem, raro, Augusto, Tergesti (M. Schultze), ibidem aestate (O.
Schmidt et Semper).

5. Myzostomum costatum Leuckart.

Corpus ovale planisculatum, antice emarginatum, brunneum, supra
costatum, costa longitudinali mediana et 10 transversalibus, duabus
antecis et duabus posticis angulum acutum formantibus, reliquis hori-
zontalibus et costis marginalibus numerosis, brevibus, irregularibus,
margine crenulato. Haustellum ... Os ad basin emarginatuarae,
ventrale, circulare. Acetabula transverse elliptica. Ambulacra un-
cino valido instructa, duo postica reliquis breviora retrorsum directa.
Anus ... Longit. 1—2’’; latit. 1/2—1 1/8’’.
Status metamorphosis incompletae: Larva 1/6'' longa, antice haud emarginata; acetabula nulla; ambulacra 10.
Habitaculum. Comatula multiradiata: ad superficiem disci, in mare rubro (Rüppell).

Subtribus II. Bdellidea monocotylea.
Corpus acetabulo uno, nec ambulaebris instructum. Anus dorsalis supra acetabulum aut in centro acetabuli situs 1).

SECTIO I. EXCENTROPROCTA.
Anus dorsalis supra acetabulum situs, rarissime in apice corporis postico. — Branchiata aut ebranchiata.

FAMILIA I. BRANCHIOBDELLAE.
Corpus branchiatum. — Androgyna.

II. OZOBANCHUS QUATREFAGES.

Corpus sublineare depressum, annulatum, utroque margine in branchias lineares, ramosas, spicdichotomas, per paria dispositas productum. Caput ... Acetabulum basilare sessile hemisphaericum. Androgyna; aperturae genitales ... — Tractus intestinalis unicoeris ano stipatus. — Cheloniudarum marinarum ectoparasita.

1. Oszobanchus Menziesi QUATREFAGES.
Corpus utrinque parum angustatum, dense annulatum, albidum, branchii utrinque 7. Longit. corp. 10''''; latit. 1 1/4''''; longit. branch. ad 1''''.

Ozobanchus Quatrefages: in Annal. des sc. nat. 3. sér. XVIII. (1852) 325.

Habitaculum. Testudinis spec. incert. oceani pacifici, in corporis superficie (Menzies).

1) De forma tractus cibarii et ventriculi et de ejus valore systematico cf. Duvernoy: in Rev. zool. 1846. 332.
III. BRANCHIOBDELLA RUDOLPHI. Charact. aucto.

Branchiobdella Savigny. — Branchiobdella Gervais. — Phyllobranchus Girard.

1. Branchiobdella Rudolphii BLAINVILLE.

Branchiarum parium numerus teste cl. Quatrefages 38; branchiae undulatae.

2. Branchiobdella Scolopendra DIESING.

Corpus subaqua, utrinque parum angustatum, fusco-carneum, annulis distinctis 34—42, branchiis remiformibus, breve pedicellatis, integris, hyalinis, granulis adspersis, marginibus inferis inflexis. Caput pallide flavescens. Ocelli quatuor per paria in lineam transversam dispositi. Collum obovatum, basi angustatum, exannulatum, diaphanum, capite concolor. Acetabulum pallide flavescens, intus granulosum. Longit. corp. 8—10″; latit. 2″; longit. branch. 1/3″; longit. colli 2—3″; latit. ultra 1″.

Sitab. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 28.

Habitaculum. In superficie corporis cujusdam piscis, in Brasiilia (Natterer).

3. Branchiobdella Orbiniensis QUATREFAGES.

 Corpus elongatum utrinque parum attenuatum, supra convexiusculum, nigro-violaceum, albido-punctatum, punctulis in omni annulo tertio lineam transversam formantibus, subtus planum, albo-flavidum, nigrircante punctatum, annulis 36—37, branchiarum paribus 33; branchiae aut mamillae contractili impositae aut sessiles, foliaceae, semicirculares, margine integre ibique praesertim subtus profunde plicatae, laete violacea; branchiarum mamillae impositarum pari uno branchiarum sessilium paria duo alternatim postposita; annuli ultimi ebranchiati. Caput pallide violaceum. Ocelli nulli. Collum fusiforme, annulis 14—15, laete violaceum, annulis ultimis fere decoloribus. Acetabulum amplum, albo-flavidum, interdum supra punctis nigro-violaceis adpersum, intus acetabulis minimis ad 200 radiatis dispositis munitum. Apertura genitalis mascula rimaformis, transversalis, versus colli annulum 13um, feminea huic postposita, ad colli basin. Longit. tot. 1—2"; latit. cum branchiis 5—6"; longit. colli 1 1/3—3".

Cl. Moquin-Tandon in suo specimine, prope Burdigalam lecto, 35 branchiaria paria numeravit.

Branchellion Torpedinis Quatrefages: in Cuvier Règne anim. illustr. edit. 3. Annal. Tab. XXIII. 3.

Branchellion Orbiniensis Quatrefages: in Annal. des se. nat. 3. sér. XVIII. (1852) 279—325 (cum anatom.) Tab. VI. 1—13, Tab. VII et VIII.

Habitaculum. Torpedinis spec. incert. oceani atlantici: ad latum corporis ventrale, specimena 1—3 in uno individuo, raro, Rupertae (Orbigny, Sauvé et Quatrefages).

4. Branchiobdella Ravenelli DIESING.

 Corpus elongatum utrinque attenuatum, retrosum constrictum, et a p hinc elliptice dilatatum, annulis (44—46?) angustis, supra obsoletis, subtus distinctis, anterioribus 31 branchiarum totidem paribus munitis; branchiae mamillae contractili impositae, foliaceae, radiatim plicatae, margine externo lobato, s. simbrario; annulorum subsequentium ultimis ebranchiati. Caput supra laeve, subtus granulis numerosis, e centro radiantisibus obsessum. Ocelli nulli (?). Collum
breve, subcylindricum. *Acetabulum* parvum, oblongum, supra laeve, subitus granulis numerosis et centro radiantis munitum. Longit. ad 2"; latit. sine branch. 3—4".

Animalcula larvarum Geometricum more incidunt. — Branchiae vasculorum retine persicula.

Phyllobranchus Ravenelli *Girard*: in Proceed. of the American Associa. for the Advancement of Science IV. (1851) 124.

Habitaculum. Raja (Skate) spec. incerta: ad corporis superficiem, Charleston Harbour (Ravenel).

IV. CYSTOBANCUS DIESING.

Piscicola spl. Leydig et Troschel.

I. Cystobranchus Troschell DIESING.

Corpus subaequale, flavo-griseum, minutissime nigro-punctulatum, branchiis utrinque 11, transparentibus. *Ocelli* duo antiores majores lineares vel semifunae, convergentes, posteriores minores punctiformes. Collum retrorsum parum dilatatum, a corpore strictura discretum, corpore inconcolor. *Acetabulum* capite duplo majus, punctis 10 marginalibus nigris cinctum. Longit. 1 1/4"; latit. 2".

Animalcula a el. Leydig descripta, branchiis utrinque solummodo 8 gaudentia, nec non aliquis characteribus organorum internorum a nostris discrepantia, aliarm fortasse speciem sistent.

Piscicola respirans Troschel: in Wiebmann’s Arch. 1830. I. 17—26 (cum anatom.) Tab. II. A—E.

FAMILIA II. ABRANCHIOBDELLAE.

Corpus ebranchiatum. — Androgyna, aut sexu discreta.

SUBFAMILIA I. CEPHALOSTOMAE.

Caput explanatum vel acetabuliforme; os circulare centrale aut excentricum aut capitis margini impositum. — Anus dorsalis supra acetabulum situs, aut terminalis posticus. — Androgyna.

V. ICHTHYOBDELLA BLAINVILLE.

— Gnatho Goldfuss et Schinz.

* Ocelli quatuor.

4. Ichthyobdella maculata GRUBE.

Piscicola maculata Grube: Famil. d. Annel. 112 et 150.

Habitaculum. In mare.... (Grube).
** Ocelli octo.**

5. (1.) **Ichthyobdella Geometra BLAINVILLE.** — Syst. Helm. I. 440.
adde:

Pisicola geometrica Troesch: in Wiegmann's Arch. 1850. I. 19. —

Ocelli ignoti.

7. (6.) **Ichthyobdella Cichlae KROYER.** — Syst. Helm. I. 442. adde:

Tab. III. 1—3, 4—7?

Species inquirendae.

9. **Ichthyobdella Anarrichae.**

Corpus teretiusculum subaequale, antice et postice angustatum,
passim constrictum, obsolete annulatum, albidum. Caput nunc exple-
natum, nunc infundibulisiforme, margine crenulatum. Ocelli . . . Aceta-
bulum nunc explanatum, nunc campanulatum. Longit. 10"; latit. */₄".

Pisicola marina Leuckart (nee Johnst.): in Wiegmann's Arch. 1849.

Habitaculum. Anarrichas Lupus: in cavo oris et bran-
chiarum; ad litus austro-occidentale Islandiae (Bergmann).

II. (9.) **Ichthyobdella vittata DIESING.** — Syst. Helm. I. 443. adde:

13. **Ichthyobdella sanguinea OERSTED:***

De region. mar. 1844. 80 (indescripta) cum tab.

Habitaculum. In profunditate 11 — ∞ orgyiarum, Helleboek
in fretu Öresund, aestate (Oersted).

14. **Ichthyobdella agilis QUATREFAGES.**

(indescripta). Tab. XXIII. 3.

VI. HAEMENTERIA FILIPPI.

Corpus elongatum, utrinque attenuatum, depressum, annulatum.
Caput disciforme in colli latere ventrali (excentrice affixum?). Os
exiguum in margine antico capitis. Ocelli nulli. Acetabulum sub-
basilare ventrale, sessile, circulare (excentrice affixum?), capite majus.
Androgyna; apertura genitalium communis in apice tubuli crassi,
limbo circulares carnose externo et minore interno ad annulum 28vum
instructa. — Tractus intestinalis unicus, ano stipatus; anus dor-
salis supra acetabulum. — Ovipara. — Fluminis Amazonum incolae.

Structura interna hujus generis insignis, illam Clepsines proxime accedens.
1. Haementeria Ghilianii FILIPPI.

Corpus et collum annulis 72 instructum, annulis duobus in pagina ventrali transverse sulcatis cum uno haud sulcato regulariter alternantis, viridia, maculis rubescentibus nigro-marginatis adpersa. Os circulare. Longit. ad 1’; spiritu vini contract. 3½’’; latit. 1½’’.

Habitaculum. In flumine Amazonum (Ghilianii).

VII. PONTODELLA LEACH.

a. Corpus verrucosum, subcylindricum vel depressum.

1. Pontobdella splauleosa LEACH. — Syst. Helm. l. 437. adde:
Albione muriata Sav.— Cuvier: Règn. anim. 3. édit. Annel. Tab. XXIII. 2.
— Quatrefages: in Annal. des sc. nat. 3. sér. XVIII. 329 — 336 (anatom.) Tab. VI. 14, IX. 1—7.

2. Pontobdella indica BLAINVILLE.

„Depressa fusca: striis transversis muricatis centum“ (Linné).

Habitaculum. In mare Indiae orientalis.
3. (2.) Pontobdella verrucata LEACH. — Syst. Helm. I. 438. adde:
Abiono verrucato. — Quatrefages: in Annal. des se. nat. 3. sér. XVIII. 328—336 (anatom.).

4. (3.) Pontobdella depressa KROYER. — Syst. Helm. I. 438. (exclus. synon.) adde:

β. Corpus haud verrucosum, subcylindricum vel subelavatum.

5. (4.) Pontobdella arcuata LEACH. — Syst. Helm. I. 439. adde:

6. (5.) Pontobdella laevis BLAINVILLE. — Syst. Helm. I. 439. adde:

Habitaculo adde: In Hibernia (Thompson).

7. (6.) Pontobdella lubrica GRUBE. — Syst. Helm. I. 439. adde:

1. Maxillata. — Acetabulum sessile.

VIII. ASTACOBDELLA VALLOT. Charact. reform.

Hirudo Braun. — Branchiobdella Odier. — Malseobdella Gervais.

Corpus subcylindricum, irregulariter annulatum. Caput campa-
nulatum, centro affixum. Os centrale in fundo capitis, intus maxillis
duabus triangularibus corneis. Ocelli nulli. Collum nullum. Ace-
tabulum basilare sessile, urceolare, centro affixum, capite minus.
Androgynea enallelogama; apertura genitalis mascula in annulo 11mo,
feminea in annulo 9no. Tractus intestinalis unicuris, ano stipatus,
anus dorsalis supra acetabulum. — Ovipara, ovulis operculatis, pedi-
cellatis et appendiculatis. — Astacorum ectoparasita; larvae Geome-
trarum in morem incedentes.

In hoc solum genere, quod scio, apertura genitalis mascula feminee post-
posita.
I. Astacobdella Roeselli DIESING.

Ovula elliptica operculata, una extremitate appendiculata, altera longe pedicellata.

Branchiobdella Parasita Kolliker. — Henle: in Müll. Arch. 1835. 574. Tab. XIV.

Habitaculum. Astacus fluviatilis: ad branchias et ad ovula, Decembri et Januario (Roesel), Aprili et Majo (Braun), Julio (Odier), vere (Kollar).

II. Astacobdella Abildgaardi DIESING.

Corpus utrinque angustatum, sordide album, annulis obsoletis. Caput spinis quatuor et macula antica ferrugineae, limbo bilabiato. Maxillae edentatae. Longit. 3—4""; latit. 1/₄—1/₄"".

Habitaculum. Astacus fluviatilis: ad oculos, Siaellandiæ (Abildgaard).

III. Astacobdella philadelphiae LEIDY.

Corpus subaequale, retrorsum sensim increscens, abidum, transparens, annulis 8 latis cum totidem angustis alternantibus. Caput inerme, limbo integro circulari v. elliptico, crenulato, seticulis cincto. Os ellipticum. Maxilla supera apice acute conico utrinque denticulato, infera apice bifurcato utrinque denticulis duobus instructo. Longit. 1—4""; latit. 1/₄—1/₄"".

Ovula operculata, una extremitate appendiculata, altera pedicellata.

Habitaculum. Astacus Bartonii ad superficiem corporis, praeprimis ventralem, et ad branchias, Philadelphiae (Leidy).

Species inquirenda.

IV. Astacobdella chilensis DIESING. — Syst. Helm. I. 434.

Habitaculum. Astaci chilensis sp., prope St. Jago (Gay).
2. Exmaxillata. — Acetabulum sessile aut pedicellatum.
† Acetabulum sessile.

IX. MYZOBDELLA LEIDY.

Corpus elongatum depressiusculum, annulatum. Caput subfundibuliforme, centro affixum, limbo oblique truncato. Os centrale in fundo capitis. Ocelli nulli. Collum nullum. Acetabulum subbasilare ventrale, sessile. Androgyna; aperturae genitales... — Tractus intestinalis unicusurus, ano stipatus; anus... Crustaceorum marinorum ectoparasita.

Characteribus nonnullis minus bene cognitis genus non satis stabilitum.

1. Myzobdella lugubris LEIDY.

Habitaculum. Lupa dicanta: ad basin pedum, Philadelphiae (Leidy).

X. TRACHELOBDELLA DIESING.

Corpus pyriforme depressiusculum, transverse rugosum. Caput hemisphaericum, centro affixum, collo teretiusculo, retractili a corpore discretum. Os centrale in fundo capitis. Ocelli nulli. Acetabulum basilare sessile, apertura circulari recta. Androgyna; apertureae genitales... — Tractus intestinalis unicurus, ano stipatus; anus dorsalis subterminalis posticus... Ovipara. — Piscium marinorum ectoparasita.

1. Trachelobella Mülleri DIESING. — Syst. Helm. I. 435. adde:

Habitaculum. Gobius Capito: ad branchias (Joannes Müller).

2. Trachelobella Kollari DIESING. — Syst. Helm. I. 436. adde:

Habitaculum. Priacanthus macrophthalmus, e Brasilia: ad branchias (Kollar).
++ Acetabulum pedicellatum.

XI. PODOBDELLA DIESING.

Corpus ellipticum depressum, supra convexum, subitus planum, dense annulato-plicatum. Caput hemisphaericum, centro affixum, collo teretiusculo retractili brevi a corpore discretum. Os centrale in fundo capitis. Ocelli nulli. Acetabulum longe pedicellatum, oblique truncatum, pedicello teretiusculo, basilari. Androgyna; apertura genitalis mascula... feminea antrorum sita, ad annulum decimum. — Tractus intestinalis unicurris, ano stipatus; anus dorsalis ad basin pedicelli. — Ovipara. — Piscium marinorum ectoparasita.

I. Podobdella Endlicheri DIESING. — Syst. Helm. I. 436. adde:

Habitaculum. Corvina oscula, ex America septentrionali: ad branchias (Kollar).

XII. MONOPUS GOSSE.

Ovarium amplum, ovulis transparentibus, globosum, in postiore abdominis parte.

I. Monopus medusicola GOSSE.

Corpus antrorum obtusum dense annulatum, retrorsum breve attenuatum, pellucidum. Ocelli hyalini ad marginem frontalem capitis. Acetabulum disciforme, in pedicello brevi, crasso, truncato. Longit. vix 1".

Gosse: Devonshire Coast. 359.

Monopus medusicola Gosse: in Ann. nat. hist. 2. ser. XV. (1855) 277. Tab. VIII. B.

Habitaculum. Willsia stellata: ad corporis superficiem, ad littus Devoniae (Gosse).
SUBFAMILIA II. SIPHONOSTOMAE.

Os circulare vel obsolete bilabiatum in spic.e haustelli protractilis. — Anus dorsalis supra acetabulum situs. — Sexus discretus aut androgyna.

* Sexus discretus.

XIII. MALACODBDELLA BLAINVILLE. Charact. aucto.

Mas et femina habitu conformes. — Nec spermatozoidea nec ovula organis propriis sunt excepta, sed libere in corporis parenchymate nidulant, nec emittuntur per aperturas proprias, imo potius ex tota corporis superficie emergunt, aperturis exitu eorum ortis serius obliterantibus (Blanchard de Malacobdella Valenciennae).

Res profecto nимio plus insolita ac, me sciente, in toto regno animali sui generis unica!

1. Malacobdella grossa BLAINVILLE. — Syst. Helm. l. 445. addе:

Specimina a el. Leidy descripta 2"" — 1", rarius 1½" longa, ¾" — 5", rarius 7" lata.

2. Malacobdella Valenciennae BLANCHARD. — Syst. Helm. l. 445. addе:

Habitaculum. Mya truncata: sub pallio, Majo (Blainville), prope La Manche (Blanchard).
Species inquirenda.

3. Malacobdella Auriculae GAY. — Syst. Helm. I. 446. addde:
 Blanchard: in Gay Historia de Chile Zool. III. 67 et in Annal. des sc.
 nat. 3. sér. XII. 267.

** Androgyna.

XIV. GYROCOTYLE DIESING. Charact. emendat.

Corpus subellipticum depressum, transverse rugosum. Caput
corpore continuum. Os circulare, subterminale, anticum, exiguum
(in apice haustelli protractilis?). Ocelli nulli. Acetabulum basilarum
sessile, circulare, intus gyrose plicatum. Androgyna; penis ventralis
superus, lateralis, apertura genitalis feminea infra penem, mediana.
 — Tractus intestinalis unicusurus, uno stipatus; anus dorsalis supra
 acetabulum. — Ovipara. — Molluscorum marinorum ectoparasita.

1. Gyrocotyle rugosa DIESING. — Syst. Helm. I. 408. addde:

Habitaculum. Mactra edulis: ad pallium prope Valparaíso
(Kroyer).

Antilope pygarga erronea pro habitaculo indicata in Systemate Helminthum
et in Denkschr. I. c. delenda.

XV. CLEPSINE SAVIGNY. Charact. aucto.

 — Erpobdella, leathyobdella et Glossobdella Blainville. — Nephelis Brigh-
 well. — Piscicola Moquin-Tandon.

Corpus depressum latum, supra convexiusculum, subtus planum
vel concavum, annulatum, annulis ternis segmentum constituentibus.
Caput subdiscretum vel corpore continuum. Os transverse ellipti-
cum subbilahiatum in apice haustelli protractilis. Ocelli 2, 4, 6, aut
8, utplurimum in lineas duas longitudinales dispositi, nigri. Aceta-
bulum subbasilare ventrale sessile subcirculare. Androgyna; apertu-
rae genitalia postpositae inter 25. et 26um, 27. et 28vum corporis
annulum. Tractus intestinalis unicusurus uno stipatus; anus dorsalis
supra acetabulum. Ovipara; ovula post partum involucro tenui
inclusa, ventri materno adhaerentia. — Animalcula metamorphosi
incompletae subjecta. — Amphibiorum et Molluscorum aquarium dul-
cium ectoparasita vel libere vagantia; larvarum Geometricum in morem
ingredientes, nonquam natantes, Oniscorum more contractae utpluri-
num quiescentes.
Revision der Myxhelminthen.

Status metamorphosis incompletae: Larva animalculo materno dissimilis, nec ocellis nec acetabulo instructa, ventri materno ut plurimum adhaerens (Grube l. i. c. 111).

Ocelli 2. — Caput corpore continuum.

1. Clepsine bioculata SAVIGNY. — Syst. Helm. I. 448 et 652. adde:

2. Clepsine sanguinea FILIPPI. — Syst. Helm. I. 449. adde:
 Grube: Famil. d. Annel. 113 et 150.

3. Clepsine algerica DIESING. — Syst. Helm. I. 449. adde:
 Clepsine algira Grube: ibid. 113 et 150.

4. Clepsine parasitica DIESING. — Syst. Helm. I. 450. adde:
 Hirudo parasitica Say. — Grube: ibid. 109, 148 et 149.

5. Clepsine carinata DIESING. — Syst. Helm. I. 450. adde:

7. Clepsine costata MÜLLER. — Syst. Helm. I. 450. adde:
 Grube: Famil. d. Annel. 113 et 150 (excl. syn. Moq.-Tand.)

8. Clepsine cateniger DIESING. — Syst. Helm. I. 451. adde:
 Clepsine costata Müller. — Grube: ibid. 113 et 150 (ex parte).

 adde:

Ocelli 4. — Caput corpore continuum v. subdiscretum.
 Caput corpore continuum.

 adde:
 Grube: ibid. 114 et 150.

 Caput subdiscretum.

13. Clepsine marginata MÜLLER. — Syst. Helm. I. 447. adde:
 Fr. Müller: de Hirudinibus circa Berol. observ. 19. — Grube l. c. 114 et 150.
 Ocelli 6. — Caput corpore continuum v. subdiscretum.
 Caput corpore continuum.

14. Clepsine complanata SAVIGNY. — Syst. Helm. I. 452. adde:
 Appendicium ventriculi paribus 6 a C. verrucata praeципue differt, testante
 Fr. Müller.

Glossiphonia sexoculata Ehrard: Nouv. Monogr. Sangs. 59 (de anatom., copulatione, ovulis et pullis, acetabulo instructis) Tab. VIII. 70 et 71. Tab. XI. 102.

adde:
Fr. Müller: Hirud. 27.
Clepsine heterocelita Grube: l. c. 113 et 150.

adde:
Fr. Müller: Hirud. 29.
Clepsine papillosa Grube: l. c. 113 et 150 (exclus. synon. Braun).

17. Clepsine Swampina DIESING. — Syst. Helm. I. 454. adde:
Clepsine? swampina Grube: l. c. 114.

Caput subdiscretum.

18. Clepsine verrucata FR. MÜLLER.

Ocelli rarissime solummodo 4? — Appendicem ventriculi paribus 7 a C. complanata praesertim differt, testante Fr. Müller.

Clepsine verrucata Fr. Müller: De Hirud. circa Berol. observ. 23.

Habitaculum. In lacu ad Tegel prope Berolinum, ad ramos arborum dejectos, raro; Mollusca gasteropoda exsugit (Fr. Müller).

Ocelli 8. — Caput corpore continuum v. subdiscretum.

Caput corpore continuum.

19. Clepsine Rachana THOMPSON.

Corpus ovale, supra laeve, hyalinum, pallide rosaceum, marginibus obsolete crenulatis. Caput corpore continuum. Ocelli 8 per paria quatuor postposita disposita, parium duorum ultimorum majores. Acetabulum circulare. Longit. 9″.

Lobuli ventriculi 16 subpinnati; intestina coeca 8.

Habitaculum. In Hibernia (Thompson).

Caput subdiseretum.

20. Clepsime tessulata O. F. Müller. — Syst. Helm. I. 447. adde:

Nephelis tessulata Savigny: Syst. 117.

SUBFAMILIA III. CHEILOSTOMAE.

Os uni- vel bilabiatum emaxillatum vel maxillis internis instructum. — Anus dorsalis supra acetabulum situs. — Androgyna.

* Os maxillis nullis. — Coeca aut Ocellata.
† Ocelli nulli.

XVI. LIOSTOMUM WAGLER.

1. Liostomum coecineum WAGLER.

Corpus supra verrucosum, subitus laeve, totum coccineum. Os exiguum. Acetabulum intus laeve, extus granulosum. Longit. ultra 2½"; latit. antrors. ½", retrors. fere 1"; diamet. capit. 1½"; diamet. acetabuli 3½".

Lumatee? Hernandez Thes. cap. 29, 75.
Liostoma coecineum Wagler: in Isis 1831. 533 et 1832. 53.

Habitaculum. In regno Mexicano, specimina plura legit (Karwinsky).

†† Ocellata.

XVII. NEPHELIS SAVIGNY.

Hirudo Auct. — Helluo Oken. — Erpobdella Blainville.

Corpus elongatum antrorsum angustatatum, depressum, obsolete annulatum, annulis quinis segmentum constituentibus. Caput corpore continuum. Os amplum, oblique terminale, limbo prominulo, subbila-

1. *Nephells vulgaris MOQUIN-TANDON.* — Syst. Helm. I. 456 et 652. addi:

Habitaculum. In aquis dulcis Europae centralis, inter plantas. — Animalcula minora devorant, Mollusca exsugunt.

2. *Nephells quadriStriata GRUBE.*

Corpus cinereum, striis dorsalibus longitudinalibus quatuor, punctulis nigris fere confluuntibus compositis. Longit. . . .

Habitaculum. America borealis (teste Burmeister).

** Os maxillis instructum. — Coeca aut ocellata.

† Ocelli nulli.

** XVIII. PINACOBDELLA DIESING.**

Corpus elongatum subcyllindricum, utrinque, antorsum in col- lum attenuatum, scutellato-tabulatum, scutellis s. tabulis duriusculus semicircularibus, dorsalibus 17 et totidem ventralibus, sutura utrin- que marginali longitudinali sinuata sejunctis; canaliculo undulato dor- sali et sulco ventrali recto, medianis, aequilongis. *Caput* collo conti-

In specimine unico spuitu vini asservato ocelli nulli visi.

1. Pinacodbella Kolenatii DIESING.

Corpus scutellis dorsalibus et ventralibus rubro-brunneis, transverse nigro-fusco-striatis, granulatis. Collum annulis ad 15 angustis cinctum. Longit. corp. ad 10”; crassit. medio 2”’; longit. colli 1 1/4”’; crassit. 1/4”’.

Habitaculum. In lacu Sulli-ghöll (lacus Hirudinum) in parte boreali provinciae Karabagh (Kolenati).

XIX. TYPHLOBDELLA DIESING.

Generi subsequenti omnino affinis, praeprimis ocellorum defectu et situ diverso organorum genitalium externorum diseepans.

1. Typhlobdella Kovatsi DIESING.

Corpus antriorum attenuatum, supra convexum nigro-olivaceum, subtus planum cinereo-flavum. Longit. ad 2’; latit. antorris. 2”’, medio 5”’; diamet. acetab. 1 1/2”’.

Habitaculum. In aquis subterraneis cavernae Aggtelekiensis, in Hungaria (Kovats et Schmidl).

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 28.
XX. TROCHETA DUTROCHET.

Nepheleis Moquin-Tandon. — Geobdella Blainville.

1. Trocheta subviridlis DUTROCHET. — Syst. Helm. I. 459. adde:

Habitaculum. In Galliae foniculis et fossis, supra terram humidam Lumbricos persequuntur et devorant; coccum abscondunt (Dutrochet) in Algeria (Guyon).

β. Ocelli 10.

XXI. AULASTOMUM MOQUIN-TANDON.

Hirudo Auct. — Haemopis Savigny. — Pseudobdella Blainville. —
Aulacostoma Wiegmann.

1. Aulastomum Gulo MOQUIN-TANDON. — Syst. Helm. I. 461 et 652. adde:

Aulostoma vorax Gratiolet: in Annal. des sc. nat. 3. sér. XIV. 188—189 (de circulat.).

Habitaculum. In Europae centralis fossis, stagnis et piscinis; pisciculosis, larvas aquaticas et Hirudines devorant, imo in propriam speciem saeviant; supra terram humidam Lumbricos persequuntur, ibique cocum abscondunt.

XXII. BDELLA SAVIGNY. Charact. reform.

Generi Hirudo proxima, a quo labio supero subtus sulcato differe videtur (Peters).

1. Belda nilotica SAVIGNY.

Corpus depressiusculum, supra fusco-brunneum, subtus rufum. Ocelli sex in segmento primo, duo in annulo tertio, duo minimi in annulo sexto (septimo?). Longit. 3—3½"; latit. 4—8".

Belda nilotica Savigny. — Syst. Helm. I. 460. adde:

Habitaculum. In Crocodilorum fauces testae Herodoto; in aqua Nili prope Kahiram (Savigny), ibidem (Comes de Schlieffen).

Arabis: Alak.
2. Bdella acunctialis PETERS.

Corpus supra olivaceum cum vel sine linea longitudinali mediana sanguineo-rubra, marginibus lateralis aurantiacis, subtus rubro-brunneum cum vel sine maculis nigris, linea longitudinali nigra utrinque ad marginem aurantiacum. Longit. . .

Habitaculum. Angola, Mossambique, Ibo, Sena (Peters).

3. Bdella trifasciata EHRENBerg et PETERS.

Corpus supra et subtus olivaceum, marginibus lateralis et linea dorsalis longitudinali rubro-flavum Acetabulum parvum. Longit. . .

Hirudo (Sanguisuga) trifasciatus Ehrenberg msc.

Bdella trifasciata Peters in Berliner Monatsber. 1854. 610.

Habitaculum. Aegyptus (Ehrenberg).

XXIII. HAEMOPIS SAVIGNY et MOQUIN-TANDON.

Hirudo Auct. — Hippobdella Blainville.

1. Haemopis sanguisorba SAVIGNY. — Syst. Helm. I. 462. adde:

Tab. VIII. 2. Tab. X. 65, 66, 69, 70.

Habitaculum. In fossis, stagnis et piscinis, vulgaris; interdum in mammalium cava intrat; in Europa præprimis Equos et Boves, in Africa boreali Cameli infestat, pharyngem, laryngem aut nares ingrediens. — Cocceum in terra humida abscondit.

XXIV. HIRUDO RAY et LINNÉ.

Sanguisuga Savigny. — Jatrobdella Blainville.

Corpus elongatum antrorsum angustatum, depressum, annulis ad 95, aequalibus, laevibus v. granulosis, quinis segmentum consti-
tuentibus. *Caput* corpore continuum. *Os* oblique terminale, hilabia-
tum, labio supero producto, sublanceolato, maxillis internis tribus, se-
micircularibus, compressis, denticulorum acutorum scriebus dubaus,
marginalibus, in serie singula denticulis 60—70. *Ocelli* decem.
Acetabulum subbasilare ventrale, sessili, circulare. *Androgyna*, nal-
lelogama; penis inter 24. et 25 tum, apertura genitalis feminae inter
29. et 30mum annulum. *Tractus intestinalis* unicurris, ano stipatus;

— *Aquarium* dulcium orbis veteris incolae.

1. *Elrudo medicinalis* *RAY* et *LINNÉ*.

Corpus ut plurimum griseo-olivaceum, supra fasciis sex, plus
minusque distinctis, pictum, marginibus olivaceis, subtus fasciis mar-
ginalibus notatum. Longit. 4—7"; latit. 5—6".

Ex observationibus el. Bounceau patet, individua hujus speciei setatem 20
et quod excurrir annorum attingere posse.

Varietates:

I. *Corpus supra nigrum, subtus rufescens nigro-punctatum, vel nigrescens maculis viridibus, vel viride.*

1. Corpus supra fasciis solummodo medianis dubas lilacinis, limbo externo
undulatis, subtus rufescens nigro-punctatum, marginibus lilacinis. *Ebrard*
Nov. Monogr. Sanss. 28. Tab. III. 26. 27. ex Oriente (Trebizonde).

2. Corpus supra fasciis utrinque dubaus, internis flavis passim dilatatis inter-
ruptis, externis ejsudem coloris maculas nigras includentibus, subtus nigres-
cens maculis viridibus vel viridiflavis regulariter dispositis, marginibus
nigris maculis viridiflavis irregularebus. *Ebrard* l. c. 32. Tab. IV. 33. (Var.
inconstans?) et Georgia et Persia.

3. Corpus supra nigrum in rufo-cinnamonum vergens, fasciis sex velutino-
nigris, punctis cyanoe-albis in omni annulo quinto, subtus cinereo-nigrum
marginibus cinereo-nigris. *Ebrard* l. c. 15. Tab. I. 7. (Var. nigrescens
Moq. Tand.) et Suecia et Gallia.

4. Corpus supra nigrum in rufo-cinnamonum vergens, fasciis sex velutino-
nigris, punctis cyanoe-albis in omni annulo quinto, subtus nigrum in rufo-
cinnamonum vergens, marginibus cinereo-nigris. *Ebrard* l. c. 15. Tab.
I. 8. et Suecia et Gallia.

5. Corpus supra nigrum in rufo-cinnamonum vergens, fasciis 6 velutino-
nigris, punctis cyanoe-albis in omni annulo quinto, subtus viride nigro-
marginatum. *Ebrard* l. c. 15. e Suecia et Gallia.

II. *Corpus supra olivaceum.*

*Corpus supra nigro-olivaceum, subtus maculis nullis vel nigro-
maculatum.*

6. Corpus fasciis maculis nigris et bruneis minus distinctis conflatis *Moq.*-
Tand. 2. édit. 331. Tab. VII. 18. (v. nigrescens.)
9. Corpus supra fasciis flavo-aurantiis, macula nigra centrali, compositis, lineis flavis junctis, subitus sordide viride nigro-maculatum, marginibus flavo-aurantiis inter fascias duas nigras. *Ebrard* l. c. 42. Tab. 47 et 49. Calvados. (Descriprio cum icone haud congruit.)

Corpus supra griseo-vel obscure olivaceum, subitus ut plurimum nigro-maculatum.

21. Corpus supra fasciis medianis e maculis flavis vel aurantiacis compositis; intermediiis flavis vel aurantiacis maculis nigris, marginalibus flavis maculis nigris, subitus viridiflavum densissime nigro-maculatum. Ebrard l. c. 31. Tab. IV. 32. e Georgia et Persia.

*** Corpus supra olivaceum, subitus ut plurimum immaculatum.

27. Corpus supra fasciis medianis vix maculatiss, intermediiis macula nigra deltoides in omni annulo quinto. Ebrard l. c. 17. (var. 2) e Gallia (Arles, Landes).

28. Corpus supra fasciis nigro-velutinis, maculis parvis flavis minus distinctis in omni annulo quinto. Ebrard l. c. 18. (var. 5) e Gallia (Arles, Landes).

32. Corpus supra fasciis medianis flavo-aurantiis maculis nullis, intermediiis laete flavis, in omni annulo quinto maculis atroviolidibus, marginalibus linearibus flavis, fasciis intermediiis cum reliquis in omni annulo quinto maculis flavis junctis. Ebrard l. c. 25. Tab. II. 18 et 24. ex Hungaria vel ex Orienti.

34. Corpus supra fasciis medianis flavo-aurantiis vel rubescentibus, intermediiis et maculis nigris et flavis alternantibus compositis, marginalibus flavis obsoletis, fasciis intermediiis cum medianis maculis transversis

35. Corpus supra fasciis medians aurantiis, reliquis flavis, omnibus in omni annulo quinto maculis flavis transversis inter se junctis, subtus punctis minimis nigris. Ebrard l. c. 29. Tab. III. 30. e Vallachia.

37. Corpus supra sordide viride rubro-adapterum, versus margines pallide viride, fasciis et maculis illis varietatis 32. similibus sed pallidioribus et maculis rubro-castaneis nec nigris, subtus laete viride marginibus viridibus inter fascias duas rubro-castaneas. Ebrard l. c. 27. (var. inconstans 1.) ex Hungaria.

38. Corpus supra illi varietatis 32. simile sed partibus in illa nigris vel viridibus, nigro-grisescente vel violaceo tinctis, subtus sordide album vel flavum in viride vergens, marginalibus sordide flavis inter fascias duas sordide nigras. Ebrard l. c. 27. (var. inconstans 2.) ex Hungaria.

39. Corpus supra illi varietatis 32. simile sed partibus flavis vel viridibus nigropunctulatis. Ebrard l. c. 27. (var. inconstans) e Turcia (Dardanellen).

*** Corpus supra olivaceum plus minusque flavum, subtus nigro-v. rufe-maculatum vel haud maculatum.

41. Corpus supra fasciis flavis inter se haud junctis. Ebrard l. c. 21: var. 1. e Gallia (Landes).

42. Corpus supra fasciis maculis triangularibus nigris notatis, subtus maculis nigris adapterum. Ebrard l. c. 21. var. 3. e Gallia (Landes).

43. Corpus supra fasciis flavis, medianis et intermediiis maculis deltoideis, marginalibus maculis nullis, subtus nigro-maculatum. Ebrard l. c. 43. Tab. V. 48. e Gallia (Calvados et Manche).

44. Corpus supra fasciis medianis et intermediiis e maculis flavis, lineis nigris junctis, compositis, marginalibus sublinearibus flavis maculis nullis, subtus nigropunctatum. Ebrard l. c. 46. (var. C.) e Syria.

45. Corpus supra fasciis flavis, medianis punctis duobus nigris in omni annulo quinto, intermediiis macula nigra ellipsoides in codem intervallo, marginalibus linearibus cum intermediiis passim maculis duabus transversis flavis junctis. Ebrard l. c. 47. Tab. VI. 52. e Syria.

46. Corpus supra fasciis angustis flavis sex, medianis et intermediiis in omni annulo quinto paulum dilatatis, macula nigra, marginalibus linearibus cum intermediiis lineis transversis duabus flavis in omni annulo quinto junctis. Ebrard l. c. 47. Race E. e Syria.
47. Corpus supra maculis flavis elongatis parum conspicuis fasciis marginali lata pallide aurea, subtus nigro dense maculatum, marginibus flavis interfiacionem dorsalem angustissimam et ventralem latam, nigras. Ebrard l. c. 49. Tab. VI. 57.

48. Corpus supra fasciis dorsalis subnulis, supra subtusque flavescens M. T. 331. Tab. VII. 17. (μ. chlorina). — Ebrard l. c. 29. Tab. III. 29. e Vallachia et 34. Tab. IV. 34. e Georgia et Persia (?)

49. Corpus supra fasciis et maculis flavis in series dispositis, medias unicoloribus, intermediis et marginalibus puncto roseo centrali instructis compositis, subtus laete viride inter fascias duas roseas. Ebrard l. c. 32. Tab. IV. 41. e Georgia.

III. Corpus supra flavum, subtus viride vel flavum ut plurimum nigro-maculatum.

50. Corpus supra aurantio-flavum fasciis utrinque duabus roseis, in omni annulo quinto dilatatis, subtus aurantio-flavum nigromaculatum, marginibus roseis. Ebrard l. c. 34. Tab. IV. 35. e Georgia.

IV. Corpus supra fulvum, subtus pallide fulvum vel viride, maculis nullis.

55. Corpus supra medio viride, versus marginae vinaceo-rubrum, fasciis 2—3 e maculis nigris minus distinctis compositis, subtus viride marginibus viridibus nigromaculatis inter fascias duas nigras. Ebrard l. c. 20. (var. inconstans) e Gallia (Landes, Arles) et Hispania.

V. Corpus supra brunnenum, subtus ut plurimum nigro-punctatum.

57. Corpus supra fasciis medianis et intermediis pallide fulvum punctulorum nigrorum serie longitudinali, marginalibus nigricantibus. M. T. l. c. 332
Tab. VIII. 6. (v. lentiginosa). — Ebrard l. c. 44. Tab. V. 50. e Gallia (Provence) et Hispania.

59. Corpus supra fasciis nigris, intermediiis puncto albo uno et marginalibus punctis duobus confluentibus in omni annulo quinto. Ebrard l. c. 45. Tab. VI. 51. (var. colorationis) e Gallia (Provence) vel Hispania.

60. Corpus supra fasciis sordide flavis nigromeaculatis, subitus pallide brunneum maculis nullis. Ebrard l. c. 21. Tab. II. 15. e Gallia (Landes).

VI. Corpus supra carneum v. rosaceum, subitus magis pallidum immaculatum vel sordide viride nigromeaculatum (Albinismus).

61. Corpus supra fasciis utrinque tribus e maculis flavis lineis nigris junctis compositis, subitus sordide viride nigro-maculatum, marginibus flavo-aureantiis inter fascias duas nigras. Ebrard l. c. 42. (var. 2) e Gallia (Calvados et Manche).

62. Corpus supra fasciis utrinque tribus e maculis flavis, interdum maculis nigris centralibus notatis, compositis, subitus sordide viride nigro maculatum, marginibus flavo-aureantiis inter fascias duas nigras. Ebrard l. c. 42. (var. 1) e Gallia (Calvados et Manche).

Revision der Myxhelminthen.

Hirudo officinalis Grube: Famil. d. Annel. 109 et 149.

Hirudo Sanguisuga Bounieau: in Annal. des sc. nat. 3. sér. XIX. (1853) 379—382 (de acetate et de reproduct.) — **Idem**: Résumé de ses communications sur la sangue officinale. 1857.

De bibliographia Gallorum cfr. insuper **Ebrard**: Nouv. Monogr. 453—468.

Habitaculum. In fossis, stagnis et piscinis per totam fere Europam, Asiæ occidentalem et Africam septentrionalem.

2. (2.*) **Hirudo chloronota WAHLBERG.**

Corpus supra atrovirens, concolor, marginibus lateribus ferrugineis, subitus nigrum, medio irregulariter flavo-maculatum, fascia interrupta longitudinali flavo utrinque versus marginem lateralem. Longit. . .

Habitaculum. In Suecia (Keyser).

Fortasse nihil nisi varietas aberrans H. medicinalis (Wahlberg).

γ. concatenata. **Ebrard** l. c. 36. Tab. IV. 38 et 40 (algerica). — **Idem** l. c. 37 (maroccaea).

δ. flammulata. **Ebrard** l. c. 36. Tab. IV. 36 et 40 (algerica). — **Idem** l. c. 38 (maroccaea).
508

Diesing.

2. constansinica. Maculae medianae aurantiacae, intermediae puncto centrali nigro, marginales nigrae transversales rectangulares, omnes lineis aurantiacis, processus transversales emittentibus, longitudinaliter junctae. Ebrard l. c. 38. Tab. V. 44.

Habitaculo adde: In Sardinia et in Hispania (Ebrard).

7. (6.) Hirudo mysemelas HENRY, SERULLAS et VIREY. — Syst. Helm. I. 469. adde:

8. (6.*) Hirudo Javanica WAHLBERG.

Corpus supra cinereo-olivaceum, fascia mediana nigra, interrupta, e maculis rectangularibus angustis longitudinalibus, cum maculis circularibus et maculis minoribus pluribus constantibus et punctis minimis alternantibus composita, marginibus lateralibus laete flavis, maculis transversalibus rectangularibus nigris; subitus ferrugineum, marginibus lateralibus aequalibus, continuis, nigris. Longit. . . .

Habitaculum. Samarang in Java . . . (Pihlgren).

9. (6**.) Hirudo tagalla MEYEN.

Corpus latum, brunneo-favum, supra maculis parvis irregularibus nigris notatum, vitta longitudinali angusta dorsali mediana nigra. Longitudo aliquot pollicem.

Habitaculum. In sylvis humidis insulae Lucon in altitudine 1000—1200', arbores adscendens (Meyen).

Peregrinatores infestat; sanguinem avido haurit, cicatrices minores relinquit quam Hirudo medicinalis regionum nostratum.
Revision der Myshelminten.

Species inquirendae.

10. Hirudo sinica BLAINVILLE. — Syst. Helm. I. 470. adde:

11. Hirudo japonica BLAINVILLE. — Syst. Helm. I. 470. adde:
 Grube l. e. 109.

12. Hirudo seyplanica BLAINVILLE. — Syst. Helm. I. 470. adde:
 Grube l. e. 109.

13. Hirudo costaricensis GRUBE et OERSTED.
 Corpus margine obsolete crenulatum, cinereum striis longitudinalibus
dorsalibus nigridentibus 4, æqualiter distantibus, exterio-
ribus angustioribus. Longit. 2”9”; latit. maxim. ad annul. 92dum. 9”.
 Hirudo (Aulacostomum?) costaricensis Grube et Oersted. — Grube: in
 literis mihi missis dd. 29. Maio 1858.
 Habitatum. Costarica (Oersted).

14. Hirudo batavica EBRARD.
 Sangsue de Batavia Ebrard: Nouv. Monogr. Sangs. 53.
 Habitatum. Batavia (Martin).

15. Hirudo ornata EBRARD.
 Sangsue ornée Ebrard l. e. 55.
 Habitatum. In America septentrionali - occidentali
 (Ebrard).

16. Hirudo scotica EBRARD.
 Sangsue écossaise Ebrard l. e. 54.
 Habitatum. In Scotia (Ebrard).

17. Hirudo hypochlora WAHLBERG:
 in Forhandl. vid de Skandinaviske Naturforsknings tredje Møte. Stock-
 Habitatum. Java (Wahlberg).

18. Hirudo Vacca QUATREFAGES.
 Sanguisuga Vacca Quatreages: in Cuvier Règn. anim. 3. édit. Annel.
 Habitatum....

Genus insufficienter cognitum.

XXV. OXYPTYCHUS GRUBE.

Corpus elongatum annulatum. Caput corpore continuum. Os
bilabiatum, maxillis internis tribus, semicircularibus, denticulatis.
Ocelli decem. Acetabulum parum constrictum. Androgyne; aper-

Genus a el. *Grube* inter genera Haemopis et Aulastomum dispositum, a quibus situ aperturarum genitalium differt.

I. **Oxyptychus striatus GRUBE.**

Habitaculum. Montevideo (teste Burmeister).

SECTIO II. CENTROPROCTA.

Anus in centro acetabuli situs.

XXVI. ACANTHOBDELLA GRUBE.

I. **Acanthobdella Peledina GRUBE.**

Corpus pallide cinereo-flavum, medio striis longitudinalibus cum annulis clathrum formantibus. *Acetabulum* latitudine corporis, parum excavatum. Longit. 9""—1"" 3'".

? Lumbri marii species oxurya *Pallas:* Miscell. Zool. Tab. XI. 7. 8 (et 9?).

Habitaculum. *Salmo Peled:* ad corpus in lacubus Sibiriae (Middendorff).

XXVII. CENTROPYGOS GRUBE et OERSTED.

Corpus elongatum subteres, antorsum sensim valde attenuatum, postice crassum, distincte annulatum, annulis 96. *Caput* corpore continuum (labio supero oblongo?). *Ocelli* nulli. *Acetabulum* subterminale posticum, margine spinulis aliquot obsitum. *Androgyna;* apertura genitalis una inter annulum 27. et 28vum, altera sub an-
nulo 30mo. Tractus intestinalis unicuris, ano stipatus; anus sub-centralis in acetabulo situs. — Americae centralis incolae.

1. Centropyges Jocensis GRUBE et OERSTED.

Corpus nigro-carneum. Acetabulum ad basin haud coarctatum, latitudine corporis, spinulis brevissimis 4 (?). Longit. 3 1/4"; latit. maxima inter annum 60. et 70mum fere 3".

— GRUBE: in literis mihi benevole communicatis dd. 29. Mai 1858.

Genus extinctum.

XXVIII. HIRUDINELLA MÜNSTER.

Corpus subcylindricum depressum, utraque extremitate attenuatum rotundatum. Acetabulum. E formatione calcarea lithographica.

1. Hirudinella angusta MÜNSTER. — Syst. Helm. I. 471. adde:

Pictet: Traité de Paléontologie. 2. édit. II. 573.

2. Hirudinella tennisi MÜNSTER. — Syst. Helm. I. 471. adde:

Pictet I. c. 573.

Bdellidea genere penitus dubia, confer Syst. Helm. I. 473—476.

Index generum et specierum.

Acanthobdella Grube: Peledina 510.
Aulacostoma Wiegmann: Gulo 499, nigrescens 499.
Aulastomum Moquin-Tandon: Gulo 499.
Bdella Savigny: equinoctialis 500, nilotica 499, trifasciata 500.
Branchellion Savigny: orbiniensis 482, pinnatum 480.
Branchiobdella Odier nec Rudolphi: Astaci 480, parasita 480.
Branchiobdella Rudolphi nec Odier: orbiniensis 482, Ravenelii 482, Rudolphi 481, Scolopendra 481.
Centropyges Grube et OERSTED: Jocensis 511.
hyalina 493, marginata 493, paludosa 493, papillosa 494, parasitica 493, Rissori 493, sanguinea 493, Sowerbyi 493, succinea 493, Swampina 494, tessulata 495, verrucata 494.

* Cyclocirra Müller: Thompsoni 477.
* Cystobranchus Diesing: Troeschelii 483.
* Glossostiphonia Johnston: Eachana 495.
* Gyrocystyle Diesing: rugosa 492.
* Haemocharis Savi ny: agilis 485.
* Haemopis Savi ny: sanguisorba 500.
* Haementerla Filippi: Ghilianii 486.
* Hirudinella Münster: angusta 511, tenuis 511.
* Liostomum Wagler: coccineum 495.
* Malacobdella Blainville: Auriculae 492, grossa 491, Valenciennaei 491.
* Monopus Gosse: medusicola 490.
* Mysobdella Leidy: lugubris 489.
* Mysostomum Leuck.: cirriferum 478 et 479, costatum 479, glabrum 477, Schultzzeanum 479, Thompsoni 478, tubercul osum 498.
* Nephells Savigny: octomaculata 496, quadristriata 496, tessellata 495, vulgaris 496.
* Oxytychus Grube: striatus 510.
* Osobranchus Quatrefages: Menziesi 480.
* Phyllobranchus Girard: Ravenelii 483.
* Podobdella Diesing: Kolenatii 497.
* Piscicola Blainville: agilis 485, maculata 484, marina 485, respirans 483, sanguinea 485.
* Podobdella Diesing: Endlicherii 490.
* Pontobdella Leach: areolata 487, depressa 486, depressa 487, indica 486, laevis 487, lubrica 487, spinulosa 486, verrucata 487.
Revision der Myzhelminthen.

Sanguisuga Savigny: albipuncta 507, chloronota 507, javanica 508, tagalla 508, Vacca 509.
Trachelobdella Diesing: Kollari 489, Mülleri 489.
Trocheta Dutrochet: subviridis 498.
Typhlobdella Diesing: Kovátsi 497.

Nachschrift.

Der Druck dieser Abhandlung war bereits seiner Vollendung nahe, als mir noch nachstehende, auf den Gegenstand derselben bezügliche, Schriften zukamen:

G. Wagener: Enthelminthica Nr. V et VI. Vorgetragen in der Sitzung der naturforschenden Freunde in Berlin vom 15. December 1857 und abgedruckt in Wiegmanns (jetzt Troschel's) Arch. 1858. I. 244—256 Tafel VIII und IX.

Ich beabsichtige die hieraus zu entnehmenden, zur Vervollständigung meiner Revision der Myzhelminthen erforderlichen, Zusätze in diesen Blättern als Nachtrag in Bälde zu veröffentlichen.
Über die Familie der Rissoiden und insbesondere die
Gattung Rissoina.

Von Gustav Schwartz v. Mohrenstern.

(Auszug aus einer für die Denkschr. bestimmten von Dr. Hörnes vorgelegten Abhandlung.)

Der lebhafter Wunsch, zur Ausbeutung der Fossilreste des
Wiener Tertiärbeckens beizutragen, führte Herrn v. Schwartz beim
Sammeln in den so reichen Fundstätten desselben bald auf eine
Anzahl neuer Mollusken, von welchen mehrere der Familie der
Rissoiden angehörten, und ihn durch die Schwierigkeiten, die bei
ihrer Bestimmung zu überwinden waren, veranlassten, diese Familie
in ihrem ganzen Umfange zu studiren. Es stellte sich gleich
Anfangs heraus, dass in der Schalthierkunde kaum eine zweite
Familie so vernachlässigt sei wie diese, und dass einzig und allein
dem wissenschaftlich so hoch gebildeten England der Ruhm gebühre
die dort einheimischen Arten aus dem Chaos ausgeschieden und
zu erst ausführlich beschrieben zu haben. Je grösser jedoch die
Schwierigkeiten waren, die sich dem Verfasser entgegenstellten,
desto grösser war aber auch der Reiz dieselben zu überwinden.

Es wurde vor Allem die gesammte Literatur erschöpfend aus-
gezogen, dann bereiste der Verfasser mehrmal ganz Europa, um die
Original-Exemplare der Autoren, die sich theils in den öffentlichen
Museen, theils in Privathänden vorhanden, zu zeichnen und zu
beschreiben.

Wesentliche Dienste leisteten ihm hiebei in England Hanley,
Jeffreys, Cuming; in Frankreich Deshayes, d'Orbigny,
Michaud, Recluz und Martin; in Belgien Nyst und Cantraine;
in Schweden Professor Lovén und in Deutschland von Lichten-
stein, Weiss, Dunker, Anton u.a.

Nachdem nun das vollständigste Material aufgehäuft war, wurde
dasselbe sorgfältig gesichtet; es ergab sich, dass von 587 bis jetzt
aufgestellten Arten von Rissöen 92 anderen Gattungen angehören,
und es verblieben also nur 495 Arten, von denen 128 auf Rissoina
un 367 auf Rissoa entfallen, aber selbst diese wurden vom Verfasser auf 86 Rissoinen und 204 Rissoen reduziert.

Hierauf folgt das Allgemeine über die von Forbes und Hanley zuerst aufgestellte Familie „Rissoidea“, namentlich über die Anatomie der Thiere, die verschiedene Beschaffenheit der Zunge, ihre Lebensweise und geographische Verbreitung. Sie werden in allen Tiefenregionen gefunden bis zu einer Tiefe von 105 Faden, doch die Mehrzahl in den oberen. Ihre Heimath sind die gemässigten Klimate, doch werden sie einzeln in den meisten Meeren getroffen und nur die verlängerten Formen (die Rissoinen) gehören ausschliesslich wärmeren Meeren an, während die dünnenschaligen ohne Mundwulst mehr dem Norden zukommen.

Von allen Meeren ist das Mittelmeer das reichste an Rissoen, dann kommt die Küste von England, doch nehmen dort die Rissoen an Grösse, Stärke und Farbenpracht schon ab, und zeigen einen mehr nördlichen Charakter; sie scheinen bis auf vereinzelte Exemplare, die Herr Prof. Lovén aufgefunden hat, nicht über den nördlichen Polarkreis hinauszureichen.

Was die von den Paläontologen in ihren Werken angeführten Arten von Rissoa und Rissoina betrifft, so sind alle Formen, die aus älteren Schichten als der Tertiärformation angeführt werden, im höchsten Grade zweifelhaft.

36
Über das Gefüge der Substantia propria corneae.

Von Dr. Alexander Rollett.

Assistent bei der physiologischen Lehrkanzel der Wiener Universitât.

(Mit 1 Tafeln).

Es herrscht wenig Übereinstimmung in den Ansichten über das Gefüge der zwischen dem äusseren Epithelium und der glasartigen Lamelle eingeschlossenen Hornhautschiichte.

Die Lehre von der Faserigkeit der Substantia propria corneae, welche von Valentin 1) im Jahre 1836 in die neuere Gewebelhre eingeführt wurde, zählt eine Reihe von Anatomen und Ophthalmologen zu ihren Anhängern.

Henle, welcher wie gesagt in seiner „allgemeinen Anatomie“ die obige Lehre gleichfalls vorgetragen hatte, setzte an deren Stelle später eine andere 4), die an Dornblüth 5) ihren Vertheidiger fand. Darnach soll die Hornhaut aus zahlreichen Schichten structurloser Lamellen bestehen.

1) Repertorium der Physiologie 1836, p. 311.
2) Breisau 1842, p. 55.
3) Berlin 1847, p. 9.
4) Canstatt's Jahresbericht für 1832, p. 26 u. 27, 1. Bd.
Über das Gefüge der Substantia propria corneae.

Andererseits hat man aber, seit Reichert sein Continuitätsgesetz aufgestellt und Virchow die Identitäts-Erklärung von Knochen-, Knorpel- und Bindegewebskörperchen vollzogen hat, auch das Hornhautgewebe der sogenannten Bindegewebszelle einverleibt.

Man betrachtet dabei den chondringebenden Anteil der Substantia propria corneae als structurlose Intercellularsubstanz zwischen den von Toynbee entdeckten und von Virchow unabhängig wieder gefundenen Corneakörperchen.

Die Bündel der früheren Autoren werden für Streifen von Intercellularsubstanz, getrennt von einander durch die heterogenen Einlagerungen, die Fasern für Kunstprodukte erklärt.

Strube hat den Bau der Hornhaut also dargestellt 1).

Leydig bekennt sich zur selben Lehre 2).

In der Abhandlung von Hiss 3), der eingehendsten unter allen, ist durch die mit faculativer Spaltbarkeit begabten Hornhautlamellen eine Annäherung an die ältere Lehre versucht.

Was ich so eben aus der Literaturgeschichte kurz angemerkt habe, weist genügend auf die Thatsache hin, dass die Ansichten über die Subst. propr. corn. ähnliche Wandlungen erlitten haben wie die Ansichten über das Bindegewebe.

Da ich aber die letzteren nicht resultatlos auf die Probe einer methodischen Untersuchung des bezüglichen Objectes gestellt hatte, so war es naheliegend, mit den ersteren ein Gleiches zu thun.

In meiner Abhandlung 5) über das Bindegewebe wurde angegeben, dass man sich von der Faserigkeit des im fertig gebildeten

2) Histologie des Menschen und der Thiere, p. 221 u. 230.
3) Beiträge zur normalen und pathologischen Histologie der Cornea. Basel 1856, p. 12 u. s. f.
4) Über die Histologie der Hornhaut. Rostock 1858, p. 25.
Organismus vorhandenen Bindegewebes am besten überzeugen könne, wenn man es auflockert durch Extraction eines in dasselbe eingelegerten löslichen Körpers, welcher die Xanthoproteinsäure-Reaction gibt).

Was ausser den schon in der Einleitung angeführten Momenten noch ganz besonders dazu bestimmen konnte, die Hornhaut einer ganz ähnlichen Prüfung zu unterwerfen wie das Bindegewebe, war, dass man durch die einfache, instrumentale Präparation der Subst. propr. corn. stets auf faserige Elemente geführt wird, die ihres constanten Erscheinens halber wenigstens eben so gut für die natürlichen Ergebnisse der Zergliederung, als für durch eine Zerspaltung der Hornhautsubstanz erzeugte Kunstprodukte erklärt werden können; ferner dass im Parenchyme der Hornhaut Eiweisskörper vorzüglich sind, die von Funke*), nachdem er sie durch Auslaugen sein erschimmer Hornhülse gewonnen hatte, sogar chemisch näher bestimmt wurden, dass endlich diese Eiweisskörper nicht etwa nur auf die Corneakörperchen beschränkt sind, sondern wirklich die ganze Substanz durchtränken und Veranlassung geben, dass diese letztere, mit Salpetersäure und Ammoniak behandelt, sich durch und durch gelb färben.

Über das Gefüge der Substantia propria corneae.

Zur Auslockerung des Bindegewebes bediente ich mich des Kalk- und Barytwassers, weil diese Flüssigkeiten den im Bindegewebe vorhandenen Eiweisskörper ausziehen, ohne sogleich auch verändernd auf die leimgebende Substanz des Bindegewebes einzuwirken.

Für die Untersuchung der Hornhaut konnte ich mich dieser Flüssigkeiten nicht bedienen, denn sowohl das Kalkwasser, in welchem man Bindegewebe viele Monate lang unverändert bewahren kann, als noch vielmehr das Barytwasser, welches auch das Bindegewebe schon nach tagelangem Einwirken in höherem Grade verändert, greifen als bald die chondringegenden Bestandtheile der Subst. propr. corn. an, wie ja auch das destillirte Wasser, welches das Bindegewebe nahezu unverändert lässt, in kürzester Frist ein beträchtliches Anschwellen der Hornhaut zu Stande bringt.

Ich lernte aber eine andere Methode kennen, welche für die Untersuchung des Bindegewebes und der Hornhaut gleich tauglich ist.

Sie besteht in der Behandlung jener Texturen mit übermangansaurem Kali. Dasselbe zerfällt unter dem Einflusse reducirender Substanzen bekanntlich nach der Formel:

$$\text{Mn}_4\text{O}_7\text{KO} = 2\text{MnO}_3 + 3\text{O} + \text{KO}.$$

Béchamp 1) benützte es vor einiger Zeit speziell zur allmäßlichen Oxydation histogenetischer Substanzen.

Es schien mir wahrscheinlich, dass an Bindegewebsmassen, welche man jenem zersetzenden Einflusse unterwerfen würde, zunächst der Zusammenhang der resistenteren leimgebenden Elemente ausgelockert werden dürfte.

Meine Voraussetzung bestätigte sich für das Bindegewebe, und diesem ganz ähnlich verhält sich auch die Subst. propr. corn.

Frische Hornhäute des Ochsen wurden in etwa 2 Linien breite Streifen zerschnitten und in einem Becherglasse mit einer Lösung von übermangansaurem Kali, die zur Hälfte aus concentrirter Solution, zur Hälfte aus destillirtem Wasser bestand, übergossen.

Die jedesmal benützte Quantität jener Lösung wurde nach Gutdünken bemessen, aber nie mehr als etwa 2 Unzen zu einmaliger Übergießung verwendet.

Man ist dadurch in den Stand gesetzt, den Oxydationsprozess rechtzeitig zu unterbrechen, und verhindert, dass die über den Hornhautstücken stehende Flüssigkeit zu stark alkalisch werde.

Die zuerst aufgegossene Flüssigkeit entfärbt sich sehr rasch und die Hornhautstücke werden auch alsbald in ihren oberflächlichsten Lagen dunkel gefärbt.

Hat sich die Flüssigkeit völlig entfärbt, so giesst man sie ab, wäscht die Hornhautstücke, um einen Theil des gebildeten Alkali zu entfernen, mit destilliertem Wasser, und übergiesst sie hierauf wieder mit einer Quantität übergangsäuren Kali; wird auch dieses nach einiger Zeit entfärbt, so verfährt man wie früher und wiederholt die ganze Procedur so lange, bis eine neu aufgegossene Quantität des zersetzbaren Salzes auch nach mehrstündigem Stehen nicht mehr weiter entfärbt wird und die verwendeten Sehnenstücke durch und durch braun gefärbt sind.

Dieser letzterwähnte Zeitpunkt tritt in verschiedenen Versuchen bald früher bald später ein.

Man wäscht schliesslich die Hornhautstücke wieder mit destilliertem Wasser aus, und kann nun, indem man quadratische Stückchen aus denselben schneidet, diese letzteren in einem Reagenzgläsern durch Hin- und Herschütteln also aus einander waschen, dass sie ein lockeres, filziges Ansehen annehmen. Nach und nach erscheint die ganze Oberfläche von theils kürzeren, theils längeren, in der umgebenden Flüssigkeit flottirenden Fasern besetzt, die nach fortgesetztem Schütteln meist einzeln von derselben abfallen.

Unter das einfache Mikroskop gebracht, nimmt sich das aufgeleckerte Hornhautstückchen aus wie ein Haufen innig verschlachtener Bänder, welche sich theils mit der breiten, theils mit der schmalen Seite dem Blicke präsentiren und an deren einem oder anderem man eine der Fläche des Bandes parallel laufende schwache Längstreifung wahrnimmt.

Wenn man etwa 2 Zoll lange Sehnenstücke der Länge nach in zwei Hälften theilt, nur um die an denselben vorhandene circuläre Schichte zu durch trennen und auch die inneren Sehnenbündel der chemischen Einwirkung zugänglicher zu machen, und nun jene Sehnenteile mit übergangsäuren Kali in der obigen Weise behandelt, so erhält man schliesslich beim Auseinanderwaschen derselben theils grössere, theils kleinere Partien, welche sich auf den ersten Blick
als Längsabtheilungen der benützten Sehnenstücke zu erkennen geben.

Unter dem Mikroskope nehmen sie sich als mehr oder minder breite, braun gefärbte, mit blassen Contouren und einer schwachen Längstreifung versehene Massen aus, in welchen man, so wie in etwas wenig aufgequollinem Bindegewebe überhaupt die heterogenen Elemente jedes Gewebes in regelmässiger Vertheilung antrifft.

Ganz ähnliche Charaktere bieten auch die durch Zerfallung der Hornhaut erhaltenen Bänder bei der Besichtigung mit dem Compōsitum.

In den Zustand mässiger Schwellung wurden aber die bezüglichen Gewebsantheile nur versetzt, weil sie sich einige Zeit lang in der durch die Zersetzung des übermangansauren Kali entstandenen alkalischen Flüssigkeit befanden.

Legt man die mit übermangansaurem Kali behandelten Sehnenstücke in eine sehr schwache Tanninlösung, die man, wenn sie unwirksam geworden ist, durch eine neue, eben so schwache nach und nach ersetzen kann, so verändert sich alsbald ihr Aussehen.

Wenn nämlich die leimgebenden Elemente Zeit haben, wieder zu verschrumpfen, d. h. eher von dem ihnen anhaftenden Alkali befreit werden, als sie sich mit Gerbstoff sättigen, so sieht man alsbald, dass die durch das Auseinanderwaschen einer Sehne erhaltenen Abtheilungen aus einer grösseren oder geringeren Menge deutlich isolirbarer Fasern zusammengesetzt sind.

Die bandförmigen Hornhautabtheilungen, welche man nach der Behandlung mit übermangansaurem Kali gewinnt, verhalten sich dem Bindegewebe ganz ähnlich.

Den Streifen entsprechend stellen sich an manchen jener Gebilde Theilungen ein, aus welchen entweder die Isolirung eines zwischen zwei der genannten Längsstreifen liegenden Theiles, oder eines aus mehreren solchen Theilen bestehenden Abschnittes resul-

Im Vergleiche mit der Wirkung des Kalk- und Barytwassers hat die oben beschriebene Methode nur einen Nachtheil. Es existirt nämlich ein Stadium, in welchem die Formelemente der untersuchten Texturen etwas anquellen und sich alsdann nicht deutlich unter dem Mikroskope wahrnehmen lassen.

Dieses Stadium kann man aber umgehen, wenn man die durch Zersetzung des übermangansauren Salzes eintretende Alkalescenz der angewendeten Flüssigkeit verhindert.

Durch zeitweiliges Hinzutropfen einer Säure gelingt dies jedoch nicht, man ist dadurch nicht im Stande, die Flüssigkeit immer genau neutral zu erhalten, und gegen verdünnte Säuren sind die Elemente des Bindegewebes und der Subst. propr. corn. eben so empfindlich wie gegen verdünnte Alkalien.

Bei weiterem Alaunzusatze entsteht nun kein neuer Niederschlag mehr. Man setze, um die für die Behandlung des Bindegewebes oder der Substantia propria corneae zu benützende Flüssigkeit zu erhalten, der Lösung von übermangansaurem Kali jedesmal so viel einer concentrirten Alaunlösung zu, als eben hinreichet, um ein in die Mischung getauftes blaues Lakmuspapier deutlich roth zu färben. Wie früher in der Lösung des übermangansauren Salzes, lege man nun in diese Mischung Sehnenstücke oder Hornhautstücke

1) Frommherz: Uber die Mangansaure; Schweigger's Journal für Chemie und Physik, Bd. XLI. Halle 1824, p. 280.
ein und behandle dieselben so lange damit, bis sie sich durch und durch braun gefärbt haben.

Die Zersetzung des übermangansauren Salzes erfolgt in dieser Mischung etwas langsamer, und während die Flüssigkeit sich entfarbt, scheidet sich ein Gemenge von Manganhydroxyd und Thonerdehydrat aus; sie wird aber, wenn man Alaun in hinreichender Menge zugesetzt hat, niemals alkalisch.

Die mit dieser Flüssigkeit behandelten Texturen bewahren ihr mikroskopisches Ansehen vollkommen; es wird aber der Zusammenhang der Texturelemente aufgelockert, so dass sich dieselben in ausgedehnten Massen isoliren lassen. Der an derselben haftende sein vertheilte Braunstein stört eben seiner feinen Vertheilung halber die mikroskopische Durchsicht der betreffenden Objecte nicht im Geringsten und bringt vielmehr für die Untersuchung der zarten, und im frischen Zustande nur bei schwachem Lichtzutritte deutlich sichtbaren Hornhautfasern derselben Nützen, wie z. B. eine Färbung derselben mit Jodtinctur.

Die mit übermangansaurem Kali behandelten Sehnen oder Hornhautstücke geben, mit Salpetersäure und Ammoniak behandelt, keine Xanthoproteinsäure-Reaction.

Donders 1) gibt an, dass gut ausgewaschenes und ausgezogenes Bindegewebe mit Salpetersäure gekocht und darauf mit Ammoniak behandelt, sich entweder gar nicht gelb färbert oder doch wenigstens nur einen Stich ins Gelbliche zeigt.

Paulsen 2) behauptet dagegen, dass alles Bindegewebe nach der Behandlung mit Salpetersäure und Ammoniak sich deutlich gelb färbt.

Für die Beurtheilung dieses scheinbaren Widerspruches kann Folgendes dienen: Wenn man ein Stück einer frischen Sehne oder der ihres Epithels und der Descemet'schen Membran beraubten Hornhaut in einer Eprouvette mit Salpetersäure verkocht und nach dem Erkalten zur Flüssigkeit Ammoniak hinzugesetzt, bekommt man eine deutlich gelbe Färbung derselben.

Wendet man dagegen dieselben Portionen von ausgewässerten Sehnen- oder Hornhäuten an, so ist die nach der Einwirkung von

2) Observat. microchimicae. Mitav. 1849.
Salpetersäure und Ammoniak hervortretende Färbung um Vieles weniger intensiv.

Nimmt man endlich Sehnen- oder Hornhautstücke, welche mit übermangansaurem Kali bis zur durchgehenden Bräunung behandelt wurden, so erhält man keine Spur der Xanthoproteinsäure-Reaction.

Die in die Eprouvette gebrachten braunen Stücke zerstieben während des Kochens mit Salpetersäure anfangs zu einer, die Flüssigkeit braun färbenden Wölke, die aber, kaum entstanden, wieder vergeht; nun erscheint die Flüssigkeit vollkommen farblos und auch ein Zusatz von Ammoniak bringt keine Farbenveränderung an derselben hervor.

Durch den Zusatz jenes Alkali entsteht zugleich in der Flüssigkeit ein Niederschlag von Manganoxydul, welches sich während des Kochens mit Salpetersäure gebildet hat.

Die Anwesenheit der Oxydationsstufen des Mangans hindert das Hervortreten der gelben Farbe nicht, denn wenn man zu einer Portion gebräunter Hornhaut- oder Sehnenstücke auch nur ein kleines Flöckchen einer frischen Sehne oder Hornhaut zusetzt, nun mit Salpetersäure kocht, und nach dem Erkalten Ammoniak zusetzt, tritt eine deutlich wahrnehmbare gelbe Färbung in der Flüssigkeit hervor.

Indem ich auf die oben beschriebenen Texturelemente der Hornhaut zurückkommte, muss ich Einiges über deren Anordnung in den verschiedenen Schichten der Substantia propria corneae mittheilen.

Die platten Bündel der Subst. propr. corn. verlaufen in dem mittleren und hinteren Theile der Hornhaut, unter verschiedenen Winkeln sich kreuwend, der Oberfläche der Hornhaut parallel und es lässt sich dieser Theil der Subst. propr. corn. am besten mit einem „geschichteten Mattenwerk“, wie Brücke sagt, vergleichen.

Unmittelbar unter dem Epithelium aber, in jener Schicht, welche Bowman Lamina elastica anterior genannt hat, verlaufen jene Faserbündel in geneigter Lage zur Oberfläche empor und kehren ebenso von derselben wieder zurück, während dieses Verlaufes biegen sie sich vielmals um einander, und bringen durch ihre innige Verflechtung die dichte Lage der Subst. propr. corn. unter dem Hornhautepithelium zu Stande. Man kann sich an den nach den obigen Methoden behandelten Hornhäuten zugleich auf das entschiedenste überzeugen, dass die sogenannte Lamina elastica anterior

Untersucht wurden noch die Hornhaut von der Ente, vom Raben, vom Huhn, vom Sperling und von der Taube.

Die vergleichend-histologisch interessante Ausnahmsstellung der Vögel veranlasste mich, die Hornhaut dieser Thiere besonders genau am Scheitel, und nahe dem Cornealrande, und jedesmal in ihrer ganzen Dicke vergleichsweise zu untersuchen, um mich gegen eine etwaige Verwechslung des Hornhautgewebes mit Bindegewebe zu versichern, denn es war durch die Untersuchungen Brücke’s 1) über das Vogelauge bekannt geworden, dass vom Cornealrande her eine lockere, bindegewebartige Faserschichte eine Strecke weit zwischen die in den vorderen Rand des Knochenringes übergehende äussere Hornhautlage und die mit dem Crampton’schen Muskel in Verbindung stehende innere Hornhautlage eindringt.

Allein ich fand in allen Theilen der Hornhaut die oben beschriebenen wohl charakterisirten Fasern, aber nirgends Gebilde, welche

1) \textit{Müller’s Archiv} 1846, p. 371.
den platten Faserbündeln der übrigen Thiere vergleichbar gewesen wären.

In der vorliegenden Abhandlung habe ich mich nur mit der Fasersubstanz der Hornhaut beschäftigt; dem was über die Toynbee-Virchowschen Hornhautkörperchen schon geschrieben wurde, habe ich nichts Positives hinzuzufügen.

Nur muss ich angeben, dass in demselben Maasse, als man in irgend einem Objecte die Fasern der Subst. propr. corn. deutlicher sieht, die deutliche Wahrnehmbarkeit der Hornhautkörperchen abnimmt. An der Oberfläche der mit übermangansaurem Kali und Alna isolirten Hornhautbündel sieht man nur Gebilde aufsitzen, welche sich mit getrennt liegenden Kernen vergleichen lassen. Man mag übrigens über die Toynbee-Virchowschen Hornhautkörper und die Fasersubstanz der Hornhaut, so wie über ihr Verhältniss zu einander, was immer für eine Vorstellung haben, sicher und gewiss bleibt es, und in gleichem Maasse auch für das Bindegewebe geltend, dass man die einmal vorhandene Constitution der chondringlebenden und beziehungsweise leimgebenden Substanz, ihre Zusammensetzung aus bestimmt geformten und in ein und derselben Textur an Form und Ausdehnung unter einander ähnlichen Elementen als charakteristisches Merkmal in die Beschreibung jener Texturen eben so gut aufnehmen muss, als die Angabe, dass ausser diesen Elementen auch noch andere, von ihnen verschiedene, regelmässig vorkommen, in dem bezüglichen Gewebe vorkommen.

Erklärung der Abbildungen.

Fig. 1. Aus einander gewaschenes Hornhautstückchen aus einer mit MnO₂KO behandelten Hornhaut des Ochsen, 20mal vergrössert.

Fig. 2. Hornhautbündel vom Ochsen, mit MnO₂KO und dann mit Gerbsäure behandelt.

Fig. 3. Zwei Hornhautbündel in gekreuzter Richtung über einander liegend, aus einer mit MnO₂KO und Alna behandelten Hornhaut des Ochsen.

Fig. 4. Fasern aus der Hornhaut des Raben. Die drei letzten Figuren 300mal vergrössert gezeichnet.
Dr. Rollett. Über das Gefüge der Substantia propria cornea.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Das Wirbelkörpergelenk der Vögel.

Von Dr. Gustav Jäger.

(Mit 1 Tafel.)

(Vorgetragen in der Sitzung vom 12. November 1858.)

Bei der vorliegenden Abhandlung habe ich mir nicht die Aufgabe gestellt, eine vollständige Beschreibung der anatomischen und functionellen Verhältnisse des Wirbelkörpergelenkes zu liefern. Ich will hier blos einige anatomische Thatsachen mittheilen, welche einmal eine Zurückführung der Gelenkbestandtheile der Vogelwirbelkörper auf die der Säugethiere möglich machen, und für's zweite die bisher noch ungenügend gelöste Frage über die Entwicklung der Wirbelkörpergelenke einer endlichen Entscheidung näher bringen.

Erst längere Zeit nachher bekam ich Meckel's System der vergleichenden Anatomie zur Hand und fand dort Band II, 2 pag. 42 die Menisci mit folgenden Worten erwähnt:

„Die Körperflächen der Halswirbel werden durch lockere „Kapselbänder, in welchen sich ein beweglicher dünner Zwischen- „knorpel befindet, der blos mit dem Umfang des Kapselbandes ver- „wachsen ist, vereinigt."

Dies stimmte mit meiner Beobachtung nicht überein, da ich noch eine weitere Befestigung des Meniscus sah, indem nämlich ein Band auf der überknorpelten Gelenkfläche des Wirbelkörpers entsprang und mit dem Meniscus in Verbindung stand. Dieses Bänd-
chen hatte mich sogleich interessirt, weil es gegen die mir damals geläufige Ansicht zu sprechen schien, dass die *Ligamenta intervertebralia* Überreste der embryonalen *Chorda dorsalis* seien. Dies bestimmte mich zunächst bei der Präparation meiner Skelete auf dieses Bändchen zu achten, und ich fand es in den unten beschriebenen Modificationen regelmässig.

Ich beschloss nun die Entwicklungsgeschichte dieses Bandes, die jedenfalls interessante Aufschlüsse über das Schicksal der *Chorda dorsalis* zu geben versprach, zu verfolgen und Herr Prof. Brücke war so gütig, mir einige in Weingeist aufbewahrte Hühnerembryonen zu überlassen, an denen ich das Wichtigste über die Entwicklung dieses Bandes eruiren konnte.

Bei den folgenden Beschreibungen ist die Wirbelsäule in senkrechter Stellung gedacht, mit der Bauchseite gegen den Beobachter sehend. oben ist also, was dem Kopfende, unten, was dem Schwanzende, voru, was der Bauchseite, und hinten, was der Rückenseite zugewandt ist.

I. *Meniscus intervertebralis*.

Die einander zugekehrten Enden der Wirbelkörper, sind durch eine ringförmige Faserkapsel mit einander verbunden, die continuir-
lich in das Periost der Wirbelkörper übergeht. Man kann an ihr, je nachdem einer ihrer vielfach sich kreuzenden Faserzüge ein bedeutendes Uebergewicht erlangt, verschiedene *ligamenta obliqua* unterscheiden, deren nähere Beschreibung jedoch für vorliegende Zwecke überflüssig ist. Die Faserkapsel als Ganzes betrachtet, stellt eine cylindrische Röhre dar, in deren beide Enden die Wirbelkörper so hinein gesteckt sind, dass in der Mitte ein bald längeres, bald kürzeres Stück der Röhre frei bleibt.

In diesem freien Abschnitt, der an seiner Innenfläche von der Synovialmembran überzogen wird, ist der Meniscus in ähnlicher Weise eingefügt, wie der Blendungsring in eine Mikroskopröhre. Er hat nämlich eine Ringform mit dickerer Peripherie und verdünnt sich gegen die centrale Öffnung, so dass er dort mit scharfem Rande endigt. Der Ring zeigt somit im senkrechten Durchschnitt eine keilförmige Contour mit der Basis nach aussen, etwa wie die *cartilago falciformis* im Kniegelenk des Menschen.

Die centrale Öffnung des Meniscus bietet in ihrer Form die mannigfaltigsten Verschiedenheiten je nach der Species, und je nach dem Abschnitt der Wirbelsäule, dem das betreffende Gelenk angehört. Im Allgemeinen ist sie spaltförmig, lanceettförmig oder abgestumpft dreieckig an der Halswirbelsäule (der grösste Durchmesser derselben liegt stets in der Richtung von der Rückenseite zur Bauchseite) und nähert sich an der Rumpfwirbelsäule mehr oder weniger der Kreisform.

An seiner äussern Peripherie ist der Meniscus fest mit der Innenfläche des freien Abschnitts der Gelenkkapsel verwachsen und die Gelenkhöhle wird somit durch denselben in zwei über einander liegende Abteilungen geschieden, die nur durch die centrale Öffnung des Meniscus mit einander communiciren. Ausser dieser Befestigung der äussern Peripherie des Meniscus an der Gelenkkapsel ist auch noch die innere die centrale Öffnung umsäumende Peripherie befestigt und zwar an das bereits erwähnte Band; da ich jedoch weiter unten bei der Beschreibung des Bandes auf diese Befestigung ausführlich zurückkommen muss, so verweise ich in Betreff derselben auf später. Dass *Meckel* und *Barkow* dieser Verbindung nicht erwähnten, hat seinen einfachen Grund darin, dass sie das Band übersahen.

Die mikroskopische Untersuchung des Meniscus ergibt, dass er aus concentrischen Ringen von Fasernorpel besteht. Die con-
centrische Zusammensetzung spricht sich in der Anordnung der Knorpelzellen aus; diese bilden nämlich Kreise, die der centralen Öffnung parallel laufen.

Von dem oben beschriebenen Verhalten des Meniscus, das für den obern und mittlern Theil der Halswirbelsäule als durchschnittliche Regel aufgestellt werden kann, gibt es nun zahlreiche Abweichungen, die sich unter zwei Gesichtspunkte zusammenfassen lassen.

dasselbe concentrisch lamelllose Ansehen wie der Durchschnitt des Annulus fibrosus an der Säugthierwirbelsäule.

Geht man nun über zu der Schwanzwirbelsäule, so findet man eine totale Verwachsung des Meniscus, und wenn nicht die eben erwähnten Übergangsstufen in der Brustwirbelsäule ein Verkennen des wahren Sachverhaltes unmöglich machen würden, so wäre es schwer, in den Gelenkbestandtheilen der Schwanzwirbelkörper den Meniscus der übrigen Gelenke wieder zu erkennen, und zwar in dem hier vollständig säugthierähnlichen Annulus fibrosus. Da Barkow diesen Annulus fibrosus bei einer Anzahl von Vögeln vollkommen richtig beschreibt, so bleibt mir blos noch übrig zu zeigen, dass dieser Annulus fibrosus der Schwanzwirbelsäule das Analogon des Meniscus der Hals- und Brustwirbelsäule ist. Die Gründe sind folgende:

2. Beide haben im Centrum constant eine Öffnung, in welcher sich bei dem Meniscus das unten zu beschreibende Ligamentum suspensorium, bei dem Annulus fibrosus der Nucleus pulposus befindet.

3. In der Brustwirbelsäule vieler Vögel finden sich Übergangsstufen in der Art, dass ein und dasselbe Gebilde, das am hintern Umfang Meniscus ist, vorn ein Segment eines Annulus fibrosus darstellt.

Da nun die vollkommene Übereinstimmung der Schwanzwirbelkörpergelenke vieler Vögel mit den Wirbelkörpergelenken der Säugethiere in die Augen springend ist, so kann es wohl keinem Zweifel unterliegen, dass wir in dem Meniscus der Vogelwirbelsäule nicht ein neues, den Vögeln allein zukommendes Wirbelsäulelement haben, sondern dass er nichts anders ist als das Analogon des Annulus fibrosus der Säugethiere.

Daraus ergibt sich also folgender wenigstens für die zwei höheren Wirbelthierklassen allgemein geltiger Satz:

Zwischen allen beweglich verbundenen Wirbelkörperrn findet sich als intercaläres Stück ein scheibenförmiger Faserknorpel mit centraler Öffnung, der bald frei beweglich bald ganz oder teilweise mit den einander zugewandten Wirbelkörpereflächen verwachsen ist. Die ersterne Modifikation wird als Meniscus, die letztere

In wie weit dieser morphologische Satz auch für die übrigen Wirbelthierklassen gilt, lasse ich vorderhand dahingestellt und begnüge mich mit der Herstellung der morphologischen Harmonie zwischen Vögeln und Säugetieren.

„Der zweite Halswirbel verbindet sich mit dem ersten auf die gewöhnliche Weise. Doch fehlt die Knorpelscheibe im Zwischenkörperbande. — Der erste Halswirbel vereinigt sich unten durch eine lockere Zwischenknorpelesscheibe an den Gelenknorpelfortsatz gehetzte Kapsel, oben durch einen gleichfalls lockerer Band „streifen mit dem Hinterhauptsbeine“.

Das Wirbelkörpergelenk der Vögel.

Zum Verständnisse der folgenden Auseinandersetzung ist es nötig, einen Rückblick auf die Geschichte des *Processus odontoides epistrophei* zu werfen.

Im Jahre 1820 veröffentlichte Béclard in Meckel's Archiv für Physiologie VI, eine Abhandlung über die Bildung und das Wachsthum der Knochen des Menschen. Er sagt darin:

Pag. 408: „Im sechsten Monat erscheinen im Körper des zweiten Halswirbels zwei über einander liegende Kerne, von denen im 7. Monat der obere dem eigentlichen Zahnfortsatz entsprechende grösser als der eigentliche Körperrn ist."

Pag. 414: „Von den zwei über einander liegenden Körperkernen des zweiten Halswirbels entsteht der obere bisweilen aus zwei Kernen. Er wird in der Folge grösser als der andere und bildet in der That zugleich den Zahn und den oberen Theil des Körpers. Im zweiten bis dritten Jahr verwachsen beide Kerne."

Joh. Müller trat der Cuvier'schen Ansicht in seiner ersten Abhandlung über „die vergleichende Anatomie der Myxinoïden“ 1834 entgegen. Er sagt daselbst pag. 168:

"Epiphyse zu erklären. Jeder Wirbelkörper hat zwar bei den Säuge-
thieren an seiner obern und untern Fläche zu einer gewissen Zeit
eine besondere ossifizirende Platte, die sich zumWirbelkörper so
verhält wie eine Epiphyse des Röhrenknochens. Man könnte nun
den Processus odontoideus als Vergrösserung einer solchen Platte
betrachten, jedoch sehe ich beim Pferdefüllen eine Ossification
zwischen dem Zahn und dem Körper des Epistropheus."

Aus diesem Abschnitt, namentlich aus der letzteren Äusserung
geht hervor, dass Müller noch nicht im Klaren über die Bedeutung
des Processus odontoideus war.

Im Jahre 1839 erschien Rathke's Schrift über „die Ent-
wicklungsgeschichte der Natter“. Er spricht sich dort, ohne
Kenntniss von den Äusserungen seiner Vorgänger zu haben, auf
Grund der Entwicklungsgeschichte dahin aus, dass der Processus
odontoideus der Körper des Atlas sei, weil er ganz so, wie ein
Wirbelkörper, als ein die Chorda dorsalis umfassender Ring ent-
stehe. Das unpaare an der Bauchseite des Atlas liegende Knochen-
stück, das J. Müller als Körper des Atlas anführt und das bereits
Albin in der ersten Hälfte des vorigen Jahrhunderts beim Menschen
beschrieben und abgebildet hat, erklärt er für einen modifizirten
untern Dornfortsatz.

In demselben Jahre bekannte sich Peters in Müller's Archiv
1839 auf Grund seiner Untersuchungen an Seeschildkröten zu derselben Ansicht.

Owen lässt es in seinem Report of British Fossils 1840
noch dahin gestellt, ob der Processus odontoideus Epiphyse, unteres
dazu in seinem Jahresbericht (Archiv 1841), dass er diese Frage
bereits in seiner vergleichenden Osteologie der Myxinoiden beant-
wortet habe.

Das entscheidendste Wort in dieser Controverse sprach Berg-
mann in seinen „Reflectionen über das Skeletsystem der
Wirbelthiere“ (Göttinger Studien 1845). In dieser Abhandlung
wird durch eine Reihe von Thatsachen an jungen Vögeln und Säugethieren zur Evidenz nachgewiesen, dass der Processus odontoideus
in der That nichts anderes ist als der erste Wirbelkörper, und dass
der Atlas keinen Wirbelkörper besitzt. Nach Bergmann's Unter-
suchungen konnte darüber wohl keine Meinungsdifferenz mehr beste-
Das Wirbelkörpergelenk der Vögel. 535

ben, wohl aber darüber, als was man das früher für den Atlaskörper gehaltene Knochenstück anzusehen habe.

Ehe ich nun diesen Beweis führe, ist eine kurze Darstellung der Verhältnisse des ersten Meniscus notwendig.

Ligamentum transversum verschmolzene Faserknorpel der Rest der ersten Fibrocartilago intercalaris corporum vertebralis ist.

Nachdem ich nun so auch für das erste Wirbelkörpergarten die Giltigkeit meines oben ausgesprochenen morphologischen Satzes bei Vögeln und Säugetieren nachgewiesen zu haben glaube, gehe ich über zur Deutung des Atlaseschlusstückes.

Dagegen stehen die zwei Gelenkhöhlen, welche von den zwei mit dem Ligamentum transversum in directer Verbindung stehenden Faserkapseln gebildet werden, nämlich die zwischen Atlas und Hinterhaupt und die zwischen Atlas und Processus odontoideus, in constanter Communication durch die centrale Öffnung des Meniscus. Sie verhalten sich also ganz so wie die zwei Abtheilungen einer Wirbelkörpergartenhöhle, die durch das Dazwischengeschobensein eines Meniscus gebildet werden.
Es liegt in der That in ihrem Verhalten durchaus nichts, was gegen die Richtigkeit dieser Auffassung spricht, und außerdem ist sie eine nothwendige Consequenz der obigen Deutung der Atlasknorpelscheibe als Meniscus und des Dens epistrophei als Wirbelkörper. Ein senkrechter Durchschnitt durch Hinterhaupts-Condylus, Atlas und Epistropheus, wie ihn Fig. 6 darstellt, macht überdies die Sache augenscheinlich.

Das Schlussstück des Atlas ist also die Hämapophyse zwischen letztem Schädelwirbel und erstem Halswirbel, die den Theil der Faserkapsel des ersten Wirbelkörpergelenkes, dem sie aufsitzt, in den Verknöcherungsprozess hereingezogen hat und so in direkte Verbindung mit dem in der Faserkapsel befindlichen Meniscus getreten ist. Bei den Papageien schreitet diese Verknöcherung constant an der Peripherie des Meniscus nach hinten fort, so dass bei diesen auch das Ligamentum transversum ganz oder theilweise verknöchert.

Nun articulirt aber das Schlussstück des Atlas nicht bloß mit dem Zahn des Epistropheus, sondern auch mit dem Epistropheus selbst und zwar, wie man sich gewöhnlich ausdrückt, mit dem Körper des Epistropheus. Da aber der Epistropheus bekanntermaassen aus zwei Körpern besteht und der Dens epistrophei bloß der vordere
Abschnitt des ersten Wirbelkörpers ist (wie Rathke, Bergmann und Béclard schon zeigten), so entsteht zunächst die Frage: welchem der beiden Körper gehört derjenige Knochenanteil an, der dieses Gelenk mit dem Atlaslückensstück bildet.

Demnach hätten wir also das Schlussstück des Atlas als die Hämapophyse zwischen letztem Schädel- und erstem Halswirbel, und den sogenannten Körper des Epistropheus samt seinem Zahnsfortsatz als eine Verschmelzung der zwei ersten Wirbelkörper und der zwischen ihnen gelegenen Hämapophyse aufzufassen.

2. Ligamentum suspensorium corporum vertebra
tum.

Wie ich bereits oben erwähnte, ist es bis jetzt in dem größten Theil der Wirbelsäule übersehen worden. Blos das erste derselben ist als Ligamentum suspensorium dentis epistrophei schon längst in der menschlichen und thierischen Anatomie bekannt und B arkow hat eine Modifikation desselben an der Brustwirbelsäule der Vögel erkannt, aber unter einem ganz andern Namen und ohne seine Homologien zwischen den übrigen Wirbeln der Vögel und denen der Säugethiere zu kennen, beschrieben. Dass es an der Halswirbelsäule übersehen wurde, ist mir auffallend, da es z. B. an dem mittleren Abschnitt der Halswirbelsäule eines Truthahns (siehe Fig. 9) ein Band

Meckel sagt nämlich in seinem System der vergleichenden Anatomie II, 1, pag. 413:

„Die Anordnung der Gelenkflächen ist dieselbe, allein zwischen Chelone auf der einen, Emys und Testudo auf der andern Seite findet der bedeutende Unterschied statt, dass dort Knorpelbandmasse beide entgegen gewandte Flächen in ihrer ganzen Ausdehnung an einander heftet, hier beide frei sind und nur an ihrem Umfang durch eine Synovialkapsel verbunden werden, höchstens sich innerhalb dieser Kapsel von vorn nach hinten ein schmales freies Faserband von einem Wirbel zum andern begibt."

Da somit das Band als integrierender Bestandtheil aller Wirbelkörpergelenke der Vögel und speciell in seiner für die Classe der Vögel am meisten charakteristischen Form noch gänzlich unbekannt zu sein scheint, so setze ich eine ausführlichere Beschreibung seines Verhaltens hierher.

Da die charakteristischste Form diejenige ist, welche die Halswirbelsäule der Vögel bietet, so wähle ich das Ligamentum suspensorium der mittlern Halswirbelkörper als Ausgangspunkt meiner Darstellung. Das zur Beschreibung dienende Präparat stammt von der Halswirbelsäule des Truthahns.

Bekanntlich zeigt die untere Gelenkfläche der Halswirbelkörper eine Sattelform und zwar so, dass die eine Sattellehne nach der Bauchseite, die andere nach dem Rückenmarkscanal zu liegt. Ich nenne die erstere die vordere Sattellehne. Von der nach rückwärts sehenden überknorpelten Fläche dieser vorderen Sattellehne entspringt genau in der Mittellinie ein von vorn nach hinten etwas platt-
gedrücktes Band. Es erhebt sich aus der Knorpelfläche im Innern der Gelenkhöhle und zieht frei durch den oberen Abschnitt derselben hindurch. An dem Meniscus angekommen tritt es durch die centrale Öffnung desselben hindurch und gelangt so in den unteren Abschnitt der Gelenkhöhle. Diesen durchzieht es in der Richtung nach vorn und setzt sich mit fächerförmiger Ausbreitung am Bauchrande der Gelenkfläche des nächstfolgenden Wirbelkörpers an. Um sein Verhalten zu dem Meniscus zu verstehen, ist es nothwendig sich seine Lage und Richtung zu vergegenwärtigen. Bringt man die Halswirbelsäule in die Lage, welche sie bei ruhiger Stellung des Vogels einnimmt, so dass der mittlere Theil der Halswirbelsäule einen starken Bogen mit der Concavität nach rückwärts bildet, so sieht man, dass das Band vollkommen ausgespannt ist, und die Ursprungsstelle am oberen Wirbelkörper nach der Rückenseite, die des unteren Wirbels nach der Bauchseite zu liegt. Das Band zieht also, um von einem Wirbelkörper zu dem nächstfolgenden zu gelangen, schief von der Rückseite nach der Bauchseite. Daraus geht hervor, dass das Band, nachdem es durch die centrale Öffnung des Meniscus getreten ist, an die untere Fläche des Meniscus und zwar am vorderen Umfang desselben zu liegen kommen muss. Wir können somit zwei Abtheilungen des Bandes unterscheiden, entsprechend den zwei Abtheilungen der Gelenkhöhle. Die obere Hälfte des Bandes zieht wie schon erwähnt frei durch die obere Abtheilung der Gelenkhöhle. Die untere Abtheilung dagegen verwächst an ihrer dem Kopfe zugewandten Fläche mit der unteren Fläche des vorderen Umfangs des Meniscus. Wenn man also das Gelenk so öffnet, dass der Meniscus auf der vorderen Fläche des nächstfolgenden Wirbelkörpers sitzen bleibt und das Ligament aus seiner Verbindung mit der hintern Fläche des vorhergehenden Wirbelkörpers gelöst wird, so hat es den Anschein, als ob das Ligamentum suspensorium von dem innern freien Rand des Meniscus und zwar in dem der Bauchseite zu gerichteten Winkel der centrale Öffnung entspringen würde (siehe Fig. 4). Hebt man jedoch den Meniscus auf und betrachtet dessen untere Fläche (siehe Fig. 10), während man das Ligamentum suspensorium etwas anzieht, so erkennt man sogleich den unteren dem Meniscus angewachsenen Theil des Bandes (b), dessen radial verlaufende Fasern sich deutlich genug von der concentrischen Anordnung der Bestandtheile des Me-
niscus unterscheiden. Ausserdem sieht man sehr deutlich, wie das Band an der der Faserkapsel aufsitzenden Peripherie des Meniscus angelangt nicht in diese übergeht, sondern sich von ihr abhebt und an den vorderen Rand der überragten Gelenkfläche sich ansetzt, so dass zwischen ihm und der Faserkapsel ein lockerer fetthaltiges Bindegewebe liegt.

Von diesem Verhalten kommen nun manngsfache Abweichungen vor, die in causalem Verhältniss zu den Abänderungen des Meniscus stehen.

sollte, in ihrer Continuität eine paarige strangförmige Verdickung, die man gewiss mit Recht als das Rudiment des Ligaments betrachten kann. In diesen Gelenken ist die centrale Öffnung des Meniscus bis an den Bauchrand desselben vorgeschritten. In dem Gelenk zwischen 11. und 12. Halswirbel (Fig. 7) ist der obere Bandabschnitt wieder frei.

Die Erklärung dieses Vorganges und die Rechtfertigung meiner Auffassung, dass das Band nicht fehle, sondern blos mit der Kapsel verwachsen sei, liegt im Folgenden:

Bei Alytes obstetricans findet man, wie bereits Joh. Müller in seiner Anatomie der Myxinoiden zeigt, an der Bauchseite der Halswirbelsäule ein Band, das, wenn nicht die Chorda dorsalis selbst, gewiss das Analogon des Ligamentum suspensorium ist, und dadurch vor die Wirbelsäule zu liegen kommt, dass der Wirbelkörper nicht ringförmig die Chorda umwuchs, sondern sich blos als halbmondförmige Masse an ihrem hintern Umfang anlegte. Bei den Vögeln entsteht nun nachgewiesenermaassen der Halswirbelkörper zwar als geschlossener Ring, allein nach den Verhältnissen am Erwachsenen zu schliessen, überschreitet die Massenzunahme am hintern Umfang beträchtlich die des vorderen Umfanges. Dadurch kommt die Chorda exzentrisch nahe unter die vordere Oberfläche des Wirbelkörpers und das um sie sich bildende Ligamentum suspensorium nahe an die Gelenkkapsel zu liegen, was zur Verwachsung führt. Freilich fehlt mir der allein entscheidende Nachweis des Ligamentes in den erwähnten Gelenken als isolirten Gebilde beim Entenembryo; allein meine Ansicht gewinnt eine hohe Wahrscheinlichkeit durch die Verdickung der Kapsel an der betreffenden Stelle, durch die Analogie der anderen Gelenke der Ente und derselben Gelenke bei anderen Vogelarten und durch das Verhalten bei Alytes obstetricans, das eine weitere Stufe der Excentricität der Chorda darbietet. Diese Excentricität ist wohl der Schlüssel zu diesem scheinbaren Fehlen des Bandes.

Mit der Reduction des Meniscus, wie ich sie oben in der Brustwirbelsäule der Ente beschrieben habe, tritt nun eine andere Modification des Bandes ein. Das Band wird ganz frei und man kann jetzt nicht mehr von zwei Abschnitten reden. Die beiden Ansatzpunkte des Bandes an den zwei einander zugekehrten Wirbelkörpelflächen rücken von der Bauchseite ab nach dem Centrum des Wirbelkörpers,
so zwischen erstem und zweitem Rückenwirbel der Ente und in den folgenden Gelenken sogar noch darüber hinaus gegen die Rückenseite. Da ferner wegen des fast ganz geraden Verlaufs der Brustwirbelsäule die beiden Ansatzpunkte einander decken und die geringe Beweglichkeit der Brustwirbelsäule fast gar keine Verschiebung der Ansatzpunkte gegen einander zulässt, so ist das Band so kurz, dass man eigentlich von keiner Längendimension desselben reden kann, dagegen nimmt es in der Breite zu. So ist dasjenige Verhalten des Bandes entstanden, das Barkow „eine centrale Verwachsung der Wirbelkörperfächen“ nennt. (Barkow's Angabe, dass diese sogenannte centrale Verwachsung an der Brustwirbelsäule der Ente fehlt, ist unrichtig; ich finde sie dort in der schönsten Vollkommenheit.) Die Brustwirbelsäule von Strix aluco zeigt mir dasselbe Verhalten; nur ist das Ligament viel zarter und etwas länger, was mit der größeren Beweglichkeit ihrer Wirbelsäule zusammenhängt.

Eigenthümlich und wichtig für die Parallelisierung der Vögel und Säugethiere ist das physikalische Verhalten des Bandes in seiner so eben beschriebenen Modification. Es zeigt nicht mehr den Sehnenlantz und die Straftheit wie in der Halswirbelsäule, sondern ist

Geht man nun über zur Schwanzwirbelsäule des Geieradlers, bei der, wie oben erörtert, der Meniscus vollständig in einen Anulus fibrosus übergegangen ist, so findet man hier, umschlossen von dem Anulus fibrosus, im Centrum des Gelenkes, wo das Band liegen sollte, einen Nucleus pulposus, der sich von dem der Säugetierwirbelsäule fast gar nicht unterscheidet, ausser dadurch dass er noch lockerer und zerfrieslicher ist.

Ich glaube somit die auf den ersten Blick so sehr differirenden Wirbelkörpergelenke der Vögel und Säugethiere und die so abweichenden Gelenke zwischen Hinterhaupt, Atlas und Epistrophus mit den übrigen Gelenken in morphologischen Einklang gesetzt zu haben, und es erübrigt jetzt nur noch, von der Entwicklungsgeschichte der Gelenkbestandtheile zu reden.

Entwicklungsgeschichtliches.

1. Von dem Ligamentum suspensorium.

Das Interesse, das die Wissenschaft an der richtigen Erkennung der Entwicklung dieses Bandes haben muss, liegt darin, dass sie das Schicksal derjenigen Abschnitte der Chorda dorsalis entscheiden wird, welche zwischen den Wirbelkörpern liegen. Dass
Diese Frage der Embryologie noch nicht erledigt ist, wird aus der folgenden historischen Übersicht sich ergeben. Denn alle Angaben, die ich über diesen Punkt fand, sind theils falsch, theils unbestimmt oder unvollständig.

Baer, bekanntlich der Entdecker der *Chorda dorsalis*, die den früheren Bearbeitern der Entwicklungsgeschichte, Haller, Wolf und Pander, nicht bekannt war, äussert sich in seiner "Entwicklungsgeschichte des Thierreiches 1828", so wie später im "zweiten Bericht der anatomischen Anstalt zu Königsberg" und in seinen "Untersuchungen über die Entwicklungsgeschichte der Fische 1835", in gleicher Weise; ich setze deshalb blos die betreffende Stelle aus der letzteren Schrift hieher; er sagt dort, pag. 36: "Diese Wirbelkörper verdicken sich endlich nach innen und schnüren die Wirbelsäule paternosterförmig ab, so dass aus der Wirbelsäule die Summe der Zwischenwirbelkörper wird, wie ich nach Vergleichung der Skelette ausgewachsener Knorpelfische vermuthet hatte."

Joh. Müller äussert sich in seiner "Vergleichenden Anatomie der Myxinoiden 1834" folgendermaassen über das Schicksal der *Chorda dorsalis*.

Pag. 146: "Es kann indess nicht bezweifelt werden, dass die Entwicklung der Wirbelsäule den in anderen Clasen constanten Gang auch hier nehme, dass die *Chorda dorsalis* zuerst paternosterförmig abgetheilt wird und dass die *Ligamenta intervertebralia* die letzten bleibenden Reste ihres Daseins sein werden."

Rathke sagt in seiner Entwicklungsgeschichte des Schleimfisches (Burdach, Physiologie II, 1837) auf pag. 280: "Die fibröse Scheide der Wirbelsäule wandelt sich zum Theil in die Bandmasse um, welche die einzelnen Wirbelkörper unter einander verbindet."

Burdach selbst sagt, pag. 322: "Das, was von der Hülle der Spinalsaite übrig bleibt, dient als Bandmasse."

Eingehender ist die Angabe Rathke's in seiner Entwicklungsgeschichte der Natter 1839. Er sagt zuerst, die Knochenhaut, durch welche die Wirbelkörper zusammenhängen, sei nicht etwa ein Überrest der Scheide der *Chorda dorsalis*, sondern das Blastem, das um die *Chorda dorsalis* angehäuft sei, werde zur Bildung der Wirbel und deren verschiedenen Bänder verwendet. Zu
dieser negativen Angabe über das Schicksal des betreffenden Abschnittes der Chorda findet sich die positive auf pag. 118:

„Doch geschieht dies (das Verdrängen der Chorda) nicht nach der ganzen Breite des Ringes, die unterdessen schon ansehnlich zugewachsen hat, sondern nur in dessen hinterer Hälfte: denn an der vorderen Hälfte des Ringes füllt sich die Höhle in der Art, dass daselbst eine kurze und weite trichterförmige Grube zurückbleibt, die von einem Überreste der Scheide der Wirbelsaite ausgekleidet wird. Während nämlich durch den oben geschilderten Bildungsvergang der Wirbelkörper die Chorda dorsalis stellenweise eingegeschnürt und zuletzt auch abgeschnürt, oder in ihrem Verlaufe unterbrochen wird, bleibt zwischen je zwei Wirbeln ein Rest von ihr zurück, der jetzt eine Gelenkkapsel bildet, von welcher die einander zugekehrten Enden der Körper beider Wirbel bekleidet und zusammengehalten werden“.

Reichert in seinem „Entwicklungslieben im Wirbelthierreich 1840 sagt, pag. 31, blos ganz kurz: „Die Verkümmerung der Wirbelsaite schreitet unter der beständig nachfolgenden innigeren Vereinigung beider Urplatten des Wirbelsystems von vorn nach hinten immer weiter und im entwickelten Frosch behalten wir nur noch zwischen den einzelnen Wirbeln ihre Rudimente.“

Bischoff äussert sich (Entwicklungsgeschichte des Menschen und der Säugethiere 1842) folgendermaassen: „Zwischen 2 (Wirbel-) Ringen bleibt ein Theil von ihr (der Chorda dorsalis) übrig. Die Ringe werden so die Wirbelkörper und der zwischen ihnen bleibende Theil das Ligamentum intervertebrale.“

Alle die bisher angeführten Notizen sind falsch und andere Forscher, wie Valentin, Vogt, gehen über diesen Punkt mit Stillschweigen hinweg. Noch 1845 hält Bergmann (l. c.) das Ligamentum transversum für eine verdickte Portion der Chordalscheide.

Die ersten Zweifel an dieser Persistenz der Chorda und ihrer Scheide äussert Reichert in seiner Abhandlung „zur Controverse über den Primordialschädel“ Müller, Archiv 1849; er sagt dort, pag. 485: „dass endlich die Wirbelsaite bei Überhand-
Jäger.

...nahme der Verknorpelung und Verknöcherung der skeletbildenden
Schicht um sie herum verkümmert und stellenweise gänzlich hin-
schwindet, ja dass sie bei den höheren Wirbeltieren selbst in den
"Ligamenta intervertebralia" nicht mit Sicherheit nachzuweisen ist,
"ist eine nicht abzuweisende Thatsache."

In demselben Jahre erschien Rathke's classische Untersuchung
über die Entwicklungsgeschichte der Schildkröte 1849.
Er tritt darin mit Entschiedenheit gegen die bisherige Ansicht auf,
und da dies die einzige ausführliche und, so viel mir bekannt, auch
letzte Angabe über das schliessliche Schicksal der Chorda dorsalis
bei den höheren Wirbeltieren ist, also meine Beobachtungen sich
unmittelbar daran anschliessen, so theile ich den betreffenden
Abschnitt vollständig mit.

Pag. 76: „Die Rückensaiten nimmt an der Bildung der Gelenk-
verbindungen zwischen den Wirbelkörpern eben so wenig bei den
Schildkröten wie bei den Batrachien, Vogeln und Säugetieren einen
wesentlichen Antheil. Durch die Gelenkhöhlen, die sich bei dem
Embryo von Testudo zwischen den Körpern der Halswirbel gebildet
hatten, lief sie wie ein Faden hindurch, der selbst im Vergleich mit
dem Querdurchmesser dieser Höhlen nur sehr dünn war. Dasselbe
Verhältniss fand ich auch bei einem Hühnchen vom 18. Tage der
Betretung an den Halswirbeln, zwischen deren Körpern sich schon
ebenfalls Gelenkhöhlen befanden. Gleichfalls bemerkte ich bei
Schweinsembryonen von 1"—1½", dass bei ihnen die Rückensaiten
durch die schon vorhandenen Anlagen der "Ligamenta interverte-
bralia" geradenwegs, wie ein zarter Faden, hindurch lief. Dass aber
bei denjenigen jungen Schildkröten, bei welchen zwischen den
Körpern der Halswirbel schon so ausgebildete Gelenkhöhlen vorka-
men, dass sie von einer serösen Haut ausgekleidet waren, Überreste
von der Scheide der Rückenseite sich erweitert und in diese Haut
umgewandelt haben sollten, ist nicht glaubhaft, weil jene Scheide
und diese Haut in ihrem Gewebe gar zu sehr verschieden sind.
Zudem geht nach Beobachtungen, die von Meckel gemacht worden
sind, selbst bei erwachsenen Schildkröten, mitunter ein dünner
übröser Faden von einem Wirbelbeinkörper zu dem andern mitten
durch die Gelenkhöhle hindurch. Nicht unwahrscheinlich aber
dürfte es sein, dass ein solcher Faden ein Überrest von der Rücken-
saiten ist.“

Ferner ist Rathke im Unklaren über das Schicksal der Chorda dorsalis in den übrigen Wirbelkörpergelenken. Zwar geht aus sei-
ner Darstellung hervor, dass er geneigt ist, ein völliges Verschwinden der *Chorda dorsalis* anzunehmen, aber das von Meckel beobachtete *Ligamentum suspensorium* erwachsener Schildkröten, das Rathke augenscheinlich nicht selbst gesehen hat, glaubt er für einen Rest der Chorda halten zu müssen, und wagt deshalb nicht, ein definitives Urtheil auszusprechen.

Ich war nun so glücklich, unter den mir von Herrn Professor Brücke übergebenen Hühner-Embryonen gerade zwei Entwicklungsstadien zu finden, welche die Frage über das Schicksal der Chorda wenigstens bei den Vögeln definitiv zum Abschluss bringen.

Auf der beiliegenden Tafel habe ich in Fig. 1—3 eine Darstellung des von mir gefundenen Sachverhaltes gegeben.

Fig. 1 stellt die Gelenke zwischen dem 7. und 8., 8. und 9. Halswirbelkörper eines Hühchens, von der Rückenseite aus gesehen, dar. Durch einen feinen Schnitt ist die hintere Partie der Wirbelkörper bis auf das Niveau der Verknöcherungspunkte abgetragen. Die Gelenkhöhlen sind also geöffnet, ohne dass die *Chorda dorsalis* von dem Schnitte getroffen wurde. Man sieht die Chorda samt ihrer Scheide ohne Unterbrechung von einem Wirbelkörper zum andern herüberziehen. Die Bildung der Gelenkhöhle hat begonnen und stellt in dieser Ansicht jederseits eine Spalte (c) dar, die übrigens nicht bis an die Scheide der Chorda vordringt, die Chorda läuft also nicht, wie Rathke angibt, frei durch die Gelenkhöhle hindurch, sondern ist von einer s scheidenartig umhüllenden Zellenmasse umgeben, die eine continuirliche Fortsetzung der Masse des einen Wirbelkörpers in die des andern ist. Diese centrale die Chorda umhüllende Masse ist aber scharf geschieden, nicht bloß von der Chorda, sondern auch von ihrer Scheide.

Um nun aber zu entscheiden, ob die Chorda mit ihrer Scheide in der That mitten durch diese centrale Zellenmasse hindurch geht,
und nicht etwa derselben bloß anliegt, fertigte ich einen senkrechten Durchschnitt durch das Gelenk an und habe diesen stärker vergrößert in Fig. 3 abgebildet. Man sieht die Chorda ebenfalls ununterbrochen durch die zwei an einander stossenden noch knorpigen Enden der Wirbelkörper hindurchziehen. Die Scheide der Chorda sieht man hier nicht, wohl aus dem einfachen Grunde, weil sie, durch den ersten Schnitt getrennt, sich vermöge ihrer bekannten Elastizität, nach rechts und links hinter die Chorda zurückgezogen hat und so von dem zweiten Schnitt nicht mehr getroffen wurde. Man sieht ferner die Gelenklinie (a) bereits gebildet und sie dringt auch hier weder an der Rückseite, noch an der Bauchseite bis zur Chorda hin, sondern diese liegt wie in Fig. 1 im Centrum einer Substanzbrücke (c), welche nach innen von den beiden Gelenklinien die Continuität zwischen den beiden Wirbelkörperenden erhält. Demnach unterliegt es keinem Zweifel, dass die Chorda wirklich von dieser centralen Substanzbrücke scheidenartig umschlossen wird.

Dass diese Substanzbrücke, die die Chorda dorsalis umhüllt, die Anlage des von mir gefundenen Ligamentum suspensorium ist, erhellt aus Fig. 2. Diese zeigt zwei Halswirbelkörper eines in der Entwicklung weiter vorangegangenen Hühnchens. Durch künstliches Strecken der Wirbelsäule haben sich die Gelenkkenden der Wirbelkörper etwas von einander entfernt. Man sieht nun das zwischen ihnen ausgespannte Band (a), und dass dies dieselbe Substanzbrücke wie in Fig. 1 und 3 ist, erkennt man daran, dass in ihrem Centrum die letzte Spur der Chorda dorsalis als dunkle Linie (c) zu erkennen ist, die an ihren beiden im Wirbelkörperende selbst gelegenen Enden eine kolbige Anscheinung zeigt.

Vergleicht man diese Beobachtungen mit der Schilderung, die Rathke von der Entwicklung des Ligamentum suspensorium des Proc. odontoideus gab, so erhellt sogleich die vollkommene Übereinstimmung in der Entwicklung beider Gebilde, und es wird somit auch durch die Entwicklungsgeschichte bestätigt, dass das Ligamentum suspensorium des Proc. odontoideus das erste meiner Ligamenta suspensoria corporum vertebrale ist.

Ferner geht aber auch aus meiner Beobachtung hervor, dass auch diejenigen Abschnitte der Chorda dorsalis, die zwischen den Wirbelkörpern liegen, wie bereits Rathke vermutet hatte, voll-
ständig zu Grunde gehen, und dass nicht einmal der äbröse Faden in der Gelenkhöhle der Schildkröten, der Rathke allein noch Scrupel macht, als Überrest der Chorda betrachtet werden darf, denn dass dieser Faden des Schildkrötenengelenkes das Analogon des Ligamentum suspensorium der Vögel ist, dürfte nach dem, was ich oben über dieses Gebilde sagte, keinem Zweifel unterliegen, obwohl ich selbst nicht durch die Autopsie mich davon überzeugen konnte.

Es steht also fest, dass wenigstens bei den Vögeln die Chorda dorsalis in ihrer ganzen Ausdehnung ein rein embryonales Gebilde ist und kein dem erwachsenen Thiere zukommender Körperteil als Überrest der Chorda bezeichnet werden darf.

Dass dieser Satz auch für die Säugethiere gilt, dürfte bei der von mir hergestellten vollkommenen morphologischen Übereinstimmung der Bestandtheile der Wirbelkörpergelenke wohl ebenfalls feststehen. Somit wäre also weder der Annulus fibrosus, noch der Nucleus pulposus ein Überrest der Chorda oder ihrer Scheide.

Über das Wirbelkörpergelenk der Reptilien erstreckten sich zwar meine Untersuchungen nicht, allein es ist mir wahrscheinlich, dass wenigstens die beschuppten Reptilien und die höheren Batrachier sich in gleicher Weise verhalten, und die vorliegenden Beobachtungen über die Vögel dürften auch noch zu einer Revision dieser Frage bei den Knochensachsen auffordern.

2. Entwicklungsgeschichtliches über den Meusceus.

Über die Entwicklung dieses Gebildes konnte ich mir aus meinen eigenen Beobachtungen keine selbstständige Ansicht bilden. Allein eine meiner Beobachtungen liess mich, schon ehe ich Remak’s Angabe über diesen Punkt kannte, dasselbe vermuten, was Remak darüber sagt. Da nun diese Beobachtung füglich als Bestätigung für die Angabe Remak’s dienen kann, so setze ich sie hierher, zumal da unter Remak’s Gründen für seine Ansicht der Grund, der in meiner Beobachtung liegt, fehlt. Dieser sagt nämlich in seiner „Entwicklungsgeschichte der Wirbelthiere 1855“:

„Die Anlagen der Zwischenwirbelscheiben gehen, wie der wei-tere Verlauf lehrt, aus dem Schwanztheile des primitiven Wirbel-
körpers oder, was dasselbe ist, aus dem Kopftheile des secundären Wirbelkörpers hervor. Denn sucht man an den folgenden Tagen die neuen secundären Wirbelkörper mittelst Nadeln von einander zu trennen, so findet man immer, dass die Ablösung vor der Zwischenwirbelscheibe zu Stande kommt. Die letztere gehört also ihrem Ursprungs nach zu dem hinter ihr liegenden secundären Wirbelkörper.

Ganz dasselbe findet auch beim erwachsenen Vogel statt. Wenn man die Wirbelsäule in Wasser bis zum vollständigen Aufhören alles Zusammenhangs macerirt, so bleibt der Meniscus immer auf der Oberfläche des Wirbelkörpers sitzen. Dies war die erste Veranlassung zu meiner mit Remak übereinstimmenden Vermuthung. Allein dies erklärt sich auch schon aus dem oben beschriebenen Verhalten des Meniscus zum Ligamentum suspensorium, und ich glaube, diese innigere Verbindung des Meniscus mit dem nach hinten liegenden Wirbel, die Remak als einzigen Grund für seine Angabe anführt, kann für sich allein die Frage noch nicht definitiv entscheiden. Für massgebend aber halte ich folgende übrigens auch für mich einzeln dastehende Beobachtung an der Wirbelsäule eines Nestvogels von Fringilla domestica. (Leider habe ich in meinem Notizenbuche damals blos eine schematische Abbildung angefertigt, und besitze jetzt kein Material zur Anfertigung einer naturgetreuen Zeichnung, so dass ich also in Fig. 8 blos meine schematische Abbildung wiedergeben konnte.) Die Knorpelzellen zeigten auf einem in der Axe des Körpers horizontal geführten Durchschnitt eine reihenweise Anordnung. Es entstanden so Linien, die ich kurzweg Knorpelzellenlinien nennen will. Diese Linien liefern in dem Schwanzende des vorderen Wirbels vollkommen parallel mit dem Rande der Knorpelfläche (Fig. 8, a). In dem Meniscus (b) liefen sie der vorderen Kante ebenfalls parallel, allein an der hinteren Contour liefen sie unter spitzem Winkel gegen die vordere Fläche des nächstfolgenden Wirbelkörpers aus, und die Knorpelzellen dieses bildeten die direkte Fortsetzung der Knorpelzellen des Meniscus. Es liefen nämlich die Knorpelzellenlinien des hinteren Wirbelkörpers (c) nicht seiner vorderen Contour parallel, sondern stellten lauter Kreissegmente dar, die mit ihren beiden Enden auf der Contour des Wirbels aufstanden. Ein Blick auf die Figur, wo ich den Verlauf der Knorpelzellenlinien durch punktierte Linien ange-
geben habe, wird dies sogleich veranschaulichen. Dieses Verhalten beweist mehr als alles Andere, dass der Meniscus eine Abhebung von der vorderen Fläche der Wirbelkörper ist. Allein zur vollkommenen Entscheidung fehlt noch der Nachweis, dass die Gelenklinie zwischen a und b (Fig. 8) der Zeit nach früher entsteht, als die zwischen b und c und diesen konnte ich mit meinem Materiale nicht liefern.

Die Resultate, die ich aus dem Bisherigen gewonnen habe, sind somit folgende:

1. Der Meniscus der Vögel ist das Analogon des *Annulus fibrosus* der Säugethiere und entwickelt sich wahrscheinlich als Abhebung von der oberen Fläche des Wirbelkörpers.

2. Zwischen allen Wirbelkörpern der Vögel findet sich ein Gebilde, das analog ist dem *Ligamentum suspensorium* des *Processus odontoides* und sich, wie dieses, aus einer die *Chorda dorsalis* umhüllenden Substanzbrücke zwischen zwei Wirbelkörpern entwickelt.

3. Der *Nucleus pulposus* der Säugethiere ist das Analogon dieses *Ligamentum suspensorium*.

5. Das *Ligamentum capsulare atlantico-occipitale* und das *Lig. caps. atlantico-epistrophicum odontoides* sind die zwei Hälften der ersten Wirbelkörper-Gelenkkapsel.

A N H A N G.

Auf der beiliegenden Tafel habe ich noch eine morphologisch nicht uninteressante Hemmungsbildung dargestellt, die ich an den zwei ersten Halswirbeln eines Seeadlers fand.
Das Wirbelkörpergelenk der Vögel.

Fig. 12—14 zeigt die normalen zwei ersten Wirbelkörper. Der Epistropheus ist von oben (Fig. 13) und von der Seite (Fig. 14) gezeichnet.

Fig. 15—17 gibt ganz dieselben Ansichten der abnormen zwei ersten Halswirbel.

Vergleicht man Fig. 15 mit Fig. 12, so sieht man, dass bei Fig. 15 der normale halbmondförmige Ausschnitt am hintern Umfang des vorderen Atlasstückes fehlt und die Gelenksfläche für den Condylus des Hinterhaupts ein vollständiges Acetabulum bildet.

Vergleicht man nun den abnormen Epistropheus (Fig. 16 und 17) mit dem normalen (Fig. 14 und 13), so sieht man, dass ersterem der Zahnfortsatz fehlt und dass der Eindruck für das Ligamentum suspensorium, den man in Fig. 13 auf der Spitze des Zahnfortsatzes sieht, in Fig. 16 auf der Mitte der vorderen Fläche des abnormen Epistropheus liegt.

Es ist also hier das Knochenstück, das im normalen Entwicklungsagli mit dem Epistropheus verwächst und dessen Zahnfortsatz bildet, abnormer Weise mit den Bestandteilen des Atlas verschmolzen, so dass dessen Mittelstück jetzt ganz die Umrisse eines vollständigen Wirbelkörpers besitzt. Durch diese Hemmungsbildung wird zu den anatomischen und physiologischen Gründen, die man für die Auffassung des Processus odontoideus als erster Wirbelkörper angeführt hat, noch ein neuer pathologischer Grund gefügt, und so diese Ansicht, wenn es überhaupt noch nöthig sein sollte, auch von dieser Seite bestätigt.

Über das Verhalten der Weichtheile, das hier gewiss nicht ohne Interesse gewesen wäre, kann ich leider nichts angeben, da ich die Beobachtung erst machte, als die Wirbelsäule durch Kochen mit Natriumlauge bereits aller Weichtheile beraubt war. Doch glaubte ich diesen Fall hier mitteilen zu müssen, weil es meines Wissens der erste derartige ist, der zur Mittheilung gelangt. Auch wenn in der mir weniger bekannten Specialliteratur über Missbildungen am Menschen etwas Ähnliches erwähnt sein sollte, so dürfte diese Mittheilung nicht ganz ohne Werth sein.
Nach dem die obige Abhandlung bereits der k. Akademie der Wissenschaften vorgelegt war, erhielt ich durch die Güte des Herrn Professor Luschka sein noch nicht lange zuvor veröffentlichtes und mir noch nicht bekanntes Werk „die Halbgelenke des menschlichen Körpers“.

Herr Prof. Luschka hat darin die anatomischen Verhältnisse der Wirbelkörperverschlingungen beim Menschen in einer virtuosen Weise geschildert und abgebildet, allein in der Deutung der Verhältnisse und der Darstellung der Entwicklung finden sich Angaben, die allerdings bei blosser Berücksichtigung der Verhältnisse bei den Säugethiern vollständig richtig erscheinen, die aber bei einer Vergleichung mit den Wirbelkörperschlingungen der nächst niederen Wirbeltierklasse, der Vögel, einer andern Auffassung Platz machen müssen. Es bewährt sich auch hier der Satz, dass der Schlüssel für die richtige Auffassung der Anatomie der höheren Thiere immer in den nächstvorhergehenden Ordnungen zu suchen ist.

Ich sehe mich deshalb genötigt, meiner Abhandlung eine besondere Besprechung der Schrift des Herrn Prof. Luschka anzuhängen, weil dieselbe dazu dienen wird, die Richtigkeit und Tragweite meiner Untersuchungen in schlagender Weise darzubieten und die so lange unentschiedene Frage über die Auffassung des Nucleus pulposus definitiv zu erledigen.

Ich werde zuerst von der Deutung des Annulus fibrosus und des Nucleus pulposus handeln und zum Schluss bei der Entwicklung auf die Chorda dorsalis zurückkommen.

Das Wirbelkörpergelenk der Vögel. 537

Ausser den vergleichend anatomischen Gründen spricht dafür noch das Verhalten bei den Säugethieren an und für sich: die Faserkapseln der Gelenke sind immer directe Fortsetzungen der Beinhaut des einen Knochens in die des andern und zeigen nie eine faserknorpelige Beschaffenheit, denn das Labrum cartilagineum des Acetabulums gehört nicht mehr zur Faserkapsel. Auch gibt es kein Gelenk, bei dem die Faserkapsel, statt einfach die zwischen den Knochenenden bestehende Spalte zu übersetzen, sich in mächtiger Entwicklung gleichsam als Duplicatur in die Spalte einsenken und die Knochenenden verkleben würde. Der Anulus fibrosus verhält sich vielmehr ganz so wie eine Cartilago interarticularis des Kniegelenkes, wie der Meniscus des Unterkiefergelenkes und der Meniscus der Vögel: er ist der inneren Fläche der Gelenkkapsel angewachsen und keilförmig zwischen die Knochenenden eingescho- "ben und unterscheidet sich in Structur, Consistenz und äusserem Ansehen von der Kapsel. Der Unterschied besteht bloß darin, dass er nicht frei beweglich, sondern an seinen beiden Flächen mit den Wirbelkörpern verwachsen ist. Ausserdem wird ein Blick auf Taf. III, Fig. 2 in dem Werke des Herrn Prof. Luschka genügen, um die, eine continuirliche Fortsetzung der Beinhaut bildende Gelenkkapsel sogleich von dem keilförmigen Durchschnitt des Anulus fibrosus (b) zu unterscheiden und eine Vergleichung dieser Figur mit Fig. 2 meiner Abhandlung wird die Identität von Meniscus und Anulus fibrosus klar machen.

Was den Nucleus pulposus betrifft, so hat Herr Prof. Luschka in dem erwähnten Werke, so wie in zwei früheren Aufsätze (Virschow’s Archiv für pathologische Anatomie, Bd. IX, und in Henle und Pfeuffer’s Zeitschrift für rationelle Medicin, Bd. VII) dargestellt als ein Convolut von Synovialzotten, die sowohl dem inneren Rande des Anulus fibrosus als der freien Fläche der Knorpelplatten der Wirbelkörper entspringen.

Diese Anschauung muss man allerdings vom Nucleus pulposus gewinnen, so lange man das Ligamentum suspensorium der Vögel und die Reihe der Übergangsstufen desselben zum Nucleus pulposus, wie sie die Wirbelsäule des Lämmergeiers in der vollkommensten Weise zeigt, nicht kennt. Hat man aber dies einmal gesehen, so ergibt sich für den Nucleus pulposus, dass er eine die beiden Wirbelkörper verbindende Substanzbrücke ist, die da,
wo es zur Bildung einer vollkommenen Gelenkhöhle kommt, zu einem Ligamentum suspensorium wird, oder im andern Falle durch allmäßliche Verflüssigung soweit ihres Gesammtzusammenhanges beraubt wird, dass sie sich als ein Convolut von Synovialfortsätzen darstellen lässt. Dass diese Substanzbrücke nicht bloß mit den beiden Knorpelflächen der Wirbelkörper in Continuität bleibt, sondern auch mit dem Innenrande des Annulus fibrosus, ist einfach der Ausdruck der Verbindung, die, wie ich zeigte, das Ligamentum der Vögel mit dem Meniscus in allen Fällen eingeht, wo er nicht reducirt ist. Und wenn man berücksichtigt, was ich beim Lämmergeier erwähnte, nämlich dass die organische Verbindung des Ligamentum suspensorium mit dem Meniscus in dem Maasse an Ausdehnung gewinnt, als der Meniscus in die Bildung eines Annulus fibrosus übergeht, so wird man begreiflich finden, warum beim Säugethier diese Verwachsung sich auf den ganzen Umkreis des Nucleus pulposus erstreckt, weil nämlich auch der Meniscus in seiner ganzen Peripherie zum Annulus fibrosus wurde. Der Nucleus pulposus, so wie das Ligamentum suspensorium ist also für das Wirbelkörpergelenk dasselbe, was das Ligamentum teres für das Hüftgelenk, die Ligamenta cruciata für das Kniegelenk und die Ligamenta interarticularia derjenigen Rippen, welche mit zwei Wirbelkörpren zugleich articuliren.

Was nun die Entwicklungsgeschichte des Nucleus pulposus betrifft, so sagt Herr Prof. Luschka, dass er wenigstens theilweise das Resultat einer Proliferation der Chordalszellen sei, und spricht sich demgemäß pag. 27 seiner Abhandlung dahin aus, „dass überall im Wirbelthierreich die Formbestandtheile der Chorda dorsalis einen wesentlichen Antheil an der Gestaltung der Wirbelverbindungen nehmen, und dass es ganz und gar irthümlich ist, wenn man die Meinung hegt, die Chorda schwinde bei den höheren Wirbeltieren schon im embryonalen Leben bedeutungslos.“

Diese Ansicht steht in Dissonanz mit dem, was ich für die Vögel angab und was bei diesen nach den von mir gemachten Beobachtungen wohl nicht mehr zweifelhaft sein kann, namentlich wenn man noch das hinunnimmt, was Rathke über die Entwicklung des Ligamentum suspensorium des Epistropheus sagte. Allein diese Dissonanz löst sich in die schönste Harmonie auf, wenn man Fig. 2 auf Taf. III des erwähnten Werkes genauer betrachtet. Man erkennt
nämlich, besonders deutlich an der Verbindung zwischen dem 11. und 12. Brustwirbel die Anlagen des Annulus fibrosus (b) an ihrer dunklen Schattierung, ihren senkrecht stehenden Zellen und ihrer keilförmigen Gestalt. Zwischen ihrem innern Ende und der Gruppe von Chordalzellen (c) liegt nun jederseits eine zellenhaltige Substanzbrücke, die beide Wirbelkörper verbindet und sehr deutlich von dem Annulus fibrosus abgegrenzt ist. Diese Substanzbrücke hat Herr Prof. Luschka übersehen, d. h. sie zu dem Annulus fibrosus gerechnet, allein dass dies nicht statthaft ist, geht aus dem Verhalten der Vögel hervor, und schon in der Abbildung bei Hrn. Prof. Luschka springt die Differenz im optischen Verhalten der Zellenrichtung und Form in die Augen. Es ist vielmehr einleuchtend, dass diese Substanzbrücke die Anlage des Nucleus pulposus ist, ganz so wie auch das Ligamentum suspensorium aus einer beide Wirbelkörper in ihrem Centrum verbindenden Substanzbrücke entsteht. Ausserdem ist auch das Verhalten der Chorda dorsalis bei Vögeln und Säugenthieren ganz gleich: man findet nämlich zu einer gewissen Zeit der Entwicklung im Centrum der Substanzbrücke noch einen Haufen Chordalzellen. Dieser Befund hat Hrn. Prof. Luschka zu dem Ausspruch über die Fortexistenz der Chorda dorsalis, den ich oben anführte, veranlasst. Die Beobachtung des Herrn Prof. Luschka beweist aber blos, dass zu einer gewissen Zeit des Embryonallebens (10. Woche) ein Haufen Chordalzellen im Centrum der Anlage des Nucleus pulposus liegt; ob dieser sich fortentwickelt oder zu Grunde geht, erheilt daraus noch nicht. Für die erstere Ansicht führt nun Hr. Prof. Luschka das Vorkommen von Zellen im Nucleus pulposus des Erwachsenen an, die den Chordalzellen ähnlich sein sollen. Er bildete sie in Fig. 3, 4, 5, 8 und 9 auf Taf. III seines Werkes ab. Vergleicht man aber diese Zellen mit den Chordalzellen, wie sie Herr Prof. Luschka in Fig. 1 der Taf. III abbildet, so findet man keine grössere Ähnlichkeit als die, welche überhaupt zwischen Zellen besteht. Auch ist gar keine Nothwendigkeit vorhanden, die Zellen des Nucleus pulposus abzuleiten von den Chordalzellen; denn in der Substanzbrücke auf Fig. 2 sehen wir Zellen genug, die eben so gut, ja wie wir sehen werden, noch weit eher die Ahnen der Knorpelzellen des Nucleus pulposus des Erwachsenen sein können. Sucht man nämlich mit Zugrundelegung der Fig. 2 des Hrn. Prof. Luschka die Zahl aller in der Anlage des Nucleus
pulposus vorhandenen Zellen zu bestimmen, so findet man als Gesamtsumme die Zahl 1428: darunter sind aber blos 60 Chordalzellen, also ist die Summe der Chordalzellen blos der 23. Theil aller in dem Nucleus pulposus eines 10wöchentlichen Menschenembryo's befindlichen Zellen, und die Wahrscheinlichkeit, dass die Zellen des Nucleus pulposus die Nachkömmlinge der Zellen der Substanzbrücke sind, verhält sich zu der Wahrscheinlichkeit der Entzündung des Hrn. Prof. Luschka ceteris paribus wie 23:1. Bei den Chordalzellen eine grösse Vermehrungsfähigkeit voraussetzen, dürfte blos den Werth einer Vermuthung haben. Ja man kann im Gegentheil gerade den Chordalzellen eine gerin gere Fortpflanzungsfähigkeit gegenüber den übrigen Embryonalzellen vindiciren. Denn, wenn man annimmt, dass zwischen allen Wirbelkörpern bei einem 10wöchentlichen Fötus eben so viel Chordalzellen liegen wie zwischen dem 11. und 12. Brustwirbel, so bekommt man als Gesamtsumme aller Chordalzellen c. 2000, eine Summe, die auf ein Minimum von Vermehrungsfähigkeit schliessen lässt. Denn die Summe der Chordalzellen, die besteht, so lange die Chorda dorsalis noch ein continuirlicher Strang ist, dürfte zum mindesten nicht viel geringer angeschlagen werden, ja, nach der Fig. 1 zu schliessen, eher weit grösser sein. Ich will zwar nicht in Abrede stellen, dass möglicher Weise ein Theil der Zellen des Nucleus pulposus die Nachkommenschaft der Chordalzellen bildet, allein beweisen wird sich dies wohl kaum lassen, und auch bei der sehr unwahrscheinlichen Annahme gleicher Vermehrungsfähigkeit könnte höchstens der 23. Theil davon Anspruch auf eine derlei Abstammung machen.

Die vergleichend anatomischen Thatsachen über die Chorda dorsalis, die Herr Prof. Luschka für sich anführt, werden schon dadurch paralysirt, dass nach mir bei den Vögeln und, wie Rathke wahrscheinlich macht, auch schon bei den Cheloniern und Ophidiern die Chorda verschwindet, und alle Angaben von höheren Thieren (ich habe die meisten derselben schon früher citirt) sind so unbestimmt, dass man kein Vertrauen zu ihnen haben kann. Dass die Chorda bei Fischen und auch noch bei niedern Amphibien (Proteiden und, wie Herr Prof. Hyrtl die Güte hatte mir mitzuteilen, auch bei den Coccilien) fortexistirt, ist sicher, allein schon bei Rana arborea sagt Dutrochet (Observ. sur l'ostéogénie) blos: „les portions de ce tube (er meint die Chordalscheide), qui correspondent aux
Das Wirbelkörpergelenk der Vögel.

„intervalles de ces os deviennent, à ce que je pense, les liga-
mens fibreux, qui les unissent.“ Man hat es also hier bloß mit der
so häufigen Thatsache zu thun, dass embryonale Gebilde oder Zu-
stände höherer Wirbeltiere bei niederen fortexistiren, und es han-
delt sich hier bloß noch um die genaue Feststellung der Grenze.
Über diese lässt sich bloß so viel mit Bestimmtheit sagen, dass sie
im Bereiche der Reptilien liegen muss.

Nach dem, was ich in meiner Abhandlung und in dem Nach-
trag bisher gesagt habe, muss auch die vergleichend-anatomische
Bemerkung des Hrn. Prof. Luschnka auf Seite 59 modifizirt werden.
Er sagt nämlich dort folgendermaassen:

„Wie schon oben angemerkt worden ist, findet die zur Erzeu-
gung einer Höhle stattfindende Schmelzung der Gallertmasse in
„den Zwischenwirbelscheiben der Neugeborenen ihr Analogon in
„der zur Bildung der Wirbelkörpergelenke der Vögel und Amphibien
„direkt eintretenden Verflüssigung der Zellen der Chorda dorsalis,
„eine Verflüssigung, welche regelmässig auch die Chorda dorsalis-
„Zellen der Plagiostomen betrifft.“

Die Bildung der Gelenkhöhle bei den Plagiostomen dürfte aller-
dings wohl zweifellos durch Schmelzung der Chordalzellen entstehen.
Allein die Gelenkhöhle der Vögel und wohl auch der höheren Repti-
lien entsteht dadurch, dass die Fibrocartilago intervertebralis (wie
ich generell Annulus fibrosus und Meniscus nenne) sich von beiden
Wirbelsäulen und von der centralen Substanzbrückelostrennt. Dies
beweist Fig. 1 u. 2. in meiner Abhandlung, wo die Gelenkhöhle schon ge-
bildet ist und trotzdem die Chorda dorsalis als continuiirlicher Strang
durch das Centrum der Anlage des Ligamentum suspensorium hin-
durchzieht. Die Bildung der Gelenkhöhle bei dem Menschen kommt
durch partielle Verflüssigung der centralen Substanzbrücke zu Stande.
Wenn sie weniger weit geht, so bildet sie einen compacteren Nucleus
pulposus, wenn sie weiter voranschreitet, ein Convolut von Synovial-
zotten, ja sie kann nach Hrn. Prof. Luschnka’s Angabe auch diese
auf ein Minimum reduciren.

Daraus möchte ich, obwohl ich keine eigenen Untersuchungen
darüber gemacht habe, einen Schluss auf die Entwicklung der
Synovialzotten überhaupt wagen. Sie dürften vielleicht der
der Verflüssigung entgangene Rest (sit venia verbi) der Substanz-
masse sein, welche bekanntlich vor der Bildung der Gelenkhöhle die

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 28. 39
Continuität der Knochenenden herstellte. Doch will ich diesem Aus-
spruch keinen höhern Werth als den einer zu Untersuchungen auff-
sfordernden Vermuthung beilegen.

Dass Herr Prof. Luschka bei seinen trefflichen Untersuchun-
gen nicht zu denselben Schlüssen kam wie ich, liegt in der Natur
der seiner Untersuchung dienenden Objecte. An den Säugethieren
allein lässt sich eine richtige Deutung des Sachverhaltes wohl nicht
gewinnen. Das Ligamentum suspensorium corporum vertebra-rum
der Vögel, das Hrn. Prof. Luschka nicht bekannt sein konnte, da
es vor mir niemand erwähnt, bildet den einzigen Schlüssel zum
Verständniss des Wirbelkörpergelenkes, und blos mit diesem war es
mir möglich, die wohl kaum mehr bezweifelbare Deutung zu geben.

Dass ich durch das Resultat meiner Untersuchungen genöthigt
bin, Hrn. Prof. Luschka, an den als meinen früheren Lehrer mich
Bande persönlicher Freundschaft und Dankbarkeit knüpfen, hier
wissenschaftlich entgegenzutreten, wird wohl Herrn Prof. Luschka
am wenigsten unmangenehm berühren. Denn Niemand wird besser als
er im Stande sein zu erkennen, dass blos die günstige Beschaffen-
heit meiner Objecte mich zu einer richtigeren Deutung geführt hat,
und der Objectivität der Wissenschaft gegenüber müssen auch die
intimsten persönlichen Beziehungen in den Hintergrund treten, da
ohne die Wahrung der wissenschaftlichen Unabhängigkeit ein Fort-
schreiten der Wissenschaft nicht denkbar ist.

Gleichzeitig mit seinem Werke hatte Herr Prof. Luschka die Güte,
mir den Separatabdruck einer Abhandlung von H. Müller „über das
Vorkommen von Resten der Chorda dorsalis beim Men-
schen nach der Geburt“ aus Henle und Pfeuffer's Zeitschrift
zusichicken. Diese beweist blos, dass in den Endabschnitten der
Wirbelsäule die Chorda dorsalis sich noch länger forterhält als in der
mitleren Partie, und dass die Chorda dorsalis als Gallertgeschwulst
des Clivus abnormaler Weise fortbestehen kann, wie dies bei allen
embryonalen Gebilden und Zuständen bekanntermassen möglich ist.

Ich glaube somit, dass ich durch die Entdeckung des Ligament-
num suspensorium nicht blos die Anatomie der Vögel um eine That-
sache bereichert, sondern dadurch auch eine richtige Deutung der
Wirbelkörpergelenke aller höheren Wirbeltiere und des Menschen
möglich gemacht und ausgeführt habe.
Erklärung der Abbildungen.

Fig. 1) 7., 8., 9. Halswirbelkörper eines Hühnerembryos. a Chorda dorsalis mit ihrer Scheide, b Anlage des Ligamentum suspensorium, c Gelenklinie, d Verknöcherungszentren.

Fig. 2) Halswirbelkörper eines älteren Hühnerembryos. a Ligamentum suspensorium, b Meniscus, c letzte Spur der Chorda dorsalis.

Fig. 3) Zwei Halswirbelkörperenden eines Embryos (von demselben Alter wie Fig. 1). a Gelenklinie, b Chorda dorsalis, c Anlage des Ligamentum suspensorium, d Verknöcherungszentren.

Fig. 4) Meniscus mit dem freien Abschnitte des Ligamentum suspensorium aus dem Gelenk zwischen dem 12. und 13. Halswirbelkörper von Anas boschas von der oberen Seite gezeichnet. Das Band scheint von dem vorderen Winkel der centralen Öffnung zu entspringen.

Fig. 5) Gelenk zwischen dem 14. und 15. Halswirbelkörper von Anas boschas an der hinteren Seite geöffnet, a Meniscus, b Ligamentum suspensorium.

Fig. 7) Gelenk zwischen dem 11. und 12. Halswirbelkörper der Echte senkrecht durchschnitten. a Meniscus, b Ligamentum suspensorium.

Fig. 8) Schematischer Durchschnitt eines Halswirbelkörpergartenes von rechts nach links geführt, um den Verlauf der Knorpelzellenlinien zu zeigen, a die Knorpelzellenlinien des oberen Wirbelkörpers, b die des Meniscus, c die des unteren Wirbelkörpers.

Fig. 9) Das Gelenk zwischen dem 9. und 10. Halswirbelkörper eines Truthahnes von vorne geöffnet. a Meniscus, b Ligamentum suspensorium (natürliche Größe).

Fig. 10) Untere Fläche des Meniscus zwischen dem 6. und 7. Halswirbelkörper des Truthahnes, etwas vergrößert. a Freier Abschnitt des Ligamentum suspensorium, b der mit dem Meniscus verwachsene Theil desselben.
Jäger. Das Wirbelkörpergefäss der Vögel.

Fig. 11) Senkrechter Durchschnitt durch Hinterhaupt, Atlas und Epistrophon bei einem halbjährigen Truthahn. I. Hinterhaupt, II. Atlas, III. Epistrophon.

a Zahnstück des Epistrophon, b Körpersstück des Epistrophon, c unterer Dornfortsatz zwischen a und b; a und c sind noch markhaltig, b lufthaltig, bei d sieht man die noch knorpelige Trennungslinie zwischen a einerseits und b und c anderseits. Die Trennungslinie zwischen c und b ist bereits verknöchert und man erkennt ihre Richtung – die der kompakter Knochensubstanz, der die markhaltigen Hohlraume von c trennt von den lufthaltigen des eigentlichen Epistrophon-Körpers.

Fig. 12) Normaler Atlas des Seeanders, von oben gesehen.

Fig. 13) Normaler Epistrophon desselben Vogels, von oben gesehen.

Fig. 14) Derselbe Epistrophon, von der Seite gesehen.

Fig. 15) Abnormer Atlas eines Seeanders von oben.

Fig. 16) Epistrophon desselben Vogels, von oben.

Fig. 17) Derselbe von der Seite.
Vorgelegte Druckschriften.

Nr. 28.

Bineau, A., Etudes chimiques sur les eaux pluviales et sur l'atmosphère de Lyon. 1858; 8°.
— Résumé des données ozométriques. 1858; 8°.
— Etudes sur les dissolutions des carbonates terreaux et des principaux oxydes métalliques. Lyon, 1854.

Cosmos, VIIe année, 23 livr.

Cremona, Luigi, Sulle linee del terz' ordine a doppia curvatura. Roma, 1858; 4°.
— Intorno ad un teorema di Abel. Roma, 1858; 8°.

Gazette médicale d'Orient. IIème année, Nr. 8.

Gillis, J. M., Observations to determine the solar Parallax. The U. S. Naval-Astronomical expedition to the southern Hemisphere, during the year 1849—52. Washington, 1856; 4°.

Kolenati, Prof., Fauna des Altvaters. Brünn, 1859; 8°.

Leidy, J., Notice of remains of extinct Vertebrata from the valley of the Niobrara River. Philadelphia, 1858; 8°.

Message from the President of the U. S. communicating the fourth meteorological report of Prof. J. P. Espy. Washington, 1857; 4°.
Ohio Agricultural Report for the year 1856. Columbus, 1857; 8°.
— Rivista meteorologica del 1857; 8°.
— Sulla terza cometa del 1854. 1857; 4°.
Ran, P. F. X. de, Discours après le service funèbre pour le repos de Jean Henri van Oyen. Louvain, 1858; 8°.
Report of the Superintendent of the U. S. Coast Survey for 1856; Washington, 1856; 4°.
SITZUNGSBERICHTE

DER

KAISERLICHEN AKADEMIE DER WISSENSCHAFTEN.

MATHEMATISCH-NATURWISSENSCHAFTLICHE CLASSE.

XXXIII. BAND.

SITZUNG VOM 16. DECEMBER 1858.

N° 29.
SITZUNG VOM 16. DECEMBER 1858.

Eingesendete Abhandlungen.

Über das Vorkommen des Quercitrin als Blüthenfarbstoff.

Von dem w. M. Dr. Friedrich Roehl der.

Wir haben demnach in Quercus tinctoria (Rinde und Splint), in Ruta graveolens (Blätter), Capparis spinosa (Blüthenknospen) und Sophora japonica (unentwickelte Blüthenknospen) das Quercitrin als gemeinschaftlichen Bestandtheil.

Diesen vier Pflanzen kann ich eine fünfte hinzufügen, die Rosskastanie (Aesculus Hippocastanum).

Die völlig entwickelten Blätter dieses Baumes enthalten eine, wenn auch nicht bedeutende Menge von Quercitrin. In der Rinde des Stammes und der Zweige, in den Tegminibus der Knospen, in

In den reifen Samen gibt Fremy Saponin, einen krystallisirten Bitterstoff und einen gelben Farbstoff als Bestandtheile an. Der gelbe Farbstoff, der schwierig von der überwiegenden Menge anderer Bestandtheile zu trennen ist, ist Queretin. Ich habe daraus reines Queretin dargestellt.

Werden die Cotyledonen der reifen Samen in dünne Scheiben zerschnitten, mit Weingeist von 35 Grad B. übergossen und in einem verschlossenen Gefäss 8 bis 10 Tage stehen gelassen, so erhält man eine goldgelbe Tinctur, die ihre Farbe dem Queretin verdankt, dem einzigen gefärbten Bestandtheile der Cotyledonen, die nach dem Ausziehen blendend weiss erscheinen. In den Samenlappen ist ausser dem Queretin kein einziger der besonderen Bestandtheile der Rinde, Blätter u. s. w. der Pflanze enthalten, sie müssen also alle beim Keimungsprocesse erst aus den Bestandtheilen des Samens herausgebildet werden.

Über das Vorkommen des Quercitrin als Blüthenfarbstoff.

Das Quercitrin und Quercetin treten, wie sich hieraus ergibt, als Blüthenfarbstoffe auf. Bei der gänzlichen Unwissenheit über die Blüthenfarbstoffe, in der wir uns noch befinden — denn ausser ein paar Analysen des Carthamin ist die Zusammensetzung keines einzigen zu ermitteln, auch nur versucht worden —, hat dieses Vorkommen des Quercitrin und Quercetin, wie ich glaube, einiges Interesse.

Zur Darstellung des Quercitrin oder Quercetin bleibt bis jetzt Quercitronrinde das beste Material. Ich will hier noch die Methode beschreiben, nach welcher ich durch Herrn Tonn er im hiesigen Laboratorium das Quercitrin und Quercetin darstellen liess, da die Unkosten dieser Methode geringer sind als die des Verfahrens, welches Bolley angegeben hat.

Über Verbindungen der Erdmetalle mit organischen Radicalen.

Von W. Hallwachs und A. Schaafrik.

Metallisches Magnesium, grob zerkleinert und mit seinem gleichen Volumen vollkommen entwässerten Jodäthylen in eine starke Glasröhre eingeschmolzen, greift schon bei gewöhnlicher Temperatur das Jodäthylen an und setzt Jodmagnesium ab; bei +100° geht die Zersetzung ziemlich schnell vor sich; bei +150° bis +180° sind 5 Gramme Jodäthylen in einem Tage zersetzt; das Magnesium ist in eine weisse Masse verwandelt, die Flüssigkeit verschwunden. Beim Öffnen der Röhre entweicht mit Heftigkeit Gas und die weisse Masse liefert erbitzt ein farbloses flüchtiges Liquidum, welches penetrant zwiebelartig riecht, bei der kleinsten Spur hinzutretender Luft weisse Wolken von Magnesia absetzt und an der Luft erwärmt dichte weisse Dämpfe verbreitet, aber sich nicht von selbst entzündet. Es besteht wahrscheinlich aus freien Kohlenwasserstoffen mit Spuren von Äthylmagnesium; die Hauptmenge des letzteren ist
offenbar in der weissen Masse mit Jodmagnesium verbunden; denn diese behält auch noch nach anhaltendem und starkem Erhitzen die Eigenschaft Wasser mit explosionsartiger Heftigkeit zu zersetzen, wobei bedeutende Erhitzung eintritt und ein penetrant riechendes Gas entwickelt wird.

Fein zerschnittenes Aluminiumblech mit seinem doppelten Volumen Jodäthy1 eingeschmolzen greift letzteres erst über +100° an; bei +180° geht die Zersetzung sehr rasch; in zwei Tagen sind 5 Gramme Jodäthy1 zersetzt und in ein dickes syropähnliches Liquidum verwandelt, trübe durch einen grauen Schlamm (Silicium- und Eisengehalt des käuflichen Aluminiums). Beim Öffnen entweicht wenig Gas, aber jeder Tropfen des Liquidums verbrennt an der Luft mit prachtvoller Feuererscheinung und unter Bildung weisser, brauner und violetter Dämpfe: zugleich fliegen lockere Flocken von Thonerde-Pompholix herum. Der Röhreninhalt, im Kohlenäurestrom abdestillirt, lässt ein schweres farbloses Öl von ungemein hohem Siedepunkte übergehen, welches wahrscheinlich Äthylaluminium ist und ebenfalls Wasser auf das heftigste zersetzt. Es ist leicht einzusehen, dass auch, wenn kein Aluminiumjodür (AlJ) gebildet wird, das Äthylaluminium doch eben so gut Al₄Aet₄ als Al-Aet (oder vielmehr Al₄Aet₄) sein kann.

Pulverförmiges Vanadin (aus VCl₅ durch Wasserstoff reducirt) greift Jodäthy1 bei +180° nur langsam an und liefert ein tieffrothes Liquidum, dessen nähere Untersuchung bis jetzt am Mangel des Materials scheiterte. Es ist von entscheidender Wichtigkeit, ob hier AetVJ (analog Telluratjodür AetTeJ) oder Aet₄VJ (analog Riches’s Met₄WJ) entsteht.

Phosphor, Selen (beide amorph) und Tellur greifen das Jodäthy1 leicht und rasch an, liefern auch wohl nur die schon bekannten Verbindungen; Bor und Silicium haben dagegen noch keine bestimmten Resultate gegeben, wiewohl nicht zu zweifeln ist, dass auch hier entsprechende Verbindungen existiren. Ebenso gedanken wir noch Beryllium und Zirkonium in den Kreis unserer Untersuchungen zu ziehen.

War es zwar auch nach den Entdeckungen der letzten Jahre (wir erinnern nur an Stannäthy1 und Plumbäthy1) höchst wahrscheinlich geworden, dass alle Elemente in Verbindung mit organischen Radicalen darstellbar seien, so ist es doch überraschend, die Metalle
der sonst so trägen und feuerfesten Erden durch Äthyl in volatile, brennbare, ja selbstentzündliche Liquida verwandelt zu sehen, deren Atomvolumina und Dampfdichten gewiss zu weiteren Aufschlüssen über die bis jetzt so rätselhafte moleculare Natur der anderthalb-atomigen Radicale führen werden; und gerade darum erscheint es unbedingt nötig, neben Aluminium auch Beryllium, Zirkonium, Eisen und Chrom zu untersuchen. Zwar wissen wir durch Frankland, dass Eisen das Jossedäthyl auch bei +200° nicht angreift, und für Chrom ist nach Analogie dasselbe zu erwarten: aber Cahn's und Hofmann's Meisterarbeit über die Phosphorbasen hat uns im Zinkäthyl ein Mittel von vielleicht unbeschränkter Anwendbarkeit kennen gelehrt, dass diese Schwierigkeit verschwinden macht. Um die Wichtigkeit der hier zu erwartenden Resultate nur anzudeuten, genügt es darauf aufmerksam zu machen, dass die Einwirkung des Zinkäthyls auf Uranylchlorür (\(\text{U}_2\text{O}_4\text{Cl} \)) einen äthylhaltigen Körper von der Formel \(\text{C}_4\text{O}_4\text{Al} \) geben wird, dessen Eigenschaften die Controverse über die Uranylfrage entscheiden müssen. Ist das Uran sesquioxyd in der That Uranloxyd, so wird obige Verbindung als Verbindung zweier Radicale, als Uranäthylühr, indifferent sein (in dem Sinne wie Zinkäthyl); sind aber die drei Sauerstoffatome des Uranoxides gleichartig (wenn auch nicht gleich wertig) so wird die Verbindung \(\text{U}_2\text{O}_4\text{Al} \) als Base auftreten. Ebenso wird die Einwirkung von Zinkäthyl auf Chlorchromsäure \(\text{CrO}_4\text{Cl} \) einen Körper \(\text{CrO}_4\text{Al} \) geben, der indifferent ist, wenn die Chromsäure in der That die Constitution \(\text{CrO}_4 \) \(\text{O}_4 \) hat, saurer dagegen, eine wahre äthylirte Chromsäure, wenn alle drei Sauerstoffatome der Chromsäure (sei es auch ungleichmässig) zu ihrer Acidität beitragen.

Es versteht sich aber von selbst, dass bei allen diesen Versuchen an der Stelle des Zinkäthyls das Aluminiumäthyl wegen seiner geringeren Flüchtigkeit und wegen seiner schärfer ausgesprochenen elektropositiven Eigenschaften mit dem grössten Vorteile wird angewandt werden können.
Vorträge.

Vorläufige Anzeige über gefäßlose Herzen.

Von dem w. M. Regierungsrat Prof. Hyrtl.

Ich habe der kaiserlichen Akademie vorläufig Bericht zu erstatten über eine anatomische Entdeckung, deren Durchführung und Sicherstellung mich lange Zeit beschäftigte. Sie betrifft einen Gegenstand der mikroskopischen Injections-Anatomie, und liefert den Nachweis der Existenz gefäßloser Herzen.

Die Klappen am Ostium arteriosum halten die centripetal injicirte Masse an dieser Stelle auf 1), und gestatten ihr, die Herzgefässse bis

1) Wird der Injectionsdruck höher gesteigert, als es nöthig ist, so wird der Bulbus in dem Grade ausgedehnt, dass die aufgekräumten freien Ränder der Klappen am Ostium arteriosum der Kammer nicht mehr in der bekannten Y Figur zusammenschliessen, sondern, geradlinig angespannt, eine dreieckige Öffnung zwischen sich entstehen lassen, durch welche die Injectionsmasse in die Herzkammer, und von dieser in die Vorkammern und in das Venensystem gelangt. Die Möglichkeit durch methodisch gesteigerten Druck die Klappen zu überwinden, findet auch bei der Injection der Lymphgefäße vom Stamme gegen die Äste eine sehr lehrreiche Anwendung, indem
in den Bezirk der Capillarien zu füllen, ja selbst aus letzteren durch die Venen zurückzukehren.

Injectionen dieser Art decken höchst merkwürdige und bisher ungeahnte Verhältnisse auf, welche herrschenden physiologischen Ansichten sich entgegenstellen und ihrer ausnahmslosen Wiederkehr bei bestimmten Familien, Ordnungen und Classen der Wirbeltiere wegen, nicht bloß in systematischer, sondern auch in funktioneller Beziehung bedeutsam sind, indem sie einen anderen als den bisher gedachten Vorgang bei der Herzernährung veranlassen.

Die beiden Classen warmblütiger Wirbeltiere zeigen dieselbe capillare Verästelung ihrer Herzgefäße, wie sie im reichversorgten Muskelfleische überhaupt stattzufinden pflegt. Allein Fische und Amphibien weichen von dieser Norm in auffallendster Weise ab.

Ich bin im Stande folgende Sätze durch einen wahren Überfluss von Injectionsbeweisen als allgemein giltig und unumstößlich aufzustellen.

1. Das Herz der Urodelen, der Gymnophionen und der Batracien, ist vollkommen gefässlos.

Jede vollkommen gelungene mikroskopische Injection der Herzarterien, welche durch die Capillargefäße in die Venen übertritt, lässt die Herzwände uninjiziert. Die in weiter Entfernung vom Herzen, jenseits des Bulbus arteriosus entspringende Arteria cardiaca 1) gehört nur den Wänden des Bulbus, nicht zugleich jenen des Herzens an, und löst sich an der Oberfläche des ersteren in Capillarnetze auf, welche an der Grenze zwischen Bulbus und Herz sich mit geschlossenen Maschen absetzen, aus welchen keine Verlängerungen in die Herzwand übertreten. Mag man die Gegenprobe durch die Injection der sogenannten Herzvene von der Jacobson'-

1) Sie entsteht bei den verschiedenen Familien der Amphibia dipnoa aus dem vordersten jener drei Äste, in welche sich der rechte primitive Spaltungsstamm des Bulbus arteriosus auflöst (Arteria carotico-lingualis), oder aus dem Ende dieses Stammes selbst. Ich kenne kein Geschlecht der Doppelathmen, bei welchem die sogenannte Arteria cardiaca aus dem Bulbus entstände, wie es aller Orten heisst.
schen Bauchvene aus vornehmen, und die Masse von den Venen in die Arterien hinüberstreifen, immer ist und bleibt das Herzmuskel der genannten Ordnungen vollkommen gefäßlos, und hat man das gesamte Gefäßsystem, Arterien, Venen und Capillargefäße, in allen seinen Bezirken durch Injection gefüllt, so sieht man auch von keiner anderen Seite her ernährende Gefäße zum Herzen und vom Herzen gehen.

2. Das Herz aller beschnuppten Amphibien (Saurier, Cheloner und Ophidier) besitzt nur eine sehr dünn, gefäßreiche Corticalschicht. Alle tiefliegenden Muskelschichten des Herzens sind durchaus gefäßlos.

Auf die für die Batrachier angegebene Weise gelingen die Herzinjectionen der beschnuppten Amphibien sehr leicht. Das Herz wird durch Füllung seiner reichlichen Capillargefäße an der Oberfläche über und über roth, und die Masse geht in die Venen über. Schneidet man ein so injiziertes Herz der Quere oder der Länge nach in Scheiben, so ist jede Scheibe von einem rothen injizierten Rande umsäumt, welcher an dem faustgrossen Herzen riesiger Cheloner höchstens eine Linie mächtig ist, während das gesamte übrige Fleisch dieser Herzscheiben eben so gefäßlos ist wie das ganze Batrachierherz. Die Grenze zwischen gefäßführendem und gefäßlosem Herzmuskel ist sehr scharf gezeichnet, und läuft der äusseren Oberfläche des Herzens parallel. Untersucht wurden bisher von den
Vorläufige Anzeige der Entdeckung gefässlöser Herzen.

575

3. Die totale und partielle Gefässlosigkeit des Amphibienherzens hängt von dem Grade des cavernösen Bauens der Herzwand ab.

Es wurde schon von älteren Schriftstellern über das Amphibienherz hervorgehoben, dass der Kamerraum desselben durch Verlängerungen, welche zwischen die Fleischbündel der Herzwand eindringen, ein multilocularer wird. Diese intraparietalen Fortsetzungen der Herzöhle bilden ein Fachwerk, dessen Lücken den Hohlräumen eines cavernösen Baues gleichen und dem Herzblut gestatten, in die Muskelwand des Herzens bis zu einer gewissen Tiefe einzudringen und die Fleischbalken der Wand zu umspülen. Da nun durch das Amphibienherz gemischtes Blut strömt, so werden die Muskelbündel der Herzwand aus dem arteriellen Anteile dieses gemischten Blutes, welches sie tränt, durch Imbibition jene Stoffe direkt aufnehmen, welche sie zu ihrer Ernährung benöthigen, ohne dieselben erst aus Capillargefässen zu beziehen.

Nach Verschiedenheit der Tiefe, bis zu welcher die cavernösen Ausläufer der Herzöhle in die Wand des Herzens eindringen, wird eine dickere oder dünner Rindenschichte der Muskelsubstanz solid bleiben können. Bei den Batraciern, Urodelen und Gymnophionen, dringt das cavernöse Fachwerk der Kammerwand durch die ganze Dickes der letzteren bis unter das viscerale Blatt des Pericardium vor, die gesammte Fleischmasse der Herzwand wird vom Herzblut getränkt und ernährt, wodurch ein Apparat von Capillargefässen am Herzen entbehrlch wird. Bei den beschuppten Amphibien dagegen reichen die Nebencavernen der Kammer nicht bis zum Pericardium hin; es findet sich eine, wenn auch sehr dünne, compacte corticale Muskelschichte, welche zu ihrer Ernährung Capillargefässen braucht, während das übrige Herzfleisch gleiche Ernährungsform mit dem Batrachercherzen hat.

Wenn nun die Bedingungen der vollkommenen oder theilweisen Gefässlosigkeit des Amphibienherzens nicht mehr dunkel sein können, so sind sie es doch bei der cursirenden Ansicht über die nutritiven
Eigenschaften des arteriellen und venösen Blutes, für die letzte Classe der Wirbelthiere, denn:

4. Das Fischherz verhält sich wie das Herz der beschuppten Amphibien.

Um die Gefäßverhältnisse des Fischherzens zur Anschauung zu bringen, muss die Herzarterie, welche aus der zweiten oder dritten rechtseitigen Kiemenvene entspringt, gegen das Herz hin isolirt injicirt werden, wozu begreiflicher Weise nur die grössten Herzen zu verwenden sind.

Man findet den ungetheilten, aber immer sehr feinen Stamm der Herzarterie, gewöhnlich an der rechten Hälfte des Bulbus zum Herzen herablaufen, und kann ihn mit Röhrchen injiciren, welche die Galvanoplastik von extremster Feinheit zu bereiten lehrte. Eine durch die Venen zurückkehrende arterielle Injection zeigt nur die corticale Muskelschichte des Herzens mit Capillaren versehen; — alles Übrige ist gefässlos. Sämtliche von mir untersuchte Donauische verhalten sich in dieser Beziehung vollkommen gleich.

Wenn sich diese Einrichtung nur bei Amphipnous und Monopterus vorfände, so wäre sie verständlich, da der Amphibienkreislauf dieser beiden Gattungen, und ihr Herz als ein Cor arteriosovenosum vollkommen sichergestellt sind 1). Allein das Herz aller übrigen Fische ist ein Venenherz, oder gilt wenigstens dafür, und man kann nicht umhin, bei der Allgemeinheit der erwähnten Herzeinrichtung zuzugeben, dass auch das venöse Blut Bestandtheile führe, welche die Ernährung der tieferen Herzschichten ermöglichen.

5. Die Ganoiden besitzen ein in allen Schichten gefässreiches Herz.

Die Ganoiden, welche in so vielen Beziehungen eine Ausnahmestellung in der Fischwelt einnehmen, behaupten diese auch durch den auf alle Schichten des Herzens gleichmässig ausgedehnten Gefäßreichthum. Ich konnte bisher nur eine Gattung dieser Ordnung untersuchen, welche bei uns immer frisch zu haben ist: Acipenser.

Bei Acipenser huso und A. ruthenus verlaufen in der Axe der grösseren Fleischbündel der Herzkammerwand nicht unansehnliche Zweige der Arteria coronaria, welche dieselben mit Capillargefäss-
netzen versehen, welche den gleichen, die in der Rindenschichte des Herzens angetroffen werden. Die übrigen Ganoiden vorzunehmen, erwartete ich die Zuzendung neuen ichthyologischen Materials, dessen Ankunft mir erlauben wird, eine Untersuchung abzuschliessen, über deren bisher erlangte Hauptergebnisse ich hiermit nur eine vori""füge Anzeige erstattet habe.

Nachschrift.

An einem so eben erhaltenen riesigen Exemplare von *Hexanchus griseus* zeigte die capillare Injection der *Arteriae coronariae* einen ähnlichen Gefässreichthum des gesammten Herzfleisches, wie bei den Ganoiden, und es steht zu erwarten, dass das Herz der Rochen und Chimaeren sich ebenso verhält, worüber ich in Bälde Gewissheit zu erhalten hoffe.

Die Änderungen der Krystallaxen des Aragonites durch die Wärme gerechnet aus Rudberg's Beobachtungen.

Von Dr. Viktor v. Lang.

1. Man verdankt Rudberg 1) die genaue Kenntniss der optischen Constanten des Aragonites, welche er durch Prismen ermittelte, die parallel je einer Krystallaxe geschnitten waren. Derselbe 2) bestimmte später mittelst dieser Prismen auch die Werthe der Brechungsquotienten für eine Temperatur-Erhöhung von 64° C. Aus den hiebei nützigen Beobachtungen der Änderungen der brechenden Winkel liessen sich mit Leichtigkeit die Änderungen der Krystallaxen berechnen, falls nur die Orientirung der Prismenseiten gegen die Axen bekannt wäre. Diese Orientirung lässt sich aber aus den Werthen bestimmen, welche Rudberg für die Minimum-Ablen- kung der ausserordentlichen Strahlen bei der gewöhnlichen Temperatur (16°—18° C.) fand. Die Zahlen, welche derselbe aus diesen Werthen nach der Minimum-Formel \(n = \sin \frac{A+D}{2} : \sin \frac{A}{2} \) rechnet,

haben zwar eigentlich keine Bedeutung, da diese Formel nur unter der Voraussetzung gilt, dass bei dem Minimum der Ablenkung die Wellennormale gleich geneigt gegen beide Prismenflächen sei, was für die ausserordentliche Welle im Allgemeinen nicht stattfindet. Trotzdem ist es aber möglich aus dem Ablenkungswinkel für die Minimumstellung, aus dem brechenden Winkel und aus den beiden Hauptbrechungsquotienten, zwischen denen der Brechungsquotient der ausserordentlichen Welle variiert, die Orientirung des Prisma’s zu gewinnen.

Die hiez zu nöthigen Formeln wurden schon von Sé n a r m o n t ¹) entwickelt. Zur Vervollständigung werde ich jedoch eine kurze Ableitung dieser Formeln für die Minimum-Ablenkung durch Prismen, welche einer optischen Elasticitätsaxe parallel sind, nebst einigen Bemerkungen über den Nutzen derselben vorausschicken.

2. Wir bezeichnen mit
 A die Grösse der brechenden Kante, welche einer optischen Elasticitätsaxe parallel läuft;
 \(i, i' \) die Winkel, welche die eintretende und austretende Wellennormale mit den Flächenormalen \(P, P' \) der Prismenseiten bilden;
 \(r, r' \) die Winkel, welche die durchgehende Wellennormale mit eben diesen Flächenormalen einschliesst;
 \(D \) den Ablenkungswinkel der Wellennormale ²);
 \(n \) den Brechungs-Quotienten der ausserordentlichen Welle für die durch \(r \) gegebene Richtung;
 \(\delta, \epsilon \) die beiden Hauptbrechungs-Quotienten, zwischen denen \(n \) variiert;

¹) Nouv. Ann. de Mathém. t. XVI.
²) Die Winkel \(i, i', D \) haben gleiche Werthe, für die Wellennormale und den zugehörigen Strahl, wodurch es auch einzig möglich wird, die Grössen dieser Winkel durch directe Beobachtung zu finden.
Aragonitos durch die Wärme gerechnet aus Rüdberg's Beobachtungen. 579

\[\theta \] den Winkel, welche die Halbierungslinie des brechenden Winkels \(A \) mit der \(\delta \) entsprechenden Elasticitätsaxe einschließt.

Man hat nun für den Durchgang der Wellen folgende Gleichungen

\[\begin{align*}
A &= r + r' ; \quad A + D = i + i' \\
\frac{\sin i}{\sin r} &= \frac{\sin i'}{\sin r'} = n \\
\frac{1}{n^2} &= \frac{\cos \left(\frac{A}{2} - r - \theta \right)^2}{n^2} + \frac{\sin \left(\frac{A}{2} - r - \theta \right)^2}{n^2}
\end{align*} \]

(1)

(2)

Die letzte Gleichung erhält man nach den Gesetzen der Doppelbrechung, indem die durchgehende Wellennormale, deren Geschwindigkeit im Allgemeinen durch den Radius einer Ellipse gegeben ist, mit der Elasticitätsaxe \(\delta \) einen Winkel \(90^\circ + \frac{A}{2} - r - \theta \) einschließt.

Für das Minimum der Ablenkung hat man noch folgende Bedingung

\[\frac{dD}{dr} = 0 \]

(3)

Aus diesen sechs Gleichungen mit zehn variablen Größen lässt sich immer eine Gleichung mit nur fünf Variablen (z. B. \(A, D, \theta, \delta, \epsilon \)) bilden.

Will man allgemein aus \(i, A, D \) den Brechungsquotienten \(n \) bestimmen, so verfährt man bekanntlich folgendermassen:

\[\begin{align*}
\frac{\sin i + \sin i'}{\sin r + \sin r'} &= \frac{\sin i - \sin i'}{\sin r - \sin r'} = n \\
\frac{\sin \frac{A + D}{2} \cos \left(i - \frac{A + D}{2} \right)}{\sin \frac{A}{2} \cos \left(\frac{A}{2} - r \right)} &= \frac{\cos \frac{A + D}{2} \sin \left(i - \frac{A + D}{2} \right)}{\cos \frac{A}{2} \sin \left(\frac{A}{2} - r \right)} = n
\end{align*} \]

(4)

und hieraus erhält man zur Bestimmung von \(n \) die bekannten Gleichungen

\[n = \frac{\sin i}{\sin r} ; \quad \tan \left(\frac{A}{2} - r \right) = \tan \frac{A}{2} \tan \left(i - \frac{A + D}{2} \right) \cot \frac{A + D}{2} \]

(1)

Aus Gleichung 4) erhält man aber auch sogleich

\[\frac{1}{n^2} = \frac{\sin \left(\frac{A}{2} \right)^2}{\sin \left(\frac{A + D}{2} \right)^2} \cos \left(\frac{A}{2} - r \right)^2 + \frac{\cos \left(\frac{A}{2} \right)^2}{\cos \left(\frac{A + D}{2} \right)^2} \sin \left(\frac{A}{2} - r \right)^2 \]

(5)

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 29.
Differentiert man diese Gleichung nach \(r \), so erhält man mit Rücksicht auf Gleichung 3)

\[
\frac{1}{n^2} \frac{dn}{dr} = -\frac{\sin \left(\frac{A}{2} \right)^2}{\sin \left(\frac{A + D}{2} \right)} \cos \left(\frac{A}{2} - r \right) \sin \left(\frac{A}{2} - r \right)
\]

\[
+ \frac{\cos \left(\frac{A}{2} \right)^2}{\cos \left(\frac{A + D}{2} \right)} \sin \left(\frac{A}{2} - r \right) \cos \left(\frac{A}{2} - r \right)
\]

(6)

Zufolge Gleichung 3) hat man aber anderseits

\[
\frac{1}{n^2} = \frac{\cos \left(\frac{A}{2} - r - \theta \right)^2}{\delta^2} + \frac{\sin \left(\frac{A}{2} - r - \theta \right)^2}{\epsilon^2}
\]

\[
\frac{1}{n^2} \frac{dn}{dr} = -\frac{\cos \left(\frac{A}{2} - r - \theta \right) \sin \left(\frac{A}{2} - r - \theta \right)}{\delta^2} + \frac{\sin \left(\frac{A}{2} - r - \theta \right) \cos \left(\frac{A}{2} - r - \theta \right)}{\epsilon^2}
\]

Hieraus ergibt sich

(7) \[
\begin{align*}
\cos \left(\frac{A}{2} - r - \theta \right) / \delta^2 &= \frac{1}{n^2} \cos \left(\frac{A}{2} - r - \theta \right) - \frac{1}{n^2} \frac{dn}{dr} \sin \left(\frac{A}{2} - r - \theta \right) \\
\sin \left(\frac{A}{2} - r - \theta \right) / \epsilon^2 &= \frac{1}{n^2} \sin \left(\frac{A}{2} - r - \theta \right) + \frac{1}{n^2} \frac{dn}{dr} \cos \left(\frac{A}{2} - r - \theta \right)
\end{align*}
\]

Führt man in diese Gleichungen die Werthe für \(\frac{1}{n^2} \) und \(\frac{1}{n^2} \frac{dn}{dr} \) aus Gleichung 5) und 6) ein, so erhält man

(8) \[
\begin{align*}
\cos \left(\frac{A}{2} - r - \theta \right) / \delta^2 &= \frac{\sin \left(\frac{A}{2} \right)^2}{\sin \left(\frac{A + D}{2} \right)} \cos \left(\frac{A}{2} - r \right) \cos \theta \\
&+ \frac{\cos \left(\frac{A}{2} \right)^2}{\cos \left(\frac{A + D}{2} \right)} \sin \left(\frac{A}{2} - r \right) \sin \theta
\end{align*}
\]

\[
\begin{align*}
\sin \left(\frac{A}{2} - r - \theta \right) / \epsilon^2 &= -\frac{\sin \left(\frac{A}{2} \right)^2}{\sin \left(\frac{A + D}{2} \right)} \cos \left(\frac{A}{2} - r \right) \sin \theta \\
&+ \frac{\cos \left(\frac{A}{2} \right)^2}{\cos \left(\frac{A + D}{2} \right)} \sin \left(\frac{A}{2} - r \right) \cos \theta
\end{align*}
\]
Ersetzt man in diesen Gleichungen \(\tan \left(\frac{A}{2} - r \right) \) durch seinen Werth aus Gleichung 4, so ist

\[
\begin{align*}
\vartheta &= \frac{\sin \left(\frac{A + D}{2} \right)^n}{\sin \left(\frac{A}{2} \right)^n} \cdot \frac{\tan \frac{A}{2} \cot \frac{A + D}{2} \tan \left(i - \frac{A + D}{2} \right) + \cot \theta}{\cot \frac{A}{2} \tan \frac{A + D}{2} \tan \left(i - \frac{A + D}{2} \right) + \cot \theta} \\
\varepsilon &= \frac{\sin \left(\frac{A + D}{2} \right)^n}{\sin \left(\frac{A}{2} \right)^n} \cdot \frac{\tan \frac{A}{2} \cot \frac{A + D}{2} \tan \left(i - \frac{A + D}{2} \right) - \tan \theta}{\cot \frac{A}{2} \tan \frac{A + D}{2} \tan \left(i - \frac{A + D}{2} \right) - \tan \theta}
\end{align*}
\]

Diese Gleichungen sind mit den von Sénar mont mit \(\theta \) bezeichneten identisch; sie dienen zur Bestimmung von \(\delta \) und \(\epsilon \), wenn \(A, D, \theta \) und \(i \) bekannt sind.

Man kann diese Gleichung auch in folgender Form schreiben:

\[
\begin{align*}
\left\{ \delta^n \sin \left(\frac{A}{2} \right)^n - \sin \left(\frac{A + D}{2} \right)^n \right\} \cos \frac{A}{2} \cos \frac{A + D}{2} \cos \left(i - \frac{A + D}{2} \right) \cos \theta &= \\
= - \left\{ \delta^n \cos \left(\frac{A}{2} \right)^n - \cos \left(\frac{A + D}{2} \right)^n \right\} \sin \frac{A}{2} \sin \frac{A + D}{2} \sin \left(i - \frac{A + D}{2} \right) \sin \theta \\
\left\{ \varepsilon^n \cos \left(\frac{A}{2} \right)^n - \cos \left(\frac{A + D}{2} \right)^n \right\} \sin \frac{A}{2} \sin \frac{A + D}{2} \sin \left(i - \frac{A + D}{2} \right) \cos \theta &= \\
= - \left\{ \varepsilon^n \sin \left(\frac{A}{2} \right)^n - \sin \left(\frac{A + D}{2} \right)^n \right\} \cos \frac{A}{2} \cos \frac{A + D}{2} \cos \left(i - \frac{A + D}{2} \right) \sin \theta
\end{align*}
\]

In dieser Form eignen sich nun diese Gleichungen sehr gut zur Elimination von \(\theta \) oder \(i \). Multipliziert man die beiden Gleichungen, wie sie unter einander stehen, so erhält man

\[
\left\{ \delta^n \sin \left(\frac{A}{2} \right)^n - \sin \left(\frac{A + D}{2} \right)^n \right\} \left\{ \varepsilon^n \cos \left(\frac{A}{2} \right)^n - \cos \left(\frac{A + D}{2} \right)^n \right\} \cos \theta^n + \\
+ \left\{ \delta^n \cos \left(\frac{A}{2} \right)^n - \cos \left(\frac{A + D}{2} \right)^n \right\} \left\{ \varepsilon^n \sin \left(\frac{A}{2} \right)^n - \sin \left(\frac{A + D}{2} \right)^n \right\} \sin \theta^n = 0
\]

Diese Gleichung [von Sénar mont mit 7) bezeichnet] kann erstens dazu dienen, einen der Hauptbrechungsquotienten \(\delta \) und \(\varepsilon \) zu bestimmen, wenn der andere und die Größen \(A, D, \theta \) bekannt sind. Andererseits findet man aus dieser Gleichung die Orientierung \(\theta \) aus den Größen \(A, B, \delta, \varepsilon \), was wir oben für unsere Aufgabe benötigen.
Multiplicirt man die Gleichungen 9) kreuzweise, so hat man hingegen

\[
\left\{ \begin{array}{l}
\sin \left(\frac{A}{2} \right)^2 - \sin \left(\frac{A + D}{2} \right)^2 \\
\cos \left(\frac{A}{2} \right)^2 \cos \left(\frac{A + D}{2} \right)^2 \cos \left(i - \frac{A + D}{2} \right) \\
+ \left\{ \begin{array}{l}
\sin \left(\frac{A}{2} \right)^2 \sin \left(\frac{A + D}{2} \right)^2 \sin \left(i - \frac{A + D}{2} \right) \\
\cos \left(\frac{A}{2} \right)^2 - \cos \left(\frac{A + D}{2} \right)^2 \cos \left(i - \frac{A + D}{2} \right) \\
\end{array} \right. \\
\end{array} \right. = 0
\]

(IV)

Aus dieser Gleichung findet man falls die Orientierung unbekannt ist, was bei weitem der häufigste Fall, einen der Brechungsquotienten aus dem andern mit Hilfe der Grössen \(A, D, i \).

3. Aus der Gleichung III, welche sich auch für die logarithmische Berechnung leicht umstellen lässt, kann man also die Orientierung der von Rudberg verwendeten Prismen bestimmen und es bleibt die weitere Aufgabe die Änderung der Axen aus den Änderungen des Brechenden Winkels zu bestimmen; natürlich kann hier nur von der Änderung des Axenverhältnisses die Rede sein.

Wir nennen zu diesem Zwecke

\(d, e \) die Längen der den Richtungen \(OX \) und \(OY \) entsprechenden Krystallaxen bei gewöhnlicher,

\(d', e' \) die Längen dieser Axen bei erhöhter Temperatur.

1) Zur Bestimmung der drei Hauptbrechungsquotienten genügen also schon zwei Prismen, die je einer Elastizitätsaxe parallel geschnitten, sonst aber beliebig orientiert sind.
A, A' die Neigungswinkel der beiden Prismenflächen für gewöhnliche und erhöhte Temperatur,

μ, ν die Winkel, welche die beiden Prismenflächen mit der Richtung der Axe d einschliessen, bei gewöhnlicher, μ', ν' diese Winkel bei erhöhter Temperatur,

me, ne die durch die Prismenflächen abgeschnittenen Stücke der Axe OY, wenn wir uns denken, dass beide Flächen die Axe OX in der Entfernung $d = LO$ schneiden.

Wir haben somit

$$A = \mu - \nu \quad A' = \mu' - \nu'$$

$$m = \frac{d}{e} \tan \mu \quad n = \frac{d}{e} \tan \nu$$

Da durch die Temperatur-Erhöhung die Verhältniszahlen m und n ungeändert bleiben, so hat man ferner

$$m = \frac{d}{e} \tan \mu' \quad n = \frac{d}{e} \tan \nu'$$

und daher

$$\frac{d}{e} \tan \mu = \frac{d}{e} \tan \mu'$$

$$\frac{d}{e} \tan \nu = \frac{d}{e} \tan \nu'$$

hieraus erhält man die beiden neuen Gleichungen

$$\frac{e'}{e'} \cdot \frac{d}{e} \left(\tan \mu - \tan \nu \right) = \left(\tan \mu' - \tan \nu' \right)$$

$$1 + \frac{d^2}{e^2} \cdot \frac{e'}{e'} \tan \mu \tan \nu = 1 + \tan \mu' \tan \nu'$$

Die Division dieser Gleichungen gibt

$$\frac{d}{e} \cdot \frac{e'}{d'} \left(\tan \mu - \tan \nu \right) = \tan A' \left(1 + \frac{d^2}{e^2} \cdot \frac{e'}{d'} \tan \mu \tan \nu \right)$$

oder in anderer Gestalt

$$\frac{d^2}{e^2} \cdot \frac{e'}{d'} = \frac{d}{e} \cdot \frac{e'}{d'} \cdot \frac{\sin A}{\tan A' \sin \mu \sin \nu} = \frac{1}{\sin \mu \sin \nu}$$

(10)

Aus dieser Gleichung ergibt sich der Werth von $\frac{e'}{d'}$ in der Form

$$\frac{e'}{d'} = \frac{e}{d} \cdot h$$

Die Wahl zwischen den beiden Werthen der Gleichung 10) ist nicht schwierig, da die Grösse h sich nicht weit von der Einheit entfernen kann.
Schneidet eine Fläche die Axe \(OY \) auf der entgegengesetzten Seite, so hat man die analoge Gleichung

\[
\frac{d^2}{c^2} \cdot \frac{e^2}{d^2} + \frac{d}{c} \cdot \frac{e'}{d'} \cdot \frac{\sin A}{\tan A' \sin \mu \sin \nu} = \frac{1}{\sin \mu \sin \nu}
\]

wo \(\mu \) und \(\nu \) wieder die Winkel sind, welche die Prismenflächen mit der Axe \(OY \) einschliessen, beide Winkel gezählt in entgegengesetzter Richtung.

4. Bezeichnen wir mit \(a, b, c \ldots a', b', c' \) die Krystallachsen bei gewöhnlicher und erhöhter Temperatur, mit \(a, b, c \) die optischen Elasticitätsaxen des Aragonits, so dass \(a > b > c \) und \(a > b > c \) ist, so hat man, da das Schema der Elasticitätsaxen für Aragonit \(c ab \) ist:

\[
a \parallel c, \ b \parallel a, \ c \parallel b.
\]

Wir bezeichnen ferner mit \(\alpha, \beta, \gamma \) die drei Hauptbrechungsquotienten, so zwar dass

\[
\alpha = \frac{1}{a}, \ \beta = \frac{1}{b}, \ \gamma = \frac{1}{c}, \ \text{und daher} \ \alpha < \beta < \gamma
\]

\textbf{Prisma A, Nr. 2.}

Dieses Prisma gibt den kleinsten Hauptbrechungsquotienten; die brechende Kante ist also parallel \(a \parallel b \), und dieses Prisma gibt daher die Änderung des Axenverhältnisses \(c \). Man hat

\[
A = 51° 48' 31'' \ \text{Temperatur} \ 18° \ C.,
A' = 51° 49' 1'',
D = 43° 27' 40'' \ \text{für das Minimum des Strahles} \ F,
\delta = \beta = 1.69053 \ \{ \
\varepsilon = \gamma = 1.69515 \ \} \ \text{für den Strahl} \ F,
\theta = 23° 40' 43'' \ \text{Winkel der Halbirungslinie mit} \ c.
\]

Die Winkel der beiden Prismenseiten mit der Axe \(c \) sind daher

\[
\mu = \frac{A}{2} + \theta = 49° 34' 58''.
\]
\[v = \frac{A}{2} - \theta = 2° 13' 33'' \] hieraus erhält man

\[\frac{c'}{a'} = \frac{c}{a} \cdot 0.999726. \]

Prisma B, Nr. 2.

Es entspricht diesem Prisma der größte Hauptbrechungsquotient und die brechende Kante desselben ist also parallel \(c \parallel a \), wir erhalten durch dieses Prisma die Änderung von \(\frac{c}{b} \). Es ist für dieses Prisma

\[A = 40° 12' 3'' \] Temperatur 18° C.,
\[A' = 40° 10' 10'', \]
\[D = 23° 50' 11'' \] Minimum-Ablenkung der Linie \(H \),
\[\delta = \alpha = 1:54226 \]
\[\varepsilon = \beta = 1:70509 \]

für die Linie \(H \),
\[\theta = 3° 34' 41'' \] Winkel der Halbirungslinie mit der Axe \(b \),

und daher die Winkel der Prismenseiten mit dieser Axe

\[\mu = \frac{A}{2} + \theta = 23° 40' 43'' \]

\[- v = \frac{A}{2} - \theta = 16° 31' 21'', \]

woraus man findet

\[\frac{c'}{b'} = \frac{c}{b} \cdot 0.999269. \]

Prisma C, Nr. 2.

Rudberg erhielt durch dieses Prisma den mittleren Hauptbrechungsquotienten; das Prisma hat daher seine brechende Kante parallel \(b \parallel c \), und gibt die Änderungen des Axenverhältnisses \(\frac{b}{a} \).

\[A' = 41° 34' 32'' \] Temperatur 16° C.,
\[A' = 41° 33' 51'', \]
\[D = 28° 44' 16'' \] für das Minimum der Linie \(H \),
\[\delta = \gamma = 1:70011 \]
\[\varepsilon = \alpha = 1:54216 \]

für die Linie \(H \),
\[\theta = 67° 50' 39'' \] Winkel der Prismenflächen mit der Axe \(a \);

man hat also für die Winkel der Prismenflächen mit der Axe \(a \)
\[\mu = \theta + \frac{A}{2} = 88^\circ 37' 58'' \]
\[\nu = \theta + \frac{A}{2} = 47^\circ 3' 23'', \] hiezu folgt
\[\frac{b'}{a'} = \frac{b}{a} \cdot 1 \cdot 000407. \]

Da man eines der drei Verhältnisse \[\frac{b'}{a'}, \frac{c'}{a'}, \frac{b'}{b} \] ersichtlich aus den beiden andern finden kann: so erhält man mit Vernachlässigung der unbedeutenden Temperaturunterschiede der einzelnen Prismen für die Verhältnisse \[\frac{b'}{a'}, \frac{c'}{a'} \] folgende Werthe:

\[\frac{b'}{a'} = \frac{b}{a} \cdot 1 \cdot 000457 \]
\[\frac{c'}{a'} = \frac{c}{a} \cdot 0 \cdot 999676. \]

Nimmt man aus diesen Doppelwerthen, welche zugleich ein Urtheil über den Grad der Genauigkeit geben, das Mittel, so hat man schliesslich

\[(12) \begin{align*}
\frac{b'}{a'} &= \frac{b}{a} \cdot 1 \cdot 000432 \\
\frac{c'}{a'} &= \frac{c}{a} \cdot 0 \cdot 999701.
\end{align*} \]

5. Auch Mitscherlich stellte Beobachtungen über die Änderung des Axenverhältnisses des Aragonits durch die Wärme an. Derselbe fand für die Temperaturen +14° R. und +114° R. folgende Winkel:

\[\begin{array}{ccc}
(t = 14^\circ \text{R.} = 17^\circ 3^\prime \text{C.}) & (t = 114^\circ \text{R.} = 142^\circ 3^\prime \text{C.}) \\
(101) (\overline{1}01) = 118^\circ 11' 46''\frac{1}{2} & 116^\circ 19' 28''\frac{1}{2} \\
(110) (\overline{1}10) = 108^\circ 20' 30'' & 108^\circ 20' 30''
\end{array} \]

hieraus ergeben sich die Axenverhältnisse

\[(13) \begin{align*}
\alpha : \beta : \gamma &= 1 : 0 \cdot 720781 : 0 \cdot 622490 & t &= 17^\circ 3^\prime \text{C.} \\
\alpha'' : \beta'' : \gamma'' &= 1 : 0 \cdot 751997 : 0 \cdot 621748 & t &= 142^\circ 3^\prime \text{C.}
\end{align*} \]

Aus diesen beiden Verhältnissen bekommt man für die Axenlängen bei einer beliebigen Temperatur \(t \) (im Grade Cels.) folgende Formeln:

\[(14) \begin{align*}
\frac{b}{a} &= 0 \cdot 720610 \left(1 + 0 \cdot 0000135 \, t \right) \\
\frac{c}{a} &= 0 \cdot 622627 \left(1 - 0 \cdot 0000125 \, t \right)
\end{align*} \]
Aus diesen Gleichungen erhält man für eine Temperatur von 81°5 C. das Axenverhältniss
\[a' : b' : c' = 1 : 0.721403 : 0.621992 \]
und in Bezug auf das Axenverhältniss \(a, b, c \) für 17°5 C. aus Gleichung 13)
\[
\begin{align*}
\frac{b'}{a'} &= \frac{b}{a} \cdot 1.000864 \\
\frac{c'}{a'} &= \frac{c}{a} \cdot 0.999200.
\end{align*}
\]
\[(15)\]

Der Temperaturunterschied für \(a, b, c \ldots a', b', c' \) beträgt auch hier 64° C. und falls die absolute Temperatur sich um ein Geringes von der Rudberg'schen unterscheidet, so hat dieses kaum irgendeinen Einfluss auf die vorstehenden Zahlenwerthe. Doch ist die Differenz der Werthe aus den Gleichungen 12) und 15) zu gross, um sie Beobachtungsfehlern zuzuschreiben; auch sind die Differenzen für beide Verhältnisse in demselben Sinne. Nach Gleichung 15) nämlich ändert sich sowohl \(\frac{b}{a} \) als \(\frac{c}{a} \) stärker als nach Gleichung 12).

Es scheint daraus hervorzugehen, dass jedenfalls bis zu einer Temperatur von 82° C. das Axenverhältniss des Aragonits sich weniger ändert, als es die Formeln 14) angeben, und dass daher auch noch in diesen Formeln wenigstens auf die zweiten Potenzen von \(t \) Rücksicht zu nehmen ist, falls man die Axenlängen auch nur auf vier Dezimalstellen richtig haben will: vorausgesetzt, dass nicht etwa in den Messungen Mitscherlich's irgend ein Beobachtungsfehler liegt.

6. Um schliesslich beurtheilen zu können, wie gross der Winkel \(W \) ist, den die durchgehende Wellennormale der ausserordentlichen Strahlen bei dem Minimum ihrer Ablenkung mit einer gegen beide Prismenseiten gleichgeneigten Linie einschliesst, so findet man für das Prisma \(A, \) Nr. 2 aus den Gleichungen IV und I
\[
i - \frac{A + D}{2} = 0° 3' 48''
\]
\[
W = r - \frac{A}{2} = 0° 1' 41''.
\]

Beide Winkel sollten gleich Null sein, falls die Wellennormale bei dem Minimum gleichgeneigt hindurchginge. Man erhält aus diesen Werthen
und hieraus den Brechungsquotienten für die durch \(r \) gegebene Richtung

\[
n = 1.69369.\]

Rechnet man aber den Brechungsquotienten unter der Voraussetzung, dass die Normale gleichgeneigt gegen die Prismenseiten ist, so hat man den schon ziemlich abweichenden Werth

\[
(n) = 1.69127.
\]

Hieraus würde sich unter obiger Voraussetzung nach Gleichung 2) für den Winkel der Halbierungslinie mit der Axe \(c \) der Werth ergeben

\[
(\theta) = 23° 40' 5''.
\]

Rechnet man mit diesem fehlerhaften Werthe die Änderung des Axenverhältnisses, so erhält man

\[
\left(\frac{c'}{a'}\right) = \frac{c}{a} \cdot 0.98810
\]

einen Werth, welcher bedeutend von dem wahren Werthe der Größe \(\frac{c'}{a'} \) abweicht, daher von einer Vernachlässigung des Winkels \(W \) nicht die Rede sein kann. Bedenkt man aber, wie es sich aus den Gleichungen 8) leicht beweisen lässt, dass der Winkel \(W \) wirklich gleich Null wird, wenn die Halbierungslinie des brechenden Winkels mit einer Axe zusammenfällt, so sieht man auch sogleich, dass das Prisma \(A, \) Nr. 2 von allen Prismen die ungünstigste Orientirung hat, indem für dasselbe der Winkel der Halbierungslinie mit der nächsten Axe den grössten Winkel einschliesst.
Untersuchungen über den Zusammenhang in den Änderungen der Dichten und Brechungsexponenten in Gemengen von Flüssigkeiten.

Von Dr. Adolph Weiss und Edmund Weiss.
(Ausgeführt im k. k. physikalischen Institute.)

Die Arbeit beginnt mit einer Untersuchung des Einflusses jener Fehler, welchen die Bestimmung des Brechungsexponenten von Flüssigkeiten in Hohlprismen unterworfen ist, auf letzteren. Dieselben werden eingetheilt in Beobachtungsfehler, entstehend durch den Nichtparallelismus der Deckplatten, und Excentricitätsfehler; jede Classe derselben wird eigens untersucht, und bei den letzteren zwei Arten die Mittel angegeben, sie zu eliminiren. Bei der Anwendung der allgemein entwickelten Formeln auf die speciellen Fälle, bei denen gewöhnlich die Messung vorgenommen wird (senkrechte Incidenz- und Minimalstellung) zeigt sich der Umstand, dass bei der Minimumstellung der Coefficient des Behlers im Einfallswinkel sich annullirt, d. h. dass ein kleiner bei der Einstellung begangener Fehler auf den Brechungsexponenten gar nicht zurückwirkt; dies zeigt, dass man auch mit dieser Stellung, trotz der Unsicherheit der Einstellung, genaue Resultate zu erzielen im Stande ist.

Dann folgen die Resultate einer Beobachtungsreihe an Salzsäure, welche so angestellt ist, dass die durch Nichtparallelismus der Deckplatten entstehenden Fehler, so wie die sogenannten Excentricitätsfehler im Mittel aus je zwei Beobachtungen sich tilgen, so dass im Mittel aller Beobachtungen der wahrscheinliche Fehler in den Dichten nie 0,0002 und in den Brechungsexponenten 0,0001 übersteigt. Die Berechnung der Contractions- und Retardations-Coéfficienten aus den Dichten und Brechungsexponenten zeigt, dass beide so wie ihr Verhältniss ganz andere Gesetze befolgen als jene sind, welche bei den
früheren Substanzen gefunden wurden. Während sowohl bei Schwefel-
als Salpetersäure die δ und θ bei grösserer Verdünnung abnehmen,
zeigt sich hier der umgekehrte Fall: bei den höchsten Concentra-
tionsgraden sind δ und θ sehr klein, wachsen aber bei fortschreiten-
der Verdünnung mehr und mehr. Ebenso verschieden ist der Gang
der θ von einer Linie des Spectrums zur anderen. Bei SO$_3$ und NO$_3$
nehmen dieselben vom rothen zum violeten Ende des Spectrums an
Grösse ab; bei ClH ist dies wenigstens nicht bei allen Concentra-
tionsgraden der Fall: in den höchsten nehmen dieselben an Grösse
bei den brechbareren Strahlen zu; in den mittleren sind dieselben
nahezu constant, und in den niedrigeren nehmen sie sogar an Grösse
vom rothen zum violeten Ende ab, wie dies an den früheren Säuren
beobachtet wurde. Das Verhältniss δ/θ ist hier nicht mehr nahe $=2$;
es beträgt stets mehr als 2·0, zugleich ist ein Abnehmen desselben
von den höchsten Concentrationsgraden gegen die niedrigsten zu
nicht zu verkennen. (Etwas ähnliches zeigt sich, wiewohl nicht so
defuellt, an SO$_3$.)

Fasst man alles, was aus den bisherigen Beobachtungen folgt,
zusammen, so ergibt sich Folgendes:

1. Die Contractions-Coëffizienten sind nicht nur bei verschiedene-
enen Substanzen, sondern auch bei verschiedenen Concentrations-
graden einer und derselben Substanz verschieden.

2. Dasselbe ist mit den Retardations-Coëffizienten der Fall. Ihr
Gang ist jedoch dem der δ insoferne analog, als ihre Grösse mit δ
zu- und abnimmt. Allein diese sind auch verschieden bei verschiedene-
en Linien eines und desselben Concentrationsgrades, und zwar
nehmen sie von Roth gegen Violet hin an Grösse bald zu, bald ab.

3. Das Verhältniss δ/θ ist für jede Substanz ein anderes; es
ändert sich auch bei verschiedenen Concentrationsgraden ein und
derselben Substanz und auch bei verschiedenen Linien ein und des-
selben Concentrationsgrades.

Es drängte sich auch wieder die Frage auf, ob die verschiedene-
en Anomalien, welche Salzsäure gegen SO$_3$ und NO$_3$ zeigt, durch
Beobachtungsfehler erklärlich seien. Zur Entscheidung derselben
wurden dieselben Fehlereinfluss benützt, welche schon in der
früheren Arbeit zu einem gleichen Zwecke gedient hatten. Der Ein-
fuss derselben zeigte sich hier, trotz der genauerer Beobachtungen,
so bedeutend, dass man wohl, wollte man die Sache auf die Spitze treiben, nicht nur die θ von einer Linie zur anderen als constant ansehen könnte, sondern auch das Verhältniss $\frac{\delta}{\theta}$ als ein solches von einem Concentrationsgrade zum anderen gelten lassen könnte. Da sich auch bei SO$_3$ und NO$_3$ derselbe Fall ereignete, so ersieht man daraus, dass durch Beobachtungen, welche die Genauigkeit der eben vorliegenden nicht weit überschreiten, diese Fragen keineswegs mit Sicherheit beantwortet werden können. Es wurde daher der Versuch gemacht, die Erscheinungen, unter theoretischen Gesichtspunkten zu erklären.

Zuerst wurde die Frage aufgenommen, ob die θ von einer Linie zur andern constant seien, und wenn dies nicht der Fall wäre, welche Veränderung mit ihnen vorgehe. Zur Beantwortung derselben kann die frühere Fehlergleichung benützt werden: um nämlich den Einfluss des Überganges von einer Linie zur andern zu erfahren, hat man in dieselbe nur die betreffende Änderung der Brechungsexponenten einzuführen, und die anderen Grössen als constant, d. h. ihre Veränderungen als $= 0$ anzusehen. Die so erhaltene Gleichung hat die Form:

$$\Delta \theta = A \Delta n_1 + B \Delta n_2 + C \Delta N.$$

Führt man die Bedingung, dass θ von einer Linie zur anderen constant sei ($\Delta \theta = 0$), ein, so ergibt sich daraus sogleich eine Bestimmungsgleichung für $\frac{\delta}{\theta}$; sie zeigt, dass unter dieser Voraussetzung $\frac{\delta}{\theta}$ für verschiedene Concentrationsgrade nicht constant sein könne. Allein jene Voraussetzung ist unstatthaft; wie sich sogleich ergibt, berechnet man $\frac{\delta}{\theta}$ aus der dadurch entstehenden Gleichung. Sucht man aber ohne irgend eine Voraussetzung die Änderung des θ von einer Linie zur andern, so zeigt sich, dass es von Roth gegen Violet hin zunehme oder abnehme, je nachdem

$$\frac{\theta}{\delta} < n_1 \frac{\Delta n_3}{\Delta n_1} + n_2 \frac{\Delta n_1}{\Delta n_2},$$

woraus sich ergibt, dass sehr wohl alle zwei Fälle bei ein und derselben Substanz bei verschiedenen Concentrationsgraden eintreten können (ClH).
Nachdem also \(\theta \) von einer Linie zur anderen nicht constant ist, kann das Verhältniss \(\frac{\delta}{\theta} \) bei verschiedenen Concentrationsgraden höchstens für ein und dieselbe Linie constant sein. Eine der früheren ähnliche Untersuchung zeigt, dass dies dann eintrete, wenn
\[
\Delta n_1 = \Delta n_2
\]
d. h. die Ausdehnung des Spectrums für alle Substanzen gleich gross wäre. Da die Beobachtungen diesem widersprechen, ist auch \(\frac{\delta}{\theta} \) bei verschiedenen Concentrationsgraden variabel.

Dann wird auf eine Eigenschaft der \(\delta \) und \(\theta \) bei einem speziellen Falle aufmerksam gemacht, welche schon in der Formel selbst liegt. Sind nämlich die Brechungssexponenten \(n_1, n_2, N \) von einer gewissen Zahl, etwa \(a \), nur um Grössen erster Ordnung verschieden, d. h. ist:
\[
\begin{align*}
n_1 &= a + \alpha \\
n_2 &= a + \beta \\
N &= a + \gamma
\end{align*}
\]
so ist \(\delta = \frac{\theta}{a} + \rho \),
wo \(\rho \) eine Grösse derselben Ordnung wie \(a, \beta, \gamma \) ist. Dieser Fall ist deshalb wichtig, weil er bei einer ganzen Classe von Körperrn, nämlich den Gasen vorkommt, bei ihnen ist \(a = 1 \) und \(\alpha, \beta, \gamma \), also auch \(\rho \), sind Grössen, die erst in der 4. Decimale zählende Ziffern haben; es ist also bis zur 4. Decimale genau, geht man aber zu höheren blos näherungsweise:
\[
\delta = \theta.
\]

Zum Schlusse ist an einer Substanz, nämlich Salzsäure, der Versuch gemacht, die \(\delta \) und \(\theta \) und \(\frac{\delta}{\theta} \) nach Potenzen der Concentration in Reihen zu entwickeln, d. h. die Coefficienten der Gleichungen:
\[
\begin{align*}
\delta &= a (1 + \alpha_1 v_1 + \alpha_2 v_1^2 + \alpha_3 v_1^3 + \ldots) \\
\theta &= b (1 + \beta_1 v_1 + \beta_2 v_1^2 + \beta_3 v_1^3 + \ldots) \\
\frac{\delta}{\theta} &= c (1 + \gamma_1 v_1 + \gamma_2 v_1^2 + \gamma_3 v_1^3 + \ldots)
\end{align*}
\]
zu bestimmen. Dieselben wurden aus allen 9 Concentrationen nach der Methode der kleinsten Quadrate berechnet. Allein es zeigt sich dabei, dass die Coefficienten \(\alpha_1, \alpha_2, \alpha_3, \beta_1 \ldots \) nicht nur nicht zu
convergiren, sondern eher zu divergiren scheinen: \(a_1 < a_2 < a_3 \). Ob dies bloß in den Beobachtungsfehlern liege, welche natürlich die Coefficienten der höheren Glieder am meisten entstellen, oder ob dadurch eine Andeutung gegeben sei, dass die Änderungen von \(\delta \) \(\theta \) etc. nicht bei allen Concentrationsgraden einem Gesetze folgen, sondern dass dieses, also die Reihe für \(\delta \) und \(\theta \) bei verschiedenen Concentrationsgraden sich ändere, ist wegen der bedeutenden Entstellung der \(\delta \) und \(\theta \) durch Beobachtungsfehler bis jetzt noch nicht zu entscheiden. Unmöglicher dürfte letztere Ansicht keineswegs sein, da dieselbe Erscheinung bei allen vier bisher beobachteten Substanzen sich zeigt, wie die an denselben angestellten Berechnungen darthun. Nur ist noch zu bemerken, dass, sieht man von den äussersten Concentrationsgraden (0·9 und 0·1) ab\(^1\), wenigstens näherungsweise für \(\frac{\delta}{\theta} \) ein Ausdruck wie

\[
\frac{\delta}{\theta} = A + B v_1 v_2
\]

am besten zu genügen scheint.

I.

Untersuchungen, welche wir im Laufe des Sommers an Salzsäure anstellten, zeigten uns jedoch, dass dem nicht so sei, indem zum Beispiele eben bei der Salzsäure in den unteren Concentrations-

\(^1\) Wegen des grossen Einflusses der Fehler, die schon mehr als das Doppelte der nächsten (0·8 und 0·2) beträgt.

gräden der Contractions-Coëfficient weit langsamer wächst als der Retardations-Coëfficient.

Ehe wir jedoch die Resultate dieser Beobachtungen sammt einigen an dieselben sich anschliessenden theoretischen Betrachtungen über die Ursachen der hier sich zeigenden Inconstanz dieses Verhältnisses darlegen, wollen wir einige Bemerkungen über die Art, wie dieselben angestellt wurden, um ein möglichst fehlerfreies Resultat zu erhalten, vorausschicken.

Vor allem anderen suchten wir zu ermitteln, wie die verschiededenen Fehler, welche bei der Messung der Winkel begangen werden, auf den Brechungsexponenten zurückwirken und wie sie paralysirt werden können. Die Beantwortung dieser Fragen ist nicht schwer.

\[\text{Fig. 1.} \]

Fällt auf ein Prisma ABC (Fig. 1), dessen brechender Winkel ACB = \(\varphi \) ist, ein Lichtstrahl unter dem Winkel SEP = \(\alpha \) [wo PP' und QQ' die betreffenden Einfalls-lothe sind], so bestehen, wenn die Winkel PEF, Q'FE, QFS' der Reihe nach mit \(\beta, \gamma \) und \(\delta \) bezeichnet werden, zwischen diesen, dem Ablenkungswinkel S'Dx = \(\omega \) und dem Brechungsexponenten der Substanz des Prismas die folgende Relationen:

\[
\begin{align*}
\omega &= \alpha + \delta - \varphi \\
\varphi &= \beta + \gamma \\
\sin \alpha &= n \sin \beta \\
\sin \delta &= n \sin \gamma.
\end{align*}
\]

Diese Beziehungen, mittelst deren man aus je drei dieser Grössen die übrigen finden kann, benützt man gewöhnlich dazu, den Brechungsexponenten aus den drei Winkeln \(\alpha, \varphi \) und \(\omega \), welche man sich durch direkte Messung leicht verschaffen kann, zu bestimmen. Die Ermittelung desselben aus den oben angeführten Gleichungen durch Einführung von Hilfswinkeln in einer zum Berechnen mit Logarithmen tauglichen Form ist nicht schwierig \(^1\); wir wollen uns aber hier mit

\(^1\) Eine solche Auflösung durch Hilfswinkel hat Herr Professor Graülich in seiner bekannten Preisschrift benützt.
dieser Auflösung nicht beschäftigen, sondern die für unsere Zwecke wichtigere direkte angeben. Sie ist

\[n = \frac{1}{\sin \varphi} \sqrt{1 - \frac{1}{2} \left[\cos \omega + \cos 2\alpha - \cos (2\alpha - \omega) + \cos (2\varphi + \omega) \right. \right.

\[- \cos (2\alpha - 2\varphi - 2\omega) + \cos (2\alpha - 2\varphi - 2\omega) \right]} \]

Die Winkel \(\alpha, \varphi \) und \(\omega \) können nun begreiflicher Weise mit verschiedenen Fehlern behaftet sein. Die hauptsächlichsten Quellen derselben sind indess folgende:

1. Unvermeidliche Beobachtungsfehler.

Bezeichnet man die Fehler, welche man in \(\alpha, \varphi \) und \(\omega \) begehen kann mit \(\Delta \alpha, \Delta \varphi \) und \(\Delta \omega \), so findet man, wenn die entsprechende Änderung im Brechungsexponenten mit \(\Delta n \) bezeichnet wird, aus der obigen Gleichung

\[\Delta n = \frac{\sin (\varphi + \omega - 2\alpha)}{n \sin^2 \varphi} \left[\cos \varphi - \cos (\varphi + \omega) \right] \Delta \alpha + \]

\[+ \frac{\cos (\varphi + \omega - 2\alpha)}{n \sin^2 \varphi} \left[\sin \alpha \cos \varphi + \sin (\varphi + \omega - \alpha) \right] \Delta \omega + \]

\[+ \left[\frac{1}{2n \sin^2 \varphi} \left\{ 2 \sin \alpha \cos (2\varphi + \omega - \alpha) + \sin (2\varphi + 2\omega - 2\alpha) \right\} - n \cot \varphi \right] \Delta \varphi \]

Fehler dieser Art können nur durch zahlreiche Beobachtungen auf ein Minimum gebracht werden.

2. Bestimmt man die Brechungsexponenten einer Flüssigkeit durch Beobachtungen mittels eines Hohlprisma’s, so kommt eine zweite Fehlerquelle hinzu, wenn die hier nötigen Deckplatten nicht vollkommen parallelflächig sind. Wegen dieses Umstandes bedürfen alle gemessenen Winkel einer Correktion, welche man etwa auf folgende Weise finden kann.

Sind die Flächen der ersten Deckplatte \(abcd \) (Fig. 2) nicht parallel, sondern unter dem Winkel \(\rho_1 \) gegen ein-

Fig. 2.

Sitzb. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 29.

42
ander geneigt, so ist, wenn \(\nu \) den Brechungsexponenten des Glases, \(\alpha \) den Winkel des einfallenden, \(\alpha' \) den des austretenden, \(\beta \) den des zuerst gebrochenen und \(\gamma \) den Winkel des an der Hinterwand auffallenden Strahles mit dem Einfallslot bezeichnet:

\[
\begin{align*}
\sin \alpha &= \nu \sin \beta \\
\sin \alpha' &= \nu \sin \gamma \\
\gamma &= \beta + \rho_1.
\end{align*}
\]

Der Unterschied

\[\alpha' - \alpha = \xi_1\]

wird, da \(\rho_1 \) sehr klein ist, es ebenfalls sein; bleibt man daher in der Entwicklung bei den ersten Potenzen dieser Grössen stehen, d. h. setzt man

\[
\begin{align*}
\sin \rho_1 &= \rho_1 & \cos \rho_1 &= 1 \\
\sin \xi_1 &= \xi_1 & \cos \xi_1 &= 1
\end{align*}
\]

so erhält man:

\[
\xi_1 = \frac{\nu \cos \beta}{\cos \alpha} \cdot \rho_1 = \frac{\sqrt{\nu^2 - \sin^2 \alpha}}{\cos \alpha} \cdot \rho_1.
\]

Hat \(\delta \) dieselbe Bedeutung wie früher, und bezeichnen \(\rho_2 \) und \(\xi_2 \) dieselben Grössen für die zweite Deckplatte, wie \(\rho_1 \) und \(\xi_1 \) für die erste, so hat man ganz analog:

\[
\xi_2 = \frac{\sqrt{\nu^2 - \sin^2 \delta}}{\cos \delta} \cdot \rho_2 \]

1) Wollte man, was freilich nur in sehr wenigen Fällen nötig sein dürfte, noch die zweiten Potenzen von \(\xi_1 \) und \(\rho_1 \) berücksichtigen, so hätte man zu setzen:

\[
\begin{align*}
\sin \xi_1 &= \xi_1 & \cos \xi_1 &= 1 - \frac{1}{2} \xi_1^2 \\
\sin \rho_1 &= \rho_1 & \cos \rho_1 &= 1 - \frac{1}{2} \rho_1^2
\end{align*}
\]

und erhielte dann

\[
\xi_1 = \cotg \alpha \pm \sqrt{\rho_1^2 - 2 \rho_1 \frac{\cos \beta}{\sin \alpha} \nu + \cotg^2 \alpha}.
\]

Das obere Zeichen kann hier nicht gelten, weil \(\xi_1 \) nicht = 0 wäre, für \(\rho_1 = 0 \). Es ist also:

\[
\xi_1 = \cotg \alpha - \sqrt{\rho_1^2 - 2 \rho_1 \frac{\cos \beta}{\cos \alpha} \nu + \cotg^2 \alpha}.
\]

Entwickelt man die Wurzelgrösse nach Potenzen von \(\rho_1 \) und vernachlässigt alle die zweite Dimension überschreitenden Grössen, so erhält man, wenn man von der Formel

\[
\nu^2 \cos^2 \beta = \nu^2 - \sin^2 \alpha
\]

Gebrauch macht:
Den brechenden Winkel des Prismas findet man
\[\varphi' = \varphi + \rho_1 + \rho_2; \]
den Winkel des ersten einfallenden Strahles mit dem letzten austretenden:
\[\omega = \alpha + \delta - \varphi', \]
während der Ablenkungswinkel, welcher dem Brechungsexponenten der Flüssigkeit entspricht:
\[\omega' = \alpha' + \delta' - \varphi \]
\[= \alpha + \delta - \varphi' + (\xi_1 + \xi_2) + (\rho_1 + \rho_2) \]
\[= \omega + \xi_1 + \xi_2 + \rho_1 + \rho_2 \]

ist. Um daraus den wahren Brechungsexponenten zu finden, sollten wir unserer Berechnung die Grössen
\[\alpha' = \alpha + \xi_1 \]
\[\varphi = \varphi' - (\rho_1 + \rho_2) \]
\[\omega' = \omega + \xi_1 + \xi_2 + \rho_1 + \rho_2 \]
zu Grunde legen, statt welcher wir aber die Werthe
\[\alpha \]
\[\varphi' \]
\[\omega \]
verwenden, und so die Fehler
\[\Delta \alpha = \xi_1 \]
\[\Delta \varphi = - (\rho_1 + \rho_2) \]
\[\Delta \omega = \xi_1 + \xi_2 + \rho_1 + \rho_2 \]
begehen. Setzt man diese Grössen in die oben gegebene Fehler-

\[\xi_1 = \rho_1 \frac{\sqrt{\omega - \sin^2 \alpha}}{\cos \alpha} - \frac{\varphi - 1}{\cos^2 \alpha} \cdot \varphi \cdot \rho_1^2. \]

und auf gleiche Weise
\[\xi_2 = \rho_2 \frac{\sqrt{\omega - \sin^5 \delta}}{\cos \delta} - \frac{\varphi - 1}{\cos^2 \delta} \cdot \varphi \cdot \rho_1^2. \]

Vernachlässigt man hier \(\rho_1^2 \) und \(\rho_2^2 \), so erhält man die oben gegebenen Werthe.
gleichung, so erhält man sogleich den Einfluss derselben auf die Brechungsexponenten, nämlich:

\[
\Delta n = \frac{\sin(\varphi + \omega - 2\alpha)}{n \sin^2 \varphi} \left[\cos \varphi - \cos(\varphi + \omega) \right] \xi_1 + \\
+ \frac{\cos(\varphi + \omega - \alpha)}{n \sin^2 \varphi} \left[\sin \alpha \cos \varphi + \sin(\varphi + \omega - \alpha) \right] \left(\xi_1 + \xi_2 + \rho_1 + \rho_2 \right) - \\
- \frac{2 \sin \alpha \cos(2\varphi + \omega - \alpha) + \sin(2\varphi - 2\omega - 2\alpha)}{2n \sin^2 \varphi} - n \cot \varphi \left(\rho_1 + \rho_2 \right)
\]

und nach Vornahme aller möglichen Reductionen:

\[
\Delta n = \frac{\cos \alpha}{n \sin^2 \varphi} \left[\sin(\varphi + \omega - \alpha) \cos \varphi + \sin \alpha \right] \xi_1 + \\
+ \frac{\cos(\varphi + \omega - \alpha)}{n \sin^2 \varphi} \left[\sin(\varphi + \omega - \alpha) + \sin \alpha \cos \varphi \right] \xi_2 - \\
- \frac{1}{\sin \varphi} \left[\frac{\sin \alpha \sin(\varphi + \omega - \alpha)}{n} + n \cos \varphi \right] \left(\rho_1 + \rho_2 \right).
\]

Die Werthe von \(\xi_1 \) und \(\xi_2 \) als Funktionen von \(\rho_1 \) und \(\rho_2 \) sind oben angegeben worden. Die Grössen \(\rho_1 \) und \(\rho_2 \) sind stets sehr klein: es ist daher schwer ihren Werth mit Genauigkeit zu ermitteln, am tauglichsten hierzu dürfte vielleicht ein gutes Sphärometer sein. Die Kenntniss derselben ist jedoch nicht nöthig, da man durch ein einfaches Mittel den Einfluss dieser Fehler ganz zu paralysiren im Stande ist. Es besteht darin, dass man die Deckplatten in zwei entgegengesetzten Lagen (wie Fig. 3 und 4 zeigt) auf das Hohlprisma legt. Dadurch ändern nämlich alle Fehler ihre Zeichen, wenn man dafür sorgt, dass der Einfallswinkel bei beiden Beobachtungen derselbe ist, und in dem Mittel beider Messungen erhält man also den wahren Werth des Brechungsexponenten selbst ohne Kenntniss der Größe der Winkel \(\rho_1 \) und \(\rho_2 \). Die Richtigkeit des hier Gesagten erübrigt sich aus Folgendem. Ist (Fig. 3) \(\alpha \) der
Einfallswinkel, β der Brechungswinkel, so ist $\beta + \rho_1$ der Einfallswinkel auf die zweite Fläche. Bezeichnet nun wieder

$$\alpha' = \alpha + \xi_1$$

den Winkel des austretenden Strahles mit dem Einfallslothe, so ist:

$$\sin \alpha = \nu \sin \beta$$
$$\sin (\alpha + \xi_1) = \nu \sin (\beta + \rho)$$
$$\xi_1 = \frac{\nu \cos \beta}{\cos \alpha} \rho_1.$$

Im zweiten Falle (Fig. 4) ist, wenn α der Einfallswinkel, β der Brechungswinkel, $\beta - \rho_1$ der auf die zweite Fläche auffallende und wenn

$$\alpha'_1 = \alpha + \xi'_1$$

der Winkel des Einfallslothees mit dem austretenden Strahle ist:

$$\sin \alpha = \nu \sin \beta$$
$$\sin (\alpha + \xi'_1) = \nu \sin (\beta - \rho_1)$$

also

$$\xi'_1 = - \frac{\nu \cos \beta}{\cos \alpha} \rho_1 = -\xi_1.$$

Für die zweite Deckplatte hat man ebenso:

$$\xi'_2 = -\xi_2 \text{ 1)}.$$

1) Diese Gleichheit mit entgegengesetzten Zeichen gilt aber nur für die Glieder erster Ordnung, denn es ist

$$\xi_1 = \frac{\nu \cos \beta}{\cos \alpha} \rho_1 - \frac{\nu^2 - 1}{2 \cos^2 \alpha} \lg \alpha \cdot \rho_1^2$$
$$\xi'_1 = - \frac{\nu \cos \beta}{\cos \alpha} \rho_1 - \frac{\nu^2 - 1}{2 \cos \alpha} \lg \alpha \cdot \rho_1^2$$

also

$$\xi'_1 = - \xi_1 - \frac{\nu^2 - 1}{2 \cos^2 \alpha} \lg \alpha \cdot \rho_1^2.$$

Durch das angegebene Verfahren wird nämlich das Zeichen von ρ verkehrt; es sind deshalb alle Glieder, welche ρ in einer ungeraden Potenz enthalten, entgegengesetzt bezeichnet, jene, welche es in einer geraden enthalten, nicht; man kann dieselben also auch nicht wegschaffen. Übrigens sind Deckplatten, bei denen ρ so gross ist, dass man noch dieses Glied berücksichtigen muss, zur Messung nicht zu brauchen.
ferner ist der brechende Winkel des Prismas im ersten Falle:

\[\varphi' = \varphi + (\rho_1 + \rho_2). \]

im zweiten

\[\varphi'_1 = \varphi - (\rho_1 + \rho_2). \]

und da der Winkel des einfallenden mit dem gebrochenen Strahle

\[\omega = \alpha + \beta - \varphi \]

ist, so ist im ersten Falle

\[\omega' = \omega + (\xi_1 + \xi_2 + \rho_1 + \rho_2) \]

und im zweiten

\[\omega'_1 = \omega - (\xi_1 + \xi_2 + \rho_1 + \rho_2). \]

Es ist somit in der ersten Stellung (Fig. 3)

\[\Delta \alpha = \xi_1 \]
\[\Delta \omega = \xi_1 + \xi_2 + \rho_1 + \rho_2 \]
\[\Delta \varphi = - (\rho_1 + \rho_2) \]

und in der anderen (Fig. 4)

\[\Delta \alpha = - \xi_1 \]
\[\Delta \omega = -(\xi_1 + \xi_2 + \rho_1 + \rho_2) \]
\[\Delta \varphi = + (\rho_1 + \rho_2) \]

Man sieht daraus, dass in der That alle Fehler ihr Zeichen gewechselt haben; im Mittel der beiden Beobachtungen sich also der Einfluss derselben gegenseitig tilgt.

3. Eine letzte Classe von Fehlern entsteht dann, wenn der Scheitel der Winkel nicht vom Centrum des Kreises aus gemessen wird. Der leichteren Übersicht wegen wollen wir hier die zwei Fälle unterscheiden:

a) Die Drehungssaxe des Fernrohrs fällt mit dem Centrum des Kreises zusammen.

Da in diesem Falle nur Strahlen, welche durch das Centrum gehen, in das Fernrohr gelangen können, findet man bei einer unrich-
tigen Stellung des Prisms nur den Deviations- und Einfallswinkel fehlerhaft; auf die Grösse des Brechungswinkels \(\phi \) hat dies gar keinen Einfluss. Aber es werden auch die eben erwähnten Fehler im Deviations- und Einfallswinkel bei nur etwas beträchtlicher Entfernung der Licht quelle ganz verschwinden. Denn was den ersteren be trifft, so ist, wenn (Fig. 5) in \(S \) die Licht quelle sich befindet und \(S E F S' \) den Weg darstellt, den ein Licht strahl nehmen muss, um in der Richtung des Centrums \((S' C) \) gesehen zu werden, der eigentliche Deviationswinkel \(S' Dx = \omega \), während man durch Messung dafür die Grösse

\[
S' Cy = \omega'
\]

findet; der Unterschied beider ist

\[
\omega' - \omega = \Delta \omega = < D S C.
\]

Nennt man \(D C = d \) und die Entfernung der Lichtquelle vom Centrum des Kreises \(CS = r \), so ist

\[
r \sin \Delta \omega = d \sin \omega
\]

oder wegen der Kleinheit von \(\Delta \omega \)

\[
\Delta \omega = \frac{d}{r} \sin \omega.
\]

In den meisten Fällen ist die Entfernung \(r \) gegen \(d \) sehr gross, und man kann die von der Lichtquelle ausgehenden Strahlen als parallel betrachten, daher

\[
r = \infty
\]

setzen, wodurch man

\[
\Delta \omega = 0
\]

erhält.
Ebenso verhält es sich mit der Änderung des Einfallswinkels. Diesen bestimmt man dadurch, dass man den Winkel des directen Strahles mit dem reflectirten misst, die Hälfte desselben ist das Complement des Einfallswinkels. Auf diese Art erhält man (Fig. 6) statt des Winkels

\[S' \triangle AM = 180 - 2a \]
den Winkel

\[S' \triangle CN = 180 - 2a'. \]

Setzt man wieder

\[a - a' = \Delta a \]
so ist, wenn \(CA = d \), \(CS = r \) gesetzt wird, da

\[CSA = 2 (a - a') = 2 \Delta a. \]
auch

\[r \sin 2 \Delta a = d \sin 2a \]
oder wegen der Kleinheit von \(\Delta a \)

\[\Delta a = \frac{d}{2r} \sin 2a \]

Ist also die Lichtquelle sehr weit entfernt, so kann man hier ebenfalls \(\Delta a = 0 \) setzen.

Wie diese Fehler vermieden werden können, wenn obige Annahme nicht gelten sollte, kann man im Allgemeinen nicht angeben, da sich mit der Änderung des Einfallswinkels auch die Lage des Scheitels des Deviationswinkels (\(\omega \)) ändert. Bei der folgenden

\[\text{1) \Übrigens ist es gut zu bemerken, dass bei der Ermittelung von } \omega \text{ und } a \text{ zugleich durch direkte Messung, einer derselben stets fehlerhaft bleiben muss, da die Scheitelbeider (} a = 0 \text{ ausgenommen) nie zusammenfallen.} \]
Besprechung jener Fälle, bei denen man mit speziellen Werthen des Einfallswinkels operirt, werden wir bei jedem derselben Mittel, dies zu erreichen, angeben.

b) Die Drehungssaxe des Fernrohrs fällt mit dem Centrum des Kreises nicht zusammen.

In diesem Falle muss man, um den Einfluss auf die zu messenden Winkel zu bestimmen, ausser der Entfernung der beiden Punkte, noch die Lage derselben gegen jene kennen. Nehmen wir an, der Scheitel der zu bestimmenden Winkel liege in der Umdrehungssaxe des Fernrohres, weil, wenn dies auch nicht der Fall ist, man doch nach den früheren Formeln dasselbe durch eine kleine Correction leicht erreichen kann; so ist, wenn C das Centrum, $CA = d$ die Entfernung der Umdrehungssaxe von demselben, $BAD = \epsilon$ den zu messenden, $BCD = \epsilon'$ den statt desselben gemessenen Winkel bezeichnen, und wenn die Lage der CA gegen den Winkel BCD durch den Winkel $BCA = \alpha$ bestimmt ist

$$\epsilon = \epsilon' + (CBA + ADC)$$

$$= \epsilon' + (\Delta \epsilon_1 + \Delta \epsilon_2) = \epsilon' + \Delta \epsilon$$

wo $\Delta \epsilon_1$ und $\Delta \epsilon_2$ durch folgende Gleichungen gegeben sind:

$$\sin \Delta \epsilon_1 = \frac{d \sin (\mu + \Delta \epsilon_1)}{r}$$

$$\sin \Delta \epsilon_2 = \frac{d \sin (\epsilon - \mu + \Delta \epsilon_2)}{r}$$

oder wegen der Kleinheit der Grössen $\Delta \epsilon_1$ und $\Delta \epsilon_2$ mit Hinweglassung aller die erste Ordnung überschreitenden Grössen

$$\Delta \epsilon_1 = \frac{d}{r} \sin \mu$$

$$\Delta \epsilon_2 = \frac{d}{r} \sin (\epsilon - \mu)$$
Es ist also
\[
\Delta e = \Delta e_1 + \Delta e_2 = \frac{d}{r} [\sin \mu + \sin (e - \mu)]
\]
\[
= \frac{2d}{r} \frac{e - 2\mu}{\sin \frac{e}{2} \cos \frac{e - 2\mu}{2}}.
\]

Fehler dieser Art gehören unter die sogenannten \textit{Exzentricitätsfehler}; das einfachste Mittel sie zu eliminieren besteht im Ablesen an zwei um 180° von einander abstehenden Nonien, weil das Mittel beider Ablesungen den gesuchten Winkel genau gibt. Ist dies an dem Instrumente, mit welchem man beobachtet, nicht möglich, so kann man die dadurch entstehenden Fehler auch ohne Kenntnis der Größen \(d\) und \(\mu\), deren genauer Bestimmung grosse Hindernisse im Wege stehen, zwar nicht ganz wegschaffen, doch ihren Einfluss sehr verkleinern, wenn man das Prisma um 180° — \(\varphi\) dreht. Dadurch wird der Einfallswinkel auf der zweiten Seite des Prismas wieder \(\alpha\) und der Fehler dem früheren beinahe gleich und entgegengesetzt bezeichnet, wie man leicht nachweisen kann.

§. 2. In der Praxis kommt dieser allgemeine Fall selten vor; man gibt dem Prisma gewöhnlich eine solche Stellung, dass der Einfallswinkel einen speziellen Werth erhält, der die Formel vereinfacht. Unter diesen speziellen Werthen verdienen zwei eine besondere Bé

rücksichtigung, und zwar:

I. Derjenige, bei welchem der Strahl die erste Prismenfläche \textit{senkrecht} trifft; für ihn ist
\[
\alpha = 0
\]
\[
\beta = 0
\]
\[
\gamma = \varphi
\]
\[
\delta = \omega + \varphi,
\]
also
\[
(1) \quad n = \frac{\sin (\omega + \varphi)}{\sin \varphi}.
\]

Was den Einfluss der Fehler auf den Brechungsexponenten betrifft, so findet man durch Substitution des speziellen Werthes \(\alpha = 0\) in die früheren Formeln:
1. Für die Beobachtungsfehler

\[\Delta n = \frac{\cos \varphi - \cos (\varphi + \omega)}{n \sin^2 \varphi} \sin (\varphi + \omega) \Delta \alpha \]

\[+ \frac{\sin (2\varphi + 2\omega)}{2n \sin^2 \varphi} \Delta \omega \]

\[+ \left(\frac{\sin (2\varphi + 2\omega)}{2n \sin^2 \varphi} - n \cotg \varphi \right) \Delta \varphi. \]

Letzterer Ausdruck läßt sich dadurch sehr vereinfachen, dass man in ihm den eben (1) angegebenen Werth von \(n \) substituirt. Nach allen sich dabei ergebenden Reductionen wird

\[\Delta n = \frac{\cos \varphi - \cos (\varphi + \omega)}{\sin \varphi} \Delta \alpha \]

\[+ \frac{\cos (\varphi + \omega)}{\sin \varphi} \Delta \omega \]

\[- \frac{\sin \omega}{\sin^2 \varphi} \Delta \varphi \]

Man sieht hier unter Anderem auf den ersten Blick, dass die Fehler im Allgemeinen desto kleiner werden, je grösser der brechende Winkel (\(\varphi \)) des Prismas ist, was sich im Grunde wohl begreifen lässt.

2. Wegen Nichtparallelismus der Deckplatten hat man folgende Correction anzubringen:

\[\Delta n = \xi_1 \cotg \varphi + \xi_2 \frac{\cos (\varphi + \omega)}{\sin \varphi} - n (\rho_1 + \rho_2) \cot \varphi \]

\[\xi_1 = \nu \rho_1 \]

\[\xi_2 = \frac{\sqrt{\nu^2 - \sin^2 (\omega + \varphi)}}{\cos (\omega + \varphi)} \rho_2. \]

Der Einfluss dieses Fehlers lässt sich, wie wir gezeigt haben, durch Umkehren der Platten beseitigen.

3. Den Exzentrizitätsfehler hat man bei der Bestimmung des Einfallswinkels gar nicht zu berücksichtigen, indem er hier, wo
man letzteren nicht durch direkte Messung sucht, wegfällt. Der Scheitel des Deviationswinkels liegt in diesem Falle an der, der Lichtquelle abgekehrten Wand des Prismas's und man kann denselben daher leicht zum Zusammenfallen mit der Umdrehungsaxe des Fernrohres bringen, dadurch, dass man sich eine Linie durch dieselbe markirt und eben jene Wand daran stellt. Fällt dieser Umdrehungspunkt nicht mit dem Centrum des Limbus zusammen, so kann man, wenn das Instrument nicht zwei Nonien besitzt, die dadurch resultirenden Fehler ganz so, wie es früher angegeben worden, verkleinern.

II. Derjenige, wo man das Prisma so stellt, dass das Minimum der Deviation eintritt). Dies geschieht, wenn

\[\alpha = \delta \]
\[\beta = \gamma \]

also

\[\alpha = \frac{1}{2} (\omega + \varphi) \]
\[\beta = \frac{1}{2} \varphi \]

ist. Dann wird

\[n = \frac{\sin \frac{1}{2} (\omega + \varphi)}{\sin \frac{1}{2} \varphi} \]

Der Einfluss der verschiedenen Fehler ist auch hier leicht gefunden, wenn man in die allgemeinen Formeln diese speziellen Werthe einführt.

1. Die für Beobachtungsfehler geltende Gleichung ver-sieht sich wieder bedeutend, wenn man \(n \) mittelst der dafür gegebenen Formel daraus eliminirt; sie nimmt dann folgende Form an:

\[\Delta n = 0 \cdot \Delta \alpha + \frac{\cos \left(\frac{\varphi + \omega}{2} \right)}{2 \sin \left(\frac{\varphi}{2} \right)} \Delta \omega - \frac{\sin \left(\frac{\omega}{2} \right)}{2 \sin^2 \left(\frac{\varphi}{2} \right)} \Delta \varphi. \]

Auch hier erweist sich ein grosser Brechungswinkel des Prisma's als vorteilhaft. Allein diese Gleichung ist in einer anderen Beziehung sehr leerreich; sie zeigt eine Eigenschaft dieser Stellung, deren Vorhandensein ihre Brauchbarkeit zu genauen Untersuchungen begründet; es ist die, dass ein kleiner bei der Einstellung auf

1) Beizüglich wäre noch, dass der Gebrauch eines Collimator sehr grosse Vorteile gewährt, indem hier z. B. die Schwankungen des Instrumentes, herbeigeführt durch die Nähe des Beobachters etc. ohne Nachtheil für die Beobachtung sind.
das Minimum der Deviation begangener Fehler auf den Brechungs-
exponenten gar keine Wirkung ausübt. Es ist nämlich bei die-
scher Beobachtungsmethode der Natur der Sache nach jener Punkt, wo
das Minimum der Deviation eintritt, nicht genau zu bestimmen; diese
Formel (2) zeigt uns aber, dass dies ganz ohne Einfluss ist.

Das hier gewonnene Resultat, dass innerhalb gewisser Grenzen
der Einfallswinkel bei der Bestimmung des Brechungssexponenten
ganz gleichgültig ist, folgt, so paradox es für den Augenblick scheinen
t mag, von selbst, wenn man die dabei eintretenden Verhältnisse be-
rücksichtigt. Man beobachtet nämlich derart, dass man den Limbus
mit dem Prisma so lange dreht, bis das Spectrum seine Lage nicht
mehr ändert 1). Sucht man nun mit dem Fernrohr genau jenen
Punkt zu bestimmen, wo das Minimum der Deviation eintritt, d. h.
jenen Punkt, wo das Spectrum die Richtung seiner Bewegung beim
Fortdrehen ändert (umkehrt), so findet man, dass eine der Brew-
ster'schen Linien, z. B. die \(D \), bei einer geringen Drehung des Lim-
bus (also auch zugleich des Prisma's) ihre Stellung gar nicht ändert,
d. h. unverrückt am Fadenkreuz stehen bleibt. Es scheint also
auf den ersten Blick, dass dieser Umstand eine beträchtliche Un-
sicherheit der Beobachtungen involvierte, allein dem ist nicht so. Es
ändert sich nämlich die Größe des Deviationswinkels, auf welchen
es hier allein ankommt, bei einem Vorwärts- oder Rückwärtsdrehen
des Limbus, welcher das Prisma trägt, gar nicht, so lange nur die
Linie sich nicht geradezu vom Fadenkreuz entfernt 2). Man begeht
zugleich, dass es ein blosser Zeitverlust ohne Vermehrung der Ge-
nauigkeit wäre, wollte man jede Linie einzeln ins Minimum der
Deviation einstellen; es genügt, dies für eine der mittleren zu thumb.

2. Der Nichtparallelismus der Deckplatten bewirkt
folgende Änderung des Brechungssexponenten:

\[
\Delta n = \frac{1}{2} \cos \left(\frac{\varphi}{2} \right) \left(\xi_0 + \xi_s \right) - \frac{1}{2} n \cotg \left(\frac{\varphi}{2} \right) [\rho_0 + \rho_s]
\]

1) Hat man das Fernrohr bei Beginn der Beobachtung auf die Lichtquelle eingestellt,
so erscheinen die Linien im Spectrum nur dann scharf, wenn das Minimum der
Deviation gerade erreicht ist.

2) Dieses Drehen des Limbus hat nur eine Verschiebung des Nullpunktes der Theilung
zur Folge, dessen Lage aber bei Beobachtungen, wo man einen Winkel aus der
Differenz zweier Ableserungen bestimmt, gleichgültig ist.
\[
\xi_1 = \frac{\sqrt{\nu^2 - \sin^2 \left(\frac{\omega + \varphi}{2}\right)}}{\cos \left(\frac{\omega + \varphi}{2}\right)} p_1 \\
\xi_2 = \frac{\sqrt{\nu^2 - \sin^2 \left(\frac{\omega + \varphi}{2}\right)}}{\cos \left(\frac{\omega + \varphi}{2}\right)} p_2
\]

also einfacher:

\[
\Delta n = \frac{1}{2 \sin \left(\frac{\varphi}{2}\right)} \left[\sqrt{\nu^2 - \sin^2 \left(\frac{\varphi + \omega}{2}\right)} - n \cos \left(\frac{\varphi}{2}\right)\right] (p_1 + p_2).
\]

Die Beseitigung dieses Fehlers ist bereits angegeben worden.

3. In Betreff der durch exzentrische Stellung entstehenden Fehler ist zu bemerken, dass man hierbei den Einfallswinkel nicht zu berücksichtigen hat, weil man die Stellung, wo das Minimum der Deviation eintritt, unabhängig von jeder Messung sucht. Den Scheitel des Deviationswinkels kann man leicht in die Umdrehungsaxe des Fernrohres bringen; derselbe liegt nämlich in einer den Prismawinkel halbirenden Linie. Um ihn also in die Umdrehungsaxe des Fernrohres zu bringen, hat man nichts zu thun, als durch dieselbe eine Linie zu ziehen und mit ihr diejenige in Coincidenz zu bringen, welche den Winkel des Prisma's halbirt. Die Bezeichnung dieser letzteren Linie geschieht am einfachsten durch je einen Strich an der vorderen und hinteren Fläche der Metallfassung des Prisma's; eine kleine etwa übrig bleibende Ungenauigkeit in der Bestimmung dieser Halbirlinie kann man noch dadurch weglassen, dass man bei einer zweiten Beobachtung das Prisma um 180° wendet, wieder auf die Linie durch die Umdrehungsaxe des Fernrohres stellt und die Marken an der Metallfassung mit ihr in Coincidenz bringt. Dadurch kommt der Scheitel des Deviationswinkels einmal rechts, dann eben so weit links von der erwähnten Linie zu stehen, und es fällt im Mittel von je zwei solchen Beobachtungen der begangene Fehler weg. Dies Verfahren ist um so mehr anzuraten, als man ohne dasselbe und die früher angegebenen Correctionen ganz gewiss nur eine illusorische Genauigkeit der Beobachtungen erzielen wird. Auch wird dadurch der eigentliche Excentricitätsfehler, nämlich der durch das Nichtzusammenfallen der Umdrehungsaxe des Fernrohres mit dem
Centrum des Limbus entstehende, soweit eliminiert, als es ohne Ablesen an zwei entgegenstehenden Nonien möglich ist.

Aus dem bereits Gesagten ergibt sich daher, dass die Beobachtung durch Minimum der Deviation nicht nur eben so genaue Resultate bietet wie die durch senkrechte Incidenz, sondern auch noch weitere Vortheile gewährt, welche nicht leicht von einer anderen erreicht werden dürften.

Zum Schlusse geben wir in einer kleinen Tabelle für einen Prismenwinkel $\varphi = 45^\circ$ (der Fall, bei dem wir beobachteten) den Einfluss der Beobachtungsfehler bei der Minimalstellung auf die Größe des Brechungsexponenten. Sie ist so eingerichtet, dass $\Delta \omega$ und $\Delta \varphi$ in Minuten ausgedrückt werden müssen.

<table>
<thead>
<tr>
<th>n</th>
<th>ω</th>
<th>Δn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4° 47.4'</td>
<td>0.000345 $\Delta \omega - 0.000042 \Delta \varphi$</td>
</tr>
<tr>
<td>1.2</td>
<td>9 40.4</td>
<td>0.000338 $\Delta \omega - 0.000084 \Delta \varphi$</td>
</tr>
<tr>
<td>1.3</td>
<td>14 40.0</td>
<td>0.000330 $\Delta \omega - 0.000127 \Delta \varphi$</td>
</tr>
<tr>
<td>1.4</td>
<td>19 47.4</td>
<td>0.000321 $\Delta \omega - 0.000171 \Delta \varphi$</td>
</tr>
<tr>
<td>1.5</td>
<td>25 38</td>
<td>0.000311 $\Delta \omega - 0.000216 \Delta \varphi$</td>
</tr>
<tr>
<td>1.6</td>
<td>30 30.6</td>
<td>0.000301 $\Delta \omega - 0.000261 \Delta \varphi$</td>
</tr>
<tr>
<td>1.7</td>
<td>36 10.0</td>
<td>0.000289 $\Delta \omega - 0.000308 \Delta \varphi$</td>
</tr>
<tr>
<td>1.8</td>
<td>42 4.4</td>
<td>0.000276 $\Delta \omega - 0.000337 \Delta \varphi$</td>
</tr>
<tr>
<td>1.9</td>
<td>48 17.2</td>
<td>0.000261 $\Delta \omega - 0.000407 \Delta \varphi$</td>
</tr>
<tr>
<td>2.0</td>
<td>54 52.8</td>
<td>0.000245 $\Delta \omega - 0.000458 \Delta \varphi$</td>
</tr>
</tbody>
</table>

II.

Die Brechungsexponenten der Salzsäure wurden an demselben Goniometer bestimmt, an welchem früher dieselben bei Schwefel- und Salpetersäure gemessen worden waren. Auch die Dichten der Mischung bestimmten wir mit demselben Dichtenapparate; nur wurden, um die Mischung möglichst genau zu haben, von jedem Concentrationsgrade mehrere Mischungen ausgeführt; von jeder einzelnen aber sowohl die Dichte als auch die Brechungsexponenten ermittelt. Zur Bestimmung des letzteren bedienten wir uns bei allen
Messungen eines und desselben Prisma's, dessen brechender Winkel durch so zahlreiche Beobachtungen bestimmt wurde, dass er schwerlich um 0.1 Minuten fehlerhaft sein dürfte. Er ist

\[\varphi = 45^\circ 9' 57'' \].

Um ferner den Einfluss aller angegebenen Fehler auf den Brechungsexponenten so viel als möglich zu eliminieren, bestimmten wir denselben aus jeder Mischung bei einer doppelten Stellung des Prisma's; bei der ersten Stellung (A) stand die brechende Kante links (nachdem man auf's Minimum eingestellt hatte); nun wurden alle Deviationen bestimmt, hierauf das Prisma zernommen, sorgfältig gereinigt, die Deckplatten in der umgekehrten Lage darauf gelegt und die Kante nach rechts gewendet (B). Dadurch erhält der vom Nichtparallelismus der Deckplatten herrührende Fehler das entgegengesetzte Zeichen, fällt somit weg, und die Excentricitätsfehler werden so viel als möglich herausgeschafft in der Art, wie es S. 16 angegeben worden ist.

Der Erfolg dieser Art zu beobachten zeigt sich ganz deutlich in der weit höheren Genauigkeit der numerischen Werthe der Brechungsexponenten etc. für Salzsäure, welche es uns ermöglichten, daraus jene Schlüsse zu ziehen, welche weiter unten folgen werden.

Beobachtet man ohne Umkehren des Prisma's und ohne Messen der Deviation auf beiden Seiten, so wird man sehr häufig bei verschiedenen Beobachtungen eine Art Wanderung der Zahlen wahrnehmen. Die Brechungsindices z. B. von \(\varphi \) werden denen einer zweiten Beobachtung von \(\beta \) genau entsprechen u. s. w., so dass man auf die Vermuthung kommt, man habe die Linien vertauscht. Dies ist aber nicht der Fall, sondern der Grund der Erscheinung liegt ausserhalb des Beobachters. Es ist nämlich, wie man leicht zeigen kann, die Summe aller oben angedeuteten Fehler in unserem Falle etwa 3' — 4'. Nun beträgt aber der Abstand einer Brewster'schen Linie von der anderen fast genau eben so viel, der Erfolg ist also derselbe wie ein Verrücken der Linien um Eine derselben vor- oder rückwärts; mit anderen Worten, es stellt sich eine Wanderung der Zahlen ein.

1) Wir glauben hier die richtige Erklärung eines Phänomens gegeben zu haben, das uns bei Schwefel- und Salpetersäure sehr viel Nachdenken und Vermuthungen kostete.
Die Brechungsexponenten wurden übrigens, wie man aus den folgenden Tabellen ersieht, nicht aus jedem Deviationswinkel gerechnet, sondern aus dem Mittel sämtlicher (6) Beobachtungen jeder einzelnen Stellung, weil sich dadurch die Beobachtungsfehler am vollständigsten eliminieren.

Die Beobachtungsmethode war im Allgemeinen, ausser den oben erwähnten Umkehrungen und den mehrfachen Mischungsbestimmungen, dieselbe wie bei der früheren Arbeit über Schwefel- und Salpetersäure.

Am Schlusse wurden noch die Mittelwerthe einer Beobachtungsreihe an Salmiaklösung hinzugefügt, welche auf dieselbe Art und aus derselben Zahl einzelner Beobachtungen erhalten wurden, wie die bei Cl. H angegebenen. Nur die Bezeichnung der Spectrallinien ist in so ferne geändert, als das Erste bei der Salmiaklösung sich zeigende Liniensystem wieder mit Α bezeichnet wurde. Auch suchten wir alle Beobachtungen unter nahezu gleichen Temperaturen auszuführen, um von den durch dieselben bewirkten Änderungen in Dichten und Brechungsexponenten unabhängig zu sein.
<table>
<thead>
<tr>
<th>Milliliter mit 10 Prozentkonzentration:</th>
<th>1.331</th>
<th>1.333</th>
<th>1.335</th>
<th>1.337</th>
<th>1.339</th>
<th>1.341</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µl 1,3</td>
<td>1,330</td>
<td>1,331</td>
<td>1,332</td>
<td>1,333</td>
<td>1,334</td>
<td>1,335</td>
</tr>
<tr>
<td>10 µl 2,0</td>
<td>1,330</td>
<td>1,331</td>
<td>1,332</td>
<td>1,333</td>
<td>1,334</td>
<td>1,335</td>
</tr>
<tr>
<td>10 µl 2,5</td>
<td>1,330</td>
<td>1,331</td>
<td>1,332</td>
<td>1,333</td>
<td>1,334</td>
<td>1,335</td>
</tr>
<tr>
<td>10 µl 3,0</td>
<td>1,330</td>
<td>1,331</td>
<td>1,332</td>
<td>1,333</td>
<td>1,334</td>
<td>1,335</td>
</tr>
<tr>
<td>Milliliter:</td>
<td>1.342</td>
<td>1.344</td>
<td>1.346</td>
<td>1.348</td>
<td>1.350</td>
<td>1.352</td>
</tr>
<tr>
<td>10 µl 1,3</td>
<td>1,341</td>
<td>1,342</td>
<td>1,343</td>
<td>1,344</td>
<td>1,345</td>
<td>1,346</td>
</tr>
<tr>
<td>10 µl 2,0</td>
<td>1,341</td>
<td>1,342</td>
<td>1,343</td>
<td>1,344</td>
<td>1,345</td>
<td>1,346</td>
</tr>
<tr>
<td>10 µl 2,5</td>
<td>1,341</td>
<td>1,342</td>
<td>1,343</td>
<td>1,344</td>
<td>1,345</td>
<td>1,346</td>
</tr>
<tr>
<td>10 µl 3,0</td>
<td>1,341</td>
<td>1,342</td>
<td>1,343</td>
<td>1,344</td>
<td>1,345</td>
<td>1,346</td>
</tr>
</tbody>
</table>

Destillates Wasser

Table 1.
Salzsäure

0.1 Concentration

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Dichte</th>
<th>(\omega_a)</th>
<th>(\omega_c)</th>
<th>(\omega_g)</th>
<th>(\omega_d)</th>
<th>(\omega_b)</th>
<th>(\omega_N)</th>
<th>(N_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stellung A:</td>
<td></td>
</tr>
<tr>
<td>23° C.</td>
<td>1-0220</td>
<td>16° 48-0’</td>
<td>16° 50-3’</td>
<td>16° 54-5’</td>
<td>16° 58-0’</td>
<td>16° 58-3’</td>
<td>17° 2-3’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0200</td>
<td>16° 46-5’</td>
<td>16° 51-3’</td>
<td>16° 55-0’</td>
<td>16° 55-5’</td>
<td>16° 58-0’</td>
<td>17° 2-5’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0210</td>
<td>16° 49-0’</td>
<td>16° 51-3’</td>
<td>16° 54-0’</td>
<td>16° 55-0’</td>
<td>17° 0-5’</td>
<td>17° 1-3’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0215</td>
<td>16° 49-0’</td>
<td>16° 50-3’</td>
<td>16° 53-0’</td>
<td>16° 57-0’</td>
<td>17° 0-0’</td>
<td>17° 1-0’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0205</td>
<td>16° 50-0’</td>
<td>16° 52-0’</td>
<td>16° 52-5’</td>
<td>16° 58-3’</td>
<td>17° 0-5’</td>
<td>17° 2-5’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mittel:</td>
<td>1-0210</td>
<td>16° 49-1’</td>
<td>16° 51-2’</td>
<td>16° 54-2’</td>
<td>16° 56-0’</td>
<td>16° 59-5’</td>
<td>17° 2-0’</td>
<td>1-3400</td>
<td>1-3416</td>
<td>1-3425</td>
<td>1-3481</td>
<td>1-3443</td>
<td>1-3451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stellung B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>23° C.</td>
<td>1-0200</td>
<td>16° 31-5’</td>
<td>16° 33-3’</td>
<td>16° 37-5’</td>
<td>16° 59-0’</td>
<td>17° 3-0’</td>
<td>17° 4-5’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0210</td>
<td>16° 32-5’</td>
<td>16° 34-3’</td>
<td>16° 58-0’</td>
<td>17° 0-0’</td>
<td>17° 2-0’</td>
<td>17° 5-0’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0215</td>
<td>16° 31-0’</td>
<td>16° 33-0’</td>
<td>16° 38-5’</td>
<td>17° 0-5’</td>
<td>17° 1-5’</td>
<td>17° 4-0’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1-0205</td>
<td>16° 31-5’</td>
<td>16° 36-0’</td>
<td>16° 37-5’</td>
<td>17° 0-0’</td>
<td>17° 3-5’</td>
<td>17° 6-0’</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mittel:</td>
<td>1-0210</td>
<td>16° 32-0’</td>
<td>16° 34-3’</td>
<td>16° 37-3’</td>
<td>17° 0-1’</td>
<td>17° 2-3’</td>
<td>17° 5-0’</td>
<td>1-3418</td>
<td>1-3427</td>
<td>1-3436</td>
<td>1-3444</td>
<td>1-3452</td>
<td>1-3460</td>
</tr>
</tbody>
</table>

Mittel aus allen 10 Beobachtungen: 1-3413 1-3421 1-3430 1-3437 1-3447 1-3453
<table>
<thead>
<tr>
<th>Temp.</th>
<th>Dichte</th>
<th>Na</th>
<th>Na</th>
<th>Na</th>
<th>Na</th>
<th>Na</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17.0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Table III.
<p>| Stellung A: | 179 | 96-9 | 179 | 96-0 | 179 | 95-9 | 179 | 95-8 | 179 | 95-7 | 179 | 95-6 | 179 | 95-5 | 179 | 95-4 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 |
| Stellung B: | 179 | 96-0 | 179 | 95-9 | 179 | 95-8 | 179 | 95-7 | 179 | 95-6 | 179 | 95-5 | 179 | 95-4 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 |
| Mittel: | 179 | 95-5 | 179 | 95-4 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 |
| Mittel aus allen 10 Beobachtungen: | 179 | 95-5 | 179 | 95-4 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 | 179 | 95-3 | 179 | 95-2 | 179 | 95-1 | 179 | 95-0 |</p>
<table>
<thead>
<tr>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Direkte</th>
<th>2 x C.</th>
<th>3 x C.</th>
<th>4 x C.</th>
<th>5 x C.</th>
<th>6 x C.</th>
<th>7 x C.</th>
<th>8 x C.</th>
<th>9 x C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

O. Concentration

FAB. A.
Tab. VI.

0.5 Concentration.

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Dichte</th>
<th>ω₁</th>
<th>ω₂</th>
<th>ω₃</th>
<th>ω₄</th>
<th>ω₅</th>
<th>ω₆</th>
<th>ω₇</th>
<th>Nu</th>
<th>N₅</th>
<th>N₆</th>
<th>N₇</th>
<th>N₈</th>
<th>N₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>24°C</td>
<td>1.0950</td>
<td>18° 34.0'</td>
<td>18° 37.0'</td>
<td>18° 39.3'</td>
<td>18° 43.5'</td>
<td>18° 47.0'</td>
<td>18° 49.3'</td>
<td>18° 53.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0960</td>
<td>18° 34.0'</td>
<td>18° 36.0'</td>
<td>18° 38.0'</td>
<td>18° 42.0'</td>
<td>18° 45.5'</td>
<td>18° 49.0'</td>
<td>18° 52.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0955</td>
<td>18° 35.0'</td>
<td>18° 37.0'</td>
<td>18° 39.5'</td>
<td>18° 43.0'</td>
<td>18° 46.0'</td>
<td>18° 49.0'</td>
<td>18° 51.5'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0950</td>
<td>18° 34.0'</td>
<td>18° 37.5'</td>
<td>18° 40.0'</td>
<td>18° 44.5'</td>
<td>18° 47.5'</td>
<td>18° 49.5'</td>
<td>18° 52.5'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0955</td>
<td>18° 35.5'</td>
<td>18° 37.5'</td>
<td>18° 41.0'</td>
<td>18° 45.5'</td>
<td>18° 48.5'</td>
<td>18° 50.0'</td>
<td>18° 53.5'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mittel</td>
<td>1.0954</td>
<td>18° 34.1'</td>
<td>18° 37.0'</td>
<td>18° 39.6'</td>
<td>18° 43.2'</td>
<td>18° 46.5'</td>
<td>18° 49.5'</td>
<td>18° 52.3'</td>
<td>1.3768</td>
<td>1.3777</td>
<td>1.3766</td>
<td>1.3777</td>
<td>1.3788</td>
<td>1.3798</td>
</tr>
</tbody>
</table>

24°C.

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Dichte</th>
<th>ω₁</th>
<th>ω₂</th>
<th>ω₃</th>
<th>ω₄</th>
<th>ω₅</th>
<th>ω₆</th>
<th>ω₇</th>
<th>Nu</th>
<th>N₅</th>
<th>N₆</th>
<th>N₇</th>
<th>N₈</th>
<th>N₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>24°C</td>
<td>1.0950</td>
<td>18° 35.5'</td>
<td>18° 41.0'</td>
<td>18° 43.5'</td>
<td>18° 46.5'</td>
<td>18° 49.0'</td>
<td>18° 51.0'</td>
<td>18° 53.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0960</td>
<td>18° 35.5'</td>
<td>18° 42.5'</td>
<td>18° 44.5'</td>
<td>18° 47.0'</td>
<td>18° 50.0'</td>
<td>18° 53.0'</td>
<td>18° 55.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0955</td>
<td>18° 39.0'</td>
<td>18° 41.0'</td>
<td>18° 45.0'</td>
<td>18° 47.5'</td>
<td>18° 51.0'</td>
<td>18° 54.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0950</td>
<td>18° 37.5'</td>
<td>18° 41.0'</td>
<td>18° 43.0'</td>
<td>18° 46.0'</td>
<td>18° 49.0'</td>
<td>18° 52.5'</td>
<td>18° 55.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1.0955</td>
<td>18° 40.0'</td>
<td>18° 43.0'</td>
<td>18° 45.5'</td>
<td>18° 48.5'</td>
<td>18° 52.0'</td>
<td>18° 55.0'</td>
<td>18° 58.0'</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mittel</td>
<td>1.0954</td>
<td>18° 38.7'</td>
<td>18° 41.7'</td>
<td>18° 43.9'</td>
<td>18° 46.6'</td>
<td>18° 49.7'</td>
<td>18° 52.5'</td>
<td>18° 55.1'</td>
<td>1.3755</td>
<td>1.3777</td>
<td>1.3768</td>
<td>1.3779</td>
<td>1.3788</td>
<td>1.3798</td>
</tr>
</tbody>
</table>

Mittel aus allen 10 Beobachtungen:

<table>
<thead>
<tr>
<th>Nu</th>
<th>N₅</th>
<th>N₆</th>
<th>N₇</th>
<th>N₈</th>
<th>N₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3755</td>
<td>1.3777</td>
<td>1.3768</td>
<td>1.3779</td>
<td>1.3788</td>
<td>1.3798</td>
</tr>
<tr>
<td>1.896</td>
<td>1.897</td>
<td>1.898</td>
<td>1.899</td>
<td>1.900</td>
<td>1.901</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>0.57</td>
<td>0.58</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
</tr>
<tr>
<td>0.76</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.80</td>
<td>0.81</td>
</tr>
<tr>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>1.14</td>
<td>1.15</td>
<td>1.16</td>
<td>1.17</td>
<td>1.18</td>
<td>1.19</td>
</tr>
</tbody>
</table>

93.6 G. Weis und E. Weis. Untersuchungen über den Zusammenhang.
<table>
<thead>
<tr>
<th>Stellung A:</th>
<th>Stellung B:</th>
<th>Mittel:</th>
<th>Mittel aus allen 10 Beobachtungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthiden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp. C</td>
<td>Temp. C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.135</td>
<td>10.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.130</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.135</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.130</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.135</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.130</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.135</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.130</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.135</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.130</td>
<td>10.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minute</td>
<td>$\lambda /{\text{cm}}$</td>
<td>Dichte</td>
<td>Temp.</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1.4500</td>
<td>18 0 60 90 0°</td>
<td>19 0 40 50 0°</td>
<td>19 0 50 50 0°</td>
</tr>
<tr>
<td>1.4490</td>
<td>18 0 50 60 0°</td>
<td>19 0 49 50 0°</td>
<td>19 0 59 50 0°</td>
</tr>
<tr>
<td>1.4480</td>
<td>18 0 40 70 0°</td>
<td>19 0 48 50 0°</td>
<td>19 0 58 50 0°</td>
</tr>
<tr>
<td>1.4470</td>
<td>18 0 30 80 0°</td>
<td>19 0 47 50 0°</td>
<td>19 0 57 50 0°</td>
</tr>
<tr>
<td>1.4460</td>
<td>18 0 20 90 0°</td>
<td>19 0 46 50 0°</td>
<td>19 0 56 50 0°</td>
</tr>
<tr>
<td>1.4450</td>
<td>18 0 10 0°</td>
<td>19 0 45 50 0°</td>
<td>19 0 55 50 0°</td>
</tr>
<tr>
<td>1.4440</td>
<td>18 0 00 0°</td>
<td>19 0 44 50 0°</td>
<td>19 0 54 50 0°</td>
</tr>
<tr>
<td>1.4430</td>
<td>18 0 10 0°</td>
<td>19 0 43 50 0°</td>
<td>19 0 53 50 0°</td>
</tr>
<tr>
<td>1.4420</td>
<td>18 0 20 0°</td>
<td>19 0 42 50 0°</td>
<td>19 0 52 50 0°</td>
</tr>
<tr>
<td>1.4410</td>
<td>18 0 30 0°</td>
<td>19 0 41 50 0°</td>
<td>19 0 51 50 0°</td>
</tr>
<tr>
<td>1.4400</td>
<td>18 0 40 0°</td>
<td>19 0 40 50 0°</td>
<td>19 0 50 50 0°</td>
</tr>
<tr>
<td>1.4390</td>
<td>18 0 50 0°</td>
<td>19 0 39 50 0°</td>
<td>19 0 49 50 0°</td>
</tr>
<tr>
<td>1.4380</td>
<td>18 0 60 0°</td>
<td>19 0 38 50 0°</td>
<td>19 0 48 50 0°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Na</th>
<th>Na</th>
<th>Na</th>
<th>Na</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3800</td>
<td>1.3800</td>
<td>1.3800</td>
<td>1.3800</td>
<td>1.3800</td>
</tr>
<tr>
<td>1.3900</td>
<td>1.3900</td>
<td>1.3900</td>
<td>1.3900</td>
<td>1.3900</td>
</tr>
<tr>
<td>1.4000</td>
<td>1.4000</td>
<td>1.4000</td>
<td>1.4000</td>
<td>1.4000</td>
</tr>
<tr>
<td>1.4100</td>
<td>1.4100</td>
<td>1.4100</td>
<td>1.4100</td>
<td>1.4100</td>
</tr>
<tr>
<td>1.4200</td>
<td>1.4200</td>
<td>1.4200</td>
<td>1.4200</td>
<td>1.4200</td>
</tr>
<tr>
<td>1.4300</td>
<td>1.4300</td>
<td>1.4300</td>
<td>1.4300</td>
<td>1.4300</td>
</tr>
<tr>
<td>1.4400</td>
<td>1.4400</td>
<td>1.4400</td>
<td>1.4400</td>
<td>1.4400</td>
</tr>
<tr>
<td>1.4500</td>
<td>1.4500</td>
<td>1.4500</td>
<td>1.4500</td>
<td>1.4500</td>
</tr>
</tbody>
</table>
T A B. X.

<table>
<thead>
<tr>
<th>Temp.</th>
<th>0.9 Concentration.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dichte</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1600</td>
</tr>
<tr>
<td></td>
<td>1:1650</td>
</tr>
<tr>
<td></td>
<td>1:1655</td>
</tr>
<tr>
<td></td>
<td>Mittel:</td>
</tr>
</tbody>
</table>

Mittel aus allen 10 Bestimmungen:

1:1600 1:1650 1:1655 1:1653
Tab. XI. Concentrirtte.

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Dichte</th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>(\omega_4)</th>
<th>(\omega_5)</th>
<th>(\omega_6)</th>
<th>(\omega_7)</th>
<th>(\omega_8)</th>
<th>(\omega_9)</th>
<th>(N_e)</th>
<th>(N_h)</th>
<th>(N_d)</th>
<th>(N_e)</th>
<th>(N_g)</th>
<th>(N_h)</th>
<th>(N_d)</th>
<th>(N_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23° C</td>
<td></td>
</tr>
<tr>
<td>1-1833</td>
<td>18° 36-3'</td>
<td>18° 39-0'</td>
<td>18° 43-0'</td>
<td>18° 46-5'</td>
<td>18° 51-0'</td>
<td>18° 54-5'</td>
<td>18° 59-5'</td>
<td></td>
</tr>
<tr>
<td>1-1830</td>
<td>20 35-0</td>
<td>20 35-3</td>
<td>20 41-3</td>
<td>20 45-0</td>
<td>20 49-5</td>
<td>20 52-5</td>
<td>20 56-0</td>
<td></td>
</tr>
<tr>
<td>1-1829</td>
<td>20 35-0</td>
<td>20 35-3</td>
<td>20 41-3</td>
<td>20 45-0</td>
<td>20 49-5</td>
<td>20 52-5</td>
<td>20 56-0</td>
<td></td>
</tr>
<tr>
<td>1-1828</td>
<td>20 35-0</td>
<td>20 38-0</td>
<td>20 41-3</td>
<td>20 45-0</td>
<td>20 49-5</td>
<td>20 52-5</td>
<td>20 56-0</td>
<td></td>
</tr>
<tr>
<td>Mittel : 1-1825</td>
<td>20 38-0'</td>
<td>20 38-1'</td>
<td>20 41-4'</td>
<td>20 45-0'</td>
<td>20 48-6'</td>
<td>20 52-0'</td>
<td>20 56-0'</td>
<td></td>
</tr>
</tbody>
</table>

23° C																		
1-1833	20° 39-5'	20° 43-0'	20° 45-5'	20° 49-5'	20° 53-0'	20° 57-0'	21° 0-0'											
1-1830	20 38-0	20 40-5	20 44-5	20 48-5	20 52-0	20 55-0	20 59-5											
1-1829	20 38-0	20 41-3	20 44-5	20 48-5	20 51-5	20 55-0	20 57-5											
1-1828	20 39-5	20 43-5	20 48-5	20 50-0	20 54-5	20 59-0	21 2-5											
Mittel : 1-1825	20° 39-5'	20° 42-6'	20° 45-7'	20° 49-6'	20° 53-2	20° 57-1	21° 0-4'											

Mittel aus allen 10 Beobachtungen: 1-1415 1-1415 1-1415 1-1415 1-1415 1-1415 1-1415
A. Mittelwerthe für Salzsäure und Wasser.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Temp.</th>
<th>Dichte</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>23° C.</td>
<td>1.1823</td>
<td>1.4141</td>
<td>1.4152</td>
<td>1.4162</td>
<td>1.4186</td>
<td>1.4197</td>
<td>1.4208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>23</td>
<td>1.1633</td>
<td>1.4060</td>
<td>1.4077</td>
<td>1.4086</td>
<td>1.4109</td>
<td>1.4120</td>
<td>1.4133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>24</td>
<td>1.1480</td>
<td>1.3990</td>
<td>1.4000</td>
<td>1.4009</td>
<td>1.4032</td>
<td>1.4042</td>
<td>1.4054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>24</td>
<td>1.1314</td>
<td>1.3920</td>
<td>1.3929</td>
<td>1.3939</td>
<td>1.3960</td>
<td>1.3969</td>
<td>1.3961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>26</td>
<td>1.1135</td>
<td>1.3839</td>
<td>1.3848</td>
<td>1.3857</td>
<td>1.3878</td>
<td>1.3887</td>
<td>1.3897</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>24</td>
<td>1.0934</td>
<td>1.3755</td>
<td>1.3765</td>
<td>1.3774</td>
<td>1.3793</td>
<td>1.3803</td>
<td>1.3812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>24</td>
<td>1.0774</td>
<td>1.3677</td>
<td>1.3686</td>
<td>1.3695</td>
<td>1.3703</td>
<td>1.3714</td>
<td>1.3723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>23</td>
<td>1.0595</td>
<td>1.3590</td>
<td>1.3600</td>
<td>1.3610</td>
<td>1.3617</td>
<td>1.3627</td>
<td>1.3637</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>26</td>
<td>1.0406</td>
<td>1.3502</td>
<td>1.3511</td>
<td>1.3519</td>
<td>1.3527</td>
<td>1.3538</td>
<td>1.3546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>25</td>
<td>1.0210</td>
<td>1.3413</td>
<td>1.3421</td>
<td>1.3430</td>
<td>1.3437</td>
<td>1.3447</td>
<td>1.3455</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>23</td>
<td>1.0000</td>
<td>1.3321</td>
<td>1.3329</td>
<td>1.3337</td>
<td>1.3344</td>
<td>1.3353</td>
<td>1.3360</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Mittelwerthe für Salmiaklösung.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Temp.</th>
<th>Dichte</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
<th>N(\beta)</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>16° S. C.</td>
<td>1.0710</td>
<td>1.3609</td>
<td>1.3618</td>
<td>1.3627</td>
<td>1.3637</td>
<td>1.3646</td>
<td>1.3654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>16</td>
<td>1.0676</td>
<td>1.3765</td>
<td>1.3774</td>
<td>1.3782</td>
<td>1.3790</td>
<td>1.3799</td>
<td>1.3807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>17</td>
<td>1.0641</td>
<td>1.3732</td>
<td>1.3741</td>
<td>1.3748</td>
<td>1.3757</td>
<td>1.3766</td>
<td>1.3776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>16</td>
<td>1.0540</td>
<td>1.3656</td>
<td>1.3663</td>
<td>1.3672</td>
<td>1.3682</td>
<td>1.3691</td>
<td>1.3700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>16</td>
<td>1.0470</td>
<td>1.3517</td>
<td>1.3525</td>
<td>1.3534</td>
<td>1.3543</td>
<td>1.3553</td>
<td>1.3561</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>18</td>
<td>1.0414</td>
<td>1.3567</td>
<td>1.3577</td>
<td>1.3586</td>
<td>1.3595</td>
<td>1.3602</td>
<td>1.3609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>20</td>
<td>1.0340</td>
<td>1.3527</td>
<td>1.3535</td>
<td>1.3543</td>
<td>1.3550</td>
<td>1.3557</td>
<td>1.3566</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>18</td>
<td>1.0271</td>
<td>1.3477</td>
<td>1.3485</td>
<td>1.3492</td>
<td>1.3501</td>
<td>1.3510</td>
<td>1.3518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>19</td>
<td>1.0200</td>
<td>1.3426</td>
<td>1.3434</td>
<td>1.3441</td>
<td>1.3450</td>
<td>1.3458</td>
<td>1.3466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>19.5</td>
<td>1.0098</td>
<td>1.3383</td>
<td>1.3392</td>
<td>1.3399</td>
<td>1.3406</td>
<td>1.3413</td>
<td>1.3420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>20</td>
<td>1.0000</td>
<td>1.3313</td>
<td>1.3320</td>
<td>1.3327</td>
<td>1.3334</td>
<td>1.3343</td>
<td>1.3351</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus den Werthen der vorstehenden Tabellen suchten wir nach den schon öfter gebrauchten Formeln:

\[\delta = \frac{v_1 d_1 + v_2 d_2 - (v_1 + v_2) D}{v_1 v_2 D} \]

\[y = \frac{N (v_1 + v_2 + v_1 v_2 \delta) - (v_1 n_1 + v_2 n_2)}{v_1 n_1 v_2 n_2} \]
Ad. Weiss und Edm. Weiss. Untersuchungen über den Zusammenhang

\[\delta = \frac{r_1 d_1 + r_2 d_2 - (r_1 + r_2) D}{N (v_1 + v_2 + v_3 + r_3 \delta) - (v_1 + r_2) n_1 + r_2 n_2} \cdot \frac{n_1 n_2}{D} \]

oder den symmetrischeren:

\[\eta = \frac{N (v_1 d_1 + v_2 d_2) - D (v_1 n_1 + v_2 n_2)}{v_1 v_2 n_1 n_2 D} \]

\[\delta = \frac{r_1 d_1 + r_2 d_2 - (r_1 + r_2) D}{N (v_1 d_1 + v_2 d_2) - D (v_1 n_1 + v_2 n_2)} \cdot \frac{n_1 n_2}{D} \]

die Werthe von \(\delta \) und \(\eta \). Folgende Tabelle enthält eine Zusammenstellung derselben.

Werthe der \(\delta \) und \(\eta \) für alle Concentrationsgrade der Salzsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\delta)</th>
<th>(\theta_4)</th>
<th>(\theta_5)</th>
<th>(\theta_6)</th>
<th>(\theta_7)</th>
<th>(\theta_8)</th>
<th>(\theta_{32})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>-0.0100</td>
<td>-0.0034</td>
<td>-0.0032</td>
<td>-0.0026</td>
<td>-0.0024</td>
<td>-0.0032</td>
<td>-0.0035</td>
</tr>
<tr>
<td>0-8</td>
<td>-0.0109</td>
<td>-0.0038</td>
<td>-0.0039</td>
<td>-0.0041</td>
<td>-0.0039</td>
<td>-0.0059</td>
<td>-0.0040</td>
</tr>
<tr>
<td>0-7</td>
<td>-0.0114</td>
<td>-0.0050</td>
<td>-0.0083</td>
<td>-0.0082</td>
<td>-0.0061</td>
<td>-0.0085</td>
<td>-0.0055</td>
</tr>
<tr>
<td>0-6</td>
<td>-0.0117</td>
<td>-0.0050</td>
<td>-0.0052</td>
<td>-0.0052</td>
<td>-0.0051</td>
<td>-0.0053</td>
<td>-0.0053</td>
</tr>
<tr>
<td>0-5</td>
<td>-0.0115</td>
<td>-0.0060</td>
<td>-0.0059</td>
<td>-0.0059</td>
<td>-0.0061</td>
<td>-0.0059</td>
<td>-0.0059</td>
</tr>
<tr>
<td>0-4</td>
<td>-0.0110</td>
<td>-0.0062</td>
<td>-0.0062</td>
<td>-0.0062</td>
<td>-0.0061</td>
<td>-0.0062</td>
<td>-0.0061</td>
</tr>
<tr>
<td>0-3</td>
<td>-0.0214</td>
<td>-0.0096</td>
<td>-0.0093</td>
<td>-0.0090</td>
<td>-0.0092</td>
<td>-0.0095</td>
<td>-0.0088</td>
</tr>
<tr>
<td>0-2</td>
<td>-0.0266</td>
<td>-0.0120</td>
<td>-0.0119</td>
<td>-0.0120</td>
<td>-0.0120</td>
<td>-0.0118</td>
<td>-0.0115</td>
</tr>
<tr>
<td>0-1</td>
<td>-0.0299</td>
<td>-0.0154</td>
<td>-0.0155</td>
<td>-0.0154</td>
<td>-0.0153</td>
<td>-0.0150</td>
<td>-0.0150</td>
</tr>
</tbody>
</table>

Werthe der \(\delta \) und \(\theta \) für alle Concentrationsgrade von Salmiaklösung.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\delta)</th>
<th>(\theta_4)</th>
<th>(\theta_5)</th>
<th>(\theta_6)</th>
<th>(\theta_7)</th>
<th>(\theta_8)</th>
<th>(\theta_{32})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>-0.0385</td>
<td>-0.0254</td>
<td>-0.0253</td>
<td>-0.0258</td>
<td>-0.0269</td>
<td>-0.0269</td>
<td>-0.0267</td>
</tr>
<tr>
<td>0-8</td>
<td>-0.0489</td>
<td>-0.0243</td>
<td>-0.0243</td>
<td>-0.0249</td>
<td>-0.0251</td>
<td>-0.0250</td>
<td>-0.0243</td>
</tr>
<tr>
<td>0-7</td>
<td>-0.0194</td>
<td>-0.0153</td>
<td>-0.0154</td>
<td>-0.0155</td>
<td>-0.0155</td>
<td>-0.0154</td>
<td>-0.0152</td>
</tr>
<tr>
<td>0-6</td>
<td>-0.0175</td>
<td>-0.0118</td>
<td>-0.0116</td>
<td>-0.0114</td>
<td>-0.0114</td>
<td>-0.0113</td>
<td>-0.0111</td>
</tr>
<tr>
<td>0-5</td>
<td>-0.0227</td>
<td>-0.0141</td>
<td>-0.0148</td>
<td>-0.0147</td>
<td>-0.0147</td>
<td>-0.0145</td>
<td>-0.0138</td>
</tr>
<tr>
<td>0-4</td>
<td>-0.0228</td>
<td>-0.0131</td>
<td>-0.0130</td>
<td>-0.0130</td>
<td>-0.0134</td>
<td>-0.0137</td>
<td>-0.0134</td>
</tr>
<tr>
<td>0-3</td>
<td>-0.0269</td>
<td>-0.0158</td>
<td>-0.0157</td>
<td>-0.0158</td>
<td>-0.0157</td>
<td>-0.0155</td>
<td>-0.0155</td>
</tr>
<tr>
<td>0-2</td>
<td>-0.0355</td>
<td>-0.0212</td>
<td>-0.0211</td>
<td>-0.0212</td>
<td>-0.0210</td>
<td>-0.0210</td>
<td>-0.0211</td>
</tr>
<tr>
<td>0-1</td>
<td>-0.0297</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Mittelwerte der \(\frac{\delta}{\theta} \) für alle Concentrationsgrade der Salzsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\frac{\delta}{\theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>2.98</td>
<td>3.13</td>
<td>2.74</td>
<td>2.94</td>
<td>3.16</td>
<td>2.85</td>
<td>2.97</td>
</tr>
<tr>
<td>0.8</td>
<td>2.88</td>
<td>2.78</td>
<td>2.65</td>
<td>2.82</td>
<td>2.77</td>
<td>2.73</td>
<td>2.78</td>
</tr>
<tr>
<td>0.7</td>
<td>2.05</td>
<td>2.90</td>
<td>2.97</td>
<td>3.01</td>
<td>2.88</td>
<td>2.78</td>
<td>2.92</td>
</tr>
<tr>
<td>0.6</td>
<td>2.92</td>
<td>2.83</td>
<td>2.81</td>
<td>2.87</td>
<td>2.83</td>
<td>2.77</td>
<td>2.84</td>
</tr>
<tr>
<td>0.5</td>
<td>2.54</td>
<td>2.58</td>
<td>2.58</td>
<td>2.58</td>
<td>2.49</td>
<td>2.58</td>
<td>2.56</td>
</tr>
<tr>
<td>0.4</td>
<td>2.76</td>
<td>2.74</td>
<td>2.77</td>
<td>2.71</td>
<td>2.74</td>
<td>2.79</td>
<td>2.76</td>
</tr>
<tr>
<td>0.3</td>
<td>2.23</td>
<td>2.30</td>
<td>2.39</td>
<td>2.31</td>
<td>2.30</td>
<td>2.42</td>
<td>2.32</td>
</tr>
<tr>
<td>0.2</td>
<td>2.05</td>
<td>2.08</td>
<td>2.06</td>
<td>2.14</td>
<td>2.15</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.94</td>
<td>1.92</td>
<td>1.98</td>
<td>1.95</td>
<td>2.00</td>
<td>2.05</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Mittelwerte der \(\frac{\delta}{\theta} \) für alle Concentrationsgrade von Salmiaklösung.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\frac{\delta}{\theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1.51</td>
<td>1.53</td>
<td>1.49</td>
<td>1.43</td>
<td>1.44</td>
<td>1.45</td>
<td>1.47</td>
</tr>
<tr>
<td>0.8</td>
<td>1.75</td>
<td>1.76</td>
<td>1.72</td>
<td>1.71</td>
<td>1.72</td>
<td>1.76</td>
<td>1.74</td>
</tr>
<tr>
<td>0.7</td>
<td>1.35</td>
<td>1.36</td>
<td>1.26</td>
<td>1.25</td>
<td>1.25</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td>0.6</td>
<td>1.52</td>
<td>1.51</td>
<td>1.54</td>
<td>1.54</td>
<td>1.55</td>
<td>1.58</td>
<td>1.55</td>
</tr>
<tr>
<td>0.5</td>
<td>1.47</td>
<td>1.51</td>
<td>1.54</td>
<td>1.54</td>
<td>1.51</td>
<td>1.48</td>
<td>1.51</td>
</tr>
<tr>
<td>0.4</td>
<td>1.72</td>
<td>1.73</td>
<td>1.74</td>
<td>1.69</td>
<td>1.65</td>
<td>1.68</td>
<td>1.70</td>
</tr>
<tr>
<td>0.3</td>
<td>1.70</td>
<td>1.72</td>
<td>1.70</td>
<td>1.71</td>
<td>1.72</td>
<td>1.74</td>
<td>1.72</td>
</tr>
<tr>
<td>0.2</td>
<td>1.67</td>
<td>1.69</td>
<td>1.68</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
</tr>
<tr>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Man sieht aus diesen Tabellen, dass sich die Salzsäure ganz anders verhält als die früher gemessenen Säuren 1). Das Verhältniss \(\frac{\delta}{\theta} \) ist variabel und schwankt nicht mehr um die Zahl 2; doch sieht man deutlich ein Abnehmen dieses Verhältnisses gegen die niedereren Concentrationsgrade. Auch die \(\delta \) und \(\theta \) nehmen, ganz ver-

1) Sitzungsberichte, XXX, S. 389.
schieden von den früheren Beobachtungsreihen, bei den niedereren Concentrationsgraden zu und die θ zeigen nur in letzteren eine Abnahme von einer Linie zur anderen, während in den höheren sogar eine beständige Zunahme stattfindet.

Um nun die Veränderungen, welche alle angegebenen Zahlen durch die möglichen Fehler der Beobachtung erlitten haben können, zu ermitteln, bedienten wir uns derselben Formeln, welche in der früheren Abhandlung angegeben wurden; sie lauten nach einigen weiteren Transformationen, durch welche sie in vieler Hinsicht zur Berechnung bequemer werden:

\[
\Delta \hat{d} = \frac{D - d_a}{\nu_1^a D} \Delta v_1 - \frac{d_1 - D}{\nu_2^a D} \Delta v_2 + \frac{1}{\nu_1 \nu_2 D} \left[\nu_1 \Delta d_1 + \nu_2 \Delta d_2 \right] -
\]

\[
\frac{\nu_1 + \nu_2 + \delta v_1 \nu_3}{\nu_1 \nu_2 D} \Delta D
\]

\[
\Delta \theta = \frac{n_2 D - N d_a}{\nu_1^a \nu_1 \nu_2 D} \Delta v_1 - \frac{N d_1 - n_1 D}{\nu_2^a \nu_1 \nu_2 D} \Delta v_2 + \frac{N}{\nu_1 \nu_2 \nu_1 \nu_2 D} \left[\nu_1 \Delta d_1 + \nu_2 \Delta d_2 \right] -
\]

\[
\frac{N (\nu_1 + \nu_2 + \delta v_1 \nu_3)}{\nu_1 \nu_2 \nu_1 \nu_2 D} \Delta D -
\]

\[
\frac{1 + \nu_2 \nu_2 \theta}{\nu_1 \nu_2 \nu_2} \Delta n_1 - \frac{1 + \nu_1 \nu_1 \theta}{\nu_1 \nu_1 \nu_2} \Delta n_2 +
\]

\[
\frac{\nu_1 + \nu_2 + \delta v_1 \nu_2}{\nu_1 \nu_2 \nu_2} \Delta N
\]

\[
\Delta \frac{\delta}{\theta} = \frac{(n_2 D - N d_a)}{n_1 \nu_2 D (\nu_1 \nu_2 \theta)^2} \left[\nu_2 \Delta v_1 - \nu_1 \Delta v_2 \right] -
\]

\[
\frac{N}{\nu_1 \nu_2 \nu_1 \nu_2 \theta} \Delta D \left[\nu_1 \Delta d_1 + \nu_2 \Delta d_2 - (\nu_1 + \nu_2 + \delta v_1 \nu_2) \Delta D \right]
\]

\[
+ \frac{(1 + \nu_2 \nu_2 \theta)}{\nu_1 \nu_2 \nu_2} \Delta n_1 + \frac{(1 + \nu_1 \nu_1 \theta)}{\nu_1 \nu_1 \nu_2} \Delta n_2 - \frac{(\nu_1 + \nu_2 + \delta v_1 \nu_2)}{\nu_1 \nu_2 \nu_1 \nu_2} \Delta N.
\]

Mit den in früherer Tabelle angegebenen Werthen berechneten wir die Coefficienten dieser Differenzengleichungen und zwar die der
$\Delta \theta$ und $\Delta \frac{\delta}{\theta}$ für die Linien A und B, weil betreffende Coeffizienten wegen der bedeutenden Änderungen der θ in den verschiedenen Linien sich auch bedeutend ändern. Man findet dabei Tabellen, wie die S. 423 ff. der früheren Abhandlung angegebenen, wobei wir nur bemerken, dass bei Salzsäure wegen der Zunahme der δ und θ von den höheren zu den niedereren Concentrationsgraden die grössten Fehler nicht wie bei SO$_4$ und NO$_4$ in den niedersten, sondern in den höchsten Concentrationsgraden begangen werden.

Wir führen die ausführliche Discussion dieser Fehlergleichungen nur an Salzsäure durch, um die Arbeit nicht zu sehr zu vergrössern, und bemerken zu den Salmiaklösungen, dass bei ihnen, da die Genauigkeit der Dichten und Brechungsexponenten der bei Cl. H erreichten wenig nachsteht, die Contractions- und Retardations-Coeffizienten aber weit grissser sind, die Beobachtungsfehler einen weit geringeren Einfluss ausüben.

Tabelle II.

Fehler in θ für das Liniensystem Α des Spectrums:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\Delta \theta_\alpha =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.08 (\Delta r_1) - 0.71 (\Delta r_2) + 6.41 (\Delta d_1) + 0.71 (\Delta d_2) - 7.11 (\Delta D) - 5.31 (\Delta n_1) - 0.59 (\Delta n_2) + 5.89 (\Delta N)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.09 (\Delta r_1) - 0.36 (\Delta r_2) + 3.23 (\Delta d_1) + 0.81 (\Delta d_2) - 4.04 (\Delta D) - 2.65 (\Delta n_1) - 0.66 (\Delta n_2) + 3.31 (\Delta N)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.11 (\Delta r_1) - 0.24 (\Delta r_2) + 2.18 (\Delta d_1) + 0.93 (\Delta d_2) - 3.10 (\Delta D) - 1.77 (\Delta n_1) - 0.76 (\Delta n_2) + 2.52 (\Delta N)</td>
</tr>
<tr>
<td>0.6</td>
<td>0.13 (\Delta r_1) - 0.18 (\Delta r_2) + 1.65 (\Delta d_1) + 1.10 (\Delta d_2) - 2.74 (\Delta D) - 1.33 (\Delta n_1) - 0.88 (\Delta n_2) + 2.20 (\Delta N)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.16 (\Delta r_1) - 0.15 (\Delta r_2) + 1.33 (\Delta d_1) + 1.34 (\Delta d_2) - 2.66 (\Delta D) - 1.06 (\Delta n_1) - 1.06 (\Delta n_2) + 2.12 (\Delta N)</td>
</tr>
<tr>
<td>0.4</td>
<td>0.21 (\Delta r_1) - 0.13 (\Delta r_2) + 1.12 (\Delta d_1) + 1.68 (\Delta d_2) - 2.80 (\Delta D) - 0.88 (\Delta n_1) - 1.32 (\Delta n_2) + 2.20 (\Delta N)</td>
</tr>
<tr>
<td>0.3</td>
<td>0.29 (\Delta r_1) - 0.11 (\Delta r_2) + 0.97 (\Delta d_1) + 2.27 (\Delta d_2) - 3.23 (\Delta D) - 0.75 (\Delta n_1) - 1.76 (\Delta n_2) + 2.52 (\Delta N)</td>
</tr>
<tr>
<td>0.2</td>
<td>0.44 (\Delta r_1) - 0.10 (\Delta r_2) + 0.86 (\Delta d_1) + 3.45 (\Delta d_2) - 4.29 (\Delta D) - 0.66 (\Delta n_1) - 2.65 (\Delta n_2) + 3.31 (\Delta N)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.98 (\Delta r_1) - 0.09 (\Delta r_2) + 0.78 (\Delta d_1) + 6.98 (\Delta d_2) - 7.74 (\Delta D) - 0.58 (\Delta n_1) - 5.30 (\Delta n_2) + 5.89 (\Delta N)</td>
</tr>
</tbody>
</table>
| $\begin{array}{c}
\ AV \ 8.86 + 2.27 \\
\ AV \ 2.19 + 8.32 \\
\ AV \ 6.08 - 0.2 \\
\ AV \ 9.73 + 1.60 \\
\ AV \ 8.61 - 0.1 \\
\ AV \ 5.33 + 0.4 \\
\ AV \ 3.29 - 0.82 \\
\ AV \ 2.85 + 0.69 \\
\ AV \ 1.73 - 0.21 \\
\ AV \ 1.18 + 0.33 \\
\ AV \ 1.07 - 0.1 \\
\ AV \ 0.79 - 0.01 \\
\ AV \ 0.60 - 0.0 \\
\ AV \ 0.40 - 0.0 \\
\ AV \ 0.21 - 0.0 \\
\ AV \ 0.00 - 0.0 \\
\end{array}$ | 1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

$\text{Kolb in } g \text{ für das Linienystem } G \text{ des Spektrums}$

Table III
Tabelle IV.

Fehler in $\frac{\delta}{\delta}$ für das Liniensystem Α des Spektrums.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>$\Delta \frac{\delta}{\delta_n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>$46 \Delta v_1 - 403 \Delta v_2 - 3123 \Delta d_1 - 327 \Delta d_2 + 3466 \Delta D - 4699 \Delta n_1 - 520 \Delta n_2 + 5219 \Delta N$</td>
</tr>
<tr>
<td>0.8</td>
<td>$43 \Delta v_1 - 172 \Delta v_2 - 1310 \Delta d_1 - 327 \Delta d_2 + 1634 \Delta D - 2018 \Delta n_1 - 502 \Delta n_2 + 2520 \Delta N$</td>
</tr>
<tr>
<td>0.7</td>
<td>$41 \Delta v_1 - 96 \Delta v_2 - 736 \Delta d_1 - 315 \Delta d_2 + 1048 \Delta D - 1072 \Delta n_1 - 458 \Delta n_2 + 1530 \Delta N$</td>
</tr>
<tr>
<td>0.6</td>
<td>$46 \Delta v_1 - 69 \Delta v_2 - 513 \Delta d_1 - 342 \Delta d_2 + 852 \Delta D - 771 \Delta n_1 - 513 \Delta n_2 + 1283 \Delta N$</td>
</tr>
<tr>
<td>0.5</td>
<td>$37 \Delta v_1 - 37 \Delta v_2 - 267 \Delta d_1 - 267 \Delta d_2 + 533 \Delta D - 450 \Delta n_1 - 449 \Delta n_2 + 900 \Delta N$</td>
</tr>
<tr>
<td>0.4</td>
<td>$53 \Delta v_1 - 35 \Delta v_2 - 251 \Delta d_1 - 377 \Delta d_2 + 625 \Delta D - 393 \Delta n_1 - 591 \Delta n_2 + 984 \Delta N$</td>
</tr>
<tr>
<td>0.3</td>
<td>$32 \Delta v_1 - 13 \Delta v_2 - 88 \Delta d_1 - 205 \Delta d_2 + 291 \Delta D - 175 \Delta n_1 - 410 \Delta n_2 + 585 \Delta N$</td>
</tr>
<tr>
<td>0.2</td>
<td>$32 \Delta v_1 - 8 \Delta v_2 - 49 \Delta d_1 - 194 \Delta d_2 + 243 \Delta D - 112 \Delta n_1 - 432 \Delta n_2 + 564 \Delta N$</td>
</tr>
<tr>
<td>0.1</td>
<td>$45 \Delta v_1 - 5 \Delta v_2 - 28 \Delta d_1 - 250 \Delta d_2 + 277 \Delta D - 73 \Delta n_1 - 660 \Delta n_2 + 743 \Delta N$</td>
</tr>
<tr>
<td>Table 1</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(N) (\sqrt{\frac{a}{p}})</td>
<td>(\sqrt{\frac{b}{q}})</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: Für das Linienvegetation der Spezies.
Um aus diesen Tabellen die Größe des Einflusses der Fehler zu bestimmen, müssen wir zuerst den Werth der mit \(\Delta v_1, \Delta v_2, \ldots \) bezeichneten Größen kennen.

Bei jeder einzelnen Mischung kann man aus Gründen, welche in der früheren Abhandlung angegeben sind, nicht leicht um mehr als \(\frac{1}{300} \) des ganzen Volums fehlen. Da wir aber bei Salzsäure von jedem Concentrationsgrade vier Mischungen machten, dann diese zusammengossen und die so entstandene Mischung als fünfte betrachten, kann man wohl sagen, dass im Mittel aller der Fehler \(\frac{1}{500} \) gewiss nicht erreicht. Um aber den Einfluss der Fehler eher zu gross als zu klein zu finden, setzen wir

\[
\Delta v_1 = 0.002 \\
\Delta v_2 = 0.002
\]

Hat man \(m \) gleich gute Beobachtungen und geben diese für ein und dieselbe Größe nach einander die Werthe \(n_1, n_2, \ldots \) so ist, wenn man

\[
x = \frac{n_1 + n_2 + n_3 + \ldots}{m}
\]

und

\[
M = (x - n_1)^2 + (x - n_2)^2 + (x - n_3)^2 + \ldots
\]

setzt, nach der Methode der kleinsten Quadrate der mittlere Fehler einer Beobachtung:

\[
\varepsilon_2 = \sqrt{\frac{M}{m}},
\]

der mittlere Fehler des arithmetischen Mittels:

\[
\varepsilon = \frac{1}{\sqrt{m}} \cdot \sqrt{\frac{M}{m}} = \frac{1}{m} \sqrt{m}.
\]

und daraus der wahrscheinliche Fehler einer einzelnen Beobachtung:

\[
r_2 = \rho \sqrt{2} \cdot \varepsilon_2 = \rho \sqrt{\frac{2M}{m}}
\]

und endlich der wahrscheinliche Fehler des arithmetischen Mittels:

\[
r = \rho \sqrt{2} \cdot \varepsilon = \frac{\rho}{m} \sqrt{2M}
\]
wo ρ aus der Gleichung:

$$\int e^{-\rho} dt = \frac{1}{4} \sqrt{\pi}$$

tzu suchen ist. Man findet:

$$\rho = 0.476936.$$

Wir geben hier den mittleren und wahrscheinlichen Fehler des arithmetischen Mittels in den Dichten und Brechungsexponenten, wobei, wie schon erwähnt, zu bemerken ist, dass von der Dichte je 5 Beobachtungen, von den Brechungsexponenten aber 10 gemacht wurden. Der Unterschied der Deviationen bei beiden Stellungen (A, B) des Prisma's wurde als nicht vorhanden betrachtet, und zwar mit vollem Rechte, denn er rührt nicht von Beobachtungsfehlern her, sondern von anderen störenden Einflüssen (Excentricitätsfehler etc.), die sich eben durch diesen Unterschied aufheben.

Mittlerer Fehler in:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>D</th>
<th>ω_A</th>
<th>ω_B</th>
<th>ω_C</th>
<th>ω_D</th>
<th>ω_E</th>
<th>ω_F</th>
<th>ω_G</th>
<th>ω_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0003</td>
<td>0.3'</td>
<td>0.4'</td>
<td>0.4'</td>
<td>0.4'</td>
<td>0.5'</td>
<td>0.6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.0003</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.0003</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.0003</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.0004</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.0002</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.0003</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.0003</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.0003</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.0003</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Man sieht aus dieser Zusammenstellung, dass der wahrscheinliche Fehler in D nie die Größe 0'0002 übersteigt. Ebenso übersteigt der Fehler in der Deviation nie 0'3'. Nehmen wir auch diese als vorkommende an, so ergibt sich daraus, da nach der früheren Tafel ein Fehler von 1' in der Deviation 0'00032 im Brechungsexponenten beträgt, eine Unsicherheit desselben von höchstens 1 Einheit der vierten Decimale. Nehmen wir daher als Maximalfehler, die wir begehen können, an:

$$\text{für } n_1 \text{ und } n_2 \ldots 0'002$$
$$\text{für } n_1, n_2 = N \ldots 0'0001$$
$$n, d_1, d_2 = D \ldots 0'0002;$$

nehmen wir ferner an, dass alle Fehler zugleich im Maximo vorhanden seien und keiner den andern teilweise tilge, was wohl schwer irgendwo der Fall sein dürfte, so erhalten wir das Fehler-
maximum, welches bei unseren Beobachtungen eintreten kann; es beträgt:

Der Maximalfehler in:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>$\delta = \Delta \theta \pm$</th>
<th>$\theta_m = \Delta \theta_m \pm$</th>
<th>$\theta_a = \Delta \theta_a \pm$</th>
<th>$\frac{\delta}{\theta_m} = \frac{\Delta \theta}{\theta_m} \pm$</th>
<th>$\frac{\delta}{\theta_a} = \frac{\Delta \theta}{\theta_a} \pm$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.0071</td>
<td>0.0056</td>
<td>0.0056</td>
<td>2.33</td>
<td>1.95</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0041</td>
<td>0.0031</td>
<td>0.0031</td>
<td>1.60</td>
<td>1.38</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0032</td>
<td>0.0024</td>
<td>0.0024</td>
<td>1.00</td>
<td>0.76</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0028</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0028</td>
<td>0.0021</td>
<td>0.0021</td>
<td>0.54</td>
<td>0.76</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0030</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.62</td>
<td>0.63</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0035</td>
<td>0.0026</td>
<td>0.0026</td>
<td>0.32</td>
<td>0.40</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0047</td>
<td>0.0035</td>
<td>0.0034</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0088</td>
<td>0.0063</td>
<td>0.0062</td>
<td>0.36</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Aus der sehr bedeutenden Größe derselben ergibt sich, dass man wohl die Schwankungen von $\frac{\delta}{\theta}$ um eine gewisse Zahl, z. B. 2.7 aus den Beobachtungsfehlern erklären, also das Verhältniss bei allen Concentrationsgraden als constant ansehen könne; fragt man aber, ob es wahrscheinlich sei, so muss man dies entschieden verneinen.

Die regelmässige Abnahme des Verhältnisses zwischen δ und θ von den höchsten zu den niedrigsten Concentrationsgraden zeigt, dass die Fehler sich nirgends alle häufen, sondern gegenseitig wenigstens grösstentheils tilgen. Aber in einer anderen Hinsicht sind diese Formeln interessant; es ist nämlich die Größe der möglichen Fehler so beträchtlich, dass man bei den meisten Mischungen (wo δ und θ sehr klein sind), auf dem Wege der Beobachtung schwerlich sicher wird entscheiden können, ob ihr Verhältniss ein constantes ist. Bei Salzsäure z. B. müssten die Fehler nur $\frac{1}{4}$ der oben
angegebenen betragen, um selbst in den günstigsten Fällen (den unteren Concentrationsgraden) \(\frac{\delta}{\theta} \) nur auf 0.1 sicher zu haben; es müsste dann der Fehler in

\[
\begin{align*}
\text{Volumenibus} &= 0.00005 \\
\text{Dichten} &= 0.00005 \\
\text{Brechungssexponenten} &= 0.00002
\end{align*}
\]

also in

\[
\omega = \frac{1}{12'} = 5 \text{ Secunden}
\]

nicht überschreiten, was wohl auch die Grenze der erreichten Genauigkeit sein dürfte.

Die Grösse des Einflusses der Fehler hat übrigens noch einen anderen Nachtheil. Es geht nämlich aus unseren Beobachtungen fast mit Gewissheit hervor, dass die \(\frac{\delta}{\theta} \) nicht constant sind, da aber die \(\delta, \theta, \frac{\delta}{\theta} \) sich jedenfalls in Reihen nach Potenzen von \(v_1 \) und \(v_2 \) entwickeln lassen, ist es auf diese Weise sehr schwer, ja beinahe unmöglich, die Coefficienten dieser Reihen, also die Functionsform derselben aus den Daten der Beobachtung zu finden, und theore
tisch dieselben allgemein abzuleiten sind noch zu wenig Anhaltspunkt vorhanden.

Um die Ergebnisse, welche man aus den bisher angestellten Beobachtungen über die Contractions- und Retardations-Coefficienten folgern kann, leicht zu übersehen, wollen wir die Resultate derselben kurz zusammenstellen. Beschränken wir uns auf die vollständig ausgeführten, d. h. auf jene, wo nicht nur mehrere Concentrationsgrade, sondern auch die Brechungssexponenten mehrerer Farben, resp. dunklen Linien im Spectrum bestimmt wurden, so haben wir dergleichen erst an 4 Substanzen, nämlich an

\[
\begin{align*}
\text{SO}_3 \\
\text{NO}_3 \\
\text{Cl. H} \\
\text{CINH}_4
\end{align*}
\]

aber schon diese zeigen uns eine grosse Mannigfaltigkeit der Verhältnisse, indem jede Substanz ihre Eigenthümlichkeit besitzt.
TABELLE I.

Werthe der δ und θ für Schwefelsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>δ</th>
<th>θ_u</th>
<th>θ_d</th>
<th>θ_g</th>
<th>θ_D</th>
<th>θ_a</th>
<th>θ_B</th>
<th>θ_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>-0.3323</td>
<td>-0.160</td>
<td>-0.159</td>
<td>-0.159</td>
<td>-0.157</td>
<td>-0.155</td>
<td>-0.155</td>
<td>-0.155</td>
</tr>
<tr>
<td>0-8</td>
<td>-0.2944</td>
<td>-0.159</td>
<td>-0.159</td>
<td>-0.159</td>
<td>-0.157</td>
<td>-0.156</td>
<td>-0.156</td>
<td>-0.156</td>
</tr>
<tr>
<td>0-7</td>
<td>-0.2559</td>
<td>-0.125</td>
<td>-0.124</td>
<td>-0.123</td>
<td>-0.122</td>
<td>-0.121</td>
<td>-0.121</td>
<td>-0.121</td>
</tr>
<tr>
<td>0-6</td>
<td>-0.2181</td>
<td>-0.187</td>
<td>-0.138</td>
<td>-0.136</td>
<td>-0.136</td>
<td>-0.136</td>
<td>-0.136</td>
<td>-0.136</td>
</tr>
<tr>
<td>0-5</td>
<td>-0.2004</td>
<td>-0.153</td>
<td>-0.150</td>
<td>-0.153</td>
<td>-0.150</td>
<td>-0.150</td>
<td>-0.150</td>
<td>-0.150</td>
</tr>
<tr>
<td>0-4</td>
<td>-0.2550</td>
<td>-0.126</td>
<td>-0.126</td>
<td>-0.126</td>
<td>-0.126</td>
<td>-0.126</td>
<td>-0.126</td>
<td>-0.126</td>
</tr>
<tr>
<td>0-3</td>
<td>-0.2362</td>
<td>-0.123</td>
<td>-0.121</td>
<td>-0.121</td>
<td>-0.120</td>
<td>-0.120</td>
<td>-0.120</td>
<td>-0.120</td>
</tr>
<tr>
<td>0-2</td>
<td>-0.2447</td>
<td>-0.117</td>
<td>-0.116</td>
<td>-0.116</td>
<td>-0.115</td>
<td>-0.115</td>
<td>-0.115</td>
<td>-0.115</td>
</tr>
<tr>
<td>0-1</td>
<td>-0.2391</td>
<td>-0.110</td>
<td>-0.108</td>
<td>-0.108</td>
<td>-0.106</td>
<td>-0.104</td>
<td>-0.104</td>
<td>-0.104</td>
</tr>
</tbody>
</table>

TABELLE II.

Werthe der δ und θ für Salpetersäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>δ</th>
<th>θ_u</th>
<th>θ_d</th>
<th>θ_g</th>
<th>θ_D</th>
<th>θ_a</th>
<th>θ_B</th>
<th>θ_M'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>-0.133</td>
<td>-0.056</td>
<td>-0.059</td>
<td>-0.058</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.057</td>
</tr>
<tr>
<td>0-8</td>
<td>-0.133</td>
<td>-0.056</td>
<td>-0.059</td>
<td>-0.058</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.057</td>
</tr>
<tr>
<td>0-7</td>
<td>-0.135</td>
<td>-0.064</td>
<td>-0.064</td>
<td>-0.063</td>
<td>-0.062</td>
<td>-0.062</td>
<td>-0.062</td>
<td>-0.063</td>
</tr>
<tr>
<td>0-6</td>
<td>-0.115</td>
<td>-0.058</td>
<td>-0.058</td>
<td>-0.053</td>
<td>-0.053</td>
<td>-0.053</td>
<td>-0.053</td>
<td>-0.053</td>
</tr>
<tr>
<td>0-5</td>
<td>-0.159</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
</tr>
<tr>
<td>0-4</td>
<td>-0.134</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
<td>-0.059</td>
</tr>
<tr>
<td>0-3</td>
<td>-0.109</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
</tr>
<tr>
<td>0-2</td>
<td>-0.091</td>
<td>-0.044</td>
<td>-0.044</td>
<td>-0.044</td>
<td>-0.044</td>
<td>-0.044</td>
<td>-0.044</td>
<td>-0.044</td>
</tr>
<tr>
<td>0-1</td>
<td>-0.085</td>
<td>-0.037</td>
<td>-0.036</td>
<td>-0.036</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-0.035</td>
</tr>
</tbody>
</table>

TABELLE III.

Werthe der δ und θ für Salzsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>δ</th>
<th>θ_u</th>
<th>θ_d</th>
<th>θ_g</th>
<th>θ_D</th>
<th>θ_a</th>
<th>θ_B</th>
<th>θ_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>-0.0100</td>
<td>-0.0034</td>
<td>-0.0032</td>
<td>-0.0034</td>
<td>-0.0032</td>
<td>-0.0032</td>
<td>-0.0032</td>
<td>-0.0034</td>
</tr>
<tr>
<td>0-8</td>
<td>-0.0109</td>
<td>-0.0036</td>
<td>-0.0039</td>
<td>-0.0039</td>
<td>-0.0039</td>
<td>-0.0039</td>
<td>-0.0039</td>
<td>-0.0039</td>
</tr>
<tr>
<td>0-7</td>
<td>-0.0154</td>
<td>-0.0050</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
</tr>
<tr>
<td>0-6</td>
<td>-0.0147</td>
<td>-0.0050</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
<td>-0.0053</td>
</tr>
<tr>
<td>0-5</td>
<td>-0.0131</td>
<td>-0.0050</td>
<td>-0.0059</td>
<td>-0.0059</td>
<td>-0.0059</td>
<td>-0.0059</td>
<td>-0.0059</td>
<td>-0.0059</td>
</tr>
<tr>
<td>0-4</td>
<td>-0.0170</td>
<td>-0.0082</td>
<td>-0.0062</td>
<td>-0.0062</td>
<td>-0.0062</td>
<td>-0.0062</td>
<td>-0.0062</td>
<td>-0.0062</td>
</tr>
<tr>
<td>0-3</td>
<td>-0.0214</td>
<td>-0.0096</td>
<td>-0.0093</td>
<td>-0.0093</td>
<td>-0.0093</td>
<td>-0.0093</td>
<td>-0.0093</td>
<td>-0.0093</td>
</tr>
<tr>
<td>0-2</td>
<td>-0.0246</td>
<td>-0.0120</td>
<td>-0.0119</td>
<td>-0.0120</td>
<td>-0.0119</td>
<td>-0.0119</td>
<td>-0.0119</td>
<td>-0.0119</td>
</tr>
<tr>
<td>0-1</td>
<td>-0.0299</td>
<td>-0.0154</td>
<td>-0.0153</td>
<td>-0.0153</td>
<td>-0.0153</td>
<td>-0.0153</td>
<td>-0.0153</td>
<td>-0.0153</td>
</tr>
</tbody>
</table>
Tabelle IV.

Werthe der δ und θ für Salmiaklösung.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>δ</th>
<th>θ_{u}</th>
<th>θ_{w}</th>
<th>θ_{e}</th>
<th>θ_{a}</th>
<th>θ_{d}</th>
<th>θ_{g}</th>
<th>θ_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.0283</td>
<td>0.0254</td>
<td>0.0253</td>
<td>0.0255</td>
<td>0.0269</td>
<td>0.0265</td>
<td>0.0267</td>
<td>0.0262</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0249</td>
<td>0.0243</td>
<td>0.0242</td>
<td>0.0249</td>
<td>0.0251</td>
<td>0.0250</td>
<td>0.0243</td>
<td>0.0247</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0194</td>
<td>0.0153</td>
<td>0.0154</td>
<td>0.0155</td>
<td>0.0153</td>
<td>0.0154</td>
<td>0.0152</td>
<td>0.0154</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0175</td>
<td>0.0118</td>
<td>0.0116</td>
<td>0.0114</td>
<td>0.0116</td>
<td>0.0115</td>
<td>0.0114</td>
<td>0.0114</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0127</td>
<td>0.0154</td>
<td>0.0150</td>
<td>0.0148</td>
<td>0.0147</td>
<td>0.0151</td>
<td>0.0153</td>
<td>0.0151</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0086</td>
<td>0.0131</td>
<td>0.0130</td>
<td>0.0129</td>
<td>0.0128</td>
<td>0.0132</td>
<td>0.0136</td>
<td>0.0133</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0055</td>
<td>0.0153</td>
<td>0.0155</td>
<td>0.0157</td>
<td>0.0157</td>
<td>0.0155</td>
<td>0.0152</td>
<td>0.0157</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0035</td>
<td>0.0312</td>
<td>0.0311</td>
<td>0.0312</td>
<td>0.0310</td>
<td>0.0310</td>
<td>0.0311</td>
<td>0.0311</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle V.

Werthe der $\frac{\delta}{\theta}$ für Schwefelsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>δ</th>
<th>θ_{u}</th>
<th>θ_{w}</th>
<th>δ</th>
<th>θ_{e}</th>
<th>δ</th>
<th>θ_{a}</th>
<th>δ</th>
<th>θ_{d}</th>
<th>δ</th>
<th>θ_{g}</th>
<th>δ</th>
<th>θ_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>2.07</td>
<td>2.07</td>
<td>2.10</td>
<td>2.09</td>
<td>2.10</td>
<td>2.10</td>
<td>2.13</td>
<td>2.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>2.09</td>
<td>2.10</td>
<td>2.09</td>
<td>2.10</td>
<td>2.10</td>
<td>2.10</td>
<td>2.13</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>2.09</td>
<td>2.09</td>
<td>2.10</td>
<td>2.11</td>
<td>2.11</td>
<td>2.10</td>
<td>2.10</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1.99</td>
<td>1.99</td>
<td>2.00</td>
<td>2.00</td>
<td>2.01</td>
<td>2.01</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.95</td>
<td>2.00</td>
<td>1.95</td>
<td>1.97</td>
<td>1.99</td>
<td>1.99</td>
<td>1.97</td>
<td>1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>2.00</td>
<td>1.96</td>
<td>1.96</td>
<td>2.00</td>
<td>1.98</td>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>2.00</td>
<td>1.96</td>
<td>1.98</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>2.00</td>
<td>2.07</td>
<td>2.07</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.07</td>
<td>2.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.05</td>
<td>2.06</td>
<td>2.03</td>
<td>2.04</td>
<td>2.06</td>
<td>2.09</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle VI.

Werthe der $\frac{\delta}{\theta}$ für Salpetersäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>δ</th>
<th>θ_{u}</th>
<th>θ_{w}</th>
<th>δ</th>
<th>θ_{e}</th>
<th>δ</th>
<th>θ_{a}</th>
<th>δ</th>
<th>θ_{d}</th>
<th>δ</th>
<th>θ_{g}</th>
<th>δ</th>
<th>θ_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>2.38</td>
<td>2.17</td>
<td>2.28</td>
<td>2.28</td>
<td>2.28</td>
<td>2.28</td>
<td>2.28</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>2.05</td>
<td>2.01</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>2.00</td>
<td>2.00</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>2.13</td>
<td>(2.20)</td>
<td>2.17</td>
<td>2.17</td>
<td>2.17</td>
<td>2.17</td>
<td>2.17</td>
<td>2.16*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2.10</td>
<td>2.10</td>
<td>2.08</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>2.05</td>
<td>2.10</td>
<td>2.11</td>
<td>2.11</td>
<td>2.11</td>
<td>2.11</td>
<td>2.11</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>2.05</td>
<td>2.04</td>
<td>2.05</td>
<td>2.07</td>
<td>2.06</td>
<td>2.06</td>
<td>2.06</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>2.07</td>
<td>2.09</td>
<td>2.08</td>
<td>2.07</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.07</td>
<td>2.16</td>
<td>2.12</td>
<td>2.17</td>
<td>2.12</td>
<td>2.12</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
T A B E L L E VII.

Werthe der \(\frac{\partial}{\theta} \) für Salzsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\frac{\partial}{\theta_a})</th>
<th>(\frac{\partial}{\theta_b})</th>
<th>(\frac{\partial}{\theta_c})</th>
<th>(\frac{\partial}{\theta_d})</th>
<th>(\frac{\partial}{\theta_e})</th>
<th>(\frac{\partial}{\theta_f})</th>
<th>(\frac{\partial}{\theta_g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>2.98</td>
<td>3.15</td>
<td>2.74</td>
<td>2.94</td>
<td>3.16</td>
<td>2.65</td>
<td>2.97</td>
</tr>
<tr>
<td>0.8</td>
<td>2.88</td>
<td>2.78</td>
<td>2.65</td>
<td>2.82</td>
<td>2.77</td>
<td>2.78</td>
<td>2.71</td>
</tr>
<tr>
<td>0.7</td>
<td>2.05</td>
<td>2.90</td>
<td>2.97</td>
<td>2.68</td>
<td>2.78</td>
<td>2.82</td>
<td>2.83</td>
</tr>
<tr>
<td>0.6</td>
<td>2.22</td>
<td>2.63</td>
<td>2.51</td>
<td>2.67</td>
<td>2.77</td>
<td>2.77</td>
<td>2.64</td>
</tr>
<tr>
<td>0.5</td>
<td>2.34</td>
<td>2.35</td>
<td>2.58</td>
<td>2.58</td>
<td>2.49</td>
<td>2.58</td>
<td>2.56</td>
</tr>
<tr>
<td>0.4</td>
<td>2.76</td>
<td>2.74</td>
<td>2.77</td>
<td>2.74</td>
<td>2.74</td>
<td>2.74</td>
<td>2.75</td>
</tr>
<tr>
<td>0.3</td>
<td>2.23</td>
<td>2.30</td>
<td>2.39</td>
<td>2.31</td>
<td>2.30</td>
<td>2.42</td>
<td>2.33</td>
</tr>
<tr>
<td>0.2</td>
<td>2.05</td>
<td>2.06</td>
<td>2.06</td>
<td>2.14</td>
<td>2.15</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.94</td>
<td>1.93</td>
<td>1.98</td>
<td>2.00</td>
<td>2.03</td>
<td>1.97</td>
<td></td>
</tr>
</tbody>
</table>

T A B E L L E VIII.

Werthe der \(\frac{\partial}{\theta} \) für Salmiaklösung.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(\frac{\partial}{\theta_a})</th>
<th>(\frac{\partial}{\theta_b})</th>
<th>(\frac{\partial}{\theta_c})</th>
<th>(\frac{\partial}{\theta_d})</th>
<th>(\frac{\partial}{\theta_e})</th>
<th>(\frac{\partial}{\theta_f})</th>
<th>(\frac{\partial}{\theta_g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1.51</td>
<td>1.52</td>
<td>1.49</td>
<td>1.44</td>
<td>1.45</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.75</td>
<td>1.76</td>
<td>1.72</td>
<td>1.71</td>
<td>1.72</td>
<td>1.76</td>
<td>1.74</td>
</tr>
<tr>
<td>0.7</td>
<td>1.23</td>
<td>1.26</td>
<td>1.26</td>
<td>1.25</td>
<td>1.26</td>
<td>1.28</td>
<td>1.26</td>
</tr>
<tr>
<td>0.6</td>
<td>1.35</td>
<td>1.51</td>
<td>1.34</td>
<td>1.34</td>
<td>1.35</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>0.5</td>
<td>1.47</td>
<td>1.51</td>
<td>1.54</td>
<td>1.54</td>
<td>1.51</td>
<td>1.48</td>
<td>1.51</td>
</tr>
<tr>
<td>0.4</td>
<td>1.73</td>
<td>1.73</td>
<td>1.74</td>
<td>1.69</td>
<td>1.65</td>
<td>1.68</td>
<td>1.70</td>
</tr>
<tr>
<td>0.3</td>
<td>1.70</td>
<td>1.72</td>
<td>1.70</td>
<td>1.71</td>
<td>1.73</td>
<td>1.74</td>
<td>1.72</td>
</tr>
<tr>
<td>0.2</td>
<td>1.87</td>
<td>1.69</td>
<td>1.68</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
</tr>
<tr>
<td>0.1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Nur bei wenigen Lösungen und Mischungen ist der Einfluss der Fehler nicht sehr beträchtlich; unter diese ist vor allen zu zählen Schwefelsäure. Von allen bisher untersuchten Substanzen kann sie bei weitem die genauesten Resultate geben 1).

Die obige Zusammenstellung (Tab. I—VIII) lässt folgende Gesetze erkennen:

1. Die Contractions-Coefficienten (\(\partial \)) haben bei verschiedenen Substanzen sehr verschiedene Werthe. Auch bei ein und derselben

1) Es wäre sehr erwünscht, \(\mathrm{SO}_3 \) noch einmal mit möglichst genauen Instrumenten in dieser Hinsicht zu untersuchen und wir haben uns vorgenommen, eine solche Beobachtungsreihe mit nächsten durchzuführen.
Substanz sind dieselben nicht constant, sondern ändern mit der Concentration ihre Grösse; gewöhnlich nehmen dieselben mit wachsender Verdünnung ab, jedoch auch der umgekehrte Fall (Salzsäure) wurde bereits beobachtet.

2. Die Retardations-Coëfficienten (θ) sind ebenso variabel als die Contractions-Coëfficienten; der Gang derselben bei verschiedenen Concentrationsgraden ist dem der δ insoferne analog, als sie mit denselben gewöhnlich an Grösse zu- und abnehmen.

4. Der Werth der \(\frac{δ}{θ} \) ist der Grösse nach für jede Substanz verschieden, allein auch bei einer und derselben Substanz ändert er sich mit dem Concentrationsgrade. Außer bei Salmiak, wo das Verhältniss bei allen nahezu constant ist, zeigt sich bei Schwefel-
säure insbesondere ganz entschieden eine Abnahme desselben in den mittleren Concentrationsgraden, also ein grösseres Wachsen oder Abnehmen der θ im Verhältniss zu δ. Deutliche Spuren dieser Erscheinung zeigen sich auch an den äussersten Concentrationsgraden der Salpetersäure. Bei Salzsäure aber nimmt die Grösse des Verhältnisses bei wachsender Verdünnung stetig ab.
8. Über die Veränderungen der $\frac{\delta}{\theta}$ zwischen den verschiedenen Linien erübrigt uns nur mehr wenig zu sagen. Da der Contraction-
Coëfficient bei denselben Concentrationsgraden eine Constante, die θ
aber von einer Linie zur andern variabel sind, ist es natürlich auch
das Verhältniss beider. Bei einer Zunahme des numerischen Werthes
des Retardations-Coëfficienten wird sich dieses Verhältniss natürlich
verkleinern, bei einer Abnahme vergrössern.

III.

Wir haben schon oben bemerkt, dass der empirischen Erfors-
schung der Relationen, welche zwischen den Retardations-Coëffici-
ienten unter einander und jener, welche zwischen diesen und den
Contractions-Coëfficienten bestehen, der sehr bedeutende Einfluss
der möglichen Beobachtungsfehler hindernd im Wege steht. Diese
Schwierigkeit kann man dadurch umgehen, dass man diese Verhältnisse auf eine andere Weise, nämlich aus der Functionsform dieser Coëfficienten zu ermitteln sucht.

gleichung zur Bestimmung des Einflusses der Beobachtungsfehler beantwortet werden. Um nämlich die Wirkung des Überganges von einer Spectrallinie zur andern zu ermitteln, hat man nur in der obigen Fehlergleichung

\[
\Delta v_1 = 0 \quad \Delta v_2 = 0
\]
\[
\Delta d_1 = 0 \quad \Delta d_2 = 0 \quad \Delta D = 0
\]

und für Δn_1, Δn_2, ΔN jene Änderungen der Brechungsexponenten zu setzen, welche dem Übergange von einer Linie zur andern entsprechen. Man erhält so:

\[
\Delta \theta = \frac{v_1 + v_2 + \delta v_1 v_2}{v_1 n_2 v_2 n_2} \Delta N - \frac{1 + v_2}{v_2 n_1 n_2} \Delta n_1 - \frac{1 + v_1}{v_1 n_4 n_2} \Delta n_2
\]
\[
\Delta \frac{\partial}{\partial \theta} = -\frac{(v_1 + v_2 + \delta v_1 v_2) \delta}{v_1 v_2 n_1 n_2 \theta^2} \Delta N + \frac{(1 + v_2 n_2 \theta) \delta}{v_2 n_1 n_4 \theta^2} \Delta n_1 + \frac{(1 + v_1 n_1 \theta) \delta}{v_1 n_3 n_4 \theta^2} \Delta n_3
\]

und daraus leicht:

\[
\Delta H = \frac{1}{v_1 v_2 n_1 n_2} \left[(v_1 + v_2 + \delta v_1 v_2) \Delta N - (v_1 \Delta n_1 + v_2 \Delta n_2) - v_1 v_2 \theta (n_2 \Delta n_1 + n_1 \Delta n_2) \right]
\]

\[
\Delta \frac{\partial}{\partial \theta} = -\frac{\partial}{\partial \theta} \Delta \theta.
\]

Mit Vernachlässigung aller die erste Ordnung überschreitenden Glieder kann man setzen:

\[
(v_1 + v_2) \Delta N = v_1 \Delta n_1 + v_2 \Delta n_2.
\]

Die Bedeutung dieses Ausdruckes ist eine sehr einfache. Lassen wir, um einen speciellen Fall vor Augen zu haben, \(\Delta n_1, \Delta n_2\) und \(\Delta N\) als die Unterschiede des Brechungsexponenten der ersten und letzten Linie des Spectrums (der Linien \(\mathfrak{A}\) und \(\mathfrak{B}\)) gelten, und tragen wir auf einem Coordinatensysteme die Größe der Concentration als Ordinate, sowie die dazu gehörige Differenz der Brechungsexponenten der ersten und letzten Spectrallinie als Abscisse auf, so fordert, wie sich leicht zeigen lässt, die Gleichung:

\[
\Delta N = \frac{v_1 \Delta n_1 + v_2 \Delta n_2}{v_1 + v_2},
\]

1. Salzsäure.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Beobachtet</th>
<th>Berechnet</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0056</td>
<td>0.0056</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0054</td>
<td>0.0054</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0053</td>
<td>0.0053</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0050</td>
<td>0.0051</td>
<td>-0.0001</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0048</td>
<td>0.0049</td>
<td>-0.0001</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0048</td>
<td>0.0048</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0046</td>
<td>0.0046</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0047</td>
<td>0.0046</td>
<td>+0.0001</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0044</td>
<td>0.0043</td>
<td>+0.0001</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0042</td>
<td>0.0041</td>
<td>+0.0001</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0039</td>
<td>0.0039</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

2. Salmiaklösung.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Beobachtet</th>
<th>Berechnet</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0045</td>
<td>0.0045</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0042</td>
<td>0.0044</td>
<td>-0.0002</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0044</td>
<td>0.0044</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0044</td>
<td>0.0043</td>
<td>+0.0001</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0044</td>
<td>0.0042</td>
<td>+0.0002</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0042</td>
<td>0.0042</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0039</td>
<td>0.0041</td>
<td>-0.0002</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0041</td>
<td>0.0040</td>
<td>+0.0001</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0040</td>
<td>0.0039</td>
<td>+0.0001</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0037</td>
<td>0.0039</td>
<td>-0.0002</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0038</td>
<td>0.0028</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Bedenkt man, dass die Werthe der Ausdehnung des Spectrums für die anderen Concentrationsgrade aus den Werthen der concentirten Substanz und des Wassers berechnet sind, welche möglicher Weise um eine, ja zwei Einheiten (eine beim ersten und eine beim letzten Brechungsexponenten) falsch sein können, welche Fehler bei der Berechnung auf alle anderen Concentrationsgrade zurückwirken; bedenkt man ferner, dass ebenso die beobachteten Werthe dieser Differenz um 1 oder 2 Einheiten unsicher sind: so wird die Annahme wohl erlaubt sein, dass der Unterschied des beobachteten und berechneten Werthes eine Folge der Beobachtungsfehler sei, insbesondere da er keinem Gesetze folgt, sondern ganz den Charakter derselben zeigt.

Ist nun dieser Unterschied für die ganze Ausdehnung des Spectrums unmerklich, so wird er es für kleinere Intervalle, etwa von einer Linie zur nächsten, um so mehr sein.

Die eben erwiesene Annahme vereinfacht bedeutend den sich für die Änderung der θ beim Übergange von einer Spectrallinie zur anderen ergebenden Ausdruck; er wird:

$$\Delta \theta = \frac{(v_1 A_1 + v_2 A_2) \theta - (v_1 + v_2) (n_2 A_2 + n_1 A_1) \theta}{(v_1 + v_2) n_1 n_2}$$

$$\Delta \frac{\theta}{\theta} = -\frac{\theta}{\theta^2} \Delta \theta.$$
Sollte nun \(\frac{\delta}{\theta} \) beim Übergange von einer Linie zur anderen const-
stant sein, so müsste es auch \(\theta \) sein, d. h. es müsste

\[
\Delta \theta = 0
\]

sein; dies kann nur dann geschehen, wenn:

\[
(v_1 \Delta n_1 + v_2 \Delta n_2) \theta = (v_1 + v_2) (n_2 \Delta n_1 + n_1 \Delta n_2) \theta = 0
\]

oder

\[
\frac{\delta}{\theta} = \frac{v_1 + v_2}{v_1 \Delta n_1 + v_2 \Delta n_2} (n_2 \Delta n_1 + n_1 \Delta n_2),
\]

wodurch wir eine interessante Bestimmungsgleichung für \(\frac{\delta}{\theta} \) erhal-
ten. Diese Gleichung zeigt, wenn man sie in die Form:

\[
\frac{\delta}{\theta} = \frac{v_1 + v_2}{(v_1 + v_2) \Delta n_1 - v_2 (\Delta n_1 - \Delta n_2)} (n_2 \Delta n_1 + n_1 \Delta n_2)
\] \((3) \)

bringt, auf den ersten Blick, dass überdies \(\frac{\delta}{\theta} \) bei allen Concentrations-
graden constant sein könne, wenn

\[
\Delta n_1 = \Delta n_2
\]

d. h. die Grösse des Spectrum bei allen Substanzen gleich gross
ist. Da dies mit keiner Beobachtung harmonirt, so ist die Unmöglich-
keit eines constanten Verhältnisses des Contractions- und Retar-
dations-Coëfficienten für verschiedene Concentrationsgrade einer und
derselben Substanz nachgewiesen, wenn man annimmt, \(\theta \) andere seinen
Werth von einer Linie zur anderen nicht. Allein letztere Annahme ist
unstatthaft. Mit sehr grosser Wahrscheinlichkeit folgt dies schon aus
den Beobachtungen, allein mit Gewissheit zeigt es sich, wenn man die
Werthe von \(\frac{\delta}{\theta} \) aus Gleichung (3) berechnet; denn die Abweichung
der berechneten von den beobachteten Werthen ist nicht nur sehr
bedeutend, sondern der Gang beider so verschieden, dass die Diffe-
renzen Beobachtungsfehler unmöglich zugeschrieben werden können,
wovon man sich am leichtesten aus der beispielsweise hier angeführ-
ten Salzsäure überzeugen kann.
Lassen wir also diese Annahme fallen und suchen ohne irgend eine Hypothese die Art der Veränderung zu ermitteln, welche mit \(\theta \) von einer Linie zur anderen vorgeht.

Es ist:

\[
\Delta \theta = \frac{1}{(v_1 + v_2)n_1 n_2} \left[(v_1 \Delta n_1 + v_2 \Delta n_2) \frac{\delta}{\theta} - (v_1 + v_2)(n_2 \Delta n_1 + n_1 \Delta n_2) \right]
\]

oder:

\[
\frac{n_1 n_2}{\Delta n_1} - \frac{n_1 n_2}{\Delta n_2} = \rho
\]

\[
\Delta \theta = \frac{\theta \Delta n_1}{n_1 n_2} \left[(1 - \frac{v_2}{v_1 + v_2} \cdot \rho) \frac{\delta}{\theta} - \frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1} \right].
\]

Ist noch \(v_1 + v_2 = 1 \), wie es bei uns immer der Fall war, so haben wir:

\[
(4) \quad \Delta \theta = \frac{0}{n_1 n_2} \left[(1 - v_2 \rho) \frac{\delta}{\theta} - \frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1} \right].
\]

Man sieht aus dieser Gleichung, dass die Änderung des \(\theta \) im Allgemeinen desto kleiner werde, je kleiner es selbst ist, ausser wenn sich dabei der zweite Factor unverhältnissmässig vergrössert. Die Richtigkeit des eben Gesagten kann man an Schwefel- und Salpetersäure z. B. leicht nachweisen. Hier ist der zweite Factor bei beiden nahezu gleich (bei \(\text{NO}_3 \) ist er etwas kleiner), bei Salpetersäure aber \(\theta \) bei Weitem kleiner als bei Schwefelsäure, daher bei
letzterer θ viel constanter, was mit den Resultaten der Beobachtung übereinstimmt. Allein noch mehr: es ist für die Schwefelsäure:

$$\frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1} = 2.59$$

und für die Salpetersäure:

$$\frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1} = 2.40$$

ferner für Schwefelsäure stets

$$\frac{\delta}{\theta} < 2.14$$

und für Salpetersäure

$$\frac{\delta}{\theta} < 2.29.$$

Da diese Grössen in unserer Formel (4) noch mit dem die Einheit nie erreichen den Factor

$$1 - \nu_2 \rho$$

multiplicirt sind, so ist offenbar:

$$(1 - \nu_2 \rho) \frac{\delta}{\theta} - \frac{n_1 \Delta n_2 - n_2 \Delta n_1}{\Delta n_1} < 0.$$

Da nun θ negativ ist, so ergibt sich, dass bei diesen beiden Substanzen die Werthe der θ vom rothen zum violetten Ende des Spectrum's successsive abnehmen.

Wie man aus den Tabellen (I—VIII) sieht, nimmt für SO$_3$ und NO$_3$ die Grösse des Verhältnisses $\frac{\delta}{\theta}$ gegen die mittleren Concentrationsgrade zu ab, und man sollte daher meinen, θ sei in diesen variabler als in den äusseren, besonders in den stärksten Concentrationsgraden, wo das Glied

$$\frac{\nu_2 \delta}{\theta} \cdot \rho$$

im Minimum ist. Begreiflicherweise ist dem jedoch nicht so, da die rasche Abnahme der θ bei wachsender Verdünnung dies beinahe vollständig paralysirt.

Den Verhältnissen bei SO$_3$ und NO$_3$ sehr analog, sind die bei Salmiak stattfindenden, allein bedeutend complicirter gestalten sich dieselben an der Salzsäure. Während die θ in den obersten Concentrationsgraden an Grösse zunehmen, nehmen sie in den niedersten
ab und bleiben in den mittleren beinahe constant. Allein auch die
Erklärung dieser Erscheinung ist auf Grundlage der eben angege-
benen Formel (4) nicht schwer. Es ist nämlich bei der Salzsäure

\[\frac{n_2 \Delta n_4 + n_4 \Delta n_2}{\Delta n_4} = 2.32 \]

und die Grösse, welche wir mit \(\rho \) bezeichneten, ziemlich gross, nämlich

\[\rho = 0.32. \]

In den höheren Concentrationsgraden übersteigt aber \(\frac{\delta}{\theta} \) bei Wei-
tem 2.32, zugleich ist der Factor \(1 - v_2 \rho \), wegen der Kleinheit
von \(v_2 \) nahezu \(= 1 \), trägt also zur Verminderung der Grösse von
\(\frac{\delta}{\theta} \) fast gar nichts bei; es ist deshalb

\[(1 - v_2 \rho) \frac{\delta}{\theta} > \frac{n_2 \Delta n_4 + n_4 \Delta n_2}{\Delta n_4} \]

woraus die Zunahme der \(\theta \) vom rothen zum violetten Ende des Spec-
trums sogleich folgt.

Bei zunehmender Verdünnung nimmt die Variabilität der \(\theta \) rasch
ab, denn der Factor \((1 - v_2 \rho) \) verkleinert sich rasch, so dass in
den mittleren Concentrationsgraden nahezu:

\[(1 - v_2 \rho) \frac{\delta}{\theta} = \frac{n_2 \Delta n_4 + n_4 \Delta n_2}{\Delta n_4} \]

wird, weshalb auch die \(\theta \) um 0.5 herum beinahe ganz constant sind.

Bei noch grösserem Fortschritte der Verdünnung verkleinert sich
nicht nur das Verhältniss \(\frac{\delta}{\theta} \), sondern auch, und zwar in viel rasche-
erem Grade \((1 - v_2 \rho) \), so dass die Differenz

\[(1 - v_2 \rho) \frac{\delta}{\theta} - \frac{n_2 \Delta n_4 + n_4 \Delta n_2}{\Delta n_4} \]

das Zeichen wechselt, wo dann die Zunahme der \(\theta \) sogleich in eine
Abnahme sich umwandelt. Diese Abnahme wird durch den Umstand,
dass hier die \(\theta \) mit der Verdünnung wachsen, um so beträcht-
licher.
Man sieht aus dem bereits Gesagten, dass eine Zunahme, ein Constantbleiben oder eine Abnahme der θ von einer Spectrallinie zur anderen lediglich davon abhängt, ob:

$$\frac{\theta}{\delta} \leq n_1 \Delta n_2 + n_2 \Delta n_1$$

und dass sehr wohl bei einer und derselben Substanz alle drei Fälle in verschiedenen Concentrationsgraden vorkommen können.

Da wir ferner aus (4) das Gesetz der Zu- oder Abnahme der θ von einer Linie zur anderen kennen und sehen, dass bei einem und derselben Concentrationsgrade die Zunahme dem Δn_1, d. h. der Entfernung der Linie von der als ersten angenommenen proportional sei, ist die Bedeutung der Grösse, welche wir θ_m nannten, leicht verständlich. Es ist nämlich der Retardations-Coëfficient einer fictiven Linie, die dem Mittel der Brechungsexponenten entspricht, also einer Linie, welche zwischen den Systemen \mathbb{D} und \mathbb{E} liegt. Diese Grösse (θ_m) ist von den Beobachtungsfehlern unabhängig als jedes andere θ, daher mit Vorteil zu verwenden, will man den Gang derselben bei verschiedenen Concentrationsgraden genähert durch eine Reihe angeben, bei welcher man auf die obnedies geringen Unterschiede der Coëfficienten bei verschiedenen Farben verzichtet.

Nachdem wir diesen Punkt erörtert, gehen wir zur Untersuchung der zweiten eben so wichtigen Frage über, ob das Verhältniss von $\frac{\delta}{\theta}$ ein rationales, und für alle Concentrationsgrade constantes ist, selbst wenn, wie wir gesehen, θ nicht constant bleibt.

Da wir oben nachgewiesen, dass die θ von Linie zu Linie ihren Werth ändern, so kann man nur noch fragen, ob $\frac{\delta}{\theta}$ bei ein und derselben Linie für alle Concentrationsgrade constant bleibt. Dass dies Verhältniss ein rationales sei, ist schon von vorn herein unwahrscheinlich, weil wir bei der Bewegung, welche wir Licht nennen, nirgends ein solches finden, indem alles durch die trigonometrischen

1) Die Erkenntniss der Natur der Änderung der θ zeigt auch, dass man dieselben nie zur Bestimmung der Dispersion der atmosphärischen Luft benützen können, wie wir Sitzungsberichte XXX, 433 vermutet hatten; denn das oben Gesagte beweist, dass in der Sitzb. XXX, angegebenen Reihe für θ die höheren, von der Dispersion abhängigen Glieder nicht zu vernachlässigen, d. h. wenigstens bei manchen Substanzen in Coëfficienten multiplizirt sind, die bei gewissen Concentrationsgraden eine beträchtliche Grösse erlangen können.
Functionen, also inrational, verbunden erscheint. Erwägt man aber die Veränderlichkeit von ß, so könnte wohl bei einer bestimmten Linie ein rationales Verhältniss herauskommen, nie aber der ganzen Länge des Spectrums nach. Betrachtet man indess die Bedingungsgleichungen, so ist es nicht nur höchst unwahrscheinlich, dass es ein rationales, sondern auch, dass es ein constantes Verhältniss sei.

Die δ und ß ändern ihren Werth mit der Concentration, sind also Functionen der Volumina; man kann daher, wenn man die Beziehung

\[v_1 + v_2 = 1 \]

festhält,

\[\delta = a \left(1 + a_1 v_1 + a_2 v_1^2 + a_3 v_1^3 + \ldots \right) \]

\[\theta = \beta \left(1 + \beta_1 v_1 + \beta_2 v_1^2 + \beta_3 v_1^3 + \ldots \right) \]

also

\[\frac{\delta}{\theta} = \frac{a}{\beta} \cdot \frac{1 + a_1 v_1 + a_2 v_1^2 + a_3 v_1^3 + \ldots}{1 + \beta_1 v_1 + \beta_2 v_1^2 + \beta_3 v_1^3 + \ldots} \]

\[= \frac{a}{\beta} \left[1 + (a_1 - \beta_1) v_1 + \left\{ (a_2 - \beta_2) - \beta_1 (a_1 - \beta_1) \right\} v_1^2 + \right. \]

\[\left. + \left\{ (a_3 - \beta_3) - \beta_2 (a_1 - \beta_1) + \beta_1^2 (a_1 - \beta_1) \right\} v_1^3 + \ldots \right] \]

setzen. Soll nun \(\frac{\delta}{\theta} \) für alle Concentrationsgrade bei ein und derselben Linie constant sein, so muss nicht bloß

\[a_1 = \beta_1 \]

\[a_2 = \beta_2 \]

\[a_3 = \beta_3 \]

\[\vdots \]

sondern auch die Variabilität der ß nur in ß liegen, zu welcher Annahme uns gar nichts berechtigt. Es liess sich dies auch noch auf folgende Art erweisen. Ändert man bei einer Spectrallinie bleibend den Concentrationsgrad nur um ein Geringes, so könnte man die dadurch in δ, ß, \(\frac{\delta}{\theta} \) hervorgebrachten Änderungen mit Hilfe der früheren Differenzengleichung dadurch untersuchen, dass man:

\[\Delta d_1 = 0 \]

\[\Delta d_2 = 0 \]

\[\Delta n_1 = 0 \]

\[\Delta n_2 = 0 \]

und für \(\Delta v_1, \Delta v_2, \Delta D, \Delta N \) die entsprechenden Änderungen setzte. Führt man dann die Bedingung der Constanz von \(\frac{\delta}{\theta} \) ein, so erhält
man wieder eine Bestimmungsgleichung für $\frac{\delta}{\theta}$. Ob indess diese
erfüllt sei, davon kann man sich so lange nicht überzeugen, als das
Verhältniss der Änderungen Δv_1, Δv_2, ΔD, ΔN zu einander oder
wenigstens das $\frac{\Delta D}{\Delta N}$ nicht bekannt ist, welches letztere schon hin-
reichend ist, wenn man durch schickliche Bewerkstelligung des Über-
ganges von einer Concentration zur anderen die Δv_1 und Δv_2 aus der
Gleichung herausschafft. Da man aber nicht einmal $\frac{\Delta D}{\Delta N}$ kennt, muss
man auf eine andere Weise zum Ziele zu gelangen suchen.

Sei δ der Contractions-Coëfficient für einen beliebigen Con-
centrationsgrad, θ_μ der zu demselben gehörige Werth des Retarda-
tions-Coëfficienten für die Linie μ und seien δ' und θ_μ' diese Grössen
für irgend einen anderen Concentrationsgrad, so muss unter der Vor-
aussetzung eines constanten Verhältnisses beider bei allen Concent-
trationsgraden (für eine und dieselbe Spectrallinie)

$$\frac{\delta}{\theta_\mu} = \frac{\delta'}{\theta_\mu'}$$

Gehnt man von der Linie μ zu einer anderen, etwa der Linie x
über und seien die Retardations-Coëfficienten für dieselbe θ_μ, θ_μ', so
muss auch

$$\frac{\delta}{\theta_\mu} = \frac{\delta'}{\theta_\mu'}$$

sein. Nun kann man nach den früheren:

$$H_x = H_\mu + \Delta H$$
$$H_x' = H_\mu' + \Delta H'$$

setzen, es ist also auch:

$$\frac{\delta}{\theta_\mu + \Delta \theta} = \frac{\delta'}{\theta_\mu' + \Delta \theta'}$$

welche Gleichung mit der oben angeführten:

$$\delta \ H'_\mu = \delta' \ H_\mu$$

combiniert, zu folgender Relation führt:

$$\frac{\delta}{\delta'} = \frac{\Delta \theta}{\Delta \theta'}$$
Bedeuten ferner \(v_1, v_2 \) die Volumina der concentrirten Substanz und des Wassers im ersten Falle und \(v', v'' \) dieselben Grössen bei der anderen Concentration, so ist nach unseren früheren Formeln:

\[
\Delta \theta = \left[(1 - \frac{v_2}{v_1 + v_2} \rho) \frac{\delta}{\theta} - \frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1} \right] \frac{\theta}{n_1 n_2} \frac{\Delta n_1}{n_1 n_2}
\]

\[
\Delta \theta' = \left[(1 - \frac{v''}{v' + v''} \rho) \frac{\delta'}{\theta'} - \frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1} \right] \frac{\theta'}{n_1 n_2} \frac{\Delta n_1}{n_1 n_2}
\]

also auch:

\[
\frac{\delta}{\delta'} = \frac{1 - \frac{v_2}{v_1 + v_2} \rho}{1 - \frac{v''}{v' + v''} \rho} \left[\frac{\frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1}}{\frac{n_1 \Delta n_2 + n_2 \Delta n_1}{\Delta n_1}} \right] \cdot \frac{\theta}{\theta'}
\]

Führt man die Berechnung aus, so erhält man nach allen Reductionen:

\[
(5) \quad v_2 v'' \left(\frac{v'}{v'} - \frac{v_1}{v_2} \right) \rho = 0
\]

als Bedingungsgleichung, dass \(\frac{\delta}{\delta'} \) für ein und dieselbe Spectrallinie bei allen Concentrationsgraden constant sei. Da nun hier von verschiedenen Concentrationsgraden die Rede ist, also unmöglich \(\frac{v'}{v''} = \frac{v_1}{v_2} \)

sein kann, so ist die Gleichung \((5) \) nur durch die Supposition

\[
\rho = 0
\]

daher

\[
\Delta n_1 = \Delta n_2
\]

zu erfüllen, eine Gleichung, der wir schon früher begegneten. Man sieht daraus, dass die Constanz des Verhältnisses beider Grössen nur durch den Umstand verhindert wird, dass die Ausdehnung des Spectrums (d. h. der Unterschied der Brechungsexponenten der Linien \(\alpha \) und \(\beta \)) nicht bei allen Substanzen gleich gross ist. Doch sieht man daraus gleich, dass je kleiner diese Differenz ist, das Verhältniss zwischen den einzelnen Concentrationsgraden desto geringeren Schwankungen unterliegt, was auch die Beobachtungen bestätigen.
Es folgt daher aus diesen Untersuchungen, dass weder die Retardations-Coëfficienten von einer Linie des Spectrums zur anderen einen constanten Werth behalten, indem dieselben gegen das violette Ende hin bald an Grösse zunehmen, bald abnehmen, sondern dass auch das Verhältniss des Contractions-Coëfficienten zum Retardations-Coëfficienten bei jeder Concentration wechselt.

Es würde sich jetzt darum handeln, die Functionsform dieser Grössen zu ermitteln. Ehe wir dies unternehmen, können wir nicht unterlassen, noch auf eine Eigenthümlichkeit der Formeln:

\[\delta = \frac{v_1 d_1 + v_2 d_2 - D (v_1 + v_2)}{D v_1 v_2} \]

\[N = \frac{v_1 n_1 + v_2 n_2 + \delta v_1 v_2 n_1 n_2}{v_1 + v_2 + \delta v_1 v_2} \]

bei einem speciellen Falle aufmerksam zu machen. Es ist nämlich jener, wo die Brechungsexponenten von einer gewissen Zahl etwa \(a \) nur um Grössen erster Ordnung, d. h. um solche Grössen abweichen, dass man die Quadrate derselben vernachlässigen kann. Es sei also:

\[n' = a + \alpha \]
\[n'' = a + \beta \]
\[N = a + \gamma \]

dann ist unter obiger Voraussetzung:

\[\theta = -\frac{v_1 v_2}{a} \frac{\delta (a + \beta - \gamma) + a v_1 + \beta v_2 - \gamma (v_1 + v_2)}{v_1 v_2 a^2}. \]

Dieser Fall ist deshalb wichtig, weil er bei einer ganzen grossen Gruppe von Körpern vorkommt, nämlich bei Gasen. Hier ist:

\[a = 1 \]

und \(a, \beta, \gamma \) sind Grössen, welche erst in der vierten Decimale zählende Ziffern haben; zugleich sind, wenn man nach der Volumtheorie rechnet, \(v_1 \) und \(v_2 \) einfache ganze Zahlen, es ist deshalb für dieselben bis in die vierte Decimale hinauf

\[\delta = \theta. \]

In der schon öfter erwähnten Abhandlung hatte Herr Handl das anfangs überraschende Resultat gefunden, dass für alle Gase

\[\delta = \theta. \]
sei; er hielt es für nicht unwahrscheinlich, dass beide vollkommen gleich wären und dass die Abweichungen nur den nicht vollkommen richtigen Beobachtungen Dulong's zuzuschreiben seien. Unsere Formel (6) beweist aber, dass δ nicht gleich θ sein könne, sondern nur näherungsweise, denn der Ausdruck

\[\frac{(α + β - γ) v_1 r_2 δ + α r_1 + β r_2 - γ(v_1 + r_2)}{v_1 r_2} \]

kann im Allgemeinen der Nulle nicht gleich werden. Übrigens zeigt eine genauere Betrachtung der Formeln, aus welchen δ und θ berechnet wird, dass diese Eigenthümlichkeit bei den Gasen ja schon in eben diesen Formeln liege, und dass man daher unter der Voraussetzung δ = θ durchaus nicht den Brechungsexponenten eines noch nicht gemessenen Gases rechnen könne, weil man dadurch einen Fehler in der vierten Decimale des Brechungsexponenten begehen, denselben also eigentlich gar nicht finden würde.

Um die Functionsform der δ und θ zu bestimmen, fehlen uns, wie wir schon einmal bemerken, bis jetzt alle Anhaltspunkte; es bleibt daher nichts anderes übrig als diese Grössen, welche sich mit der Concentration ändern, nach Potenzen derselben zu entwickeln.

Wir wollen diese Reihen nur für \(\theta_m \) und \(\frac{δ}{θ_m} \) entwickeln. Wir setzten:

\[δ = a (1 + α_1 v_1 + α_2 v_1^2 + α_3 v_1^3 + \ldots) \]
\[\theta_m = b (1 + β_1 v_1 + β_2 v_1^2 + β_3 v_1^3 + \ldots) \]
\[\frac{δ}{θ_m} = c (1 + γ_1 v_1 + γ_2 v_1^2 + γ_3 v_1^3 + \ldots) \]

und suchten nach der Methode der kleinsten Quadrate für alle Concentrationsgrade die wahrscheinlichsten Werthe von a, b, c, α, β, γ... zu ermitteln. Wir geben hier bloss die Resultate der an Salzsäure ausgeführten Berechnung; für sie ist:

\[δ = -0.0382 (1 - 2.402 v_1 + 3.469 v_1^2 - 1.880 v_1^3 + \ldots) \]
\[\theta = -0.0207 (1 - 2.959 v_1 + 4.040 v_1^2 - 1.984 v_1^3 + \ldots) \]
\[\frac{δ}{θ} = 1.449 (1 + 2.469 v_1 - 1.648 v_1^2 + 0.302 v_1^3 - \ldots) \]

Diese Reihen lassen weder jede für sich ein Gesetz erkennen, noch ist der Gang derselben für alle 3 Grössen analog. Übrigens zeigen dieselben, dass selbst bei \(\frac{δ}{θ} \) die höheren Glieder keineswegs zu vernachlässigen sind, sondern dass sie einen bedeutenden Ein-
fluss ausüben. Berechnungen derselben Art, an den anderen Substanzen ausgeführt, gaben ähnliche Reihen, nur sind die Coëfficienten der höheren Glieder, insbesondere bei \(\delta \), bedeutend grösser. Eine sehr langsame Convergenz, wenigstens in den ersten Gliedern, zieht sich bei allen diesen Reihen; ob diese jedoch in der Natur dieser Grössen begründet sei, oder ob der beträchtliche Einfluss der Beobachtungsfehler, durch welchen natürlich die Coëfficienten der höheren Glieder am meisten entstellt werden, Ursache derselben ist, lässt sich vorläufig noch nicht mit Sicherheit ermitteln. Der Umstand, dass diese Erscheinung bei allen bisher gemessenen Substanzen vorkommt, spricht nicht sehr zu Gunsten der letzteren Ansicht, und dürfte vielleicht eine Andeutung sein, dass die \(\delta, \theta \) und \(\frac{\delta}{\theta} \) bei verschiedenen Concentrationsgraden nicht stets einem und demselben Gesetze folgen, d. h. dass der Gang derselben durch eine einzige Reihe nicht für alle Concentrationen dargestellt werden könne.

Es sei nur noch die Bemerkung hinzugefügt, dass die Abnahme des Verhältnisses \(\frac{\delta}{\theta} \) gegen die mittleren Concentrationsgrade darauf führt, dass die Reihe für dasselbe folgende Form habe:

\[
\frac{\delta}{\theta} = A (1 + B v_1 v_2 + \ldots)
\]

oder

\[
\frac{\delta}{\theta} = A (1 + B v_1 - B v_1^n + \ldots)
\]

In der That genügen auch diese zwei Glieder den Beobachtungen an Schwefelsäure, Salpetersäure und Salmiaklösung so vollständig als man es erwarten kann.

Zuletzt dürfte es vielleicht nicht unangemessen sein, zu zeigen, wie man nach einer anderen Anschauungsweise die Grösse der Contraction und Retardation berechnen kann. Setzt man nämlich:

\[
V = \lambda (v_1 + v_2)
\]

\[
VN = \mu (v_1 n_1 + v_2 n_2)
\]

so ist

\[
\lambda = \frac{v_1 \delta_1 + v_2 \delta_2}{(v_1 + v_2) D}
\]

\[
\mu = \frac{-v_1 \delta_1 + v_2 \delta_2}{v_1 n_1 + v_2 n_2} \cdot \frac{D}{N}
\]
Dadurch erhält man den Vorteil, dass die mit λ und μ bezeichneten Größen reine Verhältniszahlen, d. h. von der Volumseinheit unabhängig und den sonst mit den Namen Coeffizienten bezeichneten Größen ganz analog werden; zugleich sind diese Ausdrücke nicht nur von den Beobachtungsfehlern weniger affizirt, sondern auch bei den verschiedenen Concentrationsgraden nahezu gleichmässig.

Über symmetrische Functionen, welche zur Darstellung gewisser physikalischer Verhältnisse krystallisirter Körper dienen können.

Von Dr. J. Grallich.

(Vorgelegt in der Sitzung vom 9. December 1858.)

1. Bei Gelegenheit einer Untersuchung über die Elasticitätsverhältnisse tesseraler Krystalle wurde ich veranlasst einen Ausdruck für die Grösse der Cohäsion als Function der Richtung der Zugkraft aufzusuchen. Man kann allerdings annehmen, dass im ersten Moment der Verschiebung eines Moleküles des tesseralen krystallisirten Systems ein gleicher Widerstand auftritt, die Verschiebung mag nach welcher Richtung immer veranlasst werden, so wie aber die Verschiebung einen gewissen sehr kleinen Betrag, der immer noch zwischen die Grenzen der vollkommenen Elasticität fallen kann, überschreitet, werden die geweckten inneren Widerstände von der Richtung des Impulses abhängig werden müssen. Denn die Cohäsion hört auf zu bestehen, sobald der Ausdruck der Distanz zweier Moleküle eine messbare Grösse erlangt, wodurch der Werth der Anziehungsfunktion gleich Null wird 1); die Cohäsion ist aber, wie es die Spaltbarkeit tesseraler Krystalle beweist, nicht nach allen Richtungen hin gleich gross: es

1) Dies folgt aus der bekannten Definition der Moleularkräfte. Es scheint aber, dass die Kraft, mit der die ponderablen Moleküle auf einander wirken, durch eine Reihen von der Form \(S \frac{A}{r^m} \) ausgedrückt werden muss, in welcher auch die \(A \) für niedrige Werthe von \(r \) von der Null nichts verschieden bleiben. Es ist schon oft angeführt worden, dass das Glied der zweiten Ordnung wegen der allgemeinen Schwere nicht fehlen kann. Weitere, unabweisbare Gründe, scheinen in folgenden bekannten Tatsachen zu liegen.

muss daher die Anordnung und Beschaffenheit der Moleküle eine solche sein, dass für eine und dieselbe Verschiebung nach verschiedensten Richtungen verschiedene Kräfte erforderlich werden.

Denken wir uns eine Kugel aus Flusspath. Wird sie in passender Weise aufgehängt und werden Gewichte angebracht bis sie zerreisst, so wird die Größe des Gewichtes, das zum Zerreissen notwendig ist, wesentlich durch die Richtung bedingt, nach welcher der Angriff geschieht. Gewiss aber wird ein gleiches Gewicht notwendig sein für jede krystallographisch gleichwerthige Richtung und es werden die kleinsten Gewichte in der Richtung der Normalen der Oktaederflächen, die größten in der Richtung der Normalen der Hexaederflächen gefordert werden. Da man stetig von einer Richtung zu anderen übergehen kann, und jeder eine bestimmte Cohäsion entspricht, so wird es möglich werden die Cohäsionsverhältnisse durch eine krumme Fläche darzustellen, deren Radien den in die Richtung dieser Radien entfallenden, zum Zerreissen erforderlichen Gewichten proportional gesetzt werden können. Es hängt dabei blos von der Größe dieser Radien ab ob in bestimmten Richtungen überhaupt noch ein Zerreissen möglich bleiben soll; denn es kann geschehen, dass bei einer gewissen Größe der Cohäsion nach einer bestimmten

2. Krystalle derselben Substanz zeigen oft eine verschiedene Ausbildung der einzelnen Flächensysteme, wenn die Umstände, unter welchen die Krystallisation von sich ging, verschiedene sind. Es ist bekannt, in welchen abnormen Formen man Salmiak erhalten kann; dass Kochsalz in Oktaedern, Alaun in Würfeln gesessen werden kann, wenn die Mutterlauge Borsäure oder Harnsäure enthält; dass die Mineralien bestimmter Localitäten bestimmte Typen aufweisen, die an andern Fundorten nicht wieder vorkommen. Wenn nun die äusseren Umstände, ohne die Substanz zu affiziren, den Habitus der Formentwicklung bedingen können, so ist dies bei der Einheit, welche die Ausbildung des Individuums beherrscht, nur durch ein Zusammenwirken von Kräften denkbar, die auch noch für endliche Distanzen der Angriffspunkte einen angebaren Werth behaupten.

Molecularkräfte wurden bisher immer nur in jenen Aufgaben in Erwägung gezogen, wo es sich um die inneren Widerstände handelte, welche durch die Verschiebung eines bestehenden Systems geweckt werden; um aber dieses System herzustellen, mussten Kräfte im Gleichgewicht getreten sein, die von einer ganz anderen Ordnung sein können. Es scheint aber dass die Untersuchung in dieser Richtung gegenwärtig noch ganz unausgreifbar ist, nachdem das einfachste Problem der Statik der Elasticität sich jeder Lösung entzieht.

Beim Flussspath wird die Cohäsionsfläche in den Normalpunkten der Hexaedersflächen durch eine Kugel berührt werden, und zwar wird diese Kugel die Cohäsionsfläche vollkommen umhüllen. Dagegen wird eine zweite Kugel, welche die Cohäsionsfläche in den Normalpunkten der Oktaedersflächen berührt, vollkommen von dieser Fläche eingeschlossen sein.

Indem ich nach der Form einer Gleichung suchte, welche diesen und ähnlichen Bedingungen Genüge leistet, gelangte ich zu Ausdrücken, welche eckige Körper darstellen.

Es haben Fourier und Doppler sich mit der Lösung ähnlicher Aufgaben beschäftigt; ich glaube, dass die hier mitzutheilende Methode wegen der einfachen Beziehungen, die sie zwischen eckigen und gekrümmten Flächen herstellt und der Leichtigkeit und Allgemeinheit, mit der sie hierher gehörige Aufgaben zu lösen erlaubt, einige eigenthümliche Vorteile darbietet.

2. Da die Gleichungen, welche die beschriebenen Verhältnisse darzustellen geeignet sein sollen, nothwendig homogen und bezüglich der drei rechtwinkligen Coordinatenachsen (die wir uns parallel zu den drei Oktaederachsen gelegt denken) gleichlautend sein müssen, so wird die allgemeinste Form derselben folgende sein:

$$A^{2n} = A (x^{2n} + y^{2n} + z^{2n}) + B (x^{2(n-1)} (y^{2} + z^{2}) + y^{2(n-1)} (x^{2} + z^{2}) + z^{2(n-1)} (x^{2} + y^{2})) + \ldots$$

Im einfachsten Falle reducirt sich diese auf

$$r^{2n} = x^{2n} + y^{2n} + z^{2n}$$ \hspace{1cm} (1)

Setzen wir $n = 1$, so haben wir die Gleichung der Kugel; setzen wir dagegen $n = \infty$, so wird es die Gleichung des Würfels, der die Kugel in den Punkten

$$x = \pm 1 \quad y = 0 \quad z = 0$$

$$x = 0 \quad y = \pm 1 \quad z = 0$$

$$x = 0 \quad y = 0 \quad z = \pm 1$$

berührt.
Für jeden andern positiven und ganzen Werth von \(n \) stellt diese Gleichung eine Fläche dar, die zwischen der Kugel und dem Würfel enthalten ist, und mit beiden die Berührungspunkte beider gemeinschaftlich hat.

Dass \(1 = \left(\frac{x}{a} \right)^n + \left(\frac{y}{b} \right)^n + \left(\frac{z}{c} \right)^n \) wirklich die Gleichung des Würfels ist, ergibt sich einfach aus der Erwägung, dass \(\frac{x}{r} \) gleich ist \(\pm 1 \), also \(x = \pm r \) für jeden Werth von \(y \) und \(z \), der kleiner oder gleich \(\pm r \) ist. Ebenso ist \(y = \pm r \) für jeden Werth von \(z \) und \(x \), der zwischen \(-r \) und \(+ r \) entfällt; \(z = \pm r \) für jeden Werth von \(x \) und \(y \) zwischen \(-r \) und \(+ r \).

Der Radius vector \(\rho \) ist ein Maximum für \(\pm x = \pm y = \pm z \), d. i.

\[
\rho = r \sqrt[3]{3} = 3^\frac{1}{3}(1 - \frac{1}{3}) r
\]

folglich beim Würfel \(\rho = r \sqrt[3]{3} \); er schliesst bei allen zusammengehörigen Flächen einen Winkel mit den 3 Coordinatenachsen ein, dessen Cosinus \(\frac{1}{\sqrt[3]{3}} \) ist. Da dies die Neigung der Normalen der Oktaederflächen ist, so erfüllt offenbar gar keine Gleichung von der Form 1) die beim Flusspath geforderten Bedingungen, denn die Maxima fallen bei ihnen in jene Richtungen, nach welchen die Minima im Flusspath vorkommen. Wohl aber wird 1) die Cohäsionsverhältnisse des Bleiglanzes, des Steinsalzes, kurz aller Krystalle von kubischer Spaltbarkeit repräsentieren.

3. So wie 1) für \(n = \infty \) den Würfel, so stellt

\[
1 = \left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2
\]

für \(n = \infty \) das Parallelepiped dar. Denn es ist \(\frac{x}{a} = \pm 1 \) für jedes \(y \) zwischen \(+ b \) und \(- b \), und jedes \(z \) zwischen \(+ c \) und \(- c \), u. s. f. Da dies sowohl für ein orthogonales als auch für ein beliebig geneigtes Axensystem gilt, so ist 2) die Gleichung eines jeden Parallelepipeds; sind die Axen gleich geneigt und ist \(a = b = c \), so ist es die Gleichung des Rhomboéders.

Da für \(n = 1 \) die Relation 2) ein Ellipsoid, bezogen auf dessen conjugirte (recht- oder schiefwinklige) Axen darstellt, welches das
gewisser physikalischer Verhältnisse krystallinarter Körper dienen können.

Parallelepipeds in den Mittelpunkten der Seiten berührt, so liegen sämtliche durch 2) dargestellte krumme Flächen (vorausgesetzt dass n ganze positive Zahlen bleiben) zwischen dem Ellipsoid und dem Parallelepipeds. Man überzeugt sich leicht, dass die Diagonalen des Parallelepipeds die Richtungen der 8 Maxima der Radien vectoren der Flächen bestimmen.

Ebenso zeigt die Discussion der Hauptschnitte die Existenz von grössten Radien vectoren der krummen Schnitte in der Richtung der Diagonalen der Parallelogramme an.

Man kann dieselbe Betrachtungsweise auf die übrigen Flächen der 2. Ordnung ausdehnen und wird finden, dass den Hyperboloiden eigenthümlich gebrochene von Ebenen begrenzte, unendliche Systeme entsprechen. Die Fläche

\[
\left(\frac{x}{a}\right)^{2\alpha} + \left(\frac{y}{b}\right)^{2\alpha} - \left(\frac{z}{c}\right)^{2\alpha} = 1
\]

stellt die Combination eines rechtwinkeliges Prisma mit zwei gegen einander gewendeten abgestutzten Pyramiden dar; noch compliciter wird die Form, welche dem Hyperboloid à deux nappes zugeordnet ist, wie man sich leicht durch die Discussion oder Construction der Gleichung

\[
\left(\frac{x}{a}\right)^{2\alpha} - \left(\frac{y}{b}\right)^{2\alpha} - \left(\frac{z}{c}\right)^{2\alpha} = 1
\]

überzeugt.

4. Da ein Polyeder durch eine Ebene in einem Polygon geschnitten wird, so wird

\[
\begin{cases}
\left(\frac{x}{a}\right)^{2n} + \left(\frac{y}{b}\right)^{2n} + \left(\frac{z}{c}\right)^{2n} = 1 \\
x \cos \alpha + y \cos \beta + z \cos \gamma = p
\end{cases}
\]

(3)

die Gleichung eines solchen Polygons sein, sobald \(n = \infty \) ist. Transformirt man die Coordinaten, indem man

\[
x' = -\sin \alpha \cdot x + \cos \beta' \cdot y + \cos \gamma' \cdot z \\
y' = \cos \alpha' \cdot x + \cos \beta'' \cdot y + \cos \gamma'' \cdot z \\
z' = \cos \alpha \cdot x + \cos \beta \cdot y + \cos \gamma \cdot z
\]

setzt (d. i. indem man die Normale der Schnittebene als Axe der Z' und die Verbindungslinie des Fusspunktes der Normalen mit der
Richtung der X als X' annimmt), so erhält man als Gleichung des Schnittes

\[
\left(-x' \sin \alpha + y' \cos \alpha'' + p \cos \alpha \right)^{2n} + \left(\frac{x' \cos \beta' + y' \cos \beta'' + p \cos \beta}{b} \right)^{2n} + \left(\frac{x' \cos \gamma' + y' \cos \beta'' + p \cos \gamma}{c} \right)^{2n} = 1
\]

wzu noch die Bestimmungsgleichungen

\[
\begin{align*}
\cos \alpha' & \quad \cos \alpha'' + \cos \beta' \quad \cos \beta'' + \cos \gamma' \quad \cos \gamma'' = 0 \\
-\cos \alpha'' \sin \alpha & \quad + \cos \beta' \cos \beta'' + \cos \gamma' \cos \gamma'' = 0 \\
-\sin \alpha' \cos \alpha & \quad + \cos \beta' \cos \beta'' + \cos \gamma' \cos \gamma'' = 0 \\
\cos \beta'' \cos \alpha' & \quad + \cos \gamma'' = \cos \alpha'' \\
\cos \alpha'' + \cos \beta'' + \cos \gamma'' = 1
\end{align*}
\]

treten, aus welchen die Werthe von α', β', γ', β'', γ'' als Functionen von α, β, γ erhalten werden. Wird im Exponenten $n = \infty$ gesetzt, so erhalten wir folgende Auflösungen:

\[
\frac{-x' \sin \alpha + y' \cos \alpha'' + p \cos \alpha}{a} = \pm 1 \quad \text{so lange} \quad \frac{x' \cos \beta + y' \cos \beta'' + p \cos \beta}{b} = \pm \epsilon
\]

\[
\frac{x' \cos \gamma' + y' \cos \beta'' + p \cos \gamma}{c} = \pm \epsilon'
\]

unter ϵ, ϵ' jede beliebige positive Zahl, zwischen 0 und 1, verstanden;

\[
\frac{x' \cos \beta' + y' \cos \beta'' + p \cos \beta}{a} = \pm 1 \quad \text{so lange} \quad \frac{-x' \sin \alpha + y' \cos \alpha'' + p \cos \alpha}{a} = \pm \delta
\]

\[
\frac{x' \cos \gamma' + y' \cos \beta'' + p \cos \gamma}{c} = \pm \delta'
\]

unter δ, δ' jede beliebige positive Zahl, zwischen 0 und 1, verstanden;

\[
\frac{x' \cos \gamma' + y' \cos \beta'' + p \cos \gamma}{c} = \pm 1 \quad \text{so lange} \quad \frac{-x' \sin \alpha + y' \cos \alpha'' + p \cos \alpha}{a} = \pm \epsilon_2
\]

\[
\frac{x' \cos \beta + y' \cos \beta'' + p \cos \beta}{b} = \pm \epsilon_2'
\]

unter ϵ_2 und ϵ_2' ähnliche Grössen wie ϵ, ϵ', ϵ, ϵ' verstanden.

Die erste Auflösung stellt zwei parallele Gerade dar, die bis zum Durchschnitte mit den beiden anderen Parallelen reichen, deren Gleichungen in der zweiten und dritten Auflösung enthalten sind. Es geht daraus zunächst hervor, dass ein Parallelpiped höchstens einen sechseckigen Schnitt liefern kann; sollten von den
gewisser physikalischer Verhältnisse krystallisirter Körper dienen können.

Bedingungen, welche jede Auflösung begleiten, mehrere unmöglich werden, so wird sich die Seitenzahl auf 5, 4 oder 3 reduciren.

5. Als ein einfacheres Beispiel wähle ich die Projection des Schnittes auf die Ebene XY. Man erhält aus 3)

\(\left(\frac{x}{a} \right)^{2\omega} + \left(\frac{y}{b} \right)^{2\omega} + \left(\frac{p-u \cdot x-v \cdot y}{\nu \cdot c} \right)^{2\omega} = 1 \)

(4)

Man hat folgende Auflösungen:

a) \(\frac{x}{a} = +1 \) so lange \(\frac{y}{b} = \varepsilon_0, \frac{p-u \cdot a-v \cdot b}{\nu \cdot c} = \varepsilon_0' \)

wird \(\varepsilon_0' \) oder \(\varepsilon' \) für alle Werthe von \(\varepsilon_0 \) oder \(\varepsilon \), zwischen 0 und 1 grösser als 1, so ist im ersten Falle die erste, im zweiten die zweite Auflösung unmöglich. Gibt die Annahme \(\frac{y}{b} = +1 \) ein \(\varepsilon_0' < 1 \), so schneiden sich die Geraden \(x=a, y=b \); gibt \(\frac{y}{b} = +1 \) ein \(\varepsilon' < 1 \), so schneiden sich die Geraden \(x=-a, y=b \); gibt \(\frac{y}{b} = -1 \) ein \(\varepsilon_0' < 1 \), so schneiden sich die Geraden \(x=a, y=-b \); gibt \(\frac{y}{b} = -1 \) ein \(\varepsilon' < 1 \), so schneiden sich die Geraden \(x=-a, y=-b \);

b) \(\frac{y}{b} = +1 \) so lange \(\frac{x}{a} = \varepsilon_0, \frac{p-u \cdot a+v \cdot b}{\nu \cdot c} = \pm \varepsilon_0' \)

\(\frac{y}{b} = -1 \) \(\frac{x}{a} = \varepsilon', \frac{p-u \cdot a-v \cdot b}{\nu \cdot c} = \pm \varepsilon' \)

es lässt sich hier genau dasselbe bemerken, wie bei den zwei vorigen Auflösungen;

c) \(\frac{p-u \cdot x-v \cdot y}{\nu \cdot c} = +1 \) so lange \(\frac{x}{a} = \varepsilon_0 \), \(\frac{y}{b} = \varepsilon_0' \)

\(\frac{p-u \cdot x-v \cdot y}{\nu \cdot c} = -1 \) \(\frac{x}{a} = \varepsilon', \frac{y}{b} = \varepsilon' \)

Das heisst, es werden die Geraden \(u \cdot x+v \cdot y = \pm \nu \cdot c+p \) so lange Bestandstücke des Perimeters liefern, als ihnen durch solche Werthe
von \(a \) und \(y \) Genüge geleistet werden kann, die zwischen \(x = + a \)
und \(x = - a \), und zwischen \(y = + b \) und \(y = - b \) enthalten sind.
Es kann sein, dass dies entweder für beide oder auch nur für eine
Auflösung unmöglich wird; im letzten Falle hört das dritte Glied der
Gleichung 4) auf eine geometrische Bedeutung zu haben.

Man kann nun bezüglich der ersten 4 Auflösungen sagen, dass

\[
\begin{align*}
x &= + a \quad \text{unmöglich ist, so lange} \quad (p - ua - \epsilon vb)^2 > \omega^2 e^2 \\
y &= + b \quad \text{und} \quad (p + vb - \epsilon ua)^2 > \omega^2 e^2 \\
(- b) \quad \text{und} \quad (p + vb - \epsilon ua)^2 > \omega^2 e^2 \\
\end{align*}
\]

ist. Wird \((p - ua + \epsilon vb)^2 = \omega^2 e^2\) für einen gewissen Werth
von \(\epsilon \), während es für alle übrigen \(\omega^2 e^2 \) bleibt, so wird das Poly-
gon in dem Punkte \(x = a, \ y = \pm \epsilon b \) von der Geraden \(x = a \)
berührt. Ähnliches gilt an allen übrigen Auflösungen.

Nehmen wir an, es sei \(a = 3, \ b = 2, \ c = 1; \ u = \frac{3}{\sqrt{50}}, \)
\(v = \frac{4}{\sqrt{50}}, \ w = \frac{5}{\sqrt{50}}; \ p = 0, \) d. i. die schneidende Ebene gehe
durch den Mittelpunkt des Parallelepipeds. Dann ist

\[
\begin{align*}
x &= 3 \quad \text{so lange} \quad \left(\frac{3.3 - \epsilon.8}{5}\right)^2 < 1, \ d. i. \ von \ \epsilon = \frac{1}{2} \ bis \ \epsilon = - 1 \\
\text{also} \ von \ y = - 1 \ bis \ y = - 2, \\

x &= - 3 \quad \text{so lange} \quad \left(\frac{3.3 - 8.\epsilon}{5}\right)^2 < 1, \ d. i. \ von \ \epsilon = \frac{1}{2} \ bis \ \epsilon = 1 \\
\text{also} \ von \ y = + 1 \ bis \ y = + 2, \\

y &= 2 \quad \text{so lange} \quad \left(\frac{2.4 - 9.\epsilon}{5}\right)^2 < 1, \ d. i. \ von \ \epsilon = \frac{1}{3} \ bis \ \epsilon = - 1 \\
\text{also} \ von \ x = - 1 \ bis \ x = - 3, \\

y &= - 2 \quad \text{so lange} \quad \left(\frac{2.4 - 9.\epsilon}{5}\right)^2 < 1, \ d. i. \ von \ \epsilon = - \frac{1}{3} \ bis \ \epsilon = 1 \\
\text{also} \ von \ x = 1 \ bis \ x = 3, \\

3x + 4y &= - 5 \quad \text{so lange} \quad x^2 < 9, \ y^2 < 4 \ ist, \ d. i. \ von \ x = 1 \ bis \ x = - 3, \\
4x + 4y &= + 5 \quad \text{so lange} \quad x^2 < 9, \ y^2 < 4 \ ist, \ d. i. \ von \ x = - 1 \ bis \ x = 3.
\end{align*}
\]
Das Sechseck Fig. 1 wird somit durch die Gleichung
\[(\frac{x}{3})^2 + (\frac{y}{2})^2 + (\frac{3x - 4y}{5})^2 = 1\]
dargestellt.

Setzen wir dagegen
\[u = \frac{1}{\sqrt{26}}, \quad v = \frac{1}{\sqrt{26}}, \quad \omega = \frac{-5}{\sqrt{26}}, \quad p = \frac{1}{\sqrt{26}}\]
so ist
\[x = 3\] so lange \(\left(\frac{2(1+\varepsilon)}{5}\right)^2 < 1\), d. i. von \(\varepsilon = -1\) bis \(\varepsilon = +1\),
also von \(y = -2\) bis \(y = +2\),
\[x = -3\] so lange \(\left(\frac{4-2\varepsilon}{5}\right)^2 < 1\), d. i. von \(\varepsilon = -\frac{1}{2}\) bis \(\varepsilon = +1\),
also von \(y = -1\) bis \(y = +2\),
\[y = 2\] so lange \(\left(\frac{4+3\varepsilon}{5}\right)^2 < 1\), d. i. von \(\varepsilon = +1\) bis \(\varepsilon = -1\),
also von \(x = +1\) bis \(x = -1\),
\[y = -2\] so lange \(\left(\frac{3(1-\varepsilon)}{5}\right)^2 < 1\), d. i. von \(\varepsilon = -\frac{2}{3}\) bis \(\varepsilon = +1\),
also von \(x = -2\) bis \(x = +3\),
\[x + y = 6\] so lange \((x)^2 < 9\), \((y)^2 < 4\); aber das ist offenbar unmöglich, denn die kleinsten Werthe, deren \(x\) und \(y\) fähig sind, sind \(x = y = 3\); für jedes kleinere \(x\) wird \(y\) noch grösser, also unmöglich; für jedes kleinere \(y\) wird \(x > 3\), wird also unmöglich. \(x + y = -4\) ist möglich von \(x = -2\) bis \(x = -3\).

Die Gleichung
\[(\frac{x}{3})^2 + (\frac{y}{2})^2 + (\frac{1-x-y}{-5})^2 = 1\]
stellt somit das nebenstehende Fünseck dar.

6. Es fällt in die Augen, dass die Gleichung des Polygons dadurch entsteht, dass man die Gleichungen der einzelnen Linien, die Bestandstücke des Perimeters liefern, auf die Form \(f(x, y) = ax + by = 1\) bringt, und hierauf die einzelnen \(f(x, y)\) zur Potenz \(2^\infty\) erhebt und addirt. Dies wird noch deutlicher durch folgende zwei Beispiele werden.
Setzt man $u = v = p = 0$, so wird 4)

\[
\left(\frac{x}{a}\right)^{2\omega} + \left(\frac{y}{b}\right)^{2\omega} = 1
\]

dies ist aber offenbar die Gleichung des Parallelogramms.

Transformiert man die Koordinaten, indem man denselben Mittelpunkt beibehält, aber ein schiefwinkliges System einführt, das den Diagonalen des Parallelogramms entspricht, so erhält man

\[
\left(\frac{x + y}{\sqrt{a^2 + b^2}}\right)^{2\omega} + \left(\frac{x - y}{\sqrt{a^2 + b^2}}\right)^{2\omega} = 1
\]

Es ist aber $x + y = \pm \sqrt{a^2 + b^2}$ die Gleichung der der früheren Axe b parallelen, $x - y = \pm \sqrt{a^2 + b^2}$ die Gleichung der der früheren Axe x parallelen Seiten.

Geht man von schiefwinkligen Koordinatenachsen aus, so dass die Axen XY einen Winkel von 60° einschliessen, so wird

\[
x^{2\omega} + y^{2\omega} + (x + y)^{2\omega} = 1
\]

die Projection des Durchschnittes der Ebene

\[
x + y + z = 0
\]

mit dem gleichseitigen schiefwinkligen Parallelepiped

\[
x^{2\omega} + y^{2\omega} + z^{2\omega} = 1
\]

sein. Transformiert man dann die Koordinaten so, dass die Axe der X' den Winkel von 60°, die Axe der Y' den Winkel von 120° halbiren, so wird

\[
x' = (x + y) \cos 30^\circ \quad y' = (y - x) \sin 30^\circ
\]

folglich

\[
x = \frac{1}{2} \left(\frac{x'}{\cos 30^\circ} + \frac{y'}{\sin 30^\circ}\right) \quad y = \frac{1}{2} \left(\frac{x'}{\cos 30^\circ} - \frac{y'}{\sin 30^\circ}\right)
\]

Dies gibt in die Gleichung der Projection substituiert

\[
\left[\frac{x}{2\cos 30^\circ} + \frac{y}{2\sin 30^\circ}\right]^{2\omega} + \left[\frac{x}{2\cos 30^\circ} - \frac{y}{2\sin 30^\circ}\right]^{2\omega} + \left[\frac{x}{\cos 30^\circ}\right]^{2\omega} = 1
\]

Man sieht auf den ersten Blick, dass

\[
\frac{1}{2} \left(\frac{x}{\cos 30^\circ} + \frac{y}{\sin 30^\circ}\right) = \pm 1, \quad \frac{1}{2} \left(\frac{x}{\cos 30^\circ} - \frac{y}{\sin 30^\circ}\right) = \pm 1, \quad \frac{x}{\cos 30^\circ} = \pm 1
\]
die Gleichungen der Geraden sind die ein reguläres Sechseck bilden, und zwar bezogen auf den Radius des umschriebenen Kreises als Lineareinheit.

Dies führt nun zu folgender Methode, die Gleichung eines beliebigens regulären $2n$ Ecks aufzustellen.

7. Es sei $2n$ die Anzahl der Polygonseiten; der Bogen den eine Seite als Sehne vom umschriebenen Kreise abschneidet ist $r \frac{\pi}{n}$, folglich die Entfernung der Seite vom Kreismittelpunkt $= r \cos \frac{\pi}{2n}$.

Die Gleichungen der einzelnen Polygonseiten sind nun

\[
x = r \cos \frac{\pi}{2n}
\]
\[
x \cos \frac{\pi}{n} + y \sin \frac{\pi}{n} = r \cos \frac{\pi}{2n}
\]
\[
x \cos \frac{2\pi}{n} + y \sin \frac{2\pi}{n} = r \cos \frac{\pi}{2n}
\]
\[
\ldots
\]
\[
x \cos \frac{k\pi}{n} + y \sin \frac{k\pi}{n} = r \cos \frac{\pi}{2n}
\]

und die Gleichung des Polygons wird

\[
x^{2\infty} + \left(x \cos \frac{\pi}{n} + y \sin \frac{\pi}{n} \right)^{2\infty} + \left(x \cos \frac{2\pi}{n} + y \sin \frac{2\pi}{n} \right)^{2\infty} + \ldots
\]
\[
+ \left(x \cos \frac{(n-1)\pi}{n} + y \sin \frac{(n-1)\pi}{n} \right)^{2\infty} = \left(r \cos \frac{\pi}{2n} \right)^{2\infty}
\]
or kurz

\[
S_{k=1}^{n} \left(\frac{x \cos \frac{(k-1)\pi}{n} + y \sin \frac{(k-1)\pi}{n}}{r \cos \frac{\pi}{2n}} \right)^{2\infty} = 1
\]

Die Gleichung des Quadrats ist somit

\[
\left(\frac{x}{r \cos 45^\circ} \right)^{2\infty} + \left(\frac{y}{r \cos 45^\circ} \right)^{2\infty} = 1
\]
die des Sechsecks:

\[
\left(\frac{x}{r \cos 30^\circ} \right)^{2\infty} + \left(\frac{x \cos 60^\circ + y \sin 60^\circ}{r \cos 30^\circ} \right)^{2\infty} + \left(\frac{-x \cos 60^\circ + y \sin 60^\circ}{r \cos 30^\circ} \right)^{2\infty} = 1
\]
Man würde endlich auf diesem Wege fortfahrend zur Gleichung des Kreises

\[\lim_{n \to \infty} S_k \left(\frac{x \cos \left(\frac{(k-1)x}{n} \right) + y \sin \left(\frac{(k-1)x}{n} \right)}{r \cos \frac{x}{2n}} \right) = 1 \]

gelangen.

Für die Seitenzahl \((2n + 1)\) wird eine kleine Veränderung notwendig. Denn hat man zwei Parallele

\[
\begin{align*}
ux + vy &= p \\
ux + vy &= p'
\end{align*}
\]

so kann \(p'\) so gewählt werden, dass es eine unmögliche Lösung gibt. Man erhält dies dadurch, dass \(p = \pi_1 - \pi_2\) und \(p' = \pi_1 + \pi_2\) gesetzt wird. Dann wird

\[
\frac{ux + vy - \pi_1}{\pi_2} = -1, \quad \frac{ux + vy - \pi_1}{\pi_2} = 1
\]

folglich

\[
\left(\frac{ux + vy - \pi_1}{\pi_2} \right)^2 = 1.
\]

Bei einem unregelmäßigen Polygon wird die Gleichung die Form

\[
\left(\frac{u_1 x + v_1 y + a_1}{p_1} \right)^2 + \left(\frac{u_2 x + v_2 y + a_2}{p_2} \right)^2 + \ldots + \left(\frac{u_n x + v_n y + a_n}{p_n} \right)^2 = 1
\]

annehmen.

8. Setzt man allgemein \(\varphi_k\) für die Function \(\varphi_k (x, y)\), so wird in der Gleichung

\[
\varphi_0^{2\infty} + \varphi_1^{2\infty} + \varphi_2^{2\infty} + \ldots + \varphi_n^{2\infty} = 1
\]

das Glied \(\varphi_k\) einen Theil des Perimeters einer eckigen (aus geraden oder krummlinigen Elementen zusammengesetzten) Linie darstellen, wenn die Gleichung

\[
\varphi_k = \pm 1
\]

durch solche Werthe von \(x\) und \(y\) erfüllt wird, welche in jede andere der Functionen \(\varphi\) substituirt, diese kleiner oder gleich 1 machen. Denn so lange \(\varphi < 1\) ist, wird \(\varphi^{\infty} = 0\); ist aber \(\varphi = \pm 1\), so ist, wenn \(r\) solche Glieder vorhanden sind,
gewisser physikalischer Verhältnisse krystallisierter Körper dienen können.

\[\rho^\infty = 1 \quad \varphi = r^{-\frac{1}{\infty}} = 1 \]

Es ist klar, dass \(\varphi \) nicht blos eine gerade Linie bedeuten muss. Denn auch die Gleichung

\[\left(\frac{x^3 + y^3}{r^3}\right)^\infty + \left(\frac{z^3}{a^3}\right)^\infty = 1 \]

gibt eine mögliche Lösung so lange \(a < r \) ist; es stellt dies eine aus zwei Kreisbögen und zwei Geraden zusammengesetzte gebrochene Linie dar, welche nach den Coordinatenrichtungen symmetrisch ist, indem sie auch in der Form

\[\left(\frac{\sqrt{x^2 + y^2}}{r}\right)^\infty + \left(\frac{z^3}{a^3}\right)^\infty = 1 \]

geschrieben werden kann.

Man kann daher nach der in diesem Paragraph angegebenen Methode eben so gut krumm- als geradlinige Polygone darstellen; dabei kann das Polygon eine geschlossene oder offene Form haben, je nachdem der Exponent \(2 \infty \) oder \(\infty \) ist.

Führt man Polarcoordinaten ein, so reduziert sich die Aufgabe auf die Ermittlung des Minimum der Radien vector für jede gegebene Richtung und die Curve, welche durch die betreffende Gleichung dargestellt wird, ist der geometrische Ort der Endpunkte dieser kleinsten Radien vector.

9. Aus dem bisherigen folgt, dass die Curve

\[\varphi_0^{2n} + \varphi_1^{2n} + \varphi_2^{2n} + \ldots + \varphi_k^{2n} = 1 \]

sich immer enger an das Polygon

\[\varphi_0^{\infty} + \varphi_1^{\infty} + \varphi_2^{\infty} + \ldots + \varphi_k^{\infty} = 1 \]

anschliesst, je höher der Exponent \(n \) wird. Diess gibt ein Kennzeichen durch welches die Hauptform einer Curve aus den Coefficienten ihrer Gleichung ermittelt werden kann. Es sei

\[A_0x^{2n} + A_1x^{2n-1}y + A_2x^{2n-2}y^2 + \ldots + A_{2n-1}x^2y^{2n-2} + A_ny^{2n} = 1 \]

Ist es nun möglich die Coefficienten folgendermassen zu zerlegen, dass
\(A_0 = a_0^{2n} + a_1^{2n} + \ldots + a_k^{2n} \)
\(A_1 = \binom{2n}{1}[a_0^{2n-1}b_0 + a_1^{2n-1}b_1 + \ldots + a_k^{2n-1}b_k] \)
\(A_2 = \binom{2n}{2}[a_0^{2n-2}b_0^2 + a_1^{2n-2}b_1^2 + \ldots + a_k^{2n-2}b_k^2] \)

\[A_{2n-1} = \binom{2n}{2n-1}[a_0b_0^{2n-1} + a_1b_1^{2n-1} + \ldots + a_kb_k^{2n-1}] \]
\(A_{2n} = b_0^{2n} + b_1^{2n} + \ldots + b_k^{2n} \)

so wird die Gleichung 5) in die Form

\((a_0x + b_0y)^{2n} + (a_1x + b_1y)^{2n} + \ldots + (a_kx + b_ky)^{2n} = 1\)

zu bringen sein, welche für \(n = \infty \) ein 2k Eck darstellt. Die Curve 7) wird daher in der Hauptform mit einem 2k Eck übereinstimmen, in welches ein Kreis sich einschreiben lässt. Was für das 2k Eck gilt, lässt sich auch für ein Polygon von ungerader Seitenzahl oder für Curven, die aus hyperbolischen Ästen bestehen, darthun. Es ist aber nicht die Absicht der gegenwärtigen Note auf diesen Gegenstand näher einzugehen.

Wird auch die Discussion einer gegebenen Gleichung unter dem hier angegebenen Gesichtspunkt viele Schwierigkeiten darbieten, so wird es um so leichter einen algebraischen Ausdruck anzugeben, der eine Curve repräsentiert, die sich beliebig nahe an ein reguläres oder symmetrisches 2k Eck anschliesst.

Man braucht nur in der Gleichung des 2k Ecks statt des Exponenten \(\infty \) eine endliche positive ganze Zahl zu setzen, und erhält die verlangte Gleichung.

So wird das Quadrat die Grenze aller Formen angeben, die durch die Gleichung

\((\frac{x}{a})^{2n} + (\frac{y}{a})^{2n} = 1\)

dargestellt werden. Die Diagonalrichtung des Quadrates ist durch die Gleichung \(x \pm y = 0 \) gegeben; diese Linie geht zugleich durch die Punkte grösster Krümmung dieser Curven, denn führt man ein Polar-Coordinatensystem ein, so findet sich der grösste Radius vector für den Winkel von 45° mit der als Polaraxe gewählten Axe A, X. Nun ist

\(x = y = a \cdot \frac{1}{2} \left(\frac{1}{\frac{1}{2}} \right)^{2n} \)
gewisser physikalischer Verhältnisse krystallisirter Körper dienen können. 671

folglich \(\varphi^n = 2x^n \) und es wird für das in den Kreis von Radius 1
eingeschriebene Quadrat, wenn

\[
\begin{align*}
 n = 1 & \quad \rho = 0.7071 \\
 n = 2 & \quad \rho = 0.8089 \\
 n = 3 & \quad \rho = 0.8909 \\
 n = 4 & \quad \rho = 0.9170 \\
 n = 5 & \quad \rho = 0.9330 \\
 n = \infty & \quad \rho = 1
\end{align*}
\]

Wollte man dasselbe Verfahren anwenden, um die Gleichung
des Dreiecks zu erhalten, so würde sich unmittelbar keine passende Lösung zeigen. Denn die Gleichung

\[f_1^n + f_2^n + f_3^n = 1 \]

stellt für endliche Werthe von \(n \), wenn \(n \) gerade ist, eine symmetrisch
sechseckige Curve, wenn aber \(n \) ungerade ist, ein System von drei
hyperbolischen Curven dar, deren Scheitel an Krümmung mehr und
mehr abnehmen. Dasselbe würde man für eine beliebige Anzahl von
Gliedern der Gleichung finden.

Man kann aber immer auch eine Gleichung für das Dreieck,
Fünfeck u. s. f. angeben, sobald man nach § 7 den Coordinatenmittelpunkt für jede einzelne Seite in der Art transformirt, dass von den
zwei durch eine gerade Potenz gelieferten Geraden nur die eine eine
mögliche Lösung darbietet. So ist z. B.

\[x^{2n} + y^{2n} + (1 - x - y)^{2n} = 1 \]

die Gleichung eines rechtwinkligen Dreiecks, sobald \(n = \infty \) wird und
einer Curve, die sich ohne Ende der Form des rechtwinkligen Dreiecks
nähert, wenn \(n \) ohne Ende wächst.

10. Es wird nunmehr nicht schwer, das von Polygonen ausge-
sagte auch auf Polyeder anzuwenden. Denn es stellt offenbar

\[\varphi_0 (xyz)^{2n} + \varphi_1 (xyz)^{2n} + \varphi_2 (xyz)^{2n} + \ldots + \varphi_n (xyz)^{2n} = 1 \]

einen von Flächen beliebiger Ordnung ganz oder teilweise umschlos-
senen Raum dar, dessen Begrenzung der Bedingung Genüge leistet,
dass der Radius vector an jedem Punkte derselben der kleinstmögliche
ist. Die Auflösung

\[\varphi_0 (xyz) = \pm 1 \]
fordert dass alle andern \(\varphi \) fur die dieser Auflösung entsprechenden Koordinaten kleiner oder gleich \(\pm 1 \) werden. Werden mehrere \(\varphi \) fur gleiche Koordinaten \(= \pm 1 \), so haben wir einen Eckpunkte; werden nur zwei \(\varphi \) fur dieselben Koordinaten \(= \pm 1 \), so erhalten wir eine Kante.

Soll z. B. die Gleichung derjenigen Oberfläche angegeben werden, welche den sechs Kugeln gemeinsamen Raum umschliesst, deren Radien sammlich gleich \(r \) und deren Mittelpunkte symmetrisch um einen Punkt im Raume angeordnet sind, so hat man

\[
\varphi_0 = \frac{(x + a)^2 + y^2 + z^2}{r^2}, \quad \varphi_1 = \frac{(x - a)^2 + y^2 + z^2}{r^2},
\]

\[
\varphi_2 = \frac{x^2 + (y + a)^2 + z^2}{r^2}
\]

u. s. f., folglich die gesuchte Gleichung

\[
\left[\varphi_0 \right]^{2\infty} + \left[\varphi_1 \right]^{2\infty} + \left[\varphi_2 \right]^{2\infty} + \cdots + \left[\varphi_k \right]^{2\infty} = \frac{1}{r^n}
\]

Setzt man auch hier \(n \) nicht \(\infty \), sondern \(2, 3, 4 \ldots \) so nähert man sich der verlangten Form ohne Ende, durch eine Anzahl krummer Flächen.

Man kann nach dieser Methode leicht die Gleichung einer jeden Krystallform angeben, diese mag einfach oder combiniert sein.

Es seien \(f_1 = 1, f_2 = 1 \ldots f_k = 1 \) die Gleichungen der einzelnen Krystallflächen und zwar in ähnlicher Entfernung vom Koordinatenmittelpunkte, wie es der Beobachtung entspricht, so ist

\[
f_1^{2\infty} + f_2^{2\infty} + f_3^{2\infty} + \cdots + f_k^{2\infty} = 1
\]

die Gleichung der Combination und zwar in beliebiger Verziehung. Soll z. B. die Combination des Oktaëders mit dem Dodekaëder und Hexaëder angegeben werden, bei vorherrschenden Oktaëderflächen, so wird, da

\[
\Phi = \left(\frac{x + y + z}{a} \right)^{2\infty} + \left(\frac{-x + y + z}{a} \right)^{2\infty} + \left(\frac{x - y + z}{a} \right)^{2\infty} + \left(\frac{-x - y + z}{a} \right)^{2\infty} = 1
\]

die Gleichung des Oktaëders von der Axenlänge \(a \),
gewisser physikalischer Verhältnisse krystallisirter Körper dienen können.

\[X = \left(\frac{x+y}{b} \right)^{2\omega} + \left(\frac{x-y}{b} \right)^{2\omega} + \left(\frac{y+z}{b} \right)^{2\omega} + \left(\frac{y-z}{b} \right)^{2\omega} + \left(\frac{z+x}{b} \right)^{2\omega} \]
\[+ \left(\frac{z-x}{b} \right)^{2\omega} = 1 \]

die Gleichung des Dodekaëders von der Axenlänge \(b \) und

\[\Psi = \left(\frac{x}{c} \right)^{2\omega} + \left(\frac{y}{c} \right)^{2\omega} + \left(\frac{z}{c} \right)^{2\omega} = 1 \]

die Gleichung des Hexaëders von der Axenlänge \(c \) ist, die Gleichung der verlangten Combination

\[\Phi + X + \Psi = 1 \]

sein. Von der relativen Länge von \(a, b, c \) hängt dies Vorbherrschend den einen oder anderen Form ab; natürlich muss unter allen Umständen \(c < b < a \) sein.

11. Es ist nun auch die im ersten Paragraph erwähnte Aufgabe zu lösen. Da im Flusspath die Cohäsionsverhältnisse die Symmetrie des Oktaëders aufweisen, so wird die Cohäsionsfläche von der Form

\[(x+y+z)^{2n} + (-x+y+z)^{2n} + (x-y+z)^{2n} + (-x-y+z)^{2n} = 1 \]

sein. Setzen wir \(n = 2 \), so gibt dies als erste Approximation

\[z^4 + y^4 + z^4 + 6 \left(y^2z^2 + z^2x^2 + x^2y^2 \right) = \frac{1}{4} \]

Die Spaltbarkeit des Flusspaths ist so ausgezeichnet, dass gewiss ein höherer Werth von \(n \) der Wahrheit mehr entsprechen wird; dagegen ist zu erwarten, dass die Cohäsionsverhältnisse des Alauns mit ziemlicher Genauigkeit durch diese Gleichung dargestellt werden.

Granat und Blende lassen sich nach den Flächen des Dodekaëders spalten. Die Cohäsionsfläche ist daher von der Form

\[(x + y)^{2n} + (x - y)^{2n} + (y + z)^{2n} + (y - z)^{2n} + (z + x)^{2n} + (z - x)^{2n} = 1 \]

was als erste Approximation
$x^4 + y^4 + z^4 + 3(y^2z^2 + z^2x^2 + x^2y^2) = \frac{1}{2}$
gibt. Da sich die beiden Gleichungen für oktaëdrisch- und dodekaëdrisch spaltbare Krystalle nur durch die Constanten unterscheiden, so ist es wohl nothwendig zu höheren Zahlen für n aufzustiegen, sobald es sich um eine schärfere Unterscheidung handelt.

Es ist leicht diese Betrachtungsweise auf alle übrigen Systeme auszudehnen.

Diese Gleichungen geben nun auch ein Mittel an die Hand die Formen von Differentialgleichungen höherer Ordnung zu errathen, welche zur Darstellung der Bewegungserscheinungen dienen können, in welchen die Verschiebungen nicht mehr unendlich klein gesetzt werden.

12. Nach bekannten Beobachtungen (s. meine Bearbeitung der Miller'schen Krystallographie, S. 228) steht die Härte in einem einfachen reciproken Verhältnisse zur Spaltbarkeit. Die weichsten Flächen sind die Spaltungsflächen und die Härte nimmt zu mit der Neigung der Flächen gegen die Spaltungsrichtungen.

Es scheint darum, dass die Cohäsionsflächen unmittelbar dazu dienen können, die härtere Grade der verschiedenen Flächen eines und desselben Krystalles anzugeben. Es sind zwar vom Kalkspath bereits ziemlich viele Bestimmungen bekannt; ich bereite aber eine neue umfassendere Untersuchung einer Kalkspathkugel vor. Die Schwierigkeit eine solche in den passenden Dimensionen zu erhalten, und ihr den nötigen Schleiß zu verleihen, hat bisher die Arbeit verzögert. Jedenfalls aber wird es leichter sein die Cohäsionsverhältnisse auf diesem indirecten Wege zu entwickeln, als auf directem durch die Anwendung von Gewichten.

Die Thatsache, dass Krystalle auf derselben Fläche verschiedene Härten zeigen, je nachdem sie nach verschiedenen Richtungen geritzt werden, ist durch die Cohäsionsfläche deutlich angezeigt. Denn wenn die ritzende Spitze von härteren zu weicheren Flächen, d. i. von kleineren zu grösseren Radien vectoren der Cohäsionsfläche fortschreitet, muss die beobachtete Härte nothwendig eine andere sein, als wenn die Spitze den umgekehrten Weg geht.

Es ist bisher weder die Anziehung eckiger Körper, noch auch die Vertheilung der Elektricität auf Würfeln, Pyramiden u. dgl. Flächen mit Genauigkeit zu berechnen gewesen. Zwar sollte die
gewisser physikalischer Verhältnisse krystallisirter Körper dienen können.

Elektricität auf einem Würfel aus vollkommen leitendem Materiale überhaupt nicht bestehen können, sondern in unmessbar kurzer Zeit durch die Kanten und Ecken entweichen. Dass sie trotzdem beobachtet wird zeigt, dass überhaupt keine absoluten Kanten und Ecken herzustellen sind. Es ist zu erwarten, dass die Form der Gleichung, welche es erlaubt krumme Flächen anzugeben, die sich bis zu jedem beliebigen Grade eckigen Körpern nähern, zur Lösung dieser Aufgabe sich nützlich erweisen wird.

13. Die Function

\[\left[\sin \left(2q + 1 \right) \frac{\pi}{2} \right]^{2\infty} \]

ist Null für alle gebrochenen, dagegen gleich 1 für alle ganzen, positiven oder negativen, Werthe von \(q \). Es wird somit

\[\xi = ap \left[\sin \left(2p + 1 \right) \frac{\pi}{2} \right]^{2\infty} \]

für

\[p = \pm 1, \pm 2, \pm 3 \ldots \ldots \]

den Werth

\[p = \pm a, \pm 2a, \pm 3a \ldots \ldots \]

erlangen. Die Gleichung stellt ein System von Ebenen dar, die zur Coordinatenebene \(YZ \) parallel sind und nach gleichen Intervallen \(a \) auf einander folgen. Ebenso werden die Gleichungen

\[\eta = bp \left[\sin \left(2p + 1 \right) \frac{\pi}{2} \right]^{2\infty} \]

\[\zeta = cp \left[\sin \left(2p + 1 \right) \frac{\pi}{2} \right]^{2\infty} \]

Systeme von Ebenen darstellen, die parallel zur Coordinatenebene \(XZ \) und \(XY \) in gleichen Intervallen \(b \) und \(c \) auf einander folgen.

Es sei nun \(Q \) eine beliebige Function der Coordinaten \(x, y, z \). Nehmen wir an es werde \(Q \) auf ein anderes Coordinatensystem bezogen, das mit dem ursprünglichen parallel bleibt, dessen Ursprung aber um die Grössen \(\xi, \eta, \zeta \) verschoben werde. Es wird dann

\[Q = F \left(x - \xi, y - \eta, z - \zeta \right) \]

Sind \(\xi, \eta, \zeta \) nicht beliebige Grössen, sondern wird von ihnen gefordert, dass sie die Gleichungen

\[\frac{\xi}{ap \left[\sin \left(2p + 1 \right) \frac{\pi}{2} \right]^{2\infty}} = \frac{\eta}{bp \left[\sin \left(2p + 1 \right) \frac{\pi}{2} \right]^{2\infty}} = \frac{\zeta}{cp \left[\sin \left(2p + 1 \right) \frac{\pi}{2} \right]^{2\infty}} = 1 \]

Sitab. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 29. 47
erfüllen, so ist Q nicht mehr eine einzelne Fläche, sondern ein System von Flächen, deren analoge Punkte im Raume nach gleichen Intervallen a, b, c nach den drei Coordinatenrichtungen auf einander folgen. So wird

$$
\left(x - \frac{a p}{a} \left[\sin \left(\frac{2p + 1}{2} \right) \right]^2 \right) + \left(y - \frac{b p}{b} \left[\sin \left(\frac{2p + 1}{2} \right) \right]^2 \right) + \left(z - \frac{c p}{c} \left[\sin \left(\frac{2p + 1}{2} \right) \right]^2 \right) = 1
$$

ein System von gleichen und ähnlichen Ellipsoiden darstellen, deren Mittelpunkte nach der Richtung der X um a, nach der Richtung der Y um b, nach der Richtung der Z um c von einander abstehen. Ist $a = 2a$, $b = 2b$, $c = 2c$, so wird jedes Ellipsoid an den Endpunkten der Axien von benachbarten Ellipsoiden tangiert. Ist $a = b = c = r$, $a = b = c$, so erhalten wir ein System von Kugeln vom Halbmesser r, deren Mittelpunkte nach den Coordinatenrichtungen in den Abständen a auf einander folgen; ist $r = 0$, so reduziert sich die Gleichung auf ein System von Punkten.

Würde der Exponent der einzelnen Glieder nicht gleich 2, sondern gleich $2n$ gesetzt, so erhielte man ein System von Flächen, deren Hauptform zwischen dem Ellipsoid und Parallelepiped enthalten ist. Für $n = \infty$ wird es ein System an Parallelepipeden.

Da die a, b, c selbst Functionen des Raumes und der Zeit sein können, so ist es möglich in dieser Weise ein System darzustellen, dessen Elemente nach einem beliebigen Gesetze im Raume vertheilt sein können. Wäre z. B. Q für $\xi = \eta = \zeta = 0$ die Gestalt eines Moleküls, so würde Q als Function von ξ, η, ζ mit variablen a, b, c ein System darstellen wie die elastischen ungleichartig gedehnten Körper u. dgl.

Die Unabhängigkeit der Zonen und des Krystallesystems von der Temperatur, so wie die Spaltbarkeit deuten darauf hin, dass in Krystallen die Anordnung der Massenmittelpunkte der Moleküle eine solche ist, dass sie genöthigt sind immerfort in einer der (wirklichen oder möglichen) Krystallebenen zu bleiben. Man erhält dadurch Bestimmungsgleichungen zur Auswerthung der a, b, c als Functionen der Krystallekonstanten bei irgend einer Ausgangstemperatur, der Wärmecapacität und der Temperaturen.
Vorgelegte Druckschriften.

Nr. 29.

Cosmos, VII année, XIIIième vol. livr. 18—20.
Flora. Nr. 28 bis 40. 1850; 8°.
VERZEICHNIS

DER

EINGEGANGENEN DRUCKSCHRIFTEN.

NOVEMBER, DECEMBER.

— of science, of St. Louis. The Transactions, 1858; 8°.

Sitzab. d. mathem.-naturw. Cl. XXXIII. Bd. Nr. 29.
Annali dell Istituto di Corrispondenza Archeologica. T. XXIX.
Roma, 1857; 8°.

Annales des mines. Tome XII, livr. 5, 6. — Tome XIII, livr. 1, 2. 8°.
Annals of the astronomical observatory of Harvard College,

— für die holländischen Beiträge zur Natur- und Heilkunde. Band I,
Heft 5. Utrecht, 1858; 8°.

Association, american, for the advancement of science. Proce-
ddings. Tenth and eleventh meeting. Cambridge, 1857/8; 8°.

Austria, X. Jahrgang, Heft 40 — 47.

Bauzeitung, Allgemeine, Jahrgang XXIII, Heft 9, 10; 4°, sammt
Atlas in Fol.

Belli, G., Sulle induzioni eletrostatiche. 8°. (Separatabdruck aus
dem Nuovo Cimento, Vol. VII.)

Bineau, A., Etudes chimiques sur les eaux pluviales et sur l’atmo-
sphère de Lyon. 1858; 8°. — Resumé des données ozonometri-
ques. 1858; 8°. — Études sur les dissolutions des carbonates
terreux et de principaux oxides métalliques. Lyon, 1854; 8°.

Bouiller F., L’Institut et les Académies de Province. Lyon,
1857; 8°.

Breslau, Akademische Gelegenheitsschriften.

Bronn, G. H., Die Entwicklung der organischen Schöpfung. 8°.

Bulletino dell Istituto di Corrispondenza Archeologica per l’anno
1857; 8°.

Carion, Dr. Prof., Karl Stellwag von, Die Ophthalmologie vom
Abtheilung. Erlangen, 1858; 8°.

Catalogus Codicum manu scriptorum Bibliothecae Regiae Mona-
censis. Tom. VII. 1858; 4°.

Venezia, 1857; 4°.
— Tre lettere familiari inediti di Bernardo Marcello. 4°.

Cremona, Luigi, Sulle linee del’ terz’ordine a doppia curvatura.
Roma, 1858; 8°.
der eingegangenen Druckschriften.

Desmouceaux, Mur., Notice biographique sur Balthasar Romano.
Naples, 1857; 8°.

Dudley Observatory, The. An address to the citizens of Albany, and
the donors and friends of the D. O., on the recent proceedings
of the trustees; from the committee of citizens appointed at a
public meeting held in Albany, on the 13. of Juli 1858. Albany,
1858; 8°. — Defence of Dr. Gould by the scientific council of
the. — Second ed. Albany, 1858; 8°.

Gar, Tomm., Biblioteca Trentina. Disp. 3 — 6, 1858; 8°.
Gazette medicale d’Orient, 11ße année, Nr. 8, 9.
Gesellschaft, naturforschenbe, in Zürich, Zweiter Jahrgang,
Heft 1—4. Dritter Jahrg., Heft 1 und 2. 8°.
— physikalisch — medicinische, in Würzburg, Verhandlungen.
Band IX, 1. Heft. 8°.
— Senkenbergische naturforschenbe. Abhandlungen, Band II,
Gewerbe-Verein, nieder-österreichischer, Verhandlungen und
Mittheilungen. Jahrgang 1858, Heft 7, 8. 8°.
Gillis, J. M., Observations to determine the solar parallax. The U.S.
Naval. — Astronomical expedition to the southern Hemisphere,
during the year 1849 — 52. Vol. III. Washington, 1856; 4°.
Göttingen, akademische Gelegenheitsschriften.
Hall, Jonathan, Register of the Thermometer for 36 years.
Holmes, Fr., Remains of domestic animals discovered among
Post — Pleiocene Fossils in South Carolina. Charlestown,
1858; 8°.
Jahrbuch, neues, für Pharmacie und verwandte Fächer. Band X,
Heft 3.
Jahresbericht, Siebenter, des Marien — Vereines. Wien,
1858; 4°.
Kolenati, Prof., Fauna des Altvaters. Brünn, 1859; 8°.
Kořistka, C., Studien über die Methoden und die Benützung hypso-
metrischer Arbeiten, nachgewiesen an den Niveauverhältnissen
der Umgebungen von Prag. Gotha, 1858; 4°.
Land- und forstwissenschafterliche Zeitung, Jahrgang VIII, Nr. 46.
Beiblatt Nr. 25. 1858; 4°.

Leidy, J., Notice of remains of extinct Vertebrata from the valley of the Niobrara river. Philadelphia, 1858; 8°.

Message from the president of the U. S. communicating the fourth meteorological report of Prof. J. P. Espy. Washington, 1857; 4°.

Miller, H., The testimony of the rocks etc. Philadelphia, 1857; 8°.

Mittheilungen der k. k. Central-Commission zur Erforschung und Erhaltung der Baudenkmale. III. Jahrgang, Novemb., Decemb. 1858. 4°.

— des historischen Vereines der fünf Orte. Band XIV. 8°. (Der Geschichtsfreund.)

Münc hen, akademische Schriften.

Ohio Agricultur report for the year 1856. Columbus, 1857; 8°.

Památky archeologické a mistopisné vydavané od archeologického sboru musea království českého nákladem matice české. Díl III. sešit. 3. 1858.

— Rivista meteorologica del 1857; 8°.

— Sulla terza cometa del 1854. 1857; 4°.
Ram, P. F. X. de, Discours après le service funèbre pour le repos de Jean Henri van Oyen. Louvain, 1858; 8°.
Rennie, George, On the quantity of Heat developed by Water when rapidly agitated.
Report of explorations and surveys, to ascertain the most practicable and economical route for a railroad from the Mississippi river to the pacific Ocean. Vol. II — VII. Washington, 1858; 4°.
Reumont, Alfr., La gioventù di Caterina de Medici. Firenze, 1858; 12°.
— I. d'Agriculture etc. de Lyon. Annales des sciences physiques et naturelles etc. 2° sér.: Tome VIII, 3° sér.: Tome I. Lyon, 1856, 57; 8°.
Verzeichniss der eingegangenen Druckschriften.

Verbeek, Heinr., De Rainaldi II Comitis Gerliae rebus gestis. Particula I. Monasterii. 8°.

Verein für Freunde der Naturgeschichte in Mecklenburg. XII. Jahrgang. Neubrandenburg, 1858. 8°.
—— historischer von und für Oberbaiern. Oberbaiерisches Archiv für vaterländische Geschichte, Band XVII, Heft 3; XVIII, 1, 2.

Wattenbach, W., Deutschlands Geschichtsquellen im Mittelalter bis zur Mitte des zwölften Jahrhunderts. (Herausg. von der kön. Societät d. W. zu Göttingen.)

Weber, Dr. Alb., Indische Studien. Band IV, Heft 2, 3. 1858; 8°.

—— der Deutschen morgenländischen Gesellschaft. Band XII, Heft 4, 1858; 8°.
<table>
<thead>
<tr>
<th>Herrschafts</th>
<th>Secundäre Extreme</th>
<th>Beobachtungsort.</th>
<th>Mittlere Temperaturreihe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>der Temperatur</td>
<td>(Nach der mittl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minim.</td>
<td>Tag</td>
<td>Maxim.</td>
</tr>
<tr>
<td>NW.</td>
<td>17.</td>
<td></td>
<td>15.</td>
</tr>
<tr>
<td>NO.</td>
<td>17.</td>
<td></td>
<td>14.</td>
</tr>
<tr>
<td>W.</td>
<td>1.</td>
<td></td>
<td>17.</td>
</tr>
<tr>
<td>W.</td>
<td>22.</td>
<td></td>
<td>18.</td>
</tr>
<tr>
<td>W.</td>
<td>28.</td>
<td></td>
<td>16.</td>
</tr>
<tr>
<td>NW.</td>
<td>4.</td>
<td></td>
<td>26.</td>
</tr>
<tr>
<td>SO.</td>
<td>11.</td>
<td></td>
<td>25.</td>
</tr>
<tr>
<td>S.</td>
<td>22.</td>
<td></td>
<td>22.</td>
</tr>
<tr>
<td>SO.</td>
<td>21.</td>
<td></td>
<td>19.</td>
</tr>
<tr>
<td>NW.</td>
<td>28.</td>
<td></td>
<td>13.</td>
</tr>
<tr>
<td>SO.</td>
<td>1.</td>
<td></td>
<td>16.</td>
</tr>
<tr>
<td>NO.</td>
<td>10.</td>
<td></td>
<td>14.</td>
</tr>
<tr>
<td>O.</td>
<td>16.</td>
<td></td>
<td>18.</td>
</tr>
<tr>
<td>N.</td>
<td>27.</td>
<td></td>
<td>1.</td>
</tr>
<tr>
<td>SO.</td>
<td>21.</td>
<td></td>
<td>12.</td>
</tr>
<tr>
<td>D.</td>
<td>6.</td>
<td></td>
<td>27.</td>
</tr>
<tr>
<td>F.</td>
<td>15.</td>
<td></td>
<td>21.</td>
</tr>
<tr>
<td>SO.</td>
<td>1.</td>
<td></td>
<td>27.</td>
</tr>
<tr>
<td>NO.</td>
<td>17.</td>
<td></td>
<td>24.</td>
</tr>
<tr>
<td>FF</td>
<td>21.</td>
<td></td>
<td>24.</td>
</tr>
<tr>
<td>so. sw.</td>
<td>22.</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>G.</td>
<td>3.</td>
<td></td>
<td>27.</td>
</tr>
<tr>
<td>G.</td>
<td>16.</td>
<td></td>
<td>24.</td>
</tr>
<tr>
<td>G.</td>
<td>13.</td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td>H.</td>
<td>2.</td>
<td></td>
<td>1.</td>
</tr>
<tr>
<td>W.</td>
<td>15.</td>
<td></td>
<td>9.</td>
</tr>
<tr>
<td>NW.</td>
<td>15.</td>
<td></td>
<td>9.</td>
</tr>
<tr>
<td>SO. N.</td>
<td>11.</td>
<td></td>
<td>26.</td>
</tr>
<tr>
<td>W.</td>
<td>5.</td>
<td></td>
<td>11.</td>
</tr>
<tr>
<td>NW.</td>
<td>5</td>
<td></td>
<td>9.</td>
</tr>
<tr>
<td>NO.</td>
<td>22.</td>
<td></td>
<td>17.</td>
</tr>
<tr>
<td>W.</td>
<td>28.</td>
<td></td>
<td>9.</td>
</tr>
<tr>
<td>—</td>
<td>13.</td>
<td></td>
<td>9.</td>
</tr>
<tr>
<td>N.</td>
<td>15.</td>
<td></td>
<td>19.</td>
</tr>
<tr>
<td>N.</td>
<td>9.</td>
<td></td>
<td>19.</td>
</tr>
<tr>
<td>NO.</td>
<td>1.</td>
<td></td>
<td>25.</td>
</tr>
<tr>
<td>O.</td>
<td>16.</td>
<td></td>
<td>19.</td>
</tr>
</tbody>
</table>
Die 1

von unten aufzuthauen. — Der Sannfluss behielt bis 30. mit
am 7. 12. aus breiten Rinnsalen, eine festgeschlossene Eisdecke, stärker
Bemind. Die Eisdecke betrug bis 32 Zoll.

(Ungarn, Sie

angemerk't, am 20. um 6. Ab. Blits und Donner.

nen S. March

So werden

nur

— 1—37, 31., am 4. 5°54., am 28. Mondhof, am 3. starker Westwind.

Das im Februar

3. 5. 15., am 1. 1°13., am 2. von 10° bis 12° Ab. Sturm
gleichzeitig

5. 17., am 5. 1°91.

dieses, sowol

wie Bodenb

schwaches Th

3. 6. 7. 9. 16. 17., am 9. 2°18.

Ansicht des

5. 15. 16.

und höheren

7. 9. 15., am 6. 1°47, Nebel am 4. 5. 9. bis 17. 19. 30.

Über

bends gegen 9° Blitze im NW., am 4. von 6° bis 8° Abends

strengsten Nebel.

Aufklärung

am 2. 3. 7. 9. 10. 18. 20. 21. 22. 23., am 8. 2°97, höch

Die

vom 12. bis Ende +4°2"', tieffster vom 3. bis 10. 0°00"'.

und 27. Die

am 1. 2°80, Schnee am 2. 6. 9. 15. 16. 28., am 6. 3°52.

8. primär. in Gogans 17°. Am 28. im Thale 5°', auf der S. und SW.

den Windrissen einer Stunde drei Viertel in der Höhe bis 2700', im Thale noch 1°

1. bis

Schnee.

am 1.

Agram. Reich. Schnee täglich. — Schnee am 3. 3. 5. 18. 19., am 28. Mondhof.

7°26'

Amberger bemerkt: War schon der vorausgegangene Monat

Aussel (Alb.) Februar durch eine noch lange andauernde intensive Kälte

am 1., die mittlere Temperatur nicht über — 10° und nur am 2.

Aussel (Mark) 2°73; das Monatsmittel selbst war um 8°9 niedriger, als

Althofen. Schneeschmelze im März der Jahre 1851—1857. In Folge dieser anhaltenden

nichts, eine ungewöhnliche Trockenheit in Verbindung stand, froh

ganz zu, zu Ende des Monates desshalb fühlbarer Wasser

Abfluss und zu Mitte des Monates versuchte die Südwestström-

verdrängt, wurde aber jedesmal zurückgedrängt; erst in 20 Ta

nates war ihr Bestreben mit mehr Erfolg gekrönt, die voll

und Monat noch erneut in den ersten Tagen des folgenden Monats.

Bodenbach. Schnee am 7. 8. 17. 18. 22. 23. 25. 26., um 8. 7° 20.

Buchenstein. 8. sehr zierliche Federwolken (Windbäume durch NW. und

am 15. 16. thaut es.

Bukarest. Am 16., Nebel am 5. — Am 16. um 6° Morgens Feuersäule

am 1. Die Temperatur auf — 10° bis — 15° und stieg an 5 Tagen

16. bis + 3°.

schmitt.

3. 22. 23., am 17. 22. bis 25. Höhenreif.
St. Joh. am 1. 2. 3. 4. 6. 15. 16. — Am 3. 7. 17. starke N. bis NW-Winde. Kalkstein, ganz heitere Tage, dauernde Schneedecke, im Schatten gar nicht thau-
mit unter —10°, an 5 Tagen über 0°. — Großer Wassermangel, so
er aus dem Graben ausserhalb der Stadt mittelest Fuhrwerk herbei-
Kaschinen.
Kesma am 8. 18. 26. — Am 2. NW, am 3. und 7. Windwolen,
henreif bis ins Thal?). — Am 23. Reinriesel. — Am 7. Höhenreif von
— Sehr strenger Monat. Im Hochgebirge verhältnismässig sehr wenig
sonnezeitigen Bergesabhängen bei 3500—4500' fast schneefrei. — In der
Zoll starke Schneedecke.
eine am 1. 3. 5. 6. 9. 15. 16. 17., vom 6. bis 14. oft starke Ost-
ene Luft, weite Fernicht, am 23. Ab. Mondkranz und grosser Mondhof,
6. wieder oft starke Ostwinde.
eine am 1. 2. 5. 6. 7. 8. 9. 10. 15. 17. 18. 20. 21. 22. 23. 24. 25.
Koschits
Sternschnuppen.
Korne am 1. 2. 7. 8. 15. 20. 28. am 7. 1°14. — Am 3. Sternschnuppen-
althätig. — Durch den ganzen Februar war kein Thauwetter, die Kälte
ohne ein sehr geringer Niederschlag nur in Schneeförmig stättfand,
die im Sommer versiegten, doch reichlich.
Kraak beredn, sowohl am 10. und 11. unmessbarer Regen und Schnee.
Krems. am 1. 2. 7. 8. 15. 19. 27., am 19. 5°75. — Am 1. bis 7. oft stür-
SO. und N., vom 16. bis Ende Westwind. — Der ganze Monat zeich-
nen schöne, freundliche Tage aus. — Am 2. war die Schneeangren-
zej bis 600, am 19. bis 500, am 27. bis 200 Meter gegangen, zu Anfang
sie auf der lombardischen (Süd-) Seite bis 1500 Meter, bis wohn die
t auf der Tiroler (Nord-) Seite bis 1000 Fuss über dem Meere. Es
Schnee als im vorigen Jahre.
heinem Tage, Schnee am 8. und 19., am 8. nur 0°67, am 25. und
6 Tagen stieg die Temperatur über 0°, Morgens und Abends meist
recht sehr kalt, die mittlere Morgenstemperatur war —5°, die Mittag-
em 1. 3. 5. 6. 8. 9. 20., am 9. 5°65. — Der Schnee, obwohl kaum
sich den ganzen Monat hindurch und schützt die Saaten. — Am 12.
de 60° südlich der brogen Markte Martinsberg —15° um 7°. im
tum 3° —7°8, in Raab —13°. — Am 14. war um 0° —9°, um 3°
0°5, um 8° —5°, um 10° —8°.
Lalbach. 3. 4. 5., am 3. 5°48, am 8. 8. 19. 20. Nebel. 11 Tage bei Ostwinde
An 2 ½ Tagen fiel die Temperatur unter —10°, darunter an 8 Tagen
unter —18°, und am 8. unter —16°.
5. 7. 16., am 3. 2°23.
5., am 7. 1°70, am 25. um 2° Schneegestöber auf den Bergen.
am 1. 2. 6. 7. 8. 9. 10., am 2. 0°87.
Schnee, am 1. mit Sturm, im Thale fast windstill, an 1 ½ Tagen fiel
unter —10°, darunter am 8. unter —15°.
2. 3. 5. 6. 8. 9. 15. 18., am 8. und 9. 12°58.
1. 2. 5. 9. 14. 15. 17., am 1. 2°75. — Am 1. Schnee sturm bis
Höhenreif, am 6. und 7. stürmisch, am 14. um 6° —11°, um 2°
und 10° —12°, am 17. 18. 29. 25. 26. Reif, am 23. 24. 27. und
Die verhältnismässig geringe Schneemenge überkleidet nothdürftig
D. am 7. 8. 9. 17., am 8. 4°90, am 7. stieg die Temperatur über 0°.
heiter, ebenso in Obr. III.
Oderberg. Schnee 2. 5. 9. 14. 15. 16. 17., am 1. 3°73°, Reif am 4. 17. 24.
Schnee, am 9. 10. 16. erreichte die Temperatur 0°. — Herr Bronson
Ödenburg. Schnee vor Monat sauerst zahlreiche und vollständige Beobach-
ungen. Schnee ausstrahlung auf den verschiedenen Punkten im Freien ange-
nommen. Schnee ohne die Vollständigkeit und den Werth derselben zu schmas-
25. 26. 2 Nebel am 1. 5. 8. 16. 22., Höhenreif am 23. 24. 25.
Pilsen. Schnee es am 2. 6. am 2. 2°76°. Die strengste Kälte war oft bei Südwind.
Platt. Schnee 4., am 1. 7°50°. — Der Wasserstand der Plüsse war durchaus
kalt der Winter Grund gefrorenen.
Prag. Regen am 3. 16., am 16. 4°75°, um 2° kurzer Schneesturm aus NO.
am 1. usw.
Pregraten. Schneegen am 1. 17. 18. 22. 23. 26., am 7. 7°88°. — Am 5. und 11. Mor-
Nebel am Erde 1°4 tief gefroren.
Raggsberg. Schnee 16. 17., am 5. 3°74°.
Reichenau. Schnee sehr kalt.
Rieszau. Schnee NO. — Am 17. um 10°34° Morgens leichter Erdstoß.
Sachsenburg. 9°28°., meist unbedeutend, zusammen 6°34°.
am 26. Auf der Schattenseite lag zu Monatsende noch Schnee, das
Salzburg. Am 9°25°, am 1. 5°5°, am 16. 6°5°, am 1. März 5°6°.
2°66° 8°, am 9. 2°16°, am 17. Mondhoch. — Überraschter Monat, an
gefallen darunter am 15. 16°, am 7°6°, am Unters. 18°, der sich 8. 13. 18°, am 7. 7°70°, am 11. und 12. Nebel, am 13.
starker 5, 6. 7. 8. 10. 14. 21., am 5. 1°48°, am 3. und 8. Morgens,
Schässburg. Schnee.
10° 9°, am 16. 0°37°. — Am 1. Mittags Sturm aus SW, und S.
unter 7°, eiskalter Ostwind, am 7. erastes aber kurzes Thauwetter
Schemnitz. Schnee. Morgens Sturm aus NW, später bis Abends aus S. und
erschütterte und kalte Wechselwind.
Schössl. Schnee 25.
Semlin. Schne 5. 17. 18. 19. 28., am 1. 80°, Nebel am 7. bis 10. 12. 13. 17.

Jaslo. Der Kranzstand war noch immer schlimm, die Typhen mehrten sich
Leutschau. Des, überdies sind Bronchial- und Darm-Katarre vorherrschend
Rheumatexantheme zeigten sich, obwohl seltener. Beim hellblichen
über. In der anhaltenden Kälte Gehörmutterblutungen zahlreich.

Tirnau. Am bem: keine Episootien, einige wenige Ummastungsfälle von spin-
isationen (die Lungenweise unter den Rindern.

Wien. Monats: Wien gefunden: Magnetische Declination 12°35°48°, horizon-
—20° 2°, Inclination 61°11°19°.
—5°13°, des Luftdruckes am 1. 15. 28., der Temperatur am 6. und 16.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beobachter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Herr P. Virgil Käferbach, Stiftspriester.</td>
</tr>
<tr>
<td>2</td>
<td>" Professor Anton Zeithammer.</td>
</tr>
<tr>
<td>3</td>
<td>" Pfarrer Anton Maier.</td>
</tr>
<tr>
<td>4</td>
<td>" Professor Zaxxini.</td>
</tr>
<tr>
<td>5</td>
<td>9 Sternwarte.</td>
</tr>
<tr>
<td>6</td>
<td>10 Dr. Eduard Pohl.</td>
</tr>
<tr>
<td>7</td>
<td>" Ober-Bergschaffer v. Roithberg.</td>
</tr>
<tr>
<td>8</td>
<td>" Freiherr Otto v. Sternbach.</td>
</tr>
<tr>
<td>9</td>
<td>" Forstmeister Seidl.</td>
</tr>
<tr>
<td>10</td>
<td>9 Professor Respighi.</td>
</tr>
<tr>
<td>11</td>
<td>9 Manfredi, Aufseher.</td>
</tr>
<tr>
<td>12</td>
<td>9 Frau Katharina Manfredi.</td>
</tr>
<tr>
<td>13</td>
<td>9 Herr Professor P. Cyrill Conzin.</td>
</tr>
<tr>
<td>14</td>
<td>9 Dr. Paul Olexik.</td>
</tr>
<tr>
<td>15</td>
<td>10 Bezirksförster Gustav Rasal.</td>
</tr>
<tr>
<td>16</td>
<td>10 Dr. J. Barrasch, Prof. der Naturwissensach.</td>
</tr>
<tr>
<td>17</td>
<td>10 Dr. Reyer, Lautner und Architekt Franz.</td>
</tr>
<tr>
<td>18</td>
<td>10 K. K. Conviel.</td>
</tr>
<tr>
<td>19</td>
<td>10 Herr Custos Mac-Kanzie.</td>
</tr>
<tr>
<td>20</td>
<td>10 Dr. Hanselman.</td>
</tr>
<tr>
<td>21</td>
<td>10 Canonicus Zaffron.</td>
</tr>
<tr>
<td>22</td>
<td>10 Dechant Pečerka.</td>
</tr>
<tr>
<td>23</td>
<td>10 Spiritual Blazewics.</td>
</tr>
<tr>
<td>24</td>
<td>10 Apotheker Tamássy.</td>
</tr>
<tr>
<td>25</td>
<td>10 Professor Sychrawa.</td>
</tr>
<tr>
<td>26</td>
<td>10 David Corbetta.</td>
</tr>
<tr>
<td>27</td>
<td>8 Professor Botter.</td>
</tr>
<tr>
<td>28</td>
<td>10 Wirtschaftsdirektor Emanuel Bayer.</td>
</tr>
<tr>
<td>29</td>
<td>10 Doctor Banthler.</td>
</tr>
<tr>
<td>30</td>
<td>10 Dr. Pröll und Chirurgus Lainer.</td>
</tr>
<tr>
<td>31</td>
<td>10 Apotheker Schlumpf.</td>
</tr>
<tr>
<td>32</td>
<td>10 Raymund Kühn.</td>
</tr>
<tr>
<td>33</td>
<td>9 Andreas Rospini.</td>
</tr>
<tr>
<td>34</td>
<td>10 Beneficiat Urlinger.</td>
</tr>
<tr>
<td>35</td>
<td>10 Curator Adolph Trientl.</td>
</tr>
<tr>
<td>36</td>
<td>10 Professor Reissenger.</td>
</tr>
<tr>
<td>37</td>
<td>10 Pfarrer Slavik.</td>
</tr>
<tr>
<td>38</td>
<td>10 Pfarrer Kaiser.</td>
</tr>
<tr>
<td>39</td>
<td>10 Dr. Kriz.</td>
</tr>
<tr>
<td>40</td>
<td>9 Cooperator Kargruber.</td>
</tr>
<tr>
<td>41</td>
<td>9 Canonicus Ganser.</td>
</tr>
<tr>
<td>42</td>
<td>9 Dr. Schlechter.</td>
</tr>
<tr>
<td>43</td>
<td>9 Dr. Billhuber.</td>
</tr>
<tr>
<td>44</td>
<td>9 Cooperator Huber.</td>
</tr>
<tr>
<td>45</td>
<td>9 Cooperator Jessacher.</td>
</tr>
</tbody>
</table>