On the cover: RNA polymerase II from yeast, bound to DNA and in the act of transcribing it into RNA. Image created by H. Adam Steinberg using PDB ID 1I6H as modified by Seth Darst.

Library of Congress Control Number: 2007941224

©2008 by W. H. Freeman and Company
All rights reserved

Printed in the United States of America

First printing

W. H. Freeman and Company
41 Madison Avenue
New York, NY 10010
Houndmills, Basingstoke RG21 6XS, England
www.whfreeman.com
To Our Teachers

Paul R. Burton
Albert Finholt
William P. Jencks
Eugene P. Kennedy
Homer Knoss
Arthur Kornberg
I. Robert Lehman
Earl K. Nelson
David E. Sheppard
Harold B. White
David L. Nelson, born in Fairmont, Minnesota, received his BS in Chemistry and Biology from St. Olaf College in 1964 and earned his PhD in Biochemistry at Stanford Medical School under Arthur Kornberg. He was a postdoctoral fellow at the Harvard Medical School with Eugene P. Kennedy, who was one of Albert Lehninger’s first graduate students. Nelson joined the faculty of the University of Wisconsin-Madison in 1971 and became a full professor of biochemistry in 1982. He is the Director of the Center for Biology Education at the University of Wisconsin-Madison.

Nelson’s research has focused on the signal transductions that regulate ciliary motion and exocytosis in the protozoan *Paramecium*. The enzymes of signal transductions, including a variety of protein kinases, are primary targets of study. His research group has used enzyme purification, immunological techniques, electron microscopy, genetics, molecular biology, and electrophysiology to study these processes.

Dave Nelson has a distinguished record as a lecturer and research supervisor. For 36 years he has taught an intensive survey of biochemistry for advanced biochemistry undergraduates in the life sciences. He has also taught a survey of biochemistry for nursing students, and graduate courses on membrane structure and function and on molecular neurobiology. He has sponsored numerous PhD, MS, and undergraduate honors theses, and has received awards for his outstanding teaching, including the Dreyfus Teacher-Scholar Award, the Atwood Distinguished Professorship, and the Unterkofler Excellence in Teaching Award from the University of Wisconsin System. In 1991–1992 he was a visiting professor of chemistry and biology at Spelman College. His second love is history, and in his dotage he has begun to teach the history of biochemistry to undergraduates and to collect antique scientific instruments.

Michael M. Cox was born in Wilmington, Delaware. In his first biochemistry course, Lehninger’s *Biochemistry* was a major influence in refocusing his fascination with biology and inspiring him to pursue a career in biochemistry. After graduating from the University of Delaware in 1974, Cox went to Brandeis University to do his doctoral work with William P. Jencks, and then to Stanford in 1979 for postdoctoral study with I. Robert Lehman. He moved to the University of Wisconsin-Madison in 1983, and became a full professor of biochemistry in 1992.

Cox’s doctoral research was on general acid and base catalysis as a model for enzyme-catalyzed reactions. At Stanford, he began work on the enzymes involved in genetic recombination. The work focused particularly on the RecA protein, designing purification and assay methods that are still in use, and illuminating the process of DNA branch migration. Exploration of the enzymes of genetic recombination has remained the central theme of his research.

Mike Cox has coordinated a large and active research team at Wisconsin, investigating the enzymology, topology, and energetics of genetic recombination. A primary focus has been the mechanism of RecA protein–mediated DNA strand exchange, the role of ATP in the RecA system, and the regulation of recombinational DNA repair. Part of the research program now focuses on organisms that exhibit an especially robust capacity for DNA repair, such as *Deinococcus radiodurans*, and the applications of those repair systems to biotechnology. For the past 24 years he has taught (with Dave Nelson) the survey of biochemistry to undergraduates and has lectured in graduate courses on DNA structure and topology, protein-DNA interactions, and the biochemistry of recombination. A more recent project has been the organization of a new course on professional responsibility for first-year graduate students. He has received awards for both his teaching and his research, including the Dreyfus Teacher-Scholar Award and the 1989 Eli Lilly Award in Biological Chemistry. His hobbies include gardening, wine collecting, and assisting in the design of laboratory buildings.
In this twenty-first century, a typical science education often leaves the philosophical underpinnings of science unstated, or relies on oversimplified definitions. As you contemplate a career in science, it may be useful to consider once again the terms *science*, *scientist*, and *scientific method*.

Science is both a way of thinking about the natural world and the sum of the information and theory that result from such thinking. The power and success of science flow directly from its reliance on ideas that can be tested: information on natural phenomena that can be observed, measured, and reproduced and theories that have predictive value. The progress of science rests on a foundational assumption that is often unstated but crucial to the enterprise: that the laws governing forces and phenomena existing in the universe are not subject to change. The Nobel laureate Jacques Monod referred to this underlying assumption as the “postulate of objectivity.” The natural world can therefore be understood by applying a process of inquiry—the scientific method. Science could not succeed in a universe that played tricks on us. Other than the postulate of objectivity, science makes no inviolate assumptions about the natural world. A useful scientific idea is one that (1) has been or can be reproducibly substantiated and (2) can be used to accurately predict new phenomena.

Scientific ideas take many forms. The terms that scientists use to describe these forms have meanings quite different from those applied by nonscientists. A *hypothesis* is an idea or assumption that provides a reasonable and testable explanation for one or more observations, but it may lack extensive experimental substantiation. A *scientific theory* is much more than a hunch. It is an idea that has been substantiated to some extent and provides an explanation for a body of experimental observations. A theory can be tested and built upon and is thus a basis for further advance and innovation. When a scientific theory has been repeatedly tested and validated on many fronts, it can be accepted as a fact.

In one important sense, what constitutes science or a scientific idea is defined by whether or not it is published in the scientific literature after peer review by other working scientists. About 16,000 peer-reviewed scientific journals worldwide publish some 1.4 million articles each year, a continuing rich harvest of information that is the birthright of every human being.

Scientists are individuals who rigorously apply the scientific method to understand the natural world. Merely having an advanced degree in a scientific discipline does not make one a scientist, nor does the lack of such a degree prevent one from making important scientific contributions. A scientist must be willing to challenge any idea when new findings demand it. The ideas that a scientist accepts must be based on measurable, reproducible observations, and the scientist must report these observations with complete honesty.

The **scientific method** is actually a collection of paths, all of which may lead to scientific discovery. In the *hypothesis and experiment* path, a scientist poses a hypothesis, then subjects it to experimental test. Many of the processes that biochemists work with every day were discovered in this manner. The DNA structure elucidated by James Watson and Francis Crick led to the hypothesis that base pairing is the basis for information transfer in polynucleotide synthesis. This hypothesis helped inspire the discovery of DNA and RNA polymerases.

Watson and Crick produced their DNA structure through a process of *model building and calculation*. No actual experiments were involved, although the model building and calculations used data collected by other scientists. Many adventurous scientists have applied the process of *exploration and observation* as a path to discovery. Historical voyages of discovery (Charles Darwin's 1831 voyage on H.M.S. *Beagle* among them) helped to map the planet, catalog its living occupants, and change the way we view the world. Modern scientists follow a similar path when they explore the ocean depths or launch probes to other planets. An analog of hypothesis and experiment is *hypothesis and deduction*. Crick reasoned that there must be an adaptor molecule that facilitated translation of the information in messenger RNA into protein. This adaptor hypothesis led to the discovery of transfer RNA by Mahlon Hoagland and Paul Zamecnik.

Not all paths to discovery involve planning. *Serenity* often plays a role. The discovery of penicillin by Alexander Fleming in 1928, and of RNA catalysts by Thomas Cech in the early 1980s, were both chance discoveries, albeit by scientists well prepared to exploit them. *Inspiration* can also lead to important advances. The polymerase chain reaction (PCR), now a central part of biotechnology, was developed by Kary Mullis after a flash of inspiration during a road trip in northern California in 1983.

These many paths to scientific discovery can seem quite different, but they have some important things in common. They are focused on the natural world. They rely on *reproducible observation* and/or *experiment*. All of the ideas, insights, and experimental facts that arise from these endeavors can be tested and reproduced by scientists anywhere in the world. All can be used by other scientists to build new hypotheses and make new discoveries. All lead to information that is properly included in the realm of science. Understanding our universe requires hard work. At the same time, no human endeavor is more exciting and potentially rewarding than trying, and occasionally succeeding, to understand some part of the natural world.
The first edition of *Principles of Biochemistry*, written by Albert Lehninger twenty-five years ago, has served as the starting point and the model for our four subsequent editions. Over that quarter-century, the world of biochemistry has changed enormously. Twenty-five years ago, not a single genome had been sequenced, not a single membrane protein had been solved by crystallography, and not a single knockout mouse existed. Ribozymes had just been discovered, PCR technology introduced, and archaea recognized as members of a kingdom separate from bacteria. Now, new genomic sequences are announced weekly, new protein structures even more frequently, and researchers have engineered thousands of different knockout mice, with enormous promise for advances in basic biochemistry, physiology, and medicine. This fifth edition contains the photographs of 31 Nobel laureates who have received their prizes for Chemistry or for Physiology or Medicine since that first edition of *Principles of Biochemistry*.

One major challenge of each edition has been to reflect the torrent of new information without making the book overwhelming for students having their first encounter with biochemistry. This has required much careful sifting aimed at emphasizing principles while still conveying the excitement of current research and its promise for the future. The cover of this new edition exemplifies this excitement and promise: in the x-ray structure of RNA polymerase, we see DNA, RNA, and protein in their informational roles, in atomic dimensions, caught in the central act of information transfer.

We are at the threshold of a new molecular physiology in which processes such as membrane excitation, secretion, hormone action, vision, gustation, olfaction, respiration, muscle contraction, and cell movements will be explicable in molecular terms and will become accessible to genetic dissection and pharmacological manipulation. Knowledge of the molecular structures of the highly organized membrane complexes of oxidative phosphorylation and photophosphorylation, for example, will certainly bring deepened insight into those processes, so central to life. (These developments make us wish we were young again, just beginning our careers in biochemical research and teaching. Our book is not the only thing that has acquired a touch of silver over the years!)

In the past two decades, we have striven always to maintain the qualities that made the original Lehninger text a classic—clear writing, careful explanations of difficult concepts, and communicating to students the ways in which biochemistry is understood and practiced today. We have written together for twenty years and taught together for almost twenty-five. Our thousands of students at the University of Wisconsin—Madison over those years have been an endless source of ideas about how to present biochemistry more clearly; they have enlightened and inspired us. We hope that this twenty-fifth anniversary edition will enlighten and inspire current students of biochemistry everywhere, and perhaps lead some of them to love biochemistry as we do.

Major Recent Advances in Biochemistry

Every chapter has been thoroughly revised and updated to include the most important advances in biochemistry including:

- Concepts of **proteomes and proteomics**, introduced earlier in the book (Chapter 1)
- New discussion of **amyloid diseases** in the context of protein folding (Chapter 4)
- New section on **pharmaceuticals** developed from an understanding of enzyme mechanism, using penicillin and HIV protease inhibitors as examples (Chapter 6)
- New discussion of **sugar analogs** as drugs that target viral neuraminidase (Chapter 7)
- New material on **green fluorescent protein** (Chapter 9)
- New section on **lipidomics** (Chapter 10)
- New descriptions of **volatile lipids** used as signals by plants, and of bird feather pigments derived from colored lipids in plant foods (Chapter 10)
- Expanded and updated section on **lipid rafts and caveolae** to include new material on membrane curvature and the proteins that influence it, and introducing amphitropic proteins and annular lipids (Chapter 11)
- New section on the emerging role of **ribulose 5-phosphate** as a central regulator of glycolysis and gluconeogenesis (Chapter 15)
- New Box 16–1, Moonlighting Enzymes: **Proteins with More Than One Job**
- New section on the role of transcription factors (**PPARs**) in regulation of lipid catabolism (Chapter 17)
- Revised and updated section on **fatty acid synthase**, including new structural information on FAS I (Chapter 21)
■ Updated coverage of the nitrogen cycle, including new Box 22–1, Unusual Life Styles of the Obscure but Abundant, discussing **anammox bacteria** (Chapter 22)

■ New Box 24–2, Epigenetics, Nucleosome Structure, and Histone Variants describing the role of **histone modification and nucleosome deposition** in the transmission of epigenetic information in heredity

■ New information on the initiation of replication and the dynamics at the replication fork, introducing **AAA+ ATPases** and their functions in replication and other aspects of DNA metabolism (Chapter 25)

■ New section on the expanded understanding of the roles of RNA in cells (Chapter 26)

■ New information on the **roles of RNA in protein biosynthesis** (Chapter 27)

■ New section on **riboswitches** (Chapter 28)

■ New Box 28–1, Of Fins, Wings, Beaks, and Things, describing the connections between **evolution and development**

Biochemical Methods

An appreciation of biochemistry often requires an understanding of how biochemical information is obtained. Some of the new methods or updates described in this edition are:

■ Circular dichroism (Chapter 4)

■ Measurement of glycated hemoglobin as an indicator of average blood glucose concentration, over days, in persons with diabetes (Chapter 7)

■ Use of MALDI-MS in determination of oligosaccharide structure (Chapter 7)

■ Forensic DNA analysis, a major update covering modern STR analysis (Chapter 9)

■ More on microarrays (Chapter 9)

■ Use of tags for protein analysis and purification (Chapter 9)

■ PET combined with CT scans to pinpoint cancer (Chapter 14)

■ Chromatin immunoprecipitation and ChIP-chip experiments (Chapter 24)

■ Development of bacterial strains with altered genetic codes, for site-specific insertion of novel amino acids into proteins (Chapter 27)
Medically Relevant Examples

This icon is used throughout the book to denote material of special medical interest. As teachers, our goal is for students to learn biochemistry and to understand its relevance to a healthier life and a healthier planet. We have included many new examples that relate biochemistry to medicine and to health issues in general. Some of the medical applications new to this edition are:

- The role of polyunsaturated fatty acids and trans fatty acids in cardiovascular disease (Chapter 10)
- G protein-coupled receptors (GPCRs) and the range of diseases for which drugs targeted to GPCRs are being used or developed (Chapter 12)
- G proteins, the regulation of GTPase activity, and the medical consequences of defective G protein function (Chapter 12), including new Box 12–2, G Proteins: Binary Switches in Health and Disease
- Box 12–5, Development of Protein Kinase Inhibitors for Cancer Treatment
- Box 14–1, High Rate of Glycolysis in Tumors Suggests Targets for Chemotherapy and Facilitates Diagnosis

Special Theme: Understanding Metabolism through Obesity and Diabetes

Obesity and its medical consequences—cardiovascular disease and diabetes—are fast becoming epidemic in the industrialized world, and we include new material on the biochemical connections between obesity and health throughout this edition. Our focus on diabetes provides an integrating theme throughout the chapters on metabolism and its control, and this will, we hope, inspire some students to find solutions for this disease. Some of the sections and boxes that highlight the interplay of metabolism, obesity, and diabetes are:

- Untreated Diabetes Produces Life-Threatening Acidosis (Chapter 2)
- Box 7–1, Blood Glucose Measurements in the Diagnosis and Treatment of Diabetes, introducing hemoglobin glycation and AGEs and their role in the pathology of advanced diabetes
- Box 11–2, Defective Glucose and Water Transport in Two Forms of Diabetes
- Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus (Chapter 14)
- Ketone Bodies Are Overproduced in Diabetes and during Starvation (Chapter 17)
- Some Mutations in Mitochondrial Genomes Cause Disease (Chapter 19)
- Diabetes Can Result from Defects in the Mitochondria of Pancreatic β Cells (Chapter 19)
- Box 15–3, Genetic Mutations That Lead to Rare Forms of Diabetes
- Mutations in citric acid cycle enzymes that lead to cancer (Chapter 16)
- Pernicious anemia and associated problems in strict vegetarians (Chapter 18)
- Updated information on cyclooxygenase inhibitors (pain relievers Vioxx, Celebrex, Bextra) (Chapter 21)
- HMG-CoA reductase (Chapter 21) and Box 21–3, The Lipid Hypothesis and the Development of Statins
- Box 24–1, Curing Disease by Inhibiting Topoisomerases, describing the use of topoisomerase inhibitors in the treatment of bacterial infections and cancer, including material on ciprofloxacin (the antibiotic effective for anthrax)
- Adipose Tissue Generates Glycerol 3-phosphate by Glyceroneogenesis (Chapter 21)
- Diabetes Mellitus Arises from Defects in Insulin Production or Action (Chapter 23)
- Section 23.4, Obesity and the Regulation of Body Mass, discusses the role of adiponectin and insulin sensitivity and type 2 diabetes
- Section 23.5, Obesity, the Metabolic Syndrome, and Type 2 Diabetes, includes a discussion of managing type 2 diabetes with exercise, diet, and medication

FIGURE 23–42
Advances in Teaching Biochemistry

Revising this textbook is never just an updating exercise. At least as much time is spent reexamining how the core topics of biochemistry are presented. We have revised each chapter with an eye to helping students learn and master the fundamentals of biochemistry. Students encountering biochemistry for the first time often have difficulty with two key aspects of the course: approaching quantitative problems and drawing on what they learned in organic chemistry to help them understand biochemistry. Those same students must also learn a complex language, with conventions that are often unstated. We have made some major changes in the book to help students cope with all these challenges: new problem-solving tools, a focus on organic chemistry foundations, and highlighted key conventions.

New Problem-Solving Tools

- **New in-text Worked Examples** help students improve their quantitative problem-solving skills, taking them through some of the most difficult equations.
- **More than 100 new end-of-chapter problems** give students further opportunity to practice what they have learned.
- **New Data Analysis Problems** (one at the end of each chapter), contributed by Brian White of the University of Massachusetts–Boston, encourage students to synthesize what they have learned and apply their knowledge to the interpretation of data from the literature.

Focus on Organic Chemistry Foundations

- **New Section 13.2**, *Chemical logic and common biochemical reactions*, discusses the common biochemical reaction types that underlie all metabolic reactions.
- **Chemical logic** is reinforced in the discussions of central metabolic pathways.
- **Mechanism figures** feature step-by-step descriptions to help students understand the reaction process.
- In the presentation of reaction mechanisms, we consistently use a set of conventions introduced and explained in detail with the first enzyme mechanism encountered (chymotrypsin, pp. 208–209). Some of the new problems focus on chemical mechanisms and reinforce mechanistic themes.

Key Conventions

In this edition, many of the conventions that are so necessary for understanding each biochemical topic and the biochemical literature are broken out of the text and highlighted. These **Key Conventions** include clear statements of many assumptions and conventions that students are often expected to assimilate without being told (for example, peptide sequences are written from amino-to carboxyl-terminal end, left to right; nucleotide sequences are written from 5’ to 3’ end, left to right).
Media and Supplements

A full package of media resources and supplements provides instructors and students with innovative tools to support a variety of teaching and learning approaches. All these resources are fully integrated with the style and goals of the fifth edition textbook.

eBook

This online version of the textbook combines the contents of the printed book, electronic study tools, and a full complement of student media specifically created to support the text. The eBook also provides useful material for instructors.

- **eBook study tools** include instant navigation to any section or page of the book, bookmarks, highlighting, note-taking, instant search for any term, pop-up key-term definitions, and a spoken glossary.
- The text-specific **student media**, fully integrated throughout the eBook, include animated enzyme mechanisms, animated biochemical techniques, problem-solving videos, molecular structure tutorials in Jmol, Protein Data Bank IDs in Jmol, living graphs, and online quizzes (each described under “Additional Student Media” below).
- **Instructor features** include the ability to add notes or files to any page and to share these notes with students. Notes may include text, Web links, animations, or photos. Instructors can also assign the entire text or a custom version of the eBook.

Additional Instructor Media

Instructors are provided with a comprehensive set of teaching tools, each developed to support the text, lecture presentations, and individual teaching styles. All instructor media are available for download on the book Web site (www.whfreeman.com/lehninger5e) and on the **Instructor Resource CD/DVD** (ISBN 1-4292-1912-2). These media tools include:

- **Fully optimized JPEG files** of every figure, photo, and table in the text, with enhanced color, higher resolution, and enlarged fonts. The files have been reviewed by course instructors and tested in a large lecture hall to ensure maximum clarity and visibility. The JPEGs are also offered in separate files and in PowerPoint® format for each chapter.
- The 150 most popular images in the textbook are available in an **Overhead Transparency Set** (ISBN 1-4292-1911-4), fully optimized for maximum visibility in the lecture hall.
- **Animated Enzyme Mechanisms** and **Animated Biochemical Techniques** are available in Flash files and preloaded into PowerPoint, in both PC and Macintosh formats, for lecture presentation. (See list of animation topics on the inside front cover.)
- A list of **Protein Data Bank IDs** for the structures in the text is provided, arranged by figure number. A new feature in this edition is an index to all structures in the Jmol interactive Web browser applet.
- **Living Graphs** illustrate key equations from the textbook, showing the graphic results of changing parameters.
- A comprehensive **Test Bank** in PDF and editable Word formats includes 150 multiple-choice and short-answer problems per chapter, rated by level of difficulty.

Additional Student Media

Students are provided with media designed to enhance their understanding of biochemical principles and improve their problem-solving ability. All student media, along with the **PDB Structures** and **Living Graphs**, are also in the eBook, and many are available on the book Web site (www.whfreeman.com/lehninger5e). The student media include:

- **New Problem-Solving Videos**, created by Scott Ensign of Utah State University provide 24/7 online problem-solving help to students. Through a two-part approach, each 10-minute video covers a key textbook problem representing a topic that students traditionally struggle to master. Dr. Ensign first describes a proven problem-solving strategy and then applies the strategy to the problem at hand in clear, concise steps. Students can easily pause, rewind, and review any steps as they wish until they firmly grasp not just the solution but also the reasoning behind it. Working through the problems in this way is designed to make students better and more confident at applying key strategies as they solve other textbook and exam problems.
- **Student versions of the Animated Enzyme Mechanisms** and **Animated Biochemical Techniques** help students understand key mechanisms and techniques at their own pace. For a complete list of animation topics, see the inside front cover.
Molecular Structure Tutorials, using the Jmol-Web browser applet, allow students to explore in more depth the molecular structures included in the textbook, including:

- Protein Architecture
- Bacteriorhodopsin
- Lac Repressor
- Nucleotides
- MHC Molecules
- Trimeric G Proteins
- Oxygen-Binding Proteins
- Restriction Endonucleases
- Hammerhead Ribozyme

Online Quizzes include approximately 20 challenging multiple-choice questions for each chapter, with automatic grading and text references and feedback on all answers.

Discussion Questions: provided for each section; designed for individual review, study groups, or classroom discussion

A Self-Test: "Do you know the terms?"; crossword puzzles; multiple-choice, fact-driven questions; and questions that ask students to apply their new knowledge in new directions—plus answers!

Acknowledgements

This book is a team effort, and producing it would be impossible without the outstanding people at W. H. Freeman and Company who supported us at every step along the way. Randi Rossignol (Senior Editor) and Kate Ahr (Executive Editor) arranged reviews, made many helpful suggestions, encouraged us, kept us on target, and tried valiantly (if not always successfully) to keep us on schedule. Our outstanding Project Editor, Liz Geller, somehow kept the book moving through production in spite of our missed deadlines and last-minute changes, and did so with her usual grace and skill. We thank Vicki Tomaselli for developing the design, and Marsha Cohen for the beautiful layout. We again had the good fortune to work with Linda Strange, a superb copy editor who has edited all five editions of Principles of Biochemistry (as well as the two editions of its predecessor, Lehninger's Biochemistry). Her contributions are invaluable and enhance the text wherever she touches it. We were also again fortunate to have the contributions and insights of Morgan Ryan, who worked with us on the third and fourth editions. We thank photo researcher Dena Digilio Betz for her help locating images, and Nick Tymoczko and Whitney Clench for keeping the paper and files flowing among all participants in the project. Our gratitude also goes to Debbie Clare, Associate Director of Marketing, for her creativity and good humor in coordinating the sales and marketing effort.

In Madison, Brook Soltvedt is (and has been for all the editions we have worked on) our first-line editor and critic. She is the first to see manuscript chapters, aids in manuscript and art development, ensures internal consistency in content and nomenclature, and keeps us on task with more-or-less gentle prodding. As she did for the fourth edition, Shelley Lusetti, now of New Mexico State University, read every word of the text in proofs, caught numerous mistakes, and made many suggestions that improved the book.

The new art in this edition, including the new molecular graphics, was done by Adam Steinberg, here in Madison, who often made valuable suggestions that led to better and clearer illustrations. This edition also contains many molecular graphics produced for the third and fourth editions by Jean-Yves Sgro, another Madison
colleague. We feel very fortunate to have such gifted partners as Brook, Shelley, Adam, and Jean-Yves on our team.

We are also deeply indebted to Brian White of the University of Massachusetts–Boston, who wrote the new data analysis problems at the end of each chapter.

Many colleagues played a special role throughout the project and their timely input. Prominent among these are Laurens Anderson of the University of Wisconsin–Madison; Jeffrey D. Esko of the University of California, San Diego; Jack Kirsch and his students at the University of California, Berkeley; and Dana Aswad, Shiou-Chuan (Sheryl) Tsai, Michael G. Cumsky, and their colleagues (listed below) at the University of California, Irvine. Many others helped us shape this fifth edition with their comments, suggestions, and criticisms. To all of them, we are deeply grateful:

Richard M. Amasino, University of Wisconsin–Madison
Louise E. Anderson, University of Illinois at Chicago
Cheryl Bailey, University of Nebraska, Lincoln
Kenneth Balazovich, University of Michigan
Thomas O. Baldwin, University of Arizona
Vahe Bandarian, University of Arizona
Eugene Barber, University of Rochester
Sebastian Y. Bednarek, University of Wisconsin–Madison
Ramachandra Bhat, Lincoln University
James Blankenship, Cornell University
Sandra J. Bonetti, Colorado State University, Pueblo
Barbara Bowman, University of California, Berkeley
Scott D. Briggs, Purdue University
Jeff Brodsky, University of Pittsburgh
Ben Caldwell, Missouri Western State University
David Camerini, University of California, Irvine
Guillaume Chanfreau, University of California, Los Angeles
Melanie Cocco, University of California, Irvine
Jeffrey Cohlbberg, California State University, Long Beach
Kim D. Collins, University of Maryland
Charles T. Dameron, Duquesne University
Richard S. Eisenstein, University of Wisconsin–Madison
Gerald W. Feigenson, Cornell University
Robert H. Fillingame, University of Wisconsin–Madison
Brian Fox, University of Wisconsin–Madison
Gerald D. Frenkel, Rutgers University
Perry Frey, University of Wisconsin–Madison
David E. Graham, University of Texas–Austin
William J. Grimes, University of Arizona
Martyn Gunn, Texas A&M University
Olivia Hanson, University of Central Oklahoma
Amy Hark, Muhlenberg College
Shaun V. Hernandez, University of Wisconsin–Madison
Peter Hinkle, Cornell University
P. Shing Ho, Oregon State University
Charles G. Hoogstraten, Michigan State University
Gerwald Jogi, Brown University
Sir Hans Kornberg, Boston University
Bob Landick, University of Wisconsin–Madison
Patrick D. Larkin, Texas A&M University, Corpus Christi
Ryan P. Liegel, University of Wisconsin–Madison
Maria Linder, California State University, Fullerton
Andy C. LiWang, Texas A&M University
John Makemson, Florida International University
John C. Matthews, University of Mississippi, School of Pharmacy
Benjamin J. McFarland, Seattle Pacific University
Anant Menon, Weill Cornell Medical College
Sabeeha Merchant, University of California, Los Angeles

We lack the space here to acknowledge all the other individuals whose special efforts went into this book. We offer instead our sincere thanks—and the finished book that they helped guide to completion. We, of course, assume full responsibility for errors of fact or emphasis.

We want especially to thank our students at the University of Wisconsin–Madison for their numerous comments and suggestions. If something in the book does not work, they are never shy about letting us know it. We are grateful to the students and staff of our research groups and of the Center for Biology Education, who helped us balance the competing demands on our time; to our colleagues in the Department of Biochemistry at the University of Wisconsin–Madison, who helped us with advice and criticism; and to the many students and teachers who have written to suggest ways of improving the book. We hope our readers will continue to provide input for future editions.

Finally, we express our deepest appreciation to our wives, Brook and Beth, and our families, who showed extraordinary patience with, and support for, our book writing.

David L. Nelson
Michael M. Cox
Madison, Wisconsin
January 2008
Preface viii

1 The Foundations of Biochemistry 1

I STRUCTURE AND CATALYSIS 41

2 Water 43

3 Amino Acids, Peptides, and Proteins 71

4 The Three-Dimensional Structure of Proteins 113

5 Protein Function 153

6 Enzymes 183

7 Carbohydrates and Glycobiology 235

8 Nucleotides and Nucleic Acids 271

9 DNA-Based Information Technologies 303

10 Lipids 343

11 Biological Membranes and Transport 371

12 Biosignaling 417

II BIOENERGETICS AND METABOLISM 485

13 Bioenergetics and Biochemical Reaction Types 489

14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway 527

15 Principles of Metabolic Regulation 569

16 The Citric Acid Cycle 615

17 Fatty Acid Catabolism 647

18 Amino Acid Oxidation and the Production of Urea 673

19 Oxidative Phosphorylation and Photophosphorylation 707

20 Carbohydrate Biosynthesis in Plants and Bacteria 773

21 Lipid Biosynthesis 805

22 Biosynthesis of Amino Acids, Nucleotides, and Related Molecules 851

23 Hormonal Regulation and Integration of Mammalian Metabolism 901

III INFORMATION PATHWAYS 945

24 Genes and Chromosomes 947

25 DNA Metabolism 975

26 RNA Metabolism 1021

27 Protein Metabolism 1065

28 Regulation of Gene Expression 1115

Appendix A Common Abbreviations in the Biochemical Research Literature A-1

Appendix B Abbreviated Solutions to Problems AS-1

Glossary G-1

Credits C-1

Index I-1
1.5 Evolutionary Foundations
Changes in the Hereditary Instructions Allow Evolution
Biomolecules First Arose by Chemical Evolution
RNA or Related Precursors May Have Been the First Genes and Catalysts
Biological Evolution Began More Than Three and a Half Billion Years Ago
The First Cell Probably Used Inorganic Fuels
Eukaryotic Cells Evolved from Simpler Precursors in Several Stages
Molecular Anatomy Reveals Evolutionary Relationships
Functional Genomics Shows the Allocations of Genes to Specific Cellular Processes
Genomic Comparisons Have Increasing Importance in Human Biology and Medicine

I STRUCTURE AND CATALYSIS

2 Water

2.1 Weak Interactions in Aqueous Systems
Hydrogen Bonding Gives Water Its Unusual Properties
Water Forms Hydrogen Bonds with Polar Solutes
Water Interacts Electrostatically with Charged Solutes
Entropy Increases as Crystalline Substances Dissolve
Nonpolar Gases Are Poorly Soluble in Water
Nonpolar Compounds Force Energetically Unfavorable Changes in the Structure of Water
van der Waals Interactions Are Weak Interatomic Attractions
Weak Interactions Are Crucial to Macromolecular Structure and Function
Solute s Affect the Colligative Properties of Aqueous Solutions

2.2 Ionization of Water, Weak Acids, and Weak Bases
Pure Water Is Slightly Ionized
The Ionization of Water Is Expressed by an Equilibrium Constant
The pH Scale Designates the H+ and OH—Concentrations
Weak Acids and Bases Have Characteristic Acid Dissociation Constants
Titration Curves Reveal the pk a of Weak Acids

2.3 Buffering against pH Changes in Biological Systems
Buffers Are Mixtures of Weak Acids and Their Conjugate Bases
The Henderson-Hasselbalch Equation Relates pH, pk a, and Buffer Concentration
Weak Acids or Bases Buffer Cells and Tissues against pH Changes
Untreated Diabetes Produces Life-Threatening Acidosis

Box 2-1 Medicine: On Being One's Own Rabbit
(Don't Try This at Home!)

2.4 Water as a Reactant

2.5 The Fitness of the Aqueous Environment for Living Organisms

3 Amino Acids, Peptides, and Proteins

3.1 Amino Acids
Amino Acids Share Common Structural Features
The Amino Acid Residues in Proteins Are L Stereoisomers
Amino Acids Can Be Classified by R Group

Box 3-1 Methods: Absorption of Light by Molecules:
The Lambert-Beer Law
Uncommon Amino Acids Also Have Important Functions
Amino Acids Can Act as Acids and Bases
Amino Acids Have Characteristic Titration Curves
Titration Curves Predict the Electric Charge of Amino Acids
Amino Acids Differ in Their Acid-Base Properties

3.2 Peptides and Proteins
Peptides Are Chains of Amino Acids
Peptides Can Be Distinguished by Their Ionization Behavior
Biologically Active Peptides and Polypeptides Occur in a Vast Range of Sizes and Compositions
Some Proteins Contain Chemical Groups Other Than Amino Acids

3.3 Working with Proteins
Proteins Can Be Separated and Purified
Proteins Can Be Separated and Characterized by Electrophoresis
Unseparated Proteins Can Be Quantified

3.4 The Structure of Proteins: Primary Structure
The Function of a Protein Depends on Its Amino Acid Sequence
The Amino Acid Sequences of Millions of Proteins Have Been Determined
Short Polypeptides Are Sequenced with Automated Procedures
Large Proteins Must Be Sequenced in Smaller Segments
Amino Acid Sequences Can Also Be Deduced by Other Methods

Box 3–2 Methods: Investigating Proteins with Mass Spectrometry
Small Peptides and Proteins Can Be Chemically Synthesized
Amino Acid Sequences Provide Important Biochemical Information
Protein Sequences Can Elucidate the History of Life on Earth

Box 3–3 Consensus Sequences and Sequence Logos
4 The Three-Dimensional Structure of Proteins

4.1 Overview of Protein Structure
- A Protein's Conformation Is Stabilized Largely by Weak Interactions
- The Peptide Bond Is Rigid and Planar

4.2 Protein Secondary Structure
- The α Helix Is a Common Protein Secondary Structure

Box 4–1 Methods: Knowing the Right Hand from the Left
- Amino Acid Sequence Affects Stability of the α Helix
- The β Conformation Organizes Polypeptide Chains into Sheets
- β Turns Are Common in Proteins
- Common Secondary Structures Have Characteristic Dihedral Angles
- Common Secondary Structures Can Be Assessed by Circular Dichroism

4.3 Protein Tertiary and Quaternary Structures
- Fibrous Proteins Are Adapted for a Structural Function

Box 4–2 Permanent Waving Is Biochemical Engineering

Box 4–3 Medicine: Why Sailors, Explorers, and College Students Should Eat Their Fresh Fruits and Vegetables

Box 4–4 The Protein Data Bank
- Structural Diversity Reflects Functional Diversity in Globular Proteins
- Myoglobin Provided Early Clues about the Complexity of Globular Protein Structure
- Globular Proteins Have a Variety of Tertiary Structures

Box 4–5 Methods: Methods for Determining the Three-Dimensional Structure of a Protein
- Protein Motifs Are the Basis for Protein Structural Classification
- Protein Quaternary Structures Range from Simple Diners to Large Complexes

4.4 Protein Denaturation and Folding
- Loss of Protein Structure Results in Loss of Function
- Amino Acid Sequence Determines Tertiary Structure
- Polypeptides Fold Rapidly by a Stepwise Process
- Some Proteins Undergo Assisted Folding
- Defects in Protein Folding May Be the Molecular Basis for a Wide Range of Human Genetic Disorders

Box 4–6 Medicine: Death by Misfolding: The Prion Diseases

5 Protein Function

5.1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins
- Oxygen Can Bind to a Heme Prosthetic Group
- Myoglobin Has a Single Binding Site for Oxygen
- Protein-Ligand Interactions Can Be Described Quantitatively

Protein Structure Affects How Ligands Bind
Hemoglobin Transports Oxygen in Blood
Hemoglobin Subunits Are Structurally Similar to Myoglobin
Hemoglobin Undergoes a Structural Change on Binding Oxygen
Hemoglobin Binds Oxygen Cooperatively
Cooperative Ligand Binding Can Be Described Quantitatively

Box 5–1 Medicine: Carbon Monoxide: A Stealthy Killer
- Two Models Suggest Mechanisms for Cooperative Binding
- Hemoglobin Also Transports H⁺ and CO₂
- Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate
- Sickle-Cell Anemia Is a Molecular Disease of Hemoglobin

5.2 Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins
- The Immune Response Features a Specialized Array of Cells and Proteins
- Antibodies Have Two Identical Antigen-Binding Sites
- Antibodies Bind Tightly and Specifically to Antigen
- The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures

5.3 Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors
- The Major Proteins of Muscle Are Myosin and Actin
- Additional Proteins Organize the Thin and Thick Filaments into Ordered Structures
- Myosin Thick Filaments Slide along Actin Thin Filaments

6 Enzymes

6.1 An Introduction to Enzymes
- Most Enzymes Are Proteins
- Enzymes Are Classified by the Reactions They Catalyze

6.2 How Enzymes Work
- Enzymes Affect Reaction Rates, Not Equilibria
- Reaction Rates and Equilibria Have Precise Thermodynamic Definitions
- A Few Principles Explain the Catalytic Power and Specificity of Enzymes
- Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State
- Binding Energy Contributes to Reaction Specificity and Catalysis
- Specific Catalytic Groups Contribute to Catalysis

6.3 Enzyme Kinetics as an Approach to Understanding Mechanism
- Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions
- The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively
Contents

Box 6–1 Transformations of the Michaelis-Menten Equation:
The Double-Reciprocal Plot
Kinetic Parameters Are Used to Compare Enzyme Activities
Many Enzymes Catalyze Reactions with Two or More Substrates
Pre–Steady State Kinetics Can Provide Evidence for Specific Reaction Steps
Enzymes Are Subject to Reversible or Irreversible Inhibition

Box 6–2 Kinetic Tests for Determining Inhibition Mechanisms
Enzyme Activity Depends on pH

6.4 Examples of Enzymatic Reactions
The Chymotrypsin Mechanism Involves Acylation and Deacylation of a Ser Residue

Box 6–3 Evidence for Enzyme–Transition State Complementarity
Hexokinase Undergoes Induced Fit on Substrate Binding
The Enolase Reaction Mechanism Requires Metal Ions
Lysozyme Uses Two Successive Nucleophilic Displacement Reactions
An Understanding of Enzyme Mechanism Drives Important Advances in Medicine

6.5 Regulatory Enzymes
Allosteric Enzymes Undergo Conformational Changes in Response to Modulator Binding
In Many Pathways, Regulated Steps Are Catalyzed by Allosteric Enzymes
The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior
Some Enzymes Are Regulated by Reversible Covalent Modification
Phosphoryl Groups Affect the Structure and Catalytic Activity of Enzymes
Multiple Phosphorylations Allow Exquisite Regulatory Control
Some Enzymes and Other Proteins Are Regulated by Proteolytic Cleavage of an Enzyme Precursor
Some Regulatory Enzymes Use Several Regulatory Mechanisms

7 Carbohydrates and Glycobiology

7.1 Monosaccharides and Disaccharides
The Two Families of Monosaccharides Are Aldoses and Ketoses
Monosaccharides Have Asymmetric Centers
The Common Monosaccharides Have Cyclic Structures
Organisms Contain a Variety of Hexose Derivatives
Monosaccharides Are Reducing Agents

Box 7–1 Medicine: Blood Glucose Measurements in the Diagnosis and Treatment of Diabetes
Disaccharides Contain a Glycosidic Bond

7.2 Polysaccharides
Some Homopolysaccharides Are Stored Forms of Fuel
Some Homopolysaccharides Serve Structural Roles
Steric Factors and Hydrogen Bonding Influence Homopolysaccharide Folding
Bacterial and Algal Cell Walls Contain Structural Heteropolysaccharides
Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix

7.3 Glycoconjugates: Proteoglycans, Glycoproteins, and Glycolipids
Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix
Glycoproteins Have Covalently Attached Oligosaccharides
Glycolipids and Lipopolysaccharides Are Membrane Components

7.4 Carbohydrates as Informational Molecules: The Sugar Code
Lectins Are Proteins That Read the Sugar Code and Mediate Many Biological Processes
Lectin-Carbohydrate Interactions Are Highly Specific and Often Polyvalent

7.5 Working with Carbohydrates

8 Nucleotides and Nucleic Acids

8.1 Some Basics
Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses
Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids
The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids

8.2 Nucleic Acid Structure
DNA Is a Double Helix that Stores Genetic Information
DNA Can Occur in Different Three-Dimensional Forms
Certain DNA Sequences Adopt Unusual Structures
Messenger RNAs Code for Polypeptide Chains
Many RNAs Have More Complex Three-Dimensional Structures

8.3 Nucleic Acid Chemistry
Double-Helical DNA and RNA Can Be Denatured
Nucleic Acids from Different Species Can Form Hybrids
Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations
Some Bases of DNA Are Methylated
The Sequences of Long DNA Strands Can Be Determined
The Chemical Synthesis of DNA Has Been Automated
8.4 Other Functions of Nucleotides
Nucleotides Carry Chemical Energy in Cells
Adenine Nucleotides Are Components of Many Enzyme Cofactors
Some Nucleotides Are Regulatory Molecules

9 DNA-Based Information Technologies
9.1 DNA Cloning: The Basics
Restriction Endonucleases and DNA Ligase Yield Recombinant DNA
Cloning Vectors Allow Amplification of Inserted DNA Segments
Specific DNA Sequences Are Detectable by Hybridization
Expression of Cloned Genes Produces Large Quantities of Protein
Alterations in Cloned Genes Produce Modified Proteins
Terminal Tags Provide Binding Sites for Affinity Purification

9.2 From Genes to Genomes
DNA Libraries Provide Specialized Catalogs of Genetic Information
The Polymerase Chain Reaction Amplifies Specific DNA Sequences
Genome Sequences Provide the Ultimate Genetic Libraries

Box 9–1 A Potent Weapon in Forensic Medicine

9.3 From Genomes to Proteomes
Sequence or Structural Relationships Provide Information on Protein Function
Cellular Expression Patterns Can Reveal the Cellular Function of a Gene
Detection of Protein-Protein Interactions Helps to Define Cellular and Molecular Function

9.4 Genome Alterations and New Products of Biotechnology
A Bacterial Plant Parasite Aids Cloning in Plants
Manipulation of Animal Cell Genomes Provides Information on Chromosome Structure and Gene Expression

Box 9–2 Medicine: The Human Genome and Human Gene Therapy
New Technologies Promise to Expedite the Discovery of New Pharmaceuticals
Recombinant DNA Technology Yields New Products and Challenges

10 Lipids
10.1 Storage Lipids
Fatty Acids Are Hydrocarbon Derivatives
Triacylglycerols Are Fatty Acid Esters of Glycerol
Triacylglycerols Provide Stored Energy and Insulation

Box 10–1 Sperm Whales: Fatheads of the Deep
Partial Hydrogenation of Cooking Oils Produces Trans Fatty Acids
Waxes Serve as Energy Stores and Water Repellents

10.2 Structural Lipids in Membranes
Glycerophospholipids Are Derivatives of Phosphatidic Acid
Some Glycerophospholipids Have Ether-Linked Fatty Acids
Chloroplasts Contain Galactolipids and Sulfolipids
Archaea Contain Unique Membrane Lipids
Sphingolipids Are Derivatives of Sphingosine
Sphingolipids at Cell Surfaces Are Sites of Biological Recognition
Phospholipids and Sphingolipids Are Degraded in Lysosomes
Sterols Have Four Fused Carbon Rings

Box 10–2 Medicine: Abnormal Accumulations of Membrane Lipids: Some Inherited Human Diseases
10.3 Lipids as Signals, Cofactors, and Pigments
Phosphatidylinositol and Sphingosine Derivatives Act as Intracellular Signals
Eicosanoids Carry Messages to Nearby Cells
Steroid Hormones Carry Messages between Tissues
Vascular Plants Produce Thousands of Volatile Signals
Vitamins A and D Are Hormone Precursors
Vitamins E and K and the Lipid Quinones Are Oxidation-Reduction Cofactors
Dolichols Activate Sugar Precursors for Biosynthesis
Many Natural Pigments Are Lipidic Conjugated Dienes

10.4 Working with Lipids
Lipid Extraction Requires Organic Solvents
Adsorption Chromatography Separates Lipids of Different Polarity
Gas-Liquid Chromatography Resolves Mixtures of Volatile Lipid Derivatives
Specific Hydrolysis Aids in Determination of Lipid Structure
Mass Spectrometry Reveals Complete Lipid Structure
Lipidomics Seeks to Catalog All Lipids and Their Functions

11 Biological Membranes and Transport
11.1 The Composition and Architecture of Membranes
Each Type of Membrane Has Characteristic Lipids and Proteins
All Biological Membranes Share Some Fundamental Properties
A Lipid Bilayer Is the Basic Structural Element of Membranes
Three Types of Membrane Proteins Differ in Their Association with the Membrane
Many Membrane Proteins Span the Lipid Bilayer
Integral Proteins Are Held in the Membrane by Hydrophobic Interactions with Lipids
The Topology of an Integral Membrane Protein Can Sometimes Be Predicted from Its Sequence
Covalently Attached Lipids Anchor Some Membrane Proteins

11.2 Membrane Dynamics
Acyl Groups in the Bilayer Interior Are Ordered to Varying Degrees
Transbilayer Movement of Lipids Requires Catalysis
Lipids and Proteins Diffuse Laterally in the Bilayer
Sphingolipids and Cholesterol Cluster Together in Membrane Rafts

Box 11-1 Methods: Atomic Force Microscopy to Visualize Membrane Proteins
Membrane Curvature and Fusion Are Central to Many Biological Processes
Integral Proteins of the Plasma Membrane Are Involved in Surface Adhesion, Signaling, and Other Cellular Processes

11.3 Solute Transport across Membranes
Passive Transport Is Facilitated by Membrane Proteins
Transporters Can Be Grouped into Superfamilies Based on Their Structures
The Glucose Transporter of Erythrocytes Mediates Passive Transport
The Chloride-Bicarbonate Exchanger Catalyzes Electroneutral Cotransport of Anions across the Plasma Membrane

Box 11-2 Medicine: Defective Glucose and Water Transport in Two Forms of Diabetes
Active Transport Results in Solute Movement against a Concentration or Electrochemical Gradient
P-Type ATPases Undergo Phosphorylation during Their Catalytic Cycles
P-Type ATPases Are Reversible, ATP-Driven Proton Pumps
ABC Transporters Use ATP to Drive the Active Transport of a Wide Variety of Substrates
Ion Gradients Provide the Energy for Secondary Active Transport

Box 11-3 Medicine: A Defective Ion Channel in Cystic Fibrosis
Aquaporins Form Hydrophilic Transmembrane Channels for the Passage of Water
Ion-Selective Channels Allow Rapid Movement of Ions across Membranes
Ion-Channel Function Is Measured Electrically
The Structure of a K⁺ Channel Reveals the Basis for Its Specificity
Gated Ion Channels Are Central in Neuronal Function
Defective Ion Channels Can Have Severe Physiological Consequences

12 Biosignaling

12.1 General Features of Signal Transduction
Box 12-1 Methods: Scatchard Analysis Quantifies the Receptor-Ligand Interaction
Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals 550

14.4 Gluconeogenesis 551
Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions 553
Conversion of Fructose 1,6-Bisphosphate to Fructose 6-Phosphate Is the Second Bypass 556
Conversion of Glucose 6-Phosphate to Glucose Is the Third Bypass 556
Gluconeogenesis Is Energetically Expensive, but Essential 556
Citric Acid Cycle Intermediates and Some Amino Acids Are Glucogenic 557
Mammals Cannot Convert Fatty Acids to Glucose 557
Glycolysis and Gluconeogenesis Are Reciprocally Regulated 557

14.5 Pentose Phosphate Pathway of Glucose Oxidation 558
Box 14-4 Medicine: Why Pythagoras Wouldn’t Eat Falafel: Glucose 6-Phosphate Dehydrogenase Deficiency 559
The Oxidative Phase Produces Pentose Phosphates and NADPH 559
The Nonoxidative Phase Recycles Pentose Phosphates to Glucose 6-Phosphate 560
Wernicke-Korsakoff Syndrome Is Exacerbated by a Defect in Transketolase 563
Glucose 6-Phosphate Is Partitioned between Glycolysis and the Pentose Phosphate Pathway 563

15 Principles of Metabolic Regulation 569

15.1 Regulation of Metabolic Pathways 570
Cells and Organisms Maintain a Dynamic Steady State 571
Both the Amount and the Catalytic Activity of an Enzyme Can Be Regulated 571
Reactions Far from Equilibrium in Cells Are Common Points of Regulation 574
Adenine Nucleotides Play Special Roles in Metabolic Regulation 575

15.2 Analysis of Metabolic Control 577
The Contribution of Each Enzyme to Flux through a Pathway Is Experimentally Measurable 578
The Control Coefficient Quantifies the Effect of a Change in Enzyme Activity on Metabolite Flux through a Pathway 578
Box 15-1 Methods: Metabolic Control Analysis: Quantitative Aspects 579
The Elasticity Coefficient Is Related to an Enzyme’s Responsiveness to Changes in Metabolite or Regulator Concentrations 580
The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a Pathway 581
Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising Results 581
Metabolic Control Analysis Suggests a General Method for Increasing Flux through a Pathway 582

15.3 Coordinated Regulation of Glycolysis and Gluconeogenesis 582
Hexokinase Isozymes of Muscle and Liver Are Affected Differently by Their Product, Glucose 6-Phosphate 583
Box 15–2 Isozymes: Different Proteins That Catalyze the Same Reaction 584
Hexokinase IV (Glucokinase) and Glucose 6-Phosphatase Are Transcriptionally Regulated 585
Phosphofructokinase-1 and Fructose 1,6-Bisphosphatase Are Reciprocally Regulated 585
Fructose 2,6-Bisphosphate Is a Potent Allosteric Regulator of PFK-1 and FBPase-1 587
Xylose 5-Phosphate Is a Key Regulator of Carbohydrate and Fat Metabolism 588
The Glycolytic Enzyme Pyruvate Kinase Is Allosterically Inhibited by ATP 588
The Gluconeogenic Conversion of Pyruvate to Phosphoenol Pyruvate Is Under Multiple Types of Regulation 590
Transcriptional Regulation of Glycolysis and Gluconeogenesis Changes the Number of Enzyme Molecules 590
Box 15–3 Medicine: Genetic Mutations That Lead to Rare Forms of Diabetes 593

15.4 The Metabolism of Glycogen in Animals 594
Glycogen Breakdown Is Catalyzed by Glycogen Phosphorylase 595
Glucose 1-Phosphate Can Enter Glycolysis or, in Liver, Replenish Blood Glucose 596
The Sugar Nucleotide UDP-Glucose Donates Glucose for Glycogen Synthesis 596
Box 15–4 Carl and Gerty Cori: Pioneers in Glycogen Metabolism and Disease 598
Glycogenin Primes the Initial Sugar Residues in Glycogen 601

15.5 Coordinated Regulation of Glycogen Synthesis and Breakdown 602
Glycogen Phosphorylase Is Regulated Allosterically and Hormonally 603
Glycogen Synthase Is Also Regulated by Phosphorylation and Dephosphorylation 605
Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin 606
Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism 606
Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally 606
Carbohydrate and Lipid Metabolism Are Integrated by Hormonal and Allosteric Mechanisms 608

16 The Citric Acid Cycle 615

16.1 Production of Acetyl-CoA (Activated Acetate) 616
Pyruvate Is Oxidized to Acetyl-CoA and CO2 616
The Pyruvate Dehydrogenase Complex Requires Five Coenzymes 617
The Pyruvate Dehydrogenase Complex Consists of Three Distinct Enzymes
In Substrate Channeling, Intermediates Never Leave the Enzyme Surface

16.2 Reactions of the Citric Acid Cycle
The Citric Acid Cycle Has Eight Steps
Box 16–1 Moonlighting Enzymes: Proteins with More Than One Job
Box 16–2 Synthases and Synthetases; Ligases and Lyases; Kinases, Phosphatases, and Phosphorylases: Yes, the Names Are Confusing!
Box 16–3 Citrate: A Symmetric Molecule That Reacts Asymmetrically
The Energy of Oxidations in the Cycle Is Efficiently Conserved
Why Is the Oxidation of Acetate So Complicated? Citric Acid Cycle Components Are Important
Anaplerotic Reactions Replenish Citric Acid Cycle Intermediates
Box 16–4 Citrate Synthase, Soda Pop, and the World Food Supply
Biotin in Pyruvate Carboxylase Carries CO₂ Groups

16.3 Regulation of the Citric Acid Cycle
Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by Allosteric and Covalent Mechanisms
The Citric Acid Cycle Is Regulated at Its Three Exergonic Steps
Substrate Channeling through Multi-enzyme Complexes May Occur in the Citric Acid Cycle
Some Mutations in Enzymes of the Citric Acid Cycle Lead to Cancer

16.4 The Glyoxylate Cycle
The Glyoxylate Cycle Produces Four-Carbon Compounds from Acetate
The Citric Acid and Glyoxylate Cycles Are Coordinate Regulated

17 Fatty Acid Catabolism

17.1 Digestion, Mobilization, and Transport of Fats
Dietary Fats Are Absorbed in the Small Intestine
Hormones Trigger Mobilization of Stored Triacylglycerols
Fatty Acids Are Activated and Transferred into Mitochondria

17.2 Oxidation of Fatty Acids
The β-Oxidation of Saturated Fatty Acids Has Four Basic Steps
The Four β-Oxidation Steps Are Repeated to Yield Acetyl-CoA and ATP
Box 17–1 Fat Bears Carry Out β-Oxidation in Their Sleep
Acetyl-CoA Can Be Further Oxidized in the Citric Acid Cycle
Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions
Complete Oxidation of Odd-Number Fatty Acids Requires Three Extra Reactions

Box 17–2 Coenzyme B₁₂: A Radical Solution to a Perplexing Problem
Fatty Acid Oxidation Is Tightly Regulated
Transcription Factors Turn on the Synthesis of Proteins for Lipid Catabolism
Genetic Defects in Fatty Acyl-CoA Dehydrogenases Cause Serious Disease
Peroxisomes Also Carry Out β-Oxidation
Plant Peroxisomes and Glyoxysomes Use Acetyl-CoA from β-Oxidation as a Biosynthetic Precursor
The β-Oxidation Enzymes of Different Organelles Have Diverged during Evolution
The ω-Oxidation of Fatty Acids Occurs in the Endoplasmic Reticulum
Phytanic Acid Undergoes ω-Oxidation in Peroxisomes

17.3 Ketone Bodies
Ketone Bodies, Formed in the Liver, Are Exported to Other Organs as Fuel
Ketone Bodies Are Overproduced in Diabetes and during Starvation

18 Amino Acid Oxidation and the Production of Urea

18.1 Metabolic Fates of Amino Groups
Dietary Protein Is Enzymatically Degraded to Amino Acids
Pyridoxal Phosphate Participates in the Transfer of α-Amino Groups to α-Ketoglutarate
Glutamate Releases Its Amino Group As Ammonia in the Liver

Box 18–1 Medicine: Assays for Tissue Damage
Glutamine Transports Ammonia in the Bloodstream
Alanine Transports Ammonia from Skeletal Muscles to the Liver
Ammonia Is Toxic to Animals

18.2 Nitrogen Excretion and the Urea Cycle
Urea Is Produced from Ammonia in Five Enzymatic Steps
The Citric Acid and Urea Cycles Can Be Linked
The Activity of the Urea Cycle Is Regulated at Two Levels
Pathway Interconnections Reduce the Energetic Cost of Urea Synthesis
Genetic Defects in the Urea Cycle Can Be Life-Threatening

18.3 Pathways of Amino Acid Degradation
Some Amino Acids Are Converted to Glucose, Others to Ketone Bodies
Several Enzyme Cofactors Play Important Roles in Amino Acid Catabolism
Six Amino Acids Are Degraded to Pyruvate
Seven Amino Acids Are Degraded to Acetyl-CoA
Phenylalanine Catabolism Is Genetically Defective in Some People 696
Five Amino Acids Are Converted to α-Ketoglutarate 698
Four Amino Acids Are Converted to Succinyl-CoA 699
Box 18–2 Medicine: Scientific Sleuths Solve a Murder Mystery 700
Branched-Chain Amino Acids Are Not Degraded in the Liver 701
Asparagine and Aspartate Are Degraded to Oxaloacetate 701

19 Oxidative Phosphorylation and Photophosphorylation 707

OXIDATIVE PHOSPHORYLATION

19.1 Electron-Transfer Reactions in Mitochondria 708
Electrons Are Funneled to Universal Electron Acceptors 709
Electrons Pass through a Series of Membrane-Bound Carriers 710
Electron Carriers Function in Multienzyme Complexes 712
Mitochondrial Complexes May Associate in Respirasomes 718
The Energy of Electron Transfer Is Efficiently Conserved in a Proton Gradient 718
Reactive Oxygen Species Are Generated during Oxidative Phosphorylation 720
Plant Mitochondria Have Alternative Mechanisms for Oxidizing NADH 721

Box 19–1 Hot, Stinking Plants and Alternative Respiratory Pathways 722

19.2 ATP Synthesis 723
ATP Synthase Has Two Functional Domains, F₀ and F₁ 725
ATP Is Stabilized Relative to ADP on the Surface of F₁ 725
The Proton Gradient Drives the Release of ATP from the Enzyme Surface 726
Each β Subunit of ATP Synthase Can Assume Three Different Conformations 726
Rotational Catalysis Is Key to the Binding-Change Mechanism for ATP Synthesis 728
Chemiosmotic Coupling Allows Nonintegral Stoichiometries of O₂ Consumption and ATP Synthesis 729
The Proton-Motive Force Energizes Active Transport 730
Shuttle Systems Indirectly Convey Cytosolic NADH into Mitochondria for Oxidation 731

19.3 Regulation of Oxidative Phosphorylation 732
Oxidative Phosphorylation Is Regulated by Cellular Energy Needs 733
An Inhibitory Protein Prevents ATP Hydrolysis during Hypoxia 733
Hypoxia Leads to ROS Production and Several Adaptive Responses 733

ATP-Producing Pathways Are Coordinate Regulated 734

19.4 Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis 735
Uncoupled Mitochondria in Brown Adipose Tissue Produce Heat 736
Mitochondrial P-450 Oxygenases Catalyze Steroid Hydroxylations 736
Mitochondria Are Central to the Initiation of Apoptosis 737

19.5 Mitochondrial Genes: Their Origin and the Effects of Mutations 738
Mitochondria Evolved from Endosymbiotic Bacteria 739
Mutations in Mitochondrial DNA Accumulate throughout the Life of the Organism 739
Some Mutations in Mitochondrial Genomes Cause Disease 740
Diabetes Can Result from Defects in the Mitochondria of Pancreatic β Cells 741

PHOTOSYNTHESIS: HARVESTING LIGHT ENERGY

19.6 General Features of Photophosphorylation 742
Photosynthesis in Plants Takes Place in Chloroplasts 743
Light Drives Electron Flow in Chloroplasts 743

19.7 Light Absorption 744
Chlorophylls Absorb Light Energy for Photosynthesis 745
Accessory Pigments Extend the Range of Light Absorption 747
Chlorophyll Funnels the Absorbed Energy to Reaction Centers by Exciton Transfer 747

19.8 The Central Photochemical Event: Light-Driven Electron Flow 749
Bacteria Have One of Two Types of Single Photochemical Reaction Center 749
Kinetic and Thermodynamic Factors Prevent the Dissipation of Energy by Internal Conversion 751
In Plants, Two Reaction Centers Act in Tandem 752
Antenna Chlorophylls Are Tightly Integrated with Electron Carriers 754
The Cytochrome b₆f Complex Links Photosystems II and I 755
Cyclic Electron Flow between PSⅠ and the Cytochrome b₆f Complex Increases the Production of ATP Relative to NADPH 756
State Transitions Change the Distribution of LHCII between the Two Photosystems 756
Water Is Split by the Oxygen-Evolving Complex 756

19.9 ATP Synthesis by Photophosphorylation 759
A Proton Gradient Couples Electron Flow and Photophosphorylation 759
The Approximate Stoichiometry of Photophosphorylation Has Been Established 760
The ATP Synthase of Chloroplasts Is Like That of Mitochondria 760
19.10 The Evolution of Oxygenic Photosynthesis
Chloroplasts Evolved from Ancient Photosynthetic Bacteria
In *Halobacterium*, a Single Protein Absorbs Light and Pumps Protons to Drive ATP Synthesis

20 Carbohydrate Biosynthesis in Plants and Bacteria

20.1 Photosynthetic Carbohydrate Synthesis
Plastids Are Organelles Unique to Plant Cells and Algae
Carbon Dioxide Assimilation Occurs in Three Stages
Synthesis of Each Triose Phosphate from CO₂ Requires Six NADPH and Nine ATP
A Transport System Exports Triose Phosphates from the Chloroplast and Imports Phosphate
Four Enzymes of the Calvin Cycle Are Indirectly Activated by Light

20.2 Photorespiration and the C₄ and CAM Pathways
Photorespiration Results from Rubisco's Oxygenase Activity
The Salvage of Phosphoglycolate Is Costly
In C₄ Plants, CO₂ Fixation and Rubisco Activity Are Spatially Separated
In CAM Plants, CO₂ Capture and Rubisco Action Are Temporally Separated

20.3 Biosynthesis of Starch and Sucrose
ADP-Glucose Is the Substrate for Starch Synthesis in Plant Plastids and for Glycogen Synthesis in Bacteria
UDP-Glucose Is the Substrate for Sucrose Synthesis in the Cytosol of Leaf Cells
Conversion of Triose Phosphates to Sucrose and Starch Is Tightly Regulated

20.4 Synthesis of Cell Wall Polysaccharides:
Plant Cellulose and Bacterial Peptidoglycan
Cellulose Is Synthesized by Supramolecular Structures in the Plasma Membrane
Lipid-Linked Oligosaccharides Are Precursors for Bacterial Cell Wall Synthesis

20.5 Integration of Carbohydrate Metabolism in the Plant Cell
Glucoseoneogenesis Converts Fats and Proteins to Glucose in Germinating Seeds
Pools of Common Intermediates Link Pathways in Different Organelles

21 Lipid Biosynthesis

21.1 Biosynthesis of Fatty Acids and Eicosanoids
Malonyl-CoA Is Formed from Acetyl-CoA and Bicarbonate
Fatty Acid Synthesis Proceeds in a Repeating Reaction Sequence

21.2 Biosynthesis of Triacylglycerols
Triacylglycerols and Glycerophospholipids Are Synthesized from the Same Precursors
Triacylglycerol Biosynthesis in Animals Is Regulated by Hormones
Adipose Tissue Generates Glycerol 3-Phosphate by Glyceroneogenesis
Thiazolidinediones Treat Type 2 Diabetes by Increasing Glyceroneogenesis

21.3 Biosynthesis of Membrane Phospholipids
Cells Have Two Strategies for Attaching Phospholipid Head Groups
Phospholipid Synthesis in *E. coli* Employs CDP-Diacylglycerol
Eukaryotes Synthesize Anionic Phospholipids from CDP-Diacylglycerol
Eukaryotic Pathways to Phosphatidylserine, Phosphatidylethanolamine, and Phosphatidylcholine Are Interrelated
Plasmalogen Synthesis Requires Formation of an Ether-Linked Fatty Alcohol
Sphingolipid and Glycerophospholipid Synthesis Share Precursors and Some Mechanisms
Polar Lipids Are Targeted to Specific Cellular Membranes

21.4 Biosynthesis of Cholesterol, Steroids, and Isoprenoids
Cholesterol Is Made from Acetyl-CoA in Four Stages
Cholesterol Has Several Fates
Cholesterol and Other Lipids Are Carried on Plasma Lipoproteins

Box 21–1 Medicine: ApoE Alleles Predict Incidence of Alzheimer's Disease
Cholesterol Esters Enter Cells by Receptor-Mediated Endocytosis
Cholesterol Biosynthesis Is Regulated at Several Levels

Box 21–2 Medicine: The Lipid Hypothesis and the Development of Statins
The Mammalian Fatty Acid Synthase Has Multiple Active Sites
Fatty Acid Synthase Receives the Acetyl and Malonyl Groups
The Fatty Acid Synthase Reactions Are Repeated to Form Palmitate
Fatty Acid Synthesis Occurs in the Cytosol of Many Organisms but in the Chloroplasts of Plants
Acetate Is Shuttled out of Mitochondria as Citrate
Fatty Acid Biosynthesis Is Tightly Regulated
Long-Chain Saturated Fatty Acids Are Synthesized from Palmitate
Desaturation of Fatty Acids Requires a Mixed-Function Oxidase

Eicosanoids Are Formed from 20-Carbon Polyunsaturated Fatty Acids

21.5 Biosynthesis of Cholesterol, Steroids, and Isoprenoids
Cholesterol Is Made from Acetyl-CoA in Four Stages
Cholesterol Has Several Fates
Cholesterol and Other Lipids Are Carried on Plasma Lipoproteins

Box 21–2 Medicine: ApoE Alleles Predict Incidence of Alzheimer's Disease
Cholesterol Esters Enter Cells by Receptor-Mediated Endocytosis
Cholesterol Biosynthesis Is Regulated at Several Levels

Box 21–3 Medicine: The Lipid Hypothesis and the Development of Statins
Steroid Hormones Are Formed by Side-Chain Cleavage and Oxidation of Cholesterol. Intermediates in Cholesterol Biosynthesis Have Many Alternative Fates.

22 Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

22.1 Overview of Nitrogen Metabolism

22.2 Biosynthesis of Amino Acids

22.3 Molecules Derived from Amino Acids

Box 22–3 Medicine: Curing African Sleeping Sickness with a Biochemical Trojan Horse Arginine Is the Precursor for Biological Synthesis of Nitric Oxide.

22.4 Biosynthesis and Degradation of Nucleotides

23 Hormonal Regulation and Integration of Mammalian Metabolism

23.1 Hormones: Diverse Structures for Diverse Functions

23.2 Tissue-Specific Metabolism: The Division of Labor

23.3 Hormonal Regulation of Fuel Metabolism

23.4 Obesity and the Regulation of Body Mass
Adipose Tissue Has Important Endocrine Functions. Leptin Stimulates Production of Anorexigenic Peptide Hormones. Leptin Triggers a Signaling Cascade That Regulates Gene Expression. The Leptin System May Have Evolved to Regulate the Starvation Response.
Insulin Acts in the Arcuate Nucleus to Regulate Eating and Energy Conservation

Adiponectin Acts through AMPK to Increase Insulin Sensitivity

Diet Regulates the Expression of Genes Central to Maintaining Body Mass

Short-Term Eating Behavior Is Influenced by Ghrelin and PYY3-36

23.5 Obesity, the Metabolic Syndrome, and Type 2 Diabetes

In Type 2 Diabetes the Tissues Become Insensitive to Insulin

Type 2 Diabetes Is Managed with Diet, Exercise, and Medication

III INFORMATION PATHWAYS

24 Genes and Chromosomes

24.1 Chromosomal Elements

Genes Are Segments of DNA That Code for Polypeptide Chains and RNAs

DNA Molecules Are Much Longer Than the Cellular or Viral Packages That Contain Them

Eukaryotic Genes and Chromosomes Are Very Complex

24.2 DNA Supercoiling

Most Cellular DNA Is Underwound

DNA Underwinding Is Defined by Topological Linking Number

Topoisomerases Catalyze Changes in the Linking Number of DNA

Box 24–1 Medicine: Curing Disease by Inhibiting Topoisomerases

DNA Compaction Requires a Special Form of Supercoiling

24.3 The Structure of Chromosomes

Chromatin Consists of DNA and Proteins

Histones Are Small, Basic Proteins

Nucleosomes Are the Fundamental Organizational Units of Chromatin

Box 24–2 Medicine: Epigenetics, Nucleosome Structure, and Histone Variants

Nucleosomes Are Packed into Successively Higher-Order Structures

Condensed Chromosome Structures Are Maintained by SMC Proteins

Bacterial DNA Is Also Highly Organized

25 DNA Metabolism

25.1 DNA Replication

DNA Replication Follows a Set of Fundamental Rules

DNA Is Degraded by Nucleases

DNA Is Synthesized by DNA Polymerases

Replication Is Very Accurate

E. coli Has at Least Five DNA Polymerases

DNA Replication Requires Many Enzymes and Protein Factors

Replication of the E. coli Chromosome Proceeds in Stages

Replication in Eukaryotic Cells Is Both Similar and More Complex

Viral DNA Polymerases Provide Targets for Antiviral Therapy

25.2 DNA Repair

Mutations Are Linked to Cancer

All Cells Have Multiple DNA Repair Systems

The Interaction of Replication Forks with DNA Damage Can Lead to Error-Prone Translesion DNA Synthesis

Box 25–1 Medicine: DNA Repair and Cancer

25.3 DNA Recombination

Homologous Genetic Recombination Has Several Functions

Recombination during Meiosis Is Initiated with Double-Strand Breaks

Recombination Requires a Host of Enzymes and Other Proteins

All Aspects of DNA Metabolism Come Together to Repair Stalled Replication Forks

Site-Specific Recombination Results in Precise DNA Rearrangements

Complete Chromosome Replication Can Require Site-Specific Recombination

Transposable Genetic Elements Move from One Location to Another

Immunoglobulin Genes Assemble by Recombination

26 RNA Metabolism

26.1 DNA-Dependent Synthesis of RNA

RNA Is Synthesized by RNA Polymerases

RNA Synthesis Begins at Promoters

Box 26–1 Methods: RNA Polymerase Leaves Its Footprint on a Promoter

Transcription Is Regulated at Several Levels

Specific Sequences Signal Termination of RNA Synthesis

Eukaryotic Cells Have Three Kinds of Nuclear RNA Polymerases

RNA Polymerase II Requires Many Other Protein Factors for Its Activity

DNA-Dependent RNA Polymerase Undergoes Selective Inhibition

26.2 RNA Processing

Eukaryotic mRNAs Are Capped at the 5’ End

Both Introns and Exons Are Transcribed from DNA into RNA

RNA Catalyzes the Splicing of Introns

Eukaryotic mRNAs Have a Distinctive 3’ End Structure

A Gene Can Give Rise to Multiple Products by Differential RNA Processing
Ribosomal RNAs and tRNAs Also Undergo Processing
Special-Function RNAs Undergo Several Types of Processing
RNA Enzymes Are the Catalysts of Some Events in RNA Metabolism
Cellular mRNAs Are Degraded at Different Rates
Polynucleotide Phosphorylase Makes Random RNA-like Polymers

26.3 RNA-Dependent Synthesis of RNA and DNA
Reverse Transcriptase Produces DNA from Viral RNA
Some Retroviruses Cause Cancer and AIDS
Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin

Box 26-2 Medicine: Fighting AIDS with Inhibitors of HIV Reverse Transcriptase
Telomerase Is a Specialized Reverse Transcriptase
Some Viral RNAs Are Replicated by RNA-Dependent RNA Polymerase
RNA Synthesis Offers Important Clues to Biochemical Evolution

Box 26-3 Methods: The SELEX Method for Generating RNA Polymers with New Functions
Box 26-4 An Expanding RNA Universe Filled with TUF RNAs

27 Protein Metabolism

27.1 The Genetic Code
The Genetic Code Was Cracked Using Artificial mRNA Templates

Box 27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code
Wobble Allows Some tRNAs to Recognize More than One Codon
Translational Frameshifting and RNA Editing Affect How the Code Is Read

27.2 Protein Synthesis
Protein Biosynthesis Takes Place in Five Stages
The Ribosome Is a Complex Supramolecular Machine

Box 27-2 From an RNA World to a Protein World
Transfer RNAs Have Characteristic Structural Features
Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs

Box 27-3 Natural and Unnatural Expansion of the Genetic Code
Stage 2: A Specific Amino Acid Initiates Protein Synthesis
Stage 3: Peptide Bonds Are Formed in the Elongation Stage

Box 27-4 Induced Variation in the Genetic Code: Nonsense Suppression
Stage 4: Termination of Polypeptide Synthesis Requires a Special Signal

Stage 5: Newly Synthesized Polypeptide Chains Undergo Folding and Processing
Protein Synthesis Is Inhibited by Many Antibiotics and Toxins

27.3 Protein Targeting and Degradation
Positranslational Modification of Many Eukaryotic Proteins Begins in the Endoplasmic Reticulum
Glycosylation Plays a Key Role in Protein Targeting
Signal Sequences for Nuclear Transport Are Not Cleaved
Bacteria Also Use Signal Sequences for Protein Targeting
Cells Import Proteins by Receptor-Mediated Endocytosis
Protein Degradation Is Mediated by Specialized Systems in All Cells

28 Regulation of Gene Expression

28.1 Principles of Gene Regulation
RNA Polymerase Binds to DNA at Promoters
Transcription Initiation Is Regulated by Proteins That Bind to or near Promoters
Many Bacterial Genes Are Clustered and Regulated in Operons
The lac Operon Is Subject to Negative Regulation
Regulatory Proteins Have Discrete DNA-Binding Domains
Regulatory Proteins Also Have Protein-Protein Interaction Domains

28.2 Regulation of Gene Expression in Bacteria
The lac Operon Undergoes Positive Regulation
Many Genes for Amino Acid Biosynthetic Enzymes Are Regulated by Transcription Attenuation
Induction of the SOS Response Requires Destruction of Repressor Proteins
Synthesis of Ribosomal Proteins Is Coordinated with rRNA Synthesis
The Function of Some mRNAs Is Regulated by Small RNAs in Cis or in Trans
Some Genes Are Regulated by Genetic Recombination

28.3 Regulation of Gene Expression in Eukaryotes
Transcriptionally Active Chromatin Is Structurally Distinct from Inactive Chromatin
Chromatin Is Remodeled by Acetylation and Nucleosomal Displacement/Repositioning
Many Eukaryotic Promoters Are Positively Regulated
DNA-Binding Activators and Coactivators Facilitate Assembly of the General Transcription Factors
The Genes of Galactose Metabolism in Yeast Are Subject to Both Positive and Negative Regulation
Transcription Activators Have a Modular Structure
With the cell, biology discovered its atom... To characterize life, it was henceforth essential to study the cell and analyze its structure: to single out the common denominators, necessary for the life of every cell; alternatively, to identify differences associated with the performance of special functions.

—François Jacob, La logique du vivant: une histoire de l'hérédité (The Logic of Life: A History of Heredity), 1970

The Foundations of Biochemistry

1.1 Cellular Foundations 2
1.2 Chemical Foundations 11
1.3 Physical Foundations 19
1.4 Genetic Foundations 27
1.5 Evolutionary Foundations 29

About fifteen billion years ago, the universe arose as a cataclysmic eruption of hot, energy-rich subatomic particles. Within seconds, the simplest elements (hydrogen and helium) were formed. As the universe expanded and cooled, material condensed under the influence of gravity to form stars. Some stars became enormous and then exploded as supernovae, releasing the energy needed to fuse simpler atomic nuclei into the more complex elements. Thus were produced, over billions of years, Earth itself and the chemical elements found on Earth today. About four billion years ago, life arose—simple microorganisms with the ability to extract energy from chemical compounds and, later, from sunlight, which they used to make a vast array of more complex biomolecules from the simple elements and compounds on the Earth’s surface.

Biochemistry asks how the remarkable properties of living organisms arise from the thousands of different molecules. When these molecules are isolated and examined individually, they conform to all the physical and chemical laws that describe the behavior of inanimate matter—as do all the processes occurring in living organisms. The study of biochemistry shows how the collections of inanimate molecules that constitute living organisms interact to maintain and perpetuate life animated solely by the physical and chemical laws that govern the nonliving universe.

Yet organisms possess extraordinary attributes, properties that distinguish them from other collections of matter. What are these distinguishing features of living organisms?

A high degree of chemical complexity and microscopic organization. Thousands of different molecules make up a cell’s intricate internal structures (Fig. 1–1a). These include very long polymers, each with its characteristic sequence of subunits, its unique three-dimensional structure, and its highly specific selection of binding partners in the cell.

Systems for extracting, transforming, and using energy from the environment (Fig. 1–1b), enabling organisms to build and maintain their intricate structures and to do mechanical, chemical, osmotic, and electrical work. This counteracts the tendency of all matter to decay toward a more disordered state, to come to equilibrium with its surroundings.

Defined functions for each of an organism’s components and regulated interactions among them. This is true not only of macroscopic structures, such as leaves and stems or hearts and lungs, but also of microscopic intracellular structures and individual chemical compounds. The interplay among the chemical components of a living organism is dynamic; changes in one component cause coordinating or compensating changes in another, with the whole ensemble displaying a character beyond that of its individual parts. The collection of molecules carries out a program, the end result of which is reproduction of the program and self-perpetuation of that collection of molecules—in short, life.

Mechanisms for sensing and responding to alterations in their surroundings, constantly adjusting to these changes by adapting their internal chemistry or their location in the environment.

A capacity for precise self-replication and self-assembly (Fig. 1–1c). A single bacterial cell
placed in a sterile nutrient medium can give rise to a billion identical “daughter” cells in 24 hours. Each cell contains thousands of different molecules, some extremely complex; yet each bacterium is a faithful copy of the original, its construction directed entirely from information contained in the genetic material of the original cell.

A capacity to change over time by gradual evolution. Organisms change their inherited life strategies, in very small steps, to survive in new circumstances. The result of eons of evolution is an enormous diversity of life forms, superficially very different (Fig. 1–2) but fundamentally related through their shared ancestry. This fundamental unity of living organisms is reflected at the molecular level in the similarity of gene sequences and protein structures.

Despite these common properties, and the fundamental unity of life they reveal, it is difficult to make generalizations about living organisms. Earth has an enormous diversity of organisms. The range of habitats, from hot springs to Arctic tundra, from animal intestines to college dormitories, is matched by a correspondingly wide range of specific biochemical adaptations, achieved within a common chemical framework. For the sake of clarity, in this book we sometimes risk certain generalizations, which, though not perfect, remain useful; we also frequently point out the exceptions to these generalizations, which can prove illuminating.

Biochemistry describes in molecular terms the structures, mechanisms, and chemical processes shared by all organisms and provides organizing principles that underlie life in all its diverse forms, principles we refer to collectively as the molecular logic of life. Although biochemistry provides important insights and practical applications in medicine, agriculture, nutrition, and industry, its ultimate concern is with the wonder of life itself.

In this introductory chapter we give an overview of the cellular, chemical, physical, and genetic backgrounds to biochemistry and the overarching principle of evolution—the development over generations of the properties of living cells. As you read through the book, you may find it helpful to refer back to this chapter at intervals to refresh your memory of this background material.

1.1 Cellular Foundations

The unity and diversity of organisms become apparent even at the cellular level. The smallest organisms consist of single cells and are microscopic. Larger, multicellular organisms contain many different types of cells, which vary in size, shape, and specialized function. Despite

FIGURE 1–2 Diverse living organisms share common chemical features. Birds, beasts, plants, and soil microorganisms share with humans the same basic structural units (cells) and the same kinds of macromolecules (DNA, RNA, proteins) made up of the same kinds of monomeric subunits (nucleotides, amino acids). They utilize the same pathways for synthesis of cellular components, share the same genetic code, and derive from the same evolutionary ancestors. Shown here is a detail from “The Garden of Eden,” by Jan van Kessel the Younger (1626–1679).
these obvious differences, all cells of the simplest and most complex organisms share certain fundamental properties, which can be seen at the biochemical level.

Cells Are the Structural and Functional Units of All Living Organisms

Cells of all kinds share certain structural features (Fig. 1–3). The **plasma membrane** defines the periphery of the cell, separating its contents from the surroundings. It is composed of lipid and protein molecules that form a thin, tough, pliable, hydrophobic barrier around the cell. The membrane is a barrier to the free passage of inorganic ions and most other charged or polar compounds. Transport proteins in the plasma membrane allow the passage of certain ions and molecules; receptor proteins transmit signals into the cell; and membrane enzymes participate in some reaction pathways. Because the individual lipids and proteins of the plasma membrane are not covalently linked, the entire structure is remarkably flexible, allowing changes in the shape and size of the cell. As a cell grows, newly made lipid and protein molecules are inserted into its plasma membrane; cell division produces two cells, each with its own membrane. This growth and cell division (fission) occurs without loss of membrane integrity.

The internal volume enclosed by the plasma membrane, the **cytoplasm** (Fig. 1–3), is composed of an aqueous solution, the **cytosol**, and a variety of suspended particles with specific functions. The cytosol is a highly concentrated solution containing enzymes and the RNA molecules that encode them; the components (amino acids and nucleotides) from which these macromolecules are assembled; hundreds of small organic molecules called **metabolites**, intermediates in biosynthetic and degradative pathways; **coenzymes**, compounds essential to many enzyme-catalyzed reactions; inorganic ions; and such supramolecular structures as **ribosomes**, the sites of protein synthesis, and **proteasomes**, which degrade proteins no longer needed by the cell.

All cells have, for at least some part of their life, either a **nucleus** or a **nucleoid**, in which the **genome**—the complete set of genes, composed of DNA—is stored and replicated. The nucleoid, in bacteria and archaea, is not separated from the cytoplasm by a membrane; the nucleus, in **eukaryotes**, consists of nuclear material enclosed within a double membrane, the nuclear envelope. Cells with nuclear envelopes make up the large group Eukarya (Greek eu, "true," and karyon, "nucleus"). Microorganisms without nuclear envelopes, formerly grouped together as **prokaryotes** (Greek pro, "before"), are now recognized as comprising two very distinct groups, Bacteria and Archaea, described below.

Cellular Dimensions Are Limited by Diffusion

Most cells are microscopic, invisible to the unaided eye. Animal and plant cells are typically 5 to 100 μm in diameter, and many unicellular microorganisms are only 1 to 2 μm long (see the inside back cover for information on units and their abbreviations). What limits the dimensions of a cell? The lower limit is probably set by the minimum number of each type of biomolecule required by the cell. The smallest cells, certain bacteria known as mycoplasmas, are 300 nm in diameter and have a volume of about 10⁻¹⁴ mL. A single bacterial ribosome is about 20 nm in its longest dimension, so a few ribosomes take up a substantial fraction of the volume in a mycoplasmal cell.

The upper limit of cell size is probably set by the rate of diffusion of solute molecules in aqueous systems. For example, a bacterial cell that depends on oxygen-consuming reactions for energy production must obtain molecular oxygen by diffusion from the surrounding medium through its plasma membrane. The cell is so small, and the ratio of its surface area to its volume is so large, that every part of its cytoplasm is easily reached...
FIGURE 1–4 Phylogeny of the three domains of life. Phylogenetic relationships are often illustrated by a “family tree” of this type. The basis for this tree is the similarity in nucleotide sequences of the ribosomal RNAs of each group; the more similar the sequence, the closer the location of the branches, with the distance between branches representing the degree of difference between two sequences. Phylogenetic trees can also be constructed from similarities across species of the amino acid sequences of a single protein. For example, sequences of the protein GroEL (a bacterial protein that assists in protein folding) were compared to generate the tree in Figure 3–32. The tree in Figure 3–33 is a “consensus” tree, which uses several comparisons such as these to make the best estimates of evolutionary relatedness of a group of organisms.

by O₂ diffusing into the cell. With increasing cell size, however, surface-to-volume ratio decreases, until metabolism consumes O₂ faster than diffusion can supply it. Metabolism that requires O₂ thus becomes impossible as cell size increases beyond a certain point, placing a theoretical upper limit on the size of cells.

There Are Three Distinct Domains of Life

All living organisms fall into one of three large groups (domains) that define three branches of evolution from a common progenitor (Fig. 1–4). Two large groups of single-celled microorganisms can be distinguished on genetic and biochemical grounds: Bacteria and Archaea. Bacteria inhabit soils, surface waters, and the tissues of other living or decaying organisms. Many of the Archaea, recognized as a distinct domain by Carl Woese in the 1980s, inhabit extreme environments—salt lakes, hot springs, highly acidic bogs, and the ocean depths. The available evidence suggests that the Archaea and Bacteria diverged early in evolution. All eukaryotic organisms, which make up the third domain, Eukarya,
evolved from the same branch that gave rise to the Archaea; eukaryotes are therefore more closely related to archaea than to bacteria.

Within the domains of Archaea and Bacteria are subgroups distinguished by their habitats. In aerobic habitats with a plentiful supply of oxygen, some resident organisms derive energy from the transfer of electrons from fuel molecules to oxygen. Other environments are anaerobic, virtually devoid of oxygen, and microorganisms adapted to these environments obtain energy by transferring electrons to nitrate (forming N₂), sulfate (forming H₂S), or CO₂ (forming CH₄). Many organisms that have evolved in anaerobic environments are obligate anaerobes: they die when exposed to oxygen. Others are facultative anaerobes, able to live with or without oxygen.

We can classify organisms according to how they obtain the energy and carbon they need for synthesizing cellular material (as summarized in Fig. 1–5). There are two broad categories based on energy sources: phototrophs (Greek trophe, “nourishment”) trap and use sunlight, and chemotrophs derive their energy from oxidation of a chemical fuel. Some chemotrophs, the lithotrophs, oxidize inorganic fuels—HS⁻ to S⁰ (elemental sulfur), S⁰ to SO₄²⁻, NO₂⁻ to NO₃⁻, or Fe²⁺ to Fe³⁺, for example. Organotrophs oxidize a wide array of organic compounds available in their surroundings. Phototrophs and chemotrophs may also be divided into those that can obtain all needed carbon from CO₂ (autotrophs) and those that require organic nutrients (heterotrophs).

Escherichia coli is the Most-Studied Bacterium

Bacterial cells share certain common structural features, but also show group-specific specializations (Fig. 1–6). E. coli is a usually harmless inhabitant of the human intestinal tract. The E. coli cell is about 2 μm long and a little less than 1 μm in diameter. It has a protective outer membrane and an inner plasma membrane that encloses the cytoplasm and the nucleoid. Between the inner and outer membranes is a thin but strong layer of a polymer (peptidoglycan) that gives the cell its shape and rigidity. The plasma membrane and the layers outside it constitute the cell envelope. We should note here that in archaea, rigidity is conferred by a different type of polymer (pseudopeptidoglycan). The plasma membranes of bacteria consist of a thin bilayer of lipid molecules penetrated by proteins. Archaeal membranes have a similar architecture, but the lipids are strikingly different from those of bacteria (see Fig. 10–12).

Ribosomes Bacterial ribosomes are smaller than eukaryotic ribosomes, but serve the same function—protein synthesis from an RNA message.

Nucleoid Contains a single, simple, long circular DNA molecule.

Pili Provide points of adhesion to surface of other cells.

Flagella Propel cell through its surroundings.

Escherichia coli Structure with type of bacteria.

FIGURE 1–6 Common structural features of bacterial cells. Because of differences in cell envelope structure, some bacteria (gram-positive bacteria) retain Gram's stain (introduced by Hans Christian Gram in 1882), and others (gram-negative bacteria) do not. E. coli is gram-negative. Cyanobacteria are distinguished by their extensive internal membrane system, which is the site of photosynthetic pigments. Although the cell envelopes of archaea and gram-positive bacteria look similar under the electron microscope, the structures of the membrane lipids and the polysaccharides are distinctly different (see Fig. 10–12).
The cytoplasm of *E. coli* contains about 15,000 ribosomes, various numbers (10 to thousands) of copies of each of 1,000 or so different enzymes, perhaps 1,000 organic compounds of molecular weight less than 1,000 (metabolites and cofactors), and a variety of inorganic ions. The nucleoid contains a single, circular molecule of DNA, and the cytoplasm (like that of most bacteria) contains one or more smaller, circular segments of DNA.

(a) Animal cell

(b) Plant cell

FIGURE 1-7 Eukaryotic cell structure. Schematic illustrations of two major types of eukaryotic cell: (a) a representative animal cell and (b) a representative plant cell. Plant cells are usually 10 to 100 μm in diameter—larger than animal cells, which typically range from 5 to 30 μm. Structures labeled in red are unique to either animal or plant cells. Eukaryotic microorganisms (such as protists and fungi) have structures similar to those in plant and animal cells, but many also contain specialized organelles not illustrated here.
called **plasmids**. In nature, some plasmids confer resistance to toxins and antibiotics in the environment. In the laboratory, these DNA segments are especially amenable to experimental manipulation and are powerful tools for genetic engineering (see Chapter 9).

Most bacteria (including *E. coli*) exist as individual cells, but cells of some bacterial species (the myxobacteria, for example) show simple social behavior, forming many-celled aggregates.

Eukaryotic Cells Have a Variety of Membranous Organelles, Which Can Be Isolated for Study

Typical eukaryotic cells (Fig. 1–7) are much larger than bacteria—commonly 5 to 100 µm in diameter, with cell volumes a thousand to a million times larger than those of bacteria. The distinguishing characteristics of eukaryotes are the nucleus and a variety of membrane-enclosed organelles with specific functions: mitochondria, endoplasmic reticulum, Golgi complexes, peroxisomes, and lysosomes. In addition to these, plant cells also contain vacuoles and chloroplasts (Fig. 1–7). Also present in the cytoplasm of many cells are granules or droplets containing stored nutrients such as starch and fat.

In a major advance in biochemistry, Albert Claude, Christian de Duve, and George Palade developed methods for separating organelles from the cytosol and from each other—an essential step in investigating their structures and functions. In a typical cell fractionation (Fig. 1–8), cells or tissues in solution are gently disrupted by physical shear. This treatment ruptures the plasma membrane but leaves most of the organelles

FIGURE 1–8 Subcellular fractionation of tissue. A tissue such as liver is first mechanically homogenized to break cells and disperse their contents in an aqueous buffer. The sucrose medium has an osmotic pressure similar to that in organelles, thus balancing diffusion of water into and out of the organelles, which would swell and burst in a solution of lower osmolarity (see Fig. 2–12). (a) The large and small particles in the suspension can be separated by centrifugation at different speeds, or (b) particles of different density can be separated by isopycnic centrifugation. In isopycnic centrifugation, a centrifuge tube is filled with a solution, the density of which increases from top to bottom; a solute such as sucrose is dissolved at different concentrations to produce the density gradient. When a mixture of organelles is layered on top of the density gradient and the tube is centrifuged at high speed, individual organelles sediment until their buoyant density exactly matches that in the gradient. Each layer can be collected separately.
intact. The homogenate is then centrifuged; organelles such as nuclei, mitochondria, and lysosomes differ in size and therefore sediment at different rates.

Differential centrifugation results in a rough fractionation of the cytoplasmic contents, which may be further purified by isopycnic ("same density") centrifugation. In this procedure, organelles of different buoyant densities (the result of different ratios of lipid and protein in each type of organelle) are separated by centrifugation through a column of solvent with graded density. By carefully removing material from each region of the gradient and observing it with a microscope, the biochemist can establish the sedimentation position of each organelle and obtain purified organelles for further study. For example, these methods were used to establish that lysosomes contain degradative enzymes, mitochondria contain oxidative enzymes, and chloroplasts contain photosynthetic pigments. The isolation of an organelle enriched in a certain enzyme is often the first step in the purification of that enzyme.

The Cytoplasm Is Organized by the Cytoskeleton and Is Highly Dynamic

Fluorescence microscopy reveals several types of protein filaments crisscrossing the eukaryotic cell, forming an interlocking three-dimensional meshwork, the cytoskeleton. There are three general types of cytoplasmic filaments—actin filaments, microtubules, and intermediate filaments (Fig. 1–9)—differing in width (from about 6 to 22 nm), composition, and specific function. All types provide structure and organization to the cytoplasm and shape to the cell. Actin filaments and microtubules also help to produce the motion of organelles or of the whole cell.

Each type of cytoskeletal component is composed of simple protein subunits that associate noncovalently to form filaments of uniform thickness. These filaments are not permanent structures; they undergo constant disassembly into their protein subunits and reassembly into filaments. Their locations in cells are not rigidly fixed but may change dramatically with mitosis, cytokinesis, amoeboid motion, or changes in cell shape. The assembly, disassembly, and location of all types of filaments are regulated by other proteins, which serve to link or bundle the filaments or to move cytoplasmic organelles along the filaments.

The picture that emerges from this brief survey of eukaryotic cell structure is of a cell with a meshwork of structural fibers and a complex system of membrane-enclosed compartments (Fig. 1–7). The filaments disassemble and then reassemble elsewhere. Membranous vesicles bud from one organelle and fuse with another. Organelles move through the cytoplasm along protein from the cell center, are stained green; and chromosomes (in the nucleus) are stained blue. (b) A newt lung cell undergoing mitosis. Microtubules (green), attached to structures called kinetochores (yellow) on the condensed chromosomes (blue), pull the chromosomes to opposite poles, or centrosomes (magenta), of the cell. Intermediate filaments, made of keratin (red), maintain the structure of the cell.
filaments, their motion powered by energy-dependent motor proteins. The **endomembrane system** segregates specific metabolic processes and provides surfaces on which certain enzyme-catalyzed reactions occur. **Exocytosis** and **endocytosis**, mechanisms of transport (out of and into cells, respectively) that involve membrane fusion and fission, provide paths between the cytoplasm and surrounding medium, allowing for secretion of substances produced in the cell and uptake of extracellular materials.

Cells Build Supramolecular Structures

Macromolecules and their monomeric subunits differ greatly in size (Fig. 1–10). An alanine molecule is less than 0.5 nm long. A molecule of hemoglobin, the oxygen-carrying protein of erythrocytes (red blood cells), consists of nearly 600 amino acid subunits in four long chains, folded into globular shapes and associated in a structure 5.5 nm in diameter. In turn, proteins are much smaller than ribosomes (about 20 nm in diameter), which are in turn much smaller than organelles such as mitochondria,

FIGURE 1–10 The organic compounds from which most cellular materials are constructed: the ABCs of biochemistry. Shown here are (a) six of the 20 amino acids from which all proteins are built (the side chains are shaded pink); (b) the five nitrogenous bases, two five-carbon sugars, and phosphate ion from which all nucleic acids are built; (c) five components of membrane lipids; and (d) α-glucose, the simple sugar from which most carbohydrates are derived. Note that phosphate is a component of both nucleic acids and membrane lipids.
Level 4:
The cell and its organelles

Level 3:
Supramolecular complexes

Level 2:
Macromolecules

Level 1:
Monomeric units

FIGURE 1-11 Structural hierarchy in the molecular organization of cells. The nucleus of this plant cell is an organelle containing several types of supramolecular complexes, including chromatin. Chromatin typically 1,000 nm in diameter. It is a long jump from simple biomolecules to cellular structures that can be seen with the light microscope. *Figure 1-11* illustrates the structural hierarchy in cellular organization.

The monomeric subunits of proteins, nucleic acids, and polysaccharides are joined by covalent bonds. In supramolecular complexes, however, macromolecules are held together by noncovalent interactions—much weaker, individually, than covalent bonds. Among these noncovalent interactions are hydrogen bonds (between polar groups), ionic interactions (between charged groups), hydrophobic interactions (among nonpolar groups in aqueous solution), and van der Waals interactions (London forces)—all of which have energies much smaller than those of covalent bonds. These noncovalent interactions are described in Chapter 2. The large numbers of weak interactions between macromolecules in supramolecular complexes stabilize these assemblies, producing their unique structures.

In Vitro Studies May Overlook Important Interactions among Molecules

One approach to understanding a biological process is to study purified molecules in vitro (“in glass”—in the test tube), without interference from other molecules present in the intact cell—that is, in vivo (“in the living”). Although this approach has been remarkably revealing, we must keep in mind that the inside of a cell is quite different from the inside of a test tube. The “interfering” components eliminated by purification may be critical to the biological function or regulation of the molecule purified. For example, in vitro studies of pure enzymes are commonly done at very low enzyme concentrations in thoroughly stirred aqueous solutions. In the cell, an enzyme is dissolved or suspended in a gel-like cytosol with thousands of other proteins, some of which bind to that enzyme and influence its activity. Some enzymes are components of multienzyme complexes in which reactants are channeled from one enzyme to another, never entering the bulk solvent. Diffusion is hindered in the gel-like cytosol, and the cytosolic composition varies throughout the cell. In short, a given molecule may behave quite differently in the cell and in vitro. A central challenge of biochemistry is to understand the influences of cellular organization and macromolecular associations on the function of individual enzymes and other biomolecules—to understand function in vivo as well as in vitro.

SUMMARY 1.1 Cellular Foundations

- All cells are bounded by a plasma membrane; have a cytosol containing metabolites, coenzymes, inorganic ions, and enzymes; and have a set of genes contained within a nucleoid (bacteria and archaea) or nucleus (eukaryotes).
- Phototrophs use sunlight to do work; chemotrophs oxidize fuels, passing electrons to good electron acceptors: inorganic compounds, organic compounds, or molecular oxygen.
- Bacterial and archaeal cells contain cytosol, a nucleoid, and plasmids. Eukaryotic cells have a nucleus and are multicompartmented, with certain processes segregated in specific organelles; organelles can be separated and studied in isolation.
- Cytoskeletal proteins assemble into long filaments that give cells shape and rigidity and serve as rails along which cellular organelles move throughout the cell.
Supramolecular complexes are held together by noncovalent interactions and form a hierarchy of structures, some visible with the light microscope. When individual molecules are removed from these complexes to be studied in vitro, interactions important in the living cell may be lost.

1.2 Chemical Foundations

Biochemistry aims to explain biological form and function in chemical terms. By the late eighteenth century, chemists had concluded that the composition of living matter is strikingly different from that of the inanimate world. Antoine-Laurent Lavoisier (1743–1794) noted the relative chemical simplicity of the “mineral world” and contrasted it with the complexity of the “plant and animal worlds”; the latter, he knew, were composed of compounds rich in the elements carbon, oxygen, nitrogen, and phosphorus.

During the first half of the twentieth century, parallel biochemical investigations of glucose breakdown in yeast and in animal muscle cells revealed remarkable chemical similarities in these two apparently very different cell types; the breakdown of glucose in yeast and muscle cells involved the same 10 chemical intermediates and the same 10 enzymes. Subsequent studies of many other biochemical processes in many different organisms have confirmed the generality of this observation, neatly summarized in 1954 by Jacques Monod: “What is true of E. coli is true of the elephant.” The current understanding is that all organisms share a common evolutionary origin based in part on this observed universality of chemical intermediates and transformations, often termed “biochemical unity.”

Fewer than 30 of the more than 90 naturally occurring chemical elements are essential to organisms. Most of the elements in living matter have relatively low atomic numbers; only two have atomic numbers above that of selenium, 34 (Fig. 1-12). The four most abundant elements in living organisms, in terms of percentage of total number of atoms, are hydrogen, oxygen, nitrogen, and carbon, which together make up more than 99% of the mass of most cells. They are the lightest elements capable of efficiently forming one, two, three, and four bonds, respectively; in general, the lightest elements form the strongest bonds. The trace elements (Fig. 1-12) represent a minuscule fraction of the weight of the human body, but all are essential to life, usually because they are essential to the function of specific proteins, including many enzymes. The oxygen-transporting capacity of the hemoglobin molecule, for example, is absolutely dependent on four iron ions that make up only 0.3% of its mass.

Biomolecules Are Compounds of Carbon with a Variety of Functional Groups

The chemistry of living organisms is organized around carbon, which accounts for more than half the dry weight of cells. Carbon can form single bonds with hydrogen atoms, and both single and double bonds with oxygen and nitrogen atoms (Fig. 1-13). Of greatest significance in biology is the ability of carbon atoms to form
FIGURE 1–14 Geometry of carbon bonding. (a) Carbon atoms have a characteristic tetrahedral arrangement of their four single bonds. (b) Carbon–carbon single bonds have freedom of rotation, as shown for the compound ethane (CH$_3$–CH$_3$). (c) Double bonds are shorter and do not allow free rotation. The two doubly bonded carbons and the atoms designated A, B, X, and Y all lie in the same rigid plane.

FIGURE 1–15 Some common functional groups of biomolecules. In this figure and throughout the book, we use R to represent “any substituent.” It may be as simple as a hydrogen atom, but typically it is a carbon-containing group. When two or more substituents are shown in a molecule, we designate them R1, R2, and so forth.
very stable single bonds with up to four other carbon atoms. Two carbon atoms also can share two (or three) electron pairs, thus forming double (or triple) bonds.

The four single bonds that can be formed by a carbon atom project from the nucleus to the four apices of a tetrahedron (Fig. 1-14), with an angle of about 109.5° between any two bonds and an average bond length of 0.154 nm. There is free rotation around each single bond, unless very large or highly charged groups are attached to both carbon atoms, in which case rotation may be restricted. A double bond is shorter (about 0.134 nm) and rigid and allows only limited rotation about its axis.

Covalently linked carbon atoms in biomolecules can form linear chains, branched chains, and cyclic structures. It seems likely that the bonding versatility of carbon, with itself and with other elements, was a major factor in the selection of carbon compounds for the molecular machinery of cells during the origin and evolution of living organisms. No other chemical element can form molecules of such widely different sizes, shapes, and composition.

Most biomolecules can be regarded as derivatives of hydrocarbons, with hydrogen atoms replaced by a variety of functional groups that confer specific chemical properties on the molecule, forming various families of organic compounds. Typical of these are alcohols, which have one or more hydroxyl groups; amines, with amino groups; aldehydes and ketones, with carbonyl groups; and carboxylic acids, with carboxyl groups (Fig. 1-15). Many biomolecules are polyfunctional, containing two or more types of functional groups (Fig. 1-16), each with its own chemical characteristics and reactions. The chemical “personality” of a compound is determined by the chemistry of its functional groups and their disposition in three-dimensional space.

Cells Contain a Universal Set of Small Molecules

Dissolved in the aqueous phase (cytosol) of all cells is a collection of perhaps a thousand different small organic molecules ($M_r \sim 100$ to ~ 500), the central metabolites in the major pathways occurring in nearly every cell—the metabolites and pathways that have been conserved throughout the course of evolution. (See Box 1-1 for an explanation of the various ways of referring to molecular weight.) This collection of molecules includes the common amino acids, nucleotides, sugars and their phosphorylated derivatives, and mono-, di-, and tricarboxylic acids. The molecules are polar or charged, water soluble, and present in micromolar to millimolar concentrations. They are trapped in the cell because the plasma membrane is impermeable to them—although specific membrane transporters can catalyze the movement of some molecules into and out of the cell or between compartments in eukaryotic cells. The universal occurrence of the same set of compounds in living cells reflects the evolutionary conservation of metabolic pathways that developed in the earliest cells.

There are other small biomolecules, specific to certain types of cells or organisms. For example, vascular plants contain, in addition to the universal set, small molecules called secondary metabolites, which play roles specific to plant life. These metabolites include compounds that give plants their characteristic

![Acetyl-coenzyme A](image)

FIGURE 1-16 Several common functional groups in a single biomolecule. Acetyl-coenzyme A (often abbreviated as acetyl-CoA) is a carrier of acetyl groups in some enzymatic reactions. The functional groups are screened in the structural formula. As we will see in Chapter 2, several of these functional groups can exist in protonated or unprotonated forms, depending on the pH. In the space-filling model, N is blue, C is black, P is orange, O is red, and H is white. The yellow atom at the left is the sulfur of the critical thioester bond between the acetyl moiety and coenzyme A.
There are two common (and equivalent) ways to describe molecular mass; both are used in this text. The first is molecular weight, or relative molecular mass, denoted \(M_r \). The molecular weight of a substance is defined as the ratio of the mass of a molecule of that substance to one-twelfth the mass of carbon-12 \(^{12}\text{C} \). Since \(M_r \) is a ratio, it is dimensionless—it has no associated units. The second is molecular mass, denoted \(m \). This is simply the mass of one molecule, or the molar mass divided by Avogadro’s number. The molecular mass, \(m \), is expressed in daltons (abbreviated Da). One dalton is equivalent to one-twelfth the mass of carbon-12; a kilodalton (kDa) is 1,000 daltons; a megadalton (MDa) is 1 million daltons.

Consider, for example, a molecule with a mass 1,000 times that of water. We can say of this molecule either \(M_r = 18,000 \) or \(m = 18,000 \) daltons. We can also describe it as an “18 kDa molecule.” However, the expression \(M_r = 18,000 \) daltons is incorrect.

Another convenient unit for describing the mass of a single atom or molecule is the atomic mass unit (formerly amu, now commonly denoted u). One atomic mass unit (1 u) is defined as one-twelfth the mass of an atom of carbon-12. Since the experimentally measured mass of an atom of carbon-12 is \(1.9926 \times 10^{-23} \text{ g} \), 1 u = \(1.6606 \times 10^{-24} \text{ g} \). The atomic mass unit is convenient for describing the mass of a peak observed by mass spectrometry (see Box 3–2).

Scent, and compounds such as morphine, quinine, nicotine, and caffeine that are valued for their physiological effects on humans but used for other purposes by plants.

The entire collection of small molecules in a given cell has been called that cell’s metabolome, in parallel with the term “genome” (defined earlier and expanded on in Section 1.5).

Macromolecules Are the Major Constituents of Cells

Many biological molecules are macromolecules, polymers with molecular weights above ~5,000 that are assembled from relatively simple precursors. Shorter polymers are called oligomers (Greek oligos, “few”). Proteins, nucleic acids, and polysaccharides are macromolecules composed of monomers with molecular weights of 500 or less. Synthesis of macromolecules is a major energy-consuming activity of cells. Macromolecules themselves may be further assembled into supramolecular complexes, forming functional units such as ribosomes. Table 1–1 shows the major classes of biomolecules in an E. coli cell.

Proteins, long polymers of amino acids, constitute the largest fraction (besides water) of a cell. Some proteins have catalytic activity and function as enzymes; others serve as structural elements, signal receptors, or transporters that carry specific substances into or out of cells. Proteins are perhaps the most versatile of all biomolecules; a catalog of their many functions would be very long. The sum of all the proteins functioning in a given cell is the cell’s proteome. The nucleic acids, DNA and RNA, are polymers of nucleotides. They store and transmit genetic information, and some RNA molecules have structural and catalytic roles in supramolecular complexes. The polysaccharides, polymers of simple sugars such as glucose, have three major functions: as energy-rich fuel stores, as rigid structural components of cell walls (in plants and bacteria), and as extracellular recognition elements that bind to proteins on other cells. Shorter polymers of sugars (oligosaccharides) attached to proteins or lipids at the cell surface serve as specific cellular signals. The lipids, water-insoluble hydrocarbon derivatives, serve as structural components of membranes, energy-rich fuel stores, pigments, and intracellular signals.

<table>
<thead>
<tr>
<th>Table 1–1</th>
<th>Molecular Components of an E. coli Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of total cell weight</td>
<td>Approximate number of different molecular species</td>
</tr>
<tr>
<td>Water</td>
<td>70</td>
</tr>
<tr>
<td>Proteins</td>
<td>15</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1</td>
</tr>
<tr>
<td>RNA</td>
<td>6</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>3</td>
</tr>
<tr>
<td>Lipids</td>
<td>2</td>
</tr>
<tr>
<td>Monomeric subunits and intermediates</td>
<td>2</td>
</tr>
<tr>
<td>Inorganic ions</td>
<td>1</td>
</tr>
</tbody>
</table>
Three-Dimensional Structure Is Described by Configuration and Conformation

The covalent bonds and functional groups of a biomolecule are, of course, central to its function, but so also is the arrangement of the molecule’s constituent atoms in three-dimensional space—its stereochemistry. A carbon-containing compound commonly exists as stereoisomers, molecules with the same chemical bonds but different configuration, the fixed spatial arrangement of atoms. Interactions between biomolecules are invariably stereospecific, requiring specific configurations in the interacting molecules.

Figure 1-17 shows three ways to illustrate the stereochemistry, or configuration, of simple molecules. The perspective diagram specifies stereochemistry unambiguously, but bond angles and center-to-center bond lengths are better represented with ball-and-stick models. In space-filling models, the radius of each “atom” is proportional to its van der Waals radius, and the contours of the model define the space occupied by the molecule (the volume of space from which atoms of other molecules are excluded).

Configuration is conferred by the presence of either (1) double bonds, around which there is no freedom of rotation, or (2) chiral centers, around which substituent groups are arranged in a specific orientation. The identifying characteristic of stereoisomers is that they cannot be interconverted without temporarily breaking one or more covalent bonds. Figure 1-18a shows the configurations of maleic acid and its isomer, fumaric acid. These compounds are geometric isomers, or cis-trans isomers; they differ in the arrangement of their substituent groups with respect to the nonrotating double bond (Latin cis, “on this side”—groups on the same side of the double bond; trans, “across”—groups on opposite sides). Maleic acid (maleate at the neutral pH of cytoplasm) is the cis isomer and fumaric acid (fumarate) the

![Figure 1-17 Representations of molecules.](image)

![Figure 1-18 Configurations of geometric isomers.](image)
Chiral molecule:
Rotated molecule cannot be superposed on its mirror image

(a)

Original molecule

Mirror image of original molecule

(b)

Original molecule

Mirror image of original molecule

FIGURE 1–19 Molecular asymmetry: chiral and achiral molecules. (a) When a carbon atom has four different substituent groups (A, B, X, Y), they can be arranged in two ways that represent nonsuperposable mirror images of each other (enantiomers). This asymmetric carbon atom is called a chiral atom or chiral center. (b) When a tetrahedral carbon has only three dissimilar groups (i.e., the same group occurs twice), only one configuration is possible and the molecule is symmetric, or achiral. In this case the molecule is superposable on its mirror image: the molecule on the left can be rotated counterclockwise (when looking down the vertical bond from A to C) to create the molecule in the mirror.

trans isomer; each is a well-defined compound that can be separated from the other, and each has its own unique chemical properties. A binding site (on an enzyme, for example) that is complementary to one of these molecules would not be complementary to the other, which explains why the two compounds have distinct biological roles despite their similar chemistry.

In the second type of stereoisomer, four different substituents bonded to a tetrahedral carbon atom may be arranged in two different ways in space—that is, have two configurations (Fig. 1–19)—yielding two stereoisomers with similar or identical chemical properties but differing in certain physical and biological properties. A carbon atom with four different substituents is said to be asymmetric, and asymmetric carbons are called chiral centers (Greek chiros, “hand”; some stereoisomers are related structurally as the right hand is to the left). A molecule with only one chiral carbon can have two stereoisomers; when two or more (n) chiral carbons are present, there can be 2^n stereoisomers. Stereoisomers that are mirror images of each other are called enantiomers (Fig. 1–19). Pairs of stereoisomers that are not mirror images of each other are called diastereomers (Fig. 1–20).

As Louis Pasteur first observed in 1848 (Box 1–2), enantiomers have nearly identical chemical properties but differ in a characteristic physical property: their interaction with plane-polarized light. In separate solutions,
Louis Pasteur encountered the phenomenon of optical activity in 1843, during his investigation of the crystalline sediment that accumulated in wine casks (a form of tartraric acid called paratartaric acid—also called racemic acid, from Latin racemus, “bunch of grapes”). He used fine forceps to separate two types of crystals identical in shape but mirror images of each other. Both types proved to have all the chemical properties of tartaric acid, but in solution one type rotated plane-polarized light to the left (levorotatory), the other to the right (dextrorotatory). Pasteur later described the experiment and its interpretation:

In isomeric bodies, the elements and the proportions in which they are combined are the same, only the arrangement of the atoms is different . . . We know, on the one hand, that the molecular arrangements of the two tartaric acids are asymmetric, and, on the other hand, that these arrangements are absolutely identical, excepting that they exhibit asymmetry in opposite directions. Are the atoms of the dextro acid grouped in the form of a right-handed spiral, or are they placed at the apex of an irregular tetrahedron, or are they disposed according to this or that asymmetric arrangement? We do not know.*

Now we do know. X-ray crystallographic studies in 1951 confirmed that the levorotatory and dextrorotatory forms of tartaric acid are mirror images of each other at the molecular level and established the absolute configuration of each (Fig. 1). The same approach has been used to demonstrate that although the amino acid alanine has two stereoisomeric forms (designated D and L), alanine in proteins exists exclusively in one form (the L isomer; see Chapter 3).

KEY CONVENTION: Given the importance of stereochemistry in reactions between biomolecules (see below), biochemists must name and represent the structure of each biomolecule so that its stereochemistry is unambiguous. For compounds with more than one chiral center, the most useful system of nomenclature is the RS system. In this system, each group attached to a chiral carbon is assigned a priority. The priorities of some common substituents are

\[-\text{OCH}_3 > -\text{OH} > -\text{NH}_2 > -\text{COOH} > -\text{CHO} > -\text{CH}_2\text{OH} > -\text{CH}_3 > -\text{H}\]

For naming in the RS system, the chiral atom is viewed with the group of lowest priority (4 in the following diagram) pointing away from the viewer. If the priority of the other three groups (1 to 3) decreases in clockwise order, the configuration is (R) (Latin rectus, “right”); if counterclockwise, the configuration is (S) (Latin sinister; “left”). In this way each chiral carbon is designated either (R) or (S), and the inclusion of these designations in the name of the compound provides an unambiguous description of the stereochemistry at each chiral center.

![Figure 1](image-url) Pasteur separated crystals of two stereoisomers of tartaric acid and showed that solutions of the separated forms rotated plane-polarized light to the same extent but in opposite directions. These dextrorotatory and levorotatory forms were later shown to be the (R,R) and (S,S) isomers represented here. The RS system of nomenclature is explained in the text.

Distinct from configuration is molecular conformation, the spatial arrangement of substituent groups that, without breaking any bonds, are free to assume different positions in space because of the freedom of rotation about single bonds. In the simple hydrocarbon ethane, for example, there is nearly complete freedom of rotation around the C—C bond. Many different, interconvertible conformations of ethane are possible, depending on the degree of rotation (Fig. 1–21). Two conformations are of special interest: the staggered, which is more stable than all others and thus predominates, and the eclipsed, which is least stable. We cannot isolate either of these conformational forms, because they are freely interconvertible. However, when one or more of the hydrogen atoms on each carbon is replaced by a functional group that is either very large or electrically charged, freedom of rotation around the C—C bond is hindered. This limits the number of stable conformations of the ethane derivative.

Interactions between Biomolecules Are Stereospecific
When biomolecules interact, the “fit” between them must be stereochemically correct. The three-dimensional structure of biomolecules large and small—the combination of configuration and conformation—is of the utmost importance in their biological interactions: reactant with its enzyme, hormone with its receptor on a cell surface, antigen with its specific antibody, for example (Fig. 1–22). The study of biomolecular stereochemistry, with precise physical methods, is an important part of modern research on cell structure and biochemical function.

In living organisms, chiral molecules are usually present in only one of their chiral forms. For example, the amino acids in proteins occur only as their L isomers; glucose occurs only as its D isomer. (The conventions for naming stereoisomers of the amino acids are described in Chapter 8; those for sugars, in Chapter 7; the RS system, described above, is the most useful for some biomolecules.) In contrast, when a compound with an asymmetric carbon atom is chemically synthesized in the laboratory, the reaction usually produces all possible chiral forms: a mixture of the D and L forms, for example. Living cells produce only one chiral form of a biomolecule because the enzymes that synthesize that molecule are also chiral.

Stereospecificity, the ability to distinguish between stereoisomers, is a property of enzymes and other proteins and a characteristic feature of the molecular logic of living cells. If the binding site on a protein is complementary to one isomer of a chiral compound, it will not be complementary to the other isomer, for the same reason that a left glove does not fit a right hand. Some striking examples of the ability of biological systems to distinguish stereoisomers are shown in Figure 1–23.

The common classes of chemical reactions encountered in biochemistry are described in Chapter 13, as an introduction to the reactions of metabolism.

SUMMARY 1.2 Chemical Foundations

- Because of its bonding versatility, carbon can produce a broad array of carbon—carbon skeletons with a variety of functional groups; these groups give biomolecules their biological and chemical personalities.

FIGURE 1–21 Conformations. Many conformations of ethane are possible because of freedom of rotation around the C—C bond. In the ball-and-stick model, when the front carbon atom (as viewed by the reader) with its three attached hydrogens is rotated relative to the rear carbon atom, the potential energy of the molecule rises to a maximum in the fully eclipsed conformation (torsion angle 0°, 120°, etc.), then falls to a minimum in the fully staggered conformation (torsion angle 60°, 180°, etc.). Because the energy differences are small enough to allow rapid interconversion of the two forms (millions of times per second), the eclipsed and staggered forms cannot be separately isolated.

FIGURE 1–22 Complementary fit between a macromolecule and a small molecule. A segment of RNA from a regulatory region, known as TAR, of the human immunodeficiency virus genome (gray) with a bound argininamide molecule (colored); the argininamide is used to represent an amino acid residue of a protein that binds to the TAR region. Argininamide fits into a pocket on the RNA surface and is held in this orientation by several noncovalent interactions with the RNA. This representation of the RNA molecule is produced with software that can calculate the shape of the outer surface of a macromolecule, defined either by the van der Waals radii of all the atoms in the molecule or by the “solvent exclusion volume,” the volume a water molecule cannot penetrate.
A nearly universal set of several hundred small molecules is found in living cells; the interconversions of these molecules in the central metabolic pathways have been conserved in evolution.

Proteins and nucleic acids are linear polymers of simple monomeric subunits; their sequences contain the information that gives each molecule its three-dimensional structure and its biological functions.

Molecular configuration can be changed only by breaking covalent bonds. For a carbon atom with four different substituents (a chiral carbon), the substituent groups can be arranged in two different ways, generating stereoisomers with distinct properties. Only one stereoisomer is biologically active. Molecular conformation is the position of atoms in space that can be changed by rotation about single bonds, without breaking covalent bonds.

Interactions between biological molecules are almost invariably stereospecific: they require a precise complementary match between the interacting molecules.

1.3 Physical Foundations

Living cells and organisms must perform work to stay alive and to reproduce themselves. The synthetic reactions that occur within cells, like the synthetic processes in any factory, require the input of energy. Energy is also consumed in the motion of a bacterium or an Olympic sprinter, in the flashing of a firefly or the electrical discharge of an eel. And the storage and expression of information require energy, without which structures rich in information inevitably become disordered and meaningless.

In the course of evolution, cells have developed highly efficient mechanisms for coupling the energy obtained from sunlight or fuels to the many energy-consuming processes they must carry out. One goal of biochemistry is to understand, in quantitative and chemical terms, the means by which energy is extracted, channeled, and consumed in living cells. We can consider cellular energy conversions—like all other energy conversions—in the context of the laws of thermodynamics.
Living Organisms Exist in a Dynamic Steady State, Never at Equilibrium with Their Surroundings

The molecules and ions contained within a living organism differ in kind and in concentration from those in the organism's surroundings. A paramecium in a pond, a shark in the ocean, a bacterium in the soil, an apple tree in an orchard—all are different in composition from their surroundings and, once they have reached maturity, maintain a more or less constant composition in the face of constantly changing surroundings.

Although the characteristic composition of an organism changes little through time, the population of molecules within the organism is far from static. Small molecules, macromolecules, and supramolecular complexes are continuously synthesized and broken down in chemical reactions that involve a constant flux of mass and energy through the system. The hemoglobin molecules carrying oxygen from your lungs to your brain at this moment were synthesized within the past month; by next month they will have been degraded and entirely replaced by new hemoglobin molecules. The glucose you ingested with your most recent meal is now circulating in your bloodstream; before the day is over these particular glucose molecules will have been converted into something else—carbon dioxide or fat, perhaps—and will have been replaced with a fresh supply of glucose, so that your blood glucose concentration is more or less constant over the whole day. The amounts of hemoglobin and glucose in the blood remain nearly constant because the rate of synthesis or intake of each just balances the rate of its breakdown, consumption, or conversion into some other product. The constancy of concentration is the result of a dynamic steady state, a steady state that is far from equilibrium. Maintaining this steady state requires the constant investment of energy; when a cell can no longer generate energy, it dies and begins to decay toward equilibrium with its surroundings. We consider below exactly what is meant by "steady state" and "equilibrium."

Organisms Transform Energy and Matter from Their Surroundings

For chemical reactions occurring in solution, we can define a system as all the constituent reactants and products, the solvent that contains them, and the immediate atmosphere—in short, everything within a defined region of space. The system and its surroundings together constitute the universe. If the system exchanges neither matter nor energy with its surroundings, it is said to be isolated. If the system exchanges energy but not matter with its surroundings, it is a closed system; if it exchanges both energy and matter with its surroundings, it is an open system.

A living organism is an open system; it exchanges both matter and energy with its surroundings. Organisms derive energy from their surroundings in two ways: (1) they take up chemical fuels (such as glucose) from the environment and extract energy by oxidizing them (see Box 1-3, Case 2); or (2) they absorb energy from sunlight.

The first law of thermodynamics describes the principle of the conservation of energy: in any physical or chemical change, the total amount of energy in the universe remains constant, although the form of the energy may change. Cells are consummate transducers of energy, capable of interconverting chemical, electromagnetic, mechanical, and osmotic energy with great efficiency (Fig. 1–24).

![Figure 1-24: Some energy interconversions in living organisms.](image-url)

During metabolic energy transductions, the randomness of the system plus surroundings (expressed quantitatively as entropy) increases as the potential energy of complex nutrient molecules decreases. (a) Living organisms extract energy from their surroundings; (b) convert some of it into useful forms of energy to produce work; (c) return some energy to the surroundings as heat; and (d) release end-product molecules that are less well organized than the starting fuel, increasing the entropy of the universe. One effect of all these transformations is (e) increased order (decreased randomness) in the system in the form of complex macromolecules. We return to a quantitative treatment of entropy in Chapter 13.
The term "entropy," which literally means "a change within," was first used in 1851 by Rudolf Clausius, one of the formulators of the second law of thermodynamics. A rigorous quantitative definition of entropy involves statistical and probability considerations. However, its nature can be illustrated qualitatively by three simple examples, each demonstrating one aspect of entropy.

The key descriptors of entropy are randomness and disorder, manifested in different ways.

Case 1: The Teakettle and the Randomization of Heat

We know that steam generated from boiling water can do useful work. But suppose we turn off the burner under a teakettle full of water at 100 °C (the "system") in the kitchen (the "surroundings") and allow the teakettle to cool. As it cools, no work is done, but heat passes from the teakettle to the surroundings, raising the temperature of the surroundings (the kitchen) by an infinitesimally small amount until complete equilibrium is attained. At this point all parts of the teakettle and the kitchen are at precisely the same temperature. The free energy that was once concentrated in the teakettle of hot water at 100 °C, potentially capable of doing work, has disappeared. Its equivalent in heat energy is still present in the teakettle + kitchen (i.e., the "universe") but has become completely randomized throughout. This energy is no longer available to do work because there is no temperature differential within the kitchen. Moreover, the increase in entropy of the kitchen (the surroundings) is irreversible. We know from everyday experience that heat never spontaneously passes back from the kitchen into the teakettle to raise the temperature of the water to 100 °C again.

Case 2: The Oxidation of Glucose

Entropy is a state not only of energy but of matter. Aerobic (heterotrophic) organisms extract free energy from glucose obtained from their surroundings by oxidizing the glucose with O₂, also obtained from the surroundings. The end products of this oxidative metabolism, CO₂ and H₂O, are returned to the surroundings. In this process the surroundings undergo an increase in entropy, whereas the organism itself remains in a steady state and undergoes no change in its internal order. Although some entropy arises from the dissipation of heat, entropy also arises from another kind of disorder, illustrated by the equation for the oxidation of glucose:

\[C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \]

We can represent this schematically as

In this form the 125 letters contain little or no information, but they are very rich in entropy. Such considerations have led to the conclusion that information is a form of energy; information has been called "negative entropy." In fact, the branch of mathematics called information theory, which is basic to the programming logic of computers, is closely related to thermodynamic theory. Living organisms are highly ordered, nonrandom structures, immensely rich in information and thus entropy-poor.
The Flow of Electrons Provides Energy for Organisms

Nearly all living organisms derive their energy, directly or indirectly, from the radiant energy of sunlight. The light-driven splitting of water during photosynthesis releases its electrons for the reduction of CO₂ and the release of O₂ into the atmosphere:

\[
\text{light} \quad 6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \\
\text{(light-driven reduction of CO}_2\text{)}
\]

Nonphotosynthetic cells and organisms obtain the energy they need by oxidizing the energy-rich products of photosynthesis, then passing the electrons thus acquired to atmospheric O₂ to form water, CO₂, and other end products, which are recycled in the environment:

\[
\text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{energy} \\
\text{(energy-yielding oxidation of glucose)}
\]

Thus autotrophs and heterotrophs participate in global cycles of O₂ and CO₂, driven ultimately by sunlight, making these two large groups of organisms interdependent. Virtually all energy transductions in cells can be traced to this flow of electrons from one molecule to another, in a “downhill” flow from higher to lower electrochemical potential; as such, this is formally analogous to the flow of electrons in a battery-driven electric circuit. All these reactions involved in electron flow are oxidation-reduction reactions: one reactant is oxidized (loses electrons) as another is reduced (gains electrons).

Creating and Maintaining Order Requires Work and Energy

As we've noted, DNA, RNA, and proteins are informational macromolecules; the precise sequence of their monomeric subunits contains information, just as the letters in this sentence do. In addition to using chemical energy to form the covalent bonds between these subunits, the cell must invest energy to order the subunits in their correct sequence. It is extremely improbable that amino acids in a mixture would spontaneously condense into a single type of protein, with a unique sequence. This would represent increased order in a population of molecules; but according to the second law of thermodynamics, the tendency in nature is toward ever-greater disorder in the universe: the total entropy of the universe is continually increasing. To bring about the synthesis of macromolecules from their monomeric units, free energy must be supplied to the system (in this case, the cell).

KEY CONVENTION: The randomness or disorder of the components of a chemical system is expressed as entropy, \(S \) (Box 1–3). Any change in randomness of the system is expressed as entropy change, \(\Delta S \), which by convention has a positive value when randomness increases. J. Willard Gibbs, who developed the theory of energy changes during chemical reactions, showed that the free-energy content, \(G \), of any closed system can be defined in terms of three quantities: enthalpy, \(H \), reflecting the number and kinds of bonds; entropy, \(S \); and the absolute temperature, \(T \) (in Kelvin). The definition of free energy is \(G = H - TS \). When a chemical reaction occurs at constant temperature, the free-energy change, \(\Delta G \), is determined by the enthalpy change, \(\Delta H \), reflecting the kinds and numbers of chemical bonds and noncovalent interactions broken and formed, and the entropy change, \(\Delta S \), describing the change in the system’s randomness:

\[
\Delta G = \Delta H - T\Delta S
\]

where, by definition, \(\Delta H \) is negative for a reaction that releases heat, and \(\Delta S \) is positive for a reaction that increases the system’s randomness.

A process tends to occur spontaneously only if \(\Delta G \) is negative (if free energy is released in the process). Yet cell function depends largely on molecules, such as proteins and nucleic acids, for which the free energy of formation is positive: the molecules are less stable and more highly ordered than a mixture of their monomeric components. To carry out these thermodynamically unfavorable, energy-requiring (endergonic) reactions, cells couple them to other reactions that liberate free energy (exergonic reactions), so that the overall process is exergonic: the sum of the free-energy changes is negative.

The usual source of free energy in coupled biological reactions is the energy released by breakage of phosphoanhydride bonds such as those in adenosine triphosphate (ATP; Fig. 1–25) and guanosine triphosphate (GTP). Here, each \(\text{P} \) represents a phosphoryl group:

\[
\text{Amino acids} \rightarrow \text{protein} \quad \Delta G_1 \text{ is positive (endergonic)} \\
\text{ATP} \rightarrow \text{AMP} + \text{P} = \text{P} \quad \Delta G_2 \text{ is negative (exergonic)} \\
\text{or ATP} \rightarrow \text{ADP} + \text{P}
\]

When these reactions are coupled, the sum of \(\Delta G_1 \) and \(\Delta G_2 \) is negative—the overall process is exergonic. By this coupling strategy, cells are able to synthesize and maintain the information-rich polymers essential to life.

Energy Coupling Links Reactions in Biology

The central issue in bioenergetics (the study of energy transformations in living systems) is the means by which energy from fuel metabolism or light capture is coupled to a cell’s energy-requiring reactions. In thinking about
energy coupling, it is useful to consider a simple mechanical example, as shown in Figure 1–26a. An object at the top of an inclined plane has a certain amount of potential energy as a result of its elevation. It tends to slide down the plane, losing its potential energy of position as it approaches the ground. When an appropriate string-and-pulley device couples the falling object to another, smaller object, the spontaneous downward motion of the larger can lift the smaller, accomplishing a certain amount of work. The amount of energy available to do work is the free-energy change, ΔG; this is always somewhat less than the theoretical amount of energy released, because some energy is dissipated as the heat of friction. The greater the elevation of the larger object, the greater the energy released (ΔG) as the object slides downward and the greater the amount of work that can be accomplished. The larger object can lift the smaller only because, at the outset, the larger object was far from its equilibrium position: it had at some earlier point been elevated above the ground, in a process that itself required the input of energy.

How does this apply in chemical reactions? In closed systems, chemical reactions proceed spontaneously until equilibrium is reached. When a system is at equilibrium, the rate of product formation exactly equals the rate at which product is converted to reactant. Thus there is no net change in the concentration of reactants and products. The energy change as the system moves from its initial state to equilibrium, with no changes in temperature or pressure, is given by the free-energy change, ΔG. The magnitude of ΔG depends on the particular chemical reaction and on how far from equilibrium is reached. When a system is:

![Figure 1-26](image_url)

FIGURE 1–26 Energy coupling in mechanical and chemical processes.

(a) The downward motion of an object releases potential energy that can do mechanical work. The potential energy made available by spontaneous downward motion, an exergonic process (pink), can be coupled to the endergonic upward movement of another object (blue).

(b) In reaction 1, the formation of glucose 6-phosphate from glucose and inorganic phosphate (P\(_i\)) yields a product of higher energy than the two reactants. For this endergonic reaction, ΔG is positive. In reaction 2, the exergonic breakdown of adenosine triphosphate (ATP) has a large, negative free-energy change (ΔG\(_2\)). The third reaction is the sum of reactions 1 and 2, and the free-energy change, ΔG\(_3\), is the arithmetic sum of ΔG\(_1\) and ΔG\(_2\). Because ΔG\(_3\) is negative, the overall reaction is exergonic and proceeds spontaneously.
equilibrium the system is initially. Each compound involved in a chemical reaction contains a certain amount of potential energy, related to the kind and number of its bonds. In reactions that occur spontaneously, the products have less free energy than the reactants, thus the reaction releases free energy, which is then available to do work. Such reactions are exergonic; the decline in free energy from reactants to products is expressed as a negative value. Endergonic reactions require an input of energy, and their ΔG values are positive. As in mechanical processes, only part of the energy released in exergonic chemical reactions can be used to accomplish work. In living systems some energy is dissipated as heat or lost to increasing entropy.

In biological organisms, just as in the mechanical example in Figure 1-26a, an exergonic reaction can be coupled to an endergonic reaction to drive otherwise unfavorable reactions. Figure 1-26b (a type of graph called a reaction coordinate diagram) illustrates this principle for the conversion of glucose to glucose 6-phosphate, the first step in the pathway for oxidation of glucose. The simplest way to produce glucose 6-phosphate would be:

\[
\text{Reaction 1: } \text{Glucose} + \text{P}_i \rightarrow \text{glucose 6-phosphate}
\]

(exergonic; ΔG_1 is positive)

(Here, P_i is an abbreviation for inorganic phosphate, HPO_4^{2-}; Don’t be concerned about the structure of these compounds now; we describe them in detail later in the book.) This reaction does not occur spontaneously; ΔG_1 is positive. A second, very exergonic reaction can occur in all cells:

\[
\text{Reaction 2: } \text{ATP} \rightarrow \text{ADP} + \text{P}_i
\]

(exergonic; ΔG_2 is negative)

These two chemical reactions share a common intermediate, P_i, which is consumed in reaction 1 and produced in reaction 2. The two reactions can therefore be coupled in the form of a third reaction, which we can write as the sum of reactions 1 and 2, with the common intermediate, P_i, omitted from both sides of the equation:

\[
\text{Reaction 3: } \text{Glucose} + \text{ATP} \rightarrow \text{glucose 6-phosphate} + \text{ADP}
\]

Because more energy is released in reaction 2 than is consumed in reaction 1, the free-energy change for reaction 3, ΔG_3, is negative, and the synthesis of glucose 6-phosphate can therefore occur by reaction 3.

The coupling of exergonic and endergonic reactions through a shared intermediate is central to the energy exchanges in living systems. As we shall see, reactions that break down ATP (such as reaction 2 in Fig. 1-26b) release energy that drives many endergonic processes in cells. ATP breakdown in cells is exergonic because all living cells maintain a concentration of ATP far above its equilibrium concentration. It is this disequilibrium that allows ATP to serve as the major carrier of chemical energy in all cells.

K_{eq} and ΔG° Are Measures of a Reaction’s Tendency to Proceed Spontaneously

The tendency of a chemical reaction to go to completion can be expressed as an equilibrium constant. For the reaction in which a moles of A react with b moles of B to give c moles of C and d moles of D,

\[
aA + bB \rightarrow cC + dD
\]

the equilibrium constant, K_{eq}, is given by

\[
K_{eq} = \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b}
\]

where $[\text{A}]_{eq}$ is the concentration of A, $[\text{B}]_{eq}$ the concentration of B, and so on, when the system has reached equilibrium. A large value of K_{eq} means the reaction tends to proceed until the reactants are almost completely converted into the products.

Gibbs showed that ΔG (the actual free-energy change) for any chemical reaction is a function of the standard free-energy change, ΔG°—a constant that is characteristic of each specific reaction—and a term that expresses the initial concentrations of reactants and products:

\[
\Delta G = \Delta G^\circ + RT \ln \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b}
\]

where $[\text{A}]_i$ is the initial concentration of A, and so forth; R is the gas constant; and T is the absolute temperature. ΔG is a measure of the distance of a system from its equilibrium position. When a reaction has reached equilibrium, no driving force remains and it can do no work: $\Delta G = 0$. For this special case, $[\text{A}]_i = [\text{A}]_{eq}$, and so on, for all reactants and products, and

\[
\frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b} = \frac{[\text{C}]_{eq}^c [\text{D}]_{eq}^d}{[\text{A}]_{eq}^a [\text{B}]_{eq}^b}
\]

Substituting 0 for ΔG and K_{eq} for $\frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b}$ in Equation 1–1, we obtain the relationship

\[
\Delta G^\circ = -RT \ln K_{eq}
\]

from which we see that ΔG° is simply a second way (besides K_{eq}) of expressing the driving force on a reaction. Because K_{eq} is experimentally measurable, we have a way of determining ΔG°, the thermodynamic constant characteristic of each reaction.

The units of ΔG° and ΔG are joules per mole (or calories per mole). When $K_{eq} >> 1$, ΔG° is large and negative; when $K_{eq} << 1$, ΔG° is large and positive. From a table of experimentally determined values of either K_{eq} or ΔG°, we can see at a glance which reactions tend to go to completion and which do not.

One caution about the interpretation of ΔG°: thermodynamic constants such as this show where the final equilibrium for a reaction lies but tell us nothing about how fast that equilibrium will be achieved. The rates of
reactions are governed by the parameters of kinetics, a topic we consider in detail in Chapter 6.

Enzymes Promote Sequences of Chemical Reactions

All biological macromolecules are much less thermodynamically stable than their monomeric subunits, yet they are kinetically stable: their uncatalyzed breakdown occurs so slowly (over years rather than seconds) that, on a time scale that matters for the organism, these molecules are stable. Virtually every chemical reaction in a cell occurs at a significant rate only because of the presence of enzymes—biocatalysts that, like all other catalysts, greatly enhance the rate of specific chemical reactions without being consumed in the process.

The path from reactant(s) to product(s) almost invariably involves an energy barrier, called the activation barrier (Fig. 1–27), that must be surmounted for any reaction to proceed. The breaking of existing bonds and formation of new ones generally requires, first, a distortion of the existing bonds to create a transition state of higher free energy than either reactant or product. The highest point in the reaction coordinate diagram represents the transition state, and the difference in energy between the reactant in its ground state and in its transition state is the activation energy, \(\Delta G^* \). An enzyme catalyzes a reaction by providing a more comfortable fit for the transition state: a surface that complements the transition state in stereochemistry, polarity, and charge. The binding of enzyme to the transition state is exergonic, and the energy released by this binding reduces the activation energy for the reaction and greatly increases the reaction rate.

A further contribution to catalysis occurs when two or more reactants bind to the enzyme’s surface close to each other and with stereospecific orientations that favor the reaction. This increases by orders of magnitude the probability of productive collisions between reactants. As a result of these factors and several others, discussed in Chapter 6, enzyme-catalyzed reactions commonly proceed at rates greater than \(10^{12} \) times faster than the uncatalyzed reactions. (That is a million million times faster!)

Cellular catalysts are, with a few notable exceptions, proteins. (Some RNA molecules have enzymatic activity, as discussed in Chapters 26 and 27.) Again with a few exceptions, each enzyme catalyzes a specific reaction, and each reaction in a cell is catalyzed by a different enzyme. Thousands of different enzymes are therefore required by each cell. The multiplicity of enzymes, their specificity (the ability to discriminate between reactants), and their susceptibility to regulation give cells the capacity to lower activation barriers selectively. This selectivity is crucial for the effective regulation of cellular processes. By allowing specific reactions to proceed at significant rates at particular times, enzymes determine how matter and energy are channeled into cellular activities.

The thousands of enzyme-catalyzed chemical reactions in cells are functionally organized into many sequences of consecutive reactions, called pathways, in which the product of one reaction becomes the reactant in the next. Some pathways degrade organic nutrients into simple end products in order to extract chemical energy and convert it into a form useful to the cell; together these degradative, free-energy-yielding reactions are designated catabolism. The energy released by catabolic reactions drives the synthesis of ATP. As a result, the cellular concentration of ATP is far above its equilibrium concentration, so that \(\Delta G \) for ATP breakdown is large and negative. Similarly, metabolism results in the production of the reduced electron carriers NADH and NADPH, both of which can donate electrons in processes that generate ATP or drive reductive steps in biosynthetic pathways.

Other pathways start with small precursor molecules and convert them to progressively larger and more complex molecules, including proteins and nucleic acids. Such synthetic pathways, which invariably require the input of energy, are collectively designated anabolism. The overall network of enzyme-catalyzed pathways constitutes cellular metabolism. ATP (and the energetically equivalent nucleoside triphosphates cytidine triphosphate (CTP), uridine triphosphate (UTP), and guanosine triphosphate (GTP)) is the connecting link between the catabolic and anabolic components of this network (shown schematically in Fig. 1–28). The pathways of enzyme-catalyzed reactions that act on the main constituents of cells—proteins, fats, sugars, and nucleic acids—are virtually identical in all living organisms.
Metabolism is Regulated to Achieve Balance and Economy

Not only do living cells simultaneously synthesize thousands of different kinds of carbohydrate, fat, protein, and nucleic acid molecules and their simpler subunits, but they do so in the precise proportions required by the cell under any given circumstance. For example, during rapid cell growth the precursors of proteins and nucleic acids must be made in large quantities, whereas in non-growing cells the requirement for these precursors is much reduced. Key enzymes in each metabolic pathway are regulated so that each type of precursor molecule is produced in a quantity appropriate to the current requirements of the cell.

Consider the pathway in *E. coli* that leads to the synthesis of the amino acid isoleucine, a constituent of proteins. The pathway has five steps catalyzed by five different enzymes (A through F represent the intermediates in the pathway):

\[
\text{Threonine} \rightarrow \text{B} \rightarrow \text{C} \rightarrow \text{D} \rightarrow \text{E} \rightarrow \text{F} \rightarrow \text{Isoleucine}
\]

If a cell begins to produce more isoleucine than it needs for protein synthesis, the unused isoleucine accumulates and the increased concentration inhibits the catalytic activity of the first enzyme in the pathway, immediately slowing the production of isoleucine. Such feedback inhibition keeps the production and utilization of each metabolic intermediate in balance. (Throughout the book, we will use \(\otimes \) to indicate inhibition of an enzymatic reaction.)

Although the concept of discrete pathways is an important tool for organizing our understanding of metabolism, it is an oversimplification. There are thousands of metabolic intermediates in a cell, many of which are part of more than one pathway. Metabolism would be better represented as a web of interconnected and independent pathways. A change in the concentration of any one metabolite would start a ripple effect, influencing the flow of materials through other pathways. The task of understanding these complex interactions among intermediates and pathways in quantitative terms is daunting, but the new emphasis on systems biology, discussed in Chapter 15, has begun to offer important insights into the overall regulation of metabolism.

Cells also regulate the synthesis of their own catalysts, the enzymes, in response to increased or diminished need for a metabolic product; this is the substance of Chapter 28. The expression of genes (the translation from information in DNA to active protein in the cell) and synthesis of enzymes are other layers of metabolic control in the cell. All layers must be taken into account when describing the overall control of cellular metabolism.

SUMMARY 1.3 Physical Foundations

- Living cells are open systems, exchanging matter and energy with their surroundings, extracting and channeling energy to maintain themselves in a dynamic steady state distant from equilibrium. Energy is obtained from sunlight or fuels by converting the energy from electron flow into the chemical bonds of ATP.
- The tendency for a chemical reaction to proceed toward equilibrium can be expressed as the
free-energy change, ΔG, which has two components: enthalpy change, ΔH, and entropy change, ΔS. These variables are related by the equation $\Delta G = \Delta H - T \Delta S$.

- When ΔG of a reaction is negative, the reaction is exergonic and tends to go toward completion; when ΔG is positive, the reaction is endergonic and tends to go in the reverse direction. When two reactions can be summed to yield a third reaction, the ΔG for this overall reaction is the sum of the ΔGs of the two separate reactions.

- The reactions converting ATP to P$_i$ and ADP or to AMP and PP$_i$ are highly exergonic (large negative ΔG). Many endergonic cellular reactions are driven by coupling them, through a common intermediate, to these highly exergonic reactions.

- The standard free-energy change for a reaction, ΔG°, is a physical constant that is related to the equilibrium constant by the equation $\Delta G^\circ = -RT \ln K_{eq}$.

- Most cellular reactions proceed at useful rates only because enzymes are present to catalyze them. Enzymes act in part by stabilizing the transition state, reducing the activation energy, ΔG^+, and increasing the reaction rate by many orders of magnitude. The catalytic activity of enzymes in cells is regulated.

- Metabolism is the sum of many interconnected reaction sequences that interconvert cellular metabolites. Each sequence is regulated to provide what the cell needs at a given time and to expend energy only when necessary.

1.4 Genetic Foundations

Perhaps the most remarkable property of living cells and organisms is their ability to reproduce themselves for countless generations with nearly perfect fidelity. This continuity of inherited traits implies constancy, over millions of years, in the structure of the molecules that contain the genetic information. Very few historical records of civilization, even those etched in copper or carved in stone (Fig. 1–29), have survived for a thousand years. But there is good evidence that the genetic instructions in living organisms have remained nearly unchanged over very much longer periods; many bacteria have nearly the same size, shape, and internal structure and contain the same kinds of precursor molecules and enzymes as bacteria that lived nearly four billion years ago. This continuity of structure and composition is the result of continuity in the structure of the genetic material.

Among the seminal discoveries in biology in the twentieth century were the chemical nature and the three-dimensional structure of the genetic material, deoxyribonucleic acid, DNA. The sequence of the monomeric subunits, the nucleotides (strictly, deoxyribonucleotides, as discussed below), in this linear polymer encodes the instructions for forming all other cellular components and provides a template for the production of identical DNA molecules to be distributed to progeny when a cell divides. The perpetuation of a biological species requires that its genetic information be maintained in a stable form, expressed accurately in the form of gene products, and reproduced with a minimum of errors. Effective storage, expression, and reproduction of the genetic message define individual species, distinguish them from one another, and assure their continuity over successive generations.

Genetic Continuity Is Vested in Single DNA Molecules

DNA is a long, thin, organic polymer, the rare molecule that is constructed on the atomic scale in one dimension (width) and the human scale in another (length: a molecule of DNA can be many centimeters long). A human sperm or egg, carrying the accumulated hereditary information of billions of years of evolution, transmits this inheritance in the form of DNA molecules, in which the linear sequence of covalently linked nucleotide subunits encodes the genetic message.

Usually when we describe the properties of a chemical species, we describe the average behavior of a very large number of identical molecules. While it is difficult...
to predict the behavior of any single molecule in a collection of, say, a picomole (about 6×10^{11} molecules) of a compound, the average behavior of the molecules is predictable because so many molecules enter into the average. Cellular DNA is a remarkable exception. The DNA that is the entire genetic material of *E. coli* is a single molecule containing 4.64 million nucleotide pairs. That single molecule must be replicated perfectly in every detail if an *E. coli* cell is to give rise to identical progeny by cell division; there is no room for averaging in this process! The same is true for all cells. A human sperm brings to the egg that it fertilizes just one molecule of DNA in each of its 23 different chromosomes, to combine with just one DNA molecule in each corresponding chromosome in the egg. The result of this union is very highly predictable: an embryo with all of its ~25,000 genes, constructed of 3 billion nucleotide pairs, intact. An amazing chemical feat!

WORKED EXAMPLE 1-1 Fidelity of DNA Replication

Calculate the number of times the DNA of a modern *E. coli* cell has been copied accurately since its earliest bacterial precursor cell arose about 3.5 billion years ago. Assume for simplicity that over this time period *E. coli* has undergone, on average, one cell division every 12 hours (this is an overestimate for modern bacteria, but probably an underestimate for ancient bacteria).

Solution:

$$
(1 \text{ generation}/12 \text{ hr})(24 \text{ hr/d})(365 \text{ d/yr})(3.5 \times 10^9 \text{ yr}) = 2.6 \times 10^{12} \text{ generations}.
$$

A single page of this book contains about 5,000 characters, so the entire book contains about 5 million characters. The chromosome of *E. coli* also contains about 5 million characters (base pairs). If you made a hand-written copy of this book and then passed on the copy to a classmate to copy by hand, and this copy were then copied by a third classmate, and so on, how closely would each successive copy of the book resemble the original? Now, imagine the textbook that would result from hand-copying this one a few trillion times!

The Structure of DNA Allows for Its Replication and Repair with Near-Perfect Fidelity

The capacity of living cells to preserve their genetic material and to duplicate it for the next generation results from the structural complementarity between the two strands of the DNA molecule (Fig. 1–30). The basic unit of DNA is a linear polymer of four different monomeric subunits, deoxyribonucleotides, arranged in a precise linear sequence. It is this linear sequence that encodes the genetic information. Two of these polymeric strands are twisted about each other to form the DNA double helix, in which each deoxyribonucleotide in one strand pairs specifically with a complementary deoxyribonucleotide in the opposite strand. Before a cell divides, the two DNA strands separate and each serves as a template for the synthesis of a new, complementary strand, generating two identical double-helical molecules, one for each daughter cell. If, at any time, one strand is damaged, continuity of information is assured by the information present in the other strand, which can act as a template for repair of the damage.

FIGURE 1–30 Complementarity between the two strands of DNA.

DNA is a linear polymer of covalently joined deoxyribonucleotides, of four types: deoxyadenylate (A), deoxyguanylate (G), deoxycytidylate (C), and deoxythymidylate (T). Each nucleotide, with its unique three-dimensional structure, can associate very specifically but noncovalently with one other nucleotide in the complementary chain: A always associates with T, and G with C. Thus, in the double-stranded DNA molecule, the entire sequence of nucleotides in one strand is complementary to the sequence in the other. The two strands, held together by hydrogen bonds (represented here by vertical light blue lines) between each pair of complementary nucleotides, twist about each other to form the DNA double helix. In DNA replication, the two strands (blue) separate and two new strands (pink) are synthesized, each with a sequence complementary to one of the original strands. The result is two double-helical molecules, each identical to the original DNA.
The Linear Sequence in DNA Encodes Proteins with Three-Dimensional Structures

The information in DNA is encoded in its linear (one-dimensional) sequence of deoxyribonucleotide subunits, but the expression of this information results in a three-dimensional cell. This change from one to three dimensions occurs in two phases. A linear sequence of deoxyribonucleotides in DNA codes (through an intermediary, RNA) for the production of a protein with a corresponding linear sequence of amino acids (Fig. 1–31). The protein folds into a particular three-dimensional shape, determined by its amino acid sequence and stabilized primarily by noncovalent interactions. Although the final shape of the folded protein is dictated by its amino acid sequence, the folding is aided by "molecular chaperones" (see Fig. 4–29). The precise three-dimensional structure, or native conformation, of the protein is crucial to its function.

Once in its native conformation, a protein may associate noncovalently with other macromolecules (other proteins, nucleic acids, or lipids) to form supramolecular complexes such as chromosomes, ribosomes, and membranes. The individual molecules of these complexes have specific, high-affinity binding sites for each other, and within the cell they spontaneously self-assemble into functional complexes.

Although protein sequences carry all necessary information for achieving their native conformation, accurate folding and self-assembly also require the right cellular environment—pH, ionic strength, metal ion concentrations, and so forth. Thus the DNA sequence alone is not enough to dictate the formation of a cell.

SUMMARY 1.4 Genetic Foundations

- Genetic information is encoded in the linear sequence of four types of deoxyribonucleotides in DNA.
- The double-helical DNA molecule contains an internal template for its own replication and repair.
- The linear sequence of amino acids in a protein, which is encoded in the DNA of the gene for that protein, produces a protein's unique three-dimensional structure—a process also dependent on environmental conditions.
- Individual macromolecules with specific affinity for other macromolecules self-assemble into supramolecular complexes.

1.5 Evolutionary Foundations

Nothing in biology makes sense except in the light of evolution.

—Theodosius Dobzhansky, The American Biology Teacher, March 1973

Great progress in biochemistry and molecular biology in recent decades has amply confirmed the validity of Dobzhansky's striking generalization. The remarkable similarity of metabolic pathways and gene sequences across the phyla argues strongly that all modern organisms are derived from a common evolutionary progenitor by a series of small changes (mutations), each of which conferred a selective advantage to some organism in some ecological niche.

Changes in the Hereditary Instructions Allow Evolution

Despite the near-perfect fidelity of genetic replication, infrequent, unrepaired mistakes in the DNA replication process lead to changes in the nucleotide sequence of DNA, producing a genetic mutation (Fig. 1–32) and changing the instructions for a cellular component. Incorrectly repaired damage to one of the DNA strands has the same effect. Mutations in the DNA handed down to offspring—that is, mutations carried in the reproductive cells—may be harmful or even lethal to the new organism or cell; they may, for example, cause the synthesis of a defective enzyme that is not able to catalyze an essential metabolic reaction. Occasionally,
however, a mutation better equips an organism or cell to survive in its environment. The mutant enzyme might have acquired a slightly different specificity, for example, so that it is now able to use some compound that the cell was previously unable to metabolize. If a population of cells were to find itself in an environment where that compound was the only or the most abundant available source of fuel, the mutant cell would have a selective advantage over the other, unmutated (wild-type) cells in the population. The mutant cell and its progeny would survive and prosper in the new environment, whereas wild-type cells would starve and be eliminated. This is what Darwin meant by “survival of the fittest under selective pressure”—the process of natural selection.

Occasionally, a second copy of a whole gene is introduced into the chromosome as a result of defective replication of the chromosome. The second copy is superfluous, and mutations in this gene will not be deleterious; it becomes a means by which the cell may evolve, by producing a new gene with a new function while retaining the original gene and gene function. Seen in this light, the DNA molecules of modern organisms are historical documents, records of the long journey from the earliest cells to modern organisms. The historical accounts in DNA are not complete, however; in the course of evolution, many mutations must have been erased or written over. But DNA molecules are the best source of biological history that we have. The frequency of errors in DNA replication represents a balance between too many errors, which would yield nonviable daughter cells, and too few, which would prevent the genetic variation that allows survival of mutant cells in new ecological niches.

Several billion years of adaptive selection have refined cellular systems to take maximum advantage of the chemical and physical properties of available raw materials. Chance genetic variations in individuals in a population, combined with natural selection, have resulted in the evolution of today’s enormous variety of organisms, each adapted to its particular ecological niche.

Biomolecules First Arose by Chemical Evolution

In our account thus far we have passed over the first chapter of the story of evolution: the appearance of the first living cell. Apart from their occurrence in living organisms, organic compounds, including the basic biomolecules such as amino acids and carbohydrates, are found in only trace amounts in the Earth’s crust, the sea, and the atmosphere. How did the first living organisms acquire their characteristic organic building blocks? According to one hypothesis, these compounds were created by the effects of powerful atmospheric forces—ultraviolet irradiation, lightning, or volcanic eruptions—on the gases in the prebiotic Earth’s atmosphere, and on inorganic solutes in superheated thermal vents deep in the ocean.

This hypothesis was tested in a classic experiment on the abiotic (nonbiological) origin of organic biomolecules carried out in 1953 by Stanley Miller in the laboratory of Harold Urey. Miller subjected gaseous mixtures
such as those presumed to exist on the prebiotic Earth, including NH₃, CH₄, H₂O, and H₂, to electrical sparks produced across a pair of electrodes (to simulate lightning) for periods of a week or more, then analyzed the contents of the closed reaction vessel (Fig. 1–33). The gas phase of the resulting mixture contained CO and CO₂, as well as the starting materials. The water phase contained a variety of organic compounds, including some amino acids, hydroxy acids, aldehydes, and hydrogen cyanide (HCN). This experiment established the possibility of abiotic production of biomolecules in relatively short times under relatively mild conditions.

More refined laboratory experiments have provided good evidence that many of the chemical components of living cells, including polypeptides and RNA-like molecules, can form under these conditions. Polymers of RNA can act as catalysts in biologically significant reactions (see Chapters 26 and 27), and RNA probably played a crucial role in prebiotic evolution, both as catalyst and as information repository.

RNA or Related Precursors May Have Been the First Genes and Catalysts

In modern organisms, nucleic acids encode the genetic information that specifies the structure of enzymes, and enzymes catalyze the replication and repair of nucleic acids. The mutual dependence of these two classes of biomolecules brings up the perplexing question: which came first, DNA or protein?

The answer may be that they appeared about the same time, and RNA preceded them both. The discovery that RNA molecules can act as catalysts in their own formation suggests that RNA or a similar molecule may have been the first gene and the first catalyst. According to this scenario (Fig. 1–34), one of the earliest stages of biological evolution was the chance formation, in the primordial soup, of an RNA molecule that could catalyze the formation of other RNA molecules of the same sequence—a self-replicating, self-perpetuating RNA. The concentration of a self-replicating RNA molecule would increase exponentially, as one molecule formed two, two formed four, and so on. The fidelity of self-replication was presumably less than perfect, so the process would generate variants of the RNA, some of which might be even better able to self-replicate. In the competition for nucleotides, the most efficient of the self-replicating sequences would win, and less efficient replicators would fade from the population.

FIGURE 1–34 A possible “RNA world” scenario.
The division of function between DNA (genetic information storage) and protein (catalysis) was, according to the “RNA world” hypothesis, a later development. New variants of self-replicating RNA molecules developed, with the additional ability to catalyze the condensation of amino acids into peptides. Occasionally, the peptide(s) thus formed would reinforce the self-replicating ability of the RNA, and the pair—RNA molecule and helping peptide—could undergo further modifications in sequence, generating increasingly efficient self-replicating systems. The remarkable discovery that, in the protein-synthesizing machinery of modern cells (ribosomes), RNA molecules, not proteins, catalyze the formation of peptide bonds is consistent with the RNA world hypothesis.

Some time after the evolution of this primitive protein-synthesizing system, there was a further development: DNA molecules with sequences complementary to the self-replicating RNA molecules took over the function of conserving the “genetic” information, and RNA molecules evolved to play roles in protein synthesis. (We explain in Chapter 8 why DNA is a more stable molecule than RNA and thus a better repository of inheritable information.) Proteins proved to be versatile catalysts and, over time, took over most of that function. Lipidlike compounds in the primordial soup formed relatively impermeable layers around self-replicating collections of molecules. The concentration of proteins and nucleic acids within these lipid enclosures favored the molecular interactions required in self-replication.

Biological Evolution Began More Than Three and a Half Billion Years Ago

Earth was formed about 4.6 billion years ago, and the first evidence of life dates to more than 3.5 billion years ago. In 1996, scientists working in Greenland found chemical evidence of life (“fossil molecules”) from as far back as 3.85 billion years ago, forms of carbon embedded in rock that seem to have a distinctly biological origin. Somewhere on Earth during its first billion years the first simple organism arose, capable of replicating its own structure from a template (RNA?) that was the first genetic material. Because the terrestrial atmosphere at the dawn of life was nearly devoid of oxygen, and because there were few microorganisms to scavenge organic compounds formed by natural processes, these compounds were relatively stable. Given this stability and eons of time, the improbable became inevitable: the organic compounds were incorporated into evolving cells to produce increasingly effective self-reproducing catalysts. The process of biological evolution had begun.

The First Cell Probably Used Inorganic Fuels

The earliest cells arose in a reducing atmosphere (there was no oxygen) and probably obtained energy from inorganic fuels, such as ferrous sulfide and ferrous carbonate, both abundant on the early Earth. For example, the reaction

\[
\text{FeS + H}_2\text{S} \rightarrow \text{FeS}_2 + \text{H}_2
\]

yields enough energy to drive the synthesis of ATP or similar compounds. The organic compounds they required may have arisen by the nonbiological actions of lightning or of heat from volcanoes or thermal vents in the sea on components of the early atmosphere: \(\text{CO}_2, \text{CO}, \text{N}_2, \text{NH}_3, \text{CH}_4, \) and such. An alternative source of organic compounds has been proposed: extraterrestrial space. In 2006, the Stardust space mission brought back tiny particles of dust from the tail of a comet; the dust contained a variety of organic compounds.

Early unicellular organisms gradually acquired the ability to derive energy from compounds in their environment and to use that energy to synthesize more of their own precursor molecules, thereby becoming less dependent on outside sources. A very significant evolutionary event was the development of pigments capable of capturing the energy of light from the sun, which could be used to reduce, or “fix,” \(\text{CO}_2\) to form more complex, organic compounds. The original electron donor for these photosynthetic processes was probably \(\text{H}_2\text{S}\), yielding elemental sulfur or sulfate (\(\text{SO}_4^{2-}\)) as the by-product; later cells developed the enzymatic capacity to use \(\text{H}_2\text{O}\) as the electron donor in photosynthetic reactions, eliminating \(\text{O}_2\) as waste. Cyanobacteria are the modern descendants of these early photosynthetic oxygen-producers.

Because the atmosphere of Earth in the earliest stages of biological evolution was nearly devoid of oxygen, the earliest cells were anaerobic. Under these conditions, chemotrophs could oxidize organic compounds to \(\text{CO}_2\) by passing electrons not to \(\text{O}_2\) but to acceptors such as \(\text{SO}_4^{2-}\), in this case yielding \(\text{H}_2\text{S}\) as the product. With the rise of \(\text{O}_2\)-producing photosynthetic bacteria, the atmosphere became progressively richer in oxygen—a powerful oxidant and deadly poison to anaerobes. Responding to the evolutionary pressure of what Lynn Margulis and Dorion Sagan have called the “oxygen holocaust,” some lineages of microorganisms gave rise to aerobes that obtained energy by passing electrons from fuel molecules to oxygen. Because the transfer of electrons from organic molecules to \(\text{O}_2\) releases a great deal of energy, aerobic organisms had an energetic advantage over their anaerobic counterparts when both competed in an environment containing oxygen. This advantage translated into the predominance of aerobic organisms in \(\text{O}_2\)-rich environments.

Modern bacteria and archaea inhabit almost every ecological niche in the biosphere, and there are organisms capable of using virtually every type of organic compound as a source of carbon and energy. Photosynthetic microbes in both fresh and marine waters trap solar energy and use it to generate carbohydrates and all other
cell constituents, which are in turn used as food by other forms of life. The process of evolution continues—and, in rapidly reproducing bacterial cells, on a time scale that allows us to witness it in the laboratory. One approach toward producing a "protocell" in the laboratory involves determining the minimum number of genes necessary for life by examining the genomes of simple bacteria. The smallest known genome for a free-living bacterium is that of Mycobacterium genitalium, which comprises 580,000 base pairs encoding 483 genes.

Eukaryotic Cells Evolved from Simpler Precursors in Several Stages

Starting about 1.5 billion years ago, the fossil record begins to show evidence of larger and more complex organisms, probably the earliest eukaryotic cells (Fig. 1–35). Details of the evolutionary path from non-nucleated to nucleated cells cannot be deduced from the fossil record alone, but morphological and biochemical comparisons of modern organisms have suggested a sequence of events consistent with the fossil evidence.

Three major changes must have occurred. First, as cells acquired more DNA, the mechanisms required to fold it compactly into discrete complexes with specific proteins and to divide it equally between daughter cells at cell division became more elaborate. Specialized proteins were required to stabilize folded DNA and to pull the resulting DNA-protein complexes (chromosomes) apart during cell division. Second, as cells became larger, a system of intracellular membranes developed, including a double membrane surrounding the DNA. This membrane segregated the nuclear process of RNA synthesis on a DNA template from the cytoplasmic process of protein synthesis on ribosomes. Finally, early eukaryotic cells, which were incapable of photosynthesis or aerobic metabolism, enveloped aerobic bacteria or photosynthetic bacteria to form endosymbiotic associations that eventually became permanent (Fig. 1–36). Some aerobic bacteria evolved into the mitochondria of modern eukaryotes, and some photosynthetic cyanobacteria became the plastids, such as the chloroplasts of green algae, the likely ancestors of modern plant cells.

At some later stage of evolution, unicellular organisms found it advantageous to cluster together, thereby acquiring greater motility, efficiency, or reproductive success than their free-living single-celled competitors. Further evolution of such clustered organisms led to permanent associations among individual cells and eventually to specialization within the colony—to cellular differentiation.

The advantages of cellular specialization led to the evolution of increasingly complex and highly differentiated organisms, in which some cells carried out the sensory functions, others the digestive, photosynthetic, or reproductive functions, and so forth. Many modern multicellular organisms contain hundreds of different cell types, each specialized for a function that supports the entire organism. Fundamental mechanisms that evolved early have been further refined and embellished through evolution. The same basic structures and mechanisms that underlie the beating motion of cilia in Paramecium and of flagella in Chlamydomonas are employed by the highly differentiated vertebrate sperm cell, for example.

Molecular Anatomy Reveals Evolutionary Relationships

Biochemists now have an enormously rich, ever increasing treasury of information on the molecular anatomy of cells that they can use to analyze evolutionary relationships and refine evolutionary theory. The sequence of the genome, the complete genetic endowment of an organism, has been determined for hundreds of bacteria and more than 40 archaea and for growing numbers of eukaryotic microorganisms, including Saccharomyces cerevisiae and Plasmodium sp.; plants, including Arabidopsis thaliana and rice; and multicellular animals, including Caenorhabditis elegans (a roundworm),
Anaerobic metabolism is inefficient because fuel is not completely oxidized.

Bacterium is engulfed by ancestral eukaryote, and multiplies within it.

Some bacterial genes move to the nucleus, and the bacterial endosymbionts become mitochondria.

Symbiotic system can now carry out aerobic catabolism. Nonphotosynthetic eukaryote

Bacterium

Mitochondrion

Nonphotosynthetic eukaryote

Photosynthetic eukaryote

Engulfed cyanobacterium becomes an endosymbiont and multiplies; new cell can make ATP using energy from sunlight.

Photosynthetic cyanobacterium

Light energy is used to synthesize biomolecules from CO₂.

Photosynthetic eukaryote

In time, some cyanobacterial genes move to the nucleus, and endosymbionts become plastids (chloroplasts).

Two homologous genes (or proteins) found in different species are said to be orthologous, and their protein products are orthologs. Orthologs are commonly found to have the same function in both organisms, and when a newly sequenced gene in one species is found to be strongly orthologous with a gene in another, this gene is presumed to encode a protein with the same function in both species. By this means, the function of gene products can be deduced from the genomic sequence, without any biochemical characterization of the gene product. An annotated genome includes, in addition to the DNA sequence itself, a description of the likely function of each gene product, deduced from comparisons with other genomic sequences and established protein functions. Sometimes, by identifying the pathways (sets of enzymes) encoded in a genome, we can deduce from the genomic sequence alone the organism's metabolic capabilities.

The sequence differences between homologous genes may be taken as a rough measure of the degree to which the two species have diverged during evolution—of how long ago their common evolutionary precursor gave rise to two lines with different evolutionary fates. The larger the number of sequence differences, the earlier the divergence in evolutionary history. One can construct a phylogeny (family tree) in which the evolutionary distance between any two species is represented by their proximity on the tree (Fig. 1–4 is an example).
In the course of evolution, new structures, processes, or regulatory mechanisms are acquired, reflections of the changing genomes of the evolving organisms. The genome of a simple eukaryote such as yeast should have genes related to formation of the nuclear membrane, genes not present in bacteria or archaea. The genome of an insect should contain genes that encode proteins involved in specifying insects' characteristic segmented body plan, genes not present in yeast. The genomes of all vertebrate animals should share genes that specify the development of a spinal column, and those of mammals should have unique genes necessary for the development of the placenta, a characteristic of mammals—and so on. Comparisons of the whole genomes of species in each phylum are leading to the identification of genes critical to fundamental evolutionary changes in body plan and development.

Functional Genomics Shows the Allocations of Genes to Specific Cellular Processes

When the sequence of a genome is fully determined and each gene is assigned a function, molecular geneticists can group genes according to the processes (DNA synthesis, protein synthesis, generation of ATP, and so forth) in which they function and thus find what fraction of the genome is allocated to each of a cell's activities. The largest category of genes in *E. coli, A. thaliana,* and *H. sapiens* consists of genes of (as yet) unknown function, which make up more than 40% of the genes in each species. The transporters that move ions and small molecules across plasma membranes take up a significant proportion of the genes in all three species, more in the bacterium and plant than in the mammal (10% of the ~4,400 genes of *E. coli, ~8% of the ~32,000 genes of *A. thaliana,* and ~4% of the ~29,000 genes of *H. sapiens*). Genes that encode the proteins and RNA required for protein synthesis make up 3% to 4% of the *E. coli* genome, but in the more complex cells of *A. thaliana,* more genes are needed for targeting proteins to their final location in the cell than are needed to synthesize those proteins (about 6% and 2% of the genome, respectively). In general, the more complex the organism, the greater the proportion of its genome that encodes genes involved in the regulation of cellular processes and the smaller the proportion dedicated to the basic processes themselves, such as ATP generation and protein synthesis.

Genomic Comparisons Have Increasing Importance in Human Biology and Medicine

The genomes of chimpanzees and humans are 99.9% identical, yet the differences between the
two species are vast. The relatively few differences in genetic endowment must explain the possession of language by humans, the extraordinary athleticism of chimpanzees, and myriad other differences. Genomic comparison is allowing researchers to identify candidate genes linked to divergences in the developmental programs of humans and the other primates and to the emergence of complex functions such as language. The picture will become clearer only as more primate genomes become available for comparison with the human genome.

Similarly, the differences in genetic endowment among humans are vanishingly small compared with the differences between humans and chimpanzees, yet these differences account for the variety among us—including differences in health and in susceptibility to chronic diseases. We have much to learn about the variability in sequence among humans, and the availability of genomic information will almost certainly transform medical diagnosis and treatment. We may expect that for some genetic diseases, palliatives will be replaced by cures; and that for disease susceptibilities associated with particular genetic markers, forewarning and perhaps increased preventive measures will prevail. Today's "medical history" may be replaced by a "medical forecast."

SUMMARY 1.5 Evolutionary Foundations

- Occasional inheritable mutations yield organisms that are better suited for survival in an ecological niche and progeny that are preferentially selected. This process of mutation and selection is the basis for the Darwinian evolution that led from the first cell to all modern organisms and explains the fundamental similarity of all living organisms.

- Life originated about 3.5 billion years ago, most likely with the formation of a membrane-enclosed compartment containing a self-replicating RNA molecule. The components for the first cell may have been produced near thermal vents at the bottom of the sea or by the action of lightning and high temperature on simple atmospheric molecules such as CO₂ and NH₃.

- The catalytic and genetic roles played by the early RNA genome were, over time, taken over by proteins and DNA, respectively.

- Eukaryotic cells acquired the capacity for photosynthesis and oxidative phosphorylation from endosymbiotic bacteria. In multicellular organisms, differentiated cell types specialize in one or more of the functions essential to the organism's survival.

- Knowledge of the complete genomic nucleotide sequences of organisms from different branches of the phylogenetic tree provides insights into evolution and offers great opportunities in human medicine.

Key Terms

All terms are defined in the glossary.

- metabolite
- nucleus
- genome
- eukaryote
- prokaryote
- bacteria
- archaea
- cytoskeleton
- stereoisomers
- configuration
- chiral center
- conformation
- entropy

Further Reading

General

A distinguished historian of biochemistry traces the development of this science and discusses its impact on medicine, pharmacy, and agriculture.

A highly readable and authoritative account of the rise of biochemistry and molecular biology in the twentieth century.

The importance of applying chemical tools to biological problems, described by an eminent practitioner.

An exploration of the philosophical implications of biological knowledge.

Short, beautifully written discussion of the emergence of complex organisms from simple beginnings.

A short discussion of the minimal definition of life, on Earth and elsewhere.

Cellular Foundations

An excellent introductory textbook of cell biology.

A superb text, useful for this and later chapters.

A collection of almost 100 articles on all aspects of prebiotic and early biological evolution; probably the single best source on molecular evolution.

A collection of stimulating reviews on a wide range of topics related to the RNA world scenario.

Brief review of developments in studies of the origin of life: primitive atmospheres, submarine vents, autotrophic versus heterotrophic origin, the RNA and pre-RNA worlds, and the time required for life to arise.

The arguments for dividing all living creatures into five kingdoms: Monera, Prototista, Fungi, Animalia, Plantae. (Compare Woese et al., 1990, below.)

Description of all major groups of organisms, beautifully illustrated with electron micrographs and drawings.

A history of the development of science, with special emphasis on Darwinian evolution, by an eminent Darwin scholar.

Summary of laboratory experiments on chemical evolution, by the person who did the original Miller-Urey experiment.

Short, clear review.

Development of current thinking about cellular evolution by one of the seminal thinkers in the field.

The arguments for dividing all living creatures into three domains. (Compare Margulis, 1996, above.)

Problems

Some problems related to the contents of the chapter follow. (In solving end-of-chapter problems, you may wish to refer to the tables on the inside of the back cover.) Each problem has a title for easy reference and discussion. For all numerical problems, keep in mind that answers should be expressed with the correct number of significant figures. Brief solutions are provided in Appendix B; expanded solutions are published in the *Absolute Ultimate Study Guide to Accompany Principles of Biochemistry*.

1. The Size of Cells and Their Components

(a) If you were to magnify a cell 10,000 fold (typical of the magnification achieved using an electron microscope), how big would it appear? Assume you are viewing a “typical” eukaryotic cell with a cellular diameter of 50 μm.
(b) If this cell were a muscle cell (myocyte), how many molecules of actin could it hold? (Assume the cell is spherical and no other cellular components are present; actin molecules are spherical, with a diameter of 3.6 nm. The volume of a sphere is \(\frac{4}{3} \pi r^3 \).)

(c) If this were a liver cell (hepatocyte) of the same dimensions, how many mitochondria could it hold? (Assume the cell is spherical; no other cellular components are present; and the mitochondria are spherical, with a diameter of 1.5 \(\mu \)m.)

(d) Glucose is the major energy-yielding nutrient for most cells. Assuming a cellular concentration of 1 nm (that is, 1 millimole/L), calculate how many molecules of glucose would be present in our hypothetical (and spherical) eukaryotic cell. (Avogadro's number, the number of molecules in 1 mol of a nonionized substance, is \(6.02 \times 10^{23} \).)

(e) Hexokinase is an important enzyme in the metabolism of glucose. If the concentration of hexokinase in our eukaryotic cell is 20 \(\mu \)M, how many glucose molecules are present per hexokinase molecule?

2. Components of \(E. coli \) \(E. coli \) cells are rod-shaped, about 2 \(\mu \)m long and 0.8 \(\mu \)m in diameter. The volume of a cylinder is \(\pi r^2h \), where \(h \) is the height of the cylinder.

(a) If the average density of \(E. coli \) (mostly water) is \(1.1 \times 10^3 \) g/L, what is the mass of a single cell?

(b) \(E. coli \) has a protective cell envelope 10 \(\mu \)m thick. What percentage of the total volume of the bacterium does the cell envelope occupy?

(c) \(E. coli \) is capable of growing and multiplying rapidly because it contains some 15,000 spherical ribosomes (diameter 18 nm), which carry out protein synthesis. What percentage of the cell volume do the ribosomes occupy?

3. Genetic Information in \(E. coli \) DNA The genetic information contained in DNA consists of a linear sequence of coding units, known as codons. Each codon is a specific sequence of three deoxyribonucleotides (three deoxyribonucleotide pairs in double-stranded DNA), and each codon codes for a single amino acid unit in a protein. The molecular weight of an \(E. coli \) DNA molecule is about 3.1 \(\times 10^6 \) g/mol. The average molecular weight of a nucleotide pair is 660 g/mol, and each nucleotide pair contributes 0.34 nm to the length of DNA.

(a) Calculate the length of an \(E. coli \) DNA molecule. Compare the length of the DNA molecule with the cell dimensions (see Problem 2). How does the DNA molecule fit into the cell?

(b) Assume that the average protein in \(E. coli \) consists of a chain of 400 amino acids. What is the maximum number of proteins that can be coded by an \(E. coli \) DNA molecule?

4. The High Rate of Bacterial Metabolism Bacterial cells have a much higher rate of metabolism than animal cells. Under ideal conditions some bacteria double in size and divide every 20 min, whereas most animal cells under rapid growth conditions require 24 hours. The high rate of bacterial metabolism requires a high ratio of surface area to cell volume.

(a) Why does surface-to-volume ratio affect the maximum rate of metabolism?

(b) Calculate the surface-to-volume ratio for the spherical bacterium \(Neisseria gonorrhoeae \) (diameter 0.5 \(\mu \)m), responsible for the disease gonorrhea. Compare it with the surface-to-volume ratio for a globular amoeba, a large eukaryotic cell (diameter 150 \(\mu \)m). The surface area of a sphere is \(4\pi r^2 \).

5. Fast Axonal Transport Neurons have long thin processes called axons, structures specialized for conducting signals throughout the organism's nervous system. Some axonal processes can be as long as 2 m—for example, the axons that originate in your spinal cord and terminate in the muscles of your toes. Small membrane-enclosed vesicles carrying materials essential to axonal function move along microtubules of the cytoskeleton, from the cell body to the tips of the axons. If the average velocity of a vesicle is 1 \(\mu \)m/s, how long does it take a vesicle to move from a cell body in the spinal cord to the axonal tip in the toes?

6. Is Synthetic Vitamin C as Good as the Natural Vitamin? A claim put forth by some purveyors of health foods is that vitamins obtained from natural sources are more healthful than those obtained by chemical synthesis. For example, pure L-ascorbic acid (vitamin C) extracted from rose hips is better than pure L-ascorbic acid manufactured in a chemical plant. Are the vitamins from the two sources different? Can the body distinguish a vitamin's source?

7. Identification of Functional Groups Figures 1-15 and 1-16 show some common functional groups of biomolecules. Because the properties and biological activities of biomolecules are largely determined by their functional groups, it is important to be able to identify them. In each of the compounds below, circle and identify by name each functional group.

8. Drug Activity and Stereochemistry The quantitative differences in biological activity between the two enantiomers of a compound are sometimes quite large. For example, the \(\alpha \) isomer of the drug isoproterenol, used to treat
mild asthma, is 50 to 80 times more effective as a bronchodilator than the L isomer. Identify the chiral center in isoproterenol. Why do the two enantiomers have such radically different bioactivity?

9. Separating Biomolecules In studying a particular biomolecule (a protein, nucleic acid, carbohydrate, or lipid) in the laboratory, the biochemist first needs to separate it from other biomolecules in the sample—that is, to purify it. Specific purification techniques are described later in the text. However, by looking at the monomeric subunits of a biomolecule, you should have some ideas about the characteristics of the molecule that would allow you to separate it from other molecules. For example, how would you separate (a) amino acids from fatty acids and (b) nucleotides from glucose?

10. Silicon-Based Life? Silicon is in the same group of the periodic table as carbon and, like carbon, can form up to four single bonds. Many science fiction stories have been based on the premise of silicon-based life. Is this realistic? What characteristics of silicon make it less well adapted than carbon as the central organizing element for life? To answer this question, consider what you have learned about carbon's bonding versatility, and refer to a beginning inorganic chemistry textbook for silicon's bonding properties.

11. Drug Action and Shape of Molecules Some years ago two drug companies marketed a drug under the trade names Dexedrine and Benzedrine. The structure of the drug is shown below.

The physical properties (C, H, and N analysis, melting point, solubility, etc.) of Dexedrine and Benzedrine were identical. The recommended oral dosage of Dexedrine (which is still available) was 5 mg/day, but the recommended dosage of Benzedrine (no longer available) was twice that. Apparently it required considerably more Benzedrine than Dexedrine to yield the same physiological response. Explain this apparent contradiction.

12. Components of Complex Biomolecules Figure 1–10 shows the major components of complex biomolecules. For each of the three important biomolecules below (shown in their ionized forms at physiological pH), identify the constituents.

(a) Guanosine triphosphate (GTP), an energy-rich nucleotide that serves as a precursor to RNA:

(b) Methionine enkephalin, the brain's own opiate:

(c) Phosphatidylcholine, a component of many membranes:

13. Determination of the Structure of a Biomolecule An unknown substance, X, was isolated from rabbit muscle. Its structure was determined from the following observations and experiments. Qualitative analysis showed that X was composed entirely of C, H, and O. A weighed sample of X was completely oxidized, and the H₂O and CO₂ produced were measured; this quantitative analysis revealed that X contained 40.00% C, 6.710% H, and 53.29% O by weight. The molecular mass of X, determined by mass spectrometry, was 90.00 u (atomic mass units; see Box 1–1). Infrared spectroscopy showed that X contained one double bond. X dissolved readily in water to give an acidic solution; the solution demonstrated optical activity when tested in a polarimeter.

(a) Determine the empirical and molecular formula of X.
(b) Draw the possible structures of X that fit the molecular formula and contain one double bond. Consider only linear or branched structures and disregard cyclic structures. Note that oxygen makes very poor bonds to itself.
(c) What is the structural significance of the observed optical activity? Which structures in (b) are consistent with the observation?
(d) What is the structural significance of the observation that a solution of X was acidic? Which structures in (b) are consistent with the observation?
(e) What is the structure of X? Is more than one structure consistent with all the data?

14. Sweet-Tasting Molecules Many compounds taste sweet to humans. Sweet taste results when a molecule binds to the sweet receptor, one type of taste receptor, on the surface of certain tongue cells. The stronger the binding, the lower the concentration required to saturate the receptor and the sweeter a given concentration of that substance tastes. The standard free-energy change, ΔG°, of the binding reaction
between a sweet molecule and a sweet receptor can be measured in kilojoules or kilocalories per mole.

Sweet taste can be quantified in units of “molar relative sweetness” (MRS), a measure that compares the sweetness of a substance to the sweetness of sucrose. For example, saccharin has an MRS of 161; this means that saccharin is 161 times sweeter than sucrose. In practical terms, this is measured by asking human subjects to compare the sweetness of solutions containing different concentrations of each compound. Sucrose and saccharin taste equally sweet when sucrose is at a concentration 161 times higher than that of saccharin.

(a) What is the relationship between MRS and the ΔG° of the binding reaction? Specifically, would a more negative ΔG° correspond to a higher or lower MRS? Explain your reasoning.

Shown below are the structures of 10 compounds, all of which taste sweet to humans. The MRS and ΔG° for binding to the sweet receptor are given for each substance.

(b) Why is it useful to have a computer model to predict the sweetness of molecules, instead of a human- or animal-based taste assay?

In earlier work, Schallenberger and Acree (1967) had suggested that all sweet molecules include an “AH-B” structural group, in which “A and B are electronegative atoms separated by a distance of greater than 2.5 Å [0.25 nm] but less than 4 Å [0.4 nm], H is a hydrogen atom attached to one of the electronegative atoms by a covalent bond” (p. 481).

(c) Given that the length of a “typical” single bond is about 0.15 nm, identify the AH-B group(s) in each of the molecules shown above.

(d) Based on your findings from (c), give two objections to the statement that “molecules containing an AH-B structure will taste sweet.”

(e) For the two of the molecules shown above, the AH-B model can be used to explain the difference in MRS and ΔG°. Which two molecules are these, and how would you use them to support the AH-B model?

(f) Several of the molecules have closely related structures but very different MRS and ΔG° values. Give two such examples, and use these to argue that the AH-B model is unable to explain the observed differences in sweetness.

In their computer-modeling study, Morini and coauthors used the three-dimensional structure of the sweet receptor and a molecular dynamics modeling program called GRAMM to predict the ΔG° of binding of sweet molecules to the sweet receptor. First, they “trained” their model—that is, they refined the parameters so that the ΔG° values predicted by the model matched the known ΔG° values for one set of sweet molecules (the “training set”). They then “tested” the model by asking it to predict the ΔG° values for a new set of molecules (the “test set”).

(g) Why did Morini and colleagues need to test their model against a different set of molecules from the set it was trained on?

(h) The researchers found that the predicted ΔG° values for the test set differed from the actual values by, on average, 1.3 kcal/mol. Using the values given with the structures above, estimate the resulting error in MRS values.

References

Biochemistry is nothing less than the chemistry of life, and, yes, life can be investigated, analyzed, and understood. To begin, every student of biochemistry needs both a language and some fundamentals; these are provided in Part I.

The chapters of Part I are devoted to the structure and function of the major classes of cellular constituents: water (Chapter 2), amino acids and proteins (Chapters 3 through 6), sugars and polysaccharides (Chapter 7), nucleotides and nucleic acids (Chapter 8), fatty acids and lipids (Chapter 10), and, finally, membranes and membrane signaling proteins (Chapters 11 and 12). We supplement this discourse on molecules with information about the technologies used to study them. Techniques sections are woven in throughout the text, and one chapter (Chapter 9) is devoted entirely to biotechnologies associated with cloning, genomics, and proteomics.

We begin, in Chapter 2, with water, because its properties affect the structure and function of all other cellular constituents. For each class of organic molecules, we first consider the covalent chemistry of the monomeric units (amino acids, monosaccharides, nucleotides, and fatty acids) and then describe the structure of the macromolecules and supramolecular complexes derived from them. An overarching theme is that the polymeric macromolecules in living systems, though large, are highly ordered chemical entities, with specific sequences of monomeric subunits giving rise to discrete structures and functions. This fundamental theme can be broken down into three interrelated principles: (1) the unique structure of each macromolecule determines its function; (2) noncovalent interactions play a critical role in the structure and thus the function of macromolecules; and (3) the monomeric subunits in polymeric macromolecules occur in specific sequences, representing a form of information on which the ordered living state depends.

The relationship between structure and function is especially evident in proteins, which exhibit an extraordinary diversity of functions. One particular polymeric sequence of amino acids produces a strong, fibrous structure found in hair and wool; another produces a protein that transports oxygen in the blood; a
third binds other proteins and catalyzes the cleavage of the bonds between their amino acids. Similarly, the special functions of polysaccharides, nucleic acids, and lipids can be understood as resulting directly from their chemical structure, with their characteristic monomeric subunits precisely linked to form functional polymers. Sugars linked together become energy stores, structural fibers, and points of specific molecular recognition; nucleotides strung together in DNA or RNA provide the blueprint for an entire organism; and aggregated lipids form membranes. Chapter 12 unifies the discussion of biomolecule function, describing how specific signaling systems regulate the activities of biomolecules—within a cell, within an organ, and among organs—to keep an organism in homeostasis.

As we move from monomeric units to larger and larger polymers, the chemical focus shifts from covalent bonds to noncovalent interactions. Covalent bonds, at the monomeric and macromolecular level, place constraints on the shapes assumed by large biomolecules. It is the numerous noncovalent interactions, however, that dictate the stable, native conformations of large molecules while permitting the flexibility necessary for their biological function. As we shall see, noncovalent interactions are essential to the catalytic power of enzymes, the critical interaction of complementary base pairs in nucleic acids, and the arrangement and properties of lipids in membranes. The principle that sequences of monomeric subunits are rich in information emerges most fully in the discussion of nucleic acids (Chapter 8). However, proteins and some short polymers of sugars (oligosaccharides) are also information-rich molecules. The amino acid sequence is a form of information that directs the folding of the protein into its unique three-dimensional structure, and ultimately determines the function of the protein. Some oligosaccharides also have unique sequences and three-dimensional structures that are recognized by other macromolecules.

Each class of molecules has a similar structural hierarchy: subunits of fixed structure are connected by bonds of limited flexibility to form macromolecules with three-dimensional structures determined by noncovalent interactions. These macromolecules then interact to form the supramolecular structures and organelles that allow a cell to carry out its many metabolic functions. Together, the molecules described in Part I are the stuff of life.
Water

2.1 Weak Interactions in Aqueous Systems 43
2.2 Ionization of Water, Weak Acids, and Weak Bases 54
2.3 Buffering against pH Changes in Biological Systems 59
2.4 Water as a Reactant 65
2.5 The Fitness of the Aqueous Environment for Living Organisms 65

2.1 Weak Interactions in Aqueous Systems

Hydrogen bonds between water molecules provide the cohesive forces that make water a liquid at room temperature and favor the extreme ordering of molecules that is typical of crystalline water (ice). Polar biomolecules dissolve readily in water because they can replace water-water interactions with more energetically favorable water-solute interactions. In contrast, nonpolar biomolecules interfere with water-water interactions but are unable to form water-solute interactions—consequently, nonpolar molecules are poorly soluble in water. In aqueous solutions, nonpolar molecules tend to cluster together. Hydrogen bonds and ionic, hydrophobic (Greek, “water-fearing”), and van der Waals interactions are individually weak, but collectively they have a very significant influence on the three-dimensional structures of proteins, nucleic acids, polysaccharides, and membrane lipids.

Hydrogen Bonding Gives Water Its Unusual Properties

Water has a higher melting point, boiling point, and heat of vaporization than most other common solvents (Table 2–1). These unusual properties are a consequence of attractions between adjacent water molecules that give liquid water great internal cohesion. A look at the electron structure of the H₂O molecule reveals the cause of these intermolecular attractions.

Each hydrogen atom of a water molecule shares an electron pair with the central oxygen atom. The geometry of the molecule is dictated by the shapes of the outer electron orbitals of the oxygen atom, which are similar to the sp³ bonding orbitals of carbon (see Fig. 1–14). These orbitals describe a rough tetrahedron, with a hydrogen atom at each of two corners and unshared electron pairs at the other two corners (Fig. 2–1a). The H—O—H bond angle is 104.5°, slightly less than the 109.5° of a perfect tetrahedron because of crowding by the nonbonding orbitals of the oxygen atom.

The oxygen nucleus attracts electrons more strongly than does the hydrogen nucleus (a proton); that is, oxygen is more electronegative. This means that the shared
electrons are more often in the vicinity of the oxygen atom than of the hydrogen. The result of this unequal electron sharing is two electric dipoles in the water molecule, one along each of the \(\text{H} - \text{O} \) bonds; each hydrogen bears a partial positive charge (\(\delta^+ \)), and the oxygen atom bears a partial negative charge equal in magnitude to the sum of the two partial positives (\(2\delta^- \)). As a result, there is an electrostatic attraction between the oxygen atom of one water molecule and the hydrogen of another (Fig. 2-1b), called a hydrogen bond. Throughout this book, we represent hydrogen bonds with three parallel blue lines, as in Figure 2-1b.

Hydrogen bonds are relatively weak. Those in liquid water have a bond dissociation energy (the energy required to break a bond) of about 23 kJ/mol, compared with 470 kJ/mol for the covalent \(\text{O} - \text{H} \) bond in water or 348 kJ/mol for a covalent \(\text{C} - \text{C} \) bond. The hydrogen bond is about 10% covalent, due to overlaps in the bonding orbitals, and about 90% electrostatic. At room temperature, the thermal energy of an aqueous solution (the kinetic energy of motion of the individual atoms and molecules) is of the same order of magnitude as that required to break hydrogen bonds. When water is heated, the increase in temperature reflects the faster motion of individual water molecules. At any given time, most of the molecules in liquid water are hydrogen bonded, but the lifetime of each hydrogen bond is just 1 to 20 picoseconds (1 ps : 10\(^{-12}\) s); when one hydrogen bond breaks, another hydrogen bond forms, with the same partner or a new one, within 0.1 ps. The apt phrase “flickering clusters” has been applied to the short-lived groups of water molecules interlinked by hydrogen bonds in liquid water. The sum of all the hydrogen bonds between \(\text{H}_2\text{O} \) molecules confers great internal cohesion on liquid water. Extended networks of hydrogen-bonded water molecules also form bridges between solutes (proteins and nucleic acids, for example) that allow the larger molecules to interact with each other over distances of several nanometers without physically touching.

The nearly tetrahedral arrangement of the orbitals about the oxygen atom (Fig. 2-1a) allows each water molecule to form hydrogen bonds with as many as four neighboring water molecules. In liquid water at room temperature and atmospheric pressure, however, water molecules are disorganized and in continuous motion, so that each molecule forms hydrogen bonds with an average of only 3.4 other molecules. In ice, on the other hand, each water molecule is fixed in space and forms hydrogen bonds with a full complement of four other water molecules to yield a regular lattice structure (Fig. 2-2). Breaking a sufficient proportion of hydrogen bonds to destabilize the crystal lattice of ice requires much thermal energy, which accounts for the relatively high melting

Table 2-1: Melting Point, Boiling Point, and Heat of Vaporization of Some Common Solvents

<table>
<thead>
<tr>
<th>Compound</th>
<th>Melting Point (°C)</th>
<th>Boiling Point (°C)</th>
<th>Heat of Vaporization (J/g)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0</td>
<td>100</td>
<td>2,260</td>
</tr>
<tr>
<td>Methanol ((\text{CH}_3\text{OH}))</td>
<td>-98</td>
<td>65</td>
<td>1,100</td>
</tr>
<tr>
<td>Ethanol ((\text{CH}_3\text{CH}_2\text{OH}))</td>
<td>-117</td>
<td>78</td>
<td>854</td>
</tr>
<tr>
<td>Propanol ((\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}))</td>
<td>-127</td>
<td>97</td>
<td>687</td>
</tr>
<tr>
<td>Butanol ((\text{CH}_3\text{(CH}_2\text{)}_2\text{CH}_2\text{OH}))</td>
<td>-90</td>
<td>117</td>
<td>590</td>
</tr>
<tr>
<td>Acetone ((\text{CH}_3\text{COCH}_3)</td>
<td>-95</td>
<td>56</td>
<td>523</td>
</tr>
<tr>
<td>Hexane ((\text{CH}_3\text{(CH}_2\text{)}_3\text{CH}_3)</td>
<td>-98</td>
<td>69</td>
<td>423</td>
</tr>
<tr>
<td>Benzene ((\text{C}_6\text{H}_6))</td>
<td>6</td>
<td>80</td>
<td>394</td>
</tr>
<tr>
<td>Butane ((\text{CH}_3\text{(CH}_2\text{)}_2\text{CH}_3)</td>
<td>-135</td>
<td>-0.5</td>
<td>381</td>
</tr>
<tr>
<td>Chloroform ((\text{CH}_3\text{Cl}))</td>
<td>-63</td>
<td>61</td>
<td>247</td>
</tr>
</tbody>
</table>

*The heat energy required to convert 1.0 g of a liquid at its boiling point and at atmospheric pressure into its gaseous state at the same temperature. It is a direct measure of the energy required to overcome attractive forces between molecules in the liquid phase.

FIGURE 2-1 Structure of the water molecule. (a) The dipolar nature of the \(\text{H}_2\text{O} \) molecule is shown in a ball-and-stick model; the dashed lines represent the nonbonding orbitals. There is a nearly tetrahedral arrangement of the outer-shell electron pairs around the oxygen atom; the two hydrogen atoms have localized partial positive charges (\(\delta^+ \)) and the oxygen atom has a partial negative charge (\(\delta^- \)). (b) Two \(\text{H}_2\text{O} \) molecules joined by a hydrogen bond (designated here, and throughout this book, by three blue lines) between the oxygen atom of the upper molecule and a hydrogen atom of the lower one. Hydrogen bonds are longer and weaker than covalent \(\text{O} - \text{H} \) bonds.
Hydrogen acceptor
Hydrogen donor

\[\text{Hydrogen acceptor} \]
\[\text{Hydrogen donor} \]

FIGURE 2-3 Common hydrogen bonds in biological systems. The hydrogen acceptor is usually oxygen or nitrogen; the hydrogen donor is another electronegative atom.

to carbon atoms do not participate in hydrogen bonding, because carbon is only slightly more electronegative than hydrogen and thus the C—H bond is only very weakly polar. The distinction explains why butanol (\(\text{CH}_3(\text{CH}_2)_2\text{CH}_2\text{OH} \)) has a relatively high boiling point of 117 °C, whereas butane (\(\text{CH}_3(\text{CH}_2)_2\text{CH}_3 \)) has a boiling point of only −0.5 °C. Butanol has a polar hydroxyl group and thus can form intermolecular hydrogen bonds. Uncharged but polar biomolecules such as sugars dissolve readily in water because of the stabilizing effect of hydrogen bonds between the hydroxyl groups or carbonyl oxygen of the sugar and the polar water molecules. Alcohols, aldehydes, ketones, and compounds containing N—H bonds all form hydrogen bonds with water molecules (Fig. 2-4) and tend to be soluble in water.

Between the hydroxyl group of an alcohol and water
Between the carbonyl group of a ketone and water
Between peptide groups in polypeptides

Water Forms Hydrogen Bonds with Polar Solutes

Hydrogen bonds are not unique to water. They readily form between an electronegative atom (the hydrogen acceptor, usually oxygen or nitrogen) and a hydrogen atom covalently bonded to another electronegative atom (the hydrogen donor) in the same or another molecule (Fig. 2–3). Hydrogen atoms covalently bonded

FIGURE 2-4 Some biologically important hydrogen bonds.

point of water (Table 2–1). When ice melts or water evaporates, heat is taken up by the system:

\[
\begin{align*}
\text{H}_2\text{O} \text{ (solid)} & \rightarrow \text{H}_2\text{O} \text{ (liquid)} & \Delta H &= +5.9 \text{ kJ/mol} \\
\text{H}_2\text{O} \text{ (liquid)} & \rightarrow \text{H}_2\text{O} \text{ (gas)} & \Delta H &= +44.0 \text{ kJ/mol}
\end{align*}
\]

During melting or evaporation, the entropy of the aqueous system increases as more highly ordered arrays of water molecules relax into the less orderly hydrogen-bonded arrays in liquid water or into the wholly disordered gaseous state. At room temperature, both the melting of ice and the evaporation of water occur spontaneously; the tendency of the water molecules to associate through hydrogen bonds is outweighed by the energetic push toward randomness. Recall that the free-energy change (\(\Delta G \)) must have a negative value for a process to occur spontaneously: \(\Delta G = \Delta H - T \Delta S \), where \(\Delta G \) represents the driving force, \(\Delta H \) the enthalpy change from making and breaking bonds, and \(\Delta S \) the change in randomness. Because \(\Delta H \) is positive for melting and evaporation, it is clearly the increase in entropy (\(\Delta S \)) that makes \(\Delta G \) negative and drives these changes.

Between the complementary bases of DNA

Thymine

Adenine
FIGURE 2-5 Directionality of the hydrogen bond. The attraction between the partial electric charges (see Fig. 2-1) is greatest when the three atoms involved in the bond (in this case O, H, and O) lie in a straight line. When the hydrogen-bonded moieties are structurally constrained (when they are parts of a single protein molecule, for example), this ideal geometry may not be possible and the resulting hydrogen bond is weaker.

Hydrogen bonds are strongest when the bonded molecules are oriented to maximize electrostatic interaction, which occurs when the hydrogen atom and the two atoms that share it are in a straight line—that is, when the acceptor atom is in line with the covalent bond between the donor atom and H (Fig. 2-5), putting the positive charge of the hydrogen ion directly between the two partial negative charges. Hydrogen bonds are thus highly directional and capable of holding two hydrogen-bonded molecules or groups in a specific geometric arrangement. As we shall see later, this property of hydrogen bonds confers very precise three-dimensional structures on protein and nucleic acid molecules, which have many intramolecular hydrogen bonds.

Water Interacts Electrostatically with Charged Solutes

Water is a polar solvent. It readily dissolves most biomolecules, which are generally charged or polar compounds (Table 2-2); compounds that dissolve easily in water are hydrophilic (Greek, “water-loving”). In contrast, nonpolar solvents such as chloroform and benzene are poor solvents for polar biomolecules but easily dissolve those that are hydrophobic—nonpolar molecules such as lipids and waxes.

Water dissolves salts such as NaCl by hydrating and stabilizing the Na+ and Cl− ions, weakening the electrostatic interactions between them and thus counteracting their tendency to associate in a crystalline lattice (Fig. 2-6). The same factors apply to charged biomolecules, compounds with functional groups such as ionized carboxylic acids (−COO−), protonated amines (−NH3+), and phosphate esters or anhydrides. Water readily dissolves such compounds by replacing solute-solute hydrogen bonds with solute-water hydrogen bonds, thus screening the electrostatic interactions between solute molecules.

Water is effective in screening the electrostatic interactions between dissolved ions because it has a high dielectric constant, a physical property that reflects the number of dipoles in a solvent. The strength, or force (F), of ionic interactions in a solution depends on the magnitude of the charges (Q), the distance between the charged groups (r), and the dielectric constant (ε, which is dimensionless) of the solvent in which the interactions occur:

\[F = \frac{Q_1 Q_2}{\varepsilon r^2} \]

For water at 25 °C, ε is 78.5, and for the very nonpolar solvent benzene, ε is 4.6. Thus, ionic interactions between dissolved ions are much stronger in less polar environments. The dependence on \(r^2 \) is such that ionic attractions or repulsions operate only over short distances—in the range of 10 to 40 nm (depending on the electrolyte concentration) when the solvent is water.
Entropy Increases as Crystalline Substances Dissolve

As a salt such as NaCl dissolves, the Na⁺ and Cl⁻ ions leaving the crystal lattice acquire far greater freedom of motion (Fig. 2-6). The resulting increase in entropy (randomness) of the system is largely responsible for the ease of dissolving salts such as NaCl in water. In thermodynamic terms, formation of the solution occurs with a favorable free-energy change: \(\Delta G = \Delta H - T \Delta S \), where \(\Delta H \) has a small positive value and \(T \Delta S \) a large positive value; thus \(\Delta G \) is negative.

Nonpolar Gases Are Poorly Soluble in Water

The molecules of the biologically important gases CO₂, O₂, and N₂ are nonpolar. In O₂ and N₂, electrons are shared equally by both atoms. In CO₂, each C=O bond is polar, but the two dipoles are oppositely directed and cancel each other (Table 2-3). The movement of molecules from the disordered gas phase into aqueous solution constrains their motion and the motion of water molecules and therefore represents a decrease in entropy. The nonpolar nature of these gases and the decrease in entropy when they enter solution combine to make them very poorly soluble in water (Table 2-3). Some organisms have water-soluble “carrier proteins” (hemoglobin and myoglobin, for example) that facilitate the transport of O₂. Carbon dioxide forms carbonic acid (H₂CO₃) in aqueous solution and is transported as the HCO₃⁻ (bicarbonate) ion, either free—bicarbonate is very soluble in water (~100 g/L at 25 °C)—or bound to hemoglobin. Three other gases, NH₃, NO, and H₂S, also have biological roles in some organisms; these gases are polar, dissolve readily in water, and ionize in aqueous solution.

Nonpolar Compounds Force Energetically Unfavorable Changes in the Structure of Water

When water is mixed with benzene or hexane, two phases form; neither liquid is soluble in the other. Nonpolar compounds such as benzene and hexane are hydrophobic—they are unable to undergo energetically favorable interactions with water molecules, and they interfere with the hydrogen bonding among water.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Structure*</th>
<th>Polarity</th>
<th>Solubility in Water (g/L)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>N≡N</td>
<td>Nonpolar</td>
<td>0.018 (40 °C)</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O=O</td>
<td>Nonpolar</td>
<td>0.035 (50 °C)</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>N=O</td>
<td>Nonpolar</td>
<td>0.97 (45 °C)</td>
</tr>
<tr>
<td>Ammonia</td>
<td>N(\text{H}_3)</td>
<td>Polar</td>
<td>900 (10 °C)</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>H(\text{S})</td>
<td>Polar</td>
<td>1,860 (40 °C)</td>
</tr>
</tbody>
</table>

*The arrows represent electric dipoles; there is a partial negative charge \((\delta^-) \) at the head of the arrow, a partial positive charge \((\delta^+) \); not shown here) at the tail.

†Note that polar molecules dissolve far better even at low temperatures than do nonpolar molecules at relatively high temperatures.
molecules. All molecules or ions in aqueous solution interfere with the hydrogen bonding of some water molecules in their immediate vicinity, but polar or charged solutes (such as NaCl) compensate for lost water-water hydrogen bonds by forming new solute-water interactions. The net change in enthalpy (ΔH) for dissolving these solutes is generally small. Hydrophobic solutes, however, offer no such compensation, and their addition to water may therefore result in a small gain of enthalpy; the breaking of hydrogen bonds between water molecules takes up energy from the system, requiring the input of energy from the surroundings. In addition to requiring this input of energy, dissolving hydrophobic compounds in water produces a measurable decrease in entropy. Water molecules in the immediate vicinity of a nonpolar solute are constrained in their possible orientations as they form a highly ordered cagelike shell around each solute molecule. These water molecules are not as highly oriented as those in clathrates, crystalline compounds of nonpolar solutes and water, but the effect is the same in both cases: the ordering of water molecules reduces entropy. The number of ordered water molecules, and therefore the magnitude of the entropy decrease, is proportional to the surface area of the hydrophobic solute enclosed within the cage of water molecules. The free-energy change for dissolving a nonpolar solute in water is thus unfavorable: $\Delta G = \Delta H - T \Delta S$, where ΔH has a positive value, ΔS has a negative value, and ΔG is positive.

Amphipathic compounds contain regions that are polar (or charged) and regions that are nonpolar (Table 2-2). When an amphipathic compound is mixed with water, the polar, hydrophilic region interacts favorably with the solvent and tends to dissolve, but the nonpolar, hydrophobic region tends to avoid contact with the water (Fig. 2-7a). The nonpolar regions of the molecules cluster together to present the smallest hydrophobic area to the aqueous solvent, and the polar regions are arranged to maximize their interaction with the solvent (Fig. 2-7b). These stable structures of amphipathic compounds in water, called micelles, may contain hundreds or thousands of molecules. The forces

![Amphipathic compounds in aqueous solution](image)

Figure 2-7 Amphipathic compounds in aqueous solution. (a) Long-chain fatty acids have very hydrophobic alkyl chains, each of which is surrounded by a layer of highly ordered water molecules. (b) By clustering together in micelles, the fatty acid molecules expose the smallest possible hydrophobic surface area to the water, and fewer water molecules are required in the shell of ordered water. The energy gained by freeing immobilized water molecules stabilizes the micelle.
that hold the nonpolar regions of the molecules together are called **hydrophobic interactions**. The strength of hydrophobic interactions is not due to any intrinsic attraction between nonpolar moieties. Rather, it results from the system's achieving greatest thermodynamic stability by minimizing the number of ordered water molecules required to surround hydrophobic portions of the solute molecules.

Many biomolecules are amphipathic; proteins, pigments, certain vitamins, and the sterols and phospholipids of membranes all have both polar and nonpolar surface regions. Structures composed of these molecules are stabilized by hydrophobic interactions among the nonpolar regions. Hydrophobic interactions among lipids, and between lipids and proteins, are the most important determinants of structure in biological membranes. Hydrophobic interactions between nonpolar amino acids also stabilize the three-dimensional structures of proteins.

Hydrogen bonding between water and polar solutes also causes an ordering of water molecules, but the energetic effect is less significant than with nonpolar solutes. Part of the driving force for binding of a polar substrate (reactant) to the complementary polar surface of an enzyme is the entropy increase as the enzyme displaces ordered water from the substrate, and as the substrate displaces ordered water from the enzyme surface (Fig. 2–8).

van der Waals Interactions Are Weak Interatomic Attractions

When two uncharged atoms are brought very close together, their surrounding electron clouds influence each other. Random variations in the positions of the electrons around one nucleus may create a transient electric dipole, which induces a transient, opposite electric dipole in the nearby atom. The two dipoles weakly attract each other, bringing the two nuclei closer. These weak attractions are called **van der Waals interactions** (also known as London forces). As the two nuclei draw closer together, their electron clouds begin to repel each other. At the point where the net attraction is maximal, the nuclei are said to be in van der Waals contact. Each atom has a characteristic **van der Waals radius**, a measure of how close that atom will allow another to approach (Table 2–4). In the “space-filling” molecular models shown throughout this book, the atoms are depicted in sizes proportional to their van der Waals radii.

TABLE 2–4 van der Waals Radii and Covalent (Single-Bond) Radii of Some Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>van der Waals Radii (nm)</th>
<th>Covalent radius for single bond (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.11</td>
<td>0.030</td>
</tr>
<tr>
<td>O</td>
<td>0.15</td>
<td>0.066</td>
</tr>
<tr>
<td>N</td>
<td>0.15</td>
<td>0.070</td>
</tr>
<tr>
<td>C</td>
<td>0.17</td>
<td>0.077</td>
</tr>
<tr>
<td>S</td>
<td>0.18</td>
<td>0.104</td>
</tr>
<tr>
<td>P</td>
<td>0.19</td>
<td>0.110</td>
</tr>
<tr>
<td>I</td>
<td>0.21</td>
<td>0.133</td>
</tr>
</tbody>
</table>

Notes: van der Waals radii describe the space-filling dimensions of atoms. When two atoms are joined covalently, the atomic radii at the point of bonding are less than the van der Waals radii, because the joined atoms are pulled together by the shared electron pair. The distance between nuclei in a van der Waals interaction or a covalent bond is about equal to the sum of the van der Waals or covalent radii, respectively, for the two atoms. Thus the length of a carbon–carbon single bond is about 0.077 nm + 0.077 nm = 0.154 nm.
Weak Interactions Are Crucial to Macromolecular Structure and Function

The noncovalent interactions we have described—hydrogen bonds and ionic, hydrophobic, and van der Waals interactions (Table 2-5)—are much weaker than covalent bonds. An input of about 350 kJ of energy is required to break a mole (6 x 10^23) of C—C single bonds, and about 410 kJ to break a mole of C—H bonds, but as little as 4 kJ is sufficient to disrupt a mole of typical van der Waals interactions. Hydrophobic interactions are also much weaker than covalent bonds, although they are substantially strengthened by a highly polar solvent (a concentrated salt solution, for example). Ionic interactions and hydrogen bonds are variable in strength, depending on the polarity of the solvent and the alignment of the hydrogen-bonded atoms, but they are always significantly weaker than covalent bonds. In aqueous solvent at 25 °C, the available thermal energy can be of the same order of magnitude as the strength of these weak interactions, and the interaction between solute and solvent (water) molecules is nearly as favorable as solute-solute interactions. Consequently, hydrogen bonds and ionic, hydrophobic, and van der Waals interactions are continually forming and breaking.

Although these four types of interactions are individually weak relative to covalent bonds, the cumulative effect of many such interactions can be very significant. For example, the noncovalent binding of an enzyme to its substrate may involve several hydrogen bonds and one or more ionic interactions, as well as hydrophobic and van der Waals interactions. The formation of each of these weak bonds contributes to a net decrease in the free energy of the system. We can calculate the stability of a noncovalent interaction, such as that of a small molecule hydrogen-bonded to its macromolecular partner, from the binding energy. Stability, as measured by the equilibrium constant (see below) of the binding reaction, varies exponentially with binding energy. The dissociation of two biomolecules (such as an enzyme and its bound substrate) that are associated noncovalently through multiple weak interactions requires all these interactions to be disrupted at the same time. Because the interactions fluctuate randomly, such simultaneous disruptions are very unlikely. The molecular stability bestowed by 5 or 20 weak interactions is therefore much greater than would be expected intuitively from a simple summation of small binding energies.

Macromolecules such as proteins, DNA, and RNA contain so many sites of potential hydrogen bonding or ionic, van der Waals, or hydrophobic interactions that the cumulative effect of the many small binding forces can be enormous. For macromolecules, the most stable (that is, the native) structure is usually that in which weak interactions are maximized. The folding of a single polypeptide or polynucleotide chain into its three-dimensional shape is determined by this principle. The binding of an antigen to a specific antibody depends on the cumulative effects of many weak interactions. As noted earlier, the energy released when an enzyme binds noncovalently to its substrate is the main source of the enzyme’s catalytic power. The binding of a hormone or a neurotransmitter to its cellular receptor protein is the result of multiple weak interactions. One consequence of the large size of enzymes and receptors (relative to their substrates or ligands) is that their extensive surfaces provide many opportunities for weak interactions. At the molecular level, the complementarity between interacting biomolecules reflects the complementarity and weak interactions between polar, charged, and hydrophobic groups on the surfaces of the molecules.

When the structure of a protein such as hemoglobin (Fig. 2-9) is determined by x-ray crystallography (see Box 4-5, p. 132), water molecules are often found to be bound so tightly that they are part of the crystal structure; the same is true for water in crystals of RNA or DNA. These bound water molecules, which can also be detected in aqueous solutions by nuclear magnetic resonance, have distinctly different properties from those of the “bulk” water of the solvent. They are, for example, not osmotically active (see below). For many proteins, tightly bound water molecules are essential to their function. In a reaction central to the process of photosynthesis, for example, light drives protons across a biological membrane as electrons flow through a series of electron-carrying proteins (see Fig. 19–60). One of these proteins, cytochrome f, has a chain of five bound water molecules (Fig. 2-10) that may provide a path for protons to move through the membrane by a process

| TABLE 2-5 Four Types of Noncovalent (“Weak”) Interactions among Biomolecules in Aqueous Solvent |

<table>
<thead>
<tr>
<th>Interaction Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen bonds</td>
<td>Between neutral groups</td>
</tr>
<tr>
<td></td>
<td>Between peptide bonds</td>
</tr>
<tr>
<td>Ionic interactions</td>
<td>Attraction</td>
</tr>
<tr>
<td></td>
<td>Repulsion</td>
</tr>
<tr>
<td>Hydrophobic interactions</td>
<td>Any two atoms in close proximity</td>
</tr>
<tr>
<td>van der Waals interactions</td>
<td></td>
</tr>
</tbody>
</table>
Solutes Affect the Colligative Properties of Aqueous Solutions

Solutes of all kinds alter certain physical properties of the solvent, water: its vapor pressure, boiling point, melting point (freezing point), and osmotic pressure. These are called **colligative properties** (colligative meaning “tied together”), because the effect of solutes on all four properties has the same basis: the concentration of water is lower in solutions than in pure water. The effect of solute concentration on the colligative properties of water is independent of the chemical properties of the solute; it depends only on the **number** of solute particles (molecules, ions) in a given amount of water. A compound such as NaCl, which dissociates in solution, has an effect on osmotic pressure, for example, that is twice that of an equal number of moles of a nondissociating solute such as glucose.

Water molecules tend to move from a region of higher water concentration to one of lower water concentration, in accordance with the tendency in nature for a system to become disordered. When two different aqueous solutions are separated by a semipermeable membrane (one that allows the passage of water but not solute molecules), water molecules diffusing from the region of higher water concentration to the region of lower water concentration produce osmotic pressure (Fig. 2-11). This pressure, \(\Pi \), measured as the force

FIGURE 2-9 Water binding in hemoglobin. (PDB ID 1A3N) The crystal structure of hemoglobin, shown (a) with bound water molecules (red spheres) and (b) without the water molecules. The water molecules are so firmly bound to the protein that they affect the x-ray diffraction pattern as though they were fixed parts of the crystal. The two \(\alpha \) subunits of hemoglobin are shown in gray, the two \(\beta \) subunits in blue. Each subunit has a bound heme group (red stick structure), visible only in the \(\beta \) subunits in this view. The structure and function of hemoglobin are discussed in detail in Chapter 5.

known as “proton hopping” (described below). Another such light-driven proton pump, bacteriorhodopsin, almost certainly uses a chain of precisely oriented bound water molecules in the transmembrane movement of protons (see Fig. 19-67).

FIGURE 2-10 Water chain in cytochrome \(f \). Water is bound in a proton channel of the membrane protein cytochrome \(f \), which is part of the energy-trapping machinery of photosynthesis in chloroplasts (see Fig. 19-64). Five water molecules are hydrogen-bonded to each other and to functional groups of the protein: the peptide backbone atoms of valine, proline, arginine, and alanine residues, and the side chains of three asparagine and two glutamine residues. The protein has a bound heme (see Fig. 5-1), its iron ion facilitating electron flow during photosynthesis. Electron flow is coupled to the movement of protons across the membrane, which probably involves “proton hopping” (see Fig. 2-13) through this chain of bound water molecules.
necessary to resist water movement (Fig. 2-11c), is approximated by the van't Hoff equation:

$$\Pi = icRT$$

in which R is the gas constant and T is the absolute temperature. The term ic is the osmolarity of the solution, the product of the van't Hoff factor i, which is a measure of the extent to which the solute dissociates into two or more ionic species, and the solute’s molar concentration c. In dilute NaCl solutions, the solute completely dissociates into Na$^+$ and Cl$^-$, doubling the number of solute particles, and thus $i = 2$. For all nonionizing solutes, $i = 1$. For solutions of several (n) solutes, Π is the sum of the contributions of each species:

$$\Pi = RT (i_1c_1 + i_2c_2 + \cdots + i_nc_n)$$

Osmosis, water movement across a semipermeable membrane driven by differences in osmotic pressure, is an important factor in the life of most cells. Plasma membranes are more permeable to water than to most other small molecules, ions, and macromolecules. This permeability is due largely to protein channels (aquaporins; see Fig. 11-46) in the membrane that selectively permit the passage of water. Solutions of osmolarity equal to that of a cell's cytosol are said to be isotonic relative to that cell. Surrounded by an isotonic solution, a cell neither gains nor loses water (Fig. 2-12). In a hypertonic solution, one with higher osmolarity than that of the cytosol, the cell shrinks as water moves out. In a hypotonic solution, one with a lower osmolarity than the cytosol, the cell swells as water enters. In their natural environments, cells generally contain higher concentrations of biomolecules and ions than their surroundings, so osmotic pressure tends to drive water into cells. If not somehow counterbalanced, this inward movement of water would distend the plasma membrane and eventually cause bursting of the cell (osmotic lysis).

Several mechanisms have evolved to prevent this catastrophe. In bacteria and plants, the plasma membrane is surrounded by a nonexpandable cell wall of sufficient rigidity and strength to resist osmotic pressure and prevent osmotic lysis. Certain freshwater protists that live in a highly hypotonic medium have an organelle (contractile vacuole) that pumps water out of the cell. In multicellular animals, blood plasma and interstitial fluid (the extracellular fluid of tissues) are maintained at an osmolarity close to that of the cytosol. The high concentration of albumin and other proteins in blood plasma contributes to its osmolarity. Cells also actively pump out Na$^+$ and other ions into the interstitial fluid to stay in osmotic balance with their surroundings.

Because the effect of solutes on osmolarity depends on the *number* of dissolved particles, not their *mass*, macromolecules (proteins, nucleic acids, polysaccharides) have far less effect on the osmolarity of a solution than would an equal mass of their monomeric compo-

FIGURE 2–12 Effect of extracellular osmolarity on water movement across a plasma membrane. When a cell in osmotic balance with its surrounding medium—that is, a cell in (a) an isotonic medium—is transferred into (b) a hypertonic solution or (c) a hypotonic solution, water moves across the plasma membrane in the direction that tends to equalize osmolarity outside and inside the cell.

nents. For example, a *gram* of a polysaccharide composed of 1,000 glucose units has the same effect on osmolarity as a *milligram* of glucose. Storing fuel as polysaccharides (starch or glycogen) rather than as glucose or other simple sugars avoids an enormous increase in osmotic pressure in the storage cell.

Plants use osmotic pressure to achieve mechanical rigidity. The very high solute concentration in the plant cell vacuole draws water into the cell (Fig. 2-12), but the nonexpandable cell wall prevents swelling; instead, the pressure exerted against the cell wall (turgor pressure) increases, stiffening the cell, the tissue, and the plant body. When the lettuce in your salad wilts, it is because loss of water has reduced turgor pressure. Osmosis also has consequences for laboratory protocols. Mitochondria, chloroplasts, and lysosomes, for example, are enclosed by semipermeable membranes. In isolating these organelles from broken cells, biochemists must perform the fractionations in isotonic solutions (see Fig. 1–8) to prevent excessive entry of water into the organelles and the swelling and bursting that would follow. Buffers used in cellular fractionations commonly contain sufficient concentrations of sucrose or some other inert solute to protect the organelles from osmotic lysis.
WORKED EXAMPLE 2-1 Osmotic Strength of an Organelle I

Suppose the major solutes in intact lysosomes are KCl (~0.1 M) and NaCl (~0.03 M). When isolating lysosomes, what concentration of sucrose is required in the extracting solution at room temperature (25 °C) to prevent swelling and lysis?

Solution: We want to find a concentration of sucrose that gives an osmotic strength equal to that produced by the KCl and NaCl in the lysosomes. The equation for calculating osmotic strength (the van’t Hoff equation) is

$$\Pi = RT\left(i_1c_1 + i_2c_2 + i_3c_3 + \cdots + i_nc_n\right)$$

where R is the gas constant 8.315 J/mol · K, T is the absolute temperature (Kelvin), c1, c2, and c3 are the molar concentrations of each solute, and i1, i2, and i3 are the numbers of particles each solute yields in solution (i = 2 for KCl and NaCl).

The osmotic strength of the lysosomal contents is

$$\Pi_{lyosome} = RT\left(i_{KCl}c_{KCl} + i_{NaCl}c_{NaCl}\right)$$

$$= RT[(2)(0.03 \text{ mol/L}) + (2)(0.1 \text{ mol/L})] = RT(0.26 \text{ mol/L})$$

Because the solute concentrations are only accurate to one significant figure, this becomes $$\Pi_{lyosome} = RT(0.3 \text{ mol/L})$$.

The osmotic strength of a sucrose solution is given by

$$\Pi_{sucrose} = RT\left(i_{sucrose}c_{sucrose}\right)$$

In this case, $$i_{sucrose} = 1$$, because sucrose does not ionize. Thus,

$$\Pi_{sucrose} = RT(c_{sucrose})$$

The osmotic strength of the lysosomal contents equals that of the sucrose solution when

$$\Pi_{sucrose} = \Pi_{lyosome}$$

$$RT(c_{sucrose}) = RT(0.3 \text{ mol/L})$$

$$c_{sucrose} = 0.3 \text{ mol/L}$$

So the required concentration of sucrose (FW 342) is (0.3 mol/L)(342 g/mol) = 102.6 g/L. Or, when significant figures are taken into account, $$c_{sucrose} = 0.1 \text{ kg/L}$$.

WORKED EXAMPLE 2-2 Osmotic Strength of an Organelle II

Suppose we decided to use a solution of a polysaccharide, say glycogen (see p. 246), to balance the osmotic strength of the lysosomes (described in Worked Example 2-1). Assuming a linear polymer of 100 glucose units, calculate the amount of this polymer needed to achieve the same osmotic strength as the sucrose solution in Worked Example 2-1. The Mw of the glucose polymer is ~18,000, and, like sucrose, it does not ionize in solution.

Solution: As derived in Worked Example 2-1,

$$\Pi_{sucrose} = RT(0.3 \text{ mol/L})$$

Similarly,

$$\Pi_{glycogen} = RT\left(i_{glycogen}c_{glycogen}\right) = RT(c_{glycogen})$$

For a glycogen solution with the same osmotic strength as the sucrose solution,

$$\Pi_{glycogen} = \Pi_{sucrose}$$

$$RT(c_{glycogen}) = RT(0.3 \text{ mol/L})$$

$$c_{glycogen} = 0.3 \text{ mol/L} = (0.3 \text{ mol/L})(18,000 \text{ g/mol}) = 5.4 \text{ kg/L}$$

Or, when significant figures are taken into account, $$c_{glycogen} = 5 \text{ kg/L}$$, an absurdly high concentration.

As we’ll see later (p. 246), cells of liver and muscle store carbohydrate not as low molecular weight sugars such as glucose or sucrose but as the high molecular weight polymer glycogen. This allows the cell to contain a large mass of glycogen with a minimal effect on the osmolarity of the cytosol.
SUMMARY 2.1 Weak Interactions in Aqueous Systems

- The very different electronegativities of H and O make water a highly polar molecule, capable of forming hydrogen bonds with itself and with solutes. Hydrogen bonds are fleeting, primarily electrostatic, and weaker than covalent bonds. Water is a good solvent for polar (hydrophilic) solutes, with which it forms hydrogen bonds, and for charged solutes, with which it interacts electrostatically.

- Nonpolar (hydrophobic) compounds dissolve poorly in water; they cannot hydrogen-bond with the solvent, and their presence forces an energetically unfavorable ordering of water molecules at their hydrophobic surfaces. To minimize the surface exposed to water, nonpolar compounds such as lipids form aggregates (micelles) in which the hydrophobic moieties are sequestered in the interior, associating through hydrophobic interactions, and only the more polar moieties interact with water.

- Weak, noncovalent interactions, in large numbers, decisively influence the folding of macromolecules such as proteins and nucleic acids. The most stable macromolecular conformations are those in which hydrogen bonding is maximized within the molecule and between the molecule and the solvent, and in which hydrophobic moieties cluster in the interior of the molecule away from the aqueous solvent.

- The physical properties of aqueous solutions are strongly influenced by the concentrations of solutes. When two aqueous compartments are separated by a semipermeable membrane (such as the plasma membrane separating a cell from its surroundings), water moves across that membrane to equalize the osmolarity in the two compartments. This tendency for water to move across a semipermeable membrane is the osmotic pressure.

2.2 Ionization of Water, Weak Acids, and Weak Bases

Although many of the solvent properties of water can be explained in terms of the uncharged H₂O molecule, the small degree of ionization of water to hydrogen ions (H⁺) and hydroxide ions (OH⁻) must also be taken into account. Like all reversible reactions, the ionization of water can be described by an equilibrium constant. When weak acids are dissolved in water, they contribute H⁺ by ionizing; weak bases consume H⁺ by becoming protonated. These processes are also governed by equilibrium constants. The total hydrogen ion concentration from all sources is experimentally measurable and is expressed as the pH of the solution. To predict the state of ionization of solutes in water, we must take into account the relevant equilibrium constants for each ionization reaction. We therefore turn now to a brief discussion of the ionization of water and of weak acids and bases dissolved in water.

Pure Water Is Slightly Ionized

Water molecules have a slight tendency to undergo reversible ionization to yield a hydrogen ion (a proton) and a hydroxide ion, giving the equilibrium

$$\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \quad (2-1)$$

Although we commonly show the dissociation product of water as H⁺, free protons do not exist in solution; hydrogen ions formed in water are immediately hydrated to hydronium ions (H₃O⁺). Hydrogen bonding between water molecules makes the hydration of dissociating protons virtually instantaneous:

$$\text{H}_2\text{O} + \text{H}^+ \rightarrow \text{H}_3\text{O}^+$$

The ionization of water can be measured by its electrical conductivity; pure water carries electrical current as H₃O⁺ migrates toward the cathode and OH⁻ toward the anode. The movement of hydronium and hydroxide ions in the electric field is extremely fast compared with that of other ions such as Na⁺, K⁺, and Cl⁻. This high ionic mobility results from the kind of “proton hopping” shown in Figure 2-13. No individual proton moves very far through the bulk solution, but a series of proton hops

FIGURE 2-13 Proton hopping. Short “hops” of protons between a series of hydrogen-bonded water molecules result in an extremely rapid net movement of a proton over a long distance. As a hydronium ion (upper left) gives up a proton, a water molecule some distance away (lower right) acquires one, becoming a hydronium ion. Proton hopping is much faster than true diffusion and explains the remarkably high ionic mobility of H⁺ ions compared with other monovalent cations such as Na⁺ and K⁺.
between hydrogen-bonded water molecules causes the net movement of a proton over a long distance in a remarkably short time. As a result of the high ionic mobility of H\(^+\) (and of OH\(^-\), which also moves rapidly by proton hopping, but in the opposite direction), acid-base reactions in aqueous solutions are exceptionally fast. As noted above, proton hopping very likely also plays a role in biological proton-transfer reactions (Fig. 2-10; see also Fig. 19–67).

Because reversible ionization is crucial to the role of water in cellular function, we must have a means of expressing the extent of ionization of water in quantitative terms. A brief review of some properties of reversible chemical reactions shows how this can be done.

The position of equilibrium of any chemical reaction is given by its equilibrium constant, \(K_{eq}\) (sometimes expressed simply as \(K\)). For the generalized reaction
\[
A + B \rightleftharpoons C + D
\]
an equilibrium constant can be defined in terms of the concentrations of reactants (A and B) and products (C and D) at equilibrium:
\[
K_{eq} = \frac{[C][D]}{[A][B]}
\]
Strictly speaking, the concentration terms should be the activities, or effective concentrations in nonideal solutions, of each species. Except in very accurate work, however, the equilibrium constant may be approximated by measuring the concentrations at equilibrium. For reasons beyond the scope of this discussion, equilibrium constants are dimensionless. Nonetheless, we have generally retained the concentration units (\(\text{mol/L}\)) in the equilibrium expressions used in this book to remind you that molarity is the unit of concentration used in calculating \(K_{eq}\).

The equilibrium constant is fixed and characteristic for any given chemical reaction at a specified temperature. It defines the composition of the final equilibrium mixture, regardless of the starting amounts of reactants and products. Conversely, we can calculate the equilibrium constant for a given reaction at a given temperature if the equilibrium concentrations of all its reactants and products are known. As we showed in Chapter 1 (p. 24), the standard free-energy change (\(\Delta G^\circ\)) is directly related to \(\ln K_{eq}\).

The Ionization of Water Is Expressed by an Equilibrium Constant

The degree of ionization of water at equilibrium (Eqn 2–1) is small; at 25 \(\text{°C}\) only about two of every \(10^6\) molecules in pure water are ionized at any instant. The equilibrium constant for the reversible ionization of water is
\[
K_{eq} = \frac{[H^+][OH^-]}{[H_2O]}
\]
In pure water at 25 \(\text{°C}\), the concentration of water is 55.5 \(\text{mol/L}\)—grams of \(\text{H}_2\text{O}\) in 1 L divided by its gram molecular weight: (1,000 \(\text{g/L})/(18.015 \text{g/mol}))—and is essentially constant in relation to the very low concentrations of H\(^+\) and OH\(^-\), namely, 1 \(\times\) \(10^{-7}\) \(\text{mol/L}\). Accordingly, we can substitute 55.5 \(\text{mol/L}\) in the equilibrium constant expression (Eqn 2–3) to yield
\[
K_{eq} = \frac{[H^+][OH^-]}{[H_2O]} = \frac{[H^+][OH^-]}{55.5 \text{mol/L}}
\]
On rearranging, this becomes
\[
K_w = \frac{[H^+][OH^-]}{[H_2O]} = K_{eq} = \frac{(55.5 \text{mol/L})(1.8 \times 10^{-16} \text{mol/L})}{1 \times 10^{-14} \text{mol}^2}
\]
Thus the product \([H^+][OH^-]\) in aqueous solutions at 25 \(\text{°C}\) always equals 1 \(\times\) \(10^{-14}\) \(\text{mol}^2\). When there are exactly equal concentrations of H\(^+\) and OH\(^-\), as in pure water, the solution is said to be at neutral \(\text{pH}\). At this \(\text{pH}\), the concentration of H\(^+\) and OH\(^-\) can be calculated from the ion product of water as follows:
\[
K_w = \frac{[H^+][OH^-]}{[H_2O]} = (55.5 \text{mol/L})(1.8 \times 10^{-16} \text{mol/L}) = 1.0 \times 10^{-14} \text{mol}^2
\]
Solving for \([H^+]\) gives
\[
[H^+] = \sqrt{K_w} = \sqrt{1 \times 10^{-14} \text{mol}^2} = 10^{-7} \text{mol/L}
\]
As the ion product of water is constant, whenever \([H^+]\) is greater than 1 \(\times\) \(10^{-7}\) \(\text{mol/L}\), \([\text{OH}^-]\) must be less than 1 \(\times\) \(10^{-7}\) \(\text{mol/L}\), and vice versa. When \([H^+]\) is very high, as in a solution of hydrochloric acid, \([\text{OH}^-]\) must be very low. From the ion product of water we can calculate \([H^+]\) if we know \([\text{OH}^-]\), and vice versa.

WORKED EXAMPLE 2–3 Calculation of \([H^+]\)

What is the concentration of H\(^+\) in a solution of 0.1 \(\text{mol/L}\) NaOH?

Solution: We begin with the equation for the ion product of water:
\[
K_w = [H^+][OH^-]
\]
With \([\text{OH}^-] = 0.1 \text{mol/L}\), solving for \([H^+]\) gives
\[
[H^+] = \frac{K_w}{[\text{OH}^-]} = \frac{1 \times 10^{-14} \text{mol}^2}{0.1 \text{mol/L}} = \frac{10^{-14} \text{mol}^2}{10^{-1} \text{mol/L}} = 10^{-13} \text{mol/L}
\]
WORKED EXAMPLE 2–4 Calculation of \([\text{OH}^-]\)

What is the concentration of \(\text{OH}^-\) in a solution with an \(\text{H}^+\) concentration of \(1.3 \times 10^{-4}\) M?

Solution: We begin with the equation for the ion product of water:

\[
K_w = [\text{H}^+][\text{OH}^-]
\]

With \([\text{H}^+] = 1.3 \times 10^{-4}\) M, solving for \([\text{OH}^-]\) gives

\[
[\text{OH}^-] = \frac{K_w}{[\text{H}^+]} = \frac{1 \times 10^{-14}}{0.0013} = \frac{10^{-14}}{1.3 \times 10^{-4}} M = 7.7 \times 10^{-11} M
\]

In all calculations be sure to round your answer to the correct number of significant figures, as here.

The pH Scale Designates the \(\text{H}^+\) and \(\text{OH}^-\) Concentrations

The ion product of water, \(K_w\), is the basis for the **pH scale** (Table 2–6). It is a convenient means of designating the concentration of \(\text{H}^+\) (and thus of \(\text{OH}^-\)) in any aqueous solution in the range between 1.0 M \(\text{H}^+\) and 1.0 M \(\text{OH}^-\). The term **pH** is defined by the expression

\[
\text{pH} = \log \frac{1}{[\text{H}^+]} = -\log [\text{H}^+]
\]

The symbol \(p\) denotes “negative logarithm of.” For a precisely neutral solution at 25 °C, in which the concentration of hydrogen ions is \(1.0 \times 10^{-7}\) M, the pH can be calculated as follows:

\[
\text{pH} = \log \frac{1}{1.0 \times 10^{-7}} = 7.0
\]

Note that the concentration of \(\text{H}^+\) must be expressed in molar (M) terms.

The value of 7 for the pH of a precisely neutral solution is not an arbitrarily chosen figure; it is derived from the absolute value of the ion product of water at 25 °C, which by convenient coincidence is a round number. Solutions having a pH greater than 7 are alkaline or basic; the concentration of \(\text{OH}^-\) is greater than that of \(\text{H}^+\). Conversely, solutions having a pH less than 7 are acidic.

Keep in mind that the pH scale is logarithmic, not arithmetic. To say that two solutions differ in pH by 1 pH unit means that one solution has ten times the \(\text{H}^+\) concentration of the other, but it does not tell us the absolute magnitude of the difference. **Figure 2–14** gives the pH values of some common aqueous fluids. A cola drink (pH 3.0) or red wine (pH 3.7) has an \(\text{H}^+\) concentration approximately 10,000 times that of blood (pH 7.4).

The pH of an aqueous solution can be approximately measured with various indicator dyes, including litmus, phenolphthalein, and phenol red, which undergo color changes as a proton dissociates from the dye molecule. Accurate determinations of pH in the chemical or

TABLE 2–6 The pH Scale

<table>
<thead>
<tr>
<th>([\text{H}^+]) (M)</th>
<th>pH</th>
<th>([\text{OH}^-]) (M)</th>
<th>pOH*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^0 (1)</td>
<td>0</td>
<td>10^-14</td>
<td>14</td>
</tr>
<tr>
<td>10^-1</td>
<td>1</td>
<td>10^-13</td>
<td>13</td>
</tr>
<tr>
<td>10^-2</td>
<td>2</td>
<td>10^-12</td>
<td>12</td>
</tr>
<tr>
<td>10^-3</td>
<td>3</td>
<td>10^-11</td>
<td>11</td>
</tr>
<tr>
<td>10^-4</td>
<td>4</td>
<td>10^-10</td>
<td>10</td>
</tr>
<tr>
<td>10^-5</td>
<td>5</td>
<td>10^-9</td>
<td>9</td>
</tr>
<tr>
<td>10^-6</td>
<td>6</td>
<td>10^-8</td>
<td>8</td>
</tr>
<tr>
<td>10^-7</td>
<td>7</td>
<td>10^-7</td>
<td>7</td>
</tr>
<tr>
<td>10^-8</td>
<td>8</td>
<td>10^-6</td>
<td>6</td>
</tr>
<tr>
<td>10^-9</td>
<td>9</td>
<td>10^-5</td>
<td>5</td>
</tr>
<tr>
<td>10^-10</td>
<td>10</td>
<td>10^-4</td>
<td>4</td>
</tr>
<tr>
<td>10^-11</td>
<td>11</td>
<td>10^-3</td>
<td>3</td>
</tr>
<tr>
<td>10^-12</td>
<td>12</td>
<td>10^-2</td>
<td>2</td>
</tr>
<tr>
<td>10^-13</td>
<td>13</td>
<td>10^-1</td>
<td>1</td>
</tr>
<tr>
<td>10^-14</td>
<td>14</td>
<td>10^0 (1)</td>
<td>0</td>
</tr>
</tbody>
</table>

The expression pOH is sometimes used to describe the basicity, or \(\text{OH}^-\) concentration, of a solution; pOH is defined by the expression pOH = \(-\log[\text{OH}^-]\), which is analogous to the expression for pH. Note that in all cases, pH + pOH = 14.
clinical laboratory are made with a glass electrode that is selectively sensitive to H⁺ concentration but insensitive to Na⁺, K⁺, and other cations. In a pH meter, the signal from the glass electrode placed in a test solution is amplified and compared with the signal generated by a solution of accurately known pH.

Measurement of pH is one of the most important and frequently used procedures in biochemistry. The pH affects the structure and activity of biological macromolecules; for example, the catalytic activity of enzymes is strongly dependent on pH (see Fig. 2-21). Measurements of the pH of blood and urine are commonly used in medical diagnoses. The pH of the blood plasma of people with severe, uncontrolled diabetes, for example, is often below the normal value of 7.4; this condition is called acidosis (described in more detail below). In certain other diseases the pH of the blood is higher than normal, a condition known as alkalosis. Extreme acidosis or alkalosis can be life-threatening.

Weak Acids and Bases Have Characteristic Acid Dissociation Constants

Hydrochloric, sulfuric, and nitric acids, commonly called strong acids, are completely ionized in dilute aqueous solutions; the strong bases NaOH and KOH are also completely ionized. Of more interest to biochemists is the behavior of weak acids and bases—those not completely ionized when dissolved in water. These are ubiquitous in biological systems and play important roles in metabolism and its regulation. The behavior of aqueous solutions of weak acids and bases is best understood if we first define some terms.

Acids may be defined as proton donors and bases as proton acceptors. A proton donor and its corresponding proton acceptor make up a conjugate acid-base pair (Fig. 2-15). Acetic acid (CH₃COOH), a proton donor, and the acetate anion (CH₃COO⁻), the corresponding proton acceptor, constitute a conjugate acid-base pair, related by the reversible reaction

\[
\text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}^+
\]

Each acid has a characteristic tendency to lose its proton in an aqueous solution. The stronger the acid, the greater its tendency to lose its proton. The tendency of any acid (HA) to lose a proton and form its conjugate base (A⁻) is defined by the equilibrium constant \(K_{eq}\) for the reversible reaction

\[
\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^-
\]

for which

\[
K_{eq} = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} = K_a
\]

FIGURE 2–15 Conjugate acid-base pairs consist of a proton donor and a proton acceptor. Some compounds, such as acetic acid and ammonium ion, are monoprotic; they can give up only one proton. Others are diprotic (carbonic acid and glycine) or triprotic (phosphoric acid). The dissociation reactions for each pair are shown where they occur along a pH gradient. The equilibrium or dissociation constant \(K_a\) and its negative logarithm, the pKₐ, are shown for each reaction. *For an explanation of apparent discrepancies in pKₐ values for carbonic acid (H₂CO₃), see p. 63.
Equilibrium constants for ionization reactions are usually called ionization constants or acid dissociation constants, often designated K_a. The dissociation constants of some acids are given in Figure 2-15. Stronger acids, such as phosphoric and carbonic acids, have larger ionization constants; weaker acids, such as monohydrogen phosphate (HPO_4^{2-}), have smaller ionization constants.

Also included in Figure 2-15 are values of pK_a^\prime, which is analogous to pH and is defined by the equation

$$pK_a^\prime = \log \frac{1}{K_a} = -\log K_a$$

The stronger the tendency to dissociate a proton, the stronger is the acid and the lower its pK_a. As we shall now see, the pK_a^\prime of any weak acid can be determined quite easily.

Titration Curves Reveal the pK_a^\prime of Weak Acids

Titration is used to determine the amount of an acid in a given solution. A measured volume of the acid is titrated with a solution of a strong base, usually sodium hydroxide (NaOH), of known concentration. The NaOH is added in small increments until the acid is consumed (neutralized), as determined with an indicator dye or a pH meter. The concentration of the acid in the original solution can be calculated from the volume and concentration of NaOH added.

A plot of pH against the amount of NaOH added (a titration curve) reveals the pK_a^\prime of the weak acid. Consider the titration of a 0.1 m solution of acetic acid with 0.1 m NaOH at 25 °C (Fig. 2-16). Two reversible equilibria are involved in the process (here, for simplicity, acetic acid is denoted HAc):

$$\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \quad (2-5)$$
$$\text{HAc} \rightleftharpoons \text{H}^+ + \text{Ac}^- \quad (2-6)$$

The equilibria must simultaneously conform to their characteristic equilibrium constants, which are, respectively,

$$K_w = [\text{H}^+][\text{OH}^-] = 1 \times 10^{-14} \text{ M}^2 \quad (2-7)$$
$$K_a = \frac{[\text{H}^+][\text{Ac}^-]}{[\text{HAc}]} = 1.74 \times 10^5 \text{ M} \quad (2-8)$$

At the beginning of the titration, before any NaOH is added, the acetic acid is already slightly ionized, to an extent that can be calculated from its ionization constant (Eqn 2-8).

As NaOH is gradually introduced, the added OH$^-$ combines with the free H$^+$ in the solution to form H$_2$O, to an extent that satisfies the equilibrium relationship in Equation 2-7. As free H$^+$ is removed, HAc dissociates further to satisfy its own equilibrium constant (Eqn 2-8). The net result as the titration proceeds is that more and more HAc ionizes, forming Ac$^-$, as the NaOH is added. At the midpoint of the titration, at which exactly 0.5 equivalent of NaOH has been added, one-half of the original acetic acid has undergone dissociation, so that the concentration of the proton donor, [HAc], now equals that of the proton acceptor, [Ac$^-$]. At this midpoint a very important relationship holds: the pH of the equimolar solution of acetic acid and acetate is exactly equal to the pK_a of acetic acid ($pK_a = 4.76$; Figs 2-15, 2-16). The basis for this relationship, which holds for all weak acids, will soon become clear.

As the titration is continued by adding further increments of NaOH, the remaining nondissociated acetic acid is gradually converted into acetate. The end point of the titration occurs at about pH 7.0: all the acetic acid has lost its protons to OH$^-$, to form H$_2$O and acetate. Throughout the titration the two equilibria (Eqns 2-5, 2-6) coexist, each always conforming to its equilibrium constant.

Figure 2-17 compares the titration curves of three weak acids with very different ionization constants: acetic acid ($pK_a = 4.76$); dihydrogen phosphate, H_2PO_4^- ($pK_a = 6.86$); and ammonium ion, NH_4^+ ($pK_a = 9.25$). Although the titration curves of these acids have the same shape, they are displaced along the pH axis because the three acids have different strengths. Acetic acid, with the highest K_a (lowest pK_a) of the three, is the

![Figure 2-16 The titration curve of acetic acid. After addition of each increment of NaOH to the acetic acid solution, the pH of the mixture is measured. This value is plotted against the amount of NaOH added, expressed as a fraction of the total NaOH required to convert all the acetic acid (CH_3COOH) to its deprotonated form, acetate (CH_3COO^-). The points so obtained yield the titration curve. Shown in the boxes are the predominant ionic forms at the points designated. At the midpoint of the titration, the concentrations of the proton donor and proton acceptor are equal, and the pH is numerically equal to the pK_a. The shaded zone is the useful region of buffering power, generally between 10% and 90% titration of the weak acid.](image-url)
The pH of an aqueous solution reflects, on a logarithmic scale, the concentration of hydrogen ions:

\[\text{pH} = \log \frac{1}{[H^+]} = -\log [H^+] \]

- The greater the acidity of a solution, the lower its pH. Weak acids partially ionize to release a hydrogen ion, thus lowering the pH of the aqueous solution. Weak bases accept a hydrogen ion, increasing the pH. The extent of these processes is characteristic of each particular weak acid or base and is expressed as an acid dissociation constant:

\[K_{eq} = \frac{[H^+][A^-]}{[HA]} = K_a \]

- The pK_a expresses, on a logarithmic scale, the relative strength of a weak acid or base:

\[pK_a = \log \frac{1}{K_a} = -\log K_a \]

- The stronger the acid, the lower its pK_a; the stronger the base, the higher its pK_a. The pK_a can be determined experimentally; it is the pH at the midpoint of the titration curve for the acid or base.

2.3 Buffering against pH Changes in Biological Systems

Almost every biological process is pH-dependent; a small change in pH produces a large change in the rate of the process. This is true not only for the many reactions in which the H^+ ion is a direct participant, but also for those in which there is no apparent role for H^+ ions. The enzymes that catalyze cellular reactions, and many of the molecules on which they act, contain ionizable groups with characteristic pK_a values. The protonated amino and carboxyl groups of amino acids and the phosphate groups of nucleotides, for example, function as weak acids; their ionic state is determined by the pH of the surrounding medium. (When an ionizable group is sequestered in the middle of a protein, away from the aqueous solvent, its pK_a, or apparent pK_a, can be significantly different from its pK_a in water.) As we noted above, ionic interactions are among the forces that stabilize a protein molecule and allow an enzyme to recognize and bind its substrate.

Cells and organisms maintain a specific and constant cytosolic pH, usually near pH 7, keeping biomolecules in their optimal ionic state. In multicellular organisms, the pH of extracellular fluids is also tightly regulated. Constancy of pH is achieved primarily by biological buffers: mixtures of weak acids and their conjugate bases.

Buffers Are Mixtures of Weak Acids and Their Conjugate Bases

Buffers are aqueous systems that tend to resist changes in pH when small amounts of acid (H^+) or base...
Acetic acid
(CH₃COOH)

Acetate
(CH₃COO⁻)

\[K_w = \frac{[H^+][OH^-]}{[HA]} \]

Figure 2-18 The acetic acid—acetate pair as a buffer system. The system is capable of absorbing either H⁺ or OH⁻ through the reversibility of the dissociation of acetic acid. The proton donor, acetic acid (HAc), contains a reserve of bound H⁺, which can be released to neutralize an addition of OH⁻ to the system, forming H₂O. This happens because the product [H⁺][OH⁻] transiently exceeds K_w (1 x 10⁻¹⁴ M²). The equilibrium quickly adjusts to restore the product to 1 x 10⁻¹⁴ M² (at 25 °C), thus transiently reducing the concentration of H⁺. But now the quotient [H⁺][Ac⁻]/[HAc] is less than K_a, so HAc dissociates further to restore equilibrium. Similarly, the conjugate base, AC⁻, reacts with H⁺ ions added to the system: again, the two ionization reactions simultaneously come to equilibrium. Thus a conjugate acid-base pair, such as acetic acid and acetate ion, tends to resist a change in pH when small amounts of acid or base are added. Buffering action is simply the consequence of two reversible reactions taking place simultaneously and reaching their points of equilibrium as governed by their equilibrium constants, K_w and K_a.

(OH⁻) are added. A buffer system consists of a weak acid (the proton donor) and its conjugate base (the proton acceptor). As an example, a mixture of equal concentrations of acetic acid and acetate ion, found at the midpoint of the titration curve in Figure 2-16, is a buffer system. Notice that the titration curve of acetic acid has a relatively flat zone extending about 1 pH unit on either side of its midpoint pH of 4.76. In this zone, a given amount of H⁺ or OH⁻ added to the system has much less effect on pH than the same amount added outside the zone. This relatively flat zone is the **buffering region** of the acetic acid–acetate buffer pair. At the midpoint of the buffering region, where the concentration of the proton donor (acetic acid) exactly equals that of the proton acceptor (acetate), the buffering power of the system is maximal; that is, its pH changes least on addition of H⁺ or OH⁻. The pH at this point in the titration curve of acetic acid is equal to its pK_a. The pH of the acetate buffer system does change slightly when a small amount of H⁺ or OH⁻ is added, but this change is very small compared with the pH change that would result if the same amount of H⁺ or OH⁻ were added to pure water or to a solution of the salt of a strong acid and strong base, such as NaCl, which has no buffering power.

Buffering results from two reversible reaction equilibria occurring in a solution of nearly equal concentrations of a proton donor and its conjugate proton acceptor. **Figure 2-18** explains how a buffer system works. Whenever H⁺ or OH⁻ is added to a buffer, the result is a small change in the ratio of the relative concentrations of the weak acid and its anion and thus a small change in pH. The decrease in concentration of one component of the system is balanced exactly by an increase in the other. The sum of the buffer components does not change, only their ratio.

Each conjugate acid-base pair has a characteristic pH zone in which it is an effective buffer (Fig. 2-17). The H₂PO₄⁻/HPO₄²⁻ pair has a pK_a of 6.86 and thus can serve as an effective buffer system between approximately pH 5.9 and pH 7.9; the NH₃⁻/NH₄⁺ pair, with a pK_a of 9.25, can act as a buffer between approximately pH 8.3 and pH 10.3.

The Henderson-Hasselbalch Equation Relates pH, pK_a, and Buffer Concentration

The titration curves of acetic acid, H₂PO₄⁻, and NH₄⁺ (Fig. 2-17) have nearly identical shapes, suggesting that these curves reflect a fundamental law or relationship. This is indeed the case. The shape of the titration curve of any weak acid is described by the Henderson-Hasselbalch equation, which is important for understanding buffer action and acid-base balance in the blood and tissues of vertebrates. This equation is simply a useful way of restating the expression for the ionization constant of an acid. For the ionization of a weak acid HA, the Henderson-Hasselbalch equation can be derived as follows:

\[pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right) \]

First solve for [H⁺]:

\[[H^+] = K_a \left(\frac{[HA]}{[A^-]} \right) \]

Then take the negative logarithm of both sides:

\[-\log [H^+] = -\log K_a - \log \left(\frac{[HA]}{[A^-]} \right) \]

Substitute pH for -log [H⁺] and pK_a for -log K_a:

\[pH = pK_a - \log \left(\frac{[HA]}{[A^-]} \right) \]

Now invert -log [HA]/[A⁻], which involves changing its sign, to obtain the **Henderson-Hasselbalch equation**:

\[pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right) \] (2-9)

This equation fits the titration curve of all weak acids and enables us to deduce some important quantitative relationships. For example, it shows that the pK_a of a weak acid is equal to the pH of the solution at the midpoint of its titration. At that point, [HA] = [A⁻], and

\[pH = pK_a + \log 1 = pK_a + 0 = pK_a \]
The Henderson-Hasselbalch equation also allows us to (1) calculate pK_a, given pH and the molar ratio of proton donor and acceptor; (2) calculate pH, given pK_a and the molar ratio of proton donor and acceptor; and (3) calculate the molar ratio of proton donor and acceptor, given pH and pK_a.

Weak Acids or Bases Buffer Cells and Tissues against pH Changes

The intracellular and extracellular fluids of multicellular organisms have a characteristic and nearly constant pH. The organism's first line of defense against changes in internal pH is provided by buffer systems. The cytoplasm of most cells contains high concentrations of proteins, which contain many amino acids with functional groups that are weak acids or weak bases. For example, the side chain of histidine (Fig. 2-19) has a pK_a of 6.0; proteins containing histidine residues therefore buffer effectively near neutral pH, and histidine side chains exist in either the protonated or unprotonated form near neutral pH.

WORKED EXAMPLE 2-5 Ionization of Histidine

Calculate the fraction of histidine that has its imidazole side chain protonated at pH 7.3. The pK_a values for histidine are $pK_1 = 1.82$, pK_2 (imidazole) = 6.00, and $pK_3 = 9.17$ (see Fig. 3-12b).

Solution: The three ionizable groups in histidine have sufficiently different pK_a values that the first acid (—COOH) is completely ionized before the second (protonated imidazole) begins to dissociate a proton, and the second ionizes completely before the third (—NH$_3^+$) begins to dissociate its proton. (With the Henderson-Hasselbalch equation, we can easily show that a weak acid goes from 1% ionized at 2 pH units below its pK_a, to 99% ionized at 2 pH units above its pK_a; see also Fig. 3-12b.) At pH 7.3, the carboxyl group of histidine is entirely deprotonated (—COO$^-$) and the α-amino group is fully protonated (—NH$_3^+$). We can therefore assume that at pH 7.3, the only group that is partially dissociated is the imidazole group, which can be protonated (we'll abbreviate as HisH$^+$) or not (His).

We use the Henderson-Hasselbalch equation:

$$\text{pH} = pK_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

Substituting $pK_2 = 6.0$ and pH = 7.3:

$$7.3 = 6.0 + \log \frac{[\text{His}]}{[\text{HisH}^+]}$$

$$1.3 = \log \frac{[\text{His}]}{[\text{HisH}^+]}$$

antilog 1.3 = \frac{[\text{His}]}{[\text{HisH}^+]} = 2.0 \times 10^1$$

So the fraction of total histidine that is in the protonated form HisH$^+$ at pH 7.3 is 1/21 (1 part HisH$^+$ in a total of 21 parts histidine in either form), or about 4.8%.

Nucleotides such as ATP, as well as many low molecular weight metabolites, contain ionizable groups that can contribute buffering power to the cytoplasm. Some highly specialized organelles and extracellular compartments have high concentrations of compounds that contribute buffering capacity: organic acids buffer the vacuoles of plant cells; ammonia buffers urine.

Two especially important biological buffers are the phosphate and bicarbonate systems. The phosphate buffer system, which acts in the cytoplasm of all cells, consists of H$_2$PO$_4^-$ as proton donor and HPO$_4^{2-}$ as proton acceptor:

$$H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$$

The phosphate buffer system is maximally effective at a pH close to its pK_a of 6.86 (Figs 2-15, 2-17) and thus tends to resist pH changes in the range between about 5.9 and 7.9. It is therefore an effective buffer in biological fluids; in mammals, for example, extracellular fluids and most cytoplasmic compartments have a pH in the range of 6.9 to 7.4 (see Worked Example 2-6).

Blood plasma is buffered in part by the bicarbonate system, consisting of carbonic acid (H$_2$CO$_3$) as proton donor and bicarbonate (HCO$_3^-$) as proton acceptor (K_1 is the first of several equilibrium constants in the bicarbonate buffering system):

$$H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$

$$K_1 = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$$

This buffer system is more complex than other conjugate acid-base pairs because one of its components, carbonic acid (H$_2$CO$_3$), is formed from dissolved (d) carbon dioxide and water, in a reversible reaction:

$$CO_2(d) + H_2O \rightleftharpoons H_2CO_3$$

$$K_2 = \frac{[H_2CO_3]}{[CO_2(d)][H_2O]}$$

![FIGURE 2-19 Ionization of histidine. The amino acid histidine, a component of proteins, is a weak acid. The pK_a of the protonated nitrogen of the side chain is 6.0.](image-url)
WORKED EXAMPLE 2-6 Phosphate Buffers

(a) What is the pH of a mixture of 0.042 M NaH$_2$PO$_4$ and 0.058 M Na$_2$HPO$_4$?

Solution: We use the Henderson-Hasselbalch equation, which we’ll express here as

$$\text{pH} = \text{pK}_a + \log \frac{[\text{conjugate base}]}{[\text{acid}]}$$

In this case, the acid (the species that gives up a proton) is H$_2$PO$_4^-$, and the conjugate base (the species that loses a proton) is HPO$_4^{2-}$. Substituting the given concentrations of acid and conjugate base and the pK$_a$ (6.86),

$$\text{pH} = 6.86 + \log \left(\frac{0.058}{0.042} \right) = 6.86 + 1.38 = 7.0$$

We can roughly check this answer. When more conjugate base than acid is present, the acid is more than 50% titrated and thus the pH is above the pK$_a$ (6.86), where the acid is exactly 50% titrated.

(b) If 1.0 mL of 10.0 N NaOH is added to a liter of the buffer prepared in (a), how much will the pH change?

Solution: A liter of the buffer contains 0.042 mol of NaH$_2$PO$_4$. Adding 1.0 mL of 10.0 N NaOH (0.010 mol) would titrate an equivalent amount (0.010 mol) of NaH$_2$PO$_4$ to Na$_2$HPO$_4$, resulting in 0.032 mol of NaH$_2$PO$_4$ and 0.068 mol of Na$_2$HPO$_4$. The new pH is

$$\text{pH} = \text{pK}_a + \log \frac{[\text{HPO}_4^{2-}]}{[\text{H}_2\text{PO}_4^-]}$$

$$= 6.86 + \log \left(\frac{0.068}{0.032} \right) = 6.86 + 0.33 = 7.2$$

(c) If 1.0 mL of 10.0 N NaOH is added to a liter of pure water at pH 7.0, what is the final pH? Compare this with the answer in (b).

Solution: The NaOH dissociates completely into Na$^+$ and OH$^-$, giving [OH$^-$] = 0.010 mol/L = 1.0 x 10$^{-2}$ M. The pOH is the negative logarithm of [OH$^-$], so pOH = 2.0. Given that in all solutions, pH + pOH = 14, the pH of the solution is 12.

So, an amount of NaOH that increases the pH of water from 7 to 12 increases the pH of a buffered solution, as in (b), from 7.0 to just 7.2. Such is the power of buffering!

Carbon dioxide is a gas under normal conditions, and the concentration of dissolved CO$_2$ is the result of equilibration with CO$_2$ of the gas (g) phase:

$$\text{CO}_2(\text{g}) \rightleftharpoons \text{CO}_2(\text{d})$$

$$K_3 = \frac{[\text{CO}_2(\text{d})]}{[\text{CO}_2(\text{g})]}$$

The pH of a bicarbonate buffer system depends on the concentration of H$_2$CO$_3$ and HCO$_3^-$, the proton donor and acceptor components. The concentration of H$_2$CO$_3$ in turn depends on the concentration of dissolved CO$_2$, which in turn depends on the concentration of CO$_2$ in the gas phase, or the partial pressure of CO$_2$, denoted pCO$_2$. Thus the pH of a bicarbonate buffer exposed to a gas phase is ultimately determined by the concentration of HCO$_3^-$ in the aqueous phase and by pCO$_2$ in the gas phase.

The bicarbonate buffer system is an effective physiological buffer near pH 7.4, because the H$_2$CO$_3$ of blood plasma is in equilibrium with a large reserve capacity of CO$_2(g)$ in the air space of the lungs. As noted above, this buffer system involves three reversible equilibria, in this case between gaseous CO$_2$ in the lungs and bicarbonate (HCO$_3^-$) in the blood plasma (Fig. 2-20).

![FIGURE 2-20 The bicarbonate buffer system. CO$_2$ in the air space of the lungs is in equilibrium with the bicarbonate buffer in the blood plasma passing through the lung capillaries. Because the concentration of dissolved CO$_2$ can be adjusted rapidly through changes in the rate of breathing, the bicarbonate buffer system of the blood is in near-equilibrium with a large potential reservoir of CO$_2$.](image-url)
When H^+ (from the lactic acid produced in muscle tissue during vigorous exercise, for example) is added to blood as it passes through the tissues, reaction 1 in Figure 2–20 proceeds toward a new equilibrium, in which $[H_2CO_3]$ is increased. This in turn increases $[CO_2(d)]$ in the blood (reaction 2) and thus increases the partial pressure of $CO_2(g)$ in the air space of the lungs (reaction 3); the extra CO_2 is exhaled. Conversely, when the pH of blood is raised (by the NH_3 produced during protein catabolism, for example), the opposite events occur: $[H^+]$ of blood plasma is lowered, causing more H_2CO_3 to dissociate into H^+ and HCO_3^- and thus more $CO_2(g)$ from the lungs to dissolve in blood plasma. The rate of respiration, or breathing—that is, the rate of inhaling and exhaling—can quickly adjust these equilibria to keep the blood pH nearly constant. The rate of respiration is controlled by the brain stem, where detection of an increased blood pCO_2 or decreased blood pH triggers deeper and more frequent breathing.

At the pH of blood plasma (7.4) very little H_2CO_3 is present in comparison with HCO_3^-, and the addition of a small amount of base (NH_3 or OH^-) would titrate this H_2CO_3, exhausting the buffering capacity. The important role for carbonic acid ($pK_a = 3.57$ at 37 °C) in buffering blood plasma (−pH 7.4) seems inconsistent with our earlier statement that a buffer is most effective in the range of 1 pH unit above and below its pK_a. The explanation for this paradox is the large reservoir of $CO_2(d)$ in blood and its rapid equilibration with H_2CO_3: $CO_2(d) + H_2O \rightleftharpoons H_2CO_3$.

We can define a constant, K_h, which is the equilibrium constant for the hydration of CO_2:

$$K_h = \frac{[H_2CO_3]}{[CO_2(d)]}$$

Then, to take the $CO_2(d)$ reservoir into account, we can express $[H_2CO_3]$ as $K_h[CO_2(d)]$, and substitute this expression for $[H_2CO_3]$ in the equation for the acid dissociation of H_2CO_3:

$$K_a = \frac{[H^+][HCO_3^-]}{[H_2CO_3]} = \frac{[H^+][HCO_3^-]}{K_h[CO_2(d)]}$$

Now, the overall equilibrium for dissociation of H_2CO_3 can be expressed in these terms:

$$K_hK_a = K_{combined} = \frac{[H^+][HCO_3^-]}{[CO_2(d)]}$$

We can calculate the value of the new constant, $K_{combined}$, and the corresponding apparent pK_a or $pK_{combined}$ from the experimentally determined values of K_h (3.0 × 10⁻³ M) and K_a (2.7 × 10⁻⁴ M) at 37 °C:

$$K_{combined} = (3.0 \times 10^{-3} \text{ M})(2.7 \times 10^{-4} \text{ M})$$

$$= 8.1 \times 10^{-7} \text{ M}$$

$$pK_{combined} = 6.1$$

In clinical medicine, it is common to refer to $CO_2(d)$ as the conjugate acid and to use the apparent, or combined, pK_a of 6.1 to simplify calculation of pH from $[CO_2(d)]$. In this convention,

$$\text{pH} = 6.1 + \log \frac{[HCO_3^-]}{(0.23 \times pCO_2)}$$

where pCO_2 is expressed in kilopascals (kPa; typically, pCO_2 is 4.6 to 6.7 kPa) and 0.23 is the corresponding solubility coefficient for CO_2 in water; thus the term $0.23 \times pCO_2 \approx 1.2 \text{ kPa}$. Plasma $[HCO_3^-]$ is normally about 24 mM.

Untreated Diabetes Produces Life-Threatening Acidosis

Human blood plasma normally has a pH between 7.35 and 7.45, and many of the enzymes that function in the blood have evolved to have maximal activity in that pH range. Although many aspects of cell structure and function are influenced by pH, the catalytic activity of enzymes is especially sensitive. Enzymes typically show maximal catalytic activity at a characteristic pH, called the pH optimum (Fig. 2–21). On either side of this optimum pH, catalytic activity often declines sharply. Thus, a small change in pH can make a large difference in the rate of some crucial enzyme-catalyzed reactions. Biological control of the pH of cells and body fluids is therefore of central importance in all aspects of metabolism and cellular activities, and changes in blood pH have marked physiological consequences (described with gusto in Box 2–1).

In individuals with untreated diabetes, the lack of insulin, or insensitivity to insulin (depending on the type...
This is an account by J.B.S. Haldane of physiological experiments on controlling blood pH, from his book Possible Worlds (Harper and Brothers, 1928).

"I wanted to find out what happened to a man when one made him more acid or more alkaline . . . One might, of course, have tried experiments on a rabbit first, and some work had been done along these lines; but it is difficult to be sure how a rabbit feels at any time. Indeed, some rabbits make no serious attempt to cooperate with one.

". . . A human colleague and I therefore began experiments on one another . . . My colleague Dr. H.W. Davies and I made ourselves alkaline by over-breathing and by eating anything up to three ounces of bicarbonate of soda. We made ourselves acid by sitting in an air-tight room with between six and seven per cent of carbon dioxide in the air. This makes one breathe as if one had just completed a boat-race, and also gives one a rather violent headache . . . Two hours was as long as any one wanted to stay in the carbon dioxide, even if the gas chamber at our disposal had not retained an ineradicable odour of 'yellow cross gas' from some wartime experiments, which made one weep gently every time one entered it. The most obvious thing to try was drinking hydrochloric acid. If one takes it strong it dissolves one's teeth and burns one's throat, whereas I wanted to let it diffuse gently all through my body. The strongest I ever cared to drink was about one part of the commercial strong acid in a hundred of water, but a pint of that was enough for me, as it irritated my throat and stomach, while my calculations showed that I needed a gallon and a half to get the effect I wanted . . . I argued that if one ate ammonium chloride, it would partly break up in the body, liberating hydrochloric acid. This proved to be correct . . . the liver turns ammonia into a harmless substance called urea before it reaches the heart and brain on absorption from the gut. The hydrochloric acid is left behind and combines with sodium bicarbonate, which exists in all the tissues, producing sodium chloride and carbon dioxide. I have had this gas produced in me in this way at the rate of six quarts an hour (though not for an hour on end at that rate) . . .

"I was quite satisfied to have reproduced in myself the type of shortness of breath which occurs in the terminal stages of kidney disease and diabetes. This had long been known to be due to acid poisoning, but in each case the acid poisoning is complicated by other chemical abnormalities, and it had been rather uncertain which of the symptoms were due to the acid as such.

"The scene now shifts to Heidelberg, where Freudenberg and György were studying tetany in babies . . . it occurred to them that it would be well worth trying the effect of making the body unusually acid. For tetany had occasionally been observed in patients who had been treated for other complaints by very large doses of sodium bicarbonate, or had lost large amounts of hydrochloric acid by constant vomiting, and if alkalinity of the tissues will produce tetany, acidity may be expected to cure it. Unfortunately, one could hardly try to cure a dying baby by shutting it up in a room full of carbonic acid, and still less would one give it hydrochloric acid to drink; so nothing had come of their idea, and they were using lime salts, which are not very easily absorbed, and which upset the digestion, but certainly benefit many cases of tetany.

"However, the moment they read my paper on the effects of ammonium chloride, they began giving it to babies, and were delighted to find that the tetany cleared up in a few hours. Since then it has been used with effect both in England and America, both on children and adults. It does not remove the cause, but it brings the patient into a condition from which he has a very fair chance of recovering."
WORKED EXAMPLE 2–7 Treatment of Acidosis with Bicarbonate

Why does intravenous administration of a bicarbonate solution raise the plasma pH?

Solution: The ratio of $[\text{HCO}_3^-]$ to $[\text{CO}_2(d)]$ determines the pH of the bicarbonate buffer, according to the equation

$$\text{pH} = 6.1 + \log \left(\frac{[\text{HCO}_3^-]}{0.23 \times [\text{CO}_2]} \right)$$

If $[\text{HCO}_3^-]$ is increased with no change in pCO_2, the pH will rise.

SUMMARY 2.3 Buffering against pH Changes in Biological Systems

- A mixture of a weak acid (or base) and its salt resists changes in pH caused by the addition of H^+ or OH^-, The mixture thus functions as a buffer.
- The pH of a solution of a weak acid (or base) and its salt is given by the Henderson-Hasselbalch equation: $\text{pH} = \text{pK}_a + \log \left(\frac{[\text{A}^-]}{[\text{HA}]} \right)$.
- In cells and tissues, phosphate and bicarbonate buffer systems maintain intracellular and extracellular fluids at their optimum (physiological) pH, which is usually close to pH 7. Enzymes generally work optimally at this pH.
- Medical conditions that lower the pH of blood, causing acidosis, or raise it, causing alkalosis, can be life threatening.

2.4 Water as a Reactant

Water is not just the solvent in which the chemical reactions of living cells occur; it is very often a direct participant in those reactions. The formation of ATP from ADP and inorganic phosphate is an example of a condensation reaction in which the elements of water are eliminated (Fig. 2–22). The reverse of this reaction—cleavage accompanied by the addition of the elements of water—is a hydrolysis reaction. Hydrolysis reactions are also responsible for the enzymatic depolymerization of proteins, carbohydrates, and nucleic acids. Hydrolysis reactions, catalyzed by enzymes called hydrolases, are almost invariably exergonic; by producing two molecules from one, they lead to an increase in the randomness of the system. The formation of cellular polymers from their subunits by simple reversal of hydrolysis (that is, by condensation reactions) would be endergonic and therefore does not occur. As we shall see, cells circumvent this thermodynamic obstacle by coupling endergonic condensation reactions to exergonic processes, such as breakage of the anhydride bond in ATP.

You are (we hope!) consuming oxygen as you read. Water and carbon dioxide are the end products of the oxidation of fuels such as glucose. The overall reaction can be summarized as

$$\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$$

Glucose

The “metabolic water” formed by oxidation of foods and stored fats is actually enough to allow some animals in very dry habitats (gerbils, kangaroo rats, camels) to survive for extended periods without drinking water.

The CO$_2$ produced by glucose oxidation is converted in erythrocytes to the more soluble HCO$_3^-$, in a reaction catalyzed by the enzyme carbonic anhydrase:

$$\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{HCO}_3^- + \text{H}^+$$

In this reaction, water not only is a substrate but also functions in proton transfer by forming a network of hydrogen-bonded water molecules through which proton hopping occurs (Fig. 2–13).

Green plants and algae use the energy of sunlight to split water in the process of photosynthesis:

$$2\text{H}_2\text{O} + 2\text{A} \rightarrow 2\text{O}_2 + 2\text{AH}_2$$

In this reaction, A is an electron-accepting species, which varies with the type of photosynthetic organism, and water serves as the electron donor in an oxidation-reduction sequence (see Fig. 19–57) that is fundamental to all life.

SUMMARY 2.4 Water as a Reactant

- Water is both the solvent in which metabolic reactions occur and a reactant in many biochemical processes, including hydrolysis, condensation, and oxidation-reduction reactions.

2.5 The Fitness of the Aqueous Environment for Living Organisms

Organisms have effectively adapted to their aqueous environment and have evolved means of exploiting the unusual properties of water. The high specific heat of water (the heat energy required to raise the temperature
of 1 g of water by 1 °C) is useful to cells and organisms because it allows water to act as a “heat buffer,” keeping the temperature of an organism relatively constant as the temperature of the surroundings fluctuates and as heat is generated as a byproduct of metabolism. Furthermore, some vertebrates exploit the high heat of vaporization of water (Table 2–1) by using (thus losing) excess body heat to evaporate sweat. The high degree of internal cohesion of liquid water, due to hydrogen bonding, is exploited by plants as a means of transporting dissolved nutrients from the roots to the leaves during the process of transpiration. Even the density of ice, lower than that of liquid water, has important biological consequences in the life cycles of aquatic organisms. Ponds freeze from the top down, and the layer of ice at the top insulates the water below from frigid air, preventing the pond (and the organisms in it) from freezing solid. Most fundamental to all living organisms is the fact that many physical and biological properties of cell macromolecules, particularly the proteins and nucleic acids, derive from their interactions with water molecules of the surrounding medium. The influence of water on the course of biological evolution has been profound and determinative. If life forms have evolved elsewhere in the universe, they are unlikely to resemble those of Earth unless their extraterrestrial origin is also a place in which plentiful liquid water is available.

Aqueous environments support countless species. Soft corals, sponges, bryozoans, and algae compete for space on this reef off the Philippine Islands.

Key Terms

Terms in bold are defined in the glossary.

- hydrogen bond 44
- bond energy 44
- hydrophilic 46
- hydrophobic 46
- amphipathic 48
- micelle 48
- hydrophobic interactions 49
- London forces 49
- van der Waals interactions 49
- osmolarity 52
- osmosis 52
- isotonic 52
- hypertonic 52
- hypotonic 52
- equilibrium constant \((K_{eq})\) 55
- ion product of water \((K_w)\) 55
- pH 56
- acidosis 57
- alkalosis 57
- conjugate acid-base pair 57
- acid dissociation constant \((K_a)\) 58
- \(pK_a\) 58
- titration curve 58
- buffer 59
- buffering region 60
- Henderson-Hasselbalch equation 60
- condensation 65
- hydrolysis 65

Further Reading

General

A wonderful investigation of the biological relevance of the properties of water.

An advanced, classic treatment of the physical chemistry of water and hydrophobic interactions.

A large collection of papers on the structure of pure water and of the cytoplasm.

A well-illustrated description of the use of computer simulation to study the biologically important association of water with proteins and nucleic acids.

Intermediate-level review of the role of an internal chain of water molecules in proton movement through this protein.

A short, useful summary of the ways in which bound water influences the structure and activity of proteins.

A brief review of the physical state of cytosolic water and its interactions with dissolved biomolecules.

Advanced review of a proton pump that employs an internal chain of water molecules.

A short review of the properties of water, introducing several excellent advanced reviews published in the same issue (see especially Pocker, 2000, and Rand et al., 2000, below).

Fourteen chapters, each by a different author, cover (at an advanced level) the structure of water and its interactions with proteins, nucleic acids, polysaccharides, and lipids.

A review of water in biology, including discussion of the physical structure of liquid water, its interaction with biomolecules, and the state of water in living cells.

Osmosis

An advanced physical investigation of the cytoplasmic water fraction of the bacterium Escherichia coli grown in media of different osmolarities. (See also Record et al., 1998, below.)

Review of the roles of water in enzyme catalysis as revealed by studies in water-poor solutes.

Intermediate-level review of the ways in which a bacterial cell changes in the osmolarity of its surroundings. (See also Cayley et al., 2000, above.)

Weak Interactions in Aqueous Systems

A clear, brief, quantitative discussion of the contribution of hydrogen bonding to molecular recognition and enzyme catalysis.

Review of the four kinds of weak interactions that stabilize macromolecules and confer biological specificity, with clear examples.

A detailed, advanced discussion of the structure and properties of hydrogen bonds, including those in water and biomolecules.

An advanced discussion of the role of water in protein structure.

Brief review of the evidence that hydrogen bonds have some covalent character.

Review of the role of water in enzyme catalysis, with carbonic anhydrase as the featured example.

An example of the important role of water in both the specificity and the affinity of protein-DNA interactions.

A short review of the physical structure of water, including the importance of hydrogen bonding and the nature of hydrophobic interactions.

A classic review of the chemical and energetic bases for hydrophobic interactions between biomolecules in aqueous solutions.

Weak Acids, Weak Bases, and Buffers: Problems for Practice

Problems

1. Solubility of Ethanol in Water Explain why ethanol (CH₃CH₂OH) is more soluble in water than is methane (CH₄).

2. Calculation of pH from Hydrogen Ion Concentration

 What is the pH of a solution that has an H⁺ concentration of (a) 1.75 x 10⁻⁵ mol/L; (b) 6.50 x 10⁻¹⁰ mol/L; (c) 1.0 x 10⁻⁴ mol/L; (d) 1.50 x 10⁻⁸ mol/L?

3. Calculation of Hydrogen Ion Concentration from pH

 What is the H⁺ concentration of a solution with pH of (a) 3.82; (b) 6.52; (c) 11.11?

4. Acidity of Gastric HCl In a hospital laboratory, a 10.0 mL sample of gastric juice, obtained several hours after a meal, was titrated with 0.1 M NaOH to neutrality; 7.2 mL of NaOH was required. The patient’s stomach contained no ingested food or drink, thus assume that no buffers were present. What was the pH of the gastric juice?

5. Calculation of the pH of a Strong Acid or Base

 (a) Write out the acid dissociation reaction for hydrochloric acid.

 (b) Calculate the pH of a solution of 5.0 x 10⁻⁴ M HCl.

 (c) Write out the acid dissociation reaction for sodium hydroxide.

 (d) Calculate the pH of a solution of 7.0 x 10⁻⁵ M NaOH.

6. Calculation of pH from Concentration of Strong Acid

 Calculate the pH of a solution prepared by diluting 3.0 mL of 2.5 M HCl to a final volume of 100 mL with H₂O.

7. Measurement of Acetylcholine Levels by pH Changes

 The concentration of acetylcholine (a neurotransmitter) in a sample can be determined from the pH changes that accompany its hydrolysis. When the sample is incubated with the enzyme acetylcholinesterase, acetylcholine is quantitatively
converted to choline and acetic acid, which dissociates to yield acetate and a hydrogen ion:

\[
\text{Acetylcholine} \rightarrow \text{Choline} + \text{Acetate} + \text{H}^+
\]

In a typical analysis, 15 mL of an aqueous solution containing an unknown amount of acetylcholine had a pH of 7.65. When incubated with acetylcholinesterase, the pH of the solution decreased to 6.87. Assuming there was no buffer in the assay mixture, determine the number of moles of acetylcholine in the 15 mL sample.

8. Physical Meaning of pKₐ Which of the following aqueous solutions has the lowest pH: 0.1 M HCl; 0.1 M acetic acid (pKₐ = 4.86); 0.1 M formic acid (pKₐ = 3.75)?

9. Simulated Vinegar One way to make vinegar (not the preferred way) is to prepare a solution of acetic acid, the sole acid component of vinegar, at the proper pH (see Fig. 2-14) and add appropriate flavoring agents. Acetic acid (Mₘ 60) is a liquid at 25 °C, with a density of 1.049 g/mL. Calculate the volume that must be added to distilled water to make 1 L of simulated vinegar (see Fig. 2-15).

10. Identifying the Conjugate Base Which is the conjugate base in each of the pairs below?
 (a) RCOOH, RCOO⁻
 (b) RNH₂, RNH₃⁺
 (c) H₂PO₃⁻, H₃PO₄
 (d) H₂CO₃, HCO₃⁻

11. Calculation of the pH of a Mixture of a Weak Acid and Its Conjugate Base Calculate the pH of a dilute solution that contains a molar ratio of potassium acetate to acetic acid (pKₐ = 4.76) of (a) 2:1; (b) 1:3; (c) 5:1; (d) 1:1; (e) 1:10.

12. Effect of pH on Solubility The strongly polar, hydrogen-bonding properties of water make it an excellent solvent for ionic (charged) species. By contrast, nonionized, nonpolar organic molecules, such as benzene, are relatively insoluble in water. In principle, the aqueous solubility of any organic acid or base can be increased by converting the molecules to charged species. For example, the solubility of benzoic acid in water is low. The addition of sodium bicarbonate to a mixture of water and benzoic acid raises the pH and deprotonates the benzoic acid to form benzoate ion, which is quite soluble in water.

Are the following compounds more soluble in an aqueous solution of 0.1 M NaOH or 0.1 M HCl? (The dissociable protons are shown in red.)

13. Treatment of Poison Ivy Rash The components of poison ivy and poison oak that produce the characteristic itchy rash are catechols substituted with long-chain alkyl groups.

If you were exposed to poison ivy, which of the treatments below would you apply to the affected area? Justify your choice.
 (a) Wash the area with cold water.
 (b) Wash the area with dilute vinegar or lemon juice.
 (c) Wash the area with soap and water.
 (d) Wash the area with soap, water, and baking soda (sodium bicarbonate).

14. pH and Drug Absorption Aspirin is a weak acid with a pKₐ of 3.5:

It is absorbed into the blood through the cells lining the stomach and the small intestine. Absorption requires passage through the plasma membrane, the rate of which is determined by the polarity of the molecule: charged and highly polar molecules pass slowly, whereas neutral hydrophobic ones pass rapidly. The pH of the stomach contents is about 1.5, and the pH of the contents of the small intestine is about 6. Is more aspirin absorbed into the bloodstream from the stomach or from the small intestine? Clearly justify your choice.
15. Calculation of pH from Molar Concentrations What is the pH of a solution containing 0.12 mol/L of NH₄Cl and 0.03 mol/L of NaOH (pKₐ of NH₄⁺/NH₃ is 9.25)?

16. Calculation of pH after Titration of Weak Acid A compound has a pKₐ of 7.4. To 100 mL of a 1.0 M solution of this compound at pH 8.0 is added 30 mL of 1.0 M hydrochloric acid. What is the pH of the resulting solution?

17. Properties of a Buffer The amino acid glycine is often used as the main ingredient of a buffer in biochemical experiments. The amino group of glycine, which has a pKₐ of 9.6, can exist either in the protonated form (—NH₃⁺) or as the free base (—NH₂), because of the reversible equilibrium

\[R—NH_{3} \rightleftharpoons R—NH_{2} + H^{+} \]

(a) In what pH range can glycine be used as an effective buffer due to its amino group?
(b) In a 0.1 M solution of glycine at pH 9.0, what fraction of glycine has its amino group in the —NH₃⁺ form?
(c) How much 5 M KOH must be added to 1.0 L of 0.1 M glycine at pH 9.0 to bring its pH to exactly 10.0?
(d) When 99% of the glycine is in its —NH₃⁺ form, what is the numerical relation between the pH of the solution and the pKₐ of the amino group?

18. Preparation of a Phosphate Buffer What molar ratio of HPO₄²⁻ to H₂PO₄⁻ in solution would produce a pH of 7.0? Phosphoric acid (H₃PO₄), a triprotic acid, has 3 pKₐ values: 2.14, 6.86, and 12.4. Hint: Only one of the pKₐ values is relevant here.

19. Preparation of Standard Buffer for Calibration of a pH Meter The glass electrode used in commercial pH meters gives an electrical response proportional to the concentration of hydrogen ion. To convert these responses to a pH reading, the electrode must be calibrated against standard solutions of known H⁺ concentration. Determine the weight in grams of sodium dihydrogen phosphate (Na₂HPO₄, FW 142) and disodium hydrogen phosphate (Na₂H₂PO₄, FW 138) needed to prepare 1 L of a standard buffer at pH 7.00 with a total phosphate concentration of 0.10 M (see Fig. 2-15). See problem 18 for the pKₐ values of phosphoric acid.

20. Calculation of Molar Ratios of Conjugate Base to Weak Acid from pH For a weak acid with a pKₐ of 6.0, calculate the ratio of conjugate base to acid at a pH of 5.0.

21. Preparation of Buffer of Known pH and Strength Given 0.10 M solutions of acetic acid (pKₐ = 4.76) and sodium acetate, describe how you would go about preparing 1.0 L of 0.10 M acetate buffer of pH 4.00.

22. Choice of Weak Acid for a Buffer Which of these compounds would be the best buffer at pH 5.0: formic acid (pKₐ = 3.8), acetic acid (pKₐ = 4.76), or ethylamine (pKₐ = 9.0)? Briefly justify your answer.

23. Working with Buffers A buffer contains 0.010 mol of lactic acid (pKₐ = 3.86) and 0.050 mol of sodium lactate per liter. (a) Calculate the pH of the buffer. (b) Calculate the change in pH when 5 mL of 0.5 M HCl is added to 1 L of the buffer. (c) What pH change would you expect if you added the same quantity of HCl to 1 L of pure water?

24. Use of Molar Concentrations to Calculate pH What is the pH of a solution that contains 0.20 M sodium acetate and 0.60 M acetic acid (pKₐ = 4.76)?

25. Preparation of an Acetate Buffer Calculate the concentrations of acetic acid (pKₐ = 4.76) and sodium acetate necessary to prepare a 0.2 M buffer solution at pH 5.0.

26. pH of Insect Defensive Secretion You have been observing an insect that defends itself from enemies by secreting a caustic liquid. Analysis of the liquid shows it to have a total concentration of formate plus formic acid (Kₐ = 1.8 x 10⁻⁴) of 1.45 M; the concentration of formate ion is 0.015 M. What is the pH of the secretion?

27. Calculation of pKₐ An unknown compound, X, is thought to have a carboxyl group with a pKₐ of 2.0 and another ionizable group with a pKₐ between 5 and 8. When 75 mL of 0.1 M NaOH is added to 100 mL of a 0.1 M solution of X at pH 2.0, the pH increases to 6.72. Calculate the pKₐ of the second ionizable group of X.

28. Ionic Forms of Alanine Alanine is a diprotic acid that can undergo two dissociation reactions (see Table 3-1 for pKₐ values). (a) Given the structure of the partially protonated form (or zwitterion; see Fig. 3-9) below, draw the chemical structures of the other two forms of alanine that predominate in aqueous solution: the fully protonated form and the fully deprotonated form.

Of the three possible forms of alanine, which would be present at the highest concentration in solutions of the following pH: (b) 1.0; (c) 6.2; (d) 8.02; (e) 11.9. Explain your answers in terms of pH relative to the two pKₐ values.

29. Control of Blood pH by Respiratory Rate

(a) The partial pressure of CO₂ in the lungs can be varied rapidly by the rate and depth of breathing. For example, a common remedy to alleviate hiccups is to increase the concentration of CO₂ in the lungs. This can be achieved by holding one’s breath, by very slow and shallow breathing (hypoventilation), or by breathing in and out of a paper bag. Under such conditions, pCO₂ in the air space of the lungs rises above normal. Qualitatively explain the effect of these procedures on the blood pH.

(b) A common practice of competitive short-distance runners is to breathe rapidly and deeply (hyperventilate) for about half a minute to remove CO₂ from their lungs just before the race begins. Blood pH may rise to 7.60. Explain why the blood pH increases.

(c) During a short-distance run, the muscles produce a large amount of lactic acid (CH₃CH(OH)COOH; Kₐ =
1.38 \times 10^{-4} \text{mol} from their glucose stores. In view of this fact, why might hyperventilation before a dash be useful?

30. Calculation of Blood pH from CO$_2$ and Bicarbonate Levels Calculate the pH of a blood plasma sample with a total CO$_2$ concentration of 26.9 mm and bicarbonate concentration of 25.6 mm. Recall from page 63 that the relevant pK$_a$ of carbonic acid is 6.1.

31. Effect of Holding One’s Breath on Blood pH The pH of the extracellular fluid is buffered by the bicarbonate/carbonic acid system. Holding your breath can increase the concentration of CO$_2$(g) in the blood. What effect might this have on the pH of the extracellular fluid? Explain by showing the relevant equilibrium equation(s) for this buffer system.

Data Analysis Problem

32. “Switchable” Surfactants Hydrophobic molecules do not dissolve well in water. Given that water is a very commonly used solvent, this makes certain processes very difficult: washing oily food residue off dishes, cleaning up spilled oil, keeping the oil and water phases of salad dressings well mixed, and carrying out chemical reactions that involve both hydrophobic and hydrophilic components.

Surfactants are a class of amphipathic compounds that includes soaps, detergents, and emulsifiers. With the use of surfactants, hydrophobic compounds can be suspended in aqueous solution by forming micelles (see Fig. 2–7). A micelle has a hydrophobic core consisting of the hydrophobic compound and the hydrophobic “tails” of the surfactant; the hydrophilic “heads” of the surfactant cover the surface of the micelle. A suspension of micelles is called an emulsion. The more hydrophilic the head group of the surfactant, the more powerful it is—that is, the greater its capacity to emulsify hydrophobic material.

When you use soap to remove grease from dirty dishes, the soap forms an emulsion with the grease that is easily removed by water through interaction with the hydrophilic head of the soap molecules. Likewise, a detergent can be used to emulsify spilled oil for removal by water. And emulsifiers in commercial salad dressings keep the oil suspended evenly throughout the water-based mixture.

There are some situations in which it would be very useful to have a “switchable” surfactant: a molecule that could be reversibly converted between a surfactant and a nonsurfactant.

(a) Imagine such a “switchable” surfactant existed. How would you use it to clean up and then recover the oil from an oil spill?

(b) Given that the pK$_a$ of a typical amidinium ion is 12.4, in which direction (left or right) would you expect the equilibrium of the above reaction to lie? (See Fig. 2–16 for relevant pK$_a$ values.) Justify your answer. Hint: Remember the reaction H$_2$O + CO$_2$ \rightleftharpoons H$_2$CO$_3$.

Liu and colleagues produced a switchable surfactant for which R = C$_{18}$H$_{37}$. They do not name the molecule in their article; for brevity, we’ll call it s-surf.

(c) The amidinium form of s-surf is a powerful surfactant; the amidine form is not. Explain this observation.

Liu and colleagues found that they could switch between the two forms of s-surf by changing the gas that they bubbled through a solution of the surfactant. They demonstrated this switch by measuring the electrical conductivity of the s-surf solution; aqueous solutions of ionic compounds have higher conductivity than solutions of nonionic compounds. They started with a solution of the amidine form of s-surf in water. Their results are shown below; dotted lines indicate the switch from one gas to another.

(d) In which form is the majority of s-surf at point A? At point B?

(e) Why does the electrical conductivity rise from time 0 to point A?

(f) Why does the electrical conductivity fall from point A to point B?

(g) Explain how you would use s-surf to clean up and recover the oil from an oil spill.

Reference

The word protein that I propose to you . . . I would wish to derive from proteios, because it appears to be the primitive or principal substance of animal nutrition that plants prepare for the herbivores, and which the latter then furnish to the carnivores.

—J. J. Berzelius, letter to G. J. Mulder, 1838

Amino Acids, Peptides, and Proteins

3.1 Amino Acids 72
3.2 Peptides and Proteins 82
3.3 Working with Proteins 85
3.4 The Structure of Proteins: Primary Structure 92

Proteins mediate virtually every process that takes place in a cell, exhibiting an almost endless diversity of functions. To explore the molecular mechanism of a biological process, a biochemist almost inevitably studies one or more proteins. Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds may be found in a single cell. As the arbiters of molecular function, proteins are the most important final products of the information pathways discussed in Part III of this book. Proteins are the molecular instruments through which genetic information is expressed.

Relatively simple monomeric subunits provide the key to the structure of the thousands of different proteins. All proteins, whether from the most ancient lines of bacteria or from the most complex forms of life, are constructed from the same ubiquitous set of 20 amino acids, covalently linked in characteristic linear sequences. Because each of these amino acids has a side chain with distinctive chemical properties, this group of 20 precursor molecules may be regarded as the alphabet in which the language of protein structure is written. Proteins are found in a wide range of sizes, from relatively small peptides with just a few amino acid residues to huge polymers with molecular weights in the millions.

What is most remarkable is that cells can produce proteins with strikingly different properties and activities by joining the same 20 amino acids in many different combinations and sequences. From these building blocks different organisms can make such widely diverse products as enzymes, hormones, antibodies, transporters, muscle fibers, the lens protein of the eye, feathers, spider webs, rhinoceros horn, milk proteins, antibiotics, mushroom poisons, and myriad other substances having distinct biological activities (Fig. 3–1). Among these protein products, the enzymes are the most varied and specialized. Virtually all cellular reactions are catalyzed by enzymes.

Protein structure and function are the topics of this and the next three chapters. Here, we begin with a description of the fundamental chemical properties of amino acids, peptides, and proteins. We also consider how a biochemist works with proteins.

![Some functions of proteins](image-url)

(a) The light produced by fireflies is the result of a reaction involving the protein luciferin and ATP, catalyzed by the enzyme luciferase (see Box 13–1). (b) Erythrocytes contain large amounts of the oxygen-transporting protein hemoglobin. (c) The protein keratin, formed by all vertebrates, is the chief structural component of hair, scales, horn, wool, nails, and feathers. The black rhinoceros is nearing extinction in the wild because of the belief prevalent in some parts of the world that a powder derived from its horn has aphrodisiac properties. In reality, the chemical properties of powdered rhinoceros horn are no different from those of powdered bovine hooves or human fingernails.
3.1 Amino Acids

Protein Architecture—Amino Acids. Proteins are polymers of amino acids, with each amino acid residue joined to its neighbor by a specific type of covalent bond. (The term “residue” reflects the loss of the elements of water when one amino acid is joined to another.) Proteins can be broken down (hydrolyzed) to their constituent amino acids by a variety of methods, and the earliest studies of proteins naturally focused on the free amino acids derived from them. Twenty different amino acids are commonly found in proteins. The first to be discovered was asparagine, in 1806. The last of the 20 to be found, threonine, was not identified until 1938. All the amino acids have trivial or common names, in some cases derived from the source from which they were first isolated. Asparagine was first found in asparagus, and glutamate in wheat gluten; tyrosine was first isolated from cheese (its name is derived from the Greek tyros, “cheese”); and glycine (Greek glykos, “sweet”) was so named because of its sweet taste.

Amino Acids Share Common Structural Features

All 20 of the common amino acids are α-amino acids. They have a carboxyl group and an amino group bonded to the same carbon atom (the α carbon) (Fig. 3-2). They differ from each other in their side chains, or R groups, which vary in structure, size, and electric charge, and which influence the solubility of the amino acids in water. In addition to these 20 amino acids there are many less common ones. Some are residues modified after a protein has been synthesized; others are amino acids present in living organisms but not as constituents of proteins. The common amino acids of proteins have been assigned three-letter abbreviations and one-letter symbols (Table 3-1), which are used as shorthand to indicate the composition and sequence of amino acids polymerized in proteins.

KEY CONVENTION: The three-letter code is transparent, the abbreviations generally consisting of the first three letters of the amino acid name. The one-letter code was devised by Margaret Oakley Dayhoff (1925–1983), considered by many to be the founder of the field of bioinformatics. The one-letter code reflects an attempt to reduce the size of the data files (in an era of punch-card computing) used to describe amino acid sequences. It was designed to be easily memorized, and understanding its origin can help students do just that. For six amino acids (CHIMSV), the first letter of the amino acid name is unique and thus is assigned as the symbol. For five others (AGLPT), the first letter is not unique but is assigned to the amino acid that is most common in proteins (for example, leucine is more common than lysine). For another four, the letter used is phonetically suggestive (RFYW: arginine, Phe-nylalanine, Tyr-rosine, Trp-tophan). The rest were harder to assign. Four (DNEQ) were assigned letters found within or suggested by their names (aspar-Dic, asparagine, glutamEke, Q-tamine). That left lysine. Only a few letters were left in the alphabet, and K was chosen because it was the closest to L.

For all the common amino acids except glycine, the α carbon is bonded to four different groups: a carboxyl group, an amino group, an R group, and a hydrogen atom (Fig. 3-2; in glycine, the R group is another hydrogen atom). The α-carbon atom is thus a chiral center (p. 16). Because of the tetrahedral arrangement of the bonding orbitals around the α-carbon atom, the four different groups can occupy two unique spatial arrangements, and thus amino acids have two possible stereoisomers. Since they are nonsuperposable mirror images of each other (Fig. 3-3), the two forms represent a class of stereoisomers called enantiomers.

![FIGURE 3-2 General structure of an amino acid. This structure is common to all but one of the α-amino acids. (Proline, a cyclic amino acid, is the exception.) The R group, or side chain (red), attached to the α carbon (blue) is different in each amino acid.](image)

![FIGURE 3-3 Stereoisomerism in α-amino acids. (a) The two stereoisomers of alanine, L- and D-alanine, are nonsuperposable mirror images of each other (enantiomers). (b, c) Two different conventions for showing the configurations in space of stereoisomers. In perspective formulas (b) the solid wedge-shaped bonds project out of the plane of the paper, the dashed bonds behind it. In projection formulas (c) the horizontal bonds are assumed to project out of the plane of the paper, the vertical bonds behind. However, projection formulas are often used casually and are not always intended to portray a specific stereochemical configuration.](image)
TABLE 3-1 Properties and Conventions Associated with the Common Amino Acids Found in Proteins

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Abbreviation/ symbol</th>
<th>M_r</th>
<th>pK_1 (—COOH)</th>
<th>pK_2 (—NH$_2^+$)</th>
<th>pK_R (R group)</th>
<th>pI</th>
<th>Hydrophathy index</th>
<th>Occurrence in proteins (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpolar, aliphatic R groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly G</td>
<td>75</td>
<td>2.34</td>
<td>9.60</td>
<td>5.97</td>
<td>-0.4</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>Ala A</td>
<td>89</td>
<td>2.34</td>
<td>9.69</td>
<td>6.01</td>
<td>1.8</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Prolin</td>
<td>Pro P</td>
<td>115</td>
<td>1.99</td>
<td>10.96</td>
<td>6.48</td>
<td>1.6</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td>Val V</td>
<td>117</td>
<td>2.32</td>
<td>9.62</td>
<td>5.97</td>
<td>4.2</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu L</td>
<td>131</td>
<td>2.36</td>
<td>9.60</td>
<td>5.98</td>
<td>3.8</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile I</td>
<td>131</td>
<td>2.36</td>
<td>9.68</td>
<td>6.02</td>
<td>4.5</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>Met M</td>
<td>149</td>
<td>2.28</td>
<td>9.21</td>
<td>5.74</td>
<td>1.9</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Aromatic R groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe F</td>
<td>165</td>
<td>1.83</td>
<td>9.13</td>
<td>5.48</td>
<td>2.8</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr Y</td>
<td>181</td>
<td>2.20</td>
<td>9.11</td>
<td>10.07</td>
<td>-1.3</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp W</td>
<td>204</td>
<td>2.38</td>
<td>9.39</td>
<td>5.89</td>
<td>-0.9</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Polar, uncharged R groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>Ser S</td>
<td>105</td>
<td>2.21</td>
<td>9.15</td>
<td>5.68</td>
<td>-0.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr T</td>
<td>119</td>
<td>2.11</td>
<td>9.62</td>
<td>5.87</td>
<td>-0.7</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Cysteine5</td>
<td>Cys C</td>
<td>121</td>
<td>1.96</td>
<td>10.28</td>
<td>8.18</td>
<td>5.07</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn N</td>
<td>132</td>
<td>2.02</td>
<td>8.80</td>
<td>5.41</td>
<td>-3.5</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln Q</td>
<td>146</td>
<td>2.17</td>
<td>9.13</td>
<td>5.65</td>
<td>-3.5</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Positively charged R groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys K</td>
<td>146</td>
<td>2.18</td>
<td>8.95</td>
<td>10.53</td>
<td>9.74</td>
<td>-3.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Histidine</td>
<td>His H</td>
<td>155</td>
<td>1.82</td>
<td>9.17</td>
<td>6.00</td>
<td>7.59</td>
<td>-3.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg R</td>
<td>174</td>
<td>2.17</td>
<td>9.04</td>
<td>12.48</td>
<td>10.76</td>
<td>-4.5</td>
<td>5.1</td>
</tr>
<tr>
<td>Negatively charged R groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate</td>
<td>Asp D</td>
<td>133</td>
<td>1.88</td>
<td>9.60</td>
<td>3.65</td>
<td>2.77</td>
<td>-3.5</td>
<td>5.3</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Glu E</td>
<td>147</td>
<td>2.19</td>
<td>9.67</td>
<td>4.25</td>
<td>3.22</td>
<td>-3.5</td>
<td>6.3</td>
</tr>
</tbody>
</table>

* M_r values reflect the structures as shown in Figure 3-5. The elements of water (M, 18) are deleted when the amino acid is incorporated into a polypeptide.

+A scale combining hydrophobicity and hydrophilicity of R groups. The values reflect the free energy (ΔG) of transfer of the amino acid side chain from a hydrophobic solvent to water. This transfer is favorable ($\Delta G < 0$; negative value in the index) for charged or polar amino acid side chains, and unfavorable ($\Delta G > 0$; positive value in the index) for amino acids with nonpolar or more hydrophobic side chains. See Chapter 11. From Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.

5 Cysteine is generally classified as polar despite having a positive hydropathy index. This reflects the ability of the sulfhydryl group to act as a weak acid and to form a weak hydrogen bond with oxygen or nitrogen.

(see Fig. 1–19). All molecules with a chiral center are also optically active—that is, they rotate plane-polarized light (see Box 1–2).

KEY CONVENTION: Two conventions are used to identify the carbons in an amino acid—a practice that can be confusing. The additional carbons in an R group are commonly designated $\beta, \gamma, \delta, \epsilon$, and so forth, proceeding out from the α carbon. For most other organic molecules, carbon atoms are simply numbered from one end, giving highest priority (C-1) to the carbon with the substituent containing the atom of highest atomic number.
Within this latter convention, the carboxyl carbon of an amino acid would be C-1 and the \(\alpha \) carbon would be C-2.

\[
\begin{align*}
\text{Lysine} & : & \text{CH}_2 \text{CH} - \text{CH}_2 \text{CH}_2 \text{CH} - \text{CH} - \text{COO}^- & +\text{NH}_3 \\
\text{o-Alanine} & : & \text{CH}_2 \text{CH} - \text{CH}_2 \text{CH}_2 \text{CH} - \text{CH} - \text{COO}^- & +\text{NH}_3
\end{align*}
\]

In some cases, such as amino acids with heterocyclic R groups (such as histidine), the Greek lettering system is ambiguous and the numbering convention is therefore used. For branched amino acid side chains, equivalent carbons are given numbers after the Greek letters. Leucine thus has 61 and 62 carbons (see the structure in Fig. 3–5).

Special nomenclature has been developed to specify the absolute configuration of the four substituents of asymmetric carbon atoms. The absolute configurations of simple sugars and amino acids are specified by the D, L system (Fig. 3–4), based on the absolute configuration of the three-carbon sugar glyceraldehyde, a convention proposed by Emil Fischer in 1891. (Fischer knew what groups surrounded the asymmetric carbon of glyceraldehyde but had to guess at their absolute configuration; his guess was later confirmed by x-ray diffraction analysis.) For all chiral compounds, stereoisomers having a configuration related to that of L-glyceraldehyde are designated L, and stereoisomers related to D-glyceraldehyde are designated D. The functional groups of L-alanine are matched with those of L-glyceraldehyde by aligning those that can be interconverted by simple, one-step chemical reactions. Thus the carboxyl group of L-alanine occupies the same position about the chiral carbon as does the aldehyde group of L-glyceraldehyde, because an aldehyde is readily converted to a carboxyl group via a one-step oxidation. Historically, the similar L and D designations were used for levorotatory (rotating plane-polarized light to the left) and dextrorotatory (rotating light to the right). However, not all L-amino acids are levorotatory, and the convention shown in Figure 3–4 was needed to avoid potential ambiguities about absolute configuration. By Fischer’s convention, L and D refer only to the absolute configuration of the four substituents around the chiral carbon, not to optical properties of the molecule.

Another system of specifying configuration around a chiral center is the RS system, which is used in the systematic nomenclature of organic chemistry and describes more precisely the configuration of molecules with more than one chiral center (see p. 17).

The Amino Acid Residues in Proteins Are L Stereoisomers

Nearly all biological compounds with a chiral center occur naturally in only one stereoisomeric form, either D or L. The amino acid residues in protein molecules are exclusively L stereoisomers. D-Amino acid residues have been found in only a few, generally small peptides, including some peptides of bacterial cell walls and certain peptide antibiotics.

It is remarkable that virtually all amino acid residues in proteins are L stereoisomers. When chiral compounds are formed by ordinary chemical reactions, the result is a racemic mixture of D and L isomers, which are difficult for a chemist to distinguish and separate. But to a living system, D and L isomers are as different as the right hand and the left. The formation of stable, repeating substructures in proteins (Chapter 4) generally requires that their constituent amino acids be of one stereochiral series. Cells are able to specifically synthesize the L isomers of amino acids because the active sites of enzymes are asymmetric, causing the reactions they catalyze to be stereospecific.

Amino Acids Can Be Classified by R Group

Knowledge of the chemical properties of the common amino acids is central to an understanding of biochemistry. The topic can be simplified by grouping the amino acids into five main classes based on the properties of their R groups (Table 3–1), in particular, their polarity, or tendency to interact with water at biological pH (near pH 7.0). The polarity of the R groups varies widely, from nonpolar and hydrophobic (water-insoluble) to highly polar and hydrophilic (water-soluble).

The structures of the 20 common amino acids are shown in Figure 3–5, and some of their properties are listed in Table 3–1. Within each class there are gradations of polarity, size, and shape of the R groups.

Nonpolar, Aliphatic R Groups

The R groups in this class of amino acids are nonpolar and hydrophobic.
The side chains of **alanine**, **valine**, **leucine**, and **isoleucine** tend to cluster together within proteins, stabilizing protein structure by means of hydrophobic interactions. **Glycine** has the simplest structure. Although it is most easily grouped with the nonpolar amino acids, its very small side chain makes no real contribution to hydrophobic interactions. **Methionine**, one of the two sulfur-containing amino acids, has a nonpolar thioether group in its side chain. **Proline** has an aliphatic side chain with a distinctive cyclic structure. The secondary amino (imino) group of **proline residues** is held in a rigid conformation that reduces the structural flexibility of polypeptide regions containing proline.

Aromatic R Groups **Phenylalanine**, **tyrosine**, and **tryptophan**, with their aromatic side chains, are relatively nonpolar (hydrophobic). All can participate in hydrophobic interactions. The hydroxyl group of tyrosine can form hydrogen bonds, and it is an important functional group in some enzymes. Tyrosine and tryptophan are significantly more polar than phenylalanine, because
of the tyrosine hydroxyl group and the nitrogen of the tryptophan indole ring.

Tryptophan and tyrosine, and to a much lesser extent phenylalanine, absorb ultraviolet light (Fig. 3-6; see also Box 3-1). This accounts for the characteristic strong absorbance of light by most proteins at a wavelength of 280 nm, a property exploited by researchers in the characterization of proteins.

BOX 3-1 METHODS Absorption of Light by Molecules: The Lambert-Beer Law

A wide range of biomolecules absorb light at characteristic wavelengths, just as tryptophan absorbs light at 280 nm (see Fig. 3-6). Measurement of light absorption by a spectrophotometer is used to detect and identify molecules and to measure their concentration in solution. The fraction of the incident light absorbed by a solution at a given wavelength is related to the thickness of the absorbing layer (path length) and the concentration of the absorbing species (Fig. 1). These two relationships are combined into the Lambert-Beer law,

$$\log \frac{I_0}{I} = -\varepsilon cl$$

where I_0 is the intensity of the incident light, I is the intensity of the transmitted light, the ratio I/I_0 (the inverse of the ratio in the equation) is the transmittance, ε is the molar extinction coefficient (in units of liters per mole-centimeter), c is the concentration of the absorbing species (in moles per liter), and l is the path length of the light-absorbing sample (in centimeters). The Lambert-Beer law assumes that the incident light is parallel and monochromatic (of a single wavelength) and that the solvent and solute molecules are randomly oriented. The expression $\log (I_0/I)$ is called the absorbance, designated A.

It is important to note that each successive millimeter of path length of absorbing solution in a 1.0 cm cell absorbs not a constant amount but a constant fraction of the light that is incident upon it. However, with an absorbing layer of fixed path length, the absorbance, A, is directly proportional to the concentration of the absorbing solute.

The molar extinction coefficient varies with the nature of the absorbing compound, the solvent, and the wavelength, and also with pH if the light-absorbing species is in equilibrium with an ionization state that has different absorbance properties.

FIGURE 3-6 Absorption of ultraviolet light by aromatic amino acids. Comparison of the light absorption spectra of the aromatic amino acids tryptophan and tyrosine at pH 6.0. The amino acids are present in equimolar amounts (10^{-3}M) under identical conditions. The measured absorbance of tryptophan is as much as four times that of tyrosine. Note that the maximum light absorption for both tryptophan and tyrosine occurs near a wavelength of 280 nm. Light absorption by the third aromatic amino acid, phenylalanine (not shown), generally contributes little to the spectroscopic properties of proteins.

FIGURE 1 The principal components of a spectrophotometer. A light source emits light along a broad spectrum, then the monochromator selects and transmits light of a particular wavelength. The monochromatic light passes through the sample in a cuvette of path length l and is absorbed by the sample in proportion to the concentration of the absorbing species. The transmitted light is measured by a detector.
FIGURE 3-7 Reversible formation of a disulfide bond by oxidation of two molecules of cysteine. Disulfide bonds between Cys residues stabilize the structures of many proteins.

Polar, Uncharged R Groups The R groups of these amino acids are more soluble in water or more hydrophilic, than those of the nonpolar amino acids, because they contain functional groups that form hydrogen bonds with water. This class of amino acids includes **serine**, **threonine**, **cysteine**, **asparagine**, and **glutamine**. The polarity of serine and threonine is contributed by their hydroxyl groups; that of cysteine by its sulfhydryl group, which is a weak acid and can make weak hydrogen bonds with oxygen or nitrogen; and that of asparagine and glutamine by their amide groups.

Asparagine and glutamine are the amides of two other amino acids also found in proteins, aspartate and glutamate, respectively, to which asparagine and glutamine are easily hydrolyzed by acid or base. Cysteine is readily oxidized to form a covalently linked dimeric amino acid called **cystine**, in which two cysteine molecules or residues are joined by a disulfide bond (Fig. 3-7). The disulfide-linked residues are strongly hydrophobic (nonpolar). Disulfide bonds play a special role in the structures of many proteins by forming covalent links between parts of a polypeptide molecule or between two different polypeptide chains.

Positively Charged (Basic) R Groups The most hydrophilic R groups are those that are either positively or negatively charged. The amino acids in which the R groups have significant positive charge at pH 7.0 are **lysine**, which has a secondary amino group at the α position on its aliphatic chain; **arginine**, which has a positively charged guanidinium group; and **histidine**, which has an aromatic imidazole group. As the only common amino acid having an ionizable side chain with pKₐ near neutrality, histidine may be positively charged (protonated form) or uncharged at pH 7.0. His residues facilitate many enzyme-catalyzed reactions by serving as proton donors/acceptors.

Negatively Charged (Acidic) R Groups The two amino acids having R groups with a net negative charge at pH 7.0 are **aspartate** and **glutamate**, each of which has a second carboxyl group.

Uncommon Amino Acids Also Have Important Functions

In addition to the 20 common amino acids, proteins may contain residues created by modification of common residues already incorporated into a polypeptide (Fig. 3-8a). Among these uncommon amino acids are **4-hydroxyproline**, a derivative of proline, and **5-hydroxylysine**, derived from lysine. The former is found in plant cell wall proteins, and both are found in collagen, a fibrous protein of connective tissues. **6-N-Methyllysine** is a constituent of myosin, a contractile protein of muscle. Another important uncommon amino acid is **γ-carboxyglutamate**, found in the blood-clotting protein prothrombin and in certain other proteins that bind Ca²⁺ as part of their biological function. More complex is **desmosine**, a derivative of four Lys residues, which is found in the fibrous protein elastin.

Selenocysteine is a special case. This rare amino acid residue is introduced during protein synthesis rather than created through a postsynthetic modification. It contains selenium rather than the sulfur of cysteine. Actually derived from serine, selenocysteine is a constituent of just a few known proteins.

Some amino acid residues in a protein may be modified transiently to alter the protein's function. The addition of phosphoryl, methyl, acetyl, adenyl, ADP-ribosyl, or other groups to particular amino acid residues can increase or decrease a protein's activity (Fig. 3-8b). Phosphorylation is a particularly common regulatory modification. Covalent modification as a protein regulatory strategy is discussed in more detail in Chapter 6.

Some 300 additional amino acids have been found in cells. They have a variety of functions but are not all constituents of proteins. **Ornithine** and **citrulline** (Fig. 3-8c) deserve special note because they are key intermediates (metabolites) in the biosynthesis of arginine (Chapter 22) and in the urea cycle (Chapter 18).
Amino Acids Can Act as Acids and Bases

The amino and carboxyl groups of amino acids, along with the ionizable R groups of some amino acids, function as weak acids and bases. When an amino acid lacking an ionizable R group is dissolved in water at neutral pH, it exists in solution as the dipolar ion, or zwitterion (German for “hybrid ion”), which can act as either an acid or a base (Fig. 3-9). Substances having this dual (acid-base) nature are amphoteric and are often called...
ampholytes (from “amphoteric electrolytes”). A simple monoamino monocarboxylic α-amino acid, such as alanine, is a diprotic acid when fully protonated; it has two groups, the —COOH group and the —NH₃⁺ group, that can yield protons:

\[
\begin{align*}
\text{Nonionic form} & : \quad \text{R}-\text{C}-\text{C}^- \quad \text{as acid} \\
\text{Zwitterion} & : \quad \text{R}-\text{C}^-\text{C}-\text{O}^- \\
\text{Base} & : \quad \text{R}-\text{C}-\text{C}^- \quad \text{as base}
\end{align*}
\]

Aminoo Acids Have Characteristic Titration Curves

Acid-base titration involves the gradual addition or removal of protons (Chapter 2). Figure 3-10 shows the titration curve of the diprotic form of glycine. The two ionizable groups of glycine, the carboxyl group and the amino group, are titrated with a strong base such as NaOH. The plot has two distinct stages, corresponding to deprotonation of two different groups on glycine. Each of the two stages resembles in shape the titration curve of a monoprotic acid, such as acetic acid (see Fig. 2-16), and can be analyzed in the same way. At very low pH, the predominant ionic species of glycine is the fully protonated form, \(^+\text{H}_3\text{N}^-\text{CH}_2\text{COO}^- \). At the midpoint of the first stage of the titration, in which the —COOH group of glycine loses its proton, equimolar concentrations of the proton-donor \(^+\text{H}_3\text{N}^-\text{CH}_2\text{COO}^- \) and proton-acceptor \(^+\text{H}_3\text{N}^-\text{CH}_2\text{COO}^- \) species are present. At the midpoint of any titration, a point of inflection is reached where the pH is equal to the pKₐ of the protonated group being titrated (see Fig. 2-17). For glycine, the pH at the midpoint is 2.34, thus its —COOH group has a pKₐ (labeled pK₁ in Fig. 3-10) of 2.34. (Recall from Chapter 2 that pH and pKₐ are simply convenient notations for proton concentration and the equilibrium constant for ionization, respectively. The pKₐ is a measure of the tendency of a group to give up a proton, with that tendency decreasing tenfold as the pKₐ increases by one unit.) As the titration proceeds, another important point is reached at pH 5.97. Here there is another point of inflection, at which removal of the first proton is essentially complete and removal of the second has just begun. At this pH glycine is present largely as the dipolar ion (zwitterion) \(^+\text{H}_3\text{N}^-\text{CH}_2\text{COO}^- \). We shall return to the significance of this inflection point in the titration curve (labeled pI in Fig. 3-10) shortly.

The second stage of the titration corresponds to the removal of a proton from the —NH₃⁺ group of glycine. The pH at the midpoint of this stage is 9.60, equal to the pKₐ (labeled pK₂ in Fig. 3-10) for the —NH₃⁺ group. The titration is essentially complete at a pH of about 12, at which point the predominant form of glycine is \(^+\text{H}_2\text{N}^-\text{CH}_2\text{COO}^- \).

From the titration curve of glycine we can derive several important pieces of information. First, it gives a quantitative measure of the pKₐ of each of the two ionizing groups: 2.34 for the —COOH group and 9.60 for the —NH₃⁺ group. Note that the carboxyl group of glycine is over 100 times more acidic (more easily ionized) than...
PKt
Methyl-substituted carboxyl and amino groups

FIGURE 3-11 Effect of the chemical environment on pKₐ. The pKₐ values for the ionizable groups in glycine are lower than those for simple, methyl-substituted amino and carboxyl groups. These downward perturbations of pKₐ are due to intramolecular interactions. Similar effects can be caused by chemical groups that happen to be positioned nearby—for example, in the active site of an enzyme.

glycine, the Henderson-Hasselbalch equation (p. 60) can be used to calculate the proportions of proton-donor and proton-acceptor species of glycine required to make a buffer at a given pH.

Titration Curves Predict the Electric Charge of Amino Acids

Another important piece of information derived from the titration curve of an amino acid is the relationship between its net charge and the pH of the solution. At pH 5.97, the point of inflection between the two stages in its titration curve, glycine is present predominantly as its dipolar form, fully ionized but with no net electric charge (Fig. 3-10). The characteristic pH at which the net electric charge is zero is called the isoelectric point or isoelectric pH, designated pI. For glycine, which has no ionizable group in its side chain, the isoelectric point is simply the arithmetic mean of the two pKₐ values:

\[
pI = \frac{1}{2} (pK_1 + pK_2) = \frac{1}{2} (2.34 + 9.60) = 5.97
\]

As is evident in Figure 3-10, glycine has a net negative charge at any pH above its pI and will thus move toward the positive electrode (the anode) when placed in an electric field. At any pH below its pI, glycine has a net positive charge and will move toward the negative electrode (the cathode). The farther the pH of a glycine solution is from its isoelectric point, the greater the net electric charge of the population of glycine molecules. At pH 1.0, for example, glycine exists almost entirely as the form \(+H_2N\text{-CH}_2\text{COOH}\) with a net positive charge.
of 1.0. At pH 2.34, where there is an equal mixture of $^1\text{H}_3\text{N}—\text{CH}_2—\text{COOH}$ and $^1\text{H}_3\text{N}—\text{CH}_2—\text{CO}^-\text{O}^-$, the average or net positive charge is 0.5. The sign and the magnitude of the net charge of any amino acid at any pH can be predicted in the same way.

Amino Acids Differ in Their Acid-Base Properties

The shared properties of many amino acids permit some simplifying generalizations about their acid-base behaviors. First, all amino acids with a single a-amino group, a single a-carboxyl group, and an R group that does not ionize have titration curves resembling that of glycine (Fig. 3-10). These amino acids have very similar, although not identical, pK_a values: pK_a of the $-\text{COOH}$ group in the range of 1.8 to 2.4, and pK_a of the $-\text{NH}_3^+$ group in the range of 8.8 to 11.0 (Table 3-1). The differences in these pK_a values reflect the effects of the R groups. Second, amino acids with an ionizable R group have more complex titration curves, with three stages corresponding to the three possible ionization steps; thus they have three pK_a values. The additional stage for the titration of the ionizable R group merges to some extent with the other two. The titration curves for two amino acids of this type, glutamate and histidine, are shown in Figure 3-12. The isoelectric points reflect the nature of the ionizing R groups present. For example, glutamate has a pI of 3.22, considerably lower than that of glycine. This is due to the presence of two carboxyl groups, which, at the average of their pK_a values (3.22), contribute a net charge of -1 that balances the $+1$ contributed by the amino group. Similarly, the pI of histidine, with two groups that are positively charged when protonated, is 7.59 (the average of the pK_a values of the amino and imidazole groups), much higher than that of glycine.

Finally, as pointed out earlier, under the general condition of free and open exposure to the aqueous environment, only histidine has an R group ($pK_a = 6.0$) providing significant buffering power near the neutral pH usually found in the intracellular and extracellular fluids of most animals and bacteria (Table 3-1).

SUMMARY 3.1 Amino Acids

- The 20 amino acids commonly found as residues in proteins contain an a-carboxyl group, an a-amino group, and a distinctive R group substituted on the a-carbon atom. The a-carbon atom of all amino acids except glycine is asymmetric, and thus amino acids can exist in at least two stereoisomeric forms. Only the l stereoisomers, with a configuration related to the absolute configuration of the reference molecule l-glyceraldehyde, are found in proteins.

- Other, less common amino acids also occur, either as constituents of proteins (through modification of common amino acid residues after protein synthesis) or as free metabolites.

- Amino acids are classified into five types on the basis of the polarity and charge (at pH 7) of their R groups.

- Amino acids vary in their acid-base properties and have characteristic titration curves. Monoamino monocarboxylic amino acids (with nonionizable R groups) are diprotic acids ($^1\text{H}_3\text{NCH(R)COOH}$) at low pH and exist in several different ionic forms as the pH is increased. Amino acids with ionizable R groups have additional ionic species, depending on the pH of the medium and the pK_a of the R group.
3.2 Peptides and Proteins

We now turn to polymers of amino acids, the peptides and proteins. Biologically occurring polypeptides range in size from small to very large, consisting of two or three to thousands of linked amino acid residues. Our focus is on the fundamental chemical properties of these polymers.

Peptides Are Chains of Amino Acids

Two amino acid molecules can be covalently joined through a substituted amide linkage, termed a peptide bond, to yield a dipeptide. Such a linkage is formed by removal of the elements of water (dehydration) from the α-carboxyl group of one amino acid and the α-amino group of another (Fig. 3-13). Peptide bond formation is an example of a condensation reaction, a common class of reactions in living cells. Under standard biochemical conditions, the equilibrium for the reaction shown in Figure 3-13 favors the amino acids over the dipeptide. To make the reaction thermodynamically more favorable, the carboxyl group must be chemically modified or activated so that the hydroxyl group can be more readily eliminated. A chemical approach to this problem is outlined later in this chapter. The biological approach to peptide bond formation is a major topic of Chapter 27.

Three amino acids can be joined by two peptide bonds to form a tripeptide; similarly, four amino acids can be linked to form tetrapeptides, and so forth. When a few amino acids are joined in this fashion, the structure is called an oligopeptide. When many amino acids are joined, the product is called a polypeptide. Proteins may have thousands of amino acid residues. Although the terms “protein” and “polypeptide” are sometimes used interchangeably, molecules referred to as polypeptides generally have molecular weights below 10,000, and those called proteins have higher molecular weights.

Peptide Can Be Distinguished by Their Ionization Behavior

Peptides contain only one free α-amino group and one free α-carboxyl group, at opposite ends of the chain (Fig. 3-15). These groups ionize as they do in free amino acids, although the ionization constants are different because an oppositely charged group is no longer linked to the α carbon. The α-amino and α-carboxyl groups of all nonterminal amino acids are covalently joined in the peptide bonds, which do not ionize and thus do not contribute to the total acid-base behavior of peptides. However, the R groups of some amino acids can ionize (Table 3-1), and in a peptide these contribute to the overall acid-base properties of the molecule (Fig. 3-15). Thus the acid-base behavior of a peptide can be predicted from its free α-amino and α-carboxyl groups as well as the nature and number of its ionizable R groups.

Like free amino acids, peptides have characteristic titration curves and a characteristic isoelectric pH (pI) at which they do not move in an electric field. These properties are exploited in some of the techniques used...
to separate peptides and proteins, as we shall see later in the chapter. It should be emphasized that the pK_a value for an ionizable R group can change somewhat when an amino acid becomes a residue in a peptide. The loss of charge in the α-carboxyl and α-amino groups, the interactions with other peptide R groups, and other environmental factors can affect the pK_a. The pK_a values for R groups listed in Table 3–1 can be a useful guide to the pH range in which a given group will ionize, but they cannot be strictly applied to peptides.

Biologically Active Peptides and Polypeptides Occur in a Vast Range of Sizes and Compositions

No generalizations can be made about the molecular weights of biologically active peptides and proteins in relation to their functions. Naturally occurring peptides range in length from two to many thousands of amino acid residues. Even the smallest peptides can have biologically important effects. Consider the commercially synthesized dipeptide L-aspartyl-L-phenylalanine methyl ester, the artificial sweetener better known as aspartame or NutraSweet.

Many small peptides exert their effects at very low concentrations. For example, a number of vertebrate hormones (Chapter 23) are small peptides. These include oxytocin (nine amino acid residues), which is secreted by the posterior pituitary and stimulates uterine contractions, and thyrotropin-releasing factor (three residues), which is formed in the hypothalamus and stimulates the release of another hormone, thyrotropin, from the anterior pituitary gland. Some extremely toxic mushroom poisons, such as amanitin, are also small peptides, as are many antibiotics.

How long are the polypeptide chains in proteins? As Table 3–2 shows, lengths vary considerably. Human cytochrome c has 104 amino acid residues linked in a single chain; bovine chymotrypsinogen has 245 residues. At the extreme is titin, a constituent of vertebrate muscle, which has nearly 27,000 amino acid residues and a molecular weight of about 3,000,000. The vast majority of naturally occurring proteins are much smaller than this, containing fewer than 2,000 amino acid residues.
Amino Acids, Peptides, and Proteins

In some common analyses, such as acid hydrolysis, Asp and Asn are not readily distinguished from each other and are together designated Asx (or B). Similarly, when Glu and Gln cannot be distinguished, they are together designated Glx (or Z). In addition, Trp is destroyed by acid hydrolysis. Additional procedures must be employed to obtain an accurate assessment of complete amino acid content.

Some proteins consist of a single polypeptide chain, but others, called multisubunit proteins, have two or more polypeptides associated noncovalently (Table 3-2). The individual polypeptide chains in a multisubunit protein may be identical or different. If at least two are identical the protein is said to be oligomeric, and the identical units (consisting of one or more polypeptide chains) are referred to as protomers. Hemoglobin, for example, has four polypeptide subunits: two identical α chains and two identical β chains, all four held together by noncovalent interactions. Each α subunit is paired in an identical way with a β subunit within the structure of this multisubunit protein, so that hemoglobin can be considered either a tetramer of four polypeptide subunits or a dimer of αβ protomers.

A few proteins contain two or more polypeptide chains linked covalently. For example, the two polypeptide chains of insulin are linked by disulfide bonds. In such cases, the individual polypeptides are not considered subunits but are commonly referred to simply as chains.

The amino acid composition of proteins is also highly variable. The 20 common amino acids almost never occur in equal amounts in a protein. Some amino acids may occur only once or not at all in a given type of protein; others may occur in large numbers. Table 3–3 shows the amino acid composition of bovine cytochrome c and chymotrypsinogen, the inactive precursor of the digestive enzyme chymotrypsin. These two proteins, with very different functions, also differ significantly in the relative numbers of each kind of amino acid residue.

We can calculate the approximate number of amino acid residues in a simple protein containing no other chemical constituents by dividing its molecular weight by 110. Although the average molecular weight of the 20 common amino acids is about 138, the smaller amino acids predominate in most proteins. If we take into account the proportions in which the various amino acids occur in an average protein (Table 3–1; the averages are determined by surveying the amino acid compositions of thousands of different proteins), the average molecular weight of protein amino acids is nearer to 128. Because a molecule of water (M, 18) is removed to create each peptide bond, the average molecular weight of an amino acid residue in a protein is about 128 - 18 = 110.

Some proteins contain chemical groups other than amino acids

Many proteins, for example the enzymes ribonuclease A and chymotrypsin, contain only amino acid residues and no other chemical constituents; these are considered simple proteins. However, some proteins contain permanently associated chemical components in addition to amino acids; these are called conjugated proteins. The non-amino acid part of a conjugated protein is usually called its prosthetic group. Conjugated proteins are classified on the basis of the chemical nature of their prosthetic groups (Table 3–4); for example, lipoproteins contain lipids, glycoproteins contain sugar groups, and metalloproteins contain a specific metal. Some proteins contain more than one prosthetic group. Usually the prosthetic group plays an important role in the protein’s biological function.

Table 3–3: Amino Acid Composition of Two Proteins

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Bovine cytochrome c</th>
<th>Bovine chymotrypsinogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Arg</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Asn</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Asp</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Cys</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Gln</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Glu</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Gly</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>His</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ile</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Leu</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Lys</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Met</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Phe</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Pro</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Ser</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Thr</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>Trp</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Tyr</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Val</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>245</td>
</tr>
</tbody>
</table>

*In some common analyses, such as acid hydrolysis, Asp and Asn are not readily distinguished from each other and are together designated Asx (or B). Similarly, when Glu and Gln cannot be distinguished, they are together designated Glx (or Z). In addition, Trp is destroyed by acid hydrolysis. Additional procedures must be employed to obtain an accurate assessment of complete amino acid content.

SUMMARY 3.2 Peptides and Proteins

- Amino acids can be joined covalently through peptide bonds to form peptides and proteins. Cells generally contain thousands of different proteins, each with a different biological activity.
- Proteins can be very long polypeptide chains of 100 to several thousand amino acid residues. However,
some naturally occurring peptides have only a few amino acid residues. Some proteins are composed of several noncovalently associated polypeptide chains, called subunits.

- Simple proteins yield only amino acids on hydrolysis; conjugated proteins contain in addition some other component, such as a metal or organic prosthetic group.

3.3 Working with Proteins

Biochemists' understanding of protein structure and function has been derived from the study of many individual proteins. To study a protein in detail, the researcher must be able to separate it from other proteins in pure form and must have the techniques to determine its properties. The necessary methods come from protein chemistry, a discipline as old as biochemistry itself and one that retains a central position in biochemical research.

Proteins Can Be Separated and Purified

A pure preparation is essential before a protein's properties and activities can be determined. Given that cells contain thousands of different kinds of proteins, how can one protein be purified? Classical methods for separating proteins take advantage of properties that vary from one protein to the next, including size, charge, and binding properties. Some additional modern methods, involving DNA cloning and genome sequencing, can simplify the process of protein purification and are presented in Chapter 9.

The source of a protein is generally tissue or microbial cells. The first step in any protein purification procedure is to break open these cells, releasing their proteins into a solution called a **crude extract**. If necessary, differential centrifugation can be used to prepare subcellular fractions or to isolate specific organelles (see Fig. 1–8).

Once the extract or organelle preparation is ready, various methods are available for purifying one or more of the proteins it contains. Commonly, the extract is subjected to treatments that separate the proteins into different **fractions** based on a property such as size or charge, a process referred to as **fractionation**. Early fractionation steps in a purification utilize differences in protein solubility, which is a complex function of pH, temperature, salt concentration, and other factors. The solubility of proteins is generally lowered at high salt concentrations, an effect called "salting out." The addition of certain salts in the right amount can selectively precipitate some proteins, while others remain in solution. Ammonium sulfate \((\text{NH}_4)_2\text{SO}_4\) is particularly effective and is often used to salt out proteins. The proteins thus precipitated are removed from those remaining in solution by low-speed centrifugation.

A solution containing the protein of interest usually must be further altered before subsequent purification steps are possible. For example, **dialysis** is a procedure that separates proteins from small solutes by taking advantage of the proteins' larger size. The partially purified extract is placed in a bag or tube made of a semipermeable membrane. When this is suspended in a much larger volume of buffered solution of appropriate ionic strength, the membrane allows the exchange of salt and buffer but not proteins. Thus dialysis retains large proteins within the membranous bag or tube while allowing the concentration of other solutes in the protein preparation to change until they come into equilibrium with the solution outside the membrane. Dialysis might be used, for example, to remove ammonium sulfate from the protein preparation.

The most powerful methods for fractionating proteins make use of **column chromatography**, which

Table 3–4: Conjugated Proteins

<table>
<thead>
<tr>
<th>Class</th>
<th>Prosthetic group</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipoproteins</td>
<td>Lipids</td>
<td>(\beta_1)-Lipoprotein of blood</td>
</tr>
<tr>
<td>Glycoproteins</td>
<td>Carbohydrates</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>Phosphoproteins</td>
<td>Phosphate groups</td>
<td>Casein of milk</td>
</tr>
<tr>
<td>Hemoproteins</td>
<td>Heme (iron porphyrin)</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Flavoproteins</td>
<td>Flavin nucleotides</td>
<td>Succinate dehydrogenase</td>
</tr>
<tr>
<td>Metalloproteins</td>
<td>Iron</td>
<td>Ferritin</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>Calmodulin</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Dinitrogenase</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Plastocyanin</td>
</tr>
</tbody>
</table>

[Image of Table 3–4]

Note: The image contains a table with the header "Conjugated Proteins" and columns for "Class," "Prosthetic group," and "Example." The table provides examples of various classes of conjugated proteins along with their prosthetic groups and examples of proteins containing those groups.
Column chromatography.

The standard elements of a chromatographic column include a solid, porous material (matrix) supported inside a column, generally made of plastic or glass. A solution, the mobile phase, flows through the matrix, the stationary phase. The solution that passes out of the column at the bottom (the effluent) is constantly replaced by solution supplied from a reservoir at the top. The protein solution to be separated is layered on top of the column and allowed to percolate into the solid matrix. Additional solution is added on top. The protein solution forms a band within the mobile phase that is initially the depth of the protein solution applied to the column. As proteins migrate through the column, they are retarded to different degrees by their different interactions with the matrix material. The overall protein band thus widens as it moves through the column. Individual types of proteins (such as A, B, and C, shown in blue, red, and green) gradually separate from each other, forming bands within the broader protein band. Separation improves (i.e., resolution increases) as the length of the column increases. However, each individual protein band also broadens with time due to diffusional spreading, a process that decreases resolution. As the protein-containing solution exits a column, successive portions (fractions) of this effluent are collected in test tubes. Each fraction can be tested for the presence of the protein of interest as well as other properties, such as ionic strength or total protein concentration. All fractions positive for the protein of interest can be combined as the product of this chromatographic step of the protein purification.

WORKED EXAMPLE 3–1 Ion Exchange of Peptides

A biochemist wants to separate two peptides by ion-exchange chromatography. At the pH of the mobile phase to be used on the column, one peptide (A) has a net charge of -3, due to the presence of more Glu and Asp residues than Arg, Lys, and His residues. Peptide B has a net charge of +1. Which peptide would elute first from a cation-exchange resin? Which would elute first from an anion-exchange resin?
3.3 Working with Proteins

O Large net positive charge
O Net positive charge
O Net negative charge
O Large net negative charge

Polymer beads with negatively charged functional groups

Protein mixture is added to column containing cation exchangers.

Proteins move through the column at rates determined by their net charge at the pH being used. With cation exchangers, proteins with a more negative net charge move faster and elute earlier.

(a) Ion-exchange chromatography

Polymer beads

Porous polymer beads

Protein mixture is added to column containing cross-linked polymer.

Protein molecules separate by size; larger molecules pass more freely, appearing in the earlier fractions.

(b) Size-exclusion chromatography

Solution: A cation-exchange resin has negative charges and binds positively charged molecules, retarding their progress through the column. Peptide B, with its net positive charge, will interact more strongly with the cation-exchange resin than peptide A, and thus peptide A will elute first. On the anion-exchange resin, peptide B will elute first. Peptide A, being negatively charged, will be retarded by its interaction with the positively charged resin.

Figure 3-17 shows two other variations of column chromatography in addition to ion exchange. **Size-exclusion chromatography**, also called gel filtration (Fig. 3-17b), separates proteins according to size. In this method, large proteins emerge from the column sooner than small ones—a somewhat counterintuitive result. The solid phase consists of cross-linked polymer beads with engineered pores or cavities of a particular size. Large proteins cannot enter the cavities and so take a

(c) Affinity chromatography
short (and rapid) path through the column, around the beads. Small proteins enter the cavities and are slowed by their more labyrinthine path through the column.

Affinity chromatography is based on binding affinity (Fig. 3-17c). The beads in the column have a covalently attached chemical group called a ligand—a group or molecule that binds to a macromolecule such as a protein. When a protein mixture is added to the column, any protein with affinity for this ligand binds to the beads, and its migration through the matrix is retarded. For example, if the biological function of a protein involves binding to ATP, then attaching ATP to the beads in the column creates an affinity matrix that can help purify the protein. As the protein solution moves through the column, ATP-binding proteins (including the protein of interest) bind to the ligand used in the column. After proteins that do not bind are washed through the column, the bound protein is eluted by a solution containing either a high concentration of salt or free ligand—in this case, ATP. Salt weakens the binding of the protein to the immobilized ligand, interfering with ionic interactions. Free ligand competes with the ligand attached to the beads, releasing the protein from the matrix; the protein product that elutes from the column is often bound to the ligand used to elute it.

A modern refinement in chromatographic methods is HPLC, or high-performance liquid chromatography. HPLC makes use of high-pressure pumps that speed the movement of the protein molecules down the column, as well as higher-quality chromatographic materials that can withstand the crushing force of the pressurized flow. By reducing the transit time on the column, HPLC can limit diffusional spreading of protein bands and thus greatly improve resolution.

The approach to purification of a protein that has not previously been isolated is guided both by established precedents and by common sense. In most cases, several different methods must be used sequentially to purify a protein completely, each method separating proteins on the basis of different properties. For example, if one step separates ATP-binding proteins from those that do not bind ATP, then the next step must separate the various ATP-binding proteins on the basis of size or charge to isolate the particular protein that is wanted. The choice of methods is somewhat empirical, and many strategies may be tried before the most effective one is found. Trial and error can often be minimized by basing the procedure on purification techniques developed for similar proteins. Published purification protocols are available for many thousands of proteins. Common sense dictates that inexpensive procedures such as salting out be used first, when the total volume and the number of contaminants are greatest. Chromatographic methods are often impractical at early stages, because the amount of chromatographic medium needed increases with sample size. As each purification step is completed, the sample size generally becomes smaller. Table 3–5, making it feasible to use more sophisticated (and expensive) chromatographic procedures at later stages.

Proteins Can Be Separated and Characterized by Electrophoresis

Another important technique for the separation of proteins is based on the migration of charged proteins in an electric field, a process called electrophoresis. These procedures are not generally used to purify proteins in large amounts, because simpler alternatives are usually available and electrophoretic methods often adversely affect the structure and thus the function of proteins. Electrophoresis is, however, especially useful as an analytical method. Its advantage is that proteins can be visualized as well as separated, permitting a researcher to estimate quickly the number of different proteins in a mixture or the degree of purity of a particular protein preparation. Also, electrophoresis allows determination of crucial properties of a protein such as its isoelectric point and approximate molecular weight.

Electrophoresis of Proteins

Proteins are separated in an electric field

<table>
<thead>
<tr>
<th>Fraction volume (mL)</th>
<th>Total protein (mg)</th>
<th>Activity (units)</th>
<th>Specific activity (units/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crude cellular extract</td>
<td>1,400</td>
<td>10,000</td>
<td>100,000</td>
</tr>
<tr>
<td>2. Precipitation with ammonium sulfate</td>
<td>280</td>
<td>3,000</td>
<td>96,000</td>
</tr>
<tr>
<td>3. Ion-exchange chromatography</td>
<td>90</td>
<td>400</td>
<td>80,000</td>
</tr>
<tr>
<td>4. Size-exclusion chromatography</td>
<td>80</td>
<td>100</td>
<td>60,000</td>
</tr>
<tr>
<td>5. Affinity chromatography</td>
<td>6</td>
<td>3</td>
<td>45,000</td>
</tr>
</tbody>
</table>

Note: All data represent the status of the sample after the designated procedure has been carried out. Activity and specific activity are defined on page 91.
FIGURE 3-18 Electrophoresis. (a) Different samples are loaded in wells or depressions at the top of the polyacrylamide gel. The proteins move into the gel when an electric field is applied. The gel minimizes convection currents caused by small temperature gradients, as well as protein movements other than those induced by the electric field. (b) Proteins can be visualized after electrophoresis by treating the gel with a stain such as Coomassie blue, which binds to the proteins but not to the gel itself. Each band on the gel represents a different protein (or protein subunit); smaller proteins move through the gel more rapidly than larger proteins and therefore are found nearer the bottom of the gel. This gel illustrates purification of the RecA protein of Escherichia coli (described in Chapter 25). The gene for the RecA protein was cloned (Chapter 9) so that its expression (synthesis of the protein) could be controlled. The first lane shows a set of standard proteins (of known \(M_r \), serving as molecular weight markers. The next two lanes show proteins from E. coli cells before and after synthesis of RecA protein was induced. The fourth lane shows the proteins in a crude cellular extract. Subsequent lanes (left to right) show the proteins present after successive purification steps. The purified protein is a single polypeptide chain (\(M_r \approx 38,000 \)), as seen in the rightmost lane.

electrophoresis, the force moving the macromolecule is the electrical potential, \(E \). The electrophoretic mobility, \(\mu \), of a molecule is the ratio of its velocity, \(V \), to the electrical potential. Electrophoretic mobility is also equal to the net charge, \(Z \), of the molecule divided by the frictional coefficient, \(f \), which reflects in part a protein’s shape. Thus:

\[
\mu = \frac{V}{E} = \frac{Z}{f}
\]

The migration of a protein in a gel during electrophoresis is therefore a function of its size and its shape.

An electrophoretic method commonly employed for estimation of purity and molecular weight makes use of the detergent sodium dodecyl sulfate (SDS) (“dodecyl” denoting a 12-carbon chain).

\[
\text{SDS} = \text{Na}^+ - \overset{-}{\text{O}} - \overset{\text{S}}{\overset{-}{\text{O}} - \overset{\text{CH}_2}{\text{CH}_3}} - \overset{\text{O}}{\overset{-}{\text{O}}}
\]

Sodium dodecyl sulfate (SDS)

SDS binds to most proteins in amounts roughly proportional to the molecular weight of the protein, about one molecule of SDS for every two amino acid residues. The bound SDS contributes a large net negative charge, rendering the intrinsic charge of the protein insignificant and conferring on each protein a similar charge-to-mass ratio. In addition, SDS binding partially unfolds proteins, such that most SDS-bound proteins assume a similar shape. Electrophoresis in the presence of SDS therefore separates proteins almost exclusively on the basis of mass (molecular weight), with smaller polypeptides migrating more rapidly. After electrophoresis, the proteins are visualized by adding a dye such as Coomassie blue, which binds to proteins but not to the gel itself (Fig. 3–18b). Thus, a researcher can monitor the progress of a protein purification procedure as the number of protein bands visible on the gel decreases after each new fractionation step. When compared with the positions to which proteins of known molecular weight migrate in the gel, the position of an unidentified protein can provide a good approximation of its molecular weight (Fig. 3–19). If the protein has two or more different subunits, the subunits are generally separated by the SDS treatment, and a separate band appears for each.
Isoelectric focusing is a procedure used to determine the isoelectric point (pI) of a protein (Fig. 3-20). A pH gradient is established by allowing a mixture of low molecular weight organic acids and bases (ampholytes; p. 79) to distribute themselves in an electric field generated across the gel. When a protein mixture is applied, each protein migrates until it reaches the pH that matches its pI (Table 3-6). Proteins with different isoelectric points are thus distributed differently throughout the gel.

Combining isoelectric focusing and SDS electrophoresis sequentially in a process called two-dimensional electrophoresis permits the resolution of complex mixtures of proteins (Fig. 3-21). This is a more sensitive analytical method than either electrophoretic method alone. Two-dimensional electrophoresis separates proteins of identical molecular weight that differ in pI, or proteins with similar pI values but different molecular weights.

Table 3-6: The Isoelectric Points of Some Proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pepsin</td>
<td><1.0</td>
</tr>
<tr>
<td>Egg albumin</td>
<td>4.6</td>
</tr>
<tr>
<td>Serum albumin</td>
<td>4.9</td>
</tr>
<tr>
<td>Urease</td>
<td>5.0</td>
</tr>
<tr>
<td>β-Lactoglobulin</td>
<td>5.2</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>6.8</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>7.0</td>
</tr>
<tr>
<td>Chymotrypsinogen</td>
<td>9.5</td>
</tr>
<tr>
<td>Cytochrome c</td>
<td>10.7</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>11.0</td>
</tr>
</tbody>
</table>

FIGURE 3-19 Estimating the molecular weight of a protein. The electrophoretic mobility of a protein on an SDS polyacrylamide gel is related to its molecular weight, M, (a) Standard proteins of known molecular weight are subjected to electrophoresis (lane 1). These marker proteins can be used to estimate the molecular weight of an unknown protein (lane 2). (b) A plot of log M, of the marker proteins versus relative migration during electrophoresis is linear, which allows the molecular weight of the unknown protein to be read from the graph.

FIGURE 3-20 Isoelectric focusing. This technique separates proteins according to their isoelectric points. A stable pH gradient is established in the gel by the addition of appropriate ampholytes. A protein mixture is placed in a well on the gel. With an applied electric field, proteins enter the gel and migrate until each reaches a pH equivalent to its pI. Remember that when pH = pI, the net charge of a protein is zero.
Unseparated Proteins Can Be Quantified

To purify a protein, it is essential to have a way of detecting and quantifying that protein in the presence of many other proteins at each stage of the procedure. Often, purification must proceed in the absence of any information about the size and physical properties of the protein or about the fraction of the total protein mass it represents in the extract. For proteins that are enzymes, the amount in a given solution or tissue extract can be measured, or assayed, in terms of the catalytic effect the enzyme produces—that is, the increase in the rate at which its substrate is converted to reaction products when the enzyme is present. For this purpose one must know (1) the overall equation of the reaction catalyzed, (2) an analytical procedure for determining the disappearance of the substrate or the appearance of a reaction product, (3) whether the enzyme requires cofactors such as metal ions or coenzymes, (4) the dependence of the enzyme activity on substrate concentration, (5) the optimum pH, and (6) a temperature zone in which the enzyme is stable and has high activity. Enzymes are usually assayed at their optimum pH and at some convenient temperature within the range 25 to 38°C. Also, very high substrate concentrations are generally used so that the initial reaction rate, measured experimentally, is proportional to enzyme concentration (Chapter 6).

By international agreement, 1.0 unit of enzyme activity for most enzymes is defined as the amount of enzyme causing transformation of 1.0 μmol of substrate per minute at 25°C under optimal conditions of measurement (for some enzymes, this definition is inconvenient, and a unit may be defined differently). The term activity refers to the total units of enzyme in a solution. The specific activity is the number of enzyme units per milligram of total protein (Fig. 3–22). The specific activity is a measure of enzyme purity: it increases during purification of an enzyme and becomes maximal and constant when the enzyme is pure (Table 3–5, p. 88).

FIGURE 3–21 Two-dimensional electrophoresis. (a) Proteins are first separated by isoelectric focusing in a cylindrical gel. The gel is then laid horizontally on a second, slab-shaped gel, and the proteins are separated by SDS polyacrylamide gel electrophoresis. Horizontal separation reflects differences in pI; vertical separation reflects differences in molecular weight. (b) More than 1,000 different proteins from E. coli can be resolved using this technique.

FIGURE 3–22 Activity versus specific activity. The difference between these terms can be illustrated by considering two beakers of marbles. The beakers contain the same number of red marbles, but different numbers of marbles of other colors. If the marbles represent proteins, both beakers contain the same activity of the protein represented by the red marbles. The second beaker, however, has the higher specific activity because red marbles represent a higher fraction of the total.
After each purification step, the activity of the preparation (in units of enzyme activity) is assayed, the total amount of protein is determined independently, and the ratio of the two gives the specific activity. Activity and total protein generally decrease with each step. Activity decreases because there is always some loss due to inactivation or nonideal interactions with chromatographic materials or other molecules in the solution. Total protein decreases because the objective is to remove as much unwanted or nonspecific protein as possible. In a successful step, the loss of nonspecific protein is much greater than the loss of activity; therefore, specific activity increases even as total activity falls. The data are assembled in a purification table similar to Table 3-5. A protein is generally considered pure when further purification steps fail to increase specific activity and when only a single protein species can be detected (for example, by electrophoresis).

For proteins that are not enzymes, other quantification methods are required. Transport proteins can be assayed by their binding to the molecule they transport, and hormones and toxins by the biological effect they produce; for example, growth hormones will stimulate the growth of certain cultured cells. Some structural proteins represent such a large fraction of a tissue mass that they can be readily extracted and purified without a functional assay. The approaches are as varied as the proteins themselves.

SUMMARY 3.3 Working with Proteins

- Proteins are separated and purified on the basis of differences in their properties. Proteins can be selectively precipitated by the addition of certain salts. A wide range of chromatographic procedures makes use of differences in size, binding affinities, charge, and other properties. These include ion-exchange, size-exclusion, affinity, and high-performance liquid chromatography.

- Electrophoresis separates proteins on the basis of mass or charge. SDS gel electrophoresis and isoelectric focusing can be used separately or in combination for higher resolution.

- All purification procedures require a method for quantifying or assaying the protein of interest in the presence of other proteins. Purification can be monitored by assaying specific activity.

3.4 The Structure of Proteins: Primary Structure

Purification of a protein is usually only a prelude to a detailed biochemical dissection of its structure and function. What is it that makes one protein an enzyme, another a hormone, another a structural protein, and still another an antibody? How do they differ chemically? The most obvious distinctions are structural, and to protein structure we now turn.

For large macromolecules such as proteins, the tasks of describing and understanding structure are approached at several levels of complexity, arranged in a kind of conceptual hierarchy. Four levels of protein structure are commonly defined (Fig. 3-23). A description of all covalent bonds (mainly peptide bonds and disulfide bonds) linking amino acid residues in a polypeptide chain is its primary structure. The most important element of primary structure is the sequence of amino acid residues. Secondary structure refers to particularly stable arrangements of amino acid residues giving rise to recurring structural patterns. Tertiary structure describes all aspects of the three-dimensional folding of a polypeptide. When a protein has two or more polypeptide subunits, their arrangement in space is referred to as quaternary structure. Our exploration of proteins will eventually include complex protein machines consisting of dozens to thousands of subunits. Primary structure is the focus of the remainder of this chapter; the higher levels of structure are discussed in Chapter 4.

The differences in primary structure can be especially informative. Each protein has a distinctive number and sequence of amino acid residues. As we shall see in Chapter 4, the primary structure of a protein determines how it folds up into its unique three-dimensional structure, and this in turn determines the function of the protein. We first consider empirical clues that amino acid sequence and protein function are closely linked, then describe how...
The Function of a Protein Depends on Its Amino Acid Sequence

The bacterium *Escherichia coli* produces more than 3,000 different proteins; a human has ~25,000 genes encoding a much larger number of proteins (through genetic processes discussed in Part III of this text). In both cases, each type of protein has a unique three-dimensional structure and this structure confers a unique function. Each type of protein also has a unique amino acid sequence. Intuition suggests that the amino acid sequence must play a fundamental role in determining the three-dimensional structure of the protein, and ultimately its function, but is this supposition correct? A quick survey of proteins and how they vary in amino acid sequence provides some empirical clues that help substantiate the important relationship between amino acid sequence and biological function.

First, as we have already noted, proteins with different functions always have different amino acid sequences. Second, thousands of human genetic diseases have been traced to the production of defective proteins. The defect can range from a single change in the amino acid sequence (as in sickle cell anemia, described in Chapter 5) to deletion of a larger portion of the polypeptide chain (as in most cases of Duchenne muscular dystrophy: a large deletion in the gene encoding the protein dystrophin leads to production of a shortened, inactive protein). Thus we know that if the primary structure is altered, the function of the protein may also be changed. Finally, on comparing functionally similar proteins from different species, we find that these proteins often have similar amino acid sequences. An extreme case is ubiquitin, a 76-residue protein involved in regulating the degradation of other proteins. The amino acid sequence of ubiquitin is identical in species as disparate as fruit flies and humans.

Is the amino acid sequence absolutely fixed, or invariant, for a particular protein? No; some flexibility is possible. An estimated 20% to 30% of the proteins in humans are polymorphic, having amino acid sequence variants in the human population. Many of these variations in sequence have little or no effect on the function of the protein. Furthermore, proteins that carry out a broadly similar function in distantly related species can differ greatly in overall size and amino acid sequence.

Although the amino acid sequence in some regions of the primary structure might vary considerably without affecting biological function, most proteins contain crucial regions that are essential to their function and whose sequence is therefore conserved. The fraction of the overall sequence that is critical varies from protein to protein, complicating the task of relating sequence to three-dimensional structure, and structure to function. Before we can consider this problem further, however, we must examine how sequence information is obtained.

The Amino Acid Sequences of Millions of Proteins Have Been Determined

Two major discoveries in 1953 were of crucial importance in the history of biochemistry. In that year, James D. Watson and Francis Crick deduced the double-helical structure of DNA and proposed a structural basis for its precise replication (Chapter 8). Their proposal illuminated the molecular reality behind the idea of a gene. In the same year, Frederick Sanger worked out the sequence of amino acid residues in the polypeptide chains of the hormone insulin (Fig. 3–24), surprising...
many researchers who had long thought that determining the amino acid sequence of a polypeptide would be a hopelessly difficult task. It quickly became evident that the nucleotide sequence in DNA and the amino acid sequence in proteins were somehow related. Barely a decade after these discoveries, the genetic code relating the nucleotide sequence of DNA to the amino acid sequence of protein molecules was elucidated (Chapter 27). An enormous number of protein sequences can now be derived indirectly from the DNA sequences in the rapidly growing genome databases. However, modern protein chemistry still makes frequent use of traditional methods of polypeptide sequencing, which can reveal details not evident in the gene sequence, such as modifications that occur after proteins are synthesized. Chemical protein sequencing now complements the newer methods, providing multiple avenues to obtain amino acid sequence data. Such data are now critical to every area of biochemical investigation.

Short Polypeptides Are Sequenced with Automated Procedures

Various procedures are used to analyze protein primary structure. To start, biochemists have several strategies for labeling and identifying the amino-terminal amino acid residue (Fig. 3–25a). Sanger developed the reagent 1-fluoro-2,4-dinitrobenzene (FDNB) for this purpose; other available reagents are dansyl chloride and dabsyl chloride, which yield derivatives that are more easily detectable than the dinitrophenyl derivatives. After the amino-terminal residue is labeled with one of these reagents, the polypeptide is hydrolyzed (in

Figure 3–25 Steps in sequencing a polypeptide. (a) Identification of the amino-terminal residue can be the first step in sequencing a polypeptide. Sanger’s method for identifying the amino-terminal residue is shown here. (b) The Edman degradation procedure reveals the entire sequence of a peptide. For shorter peptides, this method alone readily yields the entire sequence, and step (a) is often omitted. Step (a) is useful in the case of larger polypeptides, which are often fragmented into smaller peptides for sequencing (see Fig. 3–27).
6 M HCl) to its constituent amino acids and the labeled amino acid is identified. Because the hydrolysis stage destroys the polypeptide, this procedure cannot be used to sequence a polypeptide beyond its amino-terminal residue. However, it can help determine the number of chemically distinct polypeptides in a protein, provided each has a different amino-terminal residue. For example, two residues—Phe and Gly—would be labeled if insulin (Fig. 3–24) were subjected to this procedure.

Then cleaved in a step carried out in anhydrous trifluoroacetic acid sequence can be determined starting with only a few micrograms of protein.

Enzymes called proteases catalyze the hydrolytic cleavage of peptide bonds. Some proteases cleave only the peptide bond adjacent to particular amino acid residues (Table 3–7) and thus fragment a polypeptide chain in a predictable and reproducible way. A number of chemical reagents also cleave the peptide bond adjacent to specific residues.
Disulfide bond (cystine)

\[
\begin{align*}
\text{NH} & \quad \text{O} : \quad \text{C} \\
\text{HC} - \text{CH}_2 & \quad \text{S} - \text{S} - \text{CH}_2 & \quad \text{CH} \\
\text{rl} & \quad \text{rl} & \quad \text{rl} & \quad \text{rl}
\end{align*}
\]

Reduction by dithiothreitol or \(\beta \)-mercaptoethanol to form Cys residues must be followed by further modification of the reactive \(-\text{SH}\) groups to prevent re-formation of the disulfide bond. Acetylation by iodoacetate serves this purpose.

FIGURE 3-26 Breaking disulfide bonds in proteins. Two common methods are illustrated. Oxidation of a cystine residue with performic acid produces two cysteic acid residues. Reduction by dithiothreitol or \(\beta \)-mercaptoethanol to form Cys residues must be followed by further modification of the reactive \(-\text{SH}\) groups to prevent re-formation of the disulfide bond. Acetylation by iodoacetate serves this purpose.

TABLE 3-7 The Specificity of Some Common Methods for Fragmenting Polypeptide Chains

<table>
<thead>
<tr>
<th>Reagent (biological source)*</th>
<th>Cleavage points†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin (bovine pancreas)</td>
<td>Lys, Arg (C)</td>
</tr>
<tr>
<td>Submaxillaris protease (mouse submaxillary gland)</td>
<td>Arg (C)</td>
</tr>
<tr>
<td>Chymotrypsin (bovine pancreas)</td>
<td>Phe, Trp, Tyr (C)</td>
</tr>
<tr>
<td>Staphylococcus aureus V8 protease (bacterium S. aureus)</td>
<td>Asp, Glu (C)</td>
</tr>
<tr>
<td>Asp-N-protease (bacterium Pseudomonas fragi)</td>
<td>Asp, Glu (N)</td>
</tr>
<tr>
<td>Pepsin (porcine stomach)</td>
<td>Leu, Phe, Trp, Tyr (N)</td>
</tr>
<tr>
<td>Endoproteinase Lys C (bacterium Lysobacter enzymogenes)</td>
<td>Lys (C)</td>
</tr>
<tr>
<td>Cyanogen bromide</td>
<td>Met (C)</td>
</tr>
</tbody>
</table>

*All reagents except cyanogen bromide are proteases. All are available from commercial sources.

†Residues furnishing the primary recognition point for the protease or reagent; peptide bond cleavage occurs on either the carbonyl (C) or the amino (N) side of the indicated amino acid residues.

Among proteases, the digestive enzyme trypsin catalyzes the hydrolysis of only those peptide bonds in which the carbonyl group is contributed by either a Lys or an Arg residue, regardless of the length or amino acid sequence of the chain. The number of smaller peptides produced by trypsin cleavage can thus be predicted from the total number of Lys or Arg residues in the original polypeptide, as determined by hydrolysis of an intact sample (Fig. 3-27). A polypeptide with three Lys and/or Arg residues (as in Fig. 3-27) will usually yield four smaller peptides on cleavage with trypsin. Moreover, all except one of these will have a carboxyl-terminal Lys or Arg. The fragments produced by trypsin (or other enzyme or chemical) action are then separated by chromatographic or electrophoretic methods.

Sequencing the Peptides Each peptide fragment resulting from the action of trypsin is sequenced separately by the Edman procedure.

Ordering the Peptide Fragments The order of the "trypsin fragments" in the original polypeptide chain must now be determined. Another sample of the intact polypeptide is cleaved into fragments using a different...
enzyme or reagent, one that cleaves peptide bonds at points other than those cleaved by trypsin. For example, cyanogen bromide cleaves only those peptide bonds in which the carbonyl group is contributed by Met. The fragments resulting from this second procedure are then separated and sequenced as before.

The amino acid sequences of each fragment obtained by the two cleavage procedures are examined, with the objective of finding peptides from the second procedure whose sequences establish continuity, because of overlaps, between the fragments obtained by the first cleavage procedure (Fig. 3-27). Overlapping peptides obtained from the second fragmentation yield the correct order of the peptide fragments produced in the first. If the amino-terminal amino acid has been identified before the original cleavage of the protein, this information can be used to establish which fragment is derived from the amino terminus. The two sets of fragments can be compared for possible errors in determining the amino acid sequence of each fragment. If the second cleavage procedure fails to establish continuity between all peptides from the first cleavage, a third or even a fourth cleavage method must be used to obtain a set of peptides that can provide the necessary overlap(s).

Locating Disulfide Bonds If the primary structure includes disulfide bonds, their locations are determined in an additional step after sequencing is completed. A sample of the protein is again cleaved with a reagent

![Diagram showing the process of cleaving proteins, sequencing, and ordering peptide fragments.](image)

Figure 3-27 Cleaving proteins and sequencing and ordering the peptide fragments. First, the amino acid composition and amino-terminal residue of an intact sample are determined. Then any disulfide bonds are broken before fragmenting so that sequencing can proceed efficiently. In this example, there are only two Cys (C) residues and thus only one possibility for location of the disulfide bond. In polypeptides with three or more Cys residues, the position of disulfide bonds can be determined as described in the text. (The one-letter symbols for amino acids are given in Table 3-1.)
such as trypsin, this time without first breaking the
disulfide bond. The resulting peptides are separated by
electrophoresis and compared with the original set of
peptides generated by trypsin. For each disulfide bond,
two of the original peptides will be missing and a new,
larger peptide will appear. The two missing peptides
represent the regions of the intact polypeptide that are
linked by the disulfide bond.

**Amino Acid Sequences Can Also Be Deduced by
Other Methods**

The approach outlined above is not the only way to
determine amino acid sequences. New methods based on
mass spectrometry permit the sequencing of short
polypeptides (20 to 30 amino acid residues) in just a few
minutes (Box 3–2). In addition, with the development of
rapid DNA sequencing methods (Chapter 8), the elucidation
of the genetic code (Chapter 27), and the develop-
ment of techniques for isolating genes (Chapter 9),
researchers can deduce the sequence of a polypeptide by
determining the sequence of nucleotides in the gene that
codes for it (Fig. 3–28). The techniques used to deter-
mine protein and DNA sequences are complementary.

BOX 3–2 METHODS Investigating Proteins with Mass Spectrometry

The mass spectrometer has long been an indispensable
tool in chemistry. Molecules to be analyzed, referred to as
analytes, are first ionized in a vacuum. When the newly
charged molecules are introduced into an electric and/or
magnetic field, their paths through the field are a function
of their mass-to-charge ratio, m/z. This measured prop-
erty of the ionized species can be used to deduce the
mass (M) of the analyte with very high precision.

Although mass spectrometry has been in use for
many years, it could not be applied to macromolecules
such as proteins and nucleic acids. The m/z measure-
ments are made on molecules in the gas phase, and the
heating or other treatment needed to transfer a macro-
molecule to the gas phase usually caused its rapid de-
composition. In 1988, two different techniques were
developed to overcome this problem. In one, proteins
are placed in a light-absorbing matrix. With a short pulse
of laser light, the proteins are ionized and then desorbed
from the matrix into the vacuum system. This process,
known as **matrix-assisted laser desorption/ioniza-
tion mass spectrometry**, or MALDI MS. Protons added during pas-
 sage through the needle give additional charge to the
macromolecule. The m/z of the molecule can be ana-
lyzed in the vacuum chamber.

Mass spectrometry provides a wealth of information
for proteomics research, enzymology, and protein chem-
istry in general. The techniques require only miniscule
amounts of sample, so they can be readily applied to the
small amounts of protein that can be extracted from a
two-dimensional electrophoretic gel. The accurately
measured molecular mass of a protein is one of the crit-
ical parameters in its identification. Once the mass of a
protein is accurately known, mass spectrometry is a
convenient and accurate method for detecting changes
in mass due to the presence of bound cofactors, bound
metal ions, covalent modifications, and so on.

The process for determining the molecular mass of
a protein with ESI MS is illustrated in Figure 1. As it is
injected into the gas phase, a protein acquires a variable
number of protons, and thus positive charges, from the
solvent. This creates a spectrum of species with differ-
ent mass-to-charge ratios. Each successive peak corre-
sponds to a species that differs from that of its
neighboring peak by a charge difference of 1 and a mass
difference of 1 (1 proton). The mass of the protein can be
determined from any two neighboring peaks.
The measured m/z of one peak is

$$(m/z)_2 = \frac{M + n_2X}{n_2}$$

where M is the mass of the protein, n_2 is the number of charges, and X is the mass of the added groups (protons in this case). Similarly for the neighboring peak,

$$(m/z)_1 = \frac{M + (n_2 + 1)X}{n_2 + 1}$$

We now have two unknowns (M and n_2) and two equations. We can solve first for n_2 and then for M:

$$n_2 = \frac{(m/z)_2 - X}{(m/z)_2 - (m/z)_1}$$

$$M = n_2[(m/z)_2 - X]$$

This calculation using the m/z values for any two peaks in a spectrum such as that shown in Figure 1b usually provides the mass of the protein (in this case, aerolysin k; 47,342 Da) with an error of only ±0.01%. Generating several sets of peaks, repeating the calculation, and averaging the results generally provides an even more accurate value for M. Computer algorithms can transform the m/z spectrum into a single peak that also provides a very accurate mass measurement (Fig. 1b, inset).

Mass spectrometry can also be used to sequence short stretches of polypeptide, an application that has emerged as an invaluable tool for quickly identifying unknown proteins. Sequence information is extracted using a technique called tandem MS, or MS/MS. A solution containing the protein under investigation is first treated with a protease or chemical reagent to hydrolyze it to a mixture of shorter peptides. The mixture is then injected into a device that is essentially two mass spectrometers in tandem (Fig. 2a, top). In the first, the peptide mixture is sorted and the ionized fragments are manipulated so that only one of the several types of peptides produced by cleavage emerges at the other end. The sample of the selected peptide, each molecule of which has a charge somewhere along its length, then travels through a vacuum chamber between the two mass spectrometers. In this collision cell, the peptide is further fragmented by high-energy impact with a "collision gas," a small amount of a noble gas such as helium or argon that is bled into the vacuum chamber. This procedure is designed to fragment many of the peptide molecules in the sample, with each individual peptide broken in only one place, on average. Most breaks occur at peptide bonds. This fragmentation does not involve the addition of water (it is done in a near-vacuum), so the products may include molecular ion radicals such as carbonyl radicals (Fig. 2a, bottom). The charge on the original peptide is retained on one of the fragments generated from it.

The second mass spectrometer then measures the m/z ratios of all the charged fragments (uncharged fragments are not detected). This generates one or more sets of peaks. A given set of peaks (Fig. 2b) consists of all the charged fragments that were generated by breaking the same type of bond (but at different points in the peptide) and are derived from the same side of the bond breakage, either the carboxyl- or amino-terminal side. Each successive peak in a given set has one less amino acid than the peak before. The difference in mass from peak to peak identifies the amino acid that was lost in each case, thus revealing the sequence of the peptide. The only ambiguities involve leucine and isoleucine, which have the same mass.

(continued on next page)
The charge on the peptide can be retained on either the carboxyl- or amino-terminal fragment, and bonds other than the peptide bond can be broken in the fragmentation process, with the result that multiple sets of peaks are usually generated. The two most prominent sets generally consist of charged fragments derived from breakage of the peptide bonds. The set consisting of the carboxyl-terminal fragments can be unambiguously distinguished from that consisting of the amino-terminal fragments. Because the bond breaks generated between the spectrometers (in the collision cell) do not yield full carboxyl and amino groups at the sites of the breaks, the only intact α-amino and α-carboxyl groups on the peptide fragments are those at the very ends (Fig. 2a). The two sets of fragments can thereby be identified by the resulting slight differences in mass. The amino acid sequence derived from one set can be confirmed by the other, improving the confidence in the sequence information obtained.

Even a short sequence is often enough to permit unambiguous association of a protein with its gene, if the gene sequence is known. Sequencing by mass spectrometry cannot replace the Edman degradation procedure for the sequencing of long polypeptides, but it is ideal for proteomics research aimed at cataloging the hundreds of cellular proteins that might be separated on a two-dimensional gel.

Small Peptides and Proteins Can Be Chemically Synthesized

Many peptides are potentially useful as pharmacologic agents, and their production is of considerable commercial importance. There are three ways to obtain a peptide: (1) purification from tissue, a task often made difficult by the vanishingly low concentrations of some peptides; (2) genetic engineering (Chapter 9); or (3) direct chemical synthesis. Powerful techniques now make direct chemical synthesis an attractive option in many cases. In addition to commercial applications, the synthesis of specific peptide portions of larger proteins is an increasingly important tool for the study of protein structure and function.

The complexity of proteins makes the traditional synthetic approaches of organic chemistry impractical for peptides with more than four or five amino acid...
residues. One problem is the difficulty of purifying the product after each step.

The major breakthrough in this technology was provided by R. Bruce Merrifield in 1962. His innovation involved synthesizing a peptide while keeping it attached at one end to a solid support. The support is an insoluble polymer (resin) contained within a column, similar to that used for chromatographic procedures. The peptide is built up on this support one amino acid at a time, through a standard set of reactions in a repeating cycle (Fig. 3-29). At each successive step in the cycle, protective chemical groups block unwanted reactions.

The technology for chemical peptide synthesis is now automated. As in the sequencing reactions considered

FIGURE 3-29 Chemical synthesis of a peptide on an insoluble polymer support. Reactions \(\text{1 through 4} \) are necessary for the formation of each peptide bond. The 9-fluorenylmethoxycarbonyl (Fmoc) group (shaded blue) prevents unwanted reactions at the \(\alpha \)-amino group of the residue (shaded red). Chemical synthesis proceeds from the carboxyl terminus to the amino terminus, the reverse of the direction of protein synthesis in vivo (Chapter 27).

R. Bruce Merrifield 1921–2006

Diagram

- **Fmoc**
- **Amino acid residue**
- **Insoluble polystyrene bead**
- **Attachment of carboxyl-terminal amino acid to reactive group on resin.**
- **Protecting group is removed by flushing with solution containing a mild organic base.**
- **\(\alpha \)-Amino group of amino acid 1 attacks activated carboxyl group of amino acid 2 to form peptide bond.**
- **Dicyclohexylurea byproduct**
- **Completely deprotected as in reaction 2; HF cleaves ester linkage between peptide and resin.**

Chemical Reactions

1. Attachment of carboxyl-terminal amino acid to reactive group on resin.
2. Protecting group is removed by flushing with solution containing a mild organic base.
3. \(\alpha \)-Amino group of amino acid 1 attacks activated carboxyl group of amino acid 2 to form peptide bond.
4. Dicyclohexylurea byproduct
5. Completely deprotected as in reaction 2; HF cleaves ester linkage between peptide and resin.
Amino Acid Sequences Provide Important Biochemical Information

Knowledge of the sequence of amino acids in a protein can offer insights into its three-dimensional structure and its function, cellular location, and evolution. Most of these insights are derived by searching for similarities between a protein of interest and previously studied proteins. Thousands of sequences are known and available in databases accessible through the Internet. A comparison of a newly obtained sequence with this large bank of stored sequences often reveals relationships both surprising and enlightening.

Key Convention: Much of the functional information encapsulated in protein sequences comes in the form of consensus sequences. This term is applied to such sequences in DNA, RNA, or protein. When a series of related nucleic acid or protein sequences are compared, a consensus sequence is the one that reflects the most common base or amino acid at each position. Parts of the sequence that have particularly good agreement often represent evolutionarily conserved functional domains. A range of mathematical tools available on the Internet can be used to generate consensus sequences, or identify them in sequence databases. Box 3-3 illustrates common conventions for displaying consensus sequences.

Protein Sequences Can Elucidate the History of Life on Earth

The simple string of letters denoting the amino acid sequence of a protein belies the wealth of information this sequence holds. As more protein sequences become available, the development of more powerful methods for extracting information from them has become a major biochemical enterprise. Analysis of the information available in the many, ever-expanding biological databases, including gene and protein sequences.
Consensus sequences can be represented in several ways. To illustrate two types of conventions, we use two examples of consensus sequences, shown in Figure 1: (a) an ATP-binding structure called a P loop (see Box 12-2) and (b) a Ca$_{2+}$-binding structure called an EF hand (see Fig. 12-11). The rules described here are adapted from those used by the sequence comparison website PROSITE (expasy.org/prosite); they use the standard one-letter codes for the amino acids.

![Sequence logos](image)

FIGURE 1 Representations of two consensus sequences. (a) P loop, an ATP-binding structure; (b) EF hand, a Ca$_{2+}$-binding structure.

In one type of consensus sequence designation (shown at the top of (a) and (b)), each position is separated from its neighbor by a hyphen. A position where any amino acid is allowed is designated x. Ambiguities are indicated by listing the acceptable amino acids for a given position between square brackets. For example, in (a) [AG] means Ala or Gly. If all but a few amino acids are allowed at one position, the amino acids that are not allowed are listed between curly brackets. For example, in (b) [W] means any amino acid except Trp. Repetition of an element of the pattern is indicated by following that element with a number or range of numbers between parentheses. In (a), for example, x(4) means x-x-x-x, and x(2,4) means x-x, or x-x-x, or x-x-x-x. When a pattern is restricted to either the amino or carboxyl terminus of a sequence, that pattern starts with < or ends with >, respectively (not so for either example here). A period ends the pattern. Applying these rules to the consensus sequence in (a), either A or G can be found at the first position. Any amino acid can occupy the next four positions, followed by an invariant G and an invariant K. The last position is either S or T.

Sequence logos provide a more informative and graphic representation of an amino acid (or nucleic acid) multiple sequence alignment. Each logo consists of a stack of symbols for each position in the sequence. The overall height of the stack (in bits) indicates the degree of sequence conservation at that position, while the height of each symbol in the stack indicates the relative frequency of that amino acid (or nucleotide). For amino acid sequences, the colors denote the characteristics of the amino acid: polar (G, S, T, Y, C, Q, N) green; basic (K, R, H) blue; acidic (D, E) red; and hydrophobic (A, V, L, I, P, W, F, M) black. The classification of amino acids in this scheme is somewhat different from that in Table 3-1 and Figure 3-5. The amino acids with aromatic side chains are subsumed into the nonpolar (F, W) and polar (Y) classifications. Glycine, always hard to group, is assigned to the polar group. Note that when multiple amino acids are acceptable at a particular position, they rarely occur with equal probability. One or a few usually predominate. The logo representation makes the predominance clear, and a conserved sequence in a protein is made obvious. However, the logo obscures some amino acid residues that may be allowed at a position, such as the Cys that occasionally occurs at position 8 of the EF hand in (b).

The field of molecular evolution is often traced to Emile Zuckerkandl and Linus Pauling, whose work in the mid-1960s advanced the use of nucleotide and protein sequences to explore evolution. The premise is deceptively straightforward. If two organisms are closely related, the sequences of their genes and proteins should be similar. The sequences increasingly diverge as the evolutionary distance between two organisms increases. The promise of this approach began to be realized in the 1970s, when Carl Woese used ribosomal RNA sequences to define the Archaea as a group of living organisms distinct from the Bacteria and Eukarya (see Fig. 1-4). Protein sequences offer an opportunity to greatly refine the available information. With the advent of genome projects investigating organisms from bacteria to humans, the number of available sequences is growing at an enormous rate. This information can be
Evolution has not taken a simple linear path. Complexities abound in any attempt to mine the evolutionary information stored in protein sequences. For a given protein, the amino acid residues essential for the activity of the protein are conserved over evolutionary time. The residues that are less important to function may vary over time—that is, one amino acid may substitute for another—and these variable residues can provide the information to trace evolution. Amino acid substitutions are not always random, however. At some positions in the primary structure, the need to maintain protein function may mean that only particular amino acid substitutions can be tolerated. Some proteins have more variable amino acid residues than others. For these and other reasons, different proteins can evolve at different rates.

Another complicating factor in tracing evolutionary history is the rare transfer of a gene or group of genes from one organism to another, a process called lateral gene transfer. The transferred genes may be quite similar to the genes they were derived from in the original organism, whereas most other genes in the same two organisms may be quite distantly related. An example of lateral gene transfer is the recent rapid spread of antibiotic-resistance genes in bacterial populations. The proteins derived from these transferred genes would not be good candidates for the study of bacterial evolution, because they share only a very limited evolutionary history with their "host" organisms.

The study of molecular evolution generally focuses on families of closely related proteins. In most cases, the families chosen for analysis have essential functions in cellular metabolism that must have been present in the earliest viable cells, thus greatly reducing the chance that they were introduced relatively recently by lateral gene transfer. For example, a protein called EF-1α (elongation factor 1α) is involved in the synthesis of proteins in all eukaryotes. A similar protein, EF-Tu, with the same function, is found in bacteria. Similarities in sequence and function indicate that EF-1α and EF-Tu are members of a family of proteins that share a common ancestor. The members of protein families are called homologous proteins, or homologs. The concept of a homolog can be further refined. If two proteins in a family (that is, two homologs) are present in the same species, they are referred to as paralogs. Homologs from different species are called orthologs. The process of tracing evolution involves first identifying suitable families of homologous proteins and then using them to reconstruct evolutionary paths.

Homologs are identified through the use of increasingly powerful computer programs that can directly compare two or more chosen protein sequences, or can search vast databases to find the evolutionary relatives of one selected protein sequence. The electronic search process can be thought of as sliding one sequence past the other until a section with a good match is found. Within this sequence alignment, a positive score is assigned for each position where the amino acid residues in the two sequences are identical—the value of the score varying from one program to the next—to provide a measure of the quality of the alignment. The process has some complications. Sometimes the proteins being compared match well at, say, two sequence segments, and these segments are connected by less related sequences of different lengths. Thus the two matching segments cannot be aligned at the same time. To handle this, the computer program introduces "gaps" in one of the sequences to bring the matching segments into register (Fig. 3-30). Of course, if a sufficient number of gaps are introduced, almost any two sequences could be brought into some sort of alignment. To avoid uninformative alignments, the programs include penalties for each gap introduced, thus lowering the overall alignment score. With electronic trial and error, the program selects the alignment with the optimal score that maximizes identical amino acid residues while minimizing the introduction of gaps.

Identical amino acids are often inadequate to identify related proteins or, more importantly, to determine how closely related the proteins are on an evolutionary time scale. A more useful analysis includes a consideration of the chemical properties of substituted amino acids. When amino acid substitutions are found within a protein family, many of the differences may be conservative—that is, an amino acid residue is replaced by a residue having similar chemical properties. For example, a Glu residue may substitute in one family member for the Asp residue found in another; both amino acids are negatively charged. Such a conservative substitution should logically garner a higher score in a sequence alignment than does a nonconservative substitution, such as the replacement of the Asp residue with a hydrophobic Phe residue.

For most efforts to find homologies and explore evolutionary relationships, protein sequences (derived either

FIGURE 3–30 Aligning protein sequences with the use of gaps. Shown here is the sequence alignment of a short section of the Hsp70 proteins (a widespread class of protein-folding chaperones) from two well-studied bacterial species, *E. coli* and *Bacillus subtilis*. Introduction of a gap in the *B. subtilis* sequence allows a better alignment of amino acid residues on either side of the gap. Identical amino acid residues are shaded.
more, and the probability of chance alignment of unre-

directly from protein sequencing or from the sequencing of the DNA encoding the protein) are superior to nongenic nucleic acid sequences (those that do not encode a protein or functional RNA). For a nucleic acid, with its four different types of residues, random alignment of nonhomologous sequences will generally yield matches for at least 25% of the positions. Introduction of a few gaps can often increase the fraction of matched residues to 40% or more, and the probability of chance alignment of unrelated sequences becomes quite high. The 20 different amino acid residues in proteins greatly lower the probability of uninformative chance alignments of this type.

The programs used to generate a sequence alignment are complemented by methods that test the reliability of the alignments. A common computerized test is to shuffle the amino acid sequence of one of the proteins being compared to produce a random sequence, then to instruct the program to align the shuffled sequence with the other, unshuffled one. Scores are assigned to the new alignment, and the shuffling and alignment process is repeated many times. The original alignment, before shuffling, should have a score significantly higher than any of those within the distribution of scores generated by the random alignments; this increases the confidence that the sequence alignment has identified a pair of homologs. Note that the absence of a significant alignment score does not necessarily mean that no evolutionary relationship exists between two proteins. As we shall see in Chapter 4, three-dimensional structural similarities sometimes reveal evolutionary relationships where sequence homology has been wiped away by time.

Use of a protein family to explore evolution requires the identification of family members with similar molecular functions in the widest possible range of organisms. Information from the family can then be used to trace the evolution of those organisms. By analyzing the sequence divergence in selected protein families, investigators can segregate organisms into classes based on their evolutionary relationships. This information must be reconciled with more classical examinations of the physiology and biochemistry of the organisms.

Certain segments of a protein sequence may be found in the organisms of one taxonomic group but not in other groups; these segments can be used as signature sequences for the group in which they are found. An example of a signature sequence is an insertion of 12 amino acids near the amino terminus of the EF-1α/EF-Tu proteins in all archaea and eukaryotes but not in bacteria (Fig. 3–31). This particular signature is one of many biochemical clues that can help establish the evolutionary relatedness of eukaryotes and archaea. Other signature sequences allow the establishment of evolutionary relationships among groups of organisms at many different taxonomic levels.

By considering the entire sequence of a protein, researchers can now construct more elaborate evolutionary trees with many species in each taxonomic group. Figure 3–32 presents one such tree for bacteria, based on sequence divergence in the protein GroEL (a protein present in all bacteria that assists in the proper folding of proteins). The tree can be refined by basing it on the sequences of multiple proteins and by supplementing the sequence information with data on the unique biochemical and physiological properties of each species. There are many methods for generating trees, each method with its own advantages and shortcomings, and many ways to represent the resulting evolutionary relationships. In Figure 3–32, the free end points of lines are called “external nodes”; each represents an extant species, and each is so labeled. The points where two lines come together, the “internal nodes,” represent extinct ancestor species. In most representations (including Fig. 3–32), the lengths of the lines connecting the nodes are proportional to the number of amino acid substitutions separating one species from another. If we trace two extant species to a common internal node (representing the common ancestor of the two species), the length of the branch connecting each external node to the internal node represents the number of amino acid substitutions separating one extant species from this ancestor. The sum of the lengths of all the line segments that connect an extant species to another extant species through a common ancestor reflects the number of substitutions separating the two extant species. To determine how much time was needed for the various species to diverge, the tree must be calibrated by comparing it with information from the fossil record and other sources.
FIGURE 3-32 Evolutionary tree derived from amino acid sequence comparisons. A bacterial evolutionary tree, based on the sequence di-

As more sequence information is made available in databases, we can generate evolutionary trees based on multiple proteins. And we can refine these trees as additional genomic information emerges from increasingly sophisticated methods of analysis. All of this work moves us toward the goal of creating a detailed tree of life that describes the evolution and relationship of every organism on Earth. The story is a work in progress, of course (Fig. 3-33). The questions being asked and answered are fundamental to how humans view themselves and the world around them. The field of molecular evolution promises to be among the most vibrant of the scientific frontiers in the twenty-first century.

FIGURE 3-33 A consensus tree of life. The tree shown here is based on analyses of many different protein sequences and additional genomic features. Branches shown as dashed lines remain under investigation. The tree presents only a fraction of the available information, as well as only a fraction of the issues remaining to be resolved. Each extant group shown is a complex evolutionary story unto itself.
SUMMARY 3.4 The Structure of Proteins: Primary Structure

- Differences in protein function result from differences in amino acid composition and sequence. Some variations in sequence are possible for a particular protein, with little or no effect on function.

- Amino acid sequences are deduced by fragmenting polypeptides into smaller peptides with reagents known to cleave specific peptide bonds; determining the amino acid sequence of each fragment by the automated Edman degradation procedure; then ordering the peptide fragments by finding sequence overlaps between fragments generated by different reagents. A protein sequence can also be deduced from the nucleotide sequence of its corresponding gene in DNA.

- Short proteins and peptides (up to about 100 residues) can be chemically synthesized. The peptide is built up, one amino acid residue at a time, while tethered to a solid support.

- Protein sequences are a rich source of information about protein structure and function, as well as the evolution of life on Earth. Sophisticated methods are being developed to trace evolution by analyzing the resultant slow changes in amino acid sequences of homologous proteins.

Key Terms

Terms in bold are defined in the glossary.

- amino acids 72
- R group 72
- chiral center 72
- enantiomers 72
- absolute configuration 74
- d, l system 74
- polarity 74
- absorbance, A 76
- zwitterion 78
- isoelectric pH (isoelectric point, pI) 80

- peptide 82
- protein 82
- peptide bond 82
- oligopeptide 82
- polypeptide 82
- oligomeric protein 84
- protomer 84
- conjugated protein 84
- prosthetic group 84
- crude extract 85
- fraction 85
- fractionation 85
- dialysis 85

- column chromatography 85
- ion-exchange chromatography 86
- size-exclusion chromatography 87
- affinity chromatography 88
- high-performance liquid chromatography (HPLC) 88
- electrophoresis 88
- sodium dodecyl sulfate (SDS) 89
- isoelectric focusing 90
- primary structure 92
- secondary structure 92
- tertiary structure 92
- quaternary structure 92
- Edman degradation 95
- proteases 95
- proteome 100
- consensus sequence 102
- homolog 104
- paralog 104
- ortholog 104
- signature sequence 105

Further Reading

Amino Acids

Details the occurrence of these unusual stereoisomers of amino acids

Encyclopedic treatment of the properties, occurrence, and metabolism of amino acids

Peptides and Proteins

Very useful general source

Working with Proteins

A detailed description of the technology.

The critical role of classical biochemical methods in a new age

A good source for more complete descriptions of the principles underlying chromatography and other methods.

Protein Primary Structure and Evolution

A discussion of approaches to manufacturing peptides as pharmaceuticals.

Glycoproteins can be complex; mass spectrometry is a preferred method for sorting things out.

A good discussion about the possible uses of the increasing amount of information on protein sequences.

A very readable text describing methods used to analyze protein and nucleic acid sequences. Chapter 5 provides one of the best available descriptions of how evolutionary trees are constructed from sequence data.

An approachable summary of this technique for beginners.

This and Mayo, 2000 (above), describe how to make peptides and splice them together to address a wide range of problems in protein biochemistry.

How sequence comparisons of multiple proteins can yield accurate evolutionary information.

A nice historical account of the development of sequencing methods.

Many consider this the founding paper in the field of molecular evolution.

Problems

1. Absolute Configuration of Citrulline The citrulline isolated from watermelons has the structure shown below. Is it a D- or L-amino acid? Explain.

 \[
 \begin{align*}
 &\text{CH}_2(\text{CH}_2)_2\text{NH}^+ \quad \text{NH}_2^-
 &\text{H}^+ \quad \text{C}^+ \quad \text{NH}_2^-
 &\text{COO}^-
 \end{align*}
 \]

2. Relationship between the Titration Curve and the Acid-Base Properties of Glycine. A 100 mL solution of 0.1 M glycine at pH 1.72 was titrated with 2 M NaOH solution. The pH was monitored and the results were plotted as shown in the following graph. The key points in the titration are designated I to V. For each of the statements (a) to (o), identify the appropriate key point in the titration and justify your choice.

 (a) Glycine is present predominantly as the species \(\text{H}_2\text{N}^-\text{CH}_2\text{CH}_2\text{COO}^- \).
 (b) The average net charge of glycine is \(+\frac{1}{2} \).
 (c) Half of the amino groups are ionized.
 (d) The pH is equal to the pK_a of the carboxyl group.
 (e) The pH is equal to the pK_a of the protonated amino group.
 (f) Glycine has its maximum buffering capacity.
 (g) The average net charge of glycine is zero.
 (h) The carboxyl group has been completely titrated (first equivalence point).
 (i) Glycine is completely titrated (second equivalence point).
 (j) The predominant species is \(\text{H}_2\text{N}^-\text{CH}_2\text{CH}_2\text{COOH}^- \).
 (k) The average net charge of glycine is \(-1 \).
 (l) Glycine is present predominantly as a 50:50 mixture of \(\text{H}_2\text{N}^-\text{CH}_2\text{CH}_2\text{COOH}^- \) and \(\text{H}_2\text{N}^-\text{CH}_2\text{CH}_2\text{COO}^- \).
 (m) This is the isoelectric point.
 (n) This is the end of the titration.
 (o) These are the worst pH regions for buffering power.

3. How Much Alanine Is Present as the Completely Uncharged Species? At a pH equal to the isoelectric point of alanine, the net charge on alanine is zero. Two structures can be drawn that have a net charge of zero, but the predominant form of alanine at its pI is zwitterionic.

 \[
 \begin{align*}
 &\text{H}_2\text{N}^-\text{C}^+\text{H}_2\text{C}^-\text{O}^-
 &\text{H}_2\text{N}^-\text{C}^+\text{H}_2\text{C}^-\text{OH}^-
 \end{align*}
 \]

 (a) Why is alanine predominantly zwitterionic rather than completely uncharged at its pI?
 (b) What fraction of alanine is in the completely uncharged form at its pI? Justify your assumptions.

4. Ionization State of Histidine Each ionizable group of an amino acid can exist in one of two states, charged or neutral. The electric charge on the functional group is determined by the relationship between its pK_a and the pH of the solution. This relationship is described by the Henderson-Hasselbalch equation.

 (a) Histidine has three ionizable functional groups. Write the equilibrium equations for its three ionizations and assign the proper pK_a for each ionization. Draw the structure of histidine in each ionization state. What is the net charge on the histidine molecule in each ionization state?
 (b) Draw the structures of the predominant ionization state of histidine at pH 1, 4, 8, and 12. Note that the ionization state can be approximated by treating each ionizable group independently.
(c) What is the net charge of histidine at pH 1, 4, 8, and 12? For each pH, will histidine migrate toward the anode (+) or cathode (−) when placed in an electric field?

5. Separation of Amino Acids by Ion-Exchange Chromatography Mixtures of amino acids can be analyzed by first separating the mixture into its components through ion-exchange chromatography. Amino acids placed on a cation-exchange resin (see Fig. 3-17a) containing sulfonate (−SO₄²⁻) groups flow down the column at different rates because of two factors that influence their movement: (1) ionic attraction between the sulfonate residues on the column and positively charged functional groups on the amino acids, and (2) hydrophobic interactions between amino acid side chains and the strongly hydrophobic backbone of the polystyrene resin. For each pair of amino acids listed, determine which will be eluted first from the cation-exchange column by a pH 7.0 buffer.

(a) Asp and Lys
(b) Arg and Met
(c) Glu and Val
(d) Gly and Leu
(e) Ser and Ala

6. Naming the Stereoisomers of Isoleucine The structure of the amino acid isoleucine is

![Isoleucine Structure](image)

(a) How many chiral centers does it have?
(b) How many optical isomers?
(c) Draw perspective formulas for all the optical isomers of isoleucine.

7. Comparing the pKᵣ Values of Alanine and Polyalanine The titration curve of alanine shows the ionization of two functional groups with pKᵣ values of 2.34 and 9.69, corresponding to the ionization of the carboxyl and the protonated amino groups, respectively. The titration of di-, tri-, and larger oligopeptides of alanine also shows the ionization of only two functional groups, although the experimental pKᵣ values are different. The trend in pKᵣ values is summarized in the table.

<table>
<thead>
<tr>
<th>Amino acid or peptide</th>
<th>pKᵣ₁</th>
<th>pKᵣ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>2.34</td>
<td>9.69</td>
</tr>
<tr>
<td>Ala–Ala</td>
<td>3.12</td>
<td>8.30</td>
</tr>
<tr>
<td>Ala–Ala–Ala</td>
<td>3.39</td>
<td>8.03</td>
</tr>
<tr>
<td>Ala–(Ala)ₙ–Ala, n ≥ 4</td>
<td>3.42</td>
<td>7.94</td>
</tr>
</tbody>
</table>

(a) Draw the structure of Ala–Ala–Ala. Identify the functional groups associated with pKᵣ₁ and pKᵣ₂.
(b) Why does the value of pKᵣ₁ increase with each additional Ala residue in the oligopeptide?
(c) Why does the value of pKᵣ₂ decrease with each additional Ala residue in the oligopeptide?

8. The Size of Proteins What is the approximate molecular weight of a protein with 682 amino acid residues in a single polypeptide chain?

9. The Number of Tryptophan Residues in Bovine Serum Albumin A quantitative amino acid analysis reveals that bovine serum albumin (BSA) contains 0.58% tryptophan (M, 204) by weight.

(a) Calculate the minimum molecular weight of BSA (i.e., assume there is only one Trp residue per protein molecule).
(b) Gel filtration of BSA gives a molecular weight estimate of 70,000. How many Trp residues are present in a molecule of serum albumin?

10. Subunit Composition of a Protein A protein has a molecular mass of 400 kDa when measured by gel filtration. When subjected to gel electrophoresis in the presence of sodium dodecyl sulfate (SDS), the protein gives three bands with molecular masses of 180, 160, and 60 kDa. When electrophoresis is carried out in the presence of SDS and dithiothreitol, three bands are again formed, this time with molecular masses of 160, 90, and 60 kDa. Determine the subunit composition of the protein.

11. Net Electric Charge of Peptides A peptide has the sequence

(a) What is the net charge of the molecule at pH 3, 8, and 11? (Use pKᵣ values for side chains and terminal amino and carboxyl groups as given in Table 3–1.)
(b) Estimate the pI for this peptide.

12. Isoelectric Point of Pepsin Pepsin is the name given to a mix of several digestive enzymes secreted (as larger precursor proteins) by glands that line the stomach. These glands also secrete hydrochloric acid, which dissolves the particulate matter in food, allowing pepsin to enzymatically cleave individual protein molecules. The resulting mixture of food, HCl, and digestive enzymes is known as chyme and has a pH near 1.5. What pI would you predict for the pepsin proteins? What functional groups must be present to confer this pI on pepsin? Which amino acids in the proteins would contribute such groups?

13. The Isoelectric Point of Histones Histones are proteins found in eukaryotic cell nuclei, tightly bound to DNA, which has many phosphate groups. The pI of histones is very high, about 10.8. What amino acid residues must be present in relatively large numbers in histones? In what way do these residues contribute to the strong binding of histones to DNA?

14. Solubility of Polypeptides One method for separating polypeptides makes use of their different solubilities. The solubility of large polypeptides in water depends on the relative polarity of their R groups, particularly on the number of ionized groups: the more ionized groups there are, the more soluble the polypeptide. Which of each pair of the polypeptides that follow is more soluble at the indicated pH?

(a) (Gly)₂₀ or (Glu)₂₀ at pH 7.0
(b) (Lys–Ala)₃ or (Phe–Met)₃ at pH 7.0
(c) (Ala–Ser–Gly)₅ or (Asn–Ser–His)₅ at pH 6.0
(d) (Ala–Asp–Gly)₅ or (Asn–Ser–His)₅ at pH 3.0
15. Purification of an Enzyme A biochemist discovers and purifies a new enzyme, generating the purification table below.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Total protein (mg)</th>
<th>Activity (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crude extract</td>
<td>20,000</td>
<td>4,000,000</td>
</tr>
<tr>
<td>2. Precipitation (salt)</td>
<td>5,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>3. Precipitation (pH)</td>
<td>4,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>4. Ion-exchange</td>
<td>200</td>
<td>800,000</td>
</tr>
<tr>
<td></td>
<td>chromatography</td>
<td></td>
</tr>
<tr>
<td>5. Affinity</td>
<td>50</td>
<td>750,000</td>
</tr>
<tr>
<td></td>
<td>chromatography</td>
<td></td>
</tr>
<tr>
<td>6. Size-exclusion</td>
<td>45</td>
<td>675,000</td>
</tr>
<tr>
<td></td>
<td>chromatography</td>
<td></td>
</tr>
</tbody>
</table>

(a) From the information given in the table, calculate the specific activity of the enzyme after each purification procedure.
(b) Which of the purification procedures used for this enzyme is most effective (i.e., gives the greatest relative increase in purity)?
(c) Which of the purification procedures is least effective?
(d) Is there any indication based on the results shown in the table that the enzyme after step 6 is now pure? What else could be done to estimate the purity of the enzyme preparation?

16. Dialysis. A purified protein is in a Hepes (N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)) buffer at pH 7 with 500 mM NaCl. A sample (1 mL) of the protein solution is placed in a tube made of dialysis membrane and dialyzed against 1 L of the same Hepes buffer with 0 mM NaCl. Small molecules and ions (such as Na⁺, Cl⁻, and Hepes) can diffuse across the dialysis membrane, but the protein cannot.

(a) Once the dialysis has come to equilibrium, what is the concentration of NaCl in the protein sample? Assume no volume changes occur in the sample during the dialysis.
(b) If the original 1 mL sample were dialyzed twice, successively, against 100 mL of the same Hepes buffer with 0 mM NaCl, what would be the final NaCl concentration in the sample?

17. Peptide Purification At pH 7.0, in what order would the following three peptides be eluted from a column filled with a cation-exchange polymer? Their amino acid compositions are:

- **Protein A**: Ala 10%, Glu 5%, Ser 5%, Leu 10%, Arg 10%, His 5%, Ile 10%, Phe 5%, Tyr 5%, Lys 10%, Gly 10%, Pro 5%, and Trp 10%.
- **Protein B**: Ala 5%, Val 5%, Gly 10%, Asp 5%, Leu 5%, Arg 5%, Ile 5%, Phe 5%, Tyr 5%, Lys 5%, Trp 5%, Ser 5%, Thr 5%, Glu 5%, Asn 5%, Pro 10%, Met 5%, and Cys 5%.
- **Protein C**: Ala 10%, Glu 10%, Gly 5%, Leu 5%, Asp 10%, Arg 5%, Met 5%, Cys 5%, Tyr 5%, Phe 5%, His 5%, Val 5%, Pro 5%, Thr 5%, Ser 5%, Asn 5%, and Gln 5%.

18. Sequence Determination of the Brain Peptide Leucine Enkephalin A group of peptides that influence nerve transmission in certain parts of the brain has been isolated from normal brain tissue. These peptides are known as opioids, because they bind to specific receptors that also bind opiate drugs, such as morphine and naloxone. Opioids thus mimic some of the properties of opiates. Some researchers consider these peptides to be the brain's own painkillers. Using the information below, determine the amino acid sequence of the opioid leucine enkephalin. Explain how your structure is consistent with each piece of information.

(a) Complete hydrolysis by 6 N HCl at 110 °C followed by amino acid analysis indicated the presence of Gly, Leu, Phe, and Tyr, in a 2:1:1:1 molar ratio.
(b) Treatment of the peptide with 1-fluoro-2,4-dinitrobenzene followed by complete hydrolysis and chromatography indicated the presence of the 2,4-dinitrophenyl derivative of tyrosine. No free tyrosine could be found.
(c) Complete digestion of the peptide with chymotrypsin followed by chromatography yielded free tyrosine and leucine, plus a tripeptide containing Phe and Gly in a 1:2 ratio.

19. Structure of a Peptide Antibiotic from Bacillus brevis Extracts from the bacterium *Bacillus brevis* contain a peptide with antibiotic properties. This peptide forms complexes with metal ions and seems to disrupt ion transport across the cell membranes of other bacterial species, killing them. The structure of the peptide has been determined from the following observations.

(a) Complete acid hydrolysis of the peptide followed by amino acid analysis yielded equimolar amounts of Leu, Orn, Phe, Pro, and Val. Orn is ornithine, an amino acid not present in proteins but present in some peptides. It has the structure

$$\text{H}_3\text{N}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{C}-\text{COO}^- $$

(b) The molecular weight of the peptide was estimated as about 1,200.
(c) The peptide failed to undergo hydrolysis when treated with the enzyme carboxypeptidase. This enzyme catalyzes the hydrolysis of the carboxyl-terminal residue of a polypeptide unless the residue is Pro or, for some reason, does not contain a free carboxyl group.
(d) Treatment of the intact peptide with 1-fluoro-2,4-dinitrobenzeno, followed by complete hydrolysis and chromatography, yielded only free amino acids and the following derivative:

$$\text{O}_2\text{N}-\text{NH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{C}-\text{COO}^- $$

(Hint: The 2,4-dinitrophenyl derivative involves the amino group of a side chain rather than the α-amino group.)
(e) Partial hydrolysis of the peptide followed by chromatographic separation and sequence analysis yielded the following di- and tripeptides (the amino-terminal amino acid is always at the left):

- Leu–Phe Phe–Pro Orn–Leu Val–Orn
Given the above information, deduce the amino acid sequence of the peptide antibiotic. Show your reasoning. When you have arrived at a structure, demonstrate that it is consistent with each experimental observation.

20. Efficiency in Peptide Sequencing A peptide with the primary structure Lys–Arg–Pro–Leu–Ille–Asp–Gly–Ala is sequenced by the Edman procedure. If each Edman cycle is 96% efficient, what percentage of the amino acids liberated in the fourth cycle will be leucine? Do the calculation a second time, but assume a 99% efficiency for each cycle.

21. Sequence Comparisons Proteins called molecular chaperones (described in Chapter 4) assist in the process of protein folding. One class of chaperone found in organisms from bacteria to mammals is heat shock protein 90 (Hsp90). All Hsp90 chaperones contain a 10 amino acid “signature sequence,” which allows for ready identification of these proteins in sequence databases. Two representations of this signature sequence are shown below:

<table>
<thead>
<tr>
<th>Bits</th>
<th>YSNKEFLRE</th>
</tr>
</thead>
</table>

(a) In this sequence, which amino acid residues are invariant (conserved across all species)?
(b) At which position(s) are amino acids limited to those with positively charged side chains? For each position, which amino acid is more commonly found?
(c) At which positions are substitutions restricted to amino acids with negatively charged side chains? For each position, which amino acid predominates?
(d) There is one position that can be any amino acid, although one amino acid appears much more often than any other. What position is this, and which amino acid appears most often?

22. Biochemistry Protocols: Your First Protein Purification As the newest and least experienced student in a biochemistry research lab, your first few weeks are spent washing glassware and labeling test tubes. You then graduate to making buffers and stock solutions for use in various laboratory procedures. Finally, you are given responsibility for purifying a protein. It is citrate synthase (an enzyme of the citric acid cycle, to be discussed in Chapter 16), which is located in the mitochondrial matrix. Following a protocol for the purification, you proceed through the steps below. As you work, a more experienced student questions you about the rationale for each procedure. Supply the answers. (Hint: See Chapter 2 for information on osmolarity; see p. 7 for information on separation of organelles from cells.)

(a) You pick up 20 kg of beef hearts from a nearby slaughterhouse (muscle cells are rich in mitochondria, which supply energy for muscle contraction). You transport the hearts on ice, and perform each step of the purification on ice or in a walk-in cold room. You homogenize the beef heart tissue in a high-speed blender in a medium containing 0.2 M sucrose, buffered to a pH of 7.2. Why do you use beef heart tissue, and in such large quantity? What is the purpose of keeping the tissue cold and suspending it in 0.2 M sucrose, at pH 7.2? What happens to the tissue when it is homogenized?
(b) You subject the resulting heart homogenate, which is dense and opaque, to a series of differential centrifugation steps. What does this accomplish?
(c) You proceed with the purification using the supernatant fraction that contains mostly intact mitochondria. Next you osmotically lyse the mitochondria. The lysate, which is less dense than the homogenate, but still opaque, consists primarily of mitochondrial membranes and internal mitochondrial contents. To this lysate you add ammonium sulfate, a highly soluble salt, to a specific concentration. You centrifuge the solution, decant the supernatant, and discard the pellet. To the supernatant, which is clearer than the lysate, you add more ammonium sulfate. Once again, you centrifuge the sample, but this time you save the pellet because it contains the citrate synthase. What is the rationale for the two-step addition of the salt?
(d) You solubilize the ammonium sulfate pellet containing the mitochondrial proteins and dialyze it overnight against large volumes of buffered (pH 7.2) solution. Why isn’t ammonium sulfate included in the dialysis buffer? Why do you use the buffer solution instead of water?
(e) You run the dialyzed solution over a size-exclusion chromatographic column. Following the protocol, you collect the first protein fraction that exits the column and discard the fractions that elute from the column later. You detect the protein by measuring UV absorbance (at 280 nm) by the fractions. What does the instruction to collect the first fraction tell you about the protein? Why is UV absorbance at 280 nm a good way to monitor for the presence of protein in the eluted fractions?
(f) You place the fraction collected in (e) on a cation-exchange chromatographic column. After discarding the initial solution that exits the column (the flowthrough), you add a washing solution of higher pH to the column and collect the protein fraction that immediately elutes. Explain what you are doing.
(g) You run a small sample of your fraction, now very reduced in volume and quite clear (though tinged pink), on an isoelectric focusing gel. When stained, the gel shows three sharp bands. According to the protocol, the citrate synthase is the protein with a pI of 5.6, but you decide to do one more assay of the protein’s purity. You cut out the pI 5.6 band and subject it to SDS polyacrylamide gel electrophoresis. The protein resolves as a single band. Why were you unconvinced of the purity of the “single” protein band on your isoelectric focusing gel? What did the results of the SDS gel tell you? Why is it important to do the SDS gel electrophoresis after the isoelectric focusing?

Data Analysis Problem

23. Determining the Amino Acid Sequence of Insulin Figure 3–24 shows the amino acid sequence of the hormone insulin. This structure was determined by Frederick Sanger and
his coworkers. Most of this work is described in a series of articles published in the *Biochemical Journal* from 1945 to 1955.

When Sanger and colleagues began their work in 1945, it was known that insulin was a small protein consisting of two or four polypeptide chains linked by disulfide bonds. Sanger and his coworkers had developed a few simple methods for studying protein sequences.

Treatment with FDNB. FDNB (1-fluoro-2,4-dinitrobenzene) reacted with free amino (but not amido or guanidino) groups in proteins to produce dinitrophenyl (DNP) derivatives of amino acids:

\[
\text{R-NH}_2 + \text{F)-(ONO}_2 \rightarrow \text{R-N(NO}_2)_2 + \text{HF}
\]

Amine FDNB **DNP-amino**

Acid Hydrolysis. Boiling a protein with 10% HCl for several hours hydrolyzed all of its peptide and amide bonds. Short treatments produced short polypeptides; the longer the treatment, the more complete the breakdown of the protein into its amino acids.

Oxidation of Cysteines. Treatment of a protein with performic acid cleaved all the disulfide bonds and converted all Cys residues to cysteic acid residues (Fig. 3-26).

Paper Chromatography. This more primitive version of thin-layer chromatography (see Fig. 10-24) separated compounds based on their chemical properties, allowing identification of single amino acids and, in some cases, dipeptides. Thin-layer chromatography also separates larger peptides.

As reported in his first paper (1945), Sanger reacted insulin with FDNB and hydrolyzed the resulting protein. He found many free amino acids, but only three DNP-amino acids: \(\alpha\)-DNP-glycine (DNP group attached to the \(\alpha\)-amino group); \(\alpha\)-DNP-phenylalanine; and \(\epsilon\)-DNP-lysine (DNP attached to the \(\epsilon\)-amino group). Sanger interpreted these results as showing that insulin had two protein chains: one with Gly at its amino terminus and one with Phe at its amino terminus. One of the two chains also contained a Lys residue, not at the amino terminus. He named the chain beginning with a Gly residue “A” and the chain beginning with Phe “B.”

(a) Explain how Sanger’s results support his conclusions.

(b) Are the results consistent with the known structure of insulin (Fig. 3-24)? Explain any discrepancies.

In a later paper (1949), Sanger described how he used these techniques to determine the entire sequence of the A and B chains. Their sequence for the A chain was as follows (amino terminus on left):

\[
\text{Gly-Ile-Val-Glx-Glx-Cys-Ser-Leu-Tyr'-Glx-Leu-Glx-Asx-Tyr-Cys-Asx}
\]

Because acid hydrolysis had converted all Asn to Asp and all Gin to Glu, these residues had to be designated Asx and Glx, respectively (exact identity in the peptide unknown). Sanger solved this problem by using protease enzymes that cleave peptide bonds, but not the amide bonds in Asn and Gin residues, to prepare short peptides. He then determined the number of amide groups present in each peptide by measuring the \(\text{NH}_2\) released when the peptide was acid-hydrolyzed. Some of the results for the A chain are shown below. The peptides may not have been completely pure, so the numbers were approximate—but good enough for Sanger’s purposes.

<table>
<thead>
<tr>
<th>Peptide name</th>
<th>Peptide sequence</th>
<th>Number of amide groups in peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac1</td>
<td>Cys-Asx</td>
<td>0.7</td>
</tr>
<tr>
<td>Ap15</td>
<td>Tyr-Glx-Leu</td>
<td>0.98</td>
</tr>
<tr>
<td>Ap14</td>
<td>Tyr-Glx-Leu-Glx</td>
<td>1.06</td>
</tr>
<tr>
<td>Ap3</td>
<td>Asx-Tyr-Cys-Asx</td>
<td>2.10</td>
</tr>
<tr>
<td>Ap1</td>
<td>Glx-Asx-Tyr-Cys-Asx</td>
<td>1.94</td>
</tr>
<tr>
<td>Ap5pα1</td>
<td>Gly-Ile-Val-Glx</td>
<td>0.15</td>
</tr>
<tr>
<td>Ap5</td>
<td>Gly-Ile-Val-Glx-Glx-Cys-Ser-Ala-Ser-Val-Cys-Ser-Leu</td>
<td>1.16</td>
</tr>
</tbody>
</table>

(e) Based on these data, determine the amino acid sequence of the A chain. Explain how you reached your answer. Compare it with Figure 3-24.

References

Perhaps the more remarkable features of [myoglobin] are its complexity and its lack of symmetry. The arrangement seems to be almost totally lacking in the kind of regularities which one instinctively anticipates, and it is more complicated than has been predicted by any theory of protein structure.

—John Kendrew, article in Nature, 1958

The Three-Dimensional Structure of Proteins

4.1 Overview of Protein Structure 113
4.2 Protein Secondary Structure 117
4.3 Protein Tertiary and Quaternary Structures 123
4.4 Protein Denaturation and Folding 140

The covalent backbone of a typical protein contains hundreds of individual bonds. Because free rotation is possible around many of these bonds, the protein can assume a very large number of conformations. However, each protein has a specific chemical or structural function, strongly suggesting that each has a unique three-dimensional structure (Fig. 4-1). By the late 1920s, several proteins had been crystallized, including hemoglobin (M_r 64,500) and the enzyme urease (M_r 483,000). Given that, generally, the ordered array of molecules in a crystal can form only if the molecular units are identical, the finding that many proteins could be crystallized was evidence that even very large proteins are discrete chemical entities with unique structures. This conclusion revolutionized thinking about proteins and their functions.

In this chapter, we examine how a sequence of amino acids in a polypeptide chain is translated into a discrete, three-dimensional protein structure. We emphasize five themes. First, the three-dimensional structure of a protein is determined by its amino acid sequence. Second, the function of a protein depends on its structure. Third, an isolated protein usually exists in one or a small number of stable structural forms. Fourth, the most important forces stabilizing the specific structures maintained by a given protein are noncovalent interactions. Finally, amid the huge number of unique protein structures, we can recognize some common structural patterns that help to organize our understanding of protein architecture.

These themes should not be taken to imply that proteins have static, unchanging, three-dimensional structures. Protein function often entails an interconversion between two or more structural forms. The dynamic aspects of protein structure will be explored in Chapters 5 and 6. An understanding of all levels of protein structure is essential to the discussion of function in later chapters.

4.1 Overview of Protein Structure

The spatial arrangement of atoms in a protein is called its conformation. The possible conformations of a protein include any structural state it can achieve without breaking covalent bonds. A change in conformation could occur, for example, by rotation about single bonds. Of the many conformations that are theoretically possible in a protein containing hundreds of single
bonds, one or (more commonly) a few generally predominate under biological conditions. The need for multiple stable conformations reflects the changes that must take place in most proteins as they bind to other molecules or catalyze reactions. The conformations existing under a given set of conditions are usually the ones that are thermodynamically the most stable—that is, having the lowest Gibbs free energy (G). Proteins in any of their functional, folded conformations are called native proteins.

What principles determine the most stable conformations of a protein? An understanding of protein conformation can be built stepwise from the discussion of primary structure in Chapter 3 through a consideration of secondary, tertiary, and quaternary structures. To this traditional approach we must add the newer emphasis on common and classifiable folding patterns, called superfolding structures or motifs, which provide an important organizational context to this complex endeavor. We begin by introducing some guiding principles.

A Protein's Conformation Is Stabilized Largely by Weak Interactions

In the context of protein structure, the term stability can be defined as the tendency to maintain a native conformation. Native proteins are only marginally stable; the ΔG separating the folded and unfolded states in typical proteins under physiological conditions is in the range of 20 to 65 kJ/mol. A given polypeptide chain can theoretically assume countless conformations, and as a result the unfolded state of a protein is characterized by a high degree of conformational entropy. This entropy, and the hydrogen-bonding interactions of many groups in the polypeptide chain with the solvent (water), tend to maintain the unfolded state. The chemical interactions that counteract these effects and stabilize the native conformation include disulfide (covalent) bonds and the weak (noncovalent) interactions described in Chapter 2: hydrogen bonds and hydrophobic and ionic interactions.

Many proteins do not have disulfide bonds. The environment within most cells is highly reducing and thus precludes the formation of —S—S— bonds. In eukaryotes, disulfide bonds are found primarily in secreted, extracellular proteins (for example, the hormone insulin). Disulfide bonds are also uncommon in bacterial proteins. However, thermophilic bacteria, as well as the archaea, typically have many proteins with disulfide bonds, which stabilize proteins; this is presumably an adaptation to life at high temperatures.

For the intracellular proteins of most organisms, weak interactions are especially important in the folding of polypeptide chains into their secondary and tertiary structures. The association of multiple polypeptides to form quaternary structures also relies on these weak interactions.

About 200 to 460 kJ/mol are required to break a single covalent bond, whereas weak interactions can be disrupted by a mere 4 to 30 kJ/mol. Individual covalent bonds, such as disulfide bonds linking separate parts of a single polypeptide chain, are clearly much stronger than individual weak interactions. Yet, because they are so numerous, it is weak interactions that predominate as a stabilizing force in protein structure. In general, the protein conformation with the lowest free energy (that is, the most stable conformation) is the one with the maximum number of weak interactions.

The stability of a protein is not simply the sum of the free energies of formation of the many weak interactions within it. For every hydrogen bond formed in a protein during folding, a hydrogen bond (of similar strength) between the same group and water was broken. The net stability contributed by a given hydrogen bond, or the difference in free energies of the folded and unfolded states, may be close to zero. Ionic interactions may be either stabilizing or destabilizing. We must therefore look elsewhere to understand why a particular native conformation is favored.

On carefully examining the contribution of weak interactions to protein stability, we find that hydrophobic interactions generally predominate. Pure water contains a network of hydrogen-bonded H₂O molecules. No other molecule has the hydrogen-bonding potential of water, and the presence of other molecules in an aqueous solution disrupts the hydrogen bonding of water. When water surrounds a hydrophobic molecule, the optimal arrangement of hydrogen bonds results in a highly structured shell, or solvation layer, of water around the molecule (see Fig. 2-7). The increased order of the water molecules in the solvation layer correlates with an unfavorable decrease in the entropy of the water. However, when nonpolar groups cluster together, the extent of the solvation layer decreases because each group no longer presents its entire surface to the solution. The result is a favorable increase in entropy. As described in Chapter 2, this increase in entropy is the major thermodynamic driving force for the association of hydrophobic groups in aqueous solution. Hydrophobic amino acid side chains therefore tend to cluster in a protein's interior, away from water.

Under physiological conditions, the formation of hydrogen bonds in a protein is driven largely by this same entropic effect. Polar groups can generally form hydrogen bonds with water and hence are soluble in water. However, the number of hydrogen bonds per unit mass is generally greater for pure water than for any other liquid or solution, and there are limits to the solubility of even the most polar molecules as their presence causes a net decrease in hydrogen bonding per unit mass. Therefore, a solvation layer also forms to some extent around polar molecules. Even though the energy of formation of an intramolecular hydrogen bond between two polar groups in a macromolecule is...
largely canceled by the elimination of such interactions between these polar groups and water, the release of structured water as intramolecular interactions form provides an entropic driving force for folding. Most of the net change in free energy as weak interactions form within a protein is therefore derived from the increased entropy in the surrounding aqueous solution resulting from the burial of hydrophobic surfaces. This more than counterbalances the large loss of conformational entropy as a polypeptide is constrained into its folded conformation.

Hydrophobic interactions are clearly important in stabilizing conformation; the interior of a protein is generally a densely packed core of hydrophobic amino acid side chains. It is also important that any polar or charged groups in the protein interior have suitable partners for hydrogen bonding or ionic interactions. One hydrogen bond seems to contribute little to the stability of a native structure, but the presence of hydrogen-bonding groups without partners in the hydrophobic core of a protein can be so destabilizing that conformations containing these groups are often thermodynamically untenable. The favorable free-energy change resulting from the combination of several such groups with partners in the surrounding solution can be greater than the free-energy difference between the folded and unfolded states. In addition, hydrogen bonds between groups in a protein form cooperatively (formation of one makes the next one more likely) in repeating secondary structures that optimize hydrogen bonding, as described below. In this way, hydrogen bonds often have an important role in guiding the protein-folding process.

The interaction of oppositely charged groups that form an ion pair, or salt bridge, can have either a stabilizing or destabilizing effect on protein structure. As in the case of hydrogen bonds, charged amino acid side chains interact with water and salts when the protein is unfolded, and the loss of those interactions must be considered when evaluating the effect of a salt bridge on the overall stability of a folded protein. However, the strength of a salt bridge increases as it moves to an environment of lower dielectric constant, ε (see p. 46): from the polar aqueous solvent (ε near 80) to the nonpolar protein interior (ε near 4). Salt bridges, especially those that are partly or entirely buried, can thus provide significant stabilization to a protein structure. This trend explains the increased occurrence of buried salt bridges in the proteins of thermophilic organisms. Ionic interactions also limit structural flexibility and confer a uniqueness to protein structure that nonspecific hydrophobic interactions cannot provide.

Most of the structural patterns outlined in this chapter reflect two simple rules: (1) hydrophobic residues are largely buried in the protein interior, away from water; and (2) the number of hydrogen bonds and ionic interactions within the protein is maximized, thus reducing the number of hydrogen-bonding and ionic groups that are not paired with a suitable partner. Insoluble proteins and proteins within membranes (which we examine in Chapter 11) follow somewhat different rules, because of their particular function or environment, but weak interactions are still critical structural elements.

The Peptide Bond Is Rigid and Planar

Linus Pauling, 1901–1994

Robert Corey, 1897–1971

The α carbons of adjacent amino acid residues are separated by three covalent bonds, arranged as $C_{\alpha} - C - N - C_{\alpha}$. X-ray diffraction studies of crystals of amino acids and of simple dipeptides and tripeptides showed that the peptide $C - N$ bond is somewhat shorter than the $C - N$ bond in a simple amine and that the atoms associated with the peptide bond are coplanar. This indicated a resonance or partial sharing of two pairs of electrons between the carbonyl oxygen and the amide nitrogen (Fig. 4-2a). The oxygen has a partial negative charge and the nitrogen a partial positive charge, setting up a small electric dipole. The six atoms of the peptide group lie in a single plane, with the oxygen atom of the carbonyl group trans to the hydrogen atom of the amide nitrogen. From these findings Pauling and Corey concluded that the peptide $C - N$ bonds, because of their partial double-bond character, cannot rotate freely. Rotation is permitted about the $N - C_{\alpha}$ and the $C_{\alpha} - C$ bonds. The backbone of a polypeptide chain can thus be pictured as a series of rigid planes, with consecutive planes sharing a common point of rotation at C_{α} (Fig. 4-2b). The rigid peptide bonds limit the range of conformations possible for a polypeptide chain.
Peptide conformation is defined by three dihedral angles (also known as torsion angles) called ϕ (phi), ψ (psi), and ω (omega), reflecting rotation about each of the three repeating bonds in the peptide backbone. A dihedral angle is the angle at the intersection of two planes. In the case of peptides, the planes are defined by bond vectors in the peptide backbone. Two successive bond vectors describe a plane. Three successive bond vectors describe two planes (the central bond vector is common to both; Fig. 4-2c), and the angle between these two planes is what we measure to describe protein conformation.

KEY CONVENTION: The important dihedral angles in a peptide are defined by the three bond vectors connecting four consecutive main-chain (peptide backbone) atoms (Fig. 4-2c): ϕ involves the $\text{C} - \text{N} - \text{C} - \text{C}$ bonds (with the rotation occurring about the $\text{N} - \text{C}$ bond), and ψ involves the $\text{N} - \text{C} - \text{C} - \text{N}$ bonds. Both ϕ and ψ are defined as $\pm 180^\circ$ when the polypeptide is fully extended and all peptide groups are in the same plane (Fig. 4-2d). As one looks down the central bond vector in the direction of the vector arrow (as depicted in Fig. 4-2c for ψ), the dihedral angles increase as the distal (fourth) atom is rotated clockwise (Fig. 4-2d). From the $\pm 180^\circ$ position, the dihedral angle increases from -180° to 0°, at which point the first and fourth atoms are farthest apart and the peptide is fully extended. As the viewer looks out along the bond undergoing rotation (from either direction) the ϕ and ψ angles increase as the fourth atom rotates clockwise relative to the first. In a protein, some of the conformations shown here (e.g., 0°) are prohibited by steric overlap of atoms. In (b) through (d), the balls representing atoms are smaller than the van der Waal's radii for this scale.

The carbonyl oxygen has a partial negative charge and the amide nitrogen a partial positive charge, setting up a small electric dipole. Virtually all peptide bonds in proteins occur in this trans configuration; an exception is noted in Figure 4-7b.
FIGURE 4-3 Ramachandran plot for L-Ala residues. Peptide conformations are defined by the values of ϕ and ψ. Conformations deemed possible are those that involve little or no steric interference, based on calculations using known van der Waals radii and dihedral angles. The areas shaded dark blue represent conformations that involve no steric overlap and thus are fully allowed; medium blue indicates conformations allowed at the extreme limits for unfavorable atomic contacts; the lightest blue indicates conformations that are permissible if a little flexibility is allowed in the dihedral angles. The yellow regions are conformations that are not allowed. The asymmetry of the plot results from the L stereochemistry of the amino acid residues. The plots for other L residues with unbranched side chains are nearly identical. Allowed ranges for branched residues such as Val, Ile, and Thr are somewhat smaller than for Ala. The Gly residue, which is less sterically hindered, has a much broader range of allowed conformations. The range for Pro residues is greatly restricted because ψ is limited by the cyclic side chain to the range of -35° to -85°.

for ϕ and ψ become evident when ψ is plotted versus ϕ in a Ramachandran plot (Fig. 4-3), introduced by G. N. Ramachandran.

SUMMARY 4.1 Overview of Protein Structure

- Every protein has a three-dimensional structure that reflects its function.
- Protein structure is stabilized by multiple weak interactions. Hydrophobic interactions are the major contributors to stabilizing the globular form of most soluble proteins; hydrogen bonds and ionic interactions are optimized in the thermodynamically most stable structures.
- The nature of the covalent bonds in the polypeptide backbone places constraints on structure. The peptide bond has a partial double-bond character that keeps the entire six-atom peptide group in a rigid planar configuration. The N-C$_\alpha$ and C$_\alpha$-C bonds can rotate to define the dihedral angles ϕ and ψ, respectively.

4.2 Protein Secondary Structure

The term secondary structure refers to any chosen segment of a polypeptide chain and describes the local spatial arrangement of its main-chain atoms, without regard to the conformation of its side chains or its relationship to other segments. A regular secondary structure occurs when each dihedral angle, ϕ and ψ, remains the same or nearly the same throughout the segment. There are a few types of secondary structure that are particularly stable and occur widely in proteins. The most prominent are the α helix and β conformations; another common type is the β turn. Where a regular pattern is not found, the secondary structure is sometimes referred to as undefined or as a random coil. This last designation, however, does not properly describe the structure of these segments. The path of the polypeptide backbone in almost any protein is not random; rather, it is typically unchanging and highly specific to the structure and function of that particular protein. Our discussion here focuses on the regular, common structures.

The α Helix Is a Common Protein Secondary Structure

Protein Architecture—α Helix Pauling and Corey were aware of the importance of hydrogen bonds in orienting polar chemical groups such as the C=O and N—H groups of the peptide bond. They also had the experimental results of William Astbury, who in the 1930s had conducted pioneering x-ray studies of proteins. Astbury demonstrated that the protein that makes up hair and porcupine quills (the fibrous protein α-keratin) has a regular structure that repeats every 5.15 to 5.2 Å. (The angstrom, Å, named after the physicist Anders J. Ångström, is equal to 0.1 nm. Although not an SI unit, it is used universally by structural biologists to describe atomic distances—it is approximately the length of a typical C—H bond.) With this information and their data on the peptide bond, and with the help of precisely constructed models, Pauling and Corey set out to determine the likely conformations of protein molecules.

The simplest arrangement the polypeptide chain can assume, given its rigid peptide bonds (but free rotation around its other, single bonds), is a helical structure, which Pauling and Corey called the α helix (Fig. 4-4). In this structure the polypeptide backbone is tightly wound around an imaginary axis drawn longitudinally through the middle of the helix, and the R groups of the amino acid residues protrude outward from the helical backbone. The repeating unit is a single turn of the helix, which extends about 5.4 Å along the long axis, slightly greater than the periodicity Astbury observed on x-ray analysis of hair keratin. The amino acid residues in the prototypical α helix have conformations with $\phi = -57^\circ$ and $\psi = -47^\circ$, and each helical turn includes 3.6 amino acid residues. The α-helical segments in proteins often
deviate slightly from these dihedral angles, and even vary somewhat within a single contiguous segment to produce subtle bends or kinks in the helical axis. In all proteins, the helical twist of the \(\alpha \) helix is right-handed (Box 4–1). The \(\alpha \) helix proved to be the predominant structure in \(\alpha \)-keratins. More generally, about one-fourth of all amino acid residues in proteins are found in \(\alpha \) helices, the exact fraction varying greatly from one protein to another.

Why does the \(\alpha \) helix form more readily than many other possible conformations? The answer is, in part, that an \(\alpha \) helix makes optimal use of internal hydrogen bonds. The repeat unit is a single turn of the helix, 3.6 residues. (a) Ball-and-stick model showing the intrachain hydrogen bonds. The \(\alpha \) helix viewed from one end, looking down the longitudinal axis (derived from PDB ID 4TNC). Note the positions of the R groups, represented by purple spheres. This ball-and-stick model, which emphasizes the helical arrangement, gives the false impression that the helix is hollow, because the balls do not represent the van der Waals radii of the individual atoms. (c) As this space-filling model shows, the atoms in the center of the \(\alpha \) helix are in very close contact. (d) Helical wheel projection of an \(\alpha \) helix. This representation can be colored to identify surfaces with particular properties. The yellow residues, for example, could be hydrophobic and conform to an interface between the helix shown here and another part of the same or another polypeptide. The red and blue residues illustrate the potential for interaction of negatively and positively charged side chains separated by two residues in the helix.

BOX 4–1 METHODS Knowing the Right Hand from the Left

There is a simple method for determining whether a helical structure is right-handed or left-handed. Make fists of your two hands with thumbs outstretched and pointing away from you. Looking at your right hand, think of a helix spiraling up your right thumb in the direction in which the other four fingers are curled as shown (clockwise). The resulting helix is right-handed. Your left hand will demonstrate a left-handed helix, which rotates in the counterclockwise direction as it spirals up your thumb.
bonds. The structure is stabilized by a hydrogen bond between the hydrogen atom attached to the electronegative nitrogen atom of a peptide linkage and the electronegative carbonyl oxygen atom of the fourth amino acid on the amino-terminal side of that peptide bond (Fig. 4–4a). Within the α helix, every peptide bond (except those close to each end of the helix) participates in such hydrogen bonding. Each successive turn of the α helix is held to adjacent turns by three to four hydrogen bonds, conferring significant stability on the overall structure.

Further model-building experiments have shown that an α helix can form in polypeptides consisting of either L- or D-amino acids. However, all residues must be of one stereoisomeric series; a D-amino acid will disrupt a regular structure consisting of L-amino acids, and vice versa. In principle, naturally occurring L-amino acids can form either right- or left-handed α helices, but extended left-handed α helices are theoretically less stable and have not been observed in proteins.

WORKED EXAMPLE 4–1 Secondary Structure and Protein Dimensions

What is the length of a polypeptide with 80 amino acid residues in a single contiguous α helix?

Solution: An idealized α helix has 3.6 residues per turn and the rise along the helical axis is 5.4 Å. Thus, the rise along the axis for each amino acid residue is 1.5 Å. The length of the polypeptide is therefore 80 residues × 1.5 Å/residue = 120 Å.

Amino Acid Sequence Affects Stability of the α Helix

Not all polypeptides can form a stable α helix. Each amino acid residue in a polypeptide has an intrinsic propensity to form an α helix (Table 4–1), reflecting the properties of the R group and how they affect the capacity of the adjoining main-chain atoms to take up the characteristic φ and ψ angles. Alanine shows the greatest tendency to form α helices in most experimental model systems.

The position of an amino acid residue relative to its neighbors is also important. Interactions between amino acid side chains can stabilize or destabilize the α-helical structure. For example, if a polypeptide chain has a long block of Glu residues, this segment of the chain will not form an α helix at pH 7.0. The negatively charged carboxyl groups of adjacent Glu residues repel each other so strongly that they prevent formation of the α helix. For the same reason, if there are many adjacent Lys and/or Arg residues, with positively charged R groups at pH 7.0, they also repel each other and prevent formation of the α helix. The bulk and shape of Asn, Ser, Thr, and Cys residues can also destabilize an α helix if they are close together in the chain.

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>ΔΔG° (kJ/mol)*</th>
<th>Amino Acid</th>
<th>ΔΔG° (kJ/mol)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>0</td>
<td>Leu</td>
<td>0.79</td>
</tr>
<tr>
<td>Arg</td>
<td>0.3</td>
<td>Lys</td>
<td>0.63</td>
</tr>
<tr>
<td>Asn</td>
<td>3</td>
<td>Met</td>
<td>0.88</td>
</tr>
<tr>
<td>Asp</td>
<td>2.5</td>
<td>Phe</td>
<td>2.0</td>
</tr>
<tr>
<td>Cys</td>
<td>3</td>
<td>Pro</td>
<td>>4</td>
</tr>
<tr>
<td>Gln</td>
<td>1.3</td>
<td>Ser</td>
<td>2.2</td>
</tr>
<tr>
<td>Glu</td>
<td>1.4</td>
<td>Thr</td>
<td>2.4</td>
</tr>
<tr>
<td>Gly</td>
<td>4.6</td>
<td>Tyr</td>
<td>2.0</td>
</tr>
<tr>
<td>His</td>
<td>2.6</td>
<td>Trp</td>
<td>2.0</td>
</tr>
<tr>
<td>Ile</td>
<td>1.4</td>
<td>Val</td>
<td>2.1</td>
</tr>
</tbody>
</table>

*ΔΔG° is the difference in free-energy change, relative to that for alanine, required for the amino acid residue to take up the α-helical conformation. Larger numbers reflect greater difficulty taking up the α-helical structure. Data are a composite derived from multiple experiments and experimental systems.

The twist of an α helix ensures that critical interactions occur between an amino acid side chain and the side chain three (and sometimes four) residues away on either side of it. This is clear when the α helix is depicted as a helical wheel (Fig. 4–4d). Positively charged amino acids are often found three residues away from negatively charged amino acids, permitting the formation of an ion pair. Two aromatic amino acid residues are often similarly spaced, resulting in a hydrophobic interaction.

A constraint on the formation of the α helix is the presence of Pro or Gly residues, which have the least proclivity to form α helices. In proline, the nitrogen atom is part of a rigid ring (see Fig. 4–7b), and rotation about the N–Cα bond is not possible. Thus, a Pro residue introduces a destabilizing kink in an α helix. In addition, the nitrogen atom of a Pro residue in a peptide linkage has no substituent hydrogen to participate in hydrogen bonds with other residues. For these reasons, proline is only rarely found in an α helix. Glycine occurs infrequently in α helices for a different reason: it has more conformational flexibility than the other amino acid residues. Polymers of glycine tend to take up coiled structures quite different from an α helix.

A final factor affecting the stability of an α helix is the identity of the amino acid residues near the ends of the α-helical segment of the polypeptide. A small electric dipole exists in each peptide bond (Fig. 4–2a). These dipoles are aligned through the hydrogen bonds of the helix, resulting in a net dipole along the helical
The Three-Dimensional Structure of Proteins

Amino terminus

\[\delta^+ \]

Carboxyl terminus

\[\delta^- \]

FIGURE 4-5 Helix dipole. The electric dipole of a peptide bond (see Fig. 4-2a) is transmitted along an \(\alpha \)-helical segment through the intrachain hydrogen bonds, resulting in an overall helix dipole. In this illustration, the amino and carbonyl constituents of each peptide bond are indicated by + and – symbols, respectively. Non-hydrogen-bonded amino and carbonyl constituents of the peptide bonds near each end of the \(\alpha \)-helical region are shown in red.

axis that increases with helix length (Fig. 4–5). The four amino acid residues at each end of the helix do not participate fully in the helix hydrogen bonds. The partial positive and negative charges of the helix dipole reside on the peptide amino and carbonyl groups near the amino-terminal and carboxyl-terminal ends, respectively. For this reason, negatively charged amino acids are often found near the amino terminus of the helical segment, where they have a stabilizing interaction with the positive charge of the helix dipole; a positively charged amino acid at the amino-terminal end is destabilizing. The opposite is true at the carboxyl-terminal end of the helical segment.

In summary, five types of constraints affect the stability of an \(\alpha \) helix: (1) the intrinsic propensity of an amino acid residue to form an \(\alpha \) helix; (2) the interactions between R groups, particularly those spaced three (or four) residues apart; (3) the bulkiness of adjacent R groups; (4) the occurrence of Pro and Gly residues; and (5) interactions between amino acid residues at the ends of the helical segment and the electric dipole inherent to the \(\alpha \) helix. The tendency of a given segment of a polypeptide chain to form an \(\alpha \) helix therefore depends on the identity and sequence of amino acid residues within the segment.

The \(\beta \) Conformation Organizes Polypeptide Chains into Sheets

Protein Architecture—\(\beta \) Sheet In 1951, Pauling and Corey predicted a second type of repetitive structure, the \(\beta \) conformation. This is a more extended conformation of polypeptide chains, and its structure has been confirmed by x-ray analysis. In the \(\beta \) conformation, the backbone of the polypeptide chain is extended into a zigzag rather than helical structure (Fig. 4-6). The zigzag polypeptide chains can be arranged side by side to form a structure resembling a series of pleats. In this arrangement, called a \(\beta \) sheet, hydrogen bonds form between adjacent segments of polypeptide chain. The individual segments that form a \(\beta \) sheet are usually nearby on the polypeptide chain, but can also be

FIGURE 4-6 The \(\beta \) conformation of polypeptide chains. These top and side views reveal the R groups extending out from the \(\beta \) sheet and emphasize the pleated shape described by the planes of the peptide bonds. (An alternative name for this structure is \(\beta \)-pleated sheet.) Hydrogen-bond cross-links between adjacent chains are also shown. The amino-terminal to carboxyl-terminal orientations of adjacent chains (arrows) can be the same or opposite, forming (a) an antiparallel \(\beta \) sheet or (b) a parallel \(\beta \) sheet.
quite distant from each other in the linear sequence of the polypeptide; they may even be in different polypeptide chains. The R groups of adjacent amino acids protrude from the zigzag structure in opposite directions, creating the alternating pattern seen in the side views in Figure 4–6.

The adjacent polypeptide chains in a β sheet can be either parallel or antiparallel (having the same or opposite amino-to-carboxyl orientations, respectively). The structures are somewhat similar, although the repeat period is shorter for the parallel conformation (6.5 Å, vs. 7 Å for antiparallel) and the hydrogen-bonding patterns are different. The idealized structures correspond to $\phi = -119^\circ$, $\psi = +113^\circ$ (parallel) and $\phi = -139^\circ$, $\psi = +135^\circ$ (antiparallel); these values vary somewhat in real proteins, resulting in structural variation, as seen above for α helices.

Some protein structures limit the kinds of amino acids that can occur in the β sheet. When two or more β sheets are layered close together within a protein, the R groups of the amino acid residues on the touching surfaces must be relatively small. β-Keratins such as silk fibroin and the fibroin of spider webs have a very high content of Gly and Ala residues, the two amino acids with the smallest R groups. Indeed, in silk fibroin Gly and Ala alternate over large parts of the sequence.

β Turns Are Common in Proteins

Protein Architecture—β Turn In globular proteins, which have a compact folded structure, nearly one-third of the amino acid residues are in turns or loops where the polypeptide chain reverses direction (Fig. 4–7). These are the connecting elements that link successive runs of α helix or β conformation. Particularly common are β turns that connect the ends of two adjacent segments of an antiparallel β sheet. The structure is a 180° turn involving four amino acid residues, with the carbonyl oxygen of the first residue forming a hydrogen bond with the amino-group hydrogen of the fourth. The peptide groups of the central two residues do not participate in any inter-residue hydrogen bonding. Gly and Pro residues often occur in β turns, the former because it is small and flexible, the latter because peptide bonds involving the imino nitrogen of proline readily assume the cis configuration (Fig. 4–7b), a form that is particularly amenable to a tight turn. Of the several types of β turns, the two shown in Figure 4–7a are the most common. Beta turns are often found near the surface of a protein, where the peptide groups of the central two amino acid residues in the turn can hydrogen-bond with water. Considerably less common is the γ turn, a three-residue turn with a hydrogen bond between the first and third residues.

Common Secondary Structures Have Characteristic Dihedral Angles

The α helix and the β conformation are the major repetitive secondary structures in a wide variety of proteins, although other repetitive structures exist in some specialized proteins (an example is collagen; see Fig. 4–12). Every type of secondary structure can be completely described by the dihedral angles ϕ and ψ associated with each residue. As shown by a Ramachandran plot, the α helix and β conformation fall within a relatively restricted range of sterically allowed
The Three-Dimensional Structure of Proteins

Structures (Fig. 4-8a). Most values of ϕ and ψ taken from known protein structures fall into the expected regions, with high concentrations near the α helix and β conformation values as predicted (Fig. 4-8b). The only amino acid residue often found in a conformation outside these regions is glycine. Because its side chain is small, a Gly residue can take part in many conformations that are sterically forbidden for other amino acids.

Common Secondary Structures Can Be Assessed by Circular Dichroism

Structural asymmetry in a molecule gives rise to differences in absorption of left-handed versus right-handed plane-polarized light. Measurement of this difference is called circular dichroism (CD) spectroscopy. An ordered structure, such as a folded protein, gives rise to an absorption spectrum that can have peaks or regions with both positive and negative values. For proteins, spectra are obtained in the far UV region (190 to 250 nm). The light-absorbing entity, or chromophore, in this region is the peptide bond; a signal is obtained when the peptide bond is in a folded environment. The difference in molar extinction coefficients (see Box 3-1) for left- and right-handed plane-polarized light ($\Delta\varepsilon$) is plotted as a function of wavelength. The α helix and β conformations have characteristic CD spectra (Fig. 4-9). Using CD spectra, biochemists can determine whether proteins are properly folded, estimate the fraction of the protein that is folded in either of the common secondary structures, and monitor transitions between the folded and unfolded states.

SUMMARY 4.2 Protein Secondary Structure

- Secondary structure is the local spatial arrangement of the main-chain atoms in a selected segment of a polypeptide chain.
The most common regular secondary structures are the α helix, the β conformation, and β turns.

The secondary structure of a polypeptide segment can be completely defined if the φ and ψ angles are known for all amino acid residues in that segment.

Circular dichroism spectroscopy is a method for assessing common secondary structure and monitoring folding in proteins.

4.3 Protein Tertiary and Quaternary Structures

Protein Architecture—Introduction to Tertiary Structure

The overall three-dimensional arrangement of all atoms in a protein is referred to as the protein's tertiary structure. Whereas the term "secondary structure" refers to the spatial arrangement of amino acid residues that are adjacent in a segment of a polypeptide, tertiary structure includes longer-range aspects of amino acid sequence. Amino acids that are far apart in the polypeptide sequence and are in different types of secondary structure may interact within the completely folded structure of a protein. The location of bends (including β turns) in the polypeptide chain and the direction and angle of these bends are determined by the number and location of specific bend-producing residues, such as Pro, Thr, Ser, and Gly. Interacting segments of polypeptide chains are held in their characteristic tertiary positions by several kinds of weak interactions (and sometimes by covalent bonds such as disulfide cross-links) between the segments.

Some proteins contain two or more separate polypeptide chains, or subunits, which may be identical or different. The arrangement of these protein subunits in three-dimensional complexes constitutes quaternary structure.

In considering these higher levels of structure, it is useful to classify proteins into two major groups: fibrous proteins, with polypeptide chains arranged in long strands or sheets, and globular proteins, with polypeptide chains folded into a spherical or globular shape. The two groups are structurally distinct. Fibrous proteins usually consist largely of a single type of secondary structure, and their tertiary structure is relatively simple.

Globular proteins often contain several types of secondary structure. The two groups also differ functionally: the structures that provide support, shape, and external protection to vertebrates are made of fibrous proteins, whereas most enzymes and regulatory proteins are globular proteins.

Fibrous Proteins Are Adapted for a Structural Function

α-Keratin The α-keratins have evolved for strength. Found only in mammals, these proteins constitute almost the entire dry weight of hair, wool, nails, claws, quills, horns, hooves, and much of the outer layer of skin. The α-keratins are part of a broader family of proteins called intermediate filament (IF) proteins. Other IF proteins are found in the cytoskeletons of animal cells. All IF proteins have a structural function and share the structural features exemplified by the α-keratins.

The α-keratin helix is a right-handed α helix, the same helix found in many other proteins. Francis Crick and Linus Pauling in the early 1950s independently suggested that the α helices of keratin were arranged as a coiled coil. Two strands of α-keratin, oriented in parallel (with their amino termini at the same end), are wrapped about each other to form a supertwisted coiled coil. The supertwisting amplifies the strength of the overall structure, just as strands are twisted to make a strong

Table 4-2 Secondary Structures and Properties of Some Fibrous Proteins

<table>
<thead>
<tr>
<th>Structure</th>
<th>Characteristics</th>
<th>Examples of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>α Helix, cross-linked by disulfide bonds</td>
<td>Tough, insoluble protective structures of varying hardness and flexibility</td>
<td>α-Keratin of hair, feathers, and nails</td>
</tr>
<tr>
<td>β Conformation</td>
<td>Soft, flexible filaments</td>
<td>Silk fibroin</td>
</tr>
<tr>
<td>Collagen triple helix</td>
<td>High tensile strength, without stretch</td>
<td>Collagen of tendons, bone matrix</td>
</tr>
</tbody>
</table>
The twisting of the axis of an \(\alpha \) helix to form a coiled coil explains the discrepancy between the 5.4 Å per turn predicted for an \(\alpha \) helix by Pauling and Corey and the 5.15 to 5.2 Å repeating structure observed in the x-ray diffraction of hair (p. 117). The helical path of the supertwists is left-handed, opposite in sense to the \(\alpha \) helix. The surfaces where the two \(\alpha \) helices touch are made up of hydrophobic amino acid residues, their R groups meshed together in a regular interlocking pattern. This permits a close packing of the polypeptide chains within the left-handed supertwist. Not surprisingly, \(\alpha \)-keratin is rich in the hydrophobic residues Ala, Val, Leu, Ile, Met, and Phe.

An individual polypeptide in the \(\alpha \)-keratin coiled coil has a relatively simple tertiary structure, dominated by an \(\alpha \)-helical secondary structure with its helical axis twisted in a left-handed superhelix. The intertwining of the two \(\alpha \)-helical polypeptides is an example of quaternary structure. Coiled coils of this type are common structural elements in filamentous proteins and in the muscle protein myosin (see Fig. 5–27). The quaternary structure of \(\alpha \)-keratin can be quite complex. Many coiled coils can be assembled into large supramolecular complexes, such as the arrangement of \(\alpha \)-keratin to form the intermediate filament of hair (Fig. 4–10b).

The strength of fibrous proteins is enhanced by covalent cross-links between polypeptide chains in the multihelical "ropes" and between adjacent chains in a supramolecular assembly. In \(\alpha \)-keratins, the cross-links stabilizing quaternary structure are disulfide bonds (Box 4–2). In the hardest and toughest \(\alpha \)-keratins, such as those of rhinoceros horn, up to 18% of the residues are cysteines involved in disulfide bonds.

Collagen Like the \(\alpha \)-keratins, collagen has evolved to provide strength. It is found in connective tissue such as tendons, cartilage, the organic matrix of bone, and the cornea of the eye. The collagen helix is a unique secondary structure \((\phi = -51^\circ, \psi = +153^\circ) \) quite distinct from the \(\alpha \) helix. It is left-handed and has three amino acid residues per turn (Fig. 4–11). Collagen is also a
When hair is exposed to moist heat, it can be stretched. At the molecular level, the α helices in the α-keratin of hair are stretched out until they arrive at the fully extended β conformation. On cooling they spontaneously revert to the α-helical conformation. The characteristic “stretchability” of α-keratins, and their numerous disulfide cross-linkages, are the basis of permanent waving. The hair to be waved or curled is first bent around a form of appropriate shape. A solution of a reducing agent, usually a compound containing a thiol or sulfhydryl group (—SH), is then applied with heat. The reducing agent cleaves the cross-linkages by reducing each disulfide bond to form two Cys residues. The moist heat breaks hydrogen bonds and causes the α-helical structure of the polypeptide chains to uncoil. After a time the reducing solution is removed, and an oxidizing agent is added to establish new disulfide bonds between pairs of Cys residues of adjacent polypeptide chains, but not the same pairs as before the treatment. After the hair is washed and cooled, the polypeptide chains revert to their α-helical conformation. The hair fibers now curl in the desired fashion because the new disulfide cross-linkages exert some torsion or twist on the bundles of α-helical coils in the hair fibers. The same process can be used to straighten hair that is naturally curly. A permanent wave (or hair straightening) is not truly permanent, because the hair grows; in the new hair replacing the old, the α-keratin has the natural pattern of disulfide bonds.

coiled coil, but one with distinct tertiary and quaternary structures: three separate polypeptides, called α chains (not to be confused with α helices), are supertwisted about each other (Fig. 4-11c). The superhelical twisting is right-handed in collagen, opposite in sense to the left-handed helix of the α chains.

There are many types of vertebrate collagen. Typically they contain about 35% Gly, 11% Ala, and 21% Pro and 4-Hyp (4-hydroxyproline, an uncommon amino acid; see Fig. 3-8a). The food product gelatin is derived from collagen; it has little nutritional value as a protein, because collagen is extremely low in many amino acids that are essential in the human diet. The unusual amino acid content of collagen is related to structural constraints unique to the collagen helix. The amino acid sequence in collagen is generally a repeating tripeptide unit, Gly–X–Y, where X is often Pro, and Y is often 4-Hyp. Only Gly residues can be accommodated at the very tight junctions between the individual α chains (Fig. 4-11d). The Pro and 4-Hyp residues permit the sharp twisting of the collagen helix. The amino acid sequence and the supertwisted quaternary structure of collagen allow a very close packing of its three polypeptides. 4-Hydroxyproline has a special role in the structure of collagen—and in human history (Box 4-3).

The tight wrapping of the α chains in the collagen triple helix provides tensile strength greater than that of a steel wire of equal cross section. Collagen fibrils (Fig. 4-12) are supramolecular assemblies consisting of triple-helical collagen molecules (sometimes referred to as tropocollagen molecules) associated in a variety of ways to provide different degrees of tensile strength.
... from this misfortune, together with the unhealthiness of the country, where there never falls a drop of rain, we were stricken with the "camp-sickness," which was such that the flesh of our limbs all shrivelled up, and the skin of our legs became all blotched with black, mouldy patches, like an old jack-boot, and proud flesh came upon the gums of those of us who had the sickness, and none escaped from this sickness save through the jaws of death. The signal was this: when the nose began to bleed, then death was at hand...

—The Memoirs of the Lord of Joinville, ca. 1300

This excerpt describes the plight of Louis IX's army toward the end of the Seventh Crusade (1248-1254), when the scurvy-weakened Crusader army was destroyed by the Egyptians. What was the nature of the malady afflicting these thirteenth-century soldiers?

Scurvy is caused by lack of vitamin C, or ascorbic acid (ascorbate). Vitamin C is required for, among other things, the hydroxylation of proline and lysine in collagen; scurvy is a deficiency disease characterized by general degeneration of connective tissue. Manifestations of advanced scurvy include numerous small hemorrhages caused by fragile blood vessels, tooth loss, poor wound healing and the reopening of old wounds, bone pain and degeneration, and eventually heart failure. Milder cases of vitamin C deficiency are accompanied by fatigue, irritability, and an increased severity of respiratory tract infections. Most animals make large amounts of vitamin C, converting glucose to ascorbate in four enzymatic steps. But in the course of evolution, humans and some other animals—gorillas, guinea pigs, and fruit bats—have lost the last enzyme in this pathway and must obtain ascorbate in their diet. Vitamin C is available in a wide range of fruits and vegetables. Until 1800, however, it was often absent in the dried foods and other food supplies stored for winter or extended travel.

Scurvy was recorded by the Egyptians in 1500 BCE, and it is described in the fifth century BCE writings of Hippocrates. Yet it did not come to wide public notice until the European voyages of discovery from 1500 to 1800. The first circumnavigation of the globe, led by Ferdinand Magellan (1520), was accomplished only with the loss of more than 80% of his crew to scurvy. During Jacques Cartier's second voyage to explore the St. Lawrence River (1535-1536), his band was threatened with complete disaster until the native Americans taught the men to make a cedar tea that cured and prevented scurvy (it contained vitamin C). Winter outbreaks of scurvy in Europe were gradually eliminated in the nineteenth century as the cultivation of the potato, introduced from South America, became widespread.

In 1747, James Lind, a Scottish surgeon in the Royal Navy, carried out the first controlled clinical study in recorded history. During an extended voyage on the 50-gun warship HMS Salisbury, Lind selected 12 sailors suffering from scurvy and separated them into groups of two. All 12 received the same diet, except that each group was given a different remedy for scurvy from among those recommended at the time. The sailors given lemons and oranges recovered and returned to duty. The sailors given boiled apple juice improved slightly. The remainder continued to deteriorate. Lind's Treatise on the Scurvy was published in 1753, but inaction persisted in the Royal Navy for another 40 years. In 1795 the British admiralty finally mandated a ration of concentrated lime or lemon juice for all British sailors (hence the name "limeys"). Scurvy continued to be a problem in some other parts of the world until 1932, when Hungarian scientist Albert Szent-Györgyi, and W. A. Waugh and C. G. King at the University of Pittsburgh, isolated and synthesized ascorbic acid.

L-Ascorbic acid (vitamin C) is a white, odorless, crystalline powder. It is freely soluble in water and relatively insoluble in organic solvents. In a dry state, away from light, it is stable for a considerable length of time. The appropriate daily intake of this vitamin is still in dispute. The recommended daily allowance in the United States is 60 mg (Australia and the United Kingdom recommend 30 to 40 mg; Russia recommends 100 mg). Along with citrus fruits and almost all other fresh fruits, other good sources of vitamin C include peppers, tomatoes, potatoes, and broccoli. The vitamin C of fruits and vegetables is destroyed by overcooking or prolonged storage.

So why is ascorbate so necessary to good health? Of particular interest to us here is its role in the formation of collagen. As noted in the text, collagen is constructed of the repeating tripeptide unit Gly-X-Y, where X and Y are generally Pro or 4-Hyp—the proline derivative (4R)-l-hydroxyproline, which plays an essential role in the folding of collagen and in maintaining its structure. The proline ring is normally found as a mixture of two puckered conformations, called C3-endo and C3-exo (Fig. 1). The collagen helix structure requires the Pro residue in...
the Y positions to be in the C$_{\gamma}$-exo conformation, and it is this conformation that is enforced by the hydroxyl substitution at C-4 in 4-Hyp. The collagen structure also requires that the Pro residue in the X positions have the C$_{\gamma}$-endo conformation, and introduction of 4-Hyp here can destabilize the helix. In the absence of vitamin C, cells cannot hydroxylate the Pro at the Y positions. This leads to collagen instability and the connective tissue problems seen in scurvy.

The hydroxylation of specific Pro residues in procollagen, the precursor of collagen, requires the action of the enzyme prolyl 4-hydroxylase. This enzyme (M_r 240,000) is an $\alpha_2\beta_2$ tetramer in all vertebrate sources. The proline-hydroxylating activity is found in the α subunits. Each α subunit contains one atom of nonheme iron (Fe$^{2+}$), and the enzyme is one of a class of hydroxylases that require α-ketoglutarate in their reactions.

In the normal prolyl 4-hydroxylase reaction (Fig. 2a), one molecule of α-ketoglutarate and one of O$_2$ bind to the enzyme. The α-ketoglutarate is oxidatively decarboxylated to form CO$_2$ and succinate. The remaining oxygen atom is then used to hydroxylate an appropriate Pro residue in procollagen. No ascorbate is needed in this reaction. However, prolyl 4-hydroxylase also catalyzes an oxidative decarboxylation of α-ketoglutarate that is not coupled to proline hydroxylation (Fig. 2b). During this reaction the heme Fe$^{2+}$ becomes oxidized, inactivating the enzyme and preventing the proline hydroxylation. The ascorbate consumed in the reaction is needed to restore enzyme activity—by reducing the heme iron.

Scurvy remains a problem today, not only in remote regions where nutritious food is scarce but, surprisingly, on U.S. college campuses. The only vegetables consumed by some students are those in tossed salads, and days go by without these young adults consuming fruit. A 1998 study of 230 students at Arizona State University revealed that 10% had serious vitamin C deficiencies, and 2 students had vitamin C levels so low that they probably had scurvy. Only half the students in the study consumed the recommended daily allowance of vitamin C.

Eat your fresh fruit and vegetables.
The α chains of collagen molecules and the collagen molecules of fibrils are cross-linked by unusual types of covalent bonds involving Lys, HyLys (5-hydroxylysine; see Fig. 3–8a), or His residues that are present at a few of the X and Y positions. These links create uncommon amino acid residues such as dehydrohydroxylysinonorleucine. The increasingly rigid and brittle character of aging connective tissue results from accumulated covalent cross-links in collagen fibrils.

A typical mammal has more than 30 structural variants of collagen, particular to certain tissues and each somewhat different in sequence and function. Some human genetic defects in collagen structure illustrate the close relationship between amino acid sequence and three-dimensional structure in this protein. Osteogenesis imperfecta is characterized by abnormal bone formation in babies; Ehlers-Danlos syndrome is characterized by loose joints. Both conditions can be lethal, and both result from the substitution of an amino acid residue with a larger R group (such as Cys or Ser) for a single Gly residue in each α chain (a different Gly residue in each disorder). These single-residue substitutions have a catastrophic effect on collagen function because they disrupt the Gly-X-Y repeat that gives collagen its unique helical structure. Given its role in the collagen triple helix (Fig. 4–11d), Gly cannot be replaced by another amino acid residue without substantial deleterious effects on collagen structure.

Silk Fibroin Fibroin, the protein of silk, is produced by insects and spiders. Its polypeptide chains are predominantly in the β conformation. Fibroin is rich in Ala and Gly residues, permitting a close packing of β sheets and an interlocking arrangement of R groups (Fig. 4–13). The overall structure is stabilized by extensive hydrogen bonding between all peptide linkages in the polypeptides of each β sheet and by the optimization of van der Waals interactions between sheets. Silk does not stretch, because the β conformation is already highly extended (Fig. 4–6). However, the structure is flexible because the sheets are held together by numerous weak interactions rather than by covalent bonds such as the disulfide bonds in α-keratins.

FIGURE 4–13 Structure of silk. The fibers in silk cloth and in a spider web are made up of the protein fibroin. (a) Fibroin consists of layers of antiparallel β sheets rich in Ala and Gly residues. The small side chains interdigitate and allow close packing of the sheets, as shown in the ball and stick view. (b) Strands of fibroin (blue) emerge from the spinnerets of a spider in this colorized electron micrograph.
The number of known three-dimensional protein structures is now in the tens of thousands and more than doubles every couple of years. This wealth of information is revolutionizing our understanding of protein structure, the relation of structure to function, and the evolutionary paths by which proteins arrived at their present state, which can be seen in the family resemblances that come to light as protein databases are sifted and sorted. One of the most important resources available to biochemists is the Protein Data Bank (PDB; www.rcsb.org).

The PDB is an archive of experimentally determined three-dimensional structures of biological macromolecules, containing virtually all of the macromolecular structures (proteins, RNAs, DNAs, etc.) elucidated to date. Each structure is assigned an identifying label (a four-character identifier called the PDB ID). Such labels are provided in the figure legends for every PDB-derived structure illustrated in this text so that students and instructors can explore the same structures on their own. The data files in the PDB describe the spatial coordinates of each atom whose position has been determined (many of the cataloged structures are not complete). Additional data files provide information on how the structure was determined and its accuracy. The atomic coordinates can be converted into an image of the macromolecule using structure visualization software. Students are encouraged to access the PDB and explore structures using visualization software linked to the database. Macromolecular structure files can also be downloaded and explored on the desktop using free software such as RasMol, Protein Explorer, or FirstGlance in Jmol, available at www.umass.edu/microbio/rasmol.

Structural Diversity Reflects Functional Diversity in Globular Proteins

In a globular protein, different segments of the polypeptide chain (or multiple polypeptide chains) fold back on each other, generating a more compact shape than is seen in the fibrous proteins (Fig. 4-14). The folding also provides the structural diversity necessary for proteins to carry out a wide array of biological functions. Globular proteins include enzymes, transport proteins, motor proteins, regulatory proteins, immunoglobulins, and proteins with many other functions.

Our discussion of globular proteins begins with the principles gleaned from the first protein structures to be elucidated. This is followed by a detailed description of protein substructure and comparative categorization. Such discussions are possible only because of the vast amount of information available over the Internet from publicly accessible databases, particularly the Protein Data Bank (Box 4-4).

Myoglobin Provided Early Clues about the Complexity of Globular Protein Structure

Protein Architecture—Tertiary Structure of Small Globular Proteins, II. Myoglobin The first breakthrough in understanding the three-dimensional structure of a globular protein came from x-ray diffraction studies of myoglobin carried out by John Kendrew and his colleagues in the 1950s. Myoglobin is a relatively small (M, 16,700), oxygen-binding protein of muscle cells. It functions both to store oxygen and to facilitate oxygen diffusion in rapidly contracting muscle tissue. Myoglobin contains a single polypeptide chain of 153 amino acid residues of known sequence and a single iron protoporphyrin, or heme, group. The same heme group that is found in myoglobin is found in hemoglobin, the oxygen-binding protein of erythrocytes, and is responsible for the deep red-brown color of both myoglobin and hemoglobin. Myoglobin is particularly abundant in the muscles of diving mammals such as the whale, seal, and porpoise—so abundant that the muscles of these animals are brown. Storage and distribution of oxygen by muscle myoglobin permits diving mammals to remain submerged for long periods. The activities of myoglobin and other globin molecules are investigated in greater detail in Chapter 5.

Figure 4-15 shows several structural representations of myoglobin, illustrating how the polypeptide chain is folded in three dimensions—its tertiary structure. The red group surrounded by protein is heme. The
The Three-Dimensional Structure of Proteins

FIGURE 4-15 Tertiary structure of sperm whale myoglobin. (PDB ID 1MB0) Orientation of the protein is similar in (a) through (d); the heme group is shown in red. In addition to illustrating the myoglobin structure, this figure provides examples of several different ways to display protein structure. (a) The polypeptide backbone in a ribbon representation of a type introduced by Jane Richardson, which highlights regions of secondary structure. The α-helical regions are evident.

backbone of the myoglobin molecule consists of eight relatively straight segments of α helix interrupted by bends, some of which are β turns. The longest α helix has 23 amino acid residues and the shortest only 7; all helices are right-handed. More than 70% of the residues in myoglobin are in these α-helical regions. X-ray analysis has revealed the precise position of each of the R groups, which occupy nearly all the space within the folded chain.

Many important conclusions were drawn from the structure of myoglobin. The positioning of amino acid side chains reflects a structure that derives much of its stability from hydrophobic interactions. Most of the hydrophobic R groups are in the interior of the molecule, hidden from exposure to water. All but two of the polar R groups are located on the outer surface of the molecule, and all are hydrated. The myoglobin molecule is so compact that its interior has room for only four molecules of water. This dense hydrophobic core is typical of globular proteins. The fraction of space occupied by atoms in an organic liquid is 0.4 to 0.6. In a globular protein the fraction is about 0.75, comparable to that in a crystal (in a typical crystal the fraction is 0.70 to 0.78, near the theoretical maximum). In this packed environment, weak interactions strengthen and reinforce each other. For example, the nonpolar side chains in the core are so close together that short-range van der Waals interactions make a significant contribution to stabilizing hydrophobic interactions.

Deduction of the structure of myoglobin confirmed some expectations and introduced some new elements of secondary structure. As predicted by Pauling and Corey, all the peptide bonds are in the planar trans configuration. The α helices in myoglobin provided the first direct experimental evidence for the existence of this type of secondary structure. Three of the four Pro residues are found at bends. The fourth Pro residue occurs within an α helix, where it creates a kink necessary for tight helix packing.

The flat heme group rests in a crevice, or pocket, in the myoglobin molecule. The iron atom in the center of the heme group has two bonding (coordination) positions perpendicular to the plane of the heme (Fig. 4-16). One of these is bound to the R group of the His residue at position 93; the other is the site at which an O₂ molecule binds. Within this pocket, the accessibility of the heme group to solvent is highly restricted. This is important for function, because free heme groups in an oxygenated solution are rapidly oxidized from the ferrous (Fe²⁺) form, which is active in the reversible binding of O₂, to the ferric (Fe³⁺) form, which does not bind O₂.

FIGURE 4-16 The heme group. This group is present in myoglobin, hemoglobin, cytochromes, and many other proteins (the heme proteins). (a) Heme consists of a complex organic ring structure, protoporphyrin, which binds an iron atom in its ferrous (Fe²⁺) state. The iron atom has six coordination bonds, four in the plane of, and bonded to, the flat porphyrin molecule and two perpendicular to it. (b) In myoglobin and hemoglobin, one of the perpendicular coordination bonds is bound to a nitrogen atom of a His residue. The other is “open” and serves as the binding site for an O₂ molecule.
As many different myoglobin structures were resolved, investigators were able to observe the structural changes that accompany the binding of oxygen or other molecules and thus, for the first time, to understand the correlation between protein structure and function. Hundreds of proteins have now been subjected to similar analysis. Today, nuclear magnetic resonance (NMR) spectroscopy and other techniques supplement x-ray diffraction data, providing more information on a protein’s structure (Box 4-5, p. 132). In addition, the sequencing of the genomic DNA of many organisms (Chapter 9) has identified thousands of genes that encode proteins of known sequence but, as yet, unknown function; this work continues apace.

Globular Proteins Have a Variety of Tertiary Structures

From what we now know about the tertiary structures of hundreds of globular proteins, it is clear that myoglobin illustrates just one of many ways in which a polypeptide chain can be folded. Table 4-3 shows the proportions of α helix and β conformations (expressed as percentage of residues in each type) in several small, single-chain, globular proteins. Each of these proteins has a distinct structure, adapted for its particular biological function, but together they share several important properties with myoglobin. Each is folded compactly, and in each case the hydrophobic amino acid side chains are oriented toward the interior (away from water) and the hydrophilic side chains are on the surface. The structures are also stabilized by a multitude of hydrogen bonds and some ionic interactions.

For the beginning student, the very complex tertiary structures of globular proteins—some much larger than myoglobin—are best approached by focusing on common structural patterns, recurring in different and often unrelated proteins. The three-dimensional structure of a typical globular protein can be considered an assemblage of polypeptide segments in the α-helical and β-sheet conformations, linked by connecting segments. The structure can then be defined by how these segments stack on one another and how the segments that connect them are arranged.

To understand a complete three-dimensional structure, we need to analyze its folding patterns. We begin by defining two important terms that describe protein structural patterns or elements in a polypeptide chain, and then turn to the folding rules.

The first term is motif, also called a supersecondary structure or fold. A motif is simply a recognizable folding pattern involving two or more elements of secondary structure and the connection(s) between them. Although there is some confusing application of these three terms in the literature, they are generally used interchangeably. A motif can be very simple, such as two elements of secondary structure folded against each other, and represent only a small part of a protein. An example is a β-α-β loop (Fig. 4-17a). A motif can also be a very elaborate structure involving scores of protein segments folded together, such as the β barrel (Fig. 4-17b). In some cases, a single large motif may comprise the entire protein. The term encompasses any advantageous folding pattern and is useful for describing such patterns. The segment defined as a motif may or may not be independently stable. We have already encountered one well-studied motif, the coiled coil of α-keratin, which is also found in some other proteins. Note that a motif is not a hierarchical structural element falling between secondary and tertiary structure. It is a folding pattern that can describe a small part of a protein or an entire polypeptide chain. The synonymous term “supersecondary structure” is thus somewhat misleading because it suggests hierarchy.

Table 4-3

<table>
<thead>
<tr>
<th>Protein (total residues)</th>
<th>α Helix (%)</th>
<th>β Conformation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chymotrypsin (247)</td>
<td>14</td>
<td>45</td>
</tr>
<tr>
<td>Ribonuclease (124)</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>Carboxypeptidase (307)</td>
<td>38</td>
<td>17</td>
</tr>
<tr>
<td>Cytochrome c (104)</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>Lysozyme (129)</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>Myoglobin (153)</td>
<td>78</td>
<td>0</td>
</tr>
</tbody>
</table>

*Portions of the polypeptide chains not accounted for by α helix or β conformation consist of bends and irregularly coiled or extended stretches. Segments of α helix and β conformation sometimes deviate slightly from their normal dimensions and geometry.

FIGURE 4-17 Motifs. (a) A simple motif, the β-α-β loop. (b) A more elaborate motif, the β barrel. This β barrel is a single domain of α-hemolysin (a toxin that kills a cell by creating a hole in its membrane) from the bacterium *Staphylococcus aureus* (derived from PDB ID 7AHL).
X-Ray Diffraction

The spacing of atoms in a crystal lattice can be determined by measuring the locations and intensities of spots produced on photographic film by a beam of x rays of given wavelength, after the beam has been diffracted by the electrons of the atoms. For example, x-ray analysis of sodium chloride crystals shows that Na\(^+\) and Cl\(^-\) ions are arranged in a simple cubic lattice. The spacing of the different kinds of atoms in complex organic molecules, even very large ones such as proteins, can also be analyzed by x-ray diffraction methods. However, the technique for analyzing crystals of complex molecules is far more laborious than for simple salt crystals. When the repeating pattern of the crystal is a molecule as large as, say, a protein, the numerous atoms in the molecule yield thousands of diffraction spots that must be analyzed by computer.

Consider how images are generated in a light microscope. Light from a point source is focused on an object. The object scatters the light waves, and these scattered waves are recombined by a series of lenses to generate an enlarged image of the object. The smallest object whose structure can be determined by such a system—that is, the resolving power of the microscope—is determined by the wavelength of the light, in this case visible light, with wavelengths in the range of 400 to 700 nm. Objects smaller than half the wavelength of the incident light cannot be resolved. To resolve objects as small as proteins we must use x rays, with wavelengths in the range of 0.7 to 1.5 Å (0.07 to 0.15 nm). However, there are no lenses that can recombine x rays to form an image; instead, the pattern of diffracted x rays is collected directly and an image is reconstructed by mathematical techniques.

The amount of information obtained from x-ray crystallography depends on the degree of structural order in the sample. Some important structural parameters were obtained from early studies of the diffraction patterns of the fibrous proteins arranged in regular arrays in hair and wool. However, the orderly bundles formed by fibrous proteins are not crystals—the molecules are aligned side by side, but not all are oriented in the same direction. More detailed three-dimensional structural information about proteins requires a highly ordered protein crystal. The structures of many proteins are not yet known, simply because they have proved difficult to crystallize. Practitioners have compared making protein crystals to holding together a stack of bowling balls with cellophane tape.

Operationally, there are several steps in x-ray structural analysis (Fig. 1). A crystal is placed in an x-ray beam between the x-ray source and a detector, and a regular array of spots called reflections is generated. The spots are created by the diffracted x-ray beam, and each atom in a molecule makes a contribution to each spot. An electron-density map of the protein is reconstructed from the overall diffraction pattern of spots by a mathematical technique called a Fourier transform. In effect, the computer acts as a “computational lens.” A model for the structure is then built that is consistent with the electron-density map.

John Kendrew found that the x-ray diffraction pattern of crystalline myoglobin (isolated from muscles of the sperm whale) is very complex, with nearly 25,000 reflections. Computer analysis of these reflections took place in stages. The resolution improved at each stage, until in 1959 the positions of virtually all the nonhydrogen atoms in the protein had been determined. The amino acid sequence of the protein, obtained by chemical analysis, was consistent with the molecular model. The structures of thousands of proteins, many of them much more complex than myoglobin, have since been determined to a similar level of resolution.
The physical environment in a crystal, of course, is not identical to that in solution or in a living cell. A crystal imposes a space and time average on the structure deduced from its analysis, and x-ray diffraction studies provide little information about molecular motion within the protein. The conformation of proteins in a crystal could in principle also be affected by nonphysiological factors such as incidental protein-protein contacts within the crystal. However, when structures derived from the analysis of crystals are compared with structural information obtained by other means (such as NMR, as described below), the crystal-derived structure almost always represents a functional conformation of the protein. X-ray crystallography can be applied successfully to proteins too large to be structurally analyzed by NMR.

Nuclear Magnetic Resonance

An advantage of nuclear magnetic resonance (NMR) studies is that they are carried out on macromolecules in solution, whereas x-ray crystallography is limited to molecules that can be crystallized. NMR can also illuminate the dynamic side of protein structure, including conformational changes, protein folding, and interactions with other molecules.

NMR is a manifestation of nuclear spin angular momentum, a quantum mechanical property of atomic nuclei. Only certain atoms, including 1H, 13C, 15N, 19F, and 31P, have the kind of nuclear spin that gives rise to an NMR signal. Nuclear spin generates a magnetic dipole. When a strong, static magnetic field is applied to a solution containing a single type of macromolecule, the magnetic dipoles are aligned in the field in one of two orientations, parallel (low energy) or antiparallel (high energy). A short (~10 μs) pulse of electromagnetic energy of suitable frequency (the resonant frequency, which is in the radio frequency range) is applied at right angles to the nuclei aligned in the magnetic field. Some energy is absorbed as nuclei switch to the high-energy state, and the absorption spectrum that results contains information about the identity of the nuclei and their immediate chemical environment. The data from many such experiments on a sample are averaged, increasing the signal-to-noise ratio, and an NMR spectrum such as that in Figure 2 is generated.

1H is particularly important in NMR experiments because of its high sensitivity and natural abundance. For macromolecules, 1H NMR spectra can become quite complicated. Even a small protein has hundreds of 1H atoms, typically resulting in a one-dimensional NMR spectrum too complex for analysis. Structural analysis of proteins became possible with the advent of two-dimensional NMR techniques (Fig. 3). These methods allow measurement of distance-dependent coupling of nuclear spins in nearby atoms through space (the nuclear Overhauser effect (NOE), in a method dubbed NOESY) or the coupling of nuclear spins in atoms connected by covalent bonds (total correlation spectroscopy, or TOCSY).

(continued on next page)
Translating a two-dimensional NMR spectrum into a complete three-dimensional structure can be a laborious process. The NOE signals provide some information about the distances between individual atoms, but for these distance constraints to be useful, the atoms giving rise to each signal must be identified. Complementary TOCSY experiments can help identify which NOE signals reflect atoms that are linked by covalent bonds. Certain patterns of NOE signals have been associated with secondary structures such as α-helices. Modern genetic engineering (Chapter 9) can be used to prepare proteins that contain the rare isotopes 13C or 15N. The new NMR signals produced by these atoms, and the coupling with 1H signals resulting from these substitutions, help in the assignment of individual 1H NOE signals. The process is also aided by a knowledge of the amino acid sequence of the polypeptide.

To generate a three-dimensional structure, researchers feed the distance constraints into a computer along with known geometric constraints such as chirality, van der Waals radii, and bond lengths and angles. The computer generates a family of closely related structures that represent the range of conformations consistent with the NOE distance constraints (Fig. 3c). The uncertainty in structures generated by NMR is in part a reflection of the molecular vibrations (known as breathing) within a protein structure in solution, discussed in more detail in Chapter 5. Normal experimental uncertainty can also play a role.

Protein structures determined by both x-ray crystallography and NMR generally agree well. In some cases, the precise locations of particular amino acid side chains on the protein exterior are different, often because of effects related to the packing of adjacent protein molecules in a crystal. The two techniques together are at the heart of the rapid increase in the availability of structural information about the macromolecules of living cells.

FIGURE 3 Use of two-dimensional NMR to generate a three-dimensional structure of a globin, the same protein used to generate the data in Figure 2. The diagonal in a two-dimensional NMR spectrum is equivalent to a one-dimensional spectrum. The off-diagonal peaks are NOE signals generated by close-range interactions of 1H atoms that may generate signals quite distant in the one-dimensional spectrum. Two such interactions are identified in (a), and their identities are shown with blue lines in (b) (PDB ID 1VRF). Three lines are drawn for interaction 2 between a methyl group in the protein and a hydrogen on the heme. The methyl group rotates rapidly such that each of its three hydrogens contributes equally to the interaction and the NMR signal. Such information is used to determine the complete three-dimensional structure (PDB ID 1VRE), as in (c). The multiple lines shown for the protein backbone in (c) represent the family of structures consistent with the distance constraints in the NMR data. The structural similarity with myoglobin (Fig. 1) is evident. The proteins are oriented in the same way in both figures.
The second term for describing structural patterns is domain. A domain, as defined by Jane Richardson in 1981, is a part of a polypeptide chain that is independently stable or could undergo movements as a single entity with respect to the entire protein. Polypeptides with more than a few hundred amino acid residues often fold into two or more domains, sometimes with different functions. In many cases, a domain from a large protein will retain its native three-dimensional structure even when separated (for example, by proteolytic cleavage) from the remainder of the polypeptide chain. In a protein with multiple domains, each domain may appear as a distinct globular lobe (Fig. 4-18); more commonly, extensive contacts between domains make individual domains hard to discern. Different domains often have distinct functions, such as the binding of small molecules or interaction with other proteins. Small proteins usually have only one domain (the domain is the protein).

Following these rules, complex motifs can be built up from simple ones. For example, a series of β-α-β loops arranged so that the β strands form a barrel creates a particularly stable and common motif, the α/β barrel. Hydrophobic interactions make a large contribution to the stability of protein structures. Burial of hydrophobic amino acid R groups so as to exclude water requires at least two layers of secondary structure. Simple motifs, such as the β-α-β loop (Fig. 4-17a), create two such layers.

1. Hydrophobic interactions make a large contribution to the stability of protein structures. Burial of hydrophobic amino acid R groups so as to exclude water requires at least two layers of secondary structure. Simple motifs, such as the β-α-β loop (Fig. 4-17a), create two such layers.

2. Where they occur together in a protein, α helices and β sheets generally are found in different structural layers. This is because the backbone of a polypeptide segment in the β conformation (Fig. 4-6) cannot readily hydrogen-bond to an α helix aligned with it.

3. Segments adjacent to each other in the amino acid sequence are usually stacked adjacent to each other in the folded structure. Distant segments of a polypeptide may come together in the tertiary structure, but this is not the norm.

4. Connections between common elements of secondary structure cannot cross or form knots (Fig. 4-19a).

5. The β conformation is most stable when the individual segments are twisted slightly in a right-handed sense. This influences both the arrangement of β sheets relative to one another and the path of the polypeptide connections between them. Two parallel β strands, for example, must be connected by a crossover strand (Fig. 4-19b). In principle, this crossover could have a right- or left-handed conformation, but in proteins it is almost always right-handed. Right-handed connections tend to be shorter than left-handed connections and tend to bend through smaller angles, making them easier to form. The twisting of β sheets also leads to a characteristic twisting of the structure formed by many such segments together, as seen in the β barrel (4-17b) and twisted β sheet (Fig. 4-19c), which form the core of many larger structures.
The Three-Dimensional Structure of Proteins

FIGURE 4-20 Constructing large motifs from smaller ones. The α/β barrel is a commonly occurring motif constructed from repetitions of the β-α-β loop motif. This α/β barrel is a domain of pyruvate kinase (a glycolytic enzyme) from rabbit (derived from PDB ID 1PNK).

(Fig. 4-20). In this structure, each parallel β segment is attached to its neighbor by an α-helical segment. All connections are right-handed. The α/β barrel is found in many enzymes, often with a binding site (for a cofactor or substrate) in the form of a pocket near one end of the barrel. Note that domains with similar folding patterns are said to have the same motif even though their constituent α helices and β sheets may differ in length.

Protein Motifs Are the Basis for Protein Structural Classification

Protein Architecture—Tertiary Structure of Large Globular Proteins, IV. Structural Classification of Proteins As we have seen, understanding the complexities of tertiary structure is made easier by considering substructures. Taking this idea further, researchers have organized the complete contents of protein databases according to hierarchical levels of structure. All of these databases rely on data and information deposited in the Protein Data Bank. The Structural Classification of Proteins (SCOP) database is a good example of this important trend in biochemistry. At the highest level of classification, the SCOP database (http://scop.mrc-lmb.cam.ac.uk/scop) borrows a scheme already in common use, with four classes of protein structure: all α, all β, α/β (with α and β segments interspersed or alternating), and α + β (with α and β regions somewhat segregated). Each class includes tens to hundreds of different folding arrangements (motifs), built up from increasingly identifiable substructures. Some of the substructure arrangements are very common, others have been found in just one protein. Figure 4-21 shows a variety of motifs arrayed among the four classes of protein structure; this is just a minute sample of the hundreds of known motifs. The number of folding patterns is not infinite, however. As the rate at which new protein structures are elucidated has increased, the fraction of those structures containing a new motif has steadily declined. Fewer than 1,000 different folds or motifs may exist in all. Figure 4-21 also shows how proteins can be organized based on the presence of the various motifs. The top two levels of organization, class and fold, are purely structural. Below the fold level (see color key in Fig. 4-21), categorization is based on evolutionary relationships.

Many examples of recurring domain or motif structures are available, and these reveal that protein tertiary structure is more reliably conserved than amino acid sequence. The comparison of protein structures can thus provide much information about evolution.

FIGURE 4-21 Organization of proteins based on motifs. Shown here are just a few of the hundreds of known stable motifs. They are divided into four classes: all α, all β, α/β, and α + β. Structural classification data from the SCOP (Structural Classification of Proteins) database (http://scop.mrc-lmb.cam.ac.uk/scop) are also provided (see the color key). The PDB identifier (listed first for each structure) is the unique accession code given to each structure archived in the Protein Data Bank (www.rcsb.org). The α/β barrel (see Fig. 4-20) is another particularly common α/β motif.

(Figure continues on facing page.)
4.3 Protein Tertiary and Quaternary Structures

- **4.3.1 **All β

- **1LXA**
 - Single-stranded left-handed β helix
 - Trimeric LpxA-like enzymes
 - UDP N-acetylglucosamine acyltransferase
 - Escherichia coli

- **1PEX**
 - Four-bladed β propeller
 - Hemopexin-like domain
 - UDP N-acetylglucosamine acyltransferase
 - Collagenase-3 (MMP-13), carboxyl-terminal domain
 - Human (Homo sapiens)

- **1CD8**
 - Immunoglobulin-like β sandwich
 - Immunoglobulin
 - V set domains (antibody variable domain-like)
 - CD8
 - Human (Homo sapiens)

- **4.3.2 **α/β

- **1DEH**
 - NAD(P)-binding Rossmann-fold domains
 - NAD(P)-binding Rossmann-fold domains
 - Alcohol/glucose dehydrogenases, carboxyl-terminal domain
 - Human dehydrogenase
 - Human (Homo sapiens)

- **1DUB**
 - ClpP/crotonase
 - ClpP/crotonase
 - Crotonase-like
 - Enoyl-CoA hydratase (crotonase)
 - Rat (Rattus norvegicus)

- **1PFK**
 - Phosphofructokinase
 - ATP-dependent
 - Phosphofructokinase
 - Phosphofructokinase
 - Escherichia coli

- **4.3.3 **$\alpha + \beta$

- **1SYN**
 - Thymidylate synthase/dCMP hydroxymethylase
 - Thymidylate synthase/dCMP hydroxymethylase
 - Thymidylate synthase/dCMP hydroxymethylase
 - Thymidylate synthase/dCMP hydroxymethylase
 - Escherichia coli

- **1EMA**
 - GFP-like
 - GFP-like
 - Fluorescent proteins
 - Green fluorescent protein, GFP
 - Jollyfish (Aequorea victoria)
Proteins with significant similarity in primary structure and/or with similar tertiary structure and function are said to be in the same **protein family**. A strong evolutionary relationship is usually evident within a protein family. For example, the globin family has many different proteins with both structural and sequence similarity to myoglobin (as seen in the proteins used as examples in Box 4–5 and in Chapter 5). Two or more families with little similarity in amino acid sequence sometimes make use of the same major structural motif and have functional similarities; these families are grouped as **superfamilies**. An evolutionary relationship among families in a superfamily is considered probable, even though time and functional distinctions—that is, different adaptive pressures—may have erased many of the telltale sequence relationships. A protein family may be widespread in all three domains of cellular life, the Bacteria, Archaea, and Eukarya, suggesting a very ancient origin. Other families may be present in only a small group of organisms, indicating that the structure arose more recently. Tracing the natural history of structural motifs, using structural classifications in databases such as SCOP, provides a powerful complement to sequence analyses in tracing evolutionary relationships. The SCOP database is curated manually, with the objective of placing proteins in the correct evolutionary framework based on conserved structural features.

Structural motifs become especially important in defining protein families and superfamilies. Improved classification and comparison systems for proteins lead inevitably to the elucidation of new functional relationships. Given the central role of proteins in living systems, these structural comparisons can help illuminate every aspect of biochemistry, from the evolution of individual proteins to the evolutionary history of complete metabolic pathways.

Several online databases and resources complement the SCOP database for analysis of protein structure. The CATH (Class, Architecture, Topology, and Homologous Superfamily) database arranges the proteins in the PDB in a four-level hierarchy. Other programs allow the user to input the structure of a protein of interest and then find all the proteins in the PDB that are structurally similar to this protein or some part of it. These programs include VAST (Vector Alignment Search Tool), CE (Combinatorial Extension of the Optimal Paths), and FSSP (Fold Classification Based on Structure-Structure Alignment of Proteins).

Protein Quaternary Structures Range from Simple Dimers to Large Complexes

Protein Architecture—Quaternary Structure Many proteins have multiple polypeptide subunits (from two to hundreds). The association of polypeptide chains can serve a variety of functions. Many multisubunit proteins have regulatory roles; the binding of small molecules may affect the interaction between subunits, causing large changes in the protein's activity in response to small changes in the concentration of substrate or regulatory molecules (Chapter 6). In other cases, separate subunits take on separate but related functions, such as catalysis and regulation. Some associations, such as the fibrous proteins considered earlier in this chapter and the coat proteins of viruses, serve primarily structural roles. Some very large protein assemblies are the site of complex, multistep reactions. For example, each ribosome, the site of protein synthesis, incorporates dozens of protein subunits along with a number of RNA molecules.

A multisubunit protein is also referred to as a **multimer**. A multimer with just a few subunits is often called an **oligomer**. If a multimer has nonidentical subunits, the overall structure of the protein can be asymmetric and quite complicated. However, most multimers have identical subunits or repeating groups of nonidentical subunits, usually in symmetric arrangements. As noted in Chapter 3, the repeating structural unit in such a multimeric protein, whether a single subunit or a group of subunits, is called a **protomer**. Greek letters are sometimes used to distinguish the individual subunits that make up a protomer.

The first oligomeric protein to have its three-dimensional structure determined was hemoglobin (M, 64,500), which contains four polypeptide chains and four heme prosthetic groups, in which the iron atoms are in the ferrous (Fe²⁺) state (Fig. 4–16). The protein portion, the globin, consists of two α chains (141 residues each) and two β chains (146 residues each). Note that in this case, α and β do not refer to secondary structures. Because hemoglobin is four times as large as myoglobin, much more time and effort were required to solve its three-dimensional structure by x-ray analysis, finally achieved by Max Perutz, John Kendrew, and their colleagues in 1959. The subunits of hemoglobin are arranged in symmetric pairs (Fig. 4–22), each pair having one α and one β subunit. Hemoglobin can therefore be described either as a tetramer or as a dimer of αβ protomers.

![Max Perutz, 1914–2002 (left) John Kendrew, 1917–1997 (right)](image-url)
Identical subunits of multimeric proteins are generally arranged in one or a limited set of symmetric patterns. A description of the structure of these proteins requires an introduction to conventions used to define symmetries. Oligomers can have either rotational symmetry or helical symmetry; that is, individual subunits can be superimposed on others (brought to coincidence) by rotation about one or more rotational axes or by a helical rotation. In proteins with rotational symmetry, the subunits pack about the rotational axes to form closed structures. Proteins with helical symmetry tend to form more open-ended structures, with subunits added in a spiraling array.

There are several forms of rotational symmetry. The simplest is cyclic symmetry, involving rotation about a single axis (Fig. 4-23a). If subunits can be superimposed by rotation about a single axis, the protein has a symmetry defined as \(C_n \) (C for cyclic, \(n \) for the number of subunits related by the axis). The axis itself is described as an \(n \)-fold rotational axis. The \(\alpha \beta \) protomers of hemoglobin (Fig. 4–22) are related by \(C_2 \) symmetry. A somewhat more complicated rotational symmetry is dihedral symmetry, in which a twofold rotational axis intersects an \(n \)-fold axis at right angles; this symmetry is defined as \(D_n \) (Fig. 4–23b). A protein with dihedral symmetry has \(2n \) protomers.

Proteins with cyclic or dihedral symmetry are particularly common. More complex rotational symmetries are possible, but only a few are regularly encountered in proteins. One example is icosahedral symmetry. An icosahedron is a regular 12-cornered polyhedron with 20 equilateral triangular faces (Fig. 4–23c). Each face can be brought to coincidence with another face by rotation about one or more of three axes. This is a common structure in virus coats, or capsids. The human

FIGURE 4-22 Quaternary structure of deoxyhemoglobin. (PDB ID 2HHB) X-ray diffraction analysis of deoxyhemoglobin (hemoglobin without oxygen molecules bound to the heme groups) shows how the four polypeptide subunits are packed together. (a) A ribbon representation. (b) A surface contour model. The \(\alpha \) subunits are shown in shades of gray; the \(\beta \) subunits in shades of blue. Note that the heme groups (red) are relatively far apart.

FIGURE 4-23 Rotational symmetry in proteins. (a) In cyclic symmetry, subunits are related by rotation about a single \(n \)-fold axis, where \(n \) is the number of subunits so related. The axes are shown as black lines; the numbers are values of \(n \). Only two of many possible \(C_n \) arrangements are shown. (b) In dihedral symmetry, all subunits can be related by rotation about one or both of two axes, one of which is twofold. \(D_2 \) symmetry is most common. (c) Icosahedral symmetry. Relating all 20 triangular faces of an icosahedron requires rotation about one or more of three separate rotational axes: twofold, threefold, and fivefold. An end-on view of each of these axes is shown at the right.
The Three-Dimensional Structure of Proteins

SUMMARY 4.3 Protein Tertiary and Quaternary Structures

- Tertiary structure is the complete three-dimensional structure of a polypeptide chain. There are two general classes of proteins based on tertiary structure: fibrous and globular.
- Fibrous proteins, which serve mainly structural roles, have simple repeating elements of secondary structure.
- Globular proteins have more complicated tertiary structures, often containing several types of secondary structure in the same polypeptide chain. The first globular protein structure to be determined, by x-ray diffraction methods, was that of myoglobin.
- The complex structures of globular proteins can be analyzed by examining folding patterns called motifs, supersecondary structures, or folds. The thousands of known protein structures are generally assembled from a repertoire of only a few hundred motifs. Domains are regions of a polypeptide chain that can fold stably and independently.
- Quaternary structure results from interactions between the subunits of multisubunit (multimeric) proteins or large protein assemblies. Some multimeric proteins have a repeated unit consisting of a single subunit or a group of subunits, or protomer. Protomers are usually related by rotational or helical symmetry.

4.4 Protein Denaturation and Folding

All proteins begin their existence on a ribosome as a linear sequence of amino acid residues (Chapter 27). This polypeptide must fold during and following synthesis to take up its native conformation. As we have seen, a native protein conformation is only marginally stable. Modest changes in the protein’s environment can affect function. We now explore the transition that occurs between the folded and unfolded states.

Loss of Protein Structure Results in Loss of Function

Protein structures have evolved to function in particular cellular environments. Conditions different from those in the cell can result in protein structural changes, large and small. A loss of three-dimensional structure sufficient to cause loss of function is called denaturation. The denatured state does not necessarily equate with complete unfolding of the protein and randomization of conformation. Under most conditions, denatured proteins exist in a set of partially folded states, which as yet are poorly understood.

Most proteins can be denatured by heat, which has complex effects on the weak interactions in a protein (primarily hydrogen bonds). If the temperature is increased slowly, a protein’s conformation generally remains intact until an abrupt loss of structure (and function) occurs over a narrow temperature range (Fig. 4–25). The abruptness of the change suggests that unfolding is a cooperative process: loss of structure in one part of the protein destabilizes other parts. The effects of heat on proteins are not readily predictable. The very heat-stable proteins of thermophilic bacteria and archaea have evolved to function at the temperature of hot springs (∼100 °C). Yet the structures of these proteins often

FIGURE 4–24 Viral capsids. (a) Poliovirus (derived from PDB ID 2PLV) as rendered in the VIPER relational database for structural virology. The coat proteins of poliovirus assemble into an icosahedron 300 Å in diameter. Icosahedral symmetry is a type of rotational symmetry (see Fig. 4–23c). On the left is a surface contour image of the poliovirus capsid. The image at right was rendered at lower resolution, and the coat protein subunits were colored to show the icosahedral symmetry. (b) Tobacco mosaic virus (derived from PDB ID 1VTM). This rod-shaped virus (as shown in the electron micrograph) is 3,000 Å long and 180 Å in diameter; it has helical symmetry.

Poliovirus has an icosahedral capsid (Fig. 4–24a). Each triangular face is made up of three protomers, each containing single copies of four different polypeptide chains, three of which are accessible at the outer surface. Sixty protomers form the 20 faces of the icosahedral shell, which encloses the genetic material (RNA).

The other major type of symmetry found in oligomers, helical symmetry, also occurs in capsids. Tobacco mosaic virus is a right-handed helical filament made up of 2,130 identical subunits (Fig. 4–24b). This cylindrical structure encloses the viral RNA. Proteins with subunits arranged in helical filaments can also form long, fibrous structures such as the actin filaments of muscle (see Fig. 5–28).

Amino Acid Sequence Determines Tertiary Structure

The tertiary structure of a globular protein is determined by its amino acid sequence. The most important proof of this came from experiments showing that denaturation of some proteins is reversible. Certain globular proteins denatured by heat, extremes of pH, or denaturing reagents will regain their native structure and their biological activity if returned to conditions in which the native conformation is stable. This process is called renaturation.

A classic example is the denaturation and renaturation of ribonuclease A, demonstrated by Christian Anfinsen in the 1950s. Purified ribonuclease A denatures completely in a concentrated urea solution in the presence of a reducing agent. The reducing agent cleaves the four disulfide bonds to yield eight Cys residues, and the urea disrupts the stabilizing hydrophobic interactions, thus freeing the entire polypeptide from its folded conformation. Denaturation of ribonuclease is accompanied by a complete loss of catalytic activity. When the urea and the reducing agent are removed, the randomly coiled, denatured ribonuclease spontaneously refolds into its correct tertiary structure, with full restoration of its catalytic activity (Fig. 4-26). The refolding of ribonuclease is so
accurate that the four intrachain disulfide bonds are re-formed in the same positions in the renatured molecule as in the native ribonuclease. Calculated mathematically, the eight Cys residues could recombine at random to form up to four disulfide bonds in 10^5 different ways. In fact, an essentially random distribution of disulfide bonds is obtained when the disulfides are allowed to re-form in the presence of denaturant (without reducing agent), indicating that weak bonding interactions are required for correct positioning of disulfide bonds and restoration of the native conformation. Later, similar results were obtained using chemically synthesized, catalytically active ribonuclease A. This eliminated the possibility that some minor contaminant in Anfinsen’s purified ribonuclease preparation might have contributed to the renaturation of the enzyme, thus dispelling any remaining doubt that this enzyme folds spontaneously.

The Anfinsen experiment provided the first evidence that the amino acid sequence of a polypeptide chain contains all the information required to fold the chain into its native, three-dimensional structure. Subsequent work has shown that this is true only for a minority of proteins, many of them small and inherently stable. Even though all proteins have the potential to fold into their native structure, many require some assistance, as we shall see.

Polypeptides Fold Rapidly by a Stepwise Process

In living cells, proteins are assembled from amino acids at a very high rate. For example, E. coli cells can make a complete, biologically active protein molecule containing 100 amino acid residues in about 5 seconds at 37 °C. How does the polypeptide chain arrive at its native conformation? Let’s assume conservatively that each of the amino acid residues could take up 10 different conformations on average, giving 10^{100} different conformations for the polypeptide. Let’s also assume that the protein folds spontaneously by a random process in which it tries out all possible conformations around every single bond in its backbone until it finds its native, biologically active form. If each conformation were sampled in the shortest possible time (~10^{-12} second, or the time required for a single molecular vibration), it would take about 10^{77} years to sample all possible conformations. Clearly, protein folding is not a completely random, trial-and-error process. There must be shortcuts. This problem was first pointed out by Cyrus Levinthal in 1968 and is sometimes called Levinthal’s paradox.

The folding pathway of a large polypeptide chain is unquestionably complicated, and not all the principles that guide the process have been worked out. However, there are several plausible models. In one, the folding process is hierarchical. Local secondary structures form first. Certain amino acid sequences fold readily into α helices or β sheets, guided by constraints such as those reviewed in our discussion of secondary structure. Ionic interactions, involving charged groups that are often near one another in the linear sequence of the polypeptide chain, can play an important role in guiding these early folding steps. Assembly of local structures is followed by longer-range interactions between, say, two α helices that come together to form stable supersecondary structures. The process continues until complete domains form and the entire polypeptide is folded (Fig. 4-27). Notably, proteins dominated by close-range interactions (between pairs of residues generally located near each other in the polypeptide sequence) tend to fold faster than proteins with more complex folding patterns and many long-range interactions between different segments.

In an alternative model, folding is initiated by a spontaneous collapse of the polypeptide into a compact
state, mediated by hydrophobic interactions among nonpolar residues. The state resulting from this "hydrophobic collapse" may have a high content of secondary structure, but many amino acid side chains are not entirely fixed. The collapsed state is often referred to as a **molten globule**. Most proteins probably fold by a process that incorporates features of both models. Instead of following a single pathway, a population of peptide molecules may take a variety of routes to the same end point, with the number of different partly folded conformational species decreasing as folding nears completion.

Thermodynamically, the folding process can be viewed as a kind of free-energy funnel (Fig. 4–28). The unfolded states are characterized by a high degree of conformational entropy and relatively high free energy. As folding proceeds, the narrowing of the funnel represents a decrease in the number of conformational species present. Small depressions along the sides of the free-energy funnel represent semistable intermediates that can briefly slow the folding process. At the bottom of the funnel, an ensemble of folding intermediates has been reduced to a single native conformation (or one of a small set of native conformations).

Thermodynamic stability is not evenly distributed over the structure of a protein—the molecule has regions of high and low stability. For example, a protein may have two stable domains joined by a segment with lower structural stability, or one small part of a domain may have a lower stability than the remainder. The regions of low stability allow a protein to alter its conformation between two or more states. As we shall see in the next two chapters, variations in the stability of regions within a protein are often essential to protein function.

As our understanding of protein folding and protein structure improves, increasingly sophisticated computer programs for predicting the structure of proteins from their amino acid sequence are being developed. Prediction of protein structure is a specialty field of bioinformatics, and progress in this area is monitored with a biennial test called the CASP (Critical Assessment of Structural Prediction) competition. Entrants from around the world vie to predict the structure of an assigned protein (whose structure has been determined but not yet published). The most successful teams are invited to present their results at a CASP conference. Completely reliable solutions to the complex problem of predicting protein structure are not yet available, but the success and rigor of new approaches is being enriched by CASP.

Some Proteins Undergo Assisted Folding

Not all proteins fold spontaneously as they are synthesized in the cell. Folding for many proteins requires **molecular chaperones**, proteins that interact with partially folded or improperly folded polypeptides, facilitating correct folding pathways or providing microenvironments in which folding can occur. Two classes of molecular chaperones have been well studied. Both are found in organisms ranging from bacteria to humans. The first class is a family of proteins called **Hsp70** (see Fig. 3–30), which generally have a molecular weight near 70,000 and are more abundant in cells stressed by elevated temperatures (hence, heat shock proteins of M, 70,000, or Hsp70). Hsp70 proteins bind to regions of unfolded polypeptides that are rich in hydrophobic residues, preventing inappropriate aggregation. These chaperones thus "protect" both proteins subject to denaturation by heat and new peptide molecules being synthesized (and not yet folded). Hsp70 proteins also block the folding of certain proteins that must remain unfolded until they have been translocated across a membrane (as described in Chapter 27). Some chaperones also

FIGURE 4–28 The thermodynamics of protein folding depicted as a free-energy funnel. At the top, the number of conformations, and hence the conformational entropy, is large. Only a small fraction of the intramolecular interactions that will exist in the native conformation are present. As folding progresses, the thermodynamic path down the funnel reduces the number of states present (decreases entropy), increases the amount of protein in the native conformation, and decreases the free energy. Depressions on the sides of the funnel represent semistable folding intermediates, which in some cases may slow the folding process.
1. DnaJ binds to the unfolded or partially folded protein and then to DnaK.

2. DnaJ stimulates ATP hydrolysis by DnaK. DnaK-ADP binds tightly to the unfolded protein.

3. In bacteria, the nucleotide-exchange factor GrpE stimulates release of ADP.

4. ATP binds to DnaK and the protein dissociates.

FIGURE 4-29 Chaperones in protein folding. The cyclic pathway by which chaperones bind and release polypeptides is illustrated for the E. coli chaperone proteins DnaK and DnaJ, homologs of the eukaryotic chaperones Hsp70 and Hsp40. The chaperones do not actively promote the folding of the substrate protein, but instead prevent aggregation of unfolded peptides. For a population of polypeptide molecules, some fraction of the molecules released at the end of the cycle are in the native conformation. The remainder are rebound by DnaK or diverted to the chaperonin system (GroEL; see Fig. 4-30). In bacteria, a protein called GrpE interacts transiently with DnaK late in the cycle (step 3), promoting dissociation of ADP and possibly DnaJ. No eukaryotic analog of GrpE is known.

facilitate the quaternary assembly of oligomeric proteins. The Hsp70 proteins bind to and release polypeptides in a cycle that uses energy from ATP hydrolysis and involves several other proteins (including a class called Hsp40). Figure 4-29 illustrates chaperone-assisted folding as elucidated for the chaperones DnaK and DnaJ in E. coli, homologs of the eukaryotic Hsp70 and Hsp40 chaperones. DnaK and DnaJ were first identified as proteins required for in vitro replication of certain viral DNA molecules (hence the “Dna” designation).

The second class of chaperones is the chaperonins. These are elaborate protein complexes required for the folding of some cellular proteins that do not fold spontaneously. In E. coli an estimated 10% to 15% of cellular proteins require the resident chaperonin system, called GroEL/GroES, for folding under normal conditions (up to 30% require this assistance when the cells are heat stressed). The chaperonins first became known when they were found to be necessary for the growth of certain bacterial viruses (hence the designation “Gro”). Unfolded proteins are bound within pockets in the GroEL complex, and the pockets are capped transiently by the GroES “lid” (Fig. 4-30). GroEL undergoes substantial conformational changes, coupled to ATP hydrolysis and the binding and release of GroES, which promote folding of the bound polypeptide. The mechanism by which the GroEL/GroES chaperonin facilitates folding is not known in detail, but it depends on the size and interior surface properties of the cavity where folding occurs.

Finally, the folding pathways of some proteins require two enzymes that catalyze isomerization reactions. Protein disulfide isomerase (PDI) is a widely distributed enzyme that catalyzes the interchange, or shuffling, of disulfide bonds until the bonds of the native conformation are formed. Among its functions, PDI catalyzes the elimination of folding intermediates with inappropriate disulfide cross-links. Peptide prolyl cis-trans isomerase (PPI) catalyzes the interconversion of the cis and trans isomers of Pro residue peptide bonds (Fig. 4-7b), which can be a slow step in the folding of proteins that contain some Pro peptide bonds in the cis conformation.
Protein Denaturation and Folding

Unfolded protein binds to the GroEL pocket not blocked by GroES.

ATP binds to each subunit of the GroEL heptamer.

ATP hydrolysis leads to release of 14 ADP and GroES.

Proteins not folded when released are rapidly bound again.

The released protein is fully folded or in a partially folded state that is committed to adopt the native conformation.

Protein folds inside the enclosure.

7 ATP and GroES bind to GroEL with a filled pocket.

FIGURE 4-30 Chaperonins in protein folding. (a) A proposed pathway for the action of the *E. coli* chaperonins GroEL (a member of the Hsp60 protein family) and GroES. Each GroEL complex consists of two large pockets formed by two heptameric rings (each subunit M, 57,000); GroES, also a heptamer (subunit M, 10,000), blocks one of the GroEL pockets. (b) Surface and cut-away images of the GroEL/GroES complex (PDB ID 1AON). The cut-away (right) illustrates the large interior space within which other proteins are bound.

Protein folding is likely to be a more complex process in the densely packed cellular environment than in the test tube. More classes of proteins that facilitate protein folding may well be discovered.

Defects in Protein Folding May Be the Molecular Basis for a Wide Range of Human Genetic Disorders

Despite the many processes that assist in protein folding, misfolding does occur. In fact, protein misfolding is a substantial problem in all cells, and a quarter or more of all polypeptides synthesized may be destroyed because they do not fold correctly. In some cases, the misfolding causes or contributes to the development of serious disease.

Many conditions, including type 2 diabetes, Alzheimer's disease, Huntington's disease, and Parkinson's disease, arise from a common misfolding mechanism. In most cases, a soluble protein that is normally secreted from the cell is secreted in a misfolded state and converted into an insoluble extracellular amyloid fiber. The diseases are collectively referred to as amyloidoses. The fibers are highly ordered and unbranched, with a diameter of 7 to 10 nm and a high
degree of β-sheet structure. The β strands are oriented perpendicular to the axis of the fiber. In some amyloid fibers the overall structure forms a long, two-layered β sheet such as that shown for amyloid-β peptide in Figure 4–31.

Many proteins can take on the amyloid fibril structure as an alternative to their normal folded conformations, and most of these proteins have a concentration of aromatic amino acid residues in a core region of β sheet. The proteins are secreted in an incompletely folded conformation. The core β sheet (or some part of it) forms before the rest of the protein folds correctly, and the β sheets from two or more incompletely folded protein molecules associate to begin forming an amyloid fibril. The fibril grows in the extracellular space. Other parts of the protein then fold differently, remaining on the outside of the β-sheet core in the growing fibril (Fig. 4–31a); the effect of aromatic residues in stabilizing the structure is shown in Fig. 4–31c). Because most of the protein molecules fold normally, the onset of symptoms in the amyloidoses is often very slow. If a person inherits a mutation such as substitution with an aromatic residue at a position that favors formation of amyloid fibrils, disease symptoms may begin at an earlier age. A decreased capacity for removing misfolded proteins may also contribute to these diseases.

Some amyloidoses are systemic, involving many tissues. Primary systemic amyloidosis is caused by deposition of fibrils consisting of misfolded immunoglobulin light chains (described in Chapter 5), or fragments of light chains derived from proteolytic degradation. The mean age of onset is about 65 years. Patients have symptoms including fatigue, hoarseness, swelling, and weight loss, and many die within the first year after diagnosis. The kidneys or heart are often most affected. Some amyloidoses are associated with other types of disease. Patients with certain chronic infectious or inflammatory diseases such as rheumatoid arthritis, tuberculosis, cystic fibrosis, and some cancers can experience a sharp increase in secretion of an amyloid-prone polypeptide called serum amyloid A (SAA) protein. This protein, or fragments of it, deposits in the connective tissue of the

FIGURE 4–31 Formation of disease-causing amyloid fibrils. (a) Protein molecules whose normal structure includes regions of β sheet undergo partial folding. In a small number of the molecules, before folding is complete, the β-sheet regions of one polypeptide associate with the same region in another polypeptide, forming the nucleus of an amyloid. Additional protein molecules slowly associate with the amyloid and extend it to form a fibril. (b) The amyloid-β peptide, which plays a major role in Alzheimer's disease, is derived from a larger transmembrane protein called amyloid-β precursor protein or APP. This protein is found in most human tissues. When it is part of the larger protein, the peptide is composed of two α-helical segments spanning the membrane. When the external and internal domains (each of which have independent functions) are cleaved off by dedicated proteases, the remaining and relatively unstable amyloid-β peptide leaves the membrane and loses its α-helical structure. It can then assemble slowly into amyloid fibrils (c), which contribute to the characteristic plaques on the exterior of nervous tissue in people with Alzheimer's. Amyloid is rich in β-sheet structure, with the β strands arranged perpendicular to the axis of the amyloid fibril. In amyloid-β peptide, the structure takes the form of an extended two-layer parallel β sheet. Others may take the form of left-handed β-helices (see Fig. 4–21).
spleen, kidney, and liver, and around the heart. People with this condition, known as secondary systemic amyloidosis, have a wide range of symptoms, depending on the organs initially affected. The disease is generally fatal within a few years. More than 80 amyloidoses are associated with mutations in transthyretin (a protein that binds to and transports thyroid hormones, distributing them throughout the body and brain). A variety of mutations in this protein lead to amyloid deposition concentrated around different tissues, thus producing different symptoms. Amyloidoses are also associated with inherited mutations in the proteins lysozyme, fibrinogen A α-chain, and apolipoproteins A-I and A-II; all of these proteins are described in later chapters.

Some amyloid diseases are associated with particular organs. The amyloid-prone protein is generally secreted only by the affected tissue, and its locally high concentration leads to amyloid deposition around that tissue (although some of the protein may be distributed systemically). One common site of amyloid deposition is near the pancreatic islet β cells, responsible for insulin secretion and regulation of glucose metabolism (p. 924). Secretion by β cells of a small (37 amino acids) peptide called islet amyloid polypeptide (IAPP), or amylin, can lead to amyloid deposits around the islets, gradually destroying the cells. A healthy human adult has 1 to 1.5 million pancreatic β cells. With progressive loss of these cells, glucose homeostasis is affected and eventually, when 50% or more of the cells are lost, the condition matures into type 2 (adult onset) diabetes mellitus.

The amyloid deposition diseases that trigger neurodegeneration, particularly in older adults, are a special class of localized amyloidoses. Alzheimer’s disease is associated with extracellular amyloid deposition by neurons, involving a protein called amyloid β-peptide. These amyloid deposits seem to be the primary cause of Alzheimer’s, but a second type of amyloid-like aggregation, involving a protein called tau, also occurs intracellularly (in neurons) in patients with Alzheimer’s. Inherited mutations in the tau protein do not result in Alzheimer’s, but they cause a frontotemporal dementia and Parkinsonism (a condition with symptoms resembling Parkinson’s disease) that can be equally devastating.

Several other neurodegenerative conditions involve intracellular aggregation of misfolded proteins. In Parkinson’s disease, the misfolded form of the protein α-synuclein aggregates into spherical filamentous masses called Lewy bodies. Huntington’s disease involves the protein huntingtin, which has a long polyglutamine repeat. In some individuals, the polyglutamine repeat is longer than normal and a more subtle type of intracellular aggregation occurs. The relationship of some of these neurodegenerative conditions to amyloidoses has been debated, but the aggregates are known to have high degrees of β structure and insolubility that suggest some common structures and mechanisms of formation.

Protein misfolding need not lead to amyloid formation to cause serious disease. For example, cystic fibrosis is caused by defects in a membrane-bound protein called cystic fibrosis transmembrane conductance regulator (CFTR), which acts as a channel for chloride ions. The most common cystic fibrosis-causing mutation is the deletion of a Phe residue at position 508 in CFTR, which causes improper protein folding. Most of this protein is then degraded and its normal function is lost (see Box 11–3). Many of the disease-related mutations in collagen (p. 128) also cause defective folding. A particularly remarkable type of protein misfolding is seen in the prion diseases (Box 4–6).
Death by Misfolding: The Prion Diseases
(continued from previous page)

heretical. All disease-causing agents known up to that time—viruses, bacteria, fungi, and so on—contained nucleic acids, and their virulence was related to genetic reproduction and propagation. However, four decades of investigations, pursued most notably by Stanley Prusiner, have provided evidence that spongiform encephalopathies are different.

The infectious agent has been traced to a single protein ($M_r 28,000$), which Prusiner dubbed prion (proteinaceous infectious only) protein (PrP). Prion protein is a normal constituent of brain tissue in all mammals. Its role is not known in detail, but it may have a molecular signaling function. Strains of mice lacking the gene for PrP (and thus the protein itself) suffer no obvious ill effects. Illness occurs only when the normal cellular PrP, or PrPC, occurs in an altered conformation called PrPSc (Sc denotes scrapie). The interaction of PrPSc with PrPC converts the latter to PrPSc, initiating a domino effect in which more and more of the brain protein converts to the disease-causing form. The mechanism by which the presence of PrPSc leads to spongiform encephalopathy is not understood.

In inherited forms of prion diseases, a mutation in the gene encoding PrP produces a change in one amino acid residue that is believed to make the conversion of PrPC to PrPSc more likely. A complete understanding of prion diseases awaits new information on how prion protein affects brain function. Structural information about PrP is beginning to provide insights into the molecular process that allows the prion proteins to interact so as to alter their conformation (Fig. 2).

SUMMARY 4.4 Protein Denaturation and Folding

- The three-dimensional structure and the function of proteins can be destroyed by denaturation, demonstrating a relationship between structure and function. Some denatured proteins can renature spontaneously to form biologically active protein, showing that tertiary structure is determined by amino acid sequence.

- Protein folding in cells probably involves multiple pathways. Initially, regions of secondary structure may form, followed by folding into supersecondary structures. Large ensembles of folding intermediates are rapidly brought to a single native conformation.

- For many proteins, folding is facilitated by Hsp70 chaperones and by chaperonins. Disulfide bond formation and the cis-trans isomerization of Pro peptide bonds are catalyzed by specific enzymes.

- Protein misfolding is the molecular basis of a wide range of human diseases, including the amyloidoses.

Key Terms

Terms in bold are defined in the glossary.

- conformation 113
- native conformation 114
- hydrophobic interactions 114
- solvation layer 114
- peptide group 115
- Ramachandran plot 117
- secondary structure 117
- α helix 117
- β conformation 120
- β sheet 120
- β turn 121
- circular dichroism (CD) spectroscopy 122
- tertiary structure 123
- quaternary structure 123
- fibrous proteins 123
- globular proteins 123
- α-keratin 123
- collagen 124
- silk fibroin 128
- Protein Data Bank (PDB) 129
- motif 131
- supersecondary structure 131
- fold 131
- domain 135
- protein family 138
- multimer 138
- oligomer 138
- protomer 138
- symmetry 139
- denaturation 140
- molten globule 143
- molecular chaperone 143
- Hsp70 143
- chaperonin 144
- amyloid 145
- prion 148
Further Reading

General

The author reviews his classic work on ribonuclease.

A comprehensive and authoritative source.

A collection of excellent articles on many topics, including protein structure, folding, and function.

Describes how the structure of myoglobin was determined and what was learned from it.

An outstanding summary of protein structural patterns and principles; the author originated the very useful "ribbon" representation of protein structure.

Secondary, Tertiary, and Quaternary Structures

A broad summary of the different approaches being used to catalog protein structures.

A description of how macromolecules such as proteins are crystallized.

An explanation of how structural databases can be used to explore evolution.

A good summary of the evidence leading to the prion hypothesis.

A good, approachable summary of the major ideas in the field, and some interesting speculation thrown in.

A good summary of amyloidoses.

A good review.

Problems

1. Properties of the Peptide Bond In x-ray studies of crystalline peptides, Linus Pauling and Robert Corey found that the C—N bond in the peptide link is intermediate in length (1.32 Å) between a typical C—N single bond (1.49 Å) and a C≡N double bond (1.27 Å). They also found that the peptide bond is planar (all four atoms attached to the C—N group are located in the same plane) and that the two α-carbon atoms attached to the C—N are always trans to each other (on opposite sides of the peptide bond):

(a) What does the length of the C—N bond in the peptide linkage indicate about its strength and its bond order (i.e., whether it is single, double, or triple)?

(b) What do the observations of Pauling and Corey tell us about the ease of rotation about the C—N peptide bond?

2. Structural and Functional Relationships in Fibrous Proteins William Astbury discovered that the x-ray diffraction pattern of wool shows a repeating structural unit spaced about 5.2 Å along the length of the wool fiber. When he steamed and stretched the wool, the x-ray pattern showed a new repeating structural unit at a spacing of 7.0 Å. Steaming and stretching the wool and then letting it shrink gave an x-ray pattern consistent with the original spacing of about 5.2 Å. Although these observations provided important clues to the molecular structure of wool, Astbury was unable to interpret them at the time.

A review of how variations in structural stability in one protein contribute to function.

A good summary of the evidence leading to the prion hypothesis.

A good, approachable summary of the major ideas in the field, and some interesting speculation thrown in.

A good summary of amyloidoses.

A good review.
The Three-Dimensional Structure of Proteins

(a) Given our current understanding of the structure of wool, interpret Astbury’s observations.

(b) When wool sweaters or socks are washed in hot water or heated in a dryer, they shrink. Silk, on the other hand, does not shrink under the same conditions. Explain.

3. Rate of Synthesis of Hair α-Keratin Hair grows at a rate of 15 to 20 cm/yr. All this growth is concentrated at the base of the hair fiber, where α-keratin filaments are synthesized inside living epidermal cells and assembled into ropelike structures (see Fig. 4-10). The fundamental structural element of α-keratin is the α helix, which has 3.6 amino acid residues per turn and a rise of 5.4 Å per turn (see Fig. 4-4a).
Assuming that the biosynthesis of α-helical keratin chains is the rate-limiting factor in the growth of hair, calculate the rate at which peptide bonds of α-keratin chains must be synthesized (peptide bonds per second) to account for the observed yearly growth of hair.

4. Effect of pH on the Conformation of α-Helical Secondary Structures The unfolding of the α helix of a polypeptide to a randomly coiled conformation is accompanied by a large decrease in a property called specific rotation, a measure of a solution’s capacity to rotate plane-polarized light. Polypeptide made up of only 1-Glu residues, has the α-helical conformation at pH 3.
When the pH is raised to 7, there is a large decrease in the specific rotation of the solution. Similarly, polylysine (1-Lys residues) is an α helix at pH 10, but when the pH is lowered to 7 the specific rotation also decreases, as shown by the following graph.

What is the explanation for the effect of the pH changes on the conformations of poly(Glu) and poly(Lys)? Why does the transition occur over such a narrow range of pH?

5. Disulfide Bonds Determine the Properties of Many Proteins Some natural proteins are rich in disulfide bonds, and their mechanical properties (tensile strength, viscosity, hardness, etc.) are correlated with the degree of disulfide bonding.
(a) Glutenin, a wheat protein rich in disulfide bonds, is responsible for the cohesive and elastic character of dough made from wheat flour. Similarly, the hard, tough nature of tortoise shell is due to the extensive disulfide bonding in its α-keratin. What is the molecular basis for the correlation between disulfide-bond content and mechanical properties of the protein?
(b) Most globular proteins are denatured and lose their activity when briefly heated to 65 °C. However, globular proteins that contain multiple disulfide bonds often must be heated longer at higher temperatures to denature them. One such protein is bovine pancreatic trypsin inhibitor (BPTI), which has 58 amino acid residues in a single chain and contains three disulfide bonds. On cooling a solution of denatured BPTI, the activity of the protein is restored. What is the molecular basis for this property?

6. Amino Acid Sequence and Protein Structure Our growing understanding of how proteins fold allows researchers to make predictions about protein structure based on primary amino acid sequence data. Consider the following amino acid sequence.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>His</td>
<td>Thr</td>
<td>Tyr</td>
<td>Gly</td>
<td>Pro</td>
<td>Phe</td>
<td>Glu</td>
<td>Ala</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Cys</td>
<td>Lys</td>
<td>Trp</td>
<td>Glu</td>
<td>Ala</td>
<td>Glu</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Met</td>
<td>Glu</td>
<td>Cys</td>
<td>Ala</td>
<td>Phe</td>
<td>His</td>
<td>Arg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Where might bends or β turns occur?
(b) Where might intrachain disulfide cross-links be formed?
(c) Assuming that this sequence is part of a larger globular protein, indicate the probable location (the external surface or interior of the protein) of the following amino acid residues: Asp, Ile, Thr, Ala, Gln, Lys. Explain your reasoning. (Hint: See the hydropathy index in Table 3–1.)

7. Bacteriorhodopsin in Purple Membrane Proteins Under the proper environmental conditions, the salt-loving archaean Halobacterium halobium synthesizes a membrane protein (M, 28,000) known as bacteriorhodopsin, which is purple because it contains retinal (see Fig. 10–21). Molecules of this protein aggregate into “purple patches” in the cell membrane. Bacteriorhodopsin acts as a light-activated proton pump that provides energy for cell functions. X-ray analysis of this protein reveals that it consists of seven parallel α-helical segments, each of which traverses the bacterial cell membrane (thickness 45 Å). Calculate the minimum number of amino acid residues necessary for one segment of α helix to traverse the membrane completely. Estimate the fraction of the bacteriorhodopsin protein that is involved in membrane-spanning helices. (Use an average amino acid residue weight of 110.)

8. Protein Structure Terminology Is myoglobin a motif, a domain, or a complete three-dimensional structure?

9. Pathogenic Action of Bacteria That Cause Gas Gangrene The highly pathogenic anaerobic bacterium Clostridium perfringens is responsible for gas gangrene, a condition in which animal tissue structure is destroyed. This
bacterium secretes an enzyme that efficiently catalyzes the hydrolysis of the peptide bond indicated in red:

\[
-X\rightarrow\text{Gly-Pro-Y}\rightarrow H_2O
\]

\[
-X\rightarrow\text{COO}^- + H_2N\rightarrow\text{Gly-Pro-Y}\rightarrow
\]

where X and Y are any of the 20 common amino acids. How does the secretion of this enzyme contribute to the invasiveness of this bacterium in human tissues? Why does this enzyme not affect the bacterium itself?

10. Number of Polypeptide Chains in a Multisubunit Protein
A sample (660 mg) of an oligomeric protein of Mr 132,000 was treated with an excess of 1-fluoro-2,4-dinitrobenzene (Sanger's reagent) under slightly alkaline conditions until the chemical reaction was complete. The peptide bonds of the protein were then completely hydrolyzed by heating it with concentrated HCl. The hydrolysate was found to contain 5.5 mg of the following compound:

\[
\begin{align*}
\text{O}_2\text{N} & - \text{CH}_3 \text{CH}_3 \\
\text{C}_6\text{H}_4 & - \text{NH} - \text{C}_6\text{H}_4\text{COOH}
\end{align*}
\]

2,4-Dinitrophenyl derivatives of the α-amino groups of other amino acids could not be found.

(a) Explain how this information can be used to determine the number of polypeptide chains in an oligomeric protein.
(b) Calculate the number of polypeptide chains in this protein.
(c) What other protein analysis technique could you employ to determine whether the polypeptide chains in this protein are similar or different?

11. Predicting Secondary Structure Which of the following peptides is more likely to take up an α-helical structure, and why?

(a) LKAENDEAARAMSEA
(b) CRAGGFPWDQPGTSN

12. Amyloid Fibers in Disease Several small aromatic molecules, such as phenol red (used as a nontoxic drug model), have been shown to inhibit the formation of amyloid in laboratory model systems. A goal of the research on these small aromatic compounds is to find a drug that would efficiently inhibit the formation of amyloid in the brain in people with incipient Alzheimer's disease.

(a) Suggest why molecules with aromatic substituents would disrupt the formation of amyloid.
(b) Some researchers have suggested that a drug used to treat Alzheimer's disease may also be effective in treating type 2 (adult onset) diabetes mellitus. Why might a single drug be effective in treating these two different conditions?

Biochemistry on the Internet

13. Protein Modeling on the Internet A group of patients with Crohn's disease (an inflammatory bowel disease) under-went biopsies of their intestinal mucosa in an attempt to identify the causative agent. Researchers identified a protein that was present at higher levels in patients with Crohn's disease than in patients with an unrelated inflammatory bowel disease or in unaffected controls. The protein was isolated, and the following partial amino acid sequence was obtained (reads left to right):

\[
\begin{align*}
\text{EAELCPDRCI} & \quad \text{HSFQNLIGQC} \\
\text{SQRIQTNNNP} & \quad \text{FQVP1EEQRG} \\
\text{FQVTVRDPSG} & \quad \text{RPLRPPVPCL} \\
\text{TAELKICRVPN} & \quad \text{RNSGSCLGGD} \\
\text{KEDIEYFTTG} & \quad \text{PGWEARGFSFS} \\
\text{VFRTPPYADF} & \quad \text{SLAQAPVRVSM} \\
\text{SEPMEFQYLP} & \quad \text{DITDHRRIEEMU} \\
\text{SIMKKSFPFSG} & \quad \text{PITDRPPPPRR} \\
\text{VPKPAPQYP} & \quad \text{IVAPSRSSSAS}
\end{align*}
\]

(a) You can identify this protein using a protein database on the Internet. Some good places to start include Protein Information Resource (PIR; pir.georgetown.edu), Structural Classification of Proteins (SCOP; http://scop.mrc-lmb.cam.ac.uk/scop), and Prosite (http://expasy.org/prosite).

At your selected database site, follow links to the sequence comparison engine. Enter about 30 residues from the protein sequence in the appropriate search field and submit it for analysis. What does this analysis tell you about the identity of the protein?

(b) Try using different portions of the amino acid sequence. Do you always get the same result?

(c) A variety of websites provide information about the three-dimensional structure of proteins. Find information about the protein's secondary, tertiary, and quaternary structure using database sites such as the Protein Data Bank (PDB; www.rcsb.org) or SCOP.

(d) In the course of your Web searches, what did you learn about the cellular function of the protein?

Data Analysis Problem

14. Mirror-Image Proteins As noted in Chapter 3, "The amino acid residues in protein molecules are exclusively L stereoisomers." It is not clear whether this selectivity is necessary for proper protein function or is an accident of evolution. To explore this question, Milton and colleagues (1992) published a study of an enzyme made entirely of D stereoisomers. The enzyme they chose was HIV protease, a proteolytic enzyme made by HIV that converts inactive viral pre-proteins to their active forms.

Previously, Wodawer and coworkers (1989) had reported the complete chemical synthesis of HIV protease from L-amino acids (the L-enzyme), using the process shown in Figure 3-29. Normal HIV protease contains two Cys residues at positions 67 and 95. Because chemical synthesis of proteins containing Cys is technically difficult, Wodawer and colleagues substituted the synthetic amino acid L-α-amino-n-butyric acid (Ab) for the two Cys residues in the protein. In the authors' words, this was done so as to "reduce synthetic difficulties associated with Cys protection and ease product handling."
(a) The structure of Aba is shown below. Why was this a suitable substitution for a Cys residue? Under what circumstances would it not be suitable?

\[
\begin{align*}
\text{O} & \text{C} = \text{O} \\
\text{H} & \text{C} \text{CH}_2 \text{CH}_3 \\
\text{NH}_3
\end{align*}
\]

1-α-Amino-n-butyric acid

Wlodawer and coworkers denatured the newly synthesized protein by dissolving it in 6 M guanidine HCl, and then allowed it to fold slowly by dialyzing away the guanidine against a neutral buffer (10% glycerol, 25 mM NaPO₄, pH 7).

(b) There are many reasons to predict that a protein synthesized, denatured, and folded in this manner would not be active. Give three such reasons.

(c) Interestingly, the resulting L-protease was active. What does this finding tell you about the role of disulfide bonds in the native HIV protease molecule?

In their new study, Milton and coworkers synthesized HIV protease from D-amino acids, using the same protocol as the earlier study (Wlodawer et al.). Formally, there are three possibilities for the folding of the D-protease: it would give (1) the same shape as the L-protease; (2) the mirror image of the L-protease, or (3) something else, possibly inactive.

(d) For each possibility, decide whether or not it is a likely outcome and defend your position.

In fact, the D-protease was active: it cleaved a particular synthetic substrate and was inhibited by specific inhibitors. To examine the structure of the D- and L-enzymes, Milton and coworkers tested both forms for activity with D and L forms of a chiral peptide substrate and for inhibition by D and L forms of a chiral peptide-analog inhibitor. Both forms were also tested for inhibition by the achiral inhibitor Evans blue. The findings are given in the table.

<table>
<thead>
<tr>
<th>HIV protease</th>
<th>Substrate hydrolysis</th>
<th>Peptide inhibitor</th>
<th>Evans blue (achiral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-substrate</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>L-protease</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>D-protease</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

(e) Which of the three models proposed above is supported by these data? Explain your reasoning.

(f) Why does Evans blue inhibit both forms of the protease?

(g) Would you expect chymotrypsin to digest the D-protease? Explain your reasoning.

(h) Would you expect total synthesis from D-amino acids followed by renaturation to yield active enzyme for any enzyme? Explain your reasoning.

References

Since the proteins participate in one way or another in all chemical processes in the living organism, one may expect highly significant information for biological chemistry from the elucidation of their structure and their transformations.

—Emil Fischer, article in Berichte der deutschen chemischen Gesellschaft zu Berlin, 1906

Protein Function

5.1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins

5.2 Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins

5.3 Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors

Knowing the three-dimensional structure of a protein is an important part of understanding how the protein functions. However, the structure shown in two dimensions on a page is deceptively static. Proteins are dynamic molecules whose functions almost invariably depend on interactions with other molecules, and these interactions are affected in physiologically important ways by sometimes subtle, sometimes striking changes in protein conformation. In this chapter, we explore how proteins interact with other molecules and how their interactions are related to dynamic protein structure. The importance of molecular interactions to a protein’s function can hardly be overemphasized. In Chapter 4, we saw that the function of fibrous proteins as structural elements of cells and tissues depends on stable, long-term quaternary interactions between identical polypeptide chains. As we shall see in this chapter, the functions of many other proteins involve interactions with a variety of different molecules. Most of these interactions are fleeting, though they may be the basis of complex physiological processes such as oxygen transport, immune function, and muscle contraction—the topics we examine in this chapter. The proteins that carry out these processes illustrate the following key principles of protein function, some of which will be familiar from the previous chapter:

The functions of many proteins involve the reversible binding of other molecules. A molecule bound reversibly by a protein is called a ligand. A ligand may be any kind of molecule, including another protein. The transient nature of protein-ligand interactions is critical to life, allowing an organism to respond rapidly and reversibly to changing environmental and metabolic circumstances.

A ligand binds at a site on the protein called the binding site, which is complementary to the ligand in size, shape, charge, and hydrophobic or hydrophilic character. Furthermore, the interaction is specific: the protein can discriminate among the thousands of different molecules in its environment and selectively bind only one or a few. A given protein may have separate binding sites for several different ligands. These specific molecular interactions are crucial in maintaining the high degree of order in a living system. (This discussion excludes the binding of water, which may interact weakly and nonspecifically with many parts of a protein. In Chapter 6, we consider water as a specific ligand for many enzymes.)

Proteins are flexible. Changes in conformation may be subtle, reflecting molecular vibrations and small movements of amino acid residues throughout the protein. A protein flexing in this way is sometimes said to “breathe.” Changes in conformation may also be quite dramatic, with major segments of the protein structure moving as much as several nanometers. Specific conformational changes are frequently essential to a protein’s function.

The binding of a protein and ligand is often coupled to a conformational change in the protein that makes the binding site more complementary to the ligand, permitting tighter binding. The structural adaptation that occurs between protein and ligand is called induced fit.

In a multisubunit protein, a conformational change in one subunit often affects the conformation of other subunits.

Interactions between ligands and proteins may be regulated, usually through specific interactions with one or more additional ligands. These other ligands may cause conformational changes in the protein that affect the binding of the first ligand.
Enzymes represent a special case of protein function. Enzymes bind and chemically transform other molecules—they catalyze reactions. The molecules acted upon by enzymes are called reaction *substrates* rather than ligands, and the ligand-binding site is called the *catalytic site* or *active site*. In this chapter, we emphasize the noncatalytic functions of proteins. In Chapter 6, we consider catalysis by enzymes, a central topic in biochemistry. You will see that the themes of this chapter—binding, specificity, and conformational change—are continued in the next chapter, with the added element of proteins participating in chemical transformations.

5.1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins

Myoglobin and hemoglobin may be the most-studied and best-understood proteins. They were the first proteins for which three-dimensional structures were determined, and these two molecules illustrate almost every aspect of that most central of biochemical processes: the reversible binding of a ligand to a protein. This classic model of protein function tells us a great deal about how proteins work.

Oxygen-Binding Proteins—Myoglobin:

Oxygen Storage

Oxygen can bind to a heme prosthetic group. Oxygen is poorly soluble in aqueous solutions (see Table 2-3) and cannot be carried to tissues in sufficient quantity if it is simply dissolved in blood serum. Diffusion of oxygen through tissues is also ineffective over distances greater than a few millimeters. The evolution of larger, multicellular animals depended on the evolution of proteins that could transport and store oxygen. However, none of the amino acid side chains in proteins are suited for the reversible binding of oxygen molecules. This role is filled by certain transition metals, among them iron and copper, that have a strong tendency to bind oxygen. Multicellular organisms exploit the properties of metals, most commonly iron, for oxygen transport. However, free iron promotes the formation of highly reactive oxygen species such as hydroxyl radicals that can damage DNA and other macromolecules. Iron used in cells is therefore bound in forms that sequester it and/or make it less reactive. In multicellular organisms—especially those in which iron, in its oxygen-carrying capacity, must be transported over large distances—iron is often incorporated into a protein-bound prosthetic group called heme (or haem). (Recall from Chapter 3 that a prosthetic group is a compound permanently associated with a protein that contributes to the protein’s function.)

Heme consists of a complex organic ring structure, protoporphyrin, to which is bound a single iron atom in its ferrous (Fe$^{2+}$) state (Fig. 5-1). The iron atom has six coordination bonds, four to nitrogen atoms that are part of the flat porphyrin ring system and two perpendicular to it. The coordinated nitrogen atoms (which have an electron-donating character) help prevent conversion of the heme iron to the ferric (Fe$^{3+}$) state. Iron in the Fe$^{3+}$ state binds oxygen reversibly; in the Fe$^{2+}$ state it does not bind oxygen. Heme is found in many oxygen-transporting proteins, as well as in some proteins, such as the cytochromes, that participate in oxidation-reduction (electron-transfer) reactions (Chapter 19).

Free heme molecules (heme not bound to protein) leave Fe$^{2+}$ with two “open” coordination bonds. Simultaneous reaction of one O$_2$ molecule with two free heme molecules (or two free Fe$^{2+}$) can result in irreversible conversion of Fe$^{2+}$ to Fe$^{3+}$. In heme-containing proteins, this reaction is prevented by sequestering each heme deep within the protein structure. Thus, access to

FIGURE 5-1 Heme. The heme group is present in myoglobin, hemoglobin, and many other proteins, designated heme proteins. Heme consists of a complex organic ring structure, protoporphyrin IX, with a bound iron atom in its ferrous (Fe$^{2+}$) state. (a) Porphyrins, of which protoporphyrin IX is only one example, consist of four pyrrole rings linked by methene bridges, with substitutions at one or more of the positions denoted X. (b, c) Two representations of heme (derived from PDB ID 1CCR). The iron atom of heme has six coordination bonds: four in the plane of, and bonded to, the flat porphyrin ring system, and (d) two perpendicular to it.
5.1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins

The heme group viewed from the side. This view shows the two coordination bonds to Fe²⁺ that are perpendicular to the porphyrin ring system. One is occupied by a His residue, sometimes called the proximal His; the other is the binding site for oxygen. The remaining four coordination bonds are in the plane of, and bonded to, the flat porphyrin ring system.

the two open coordination bonds is restricted. One of these two coordination bonds is occupied by a side-chain nitrogen of a His residue. The other is the binding site for molecular oxygen (O₂) (Fig. 5-2). When oxygen binds, the electronic properties of heme iron change; this accounts for the change in color from the dark purple of oxygen-depleted venous blood to the bright red of oxygen-rich arterial blood. Some small molecules, such as carbon monoxide (CO) and nitric oxide (NO), coordinate to heme iron with greater affinity than does O₂. When a molecule of CO is bound to heme, O₂ is excluded, which is why CO is highly toxic to aerobic organisms (a topic explored later, in Box 5-1). By surrounding and sequestering heme, oxygen-binding proteins regulate the access of CO and other small molecules to the heme iron.

Myoglobin Has a Single Binding Site for Oxygen

Myoglobin (Mr 16,700; abbreviated Mb) is a relatively simple oxygen-binding protein found in almost all mammals, primarily in muscle tissue. As a transport protein, it facilitates oxygen diffusion in muscle. Myoglobin is particularly abundant in the muscles of diving mammals such as seals and whales, where it also has an oxygen-storage function for prolonged excursions undersea. Proteins very similar to myoglobin are widely distributed, occurring even in some single-celled organisms.

Myoglobin is a single polypeptide of 153 amino acid residues with one molecule of heme. It is typical of the family of proteins called globins, all of which have similar primary and tertiary structures. The polypeptide is made up of eight α-helical segments connected by bends (Fig. 5-3). About 78% of the amino acid residues in the protein are found in these α helices.

Any detailed discussion of protein function inevitably involves protein structure. In the case of myoglobin, we first introduce some structural conventions peculiar to globins. As seen in Figure 5-3, the helical segments are named A through H. An individual amino acid residue is designated either by its position in the amino acid sequence or by its location in the sequence of a particular α-helical segment. For example, the His residue coordinated to the heme in myoglobin, His93 (the 93rd residue from the amino-terminal end of the myoglobin polypeptide sequence), is also called His F8 (the 8th residue in α helix F).

Protein-Ligand Interactions Can Be Described Quantitatively

The function of myoglobin depends on the protein’s ability not only to bind oxygen but also to release it when and where it is needed. Function in biochemistry often revolves around a reversible protein-ligand interaction of this type. A quantitative description of this interaction is therefore a central part of many biochemical investigations.

In general, the reversible binding of a protein (P) to a ligand (L) can be described by a simple equilibrium expression:

\[P + L \rightleftharpoons PL \]

The reaction is characterized by an equilibrium constant, \(K_a \), such that

\[K_a = \frac{[PL]}{[P][L]} = \frac{k_a}{k_d} \]
where k_a and k_d are rate constants (more on these below). The term K_a is an association constant (not to be confused with the K_a that denotes an acid dissociation constant; p. 58) that describes the equilibrium between the complex and the unbound components of the complex. The association constant provides a measure of the affinity of the ligand L for the protein. K_a has units of M^{-1}; a higher value of K_a corresponds to a higher affinity of the ligand for the protein.

The equilibrium term K_a is also equivalent to the ratio of the rates of the forward (association) and reverse (dissociation) reactions that form the PL complex. The association rate is described by a rate constant k_a, and dissociation by the rate constant k_d. As discussed further in the next chapter, rate constants are proportionality constants, describing the fraction of a pool of reactant that reacts in a given amount of time. When the reaction involves one molecule, such as the dissociation reaction $PL \rightarrow P + L$, the reaction is first order and the rate constant (k_d) has units of reciprocal time (s^{-1}). When the reaction involves two molecules, such as the association reaction $P + L \rightarrow PL$, it is called second order, and its rate constant (k_a) has units of $M^{-1} s^{-1}$.

KEY CONVENTION: Equilibrium constants are denoted with a capital K and rate constants with a lower case k.

A rearrangement of the first part of Equation 5-2 shows that the ratio of bound to free protein is directly proportional to the concentration of free ligand:

$$K_a[L] = \frac{[PL]}{[P]}$$

(5-3)

When the concentration of the ligand is much greater than the concentration of ligand-binding sites, the binding of the ligand by the protein does not appreciably change the concentration of free (unbound) ligand—that is, $[L]$ remains constant. This condition is broadly applicable to most ligands that bind to proteins in cells and simplifies our description of the binding equilibrium.

We can now consider the binding equilibrium from the standpoint of the fraction, θ (theta), of ligand-binding sites on the protein that are occupied by ligand:

$$\theta = \frac{\text{binding sites occupied}}{\text{total binding sites}} = \frac{[PL]}{[PL] + [P]}$$

(5-4)

Substituting $K_a[L][P]$ for $[PL]$ (see Eqn 5-3) and rearranging terms gives

$$\theta = \frac{K_a[L][P]}{K_a[L][P] + [P]} = K_a[L][P] + 1 = \frac{[L]}{[L] + \frac{1}{K_a}}$$

(5-5)

The value of K_a can be determined from a plot of θ versus the concentration of free ligand, $[L]$ (Fig. 5-4a). Any equation of the form $x = y/(y + z)$ describes a hyperbola, and θ is thus found to be a hyperbolic function of $[L]$. The fraction of ligand-binding sites occupied approaches saturation asymptotically as $[L]$ increases. The

![Figure 5-4 Graphical representations of ligand binding.](image)

FIGURE 5-4 Graphical representations of ligand binding. The fraction of ligand-binding sites occupied, θ, is plotted against the concentration of free ligand. Both curves are rectangular hyperbolas. (a) A hypothetical binding curve for a ligand L. The $[L]$ at which half of the available ligand-binding sites are occupied is equivalent to $1/K_a$ or K_d. The curve has a horizontal asymptote at $\theta = 1$ and a vertical asymptote (not shown) at $[L] = -1/K_a$. (b) A curve describing the binding of oxygen to myoglobin. The partial pressure of O_2 in the air above the solution is expressed in kilopascals (kPa). Oxygen binds tightly to myoglobin, with a P_{50} of only 0.26 kPa.

When $[L]$ equals K_a, half of the available ligand-binding sites are occupied (that is, $\theta = 0.5$) corresponds to $1/K_a$.

It is more common (and intuitively simpler), however, to consider the dissociation constant, K_d, which is the reciprocal of K_a ($K_d = 1/K_a$) and is given in units of molar concentration (M). K_d is the equilibrium constant for the release of ligand. The relevant expressions change to

$$K_d = \frac{[P][L]}{[PL]} = \frac{k_d}{k_a}$$

(5-6)

$$[PL] = \frac{[P][L]}{K_d}$$

(5-7)

$$\theta = \frac{[L]}{[L] + K_d}$$

(5-8)

When $[L]$ equals K_d, half of the ligand-binding sites are occupied. As $[L]$ falls below K_d, progressively less of the protein has ligand bound to it. In order for 90% of the available ligand-binding sites to be occupied, $[L]$ must be nine times greater than K_d.

In practice, K_d is used much more often than K_a to express the affinity of a protein for a ligand. Note that a lower value of K_d corresponds to a higher affinity of ligand for the protein. The mathematics can be reduced to simple statements: K_d is equivalent to the molar
5.1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins

Table 5-1: Some Protein Dissociation Constants

<table>
<thead>
<tr>
<th>Protein</th>
<th>Ligand</th>
<th>K_d (M)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avidin (egg white)</td>
<td>Biotin</td>
<td>1×10^{-16}</td>
</tr>
<tr>
<td>Insulin receptor (human)</td>
<td>Insulin</td>
<td>1×10^{-10}</td>
</tr>
<tr>
<td>Anti-HIV immunoglobulin (human)†</td>
<td>gp41 (HIV-1 surface protein)</td>
<td>4×10^{-10}</td>
</tr>
<tr>
<td>Nickel-binding protein (E. coli)</td>
<td>Ni$^{2+}$</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>Calmodulin (rat)†</td>
<td>Ca$^{2+}$</td>
<td>3×10^{-6}</td>
</tr>
</tbody>
</table>

| Typical receptor-ligand interactions | |

- Biotin-avidin
- Antibody-antigen
- Enzyme-substrate

Color bars indicate the range of dissociation constants typical of various classes of interactions in biological systems. A few interactions, such as that between the protein avidin and the enzyme cofactor biotin, fall outside the normal ranges. The avidin-biotin interaction is so tight it may be considered irreversible.

Sequence-specific protein-DNA interactions reflect proteins that bind to a particular sequence of nucleotides in DNA, as opposed to general binding to any DNA site.

Some representative dissociation constants are given in Table 5-1; the scale shows typical ranges for dissociation constants found in biological systems.

Concentration of ligand at which half of the available ligand-binding sites are occupied. At this point, the protein is said to have reached half-saturation with respect to ligand binding. The more tightly a protein binds a ligand, the lower the concentration of ligand required for half the binding sites to be occupied, and thus the lower the value of K_d. Some representative dissociation constants are given in Table 5-1; the scale shows typical ranges for dissociation constants found in biological systems.

Worked Example 5-1: Receptor-Ligand Dissociation Constants

Two proteins, X and Y, bind to the same ligand, A, with the binding curves shown below.

What is the dissociation constant, K_d, for each protein? Which protein (X or Y) has a greater affinity for ligand A?

Solution: We can determine the dissociation constants by inspecting the graph. Since θ represents the fraction of binding sites occupied by ligand, the concentration of ligand at which half the binding sites are occupied—that is, the point where the binding curve crosses the line where $\theta = 0.5$—is the dissociation constant. For X, $K_d = 2 \mu M$; for Y, $K_d = 6 \mu M$. Because X is half-saturated at a lower [A], it has a higher affinity for the ligand.

The binding of oxygen to myoglobin follows the patterns discussed above. However, because oxygen is a gas, we must make some minor adjustments to the equations so that laboratory experiments can be carried out more conveniently. We first substitute the concentration of dissolved oxygen for [L] in Equation 5-8 to give

$$\theta = \frac{[O_2]}{[O_2] + K_d}$$

As for any ligand, K_d equals the [O$_2$] at which half of the available ligand-binding sites are occupied, or [O$_2$]$_{0.5}$. Equation 5-9 thus becomes

$$\theta = \frac{[O_2]}{[O_2] + [O_2]_{0.5}}$$

(5-10)
In experiments using oxygen as a ligand, it is the partial pressure of oxygen \((pO_2) \) in the gas phase above the solution that is varied, because this is easier to measure than the concentration of oxygen dissolved in the solution. The concentration of a volatile substance in solution is always proportional to the local partial pressure of the gas. So, if we define the partial pressure of oxygen at \([O_2]_{1/2} \) as \(P_{50} \), substitution in Equation 5-10 gives

\[
\theta = \frac{pO_2}{pO_2 + P_{50}}
\]

(5-11)

A binding curve for myoglobin that relates \(\theta \) to \(pO_2 \) is shown in Figure 5-4b.

Protein Structure Affects How Ligands Bind

The binding of a ligand to a protein is rarely as simple as the above equations would suggest. The interaction is greatly affected by protein structure and is often accompanied by conformational changes. For example, the specificity with which heme binds its various ligands is altered when the heme is a component of myoglobin. Carbon monoxide binds to free heme molecules more than 20,000 times better than does \(O_2 \) (that is, the \(K_d \) or \(P_{50} \) for CO binding to free heme is more than 20,000 times lower than that for \(O_2 \)), but it binds only about 200 times better than \(O_2 \) when the heme is bound in myoglobin. The difference may be partly explained by steric hindrance. When \(O_2 \) binds to free heme, the axis of the oxygen molecule is positioned at an angle to the Fe-O bond (Fig. 5-5a). In contrast, when CO binds to free heme, the Fe, C, and O atoms lie in a straight line (Fig. 5-5b). In both cases, the binding reflects the geometry of hybrid orbitals in each ligand. In myoglobin, His\(^{64} \) (His E7), on the \(O_2 \)-binding side of the heme, is too far away to coordinate with the heme iron, but it does interact with a ligand bound to heme. This residue, called the distal His (as distinct from the proximal His, His F8), forms a hydrogen bond with \(O_2 \) (Fig. 5-5c) but may preclude the linear binding of CO, providing one explanation for the selectively diminished binding of CO to heme in myoglobin (and hemoglobin). A reduction in CO binding is physiologically important, because CO is a low-level byproduct of cellular metabolism. Other factors, not yet well-defined, also may modulate the interaction of heme with CO in these proteins.

The binding of \(O_2 \) to the heme in myoglobin also depends on molecular motions, or “breathing,” in the protein structure. The heme molecule is deeply buried in the folded polypeptide, with no direct path for oxygen to move from the surrounding solution to the ligand-binding site. If the protein were rigid, \(O_2 \) could not enter or leave the heme pocket at a measurable rate. However, rapid molecular flexing of the amino acid side chains produces transient cavities in the protein structure, and \(O_2 \) makes its way in and out by moving through these cavities. Computer simulations of rapid structural fluctuations in myoglobin suggest that there are many such pathways.

One major route is provided by rotation of the side chain of the distal His (His\(^{64} \)), which occurs on a nanosecond \((10^{-9} \) s) time scale. Even subtle conformational changes can be critical for protein activity.

Hemoglobin Transports Oxygen in Blood

Nearly all the oxygen carried by whole blood in animals is bound and transported by hemoglobin in erythrocytes (red blood cells). Normal human erythrocytes are small (6 to 9 \(\mu \)m in diameter), biconcave disks. They are formed from precursor stem cells called hemocytoblasts. In the maturation process, the stem cell produces daughter cells that form large amounts of hemoglobin and then lose their intracellular organelles—nucleus, mitochondria, and endoplasmic reticulum. Erythrocytes are thus incomplete, vestigial cells, unable to reproduce and, in humans, destined to survive for
only about 120 days. Their main function is to carry hemoglobin, which is dissolved in the cytosol at a very high concentration (~34% by weight).

In arterial blood passing from the lungs through the heart to the peripheral tissues, hemoglobin is about 96% saturated with oxygen. In the venous blood returning to the heart, hemoglobin is only about 64% saturated. Thus, each 100 mL of blood passing through a tissue releases about one-third of the oxygen it carries, or 6.5 mL of O2 gas at atmospheric pressure and body temperature.

Myoglobin, with its hyperbolic binding curve for oxygen (Fig. 5–4b), is relatively insensitive to small changes in the concentration of dissolved oxygen and so functions well as an oxygen-storage protein. Hemoglobin, with its multiple subunits and O2-binding sites, is better suited to oxygen transport. As we shall see, interactions between the subunits of a multimeric protein can permit a highly sensitive response to small changes in ligand concentration. Interactions among the subunits in hemoglobin cause conformational changes that alter the affinity of the protein for oxygen. The modulation of oxygen binding allows the O2-transport protein to respond to changes in oxygen demand by tissues.

Hemoglobin Subunits Are Structurally Similar to Myoglobin

Hemoglobin (Mr 64,500; abbreviated Hb) is roughly spherical, with a diameter of nearly 5.5 nm. It is a tetrameric protein containing four heme prosthetic groups, one associated with each polypeptide chain. Adult hemoglobin contains two types of globin, two α chains (141 residues each) and two β chains (146 residues each). Although fewer than half of the amino acid residues are identical in the polypeptide sequences of the α and β subunits, the three-dimensional structures of the two types of subunits are very similar. Furthermore, their structures are very similar to that of myoglobin (Fig. 5–6), even though the amino acid sequences of the three polypeptides are identical at only 27 positions (Fig. 5–7). All three polypeptides are

![Heme group](image)

FIGURE 5–6 Comparison of the structures of myoglobin (PDB ID 1MB0) and the β subunit of hemoglobin (derived from PDB ID 1HGA).

![Myoglobin](image)

FIGURE 5–7 The amino acid sequences of whale myoglobin and the α and β chains of human hemoglobin. Dashed lines mark helix boundaries. To align the sequences optimally, short gaps must be introduced into both Hb sequences where a few amino acids are present in the other, compared sequences. With the exception of the missing D helix in Hb β, this alignment permits the use of the helix lettering convention that emphasizes the common positioning of amino acid residues that are identical in all three structures (shaded). Residues shaded in pink are conserved in all known globins. Note that the common helix-letter-and-number designation for amino acids does not necessarily correspond to a common position in the linear sequence of amino acids in the polypeptides. For example, the distal His residue is His E7 in all three structures, but corresponds to His 15′, His 15′′, and His 15′ in the linear sequences of Mb, Hbα, and Hbβ, respectively. Nonhelical residues at the amino and carboxyl termini, beyond the first (A) and last (H) α-helical segments, are labeled NA and HC, respectively.
Protein Function

Figure 5-8 Dominant interactions between hemoglobin subunits.

In this representation, α subunits are light and β subunits are dark. The strongest subunit interactions (highlighted) occur between unlike subunits. When oxygen binds, the α1β1 contact changes little, but there is a large change at the α1β2 contact, with several ion pairs broken (PDB ID 1HCA).

Members of the globin family of proteins. The helix-naming convention described for myoglobin is also applied to the hemoglobin polypeptides, except that the α subunit lacks the short D helix. The heme-binding pocket is made up largely of the E and F helices in each of the subunits.

The quaternary structure of hemoglobin features strong interactions between unlike subunits. The α1β1 interface (and its α2β2 counterpart) involves more than 30 residues, and its interaction is sufficiently strong that although mild treatment of hemoglobin with urea tends to disassemble the tetramer into αβ dimers, these dimers remain intact. The α1β2 (and α2β1) interface involves 19 residues (Fig. 5-8). Hydrophobic interactions predominate at all the interfaces, but there are also many hydrogen bonds and a few ion pairs (or salt bridges), whose importance is discussed below.

Hemoglobin Undergoes a Structural Change on Binding Oxygen

X-ray analysis has revealed two major conformations of hemoglobin: the R state and the T state. Although oxygen binds to hemoglobin in either state, it has a significantly higher affinity for hemoglobin in the R state. Oxygen binding stabilizes the R state. When oxygen is absent experimentally, the T state is more stable and is thus the predominant conformation of deoxyhemoglobin. T and R originally denoted "tense" and "relaxed," respectively, because the T state is stabilized by a greater number of ion pairs, many of which lie at the α1β2 (and α2β1) interface (Fig. 5-9). The binding of O2 to a hemoglobin subunit in the T state triggers a change in conformation to the R state. When the entire protein undergoes this transition, the structures of the individual subunits change little, but the αβ subunit pairs slide past each other and rotate, narrowing the pocket between the β subunits (Fig. 5-10). In this process, some of the ion pairs that stabilize the T state are broken and some new ones are formed.

Max Perutz proposed that the T → R transition is triggered by changes in the positions of key amino acid side chains surrounding the heme. In the T state, the porphyrin is slightly puckered, causing the heme iron to protrude somewhat on the proximal His (His F8) side. The binding of O2 causes the heme to assume a more planar conformation, shifting the position of the proximal His and the attached F helix (Fig. 5-11). These changes lead to adjustments in the ion pairs at the α1β2 interface.

Hemoglobin Binds Oxygen Cooperatively

Hemoglobin must bind oxygen efficiently in the lungs, where the pO2 is about 13.3 kPa, and release oxygen in the tissues, where the pO2 is about 4 kPa. Myoglobin, or
The T → R transition. (PDB ID 1HGA and 1BBB) In these depictions of deoxyhemoglobin, as in Figure 5–9, the β subunits are blue and the α subunits are gray. Positively charged side chains and chain termini involved in ion pairs are shown in blue, their negatively charged partners in red. The Lys C5 of each α subunit and Asp F4L of each β subunit are visible but not labeled (compare Fig. 5–9a). Note that the molecule is oriented slightly differently than in Figure 5–9. The transition from the T state to the R state shifts the subunit pairs substantially, affecting certain ion pairs. Most noticeably, the His HC3 residues at the carboxyl termini of the β subunits, which are involved in ion pairs in the T state, rotate in the R state toward the center of the molecule, where they are no longer in ion pairs. Another dramatic result of the T → R transition is a narrowing of the pocket between the β subunits.

Changes in conformation near heme on O₂ binding to deoxyhemoglobin. (Derived from PDB ID 1HGA and 1BBB) The shift in the position of helix F when heme binds O₂ is thought to be one of the adjustments that triggers the T → R transition.

any protein that binds oxygen with a hyperbolic binding curve, would be ill-suited to this function, for the reason illustrated in Figure 5–12. A protein that bound O₂ with high affinity would bind it efficiently in the lungs but would not release much of it in the tissues. If the protein bound oxygen with a sufficiently low affinity to release it in the tissues, it would not pick up much oxygen in the lungs.

Hemoglobin solves the problem by undergoing a transition from a low-affinity state (the T state) to a high-affinity state (the R state) as more O₂ molecules are bound. As a result, hemoglobin has a hybrid S-shaped, or sigmoid, binding curve for oxygen (Fig. 5–12). A single-subunit protein with a single ligand-binding site cannot produce a sigmoid binding curve—even if binding elicits a conformational change—because each molecule of ligand binds independently and cannot affect ligand binding to another molecule. In contrast, O₂ binding to individual subunits of hemoglobin can alter

A sigmoid (cooperative) binding curve. A sigmoid binding curve can be viewed as a hybrid curve reflecting a transition from a low-affinity to a high-affinity state. Because of its cooperative binding, as manifested by a sigmoid binding curve, hemoglobin is more sensitive to the small differences in O₂ concentration between the tissues and the lungs, allowing it to bind oxygen in the lungs (where pO₂ is high) and release it in the tissues (where pO₂ is low).
the affinity for \(O_2 \) in adjacent subunits. The first molecule of \(O_2 \) that interacts with deoxyhemoglobin binds weakly, because it binds to a subunit in the T state. Its binding, however, leads to conformational changes that are communicated to adjacent subunits, making it easier for additional molecules of \(O_2 \) to bind. In effect, the \(T \rightarrow R \) transition occurs more readily in the second subunit once \(O_2 \) is bound to the first subunit. The last (fourth) \(O_2 \) molecule binds to a heme in a subunit that is already in the R state, and hence it binds with much higher affinity than the first molecule.

An **allosteric protein** is one in which the binding of a ligand to one site affects the binding properties of another site on the same protein. The term “allosteric” derives from the Greek *allo*, “other,” and *stereos*, “solid” or “shape.” Allosteric proteins are those having “other shapes,” or conformations, induced by the binding of ligands referred to as modulators. The conformational changes induced by the modulator(s) interconvert more-active and less-active forms of the protein. The modulators for allosteric proteins may be either inhibitors or activators. When the normal ligand and modulator are identical, the interaction is termed **homotropic**. When the modulator is a molecule other than the normal ligand, the interaction is **heterotropic**. Some proteins have two or more modulators and therefore can have both homotropic and heterotropic interactions.

Cooperative binding of a ligand to a multimeric protein, such as we observe with the binding of \(O_2 \) to hemoglobin, is a form of allosteric binding. The binding of one ligand affects the affinities of any remaining unfilled binding sites, and \(O_2 \) can be considered as both a ligand and an activating homotropic modulator. There is only one binding site for \(O_2 \) on each subunit, so the allosteric effects giving rise to cooperativity are mediated by conformational changes transmitted from one subunit to another by subunit-subunit interactions. A sigmoid binding curve is diagnostic of cooperative binding. It permits a much more sensitive response to ligand concentration and is important to the function of many multisubunit proteins. The principle of allostery extends readily to regulatory enzymes, as we shall see in Chapter 6.

Cooperative conformational changes depend on variations in the structural stability of different parts of a protein, as described in Chapter 4. The binding sites of an allosteric protein typically consist of stable segments in proximity to relatively unstable segments, with the latter capable of frequent changes in conformation or disorganized motion (Fig. 5-13). When a ligand binds, the moving parts of the protein’s binding site may be stabilized in a particular conformation, affecting the conformation of adjacent polypeptide subunits. If the entire binding site were highly stable, then few structural changes could occur in this site or be propagated to other parts of the protein when a ligand binds.

As is the case with myoglobin, ligands other than oxygen can bind to hemoglobin. An important example is carbon monoxide, which binds to hemoglobin about 250 times better than does oxygen. Human exposure to CO can have tragic consequences (Box 5-1).

Cooperative Ligand Binding Can Be Described Quantitatively

Cooperative binding of oxygen by hemoglobin was first analyzed by Archibald Hill in 1910. From this work came a general approach to the study of cooperative ligand binding to multisubunit proteins.

For a protein with \(n \) binding sites, the equilibrium of Equation 5-1 becomes

\[
P + nL \rightleftharpoons PL_n
\]

and the expression for the association constant becomes

\[
K_a = \frac{[PL_n]}{[P][L]^n}
\]
Lake Powell, Arizona, August 2000. A family was vacationing in a rented houseboat. They turned on the electrical generator to power an air conditioner and a television. About 15 minutes later, two brothers, aged 8 and 11, jumped off the swim deck at the stern. Situated immediately below the deck was the exhaust port for the generator. Within two minutes, both boys were overcome by the carbon monoxide in the exhaust, which had become concentrated in the space under the deck. Both drowned. These deaths, along with a series of deaths in the 1990s that were linked to houseboats of similar design, eventually led to the recall and redesign of the generator exhaust assembly.

Carbon monoxide (CO), a colorless, odorless gas, is responsible for more than half of yearly deaths due to poisoning worldwide. CO has an approximately 250-fold greater affinity for hemoglobin than does oxygen. Consequently, relatively low levels of CO can have substantial and tragic effects. When CO combines with hemoglobin, the complex is referred to as carboxyhemoglobin, or COHb.

Some CO is produced by natural processes, but locally high levels generally result only from human activities. Engine and furnace exhausts are important sources, as CO is a byproduct of the incomplete combustion of fossil fuels. In the United States alone, nearly 4,000 people succumb to CO poisoning each year, both accidentally and intentionally. Many of the accidental deaths involve undetected CO buildup in enclosed spaces, such as when a household furnace malfunctions or leaks, venting CO into a home. However, CO poisoning can also occur in open spaces, as unsuspecting people at work or play inhale the exhaust from generators, outboard motors, tractor engines, recreational vehicles, or lawn mowers.

Carbon monoxide levels in the atmosphere are rarely dangerous, ranging from less than 0.05 parts per million (ppm) in remote and uninhabited areas to 3 to 4 ppm in some cities of the northern hemisphere. In the United States, the government-mandated (Occupational Safety and Health Administration, OSHA) limit for CO at worksites is 50 ppm for people working an eight-hour shift. The tight binding of CO to hemoglobin means that COHb can accumulate over time as people are exposed to a constant low-level source of CO.

In an average, healthy individual, 1% or less of the total hemoglobin is complexed as COHb. Since CO is a product of tobacco smoke, many smokers have COHb levels in the range of 3% to 8% of total hemoglobin, and the levels can rise to 15% for chain-smokers. COHb levels equilibrate at 50% in people who breathe air containing 570 ppm of CO for several hours. Reliable methods have been developed that relate CO content in the atmosphere to COHb levels in the blood (Fig. 1). In tests of houseboats with a generator exhaust like the one responsible for the Lake Powell deaths, CO levels reached 6,000 to 30,000 ppm under the swim deck, and atmospheric O2 levels under the deck declined from 21% to 12%. Even above the swim deck, CO levels of up to 7,200 ppm were detected, high enough to cause death within a few minutes.

How is a human affected by COHb? At levels of less than 10% of total hemoglobin, symptoms are rarely observed. At 15%, the individual experiences mild headaches. At 20% to 30%, the headache is severe and is generally accompanied by nausea, dizziness, confusion, disorientation, and some visual disturbances; these symptoms are generally reversed if the individual is treated with oxygen. At COHb levels of 30% to 50%, the neurological symptoms become more severe, and at levels near 50%, the individual loses consciousness and can sink into coma. Respiratory failure may follow. With prolonged exposure, some damage becomes permanent. Death normally occurs when COHb levels rise above 60%. Autopsy on the boys who died at Lake Powell revealed COHb levels of 59% and 62%.

Binding of CO to hemoglobin is affected by many factors, including exercise (Fig. 1) and changes in air pressure related to altitude. Because of their higher base levels of COHb, smokers exposed to a source of CO often develop symptoms faster than nonsmokers. Individuals with heart, lung, or blood diseases that reduce the availability of oxygen to tissues may also experience symptoms at lower levels of CO exposure. Fetuses are at particular risk for CO poisoning, because fetal hemoglobin has a somewhat higher affinity for CO than adult hemoglobin. Cases of CO exposure have been recorded in which the fetus died but the mother recovered.

(continued on next page)
It may seem surprising that the loss of half of one's hemoglobin to COHb can prove fatal—we know that people with any of several anemic conditions manage to function reasonably well with half the usual complement of active hemoglobin. However, the binding of CO to hemoglobin does more than remove protein from the pool available to bind oxygen. It also affects the affinity of the remaining hemoglobin subunits for oxygen. As CO binds to one or two subunits of a hemoglobin tetramer, the affinity for O2 is increased substantially in the remaining subunits (Fig. 2). Thus, a hemoglobin tetramer with two bound CO molecules can efficiently bind O2 in the lungs—but it releases very little of it in the tissues. Oxygen deprivation in the tissues rapidly becomes severe. To add to the problem, the effects of CO are not limited to interference with hemoglobin function. CO binds to other heme proteins and a variety of metalloproteins. The effects of these interactions are not yet well understood, but they may be responsible for some of the longer-term effects of acute but nonfatal CO poisoning.

When CO poisoning is suspected, rapid evacuation of the person away from the CO source is essential, but this does not always result in rapid recovery. When an individual is moved from the CO-polluted site to a normal, outdoor atmosphere, O2 begins to replace the CO in hemoglobin—but the COHb levels drop only slowly. The half-time is 2 to 6.5 hours, depending on individual and environmental factors. If 100% oxygen is administered with a mask, the rate of exchange can be increased about fourfold; the half-time for O2-CO exchange can be reduced to tens of minutes if 100% oxygen at a pressure of 3 atm (303 kPa) is supplied. Thus, rapid treatment by a properly equipped medical team is critical.

Carbon monoxide detectors in all homes are highly recommended. This is a simple and inexpensive measure to avoid possible tragedy. After completing the research for this box, we immediately purchased several new CO detectors for our homes.

The expression for \(\theta \) (see Eqn 5–8) is

\[
\theta = \frac{[L]^n}{[L]^n + K_d} \tag{5-14}
\]

Rearranging, then taking the log of both sides, yields

\[
\log \left(\frac{\theta}{1 - \theta} \right) = n \log [L] - \log K_d \tag{5-15}
\]

where \(K_d = [L]_{50}^4 \).

Equation 5–16 is the Hill equation, and a plot of \(\log [\theta/(1 - \theta)] \) versus \(\log [L] \) is called a Hill plot. Based on the equation, the Hill plot should have a slope of \(n \). However, the experimentally determined slope actually reflects not the number of binding sites but the degree of interaction between them. The slope of a Hill plot is therefore denoted by \(n_H \), the Hill coefficient, which is a measure of the degree of cooperativity. If \(n_H \) equals 1, ligand binding is not cooperative, a situation that can arise even in a multisubunit protein if the subunits do not communicate. An \(n_H \) of greater than 1 indicates positive cooperativity in ligand binding. This is the situation observed in hemoglobin, in which the binding of one molecule of ligand facilitates the binding of others. The theoretical upper limit for \(n_H \) is reached when \(n_H = n \). In this case the binding would be completely cooperative: all binding sites on the protein would bind ligand simultaneously, and no protein molecules partially saturated with ligand would be present under any conditions. This limit is never reached in practice, and the measured value of \(n_H \) is always less than the actual number of ligand-binding sites in the protein.

An \(n_H \) of less than 1 indicates negative cooperativity, in which the binding of one molecule of ligand impedes the binding of others. Well-documented cases of negative cooperativity are rare.

To adapt the Hill equation to the binding of oxygen to hemoglobin we must again substitute \(pO_2 \) for [L] and \(P_{50} \) for \(K_d \):

\[
\log \left(\frac{\theta}{1 - \theta} \right) = n \log pO_2 - n \log P_{50} \tag{5-17}
\]
subunits of a cooperatively binding protein are functionally identical, that each subunit can exist in (at least) two conformations, and that all subunits undergo the transition from one conformation to the other simultaneously. In this model, no protein has individual subunits in different conformations. The two conformations are in equilibrium. The ligand can bind to either conformation, but binds each with different affinity. Successive binding of ligand molecules to the low-affinity conformation (which is more stable in the absence of ligand) makes a transition to the high-affinity conformation more likely.

In the second model, the sequential model (Fig. 5–15b), proposed in 1966 by Daniel Koshland and colleagues, ligand binding can induce a change of conformation in an individual subunit. A conformational change in one subunit makes a similar change in an adjacent subunit, as well as the binding of a second ligand molecule, more likely. There are more potential intermediate states in this model than in the concerted model. The two models are not mutually exclusive; the concerted model may be viewed as the “all-or-none” limiting case of the sequential model. In Chapter 6 we use these models to investigate allosteric enzymes.

Hemoglobin Also Transports H\(^+\) and CO\(_2\)

In addition to carrying nearly all the oxygen required by cells from the lungs to the tissues, hemoglobin carries two end products of cellular respiration—H\(^+\) and CO\(_2\)—from the tissues to the lungs and the kidneys, where they are excreted. The CO\(_2\), produced by oxidation of organic fuels in mitochondria, is hydrated to form bicarbonate:

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^-
\]

This reaction is catalyzed by carbonic anhydrase, an enzyme particularly abundant in erythrocytes. Carbon dioxide is not very soluble in aqueous solution, and bubbles of CO\(_2\) would form in the tissues and blood if it were not converted to bicarbonate. As you can see from the

FIGURE 5–14 Hill plots for oxygen binding to myoglobin and hemoglobin. When \(n_t = 1\), there is no evident cooperativity. The maximum degree of cooperativity observed for hemoglobin corresponds approximately to \(n_t = 3\). Note that while this indicates a high level of cooperativity, \(n_t\) is less than \(n\), the number of O\(_2\)-binding sites in hemoglobin. This is normal for a protein that exhibits allosteric binding behavior.

Two Models Suggest Mechanisms for Cooperative Binding

Biochemists now know a great deal about the T and R states of hemoglobin, but much remains to be learned about how the T \(\rightarrow\) R transition occurs. Two models for the cooperative binding of ligands to proteins with multiple binding sites have greatly influenced thinking about this problem.

The first model was proposed by Jacques Monod, Jeffries Wyman, and Jean-Pierre Changeux in 1965, and is called the MWC model or the concerted model (Fig. 5–15a). The concerted model assumes that the

FIGURE 5–15 Two general models for the interconversion of inactive and active forms of a protein during cooperative ligand binding. Although the models may be applied to any protein—including any enzyme (Chapter 6)—that exhibits cooperative binding, we show here four subunits because the model was originally proposed for hemoglobin. (a) In the concerted, or all-or-none, model (MWC model), all subunits are postulated to be in the same conformation, either all \(\bigcirc\) (low affinity or inactive) or all \(\square\) (high affinity or active). Depending on the equilibrium, \(K_t\), between \(\bigcirc\) and \(\square\) forms, the binding of one or more ligand molecules (L) will pull the equilibrium toward the \(\square\) form. Subunits with bound L are shaded. (b) In the sequential model, each individual subunit can be in either the \(\bigcirc\) or \(\square\) form. A very large number of conformations is thus possible.
reaction catalyzed by carbonic anhydrase, the hydration of CO₂ results in an increase in the H⁺ concentration (a decrease in pH) in the tissues. The binding of oxygen by hemoglobin is profoundly influenced by pH and CO₂ concentration, so the interconversion of CO₂ and bicarbonate is of great importance to the regulation of oxygen binding and release in the blood.

Hemoglobin transports about 40% of the total H⁺ and 15% to 20% of the CO₂ formed in the tissues to the lungs and kidneys. (The remainder of the H⁺ is absorbed by the plasma’s bicarbonate buffer; the remainder of the CO₂ is transported as dissolved HCO₃⁻ and CO₂.) The binding of H⁺ and CO₂ is inversely related to the binding of oxygen. At the relatively low pH and high CO₂ concentration of peripheral tissues, the affinity of hemoglobin for oxygen decreases as H⁺ and CO₂ are bound, and O₂ is released to the tissues. Conversely, in the capillaries of the lung, as CO₂ is excreted and the blood pH consequently rises, the affinity of hemoglobin for oxygen increases and the protein binds more O₂ for transport to the peripheral tissues. This effect of pH and CO₂ concentration on the binding and release of oxygen by hemoglobin is called the Bohr effect, after Christian Bohr, the Danish physiologist (and father of physicist Niels Bohr) who discovered it in 1904.

The binding equilibrium for hemoglobin and one molecule of oxygen can be designated by the reaction

\[\text{Hb} + \text{O}_2 \rightleftharpoons \text{HbO}_2 \]

but this is not a complete statement. To account for the effect of H⁺ concentration on this binding equilibrium, we rewrite the reaction as

\[\text{HbH}^+ + \text{O}_2 \rightleftharpoons \text{HbO}_2 + \text{H}^+ \]

where HbH⁺ denotes a protonated form of hemoglobin. This equation tells us that the O₂-saturation curve of hemoglobin is influenced by the H⁺ concentration (Fig. 5-16). Both O₂ and H⁺ are bound by hemoglobin, but with inverse affinity. When the oxygen concentration is high, as in the lungs, hemoglobin binds O₂ and releases protons. When the oxygen concentration is low, as in the peripheral tissues, H⁺ is bound and O₂ is released.

Oxygen and H⁺ are not bound at the same sites in hemoglobin. Oxygen binds to the iron atoms of the hemes, whereas H⁺ binds to any of several amino acid residues in the protein. A major contribution to the Bohr effect is made by His₁₆ (His HČ₃) of the β subunits. When protonated, this residue forms one of the ion pairs—to Asp¹⁴ (Asp FG1)—that helps stabilize deoxyhemoglobin in the T state (Fig. 5-9). The ion pair stabilizes the protonated form of His HČ₃, giving this residue an abnormally high pKₐ in the T state. The pKₐ falls to its normal value of 6.0 in the R state because the ion pair cannot form, and this residue is largely unprotonated in oxyhemoglobin at pH 7.6, the blood pH in the lungs. As the concentration of H⁺ rises, protonation of His HČ₃ promotes release of oxygen by favoring a transition to the T state. Protonation of the amino-terminal residues of the α subunits, certain other His residues, and perhaps other groups has a similar effect.

Thus we see that the four polypeptide chains of hemoglobin communicate with each other not only about O₂ binding to their heme groups but also about H⁺ binding to specific amino acid residues. And there is still more to the story. Hemoglobin also binds CO₂, again in a manner inversely related to the binding of oxygen. Carbon dioxide binds as a carbamate group to the α-amino group at the amino-terminal end of each globin chain, forming carbaminohemoglobin:

\[\text{C} + \text{H}_2\text{N-C-C-} \rightarrow \text{C} \text{N-C-C-} \]

\[
\begin{align*}
\text{Amino-terminal residue} & \quad \text{Carbamino-terminal residue} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{R} & \quad \text{R} \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{C} & \quad \text{C} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

This reaction produces H⁺, contributing to the Bohr effect. The bound carbamates also form additional salt bridges (not shown in Fig. 5-9) that help to stabilize the T state and promote the release of oxygen.

When the concentration of carbon dioxide is high, as in peripheral tissues, some CO₂ binds to hemoglobin and the affinity for O₂ decreases, causing its release. Conversely, when hemoglobin reaches the lungs, the high oxygen concentration promotes binding of O₂ and release of CO₂. It is the capacity to communicate ligand-binding information from one polypeptide subunit to the others that makes the hemoglobin molecule so beautifully adapted to integrating the transport of O₂, CO₂, and H⁺ by erythrocytes.

FIGURE 5-16 Effect of pH on oxygen binding to hemoglobin. The pH of blood is 7.6 in the lungs and 7.2 in the tissues. Experimental measurements on hemoglobin binding are often performed at pH 7.4.
Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate

The interaction of 2,3-bisphosphoglycerate (BPG) with hemoglobin molecules further refines the function of hemoglobin, and provides an example of heterotropic allosteric modulation.

2,3-Bisphosphoglycerate

BPG is present in relatively high concentrations in erythrocytes. When hemoglobin is isolated, it contains substantial amounts of bound BPG, which can be difficult to remove completely. In fact, the O₂-binding curves for hemoglobin that we have examined to this point were obtained in the presence of bound BPG. 2,3-Bisphosphoglycerate is known to greatly reduce the affinity of hemoglobin for oxygen—there is an inverse relationship between the binding of O₂ and the binding of BPG. We can therefore describe another binding process for hemoglobin:

$$\text{HbBPG} + \text{O}_2 \rightleftharpoons \text{HbO}_2 + \text{BPG}$$

BPG binds at a site distant from the oxygen-binding site and regulates the O₂-binding affinity of hemoglobin in relation to the pO₂ in the lungs. BPG is important in the physiological adaptation to the lower pO₂ at high altitudes. For a healthy human at sea level, the binding of O₂ to hemoglobin is regulated such that the amount of O₂ delivered to the tissues is nearly 40% of the maximum that could be carried by the blood (Fig. 5–17). Imagine that this person is suddenly transported from sea level to an altitude of 4,500 meters, where the pO₂ is considerably lower. The delivery of O₂ to the tissues is now reduced. However, after just a few hours at the higher altitude, the BPG concentration in the blood has begun to rise, leading to a decrease in the affinity of hemoglobin for oxygen. This adjustment in the BPG level has only a small effect on the binding of O₂ in the lungs but a considerable effect on the release of O₂ in the tissues. As a result, the delivery of oxygen to the tissues is restored to nearly 40% of the O₂ that can be transported by the blood. The situation is reversed when the person returns to sea level. The BPG concentration in erythrocytes also increases in people suffering from hypoxia, lowered oxygenation of peripheral tissues due to inadequate functioning of the lungs or circulatory system.

The site of BPG binding to hemoglobin is the cavity between the β subunits in the T state (Fig. 5–18). This cavity is lined with positively charged amino acid residues that interact with the negatively charged groups of BPG. Unlike O₂, only one molecule of BPG is bound to each hemoglobin tetramer. BPG lowers hemoglobin's affinity for oxygen by stabilizing the T state. The transition to the R state narrows the binding pocket for BPG, precluding BPG binding. In the absence of BPG, hemoglobin is converted to the R state more easily.

Regulation of oxygen binding to hemoglobin by BPG has an important role in fetal development. Because a fetus must extract oxygen from its mother's blood, fetal hemoglobin must have greater affinity than the maternal hemoglobin for O₂. The fetus synthesizes γ subunits rather than β subunits, forming α₂γ₂ hemoglobin. This tetramer has a much lower affinity for BPG than normal adult hemoglobin, and a correspondingly higher affinity for O₂. Oxygen-Binding Proteins—Hemoglobin Is Susceptible to Allosteric Regulation
Sickle-Cell Anemia Is a Molecular Disease of Hemoglobin

The hereditary human disease sickle-cell anemia demonstrates strikingly the importance of amino acid sequence in determining the secondary, tertiary, and quaternary structures of globular proteins, and thus their biological functions. Almost 500 genetic variants of hemoglobin are known to occur in the human population; all but a few are quite rare. Most variations consist of differences in a single amino acid residue. The effects on hemoglobin structure and function are often minor but can sometimes be extraordinary. Each hemoglobin variation is the product of an altered gene. The variant genes are called alleles. Because humans generally have two copies of each gene, an individual may have two copies of one allele (thus being homozygous for that gene) or one copy of each of two different alleles (thus heterozygous).

Sickle-cell anemia occurs in individuals who inherit the allele for sickle-cell hemoglobin from both parents. The erythrocytes of these individuals are fewer and also abnormal. In addition to an unusually large number of immature cells, the blood contains many long, thin, sickle-shaped erythrocytes (Fig. 5-19). When hemoglobin from sickle cells (called hemoglobin S) is deoxygenated, it becomes insoluble and forms polymers that aggregate into tubular fibers (Fig. 5-20). Normal hemoglobin (hemoglobin A) remains soluble on deoxygenation. The insoluble fibers of deoxygenated hemoglobin S cause the deformed, sickle shape of the erythrocytes, and the proportion of sickled cells increases greatly as blood is deoxygenated.

The altered properties of hemoglobin S result from a single amino acid substitution, a Val instead of a Glu residue at position 6 in the two β chains. The R group of valine has no electric charge, whereas glutamate has a negative charge at pH 7.4. Hemoglobin S therefore has two fewer negative charges than hemoglobin A (one fewer on each β chain). Replacement of the Glu residue by Val creates a "sticky" hydrophobic contact point at position 6 of the β chain, which is on the outer surface of the molecule. These sticky spots cause deoxyhemoglobin S molecules to associate abnormally with each other, forming the long, fibrous aggregates characteristic of this disorder. Oxygen-Binding Proteins—Defects in Hb Lead to Serious Genetic Disease

Sickle-cell anemia, as we have noted, occurs in individuals homozygous for the sickle-cell allele of the gene encoding the β subunit of hemoglobin. Individuals who receive the sickle-cell allele from only one parent and are thus heterozygous experience a milder condition called sickle-cell trait; only about 1% of their erythrocytes become sickled on deoxygenation. These individuals may live completely normal lives if they avoid vigorous exercise and other stresses on the circulatory system.

Sickle-cell anemia is life-threatening and painful. People with this disease suffer repeated crises brought on by physical exertion. They become weak, dizzy, and short of breath, and they also experience heart murmurs and an increased pulse rate. The hemoglobin content of their blood is only about half the normal value of 15 to 16 g/100 mL.
Hemoglobin S

Interaction between molecules

Strand formation

Alignment and crystallization (fiber formation)

FIGURE 5-20 Normal and sickle-cell hemoglobin. (a) Subtle differences between the conformations of hemoglobin A and hemoglobin S result from a single amino acid change in the β chains. (b) As a result of this change, deoxyhemoglobin S has a hydrophobic patch on its surface, which causes the molecules to aggregate into strands that align into insoluble fibers.

because sickled cells are very fragile and rupture easily; this results in anemia (“lack of blood”). An even more serious consequence is that capillaries become blocked by the long, abnormally shaped cells, causing severe pain and interfering with normal organ function—a major factor in the early death of many people with the disease.

Without medical treatment, people with sickle-cell anemia usually die in childhood. Curiously, the frequency of the sickle-cell allele in populations is unusually high in certain parts of Africa. Investigation into this matter led to the finding that in heterozygous individuals, the allele confers a small but significant resistance to lethal forms of malaria. Natural selection has resulted in an allele population that balances the deleterious effects of the homozygous condition against the resistance to malaria afforded by the heterozygous condition.

SUMMARY 5.1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins

Protein function often entails interactions with other molecules. A protein binds a molecule, known as a ligand, at its binding site. Proteins may undergo conformational changes when a ligand binds, a process called induced fit. In a multisubunit protein, the binding of a ligand to one subunit may affect ligand binding to other subunits. Ligand binding can be regulated.

Myoglobin contains a heme prosthetic group, which binds oxygen. Heme consists of a single atom of Fe²⁺ coordinated within a porphyrin. Oxygen binds to myoglobin reversibly; this simple reversible binding can be described by an association constant K_a or a dissociation constant K_d. For a monomeric protein such as myoglobin, the fraction of binding sites occupied by a ligand is a hyperbolic function of ligand concentration.

Normal adult hemoglobin has four heme-containing subunits, two α and two β, similar in structure to each other and to myoglobin. Hemoglobin exists in two interchangeable structural states, T and R. The T state is most stable when oxygen is not bound. Oxygen binding promotes transition to the R state.

Oxygen binding to hemoglobin is both allosteric and cooperative. As O_2 binds to one binding site, the hemoglobin undergoes conformational changes that affect the other binding sites—an example of allosteric behavior. Conformational changes between the T and R states, mediated by subunit-subunit interactions, result in cooperative binding; this is described by a sigmoid binding curve and can be analyzed by a Hill plot.

Two major models have been proposed to explain the cooperative binding of ligands to multisubunit proteins: the concerted model and the sequential model.

Hemoglobin also binds H^+ and CO_2, resulting in the formation of ion pairs that stabilize the T state and lessen the protein’s affinity for O_2 (the Bohr effect). Oxygen binding to hemoglobin is also modulated by 2,3-bisphosphoglycerate, which binds to and stabilizes the T state.
Sickle-cell anemia is a genetic disease caused by a single amino acid substitution (Glu to Val) in each β chain of hemoglobin. The change produces a hydrophobic patch on the surface of the hemoglobin that causes the molecules to aggregate into bundles of fibers. This homozygous condition results in serious medical complications.

5.2 Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins

We have seen how the conformations of oxygen-binding proteins affect and are affected by the binding of small ligands (O₂ or CO) to the heme group. However, most protein-ligand interactions do not involve a prosthetic group. Instead, the binding site for a ligand is more often like the hemoglobin binding site for O₂—a cleft in the protein lined with amino acid residues, arranged to make the binding interaction highly specific. Effective discrimination between ligands is the norm at binding sites, even when the ligands have only minor structural differences.

All vertebrates have an immune system capable of distinguishing molecular "self" from "nonself" and then destroying what is identified as nonself. In this way, the immune system eliminates viruses, bacteria, and other pathogens and molecules that may pose a threat to the organism. On a physiological level, the immune response is an intricate and coordinated set of interactions among many classes of proteins, molecules, and cell types. At the level of individual proteins, the immune response demonstrates how an acutely sensitive and specific biochemical system is built upon the reversible binding of ligands to proteins.

The Immune Response Features a Specialized Array of Cells and Proteins

Immunity is brought about by a variety of leukocytes (white blood cells), including macrophages and lymphocytes, all of which develop from undifferentiated stem cells in the bone marrow. Leukocytes can leave the bloodstream and patrol the tissues, each cell producing one or more proteins capable of recognizing and binding to molecules that might signal an infection.

The immune response consists of two complementary systems, the humoral and cellular immune systems. The humoral immune system (Latin humor, "fluid") is directed at bacterial infections and extracellular viruses (those found in the body fluids), but can also respond to individual foreign proteins. The cellular immune system destroys host cells infected by viruses and also destroys some parasites and foreign tissues.

At the heart of the humoral immune response are soluble proteins called antibodies or immunoglobulins, often abbreviated Ig. Immunoglobulins bind bacteria, viruses, or large molecules identified as foreign and target them for destruction. Making up 20% of blood protein, the immunoglobulins are produced by B lymphocytes, or B cells, so named because they complete their development in the bone marrow.

The agents at the heart of the cellular immune response are a class of T lymphocytes, or T cells (so called because the latter stages of their development occur in the thymus), known as cytotoxic T cells (T₅ cells, also called killer T cells). Recognition of infected cells or parasites involves proteins called T-cell receptors on the surface of T₅ cells. Receptors are proteins, usually found on the outer surface of cells and extending through the plasma membrane; they recognize and bind extracellular ligands, triggering changes inside the cell.

In addition to cytotoxic T cells, there are helper T cells (T₄ cells), whose function it is to produce soluble signaling proteins called cytokines, which include the interleukins. T₄ cells interact with macrophages. The T₄ cells participate only indirectly in the destruction of infected cells and pathogens, stimulating the selective proliferation of those T₅ and B cells that can bind to a particular antigen. This process, called clonal selection, increases the number of immune system cells that can respond to a particular pathogen. The importance of T₄ cells is dramatically illustrated by the epidemic produced by HIV (human immunodeficiency virus), the virus that causes AIDS (acquired immune deficiency syndrome). The primary targets of HIV infection are T₄ cells. Elimination of these cells progressively incapacitates the entire immune system. Table 5-2 summarizes the functions of some leukocytes of the immune system.

Each recognition protein of the immune system, either a T-cell receptor or an antibody produced by a B cell, specifically binds some particular chemical structure,

| Table 5-2: Some Types of Leukocytes Associated with the Immune System |
|--------------------------|---|
| **Cell type** | **Function** |
| Macrophages (B cells) | Ingest large particles and cells by phagocytosis |
| B lymphocytes (B cells) | Produce and secrete antibodies |
| T lymphocytes (T cells) | Interact with infected host cells through receptors on T-cell surface |
| Cytotoxic (killer) T cells (T₅) | |
| Helper T cells (T₄) | Interact with macrophages and secrete cytokines (interleukins) that stimulate T₅, T₄, and B cells to proliferate. |
5.2 Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins

Humans are capable of producing more than 10^8 different antibodies with distinct binding specificities. Given this extraordinary diversity, any chemical structure on the surface of a virus or invading cell will most likely be recognized and bound by one or more antibodies. Antibody diversity is derived from random reassembly of a set of immunoglobulin gene segments through genetic recombination mechanisms that are discussed in Chapter 25 (see Fig. 25-26).

A specialized lexicon is used to describe the unique interactions between antibodies or T-cell receptors and the molecules they bind. Any molecule or pathogen capable of eliciting an immune response is called an antigen. An antigen may be a virus, a bacterial cell wall, or an individual protein or other macromolecule. A complex antigen may be bound by several different antibodies. An individual antibody or T-cell receptor binds only a particular molecular structure within the antigen, called its antigenic determinant or epitope.

It would be unproductive for the immune system to respond to small molecules that are common intermediates and products of cellular metabolism. Molecules of $M_r < 5000$ are generally not antigenic. However, when small molecules are covalently attached to large proteins in the laboratory, they can be used to elicit an immune response. These small molecules are called haptens. The antibodies produced in response to protein-linked haptens will then bind to the same small molecules in their free form. Such antibodies are sometimes used in the development of analytical tests described later in this chapter or as catalytic antibodies (see Box 6-3). We now turn to a more detailed description of antibodies and their binding properties.

Antibodies Have Two Identical Antigen-Binding Sites

Immunoglobulin G (IgG) is the major class of antibody molecule and one of the most abundant proteins in the blood serum. IgG has four polypeptide chains: two large ones, called heavy chains, and two light chains, linked by noncovalent and disulfide bonds into a complex of $M_r 150,000$. The heavy chains of an IgG molecule interact at one end, then branch to interact separately with the light chains, forming a Y-shaped molecule (Fig. 5-21). At the “hinges” separating the base of an IgG molecule from its branches, the immunoglobulin can be cleaved with proteases. Cleavage with the protease papain liberates the basal fragment, called Fe because it usually crystallizes readily, and the two branches, called Fab, the antigen-binding fragments. Each branch has a single antigen-binding site.

![Antibody structure](image)

FIGURE 5-21 Immunoglobulin G. (a) Pairs of heavy and light chains combine to form a Y-shaped molecule. Two antigen-binding sites are formed by the combination of variable domains from one light (V_L) and one heavy (V_H) chain. Cleavage with papain separates the Fab and Fc portions of the protein in the hinge region. The Fc portion of the molecule also contains bound carbohydrate (shown in (b)). (b) A ribbon model of the first complete IgG molecule to be crystallized and structurally analyzed (PDB ID 1IGT). Although the molecule has two identical heavy chains (two shades of blue) and two identical light chains (two shades of red), it crystallized in the asymmetric conformation shown here. Conformational flexibility may be important to the function of immunoglobulins.
The fundamental structure of immunoglobulins was first established by Gerald Edelman and Rodney Porter. Each chain is made up of identifiable domains; some are constant in sequence and structure from one IgG to the next, others are variable. The constant domains have a characteristic structure known as the immunoglobulin fold, a well-conserved structural motif in the all-β class of proteins (Chapter 4). There are three of these constant domains in each heavy chain and one in each light chain. The heavy and light chains also have one variable domain each, in which most of the variability in amino acid sequence is found. The variable domains associate to create the antigen-binding site (Fig. 5–21, Fig. 5–22).

In many vertebrates, IgG is but one of five classes of immunoglobulins. Each class has a characteristic type of heavy chain, denoted α, δ, ε, γ, and μ for IgA, IgD, IgE, IgG, and IgM, respectively. Two types of light chain, κ and λ, occur in all classes of immunoglobulins. The overall structures of IgD and IgE are similar to that of IgG. IgM occurs either in a monomeric, membrane-bound form or in a secreted form that is a cross-linked pentamer of this basic structure (Fig. 5–23). IgA, found principally in secretions such as saliva, tears, and milk, can be a monomer, dimer, or trimer. IgM is the first antibody to be made by B lymphocytes and the major antibody in the early stages of a primary immune response. Some B cells soon begin to produce IgD (with the same antigen-binding site as the IgM produced by the same cell), but the particular function of IgD is less clear.

The IgG described above is the major antibody in secondary immune responses, which are initiated by a class of B cells called memory B cells. As part of the organism’s ongoing immunity to antigens already encountered and dealt with, IgG is the most abundant immunoglobulin in the blood. When IgG binds to an invading bacterium or virus, it activates certain leukocytes such as macrophages to engulf and destroy the invader, and also activates some other parts of the immune response. Receptors on the macrophage surface recognize and bind the Fc region of IgG. When these Fc receptors bind an antibody-pathogen complex, the macrophage engulfs the complex by phagocytosis (Fig. 5–24).

IgE plays an important role in the allergic response, interacting with basophils (phagocytic leukocytes) in the blood and with histamine-secreting cells called mast cells, which are widely distributed in tissues. This immunoglobulin binds, through its Fc region, to special Fc receptors on the basophils or mast cells. In this form, IgE serves as a receptor for antigen. If antigen is bound, the cells are induced to secrete histamine and other biologically active amines that cause dilation and increased permeability of blood vessels. These effects on the blood vessels are thought to facilitate the movement of immune system cells and proteins to sites of inflammation. They also produce the symptoms normally associated with allergies. Pollen or other allergens are recognized as foreign, triggering an immune response normally reserved for pathogens.
Figure 5-25: Induced fit in the binding of an antigen to IgG. The molecule here, shown in surface contour, is the Fab fragment of an IgG. The antigen is a small peptide derived from HIV. Two residues in the heavy chain (blue) and one in the light chain (pink) are colored to provide visual points of reference. (a) View of the Fab fragment in the absence of antigen, looking down on the antigen-binding site (PDB ID 1GFC). (b) The same view, but with the Fab fragment in the “bound” conformation (PDB ID 1GGI); the antigen is omitted to provide an unobstructed view of the altered binding site. Note how the binding cavity has enlarged and several groups have shifted position. (c) The same view as (b), but with the antigen in the binding site, pictured as a red stick structure.

Antibodies Bind Tightly and Specifically to Antigen

The binding specificity of an antibody is determined by the amino acid residues in the variable domains of its heavy and light chains. Many residues in these domains are variable, but not equally so. Some, particularly those lining the antigen-binding site, are hypervariable—especially likely to differ. Specificity is conferred by chemical complementarity between the antigen and its specific binding site, in terms of shape and the location of charged, nonpolar, and hydrogen-bonding groups. For example, a binding site with a negatively charged group may bind an antigen with a positive charge in the complementary position. In many instances, complementarity is achieved interactively as the structures of antigen and binding site influence each other as they come closer together. Conformational changes in the antibody and/or the antigen then allow the complementary groups to interact fully. This is an example of induced fit. The complex of a peptide derived from HIV (a model antigen) and an Fab molecule, shown in Figure 5-25, illustrates some of these properties. The changes in structure observed on antigen binding are particularly striking in this example.

A typical antibody-antigen interaction is quite strong, characterized by K_d values as low as 10^{-10} M (recall that a lower K_d corresponds to a stronger binding interaction; see Table 5-1). The K_d reflects the energy derived from the various ionic, hydrogen-bonding, hydrophobic, and van der Waals interactions that stabilize the binding. The binding energy required to produce a K_d of 10^{-10} M is about 65 kJ/mol.

The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures

The extraordinary binding affinity and specificity of antibodies make them valuable analytical reagents. Two types of antibody preparations are in use: polyclonal and monoclonal. Polyclonal antibodies are those produced by many different B lymphocytes responding to one antigen, such as a protein injected into an animal. Cells in the population of B lymphocytes produce antibodies that bind specific, different epitopes within the antigen. Thus, polyclonal preparations contain a mixture of antibodies that recognize different parts of the protein. Monoclonal antibodies, in contrast, are synthesized by a population of identical B cells (a clone) grown in cell culture. These antibodies are homogeneous, all recognizing the same epitope. The techniques for producing monoclonal antibodies were developed by Georges Köhler and Cesar Milstein.

George Köhler, 1946–1995
Cesar Milstein, 1927–2002

The specificity of antibodies has practical uses. A selected antibody can be covalently attached to a resin and used in a chromatography column of the type shown in Figure 3-17c. When a mixture of proteins is added to the column, the antibody specifically binds its target protein and retains it on the column while other proteins are washed through. The target protein can then be eluted from the resin by a salt solution or some other agent. This is a powerful protein analytical tool.

In another versatile analytical technique, an antibody is attached to a radioactive label or some other reagent that makes it easy to detect. When the antibody
ELISA (b) SDS gel Immunoblot (c)

binds the target protein, the label reveals the presence of the protein in a solution or its location in a gel or even a living cell. Several variations of this procedure are illustrated in Figure 5–26.

An ELISA (enzyme-linked immunosorbent assay) can be used to rapidly screen for and quantify an antigen in a sample (Fig. 5–26b). Proteins in the sample are adsorbed to an inert surface, usually a 96-well polystyrene plate. The surface is washed with a solution of an inexpensive nonspecific protein (often casein from nonfat dry milk powder) to block proteins introduced in subsequent steps from adsorbing to unoccupied sites. The surface is then treated with a solution containing the primary antibody—an antibody against the protein of interest. Unbound antibody is washed away, and the surface is treated with a solution containing a secondary antibody—antibody against the primary antibody—linked to an enzyme that catalyzes a reaction that forms a colored product. After unbound secondary antibody is washed away, the substrate of the antibody-linked enzyme is added. Product formation (monitored as color intensity) is proportional to the concentration of the protein of interest in the sample.

In an immunoblot assay (Fig. 5–26c), proteins that have been separated by gel electrophoresis are transferred electrophoretically to a nitrocellulose membrane. The membrane is blocked (as described above for ELISA), then treated successively with primary antibody, secondary antibody linked to enzyme, and substrate. A colored precipitate forms only along the band containing the protein of interest. Immunoblotting allows the detection of a minor component in a sample and provides an approximation of its molecular weight.

We will encounter other aspects of antibodies in later chapters. They are extremely important in medicine and can tell us much about the structure of proteins and the action of genes.

SUMMARY 5.2 Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins

- The immune response is mediated by interactions among an array of specialized leukocytes and their associated proteins. T lymphocytes produce T-cell receptors. B lymphocytes produce immunoglobulins. In a process called clonal selection, helper T cells induce the proliferation of B cells and cytotoxic T cells that produce immunoglobulins.
Humans have five classes of immunoglobulins, each with different biological functions. The most abundant class is IgG, a Y-shaped protein with two heavy and two light chains. The domains near the upper ends of the Y are hypervariable within the broad population of IgGs and form two antigen-binding sites.

- A given immunoglobulin generally binds to only a part, called the epitope, of a large antigen. Binding often involves a conformational change in the IgG, an induced fit to the antigen.

5.3 Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors

Organisms move. Cells move. Organelles and macromolecules within cells move. Most of these movements arise from the activity of a fascinating class of protein-based molecular motors. Fueled by chemical energy, usually derived from ATP, large aggregates of motor proteins undergo cyclic conformational changes that accumulate into a unified, directional force—the tiny force that pulls apart chromosomes in a dividing cell, and the immense force that levers a pouncing, quarter-ton jungle cat into the air.

The interactions among motor proteins, as you might predict, feature complementary arrangements of ionic, hydrogen-bonding, hydrophobic, and van der Waals interactions at protein binding sites. In motor proteins, however, these interactions achieve exceptionally high levels of spatial and temporal organization.

Motor proteins underlie the contraction of muscles, the migration of organelles along microtubules, the rotation of bacterial flagella, and the movement of some proteins along DNA. Proteins called kinesins and dyneins move along microtubules in cells, pulling along organelles or reorganizing chromosomes during cell division. An interaction of dynein with microtubules brings about the motion of eukaryotic flagella and cilia. Flagellar motion in bacteria involves a complex rotational motor at the base of the flagellum (see Fig. 19–39). Helicases, polymerases, and other proteins move along DNA as they carry out their functions in DNA metabolism (Chapter 25). Here, we focus on the well-studied example of the contractile proteins of vertebrate skeletal muscle as a paradigm for how proteins translate chemical energy into motion.

The Major Proteins of Muscle Are Myosin and Actin

The contractile force of muscle is generated by the interaction of two proteins, myosin and actin. These proteins are arranged in filaments that undergo transient interactions and slide past each other to bring about contraction. Together, actin and myosin make up more than 80% of the protein mass of muscle.

Myosin ($M_r 540,000$) has six subunits: two heavy chains (each of $M_r 220,000$) and four light chains (each of $M_r 20,000$). The heavy chains account for much of the overall structure. At their carboxyl termini, they are arranged as extended α helices, wrapped around each other in a fibrous, left-handed coiled coil similar to that of α-keratin (Fig. 5–27a). At its amino terminus, each

![Myosin](image)

- **FIGURE 5–27** Myosin. (a) Myosin has two heavy chains (in two shades of pink), the carboxyl termini forming an extended coiled coil (tail) and the amino termini having globular domains (heads). Two light chains (blue) are associated with each myosin head. (b) Cleavage with trypsin and papain separates the myosin heads (S1 fragments) from the tails. (c) Ribbon representation of the myosin S1 fragment (from coordinates supplied by Ivan Rayment). The heavy chain is in gray, the two light chains in two shades of blue.
Heavy chain has a large globular domain containing a site where ATP is hydrolyzed. The light chains are associated with the globular domains. When myosin is treated briefly with the protease trypsin, much of the fibrous tail is cleaved off, dividing the protein into components called light and heavy meromyosin (Fig. 5–27b). The globular domain—called myosin subfragment 1, or S1, or simply the myosin head group—is liberated from heavy meromyosin by cleavage with papain. The S1 fragment is the motor domain that makes muscle contraction possible. S1 fragments can be crystallized, and their overall structure as determined by Ivan Rayment and Hazel Holden is shown in Figure 5–27c.

In muscle cells, molecules of myosin aggregate to form structures called thick filaments (Fig. 5–28a). These rodlike structures are the core of the contractile unit. Within a thick filament, several hundred myosin molecules are arranged with their fibrous “tails” associated to form a long bipolar structure. The globular domains project from either end of this structure, in regular stacked arrays.

The second major muscle protein, actin, is abundant in almost all eukaryotic cells. In muscle, molecules of monomeric actin, called G-actin (globular actin; , 42,000), associate to form a long polymer called F-actin (filamentous actin). The thin filament consists of F-actin (Fig. 5–28b), along with the proteins troponin and tropomyosin (discussed below). The filamentous parts of thin filaments assemble as successive monomeric actin molecules add to one end. On addition, each monomer binds ATP, then hydrolyzes it to ADP, so every actin molecule in the filament is complexed to ADP. This ATP hydrolysis by actin functions only in the assembly of the filaments; it does not contribute directly to the energy expended in muscle contraction. Each actin monomer in the thin filament can bind tightly and specifically to one myosin head group (Fig. 5–28c).

Additional Proteins Organize the Thin and Thick Filaments into Ordered Structures

Skeletal muscle consists of parallel bundles of muscle fibers, each fiber a single, very large, multinucleated cell, 20 to 100 μm in diameter, formed from many cells fused together; a single fiber often spans the length of the muscle. Each fiber contains about 1,000 myofibrils, 2 μm in diameter, each consisting of a vast number of regularly arrayed thick and thin filaments complexed to other proteins (Fig. 5–29). A system of flat membranous vesicles called the sarcoplasmic reticulum surrounds each myofibril. Examined under the electron microscope, muscle fibers reveal alternating regions of high and low electron density, called the A bands and I bands (Fig. 5–29b, c). The A and I bands arise from the arrangement of thick and thin filaments, which are aligned and partially overlapping. The I band is the region of the bundle that in cross section would contain only thin filaments. The darker A band stretches the length of the thick filament and includes the region where parallel thick and thin filaments overlap. Bisecting the I band is a thin structure called the Z disk, perpendicular to the thin filaments and serving as an anchor to which the thin filaments are attached. The A band too is bisected by a thin line, the M line or M disk, a region of high electron density in the middle of the thick filaments. The entire contractile unit, consisting of bundles of thick filaments interleaved at either end with bundles of thin filaments, is called the sarcomere. The
5.3 Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors

(a) Muscle fibers consist of single, elongated, multinucleated cells that arise from the fusion of many precursor cells. The fibers are made up of many myofibrils (only six are shown here for simplicity) surrounded by the membranous sarcoplasmic reticulum. The organization of thick and thin filaments in a myofibril gives it a striped appearance. When muscle contracts, the I bands narrow and the Z disks come closer together, as seen in electron micrographs of (b) relaxed and (c) contracted muscle.

![Diagram of muscle fibers and myofibrils](image)

arrangement of interleaved bundles allows the thick and thin filaments to slide past each other (by a mechanism discussed below), causing a progressive shortening of each sarcomere (Fig. 5-30).

The thin actin filaments are attached at one end to the Z disk in a regular pattern. The assembly includes the minor muscle proteins α-actinin, desmin, and vimentin. Thin filaments also contain a large protein called nebulin (~7,000 amino acid residues), thought to be structured as an α helix that is long enough to span the length of the filament. The M line similarly organizes the thick filaments. It contains the proteins paramyosin, C-protein, and M-protein. Another class of proteins called titins, the largest single polypeptide chains discovered thus far (the titin of human cardiac muscle has 26,926 amino acid residues), link the thick filaments to the Z disk, providing additional organization to the overall structure. Among their structural functions, the proteins nebulin and titin are believed to act as “molecular rulers,” regulating the length of the thin and thick filaments, respectively. Titin extends from the Z disk to the M line, regulating the length of the sarcomere itself and preventing overextension of the muscle. The characteristic sarcomere length varies from one muscle tissue to the next in a vertebrate, largely due to the different titin variants in the tissues.

![Diagram of muscle contraction](image)

FIGURE 5-30 Muscle contraction. Thick filaments are bipolar structures created by the association of many myosin molecules. (a) Muscle contraction occurs by the sliding of the thick and thin filaments past each other so that the Z disks in neighboring I bands draw closer together. (b) The thick and thin filaments are interleaved such that each thick filament is surrounded by six thin filaments.
The interaction between actin and myosin, like that between all proteins and ligands, involves weak bonds. When ATP is not bound to myosin, a face on the myosin head group binds tightly to actin (Fig. 5–31). When ATP binds to myosin and is hydrolyzed to ADP and phosphate, a coordinated and cyclic series of conformational changes occurs in which myosin releases the F-actin subunit and binds another subunit farther along the thin filament.

The cycle has four major steps (Fig. 5–31). In step 1, ATP binds to myosin and a cleft in the myosin molecule opens, disrupting the actin-myosin interaction so that the bound actin is released. ATP is then hydrolyzed in step 2, causing a conformational change in the protein to a "high-energy" state that moves the myosin head and changes its orientation in relation to the actin thin filament. Myosin then binds weakly to an F-actin subunit closer to the Z disk than the one just released. As the phosphate product of ATP hydrolysis is released from myosin in step 3, another conformational change occurs in which the myosin cleft closes, strengthening the myosin-actin binding. This is followed quickly by step 4, a "power stroke" during which the conformation of the myosin head returns to the original resting state, its orientation relative to the bound actin changing so as to pull the tail of the myosin toward the Z disk. ADP is then released to complete the cycle. Each cycle generates about 3 to 4 pN (piconewtons) of force and moves the thick filament 5 to 10 nm relative to the thin filament.

Myosin Thick Filaments Slide along Actin Thin Filaments

Because there are many myosin heads in a thick filament, at any given moment some (probably 1% to 3%) are bound to thin filaments. This prevents thick filaments from slipping backward when an individual myosin head releases the actin subunit to which it was bound. The thick filament thus actively slides forward past the adjacent thin filaments. This process, coordinated among the many sarcomeres in a muscle fiber, brings about muscle contraction.

The interaction between actin and myosin must be regulated so that contraction occurs only in response to appropriate signals from the nervous system. The regulation is mediated by a complex of two proteins, tropomyosin and troponin (Fig. 5–32). Tropomyosin binds to the thin filament, blocking the attachment sites for the myosin head groups. Troponin is a Ca²⁺-binding protein. A nerve impulse causes release of Ca²⁺ from the sarcoplasmic reticulum. The released Ca²⁺ binds to troponin (another protein-ligand interaction) and causes a conformational change in the tropomyosin–tropomysosin complexes, exposing the myosin-binding sites on the thin filaments. Contraction follows.

Working skeletal muscle requires two types of molecular functions that are common in proteins—binding and catalysis. The actin-myosin interaction, a protein-ligand interaction like that of immunoglobulins with...
antigens, is reversible and leaves the participants unchanged. When ATP binds myosin, however, it is hydrolyzed to ADP and Pi. Myosin is not only an actin-binding protein, it is also an ATPase—an enzyme. The function of enzymes in catalyzing chemical transformations is the topic of the next chapter.

SUMMARY 5.3 Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors

- Protein-ligand interactions achieve a special degree of spatial and temporal organization in motor proteins. Muscle contraction results from choreographed interactions between myosin and actin, coupled to the hydrolysis of ATP by myosin.

- Myosin consists of two heavy and four light chains, forming a fibrous coiled coil (tail) domain and a globular (head) domain. Myosin molecules are organized into thick filaments, which slide past thin filaments composed largely of actin. ATP hydrolysis in myosin is coupled to a series of conformational changes in the myosin head, leading to dissociation of myosin from one F-actin subunit and its eventual reassociation with another, farther along the thin filament. The myosin thus slides along the actin filaments.

- Muscle contraction is stimulated by the release of Ca$^{2+}$ from the sarcoplasmic reticulum. The Ca$^{2+}$ binds to the protein troponin, leading to a conformational change in a troponin-tropomyosin complex that triggers the cycle of actin-myosin interactions.

Key Terms

Terms in bold are defined in the glossary.

- ligand 153
- binding site 153
- induced fit 153
- heme 154
- porphyrin 154
- globins 155
- equilibrium expression 155
- association constant, K_a 156
- dissociation constant, K_d 156
- allosteric protein 162
- Hill equation 164
- Bohr effect 166
- lymphocytes 170
- antibody 170
- immunoglobulin 170
- B lymphocytes or B cells 170
- T lymphocytes or T cells 170
- antigen 171
- epitope 171
- hapten 171
- monoclonal antibodies 173
- polyclonal antibodies 173
- ELISA 174
- myosin 175
- actin 176
- sarcomere 176

Further Reading

Oxygen-Binding Proteins

The paper that introduced the sequential model.

The concerted model was first proposed in this landmark paper.

A nice description of the imposing technical challenge of mimicking the highly evolved oxygen-transport function of blood.

Immune System Proteins

An interesting essay tracing the origins of our immune system.

in the partial pressure of CO₂ in the lungs from 6 kPa (holding drop in the pH of blood plasma from 7.4 to 7.2. (b) A decrease in the partial pressure of CO₂ in the lungs from 6 kPa (holding one's breath) to 2 kPa (normal). (c) An increase in the BPG level from 5 mM (normal altitudes) to 8 mM (high altitudes). (d) An increase in CO from 1 ppm parts per million (ppm) in a normal indoor atmosphere to 30 ppm in a home that has a malfunctioning or leaking furnace.

4. Reversible Ligand Binding The protein calcineurin binds to the protein calmodulin with an association rate of 8.9 × 10⁸ M⁻¹ s⁻¹ and an overall dissociation constant, K₆, of 10 nM. Calculate the dissociation rate, k₆, including appropriate units.

5. Cooperativity in Hemoglobin Under appropriate conditions, hemoglobin dissociates into its four subunits. The isolated α subunit binds oxygen, but the O₂-saturation curve is hyperbolic rather than sigmoid. In addition, the binding of oxygen to the isolated α subunit is not affected by the presence of H⁺, CO₂, or BPG. What do these observations indicate about the source of the cooperativity in hemoglobin?

6. Comparison of Fetal and Maternal Hemoglobins Studies of oxygen transport in pregnant mammals show that the O₂-saturation curves of fetal and maternal blood are markedly different when measured under the same conditions. Fetal erythrocytes contain a structural variant of hemoglobin, HbF, consisting of two α and two γ subunits (α₂γ₂), whereas maternal erythrocytes contain HbA (α₂β₂).

(a) Which hemoglobin has a higher affinity for oxygen under physiological conditions, HbA or HbF? Explain.

(b) What is the physiological significance of the different O₂ affinities?

(c) When all the BPG is carefully removed from samples of HbA and HbF, the measured O₂-saturation curves (and consequently the O₂ affinities) are displaced to the left. However, HbA now has a greater affinity for oxygen than does HbF. When BPG is reintroduced, the O₂-saturation curves return to normal, as shown in the graph. What is the effect of BPG on the O₂ affinity of hemoglobin? How can the above information be used to explain the different O₂ affinities of fetal and maternal hemoglobin?

Problems

1. Relationship between Affinity and Dissociation Constant Protein A has a binding site for ligand X with a K₆ of 10⁻⁶ M. Protein B has a binding site for ligand X with a K₆ of 10⁻⁸ M. Which protein has a higher affinity for ligand X? Explain your reasoning. Convert the K₆ for each protein.

2. Negative Cooperativity Which of the following situations would produce a Hill plot with n_Hig < 1.0? Explain your reasoning in each case.

(a) The protein has multiple subunits, each with a single ligand-binding site. Binding of ligand to one site decreases the binding affinity of other sites for the ligand.

(b) The protein is a single polypeptide with two ligand-binding sites, each having a different affinity for the ligand.

(c) The protein is a single polypeptide with a single ligand-binding site. As purified, the protein preparation is heterogeneous, containing some protein molecules that are partially denatured and thus have a lower binding affinity for the ligand.

3. Affinity for Oxygen of Hemoglobin What is the effect of the following changes on the O₂ affinity of hemoglobin? (a) A drop in the pH of blood plasma from 7.4 to 7.2. (b) A decrease in the partial pressure of CO₂ in the lungs from 6 kPa (holding one's breath) to 2 kPa (normal). (c) An increase in the BPG level from 5 mM (normal altitudes) to 8 mM (high altitudes). (d) An increase in CO from 1 ppm parts per million (ppm) in a normal indoor atmosphere to 30 ppm in a home that has a malfunctioning or leaking furnace.

7. Hemoglobin Variants There are almost 500 naturally occurring variants of hemoglobin. Most are the result of a single amino acid substitution in a globin polypeptide chain. Some variants produce clinical illness, though not all variants have deleterious effects. A brief sample follows.
HbS (sickle-cell Hb): substitutes a Val for a Glu on the surface
Hb Cowtown: eliminates an ion pair involved in T-state stabilization
Hb Memphis: substitutes one uncharged polar residue for another of similar size on the surface
Hb Bibba: substitutes a Pro for a Leu involved in an α helix
Hb Milwaukee: substitutes a Glu for a Val
Hb Providence: substitutes an Asn for a Lys that normally projects into the central cavity of the tetramer
Hb Philly: substitutes a Phe for a Tyr, disrupting hydrogen bonding at the αβ1 interface

Explain your choices for each of the following:
(a) The Hb variant least likely to cause pathological symptoms.
(b) The variant(s) most likely to show pI values different from that of HbA on an isoelectric focusing gel.
(c) The variant(s) most likely to show a decrease in BPG binding and an increase in the overall affinity of the hemoglobin for oxygen.

8. Oxygen Binding and Hemoglobin Structure A team of biochemists uses genetic engineering to modify the interface region between hemoglobin subunits. The resulting hemoglobin variants exist in solution primarily as αβ dimers (few, if any, ααββ tetramers form). Are these variants likely to bind oxygen more weakly or more tightly? Explain your answer.

9. Reversible (but Tight) Binding to an Antibody An antibody binds to an antigen with a K_d of 5 × 10^{-9} M. At what concentration of antigen will θ be (a) 0.2, (b) 0.5, (c) 0.6, (d) 0.8?

10. Using Antibodies to Probe Structure-Function Relationships in Proteins A monoclonal antibody binds to G-actin but not to F-actin. What does this tell you about the epitope recognized by the antibody?

11. The Immune System and Vaccines A host organism needs time, often days, to mount an immune response against a new antigen, but memory cells permit a rapid response to pathogens previously encountered. A vaccine to protect against a particular viral infection often consists of weakened or killed virus or isolated proteins from a viral protein coat. When injected into a human patient, the vaccine generally does not cause an infection and illness, but it effectively “teaches” the immune system what the viral particles look like, stimulating the production of memory cells. On subsequent infection, these cells can bind to the virus and trigger a rapid immune response. Some pathogens, including HIV, have developed mechanisms to evade the immune system, making it difficult or impossible to develop effective vaccines against them. What strategy could a pathogen use to evade the immune system? Assume that a host’s antibodies and/or T-cell receptors are available to bind to any structure that might appear on the surface of a pathogen and that, once bound, the pathogen is destroyed.

12. How We Become a “Stiff” When a vertebrate dies, its muscles stiffen as they are deprived of ATP, a state called rigor mortis. Explain the molecular basis of the rigor state.

13. Sarcomeres from Another Point of View The symmetry of thick and thin filaments in a sarcomere is such that six thin filaments ordinarily surround each thick filament in a hexagonal array. Draw a cross section (transverse cut) of a myofibril at the following points: (a) at the M line; (b) through the I band; (c) through the dense region of the A band; (d) through the less dense region of the A band, adjacent to the M line (see Fig. 5–29b, c).

14. Lysozyme and Antibodies To fully appreciate how proteins function in a cell, it is helpful to have a three-dimensional view of how proteins interact with other cellular components. Fortunately, this is possible using Web-based protein databases and three-dimensional molecular viewing utilities. Some molecular viewers require that you download a program or plug-in; some can be problematic when used with certain operating systems or browsers; some require the use of command-line code; some have a more user-friendly interface. We suggest you go to www.umass.edu/microbio/rasmol and look at the information about RasMol, Protein Explorer, and Jmol First Glance. Choose the viewer most compatible with your operating system, browser, and level of expertise. Then download and install any software or plug-ins you may need.

In this exercise you will examine the interactions between the enzyme lysozyme (Chapter 4) and the Fab portion of the anti-lysozyme antibody. Use the PDB identifier 1FDL to explore the structure of the IgG1 Fab fragment–lysozyme complex (antibody-antigen complex). To answer the following questions, use the information on the Structure Summary page at the Protein Data Bank (www.rcsb.org), and view the structure using RasMol, Protein Explorer, or Jmol First Glance.
(a) Which chains in the three-dimensional model correspond to the antibody fragment and which correspond to the antigen, lysozyme?
(b) What type of secondary structure predominates in this Fab fragment?
(c) How many amino acid residues are in the heavy and light chains of the Fab fragment? In lysozyme? Estimate the percentage of the lysozyme that interacts with the antigen-binding site of the antibody fragment.
(d) Identify the specific amino acid residues in lysozyme and in the variable regions of the Fab heavy and light chains that are situated at the antigen-antibody interface. Are the residues contiguous in the primary sequence of the polypeptide chains?

15. Exploring Reversible Interactions of Proteins and Ligands with Living Graphs Use the living graphs for Equations 5–8, 5–11, 5–14, and 5–16 to work through the following exercises.
(a) Reversible binding of a ligand to a simple protein, without cooperativity. For Equation 5–8, set up a plot of θ versus [L] (vertical and horizontal axes, respectively). Examine the plots generated when K_d is set at 5, 10, 20, and 100 μM. Higher affinity of the protein for the ligand means more binding at lower ligand concentrations. Suppose that four different proteins exhibit these four different K_d values for ligand L. Which protein would have the highest affinity for L?
Examined the plot generated when $K_d = 10 \mu M$. How much does θ increase when $[L]$ increases from 0.2 to 0.4 μM? How much does θ increase when $[L]$ increases from 40 to 80 μM?

You can do the same exercise for Equation 5-11. Convert $[L]$ to pO$_2$ and K_d to P_{50}. Examine the curves generated when P_{50} is set at 0.5, 1, 2, and 10 kPa. For the curve generated when $P_{50} = 1$ kPa, how much does θ change when the pO$_2$ increases from 0.02 to 0.04 kPa? From 4 to 8 kPa?

(b) Cooperative binding of a ligand to a multisubunit protein. Using Equation 5-14, generate a binding curve for a protein and ligand with $K_d = 10 \mu M$ and $n = 3$. Note the altered definition of K_d in Equation 5-16. On the same plot, add a curve for a protein with $K_d = 20 \mu M$ and $n = 3$. Now see how both curves change when you change to $n = 4$. Generate Hill plots (Eqn 5-16) for each of these cases. For $K_d = 10 \mu M$ and $n = 3$, what is θ when $[L] = 20 \mu M$?

(c) Explore these equations further by varying all the parameters used above.

Data Analysis Problem

16. Protein Function During the 1980s, the structures of actin and myosin were known only at the resolution shown in Figure 5-28a, b. Although researchers knew that the S1 portion of myosin binds to actin and hydrolyzes ATP, there was a substantial debate about where in the myosin molecule the contractile force was generated. At the time, two competing models were proposed for the mechanism of force generation in myosin.

In the “hinge” model, S1 bound to actin, but the pulling force was generated by contraction of the “hinge region” in the myosin tail. The hinge region is in the heavy meromyosin portion of the myosin molecule, near where trypsin cleaves off light meromyosin (see Fig. 5-27b). This is roughly the point labeled “Two supercoiled α helices” in Figure 5-27a. In the “S1” model, the pulling force was generated in the S1 “head” itself and the tail was just for structural support.

Many experiments had been performed but provided no conclusive evidence. In 1987, James Spudich and his colleagues at Stanford University published a study that, although not conclusive, went a long way toward resolving this controversy.

Recombinant DNA techniques were not sufficiently developed to address this issue in vivo, so Spudich and colleagues used an interesting in vitro motility assay. The alga *Nitella* has extremely long cells, often several centimeters in length and about 1 mm in diameter. These cells have actin fibers that run along their long axes, and the cells can be cut open along their length to expose the actin fibers. Spudich and his group had observed that plastic beads coated with myosin would “walk” along these fibers in the presence of ATP, just as myosin would do in contracting muscle.

For these experiments, they used a more well-defined method for attaching the myosin to the beads. The “beads” were clumps of killed bacterial (Staphylococcus aureus) cells. These cells have a protein on their surface that binds to the Fc region of antibody molecules (Fig. 5-21a). The antibodies, in turn, bind to several (unknown) places along the tail of the myosin molecule. When bead-antibody-myosin complexes were prepared with intact myosin molecules, they would move along *Nitella* actin fibers in the presence of ATP.

(a) Sketch a diagram showing what a bead-antibody-myosin complex might look like at the molecular level.

(b) Why was ATP required for the beads to move along the actin fibers?

(c) Spudich and coworkers used antibodies that bound to the myosin tail. Why would this experiment have failed if they had used an antibody that bound to the part of S1 that normally binds to actin? Why would this experiment have failed if they had used an antibody that bound to actin?

To help focus in on the part of myosin responsible for force production, Spudich and his colleagues used trypsin to produce two partial myosin molecules (see Fig. 5-27): (1) heavy meromyosin (HMM), made by briefly digesting myosin with trypsin; HMM consists of S1 and the part of the tail that includes the hinge; and (2) short heavy meromyosin (SHMM), made from a more extensive digestion of HMM with trypsin; SHMM consists of S1 and a shorter part of the tail that does not include the hinge. Brief digestion of myosin with trypsin produces HMM and light meromyosin (Fig. 5-27), by cleavage of a single specific peptide bond in the myosin molecule.

(d) Why might trypsin attack this peptide bond first rather than other peptide bonds in myosin?

Spudich and colleagues prepared bead-antibody-myosin complexes with varying amounts of myosin, HMM, and SHMM, and measured their speeds along *Nitella* actin fibers in the presence of ATP. The graph below sketches their results.

(e) Which model (“S1” or “hinge”) is consistent with these results? Explain your reasoning.

(f) Provide a plausible explanation for why the speed of the beads increased with increasing myosin density.

(g) Provide a plausible explanation for why the speed of the beads reached a plateau at high myosin density.

The more extensive trypsin digestion required to produce SHMM had a side effect: another specific cleavage of the myosin polypeptide backbone in addition to the cleavage in the tail. This second cleavage was in the S1 head.

(h) Based on this information, why is it surprising that SHMM was still capable of moving beads along actin fibers?

(i) As it turns out, the tertiary structure of the S1 head remains intact in SHMM. Provide a plausible explanation of how the protein remains intact and functional even though the polypeptide backbone has been cleaved and is no longer continuous.

Reference

There are two fundamental conditions for life. First, the organism must be able to self-replicate (a topic considered in Part III); second, it must be able to catalyze chemical reactions efficiently and selectively. The central importance of catalysis may seem surprising, but it is easy to demonstrate. As described in Chapter 1, living systems make use of energy from the environment. Many of us, for example, consume substantial amounts of sucrose—common table sugar—as a kind of fuel, usually in the form of sweetened foods and drinks. The conversion of sucrose to CO$_2$ and H$_2$O in the presence of oxygen is a highly exergonic process, releasing free energy that we can use to think, move, taste, and see. However, a bag of sugar can remain on the shelf for years without any obvious conversion to CO$_2$ and H$_2$O. Although this chemical process is thermodynamically favorable, it is very slow! Yet when sucrose is consumed by a human (or almost any other organism), it releases its chemical energy in seconds. The difference is catalysis. Without catalysis, chemical reactions such as sucrose oxidation could not occur on a useful time scale, and thus could not sustain life.

In this chapter, then, we turn our attention to the reaction catalysts of biological systems: the enzymes, the most remarkable and highly specialized proteins. Enzymes have extraordinary catalytic power, often far greater than that of synthetic or inorganic catalysts. They have a high degree of specificity for their substrates, they accelerate chemical reactions tremendously, and they function in aqueous solutions under very mild conditions of temperature and pH. Few nonbiological catalysts have all these properties.

Enzymes are central to every biochemical process. Acting in organized sequences, they catalyze the hundreds of stepwise reactions that degrade nutrient molecules, conserve and transform chemical energy, and make biological macromolecules from simple precursors. The study of enzymes has immense practical importance. In some diseases, especially inheritable genetic disorders, there may be a deficiency or even a total absence of one or more enzymes. Other disease conditions may be caused by excessive activity of an enzyme. Measurements of the activities of enzymes in blood plasma, erythrocytes, or tissue samples are important in diagnosing certain illnesses. Many drugs act through interactions with enzymes. Enzymes are also important practical tools in chemical engineering, food technology, and agriculture.

We begin with descriptions of the properties of enzymes and the principles underlying their catalytic power, then introduce enzyme kinetics, a discipline that provides much of the framework for any discussion of enzymes. Specific examples of enzyme mechanisms are then provided, illustrating principles introduced earlier in the chapter. We end with a discussion of how enzyme activity is regulated.

6.1 An Introduction to Enzymes

Much of the history of biochemistry is the history of enzyme research. Biological catalysis was first recognized and described in the late 1700s, in studies on the digestion of meat by secretions of the stomach. Research continued in the 1800s with examinations of the conversion of starch to sugar by saliva and various plant
Enzymes, like other proteins, have molecular weights ranging from about 12,000 to more than 1 million. Some enzymes require no chemical groups for activity other than their amino acid residues. Others require an additional chemical component called a cofactor—either one or more inorganic ions, such as Fe^{2+}, Mg^{2+}, Mn^{2+}, or Zn^{2+} (Table 6-1), or a complex organic or metalloorganic molecule called a coenzyme. Coenzymes act as transient carriers of specific functional groups (Table 6-2). Most are derived from vitamins, organic nutrients required in small amounts in the diet. We consider coenzymes in more detail as we encounter them in the metabolic pathways discussed in Part II. Some enzymes require both a coenzyme and one or more metal ions for activity. A coenzyme or metal ion that is very tightly or even covalently bound to the enzyme protein is called a prosthetic group. A complete, catalytically active enzyme together with its bound coenzyme and/or metal ions is called a holoenzyme. The protein part of such an enzyme is called the apoenzyme or apoprotein. Finally, some enzyme proteins are modified covalently by phosphorylation, glycosylation, and other processes. Many of these alterations are involved in the regulation of enzyme activity.

Enzymes Are Classified by the Reactions They Catalyze

Many enzymes have been named by adding the suffix "-ase" to the name of their substrate or to a word or phrase describing their activity. Thus urease catalyzes hydrolysis of urea, and DNA polymerase catalyzes the polymerization of nucleotides to form DNA. Other enzymes were named by their discoverers for a broad function, before the specific reaction catalyzed was

Most Enzymes Are Proteins

With the exception of a small group of catalytic RNA molecules (Chapter 26), all enzymes are proteins. Their catalytic activity depends on the integrity of their native protein conformation. If an enzyme is denatured or dissociated into its subunits, catalytic activity is usually lost. If an enzyme is broken down into its component amino acids, its catalytic activity is always destroyed. Thus the primary, secondary, tertiary, and quaternary structures of protein enzymes are essential to their catalytic activity.

TABLE 6-1

<table>
<thead>
<tr>
<th>Ions</th>
<th>Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu^{2+}</td>
<td>Cytochrome oxidase</td>
</tr>
<tr>
<td>Fe^{2+} or Fe^{3+}</td>
<td>Cytochrome oxidase, catalase, peroxidase</td>
</tr>
<tr>
<td>K^{+}</td>
<td>Pyruvate kinase</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>Hexokinase, glucose 6-phosphatase, pyruvate kinase</td>
</tr>
<tr>
<td>Mn^{2+}</td>
<td>Arginase, ribonucleotide reductase</td>
</tr>
<tr>
<td>Mo</td>
<td>Dinitrogenase</td>
</tr>
<tr>
<td>Ni^{2+}</td>
<td>Urease</td>
</tr>
<tr>
<td>Se</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>Zn^{2+}</td>
<td>Carbonic anhydrase, alcohol dehydrogenase, carboxypeptidases A and B</td>
</tr>
</tbody>
</table>
6.1 An Introduction to Enzymes

Coenzyme Examples of chemical groups transferred Dietary precursor in mammals

<table>
<thead>
<tr>
<th>Coenzyme</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocytin</td>
<td>CO₂</td>
<td>Biotin</td>
<td></td>
</tr>
<tr>
<td>Coenzyme A</td>
<td>Acyl groups</td>
<td>Pantothenic acid and other compounds</td>
<td></td>
</tr>
<tr>
<td>5'-Deoxyadenosylcobalamin (coenzyme B₁₂)</td>
<td>H atoms and alkyl groups</td>
<td>Vitamin B₁₂</td>
<td></td>
</tr>
<tr>
<td>Flavin adenine dinucleotide</td>
<td>Electrons</td>
<td>Riboflavin (vitamin B₂)</td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>Electrons and acyl groups</td>
<td>Nicotinic acid (niacin)</td>
<td></td>
</tr>
<tr>
<td>Nicotinamide adenine dinucleotide</td>
<td>Hydride ion (H⁻)</td>
<td>Pyridoxine (vitamin B₆)</td>
<td></td>
</tr>
<tr>
<td>Pyridoxal phosphate</td>
<td>Amino groups</td>
<td>Folate</td>
<td></td>
</tr>
<tr>
<td>Tetrahydrofolate</td>
<td>One-carbon groups</td>
<td>Thiamine (vitamin B₁)</td>
<td></td>
</tr>
<tr>
<td>Thiamine pyrophosphate</td>
<td>Aldehydes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The structures and modes of action of these coenzymes are described in Part II.

known. For example, an enzyme known to act in the digestion of foods was named pepsin, from the Greek pepsis, "digestion," and lysozyme was named for its ability to lyse (break down) bacterial cell walls. Still others were named for their source: trypsin, named in part from the Greek tryein, "to wear down," was obtained by rubbing pancreatic tissue with glycerin. Sometimes the same enzyme has two or more names, or two different enzymes have the same name. Because of such ambiguities, and the ever-increasing number of newly discovered enzymes, biochemists, by international agreement, have adopted a system for naming and classifying enzymes. This system divides enzymes into six classes, each with subclasses, based on the type of reaction catalyzed (Table 6-3). Each enzyme is assigned a four-part classification number and a systematic name, which identifies the reaction it catalyzes. As an example, the formal systematic name of the enzyme catalyzing the reaction

\[
\text{ATP + D-glucose} \rightarrow \text{ADP + D-glucose 6-phosphate}
\]

is ATP-glucose phosphotransferase, which indicates that it catalyzes the transfer of a phosphoryl group from ATP to glucose. Its Enzyme Commission number (E.C. number) is 2.7.1.1. The first number (2) denotes the class name (transferase); the second number (7), the subclass (phosphotransferase); the third number (1), a phosphotransferase with a hydroxyl group as acceptor; and the fourth number (1), D-glucose as the phosphoryl group acceptor. For many enzymes, a common name is more frequently used—in this case hexokinase. A complete list and description of the thousands of known enzymes is maintained by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (www.chem.qmul.ac.uk/iubmb/enzyme). This chapter is devoted primarily to principles and properties common to all enzymes.

SUMMARY 6.1 An Introduction to Enzymes

- Life depends on powerful and specific catalysts: the enzymes. Almost every biochemical reaction is catalyzed by an enzyme.
- With the exception of a few catalytic RNAs, all known enzymes are proteins. Many require nonprotein coenzymes or cofactors for their catalytic function.
- Enzymes are classified according to the type of reaction they catalyze. All enzymes have formal E.C. numbers and names, and most have trivial names.

TABLE 6-3 International Classification of Enzymes

<table>
<thead>
<tr>
<th>Class no.</th>
<th>Class name</th>
<th>Type of reaction catalyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxidoreductases</td>
<td>Transfer of electrons (hydride ions or H atoms)</td>
</tr>
<tr>
<td>2</td>
<td>Transferases</td>
<td>Group transfer reactions</td>
</tr>
<tr>
<td>3</td>
<td>Hydrolases</td>
<td>Hydrolysis reactions (transfer of functional groups to water)</td>
</tr>
<tr>
<td>4</td>
<td>Lyases</td>
<td>Addition of groups to double bonds, or formation of double bonds by removal of groups</td>
</tr>
<tr>
<td>5</td>
<td>Isomerases</td>
<td>Transfer of groups within molecules to yield isomeric forms</td>
</tr>
<tr>
<td>6</td>
<td>Ligases</td>
<td>Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor</td>
</tr>
</tbody>
</table>
Enzymes

6.1 Enzyme Catalysis

The enzymatic catalysis of reactions is essential to living systems. Under biologically relevant conditions, uncatalyzed reactions tend to be slow—most biological molecules are quite stable in the neutral-pH, mild-temperature, aqueous environment inside cells. Furthermore, many common chemical processes are unfavorable or unlikely in the cellular environment, such as the transient formation of unstable charged intermediates or the collision of two or more molecules in the precise orientation required for reaction. Reactions required to digest food, send nerve signals, or contract a muscle simply do not occur at a useful rate without catalysis.

An enzyme circumvents these problems by providing a specific environment within which a given reaction can occur more rapidly. The distinguishing feature of an enzyme-catalyzed reaction is that it takes place within the confines of a pocket on the enzyme called the active site (Fig. 6–1). The molecule that is bound in the active site and acted upon by the enzyme is called the substrate. The surface of the active site is lined with amino acid residues with substituent groups that bind the substrate and catalyze its chemical transformation. Often, the active site encloses a substrate, sequestering it completely from solution. The enzyme-substrate complex, whose existence was first proposed by Charles-Adolphe Wurtz in 1880, is central to the action of enzymes. It is also the starting point for mathematical treatments that define the kinetic behavior of enzyme-catalyzed reactions and for theoretical descriptions of enzyme mechanisms.

6.2 How Enzymes Work

The enzymatic catalysis of reactions is essential to living systems. Under biologically relevant conditions, uncatalyzed reactions tend to be slow—most biological molecules are quite stable in the neutral-pH, mild-temperature, aqueous environment inside cells. Furthermore, many common chemical processes are unfavorable or unlikely in the cellular environment, such as the transient formation of unstable charged intermediates or the collision of two or more molecules in the precise orientation required for reaction. Reactions required to digest food, send nerve signals, or contract a muscle simply do not occur at a useful rate without catalysis.

An enzyme circumvents these problems by providing a specific environment within which a given reaction can occur more rapidly. The distinguishing feature of an enzyme-catalyzed reaction is that it takes place within the confines of a pocket on the enzyme called the active site (Fig. 6–1). The molecule that is bound in the active site and acted upon by the enzyme is called the substrate. The surface of the active site is lined with amino acid residues with substituent groups that bind the substrate and catalyze its chemical transformation. Often, the active site encloses a substrate, sequestering it completely from solution. The enzyme-substrate complex, whose existence was first proposed by Charles-Adolphe Wurtz in 1880, is central to the action of enzymes. It is also the starting point for mathematical treatments that define the kinetic behavior of enzyme-catalyzed reactions and for theoretical descriptions of enzyme mechanisms.

Enzymes Affect Reaction Rates, Not Equilibria

A simple enzymatic reaction might be written

\[E + S \rightleftharpoons ES \rightleftharpoons EP \rightleftharpoons E + P \]

(6–1)

where E, S, and P represent the enzyme, substrate, and product; ES and EP are transient complexes of the enzyme with the substrate and with the product.

To understand catalysis, we must first appreciate the important distinction between reaction equilibria and reaction rates. The function of a catalyst is to increase the rate of a reaction. Catalysts do not affect reaction equilibria. Any reaction, such as \(S \rightleftharpoons P \), can be described by a reaction coordinate diagram (Fig. 6–2), a picture of the energy changes during the reaction. As discussed in Chapter 1, energy in biological systems is described in terms of free energy, \(G \). In the coordinate diagram, the free energy of the system is plotted against the progress of the reaction (the reaction coordinate). The starting point for either the forward or the reverse reaction is called the ground state, the contribution to the free energy of the system by an average molecule (S or P) under a given set of conditions.

KEY CONVENTION: To describe the free-energy changes for reactions, chemists define a standard set of conditions (temperature 298 K; partial pressure of each gas 1 atm, or 101.3 kPa; concentration of each solute 1 M) and express the free-energy change for a reacting system under these conditions as \(\Delta G^\circ \), the standard free-energy change. Because biochemical systems commonly involve \(H^+ \) concentrations far below 1 M, biochemists define a biochemical standard free-energy change, \(\Delta G^\circ_b \), the standard free-energy change at pH 7.0; we employ this definition throughout the book. A more complete definition of \(\Delta G^\circ_b \) is given in Chapter 13.

The equilibrium between S and P reflects the difference in the free energies of their ground states. In the example shown in Figure 6–2, the free energy of the ground state of P is lower than that of S, so \(\Delta G^\circ_b \) for the reaction is negative and the equilibrium favors P. The position and direction of equilibrium are not affected by any catalyst.

FIGURE 6–2 Reaction coordinate diagram. The free energy of the system is plotted against the progress of the reaction S \(\rightarrow \) P. A diagram of this kind is a description of the energy changes during the reaction, and the horizontal axis (reaction coordinate) reflects the progressive chemical changes (e.g., bond breakage or formation) as S is converted to P. The activation energies, \(\Delta G^\ast \), for the S \(\rightarrow \) P and P \(\rightarrow \) S reactions are indicated. \(\Delta G^\circ \) is the overall standard free-energy change in the direction S \(\rightarrow \) P.
A favorable equilibrium does not mean that the $S \rightarrow P$ conversion will occur at a detectable rate. The rate of a reaction is dependent on an entirely different parameter. There is an energy barrier between S and P: the energy required for alignment of reacting groups, formation of transient unstable charges, bond rearrangements, and other transformations required for the reaction to proceed in either direction. This is illustrated by the energy “hill” in Figures 6–2 and 6–3. To undergo reaction, the molecules must overcome this barrier and therefore must be raised to a higher energy level. At the top of the energy hill is a point at which decay to the S or P state is equally probable (it is downhill either way). This is called the transition state. The transition state is not a chemical species with any significant stability and should not be confused with a reaction intermediate (such as ES or EP). It is simply a fleeting molecular moment in which events such as bond breakage, bond formation, and charge development have proceeded to the precise point at which decay to either substrate or product is equally likely. The difference between the energy levels of the ground state and the transition state is the activation energy, ΔG^\ddagger. The rate of a reaction reflects this activation energy: a higher activation energy corresponds to a slower reaction. Reaction rates can be increased by raising the temperature and/or pressure, thereby increasing the number of molecules with sufficient energy to overcome the energy barrier. Alternatively, the activation energy can be lowered by adding a catalyst (Fig. 6–3). Catalysts enhance reaction rates by lowering activation energies.

Enzymes are no exception to the rule that catalysts do not affect reaction equilibria. The bidirectional arrows in Equation 6–1 make this point: any enzyme that catalyzes the reaction $S \rightarrow P$ also catalyzes the reaction $P \rightarrow S$. The role of enzymes is to accelerate the interconversion of S and P. The enzyme is not used up in the process, and the equilibrium point is unaffected. However, the reaction reaches equilibrium much faster when the appropriate enzyme is present, because the rate of the reaction is increased.

This general principle is illustrated in the conversion of sucrose and oxygen to carbon dioxide and water:

$$C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$$

This conversion, which takes place through a series of separate reactions, has a very large and negative ΔG^\ddagger, and at equilibrium the amount of sucrose present is negligible. Yet sucrose is a stable compound, because the activation energy barrier that must be overcome before sucrose reacts with oxygen is quite high. Sucrose can be stored in a container with oxygen almost indefinitely without reacting. In cells, however, sucrose is readily broken down to CO_2 and H_2O in a series of reactions catalyzed by enzymes. These enzymes not only accelerate the reactions, they organize and control them so that much of the energy released is recovered in other chemical forms and made available to the cell for other tasks. The reaction pathway by which sucrose (and other sugars) is broken down is the primary energy-yielding pathway for cells, and the enzymes of this pathway allow the reaction sequence to proceed on a biologically useful time scale.

Any reaction may have several steps, involving the formation and decay of transient chemical species called reaction intermediates. A reaction intermediate is any species on the reaction pathway that has a finite chemical lifetime (longer than a molecular vibration, $\sim 10^{-13}$ seconds). When the $S \Rightarrow P$ reaction is catalyzed by an enzyme, the ES and EP complexes can be considered intermediates, even though S and P are stable chemical species (Eqn 6–1); the ES and EP complexes occupy valleys in the reaction coordinate diagram (Fig. 6–3). Additional, less stable chemical intermediates often exist in the course of an enzyme-catalyzed reaction. The interconversion of two sequential reaction intermediates thus constitutes a reaction step. When several steps occur in a reaction, the overall rate is determined by the step (or steps) with the highest activation energy; this is called the rate-limiting step. In a simple case, the rate-limiting step is the highest-energy point in the diagram for interconversion of S and P. In practice, the rate-limiting step can vary with reaction conditions, and for many enzymes several steps may have similar activation energies, which means they are all partially rate-limiting.

Activation energies are energy barriers to chemical reactions. These barriers are crucial to life itself. The rate at which a molecule undergoes a particular reaction

![Figure 6-3](image)
Enzymes decrease as the activation barrier for that reaction increases. Without such energy barriers, complex macromolecules would revert spontaneously to much simpler molecular forms, and the complex and highly ordered structures and metabolic processes of cells could not exist. Over the course of evolution, enzymes have developed to lower activation energies selectively for reactions that are needed for cell survival.

Reaction Rates and Equilibria Have Precise Thermodynamic Definitions

Reaction *equilibria* are inextricably linked to the standard free-energy change for the reaction, ΔG°, and reaction *rates* are linked to the activation energy, ΔG^\ddagger. A basic introduction to these thermodynamic relationships is the next step in understanding how enzymes work.

An equilibrium such as $S \rightleftharpoons P$ is described by an *equilibrium constant*, K_{eq}, or simply K (p. 24). Under the standard conditions used to compare biochemical processes, an equilibrium constant is denoted K'_{eq} (or K'):

$$K'_{eq} = \frac{[P]}{[S]} \quad (6-2)$$

From thermodynamics, the relationship between K'_{eq} and ΔG° can be described by the expression

$$\Delta G^{\circ} = -RT \ln K'_{eq} \quad (6-3)$$

where R is the gas constant, 8.315 J/mol · K, and T is the absolute temperature, 298 K (25 °C). Equation 6–3 is developed and discussed in more detail in Chapter 13. The important point here is that the equilibrium constant is directly related to the overall standard free-energy change for the reaction (Table 6–4). A large negative value for ΔG° reflects a favorable reaction equilibrium—but as already noted, this does not mean the reaction will proceed at a rapid rate.

<table>
<thead>
<tr>
<th>K'_{eq}</th>
<th>ΔG° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6}</td>
<td>34.2</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>28.5</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>22.8</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>17.1</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>11.4</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>10^{1}</td>
<td>-5.7</td>
</tr>
<tr>
<td>10^{2}</td>
<td>-11.4</td>
</tr>
<tr>
<td>10^{3}</td>
<td>-17.1</td>
</tr>
</tbody>
</table>

Note: The relationship is calculated from $\Delta G^{\circ} = -RT \ln K'_{eq}$ (Eqn 6-3).

The rate of any reaction is determined by the concentration of the reactant (or reactants) and by a rate constant, usually denoted by k. For the unimolecular reaction $S \rightarrow P$, the rate (or velocity) of the reaction, V—representing the amount of S that reacts per unit time—is expressed by a rate equation:

$$V = k[S] \quad (6-4)$$

In this reaction, the rate depends only on the concentration of S. This is called a first-order reaction. The factor k is a proportionality constant that reflects the probability of reaction under a given set of conditions (pH, temperature, and so forth). Here, k is a first-order rate constant and has units of reciprocal time, such as s^{-1}. If a first-order reaction has a rate constant k of $0.03 \, s^{-1}$, this may be interpreted (qualitatively) to mean that 3% of the available S will be converted to P in 1 s. A reaction with a rate constant of $2,000 \, s^{-1}$ will be over in a small fraction of a second. If a reaction rate depends on the concentration of two different compounds, or if the reaction is between two molecules of the same compound, the reaction is second order and k is a second-order rate constant, with units of $M^{-1}s^{-1}$. The rate equation then becomes

$$V = k[S_1][S_2] \quad (6-5)$$

From transition-state theory we can derive an expression that relates the magnitude of a rate constant to the activation energy:

$$k = \frac{kT}{h} e^{-\Delta G^\ddagger/RT} \quad (6-6)$$

where k is the Boltzmann constant and h is Planck’s constant. The important point here is that the relationship between the rate constant k and the activation energy ΔG^\ddagger is inverse and exponential. In simplified terms, this is the basis for the statement that a lower activation energy means a faster reaction rate.

Now we turn from what enzymes do to how they do it.

A Few Principles Explain the Catalytic Power and Specificity of Enzymes

Enzymes are extraordinary catalysts. The rate enhancements they bring about are in the range of 5 to 17 orders of magnitude (Table 6–5). Enzymes are also very specific, readily discriminating between substrates with quite similar structures. How can these enormous and highly selective rate enhancements be explained? What is the source of the energy for the dramatic lowering of the activation energies for specific reactions?

The answer to these questions has two distinct but interwoven parts. The first lies in the rearrangement of covalent bonds during an enzyme-catalyzed reaction. Chemical reactions of many types take place between substrates and enzymes’ functional groups (specific amino acid side chains, metal ions, and coenzymes). Catalytic functional groups on an enzyme may form a transient
covalent bond with a substrate and activate it for reaction, or a group may be transiently transferred from the substrate to the enzyme. In many cases, these reactions occur only in the enzyme active site. Covalent interactions between enzymes and substrates lower the activation energy (and thereby accelerate the reaction) by providing an alternative, lower-energy reaction path. The specific types of rearrangements that occur are described in Section 6.4.

The second part of the explanation lies in the noncovalent interactions between enzyme and substrate. Much of the energy required to lower activation energies is derived from weak, noncovalent interactions between substrate and enzyme. What really sets enzymes apart from most other catalysts is the formation of a specific ES complex. The interaction between substrate and enzyme in this complex is mediated by the same forces that stabilize protein structure, including hydrogen bonds and hydrophobic and ionic interactions (Chapter 4). Formation of each weak interaction in the ES complex is accompanied by release of a small amount of free energy that stabilizes the interaction. The energy derived from enzyme-substrate interaction is called binding energy, ΔG_B. Its significance extends beyond a simple stabilization of the enzyme-substrate interaction. Binding energy is a major source of free energy used by enzymes to lower the activation energies of reactions.

Two fundamental and interrelated principles provide a general explanation for how enzymes use noncovalent binding energy:

1. Much of the catalytic power of enzymes is ultimately derived from the free energy released in forming many weak bonds and interactions between an enzyme and its substrate. This binding energy contributes to specificity as well as to catalysis.

2. Weak interactions are optimized in the reaction transition state; enzyme active sites are complementary not to the substrates per se but to the transition states through which substrates pass as they are converted to products during an enzymatic reaction.

These themes are critical to an understanding of enzymes, and they now become our primary focus.

Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State

How does an enzyme use binding energy to lower the activation energy for a reaction? Formation of the ES complex is not the explanation in itself, although some of the earliest considerations of enzyme mechanisms began with this idea. Studies on enzyme specificity carried out by Emil Fischer led him to propose, in 1894, that enzymes were structurally complementary to their substrates, so that they fit together like a lock and key (Fig. 6-4). This elegant idea, that a specific (exclusive) interaction between two biological molecules is mediated by molecular surfaces with complementary shapes, has greatly influenced the development of biochemistry, and such interactions lie at the heart of many biochemical processes. However, the “lock and key” hypothesis can be misleading when applied to enzymatic catalysis. An enzyme completely complementary to its substrate would be a very poor enzyme, as we can demonstrate.

FIGURE 6-4 Complementary shapes of a substrate and its binding site on an enzyme. The enzyme dihydrofolate reductase with its substrate NADP^+ (red), unbound (top) and bound (bottom); another bound substrate, tetrahydrofolate (yellow), is also visible (PDB ID 1RA2). In this model, the NADP^+ binds to a pocket that is complementary to it in shape and ionic properties, an illustration of Emil Fischer’s “lock and key” hypothesis of enzyme action. In reality, the complementarity between protein and ligand (in this case substrate) is rarely perfect, as we saw in Chapter 5.
Consider an imaginary reaction, the breaking of a magnetized metal stick. The uncatalyzed reaction is shown in Figure 6–5a. Let’s examine two imaginary enzymes—two “stickases”—that could catalyze this reaction, both of which employ magnetic forces as a paradigm for the binding energy used by real enzymes. We first design an enzyme perfectly complementary to the substrate (Fig. 6–5b). The active site of this stickase is a pocket lined with magnets. To react (break), the stick must reach the transition state of the reaction, but the stick fits so tightly in the active site that it cannot bend, because bending would eliminate some of the magnetic interactions between stick and enzyme. Such an enzyme impedes the reaction, stabilizing the substrate instead. In a reaction coordinate diagram (Fig. 6–5b), this kind of ES complex would correspond to an energy trough from which the substrate would have difficulty escaping. Such an enzyme would be useless.

The modern notion of enzymatic catalysis, first proposed by Michael Polanyi (1921) and Haldane (1930), was elaborated by Linus Pauling in 1946: in order to catalyze reactions, an enzyme must be complementary to the reaction transition state. This means that optimal interactions between substrate and enzyme occur only in the transition state. Figure 6–5c demonstrates how such an enzyme can work. The metal stick binds to the stickase, but only a subset of the possible magnetic interactions are used in forming the ES complex. The bound substrate must still undergo the increase in free energy needed to reach the transition state. Now, however, the increase in free energy required to draw the stick into a bent and partially broken conformation is offset, or “paid for,” by the magnetic interactions (binding energy) that form between the enzyme and substrate in the transition state. Many of these interactions involve parts of the stick that are distant from the point of breakage; thus interactions between the stickase and nonreacting parts of the stick provide some of the energy needed to catalyze stick breakage. This “energy payment” translates into a lower net activation energy and a faster reaction rate.

![Diagram](image-url)

Figure 6–5 An imaginary enzyme (stickase) designed to catalyze breakage of a metal stick. (a) Before the stick is broken, it must first be bent (the transition state). In both stickase examples, magnetic interactions take the place of weak bonding interactions between enzyme and substrate. (b) A stickase with a magnet-lined pocket complementary in structure to the stick (the substrate) stabilizes the substrate. Bending is impeded by the magnetic attraction between stick and stickase. (c) An enzyme with a pocket complementary to the reaction transition state helps to destabilize the stick, contributing to catalysis of the reaction. The binding energy of the magnetic interactions compensates for the increase in free energy required to bend the stick. Reaction coordinate diagrams (right) show the energy consequences of complementarity to substrate versus complementarity to transition state (ES complexes are omitted). \(\Delta G_M \): the difference between the transition-state energies of the uncatalyzed and catalyzed reactions, is contributed by the magnetic interactions between the stick and stickase. When the enzyme is complementary to the substrate (b), the ES complex is more stable and has less free energy in the ground state than substrate alone. The result is an increase in the activation energy.
Real enzymes work on an analogous principle. Some weak interactions are formed in the ES complex, but the full complement of such interactions between substrate and enzyme is formed only when the substrate reaches the transition state. The free energy (binding energy) released by the formation of these interactions partially offsets the energy required to reach the top of the energy hill. The summation of the unfavorable (positive) activation energy ΔG° and the favorable (negative) binding energy ΔGₐ results in a lower net activation energy (Fig. 6-6). Even on the enzyme, the transition state is not a stable species but a brief point in time that the substrate spends atop an energy hill. The enzyme-catalyzed reaction is much faster than the uncatalyzed process, however, because the hill is much smaller. The important principle is that weak binding interactions between the enzyme and the substrate provide a substantial driving force for enzymatic catalysis. The groups on the substrate that are involved in these weak interactions can be at some distance from the bonds that are broken or changed. The weak interactions formed only in the transition state are those that make the primary contribution to catalysis.

The requirement for multiple weak interactions to drive catalysis is one reason why enzymes (and some coenzymes) are so large. An enzyme must provide functional groups for ionic, hydrogen-bond, and other interactions, and also must precisely position these groups so that binding energy is optimized in the transition state. Adequate binding is accomplished most readily by positioning a substrate in a cavity (the active site) where it is effectively removed from water. The size of proteins reflects the need for superstructure to keep interacting groups properly positioned and to keep the cavity from collapsing.

Binding Energy Contributes to Reaction Specificity and Catalysis

Can we demonstrate quantitatively that binding energy accounts for the huge rate accelerations brought about by enzymes? Yes. As a point of reference, Equation 6-6 allows us to calculate that ΔG° must be lowered by about 5.7 kJ/mol to accelerate a first-order reaction by a factor of ten, under conditions commonly found in cells. The energy available from formation of a single weak interaction is generally estimated to be 4 to 30 kJ/mol. The overall energy available from a number of such interactions is therefore sufficient to lower activation energies by the 60 to 100 kJ/mol required to explain the large rate enhancements observed for many enzymes.

The same binding energy that provides energy for catalysis also gives an enzyme its specificity, the ability to discriminate between a substrate and a competing molecule. Conceptually, specificity is easy to distinguish from catalysis, but this distinction is much more difficult to make experimentally, because catalysis and specificity arise from the same phenomenon. If an enzyme active site has functional groups arranged optimally to form a variety of weak interactions with a particular substrate in the transition state, the enzyme will not be able to interact to the same degree with any other molecule. For example, if the substrate has a hydroxyl group that forms a hydrogen bond with a specific Glu residue on the enzyme, any molecule lacking a hydroxyl group at that particular position will be a poorer substrate for the enzyme. In addition, any molecule with an extra functional group for which the enzyme has no pocket or binding site is likely to be excluded from the enzyme. In general, specificity is derived from the formation of many weak interactions between the enzyme and its specific substrate molecule.

The importance of binding energy to catalysis can be readily demonstrated. For example, the glycolytic enzyme triose phosphate isomerase catalyzes the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate:

\[
\begin{align*}
\text{Glyceraldehyde} & \quad \text{Dihydroxyacetone} \\
\text{3-phosphate} & \quad \text{phosphate} \\
HC=O & \quad H_2C-OH \\
HC-OH & \quad C=O \\
C_3H_5OPO_3^+ & \text{triose phosphate} \\
& \text{isomerase} \\
& \text{H}_{3}C-OPO_{3}^- \\
\end{align*}
\]

This reaction rearranges the carbonyl and hydroxyl groups on carbons 1 and 2. However, more than 80% of the enzymatic rate acceleration has been traced to enzyme-substrate interactions involving the phosphate group on carbon 3 of the substrate. This was determined by comparing the enzyme-catalyzed reactions with glyceraldehyde 3-phosphate and with glyceraldehyde (no phosphate group at position 3) as substrate.

The general principles outlined above can be illustrated by a variety of recognized catalytic mechanisms. These mechanisms are not mutually exclusive, and a given enzyme might incorporate several types in its overall mechanism of action.

Consider what needs to occur for a reaction to take place. Prominent physical and thermodynamic factors contributing to ΔG°, the barrier to reaction, might include:
The entropy (freedom of motion) of molecules in solution, which reduces the possibility that they will react together; (2) the solvation shell of hydrogen-bonded water that surrounds and helps to stabilize most biomolecules in aqueous solution; (3) the distortion of substrates that must occur in many reactions; and (4) the need for proper alignment of catalytic functional groups on the enzyme. Binding energy can be used to overcome all these barriers.

First, a large restriction in the relative motions of two substrates that are to react, or entropy reduction, is one obvious benefit of binding them to an enzyme. Binding energy holds the substrates in the proper orientation to react—a substantial contribution to catalysis, because productive collisions between molecules in solution can be exceedingly rare. Substrates can be precisely aligned on the enzyme, with many weak interactions between each substrate and strategically located groups on the enzyme clamping the substrate molecules into the proper positions. Studies have shown that constraining the motion of two reactants can produce rate enhancements of many orders of magnitude (Fig. 6–7).

Second, formation of weak bonds between substrate and enzyme results in desolvation of the substrate. Enzyme-substrate interactions replace most or all of the hydrogen bonds between the substrate and water. Third, binding energy involving weak interactions formed only in the reaction transition state helps to compensate thermodynamically for any distortion, primarily electron redistribution, that the substrate must undergo to react.

Finally, the enzyme itself usually undergoes a change in conformation when the substrate binds, induced by multiple weak interactions with the substrate. This is referred to as induced fit, a mechanism postulated by Daniel Koshland in 1958. The motions can affect a small part of the enzyme near the active site, or can involve changes in the positioning of entire domains. Typically, a network of coupled motions occurs throughout the enzyme that ultimately brings about the required changes in the active site. Induced fit serves to bring specific functional groups on the enzyme into the proper position to catalyze the reaction. The conformational change also permits formation of additional weak bonding interactions in the transition state. In either case, the new enzyme conformation has enhanced catalytic properties. As we have seen, induced fit is a common feature of the reversible binding of ligands to proteins (Chapter 5). Induced fit is also important in the interaction of almost every enzyme with its substrate.

Specific Catalytic Groups Contribute to Catalysis

In most enzymes, the binding energy used to form the ES complex is just one of several contributors to the overall catalytic mechanism. Once a substrate is bound to an enzyme, properly positioned catalytic functional groups aid in the cleavage and formation of bonds by a variety of mechanisms, including general acid-base catalysis, covalent catalysis, and metal ion catalysis. These are distinct from mechanisms based on binding energy, because they generally involve transient covalent interaction with a substrate or group transfer to or from a substrate.

General Acid-Base Catalysis

Many biochemical reactions involve the formation of unstable charged intermediates that tend to break down rapidly to their constituent reactant species, thus impeding the reaction (Fig. 6–8). Charged intermediates can often be stabilized by the transfer of protons to or from the substrate or intermediate to form a species that breaks down more readily to products. For nonenzymatic reactions, the proton transfers can involve either the constituents of water alone or other weak proton donors or acceptors. Catalysis of the type that uses only the H^+ (H_2O^+) or OH^- ions present in water is referred to as specific acid-base catalysis. If protons are transferred between the intermediate and water faster than the intermediate breaks down to reactants, the intermediate is effectively stabilized every time it forms. No additional catalysis...
Without catalysis, unstable (charged) intermediate breaks down rapidly to form reactants.

When proton transfer to or from H₂O is faster than the rate of breakdown of intermediates, the presence of other proton donors or acceptors does not increase the rate of the reaction.

When proton transfer to or from H₂O is slower than the rate of breakdown of intermediates, only a fraction of the intermediates formed are stabilized. The presence of alternative proton donors (HA) or acceptors (B⁻) increases the rate of the reaction.

FIGURE 6-8 How a catalyst circumvents unfavorable charge development during cleavage of an amide. The hydrolysis of an amide bond, shown here, is the same reaction as that catalyzed by chymotrypsin and other proteases. Charge development is unfavorable and can be circumvented by donation of a proton by H₃O⁺ (specific acid catalysis) or HA (general acid catalysis), where HA represents any acid. Similarly, charge can be neutralized by proton abstraction by OH⁻ (specific base catalysis) or B⁻ (general base catalysis), where B⁻ represents any base.

mediated by other proton acceptors or donors will occur. In many cases, however, water is not enough. The term general acid-base catalysis refers to proton transfers mediated by other classes of molecules. For nonenzymatic reactions in aqueous solutions, this occurs only when the unstable reaction intermediate breaks down to reactants faster than protons can be transferred to or from water. Many weak organic acids can supplement water as proton donors in this situation, or weak organic bases can serve as proton acceptors.

In the active site of an enzyme, a number of amino acid side chains can similarly act as proton donors and acceptors (Fig. 6-9). These groups can be precisely positioned in an enzyme active site to allow proton transfers, providing rate enhancements of the order of 10⁴ to 10⁵. This type of catalysis occurs on the vast majority of enzymes. In fact, proton transfers are the most common biochemical reactions.

Covalent Catalysis In covalent catalysis, a transient covalent bond is formed between the enzyme and the substrate. Consider the hydrolysis of a bond between groups A and B:

\[A - B + H_2O \rightarrow A + B \]

In the presence of a covalent catalyst (an enzyme with a nucleophilic group X⁻) the reaction becomes

\[A - B + X⁻ \rightarrow A - X + B \rightarrow A + X⁻ + B \]

This alters the pathway of the reaction, and it results in catalysis only when the new pathway has a lower activation energy than the uncatalyzed pathway. Both of the new steps must be faster than the uncatalyzed reaction. A number of amino acid side chains, including all those in Figure 6-9, and the functional groups of some enzyme cofactors can serve as nucleophiles in the formation of covalent bonds with substrates. These covalent complexes always undergo further reaction to regenerate the free enzyme. The covalent bond formed between the enzyme and the substrate can activate a substrate for further reaction in a manner that is usually specific to the particular group or coenzyme.

Metal Ion Catalysis Metals, whether tightly bound to the enzyme or taken up from solution along with the substrate, can participate in catalysis in several ways.

Table: Amino acids in general acid-base catalysis

<table>
<thead>
<tr>
<th>Amino acid residues</th>
<th>General acid form (proton donor)</th>
<th>General base form (proton acceptor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu, Asp</td>
<td>R—COOH</td>
<td>R—COO⁻</td>
</tr>
<tr>
<td>Lys, Arg</td>
<td>H; R⁻N⁻H</td>
<td>R—NH₂</td>
</tr>
<tr>
<td>Cys</td>
<td>R—SH</td>
<td>R—S⁻</td>
</tr>
<tr>
<td>His</td>
<td>R—C=CH+</td>
<td>R—C=CH⁻</td>
</tr>
<tr>
<td>Ser</td>
<td>R—OH</td>
<td>R—O⁻</td>
</tr>
<tr>
<td>Tyr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ionic interactions between an enzyme-bound metal and a substrate can help orient the substrate for reaction or stabilize charged reaction transition states. This use of weak bonding interactions between metal and substrate is similar to some of the uses of enzyme-substrate binding energy described earlier. Metals can also mediate oxidation-reduction reactions by reversible changes in the metal ion's oxidation state. Nearly a third of all known enzymes require one or more metal ions for catalytic activity.

Most enzymes combine several catalytic strategies to bring about a rate enhancement. A good example is the use of covalent catalysis, general acid-base catalysis, and transition-state stabilization in the reaction catalyzed by chymotrypsin, detailed in Section 6.4.

SUMMARY 6.2 How Enzymes Work

- Enzymes are highly effective catalysts, commonly enhancing reaction rates by a factor of 10^5 to 10^{16}.
- Enzyme-catalyzed reactions are characterized by the formation of a complex between substrate and enzyme (an ES complex). Substrate binding occurs in a pocket on the enzyme called the active site.
- The function of enzymes and other catalysts is to lower the activation energy, ΔG^\ddagger, for a reaction and thereby enhance the reaction rate. The equilibrium of a reaction is unaffected by the enzyme.
- A significant part of the energy used for enzymatic rate enhancements is derived from weak interactions (hydrogen bonds and hydrophobic and ionic interactions) between substrate and enzyme. The enzyme active site is structured so that some of these weak interactions occur preferentially in the reaction transition state, thus stabilizing the transition state. The need for multiple interactions is one reason for the large size of enzymes. The binding energy, ΔG_B, can be used to lower substrate entropy or to cause a conformational change in the enzyme (induced fit). Binding energy also accounts for the exquisite specificity of enzymes for their substrates.
- Additional catalytic mechanisms employed by enzymes include general acid-base catalysis, covalent catalysis, and metal ion catalysis. Catalysis often involves transient covalent interactions between the substrate and the enzyme, or group transfers to and from the enzyme, so as to provide a new, lower-energy reaction path.

6.3 Enzyme Kinetics as an Approach to Understanding Mechanism

Biochemists commonly use several approaches to study the mechanism of action of purified enzymes. The three-dimensional structure of the protein provides important information, which is enhanced by classical protein chemistry and modern methods of site-directed mutagenesis (changing the amino acid sequence of a protein by genetic engineering; see Fig. 9–11). These technologies permit enzymologists to examine the role of individual amino acids in enzyme structure and action. However, the oldest approach to understanding enzyme mechanisms, and the one that remains most important, is to determine the rate of a reaction and how it changes in response to changes in experimental parameters, a discipline known as enzyme kinetics. We provide here a basic introduction to the kinetics of enzyme-catalyzed reactions. More advanced treatments are available in the sources cited at the end of the chapter.

Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions

A key factor affecting the rate of a reaction catalyzed by an enzyme is the concentration of substrate, $[S]$. However, studying the effects of substrate concentration is complicated by the fact that $[S]$ changes during the course of an in vitro reaction as substrate is converted to product. One simplifying approach in kinetics experiments is to measure the initial rate (or initial velocity), designated V_0 (Fig. 6–10). In a typical reaction, the enzyme may be present in nanomolar quantities, whereas $[S]$ may be five or six orders of magnitude higher. If only the beginning of the reaction is monitored (often the first 60 seconds or less), changes in $[S]$ can be limited to a few percent, and $[S]$ can be regarded as constant. V_0 can then be explored as a function of $[S]$, which is adjusted by the investigator. The effect on V_0 of varying $[S]$ when the enzyme concentration is held constant is

![Figure 6–10 Initial velocities of enzyme-catalyzed reactions. A theoretical enzyme catalyzes the reaction $S \rightarrow P$, and is present at a concentration sufficient to catalyze the reaction at a maximum velocity, V_{max}, of 1 μM/min. The Michaelis constant, K_m (explained in the text), is 0.5 μM. Progress curves are shown for substrate concentrations below, at, and above the K_m. The rate of an enzyme-catalyzed reaction declines as substrate is converted to product. A tangent to each curve taken at time $= 0$ defines the initial velocity, V_0, of each reaction.](image-url)
Substrate concentration, [S] (mM)

FIGURE 6-11 Effect of substrate concentration on the initial velocity of an enzyme-catalyzed reaction. The maximum velocity, V_{max}, is extrapolated from the plot, because V_0 approaches but never quite reaches V_{max}. The substrate concentration at which V_0 is half maximal is K_m, the Michaelis constant. The concentration of enzyme in an experiment such as this is generally so low that $E_i \gg E_f$ even when $[S]$ is described as low or relatively low. The units shown are typical for enzyme-catalyzed reactions and are given only to help illustrate the meaning of V_0 and $[S]$. (Note that the curve describes part of a rectangular hyperbola, with one asymptote at V_{max}. If the curve were continued below $[S] = 0$, it would approach a vertical asymptote at $[S] = K_m$.)

FIGURE 6-11 shows the effect of substrate concentration on the initial velocity of an enzyme-catalyzed reaction. At relatively low concentrations of substrate, V_0 increases almost linearly with an increase in $[S]$. At higher substrate concentrations, V_0 increases by smaller and smaller amounts in response to increases in $[S]$. Finally, a point is reached beyond which increases in V_0 are vanishingly small as $[S]$ increases. This plateau-like V_0 region is close to the maximum velocity, V_{max}.

The ES complex is the key to understanding this kinetic behavior, just as it was a starting point for our discussion of catalysis. The kinetic pattern in Figure 6-11 led Victor Henri, following the lead of Wurtz, to propose in 1903 that the combination of an enzyme with its substrate molecule to form an ES complex is a necessary step in enzymatic catalysis. This idea was expanded into a general theory of enzyme action, particularly by Leonor Michaelis and Maud Menten in 1913. They postulated that the enzyme first combines reversibly with its substrate to form an enzyme-substrate complex in a relatively fast reversible step:

$$E + S \xrightleftharpoons[k_{-1}]{k_1} ES \quad (6-7)$$

The ES complex then breaks down in a slower second step to yield the free enzyme and the reaction product P:

$$ES \xrightleftharpoons[k_{-2}]{k_2} E + P \quad (6-8)$$

Because the slower second reaction (Eqn 6–8) must limit the rate of the overall reaction, the overall rate must be proportional to the concentration of the species that reacts in the second step, that is, ES.

At any given instant in an enzyme-catalyzed reaction, the enzyme exists in two forms, the free or uncombined form E and the combined form ES. At low $[S]$, most of the enzyme is in the uncombined form E. Here, the rate is proportional to $[S]$ because the equilibrium of Equation 6–7 is pushed toward formation of more ES as $[S]$ increases. The maximum initial rate of the catalyzed reaction (V_{max}) is observed when virtually all the enzyme is present as the ES complex and $[E]$ is vanishingly small. Under these conditions, the enzyme is “saturated” with its substrate, so that further increases in $[S]$ have no effect on rate. This condition exists when $[S]$ is sufficiently high that essentially all the free enzyme has been converted to the ES form. After the ES complex breaks down to yield the product P, the enzyme is free to catalyze reaction of another molecule of substrate. The saturation effect is a distinguishing characteristic of enzymatic catalysts and is responsible for the plateau observed in Figure 6-11. The pattern seen in Figure 6–11 is sometimes referred to as saturation kinetics.

When the enzyme is first mixed with a large excess of substrate, there is an initial period, the pre-steady state, during which the concentration of ES builds up. This period is usually too short to be easily observed, lasting just microseconds, and is not evident in Figure 6–10. The reaction quickly achieves a steady state in which $[ES]$ (and the concentrations of any other intermediates) remains approximately constant over time. The concept of a steady state was introduced by G. E. Briggs and Haldane in 1925. The measured V_0 generally reflects the steady state, even though V_0 is limited to the early part of the reaction, and analysis of these initial rates is referred to as steady-state kinetics.

The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively

The curve expressing the relationship between $[S]$ and V_0 (Fig. 6–11) has the same general shape for most enzymes (it approaches a rectangular hyperbola), which can be expressed algebraically by the Michaelis-Menten equation. Michaelis and Menten derived this equation starting from their basic hypothesis that the rate-limiting step in enzymatic reactions is the
breakdown of the ES complex to product and free enzyme. The equation is

\[V_0 = \frac{V_{\text{max}}[S]}{K_m + [S]} \]

(6-9)

The important terms are \([S], V_0, V_{\text{max}},\) and a constant called the Michaelis constant, \(K_m\). All these terms are readily measured experimentally.

Here we develop the basic logic and the algebraic steps in a modern derivation of the Michaelis-Menten equation, which includes the steady-state assumption introduced by Briggs and Haldane. The derivation starts with the two basic steps of the formation and breakdown of ES (Eqns 6-7 and 6-8). Early in the reaction, the concentration of the product, \([P]\), is negligible, and we make the simplifying assumption that the reverse reaction, \(P \rightarrow S\) (described by \(k_{-2}\)), can be ignored. This assumption is not critical but it simplifies our task. The overall reaction then reduces to

\[E + S \xrightarrow{k_1} ES \xrightarrow{k_{-1}} E + P \]

(6-10)

\(V_0\) is determined by the breakdown of ES to form product, which is determined by [ES]:

\[V_0 = k_2[ES] \]

(6-11)

Because [ES] in Equation 6-11 is not easily measured experimentally, we must begin by finding an alternative expression for this term. First, we introduce the term \([E]\), representing the total enzyme concentration (the sum of free and substrate-bound enzyme). Free or unbound enzyme can then be represented by \([E] - [ES]\). Also, because \([S]\) is ordinarily far greater than \([E]\), the amount of substrate bound by the enzyme at any given time is negligible compared with the total [S]. With these conditions in mind, the following steps lead us to an expression for \(V_0\) in terms of easily measurable parameters.

Step 1 The rates of formation and breakdown of ES are determined by the steps governed by the rate constants \(k_1\) (formation) and \(k_{-1} + k_2\) (breakdown to reactants and products, respectively), according to the expressions

\[
\begin{align*}
\text{Rate of ES formation} & = k_1([E] - [ES])[S] \\
\text{Rate of ES breakdown} & = k_{-1}[ES] + k_2[ES]
\end{align*}
\]

(6-12)-(6-13)

Step 2 We now make an important assumption: that the initial rate of reaction reflects a steady state in which [ES] is constant—that is, the rate of formation of ES is equal to the rate of its breakdown. This is called the steady-state assumption. The expressions in Equations 6-12 and 6-13 can be equated for the steady state, giving

\[k_1([E] - [ES])[S] = k_{-1}[ES] + k_2[ES] \]

(6-14)

Step 3 In a series of algebraic steps, we now solve Equation 6-14 for [ES]. First, the left side is multiplied out and the right side simplified to give

\[k_1[E][S] - k_1[ES][S] = (k_{-1} + k_2)[ES] \]

(6-15)

Adding the term \(k_1[ES][S]\) to both sides of the equation and simplifying gives

\[k_1[E][S] = (k_1[S] + k_{-1} + k_2)[ES] \]

(6-16)

We then solve this equation for [ES]:

\[[ES] = \frac{k_1[E][S]}{k_1[S] + k_{-1} + k_2} \]

(6-17)

This can now be simplified further, combining the rate constants into one expression:

\[[ES] = \frac{[E][S]}{[S] + (k_{-1} + k_2)/k_1} \]

(6-18)

The term \((k_{-1} + k_2)/k_1\) is defined as the Michaelis constant, \(K_m\). Substituting this into Equation 6-18 simplifies the expression to

\[[ES] = \frac{[E][S]}{K_m + [S]} \]

(6-19)

Step 4 We can now express \(V_0\) in terms of [ES]. Substituting the right side of Equation 6-19 for [ES] in Equation 6-11 gives

\[V_0 = \frac{k_2[E][S]}{K_m + [S]} \]

(6-20)

This equation can be further simplified. Because the maximum velocity occurs when the enzyme is saturated (that is, with [ES] = [E]), \(V_{\text{max}}\) can be defined as \(k_2[E]\). Substituting this in Equation 6-20 gives Equation 6-9:

\[V_0 = \frac{V_{\text{max}}[S]}{K_m + [S]} \]

This is the **Michaelis-Menten equation**, the rate equation for a one-substrate enzyme-catalyzed reaction. It is a statement of the quantitative relationship between the initial velocity \(V_0\), the maximum velocity \(V_{\text{max}}\), and the initial substrate concentration [S], all related through the Michaelis constant \(K_m\). Note that \(K_m\) has units of concentration. Does the equation fit experimental observations? Yes; we can confirm this by considering the limiting situations where [S] is very high or very low, as shown in Figure 6-12.

An important numerical relationship emerges from the Michaelis-Menten equation in the special case when \(V_0\) is exactly one-half \(V_{\text{max}}\) (Fig. 6-12). Then

\[\frac{V_{\text{max}}}{2} = \frac{V_{\text{max}}[S]}{K_m + [S]} \]

(6-21)

On dividing by \(V_{\text{max}}\), we obtain

\[\frac{1}{2} = \frac{[S]}{K_m + [S]} \]

(6-22)

Solving for \(K_m\), we get \(K_m + [S] = 2[S]\), or

\[K_m = [S], \text{ when } V_0 = \frac{1}{2}V_{\text{max}} \]

(6-23)
This is a very useful, practical definition of \(K_m \); \(K_m \) is equivalent to the substrate concentration at which \(V_0 \) is one-half \(V_{\text{max}} \).

The Michaelis-Menten equation (Eqn 6–9) can be algebraically transformed into versions that are useful in the practical determination of \(K_m \) and \(V_{\text{max}} \) (Box 6–1) and, as we describe later, in the analysis of inhibitor action (see Box 6–2 on page 202).

Kinetic Parameters Are Used to Compare Enzyme Activities

It is important to distinguish between the Michaelis-Menten equation and the specific kinetic mechanism on which it was originally based. The equation describes the kinetic behavior of a great many enzymes, and all enzymes that exhibit a hyperbolic dependence of \(V_0 \) on \([S] \) are said to follow Michaelis-Menten kinetics. The practical rule that \(K_m = [S] \) when \(V_0 = \frac{1}{2} V_{\text{max}} \) (Eqn 6–23) holds for all enzymes that follow Michaelis-Menten kinetics. (The most important exceptions to Michaelis-Menten kinetics are the regulatory enzymes, discussed in Section 6.5.) However, the Michaelis-Menten equation does not depend on the relatively simple two-step reaction mechanism proposed by Michaelis.

Figure 6–12 Dependence of initial velocity on substrate concentration.

This graph shows the kinetic parameters that define the limits of the curve at high and low [S]. At low [S], \(K_m \gg [S] \) and the [S] term in the denominator of the Michaelis-Menten equation (Eqn 6–9) becomes insignificant. The equation simplifies to \(V_0 = V_{\text{max}} [S]/K_m \) and \(V_0 \) exhibits a linear dependence on [S], as observed here. At high [S], where \([S] \gg K_m \), the \(K_m \) term in the denominator of the Michaelis-Menten equation becomes insignificant and the equation simplifies to \(V_0 = V_{\text{max}} \), this is consistent with the plateau observed at high [S]. The Michaelis-Menten equation is therefore consistent with the observed dependence of \(V_0 \) on [S], and the shape of the curve is defined by the terms \(V_{\text{max}}/K_m \) at low [S] and \(V_{\text{max}} \) at high [S].

Box 6–1 Transforms of the Michaelis-Menten Equation: The Double-Reciprocal Plot

The Michaelis-Menten equation

\[
V_0 = \frac{V_{\text{max}} [S]}{K_m + [S]}
\]

can be algebraically transformed into equations that are more useful in plotting experimental data. One common transformation is derived simply by taking the reciprocal of both sides of the Michaelis-Menten equation:

\[
\frac{1}{V_0} = \frac{K_m + [S]}{V_{\text{max}} [S]} \frac{1}{V_{\text{max}}}
\]

Separating the components of the numerator on the right side of the equation gives

\[
\frac{1}{V_0} = \frac{K_m}{V_{\text{max}} [S]} + \frac{[S]}{V_{\text{max}}}
\]

which simplifies to

\[
\frac{1}{V_0} = \frac{K_m}{V_{\text{max}} [S]} + \frac{1}{V_{\text{max}}}
\]

This form of the Michaelis-Menten equation is called the **Lineweaver-Burk equation**. For enzymes obeying the Michaelis-Menten relationship, a plot of \(1/V_0 \) versus \(1/[S] \) (the “double reciprocal” of the \(V_0 \) versus \([S] \) plot we have been using to this point) yields a straight line (Fig. 1). This line has a slope of \(K_m/V_{\text{max}} \), an intercept of \(1/V_{\text{max}} \) on the \(1/V_0 \) axis, and an intercept of \(-1/K_m \) on the \(1/[S] \) axis. The double-reciprocal presentation, also called a Lineweaver-Burk plot, has the great advantage of allowing a more accurate determination of \(V_{\text{max}} \), which can only be approximated from a simple plot of \(V_0 \) versus \([S] \) (see Fig. 6–12).

Other transformations of the Michaelis-Menten equation have been derived, each with some particular advantage in analyzing enzyme kinetic data. (See Problem 14 at the end of this chapter.)

The double-reciprocal plot of enzyme reaction rates is very useful in distinguishing between certain types of enzymatic reaction mechanisms (see Fig. 6–14) and in analyzing enzyme inhibition (see Box 6–2).
Enzymes and Michaelis-Menten (Eqn 6-10). Many enzymes that follow Michaelis-Menten kinetics have quite different reaction mechanisms, and enzymes that catalyze reactions with six or eight identifiable steps often exhibit the same steady-state kinetic behavior. Even though Equation 6-23 holds true for many enzymes, both the magnitude and the real meaning of V_{max} and K_{m} can differ from one enzyme to the next. This is an important limitation of the steady-state approach to enzyme kinetics. The parameters V_{max} and K_{m} can be obtained experimentally for any given enzyme, but by themselves they provide little information about the number, rates, or chemical nature of discrete steps in the reaction. Steady-state kinetics nevertheless is the standard language by which biochemists compare and characterize the catalytic efficiencies of enzymes.

Interpreting V_{max} and K_{m} Figure 6-12 shows a simple graphical method for obtaining an approximate value for K_{m}. A more convenient procedure, using a double-reciprocal plot, is presented in Box 6-1. The K_{m} can vary greatly from enzyme to enzyme, and even for different substrates of the same enzyme (Table 6-6). The term is sometimes used (often inappropriately) as an indicator of the affinity of an enzyme for its substrate. The actual meaning of K_{m} depends on specific aspects of the reaction mechanism such as the number and relative rates of the individual steps. For reactions with two steps,

$$K_{m} = \frac{k_2 + k_{-1}}{k_1} \quad (6-24)$$

When k_2 is rate-limiting, $k_2 << k_{-1}$ and K_{m} reduces to k_{-1}/k_1, which is defined as the dissociation constant, K_d, of the ES complex. Where these conditions hold, K_{m} does represent a measure of the affinity of the enzyme for its substrate in the ES complex. However, this scenario does not apply for most enzymes. Sometimes $k_2 >> k_{-1}$, and then $K_{m} = k_2/k_1$. In other cases, k_2 and k_{-1} are comparable and K_{m} remains a more complex function of all three rate constants (Eqn 6-24). The Michaelis-Menten equation and the characteristic saturation behavior of the enzyme still apply, but K_{m} cannot be considered a simple measure of substrate affinity. Even more common are cases in which the reaction goes through several steps after formation of ES; K_{m} can then become a very complex function of many rate constants.

The quantity V_{max} also varies greatly from one enzyme to the next. If an enzyme reacts by the two-step Michaelis-Menten mechanism, $V_{\text{max}} = k_2[E]$, where k_2 is rate-limiting. However, the number of reaction steps and the identity of the rate-limiting step(s) can vary from enzyme to enzyme.

For example, consider the quite common situation where product release, $EP \rightarrow E + P$, is rate-limiting. Early in the reaction (when $[P]$ is low), the overall reaction can be described by the scheme

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{-1}} EP \xrightarrow{k_2} E + P \quad (6-25)$$

In this case, most of the enzyme is in the EP form at saturation, and $V_{\text{max}} = k_2[E]$. It is useful to define a more general rate constant, k_{cat}, to describe the limiting rate of any enzyme-catalyzed reaction at saturation. If the reaction has several steps and one is clearly rate-limiting, k_{cat} is equivalent to the rate constant for that limiting step. For the simple reaction of Equation 6-10, $k_{\text{cat}} = k_2$. For the reaction of Equation 6-25, $k_{\text{cat}} = k_3$. When several steps are partially rate-limiting, k_{cat} can become a complex function of several of the rate constants that define each individual reaction step. In the Michaelis-Menten equation, $k_{\text{cat}} = V_{\text{max}}/[E]$, and Equation 6-9 becomes

$$V_0 = \frac{k_{\text{cat}}[E][S]}{K_{m} + [S]} \quad (6-26)$$

The constant k_{cat} is a first-order rate constant and hence has units of reciprocal time. It is also called the turnover number. It is equivalent to the number of substrate molecules converted to product in a given unit of time on a single enzyme molecule when the enzyme is saturated with substrate. The turnover numbers of several enzymes are given in Table 6-7.

<table>
<thead>
<tr>
<th>Table 6-6</th>
<th>K_m for Some Enzymes and Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme</td>
<td>Substrate</td>
</tr>
<tr>
<td>Hexokinase (brain)</td>
<td>ATP</td>
</tr>
<tr>
<td></td>
<td>d-Glucose</td>
</tr>
<tr>
<td></td>
<td>d-Fructose</td>
</tr>
<tr>
<td>Carbonic anhydrase</td>
<td>HCO$_3^-$</td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>Glycyltyrosylglycine</td>
</tr>
<tr>
<td></td>
<td>N-Benzoyltyrosinamide</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>d-Lactose</td>
</tr>
<tr>
<td>Threonine dehydratase</td>
<td>L-Threonine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6-7</th>
<th>Turnover Numbers, k_{cat}, of Some Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme</td>
<td>Substrate</td>
</tr>
<tr>
<td>Catalase</td>
<td>H$_2$O$_2$</td>
</tr>
<tr>
<td>Carbonic anhydrase</td>
<td>HCO$_3^-$</td>
</tr>
<tr>
<td>Acetylcholinesterase</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>β-Lactamase</td>
<td>Benzylpenicillin</td>
</tr>
<tr>
<td>Fumarase</td>
<td>Fumarate</td>
</tr>
<tr>
<td>RecA protein (an ATPase)</td>
<td>ATP</td>
</tr>
</tbody>
</table>
Comparing Catalytic Mechanisms and Efficiencies

The kinetic parameters k_{cat} and K_m are useful for the study and comparison of different enzymes, whether their reaction mechanisms are simple or complex. Each enzyme has values of k_{cat} and K_m that reflect the cellular environment, the concentration of substrate normally encountered in vivo by the enzyme, and the chemistry of the reaction being catalyzed.

The parameters k_{cat} and K_m also allow us to evaluate the kinetic efficiency of enzymes, but either parameter alone is insufficient for this task. Two enzymes catalyzing different reactions may have the same k_{cat} (turnover number), yet the rates of the uncatalyzed reactions may be different and thus the rate enhancements brought about by the enzymes may differ greatly. Experimentally, the K_m for an enzyme tends to be similar to the cellular concentration of its substrate. An enzyme that acts on a substrate present at a very low concentration in the cell usually has a lower K_m than an enzyme that acts on a substrate that is more abundant.

The best way to compare the catalytic efficiencies of different enzymes or the turnover of different substrates by the same enzyme is to compare the ratio k_{cat}/K_m for the two reactions. This parameter, sometimes called the specificity constant, is the rate constant for the conversion of $E + S$ to $E + P$. When $[S] << K_m$, Equation 6-26 reduces to the form

$$V_0 = \frac{k_{\text{cat}}[E_i][S]}{K_m + [S]} \quad \text{(6-27)}$$

V_0 in this case depends on the concentration of two reactants, $[E_i]$ and $[S]$; therefore this is a second-order rate equation and the constant k_{cat}/K_m is a second-order rate constant with units of $\text{M}^{-1}\text{s}^{-1}$. There is an upper limit to k_{cat}/K_m, imposed by the rate at which E and S can diffuse together in an aqueous solution. This diffusion-controlled limit is 10^8 to $10^9 \text{M}^{-1}\text{s}^{-1}$, and many enzymes have a k_{cat}/K_m near this range (Table 6-8). Such enzymes are said to have achieved catalytic perfection. Note that different values of k_{cat} and K_m can produce the maximum ratio.

WORKED EXAMPLE 6-1 Determining K_m

An enzyme is discovered that catalyzes the chemical reaction

$$\text{SAD} \rightleftharpoons \text{HAPPY}$$

A team of motivated researchers sets out to study the enzyme, which they call happyase. They find that the k_{cat} for happyase is 600 s^{-1}. They carry out several experiments.

When $[E_i] = 20 \text{ nm}$ and $[\text{SAD}] = 40 \text{ M}$, the reaction velocity, V_0, is $9.6 \mu\text{M} \text{ s}^{-1}$. Calculate K_m for the substrate SAD.

Solution: We know $k_{\text{cat}}, [E_i], [S]$, and V_0. We want to solve for K_m. Equation 6-26, in which we substitute $k_{\text{cat}}[E_i]$ for V_0 in the Michaelis-Menten equation, is most useful here. Substituting our known values in Equation 6-26 allows us to solve for K_m.

$$V_0 = \frac{k_{\text{cat}}[E_i][S]}{K_m + [S]}$$

$$9.6 \mu\text{M} \text{ s}^{-1} = \frac{(600 \text{ s}^{-1})(0.020 \mu\text{M})(40 \mu\text{M})}{K_m + 40 \mu\text{M}}$$

$$9.6 \mu\text{M} \text{ s}^{-1} = \frac{480 \mu\text{M}^2 \text{ s}^{-1}}{K_m + 40 \mu\text{M}}$$

$$9.6 \mu\text{M} \text{ s}^{-1}(K_m + 40 \mu\text{M}) = 480 \mu\text{M}^2 \text{ s}^{-1}$$

$$K_m + 40 \mu\text{M} = 480 \mu\text{M}^2 \text{ s}^{-1}$$

$$K_m + 40 \mu\text{M} = 480 \mu\text{M}^2 \text{ s}^{-1}$$

$$K_m = 50 \mu\text{M} - 40 \mu\text{M}$$

$$K_m = 10 \mu\text{M}$$

Once you have worked with this equation, you will recognize shortcuts to solve problems like this. For example, one can calculate V_{max} knowing that $k_{\text{cat}}[E_i] = V_{\text{max}} (600 \text{ s}^{-1} \times 0.020 \mu\text{M} = 12 \mu\text{M} \text{ s}^{-1}$ in this case). A

TABLE 6-8 Enzymes for Which k_{cat}/K_m Is Close to the Diffusion-Controlled Limit (10^8 to $10^9 \text{M}^{-1}\text{s}^{-1}$)

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate</th>
<th>k_{cat} ((\text{s}^{-1}))</th>
<th>K_m ((\mu\text{M}))</th>
<th>k_{cat}/K_m ((\text{M}^{-1}\text{s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholinesterase</td>
<td>Acetylcholine</td>
<td>1.4×10^4</td>
<td>9×10^{-5}</td>
<td>1.6×10^8</td>
</tr>
<tr>
<td>Carbonic anhydrase</td>
<td>CO$_2$</td>
<td>1×10^5</td>
<td>1.2×10^{-2}</td>
<td>8.3×10^7</td>
</tr>
<tr>
<td></td>
<td>HCO$_3^-$</td>
<td>4×10^5</td>
<td>2.6×10^{-2}</td>
<td>1.5×10^7</td>
</tr>
<tr>
<td>Catalase</td>
<td>H$_2$O$_2$</td>
<td>4×10^7</td>
<td>1.1×10^9</td>
<td>4×10^7</td>
</tr>
<tr>
<td>Crotonase</td>
<td>Crotonyl-CoA</td>
<td>5.7×10^3</td>
<td>2×10^{-5}</td>
<td>2.8×10^8</td>
</tr>
<tr>
<td>Fumarase</td>
<td>Fumarate</td>
<td>8×10^3</td>
<td>5×10^{-6}</td>
<td>1.6×10^8</td>
</tr>
<tr>
<td></td>
<td>Malate</td>
<td>9×10^2</td>
<td>2.5×10^{-5}</td>
<td>3.6×10^7</td>
</tr>
<tr>
<td>β-Lactamase</td>
<td>Benzylpenicillin</td>
<td>2.0×10^3</td>
<td>2×10^{-5}</td>
<td>1×10^8</td>
</tr>
</tbody>
</table>

simple rearrangement of Equation 6–26 by dividing both sides by V_{max} gives

$$\frac{V_0}{V_{\text{max}}} = \frac{[S]}{K_\text{m} + [S]}$$

Thus, the ratio $V_0/V_{\text{max}} = 9.6 \mu\text{M s}^{-1}/12 \mu\text{M s}^{-1} = [S]/(K_\text{m} + [S])$. This simplifies the process of solving for K_m, giving 0.25[S] or 10 μM.

WORKED EXAMPLE 6–2 Determining [S]

In a separate happyase experiment using $[E_0] = 10 \text{ nM}$, the reaction velocity, V_0, is measured as 3 $\mu\text{M s}^{-1}$. What is the [S] used in this experiment?

Solution: Using the same logic as in Worked Example 6–1, we see that the V_{max} for this enzyme concentration is 6 $\mu\text{M s}^{-1}$. Note that the V_0 is exactly half of the V_{max}. Recall that K_m is by definition equal to the [S] where $V_0 = V_{\text{max}}/2$. Thus, the [S] in this problem must be the same as the K_m, or 10 μM. If V_0 were anything other than $V_{\text{max}}/2$, it would be simplest to use the expression $V_0/V_{\text{max}} = [S]/(K_\text{m} + [S])$ to solve for [S].

Many Enzymes Catalyze Reactions with Two or More Substrates

We have seen how [S] affects the rate of a simple enzymatic reaction ($S \rightarrow P$) with only one substrate molecule. In most enzymatic reactions, however, two (and sometimes more) different substrate molecules bind to the enzyme and participate in the reaction. For example, in the reaction catalyzed by hexokinase, ATP and glucose are the substrate molecules, and ADP and glucose 6-phosphate are the products:

$$\text{ATP} + \text{glucose} \rightarrow \text{ADP} + \text{glucose 6-phosphate}$$

The rates of such bisubstrate reactions can also be analyzed by the Michaelis-Menten approach. Hexokinase has a characteristic K_m for each of its substrates (Table 6–6).

Enzymatic reactions with two substrates usually involve transfer of an atom or a functional group from one substrate to the other. These reactions proceed by one of several different pathways. In some cases, both substrates are bound to the enzyme concurrently at some point in the course of the reaction, forming a noncovalent ternary complex (Fig. 6–13a); the substrates bind in a random sequence or in a specific order. In other cases, the first substrate is converted to product and dissociates before the second substrate binds, so no ternary complex is formed. An example of this is the Ping-Pong, or double-displacement, mechanism (Fig. 6–13b). Steady-state kinetics can often help distinguish among these possibilities (Fig. 6–14).

FIGURE 6–13 Common mechanisms for enzyme-catalyzed bisubstrate reactions. (a) The enzyme and both substrates come together to form a ternary complex. In ordered binding, substrate 1 must bind before substrate 2 can bind productively. In random binding, the substrates can bind in either order. (b) An enzyme-substrate complex forms, a product leaves the complex, the altered enzyme forms a second complex with another substrate molecule, and the second product leaves, regenerating the enzyme. Substrate 1 may transfer a functional group to the enzyme (to form the covalently modified E'), which is subsequently transferred to substrate 2. This is called a Ping-Pong or double-displacement mechanism.

FIGURE 6–14 Steady-state kinetic analysis of bisubstrate reactions. In these double-reciprocal plots (see Box 6–1), the concentration of substrate 1 is varied while the concentration of substrate 2 is held constant. This is repeated for several values of [S2], generating several separate lines. (a) Intersecting lines indicate that a ternary complex is formed in the reaction; (b) parallel lines indicate a Ping-Pong (double-displacement) pathway.
Pre-steady State Kinetics Can Provide Evidence for Specific Reaction Steps

We have introduced kinetics as the primary method for studying the steps in an enzymatic reaction, and we have also outlined the limitations of the most common kinetic parameters in providing such information. The two most important experimental parameters obtained from steady-state kinetics are k_{cat} and k_{cat}/K_m. Variation in k_{cat} and k_{cat}/K_m with changes in pH or temperature can provide additional information about steps in a reaction pathway. In the case of bisubstrate reactions, steady-state kinetics can help determine whether a ternary complex is formed during the reaction (Fig. 6-14). A more complete picture generally requires more sophisticated kinetic methods that go beyond the scope of an introductory text. Here, we briefly introduce one of the most important kinetic approaches for studying reaction mechanisms, pre-steady state kinetics.

A complete description of an enzyme-catalyzed reaction requires direct measurement of the rates of individual reaction steps—for example, the association of enzyme and substrate to form the ES complex. It is during the pre-steady state (see p. 195) that the rates of many reaction steps can be measured independently and events during reaction of a single substrate molecule can be observed. Because the pre-steady state phase is generally very short, the experiments often require specialized techniques for very rapid mixing and sampling. One objective is to gain a complete and quantitative picture of the energy changes during the reaction. As we have already noted, reaction rates and equilibria are related to the free-energy changes during a reaction. Another objective is to measure the rate of individual reaction steps. In a number of cases investigators have been able to record the rates of every individual step in a multistep enzymatic reaction. Some examples of the application of pre-steady state kinetics are included in the descriptions of specific enzymes in Section 6.4.

Enzymes Are Subject to Reversible or Irreversible Inhibition

Enzyme inhibitors are molecules that interfere with catalysis, slowing or halting enzymatic reactions. Enzymes catalyze virtually all cellular processes, so it should not be surprising that enzyme inhibitors are among the most important pharmaceutical agents known. For example, aspirin (acetylsalicylate) inhibits the enzyme that catalyzes the first step in the synthesis of prostaglandins, compounds involved in many processes, including some that produce pain. The study of enzyme inhibitors also has provided valuable information about enzyme mechanisms and has helped define some metabolic pathways. There are two broad classes of enzyme inhibitors: reversible and irreversible.

Reversible Inhibition One common type of reversible inhibition is called competitive (Fig. 6-15a).

![FIGURE 6-15 Three types of reversible inhibition. (a) Competitive inhibitors bind to the enzyme's active site; K_i is the equilibrium constant for inhibitor binding to E. (b) Uncompetitive inhibitors bind at a separate site, but bind only to the ES complex; K_i' is the equilibrium constant for inhibitor binding to ES. (c) Mixed inhibitors bind at a separate site, but may bind to either E or ES.](image-url)
presence of a competitive inhibitor, the Michaelis-Menten equation (Eqn 6–9) becomes

\[V_0 = \frac{V_{\text{max}}[S]}{\alpha K_m + [S]} \]

Equation 6–28 describes the important features of competitive inhibition. The experimentally determined variable \(\alpha K_m \), the \(K_m \) observed in the presence of the inhibitor, is often called the “apparent” \(K_m \).

A medical therapy based on competition at the active site is used to treat patients who have ingested methanol, a solvent found in gas-line antifreeze. The liver enzyme alcohol dehydrogenase converts methanol to formaldehyde, which is damaging to many tissues. Blindness is a common result of methanol ingestion, because the eyes are particularly sensitive to formaldehyde. Ethanol competes effectively with methanol as an alternative substrate for alcohol dehydrogenase. The effect of ethanol is much like that of a competitive inhibitor, with the distinction that ethanol is also

\[
\alpha = 1 + \frac{[I]}{K_I}
\]

The double-reciprocal plot (see Box 6–1) offers an easy way of determining whether an enzyme inhibitor is competitive, uncompetitive, or mixed. Two sets of rate experiments are carried out, with the enzyme concentration held constant in each set. In the first set, \([S]\) is also held constant, permitting measurement of the effect of increasing inhibitor concentration \([I]\) on the initial rate \(V_0 \) (not shown). In the second set, \([I]\) is held constant but \([S]\) is varied. The results are plotted as \(1/V_0\) versus \(1/[S]\).

Figure 1 shows a set of double-reciprocal plots, one obtained in the absence of inhibitor and two at different concentrations of a competitive inhibitor. Increasing \([I]\) results in a family of lines with a common intercept on the \(1/V_0\) axis but with different slopes. Because the intercept on the \(1/V_0\) axis equals \(1/V_{\text{max}}\), we know that \(V_{\text{max}} \) is unchanged by the presence of a competitive inhibitor. That is, regardless of the concentration of a competitive inhibitor, a sufficiently high substrate concentration will always displace the inhibitor from the enzyme’s active site. Above the graph is the rearrangement of Equation 6–28 on which the plot is based. The value of \(\alpha \) can be calculated from the change in slope at any given \([I]\). Knowing \([I]\) and \(\alpha \), we can calculate \(K_I \) from the expression

\[
\alpha = 1 + \frac{[I]}{K_I}
\]

For uncompetitive and mixed inhibition, similar plots of rate data give the families of lines shown in Figures 2 and 3. Changes in axis intercepts signal changes in \(V_{\text{max}} \) and \(K_m \).
a substrate for alcohol dehydrogenase and its concentration will decrease over time as the enzyme converts it to acetaldehyde. The therapy for methanol poisoning is slow intravenous infusion of ethanol, at a rate that maintains a controlled concentration in the bloodstream for several hours. This slows the formation of formaldehyde, lessening the danger while the kidneys filter out the methanol to be excreted harmlessly in the urine.

Two other types of reversible inhibition, uncompetitive and mixed, though often defined in terms of one-substrate enzymes, are in practice observed only with enzymes having two or more substrates. An uncompetitive inhibitor (Fig. 6–15b) binds at a site distinct from the substrate active site and, unlike a competitive inhibitor, binds only to the ES complex. In the presence of an uncompetitive inhibitor, the Michaelis-Menten equation is altered to

$$V_0 = \frac{V_{\text{max}} [S]}{K_m + \alpha'[S]}$$ \hspace{1cm} (6–29)

Where

$$\alpha' = 1 + \frac{[I]}{K_I} \quad \text{and} \quad K_I = \frac{\text{[ES][I]}}{\text{[ESI]}}$$

As described by Equation 6–29, at high concentrations of substrate, V_0 approaches V_{max}/α'. Thus, an uncompetitive inhibitor lowers the measured V_{max}. Apparent K_m also decreases, because the [S] required to reach one-half V_{max} decreases by the factor α'.

A mixed inhibitor (Fig. 6–15c) also binds at a site distinct from the substrate active site, but it binds to either E or ES. The rate equation describing mixed inhibition is

$$V_0 = \frac{V_{\text{max}} [S]}{\alpha K_m + \alpha'[S]}$$ \hspace{1cm} (6–30)

where α and α' are defined as above. A mixed inhibitor usually affects both K_m and V_{max}. The special case of $\alpha = \alpha'$, rarely encountered in experiments, classically has been defined as noncompetitive inhibition. Examine Equation 6–30 to see why a noncompetitive inhibitor would affect the V_{max} but not the K_m.

Equation 6–30 is a general expression for the effects of reversible inhibitors, simplifying to the expressions for competitive and uncompetitive inhibition when α' = 1.0 or α = 1.0, respectively. From this expression we can summarize the effects of inhibitors on individual kinetic parameters. For all reversible inhibitors, apparent $V_{\text{max}} = V_{\text{max}}/\alpha'$, because the right side of Equation 6–30 always simplifies to V_{max}/α' at sufficiently high substrate concentrations. For competitive inhibitors, $\alpha' = 1.0$ and can thus be ignored. Taking this expression for apparent V_{max}, we can also derive a general expression for apparent K_m to show how this parameter changes in the presence of reversible inhibitors. Apparent K_m, as always, equals the [S] at which V_0 is one-half apparent V_{max} or,

more generally, when $V_0 = V_{\text{max}}/2\alpha'$. This condition is met when $[S] = \alpha K_m/\alpha'$. Thus, apparent $K_m = \alpha K_m/\alpha'$. This expression is simpler when either α or α' is 1.0 (for uncompetitive or competitive inhibitors), as summarized in Table 6–9.

In practice, uncompetitive and mixed inhibition are observed only for enzymes with two or more substrates—say, S₁ and S₂—and are very important in the experimental analysis of such enzymes. If an inhibitor binds to the site normally occupied by S₁, it may act as a competitive inhibitor in experiments in which [S₁] is varied. If an inhibitor binds to the site normally occupied by S₂, it may act as a mixed or uncompetitive inhibitor of S₁. The actual inhibition patterns observed depend on whether the S₁- and S₂-binding events are ordered or random, and thus the order in which substrates bind and products leave the active site can be determined. Use of one of the reaction products as an inhibitor is often particularly informative. If only one of two reaction products is present, no reverse reaction can take place. However, a product generally binds to some part of the active site, thus serving as an inhibitor. Enzymologists can use elaborate kinetic studies involving different combinations and amounts of products and inhibitors to develop a detailed picture of the mechanism of a bisubstrate reaction.

WORKED EXAMPLE 6–3 Effect of Inhibitor on K_m

The researchers working on happyase (see Worked Examples 6–1 and 6–2, pp. 199, 200) discover that the compound STRESS is a potent competitive inhibitor of happyase. Addition of 1 nM STRESS increases the measured K_m for SAD by a factor of 2. What are the values for α and α' under these conditions?

Solution: Recall that the apparent K_m, the K_m measured in the presence of a competitive inhibitor, is defined as αK_m. Because K_m for SAD increases by a factor of 2 in the presence of 1 nM STRESS, the value of α must be 2. The value of α' for a competitive inhibitor is 1 by definition.

Irreversible Inhibition The irreversible inhibitors bind covalently with or destroy a functional group on an enzyme that is essential for the enzyme's activity, or form a particularly stable noncovalent association. Formation
of a covalent link between an irreversible inhibitor and an enzyme is common. Irreversible inhibitors are another useful tool for studying reaction mechanisms. Amino acids with key catalytic functions in the active site can sometimes be identified by determining which residue is covalently linked to an inhibitor after the enzyme is inactivated. An example is shown in Figure 6-16.

A special class of irreversible inhibitors is the suicide inactivators. These compounds are relatively unreactive until they bind to the active site of a specific enzyme. A suicide inactivator undergoes the first few chemical steps of the normal enzymatic reaction, but instead of being transformed into the normal product, the inactivator is converted to a very reactive compound that combines irreversibly with the enzyme. These compounds are also called mechanism-based inactivators, because they hijack the normal enzyme reaction mechanism to inactivate the enzyme. Suicide inactivators play a significant role in rational drug design, a modern approach to obtaining new pharmaceutical agents in which chemists synthesize novel substrates based on knowledge of substrates and reaction mechanisms. A well-designed suicide inactivator is specific for a single enzyme and is unreactive until it is within that enzyme's active site, so drugs based on this approach can offer the important advantage of few side effects (see Box 22–3). Some examples of irreversible inhibitors of medical importance are described at the end of Section 6.4.

Enzyme Activity Depends on pH

Enzymes have an optimum pH (or pH range) at which their activity is maximal (Fig. 6-17); at higher or lower pH, activity decreases. This is not surprising. Amino acid side chains in the active site may act as weak acids and bases with critical functions that depend on their maintaining a certain state of ionization, and elsewhere in the protein ionized side chains may play an essential role in the interactions that maintain protein structure. Removing a proton from a His residue, for example, might eliminate an ionic interaction essential for stabilizing the active conformation of the enzyme. A less common cause of pH sensitivity is titration of a group on the substrate.

The pH range over which an enzyme undergoes changes in activity can provide a clue to the type of amino acid residue involved (see Table 3-1). A change in activity near pH 7.0, for example, often reflects titration of a His residue. The effects of pH must be interpreted with some caution, however. In the closely packed environment of a protein, the pK_a of amino acid side chains can be significantly altered. For example, a nearby positive charge can lower the pK_a of a Lys residue, and a nearby negative charge can increase it. Such effects sometimes result in a pK_a that is shifted by several pH units from its value in the free amino acid. In the enzyme acetoacetate decarboxylase, for example, one Lys residue has a pK_a of 6.6 (compared with 10.5 in free lysine) due to electrostatic effects of nearby positive charges.

SUMMARY 6.3 Enzyme Kinetics as an Approach to Understanding Mechanism

- Most enzymes have certain kinetic properties in common. When substrate is added to an enzyme, the reaction rapidly achieves a steady state in
which the rate at which the ES complex forms balances the rate at which it breaks down. As [S] increases, the steady-state activity of a fixed concentration of enzyme increases in a hyperbolic fashion to approach a characteristic maximum rate, \(V_{\text{max}} \), at which essentially all the enzyme has formed a complex with substrate.

- The substrate concentration that results in a reaction rate equal to one-half \(V_{\text{max}} \) is the Michaelis constant \(K_m \), which is characteristic for each enzyme acting on a given substrate. The Michaelis-Menten equation

\[
V_o = \frac{V_{\text{max}} [S]}{K_m + [S]}
\]

relates initial velocity to [S] and \(V_{\text{max}} \) through the constant \(K_m \). Michaelis-Menten kinetics is also called steady-state kinetics.

- \(K_m \) and \(V_{\text{max}} \) have different meanings for different enzymes. The limiting rate of an enzyme-catalyzed reaction at saturation is described by the constant \(k_{\text{cat}} \), the turnover number. The ratio \(k_{\text{cat}}/K_m \) provides a good measure of catalytic efficiency. The Michaelis-Menten equation is also applicable to bisubstrate reactions, which occur by ternary-complex or Ping-Pong (double-displacement) pathways.

- Reversible inhibition of an enzyme may be competitive, uncompetitive, or mixed. Competitive inhibitors compete with substrate by binding reversibly to the active site, but they are not transformed by the enzyme. Uncompetitive inhibitors bind only to the ES complex, at a site distinct from the active site. Mixed inhibitors bind to either E or ES, again at a site distinct from the active site. In irreversible inhibition an inhibitor binds permanently to an active site by forming a covalent bond or a very stable noncovalent interaction.

- Every enzyme has an optimum pH (or pH range) at which it has maximal activity.

6.4 Examples of Enzymatic Reactions

Thus far we have focused on the general principles of catalysis and on introducing some of the kinetic parameters used to describe enzyme action. We now turn to several examples of specific enzyme reaction mechanisms.

An understanding of the complete mechanism of action of a purified enzyme requires identification of all substrates, cofactors, products, and regulators. Moreover, it requires a knowledge of (1) the temporal sequence in which enzyme-bound reaction intermediates form, (2) the structure of each intermediate and each transition state, (3) the rates of interconversion between intermediates, (4) the structural relationship of the enzyme to each intermediate, and (5) the energy contributed by all reacting and interacting groups to intermediate complexes and transition states. As yet, there is probably no enzyme for which we have an understanding that meets all these requirements.

We present here the mechanisms for four enzymes: chymotrypsin, hexokinase, enolase, and lysozyme. These examples are not intended to cover all possible classes of enzyme chemistry. They are chosen in part because they are among the best understood enzymes, and in part because they clearly illustrate some general principles outlined in this chapter. The discussion concentrates on selected principles, along with some key experiments that have helped to bring these principles into focus. We use the chymotrypsin example to review some of the conventions used to depict enzyme mechanisms. Much mechanistic detail and experimental evidence is necessarily omitted; no one book could completely document the rich experimental history of these enzymes. Also absent from these discussions is the special contribution of coenzymes to the catalytic activity of many enzymes. The function of coenzymes is chemically varied, and we describe each as it is encountered in Part II.

The Chymotrypsin Mechanism Involves Acylation and Deacylation of a Ser Residue

Bovine pancreatic chymotrypsin (Mr 25,191) is a protease, an enzyme that catalyzes the hydrolytic cleavage of peptide bonds. This protease is specific for peptide bonds adjacent to aromatic amino acid residues (Trp, Phe, Tyr). The three-dimensional structure of chymotrypsin is shown in Figure 6–18, with functional groups in the active site emphasized. The reaction catalyzed by this enzyme illustrates the principle of transition-state stabilization and also provides a classic example of general acid-base catalysis and covalent catalysis.

Chymotrypsin enhances the rate of peptide bond hydrolysis by a factor of at least \(10^9 \). It does not catalyze a direct attack of water on the peptide bond; instead, a transient covalent acyl-enzyme intermediate is formed. The reaction thus has two distinct phases. In the acylation phase, the peptide bond is cleaved and an ester linkage is formed between the peptide carbonyl carbon and the enzyme. In the deacylation phase, the ester linkage is hydrolyzed and the nonacylated enzyme regenerated.

The first evidence for a covalent acyl-enzyme intermediate came from a classic application of pre-steady state kinetics. In addition to its action on polypeptides, chymotrypsin also catalyzes the hydrolysis of small esters and amides. These reactions are much slower than hydrolysis of peptides because less binding energy is available with smaller substrates, and they are therefore easier to study. Investigations by B. S. Hartley and B. A. Kilby in 1954 found that chymotrypsin hydrolysis of the
ester p-nitrophenylacetate, as measured by release of p-nitrophenol, proceeds with a rapid burst before leveling off to a slower rate (Fig. 6–19). By extrapolating back to zero time, they concluded that the burst phase corresponded to just under one molecule of p-nitrophenol released for every enzyme molecule present. Hartley and Kilby suggested that this reflected a rapid acylation of all the enzyme molecules (with release of p-nitrophenol), with the rate for subsequent turnover of the enzyme limited by a slow deacylation step. Similar results have since been obtained with many other enzymes. The observation of a burst phase provides yet another example of the use of kinetics to break down a reaction into its constituent steps.

FIGURE 6–18 Structure of chymotrypsin. (PDB ID 7GCH) (a) A representation of primary structure, showing disulfide bonds and the amino acid residues crucial to catalysis. The protein consists of three polypeptide chains linked by disulfide bonds. (The numbering of residues in chymotrypsin, with “missing” residues 14, 15, 147, and 148, is explained in Fig. 6–38.) The active-site amino acid residues are grouped together in the three-dimensional structure. (b) A depiction of the enzyme emphasizing its surface. The pocket in which the aromatic amino acid side chain of the substrate is bound is shown in green. Key active-site residues, including Ser195, His57, and Asp102, are red. The roles of these residues in catalysis are illustrated in Figure 6–21. (c) The polypeptide backbone as a ribbon structure. Disulfide bonds are yellow; the three chains are colored as in part (a). (d) A close-up of the active site with a substrate (mostly green) bound. Two of the active-site residues, Ser195 and His57 (both red), are partly visible. The hydroxyl of Ser195 attacks the carbonyl group of the substrate (the oxygen is purple); the developing negative charge on the oxygen is stabilized by the oxyanion hole (amide nitrogens, including one from Ser195, in orange), as explained in Figure 6–21. In the substrate, the aromatic amino acid side chain and the amide nitrogen of the peptide bond to be cleaved (protruding toward the viewer and projecting the path of the rest of the substrate polypeptide chain) are in blue.

FIGURE 6–19 Pre–steady state kinetic evidence for an acyl-enzyme intermediate. The hydrolysis of p-nitrophenylacetate by chymotrypsin is measured by release of p-nitrophenol (a colored product). Initially, the reaction releases a rapid burst of p-nitrophenol nearly stoichiometric with the amount of enzyme present. This reflects the fast acylation phase of the reaction. The subsequent rate is slower, because enzyme turnover is limited by the rate of the slower deacylation phase.
Additional features of the chymotrypsin mechanism have been discovered by analyzing the dependence of the reaction on pH. The rate of chymotrypsin-catalyzed cleavage generally exhibits a bell-shaped pH-rate profile (Fig. 6–20). The rates plotted in Figure 6–20a are obtained at low (subsaturating) substrate concentrations and therefore represent k_{cat}/K_m (see Eqn 6–27, p. 199). The plot can be dissected further by first obtaining the maximum rates at each pH, and then plotting k_{cat} alone versus pH (Fig. 6–20b); after obtaining the K_m at each pH, researchers can then plot $1/K_m$ (Fig. 6–20c). Kinetic and structural analyses have revealed that the change in k_{cat} reflects the ionization state of His57. The decline in k_{cat} at low pH results from protonation of His57 (so that it cannot extract a proton from Ser195 in step (1) of the reaction; see Fig. 6–21). This rate reduction illustrates the importance of general acid and general base catalysis in the mechanism for chymotrypsin. The changes in the $1/K_m$ term reflect the ionization of the α-amino group of Ile16 (at the amino-terminal end of one of chymotrypsin’s three polypeptide chains). This group forms a salt bridge to Asp193, stabilizing the active conformation of the enzyme. When this group loses its proton at high pH, the salt bridge is eliminated and a conformational change closes the hydrophobic pocket where the aromatic amino acid side chain of the substrate inserts (Fig. 6–18). Substrates can no longer bind properly, which is measured kinetically as an increase in K_m.

The nucleophile in the acylation phase is the oxygen of Ser195. (Proteases with a Ser residue that plays this role in reaction mechanisms are called serine proteases.) The pK_a of a Ser hydroxyl group is generally too high for the unprotonated form to be present in significant concentrations at physiological pH. However, in chymotrypsin, Ser195 is linked to His57 and Asp102 in a hydrogen-bonding network referred to as the catalytic triad. When a peptide substrate binds to chymotrypsin, a subtle change in conformation compresses the hydrogen bond between His57 and Asp102, resulting in a stronger interaction, called a low-barrier hydrogen bond. This enhanced interaction increases the pK_a of His57 from ~7 (for free histidine) to >12, allowing the His residue to act as an enhanced general base that can remove the proton from the Ser195 hydroxyl. Deprotonation prevents development of a very unstable positive charge on the Ser195 hydroxyl and makes the Ser side chain a stronger nucleophile. At later reaction stages, His57 also acts as a proton donor, protonating the amino group in the displaced portion of the substrate (the leaving group).

As the Ser195 oxygen attacks the carbonyl group of the substrate, a very short-lived tetrahedral intermediate is formed in which the carbonyl oxygen acquires a negative charge (Fig. 6–21, step (2)). This charge, forming within a pocket on the enzyme called the oxyanion hole, is stabilized by hydrogen bonds contributed by the amide groups of two peptide bonds in the chymotrypsin backbone. One of these hydrogen bonds (contributed by Gly195) is present only in this intermediate and in the transition states for its formation and breakdown; it reduces the energy required to reach these states. This is an example of the use of binding energy in catalysis.

The role of transition state complementarity in enzyme catalysis is further explored in Box 6–3.
How to Read Reaction Mechanisms—A Refresher

Chemical reaction mechanisms, which trace the formation and breakage of covalent bonds, are communicated with dots and curved arrows, a convention known informally as "electron pushing." A covalent bond consists of a shared pair of electrons. Nonbonded electrons important to the reaction mechanism are designated by dots (—OH). Curved arrows (—) represent the movement of electron pairs. For movement of a single electron (as in a free radical reaction), a single-headed (fishhook-type) arrow is used (—). Most reaction steps involve an unshared electron pair (as in the chymotrypsin mechanism).

Some atoms are more electronegative than others; that is, they more strongly attract electrons. The relative electronegativities of atoms encountered in this text are F > O > N > C = S > P = H. For example, the two electron pairs making up a C=O (carbonyl) bond are not shared equally; the carbon is relatively electron-deficient as the oxygen draws away the electrons. Many reactions involve an electron-rich atom (a nucleophile) reacting with an electron-deficient atom (an electrophile). Some common nucleophiles and electrophiles in biochemistry are shown at right.

In general, a reaction mechanism is initiated at an unshared electron pair of a nucleophile. In mechanism diagrams, the base of the electron-pushing arrow originates near the electron-pair dots, and the head of the arrow points directly at the electrophilic center being attacked. Where the unshared electron pair confers a formal negative charge on the nucleophile, the negative charge symbol itself can represent the unshared electron pair and serves as the base of the arrow. In the chymotrypsin mechanism, the nucleophilic electron pair in the ES complex between steps 1 and 2 is provided by the oxygen of the Ser195 hydroxyl group. This electron pair (2 of the 8 valence electrons of the hydroxyl oxygen) provides the base of the curved arrow. The electrophilic center under attack is the carbonyl carbon of the peptide bond to be cleaved. The C, O, and N atoms have a maximum of 8 valence electrons, and H has a maximum of 2. These atoms are occasionally found in unstable states with less than their maximum allotment of electrons, but C, O, and N cannot have more than 8. Thus, when the electron pair from chymotrypsin's Ser195 attacks the substrate's carbonyl carbon, an electron pair is displaced from the carbon valence shell (you cannot have 5 bonds to carbon!). These electrons move toward the more electronegative carbonyl oxygen. The oxygen has 8 valence electrons both before and after this chemical process, but the number shared with the carbon is reduced from 4 to 2, and the carbonyl oxygen acquires a negative charge. In the next step, the electron pair conferring the negative charge on the oxygen moves back to re-form a bond with carbon and reestablish the carbonyl linkage. Again, an electron pair must be displaced from the carbon, and this time it is the electron pair shared with the amino group of the peptide linkage. This breaks the peptide bond. The remaining steps follow a similar pattern.
Interaction of Ser^{195} and His^{57} generates a strongly nucleophilic alkoxide ion on Ser^{195}; the ion attacks the peptide carbonyl group, forming a tetrahedral acyl-enzyme. This is accompanied by formation of a short-lived negative charge on the carbonyl oxygen of the substrate, which is stabilized by hydrogen bonding in the oxyanion hole.

MECHANISM FIGURE 6–21 Hydrolytic cleavage of a peptide bond by chymotrypsin. The reaction has two phases. In the acylation phase (steps 1 to 3), formation of a covalent acyl-enzyme intermediate is coupled to cleavage of the peptide bond. In the deacylation phase (steps 4 to 6), deacylation regenerates the free enzyme; this is essentially the reverse of the acylation phase, with water mirroring, in reverse, the role of the amine component of the substrate.

Chymotrypsin Mechanism

- **Short-lived intermediate** (acylation)
- **Acyl-enzyme intermediate**
- **Short-lived intermediate** (deacylation)
- **Acyl-enzyme intermediate**

The tetrahedral intermediate in the chymotrypsin reaction pathway, and the second tetrahedral intermediate that forms later, are sometimes referred to as transition states, which can lead to confusion. An intermediate is any chemical species with a finite lifetime, “finite” being defined as longer than the time required for a molecular vibration (~10^{-13} seconds). A transition state is simply the maximum-energy species formed on the reaction coordinate and does not have a finite lifetime. The tetrahedral intermediates formed in the chymotrypsin reaction closely resemble, both energetically and structurally, the transition states leading to their formation and breakdown. However, the intermediate represents a committed stage of completed bond formation, whereas the transition state is part of the process of reaction. In the case of chymotrypsin, given the close relationship between the intermediate and the actual transition state the distinction between them is routinely glossed over. Furthermore, the interaction of the negatively charged oxygen with the amide nitrogens in the oxyanion hole, often referred to as transition-state stabilization, also serves to stabilize the intermediate in this case. Not all intermediates are so short-lived that they resemble transition states. The chymotrypsin acyl-enzyme intermediate is much more stable and more readily detected and studied, and it is never confused with a transition state.
The transition state of a reaction is difficult to study because it is so short-lived. To understand enzymatic catalysis, however, we must understand what occurs during this fleeting moment in the course of a reaction. Complementarity between an enzyme and the transition state is virtually a requirement for catalysis, because the energy hill upon which the transition state sits is what the enzyme must lower if catalysis is to occur. How can we obtain evidence for enzyme–transition state complementarity? Fortunately, we have a variety of approaches, old and new, to address this problem, each providing compelling evidence in support of this general principle of enzyme action.

Structure-Activity Correlations

If enzymes are complementary to reaction transition states, then some functional groups in both the substrate and the enzyme must interact preferentially in the transition state rather than in the ES complex. Changing these groups should have little effect on formation of the ES complex and hence should not affect kinetic parameters (the dissociation constant, K_d, or sometimes K_m if $K_d = K_m$) that reflect the $E + S \rightleftharpoons ES$ equilibrium. Changing these same groups should have a large effect on the overall rate (k_{cat} or k_{cat}/K_m) of the reaction, however, because the bound substrate lacks potential binding interactions needed to lower the activation energy.

An excellent example of this effect is seen in the kinetics associated with a series of related substrates for the enzyme chymotrypsin (Fig. 1). Chymotrypsin normally catalyzes the hydrolysis of peptide bonds next to aromatic amino acids. The substrates shown in Figure 1 are convenient smaller models for the natural substrates (long polypeptides and proteins). The additional chemical groups added in each substrate (A to B to C) are shaded. As the table shows, the interaction between the enzyme and these added functional groups has a minimal effect on K_m (taken here as a reflection of K_d) but a large, positive effect on k_{cat} and k_{cat}/K_m. This is what we would expect if the interaction contributed largely to stabilization of the transition state. The results also demonstrate that the rate of a reaction can be affected greatly by enzyme-substrate interactions that are physically remote from the covalent bonds that are altered in the enzyme-catalyzed reaction. Chymotrypsin is described in more detail in the text.

A complementary experimental approach is to modify the enzyme, eliminating certain enzyme-substrate interactions by replacing specific amino acid residues through site-directed mutagenesis (see Fig. 9-11). Results from such experiments again demonstrate the importance of binding energy in stabilizing the transition state.

Transition-State Analogs

Even though transition states cannot be observed directly, chemists can often predict the approximate structure of a transition state based on accumulated knowledge about reaction mechanisms. The transition state is by definition transient and so unstable that direct measurement of the binding interaction between this species and the enzyme is impossible. In some cases, however, stable molecules can be designed that resemble transition states. These are called transition-
state analogs. In principle, they should bind to an enzyme more tightly than does the substrate in the ES complex, because they should fit the active site better (that is, form a greater number of weak interactions) than the substrate itself. The idea of transition-state analogs was suggested by Pauling in the 1940s, and it has been explored using a number of enzymes. These experiments have the limitation that a transition-state analog cannot perfectly mimic a transition state. Some analogs, however, bind an enzyme 10^2 to 10^6 times more tightly than does the normal substrate, providing good evidence that enzyme active sites are indeed complementary to transition states. The same principle is used in the pharmaceutical industry to design new drugs. The powerful anti-HIV drugs called protease inhibitors were designed in part as tight-binding transition-state analogs directed at the active site of HIV protease.

Catalytic Antibodies

If a transition-state analog can be designed for the reaction $S \rightarrow P$ then an antibody that binds tightly to this analog might be expected to catalyze $S \rightarrow P$. Antibodies (immunoglobulins; see Fig. 5-21) are key components of the immune response. When a transition-state analog is used as a protein-bound epitope to stimulate the production of antibodies, the antibodies that bind it are potential catalysts of the corresponding reaction. This use of "catalytic antibodies," first suggested by William P. Jencks in 1969, has become practical with the development of laboratory techniques to produce quantities of identical antibodies that bind one specific antigen (monoclonal antibodies, p. 173).

Pioneering work in the laboratories of Richard Lerner and Peter Schultz has resulted in the isolation of a number of monoclonal antibodies that catalyze the hydrolysis of esters or carbonates (Fig. 2). In these reactions, the attack by water (OH^-) on the carbonyl carbon produces a tetrahedral transition state in which a partial negative charge has developed on the carbonyl oxygen. Phosphonate ester compounds mimic the structure and charge distribution of this transition state in ester hydrolysis, making them good transition-state analogs; phosphate ester compounds are used for carbonate hydrolysis reactions. Antibodies that bind the phosphonate or phosphate compound tightly have been found to accelerate the corresponding ester or carbonate hydrolysis reaction by factors of 10^3 to 10^4. Structural analyses of a few of these catalytic antibodies have shown that some catalytic amino acid side chains are arranged such that they could interact with the substrate in the transition state.

Catalytic antibodies generally do not approach the catalytic efficiency of enzymes, but medical and industrial uses for them are nevertheless emerging. For example, catalytic antibodies designed to degrade cocaine are being investigated as a potential aid in the treatment of cocaine addiction.

![Ester hydrolysis](image)

![Carbonate hydrolysis](image)

FIGURE 2 The expected transition states for ester or carbonate hydrolysis reactions. Phosphonate and phosphate ester compounds, respectively, make good transition-state analogs for these reactions.
Hexokinase Undergoes Induced Fit on Substrate Binding

Yeast hexokinase (M_r 107,862) is a bisubstrate enzyme that catalyzes the reversible reaction

$$\text{Glucose 6-phosphate} \rightleftharpoons \text{ATP} + \text{ADP} + \text{Mg}^{2+}$$

ATP and ADP always bind to enzymes as a complex with the metal ion Mg$^{2+}$.

The hydroxyl at C-6 of glucose (to which the γ-phosphoryl of ATP is transferred in the hexokinase reaction) is similar in chemical reactivity to water, and water freely enters the enzyme active site. Yet hexokinase favors the reaction with glucose by a factor of 10^6. The enzyme can discriminate between glucose and water because of a conformational change in the enzyme when the correct substrates binds (Fig. 6-22). Hexokinase thus provides a good example of induced fit. When glucose is not present, the enzyme is in an inactive conformation with the active-site amino acid side chains out of position for reaction. When glucose (but not water) and Mg \cdot ATP bind, the binding energy derived from this interaction induces a conformational change in hexokinase to the catalytically active form.

This model has been reinforced by kinetic studies. The five-carbon sugar xylose, stereochemically similar to glucose but one carbon shorter, binds to hexokinase but in a position where it cannot be phosphorylated. Nevertheless, addition of xylose to the reaction mixture increases the rate of ATP hydrolysis. Evidently, the binding of xylose is sufficient to induce a change in hexokinase to its active conformation, and the enzyme is thereby “tricked” into phosphorylating water. The hexokinase reaction also illustrates that enzyme specificity is not always a simple matter of binding one compound but not another. In the case of hexokinase, specificity is observed not in the formation of the ES complex but in the relative rates of subsequent catalytic steps. Water is not excluded from the active site, but reaction rates increase greatly in the presence of the functional phosphoryl group acceptor (glucose).

Induced fit is only one aspect of the catalytic mechanism of hexokinase—like chymotrypsin, hexokinase uses several catalytic strategies. For example, the active-site amino acid residues (those brought into position by the conformational change that follows substrate binding) participate in general acid-base catalysis and transition-state stabilization.
6.4 Examples of Enzymatic Reactions

MECHANISM Figure 6-23 Two-step reaction catalyzed by enolase.
(a) The mechanism by which enolase converts 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate. The carboxyl group of 2-PGA is coordinated by two magnesium ions at the active site. (b) The substrate, 2-PGA.

The Enolase Reaction Mechanism Requires Metal Ions

Another glycolytic enzyme, enolase, catalyzes the reversible dehydration of 2-phosphoglycerate to phosphoenolpyruvate:

\[
\text{H}_2\text{C}-\text{O}-\text{P}^-\text{O}^- \xrightarrow{\text{Enolase}} \text{H}_2\text{C}-\text{O}-\text{P}^-\text{O}^- + \text{H}_2\text{O}
\]

Yeast enolase (M₉ 93,316) is a dimer with 436 amino acid residues per subunit. The enolase reaction illustrates one type of metal ion catalysis and provides an additional example of general acid-base catalysis and transition-state stabilization. The reaction occurs in two steps (Fig. 6-23a). First, Lys⁴⁴⁵ acts as a general base catalyst, abstracting a proton from C-2 of 2-phosphoglycerate; then Glu²¹¹ acts as a general acid catalyst, donating a proton to the —OH leaving group. The proton at C-2 of 2-phosphoglycerate is not very acidic and thus is not readily removed.

However, in the enzyme active site, 2-phosphoglycerate undergoes strong ionic interactions with two bound Mg²⁺ ions (Fig. 6-23b), making the C-2 proton more acidic (lowering the pKₐ) and easier to abstract. Hydrogen bonding to other active-site amino acid residues also contributes to the overall mechanism. The various interactions effectively stabilize both the enolate intermediate and the transition state preceding its formation.

Lysozyme Uses Two Successive Nucleophilic Displacement Reactions

Lysozyme is a natural antibacterial agent found in tears and egg whites. The hen egg white lysozyme (M₉ 14,296) is a monomer with 129 amino acid residues. This was the first enzyme to have its three-dimensional structure determined, by David Phillips and colleagues in 1965. The structure revealed four stabilizing disulfide bonds and a cleft containing the active site (Fig. 6-24a). More than five decades of investigations have provided a detailed picture of the structure and activity of the enzyme, and an interesting story of how biochemical science progresses.
The substrate of lysozyme is peptidoglycan, a carbohydrate found in many bacterial cell walls (see Fig. 20–31). Lysozyme cleaves the \((\beta 1\rightarrow 4)\) glycosidic C–O bond (see p. 243) between the two types of sugar residue in the molecule, \(N\)-acetylmuramic acid (Mur2Ac) and \(N\)-acetylglucosamine (GlcNAc), often referred to as NAM and NAG, respectively, in the research literature on enzymology (Fig. 6–24b). Six residues of the alternating Mur2Ac and GlcNAc in peptidoglycan bind in the active site, in binding sites labeled A through F. Model building has shown that the lactyl side chain of Mur2Ac cannot be accommodated in sites C and E, restricting Mur2Ac binding to sites B, D, and F. Only one of the bound glycosidic bonds is cleaved, that between a Mur2Ac residue in site D and a GlcNAc residue in site E. The key catalytic amino acid residues in the active site are Glu35 and Asp52 (Fig. 6–25a).

The reaction is a nucleophilic substitution, with \(-\text{OH}\) from water replacing the GlcNAc at C-1 of Mur2Ac.

With the active site residues identified and a detailed structure of the enzyme available, the path to understanding the reaction mechanism seemed open in the 1960s. However, definitive evidence for a particular mechanism eluded investigators for nearly four decades.

There are two chemically reasonable mechanisms that could generate the observed product of lysozyme-mediated cleavage of the glycosidic bond. Phillips and colleagues proposed a dissociative (S\textsubscript{N}1-type) mechanism (Fig. 6–25a, left), in which the GlcNAc initially dissociates in step (1) to leave behind a glycosyl cation (a carbocation) intermediate. In this mechanism, the departing GlcNAc is protonated by general acid catalysis by Glu35, located in a hydrophobic pocket that gives its carboxyl group an unusually high \(pK_a\). The carbocation is stabilized by resonance involving the adjacent ring oxygen, as well as by electrostatic interaction with the negative charge on the nearby Asp52. In step (2), water attacks at C-1 of Mur2Ac to yield the product. The alternative mechanism (Fig. 6–25a, right) involves two consecutive direct-displacement (S\textsubscript{N}2-type) steps. In step (1), Asp52 attacks C-1 of Mur2Ac to displace the GlcNAc. As in the first mechanism, Glu35 acts as a general acid to protonate the departing GlcNAc. In step (2), water attacks at C-1 of Mur2Ac to displace the Asp52 and generate product.

The Phillips mechanism (S\textsubscript{N}1), was widely accepted for more than three decades. However, some controversy persisted and tests continued. The scientific method sometimes advances an issue slowly, and a truly insightful experiment can be difficult to design. Some early
A rearrangement produces a glycosyl carbocation. General acid catalysis by Glu₃⁵ protonates the displaced GlcNAc oxygen and facilitates its departure.

Asp⁵² acts as a covalent catalyst, directly displacing the GlcNAc via an Sn₂ mechanism. Glu₃⁵ protonates the GlcNAc to facilitate its departure.

General base catalysis by Glu₃⁵ facilitates the attack of water on the glycosyl carbocation to form product.

Glu₃⁵ acts as a general base catalyst to facilitate the Sn₂ attack of water, displacing Asp⁵² and generating product.

MECHANISM FIGURE 6-25 Lysozyme reaction. In this reaction (described in the text), the water introduced into the product at C-1 of Mur2Ac is in the same configuration as the original glycosidic bond. The reaction is thus a molecular substitution with retention of configuration. (a) Two proposed pathways potentially explain the overall reaction and its properties. The Sn₁ pathway (left) is the original Phillips mechanism. The Sn₂ pathway (right) is the mechanism most consistent with current data. (b) A surface rendering of the lysozyme active site with the covalent enzyme-substrate intermediate shown as a ball-and-stick structure. Side chains of active-site residues are shown as ball-and-stick structures protruding from ribbons (PDB ID 1H6M).
arguments against the Phillips mechanism were suggestive but not completely persuasive. For example, the half-life of the proposed glycosyl cation was estimated to be 10^{-12} seconds, just longer than a molecular vibration and not long enough for the needed diffusion of other molecules. More important, lysozyme is a member of a family of enzymes called "retaining glycosidases," all of which catalyze reactions in which the product has the same anomic configuration as the substrate (anomic configurations of carbohydrates are examined in Chapter 7), and all of which are known to have reactive covalent intermediates like that envisioned in the alternative (S_n2) pathway. Hence, the Phillips mechanism ran counter to experimental findings for closely related enzymes.

A compelling experiment tipped the scales decidedly in favor of the S_n2 pathway, as reported by Stephen Withers and colleagues in 2001. Making use of a mutant enzyme (with residue 35 changed from Glu to Gln) and artificial substrates, which combined to slow the rate of key steps in the reaction, these workers were able to stabilize the elusive covalent intermediate. This in turn allowed them to observe the intermediate directly, using both mass spectrometry and x-ray crystallography (Fig. 6-25b).

Is the lysozyme mechanism now proven? No. A key feature of the scientific method, as Albert Einstein once summarized it, is "No amount of experimentation can ever prove me right; a single experiment can prove me wrong." In the case of the lysozyme mechanism, one might argue (and some have) that the artificial substrates, with fluorine substitutions at C-1 and C-2, that were used to stabilize the covalent intermediate might have altered the reaction pathway. The highly electronegative fluorine could destabilize an already electron-deficient oxocarbenium ion in the glycosyl cation intermediate that might occur in an S_n1 pathway. However, the S_n2 pathway is now the mechanism most in concert with available data.

An Understanding of Enzyme Mechanism Drives Important Advances in Medicine

The drugs used to treat maladies ranging from headache to HIV infection are almost always inhibitors of an enzyme. Two examples are explored here: the antibiotic penicillin (and its derivatives) and the protease inhibitors used to treat HIV infections, all of which are irreversible inhibitors.

Penicillin was discovered in 1928 by Alexander Fleming, but it took another 15 years before this relatively unstable compound was understood well enough to use it as a pharmaceutical agent to treat bacterial infections. Penicillin interferes with the synthesis of peptidoglycan (described in Chapter 20, Fig. 20-32), the major component of the rigid cell wall that protects bacteria from osmotic lysis. Peptidoglycan consists of polysaccharides and peptides cross-linked in several steps that include a transpeptidase reaction (Fig. 6-26). It is

![Figure 6-26: The transpeptidase reaction. This reaction, which links two peptidoglycan precursors into a larger polymer, is facilitated by an active-site Ser and a covalent catalysis mechanism similar to that of chymotrypsin. Note that peptidoglycan is one of the few places in nature where α-amino acid residues are found. The active-site Ser attacks the carbonyl of the peptide bond between the two α-Ala residues, creating a covalent ester linkage between the substrate and the enzyme with release of the terminal α-Ala residue. An amino group from the second peptidoglycan precursor then attacks the ester linkage, displacing the enzyme and cross-linking the two precursors.](https://example.com/figure626.png)
6.4 Examples of Enzymatic Reactions

FIGURE 6–27 Transpeptidase inhibition by β-lactam antibiotics. (a) β-Lactam antibiotics feature a five-membered thiazolidine ring fused to a four-membered β-lactam ring. The latter ring is strained and includes an amide moiety that plays a critical role in the inactivation of peptidoglycan synthesis. The R group varies in different penicillins. Penicillin G was the first to be isolated and remains one of the most effective, but it is degraded by stomach acid and must be administered by injection. Penicillin V is nearly as effective and is acid stable, so it can be administered orally. Amoxicillin has a broad range of effectiveness, is readily administered orally, and is thus the most widely prescribed β-lactam antibiotic. (b) Attack on the amide moiety of the β-lactam ring by a transpeptidase active-site Ser results in a covalent acyl-enzyme product. This is hydrolyzed so slowly that adduct formation is practically irreversible, and the transpeptidase is inactivated.

by injection. Penicillin V is nearly as effective and is acid stable, so it can be administered orally. Amoxicillin has a broad range of effectiveness, is readily administered orally, and is thus the most widely prescribed β-lactam antibiotic. (b) Attack on the amide moiety of the β-lactam ring by a transpeptidase active-site Ser results in a covalent acyl-enzyme product. This is hydrolyzed so slowly that adduct formation is practically irreversible, and the transpeptidase is inactivated.

this reaction that is inhibited by penicillin and related compounds (Fig. 6–27a), all of which mimic one conformation of the D-Ala–D-Ala segment of the peptidoglycan precursor. The peptide bond in the precursor is replaced by a highly reactive β-lactam ring. When penicillin binds to the transpeptidase, an active-site Ser attacks the carbonyl of the β-lactam ring and generates a covalent adduct between penicillin and the enzyme. However, the leaving group remains attached because it is linked by the remnant of the β-lactam ring (Fig. 6–27b). The covalent complex irreversibly inactivates the enzyme. This, in turn, blocks synthesis of the bacterial cell wall, and most bacteria die as the fragile inner membrane bursts under osmotic pressure.

Human use of penicillin and its derivatives has led to the evolution of strains of pathogenic bacteria that express β-lactamases (Fig. 6–28a), enzymes that cleave β-lactam antibiotics, rendering them inactive. The bacteria thereby become resistant to the antibiotics. The genes for these enzymes have spread rapidly through bacterial populations under the selective pressure imposed by the use (and often overuse) of β-lactam antibiotics. Human medicine responded with the development of compounds such as clavulanic acid, a...
suicide inactivator, which irreversibly inactivates the \(\beta \)-lactamases (Fig. 6–28b). Clavulanic acid mimics the structure of a \(\beta \)-lactam antibiotic, and forms a covalent adduct with a Ser in the \(\beta \)-lactamase active site. This leads to a rearrangement that creates a much more reactive derivative, which is subsequently attacked by another nucleophile in the active site to irreversibly acylate the enzyme and inactivate it. Amoxicillin and clavulanic acid are combined in a widely used pharmaceutical formulation with the trade name Augmentin. The cycle of chemical warfare between humans and bacteria continues unabated. Strains of disease-causing bacteria that are resistant to both amoxicillin and clavulanic acid (reflecting mutations in \(\beta \)-lactamase that render it unreactive to clavulanic acid) have been discovered. The development of new antibiotics promises to be a growth industry for the foreseeable future.

Antiviral agents provide another example of modern drug development. The human immunodeficiency virus (HIV) is the causative agent of acquired immune deficiency syndrome, or AIDS. In 2005, an estimated 37 to 45 million people worldwide were living with HIV infections, with 3.9 to 6.6 million new infections that year and more than 2.4 million fatalities. AIDS first surfaced as a world epidemic in the 1980s; HIV was discovered soon after and identified as a retrovirus. Retroviruses possess an RNA genome and an enzyme, reverse transcriptase, capable of using RNA to direct the synthesis of a complementary DNA. Efforts to understand HIV and develop therapies for HIV infection benefited from decades of basic research on other retroviruses. A retrovirus such as HIV has a relatively simple life cycle (see Fig. 26–33). Its RNA genome is converted to duplex DNA in several steps catalyzed by a reverse transcriptase (described in Chapter 26). The duplex DNA is then inserted into a chromosome in the nucleus of the host cell by the enzyme integrase (described in Chapter 25). The integrated copy of the viral genome can remain dormant indefinitely. Alternatively, it can be transcribed back into RNA, which can then be translated into proteins to construct new virus particles. Most of the viral genes are translated into large polyproteins, which are cut by the HIV protease into the individual proteins needed to make the virus (see Fig. 26–34). There are only three key enzymes in this cycle—the reverse transcriptase, the integrase, and the protease—which thus are the potential drug targets.
There are four major subclasses of proteases. Serine proteases, such as chymotrypsin and trypsin, and cysteine proteases (in which Cys serves a catalytic role similar to that of Ser in the active site) feature covalent enzyme-substrate complexes; aspartyl proteases and metalloproteases do not. The HIV protease is an aspartyl protease. Two active-site Asp residues facilitate a direct attack of water on the peptide bond to be cleaved (Fig. 6-29). The initial product of the attack of water on the carbonyl group of the peptide bond to be cleaved is an unstable tetrahedral intermediate, much as we have seen for the chymotrypsin reaction. This intermediate is close in structure and energy to the reaction transition state. The drugs that have been developed as HIV protease inhibitors form noncovalent complexes with the enzyme, but they bind to it so tightly that they can be considered irreversible inhibitors. The tight binding is derived in part from their design as transition-state analogs (see Box 6-3). The success of these drugs makes a point worth emphasizing. The catalytic principles we have studied in this chapter are not simply abstruse ideas to be memorized—their application saves lives.

The HIV protease cleaves peptide bonds between Phe and Pro residues most efficiently. The active site thus has a pocket to bind aromatic groups next to the bond to be cleaved. The structures of several HIV protease inhibitors are shown in Figure 6-30. Although the structures appear varied, they all share a core structure—a main chain with a hydroxyl group positioned next to a branch containing a benzyl group. This arrangement targets the benzyl group to the aromatic binding pocket. The adjacent hydroxyl group mimics the negatively charged oxygen in the tetrahedral intermediate in the normal reaction, providing a transition-state analog. The remainder of each inhibitor structure was designed to fit into and bind to various crevices along the surface of the enzyme, enhancing overall binding. Availability of these effective drugs has vastly increased the lifespan and quality of life of millions of people with HIV and AIDS.

FIGURE 6–29 Mechanism of action of HIV protease. Two active-site Asp residues (from different subunits) act as general acid-base catalysts, facilitating the attack of water on the peptide bond. The unstable tetrahedral intermediate in the reaction pathway is highlighted in pink.
SUMMARY 6.4 Examples of Enzymatic Reactions

- Chymotrypsin is a serine protease with a well-understood mechanism, featuring general acid-base catalysis, covalent catalysis, and transition-state stabilization.
- Hexokinase provides an excellent example of induced fit as a means of using substrate binding energy.
- The enolase reaction proceeds via metal ion catalysis.
- Lysozyme makes use of covalent catalysis and general acid catalysis as it promotes two successive nucleophilic displacement reactions.
- Understanding enzyme mechanism allows the development of drugs to inhibit enzyme action.

6.5 Regulatory Enzymes

In cellular metabolism, groups of enzymes work together in sequential pathways to carry out a given metabolic process, such as the multireaction breakdown of glucose to lactate or the multireaction synthesis of an amino acid from simpler precursors. In such enzyme systems, the reaction product of one enzyme becomes the substrate of the next.

Most of the enzymes in each metabolic pathway follow the kinetic patterns we have already described. Each pathway, however, includes one or more enzymes that have a greater effect on the rate of the overall sequence. These regulatory enzymes exhibit increased or decreased catalytic activity in response to certain signals. Adjustments in the rate of reactions catalyzed by regulatory enzymes, and therefore in the rate of entire metabolic sequences, allow the cell to meet changing needs for energy and for biomolecules required in growth and repair.

In most multienzyme systems, the first enzyme of the sequence is a regulatory enzyme. This is an excellent place to regulate a pathway, because catalysis of even the first few reactions of a sequence that leads to an unneeded product diverts energy and metabolites from more important processes. Other enzymes in the sequence may play subtler roles in modulating the flux through a pathway, as described in Chapter 15.

The activities of regulatory enzymes are modulated in a variety of ways. Allosteric enzymes function through reversible, noncovalent binding of regulatory compounds called allosteric modulators or allosteric effectors, which are generally small metabolites or cofactors. Other enzymes are regulated by reversible covalent modification. Both classes of regulatory enzymes tend to be multisubunit proteins, and in some cases the regulatory site(s) and the active site are on separate subunits. Metabolic systems have at least two other mechanisms of enzyme regulation. Some enzymes are stimulated or inhibited when they are bound by separate regulatory proteins. Others are activated when peptide segments are removed by proteolytic cleavage; unlike effector-mediated regulation, regulation by proteolytic cleavage is irreversible. Important examples of both mechanisms are found in physiological processes such as digestion, blood clotting, hormone action, and vision.

Cell growth and survival depend on efficient use of resources, and this efficiency is made possible by regulatory enzymes. No single rule governs the occurrence of different types of regulation in different systems. To a degree, allosteric (noncovalent) regulation may permit fine-tuning of metabolic pathways that are required continuously but at different levels of activity as cellular conditions change. Regulation by covalent modification may be all or none—usually the case with proteolytic cleavage—or it may allow for subtle changes in activity. Several types of regulation may occur in a single regulatory enzyme. The remainder of this chapter is devoted to a discussion of these methods of enzyme regulation.

Allosteric Enzymes Undergo Conformational Changes in Response to Modulator Binding

As we saw in Chapter 5, allosteric proteins are those having "other shapes" or conformations induced by the binding of modulators. The same concept applies to certain regulatory enzymes, as conformational changes induced by one or more modulators interconvert more-active and less-active forms of the enzyme. The modulators for allosteric enzymes may be inhibitory or stimulatory. Often the modulator is the substrate itself; regulatory enzymes for which substrate and modulator are identical are called homotropic. The effect is similar to that of O₂ binding to hemoglobin (Chapter 5): binding of the ligand—or substrate, in the case of enzymes—causes conformational changes that affect the subsequent activity of other sites on the protein. When the modulator is a molecule other than the substrate, the enzyme is said to be heterotropic. Note that allosteric modulators should not be confused with competitive and mixed inhibitors. Although the latter bind at a second site on the enzyme, they do not necessarily mediate conformational changes between active and inactive forms, and the kinetic effects are distinct.

The properties of allosteric enzymes are significantly different from those of simple nonregulatory enzymes. Some of the differences are structural. In addition to active sites, allosteric enzymes generally have one or more regulatory, or allosteric, sites for binding the modulator (Fig. 6-31). Just as an enzyme's active site is specific for its substrate, each regulatory site is specific for its modulator. Enzymes with several modulators generally have different specific binding sites for each. In homotropic enzymes, the active site and regulatory site are the same.

Allosteric enzymes are generally larger and more complex than nonallosteric enzymes. Most have two or more subunits. Aspartate transcarbamoylase, which catalyzes an early reaction in the biosynthesis of pyrimidines, is a...
In many multienzyme systems, the regulatory enzymes are specifically inhibited by the end product of the pathway whenever the concentration of the end product exceeds the cell's requirements. When the regulatory enzyme reaction is slowed, subsequent enzymes may operate at different rates as their substrate pools are depleted. The rate of production of the pathway's end product is thereby brought into balance with the cell's needs. This type of regulation is called feedback inhibition. Buildup of the end product ultimately slows the entire pathway.

One of the first known examples of allosteric feedback inhibition was the bacterial enzyme system that catalyzes the conversion of \(L \)-threonine to \(L \)-isoleucine in five steps (Fig. 6-33). In this system, the first enzyme, threonine dehydratase, is inhibited by isoleucine, the product of the last reaction of the series. This is an example of heterotropic allosteric inhibition. Isoleucine is quite specific as an inhibitor. No other intermediate in this sequence inhibits threonine dehydratase, nor is any other enzyme in the sequence inhibited by isoleucine. Isoleucine binds not to the active site but to another specific site on the enzyme molecule, the regulatory site.
This binding is noncovalent and readily reversible; if the isoleucine concentration decreases, the rate of threonine dehydration increases. Thus threonine dehydratase activity responds rapidly and reversibly to fluctuations in the cellular concentration of isoleucine. As we shall see in Part II of this book, the patterns of regulation in many other metabolic pathways are much more complex.

The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior

Allosteric enzymes show relationships between V_0 and $[S]$ that differ from Michaelis-Menten kinetics. They do exhibit saturation with the substrate when $[S]$ is sufficiently high, but for some allosteric enzymes, plots of V_0 versus $[S]$ (Fig. 6-34) produce a sigmoid saturation curve, rather than the hyperbolic curve typical of non-regulatory enzymes. On the sigmoid saturation curve we can find a value of $[S]$ at which V_0 is half-maximal, but we cannot refer to it with the designation K_m, because the enzyme does not follow the hyperbolic Michaelis-Menten relationship. Instead, the symbol $[S]_0.5$ or $K_0.5$ is often used to represent the substrate concentration giving half-maximal velocity of the reaction catalyzed by an allosteric enzyme (Fig. 6-34).

Sigmoid kinetic behavior generally reflects cooperative interactions between protein subunits. In other words, changes in the structure of one subunit are translated into structural changes in adjacent subunits, an effect mediated by noncovalent interactions at the interface between subunits. The principles are particularly well illustrated by a nonenzyme: O$_2$ binding to hemoglobin. Sigmoid kinetic behavior is explained by the concerted and sequential models for subunit interactions (see Fig. 5-15).

Homotropic allosteric enzymes generally are multisubunit proteins and, as noted earlier, the same binding site on each subunit functions as both the active site and the regulatory site. Most commonly, the substrate acts as a positive modulator (an activator), because the subunits act cooperatively: the binding of one molecule of substrate to one binding site alters the enzyme’s conformation and enhances the binding of subsequent substrate molecules. This accounts for the sigmoid rather than hyperbolic change in V_0 with increasing $[S]$. One characteristic of sigmoid kinetics is that small changes in the concentration of a modulator can be associated with large changes in activity. As is evident in Figure 6-34a, a relatively small increase in $[S]$ in the steep part of the curve causes a comparatively large increase in V_0.

For heterotropic allosteric enzymes, those whose modulators are metabolites other than the normal substrate, it is difficult to generalize about the shape of the substrate-saturation curve. An activator may cause the curve to become more nearly hyperbolic, with a decrease in $K_{0.5}$ but no change in V_{max}, resulting in an increased reaction velocity at a fixed substrate concentration (V_0 is higher for any value of $[S]$; Fig. 6-34b, upper curve). Other heterotropic allosteric enzymes respond to an activator by an increase in V_{max} with little change in $K_{0.5}$ (Fig. 6-34c). A negative modulator (an inhibitor) may produce a more sigmoid substrate-saturation curve, with an increase in $K_{0.5}$ (Fig. 6-34b, lower curve). Heterotropic allosteric enzymes therefore show different kinds of responses in their substrate-activity curves, because some have inhibitory modulators, some have activating modulators, and some have both.

![Figure 6-34 Substrate-activity curves for representative allosteric enzymes.](image-url)
Some Enzymes Are Regulated by Reversible Covalent Modification

In another important class of regulatory enzymes, activity is modulated by covalent modification of one or more of the amino acid residues in the enzyme molecule. Over 500 different types of covalent modification have been found in proteins. Common modifying groups include phosphoryl, acetyl, adenylyl, uridylyl, methyl, amide, carboxyl, myristoyl, palmitoyl, prenyl, hydroxyl, sulfate, and adenosine diphosphate ribosyl groups (Fig. 6–35). There are even entire proteins that are used as specialized modifying groups, including ubiquitin and sumo. These varied groups are generally linked to and removed from a regulated enzyme by separate enzymes. When an amino acid residue in an enzyme is modified, a novel amino acid with altered properties has effectively been introduced into the enzyme. Introduction of a charge can alter the local properties of the enzyme and induce a change in conformation. Introduction of a hydrophobic group can trigger association with a membrane. The changes are often substantial and can be critical to the function of the altered enzyme.

The variety of enzyme modifications is too great to cover in detail, but some examples can be offered. An example of an enzyme regulated by methylation is the methyl-accepting chemotaxis protein of bacteria. This protein is part of a system that permits a bacterium to swim toward an attractant (such as a sugar) in solution and away from repellent chemicals. The methylating agent is S-adenosylmethionine (adoMet) (see Fig. 18–18). Acetylation is a common modification, with approximately 80% of the soluble proteins in eukaryotes, including many enzymes, acetylated at their amino termini. Ubiquitin is added to proteins as a tag that predetermines them for proteolytic degradation (see Fig. 27–47). Ubiquitination can also have a regulatory function. Sumo is found attached to many eukaryotic nuclear proteins with roles in the regulation of transcription, chromatin structure, and DNA repair.

ADP-ribosylation is an especially interesting reaction, observed in a number of proteins; the ADP-ribose is derived from nicotinamide adenine dinucleotide (NAD) (see Fig. 8–38). This type of modification occurs for the bacterial enzyme dinitrogenase reductase, resulting in regulation of the important process of biological nitrogen fixation. Diphtheria toxin and cholera toxin are enzymes that catalyze the ADP-ribosylation (and inactivation) of key cellular enzymes or proteins.

Phosphorylation is probably the most important type of regulatory modification. It is estimated that one-third of all proteins in a eukaryotic cell are phosphorylated, and one or (often) many phosphorylation events are part of virtually every regulatory process. Some proteins have only one phosphorylated residue, others have several, and a few have dozens of sites for phosphorylation. This mode of covalent modification is central to a large number of regulatory pathways, and we therefore

![FIGURE 6-35 Some enzyme modification reactions.](image-url)
Phosphoryl Groups Affect the Structure and Catalytic Activity of Enzymes

The attachment of phosphoryl groups to specific amino acid residues of a protein is catalyzed by protein kinases; removal of phosphoryl groups is catalyzed by protein phosphatases. The addition of a phosphoryl group to a Ser, Thr, or Tyr residue introduces a bulky, charged group into a region that was only moderately polar. The oxygen atoms of a phosphoryl group can hydrogen-bond with one or several groups in a protein, commonly the amide groups of the peptide backbone at the start of an α helix or the charged guanidinium group of an Arg residue. The two negative charges on a phosphorylated side chain can also repel neighboring negatively charged (Asp or Glu) residues. When the modified side chain is located in a region of an enzyme critical to its three-dimensional structure, phosphorylation can have dramatic effects on enzyme conformation and thus on substrate binding and catalysis.

An important example of enzyme regulation by phosphorylation is seen in glycogen phosphorylase (MW 94,500) of muscle and liver (Chapter 15), which catalyzes the reaction

\[(\text{Glucose})_n + P_i \rightarrow (\text{glucose})_{n-1} + \text{glucose 1-phosphate} \]

Glycogen

The glucose 1-phosphate so formed can be used for ATP synthesis in muscle or converted to free glucose in the liver. Glycogen phosphorylase occurs in two forms: the more active phosphorylase a and the less active phosphorylase b (Fig. 6–36). Phosphorylase a has two subunits, each with a specific Ser residue that is phosphorylated at its hydroxyl group. These serine phosphate residues are required for maximal activity of the enzyme. The phosphoryl groups can be hydrolytically removed by a separate enzyme called phosphorylase phosphatase:

\[
\text{Phosphorylase a} + 2H_2O \rightarrow \text{phosphorylase b} + 2P_i
\]

(more active) (less active)

In this reaction, phosphorylase a is converted to phosphorylase b by the cleavage of two serine phosphate covalent bonds, one on each subunit of glycogen phosphorylase.

Phosphorylase b can in turn be reactivated—covalently transformed back into active phosphorylase a—by another enzyme, phosphorylase kinase, which catalyzes the transfer of phosphoryl groups from ATP to the hydroxyl groups of the two specific Ser residues in phosphorylase b:

\[
2\text{ATP} + \text{phosphorylase b} \rightarrow 2\text{ADP} + \text{phosphorylase a}
\]

(less active) (more active)

The breakdown of glycogen in skeletal muscles and the liver is regulated by variations in the ratio of the two forms of glycogen phosphorylase. The a and b forms differ in their secondary, tertiary, and quaternary structures; the active site undergoes changes in structure and, consequently, changes in catalytic activity as the two forms are interconverted.

The regulation of glycogen phosphorylase by phosphorylation illustrates the effects on both structure and catalytic activity of adding a phosphoryl group. In the unphosphorylated state, each subunit of this enzyme is folded so as to bring the 20 residues at its amino terminus, including a number of basic residues, into a region containing several acidic amino acids; this produces an

![FIGURE 6–36 Regulation of muscle glycogen phosphorylase activity by multiple mechanisms. The activity of glycogen phosphorylase in muscle is subjected to a multilevel system of regulation, involving covalent modification (phosphorylation), allosteric regulation, and a regulatory cascade sensitive to hormonal status that acts on the enzymes involved in phosphorylation and dephosphorylation. In the more active form of the enzyme, phosphorylase a, specific Ser residues, one on each subunit, are phosphorylated. Phosphorylase a is converted to the less active phosphorylase b by enzymatic loss of these phosphoryl groups, promoted by phosphoprotein phosphatase 1 (PP1). Phosphorylase b can be reconverted (reactivated) to phosphorylase a by the action of phosphorylase kinase. The activity of both forms of the enzyme is allosterically regulated by an activator (AMP) and by inhibitors (glucose 6-phosphate and ATP) that bind to separate sites on the enzyme. The activities of phosphorylase kinase and PP1 are also regulated via a short pathway that responds to the hormones glucagon and epinephrine. When blood sugar levels are low, the pancreas and adrenal glands secrete glucagon and epinephrine. Epinephrine binds to its receptor in muscle and some other tissues, and activates the enzyme adenyl cyclase. Glucagon plays a similar role, binding to receptors in the liver. This leads to the synthesis of high levels of the modified nucleotide cyclic AMP (cAMP; see p. 298), activating the enzyme cAMP-dependent protein kinase (also called protein kinase A or PKA). PKA phosphorylates several target proteins, among them phosphorylase kinase and phosphoprotein phosphatase inhibitor 1 (PP1-1). The phosphorylated phosphorylase kinase is activated and in turn phosphorylates and activates glycogen phosphorylase. At the same time, the phosphorylated PP1-1 interacts with and inhibits PP1. PP1-1 also keeps itself active (phosphorylated) by inhibiting phosphoprotein phosphatase 2B (PP2B), the enzyme that dephosphorylates (inactivates) it. In this way, the equilibrium between the a and b forms of glycogen phosphorylase is shifted decisively toward the more active glycogen phosphorylase a. Note that the two forms of phosphorylase kinase are both activated to a degree by Ca²⁺ ion (not shown). This pathway is discussed in more detail in Chapters 14, 15, and 23.]
electrostatic interaction that stabilizes the conformation. Phosphorylation of Ser^{14} interferes with this interaction, forcing the amino-terminal domain out of the acidic environment and into a conformation that allows interaction between the \(\Phi \)-Ser and several Arg side chains. In this conformation, the enzyme is much more active.

Phosphorylation of an enzyme can affect catalysis in another way: by altering substrate-binding affinity. For example, when isocitrate dehydrogenase (an enzyme of the citric acid cycle; Chapter 16) is phosphorylated, electrostatic repulsion by the phosphoryl group inhibits the binding of citrate (a tricarboxylic acid) at the active site.

Multiple Phosphorylations Allow Exquisite Regulatory Control

The Ser, Thr, or Tyr residues that are phosphorylated in regulated proteins occur within common structural motifs, called consensus sequences, that are recognized by specific protein kinases (Table 6–10). Some kinases are basophilic, preferring to phosphorylate a residue having basic neighbors; others have different substrate preferences, such as for a residue near a Pro residue. Amino acid sequence is not the only important factor in determining whether a given residue will be phosphorylated, however. Protein folding brings together residues that are distant in the primary sequence; the resulting three-dimensional structure can determine whether a protein kinase has access to a given residue and can recognize it as a substrate. Another factor influencing the substrate specificity of certain protein kinases is the proximity of other phosphorylated residues.

Regulation by phosphorylation is often complicated. Some proteins have consensus sequences recognized by several different protein kinases, each of which can phosphorylate the protein and alter its enzymatic activity. In some cases, phosphorylation is hierarchical: a certain residue can be phosphorylated only if a neighboring residue has already been phosphorylated. For example, glycogen synthase, the enzyme that catalyzes the condensation of glucose monomers to form glycogen (Chapter 15), is inactivated by phosphorylation of specific Ser residues and is also modulated by at least four other protein kinases that phosphorylate four other
TABLE 6–10 Consensus Sequences for Protein Kinases

<table>
<thead>
<tr>
<th>Protein kinase</th>
<th>Consensus sequence and phosphorylated residue*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein kinase A</td>
<td>-x-R-[RK]-x-[ST]-B-</td>
</tr>
<tr>
<td>Protein kinase G</td>
<td>-x-R-[RK]-x-[ST]-x-</td>
</tr>
<tr>
<td>Protein kinase C</td>
<td>-RK-x-[ST]-B-RK-</td>
</tr>
<tr>
<td>Protein kinase B</td>
<td>-x-R-x-[ST]-x-K-</td>
</tr>
<tr>
<td>Ca(^{2+})/calmodulin kinase I</td>
<td>-B-x-R-(x(2))-[ST]-x(3)-B-</td>
</tr>
<tr>
<td>Ca(^{2+})/calmodulin kinase II</td>
<td>-B-x-[RK]-x(2)-[ST]-x(2)-</td>
</tr>
<tr>
<td>Myosin light chain kinase (smooth muscle)</td>
<td>-K(2)-R-x(2)-S-x-B(2)-</td>
</tr>
<tr>
<td>Phosphorylase b kinase</td>
<td>-K-R-K-Q-I-S-V-R-</td>
</tr>
<tr>
<td>Extracellular signal-regulated kinase</td>
<td>-P-x-[ST]-P(2)-</td>
</tr>
<tr>
<td>Cyclin-dependent protein kinase (cdk2)</td>
<td>-x-[ST]-P-x-[KR]-</td>
</tr>
<tr>
<td>Casein kinase I</td>
<td>-[SpTp]-x(2)-[ST]-B-</td>
</tr>
<tr>
<td>Casein kinase II</td>
<td>-x-[ST]-x(2)-[ED]-x-</td>
</tr>
<tr>
<td>β-Adrenergic receptor kinase</td>
<td>-DE-[ST]-x(3)</td>
</tr>
<tr>
<td>Rhodopsin kinase</td>
<td>-x(2)-[ST]-E(n)-</td>
</tr>
<tr>
<td>Epidermal growth factor (EGF) receptor kinase</td>
<td>-E(+)-Y-P-E-L-V-</td>
</tr>
</tbody>
</table>

*Shown here are deduced consensus sequences (in roman type) and actual sequences from known substrates (italic). The Ser (S), Thr (T), or Tyr (Y) residue that underlies phosphorylation is in red; all amino acid residues are shown as their one-letter abbreviations (see Table 3–1). x represents any amino acid, B, any hydrophobic amino acid. Sp, Tp, and Ip are Ser, Thr, and Tyr residues that must already be phosphorylated for the kinase to recognize the site.

The best target site has two amino acid residues separating the phosphorylated and target Ser/Thr residues; target sites with one or three intervening residues function at a reduced level.

Phosphorylation sites on glycogen synthase

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Phosphorylation sites</th>
<th>Degree of synthase inactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein kinase A</td>
<td>1A, 1B, 2, 4</td>
<td>+</td>
</tr>
<tr>
<td>Protein kinase G</td>
<td>1A, 1B, 2</td>
<td>+</td>
</tr>
<tr>
<td>Protein kinase C</td>
<td>1A</td>
<td>+</td>
</tr>
<tr>
<td>Ca(^{2+})/calmodulin kinase</td>
<td>1B, 2</td>
<td>+</td>
</tr>
<tr>
<td>Phosphorylase b kinase</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>Casein kinase I</td>
<td>At least nine</td>
<td>+ + + +</td>
</tr>
<tr>
<td>Casein kinase II</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Glycogen synthase kinase 3</td>
<td>3A, 3B, 3C</td>
<td>+ + +</td>
</tr>
<tr>
<td>Glycogen synthase kinase 4</td>
<td>2</td>
<td>+</td>
</tr>
</tbody>
</table>

FIGURE 6–37 Multiple regulatory phosphorylations. The enzyme glycogen synthase has at least nine separate sites in five designated regions susceptible to phosphorylation by one of the cellular protein kinases. Thus, regulation of this enzyme is a matter not of binary (on/off) switching but of finely tuned modulation of activity over a wide range in response to a variety of signals.

sites in the enzyme (Fig. 6–37). The enzyme is not a substrate for glycogen synthase kinase 3, for example, until one site has been phosphorylated by casein kinase II. Some phosphorylations inhibit glycogen synthase more than others, and some combinations of phosphorylations are cumulative. These multiple regulatory phosphorylations provide the potential for extremely subtle modulation of enzyme activity.

To serve as an effective regulatory mechanism, phosphorylation must be reversible. In general, phosphoryl groups are added and removed by different enzymes, and the processes can therefore be separately regulated. Cells contain a family of phosphoprotein phosphatases that hydrolyze specific [P]-Ser, [P]-Thr, and [P]-Tyr esters, releasing P. The phosphoprotein phosphatases we know of thus far act only on a subset of phosphoproteins, but they show less substrate specificity than protein kinases.

Some Enzymes and Other Proteins Are Regulated by Proteolytic Cleavage of an Enzyme Precursor

For some enzymes, an inactive precursor called a zymogen is cleaved to form the active enzyme. Many proteolytic enzymes (proteases) of the stomach and pancreas are regulated in this way. Chymotrypsin and trypsin are initially synthesized as chymotrypsinogen and trypsinogen (Fig. 6–38). Specific cleavage causes conformational changes that expose the enzyme active site.
Because this type of activation is irreversible, other mechanisms are needed to inactivate these enzymes. Proteases are inactivated by inhibitor proteins that bind very tightly to the enzyme active site. For example, pancreatic trypsin inhibitor (M, 6,000) binds to and inhibits trypsin. α1-Antiproteinase (M, 53,000) primarily inhibits neutrophil elastase (neutrophils are a type of leukocyte, or white blood cell; elastase is a protease acting on elastin, a component of some connective tissues). An insufficiency of α1-antiproteinase, which can be caused by exposure to cigarette smoke, has been associated with lung damage, including emphysema.

Proteases are not the only proteins activated by proteolysis. In other cases, however, the precursors are called not zymogens but, more generally, proproteins or proenzymes, as appropriate. For example, the connective tissue protein collagen is initially synthesized as the soluble precursor procollagen. Blood clotting is mediated by a complicated cascade of proteolytic activations: fibrin, the protein of blood clots, is produced by proteolysis of fibrinogen, its inactive proprotein; the protease responsible for this activation is thrombin (similar in many respects to chymotrypsin), which itself is produced by proteolysis of a proprotein (in this case a zymogen), prothrombin.

Some Regulatory Enzymes Use Several Regulatory Mechanisms

Glycogen phosphorylase catalyzes the first reaction in a pathway that feeds stored glucose into energy-yielding carbohydrate metabolism (Chapters 14 and 15). This is an important metabolic pathway, and its regulation is correspondingly complex. Although the primary regulation of glycogen phosphorylase is through covalent modification, as outlined in Figure 6–36, glycogen phosphorylase is also modulated allosterically by AMP, which is an activator of phosphorylase b, and by glucose 6-phosphate and ATP, both inhibitors. In addition, the enzymes that add and remove the phosphoryl groups are themselves regulated by—and so the entire system is sensitive to—the levels of hormones that regulate blood sugar (Fig. 6–36; see also Chapters 15 and 23).

Other complex regulatory enzymes are found at key metabolic crossroads. Bacterial glutamine synthetase, which catalyzes a reaction that introduces reduced nitrogen into cellular metabolism (Chapter 22), is among the most complex regulatory enzymes known. It is regulated allosterically (with at least eight different modulators); by reversible covalent modification; and by the association of other regulatory proteins, a mechanism examined in detail when we consider the regulation of specific metabolic pathways.

What is the advantage of such complexity in the regulation of enzymatic activity? We began this chapter by stressing the central importance of catalysis to the very existence of life. The control of catalysis is also critical to life. If all possible reactions in a cell were catalyzed simultaneously, macromolecules and metabolites would quickly be broken down to much simpler chemical forms. Instead, cells catalyze only the reactions they need at a given moment. When chemical resources are plentiful, cells synthesize and store glucose and other metabolites. When chemical resources are scarce, cells use these stores to fuel cellular metabolism. Chemical energy is used economically, parceled out to various metabolic pathways as cellular needs dictate. The availability of powerful catalysts, each specific for a given reaction, makes the regulation of these reactions possible. This in turn gives rise to the complex, highly regulated symphony we call life.
SUMMARY 6.5 Regulatory Enzymes

- The activities of metabolic pathways in cells are regulated by control of the activities of certain enzymes.
- In feedback inhibition, the end product of a pathway inhibits the first enzyme of that pathway.
- The activity of an allosteric enzyme is adjusted by reversible binding of a specific modulator to a regulatory site. A modulator may be the substrate itself or some other metabolite, and the effect of the modulator may be inhibitory or stimulatory. The kinetic behavior of allosteric enzymes reflects cooperative interactions among enzyme subunits.
- Other regulatory enzymes are modulated by covalent modification of a specific functional group necessary for activity. The phosphorylation of specific amino acid residues is a particularly common way to regulate enzyme activity.
- Many proteolytic enzymes are synthesized as inactive precursors called zymogens, which are activated by cleavage of small peptide fragments.
- Enzymes at important metabolic intersections may be regulated by complex combinations of effectors, allowing coordination of the activities of interconnected pathways.

Key Terms

Terms in bold are defined in the glossary.

- enzyme 184
- cofactor 184
- coenzyme 184
- prosthetic group 184
- holoenzyme 184
- apoenzyme 184
- apoprotein 184
- active site 186
- substrate 186
- ground state 186
- standard free-energy change (ΔG°) 186
- transition state 187
- activation energy (ΔG‡) 187
- reaction intermediate 187
- rate-limiting step 187
- equilibrium constant (Km) 188
- rate constant 188
- binding energy (ΔGb) 189
- specificity 191
- induced fit 192
- specific acid-base catalysis 192
- general acid-base catalysis 193
- covalent catalysis 193
- enzyme kinetics 194
- initial rate (initial velocity), V₀ 194
- Vₘₐₓ 195
- pre-steady state 195
- steady state 195
- steady-state kinetics 195
- Michaelis constant (Kₘ) 196
- Michaelis-Menten equation 196
- Lineweaver-Burk equation 197
- dissociation constant (Kₐ) 198
- kᵣ 198
- turnover number 198
- reversible inhibition 201
- competitive inhibition 201
- uncompetitive inhibition 203
- mixed inhibition 203
- noncompetitive inhibition 203
- irreversible inhibitors 203
- suicide inactivator 204
- transition state analogs 210
- regulatory enzyme 220
- allosteric enzyme 220
- allosteric modulator 220
- feedback inhibition 221
- protein kinases 224
- zymogen 226

Further Reading

General

- A collection of excellent papers on fundamentals; continues to be very useful.

- A clearly written, concise introduction. More advanced.

- An authoritative and up-to-date resource on the reactions that occur in living systems.

- A collection of classic papers on enzyme chemistry, with historical commentaries by the editor. Extremely interesting.

Principles of Catalysis

- A nice discussion of where binding energy comes from and how it is used.

- A nice discussion of where binding energy comes from and how it is used.

- A good description of the importance of protein motions in catalysis.

- A good place for the beginning student to acquire a better understanding of principles.

Harris, T.K. & Turner, G.J. (2002) Structural basis of perturbed pKₐ values of catalytic groups in enzyme active sites. IUBMB Life 53, 85—98.
- A good summary of the principles of enzymatic catalysis as currently understood, and of what we still do not understand.

Orotidine monophosphate decarboxylase seems to be a reigning champion of catalytic rate enhancement by an enzyme.

Many good illustrations of the principles introduced in this chapter.

Kinetics

A clear and concise presentation of the basics.

Enzyme Examples

An interesting description of the evolution of enzymes with different catalytic specificities, and the use of a limited repertoire of protein structural motifs.

A nice discussion of the catalytic power of enzymes and the principles underlying it.

Regulatory Enzymes

Details of the variety of these important enzymes in a model eukaryote.

A classic paper introducing the concept of allosteric regulation.

Problems

1. **Keeping the Sweet Taste of Corn** The sweet taste of freshly picked corn (maize) is due to the high level of sugar in the kernels. Store-bought corn (several days after picking) is not as sweet, because about 50% of the free sugar is converted to starch within one day of picking. To preserve the sweetness of fresh corn, the husked ears can be immersed in boiling water for a few minutes (“blanched”) then cooled in cold water. Corn processed in this way and stored in a freezer maintains its sweetness. What is the biochemical basis for this procedure?

2. **Intracellular Concentration of Enzymes** To approximate the actual concentration of enzymes in a bacterial cell, assume that the cell contains equal concentrations of 1,000 different enzymes in solution in the cytosol and that each protein has a molecular weight of 100,000. Assume also that the bacterial cell is a cylinder (diameter 1.0 μm, height 2.0 μm), that the cytosol (specific gravity 1.20) is 20% soluble protein by weight, and that the soluble protein consists entirely of enzymes. Calculate the average molar concentration of each enzyme in this hypothetical cell.

3. **Rate Enhancement by Urease** The enzyme urease enhances the rate of urea hydrolysis at pH 8.0 and 20 °C by a factor of 10^{14}. If a given quantity of urease can completely hydrolyze a given quantity of urea in 5.0 min at 20 °C and pH 8.0, how long would it take for this amount of urea to be hydrolyzed under the same conditions in the absence of urease? Assume that both reactions take place in sterile systems so that bacteria cannot attack the urea.

4. **Protection of an Enzyme against Denaturation by Heat** When enzyme solutions are heated, there is a progressive loss of catalytic activity over time due to denaturation of the enzyme. A solution of the enzyme hexokinase incubated at 45 °C lost 50% of its activity in 12 min, but when incubated at 45 °C in the presence of a very large concentration of one of its substrates, it lost only 3% of its activity in 12 min. Suggest why thermal denaturation of hexokinase was retarded in the presence of one of its substrates.

5. **Requirements of Active Sites in Enzymes** Carboxypeptidase, which sequentially removes carboxyl-terminal amino acid residues from its peptide substrates, is a single polypeptide of 307 amino acids. The two essential catalytic groups in the active site are furnished by Arg^{145} and Glu^{279}.

(a) If the carboxypeptidase chain were a perfect α helix, how far apart (in Å) would Arg^{145} and Glu^{279} be? (Hint: See Fig. 4.4a.)

(b) Explain how the two amino acid residues can catalyze a reaction occurring in the space of a few angstroms.

6. **Quantitative Assay for Lactate Dehydrogenase** The muscle enzyme lactate dehydrogenase catalyzes the reaction

\[
\text{Pyruvate} \rightarrow \text{Lactate}
\]

\[
\text{CH}_3\text{C}(-)\text{COO}^- + \text{NADH} + \text{H}^+ \rightarrow \text{CH}_3\text{C}(-)\text{COO}^- + \text{NAD}^+
\]

NADH and NAD^{+} are the reduced and oxidized forms, respectively, of the coenzyme NAD. Solutions of NADH, but not NAD^{+},
absorb light at 340 nm. This property is used to determine the concentration of NADH in solution by measuring spectrophotometrically the amount of light absorbed at 340 nm by the solution. Explain how these properties of NADH can be used to design a quantitative assay for lactate dehydrogenase.

7. Effect of Enzymes on Reactions Which of the following effects would be brought about by any enzyme catalyzing the simple reaction

\[S \xrightarrow{k_1} P \quad \text{where} \quad K_{eq} = \frac{[P]}{[S]} \]

(a) Decreased \(K_{eq} \); (b) Increased \(k_1 \); (c) Increased \(K_{eq} \); (d) Increased \(\Delta G^\circ \); (e) Decreased \(\Delta G^\circ \); (f) More negative \(\Delta G^\circ \); (g) Increased \(k_2 \).

8. Relation between Reaction Velocity and Substrate Concentration: Michaelis-Menten Equation

(a) At what substrate concentration would an enzyme with a \(k_{cat} \) of 30.0 \(\text{s}^{-1} \) and a \(K_m \) of 0.0050 \(M \) operate at one-quarter of its maximum rate?

(b) Determine the fraction of \(V_{max} \) that would be obtained at the following substrate concentrations \([S]\): ¼\(K_m \), 2\(K_m \), and 10\(K_m \).

(c) An enzyme that catalyzes the reaction \(X \rightleftharpoons Y \) is isolated from two bacterial species. The enzymes have the same \(V_{max} \) but different \(K_m \) values for the substrate \(X \). Enzyme A has a \(K_m \) of 2.0 \(\mu M \), while enzyme B has a \(K_m \) of 0.5 \(\mu M \). The plot below shows the kinetics of reactions carried out with the same concentration of each enzyme and with \([X] = 1 \mu M \). Which curve corresponds to which enzyme?

9. Applying the Michaelis-Menten Equation I A research group discovers a new version of happyase, which they call happyase*, that catalyzes the chemical reaction

\[\text{HAPPY} \rightleftharpoons \text{SAD} \]

The researchers begin to characterize the enzyme.

(a) In the first experiment, with \([E]\) at 4 \(mM \), they find that the \(V_{max} \) is 1.6 \(\mu M \text{s}^{-1} \). Based on this experiment, what is the \(k_{cat} \) for happyase*? (Include appropriate units.)

(b) In another experiment, with \([E]\) at 1 \(mM \) and \([\text{HAPPY}] \) at 30 \(\mu M \), the researchers find that \(V_0 = 300 \mu M \text{s}^{-1} \). What is the measured \(K_m \) of happyase* for its substrate \(\text{HAPPY} \)? (Include appropriate units.)

(c) Further research shows that the purified happyase* used in the first two experiments was actually contaminated with a reversible inhibitor called ANGER. When ANGER is carefully removed from the happyase* preparation, and the two experiments repeated, the measured \(V_{max} \) in (a) is increased to 4.8 \(\mu M \text{s}^{-1} \), and the measured \(K_m \) in (b) is now 15 \(\mu M \). For the inhibitor ANGER, calculate the values of \(a \) and \(a' \).

(d) Based on the information given above, what type of inhibitor is ANGER?

10. Applying the Michaelis-Menten Equation II Another enzyme is found that catalyzes the reaction

\[A \rightleftharpoons B \]

Researchers find that the \(K_m \) for the substrate \(A \) is 4 \(\mu M \), and the \(k_{cat} \) is 20 \(\text{min}^{-1} \).

(a) In an experiment, \([A] = 6 \mu M \), and the initial velocity, \(V_0 \) was 480 \(\mu M \text{min}^{-1} \). What was the \([E]\) used in the experiment?

(b) In another experiment, \([E] = 0.5 \mu M \), and the measured \(V_0 = 5 \mu M \text{min}^{-1} \). What was the \([A]\) used in the experiment?

(c) The compound \(Z \) is found to be a very strong competitive inhibitor of the enzyme, with an \(a \) of 10. In an experiment with the same \([E]\) as in part (a), but a different \([A]\), an amount of \(Z \) is added that reduces the rate \(V_0 \) to 240 \(\mu M \text{min}^{-1} \). What is the \([A]\) in this experiment?

(d) Based on the kinetic parameters given above, has this enzyme evolved to achieve catalytic perfection? Explain your answer briefly, using the kinetic parameter(s) that define catalytic perfection.

11. Estimation of \(V_{max} \) and \(K_m \) by Inspection Although graphical methods are available for accurate determination of the \(V_{max} \) and \(K_m \) of an enzyme-catalyzed reaction (see Box 6–1), sometimes these quantities can be quickly estimated by inspecting values of \(V_0 \) at increasing \([S]\). Estimate the \(V_{max} \) and \(K_m \) of the enzyme-catalyzed reaction for which the following data were obtained.

<table>
<thead>
<tr>
<th>([S]) (M)</th>
<th>(V_0) ((\mu M/\text{min}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 (\times 10^{-6})</td>
<td>28</td>
</tr>
<tr>
<td>4.0 (\times 10^{-6})</td>
<td>40</td>
</tr>
<tr>
<td>1 (\times 10^{-5})</td>
<td>70</td>
</tr>
<tr>
<td>2 (\times 10^{-5})</td>
<td>95</td>
</tr>
<tr>
<td>4 (\times 10^{-5})</td>
<td>112</td>
</tr>
<tr>
<td>1 (\times 10^{-4})</td>
<td>128</td>
</tr>
<tr>
<td>2 (\times 10^{-3})</td>
<td>139</td>
</tr>
<tr>
<td>1 (\times 10^{-2})</td>
<td>140</td>
</tr>
</tbody>
</table>

12. Properties of an Enzyme of Prostaglandin Synthesis Prostaglandins are a class of eicosanoids, fatty acid derivatives with a variety of extremely potent actions on vertebrate tissues. They are responsible for producing fever and inflammation and its associated pain. Prostaglandins are derived from the 20-carbon fatty acid arachidonic acid in a reaction catalyzed by the enzyme prostaglandin endoperoxide synthase. This enzyme, a cyclooxygenase, uses oxygen to convert arachidonic acid to \(\text{PGG}_2 \), the immediate precursor of many
different prostaglandins (prostaglandin synthesis is described in Chapter 21).

(a) The kinetic data given below are for the reaction catalyzed by prostaglandin endoperoxide synthase. Focusing here on the first two columns, determine the V_{max} and K_m of the enzyme.

<table>
<thead>
<tr>
<th>[Arachidonic acid] (mm)</th>
<th>Rate of formation of PGG$_2$ (mm/min)</th>
<th>Rate of formation of PGG$_2$ with 10 mg/mL ibuprofen (mm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>23.5</td>
<td>16.67</td>
</tr>
<tr>
<td>1.0</td>
<td>32.2</td>
<td>25.25</td>
</tr>
<tr>
<td>1.5</td>
<td>36.9</td>
<td>30.49</td>
</tr>
<tr>
<td>2.5</td>
<td>41.8</td>
<td>37.04</td>
</tr>
<tr>
<td>3.5</td>
<td>44.0</td>
<td>38.91</td>
</tr>
</tbody>
</table>

(b) Ibuprofen is an inhibitor of prostaglandin endoperoxide synthase. By inhibiting the synthesis of prostaglandins, ibuprofen reduces inflammation and pain. Using the data in the first and third columns of the table, determine the type of inhibition that ibuprofen exerts on prostaglandin endoperoxide synthase.

13. Graphical Analysis of V_{max} and K_m The following experimental data were collected during a study of the catalytic activity of an intestinal peptidase with the substrate glycylglycine:

Glycylglycine + H$_2$O \rightarrow 2 glycine

<table>
<thead>
<tr>
<th>[S] (mm)</th>
<th>Product formed (μmol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.21</td>
</tr>
<tr>
<td>2.0</td>
<td>0.24</td>
</tr>
<tr>
<td>3.0</td>
<td>0.28</td>
</tr>
<tr>
<td>4.0</td>
<td>0.33</td>
</tr>
<tr>
<td>8.0</td>
<td>0.40</td>
</tr>
<tr>
<td>16.0</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Use graphical analysis (see Box 6–1 and its associated Living Graph) to determine the K_m and V_{max} for this enzyme preparation and substrate.

14. The Eadie-Hofstee Equation One transformation of the Michaelis-Menten equation is the Lineweaver-Burk, or double-reciprocal, equation. Multiplying both sides of the Lineweaver-Burk equation by V_{max} and rearranging gives the Eadie-Hofstee equation:

$$V_0 = \frac{V_{\text{max}}}{S} + \frac{V_{\text{max}}}{K_m}$$

A plot of V_0 versus $V_0/[S]$ for an enzyme-catalyzed reaction is shown below. The blue curve was obtained in the absence of inhibitor. Which of the other curves (A, B, or C) shows the enzyme activity when a competitive inhibitor is added to the reaction mixture? Hint: See Equation 6–30.

15. The Turnover Number of Carbonic Anhydrase Carbonic anhydrase of erythrocytes (M, 30,000) has one of the highest turnover numbers we know of. It catalyzes the reversible hydration of CO$_2$:

$$H_2O + CO_2 \rightleftharpoons H_2CO_3$$

This is an important process in the transport of CO$_2$ from the tissues to the lungs. If 10.0 μg of pure carbonic anhydrase catalyzes the hydration of 0.30 g of CO$_2$ in 1 min at 37 °C at V_{max}, what is the turnover number (k_{cat}) of carbonic anhydrase (in units of min$^{-1}$)?

16. Deriving a Rate Equation for Competitive Inhibition The rate equation for an enzyme subject to competitive inhibition is

$$V_0 = \frac{V_{\text{max}} [S]}{K_m + [S]}$$

Beginning with a new definition of total enzyme as

$$[E] = [E] + [ES] + [EI]$$

and the definitions of α and K_1 provided in the text, derive the rate equation above. Use the derivation of the Michaelis-Menten equation as a guide.

17. Irreversible Inhibition of an Enzyme Many enzymes are inhibited irreversibly by heavy metal ions such as Hg$^{2+}$, Cu$^{2+}$, or Ag$^+$, which can react with essential sulfhydryl groups to form mercaptides:

$$\text{Enz-SH} + \text{Ag}^+ \rightarrow \text{Enz-S-Ag} + \text{H}^+$$

The affinity of Ag$^+$ for sulfhydryl groups is so great that Ag$^+$ can be used to titrate —SH groups quantitatively. To 10.0 mL of a solution containing 1.0 mg/mL of a pure enzyme, an investigator added just enough AgNO$_3$ to completely inactivate the enzyme. A total of 0.342 pmol of AgNO$_3$ was required. Calculate the minimum molecular weight of the enzyme. Does the value obtained in this way give only the minimum molecular weight?

18. Clinical Application of Differential Enzyme Inhibition Human blood serum contains a class of
enzymes known as acid phosphatases, which hydrolyze biological phosphate esters under slightly acidic conditions (pH 5.0):

\[
\begin{align*}
R-O-P-O^- + H_2O & \rightarrow R-OH + HO-P-O^- \\
\end{align*}
\]

Acid phosphatases are produced by erythrocytes, the liver, kidney, spleen, and prostate gland. The enzyme of the prostate gland is clinically important, because its increased activity in the blood can be an indication of prostate cancer. The phosphatase from the prostate gland is strongly inhibited by tartrate ion, but acid phosphatases from other tissues are not. How can this information be used to develop a specific procedure for measuring the activity of the acid phosphatase of the prostate gland in human blood serum?

19. Inhibition of Carbonic Anhydrase by Acetzolamide Carbonic anhydrase is strongly inhibited by the drug acetazolamide, which is used as a diuretic (i.e., to increase the production of urine) and to lower excessively high pressure in the eye (due to accumulation of intraocular fluid) in glaucoma. Carbonic anhydrase plays an important role in these and other secretory processes, because it participates in regulating the pH and bicarbonate content of several body fluids. The experimental curve of initial reaction velocity (as percentage of \(V_{\text{max}} \)) versus [S] for the carbonic anhydrase reaction is illustrated below (upper curve). When the experiment is repeated in the presence of acetazolamide, the lower curve is obtained. From an inspection of the curves and your knowledge of the kinetic properties of competitive and mixed enzyme inhibitors, determine the nature of the inhibition by acetazolamide. Explain your reasoning.

20. The Effects of Reversible Inhibitors Derive the expression for the effect of a reversible inhibitor on observed \(K_m \) (apparent \(K_m = \alpha K_m / \alpha' \)). Start with Equation 6–30 and the statement that apparent \(K_m \) is equivalent to the [S] at which \(V_0 = V_{\text{max}} / 2 \alpha' \).

21. pH Optimum of Lysozyme The active site of lysozyme contains two amino acid residues essential for catalysis: G135 and A52. The \(pK_a \) values of the carboxyl side chains of these residues are 5.9 and 4.5, respectively. What is the ionization state (protonated or deprotonated) of each residue at pH 5.2, the pH optimum of lysozyme? How can the ionization states of these residues explain the pH-activity profile of lysozyme shown below?

Data Analysis Problem

22. Working with Kinetics Go to the Living Graphs for Chapter 6.

(a) Using the Living Graph for Equation 6–9, create a \(V \) versus [S] plot. Use \(V_{\text{max}} = 100 \mu M \cdot s^{-1} \), and \(K_m = 10 \mu M \). How much does \(V_0 \) increase when [S] is doubled, from 0.2 to 0.4 \(\mu M \)? What is \(V_0 \) when [S] = 10 \(\mu M \)? How much does the \(V_0 \) increase when [S] increases from 100 to 200 \(\mu M \)? Observe how the graph changes when the values for \(\alpha \) and \(\alpha' \) are halved or doubled.

(b) Using the Living Graph for Equation 6–30 and the kinetic parameters in (a), create a plot in which both \(\alpha \) and \(\alpha' \) are 1.0. Now observe how the plot changes when \(\alpha \) = 2.0, when \(\alpha' \) = 3.0, and when \(\alpha = 2.0 \) and \(\alpha' = 3.0 \).

(c) Using the Living Graphs for Equation 6–30 and the Lineweaver-Burk equation in Box 6–1, create Lineweaver-Burk (double-reciprocal) plots for all the cases in (a) and (b). When \(\alpha = 2.0 \), does the \(x \) intercept move to the right or to the left? If \(\alpha = 2.0 \) and \(\alpha' = 3.0 \), does the \(x \) intercept move to the right or to the left?

23. Exploring and Engineering Lactate Dehydrogenase Examining the structure of an enzyme results in hypotheses about the relationship between different amino acids in the protein’s structure and the protein’s function. One way to test these hypotheses is to use recombinant DNA technology to generate mutant versions of the enzyme and then examine the structure and function of these altered forms. The technology used to do this is described in Chapter 9.

One example of this kind of analysis is the work of Clarke and colleagues on the enzyme lactate dehydrogenase, published in 1989. Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate with NADH to form lactate (see Section 14.3). A schematic of the enzyme’s active site is shown below; the pyruvate is in the center:
Lactate dehydrogenase

The reaction mechanism is similar to many NADH reductions (Fig. 13–24); it is approximately the reverse of steps 2 and 3 of Figure 14–7. The transition state involves a strongly polarized carbonyl group of the pyruvate molecule as shown below:

(a) A mutant form of LDH in which Arg\(^{109}\) is replaced with Gln shows only 5% of the pyruvate binding and 0.07% of the activity of wild-type enzyme. Provide a plausible explanation for the effects of this mutation.

(b) A mutant form of LDH in which Arg\(^{171}\) is replaced with Lys shows only 0.05% of the wild-type level of substrate binding. Why is this dramatic effect surprising?

(c) In the crystal structure of LDH, the guanidinium group of Arg\(^{171}\) and the carboxyl group of pyruvate are aligned as shown in a co-planar “forked” configuration. Based on this, provide a plausible explanation for the dramatic effect of substituting Arg\(^{171}\) with Lys.

(d) A mutant form of LDH in which Ile\(^{250}\) is replaced with Gln shows reduced binding of NADH. Provide a plausible explanation for this result.

Clarke and colleagues also set out to engineer a mutant version of LDH that would bind and reduce oxaloacetate rather than pyruvate. They made a single substitution, replacing Gln\(^{102}\) with Arg; the resulting enzyme would reduce oxaloacetate to malate and would no longer reduce pyruvate to lactate. They had therefore converted LDH to malate dehydrogenase.

(e) Sketch the active site of this mutant LDH with oxaloacetate bound.

(f) Provide a plausible explanation for why this mutant enzyme now “prefers” oxaloacetate instead of pyruvate.

(g) The authors were surprised that substituting a larger amino acid in the active site allowed a larger substrate to bind. Provide a plausible explanation for this result.

References

Carbohydrates and Glycobiology

7.1 Monosaccharides and Disaccharides 235
7.2 Polysaccharides 244
7.3 Glycoconjugates: Proteoglycans, Glycoproteins, and Glycolipids 252
7.4 Carbohydrates as Informational Molecules: The Sugar Code 257
7.5 Working with Carbohydrates 263

Carbohydrates are the most abundant biomolecules on Earth. Each year, photosynthesis converts more than 100 billion metric tons of CO₂ and H₂O into cellulose and other plant products. Certain carbohydrates (sugar and starch) are a dietary staple in most parts of the world, and the oxidation of carbohydrates is the central energy-yielding pathway in most nonphotosynthetic cells. Carbohydrate polymers (also called glycans) serve as structural and protective elements in the cell walls of bacteria and plants and in the connective tissues of animals. Other carbohydrate polymers lubricate skeletal joints and participate in recognition and adhesion between cells. Complex carbohydrate polymers covalently attached to proteins or lipids act as signals that determine the intracellular location or metabolic fate of these hybrid molecules, called glycoconjugates. This chapter introduces the major classes of carbohydrates and glycoconjugates and provides a few examples of their many structural and functional roles.

Carbohydrates are polyhydroxy aldehydes or ketones, or substances that yield such compounds on hydrolysis. Many, but not all, carbohydrates have the empirical formula (CH₂O)ₙ; some also contain nitrogen, phosphorus, or sulfur.

There are three major size classes of carbohydrates: monosaccharides, oligosaccharides, and polysaccharides (the word “saccharide” is derived from the Greek sakcharon, meaning “sugar”). Monosaccharides, or simple sugars, consist of a single polyhydroxy aldehyde or ketone unit. The most abundant monosaccharide in nature is the six-carbon sugar D-glucose, sometimes referred to as dextrose. Monosaccharides of four or more carbons tend to have cyclic structures.

Oligosaccharides consist of short chains of monosaccharide units, or residues, joined by characteristic linkages called glycosidic bonds. The most abundant are the disaccharides, with two monosaccharide units. Typical is sucrose (cane sugar), which consists of the six-carbon sugars D-glucose and D-fructose. All common monosaccharides and disaccharides have names ending with the suffix “-ose.” In cells, most oligosaccharides consisting of three or more units do not occur as free entities but are joined to nonsugar molecules (lipids or proteins) in glycoconjugates.

The polysaccharides are sugar polymers containing more than 20 or so monosaccharide units; some have hundreds or thousands of units. Some polysaccharides, such as cellulose, are linear chains; others, such as glycogen, are branched. Both glycogen and cellulose consist of recurring units of D-glucose, but they differ in the type of glycosidic linkage and consequently have strikingly different properties and biological roles.

7.1 Monosaccharides and Disaccharides

The simplest of the carbohydrates, the monosaccharides, are either aldehydes or ketones with two or more hydroxyl groups; the six-carbon monosaccharides glucose and fructose have five hydroxyl groups. Many of the carbon atoms to which hydroxyl groups are attached are chiral centers, which give rise to the many sugar stereoisomers found in nature. We begin by describing the families of monosaccharides with backbones of three to seven carbons—their structure and stereoisomeric forms, and the means of representing their three-dimensional structures on paper. We then discuss several chemical reactions of the carbonyl groups of monosaccharides. One such reaction, the addition of a hydroxyl group from within the same molecule, generates cyclic forms having four or more backbone carbons (the forms that predominate in aqueous solution). This ring closure creates a new chiral center, adding further stereochemical complexity to this class of compounds. The nomenclature for unambiguously specifying the configuration about each carbon atom in a cyclic form and the means of representing these structures on paper are therefore
described in some detail; this information will be useful as we discuss the metabolism of monosaccharides in Part II. We also introduce here some important monosaccharide derivatives encountered in later chapters.

The Two Families of Monosaccharides Are Aldoses and Ketoses

Monosaccharides are colorless, crystalline solids that are freely soluble in water but insoluble in nonpolar solvents. Most have a sweet taste. The backbones of common monosaccharides are unbranched carbon chains in which all the carbon atoms are linked by single bonds. In the open-chain form, one of the carbon atoms is double-bonded to an oxygen atom to form a carbonyl group; each of the other carbon atoms has a hydroxyl group. If the carbonyl group is at an end of the carbon chain (that is, in an aldehyde group) the monosaccharide is an aldose; if the carbonyl group is at any other position (in a ketone group) the monosaccharide is a ketose. The simplest monosaccharides are the two three-carbon trioses: glyceraldehyde, an aldotriose, and dihydroxyacetone, a ketotriose (Fig. 7-1a).

Monosaccharides with four, five, six, and seven carbon atoms in their backbones are called, respectively, tetroses, pentoses, hexoses, and heptoses. There are aldoses and ketoses of each of these chain lengths: aldohexoses and ketohexoses, and so on. The hexoses, which include the aldohexose d-glucose and the ketohexose d-fructose (Fig. 7-1b), are the most common monosaccharides in nature. The aldopentoses d-ribose and 2-deoxy-d-ribose (Fig. 7-1c) are components of nucleotides and nucleic acids (Chapter 8).

Monosaccharides Have Asymmetric Centers

All the monosaccharides except dihydroxyacetone contain one or more asymmetric (chiral) carbon atoms and thus occur in optically active isomeric forms (pp. 16–17). The simplest aldose, glyceraldehyde, contains one chiral center (the middle carbon atom) and therefore has two different optical isomers, or enantiomers (Fig. 7–2).

KEY CONVENTION: One of the two enantiomers is, by convention, designated the D isomer, the other the L isomer. As for other biomolecules with chiral centers, the absolute configurations of sugars are known from x-ray crystallography. To represent three-dimensional sugar structures on paper, we often use Fischer projection formulas (Fig. 7–2). In Fischer projection formulas, horizontal bonds project out of the plane of the paper, toward the reader; vertical bonds project behind the plane of the paper, away from the reader.

FIGURE 7–1 Representative monosaccharides. (a) Two trioses, an aldose and a ketose. The carbonyl group in each is shaded. (b) Two common hexoses. (c) The pentose components of nucleic acids. d-Ribose is a component of ribonucleic acid (RNA), and 2-deoxy-d-ribose is a component of deoxyribonucleic acid (DNA).
7.1 Monosaccharides and Disaccharides

FIGURE 7-3 Aldoses and ketoses. The series of (a) \(\alpha\)-aldoses and (b) \(\alpha\)-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these \(\alpha\) isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in \(\alpha\)-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.

In general, a molecule with \(n\) chiral centers can have \(2^n\) stereoisomers. Glyceraldehyde has \(2^1 = 2\); the aldohexoses, with four chiral centers, have \(2^4 = 16\) stereoisomers. The stereoisomers of monosaccharides of each carbon-chain length can be divided into two groups that differ in the configuration about the chiral center most distant from the carbonyl carbon. Those in which the configuration at this reference carbon is the same as that of \(\alpha\)-glyceraldehyde are designated \(\alpha\) isomers, and those with the same configuration as \(\alpha\)-glyceraldehyde are \(\beta\) isomers. When the hydroxyl group on the reference carbon is on the right in a projection formula that has the carbonyl carbon at the top, the sugar is the \(\alpha\) isomer; when on the left, it is the \(\beta\) isomer. Of the 16 possible aldohexoses, eight are \(\alpha\) forms and eight are \(\beta\). Most of the hexoses of living organisms are \(\alpha\) isomers.

Figure 7-3 shows the structures of the \(\alpha\) stereoisomers of all the aldoses and ketoses having three to six carbon atoms. The carbons of a sugar are numbered beginning at the end of the chain nearest the carbonyl group. Each of the eight \(\alpha\)-aldohexoses, which differ in the stereochemistry at C-2, C-3, or C-4, has its own name: \(\alpha\)-glucose, \(\alpha\)-galactose, \(\alpha\)-mannose, and so forth (Fig. 7-3a). The four- and five-carbon ketoses are
designated by inserting “ul” into the name of a corresponding aldose; for example, d-ribulose is the ketopentose corresponding to the aldopentose d-ribose. The ketohexoses are named otherwise: for example, fructose (from the Latin fructus, “fruit”; fruits are one source of this sugar) and sorbose (from Sorbus, the genus of mountain ash, which has berries rich in the related sugar alcohol sorbitol). Two sugars that differ only in the configuration around one carbon atom are called epimers; d-glucose and d-mannose, which differ only in the stereochemistry at C-2, are epimers, as are d-glucose and d-galactose (which differ at C-4) (Fig. 7-4).

Some sugars occur naturally in their L form; examples are L-arabinose and the L isomers of some sugar derivatives that are common components of glycoconjugates (Section 7.3).

The Common Monosaccharides Have Cyclic Structures

For simplicity, we have thus far represented the structures of aldoses and ketoses as straight-chain molecules (Figs 7-3, 7-4). In fact, in aqueous solution, aldotetroses and all monosaccharides with five or more carbon atoms in the backbone occur predominantly as cyclic (ring) structures in which the carbonyl group has formed a covalent bond with the oxygen of a hydroxyl group along the chain. The formation of these ring structures is the result of a general reaction between alcohols and aldehydes or ketones to form derivatives called hemiacetals or hemiketals (Fig. 7-5), which contain an additional asymmetric carbon atom and thus can exist in two stereoisomeric forms. For example, d-glucose exists in solution as an intramolecular hemiacetal in which the free hydroxyl group at C-5 has reacted with the aldehydeic C-1, rendering the latter carbon asymmetric and producing two stereoisomers, designated α and β (Fig. 7-6). The designation α indicates that the hydroxyl group at the anomeric center is, in a Fischer projection, on the same side as the

![FIGURE 7-4 Epimers. d-Glucose and two of its epimers are shown as projection formulas. Each epimer differs from d-glucose in the configuration at one chiral center (shaded pink).](image)

![FIGURE 7-5 Formation of hemiacetals and hemiketals. An aldehyde or ketone can react with an alcohol in a 1:1 ratio to yield a hemiacetal or hemiketal, respectively, creating a new chiral center at the carbonyl carbon. Substitution of a second alcohol molecule produces an acetal or ketal. When the second alcohol is part of another sugar molecule, the bond produced is a glycosidic bond (p. 243).](image)

![FIGURE 7-6 Formation of the two cyclic forms of d-glucose. Reaction between the aldehyde group at C-1 and the hydroxyl group at C-5 forms a hemiacetal linkage, producing either of two stereoisomers, the α and β anomers, which differ only in the stereochemistry around the hemiacetal carbon. The interconversion of α and β anomers is called mutarotation.](image)
hydroxyl attached at the farthest chiral center, whereas β indicates that these hydroxyl groups are on opposite sides. These six-membered ring compounds are called **pyranoses** because they resemble the six-membered ring compound pyran (Fig. 7-7). The systematic names for the two ring forms of d-glucose are α-d-glucopyranose and β-d-glucopyranose.

Aldoses also exist in cyclic forms having five-membered rings, which, because they resemble the five-membered ring compound furan, are called **furanoses**. However, the six-membered aldopyranose ring is much more stable than the aldofuranose ring and predominates in aldohexose and aldotetrose solutions. Only aldoses having five or more carbon atoms can form pyranose rings.

Isomeric forms of monosaccharides that differ only in their configuration about the hemiacetal or hemiketal carbon atom are called **anomers**. The hemiacetal (or carbonyl) carbon atom is called the **anomeric carbon**. The α and β anomers of d-glucose interconvert in aqueous solution by a process called **mutarotation** (Fig. 7-6). Thus, a solution of α-d-glucose and a solution of β-d-glucose eventually form identical equilibrium mixtures having identical optical properties. This mixture consists of about one-third α-d-glucose, two-thirds β-d-glucose, and very small amounts of the linear and five-membered ring (glucofuranose) forms.

Ketohexoses also occur in α and β anomeric forms. In these compounds the hydroxyl group at C-5 (or C-6) reacts with the keto group at C-2, forming a furanose (or pyranose) ring containing a hemiketal linkage (Fig. 7-5). D-Fructose readily forms the furanose ring (Fig. 7-7); the more common anomer of this sugar in combined forms or in derivatives is β-d-fructofuranose.

Haworth perspective formulas like those in Figure 7-7 are commonly used to show the stereochemistry of ring forms of monosaccharides. However, the six-membered pyranose ring is not planar, as Haworth perspectives suggest, but tends to assume either of two “chair” conformations (Fig. 7-8). Recall from Chapter 1 (p. 18) that two configurations of a molecule are interconvertible without the breakage of covalent bonds, whereas two conformations can be interconverted only by breaking a covalent bond. To interconvert α and β conformations, the bond involving the ring oxygen atom would have to be broken, but interconversion of the two chair forms does not require bond breakage. The specific three-dimensional structures of the monosaccharide units are important in determining the biological properties and functions of some polysaccharides, as we shall see.

FIGURE 7-8 Conformational formulas of pyranoses. (a) Two chair forms of the pyranose ring. Bonds to substituents and hydrogen atoms on the ring carbons may be either axial (ax), projecting parallel to the vertical axis through the ring, or equatorial (eq), projecting roughly perpendicular to this axis. Two conformers such are these are not readily interconvertible without breaking the ring. However, when the molecule is “stretched” (by atomic force microscopy; see Box 11-1), an input of about 46 kJ of energy per mole of sugar can force the interconversion of chair forms. Generally, substituents in the equatorial positions are less sterically hindered by neighboring substituents, and conformers with bulky substituents in equatorial positions are favored. Another conformation, the “boat” (not shown), is seen only in derivatives with very bulky substituents. (b) The preferred chair conformation of α-d-glucopyranose.
Organisms Contain a Variety of Hexose Derivatives

In addition to simple hexoses such as glucose, galactose, and mannose, there are a number of sugar derivatives in which a hydroxyl group in the parent compound is replaced with another substituent, or a carbon atom is oxidized to a carboxyl group (Fig. 7-9). In glucosamine, galactosamine, andmannosamine, the hydroxyl at C-2 of the parent compound is replaced with an amino group. The amino group is nearly always condensed with acetic acid, as in N-acetylglicosamine. This glucosamine derivative is part of many structural polymers, including those of the bacterial cell wall. Bacterial cell walls also contain a derivative of glucosamine, N-acetylmuramic acid, in which lactic acid (a three-carbon carboxylic acid) is ether-linked to the oxygen at C-3 of N-acetylglicosamine. The substitution of a hydrogen for the hydroxyl group at C-6 of L-galactose produces L-fucose or L-rhamnose, respectively. L-Fucose is found in the complex oligosaccharide components of glycoproteins and glycolipids; L-rhamnose is found in plant polysaccharides.

Oxidation of the carbonyl (aldehyde) carbon of glucose to the carboxyl level produces gluconic acid; other aldoses yield other aldonic acids. Oxidation of the carbon at the other end of the carbon chain—C-6 of glucose, galactose, or mannose—forms the corresponding uronic acid: glucuronic, galacturonic, or mannuronic acid. Both aldonic and uronic acids form stable intramolecular esters called lactones (Fig. 7-9, lower left). In addition to these acidic hexose derivatives, one nine-carbon acidic sugar deserves mention: N-acetyleneuraminic acid (a sialic acid, but often referred to simply as “sialic acid”), a derivative of N-acetylmannosamine, is a component of many glycoproteins and glycolipids in animals.

The acidic sugars contain a carboxylate group, which confers a negative charge at neutral pH. D-Glucono-δ-lactone results from formation of an ester linkage between the C-1 carboxylate group and the C-3 (also known as the δ carbon) hydroxyl group of D-gluconate.
carboxylic acid groups of the acidic sugar derivatives are ionized at pH 7, and the compounds are therefore correctly named as the carboxylates—glucuronate, galacturonate, and so forth.

In the synthesis and metabolism of carbohydrates, the intermediates are very often not the sugars themselves but their phosphorylated derivatives. Condensation of phosphoric acid with one of the hydroxyl groups of a sugar forms a phosphate ester, as in glucose 6-phosphate (Fig. 7-9). Sugar phosphates are relatively stable at neutral pH and bear a negative charge. One effect of sugar phosphorylation within cells is to trap the sugar inside the cell; most cells do not have plasma membrane transporters for phosphorylated sugars. Phosphorylation also activates sugars for subsequent chemical transformation. Several important phosphorylated derivatives of sugars are components of nucleotides (discussed in the next chapter).

Monosaccharides Are Reducing Agents

Monosaccharides can be oxidized by relatively mild oxidizing agents such as cupric (Cu++) ion (Fig. 7–10). The carbonyl carbon is oxidized to a carboxyl group. Glucose and other sugars capable of reducing cupric ion are called reducing sugars. They form enediols, which are converted to aldonic acids and then to a complex mixture of 2-, 3-, 4-, and 6-carbon acids. This is the basis of Fehling’s reaction, a qualitative test for the presence of reducing sugar. By measuring the amount of oxidizing agent reduced by a solution of a sugar, it is also possible to estimate the concentration of that sugar. For many years this test was used to detect and measure elevated glucose levels in blood and urine in the diagnosis of diabetes mellitus (Box 7–1).

BOX 7-1 Medicine

Blood Glucose Measurements in the Diagnosis and Treatment of Diabetes

Glucose is the principal fuel for the brain. When the amount of glucose reaching the brain is too low, the consequences can be dire: lethargy, coma, permanent brain damage, and death (see Fig. 23–25). Animals have evolved complex hormonal mechanisms to ensure that the concentration of glucose in the blood remains high enough (about 5 mM) to satisfy the brain’s needs, but not too high, because elevated blood glucose can also have serious physiological consequences.

Individuals with insulin-dependent diabetes mellitus do not produce sufficient insulin, the hormone that normally serves to reduce blood glucose concentration, and if the diabetes is untreated their blood glucose levels may rise to severalfold higher than normal. These high glucose levels are believed to be at least one cause of the serious long-term consequences of untreated diabetes—kidney failure, cardiovascular disease, blindness, and impaired wound healing—so one goal of therapy is to provide just enough insulin (by injection) to keep blood glucose levels near normal. To maintain the correct balance of exercise, diet, and insulin for the individual, blood glucose concentration needs to be measured several times a day, and the amount of insulin injected adjusted appropriately.

The concentrations of glucose in blood and urine can be determined by a simple assay for reducing sugar, such as Fehling’s reaction, which for many years was used as a diagnostic test for diabetes (Fig. 7–10). Modern measurements require just a drop of blood, added to a test strip containing the enzyme glucose oxidase (Fig. 1); a simple photometer measures the color produced when the H2O2 from glucose oxidation reacts with a dye, and reads out the blood glucose concentration. Because blood glucose levels change with the timing of meals and exercise, single-time measurements do not necessarily reflect the average blood glucose over hours and days, so dangerous increases may go undetected. The average glucose concentration can be assessed by looking at its effect on hemoglobin, the oxygen-carrying protein in erythrocytes (p. 158). Transporters in the erythrocyte membrane equilibrate intracellular and plasma glucose.

\[
\text{D-Glucose} + \text{O}_2 \xrightarrow{\text{glucose oxidase}} \text{D-Glucono-6-lactone} + \text{H}_2\text{O}_2
\]

FIGURE 1 The glucose oxidase reaction, used in the measurement of blood glucose. A second enzyme, a peroxidase, catalyzes the reaction of the H2O2 with a colorless compound to produce a colored product, which is measured spectrophotometrically.
glucose concentrations, so hemoglobin is constantly exposed to glucose at whatever concentration is present in the blood. A nonenzymatic reaction occurs between glucose and primary amino groups in hemoglobin (either the amino-terminal Val or the ε-amino groups of Lys residues; see Fig. 2). The rate of this process is proportional to the concentration of glucose, so the reaction can be used as the basis for estimating the average blood glucose level over weeks. The amount of glycated hemoglobin (GHB) present at any time reflects the average blood glucose concentration over the circulating “lifetime” of the erythrocyte (about 120 days), although the concentration in the last two weeks is the most important in setting the level of GHB.

The extent of hemoglobin glycation (so named to distinguish it from glycosylation, the enzymatic transfer of glucose to a protein) is measured clinically by extracting hemoglobin from a small sample of blood and separating GHB from unmodified hemoglobin electrophoretically, taking advantage of the charge difference resulting from modification of the amino group(s). Normal GHB values are about 5% of total hemoglobin (corresponding to blood glucose of 120 mg/100 mL). In people with untreated diabetes, however, this value may be as high as 13%, indicating an average blood glucose level of about 300 mg/100 mL—dangerously high. One criterion for success in an individual program of insulin therapy (the timing, frequency, and amount of insulin injected) is maintaining GHB values at about 7%.

In the hemoglobin glycation reaction, the first step (formation of a Schiff base) is followed by a series of rearrangements, oxidations, and dehydrations of the carbohydrate moiety to produce a heterogeneous mixture of AGEs, advanced glycation end products. These products can leave the erythrocyte and form covalent cross-links between proteins, interfering with normal protein function (Fig. 2). The accumulation of relatively high concentrations of AGEs in people with diabetes may, by cross-linking critical proteins, cause the damage to the kidneys, retinas, and cardiovascular system that characterize the disease. This pathogenic process is a potential target for drug action.

FIGURE 2 The nonenzymatic reaction of glucose with a primary amino group in hemoglobin begins with ① formation of a Schiff base, which ② undergoes the Amadori rearrangement to generate a stable product; ③ this ketoamine can further cyclize to yield GHB. ④ Subsequent reactions generate advanced glycation end products (AGEs), such as ε-N-carboxymethyllysine and methylglyoxal, compounds that ⑤ can damage other proteins by cross-linking them, causing pathological changes.
Disaccharides Contain a Glycosidic Bond

Disaccharides (such as maltose, lactose, and sucrose) consist of two monosaccharides joined covalently by an **O-glycosidic bond**, which is formed when a hydroxyl group of one sugar reacts with the anomeric carbon of the other (Fig. 7-11). This reaction represents the formation of an acetal from a hemiacetal (such as glucopyranose) and an alcohol (a hydroxyl group of the second sugar molecule) (Fig. 7-5), and the resulting compound is called a glycoside. Glycosidic bonds are readily hydrolyzed by acid but resist cleavage by base. Thus disaccharides can be hydrolyzed to yield their free monosaccharide components by boiling with dilute acid. N-glycosyl bonds join the anomeric carbon of a sugar to a nitrogen atom in glycoproteins (see Fig. 7-29) and nucleotides (see Fig. 8-1).

The oxidation of a sugar by cupric ion (the reaction that defines a reducing sugar) occurs only with the linear form, which exists in equilibrium with the cyclic forms. When the anomeric carbon is involved in a glycosidic bond, that sugar residue cannot take the linear form and therefore becomes a nonreducing sugar. In describing disaccharides or polysaccharides, the end of a chain with a free anomeric carbon (one not involved in a glycosidic bond) is commonly called the **reducing end**.

![Formation of maltose](image)

FIGURE 7-11 Formation of maltose. A disaccharide is formed from two monosaccharides (here, two molecules of d-glucose) when an \(-\text{OH}\) (alcohol) of one glucose molecule (right) condenses with the intramolecular hemiacetal of the other glucose molecule (left), with elimination of \(\text{H}_2\text{O}\) and formation of a glycosidic bond. The reversal of this reaction is hydrolysis—attack by \(\text{H}_2\text{O}\) on the glycosidic bond. The maltose molecule, shown here as an illustration, retains a reducing hemiacetal at the C-1 not involved in the glycosidic bond. Because mutarotation interconverts the \(\alpha\) and \(\beta\) forms of the hemiacetal, the bonds at this position are sometimes depicted with wavy lines, as shown here, to indicate that the structure may be either \(\alpha\) or \(\beta\).

The disaccharide maltose (Fig. 7-11) contains two d-glucose residues joined by a glycosidic linkage between C-1 (the anomeric carbon) of one glucose residue and C-4 of the other. Because the disaccharide retains a free anomeric carbon (C-1 of the glucose residue on the right in Fig. 7-11), maltose is a reducing sugar. The configuration of the anomeric carbon atom in the glycosidic linkage is \(\alpha\). The glucose residue with the free anomeric carbon is capable of existing in \(\alpha\)- and \(\beta\)-pyranose forms.

KEY CONVENTION: To name reducing disaccharides such as maltose unambiguously, and especially to name more complex oligosaccharides, several rules are followed. By convention, the name describes the compound written with its nonreducing end to the left, and we can “build up” the name in the following order. (1) Give the configuration (\(\alpha\) or \(\beta\)) at the anomeric carbon joining the first monosaccharide unit (on the left) to the second. (2) Name the nonreducing residue; to distinguish five- and six-membered ring structures, insert “furan” or “pyran” into the name. (3) Indicate in parentheses the two carbon atoms joined by the glycosidic bond, with an arrow connecting the two numbers; for example, \((1\rightarrow4)\) shows that C-1 of the first-named sugar residue is joined to C-4 of the second. (4) Name the second residue. If there is a third residue, describe the second glycosidic bond by the same conventions. (To shorten the description of complex polysaccharides, three-letter abbreviations or colored symbols for the monosaccharides are often used, as given in Table 7-1.) Following this convention for naming oligosaccharides, maltose is \(\alpha\)-D-glucopyranosyl-(1\(\rightarrow4\))-D-glucopyranose. Because most sugars encountered in this book are the \(\beta\) enantiomers and the pyranose form of hexoses predominates, we generally use a shortened version of the formal name of

TABLE 7-1 Symbols and Abbreviations for Common Monosaccharides and Some of Their Derivatives

<table>
<thead>
<tr>
<th>Monosaccharide</th>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abequose</td>
<td>Abe</td>
<td>Glucuronic acid</td>
<td>GlcA</td>
</tr>
<tr>
<td>Arabinose</td>
<td>Ara</td>
<td>Galactosamine</td>
<td>GalN</td>
</tr>
<tr>
<td>Fructose</td>
<td>Fru</td>
<td>Glucosamine</td>
<td>GlcN</td>
</tr>
<tr>
<td>Fucose</td>
<td>Fuc</td>
<td>N-Acetylgalactosamine</td>
<td>GalNAc</td>
</tr>
<tr>
<td>Galactose</td>
<td>Gal</td>
<td>N-Acetylgalactosamine</td>
<td>GalNAc</td>
</tr>
<tr>
<td>Glucose</td>
<td>Glc</td>
<td>Iduronic acid</td>
<td>IdoA</td>
</tr>
<tr>
<td>Mannose</td>
<td>Man</td>
<td>Muramic acid</td>
<td>Mur</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>Rha</td>
<td>N-Acetylmuramic acid</td>
<td>Mur2Ac</td>
</tr>
<tr>
<td>Ribose</td>
<td>Rib</td>
<td>N-Acetylgalactosaminic acid</td>
<td>Mur2Ac</td>
</tr>
<tr>
<td>Xylose</td>
<td>Xyl</td>
<td>(a sialic acid)</td>
<td>Neu5Ac</td>
</tr>
</tbody>
</table>

Note: In a commonly used convention, hexoses are represented as circles, N-acetylhexosamines as squares, and hexosamines as squares divided diagonally. All sugars with the “gluco” configuration are blue, those with the “galacto” configuration are yellow, and “manno” sugars are green. Other substituents can be added as needed: sulfate (S), phosphate (P), O-acetyl (OAc), or O-methyl (Ome).
such compounds, giving the configuration of the anomeric carbon and naming the carbons joined by the glycosidic bond. In this abbreviated nomenclature, maltose is Glc(α1→4)Glc.

The disaccharide lactose (Fig. 7-12), which yields D-galactose and D-glucose on hydrolysis, occurs naturally in milk. The anomeric carbon of the glucose residue is available for oxidation, and thus lactose is a reducing disaccharide. Its abbreviated name is Gal(β1→4)Glc. Sucrose (table sugar) is a disaccharide of glucose and fructose. It is formed by plants but not by animals. In contrast to maltose and lactose, sucrose contains no free anomeric carbon atom; the anomeric carbons of both monosaccharide units are involved in the glycosidic bond (Fig. 7-12). Sucrose is therefore a nonreducing sugar. In the abbreviated nomenclature, a double-headed arrow connects the symbols specifying the anomeric carbons and their configurations. For example, the abbreviated name of sucrose is either Glc(α1→2β)Fru or Fru(2β→1α)Glc. Sucrose is a major intermediate product of photosynthesis; in many plants it is the principal form in which sugar is transported from the leaves to other parts of the plant body. Trehalose, Glc(α1→1α)Glc (Fig. 7-12)—a disaccharide of D-glucose that, like sucrose, is a nonreducing sugar—is a major constituent of the circulating fluid (hemolymph) of insects, serving as an energy-storage compound. Fungi also contain trehalose and are used as a commercial source of this sugar.

SUMMARY 7.1 Monosaccharides and Disaccharides

- Sugars (also called saccharides) are compounds containing an aldehyde or ketone group and two or more hydroxyl groups.
- Monosaccharides generally contain several chiral carbons and therefore exist in a variety of stereochemical forms, which may be represented on paper as Fischer projections. Epimers are sugars that differ in configuration at only one carbon atom.
- Monosaccharides commonly form internal hemiacetals or hemiketals, in which the aldehyde or ketone group joins with a hydroxyl group of the same molecule, creating a cyclic structure; this can be represented as a Haworth perspective formula. The carbon atom originally found in the aldehyde or ketone group joins with a hydroxyl group of the same molecule, creating a cyclic structure; this can be represented as a Haworth perspective formula.
- A hydroxyl group of one monosaccharide can add to the anomeric carbon of a second monosaccharide to form an acetal. In this disaccharide, the glycosidic bond protects the anomeric carbon from oxidation.
- Oligosaccharides are short polymers of several monosaccharides joined by glycosidic bonds. At one end of the chain, the reducing end, is a monosaccharide unit with its anomeric carbon not involved in a glycosidic bond.
- The common nomenclature for di- or oligosaccharides specifies the order of monosaccharide units, the configuration at each anomeric carbon, and the carbon atoms involved in the glycosidic linkage(s).

7.2 Polysaccharides

Most carbohydrates found in nature occur as polysaccharides, polymers of medium to high molecular weight. Polysaccharides, also called glycans, differ from each other in the identity of their recurring monosaccharide units, in the length of their chains, in the types of bonds linking the units, and in the degree of branching. Homopolysaccharides contain only a single monomeric species; heteropolysaccharides contain two or more different kinds (Fig. 7-13). Some homopolysaccharides serve as storage forms of monosaccharides that are used as fuels; starch and glycogen are homopolysaccharides of this type. Other homopolysaccharides (cellulose and chitin, for example) serve as structural elements in plant
Homopolysaccharides	Heteropolysaccharides
Unbranched | Branched
Two monomer types, unbranched | Multiple monomer types, branched

FIGURE 7-13 Homo- and heteropolysaccharides. Polysaccharides may be composed of one, two, or several different monosaccharides, in straight or branched chains of varying length.

Cell walls and animal exoskeletons. Heteropolysaccharides provide extracellular support for organisms of all kingdoms. For example, the rigid layer of the bacterial cell envelope (the peptidoglycan) is composed in part of a heteropolysaccharide built from two alternating monosaccharide units. In animal tissues, the extracellular space is occupied by several types of heteropolysaccharides, which form a matrix that holds individual cells together and provides protection, shape, and support to cells, tissues, and organs.

Unlike proteins, polysaccharides generally do not have defining molecular weights. This difference is a consequence of the mechanisms of assembly of the two types of polymer. As we shall see in Chapter 27, proteins are synthesized on a template (messenger RNA) of defined sequence and length, by enzymes that follow the template exactly. For polysaccharide synthesis there is no template; rather, the program for polysaccharide synthesis is intrinsic to the enzymes that catalyze the polymerization of the monomeric units, and there is no specific stopping point in the synthetic process.

Some Homopolysaccharides Are Stored Forms of Fuel

The most important storage polysaccharides are starch in plant cells and glycogen in animal cells. Both polysaccharides occur intracellularly as large clusters or granules. Starch and glycogen molecules are heavily hydrated, because they have many exposed hydroxyl groups available to hydrogen-bond with water. Most plant cells have the ability to form starch (see Fig. 20-2), and starch storage is especially abundant in tubers (underground stems), such as potatoes, and in seeds.

Starch contains two types of glucose polymer, amylose and amylopectin (Fig. 7-14). The former consists

FIGURE 7-14 Glycogen and starch. (a) A short segment of amylose, a linear polymer of α-glucose residues in (α1→4) linkage. A single chain can contain several thousand glucose residues. Amylopectin has stretches of similarly linked residues between branch points. Glycogen has the same basic structure, but has more branching than amylopectin. (b) An (α1→6) branch point of glycogen or amylopectin. (c) A cluster of amylose and amylopectin like that believed to occur in starch granules. Strands of amylopectin (red) form double-helical structures with each other or with amylose strands (blue). Glucose residues at the nonreducing ends of the outer branches are removed enzymatically during the mobilization of starch for energy production. Glycogen has a similar structure but is more highly branched and more compact.
of long, unbranched chains of D-glucose residues connected by (α1→4) linkages (as in maltose). Such chains vary in molecular weight from a few thousand to more than a million. Amylopectin also has a high molecular weight (up to 200 million) but unlike amylose is highly branched. The glycosidic linkages joining successive glucose residues in amylopectin chains are (α1→4); the branch points (occurring every 24 to 30 residues) are (α1→6) linkages.

Glycogen is the main storage polysaccharide of animal cells. Like amylopectin, glycogen is a polymer of (α1→4)-linked subunits of glucose, with (α1→6)-linked branches, but glycogen is more extensively branched (on average, every 8 to 12 residues) and more compact than starch. Glycogen is especially abundant in the liver, where it may constitute as much as 7% of the wet weight; it is also present in skeletal muscle. In hepatocytes glycogen is found in large granules, which are themselves clusters of smaller granules composed of single, highly branched glycogen molecules with an average molecular weight of several million. Such glycogen granules also contain, in tightly bound form, the enzymes responsible for the synthesis and degradation of glycogen.

Because each branch in glycogen ends with a nonreducing sugar unit, a glycogen molecule with n branches has $n + 1$ nonreducing ends, but only one reducing end. When glycogen is used as an energy source, glucose units are removed one at a time from the nonreducing ends. Degradative enzymes that act only at nonreducing ends can work simultaneously on the many branches, speeding the conversion of the polymer to monosaccharides.

Why not store glucose in its monomeric form? It has been calculated that hepatocytes store glycogen equivalent to a glucose concentration of 0.4 M. The actual concentration of glycogen, which is insoluble and contributes little to the osmolarity of the cytosol, is about 0.01 μM. If the cytosol contained 0.4 M glucose, the osmolarity would be threateningly elevated, leading to osmotic entry of water that might rupture the cell (see Fig. 2–12). Furthermore, with an intracellular glucose concentration of 0.4 M and an external concentration of about 5 mM (the concentration in the blood of a mammal), the free-energy change for glucose uptake into cells against this very high concentration gradient would be prohibitively large.

DextranS are bacterial and yeast polysaccharides made up of (α1→6)-linked poly-D-glucose; all have (α1→3) branches, and some also have (α1→2) or (α1→4) branches. Dental plaque, formed by bacteria growing on the surface of teeth, is rich in dextranS. Synthetic dextranS are used in several commercial products (for example, Sephadex) that serve in the fractionation of proteins by size-exclusion chromatography (see Fig. 3–17b). The dextranS in these products are chemically cross-linked to form insoluble materials of various porosities, admitting macromolecules of various sizes.

Some Homopolysaccharides Serve Structural Roles

Cellulose, a fibrous, tough, water-insoluble substance, is found in the cell walls of plants, particularly in stalks, stems, trunks, and all the woody portions of the plant body. Cellulose constitutes much of the mass of wood, and cotton is almost pure cellulose. Like amylose, the cellulose molecule is a linear, unbranched homopolysaccharide, consisting of 10,000 to 15,000 D-glucose units. But there is a very important difference: in cellulose the glucose residues have the β configuration (Fig. 7–15), whereas in amylose the glucose is in the α configuration. The glucose residues in cellulose are linked by (β1→4) glycosidic bonds, in contrast to the (α1→4) bonds of amylose. This difference gives cellulose and amylose very different structures and physical properties.

Glycogen and starch ingested in the diet are hydrolyzed by α-amylases and glycosidases, enzymes in saliva and the intestine that break (α1→4) glycosidic bonds between glucose units. Most animals cannot use cellulose as a fuel source, because they lack an enzyme to hydrolyze the (β1→4) linkages. Termites readily digest cellulose (and therefore wood), but only because their intestinal tract harbors a symbiotic microorganism,
Trichonympha, that secretes cellulase, which hydrolyzes the (β1→4) linkages. Wood-rot fungi and bacteria also produce cellulase (Fig. 7-16).

Chitin is a linear homopolysaccharide composed of N-acetylglucosamine residues in (β1→4) linkage (Fig. 7-17). The only chemical difference from cellulose is the replacement of the hydroxyl group at C-2 with an acetylated amino group. Chitin forms extended fibers similar to those of cellulose, and like cellulose cannot be digested by vertebrates. Chitin is the principal component of the hard exoskeletons of nearly a million species of arthropods— insects, lobsters, and crabs, for example—and is probably the second most abundant polysaccharide, next to cellulose, in nature; an estimated 1 billion tons of chitin are produced each year in the biosphere!

Steric Factors and Hydrogen Bonding Influence Homopolysaccharide Folding

The folding of polysaccharides in three dimensions follows the same principles as those governing polypeptide structure: subunits with a more-or-less rigid structure dictated by covalent bonds form three-dimensional macromolecular structures that are stabilized by weak interactions within or between molecules: hydrogen bonds and hydrophobic and van der Waals interactions, and, for polymers with charged subunits, electrostatic interactions. Because polysaccharides have so many hydroxyl groups, hydrogen bonding has an especially important influence on their structure. Glycogen, starch, and cellulose are composed of pyranoside subunits (having six-membered rings), as are the oligosaccharides of glycoproteins and glycolipids to be discussed later. Such molecules can be represented as a series of rigid pyranose rings connected by an oxygen atom bridging two carbon atoms (the glycosidic bond). There is, in principle, free rotation about both C—O bonds linking the residues (Fig. 7-15a), but as in polypeptides (see Figs 4-2, 4-8), rotation about each bond is limited by steric hindrance by substituents. The three-dimensional structures of these molecules can be
described in terms of the dihedral angles, ϕ and Ψ, about the glycosidic bond (Fig. 7-18), analogous to angles ϕ and Ψ made by the peptide bond (see Fig. 4-2).

The bulkiness of the pyranose ring and its substituents, and electronic effects at the anomeric carbon, place constraints on the angles ϕ and Ψ; thus certain conformations are much more stable than others, as can be shown on a map of energy as a function of ϕ and Ψ (Fig. 7-19).

The most stable three-dimensional structure for the ($\alpha1\rightarrow4$)-linked chains of starch and glycogen is a tightly coiled helix (Fig. 7-20), stabilized by interchain hydrogen bonds. In amylose (with no branches) this structure is regular enough to allow crystallization and thus determination of the structure by x-ray diffraction. The average plane of each residue along the amylose chain forms a 60° angle with the average plane of the preceding residue, so the helical structure has six residues per turn. For amylose, the core of the helix is of precisely the right dimensions to accommodate iodine as complex ions (I^- and I^-), giving an intensely blue complex. This interaction is a common qualitative test for amylose.

For cellulose, the most stable conformation is that in which each chair is turned 180° relative to its neighbors, yielding a straight, extended chain. All --OH groups are available for hydrogen bonding with neighboring chains. With several chains lying side by side, a stabilizing network of interchain and intrachain hydrogen bonds produces straight, stable supramolecular fibers of great tensile strength (Fig. 7-15b). This property of cellulose has made it a useful substance for civilizations for millennia. Many manufactured products, including papyrus, paper, cardboard, rayon, insulating tiles, and a variety of other useful materials, are derived from cellulose. The water content of these materials is low because extensive interchain hydrogen bonding between cellulose molecules satisfies their capacity for hydrogen-bond formation.

Figure 7-19 A map of favored conformations for oligosaccharides and polysaccharides. The torsion angles Ψ and ϕ (see Fig. 7-18), which define the spatial relationship between adjacent rings, can in principle have any value from 0° to 360°. In fact, some of the torsion angles would give conformations that are sterically hindered, whereas others give conformations that maximize hydrogen bonding. (a) When the relative energy (E) is plotted for each value of ϕ and Ψ, with isoenergy (“same energy”) contours drawn at intervals of 1 kcal/mol above the minimum energy state, the result is a map of preferred conformations. This is analogous to the Ramachandran plot for peptides (see Figs 4-3, 4-8). (b) Two energetic extremes for the disaccharide Gal($\beta1\rightarrow3$)Gal; these values fall on the energy diagram (a) as shown by the red and blue dots. The red dot indicates the least favored conformation, the blue dot the most favored conformation. The known conformations of the three polysaccharides shown in Figure 7-18 have been determined by x-ray crystallography, and all fall within the lowest-energy regions of the map.
FIGURE 7-20 Starch (amylose). (a) In the most stable conformation, with adjacent rigid chairs, the polysaccharide chain is curved, rather than linear as in cellulose (see Fig. 7-15). (b) A model of a segment of amylose; for clarity, the hydroxyl groups have been omitted from all but one of the glucose residues. Compare the two residues shaded in pink with the chemical structures in (a). The conformation of $(\alpha 1 \rightarrow 4)$ linkages in amylose, amylopectin, and glycogen causes these polymers to assume tightly coiled helical structures. These compact structures produce the dense granules of stored starch or glycogen seen in many cells (see Fig. 20-2).

Bacterial and Algal Cell Walls Contain Structural Heteropolysaccharides

The rigid component of bacterial cell walls (peptidoglycan) is a heteropolymer of alternating $(\beta 1 \rightarrow 4)$-linked N-acetylglucosamine and N-acetylmuramic acid residues (see Fig. 20-31). The linear polymers lie side by side in the cell wall, cross-linked by short peptides, the exact structure of which depends on the bacterial species. The peptide cross-links weld the polysaccharide chains into a strong sheath that envelopes the entire cell and prevents cellular swelling and lysis due to the osmotic entry of water. The enzyme lysozyme kills bacteria by hydrolyzing the $(\beta 1 \rightarrow 4)$ glycosidic bond between N-acetylglucosamine and N-acetylmuramic acid (see Fig. 6-24). Lysozyme is notably present in tears, presumably as a defense against bacterial infections of the eye. It is also produced by certain bacterial viruses to ensure their release from the host bacterial cell, an essential step of the viral infection cycle. Penicillin and related antibiotics kill bacteria by preventing synthesis of the cross-links, leaving the cell wall too weak to resist osmotic lysis (see pp. 216–217).

Certain marine red algae, including some of the seaweeds, have cell walls that contain agar, a mixture of sulfated heteropolysaccharides made up of D-galactose and an L-galactose derivative ether-linked between C-3 and C-6. Agar is a complex mixture of polysaccharides, all with the same backbone structure, but substituted to varying degrees with sulfate and pyruvate. Agarose ($M_t \sim 150,000$) is the agar component with the fewest charged groups (sulfates, pyruvates) (Fig. 7-21). The remarkable gel-forming property of agarose makes it useful in the biochemistry laboratory. When a suspension of agarose in water is heated and cooled, the agarose forms a double helix: two molecules in parallel orientation twist together with a helix repeat of three residues; water molecules are trapped in the central cavity. These structures in turn associate with each other to form a gel—a three-dimensional matrix that traps large amounts of water. Agarose gels are used as inert supports for the electrophoretic separation of nucleic acids, an essential part of the DNA sequencing process (p. 292). Agar is also used to form a surface for the growth of bacterial colonies. Another commercial use of agar is for the capsules in which some vitamins and drugs are packaged; the dried agar material dissolves readily in the stomach and is metabolically inert.

Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix

The extracellular space in the tissues of multicellular animals is filled with a gel-like material, the extracellular matrix (ECM), also called ground substance, which holds the cells together and provides a porous pathway for the diffusion of nutrients and oxygen to individual cells. The reticular ECM that surrounds fibroblasts and other connective tissue cells is composed of an interlocking meshwork of heteropolysaccharides and fibrous proteins such as fibrillar collagens, elastin, and fibronectin. Basement membrane is a specialized ECM that underlies epithelial cells; it consists of specialized collagens, laminin, and heteropolysaccharides. These heteropolysaccharides, the glycosaminoglycans, are a family of linear polymers composed of repeating disaccharide units (Fig. 7-22). They are unique to animals and bacteria and are not found in plants. One of the two monosaccharides is always either N-acetylglucosamine or N-acetylgalactosamine; the other is in most cases a uronic acid, usually α-glucuronic or β-iduronic acid. Some glycosaminoglycans contain esterified sulfate groups. The combination of sulfate groups and the carboxylate groups of the uronic acid residues gives glycosaminoglycans a very high density of negative charge. To minimize the repulsive forces among neighboring charged groups, these molecules assume an
Carbohydrates and Glycobiology

Glycosaminoglycan

<table>
<thead>
<tr>
<th>Number of disaccharides per chain</th>
<th>Repeating disaccharide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyaluronan</td>
<td>~50,000</td>
</tr>
<tr>
<td>Chondroitin 4-sulfate</td>
<td>20–60</td>
</tr>
<tr>
<td>Keratan sulfate</td>
<td>~25</td>
</tr>
<tr>
<td>Heparin</td>
<td>15–90</td>
</tr>
</tbody>
</table>

Extended conformation in solution, forming a rodlike helix in which the negatively charged carboxylate groups occur on alternate sides of the helix (as shown for heparin in Fig. 7–22). The extended rod form also provides maximum separation between the negatively charged sulfate groups. The specific patterns of sulfated and nonsulfated sugar residues in glycosaminoglycans provide for specific recognition by a variety of protein ligands that bind electrostatically to these molecules. The sulfated glycosaminoglycans are attached to extracellular proteins to form proteoglycans (Section 7.3).

Figure 7–22 Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.

The glycosaminoglycan **hyaluronan** (hyaluronic acid) contains alternating residues of D-glucuronic acid and N-acetylglucosamine (Fig. 7–22). With up to 50,000 repeats of the basic disaccharide unit, hyaluronan has a molecular weight of several million; it forms clear, highly viscous solutions that serve as lubricants in the synovial fluid of joints and give the vitreous humor of the vertebrate eye its jellylike consistency (the Greek hyalos means “glass”; hyaluronan can have a glassy or translucent appearance). Hyaluronan is also a component of the extracellular matrix of cartilage and tendons, to which it contributes tensile strength and elasticity as a result of its strong interactions with other components of the matrix. Hyaluronidase, an enzyme secreted by some pathogenic bacteria, can hydrolyze the glycosidic linkages of hyaluronan, rendering tissues more susceptible to bacterial invasion. In many species, a similar enzyme in sperm hydrolyzes an outer glycosaminoglycan coat around the ovum, allowing sperm penetration.

Other glycosaminoglycans differ from hyaluronan in three respects: they are generally much shorter polymers, they are covalently linked to specific proteins (proteoglycans), and one or both monomeric units differ from those of hyaluronan. **Chondroitin sulfate** (Greek chondros, “cartilage”) contributes to the tensile strength of cartilage, tendons, ligaments, and the walls of the aorta. **Dermatan sulfate** (Greek derma, “skin”) contributes to the pliability of skin and is also present in blood vessels and heart valves. In this polymer, many of the glucuronate residues present in chondroitin sulfate are replaced by their 5-epimer, l-iduronate.
Keratan sulfates (Greek κέρας, “horn”) have no uronic acid and their sulfate content is variable. They are present in cornea, cartilage, bone, and a variety of horny structures formed of dead cells: horn, hair, hoofs, nails, and claws. Heparan sulfate (Greek ἰεπάρ, “liver”) is produced by all animal cells and contains variable arrangements of sulfated and nonsulfated sugars. The sulfated segments of the chain allow it to interact with a large number of proteins, including growth factors and ECM components, as well as various enzymes and factors present in plasma. Heparin is a fractionated form of heparan sulfate derived mostly from mast cells (a type of leukocyte). Heparin is a therapeutic agent used to inhibit coagulation through its capacity to bind the protease inhibitor antithrombin. Heparin binding causes antithrombin to bind to and inhibit thrombin, a protease essential to blood clotting. The interaction is strongly electrostatic; heparin has the highest negative charge density of any known biological macromolecule (Fig. 7-23). Purified heparin is routinely added to blood samples obtained for clinical analysis, and to blood donated for transfusion, to prevent clotting.

Table 7-2 summarizes the composition, properties, roles, and occurrence of the polysaccharides described in Section 7.2.

TABLE 7-2 Structures and Roles of Some Polysaccharides

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Type*</th>
<th>Repeating unit†</th>
<th>Size (number of monosaccharide units)</th>
<th>Roles/significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>Homopolymer</td>
<td>(α1→4)Glc, linear</td>
<td>50–5,000</td>
<td>Energy storage: in plants</td>
</tr>
<tr>
<td>Amylose</td>
<td>Homopolymer</td>
<td>(α1→4)Glc, with (α1→6)Glc branches every 24–30 residues</td>
<td>Up to 10⁶</td>
<td></td>
</tr>
<tr>
<td>Amylopectin</td>
<td>Homopolymer</td>
<td>(α1→4)Glc, with (α1→6)Glc branches every 8–12 residues</td>
<td>Up to 50,000</td>
<td>Energy storage: in bacteria and animal cells</td>
</tr>
<tr>
<td>Glycogen</td>
<td>Homopolymer</td>
<td>(β1→4)Glc</td>
<td>Up to 15,000</td>
<td>Structural: in plants, gives rigidity and strength to cell walls</td>
</tr>
<tr>
<td>Cellulose</td>
<td>Homopolymer</td>
<td>(β1→4)GlcNAc</td>
<td>Very large</td>
<td>Structural: in plants, gives rigidity and strength to exoskeletons</td>
</tr>
<tr>
<td>Chitin</td>
<td>Homopolymer</td>
<td>(β1→4)GlcNAc</td>
<td>Very large</td>
<td>Structural: in bacteria, extracellular adhesive</td>
</tr>
<tr>
<td>Dextran</td>
<td>Homopolymer</td>
<td>(α1→6)Glc, with (α1→3) branches</td>
<td>Wide range</td>
<td>Structural: in bacteria, extracellular adhesive</td>
</tr>
<tr>
<td>Peptidoglycan</td>
<td>Heteropolymer; peptides attached</td>
<td>4Mur2Ac(β1→4)GlcNAc(β1)</td>
<td>Very large</td>
<td>Structural: in bacteria, gives rigidity and strength to cell envelope</td>
</tr>
<tr>
<td>Agarose</td>
<td>Heteropolymer</td>
<td>3Gal(β1→4)3,6-anhydro-l-Gal(α1)</td>
<td>1,000</td>
<td>Structural: in algae, cell wall material</td>
</tr>
<tr>
<td>Hyaluronan (a glycosaminoglycan)</td>
<td>Heteropolymer; acidic</td>
<td>4GlcA(β1→3)GlcNAc(β1)</td>
<td>Up to 100,000</td>
<td>Structural: in vertebrates, extracellular matrix of skin and connective tissue; viscosity and lubrication in joints</td>
</tr>
</tbody>
</table>

*Each polymer is classified as a homopolysaccharide (homo-) or heteropolysaccharide (hetero-).
†The abbreviated names for the peptidoglycan, agarose, and hyaluronan repeating units indicate that the polymer contains repeats of this disaccharide unit. For example, in peptidoglycan, the GlcNAc of one disaccharide unit is (β1→4)-linked to the first residue of the next disaccharide unit.
SUMMARY 7.2 Polysaccharides

- Polysaccharides (glycans) serve as stored fuel and as structural components of cell walls and extracellular matrix.
- The homopolysaccharides starch and glycogen are stored fuels in plant, animal, and bacterial cells. They consist of D-glucose with (α1→4) linkages, and both contain some branches.
- The homopolysaccharides cellulose, chitin, and dextran serve structural roles. Cellulose, composed of (β1→4)-linked D-glucose residues, lends strength and rigidity to plant cell walls. Chitin, a polymer of (β1→4)-linked N-acetylgalactosamine, strengthens the exoskeletons of arthropods. Dextran forms an adhesive coat around certain bacteria.
- Homopolysaccharides fold in three dimensions. The chair form of the pyranose ring is essentially rigid, so the conformation of the polymers is determined by rotation about the bonds from the rings to the oxygen atom in the glycosidic linkage. Starch and glycogen form helical structures with intrachain hydrogen bonding; cellulose and chitin form long, straight strands that interact with neighboring strands.
- Bacterial and algal cell walls are strengthened by heteropolysaccharides—peptidoglycan in bacteria, agar in red algae. The repeating disaccharide in peptidoglycan is GlcNAc(β1→4)Mur2Ac; in sugar, it is D-Gal(β1→4)3,6-anhydro-1-Gal.
- Glycosaminoglycans are extracellular heteropolysaccharides in which one of the two monosaccharide units is a uronic acid (keratan sulfate is an exception) and the other an N-acetylated amino sugar. Sulfate esters on some of the hydroxyl groups and on the amino group of some glucosamine residues in heparin and in heparan sulfate give these polymers a high density of negative charge, forcing them to assume extended conformations. These polymers (hyaluronan, chondroitin sulfate, dermatan sulfate, and keratan sulfate) provide viscosity, adhesiveness, and tensile strength to the extracellular matrix.

7.3 Glycoconjugates: Proteoglycans, Glycoproteins, and Glycolipids

In addition to their important roles as stored fuels (starch, glycogen, dextran) and as structural materials (cellulose, chitin, peptidoglycans), polysaccharides and oligosaccharides are information carriers. Some provide communication between cells and their extracellular surroundings; others label proteins for transport to and localization in specific organelles, or for destruction when the protein is malformed or superfluous; and others serve as recognition sites for extracellular signal molecules (growth factors, for example) or extracellular parasites (bacteria or viruses). On almost every eukaryotic cell, specific oligosaccharide chains attached to components of the plasma membrane form a carbohydrate layer (the glycocalyx), several nanometers thick, that serves as an information-rich surface that a cell shows to its surroundings. These oligosaccharides are central players in cell-cell recognition and adhesion, cell migration during development, blood clotting, the immune response, wound healing, and other cellular processes. In most of these cases, the informational carbohydrate is covalently joined to a protein or a lipid to form a glycoconjugate, which is the biologically active molecule.

Proteoglycans are macromolecules of the cell surface or extracellular matrix in which one or more sulfated glycosaminoglycan chains are joined covalently to a membrane protein or a secreted protein. The glycosaminoglycan chain can bind to extracellular proteins through electrostatic interactions with the negatively charged groups on the polysaccharide. Proteoglycans are major components of all extracellular matrices.

Glycoproteins have one or several oligosaccharides of varying complexity joined covalently to a protein. They are usually found on the outer face of the plasma membrane (as part of the glycocalyx), in the extracellular matrix, and in the blood. Inside cells they are found in specific organelles such as Golgi complexes, secretory granules, and lysosomes. The oligosaccharide portions of glycoproteins are very heterogeneous and, like glycosaminoglycans, they are rich in information, forming highly specific sites for recognition and high-affinity binding by carbohydrate-binding proteins called lectins. Some cytosolic and nuclear proteins can be glycosylated as well.

Glycolipids are membrane sphingolipids in which the hydrophilic head groups are oligosaccharides. As in glycoproteins, the oligosaccharides act as specific sites for recognition by lectins. The brain and neurons are rich in glycolipids, which help in nerve conduction and myelin formation. Glycolipids also play a role in signal transduction in cells.

Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix

Mammalian cells can produce 40 types of proteoglycans. These molecules act as tissue organizers, and they influence various cellular activities, such as growth factor activation and adhesion. The basic proteoglycan unit consists of a “core protein” with covalently attached glycosaminoglycan(s). The point of attachment is a Ser residue, to which the glycosaminoglycan is joined through a tetrasaccharide bridge (Fig. 7-24). The Ser residue is generally in the sequence -Ser–Gly–X–Gly– (where X is any amino acid residue), although not every protein with this sequence has an attached glycosaminoglycan.
Many proteoglycans are secreted into the extracellular matrix, but some are integral membrane proteins (see Fig. 11–6). For example, the sheet-like extracellular matrix (basal lamina) that separates organized groups of cells from other groups contains a family of core proteins (M, 20,000 to 40,000), each with several covalently attached heparan sulfate chains. There are two major families of membrane heparan sulfate proteoglycans. **Syndecans** have a single transmembrane domain and an extracellular domain bearing three to five chains of heparan sulfate and in some cases chondroitin sulfate (Fig. 7–25a). **Glypicans** are attached to the membrane by a lipid anchor, a derivative of the membrane lipid phosphatidylinositol (Chapter 11). Both syndecans and glypicans can be shed into the extracellular space. A protease in the ECM that cuts close to the membrane surface releases syndecan ectodomains (those domains outside the plasma membrane), and a phospholipase that breaks the connection to the membrane lipid releases glypicans. Numerous chondroitin sulfate and dermatan sulfate proteoglycans also exist, some as membrane-bound entities, others as secreted products in the ECM.

The glycosaminoglycan chains can bind to a variety of extracellular ligands and thereby modulate the ligands' interaction with specific receptors of the cell surface. Detailed studies of heparan sulfate demonstrate a domain structure that is not random; some domains (typically 3 to 8 disaccharide units long) differ from neighboring domains in sequence and in ability to bind to specific proteins. Highly sulfated domains (called NS domains) alternate with domains having unmodified GlcNAc and GlcA residues (N-acetylated, or NA, domains) (Fig. 7–25b). The exact pattern of sulfation in the NS domain depends on the particular proteoglycan; given the number of possible modifications of the GlcNAc–IdoA dimer, at least 32 different disaccharide units are possible. Furthermore, the same core protein can display different heparan sulfate structures when synthesized in different cell types.

The NS domains bind specifically to extracellular proteins and signaling molecules to alter their activities. The change in activity may result from a conformational change in the protein that is induced by the binding...
A conformational change induced in the protein antithrombin (AT) on binding a specific pentasaccharide NS domain allows its interaction with blood clotting factor Xa, preventing clotting.

Binding of AT and thrombin to two adjacent NS domains brings the two proteins into close proximity, favoring their interaction, which inhibits blood clotting.

NS domains interact with both the fibroblast growth factor (FGF) and its receptor, bringing the oligomeric complex together and increasing the effectiveness of a low concentration of FGF.

The high density of negative charges in heparan sulfate attracts positively charged lipoprotein lipase molecules and holds them by electrostatic and sequence-specific interactions with NS domains.

FIGURE 7–26 Four types of protein interactions with NS domains of heparan sulfate.

(Fig. 7–26a), or it may be due to the ability of adjacent domains of heparan sulfate to bind to two different proteins, bringing them into close proximity and enhancing protein-protein interactions (Fig. 7–26b). A third general mechanism of action is the binding of extracellular signal molecules (growth factors, for example) to heparan sulfate, which increases their local concentrations and enhances their interaction with growth factor receptors in the cell surface; in this case, the heparan sulfate acts as a coreceptor (Fig. 7–26c). For example, fibroblast growth factor (FGF), an extracellular protein signal that stimulates cell division, first binds to heparan sulfate moieties of syndecan molecules in the target cell's plasma membrane. Syndecan presents FGF to the FGF plasma membrane receptor, and only then can FGF interact productively with its receptor to trigger cell division. Finally, in another type of mechanism, the NS domains interact—electrostatically and otherwise—with a variety of soluble molecules outside the cell, maintaining high local concentrations at the cell surface (Fig. 7–26d).

The importance of correctly synthesizing sulfated domains in heparan sulfate is demonstrated in mutant (“knockout”) mice lacking the enzyme that sulfates the C-2 hydroxyl of IdooA. These animals are born without kidneys and with very severe developmental abnormalities of the skeleton and eyes. Other studies demonstrate that membrane proteoglycans are important in lipoprotein clearance in the liver. There is growing evidence that the path taken by developing axons in the nervous system, and thus the wiring circuitry, is influenced by proteoglycans containing heparan sulfates and chondroitin sulfate, which provide directional cues for axon outgrowth.

Some proteoglycans can form proteoglycan aggregates, enormous supramolecular assemblies of many core proteins all bound to a single molecule of hyaluronan. Aggrecan core protein (Mᵣ ~250,000) has multiple chains of chondroitin sulfate and keratan sulfate, joined to Ser residues in the core protein through trisaccharide linkers, to give an aggrecan monomer of

\[Mᵣ \approx 2 \times 10^6 \]

When a hundred or more of these “decorated” core proteins bind a single, extended molecule of hyaluronate (Fig. 7–27), the resulting proteoglycan aggregate (Mᵣ > 2 x 10⁸) and its associated water of hydration occupy a volume about equal to that of a bacterial cell! Aggrecan interacts strongly with collagen in the extracellular matrix of cartilage, contributing to the development, tensile strength, and resiliency of this connective tissue.

Interwoven with these enormous extracellular proteoglycans are fibrous matrix proteins such as collagen, elastin, and fibronectin, forming a cross-linked meshwork that gives the whole extracellular matrix strength and resilience. Some of these proteins are multiahesive, a single protein having binding sites for several different matrix molecules. Fibronectin, for example, has separate domains that bind fibrin, heparan sulfate, collagen, and a family of plasma membrane proteins called integrins that mediate signaling between the cell interior and the extracellular matrix (see Fig. 12–28). The overall picture of cell-matrix interactions that emerges
Figure 7-27 Proteoglycan aggregate of the extracellular matrix. Schematic drawing of a proteoglycan with many aggrecan molecules. One very long molecule of hyaluronan is associated noncovalently with about 100 molecules of the core protein aggrecan. Each aggrecan molecule contains many covalently bound chondroitin sulfate and keratan sulfate chains. Link proteins at the junction between each core protein and the hyaluronan backbone mediate the core protein-hyaluronan interaction. The micrograph shows a single molecule of aggrecan, viewed with the atomic force microscope (see Box 11-1).

(Fig. 7-28) shows an array of interactions between cellular and extracellular molecules. These interactions serve not only to anchor cells to the extracellular matrix but also to provide paths that direct the migration of cells in developing tissue and to convey information in both directions across the plasma membrane.

Figure 7-28 Interactions between cells and the extracellular matrix. The association between cells and the proteoglycan of the extracellular matrix is mediated by a membrane protein (integrin) and by an extracellular protein (fibronectin in this example) with binding sites for both integrin and the proteoglycan. Note the close association of collagen fibers with the fibronectin and proteoglycan.

Glycoproteins Have Covalently Attached Oligosaccharides
Glycoproteins are carbohydrate-protein conjugates in which the glycans are smaller, branched, and more structurally diverse than the glycosaminoglycans of proteoglycans. The carbohydrate is attached at its anomeric carbon through a glycosidic link to the —OH of a Ser or Thr residue (O-linked), or through an N-glycosyl link to the amide nitrogen of an Asn residue (N-linked) (Fig. 7-29). Some glycoproteins have a single
oligosaccharide chain, but many have more than one; the carbohydrate may constitute from 1% to 70% or more of the glycoprotein by mass. **Mucins** are secreted or membrane glycoproteins that can contain large numbers of *O*-linked oligosaccharide chains. Mucins are present in most secretions; they give mucus its characteristic slipperiness. About half of all proteins of mammals are glycosylated, and about 1% of all mammalian genes encode enzymes involved in the synthesis and attachment of these oligosaccharide chains. Sequences for the attachment of *O*-linked chains tend to be rich in Gly, Val, and Pro residues. In contrast the attachment of *N*-linked chains depends on the consensus sequence N-{P}-[ST] (see Box 3–3 for the conventions on representing consensus sequences). As with proteoglycans, not all potential sites are used.

One class of glycoproteins found in the cytoplasm and the nucleus is unique in that the glycosylated positions in the protein carry only single residues of *N*-acetylglucosamine, in *O*-glycosidic linkage to the hydroxyl group of Ser side chains. This modification is reversible and often occurs on the same Ser residues that are phosphorylated at some stage in the protein's activity. The two modifications are mutually exclusive, and this type of glycosylation may prove to be important in the regulation of protein activity. We discuss it in the context of protein phosphorylation in Chapter 12.

As we shall see in Chapter 11, the external surface of the plasma membrane has many membrane glycoproteins with arrays of covalently attached oligosaccharides of varying complexity. The first well-characterized membrane glycoprotein was glycophorin A of the erythrocyte membrane (see Fig. 11–7). It contains 60% carbohydrate by mass, in the form of 16 oligosaccharide chains (totaling 60 to 70 monosaccharide residues) covalently attached to amino acid residues near the amino terminus of the polypeptide chain. Fifteen of the oligosaccharide chains are *O*-linked to Ser or Thr residues, and one is *N*-linked to an Asn residue.

Glycomics is the systematic characterization of all of the carbohydrate components of a given cell or tissue, including those attached to proteins and to lipids. For glycoproteins, this also means determining which proteins are glycosylated and where in the amino acid sequence each oligosaccharide is attached. This is a challenging undertaking, but worthwhile because of the potential insights it offers into normal patterns of glycosylation and the ways in which they are altered during development or in genetic diseases or cancer. Current methods of characterizing the whole carbohydrate complement of cells depend heavily on sophisticated application of mass spectroscopy (see Fig. 7–37).

The structures of a large number of *O* - and *N*-linked oligosaccharides from a variety of glycoproteins are known; Figure 7–29 shows a few typical examples. We consider the mechanisms by which specific proteins acquire specific oligosaccharide moieties in Chapter 27.

Many of the proteins secreted by eukaryotic cells are glycoproteins, including most of the proteins of blood. For example, immunoglobulins (antibodies) and certain hormones, such as follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone, are glycoproteins. Many milk proteins, including lactalbumin, and some of the proteins secreted by the pancreas (such as ribonuclease) are glycosylated, as are most of the proteins contained in lysosomes.

The biological advantages of adding oligosaccharides to proteins are slowly being uncovered. The very hydrophilic clusters of carbohydrate alter the polarity and solubility of the proteins with which they are conjugated. Oligosaccharide chains that are attached to newly synthesized proteins in the endoplasmic reticulum (ER) and elaborated in the Golgi complex serve as destination labels and also act in protein quality control, targeting misfolded proteins for degradation (see Fig. 27–39). When numerous negatively charged oligosaccharide chains are clustered in a single region of a protein, the charge repulsion among them favors the formation of an extended, rodlike structure in that region. The bulkiness and negative charge of oligosaccharide chains also protect some proteins from attack by proteolytic enzymes. Beyond these global physical effects on protein structure, there are also more specific biological effects of oligosaccharide chains in glycoproteins (Section 7.4). The importance of normal protein glycosylation is clear from the finding of at least 18 different genetic disorders of glycosylation in humans, all causing severely defective physical or mental development; some of these disorders are fatal.

Glycolipids and Lipopolysaccharides Are Membrane Components

Glycoproteins are not the only cellular components that bear complex oligosaccharide chains; some lipids, too, have covalently bound oligosaccharides. **Gangliosides** are membrane lipids of eukaryotic cells in which the polar head group, the part of the lipid that forms the outer surface of the membrane, is a complex oligosaccharide containing a sialic acid (Fig. 7–9) and other monosaccharide residues. Some of the oligosaccharide moieties of gangliosides, such as those that determine human blood groups (see Fig. 10–15), are identical with those found in certain glycoproteins, which therefore also contribute to blood group type. Like the oligosaccharide moieties of glycoproteins, those of membrane lipids are generally, perhaps always, found on the outer face of the plasma membrane.

Lipopolysaccharides are the dominant surface feature of the outer membrane of gram-negative bacteria such as *Escherichia coli* and *Salmonella typhimurium*. These molecules are prime targets of the antibodies produced by the vertebrate immune system in response to bacterial infection and are therefore
7.4 Carbohydrates as Informational Molecules: The Sugar Code

SUMMARY 7.3 Glycoconjugates: Proteoglycans, Glycoproteins, and Glycolipids

- Proteoglycans are glycoconjugates in which one or more large glycans, called sulfated glycosaminoglycans (heparan sulfate, chondroitin sulfate, dermatan sulfate, or keratan sulfate) are covalently attached to a core protein. Bound to the outside of the plasma membrane by a transmembrane peptide or a covalently attached lipid, proteoglycans provide points of adhesion, recognition, and information transfer between cells, or between the cell and the extracellular matrix.

- Glycoproteins contain oligosaccharides covalently linked to Asp or Ser/Thr residues. The glycans are typically branched and smaller than glycosaminoglycans. Many cell surface or extracellular proteins are glycoproteins, as are most secreted proteins. The covalently attached oligosaccharides influence the folding and stability of the proteins, provide critical information about the targeting of newly synthesized proteins, and allow for specific recognition by other proteins.

- Glycomics is the determination of the full complement of sugar-containing molecules in a cell or tissue, and the determination of the function of each such molecule.

- Glycolipids in plants and animals and lipopolysaccharides in bacteria are components of the cell envelope with covalently attached oligosaccharide chains exposed on the cell's outer surface.

7.4 Carbohydrates as Informational Molecules: The Sugar Code

Glycobiology, the study of the structure and function of glycoconjugates, is one of the most active and exciting areas of biochemistry and cell biology. As is becoming increasingly clear, cells use specific oligosaccharides to encode important information about intracellular targeting of proteins, cell-cell interactions, cell differentiation and tissue development, and extracellular signals. Our discussion uses just a few examples to illustrate the diversity of structure and the range of biological activity of the glycoconjugates. In Chapter 20 we discuss the biosynthesis of polysaccharides, including peptidoglycan; and in Chapter 27, the assembly of oligosaccharide chains on glycoproteins.

Improved methods for the analysis of oligosaccharide and polysaccharide structure have revealed remarkable complexity and diversity in the oligosaccharides of glycoproteins and glycolipids. Consider the oligosaccharide chains in Figure 7-29, typical of those found in many glycoproteins. The most complex of those shown...
contains 14 monosaccharide residues of four different kinds, variously linked as (1→2), (1→3), (1→4), (1→6), (2→3), and (2→6), some with the α and some with the β configuration. Branched structures, not found in nucleic acids or proteins, are common in oligosaccharides. With the reasonable assumption that 20 different monosaccharide subunits are available for construction of oligosaccharides, we can calculate that many billions of different hexameric oligosaccharides are possible; this compares with 6.4×10^7 (20^6) different hexapeptides possible with the 20 common amino acids, and 4,096 (4^6) different hexanucleotides with the four nucleotide subunits. If we also allow for variations in oligosaccharides resulting from sulfation of one or more residues, the number of possible oligosaccharides increases by two orders of magnitude. In reality, only a subset of possible combinations is found, given the restrictions imposed by the biosynthetic enzymes and the availability of precursors. Nevertheless, the enormously rich structural information in glycans does not merely rival but far surpasses that of nucleic acids in the density of information contained in a molecule of modest size. Each of the oligosaccharides represented in Figure 7–29 presents a unique, three-dimensional face—a word in the sugar code—readable by the proteins that interact with it.

Lectins Are Proteins That Read the Sugar Code and Mediate Many Biological Processes

Lectins, found in all organisms, are proteins that bind carbohydrates with high specificity and with moderate to high affinity (Table 7–3). Lectins serve in a wide variety of cell-cell recognition, signaling, and adhesion processes and in intracellular targeting of newly synthesized proteins. Plant lectins, abundant in seeds, probably serve as deterrents to insects and other predators. In the laboratory, purified plant lectins are useful reagents for detecting and separating glycans and glycoproteins with different oligosaccharide moieties. Here we discuss just a few examples of the roles of lectins in animal cells.

Some peptide hormones that circulate in the blood have oligosaccharide moieties that strongly influence their circulatory half-life. Luteinizing hormone and thyrotropin (polypeptide hormones produced in the adrenal cortex) have N-linked oligosaccharides that end with the disaccharide GalNAc4S(β1→4)GlcNAc, which is recognized by a lectin (receptor) of hepatocytes. (GalNAc4S is N-acetylgalactosamine sulfated on the –OH group at C-4.) Receptor-hormone interaction mediates the uptake and destruction of luteinizing hormone and thyrotropin, reducing their concentration in the blood. Thus the blood levels of these hormones undergo a periodic rise (due to pulsatile secretion by the adrenal cortex) and fall (due to continual destruction by hepatocytes).

The residues of Neu5Ac (a sialic acid) situated at the ends of the oligosaccharide chains of many plasma glycoproteins (Fig. 7–29) protect those proteins from uptake and degradation in the liver. For example, ceruloplasmin, a copper-containing serum glycoprotein, has several oligosaccharide chains ending in Neu5Ac. The mechanism that removes sialic acid residues from serum glycoproteins is unclear. It may be due to the activity of the enzyme sialidase (also called neuraminidase) produced by invading organisms or to a steady, slow release by extracellular enzymes. The plasma membrane of hepatocytes has lectin molecules (asialoglycoprotein receptors; “asialo-” indicating “without sialic acid”) that specifically bind oligosaccharide chains with galactose residues no longer “protected” by a terminal Neu5Ac.

<table>
<thead>
<tr>
<th>Lectin source and lectin</th>
<th>Abbreviation</th>
<th>Ligand(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concanavalin A</td>
<td>ConA</td>
<td>Manα1-OCH₃</td>
</tr>
<tr>
<td>Griffonia simplicifolia lectin 4</td>
<td>GS4</td>
<td>Lewis b (Le³) tetrasaccharide</td>
</tr>
<tr>
<td>Wheat germ agglutinin</td>
<td>WGA</td>
<td>Neu5Ac(α2→3)Gal(β1→4)Glc</td>
</tr>
<tr>
<td>Ricin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galectin-1</td>
<td></td>
<td>Gal(β1→4)Glc</td>
</tr>
<tr>
<td>Mannose-binding protein A</td>
<td>MBP-A</td>
<td>High-mannose octasaccharide</td>
</tr>
<tr>
<td>Viral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza virus hemagglutinin</td>
<td>HA</td>
<td>Neu5Ac(α2→6)Gal(β1→4)Glc</td>
</tr>
<tr>
<td>Polyoma virus protein 1</td>
<td></td>
<td>Neu5Ac(α2→3)Gal(β1→4)Glc</td>
</tr>
<tr>
<td>Bacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterotoxin</td>
<td>LT</td>
<td>Gal</td>
</tr>
<tr>
<td>Cholera toxin</td>
<td>CT</td>
<td>GM1 pentasaccharide</td>
</tr>
</tbody>
</table>

7.4 Carbohydrates as Informational Molecules: The Sugar Code

Residue. Receptor-ceruloplasmin interaction triggers endocytosis and destruction of the ceruloplasmin.

\[
\text{HOCH}_2\text{C} = \text{O} \quad \text{HO} \quad \text{HN} \\
\text{H}_2\text{C} - \text{C} \quad \text{OH} \\
\text{N}-\text{Acetylneuraminic acid (Neu5Ac)} (a \text{ sialic acid})
\]

A similar mechanism is apparently responsible for removing “old” erythrocytes from the mammalian bloodstream. Newly synthesized erythrocytes have several membrane glycoproteins with oligosaccharide chains that end in Neu5Ac. When the sialic acid residues are removed by withdrawing a sample of blood from experimental animals, treating it with sialidase in vitro, and reintroducing it into the circulation, the treated erythrocytes disappear from the bloodstream within a few hours; erythrocytes with intact oligosaccharides (withdrawn and reintroduced without sialidase treatment) continue to circulate for days.

Cell surface lectins are important in the development of some human diseases—both human lectins and the lectins of infectious agents. Selectins are a family of plasma membrane lectins that mediate cell-cell recognition and adhesion in a wide range of cellular processes. One such process is the movement of immune cells (neutrophils) through the capillary wall, from blood to tissues, at sites of infection or inflammation (Fig. 7-31). At an infection site, P-selectin on the surface of capillary endothelial cells interacts with a specific oligosaccharide of the glycoproteins of circulating neutrophils. This interaction slows the neutrophils as they adhere to and roll along the endothelial lining of the capillaries. A second interaction, between integrin molecules (p. 455) in the neutrophil plasma membrane and an adhesion protein on the endothelial cell surface, now stops the neutrophil and allows it to move through the capillary wall into the infected tissues to initiate the immune attack. Two other selectins participate in this “lymphocyte homing”: E-selectin on the endothelial cell and L-selectin on the neutrophil bind their cognate oligosaccharides on the neutrophil and endothelial cell, respectively.

Selectins mediate the inflammatory responses in rheumatoid arthritis, asthma, psoriasis, multiple sclerosis, and the rejection of transplanted organs, and thus there is great interest in developing drugs that inhibit selectin-mediated cell adhesion. Many carcinomas express an antigen normally present only in fetal cells (sialyl Lewis x, or sialyl Le\(^x\)) that, when shed into the circulation, facilitates tumor cell survival and metastasis. Carbohydrate derivatives that mimic the sialyl Le\(^x\) portion of sialoglycoproteins or that alter the biosynthesis of the oligosaccharide might prove effective as selectin-specific drugs for treating chronic inflammation or metastatic disease.

Several animal viruses, including the influenza virus, attach to their host cells through interactions with oligosaccharides displayed on the host cell surface. The lectin of the influenza virus, known as the HA (hemagglutinin) protein, is essential for viral entry and infection. After the virus has entered a host cell and has been replicated, the newly synthesized viral particles bud out of the cell, wrapped in a portion of its plasma membrane. A viral sialidase (neuraminidase) trims the terminal sialic acid residue from the host cell’s oligosaccharides, releasing the viral particles from their interaction with the cell and preventing their aggregation with one another. Another round of infection can now begin. The antiviral drugs oseltamivir (Tamiflu) and zanamivir (Relenza) (next page) are used clinically in the treatment of influenza. These drugs are sugar analogs; they inhibit the viral sialidase by competing with the host cell’s oligosaccharides for binding. This prevents the release of viruses from the infected cell.
and also causes viral particles to aggregate, both of which block another cycle of infection.

Lectins on the surface of the herpes simplex viruses HSV-1 and HSV-2 (the causative agents of oral and genital herpes, respectively) bind specifically to heparan sulfate on the host cell surface as a first step in the infection cycle; infection requires precisely the right pattern of sulfation on this polymer. Analogs of heparan sulfate that mimic its interaction with the viruses are being investigated as possible antiviral drugs, interfering with interactions between virus and cell.

Some microbial pathogens have lectins that mediate bacterial adhesion to host cells or the entry of toxin into cells. For example, Helicobacter pylori—shown by Barry J. Marshall and J. Robin Warren in the 1980s to be responsible for most gastric ulcers—adheres to the inner surface of the stomach as bacterial membrane lectins interact with specific oligosaccharides of membrane glycoproteins of the gastric epithelial cells (Fig. 7-32). Among the binding sites recognized by H. pylori is the oligosaccharide Lewis b (Le\(^b\)), when it is part of the type O blood group determinant. This observation helps to explain the severalfold greater incidence of gastric ulcers in people of blood type O than in those of type A or B. Chemically synthesized analogs of the Le\(^b\) oligosaccharide may prove useful in treating this type of ulcer. Administered orally, they could prevent bacterial adhesion (and thus infection) by competing with the gastric glycoproteins for binding to the bacterial lectin.

Some of the most devastating of the human parasitic diseases, widespread in much of the developing world, are caused by eukaryotic microorganisms that display unusual surface oligosaccharides, which in some cases are known to be protective for the parasites. These organisms include the trypanosomes, responsible for African sleeping sickness and Chagas disease; Plasmodium falciparum, the malaria parasite; and Entamoeba histolytica, the causative agent of amoebic dysentery. The prospect of finding drugs that interfere with the synthesis of these unusual oligosaccharide chains, and therefore with the replication of the parasites, has inspired much recent work on the biosynthetic pathways of these oligosaccharides.

The cholera toxin molecule (produced by the bacterium Vibrio cholerae) triggers diarrhea after entering intestinal cells responsible for water absorption from the intestine. The toxin attaches to its target cell through the oligosaccharide moiety of ganglioside GM1, a membrane phospholipid (for the structure of GM1 see Box 10-2, Fig. 1), on the surface of intestinal epithelial cells. Similarly, the pertussis toxin produced by Bordetella pertussis, the bacterium that causes whooping cough, enters target cells only after interacting with a host cell oligosaccharide (or perhaps several oligosaccharides) bearing a terminal sialic acid residue. Understanding the details of the oligosaccharide-binding sites of these toxins (lectins) may allow the development of genetically engineered toxin analogs for use in vaccines. Toxin analogs engineered to lack the carbohydrate binding site would be harmless because they could not bind to and enter cells, but they might elicit an immune response that would protect against later exposure to the natural toxin. It is also possible to imagine drugs that would act by mimicking cell surface oligosaccharides, binding to the bacterial lectins or toxins and preventing their productive binding to cell surfaces.

Lectins also act intracellularly. An oligosaccharide containing mannose 6-phosphate marks newly synthesized proteins in the Golgi complex for transfer to the lysosome (see Fig. 27-39). A common structural feature on the surface of these glycoproteins, the signal patch, is recognized by an enzyme that phosphorylates (in a two-step process) a mannose residue at the terminus of an oligosaccharide chain. The resulting mannose 6-phosphate residue is then recognized by the cation-dependent mannose 6-phosphate receptor, a membrane-
associated lectin with its mannose phosphate binding site on the luminal side of the Golgi complex. When a section of the Golgi complex containing this receptor buds off to form a transport vesicle, proteins containing mannose phosphate residues are dragged into the forming bud by interaction of their mannose phosphates with the receptor; the vesicle then moves to and fuses with a lysosome, depositing its cargo therein. Many, perhaps all, of the degradative enzymes (hydrolases) of the lysosome are targeted and delivered by this mechanism. Some of the mannose 6-phosphate receptors can capture enzymes containing the mannose 6-phosphate residue and direct them to the lysosome. This process is the basis for "enzyme replacement therapy" to correct lysosomal storage disorders in humans.

Other lectins act in other kinds of protein sorting. Any newly synthesized protein in the endoplasmic reticulum already has a complex oligosaccharide attached, which can be bound by either of two ER lectins that are also chaperones: calnexin (membrane-bound) or calreticulin (soluble). These lectins link the new protein with an enzyme that brings about rapid disulfide exchange as the protein tries various ways to fold, leading eventually to the native conformation. At this point, enzymes in the ER trim the oligosaccharide moiety to a form recognized by another lectin, ERGIC53, which draws the folded protein (glycoprotein) into the Golgi complex for further maturation. If a protein has not folded effectively, the oligosaccharide is trimmed to another form, this one recognized by a lectin, EDEM, that initiates movement of the defectively folded protein into the cytosol, where it will be degraded. Thus, protein glycosylation serves in the ER as a kind of quality control signal, allowing the cell to eliminate improperly folded proteins. (This process is described in greater detail in Chapter 27.)

Lectin-Carbohydrate Interactions Are Highly Specific and Often Polyvalent

In all the functions of lectins described above, and in many more known to involve lectin-oligosaccharide interactions, it is essential that the oligosaccharide have a unique structure, so that recognition by the lectin is highly specific. The high density of information in oligosaccharides provides a sugar code with an essentially unlimited number of unique "words" small enough to be read by a single protein. In their carbohydrate-binding sites, lectins have a subtle molecular complementarity that allows interaction only with their correct carbohydrate cognates. The result is an extraordinarily high specificity in these interactions. The affinity between an oligosaccharide and each carbohydrate binding domain (CBD) of a lectin is sometimes modest (micromolar to millimolar K_d values), but the effective affinity is in many cases greatly increased by lectin multivalency, in which a single lectin molecule has multiple CBDs. In a cluster of oligosaccharides—as is commonly found on a membrane surface, for example—each oligosaccharide can engage one of the lectin's CBDs, strengthening the interaction. When cells express multiple receptors, the avidity of the interaction can be very high, enabling highly cooperative events such as cell attachment and rolling (see Fig. 7-3I).

X-ray crystallographic studies of the structures of several lectin-carbohydrate complexes have provided rich details of the lectin-sugar interaction (Fig. 7-33). In humans, a family of 11 lectins that bind to oligosaccharide chains ending in sialic acid residues plays some important biological roles. All of these lectins bind sialic acids at β sandwich domains like those found in immunoglobulins (Igs; see this motif in the CD8 protein in Fig. 4-21), and the proteins are therefore called siglecs 1 to 11 (sialic bonded to Arg111 and coordinated with the manganese ion (shown smaller than its van der Waals radius for clarity). Each hydroxyl group of mannose is hydrogen-bonded to the protein. The His105 hydroxyl-bonded to a phosphate oxygen of mannose 6-phosphate may be the residue that, when protonated at low pH, causes the receptor to release mannose 6-phosphate into the lysosome.

FIGURE 7-33 Details of a lectin-carbohydrate interaction. Structure of the bovine mannose 6-phosphate receptor complexed with mannose 6-phosphate (PDB ID 1M6P). The protein is represented as a surface contour image, showing the surface as predominantly negatively charged (red) or positively charged (blue). Mannose 6-phosphate is shown as a stick structure; a manganese ion is shown in violet. (b) An enlarged view of the binding site. Mannose 6-phosphate is hydrogen-bonded to Arg111 and coordinated with the manganese ion (shown smaller than its van der Waals radius for clarity). Each hydroxyl group of mannose is hydrogen-bonded to the protein. The His105 hydroxyl-bonded to a phosphate oxygen of mannose 6-phosphate may be the residue that, when protonated at low pH, causes the receptor to release mannose 6-phosphate into the lysosome.
Carbohydrates and Glycobiology

acid-recognizing Ig-superfamily lectins), or sometimes sialoadhesins. The interaction of a siglec with sialic acid (Neu5Ac) involves each of the ring substituents unique to Neu5Ac: the acetyl group at C-5 undergoes both hydrogen-bond and van der Waals interactions with the protein; the carboxyl group makes a salt bridge with a conserved Arg residue; and the hydroxyls of the glycerol moieties hydrogen-bond with the protein. Siglec-7, for example, by binding to a specific ganglioside (GD3) containing two sialic acid residues, suppresses the activity of NK (natural killer) cells in the immune system, sparing cells targeted for immune destruction from the NK killing activity. The elevated GD3 levels in tumors such as malignant melanoma and neuroblastoma may be a mechanism for evading the protective action of the immune system.

The structure of the mannose 6-phosphate receptor/lectin reveals details of its interaction with mannose 6-phosphate that explain the specificity of the binding and the role for a divalent cation in the lectin-sugar interaction (Fig. 7-33a). His105 is hydrogen-bonded to one of the oxygen atoms of the phosphate (Fig. 7-33b).

When the protein tagged with mannose 6-phosphate reaches the lysosome (which has a lower internal pH than the Golgi complex), the receptor loses its affinity for mannose 6-phosphate. Protonation of His105 may be responsible for this change in binding.

In addition to these very specific interactions, there are more general interactions that contribute to the binding of many carbohydrates to their lectins. For example, many sugars have a more polar and a less polar side (Fig. 7-34); the more polar side hydrogen-bonds with the lectin, while the less polar side undergoes hydrophobic interactions with nonpolar amino acid residues. The sum of all these interactions produces high-affinity binding and high specificity of lectins for their carbohydrates. This represents a kind of information transfer that is clearly central in many processes within and between cells. Figure 7-35 summarizes some of the biological interactions mediated by the sugar code.
SUMMARY 7.4 Carbohydrates as Informational Molecules: The Sugar Code

- Monosaccharides can be assembled into an almost limitless variety of oligosaccharides, which differ in the stereochemistry and position of glycosidic bonds, the type and orientation of substituent groups, and the number and type of branches. Glycans are far more information-dense than nucleic acids or proteins.

- Lectins, proteins with highly specific carbohydrate-binding domains, are commonly found on the outer surface of cells, where they initiate interaction with other cells. In vertebrates, oligosaccharide tags “read” by lectins govern the rate of degradation of certain peptide hormones, circulating proteins, and blood cells.

- Bacterial and viral pathogens and some eukaryotic parasites adhere to their animal-cell targets by the binding of lectins in the pathogens to oligosaccharides on the target cell surface.

- Intracellular lectins mediate intracellular protein targeting to specific organelles or to the secretory pathway.

- X-ray crystallography of lectin-sugar complexes shows the detailed complementarity between the two molecules, which accounts for the strength and specificity of lectin interactions with carbohydrates.

7.5 Working with Carbohydrates

The growing appreciation of the importance of oligosaccharide structure in biological recognition has been the driving force behind the development of methods for analyzing the structure and stereochemistry of complex oligosaccharides. Oligosaccharide analysis is complicated by the fact that, unlike nucleic acids and proteins, oligosaccharides can be branched and are joined by a variety of linkages. The high charge density of many oligosaccharides and polysaccharides, and the relative lability of the sulfate esters in glycosaminoglycans, present further difficulties.

For simple, linear polymers such as amylose, the positions of the glycosidic bonds are determined by the classical method of exhaustive methylation: treating the intact polysaccharide with methyl iodide in a strongly basic medium to convert all free hydroxyls to acid-stable methyl ethers, then hydrolyzing the methylated polysaccharide in acid. The only free hydroxyls present in the monosaccharide derivatives so produced are those that were involved in the glycosidic bonds. To determine the sequence of monosaccharide residues, including any branches that are present, exoglycosidases of known specificity are used to remove residues one at a time from the nonreducing end(s). The known specificity of these exoglycosidases often allows deduction of the position and stereochemistry of the linkages.

For analysis of the oligosaccharide moieties of glycoproteins and glycolipids, the oligosaccharides are released by purified enzymes—glycosidases that specifically cleave O- or N-linked oligosaccharides or lipases that remove lipid head groups. Alternatively, O-linked glycans can be released from glycoproteins by treatment with hydrazine.

The resulting mixtures of carbohydrates are resolved into their individual components by a variety of methods (Fig. 7–36), including the same techniques used in protein and amino acid separation: fractional precipitation by solvents, and ion-exchange and size-exclusion chromatography (see Fig. 3–17). Highly purified lectins, attached covalently to an insoluble support, are commonly used in affinity chromatography of carbohydrates (see Fig. 3–17c).

Hydrolysis of oligosaccharides and polysaccharides in strong acid yields a mixture of monosaccharides, which may be identified and quantified by chromatographic techniques to yield the overall composition of the polymer.

Oligosaccharide analysis relies increasingly on mass spectrometry and high-resolution NMR spectroscopy. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and tandem mass spectrometry (MS/MS), both described in Box 3–2, are readily applicable to polar compounds such as oligosaccharides. MALDI MS is a very sensitive method for determining the mass of a molecular ion (in this case, the entire oligosaccharide chain; Fig. 7–37). MS/MS reveals the mass of the molecular ion and many of its fragments, which are usually the result of breakage of the glycosidic bonds. NMR analysis alone (see Box 4–5), especially for oligosaccharides of moderate size, can yield much information about sequence, linkage position, and anomeric carbon configuration. For example, the structure of the heparin segment shown as a space-filling model in Figure 7–22 was obtained entirely by NMR spectroscopy. Automated procedures and commercial instruments are used for the routine determination of oligosaccharide structure, but the sequencing of branched oligosaccharides joined by more than one type of bond remains a far more formidable task than determining the linear sequences of proteins and nucleic acids.

Another important tool in working with carbohydrates is chemical synthesis, which has proved to be a powerful approach to understanding the biological functions of glycosaminoglycans and oligosaccharides. The chemistry involved in such syntheses is difficult, but carbohydrate chemists can now synthesize short segments of almost any glycosaminoglycan, with correct stereochemistry, chain length, and sulfation pattern, and oligosaccharides significantly more complex than those shown in Figure 7–29. Solid-phase oligosaccharide synthesis is based on the same principles (and has the same advantages) as peptide synthesis (see Fig. 3–29), but requires a set of tools unique to carbohydrate chemistry: blocking groups and activating groups that allow the synthesis of glycosidic linkages with the correct hydroxyl.
FIGURE 7-36 Methods of carbohydrate analysis. A carbohydrate purified in the first stage of the analysis often requires all four analytical routes for its complete characterization.

FIGURE 7-37 Separation and quantification of the oligosaccharides in a group of glycoproteins. In this experiment, the mixture of proteins extracted from kidney tissue was treated to release oligosaccharides from glycoproteins, and the oligosaccharides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Each distinct oligosaccharide produces a peak at its molecular mass, and the area under the curve reflects the quantity of that oligosaccharide. The most prominent oligosaccharide here (mass 2837.4 u) is composed of 13 sugar residues; in this sample, other oligosaccharides containing as few as 7 and as many as 19 residues are also resolved by this method.
group. Highly purified enzymes (glycosyltransferases) should greatly aid in the preparation of pure synthetic compounds. Synthetic approaches like this represent a current area of great interest since it is difficult to purify in adequate quantity defined oligosaccharides from natural sources. Glycan microarrays of defined oligosaccharides, analogous to the DNA arrays described in Chapter 9, can be probed with fluorescently tagged lectins to determine their binding specificity.

SUMMARY 7.5 Working with Carbohydrates

- Establishing the complete structure of oligosaccharides and polysaccharides requires determination of linear sequence, branching positions, the configuration of each monosaccharide unit, and the positions of the glycosidic linkages—a more complex problem than protein and nucleic acid analysis.

- The structures of oligosaccharides and polysaccharides are usually determined by a combination of methods: specific enzymatic hydrolysis to determine stereochemistry at the glycosidic bond and produce smaller fragments for further analysis; methylation to locate glycosidic bonds; and stepwise degradation to determine sequence and configuration of anomeric carbons.

- Mass spectrometry and high-resolution NMR spectroscopy, applicable to small samples of carbohydrate, yield essential information about sequence, configuration at anomeric and other carbons, and positions of glycosidic bonds.

- Solid-phase synthetic methods yield defined oligosaccharides that are of great value in exploring lectin-oligosaccharide interactions and may prove clinically useful.

Key Terms

Terms in bold are defined in the glossary.

- glycoconjugate 235
- monosaccharide 235
- oligosaccharide 235
- disaccharide 235
- polysaccharide 235
- allose 236
- ketose 236
- Fischer projection formulas 236
- epimer 238
- hemiacetal 238
- hemiketal 238
- pyranose 239
- furanose 239
- anomers 239
- anomic carbon 239
- mutarotation 239
- Haworth perspective formulas 239
- reducing sugar 241
- hemoglobin glycation 242
- glycosidic bonds 243
- reducing end 243
- glycan 244
- starch 245
- glycogen 246
- extracellular matrix (ECM) 249
- glycosaminoglycan 249
- hyaluronan 250
- chondroitin sulfate 250
- heparan sulfate 251
- proteoglycan 252
- glycoprotein 252
- glycolipid 252
- syndecan 253
- glypican 253
- glycomics 256
- lectin 258
- selectin 259
- siglec 261
- sialoadhesin 262

Further Reading

General

A comprehensive text at the graduate level.

Chapters 34 and 35 cover the structure, stereochemistry, nomenclature, and chemical reactions of carbohydrates.

Brief introduction to some very useful materials on carbohydrate structure, synthesis, chemistry, and biology on the Internet.

Structure, biosynthesis, metabolism, and function of glycosaminoglycans, proteoglycans, glycoproteins, and glycolipids, all presented at an intermediate level and very well illustrated.

Glycosaminoglycans and Proteoglycans

Advanced review of recent studies on glycosaminoglycan defects in human disease and of the use of model organisms to study glycosaminoglycan biology.

Intermediate-level review.

Intermediate-level review.

Intermediate review of the use of chemically synthesized glycosaminoglycans in exploring the functions of these glycoconjugates.

Intermediate review of the roles of proteoglycans in development.

Brief, intermediate-level review of the possible role of glycosaminoglycans in directing the outgrowth of axons in the developing nervous system.

A review focusing on genetic and molecular biological studies of the matrix proteoglycans. The structure-function relationships of some paradigmatic proteoglycans are discussed in depth, and novel aspects of their biology are examined.

A masterful review of the history of carbohydrate and glycosaminoglycan studies, by one of the major contributors to this field.

Advanced review, including the methodology of glycosaminoglycan analysis.

Glycoproteins

Short, intermediate review of the consequences of genetic defects in glycoprotein synthesis.

Intermediate review of the medical consequences of defective protein glycosylation.

Short, intermediate-level review of the structures of parasite glycoprotein oligosaccharides.

Intermediate-level review, including both structure and biology.

Intermediate-level review of the biosynthetic process of protein glycosylation.

Glycobiology and the Sugar Code

Excellent review of the structural basis for the specificity of sugar-binding proteins.

How the oligosaccharides that determine blood type affect the adherence of Helicobacter pylori to the stomach lining.

Analogs of recognition oligosaccharides are used to block adhesion of a pathogen to its host-cell target.

Description of the basis for the high information density in oligosaccharides, with examples of the importance of the sugar code.

This review examines the reasons for the relatively late appreciation of the informational roles of oligosaccharides and polysaccharides.

Intermediate-level review.

Evidence for roles of sulfated oligosaccharides in peptide hormone half-life, symbiotic interactions in nitrogen-fixing legumes, and lymphocyte homing.

Introduction to a series of papers on heparan sulfates published in the same issue of the journal; all are rewarding reading.

Intermediate-level review.

Introduction to a series of excellent reviews on lectins and their biological roles, all published in the same issue of the journal.

Intermediate-level review of the role of protein glycosylation in quality control in the endoplasmic reticulum.

Excellent review of the structural basis for the high information density in oligosaccharides, with examples of the importance of the sugar code.

Excellent review of the chemical diversity of oligosaccharides and polysaccharides and of biological processes dependent on protein-carbohydrate recognition.

Working with Carbohydrates

Problems

1. Sugar Alcohols In the monosaccharide derivatives known as sugar alcohols, the carbonyl oxygen is reduced to a hydroxyl group. For example, d-glyceraldeldehyde can be reduced to glycerol. However, this sugar alcohol is no longer designated D or L. Why?

2. Recognizing Epimers Using Figure 7–3, identify the epimers of (a) d-allose, (b) d-gulose, and (c) d-ribose at C-2, C-3, and C-4.

3. Melting Points of Monosaccharide Osazone Derivatives Many carbohydrates react with phenylhydrazine (C₆H₅NHNH₂) to form bright yellow crystalline derivatives known as osazones:

The melting temperatures of these derivatives are easily determined and are characteristic for each osazone. This information was used to help identify monosaccharides before the development of HPLC or gas-liquid chromatography. Listed below are the melting points (MPs) of some aldose-osazone derivatives:

<table>
<thead>
<tr>
<th>Monosaccharide</th>
<th>MP of anhydrous monosaccharide (°C)</th>
<th>MP of osazone derivative (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>146</td>
<td>205</td>
</tr>
<tr>
<td>Mannose</td>
<td>132</td>
<td>205</td>
</tr>
<tr>
<td>Galactose</td>
<td>165–168</td>
<td>201</td>
</tr>
<tr>
<td>Talose</td>
<td>128–130</td>
<td>201</td>
</tr>
</tbody>
</table>

As the table shows, certain pairs of derivatives have the same melting points, although the underivatized monosaccharides do not. Why do glucose and mannose, and similarly galactose and talose, form osazone derivatives with the same melting points?

4. Interconversion of D-Glucose Forms A solution of one enantiomer of a given monosaccharide rotates plane-polarized light to the left (counterclockwise) and is called the levorotatory isomer, designated (−); the other enantiomer rotates plane-polarized light to the same extent but to the right (clockwise) and is called the dextrorotatory isomer, designated (+). An equimolar mixture of the (+) and (−) forms does not rotate plane-polarized light.

The optical activity of a stereoisomer is expressed quantitatively by its optical rotation, the number of degrees by which plane-polarized light is rotated on passage through a given path length of a solution of the compound at a given concentration. The specific rotation [α]₀ of an optically active compound is defined thus:

\[[\alpha]_0 = \frac{\text{observed optical rotation} (\degree)}{\text{optical path length (dm)} \times \text{concentration (g/mL)}} \]

The temperature (T) and the wavelength of the light (λ) employed (usually, as here, the D line of sodium, 589 nm) must be specified.

A freshly prepared solution of α-D-glucose shows a specific rotation of +112°. Over time, the rotation of the solution...
gradually decreases and reaches an equilibrium value corresponding to $[\alpha]_D^{20} = +52.5^\circ$. In contrast, a freshly prepared solution of β-D-glucose has a specific rotation of $+19^\circ$. The rotation of this solution increases over time to the same equilibrium value as that shown by the α anomer.

(a) Draw the Haworth perspective formulas of the α and β forms of D-glucose. What feature distinguishes the two forms?

(b) Why does the specific rotation of a freshly prepared solution of the α form gradually decrease with time? Why do solutions of the α and β forms reach the same specific rotation at equilibrium?

(c) Calculate the percentage of each of the two forms of D-glucose present at equilibrium.

5. Configuration and Conformation Which bond(s) in α-D-glucose must be broken to change its configuration to β-D-glucose? Which bond(s) to convert α-D-glucose to α-mannose? Which bond(s) to convert one “chair” form of β-glucose to the other?

6. Deoxysugars Is β-2-deoxygalactose the same chemical as D-2-deoxyglucose? Explain.

7. Sugar Structures Describe the common structural features and the differences for each pair: (a) cellulose and glycogen; (b) D-glucose and D-fructose; (c) maltose and sucrose.

8. Reducing Sugars Draw the structural formula for α-D-glucosyl-(1→6)-D-mannosamine and circle the part of this structure that makes the compound a reducing sugar.

9. Hemiacetal and Glycosidic Linkages Explain the difference between a hemiacetal and a glycoside.

10. A Taste of Honey The fructose in honey is mainly in the β-D-pyranose form. This is one of the sweetest carbohydrates known, about twice as sweet as glucose; the β-D-furanose form of fructose is much less sweet. The sweetness of honey gradually decreases at a high temperature. Also, high-fructose corn syrup (a commercial product in which much of the glucose in corn syrup is converted to fructose) is used for sweetening cold but not hot drinks. What chemical property of fructose could account for both these observations?

11. Reducing Disaccharide A disaccharide, which you know to be either maltose or sucrose, is treated with Fehling’s solution, and a red color is formed. Which sugar is it, and how do you know?

12. Glucose Oxidase in Determination of Blood Glucose The enzyme glucose oxidase isolated from the mold Penicillium notatum catalyzes the oxidation of β-D-glucose to D-glucono-6-lactone. This enzyme is highly specific for the β anomer of glucose and does not affect the α anomer. In spite of this specificity, the reaction catalyzed by glucose oxidase is commonly used in a clinical assay for total blood glucose—that is, for solutions consisting of a mixture of β- and α-D-glucose. What are the circumstances required to make this possible? Aside from allowing the detection of smaller quantities of glucose, what advantage does glucose oxidase offer over Fehling’s reagent for measuring blood glucose?

13. Invertase “Inverts” Sucrose The hydrolysis of sucrose (specific rotation $+66.5^\circ$) yields an equimolar mixture of α-glucose (specific rotation $+52.5^\circ$) and β-fructose (specific rotation -92°). (See Problem 4 for details of specific rotation.)

(a) Suggest a convenient way to determine the rate of hydrolysis of sucrose by an enzyme preparation extracted from the lining of the small intestine.

(b) Explain why, in the food industry, an equimolar mixture of α-glucose and β-fructose formed by hydrolysis of sucrose is called invert sugar.

(c) The enzyme invertase (now commonly called sucrase) is allowed to act on a 10% (0.1 g/mL) solution of sucrose until hydrolysis is complete. What will be the observed optical rotation of the solution in a 10 cm cell? (Ignore a possible small contribution from the enzyme.)

14. Manufacture of Liquid-Filled Chocolates The manufacture of chocolates containing a liquid center is an interesting application of enzyme engineering. The flavored liquid center consists largely of an aqueous solution of sugars rich in fructose to provide sweetness. The technical dilemma is the following: the chocolate coating must be prepared by pouring hot melted chocolate over a solid (or almost solid) core, yet the final product must have a liquid, fructose-rich center. Suggest a way to solve this problem. (Hint: Sucrose is much less soluble than a mixture of glucose and fructose.)

15. Anomers of Sucrose? Lactose exists in two anomeric forms, but no anomeric forms of sucrose have been reported. Why?

16. Gentiobiose Gentiobiose (D-Glc(1→6)D-Glc) is a disaccharide found in some plant glycosides. Draw the structure of gentiobiose based on its abbreviated name. Is it a reducing sugar? Does it undergo mutarotation?

17. Identifying Reducing Sugars Is N-acetyl-β-D-glucosamine (Fig. 7–9) a reducing sugar? What about D-glucurate? Is the disaccharide GlcN(\(\alpha\)1→1\(\alpha\))Glc a reducing sugar?

18. Cellulose Digestion Cellulose could provide a widely available and cheap form of glucose, but humans cannot digest it. Why not? If you were offered a procedure that allowed you to acquire this ability, would you accept? Why or why not?

19. Physical Properties of Cellulose and Glycogen The almost pure cellulose obtained from the seed threads of Gossypium (cotton) is tough, fibrous, and completely insoluble in water. In contrast, glycogen obtained from muscle or liver disperses readily in hot water to make a turbid solution. Despite their markedly different physical properties, both substances are (1→4)-linked β-glucose polymers of comparable molecular weight. What structural features of these two polysaccharides underlie their different physical properties? Explain the biological advantages of their respective properties.

20. Dimensions of a Polysaccharide Compare the dimensions of a molecule of cellulose and a molecule of amylose, each of \mathcal{M}_r 200,000.
21. Growth Rate of Bamboo The stems of bamboo, a tropical grass, can grow at the phenomenal rate of 0.3 m/day under optimal conditions. Given that the stems are composed almost entirely of cellulose fibers oriented in the direction of growth, calculate the number of sugar residues per second that must be added enzymatically to growing cellulose chains to account for the growth rate. Each D-glucose unit contributes ~0.5 nm to the length of a cellulose molecule.

22. Glycogen as Energy Storage: How Long Can a Game Bird Fly? Since ancient times it has been observed that certain game birds, such as grouse, quail, and pheasants, are easily fatigued. The Greek historian Xenophon wrote, "The bustards... can be caught if one is quick in starting them up, for they will fly only a short distance, like partridges, and soon tire; and their flesh is delicious." The flight muscles of game birds rely almost entirely on the use of glucose 1-phosphate for energy, in the form of ATP (Chapter 14). The glucose 1-phosphate is formed by the breakdown of stored muscle glycogen, catalyzed by the enzyme glycogen phosphorylase. The rate of ATP production is limited by the rate at which glycogen can be broken down. During a "panic flight," the game bird's rate of glycogen breakdown is quite high, approximately 120 μmol/min of glucose 1-phosphate produced per gram of fresh tissue. Given that the flight muscles usually contain about 0.35% glycogen by weight, calculate how long a game bird can fly. (Assume the average molecular weight of a glucose residue in glycogen is 162 g/mol.)

23. Relative Stability of Two Conformers Explain why the two structures shown in Figure 7–19 are so different in energy (stability). Hint: See Figure 1–21.

24. Volume of Chondroitin Sulfate in Solution One critical function of chondroitin sulfate is to act as a lubricant in skeletal joints by creating a gel-like medium that is resilient to friction and shock. This function seems to be related to a distinctive property of chondroitin sulfate: the volume occupied by the molecule is much greater in solution than in the dehydrated solid. Why is the volume so much larger in solution?

25. Heparin Interactions Heparin, a highly negatively charged glycosaminoglycan, is used clinically as an anticoagulant. It acts by binding several plasma proteins, including antithrombin III, an inhibitor of blood clotting. The 1:1 binding of heparin to antithrombin III seems to cause a conformational change in the protein that greatly increases its ability to inhibit clotting. What amino acid residues of antithrombin III are likely to interact with heparin?

26. Permutations of a Trisaccharide Think about how one might estimate the number of possible trisaccharides composed of N-acetylglucosamine 4-sulfate (GlcNAc4S) and glucuronic acid (GlcA), and draw 10 of them.

27. Effect of Sialic Acid on SDS Polyacrylamide Gel Electrophoresis Suppose you have four forms of a protein, all with identical amino acid sequence but containing zero, one, two, or three oligosaccharide chains, each ending in a single sialic acid residue. Draw the gel pattern you would expect when a mixture of these four glycoproteins is subjected to SDS polyacrylamide gel electrophoresis (see Fig. 3–18) and stained for protein. Identify any bands in your drawing.

28. Information Content of Oligosaccharides The carbohydrate portion of some glycoproteins may serve as a cellular recognition site. To perform this function, the oligosaccharide moiety must have the potential to exist in a large variety of forms. Which can produce a greater variety of structures: oligopeptides composed of five different amino acid residues or oligosaccharides composed of five different monosaccharide residues? Explain.

29. Determination of the Extent of Branching in Amylopectin The amount of branching (number of (α1→6) glycosidic bonds) in amylopectin can be determined by the following procedure. A sample of amylopectin is exhaustively methylated—treated with a methylating agent (methyl iodide) that replaces the hydrogen of every sugar hydroxyl with a methyl group, converting —OH to —OCH₃. All the glycosidic bonds in the treated sample are then hydrolyzed in aqueous acid, and the amount of 2,3-di-O-methylglucose so formed is determined.

(a) Explain the basis of this procedure for determining the number of (α1→6) branch points in amylopectin. What happens to the unbranched glucose residues in amylopectin during the methylation and hydrolysis procedure?

(b) A 258 mg sample of amylopectin treated as described above yielded 12.4 mg of 2,3-di-O-methylglucose. Determine what percentage of the glucose residues in the amylopectin contained an (α1→6) branch. (Assume that the average molecular weight of a glucose residue in amylopectin is 162 g/mol.)

30. Structural Analysis of a Polysaccharide A polysaccharide of unknown structure was isolated, subjected to exhaustive methylation, and hydrolyzed. Analysis of the products revealed three methylated sugars: 2,3,4-tri-O-methyl-o-glucose, 2,4-di-O-methyl-o-glucose, and 2,3,4,6-tetra-O-methyl-d-glucose, in the ratio 20:1:1. What is the structure of the polysaccharide?

31. Determining the Structure of ABO Blood Group Antigens The human ABO blood group system was first discovered in 1901, and in 1924 this trait was shown to be inherited at a single gene locus with three alleles. In 1960, W. T. J. Morgan published a paper summarizing what was known at that time about the structure of the ABO antigen molecules. When the paper was published, the complete structures of the A, B, and O
antigens were not yet known; this paper is an example of what scientific knowledge looks like "in the making."

In any attempt to determine the structure of an unknown biological compound, researchers must deal with two fundamental problems: (1) If you don’t know what it is, how do you know if it is pure? (2) If you don’t know what it is, how do you know that your extraction and purification conditions have not changed its structure? Morgan addressed problem 1 through several methods. One method is described in his paper as observing “constant analytical values after fractional solubility tests” (p. 312). In this case, “analytical values” are measurements of chemical composition, melting point, and so forth.

(a) Based on your understanding of chemical techniques, what could Morgan mean by “fractional solubility tests”?

(b) Why would the analytical values obtained from fractional solubility tests of a pure substance be constant, and those of an impure substance not be constant?

Morgan addressed problem 2 by using an assay to measure the immunological activity of the substance present in different samples.

(c) Why was it important for Morgan’s studies, and especially for addressing problem 2, that this activity assay be quantitative (measuring a level of activity) rather than simply qualitative (measuring only the presence or absence of a substance)?

The structure of the blood group antigens is shown in Figure 10–15. In his paper (p. 314), Morgan listed several properties of the three antigens, A, B, and O, that were known at that time:

1. Type B antigen has a higher content of galactose than A or O.
2. Type A antigen contains more total amino sugars than B or O.
3. The glucosamine/galactosamine ratio for the A antigen is roughly 1.2; for B, it is roughly 2.5.

(d) Which of these findings is (are) consistent with the known structures of the blood group antigens?

(e) How do you explain the discrepancies between Morgan’s data and the known structures?

In later work, Morgan and his colleagues used a clever technique to obtain structural information about the blood group antigens. Enzymes had been found that would specifically degrade the antigens. However, these were available only as crude enzyme preparations, perhaps containing more than one enzyme of unknown specificity. Degradation of the blood type antigens by these crude enzymes could be inhibited by the addition of particular sugar molecules to the reaction. Only sugars found in the blood type antigens would cause this inhibition. One enzyme preparation, isolated from the protozoan Trichomonas foetus, would degrade all three antigens and was inhibited by the addition of particular sugars. The results of these studies are summarized in the table below, showing the percentage of substrate remaining unchanged when the T. foetus enzyme acted on the blood group antigens in the presence of sugars.

<table>
<thead>
<tr>
<th>Sugar added</th>
<th>A antigen</th>
<th>B antigen</th>
<th>O antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control—no sugar</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L-Fucose</td>
<td>3</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>D-Fucose</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>L-Galactose</td>
<td>6</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>D-Galactose</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N-Acetylglucosamine</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N-Acetylgalactosamine</td>
<td>100</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

For the O antigen, a comparison of the control and L-fucose results shows that L-fucose inhibits the degradation of the antigen. This is an example of product inhibition, in which an excess of reaction product shifts the equilibrium of the reaction, preventing further breakdown of substrate.

(f) Although the O antigen contains galactose, N-acetylglucosamine, and N-acetylgalactosamine, none of these sugars inhibited the degradation of this antigen. Based on these data, is the enzyme preparation from T. foetus an endo- or exoglycosidase? (Endoglycosidases cut bonds between interior residues; exoglycosidases remove one residue at a time from the end of a polymer.) Explain your reasoning.

(g) Fucose is also present in the A and B antigens. Based on the structure of these antigens, why does fucose fail to prevent their degradation by the T. foetus enzyme? What structure would be produced?

(h) Which of the results in (f) and (g) are consistent with the structures shown in Figure 10–15? Explain your reasoning.

Reference
Nucleotides have a variety of roles in cellular metabolism. They are the energy currency in metabolic transactions, the essential chemical links in the response of cells to hormones and other extracellular stimuli, and the structural components of an array of enzyme cofactors and metabolic intermediates. And, last but certainly not least, they are the constituents of nucleic acids: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), the molecular repositories of genetic information. The structure of every protein, and ultimately of every biomolecule and cellular component, is a product of information programmed into the nucleotide sequence of a cell’s nucleic acids. The ability to store and transmit genetic information from one generation to the next is a fundamental condition for life.

This chapter provides an overview of the chemical nature of the nucleotides and nucleic acids found in most cells; a more detailed examination of the function of nucleic acids is the focus of Part III of this text.

8.1 Some Basics

Nucleotides, Building Blocks of Nucleic Acids

The amino acid sequence of every protein in a cell, and the nucleotide sequence of every RNA, is specified by a nucleotide sequence in the cell’s DNA. A segment of a DNA molecule that contains the information required for the synthesis of a functional biological product, whether protein or RNA, is referred to as a gene. A cell typically has many thousands of genes, and DNA molecules, not surprisingly, tend to be very large. The storage and transmission of biological information are the only known functions of DNA.

RNAs have a broader range of functions, and several classes are found in cells. Ribosomal RNAs (rRNAs) are components of ribosomes, the complexes that carry out the synthesis of proteins. Messenger RNAs (mRNAs) are intermediaries, carrying genetic information from one or a few genes to a ribosome, where the corresponding proteins can be synthesized. Transfer RNAs (tRNAs) are adapter molecules that faithfully translate the information in mRNA into a specific sequence of amino acids. In addition to these major classes there is a wide variety of RNAs with special functions, described in depth in Part III.

Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses

Nucleotides have three characteristic components: (1) a nitrogenous (nitrogen-containing) base, (2) a pentose, and (3) a phosphate (Fig. 8–1). The molecule

![FIGURE 8–1 Structure of nucleotides. (a) General structure showing the numbering convention for the pentose ring. This is a ribonucleotide. In deoxyribonucleotides the —OH group on the 2’ carbon (in red) is replaced with —H. (b) The parent compounds of the pyrimidine and purine bases of nucleotides and nucleic acids, showing the numbering conventions.](image)
without the phosphate group is called a **nucleoside**. The nitrogenous bases are derivatives of two parent compounds, **pyrimidine** and **purine**. The bases and pentoses of the common nucleotides are heterocyclic compounds.

KEY CONVENTION: The carbon and nitrogen atoms in the parent structures are conventionally numbered to facilitate the naming and identification of the many derivative compounds. The convention for the pentose ring follows rules outlined in Chapter 7, but in the pentoses of nucleotides and nucleosides the carbon numbers are given a prime (') designation to distinguish them from the numbered atoms of the nitrogenous bases.

The base of a nucleotide is joined covalently (at N-1 of pyrimidines and N-9 of purines) in an N-β-glycosyl bond to the 1' carbon of the pentose, and the phosphate is esterified to the 5' carbon. The N-β-glycosyl bond is formed by removal of the elements of water (a hydroxyl group from the pentose and hydrogen from the base), as in O-glycosidic bond formation (see Fig. 7–29).

Both DNA and RNA contain two major purine bases, **adenine** (A) and **guanine** (G), and two major pyrimidines. In both DNA and RNA one of the pyrimidines is **cytosine** (C), but the second major pyrimidine is not the same in both: it is **thymine** (T) in DNA and **uracil** (U) in RNA. Only rarely does thymine occur in RNA or uracil in DNA. The structures of the five major bases are shown in Figure 8–2, and the nomenclature of their corresponding nucleotides and nucleosides is summarized in Table 8–1.

Nucleic acids have two kinds of pentoses. The recurring deoxyribonucleotide units of DNA contain 2'-deoxy-D-ribose, and the ribonucleotide units of RNA contain D-ribose. In nucleotides, both types of pentoses are in their β-furanose (closed five-membered ring) form. As Figure 8–3 shows, the pentose ring is not planar but occurs in one of a variety of conformations generally described as “puckered.”

KEY CONVENTION: Although DNA and RNA seem to have two distinctions—different pentoses and the presence of uracil in RNA and thymine in DNA—it is the pentoses that define the identity of a nucleic acid. If the nucleic acid contains 2'-deoxy-D-ribose, it is DNA by definition even though it may contain some uracil. Similarly, if the nucleic acid contains D-ribose, it is RNA regardless of its base composition.

Table 8–1: Nucleotide and Nucleic Acid Nomenclature

<table>
<thead>
<tr>
<th>Base</th>
<th>Nucleoside</th>
<th>Nucleotide</th>
<th>Nucleic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenine</td>
<td>Adenosine</td>
<td>Adenylate</td>
<td>RNA</td>
</tr>
<tr>
<td></td>
<td>Deoxyadenosine</td>
<td>Deoxyadenylate</td>
<td>DNA</td>
</tr>
<tr>
<td>Guanine</td>
<td>Guanosine</td>
<td>Guanylate</td>
<td>RNA</td>
</tr>
<tr>
<td></td>
<td>Deoxyguanosine</td>
<td>Deoxyguanylate</td>
<td>DNA</td>
</tr>
<tr>
<td>Pyrimidines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytosine</td>
<td>Cytidine</td>
<td>Cytidylate</td>
<td>RNA</td>
</tr>
<tr>
<td></td>
<td>Deoxycytidine</td>
<td>Deoxycytidylate</td>
<td>DNA</td>
</tr>
<tr>
<td>Thymine</td>
<td>Thymidine or deoxythymidine</td>
<td>Thymidylate or deoxythymidylate</td>
<td>DNA</td>
</tr>
<tr>
<td>Uracil</td>
<td>Uridine</td>
<td>Uridylate</td>
<td>RNA</td>
</tr>
</tbody>
</table>

Note: “Nucleoside” and “nucleotide” are generic terms that include both ribo- and deoxyribo- forms. Also, ribonucleosides and ribonucleotides are here designated simply as nucleosides and nucleotides (e.g., riboadenosine as adenosine), and deoxyribonucleosides and deoxyribonucleotides as deoxyribonucleosides and deoxyribonucleotides (e.g., deoxyriboadenosine as deoxyadenosine). Both forms of naming are acceptable, but the shortened names are more commonly used. Thymine is an exception; “ribothymidine” is used to describe its unusual occurrence in RNA.
Figure 8-3 Conformations of ribose. (a) In solution, the straight-chain (aldehyde) and ring (β-furanose) forms of free ribose are in equilibrium. RNA contains only the ring form, β-β-ribofuranose. Deoxyribose undergoes a similar interconversion in solution, but in DNA exists solely as β-2′-deoxy-β-ribofuranose. (b) Ribofuranose rings in nucleotides can exist in four different puckered conformations. In all cases, four of the five atoms are in a single plane. The fifth atom (C-2′ or C-3′) is on either the same (endo) or the opposite (exo) side of the plane relative to the C-5′ atom.

Figure 8-4 gives the structures and names of the four major deoxyribonucleotides (deoxyribonucleoside 5′-monophosphates), the structural units of DNAs, and the four major ribonucleotides (ribonucleoside 5′-monophosphates), the structural units of RNAs.

Deoxyribonucleotides

<table>
<thead>
<tr>
<th>Nucleotide:</th>
<th>Symbols:</th>
<th>Nucleoside:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deoxyadenylate</td>
<td>A, dA, dAMP</td>
<td>Deoxyadenosine</td>
</tr>
<tr>
<td>(deoxyadenosine 5′-monophosphate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deoxyguanylate</td>
<td>G, dG, dGMP</td>
<td>Deoxyguanosine</td>
</tr>
<tr>
<td>(deoxyguanosine 5′-monophosphate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deoxythymidylate</td>
<td>T, dT, dTMP</td>
<td>Deoxythymidine</td>
</tr>
<tr>
<td>(deoxythymidine 5′-monophosphate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deoxycytidylate</td>
<td>C, dC, dCMP</td>
<td>Deoxycytidine</td>
</tr>
<tr>
<td>(deoxycytidine 5′-monophosphate)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ribonucleotides

<table>
<thead>
<tr>
<th>Nucleotide:</th>
<th>Symbols:</th>
<th>Nucleoside:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenylate (adenosine 5′-monophosphate)</td>
<td>A, AMP</td>
<td>Adenosine</td>
</tr>
<tr>
<td>Guanylate (guanosine 5′-monophosphate)</td>
<td>G, GMP</td>
<td>Guanosine</td>
</tr>
<tr>
<td>Uridylate (uridine 5′-monophosphate)</td>
<td>U, UMP</td>
<td>Uridine</td>
</tr>
<tr>
<td>Cytidylate (cytidine 5′-monophosphate)</td>
<td>C, CMP</td>
<td>Cytidine</td>
</tr>
</tbody>
</table>

All nucleotides are shown in their free form at pH 7.0. The nucleotide units of DNA (a) are usually symbolized as A, G, T, and C, sometimes as dA, dG, dT, and dC; those of RNA (b) as A, G, U, and C. In their free form the deoxyribonucleotides are commonly abbreviated dAMP, dGMP, dTMP, and dCMP; the ribonucleotides, AMP, GMP, UMP, and CMP. For each nucleotide, the more common name is followed by the complete name in parentheses. All abbreviations assume that the phosphate group is at the 5′ position. The nucleoside portion of each molecule is shaded in pink. In this and the following illustrations, the ring carbons are not shown.
Figure 8-5 Some minor purine and pyrimidine bases, shown as the nucleosides. (a) Minor bases of DNA. 5-Methylcytidine occurs in the DNA of animals and higher plants, \(N^\beta \)-methyladenosine in bacterial DNA, and 5-hydroxymethylcytidine in the DNA of bacteria infected with certain bacteriophages. (b) Some minor bases of tRNAs. Inosine contains the base hypoxanthine. Note that pseudouridine, like uridine, contains uracil; they are distinct in the point of attachment to the ribose—in uridine, uracil is attached through N-1, the usual attachment point for pyrimidines; in pseudouridine, through C-5.

Although nucleotides bearing the major purines and pyrimidines are most common, both DNA and RNA also contain some minor bases (Fig. 8-5). In DNA the most common of these are methylated forms of the major bases; in some viral DNAs, certain bases may be hydroxymethylated or glucosylated. Altered or unusual bases in DNA molecules often have roles in regulating or protecting the genetic information. Minor bases of many types are also found in RNAs, especially in tRNAs (see Fig. 8-25 and Fig. 26-23).

KEY CONVENTION: The nomenclature for the minor bases can be confusing. Like the major bases, many have common names—hypoxanthine, for example, shown as its nucleoside inosine in Figure 8-5. When an atom in the purine or pyrimidine ring is substituted, the usual convention (used here) is simply to indicate the ring position of the substituent by its number—for example, 5-methylcytosine, 7-methylguanine, and 5-hydroxymethylcytosine (shown as the nucleosides in Fig. 8-5). The element to which the substituent is attached (N, C, O) is not identified. The convention changes when the substituted atom is exocyclic (not within the ring structure), in which case the type of atom is identified and the ring position to which it is attached is denoted with a superscript. The amino nitrogen attached to C-6 of adenine is \(N^\alpha \); similarly, the carbonyl oxygen and amino nitrogen at C-6 and C-2 of guanine are \(O^\beta \) and \(N^\beta \), respectively. Examples of this nomenclature are \(N^\beta \)-methyladenosine and \(N^\alpha \)-methylguanosine (Fig. 8-5).

Cells also contain nucleotides with phosphate groups in positions other than on the 5' carbon (Fig. 8-6). **Ribonucleoside 2',3'-cyclic monophosphates** are isolatable intermediates, and **ribonucleoside 3'-monophosphates** are end products of the hydrolysis of RNA by certain ribonucleases. Other variations are adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), considered at the end of this chapter.

Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids

The successive nucleotides of both DNA and RNA are covalently linked through phosphate-group "bridges," in
which the 5'-phosphate group of one nucleotide unit is joined to the 3'-hydroxyl group of the next nucleotide, creating a **phosphodiester linkage** (Fig. 8–7). Thus the covalent backbones of nucleic acids consist of alternating phosphate and pentose residues, and the nitrogenous bases may be regarded as side groups joined to the backbone at regular intervals. The backbones of both DNA and RNA are hydrophilic. The hydroxyl groups of the sugar residues form hydrogen bonds with water. The phosphate groups, with a pK_a near 0, are completely ionized and negatively charged at pH 7, and the negative charges are generally neutralized by ionic interactions with positive charges on proteins, metal ions, and polyamines.

KEY CONVENTION: All the phosphodiester linkages in DNA and RNA have the same orientation along the chain (Fig. 8–7), giving each linear nucleic acid strand a specific polarity and distinct 5' and 3' ends. By definition, the **5' end** lacks a nucleotide at the 5' position and the **3' end** lacks a nucleotide at the 3' position. Other groups (most often one or more phosphates) may be present on one or both ends. The 5' to 3' orientation of a strand of nucleic acid refers to the ends of the strand, not the orientation of the individual phosphodiester bonds linking its constituent nucleotides.

The covalent backbone of DNA and RNA is subject to slow, nonenzymatic hydrolysis of the phosphodiester bonds. In the test tube, RNA is hydrolyzed rapidly under alkaline conditions, but DNA is not; the 2'-hydroxyl groups in RNA (absent in DNA) are directly involved in the process. Cyclic 2',3'-monophosphate nucleotides are the first products of the action of alkali on RNA and are rapidly hydrolyzed further to yield a mixture of 2'- and 3'-nucleoside monophosphates (Fig. 8–8).

FIGURE 8–7 Phosphodiester linkages in the covalent backbone of DNA and RNA. The phosphodiester bonds (one of which is shaded in the DNA) link successive nucleotide units. The backbone of alternating pentose and phosphate groups in both types of nucleic acid is highly polar. The 5' end of the macromolecule lacks a nucleotide at the 5' position, and the 3' end lacks a nucleotide at the 3' position.

FIGURE 8–8 Hydrolysis of RNA under alkaline conditions. The 2' hydroxyl acts as a nucleophile in an intramolecular displacement. The 2',3'-cyclic monophosphate derivative is further hydrolyzed to a mixture of 2'- and 3'-monophosphates. DNA, which lacks 2' hydroxyls, is stable under similar conditions.
The nucleotide sequences of nucleic acids can be represented schematically, as illustrated below by a segment of DNA with five nucleotide units. The phosphate groups are symbolized by \mathbb{P}, and each deoxyribose is symbolized by a vertical line, from C-1' at the top to C-5' at the bottom (but keep in mind that the sugar is always in its closed-ring β-furanose form in nucleic acids). The connecting lines between nucleotides (which pass through \mathbb{P}) are drawn diagonally from the middle (C-3') of the deoxyribose of one nucleotide to the bottom (C-5') of the next.

Some simpler representations of this pentadeoxyribonucleotide are pA-C-G-T-ASH, pApCpGpTpA, and pACGTA.

KEY CONVENTION: The sequence of a single strand of nucleic acid is always written with the 5' end at the left and the 3' end at the right—that is, in the 5' → 3' direction.

A short nucleic acid is referred to as an oligonucleotide. The definition of "short" is somewhat arbitrary, but polymers containing 50 or fewer nucleotides are generally called oligonucleotides. A longer nucleic acid is called a polynucleotide.

The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids

Free pyrimidines and purines are weakly basic compounds and thus are called bases. The purines and pyrimidines common in DNA and RNA are aromatic molecules (Fig. 8–2), a property with important consequences for the structure, electron distribution, and light absorption of nucleic acids. Electron delocalization among atoms in the ring gives most of the bonds partial double-bond character. One result is that pyrimidines are planar molecules and purines are very nearly planar, with a slight pucker. Free pyrimidine and purine bases may exist in two or more tautomeric forms depending on the pH. Uracil, for example, occurs in lactam, lactim, and double lactim forms (Fig. 8–9). The structures shown in Figure 8–2 are the tautomers that predominate at pH 7.0. All nucleotide bases absorb UV light, and nucleic acids are characterized by a strong absorption at wavelengths near 260 nm (Fig. 8–10).

The purine and pyrimidine bases are hydrophobic and relatively insoluble in water at the near-neutral pH of the cell. At acidic or alkaline pH the bases become charged and their solubility in water increases. Hydrophobic stacking interactions in which two or more bases are positioned with the planes of their rings parallel (like a stack of coins) are one of two important modes of interaction between bases in nucleic acids. The stacking also involves a combination of van der Waals and dipole-dipole interactions between the bases. Base stacking helps to minimize contact of the bases with water, and base-stacking interactions are very important in stabilizing the three-

![Figure 8-9 Tautomeric forms of uracil.](image)

![Figure 8-10 Absorption spectra of the common nucleotides.](image)
The functional groups of pyrimidines and purines are ring nitrogens, carbonyl groups, and exocyclic amino groups. Hydrogen bonds involving the amino and carbonyl groups are the most important mode of interaction between two (and occasionally three or four) complementary strands of nucleic acid. The most common hydrogen-bonding patterns are those defined by James D. Watson and Francis Crick in 1953, in which A bonds specifically to T (or U) and G bonds to C (Fig. 8-11). These two types of base pairs predominate in double-stranded DNA and RNA, and the tautomers shown in Figure 8-2 are responsible for these patterns. It is this specific pairing of bases that permits the duplication of genetic information, as we shall discuss later in this chapter.

SUMMARY 8.1 Some Basics

- A nucleotide consists of a nitrogenous base (purine or pyrimidine), a pentose sugar, and one or more phosphate groups. Nucleic acids are polymers of nucleotides, joined together by phosphodiester linkages between the 5’-hydroxyl group of one pentose and the 3’-hydroxyl group of the next.

- There are two types of nucleic acid: RNA and DNA. The nucleotides in RNA contain ribose, and the common pyrimidine bases are uracil and cytosine. In DNA, the nucleotides contain 2’-deoxyribose, and the common pyrimidine bases are thymine and cytosine. The primary purines are adenine and guanine in both RNA and DNA.

8.2 Nucleic Acid Structure

The discovery of the structure of DNA by Watson and Crick in 1953 was a momentous event in science, an event that gave rise to entirely new disciplines and influenced the course of many established ones. In this section we focus on DNA structure, some of the events that led to its discovery, and more recent refinements in our understanding of DNA. RNA structure is also introduced.

As in the case of protein structure (Chapter 4), it is sometimes useful to describe nucleic acid structure in terms of hierarchical levels of complexity (primary, secondary, tertiary). The primary structure of a nucleic acid is its covalent structure and nucleotide sequence. Any regular, stable structure taken up by some or all of

Figure 8-11 Hydrogen-bonding patterns in the base pairs defined by Watson and Crick. Here as elsewhere, hydrogen bonds are represented by three blue lines.
the nucleotides in a nucleic acid can be referred to as secondary structure. All structures considered in the remainder of this chapter fall under the heading of secondary structure. The complex folding of large chromosomes within eukaryotic chromatin and bacterial nucleoids is generally considered tertiary structure; this is discussed in Chapter 24.

DNA Is a Double Helix That Stores Genetic Information

DNA was first isolated and characterized by Friedrich Miescher in 1868. He called the phosphorus-containing substance “nuclein.” Not until the 1940s, with the work of Oswald T. Avery, Colin MacLeod, and Maclyn McCarty, was there any compelling evidence that DNA was the genetic material. Avery and his colleagues found that DNA extracted from a virulent (disease-causing) strain of the bacterium *Streptococcus pneumoniae* and injected into a nonvirulent strain of the same bacterium transformed the nonvirulent strain into a virulent strain. They concluded that the DNA from the virulent strain carried the genetic information for virulence. Then in 1952, experiments by Alfred D. Hershey and Martha Chase, in which they studied the infection of bacterial cells by a virus (bacteriophage) with radioactively labeled DNA or protein, removed any remaining doubt that DNA, not protein, carried the genetic information.

Another important clue to the structure of DNA came from the work of Erwin Chargaff and his colleagues in the late 1940s. They found that the four nucleotide bases of DNA occur in different ratios in the DNAs of different organisms and that the amounts of certain bases are closely related. These data, collected from DNAs of a great many different species, led Chargaff to the following conclusions:

1. The base composition of DNA generally varies from one species to another.
2. DNA specimens isolated from different tissues of the same species have the same base composition.
3. The base composition of DNA in a given species does not change with an organism’s age, nutritional state, or changing environment.
4. In all cellular DNAs, regardless of the species, the number of adenosine residues is equal to the number of thymidine residues (that is, *A* = *T*), and the number of guanosine residues is equal to the number of cytidine residues (*G* = *C*). From these relationships it follows that the sum of the purine residues equals the sum of the pyrimidine residues, that is, *A* + *G* = *T* + *C*.

These quantitative relationships, sometimes called “Chargaff’s rules,” were confirmed by many subsequent researchers. They were a key to establishing the three-dimensional structure of DNA and yielded clues to how genetic information is encoded in DNA and passed from one generation to the next.

To shed more light on the structure of DNA, Rosalind Franklin and Maurice Wilkins used the powerful method of x-ray diffraction (see Box 4-5) to analyze DNA fibers. They showed in the early 1950s that DNA produces a characteristic x-ray diffraction pattern (Fig. 8-12). From this pattern it was deduced that DNA molecules are helical with two periodicities along their long axis, a primary one of 3.4 Å and a secondary one of 34 Å. The problem then was to formulate a three-dimensional model of the DNA molecule that could account not only for the x-ray diffraction data but also for the specific *A* = *T* and *G* = *C* base equivalences discovered by Chargaff and for the other chemical properties of DNA.

James Watson and Francis Crick relied on this accumulated information about DNA to set about deducing its structure. In 1953 they postulated a three-dimensional model of DNA structure that accounted for all the available data. It consists of two helical DNA chains wound around the same axis to form a right-handed double helix (see Box 4-1 for an explanation of the right- or left-handed sense of a helical structure). The hydrophilic backbones of alternating deoxyribose and phosphate groups are on the outside of the double helix, facing the surrounding water. The furanose ring of each deoxyribose is in the C-2’ endo conformation. The purine and pyrimidine bases of both strands are stacked inside the
FIGURE 8-13 Watson-Crick model for the structure of DNA. The original model proposed by Watson and Crick had 10 base pairs, or 34 Å (3.4 nm), per turn of the helix; subsequent measurements revealed 10.5 base pairs, or 36 Å (3.6 nm), per turn. (a) Schematic representation, showing dimensions of the helix. (b) Stick representation showing the backbone and stacking of the bases. (c) Space-filling model.

The DNA double helix, with their hydrophobic and nearly planar ring structures very close together and perpendicular to the long axis. The offset pairing of the two strands creates a major groove and minor groove on the surface of the duplex (Fig. 8–13). Each nucleotide base of one strand is paired in the same plane with a base of the other strand. Watson and Crick found that the hydrogen-bonded base pairs illustrated in Figure 8–11, G with C and A with T, are those that fit best within the structure, providing a rationale for Chargaff’s rule that in any DNA, G : C and A : T. It is important to note that three hydrogen bonds can form between G and C, symbolized G=C, but only two can form between A and T, symbolized A=T. This is one reason for the finding that the separation of paired DNA strands is more difficult the higher the ratio of G=C to A=T base pairs. Other pairings of bases tend (to varying degrees) to destabilize the double-helical structure.

When Watson and Crick constructed their model, they had to decide at the outset whether the strands of DNA should be parallel or antiparallel—whether their 3' ,5'-phosphodiester bonds should run in the same or opposite directions. An antiparallel orientation produced the most convincing model, and later work with DNA polymerases (Chapter 25) provided experimental evidence that the strands are indeed antiparallel, a finding ultimately confirmed by x-ray analysis.

To account for the periodicities observed in the x-ray diffraction patterns of DNA fibers, Watson and Crick manipulated molecular models to arrive at a structure in which the vertically stacked bases inside the double helix would be 3.4 Å apart; the secondary repeat distance of about 34 Å was accounted for by the presence of 10 base pairs in each complete turn of the double helix. In aqueous solution the structure differs slightly from that in fibers, having 10.5 base pairs per helical turn (Fig. 8–13).

As Figure 8–14 shows, the two antiparallel polynucleotide chains of double-helical DNA are not identical in either base sequence or composition. Instead they are complementary to each other. Wherever adenine occurs in one chain, thymine is found in the other; similarly, wherever guanine occurs in one chain, cytosine is found in the other.

The DNA double helix, or duplex, is held together by two forces, as described earlier: hydrogen bonding between complementary base pairs (Fig. 8–11) and base-stacking interactions. The complementarity between the DNA strands is attributable to the hydrogen bonding between base pairs. The base-stacking interactions, which are largely nonspecific with respect to the identity of the stacked bases, make the major contribution to the stability of the double helix.

The important features of the double-helical model of DNA structure are supported by much chemical and biological evidence. Moreover, the model immediately suggested a mechanism for the transmission of genetic information. The essential feature of the model is the complementarity of the two DNA strands. As Watson and Crick were able to see, well before confirmatory data became available, this structure could logically be replicated by (1) separating the two strands and (2) synthesizing a complementary strand for each. Because nucleotides in each new strand are joined in a sequence specified by the base-pairing rules stated above, each preexisting strand

FIGURE 8-14 Complementarity of strands in the DNA double helix. The complementary antiparallel strands of DNA follow the pairing rules proposed by Watson and Crick. The base-paired antiparallel strands differ in base composition: the left strand has the composition A2 T2 G3 C1; the right, A2 T1 G3 C1. They also differ in sequence when each chain is read in the 5' → 3' direction. Note the base equivalences: A = T and G = C in the duplex.
functions as a template to guide the synthesis of a complementary strand (Fig. 8-15). These expectations were experimentally confirmed, inaugurating a revolution in our understanding of biological inheritance.

WORKED EXAMPLE 8–1 Base Pairing in DNA

In samples of DNA isolated from two unidentified species of bacteria, X and Y, adenine makes up 32% and 17%, respectively, of the total bases. What relative proportions of adenine, guanine, thymine, and cytosine would you expect to find in the two DNA samples? What assumptions have you made? One of these species was isolated from a hot spring (64°C). Which species is most likely the thermophilic bacterium, and why?

Solution: For any double-helical DNA, A = T and G = C. The DNA from species X has 32% A and therefore must contain 32% T. This accounts for 64% of the bases and leaves 36% as G=C pairs: 18% G and 18% C. The sample from species Y, with 17% A, must contain 17% T, accounting for 34% of the base pairs. The remaining 66% of the bases are thus equally distributed as 33% G and 33% C. This calculation is based on the assumption that both DNA molecules are double-stranded.

The higher the G + C content of a DNA molecule, the higher the melting temperature. Species Y, having the DNA with the higher G + C content (66%), most likely is the thermophilic bacterium; its DNA has a higher melting temperature and thus is more stable at the temperature of the hot spring.

DNA Can Occur in Different Three-Dimensional Forms

DNA is a remarkably flexible molecule. Considerable rotation is possible around several types of bonds in the sugar–phosphate (phosphodeoxyribose) backbone, and thermal fluctuation can produce bending, stretching, and unpairing (melting) of the strands. Many significant deviations from the Watson-Crick DNA structure are found in cellular DNA, some or all of which may be important in DNA metabolism. These structural variations generally do not affect the key properties of DNA defined by Watson and Crick: strand complementarity, antiparallel strands, and the requirement for A=T and G=C base pairs.

Structural variation in DNA reflects three things: the different possible conformations of the deoxyribose, rotation about the contiguous bonds that make up the phosphodeoxyribose backbone (Fig. 8–16a), and free rotation about the C-1'-N-glycosyl bond (Fig. 8–16b). Because of steric constraints, purines in purine nucleotides are restricted to two stable conformations with respect to deoxyribose, called syn and
anti (Fig. 8–16b). Pyrimidines are generally restricted to the anti conformation because of steric interference between the sugar and the carbonyl oxygen at C-2 of the pyrimidine.

The Watson-Crick structure is also referred to as **B-form DNA**, or B-DNA. The B form is the most stable structure for a random-sequence DNA molecule under physiological conditions and is therefore the standard point of reference in any study of the properties of DNA. Two structural variants that have been well characterized in crystal structures are the **A** and **Z** forms. These three DNA conformations are shown in **Figure 8–17**, with a summary of their properties. The A form is favored in many solutions that are relatively devoid of water. The DNA is still arranged in a right-handed double helix, but the helix is wider and the number of base pairs per helical turn is 11, rather than 10.5 as in B-DNA. The plane of the base pairs in A-DNA is tilted about 20° with respect to the helix axis. These structural changes deepen the major groove while making the minor groove shallower. The reagents used to promote crystallization of DNA tend to dehydrate it, and thus most short DNA molecules tend to crystallize in the A form.

Z-form DNA is a more radical departure from the B structure; the most obvious distinction is the left-handed helical rotation. There are 12 base pairs per helical turn, and the structure appears more slender and elongated. The DNA backbone takes on a zigzag appearance. Certain nucleotide sequences fold into left-handed Z helices much more readily than others. Prominent examples are sequences in which pyrimidines alternate with purines, especially alternating C and G or 5-methyl-C and G residues. To form the left-handed helix in Z-DNA, the purine residues flip to the syn conformation, alternating with pyrimidines in the anti conformation. The major groove is barely apparent in Z-DNA, and the minor groove is narrow and deep.

Whether A-DNA occurs in cells is uncertain, but there is evidence for some short stretches (tracts) of Z-DNA in both bacteria and eukaryotes. These Z-DNA tracts may play a role (as yet undefined) in regulating the expression of some genes or in genetic recombination.

Certain DNA Sequences Adopt Unusual Structures

Other sequence-dependent structural variations found in larger chromosomes may affect the function and metabolism of the DNA segments in their immediate vicinity. For example, bends occur in the DNA helix wherever four or more adenosine residues appear sequentially in one strand. Six adenosines in a row produce a bend of about 18°. The bending observed with this and other sequences may be important in the binding of some proteins to DNA.

A rather common type of DNA sequence is a palindrome. A palindrome is a word, phrase, or sentence that is spelled identically read either forward or backward; two examples are ROTATOR and NURSES RUN. The term is applied to regions of DNA with inverted repeats of base sequence having twofold symmetry over two

FIGURE 8–17 Comparison of A, B, and Z forms of DNA. Each structure shown here has 36 base pairs. The bases are shown in gray, the phosphate atoms in yellow, and the riboses and phosphate oxygens in blue. Blue is the color used to represent DNA strands in later chapters. The table summarizes some properties of the three forms of DNA.

<table>
<thead>
<tr>
<th>Property</th>
<th>A form</th>
<th>B form</th>
<th>Z form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helical sense</td>
<td>Right handed</td>
<td>Right handed</td>
<td>Left handed</td>
</tr>
<tr>
<td>Diameter</td>
<td>~26 Å</td>
<td>~20 Å</td>
<td>~18 Å</td>
</tr>
<tr>
<td>Base pairs per helical turn</td>
<td>11</td>
<td>10.5</td>
<td>12</td>
</tr>
<tr>
<td>Helix rise per base pair</td>
<td>2.6 Å</td>
<td>3.4 Å</td>
<td>3.7 Å</td>
</tr>
<tr>
<td>Base tilt normal to the helix axis</td>
<td>20°</td>
<td>6°</td>
<td>7°</td>
</tr>
<tr>
<td>Sugar pucker conformation</td>
<td>C-3’ endo</td>
<td>C-2’ endo</td>
<td>C-2’ endo for pyrimidines; C-3’ endo for purines</td>
</tr>
<tr>
<td>Glycosyl bond conformation</td>
<td>Anti</td>
<td>Anti</td>
<td>Anti for pyrimidines; syn for purines</td>
</tr>
</tbody>
</table>
strands of DNA (Fig. 8–18). Such sequences are self-complementary within each strand and therefore have the potential to form hairpin or cruciform (cross-shaped) structures (Fig. 8–19). When the inverted repeat occurs within each individual strand of the DNA, the sequence is called a mirror repeat. Mirror repeats do not have complementary sequences within the same strand and cannot form hairpin or cruciform structures. Sequences of these types are found in virtually every large DNA molecule and can encompass a few base pairs or thousands. The extent to which palindromes occur as cruciforms in cells is not known, although some cruciform structures have been demonstrated in vivo in *Escherichia coli*. Self-complementary sequences cause isolated single strands of DNA (or RNA) in solution to fold into complex structures containing multiple hairpins.

Several unusual DNA structures involve three or even four DNA strands. Nucleotides participating in a Watson-Crick base pair (Fig. 8–11) can form additional hydrogen bonds, particularly with functional groups arrayed in the major groove. For example, a cytidine residue (if protonated) can pair with the guanosine residue of a G:C nucleotide pair (Fig. 8–20); a thymidine can pair with the adenosine of an A:T pair. The N-7, O6, and N6 of purines, the atoms that participate in the hydrogen bonding of triplex DNA, are often referred to as Hoogsteen positions, and the non-Watson-Crick pairing is called Hoogsteen pairing, after Karst Hoogsteen, who in 1963 first recognized the potential for these unusual pairings. Hoogsteen pairing allows the formation of triplex DNAs. The triplexes shown in Figure 8–20 (a, b) are most stable at low pH because the C=G ∙ C+ triplet requires a protonated cytosine. In the triplex, the pKa of this cytosine is >7.5, altered from its normal value of 4.2. The triplexes also form most readily within long sequences containing only pyrimidines or only purines in a given strand. Some triplex DNAs contain two pyrimidine strands and one purine strand; others contain two purine strands and one pyrimidine strand.

Four DNA strands can also pair to form a tetraplex (quadruplex), but this occurs readily only for DNA sequences with a very high proportion of guanosine residues (Fig. 8–20c, d). The guanosine tetraplex, or G tetraplex, is quite stable over a wide range of conditions. The orientation of strands in the tetraplex can vary as shown in Figure 8–20e.

In the DNA of living cells, sites recognized by many sequence-specific DNA-binding proteins (Chapter 28) are arranged as palindromes, and polyuridine or poly-purine sequences that can form triple helices are found within regions involved in the regulation of expression of some eukaryotic genes. In principle, synthetic DNA strands designed to pair with these sequences to form
Messenger RNAs Code for Polypeptide Chains

We now turn our attention to the expression of the genetic information that DNA contains. RNA, the second major form of nucleic acid in cells, has many functions. In gene expression, RNA acts as an intermediary by using the information encoded in DNA to specify the amino acid sequence of a functional protein.

Given that the DNA of eukaryotes is largely confined to the nucleus whereas protein synthesis occurs on ribosomes in the cytoplasm, some molecule other than DNA must carry the genetic message from the nucleus to the cytoplasm. As early as the 1950s, RNA was considered the logical candidate: RNA is found in both the nucleus and the cytoplasm, and an increase in protein synthesis is accompanied by an increase in the amount of cytoplasmic RNA and an increase in its rate of turnover. These and other observations led several researchers to suggest that RNA carries genetic information from DNA to the protein biosynthetic machinery of the ribosome. In 1961 François Jacob and Jacques Monod presented a unified (and essentially correct) picture of many aspects of this process. They proposed the name "messenger RNA" (mRNA) for that portion of the total cellular RNA carrying the genetic information.

FIGURE 8–20 DNA structures containing three or four DNA strands.

(a) Base-pairing patterns in one well-characterized form of triplex DNA. The Hoogsteen pair in each case is shown in red. (b) Triple-helical DNA containing two pyrimidine strands (poly(C)) and one purine strand (poly(G)) (derived from PDB ID 1BCE). The dark blue and light blue strands are antiparallel and paired by normal Watson-Crick base-pairing patterns. The third (all-pyrimidine) strand (purple) is parallel to the purine strand and paired through non-Watson-Crick hydrogen bonds. The triplex is viewed end-on, with five triplets shown. Only the triplet closest to the viewer is colored. (c) Base-pairing pattern in the guanosine tetraplex structure. (d) Two successive tetraplets from a G tetraplex structure, viewed end-on with the one closest to the viewer in color. (e) Possible variants in the orientation of strands in a G tetraplex.
Gene

(a) Monocistronic

Gene 1 Gene 2 Gene 3

(b) Polycistronic

FIGURE 8-21 Bacterial mRNA. Schematic diagrams show (a) monocistronic and (b) polycistronic mRNAs of bacteria. Red segments represent RNA coding for a gene product; gray segments represent noncoding RNA. In the polycistronic transcript, noncoding RNA separates the three genes.

information from DNA to the ribosomes, where the messengers provide the templates that specify amino acid sequences in polypeptide chains. Although mRNAs from different genes can vary greatly in length, the mRNAs from a particular gene generally have a defined size. The process of forming mRNA on a DNA template is known as transcription.

In bacteria and archaea, a single mRNA molecule may code for one or several polypeptide chains. If it carries the code for only one polypeptide, the mRNA is monocistronic; if it codes for two or more different polypeptides, the mRNA is polycistronic. In eukaryotes, most mRNAs are monocistronic. (For the purposes of this discussion, “cistron” refers to a gene. The term itself has historical roots in the science of genetics, and its formal genetic definition is beyond the scope of this text.) The minimum length of an mRNA is set by the length of the polypeptide chain for which it codes. For example, a polypeptide chain of 100 amino acid residues requires an RNA coding sequence of at least 300 nucleotides, because each amino acid is coded by a nucleotide triplet (this and other details of protein synthesis are discussed in Chapter 27). However, mRNAs transcribed from DNA are always somewhat longer than the length needed simply to code for a polypeptide sequence (or sequences). The additional, noncoding RNA includes sequences that regulate protein synthesis. Figure 8–21 summarizes the general structure of bacterial mRNAs.

Many RNAs Have More Complex Three-Dimensional Structures

Messenger RNA is only one of several classes of cellular RNA. Transfer RNAs are adapter molecules in protein synthesis; covalently linked to an amino acid at one end, they pair with the mRNA in such a way that amino acids are joined to a growing polypeptide in the correct sequence. Ribosomal RNAs are components of ribosomes. There is also a wide variety of special-function RNAs, including some (called ribozymes) that have enzymatic activity. All the RNAs are considered in detail in Chapter 26. The diverse and often complex functions of these RNAs reflect a diversity of structure much richer than that observed in DNA molecules.

The product of transcription of DNA is always single-stranded RNA. The single strand tends to assume a right-handed helical conformation dominated by base-stacking interactions (Fig. 8–22), which are stronger between two purines than between a purine and pyrimidine or between two pyrimidines. The purine-purine interaction is so strong that a pyrimidine separating two purines is often displaced from the stacking pattern so that the purines can interact. Any self-complementary sequences in the molecule produce more complex structures. RNA can base-pair with complementary regions of either RNA or DNA. Base pairing matches the pattern for DNA: G pairs with C and A pairs with U (or with the occasional T residue in some RNAs). One difference is that base pairing between G and U residues—unusual in DNA—is fairly common in RNA (see Fig. 8–24). The paired strands in RNA or RNA-DNA duplexes are antiparallel, as in DNA.

RNA has no simple, regular secondary structure that serves as a reference point, as does the double helix for DNA. The three-dimensional structures of many RNAs, like those of proteins, are complex and unique. Weak interactions, especially base-stacking interactions, help stabilize RNA structures, just as they do in DNA. Where complementary sequences are present, the predominant double-stranded structure is an A-form right-handed double helix. Z-form helices have been made in the laboratory (under very high-salt or

FIGURE 8–22 Typical right-handed stacking pattern of single-stranded RNA. The bases are shown in gray, the phosphate atoms in yellow, and the riboses and phosphate oxygens in green. Green is used to represent RNA strands in succeeding chapters, just as blue is used for DNA.
high-temperature conditions). The B form of RNA has not been observed. Breaks in the regular A-form helix caused by mismatched or unmatched bases in one or both strands are common and result in bulges or internal loops (Fig. 8-23). Hairpin loops form between nearby self-complementary sequences. The potential for base-paired helical structures in many RNAs is extensive (Fig. 8-24), and the resulting hairpins are the most common type of secondary structure in RNA. Specific short base sequences (such as UUCG) are often found at the ends of RNA hairpins and are known to form particularly tight and stable loops. Such sequences may act as starting points for the folding of an RNA molecule into its precise three-dimensional structure. Other contributions are made by hydrogen bonds that are not part of standard Watson-Crick base pairs. For example, the 2'-hydroxyl group of ribose can hydrogen-bond with other groups. Some of these properties are evident in the structure of the phenylalanine transfer RNA of yeast—the tRNA responsible for inserting Phe residues into polypeptides—and in two RNA enzymes, or ribozymes, whose functions, like those of

FIGURE 8-24 Base-paired helical structures in an RNA. Shown here is the possible secondary structure of the M1 RNA component of the enzyme RNase P of _E. coli_, with many hairpins, RNase P, which also contains a protein component (not shown), functions in the processing of transfer RNAs (see Fig. 26-27). The two brackets indicate additional complementary sequences that may be paired in the three-dimensional structure. The blue dots indicate non-Watson-Crick G=U base pairs (boxed inset). Note that G=U base pairs are allowed only when presynthesized strands of RNA fold up or anneal with each other. There are no RNA polymerases (the enzymes that synthesize RNAs on a DNA template) that insert a U opposite a template G, or vice versa, during RNA synthesis.
protein enzymes, depend on their three-dimensional structures (Fig. 8–25).

The analysis of RNA structure and the relationship between structure and function is an emerging field of inquiry that has many of the same complexities as the analysis of protein structure. The importance of understanding RNA structure grows as we become increasingly aware of the large number of functional roles for RNA molecules.

SUMMARY 8.2 Nucleic Acid Structure

- Many lines of evidence show that DNA bears genetic information. In particular, the Avery-MacLeod-McCarty experiment showed that DNA isolated from one bacterial strain can enter and transform the cells of another strain, endowing it with some of the inheritable characteristics of the donor. The Hershey-Chase experiment showed that...
the DNA of a bacterial virus, but not its protein coat, carries the genetic message for replication of the virus in a host cell.

Putting together the available data, Watson and Crick postulated that native DNA consists of two antiparallel chains in a right-handed double-helical arrangement. Complementary base pairs, A=T and G=C, are formed by hydrogen bonding within the helix. The base pairs are stacked perpendicular to the long axis of the double helix, 3.4 Å apart, with 10.5 base pairs per turn.

DNA can exist in several structural forms. Two variations of the Watson-Crick form, or B-DNA, are A- and Z-DNA. Some sequence-dependent structural variations cause bends in the DNA molecule. DNA strands with appropriate sequences can form hairpin/cruciform structures or triplex or tetraplex DNA.

Messenger RNA transfers genetic information from DNA to ribosomes for protein synthesis. Transfer RNA and ribosomal RNA are also involved in protein synthesis. RNA can be structurally complex; single RNA strands can fold into hairpins, double-stranded regions, or complex loops.

8.3 Nucleic Acid Chemistry

The role of DNA as a repository of genetic information depends in part on its inherent stability. The chemical transformations that do occur are generally very slow in the absence of an enzyme catalyst. The long-term storage of information without alteration is so important to a cell, however, that even very slow reactions that alter DNA structure can be physiologically significant. Processes such as carcinogenesis and aging may be intimately linked to slowly accumulating, irreversible alterations of DNA. Other, nondestructive alterations also occur and are essential to function, such as the strand separation that must precede DNA replication or transcription. In addition to providing insights into physiological processes, our understanding of nucleic acid chemistry has given us a powerful array of technologies that have applications in molecular biology, medicine, and forensic science. We now examine the chemical properties of DNA and some of these technologies.

Double-Helical DNA and RNA Can Be Denatured

Solutions of carefully isolated, native DNA are highly viscous at pH 7.0 and room temperature (25 °C). When such a solution is subjected to extremes of pH or to temperatures above 80 °C, its viscosity decreases sharply, indicating that the DNA has undergone a physical change. Just as heat and extremes of pH denature globular proteins, they also cause denaturation, or melting, of double-helical DNA. Disruption of the hydrogen bonds between paired bases and of base stacking causes unwinding of the double helix to form two single strands, completely separate from each other along the entire length or part of the length (partial denaturation) of the molecule. No covalent bonds in the DNA are broken (Fig. 8–26).

Renaturation of a DNA molecule is a rapid one-step process, as long as a double-helical segment of a dozen or more residues still unites the two strands. When the temperature or pH is returned to the range in which most organisms live, the unwound segments of the two strands spontaneously rewind, or anneal, to yield the intact duplex (Fig. 8–26). However, if the two strands are completely separated, renaturation occurs in two steps. In the first, relatively slow step, the two strands “find” each other by random collisions and form a short segment of complementary double helix. The second step is much faster: the remaining unpaired bases successively come into register as base pairs, and the two strands “zipper” themselves together to form the double helix.

The close interaction between stacked bases in a nucleic acid has the effect of decreasing its absorption of UV light relative to that of a solution with the same concentration of free nucleotides, and the absorption is decreased further when two complementary nucleic acid strands are paired. This is called the hypochromic effect. Denaturation of a double-stranded nucleic acid

![Diagram of nucleic acid denaturation and renaturation](image-url)
produces the opposite result: an increase in absorption called the hyperchromic effect. The transition from double-stranded DNA to the single-stranded, denatured form can thus be detected by monitoring UV absorption at 260 nm.

Viral or bacterial DNA molecules in solution denature when they are heated slowly (Fig. 8-27). Each species of DNA has a characteristic denaturation temperature, or melting point \(t_m \); formally, the temperature at which half the DNA is present as separated single strands): the higher its content of G=C base pairs, the higher the melting point of the DNA. This is because G=C base pairs, with three hydrogen bonds, require more heat energy to dissociate than A=T base pairs. Thus the melting point of a DNA molecule, determined under fixed conditions of pH and ionic strength, can yield an estimate of its base composition. If denaturation conditions are carefully controlled, regions that are rich in A=T base pairs will specifically denature while most of the DNA remains double-stranded. Such denatured regions (called bubbles) can be visualized with electron microscopy (Fig. 8-28). Note that in the strand separation of DNA that occurs in vivo during processes such as DNA replication and transcription, the sites where these processes are initiated are often rich in A=T base pairs, as we shall see.

Duplexes of two RNA strands or one RNA strand and one DNA strand (RNA-DNA hybrids) can also be denatured. Notably, RNA duplexes are more stable than DNA duplexes. At neutral pH, denaturation of a double-helical RNA often requires temperatures 20 °C or more higher than those required for denaturation of a DNA molecule with a comparable sequence. The stability of an RNA-DNA hybrid is generally intermediate between that of RNA and that of DNA. The physical basis for these differences in thermal stability is not known.

Nucleic Acids from Different Species Can Form Hybrids

The ability of two complementary DNA strands to pair with one another can be used to detect similar DNA sequences in two different species or within the genome of a single species. If duplex DNAs isolated from human cells and from mouse cells are completely denatured by heating, then mixed and kept at about 25 °C below their \(t_m \) for many hours, much of the DNA will anneal. The rate of DNA annealing is affected by temperature, the length and concentration of the DNA fragments being annealed, the concentration of salts in the reaction mixture, and properties of the sequence itself.
Temperature is especially important. If the temperature is too low, short sequences with coincidental similarity from distant, heterologous parts of the DNA molecules will anneal unproductively and interfere with the more general alignment of complementary DNA strands. Temperatures that are too high will favor denaturation. Most of the reannealing occurs between complementary mouse DNA strands to form mouse duplex DNA; similarly, most human DNA strands anneal with complementary human DNA strands. However, some strands of the mouse DNA will associate with human DNA strands to yield hybrid duplexes, in which segments of a mouse DNA strand form base-paired regions with segments of a human DNA strand (Fig. 8–29). This reflects a common evolutionary heritage; different organisms generally have many proteins and RNAs with similar functions and, often, similar structures. In many cases, the DNAs encoding these proteins and RNAs have similar sequences. The closer the evolutionary relationship between two species, the more extensively their DNAs will hybridize. For example, human DNA hybridizes much more extensively with mouse DNA than with DNA from yeast.

The hybridization of DNA strands from different sources forms the basis for a powerful set of techniques essential to the practice of modern molecular genetics. A specific DNA sequence or gene can be detected in the presence of many other sequences if one already has an appropriate complementary DNA strand (usually labeled in some way) to hybridize with it (Chapter 9). The complementary DNA can be from a different species or from the same species, or it can be synthesized chemically in the laboratory using techniques described later in this chapter. Hybridization techniques can be varied to detect a specific RNA rather than DNA. The isolation and identification of specific genes and RNAs rely on these hybridization techniques. Applications of this technology make possible the identification of an individual on the basis of a single hair left at the scene of a crime or the prediction of the onset of a disease decades before symptoms appear (see Box 9–1).

Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations

Purines and pyrimidines, along with the nucleotides of which they are a part, undergo spontaneous alterations in their covalent structure. The rate of these reactions is generally very slow, but they are physiologically significant because of the cell’s very low tolerance for alterations in its genetic information. Alterations in DNA structure that produce permanent changes in the genetic information encoded therein are called mutations, and much evidence suggests an intimate link between the accumulation of mutations in an individual organism and the processes of aging and carcinogenesis.

Several nucleotide bases undergo spontaneous loss of their exocyclic amino groups (deamination) (Fig. 8–30a). For example, under typical cellular conditions, deamination of cytosine (in DNA) to uracil occurs in about one of every 106 cytosine residues in 24 hours. This corresponds to about 100 spontaneous events per day, on average, in a mammalian cell. Deamination of adenine and guanine occurs at about 1/100th this rate.

The slow cytosine deamination reaction seems innocuous enough, but is almost certainly the reason why DNA contains thymine rather than uracil. The product of cytosine deamination (uracil) is readily recognized as foreign in DNA and is removed by a repair system (Chapter 25). If DNA normally contained uracil, recognition of uracils resulting from cytosine deamination would be more difficult, and unrepaired uracils would lead to permanent sequence changes as they were paired with adenines during replication. Cytosine deamination would gradually lead to a decrease in G=C base pairs and an increase in A=U base pairs in the DNA of all cells. Over the millennia, cytosine deamination could eliminate G=C base pairs and the genetic code that depends on them. Establishing thymine as one of the four bases in DNA may well have been one of the crucial
turning points in evolution, making the long-term storage of genetic information possible.

Another important reaction in deoxyribonucleotides is the hydrolysis of the N-β-glycosyl bond between the base and the pentose, to create a DNA lesion called an AP (apurinic, apyrimidinic) site or abasic site (Fig. 8–30b). This occurs at a higher rate for purines than for pyrimidines. As many as one in 10^6 purines (10,000 per mammalian cell) are lost from DNA every 24 hours under typical cellular conditions. Depurination of ribonucleotides and RNA is much slower and generally is not considered physiologically significant. In the test tube, loss of purines can be accelerated by dilute acid. Incubation of DNA at pH 3 causes selective removal of the purine bases, resulting in a derivative called apurinic acid.

Other reactions are promoted by radiation. UV light induces the condensation of two ethylene groups to form a cyclobutane ring. In the cell, the same reaction between adjacent pyrimidine bases in nucleic acids forms cyclobutane pyrimidine dimers. This happens most frequently between adjacent thymidine residues on the same DNA strand (Fig. 8–31). A second type of pyrimidine dimer, called a 6-4 photoproduct, is also formed during UV irradiation. Ionizing radiation (x rays and gamma rays) can cause ring opening and fragmentation of bases as well as breaks in the covalent backbone of nucleic acids.

Virtually all forms of life are exposed to energy-rich radiation capable of causing chemical changes in DNA. Near-UV radiation (with wavelengths of 200 to 400 nm), which makes up a significant portion of the solar spectrum, is known to cause pyrimidine dimer formation and other chemical changes in the DNA of bacteria and of human skin cells. We are subject to a constant field of ionizing radiation in the form of cosmic rays, which can penetrate deep into the earth, as well as radiation emitted from radioactive elements, such as radium, plutonium, uranium, radon, 14C, and 3H. X rays used in medical and dental examinations and in radiation therapy of cancer and other diseases are another form of ionizing radiation. It is estimated that UV and ionizing radiations are responsible for about 10% of all DNA damage caused by environmental agents.
DNA also may be damaged by reactive chemicals introduced into the environment as products of industrial activity. Such products may not be injurious per se but may be metabolized by cells into forms that are. There are two prominent classes of such agents (Fig. 8-32): (1) deaminating agents, particularly nitrous acid (HNO_2) or compounds that can be metabolized to nitrous acid or nitrites, and (2) alkylating agents.

Nitrous acid, formed from organic precursors such as nitrosamines and from nitrite and nitrate salts, is a potent accelerator of the deamination of bases. Bisulfite has similar effects. Both agents are used as preservatives in processed foods to prevent the growth of toxic bacteria. They do not seem to increase cancer risks significantly when used in this way, perhaps because they are used in small amounts and make only a minor contribution to the overall levels of DNA damage. (The potential health risk from food spoilage if these preservatives were not used is much greater.)
Alkylating agents can alter certain bases of DNA. For example, the highly reactive chemical dimethylsulphate (Fig. 8–32b) can methylate a guanine to yield O6-methylguanine, which cannot base-pair with cytosine.

\[
\begin{align*}
\text{Guanine tautomers} \\
\begin{array}{c}
\text{OH} \\
\text{H}_2\text{N} \hspace{1cm} \text{N} \hspace{1cm} \text{N} \hspace{1cm} \text{H} \\
\text{H}_2\text{N} \hspace{1cm} \text{H} \\
\end{array}
\end{align*}
\]

\[
\text{O}^6-\text{Methylguanine}
\]

Many similar reactions are brought about by alkylating agents normally present in cells, such as S-adenosylmethionine.

The most important source of mutagenic alterations in DNA is oxidative damage. Excited-oxygen species such as hydrogen peroxide, hydroxyl radicals, and superoxide radicals arise during irradiation or as a byproduct of aerobic metabolism. Of these species, the hydroxyl radicals are responsible for most oxidative DNA damage. Cells have an elaborate defense system to destroy reactive oxygen species, including enzymes such as catalase and superoxide dismutase that convert reactive oxygen species to harmless products. A fraction of these oxidants inevitably escape cellular defenses, however, and damage to DNA occurs through any of a large, complex group of reactions ranging from oxidation of deoxyribose and base moieties to strand breaks. Accurate estimates for the extent of this damage are not yet available, but every day the DNA of each human cell is subjected to thousands of damaging oxidative reactions.

This is merely a sampling of the best-understood reactions that damage DNA. Many carcinogenic compounds in food, water, or air exert their cancer-causing effects by modifying bases in DNA. Nevertheless, the integrity of DNA as a polymer is better maintained than that of either RNA or protein, because DNA is the only macromolecule that has the benefit of biochemical repair systems. These repair processes (described in Chapter 25) greatly lessen the impact of damage to DNA.

Some Bases of DNA Are Methylated

Certain nucleotide bases in DNA molecules are enzymatically methylated. Adenine and cytosine are methylated more often than guanine and thymine. Methylations is generally confined to certain sequences or regions of a DNA molecule. In some cases the function of methylation is well understood; in others the function remains unclear. All known DNA methylases use S-adenosylmethionine as a methyl group donor (Fig. 8–32b).

E. coli has two prominent methylation systems. One serves as part of a defense mechanism that helps the cell to distinguish its DNA from foreign DNA by marking its own DNA with methyl groups and destroying (foreign) DNA without the methyl groups (this is known as a restriction-modification system; see p. 305). The other system methylates adenosine residues within the sequence (5')(GATC(3')) to N6-methyladenosine (Fig. 8–5a). This is mediated by the Dam (DNA adenine methylation) methylase, a component of a system that repairs mismatched base pairs formed occasionally during DNA replication (see Fig. 25–22).

In eukaryotic cells, about 5% of cytidine residues in DNA are methylated to 5-methylcytidine (Fig. 8–5a). Methylation is most common at CpG sequences, producing methyl-CpG symmetrically on both strands of the DNA. The extent of methylation of CpG sequences varies by molecular region in large eukaryotic DNA molecules.

The Sequences of Long DNA Strands Can Be Determined

In its capacity as a repository of information, a DNA molecule's most important property is its nucleotide sequence. Until the late 1970s, determining the sequence of a nucleic acid containing even five or ten nucleotides was very laborious. The development of two new techniques in 1977, one by Alan Maxam and Walter Gilbert and the other by Frederick Sanger, made possible the sequencing of larger DNA molecules with an ease unimaginable just a few years before. The techniques depend on an improved understanding of nucleotide chemistry and DNA metabolism, and on electrophoretic methods for separating DNA strands differing in size by one nucleotide. Electrophoresis of DNA is similar to that of proteins (see Fig. 3–18). Polyacrylamide is often used as the gel matrix in work with short DNA molecules (up to a few hundred nucleotides); agarose is generally used for longer pieces of DNA.

In both Sanger and Maxam-Gilbert sequencing, the general principle is to reduce the DNA to four sets of labeled fragments. The reaction producing each set is base-specific, so the lengths of the fragments correspond to positions in the DNA sequence where a certain base occurs. For example, for an oligonucleotide with the sequence pAATCGACT, labeled at the 5' end (the left end), a reaction that breaks the DNA after each G residue will generate two labeled fragments: a four-nucleotide and a seven-nucleotide fragment; a reaction that breaks the DNA after each C residue will generate two labeled fragments: a four-nucleotide and a seven-nucleotide fragment. Because the fragments are radioactively labeled at their 5' ends, only the fragment to the 5' side of the break is visualized. The fragment sizes correspond to the relative positions of C and G residues in the sequence. When the sets of fragments corresponding to each of the four bases are electrophoretically separated side by side, they produce a ladder of bands from which the sequence can be read directly (Fig. 8–33). We illustrate only the Sanger
FIGURE 8-33 DNA sequencing by the Sanger method. This method makes use of the mechanism of DNA synthesis by DNA polymerases (Chapter 25). (a) DNA polymerases require both a primer (a short oligonucleotide strand), to which nucleotides are added, and a template strand to guide selection of each new nucleotide. In cells, the 3'-hydroxyl group of the primer reacts with an incoming deoxynucleoside triphosphate (dNTP) to form a new phosphodiester bond. (b) The Sanger sequencing procedure uses dideoxynucleoside triphosphate (ddNTP) analogs to interrupt DNA synthesis. (The Sanger method is also known as the dideoxy method.) When a ddNTP is inserted in place of a dNTP, strand elongation is halted after the analog is added, because it lacks the 3'-hydroxyl group needed for the next step. (c) The DNA to be sequenced is used as the template strand, and a short primer, radioactively or fluorescently labeled, is annealed to it. By addition of small amounts of a single ddNTP, for example ddCTP, to an otherwise normal reaction system, the synthesized strands will be prematurely terminated at some locations where dC normally occurs. Given the excess of dCTP over ddCTP, the chance that the analog will be incorporated whenever a dC is to be added is small. However, ddCTP is present in sufficient amounts to ensure that each new strand has a high probability of acquiring at least one ddC at some point during synthesis. The result is a solution containing a mixture of labeled fragments, each ending with a C residue. Each C residue in the sequence generates a set of fragments of a particular length, such that the different-sized fragments, separated by electrophoresis, reveal the location of C residues. This procedure is repeated separately for each of the four ddNTPs, and the sequence can be read directly from an autoradiogram of the gel. Because shorter DNA fragments migrate faster, the fragments near the bottom of the gel represent the nucleotide positions closest to the primer (the 5' end), and the sequence is read (in the 5' → 3' direction) from bottom to top. Note that the sequence obtained is that of the strand complementary to the strand being analyzed.
method, because it has proved to be technically easier and is in more widespread use. It requires the enzymatic synthesis of a DNA strand complementary to the strand under analysis, using a radioactively labeled “primer” and dideoxynucleotides.

DNA sequencing is now automated by a variation of Sanger’s sequencing method in which the dideoxynucleotides used for each reaction are labeled with a differently colored fluorescent tag (Fig. 8-34). With this technology, researchers can sequence DNA molecules containing thousands of nucleotides in a few hours. The entire genomes of more than a thousand organisms have now been sequenced in this way (see Table 1-2), and many very large DNA-sequencing projects have been completed or are in progress. For example, in the Human Genome Project, researchers have sequenced all 3.2 billion base pairs of the DNA in a human cell (Chapter 9).

![Diagram of DNA sequencing](image)

FIGURE 8-34 Strategy for automating DNA sequencing reactions.

Each dideoxynucleotide used in the Sanger method can be linked to a fluorescent molecule that gives all the fragments terminating in that nucleotide a particular color. All four labeled ddNTPs are added to a single tube. The resulting colored DNA fragments are then separated by size in a single electrophoretic gel contained in a capillary tube (a refinement of gel electrophoresis that allows for faster separations). All fragments of a given length migrate through the capillary gel in a single peak, and the color associated with each peak is detected using a laser beam. The DNA sequence is read by determining the sequence of colors in the peaks as they pass the detector. This information is fed directly to a computer, which determines the sequence.

The Chemical Synthesis of DNA Has Been Automated

Also important in nucleic acid chemistry is the rapid and accurate synthesis of short oligonucleotides of known sequence. The methods were pioneered by H. Gobind Khorana and his colleagues in the 1970s. Refinements by Robert Letsinger and Marvin Caruthers led to the chemistry now in widest use, called the phosphoramidite method (Fig. 8–35). The synthesis is carried out with the growing strand attached to a solid support, using principles similar to those used by Merrifield for peptide synthesis (see Fig. 3–29), and is readily automated. The efficiency of each addition step is very high, allowing the routine synthesis of polymers containing 70 or 80 nucleotides and, in some laboratories, much longer strands. The availability of relatively inexpensive DNA polymers with predesigned sequences is having a powerful impact on all areas of biochemistry (Chapter 9).
FIGURE 8-35 Chemical synthesis of DNA by the phosphoramidite method. Automated DNA synthesis is conceptually similar to the synthesis of polypeptides on a solid support. The oligonucleotide is built up on the solid support (silica), one nucleotide at a time, in a repeated series of chemical reactions with suitably protected nucleotide precursors.

1. The first nucleoside (which will be the 3' end) is attached to the silica support at the 3' hydroxyl (through a linking group, R) and is protected at the 5' hydroxyl with an acid-labile dimethoxytrityl group (DMT). The reactive groups on all bases are also chemically protected.

2. The protecting DMT group is removed by washing the column with acid (the DMT group is colored, so this reaction can be followed spectrophotometrically).

3. The next nucleotide has a reactive phosphoramidite at its 3' position: a trivalent phosphite (as opposed to the more oxidized pentavalent phosphate normally present in nucleic acids) with one linked oxygen replaced by an amino group or substituted amine. In the common variant shown, one of the phosphoramidite oxygens is bonded to the deoxyribose, the other is protected by a cyanoethyl group, and the third position is occupied by a readily displaced diisopropylamino group. Reaction with the immobilized nucleotide forms a 5',3' linkage, and the diisopropylamino group is eliminated. In step 4, the phosphite linkage is oxidized with iodine to produce a phosphotriester linkage. Reactions 2 through 4 are repeated until all nucleotides are added. At each step, excess nucleotide is removed before addition of the next nucleotide. In steps 5 and 6 the remaining protecting groups on the bases and the phosphates are removed, and in 7 the oligonucleotide is separated from the solid support and purified. The chemical synthesis of RNA is somewhat more complicated because of the need to protect the 2' hydroxyl of ribose without adversely affecting the reactivity of the 3' hydroxyl.
SUMMARY 8.3 Nucleic Acid Chemistry

- Native DNA undergoes reversible unwinding and separation of strands (melting) on heating or at extremes of pH. DNAs rich in G=C pairs have higher melting points than DNAs rich in A=T pairs.
- Denatured single-stranded DNAs from two species can form a hybrid duplex, the degree of hybridization depending on the extent of sequence similarity. Hybridization is the basis for important techniques used to study and isolate specific genes and RNAs.
- DNA is a relatively stable polymer. Spontaneous reactions such as deamination of certain bases, hydrolysis of base-sugar N-glycosyl bonds, radiation-induced formation of pyrimidine dimers, and oxidative damage occur at very low rates, yet are important because of a cell's very low tolerance for changes in genetic material.
- DNA sequences can be determined and DNA polymers synthesized with simple, automated protocols involving chemical and enzymatic methods.

8.4 Other Functions of Nucleotides

In addition to their roles as the subunits of nucleic acids, nucleotides have a variety of other functions in every cell: as energy carriers, components of enzyme cofactors, and chemical messengers.

Nucleotides Carry Chemical Energy in Cells

The phosphate group covalently linked at the 5' hydroxyl of a ribonucleotide may have one or two additional phosphates attached. The resulting molecules are referred to as nucleoside mono-, di-, and triphosphates (Fig. 8-36). Starting from the ribose, the three phosphates are generally labeled α, β, and γ. Hydrolysis of nucleoside triphosphates provides the chemical energy to drive many cellular reactions. Adenosine 5'-triphosphate, ATP, is by far the most widely used for this purpose, but UTP, GTP, and CTP are also used in some reactions. Nucleoside triphosphates also serve as the activated precursors of DNA and RNA synthesis, as described in Chapters 25 and 26.

The energy released by hydrolysis of ATP and the other nucleoside triphosphates is accounted for by the structure of the triphosphate group. The bond between the ribose and the α phosphate is an ester linkage. The α, β and γ linkages are phosphoanhydrides (Fig. 8-37). Hydrolysis of the ester linkage yields about 14 kJ/mol under standard conditions, whereas hydrolysis of each anhydride bond yields about 30 kJ/mol. ATP hydrolysis often plays an important thermodynamic role in biosynthesis. When coupled to a reaction with a positive free-energy change, ATP hydrolysis shifts the equilibrium of the overall process to favor product formation.
(recall the relationship between equilibrium constant and free-energy change described by Eqn 6-3 on p. 188).

Adenine Nucleotides Are Components of Many Enzyme Cofactors

A variety of enzyme cofactors serving a wide range of chemical functions include adenosine as part of their structure (Fig. 8–38). They are unrelated structurally except for the presence of adenosine. In none of these cofactors does the adenosine portion participate directly in the primary function, but removal of adenosine generally results in a drastic reduction of cofactor activities. For example, removal of the adenine nucleotide (3’-phosphoadenosine diphosphate) from acetoacetyl-CoA, the coenzyme A derivative of acetoacetate, reduces its reactivity as a substrate for β-ketoacyl-CoA transferase (an enzyme of lipid metabolism) by a factor of 10^6. Although this requirement for adenosine has not been investigated in detail, it must involve the binding energy between enzyme and substrate (or cofactor) that is used both in catalysis and in stabilizing the initial enzyme-substrate complex (Chapter 6). In the case of β-ketoacyl-CoA transferase, the nucleotide moiety of coenzyme A seems to be a binding “handle” that helps to pull the substrate (acetoacetyl-CoA) into the active site. Similar roles may be found for the nucleoside portion of other nucleotide cofactors.

Why is adenosine, rather than some other large molecule, used in these structures? The answer here may involve a form of evolutionary economy. Adenosine is certainly not unique in the amount of potential binding energy it can contribute. The importance of adenosine probably lies not so much in some special chemical

FIGURE 8–38 Some coenzymes containing adenosine. The adenosine portion is shaded in light red. Coenzyme A (CoA) functions in acyl group transfer reactions; the acyl group (such as the acetyl or acetoacetyl group) is attached to the CoA through a thioester linkage to the β-mercaptoethylamine moiety. NAD+ functions in hydride transfers, and FAD, the active form of vitamin B₂ (riboflavin), in electron transfers. Another coenzyme incorporating adenosine is 5’-deoxyadenosylcobalamain, the active form of vitamin B₁₂ (see Box 17–2), which participates in intramolecular group transfers between adjacent carbons.
characteristic as in the evolutionary advantage of using one compound for multiple roles. Once ATP became the universal source of chemical energy, systems developed to synthesize ATP in greater abundance than the other nucleotides; because it is abundant, it becomes the logical choice for incorporation into a wide variety of structures. The economy extends to protein structure. A single protein domain that binds adenosine can be used in different enzymes. Such a domain, called a nucleotide-binding fold, is found in many enzymes that bind ATP and nucleotide cofactors.

Some Nucleotides Are Regulatory Molecules

Cells respond to their environment by taking cues from hormones or other external chemical signals. The interaction of these extracellular chemical signals (“first messengers”) with receptors on the cell surface often leads to the production of second messengers inside the cell, which in turn leads to adaptive changes in the cell interior (Chapter 12). Often, the second messenger is a nucleotide (Fig. 8-39). One of the most common is adenosine 3′,5′-cyclic monophosphate (cyclic AMP, or cAMP), formed from ATP in a reaction catalyzed by adenylyl cyclase, an enzyme associated with the inner face of the plasma membrane. Cyclic AMP serves regulatory functions in virtually every cell outside the plant kingdom. Guanosine 3′,5′-cyclic monophosphate (cGMP) occurs in many cells and also has regulatory functions.

Another regulatory nucleotide, ppGpp (Fig. 8–39), is produced in bacteria in response to a slowdown in protein synthesis during amino acid starvation. This nucleotide inhibits the synthesis of the rRNA and tRNA molecules (see Fig. 28–24) needed for protein synthesis, preventing the unnecessary production of nucleic acids.

SUMMARY 8.4 Other Functions of Nucleotides

- ATP is the central carrier of chemical energy in cells. The presence of an adenosine moiety in a variety of enzyme cofactors may be related to binding-energy requirements.
- Cyclic AMP, formed from ATP in a reaction catalyzed by adenylyl cyclase, is a common second messenger produced in response to hormones and other chemical signals.

Key Terms

Terms in bold are defined in the glossary.

- gene 271
- ribosomal RNA (rRNA) 271
- messenger RNA (mRNA) 271
- transfer RNA (tRNA) 271
- nucleotide 271
- nucleoside 272
- pyrimidine 272
- purine 272
- deoxyribonucleotide 273
- ribonucleotide 273
- phosphodiester linkage 275
- 5′ end 275
- 3′ end 275
- oligonucleotide 276
- polynucleotide 276
- base pair 277
- major groove 279
- minor groove 279
- B-form DNA 281
- A-form DNA 281
- Z-form DNA 281
- palindrome 281
- hairpin 282
- cruciform 282
- triplex DNA 282
- G tetraplex 282
- transcription 284
- monocistronic mRNA 284
- polycistronic mRNA 284
- mutation 289
- second messenger 298
- adenosine 3′,5′-cyclic monophosphate (cyclic AMP, cAMP) 298

Further Reading

General

A good source for more information on the chemistry of nucleotides and nucleic acids.

A very useful set of articles.

The best place to start to learn more about DNA structure.

Historical

Variations in DNA Structure

Good summary of the structural properties of quadruplexes.

Nucleic Acid Chemistry

Faster and more powerful DNA sequencing technologies are under development.

ATP as Energy Carrier

A relatively short article, full of insights.

Problems

1. Nucleotide Structure Which positions in the purine ring of a purine nucleotide in DNA have the potential to form hydrogen bonds but are not involved in Watson-Crick base pairing?

2. Base Sequence of Complementary DNA Strands One strand of a double-helical DNA has the sequence (5')GCC-GATATTCTCCTCAAAATTTGC(C3'). Write the base sequence of the complementary strand. What is the potential type of sequence contained in this DNA segment? Does the double-stranded DNA have the potential to form any alternative structures?

3. DNA of the Human Body Calculate the weight in grams of a double-helical DNA molecule stretching from the Earth to the moon (~320,000 km). The DNA double helix weighs about 1×10^{-18} g per 1,000 nucleotide pairs; each base pair extends 3.4 Å. For an interesting comparison, your body contains about 0.5 g of DNA!

4. DNA Bending Assume that a poly(A) tract five base pairs long produces a 20° bend in a DNA strand. Calculate the total (net) bend produced in a DNA if the center base pairs (the third of five) of two successive (dA)₅ tracts are located (a) 10 base pairs apart; (b) 15 base pairs apart. Assume 10 base pairs per turn in the DNA double helix.

5. Distinction between DNA Structure and RNA Structure Hairpins may form at palindromic sequences in single strands of either RNA or DNA. How is the helical structure of a long and fully base-paired (except at the end) hairpin in RNA different from that of a similar hairpin in DNA?

6. Nucleotide Chemistry The cells of many eukaryotic organisms have highly specialized systems that specifically repair G-T mismatches in DNA. The mismatch is repaired to form a G=C (not A=T) base pair. This G-T mismatch repair mechanism occurs in addition to a more general system that repairs virtually all mismatches. Can you suggest why cells might require a specialized system to repair G-T mismatches?

7. Spontaneous DNA Damage Hydrolysis of the N-glycosyl bond between deoxyribose and a purine in DNA creates an AP site. An AP site generates a thermodynamic destabilization greater than that created by any DNA mismatched base pair. This effect is not completely understood. Examine the structure of an AP site (see Fig. 8-33b) and describe some chemical consequences of base loss.

8. Nucleic Acid Structure Explain why the absorption of UV light by double-stranded DNA increases (the hyperchromic effect) when the DNA is denatured.

9. Determination of Protein Concentration in a Solution Containing Proteins and Nucleic Acids The concentration of protein or nucleic acid in a solution containing both can be estimated by using their different light absorption properties: proteins absorb most strongly at 280 nm and nucleic acids at 260 nm. Estimates of their respective concentrations in a mixture can be made by measuring the absorbance (A) of the solution at 280 and 260 nm and using the table on page 300, which gives $R_{280/260}$, the ratio of absorbances at 280 and 260 nm; the percentage of total mass that is nucleic acid; and a factor, F, that corrects the A_{280} reading and gives a more accurate protein concentration.
The protein concentration (in mg/mL) = \(F \times A_{280} \) (assuming the cuvette is 1 cm wide). Calculate the protein concentration in a solution of \(A_{280} = 0.69 \) and \(A_{280} = 0.94 \).

Proportion of Nucleic Acid (\%)

<table>
<thead>
<tr>
<th>(R_{280/260})</th>
<th>Proportion of Nucleic Acid (%)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>0.00</td>
<td>1.116</td>
</tr>
<tr>
<td>1.63</td>
<td>0.25</td>
<td>1.081</td>
</tr>
<tr>
<td>1.52</td>
<td>0.50</td>
<td>1.054</td>
</tr>
<tr>
<td>1.40</td>
<td>0.75</td>
<td>1.023</td>
</tr>
<tr>
<td>1.36</td>
<td>1.00</td>
<td>0.994</td>
</tr>
<tr>
<td>1.30</td>
<td>1.25</td>
<td>0.970</td>
</tr>
<tr>
<td>1.25</td>
<td>1.50</td>
<td>0.944</td>
</tr>
<tr>
<td>1.16</td>
<td>2.00</td>
<td>0.899</td>
</tr>
<tr>
<td>1.09</td>
<td>2.50</td>
<td>0.852</td>
</tr>
<tr>
<td>1.03</td>
<td>3.00</td>
<td>0.814</td>
</tr>
<tr>
<td>0.979</td>
<td>3.50</td>
<td>0.776</td>
</tr>
<tr>
<td>0.939</td>
<td>4.00</td>
<td>0.743</td>
</tr>
<tr>
<td>0.874</td>
<td>5.00</td>
<td>0.682</td>
</tr>
<tr>
<td>0.846</td>
<td>5.50</td>
<td>0.656</td>
</tr>
<tr>
<td>0.822</td>
<td>6.00</td>
<td>0.632</td>
</tr>
<tr>
<td>0.804</td>
<td>6.50</td>
<td>0.607</td>
</tr>
<tr>
<td>0.784</td>
<td>7.00</td>
<td>0.585</td>
</tr>
<tr>
<td>0.767</td>
<td>7.50</td>
<td>0.565</td>
</tr>
<tr>
<td>0.753</td>
<td>8.00</td>
<td>0.545</td>
</tr>
<tr>
<td>0.730</td>
<td>9.00</td>
<td>0.508</td>
</tr>
<tr>
<td>0.705</td>
<td>10.00</td>
<td>0.478</td>
</tr>
<tr>
<td>0.671</td>
<td>12.00</td>
<td>0.422</td>
</tr>
<tr>
<td>0.644</td>
<td>14.00</td>
<td>0.377</td>
</tr>
<tr>
<td>0.615</td>
<td>17.00</td>
<td>0.322</td>
</tr>
<tr>
<td>0.595</td>
<td>20.00</td>
<td>0.278</td>
</tr>
</tbody>
</table>

10. Solubility of the Components of DNA

Draw the following structures and rate their relative solubilities in water (most soluble to least soluble): deoxyribose, guanine, phosphate. How are these solubilities consistent with the three-dimensional structure of double-stranded DNA?

11. Sanger Sequencing Logic

In the Sanger (dideoxy) method for DNA sequencing, a small amount of a dideoxynucleotide triphosphate—say, ddCTP—is added to the sequencing reaction along with a larger amount of the corresponding dCTP. What result would be observed if the dCTP were omitted?

12. DNA Sequencing

The following DNA fragment was sequenced by the Sanger method. The red asterisk indicates a fluorescent label.

\[\text{5'- ATTACGCAAGGACATTAGAC-3'} \]

A sample of the DNA was reacted with DNA polymerase and each of the nucleotide mixtures (in an appropriate buffer) listed below. Dideoxynucleotides (ddNTPs) were added in relatively small amounts.

1. dATP, dTTP, dCTP, dGTP, ddTTP
2. dATP, dTTP, dCTP, dGTP, ddGTP
3. dATP, dCTP, dGTP, ddTTP
4. dATP, dTTP, dCTP, dGTP

The resulting DNA was separated by electrophoresis on an agarose gel, and the fluorescent bands on the gel were located. The band pattern resulting from nucleotide mixture 1 is shown below. Assuming that all mixtures were run on the same gel, what did the remaining lanes of the gel look like?

13. Snake Venom Phosphodiesterase

An exonuclease is an enzyme that sequentially cleaves nucleotides from the end of a polynucleotide strand. Snake venom phosphodiesterase, which hydrolyzes nucleotides from the 3’ end of any oligonucleotide with a free 3’-hydroxyl group, cleaves between the 3’ hydroxyl of the ribose or deoxyribose and the phosphoryl group of the next nucleotide. It acts on single-stranded DNA or RNA and has no base specificity. This enzyme was used in sequence determination experiments before the development of modern nucleic acid sequencing techniques. What are the products of partial digestion by snake venom phosphodiesterase of an oligonucleotide with the following sequence?

\[(5') GCGCCAUUGC(3') - OH \]

(b) One factor that prevents potential DNA damage in spores is their greatly decreased water content. How would this affect some types of mutations?

(b) Endospores have a category of proteins called small acid-soluble proteins (SASPs) that bind to their DNA, preventing formation of cyclobutane-type dimers. What causes cyclobutane dimers, and why do bacterial endospores need mechanisms to prevent their formation?
15. Oligonucleotide Synthesis In the scheme of Figure 8–35, each new base to be added to the growing oligonucleotide is modified so that its 3’ hydroxyl is activated and the 5’ hydroxyl has a dimethoxytrityl (DMT) group attached. What is the function of the DMT group on the incoming base?

Biochemistry on the Internet

16. The Structure of DNA Elucidation of the three-dimensional structure of DNA helped researchers understand how this molecule conveys information that can be faithfully replicated from one generation to the next. To see the secondary structure of double-stranded DNA, go to the Protein Data Bank website (www.rcsb.org). Use the PDB identifiers listed below to retrieve the structure summaries for the two forms of DNA. Open the structures using Jmol (linked under the Display Options), and use the controls in the Jmol menu to complete the following exercises. Refer to the Jmol help links as needed.

(a) Obtain the file for 141D, a highly conserved, repeated DNA sequence from the end of the HIV-1 (the virus that causes AIDS) genome. Display the molecule as a ball-and-stick structure (in the control menu, choose Select > All, then Render > Scheme > Ball and Stick). Identify the sugar–phosphate backbone for each strand of the DNA duplex. Locate and identify individual bases. Identify the 5’ end of each strand. Locate the major and minor grooves. Is this a right- or left-handed helix?

(b) Obtain the file for 145D, a DNA with the Z conformation. Display the molecule as a ball-and-stick structure. Identify the sugar–phosphate backbone for each strand of the DNA duplex. Is this a right- or left-handed helix?

(c) To fully appreciate the secondary structure of DNA, view the molecules in stereo. On the control menu, Select > All, then Render > Stereographic > Cross-eyed or Wall-eyed. You will see two images of the DNA molecule. Sit with your nose approximately 10 inches from the monitor and focus on the tip of your nose (cross-eyed) or the opposite edges of the screen (wall-eyed). In the background you should see three images of the DNA helix. Shift your focus to the middle image, which should appear three-dimensional. (Note that only one of the two authors can make this work.)

Data Analysis Problem

17. Chargaff’s Studies of DNA Structure The chapter section “DNA Is a Double Helix that Stores Genetic Information” includes a summary of the main findings of Erwin Chargaff and his coworkers, listed as four conclusions (“Chargaff’s rules”; p. 278). In this problem, you will examine the data Chargaff collected in support of these conclusions.

In one paper, Chargaff (1950) described his analytical methods and some early results. Briefly, he treated DNA samples with acid to remove the bases, separated the bases by paper chromatography, and measured the amount of each base with UV spectroscopy. His results are shown in the three tables below. The molar ratio is the ratio of the number of moles of each base in the sample to the number of moles of phosphate in the sample—this gives the fraction of the total number of bases represented by each particular base. The recovery is the sum of all four bases (the sum of the molar ratios); full recovery of all bases in the DNA would give a recovery of 1.0.

Molar ratios in ox DNA

<table>
<thead>
<tr>
<th>Base</th>
<th>Thymus</th>
<th>Spleen</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep. 1</td>
<td>Prep. 2</td>
<td>Prep. 3</td>
<td>Prep. 1</td>
</tr>
<tr>
<td>Adenine</td>
<td>0.26</td>
<td>0.28</td>
<td>0.30</td>
</tr>
<tr>
<td>Guanine</td>
<td>0.21</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>Cytosine</td>
<td>0.16</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>Thymine</td>
<td>0.25</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>Recovery</td>
<td>0.88</td>
<td>0.94</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Molar ratios in human DNA

<table>
<thead>
<tr>
<th>Base</th>
<th>Sperm</th>
<th>Thymus</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep. 1</td>
<td>Prep. 2</td>
<td>Prep. 1</td>
<td>Normal Carcinoma</td>
</tr>
<tr>
<td>Adenine</td>
<td>0.29</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>Guanine</td>
<td>0.18</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>Cytosine</td>
<td>0.18</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>Thymine</td>
<td>0.31</td>
<td>0.30</td>
<td>0.28</td>
</tr>
<tr>
<td>Recovery</td>
<td>0.96</td>
<td>0.92</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Molar ratios in DNA of microorganisms

<table>
<thead>
<tr>
<th>Base</th>
<th>Yeast</th>
<th>Avian tubercle bacilli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep. 1</td>
<td>Prep. 2</td>
<td>Prep. 1</td>
</tr>
<tr>
<td>Adenine</td>
<td>0.24</td>
<td>0.30</td>
</tr>
<tr>
<td>Guanine</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>Cytosine</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>Thymine</td>
<td>0.25</td>
<td>0.29</td>
</tr>
<tr>
<td>Recovery</td>
<td>0.76</td>
<td>0.92</td>
</tr>
</tbody>
</table>

(a) Based on these data, Chargaff concluded that “no differences in composition have so far been found in DNA from different tissues of the same species.” This corresponds to conclusion 2 in this chapter. However, a skeptic looking at the data above might say, “They certainly look different to me!” If you were Chargaff, how would you use the data to convince the skeptic to change her mind?

(b) The base composition of DNA from normal and cancerous liver cells (hepatocarcinoma) was not distinguishably different. Would you expect Chargaff’s technique to be capable of detecting a difference between the DNA of normal and cancerous cells? Explain your reasoning.

As you might expect, Chargaff’s data were not completely convincing. He went on to improve his techniques, as described...
in a later paper (Chargaff, 1951), in which he reported molar ratios of bases in DNA from a variety of organisms:

<table>
<thead>
<tr>
<th>Source</th>
<th>A:G</th>
<th>T:C</th>
<th>A:T</th>
<th>G:C</th>
<th>Purine:pyrimidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ox</td>
<td>1.29</td>
<td>1.43</td>
<td>1.04</td>
<td>1.00</td>
<td>1.1</td>
</tr>
<tr>
<td>Human</td>
<td>1.56</td>
<td>1.75</td>
<td>1.00</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>Hen</td>
<td>1.45</td>
<td>1.29</td>
<td>1.06</td>
<td>0.91</td>
<td>0.99</td>
</tr>
<tr>
<td>Salmon</td>
<td>1.43</td>
<td>1.43</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.22</td>
<td>1.18</td>
<td>1.00</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Yeast</td>
<td>1.67</td>
<td>1.92</td>
<td>1.00</td>
<td>1.20</td>
<td>1.0</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type c</td>
<td>1.74</td>
<td>1.54</td>
<td>1.07</td>
<td>0.91</td>
<td>1.0</td>
</tr>
<tr>
<td>E. coli K-12</td>
<td>1.05</td>
<td>0.95</td>
<td>1.09</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>Avian tubercle bacillus</td>
<td>0.4</td>
<td>0.4</td>
<td>1.09</td>
<td>1.08</td>
<td>1.1</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>0.7</td>
<td>0.7</td>
<td>0.95</td>
<td>0.86</td>
<td>0.9</td>
</tr>
<tr>
<td>Bacillus satch</td>
<td>0.7</td>
<td>0.6</td>
<td>1.12</td>
<td>0.89</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(c) According to Chargaff, as stated in conclusion 1 in this chapter, "The base composition of DNA generally varies from one species to another." Provide an argument, based on the data presented so far, that supports this conclusion.

(d) According to conclusion 4, "In all cellular DNAs, regardless of the species ... A + G = T + C." Provide an argument, based on the data presented so far, that supports this conclusion.

Part of Chargaff's intent was to disprove the "tetranucleotide hypothesis"; this was the idea that DNA was a monotonous tetranucleotide polymer (AGCT)$_n$ and therefore not capable of containing sequence information. Although the data presented above show that DNA cannot be simply a tetranucleotide—if so, all samples would have molar ratios of 0.25 for each base—it was still possible that the DNA from different organisms was a slightly more complex, but still monotonous, repeating sequence.

To address this issue, Chargaff took DNA from wheat germ and treated it with the enzyme deoxyribonuclease for different time intervals. At each time interval, some of the DNA was converted to small fragments; the remaining, larger fragments he called the "core." In the table below, the "19% core" corresponds to the larger fragments left behind when 81% of the DNA was degraded; the "8% core" corresponds to the larger fragments left after 92% degradation.

<table>
<thead>
<tr>
<th>Base</th>
<th>Intact DNA</th>
<th>19% Core</th>
<th>8% Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenine</td>
<td>0.27</td>
<td>0.33</td>
<td>0.35</td>
</tr>
<tr>
<td>Guanine</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Cytosine</td>
<td>0.22</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>Thymine</td>
<td>0.27</td>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>Recovery</td>
<td>0.98</td>
<td>0.95</td>
<td>0.92</td>
</tr>
</tbody>
</table>

(e) How would you use these data to argue that wheat germ DNA is not a monotonous repeating sequence?

References

Of all the natural systems, living matter is the one which, in the face of great transformations, preserves inscribed in its organization the largest amount of its own past history.

—Emile Zuckerkandl and Linus Pauling, article in Journal of Theoretical Biology, 1965

DNA-Based Information Technologies

9.1 DNA Cloning: The Basics 304
9.2 From Genes to Genomes 315
9.3 From Genomes to Proteomes 324
9.4 Genome Alterations and New Products of Biotechnology 330

We now turn to a technology that is fundamental to the advance of modern biological sciences, defining present and future biochemical frontiers and illustrating many important principles of biochemistry. Elucidation of the laws governing enzymatic catalysis, macromolecular structure, cellular metabolism, and information pathways allows research to be directed at increasingly complex biochemical processes. Cell division, immunity, embryogenesis, vision, taste, oncogenesis, cognition—all are orchestrated in an elaborate symphony of molecular and macromolecular interactions that we are now beginning to understand with increasing clarity. The real implications of the biochemical journey begun in the nineteenth century are found in the ever-increasing power to analyze and alter living systems.

To understand a complex biological process, a biochemist isolates and studies the individual components in vitro, then pieces together the parts to get a coherent picture of the overall process. A major source of molecular insights is the cell’s own information archive, its DNA. The sheer size of chromosomes, however, presents an enormous challenge: how does one find and study a particular gene among the tens of thousands of genes nested in the billions of base pairs of a mammalian genome? Solutions began to emerge in the 1970s.

Decades of advances by thousands of scientists working in genetics, biochemistry, cell biology, and physical chemistry came together in the laboratories of Paul Berg, Herbert Boyer, and Stanley Cohen to yield techniques for locating, isolating, preparing, and studying small segments of DNA derived from much larger chromosomes. Techniques for DNA cloning paved the way to the modern fields of genomics and proteomics, the study of genes and proteins on the scale of whole cells and organisms. These new methods are transforming basic research, agriculture, medicine, ecology, forensics, and many other fields, while occasionally presenting society with difficult choices and ethical dilemmas.

We begin this chapter with an outline of the fundamental biochemical principles of the now-classic discipline of DNA cloning. Next, we illustrate the range of applications and the potential of a range of newer technologies, with a broad emphasis on modern advances in genomics and proteomics.
9.1 DNA Cloning: The Basics

A clone is an identical copy. This term originally applied to cells of a single type, isolated and allowed to reproduce to create a population of identical cells. DNA cloning involves separating a specific gene or DNA segment from a larger chromosome, attaching it to a small molecule of carrier DNA, and then replicating this modified DNA thousands or millions of times through both an increase in host cell number and the creation of multiple copies of the cloned DNA in each cell. The result is selective amplification of a particular gene or DNA segment. Cloning of DNA from any organism entails five general procedures:

1. Cutting DNA at precise locations. Sequence-specific endonucleases (restriction endonucleases) provide the necessary molecular scissors.

2. Selecting a small molecule of DNA capable of self-replication. These DNAs are called cloning vectors (a vector is a delivery agent). They are typically plasmids or viral DNAs.

3. Joining two DNA fragments covalently. The enzyme DNA ligase links the cloning vector and DNA to be cloned. Composite DNA molecules comprising covalently linked segments from two or more sources are called recombinant DNAs.

4. Moving recombinant DNA from the test tube to a host cell that will provide the enzymatic machinery for DNA replication.

5. Selecting or identifying host cells that contain recombinant DNA.

The methods used to accomplish these and related tasks are collectively referred to as recombinant DNA technology or, more informally, genetic engineering.

Much of our initial discussion will focus on DNA cloning in the bacterium Escherichia coli, the first organism used for recombinant DNA work and still the most common host cell. *E. coli* has many advantages: its DNA metabolism (like many other of its biochemical processes) is well understood; many naturally occurring cloning vectors associated with *E. coli*, such as plasmids and bacteriophages (bacterial viruses; also called phages), are well characterized; and techniques are available for moving DNA expeditiously from one bacterial cell to another. The principles discussed here are broadly applicable to DNA cloning in other organisms, a topic discussed more fully later in the chapter.

Restriction Endonucleases and DNA Ligase Yield Recombinant DNA

Particularly important to recombinant DNA technology is a set of enzymes (Table 9-1) made available through decades of research on nucleic acid metabolism. Two classes of enzymes lie at the heart of the classic approach to generating and propagating a recombinant DNA molecule (Fig. 9-1). First, restriction endonucleases (also called restriction enzymes) recognize and cleave DNA at specific sequences (recognition sequences or restriction sites) to generate a set of smaller fragments. Second, the DNA fragment to be cloned is joined to a suitable cloning vector by using DNA ligases to link the DNA molecules together. The recombinant vector is then introduced into a host cell, which amplifies the fragment in the course of many generations of cell division.

Restriction endonucleases are found in a wide range of bacterial species. Werner Arber discovered in the early 1960s that their biological function is to recognize and cleave foreign DNA (the DNA of an infecting virus,
for example); such DNA is said to be restricted. In the host cell’s DNA, the sequence that would be recognized by its own restriction endonuclease is protected from digestion by methylation of the DNA, catalyzed by a specific DNA methylase. The restriction endonuclease and the corresponding methylase are sometimes referred to as a restriction-modification system.

There are three types of restriction endonucleases, designated I, II, and III. Types I and III are generally large, multisubunit complexes containing both the endonuclease and methylase activities. Type I restriction endonucleases cleave DNA at random sites that can be more than 1,000 base pairs (bp) from the recognition sequence. Type III restriction endonucleases cleave the DNA about 25 bp from the recognition sequence. Both types move along the DNA in a reaction that requires the energy of ATP. Type II restriction endonucleases, first isolated by Hamilton Smith in 1970, are simpler, require no ATP, and cleave the DNA within the recognition sequence itself. The extraordinary utility of this group of restriction endonucleases was demonstrated by Daniel Nathans, who first used them to develop novel methods for mapping and analyzing genes and genomes.

Thousands of restriction endonucleases have been discovered in different bacterial species, and more than 100 different DNA sequences are recognized by one or more of these enzymes. The recognition sequences are usually 4 to 6 bp long and palindromic (see Fig. 8-18). Table 9–2 lists sequences recognized by a few type II restriction endonucleases.

TABLE 9–2 | Recognition Sequences for Some Type II Restriction Endonucleases

<table>
<thead>
<tr>
<th>Enzyme(s)</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BamHI</td>
<td>(5') G G A T C C (3') C C T A G G *</td>
</tr>
<tr>
<td>Clal</td>
<td>(5') A T C G A T (3') T A G C T A *</td>
</tr>
<tr>
<td>EcoRI</td>
<td>(5') G A A T T C (3') C T T A A G *</td>
</tr>
<tr>
<td>EcoRV</td>
<td>(5') G A T A T C (3') C T T A A G *</td>
</tr>
<tr>
<td>HaeIII</td>
<td>(5') G G C G (3') C C G G *</td>
</tr>
<tr>
<td>HindIII</td>
<td>HindIII</td>
</tr>
</tbody>
</table>

Arrows indicate the phosphodiester bonds cleaved by each restriction endonuclease. Asterisks indicate bases that are methylated by the corresponding methylase (where known). N denotes any base. Note that the name of each enzyme consists of a three-letter abbreviation (in italics) of the bacterial species from which it is derived, sometimes followed by a strain designation and Roman numerals to distinguish different restriction endonucleases isolated from the same bacterial species. Thus *BamHI* is the first (I) restriction endonuclease characterized from *Bacillus amyloliquefaciens*, strain H.
Some restriction endonucleases make staggered cuts on the two DNA strands, leaving two to four nucleotides of one strand unpaired at each resulting end. These unpaired strands are referred to as sticky ends (Fig. 9-2a), because they can base-pair with each other or with complementary sticky ends of other DNA fragments. Other restriction endonucleases cleave both strands of DNA at the opposing phosphodiester bonds, leaving no unpaired bases on the ends, often called blunt ends (Fig. 9-2b).

The average size of the DNA fragments produced by cleaving genomic DNA with a restriction endonuclease depends on the frequency with which a particular restriction site occurs in the DNA molecule; this in turn depends largely on the size of the recognition sequence.

In a DNA molecule with a random sequence in which all four nucleotides were equally abundant, a 6 bp sequence recognized by a restriction endonuclease such as BamHI would occur on average once every $4^6 (4,096)$ bp, assuming the DNA had a 50% G=C content. Enzymes that recognize a 4 bp sequence would produce smaller DNA fragments from a random-sequence DNA molecule; a recognition sequence of this size would be expected to occur about once every $4^4 (256)$ bp. In natural DNA molecules, particular recognition sequences tend to occur less frequently than this because nucleotide sequences in DNA are not random and the four nucleotides are not equally abundant. In laboratory experiments, the average size of the fragments produced by restriction endonuclease cleavage of a large DNA

![Diagram of DNA molecules cleaved by restriction endonucleases.](https://example.com/diagram.png)

FIGURE 9-2 Cleavage of DNA molecules by restriction endonucleases.
Restriction endonucleases recognize and cleave only specific sequences, leaving either (a) sticky ends (with protruding single strands) or (b) blunt ends. Fragments can be ligated to other DNAs, such as the cleaved cloning vector (a plasmid) shown here. This reaction is facilitated by the annealing of complementary sticky ends; ligation is less efficient for DNA fragments with blunt ends than for those with complementary sticky ends, and DNA fragments with different (non-complementary) sticky ends generally are not ligated. (c) A synthetic DNA fragment with recognition sequences for several restriction endonucleases can be inserted into a plasmid that has been cleaved by a restriction endonuclease. The insert is called a linker, an insert with multiple restriction sites is called a polylinker.

Restriction Enzymes
can be increased by simply terminating the reaction before completion; the result is called a partial digest. Fragment size can also be increased by using a special class of endonucleases called homing endonucleases (see Fig. 26-38). These recognize and cleave much longer DNA sequences (14 to 20 bp).

Fragment size can also be increased by using a special class of endonucleases called homing endonucleases (see Fig. 26-38). These recognize and cleave much longer DNA sequences (14 to 20 bp).

Once a DNA molecule has been cleaved into fragments, a particular fragment of known size can be enriched by agarose or acrylamide gel electrophoresis or by HPLC (pp. 89, 88). For a typical mammalian genome, however, cleavage by a restriction endonuclease usually yields too many different DNA fragments to permit convenient isolation of a particular fragment. A common intermediate step in the cloning of a specific gene or DNA segment is the construction of a DNA library (described in Section 9.2).

After the target DNA fragment is isolated, DNA ligase can be used to join it to a similarly digested cloning vector—that is, a vector digested by the same restriction endonuclease; a fragment generated by EcoRI, for example, generally will not link to a fragment generated by BamHI. As described in more detail in Chapter 25 (see Fig. 25-17), DNA ligase catalyzes the formation of new phosphodiester bonds in a reaction that uses ATP or a similar cofactor. The base pairing of complementary sticky ends greatly facilitates the ligation reaction (Fig. 9-2a). Blunt ends can also be ligated, albeit less efficiently. Researchers can create new DNA sequences by inserting synthetic DNA fragments (called linkers) between the ends that are being ligated. Inserted DNA fragments with multiple recognition sequences for restriction endonucleases (often useful later as points for inserting additional DNA by cleavage and ligation) are called polylinkers (Fig. 9-2c).

The effectiveness of sticky ends in selectively joining two DNA fragments was apparent in the earliest recombinant DNA experiments. Before restriction endonucleases were widely available, some workers found they could generate sticky ends by the combined action of the bacteriophage λ exonuclease and terminal transferase (Table 9-1). The fragments to be joined were given complementary homopolymeric tails. Peter Lobban and Dale Kaiser used this method in 1971 in the first experiments to join naturally occurring DNA fragments. Similar methods were used soon after in the laboratory of Paul Berg to join DNA segments from simian virus 40 (SV40) to DNA derived from bacteriophage λ, thereby creating the first recombinant DNA molecule with DNA segments from different species.

Cloning Vectors Allow Amplification of Inserted DNA Segments

The principles that govern the delivery of recombinant DNA in clonable form to a host cell, and its subsequent amplification in the host, are well illustrated by considering three popular cloning vectors commonly used in experiments with *E. coli*—plasmids, bacteriophages, and bacterial artificial chromosomes—and a vector used to clone large DNA segments in yeast.

Plasmids Plasmids are circular DNA molecules that replicate separately from the host chromosome. Naturally occurring bacterial plasmids range in size from 5,000 to 400,000 bp. They can be introduced into bacterial cells by a process called **transformation**. The cells (generally *E. coli*) and plasmid DNA are incubated together at 0 °C in a calcium chloride solution, then subjected to a shock by rapidly shifting the temperature to 37 to 43 °C. For reasons not well understood, some of the cells treated in this way take up the plasmid DNA. Some species of bacteria, such as *Acinetobacter baylyi*, are naturally competent for DNA uptake and do not require the calcium chloride treatment. In an alternative method, cells incubated with the plasmid DNA are subjected to a high-voltage pulse. This approach, called **electroporation**, transiently renders the bacterial membrane permeable to large molecules.

Regardless of the approach, few cells actually take up the plasmid DNA, so a method is needed to select those that do. The usual strategy is to use a plasmid that includes a gene that the host cell requires for growth under specific conditions, such as a gene that confers resistance to an antibiotic. Only cells transformed by the recombinant plasmid can grow in the presence of that antibiotic, making any cell that contains the plasmid "selectable" under those growth conditions. Such a gene is called a selectable marker.

Investigators have developed many different plasmid vectors suitable for cloning by modifying naturally occurring plasmids. The now classic *E. coli* plasmid pBR322 offers a good example of the features useful in a cloning vector (Fig. 9-3).

FIGURE 9-3 The constructed *E. coli* plasmid pBR322. Note the location of some important restriction sites—for *PstI*, EcoRI, BamHI, *SalI*, and *PvuII*; ampicillin- and tetracycline-resistance genes; and the replication origin (ori). Constructed in 1977, this was one of the early plasmids designed expressly for cloning in *E. coli*.
Important pBR322 features include:

1. An origin of replication, ori, a sequence where replication is initiated by cellular enzymes (Chapter 25). This sequence is required to propagate the plasmid and maintain it at a level of 10 to 20 copies per cell.

2. Two genes that confer resistance to different antibiotics (tetR, ampR), allowing the identification of cells that contain the intact plasmid or a recombinant version of the plasmid (Fig. 9-4).

3. Several unique recognition sequences (PstI, EcoRI, BamHI, Sall, PvuII) that are targets for different restriction endonucleases, providing sites where the plasmid can later be cut to insert foreign DNA.

4. Small size (4,361 bp), which facilitates entry of the plasmid into cells and the biochemical manipulation of the DNA.

Transformation of typical bacterial cells with purified DNA (never a very efficient process) becomes less successful as plasmid size increases, and it is difficult to clone DNA segments longer than about 15,000 bp when plasmids are used as the vector.

Bacteriophages Bacteriophage λ has a very efficient mechanism for delivering its 48,502 bp of DNA into a bacterium, and it can be used as a vector to clone somewhat larger DNA segments (Fig. 9-5). Two key features contribute to its utility:

1. About one-third of the λ genome is nonessential and can be replaced with foreign DNA.

2. DNA is packaged into infectious phage particles only if it is between 40,000 and 53,000 bp long, a constraint that can be used to ensure packaging of recombinant DNA only.

Researchers have developed bacteriophage λ vectors that can be readily cleaved into three pieces, two of which contain essential genes but which together are only about 30,000 bp long. The third piece, “filler” DNA, is discarded when the vector is to be used for cloning, and additional DNA is inserted between the two essential segments to generate ligated DNA molecules long enough to produce viable phage particles. In effect, the packaging mechanism selects for recombinant viral DNAs.

Bacteriophage λ vectors permit the cloning of DNA fragments of up to 23,000 bp. Once the bacteriophage λ fragments are ligated to foreign DNA fragments of suitable size, the resulting recombinant DNAs can be packaged into phage particles by adding them to crude bacterial cell extracts that contain all the proteins needed to assemble a complete phage. This is called **in vitro packaging** (Fig. 9-5). All viable phage particles will contain a foreign DNA fragment. The subsequent transmission of the recombinant DNA into E. coli cells is highly efficient.
Recombinant DNAs

Bacteriophage cloning vectors. Recombinant DNA methods are used to modify the bacteriophage \(\lambda \) genome, removing the genes not needed for phage production and replacing them with "filler" DNA to make the phage DNA large enough for packaging into phage particles. As shown here, the filler is replaced with foreign DNA in cloning experiments. Recombinants are packaged into viable phage particles in vitro only if they include an appropriately sized foreign DNA fragment as well as both of the essential \(\lambda \) DNA end fragments.

Bacterial Artificial Chromosomes (BACs) Bacterial artificial chromosomes are simply plasmids designed for the cloning of very long segments (typically 100,000 to 300,000 bp) of DNA (Fig. 9-6). They generally include selectable markers such as resistance to the antibiotic chloramphenicol (Cm\(^R\)), as well as a very stable origin of replication (ori) that maintains the plasmid at one or two copies per cell. DNA fragments of several hundred thousand base pairs are cloned into the BAC vector. The large circular DNAs are then introduced into host bacteria by electroporation. These procedures use host bacteria with mutations that compromise the structure of their cell wall, permitting the uptake of the large DNA molecules.

Bacterial artificial chromosomes (BACs) as cloning vectors. The vector is a relatively simple plasmid, with a replication origin (ori) that directs replication. The \(\bar{p} \)par genes, derived from a type of plasmid called an F plasmid, assist in the even distribution of plasmids to daughter cells at cell division. This increases the likelihood of each daughter cell carrying one copy of the plasmid, even when few copies are present. The low number of copies is useful in cloning large segments of DNA because it limits the opportunities for unwanted recombination reactions that can unpredictably alter large cloned DNAs over time. The BAC includes selectable markers. A lac\(\bar{Z} \) gene (required for the production of the enzyme \(\beta \)-galactosidase) is situated in the cloning region such that it is inactivated by cloned DNA inserts. Introduction of recombinant BACs into cells by electroporation is promoted by the use of cells with an altered (more porous) cell wall. Recombinant DNAs are screened for resistance to the antibiotic chloramphenicol (Cm\(^R\)). Plates also contain a substrate for \(\beta \)-galactosidase that yields a colored product. Colonies with active \(\beta \)-galactosidase and hence no DNA insert in the BAC vector turn blue; colonies without \(\beta \)-galactosidase activity—and thus with the desired DNA inserts—are white.
Yeast Artificial Chromosomes (YACs)
E. coli cells are by no means the only hosts for genetic engineering. Yeasts are particularly convenient eukaryotic organisms for this work. As with *E. coli*, yeast genetics is a well-developed discipline. The genome of the most commonly used yeast, *Saccharomyces cerevisiae*, contains only 14×10^6 bp (a simple genome by eukaryotic standards, less than four times the size of the *E. coli* chromosome), and its entire sequence is known. Yeast is also very easy to maintain and grow on a large scale in the laboratory. Plasmid vectors have been constructed for yeast, employing the same principles that govern the use of *E. coli* vectors described above. Convenient methods are now available for moving DNA into and out of yeast cells, facilitating the study of many aspects of eukaryotic cell biochemistry. Some recombinant plasmids incorporate multiple replication origins and other elements that allow them to be used in more than one species (for example, yeast or *E. coli*). Plasmids that can be propagated in cells of two or more different species are called **shuttle vectors**.

Research with large genomes and the associated need for high-capacity cloning vectors led to the development of **yeast artificial chromosomes (YACs)**. YAC vectors contain all the elements needed to maintain a eukaryotic chromosome in the yeast nucleus: a yeast origin of replication, two selectable markers, and specialized sequences (derived from the telomeres and centromere, regions of the chromosome discussed in Chapter 24) needed for stability and proper segregation of the chromosomes at cell division. Before being used in cloning, the vector is propagated as a circular bacterial plasmid. Cleavage with a restriction endonuclease (*BamHI* in Fig. 9–7) removes a length of DNA between two telomere sequences (TEL), leaving the telomeres at the ends of the linearized DNA. Cleavage at another internal site (*EcoRI* in Fig. 9–7) divides the vector into two DNA segments, referred to as vector arms, each with a different selectable marker.

The genomic DNA is prepared by partial digestion with restriction endonucleases (*EcoRI* in Fig. 9–7) to obtain a suitable fragment size. Genomic fragments are then separated by **pulsed field gel electrophoresis**, a variation of gel electrophoresis (see Fig. 3–18) that allows the separation of very large DNA segments. The DNA fragments of appropriate size (up to about 2×10^6 bp) are mixed with the prepared vector arms and ligated. The ligation mixture is then used to transform treated yeast cells with very large DNA molecules. Culture on a medium that requires the presence of both selectable marker genes ensures the growth of only those yeast cells that contain an artificial chromosome with a large insert sandwiched between the two vector arms (Fig. 9–7). The stability of YAC clones increases with size (up to a point). Those with inserts of more than 150,000 bp are nearly as stable as normal cellular chromosomes, whereas those with inserts of less than 100,000 bp are gradually lost during mitosis (so generally there are no yeast cell clones carrying only the two vector ends ligated together or with only short inserts). YACs that lack a telomere at either end are rapidly degraded.

Specific DNA Sequences Are Detectable by Hybridization
DNA hybridization, a process outlined in Chapter 8 (see Fig. 8–29), is the most common sequence-based process for detecting a particular gene or segment of nucleic acid. There are many variations of the basic method, most making use of a labeled (such as radioactive) DNA.
or RNA fragment, known as a **probe**, complementary to the DNA being sought. In one classic approach to detect a particular DNA sequence within a DNA library (a collection of DNA clones), nitrocellulose paper is pressed onto an agar plate containing many individual bacterial colonies from the library, each colony with a different recombinant DNA. Some cells from each colony adhere to the paper, forming a replica of the plate. The paper is treated with alkali to disrupt the cells and denature the DNA within, which remains bound to the region of the paper around the colony from which it came. Added radioactive DNA probe anneals only to its complementary DNA. After any unannealed probe DNA is washed away, the hybridized DNA can be detected by autoradiography (Fig. 9–8).

A common limiting step in detecting and cloning a gene is the generation of a complementary strand of nucleic acid to use as a probe. The origin of a probe depends on what is known about the gene under investigation. Sometimes a homologous gene cloned from another species makes a suitable probe. Or, if the protein product of a gene has been purified, probes can be designed and synthesized by working backward from the amino acid sequence, deducing the DNA sequence that would code for it (Fig. 9–9). Now, researchers typically obtain the necessary DNA sequence information from sequence databases that detail the structure of millions of genes from a wide range of organisms.

FIGURE 9–8 Use of **hybridization** to identify a clone with a particular DNA **segment**. The radioactive DNA probe hybridizes to complementary DNA and is revealed by autoradiography. Once the labeled colonies have been identified, the corresponding colonies on the original agar plate can be used as a source of cloned DNA for further study.

FIGURE 9–9 **Probe to detect the gene for a protein of known amino acid sequence.** Because more than one DNA sequence can code for any given amino acid sequence, the genetic code is said to be “degenerate.” (As described in Chapter 27, an amino acid is coded for by a set of three nucleotides called a **codon**. Most amino acids have two or more codons; see Fig. 27–7.) Thus the correct DNA sequence for a known amino acid sequence cannot be known in advance. The probe is designed to be complementary to a region of the gene with minimal degeneracy, that is, a region with the fewest possible codons for the amino acids—two codons at most in the example shown here. Oligonucleotides are synthesized with selectively randomized sequences, so that they contain either of the two possible nucleotides at each position of potential degeneracy (shaded in pink). The oligonucleotide shown here represents a mixture of eight different sequences: one of the eight will complement the gene perfectly, and all eight will match at least 17 of the 20 positions.

<table>
<thead>
<tr>
<th>Known amino acid sequence</th>
<th>H3N ^---Gly — Leu — Pro — Trp — Glu — Asp — Met — Trp — Phe — Val — Arg ---COO—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible codons</td>
<td>(5') GGA UGA GAC AUG UGG UUG GUA AGA (3')</td>
</tr>
<tr>
<td></td>
<td>GGG UUG CCC GGG UCU CCG CUG GUU GGU GAG AGG</td>
</tr>
<tr>
<td></td>
<td>GGU CGU CUG CCU GGU CUC UGC CUG</td>
</tr>
<tr>
<td></td>
<td>Region of minimal degeneracy</td>
</tr>
<tr>
<td></td>
<td>Synthetic probes</td>
</tr>
<tr>
<td></td>
<td>UGG GAG GAC AUG UGG UUC CUG GU</td>
</tr>
<tr>
<td></td>
<td>20 nucleotides long, 8 possible sequences</td>
</tr>
</tbody>
</table>
Expression of Cloned Genes Produces Large Quantities of Protein

Frequently it is the product of the cloned gene, rather than the gene itself, that is of primary interest—particularly when the protein has commercial, therapeutic, or research value. With an increased understanding of the fundamentals of DNA, RNA, and protein metabolism and their regulation in E. coli, investigators can now manipulate cells to express cloned genes in order to study their protein products.

Most eukaryotic genes lack the DNA sequence elements—such as promoters, sequences that instruct RNA polymerase where to bind—required for their expression in E. coli cells, so bacterial regulatory sequences for transcription and translation must be inserted at appropriate positions relative to the eukaryotic gene in the vector DNA. (Promoters, regulatory sequences, and other aspects of the regulation of gene expression are discussed in Chapter 28.) In some cases cloned genes are so efficiently expressed that their protein product represents 10% or more of the cellular protein; they are said to be overexpressed. At these concentrations some foreign proteins can kill an E. coli cell, so gene expression must be limited to the few hours before the planned harvest of the cells.

Cloning vectors with the transcription and translation signals needed for the regulated expression of a cloned gene are often called expression vectors. These contain the transcription and translation elements-such as promoters, sequences that instruct RNA polymerase where to bind—and sequences required for efficient translation of the mRNA derived from the gene. The selectable marker allows the selection of cells containing the recombinant DNA.

Alterations in Cloned Genes Produce Modified Proteins

Cloning techniques can be used not only to overproduce proteins but to produce protein products subtly altered from their native forms. Specific amino acids may be replaced individually by site-directed mutagenesis. This powerful approach to studying protein structure and function changes the amino acid sequence of a protein by altering the DNA sequence of the cloned gene. If appropriate restriction sites flank the sequence to be altered, researchers can simply remove a DNA segment and replace it with a synthetic one that is identical to the original except for the desired change (Fig. 9-11a). When suitably located restriction sites are not present, an approach called oligonucleotide-directed mutagenesis (Fig. 9-11b) can create a specific DNA sequence change. A short synthetic DNA strand with a specific base change is annealed to a single-stranded copy of the cloned gene within a suitable vector. The mismatch of a single base pair in 15 to 20 bp does not prevent annealing if it is done at an appropriate temperature. The annealed strand serves as a primer for the synthesis of a strand complementary to the plasmid vector. This slightly mismatched duplex recombinant plasmid is then used to transform bacteria, where the mismatch is repaired by cellular DNA repair enzymes (Chapter 25). About half of the repair events will remove and replace the altered base and restore the gene to its original sequence; the other half will remove and replace the normal base, retaining the desired mutation. Transformants are screened (often by sequencing their plasmid DNA) until a bacterial colony containing a plasmid with the altered sequence is found.

Changes can also be introduced that involve more than one base pair. Large parts of a gene can be deleted by cutting out a segment with restriction endonucleases...
DNA ligase

In E. coli cells, about half the plasmids will have gene with desired base-pair change.

(b)

FIGURE 9-11 Two approaches to site-directed mutagenesis. (a) A synthetic DNA segment replaces a DNA fragment that has been removed by cleavage with a restriction endonuclease. (b) A synthetic oligonucleotide with a desired sequence change at one position is hybridized to a single-stranded copy of the gene to be altered. This acts as primer for synthesis of a duplex DNA (with one mismatch), which is then used to transform cells. Cellular DNA repair systems will convert about 50% of the mismatches to reflect the desired sequence change.

and ligating the remaining portions to form a smaller gene. Parts of two different genes can be ligated to create new combinations. The product of such a fused gene is called a fusion protein.

Researchers now have ingenious methods to bring about virtually any genetic alteration in vitro. Reintroduction of the altered DNA into the cell permits investigation of the consequences of the alteration. Site-directed mutagenesis has greatly facilitated research on proteins by allowing investigators to make specific changes in the primary structure of a protein and to examine the effects of these changes on the folding, three-dimensional structure, and activity of the protein.

Terminal Tags Provide Binding Sites for Affinity Purification

Affinity chromatography is one of the most efficient methods available for protein purification (see Fig. 3–17c). Unfortunately, there are many proteins for which there is no known ligand that can be conveniently immobilized on a chromatographic medium. The use of fusion proteins has made it possible to purify almost any protein by affinity chromatography.

First, the gene encoding the target protein is fused to a gene encoding a peptide or protein that binds to a known ligand with high affinity and specificity. The peptide or protein used for this purpose, which may be attached at either the amino or carboxyl terminus, is called a terminal tag or (more often) simply a tag. Some proteins and peptides commonly used as tags are listed in Table 9–3 along with their ligands.

The general procedure is illustrated by the attachment of a tag consisting of glutathione-S-transferase (GST). GST is a small enzyme (M, 26,000) that binds tightly and specifically to the molecule glutathione (Figs 9–12). If the GST gene sequence is fused to a target gene, the fusion protein acquires the capacity to bind glutathione. The fusion protein is expressed in a bacterial or other host organism, and a crude extract is prepared. A column is filled with a porous matrix consisting of the ligand (in this case, glutathione) immobilized to microscopic beads of a stable polymer such as cross-linked agarose. As the crude extract percolates through this column matrix, the fusion protein becomes immobilized by binding to the glutathione. The other

<table>
<thead>
<tr>
<th>Tag protein/ peptide</th>
<th>Molecular mass (kDa)</th>
<th>Immobilized ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein A (His)_6</td>
<td>59</td>
<td>Fc portion of IgG</td>
</tr>
<tr>
<td>Glutathione-S- transferase (GST)</td>
<td>26</td>
<td>Glutathione</td>
</tr>
<tr>
<td>Maltose-binding protein</td>
<td>41</td>
<td>Maltose</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>116</td>
<td>p-Aminophenyl-β-D-thiogalactoside (TPEG)</td>
</tr>
<tr>
<td>Chitin-binding domain</td>
<td>5.7</td>
<td>Chitin</td>
</tr>
</tbody>
</table>
Glutathione-S-transferase (GST)

(a) Glutathione (GSH)

(b) The use of tagged proteins in protein purification. The use of a GST tag is illustrated. (a) Glutathione-S-transferase (GST) is a small enzyme (depicted here by the purple icon) that binds glutathione (a glutamate residue to which a Cys-Gly dipeptide is attached at the carboxyl carbon of the Glu side chain, hence the abbreviation GSH). (b) The GST tag is fused to the carboxyl terminus of the target protein by genetic engineering. The tagged protein is expressed in host cells, and is present in the crude extract when the cells are lysed. The extract is subjected to chromatography on a column containing a medium with immobilized glutathione. The GST-tagged protein binds to the glutathione, retarding its migration through the column, while the other proteins wash through rapidly. The tagged protein is subsequently eluted from the column with a solution containing elevated salt concentration or free glutathione.

A short tag with widespread application consists of a simple sequence of six or more histidine residues. These histidine tags or His tags, as they are more commonly known, bind tightly and specifically to nickel ions. Chromatography media with immobilized Ni\(^{2+}\) can then be used to efficiently separate His-tagged proteins from others in an extract. Larger tags, such as maltose-binding protein, can enhance solubility and compensate for lack of stability in target proteins, allowing the purification of proteins that cannot be purified by other methods.

Tag technology is powerful and convenient, and has been used successfully in thousands of published studies. However, one must be wary when using tagged proteins in experiments. Terminal tags are not inert. Even very small tags can affect the properties of the proteins to which they are attached and thus affect experimental results. Activity may be affected even when tags are removed by proteases, if one or a few extra amino acid residues remain associated with the target protein. Results obtained from tagged proteins should always be evaluated with the aid of well-designed controls to assess the effect of the tag on protein function.

SUMMARY 9.1 DNA Cloning: The Basics

- DNA cloning and genetic engineering involve the cleavage of DNA and assembly of DNA segments in new combinations—recombinant DNA.
- Cloning entails cutting DNA into fragments with enzymes; selecting and possibly modifying a fragment of interest; inserting the DNA fragment into a suitable cloning vector; transferring the vector with the DNA insert into a host cell for replication; and identifying and selecting cells that contain the DNA fragment.
- Key enzymes in gene cloning include restriction endonucleases (especially the type II enzymes) and DNA ligase.
Genetic engineering techniques manipulate cells to
Cells containing particular DNA sequences can be
Cloning vectors include plasmids, bacteriophages,
Proteins or peptides can be attached to a protein
Genomic databases are growing rapidly, as one
The modern science of genomics now permits the
Variety of forms, depending on the source of the DNA.
A DNA library is a collection of DNA clones, gathered to-
The first step in preparing a genomic library is partial
Segment of chromosome from organism X

Using hybridization methods, researchers can order individual clones in a library by identifying clones with overlapping sequences. A set of overlapping clones represents a catalog for a long contiguous segment of a genome, often referred to as a contig (Fig. 9-13). Previously studied sequences or entire genes can be located within the library using hybridization methods to determine which library clones harbor the known sequence. If the sequence has already been mapped on a chromosome, investigators can determine the location (in the genome) of the cloned DNA and any contig of which it is a part. A well-characterized library may contain thousands of long contigs, all assigned to and ordered on particular chromosomes to form a detailed physical map. The known sequences within the library (each called a sequence-tagged site, or STS) can provide landmarks for genomic sequencing projects.

As more and more genome sequences become available, the utility of genomic libraries is diminishing and investigators are constructing more specialized libraries designed to study gene function. An example is a library that includes only those genes that are expressed—that is, are transcribed into RNA—in a given organism or even in certain cells or tissues. Such a library focuses on those portions of a genome relevant to the function of a tissue or cell type. The researcher first extracts mRNA from an organism or from specific cells of an

DNA Libraries Provide Specialized Catalogs of Genetic Information

A DNA library is a collection of DNA clones, gathered together as a source of DNA for sequencing, gene discovery, or gene function studies. The library can take a variety of forms, depending on the source of the DNA. Among the largest types of DNA library is a genomic library, produced when the complete genome of a particular organism is cleaved into thousands of fragments, and all the fragments are cloned by insertion into a cloning vector.

The first step in preparing a genomic library is partial digestion of the DNA by restriction endonucleases, such that any given sequence will appear in fragments of a range of sizes—a range that is compatible with the cloning vector and ensures that virtually all sequences are represented among the clones in the library. Fragments that are too large or too small for cloning are removed by centrifugation or electrophoresis. The cloning vector, such as a BAC or YAC plasmid, is cleaved with the same restriction endonuclease and ligated to the genomic DNA fragments. The ligated DNA mixture is then used to transform bacterial or yeast cells to produce a library of cell types, each type harboring a different recombinant DNA molecule. Ideally, all the DNA in the genome under study will be represented in the library. Each transformed bacterium or yeast cell grows into a colony, or “clone,” of identical cells, each cell bearing the same recombinant plasmid, one of many represented in the overall library.
organism and then prepares complementary DNAs (cDNAs) from the RNA in a multistep reaction catalyzed by the enzyme reverse transcriptase (Fig. 9–14). The resulting double-stranded DNA fragments are then inserted into a suitable vector and cloned, creating a population of clones called a cDNA library. The search for a particular gene is made easier by focusing on a cDNA library generated from the mRNAs of a cell known to express that gene. For example, if we wished to clone globin genes, we could first generate a cDNA library from erythrocyte precursor cells, in which about half the mRNAs code for globins. To aid in the mapping of large genomes, cDNAs in a library can be partially sequenced at random to produce a useful type of STS called an expressed sequence tag (EST). ESTs, ranging in size from a few dozen to several hundred base pairs, can be positioned within the larger genome map, providing markers for expressed genes. Hundreds of thousands of ESTs were included in the detailed physical maps used as a guide to sequencing the human genome.

A cDNA library can be made even more specialized by cloning cDNAs or cDNA fragments into a vector that fuses each cDNA sequence with the sequence for a marker, or reporter gene; the fused genes form a "reporter construct." Two useful markers are the genes for green fluorescent protein and epitope tags. A target gene fused with a gene for green fluorescent protein (GFP) generates a fusion protein that is highly fluorescent—it literally lights up (Fig. 9–15a). GFP, derived from the jellyfish Aequorea victoria, has a β-barrel structure, with a fluorophore in the center of the barrel (see Box 12–3, p. 434). The fluorophore is

![Diagram](https://example.com/DNA.png)

FIGURE 9–14 Construction of a cDNA library from mRNA. A cell's mRNA includes transcripts from thousands of genes, and the cDNAs generated are correspondingly heterogeneous. The duplex DNA produced by this method is inserted into an appropriate cloning vector. Reverse transcriptase can synthesize DNA on an RNA or a DNA template (see Fig. 26–33).

![Diagram](https://example.com/Reporter Constructs.png)

FIGURE 9–15 Specialized DNA libraries. (a) Cloning of cDNA next to a gene for green fluorescent protein (GFP) creates a reporter construct. RNA transcription proceeds through the gene of interest (insert DNA) and the reporter gene, and the mRNA transcript is then expressed as a fusion protein. The GFP part of the protein is visible in the fluorescence microscope. The photograph shows a nematode worm containing a GFP fusion protein expressed only in the four "touch" neurons that run the length of its body. Reporter Constructs (b) If the cDNA is cloned next to a gene for an epitope tag, the resulting fusion protein can be precipitated by antibodies to the epitope. Any other proteins that interact with the tagged protein also precipitate, helping to elucidate protein-protein interactions.
derived from a rearrangement and oxidation of several amino acid residues in an autocatalytic reaction that requires only molecular oxygen (see Box 12–3, Fig. 3). Thus the protein is readily cloned in an active form in almost any cell. Just a few molecules of this protein can be observed microscopically, allowing the study of its location and movements in a cell. Careful protein engineering has generated mutant forms of GFP with a range of different colors and other properties (brightness, stability), and related proteins have recently been isolated from other species.

An epitope tag is a short protein sequence that is bound tightly by a well-characterized monoclonal antibody (p. 173). The tagged protein can be specifically precipitated from a crude protein extract by interaction with the antibody (Fig. 9–15b). If any other proteins bind to the tagged protein, those will precipitate as well, providing information about protein-protein interactions in a cell. The diversity and utility of specialized DNA libraries (and tagged proteins) are growing every year.

The Polymerase Chain Reaction Amplifies Specific DNA Sequences

The Human Genome Project, along with the many associated efforts to sequence the genomes of organisms of every type, is providing unprecedented access to gene sequence information. This in turn is simplifying the process of cloning individual genes for more detailed biochemical analysis. If we know the sequence of at least the flanking parts of a DNA segment to be cloned, we can hugely amplify the number of copies of that DNA segment, using the polymerase chain reaction (PCR), a process conceived by Kary Mullis in 1983. The amplified DNA can be cloned directly or used in a variety of analytical procedures.

The PCR procedure has an elegant simplicity. Two synthetic oligonucleotides are prepared, complementary to sequences on opposite strands of the target DNA at positions defining the ends of the segment to be amplified. The oligonucleotides serve as replication primers that can be extended by DNA polymerase. The 3' ends of the hybridized probes are oriented toward each other and positioned to prime DNA synthesis across the desired DNA segment (Fig. 9–16). (DNA polymerases synthesize DNA strands from deoxyribonucleotides, using a DNA template, as described in Chapter 25.) Isolated DNA containing the segment to be amplified is heated briefly to denature it, and then cooled in the presence of a large excess of the synthetic oligonucleotide primers. The four deoxynucleoside triphosphates are then added, and the primed DNA segment is replicated selectively. The cycle of heating, cooling, and replication is repeated 25 or 30 times over a few hours in an automated process, amplifying the DNA segment between the primers until it can be readily analyzed or cloned. PCR uses a heat-stable DNA polymerase, such as the Taq polymerase (derived from a bacterium that lives at 90 °C), which remains active after every heating step and does not have to be replenished. Careful design of the primers used for PCR, such as including restriction endonuclease cleavage sites, can facilitate the subsequent cloning of the amplified DNA (Fig. 9–16b).

This technology is highly sensitive: PCR can detect and amplify as little as one DNA molecule in almost any type of sample. Although DNA degrades over time (p. 289), PCR has allowed successful cloning of DNA from samples more than 40,000 years old. Investigators have used the technique to clone DNA fragments from the mummified remains of humans and extinct animals such as the woolly mammoth, creating the new fields of molecular archaeology and molecular paleontology. DNA from burial sites has been amplified by PCR and used to trace ancient human migrations. Epidemiologists can use PCR-enhanced DNA samples from human remains to trace the evolution of human pathogenic viruses. In addition to its usefulness for cloning DNA, PCR is a potent tool in forensic medicine (Box 9–1). It is also being used for detection of viral infections before they cause symptoms and for prenatal diagnosis of a wide array of genetic diseases.

The PCR method is also important in advancing the goal of whole genome sequencing. For example, the mapping of expressed sequence tags to particular chromosomes often involves amplification of the EST by PCR, followed by hybridization of the amplified DNA to clones in an ordered library. Investigators found many other applications of PCR in the Human Genome Project, to which we now turn.

Genome Sequences Provide the Ultimate Genetic Libraries

The genome is the ultimate source of information about an organism, and there is no genome we are more interested in than our own. Less than 10 years after the development of practical DNA sequencing methods, serious discussions began about the prospects for sequencing the entire 3 billion base pairs of the human genome. The international Human Genome Project got underway with substantial funding in the late 1980s. The effort eventually included significant contributions from 20 sequencing centers distributed among six nations: the United States, Great Britain, Japan, France, China, and Germany. General coordination was provided by the Office of Genome Research at the National Institutes of Health, led first by James Watson and after 1992 by Francis Collins. At the outset, the task of sequencing a 3×10^9 bp genome seemed to be a titanic job, but it gradually yielded to advances in technology. The completed sequence of the human genome was published in April 2003, several years ahead of schedule.
FIGURE 9-16 Amplification of a DNA segment by the polymerase chain reaction. (a) The PCR procedure has three steps. DNA strands are (1) separated by heating, then (2) annealed to an excess of short synthetic DNA primers (blue) that flank the region to be amplified; (3) new DNA is synthesized by polymerization. The three steps are repeated for 25 or 30 cycles. The thermostable DNA polymerase Taq (from Thermus aquaticus, a bacterial species that grows in hot springs) is not denatured by the heating steps. (b) DNA amplified by PCR can be cloned. The primers can include noncomplementary ends that have a site for cleavage by a restriction endonuclease. Although these parts of the primers do not anneal to the target DNA, the PCR process incorporates them into the DNA that is amplified. Cleavage of the amplified fragments at these sites creates sticky ends, used in ligation of the amplified DNA to a cloning vector. (a) Polymerase Chain Reaction

Region of target DNA to be amplified

1. Heat to separate strands.
2. Add synthetic oligonucleotide primers; cool.

3. Add thermostable DNA polymerase to catalyze 5'→3' DNA synthesis.

Repeat steps 1 and 2.

DNA synthesis (step 3) is catalyzed by the thermostable DNA polymerase (still present).

Repeat steps 1 through 3.

After 25 cycles, the target sequence has been amplified about 10^6-fold.

(a)

Clone by insertion at an EcoRI site in a cloning vector.

(b)

EcoRI endonuclease
Traditionally, one of the most accurate methods for placing an individual at the scene of a crime has been a fingerprint. With the advent of recombinant DNA technology, a more powerful tool is now available: DNA fingerprinting (also called DNA typing or DNA profiling). The method was first described by English geneticist Alec Jeffreys in 1985.

DNA fingerprinting is based on sequence polymorphisms, slight sequence differences between individuals, 1 bp in every 1,000 bp, on average. Each difference from the prototype human genome sequence (the first one obtained) occurs in some fraction of the human population; every individual has some differences. Some of the sequence changes affect recognition sites for restriction enzymes, resulting in variation in the size of DNA fragments produced by digestion with a particular restriction enzyme. These variations are restriction fragment length polymorphisms (RFLPs).

Another type of sequence variation, and the one now most commonly in DNA typing, involves short tandem repeats (STRs).

The detection of RFLPs relies on a specialized hybridization procedure called Southern blotting (Fig. 1). DNA fragments from digestion of genomic DNA by restriction endonucleases are separated by size electrophoretically, denatured by soaking the agarose gel in alkali, and then blotted onto a nylon membrane to reproduce the distribution of fragments in the gel. The membrane is immersed in a solution containing a radioactively labeled DNA probe. A probe for a sequence that is repeated several times in the human genome generally identifies a few of the thousands of DNA fragments generated when the human genome is digested with a restriction endonuclease. Autoradiography reveals the fragments to which the probe hybridizes, as in Figure 1. The method is very accurate (continued on next page)

![Diagram of DNA fingerprinting process](image-url)

FIGURE 1 The Southern blot procedure, as applied to RFLP DNA fingerprinting. Southern blotting (used for many purposes in molecular biology) was named after Jeremy Southern, who developed the technique. In this example of a forensic application, the DNA from a semen sample obtained from a rape and murder victim was compared with DNA samples from the victim and two suspects. Each sample was cleaved into fragments and separated by gel electrophoresis.
and was first used in court cases in the late 1980s. However, it requires a large sample of undegraded DNA (>25 ng). That amount of DNA is often not available at a crime scene or disaster site.

The requirement for more-sensitive DNA typing methods led to a focus on the polymerase chain reaction (PCR; see Fig. 9–16), and on STRs. An STR locus is a short DNA sequence, repeated many times in tandem at a particular location in a chromosome; most commonly, the repeated sequences are 4 bp long. The STR loci that are most useful for DNA typing are quite short, from 4 to 50 repeats long (16 to 200 total base pairs for tetranucleotide repeats), and have multiple length variants in the human population. More than 20,000 tetranucleotide STR loci have been characterized in the human genome. More than a million STRs of all types may be present in the human genome, accounting for about 3% of all human DNA.

The polymerase chain reaction is readily applied to STR analysis, and the focus of forensic scientists changed from RFLPs to STRs as the promise of increased sensitivity became apparent in the early 1990s. The DNA sequences flanking STRs are unique to each type of STR and identical (except for very rare mutations) in all humans. PCR primers are targeted to this flanking DNA, and designed to amplify the DNA across the STR (Fig. 2a). The length of the PCR product then reflects the length of the STR in that sample. Since each human inherits one chromosome from each parent, the STR lengths on the two chromosomes are often different, generating two signals from one individual. If multiple STR loci are analyzed, a profile can be generated that is essentially unique to a particular individual. PCR amplification allows investigators to obtain DNA fingerprints from less than 1 ng of partially degraded DNA, an amount that can be obtained from a single hair follicle, a drop of blood, a small semen sample on a bed sheet, or samples that might be months or even many years old.

Successful forensic use of STR analysis required standardization. The first forensic STR standard was established in the United Kingdom in 1995. The U.S. standard, called the COMbined DNA Index System (CODIS), was established in 1998. The CODIS system is based on 13 well-studied STR loci (Table 1), which must be present in any DNA typing experiment carried out in the United States. The amelogenin gene is also used as a marker. This gene, present on the human sex chromosomes, has slightly different flanking DNA on the X and Y chromosomes. PCR amplification across the amelogenin gene thus generates different-size products that can reveal the sex of the DNA donor.

Table 1: Properties of the Loci Used for the CODIS Database

<table>
<thead>
<tr>
<th>Locus</th>
<th>Chromosome</th>
<th>Repeat motif</th>
<th>Repeat length (range)</th>
<th>Number of alleles seen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF1PO</td>
<td>5</td>
<td>TAGA</td>
<td>5–16</td>
<td>20</td>
</tr>
<tr>
<td>FGA</td>
<td>4</td>
<td>CTTT</td>
<td>12.2–51.2</td>
<td>80</td>
</tr>
<tr>
<td>TH01</td>
<td>11</td>
<td>TCAT</td>
<td>3–14</td>
<td>20</td>
</tr>
<tr>
<td>TPOX</td>
<td>2</td>
<td>GAAT</td>
<td>4–16</td>
<td>15</td>
</tr>
<tr>
<td>VWA</td>
<td>12</td>
<td>[TCTG][TCTA]</td>
<td>10–25</td>
<td>28</td>
</tr>
<tr>
<td>D3S1358</td>
<td>3</td>
<td>[TCTG][TCTA]</td>
<td>8–21</td>
<td>24</td>
</tr>
<tr>
<td>D5S818</td>
<td>5</td>
<td>AGAT</td>
<td>7–18</td>
<td>15</td>
</tr>
<tr>
<td>D7S820</td>
<td>7</td>
<td>GATA</td>
<td>5–16</td>
<td>30</td>
</tr>
<tr>
<td>D8S1179</td>
<td>8</td>
<td>[TCTA][TCTG]</td>
<td>7–20</td>
<td>17</td>
</tr>
<tr>
<td>D13S317</td>
<td>13</td>
<td>TATC</td>
<td>5–16</td>
<td>17</td>
</tr>
<tr>
<td>D16S539</td>
<td>16</td>
<td>GATA</td>
<td>5–16</td>
<td>19</td>
</tr>
<tr>
<td>D18S51</td>
<td>18</td>
<td>AGAA</td>
<td>7–39.2</td>
<td>51</td>
</tr>
<tr>
<td>D21S11</td>
<td>21</td>
<td>[TCTA][TCTG]</td>
<td>12–41.2</td>
<td>82</td>
</tr>
<tr>
<td>Amelogenin</td>
<td>X,Y</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Repeat lengths observed in the human population. Partial or imperfect repeats can be included in some alleles.

†Number of different alleles observed to date in the human population. Careful analysis of a locus in many individuals is a prerequisite to its use in forensic DNA typing.
The CODIS database contained 2.8 million samples prior to 2006, and is linked to all 50 United States. As of mid-2005, it had assisted more than 25,000 forensic investigations.

Convenient kits have been developed commercially that allow the amplification of 16 or more STR loci in one test tube. These "multiplex" STR kits (Fig. 2b) have PCR primers unique to each locus. Each primer is carefully designed to avoid hybridization to any other primer in the kit and to generate PCR products of different sizes so as to spread out the signals from the different loci during electrophoresis. The primers are linked to colored dyes to help distinguish the different PCR products. The most widely used kits now include the 13 CODIS loci, amelogenin, and two additional loci used by law enforcement agencies elsewhere in the world (16 total). The kits are very precise in establishing human identity. When good DNA profiles are obtained, the chance of an accidental match between two individuals in the human population is less than 1 in 10^{18} (quintillion).

DNA typing has been used to both convict and acquit suspects and, in other cases, to establish paternity with an extraordinary degree of certainty. The impact of these procedures on court cases will continue to grow as standards are improved and as international DNA typing databases grow. Even very old mysteries can be solved: in 1996, DNA fingerprinting helped to confirm the identification of the bones of the last Russian czar and his family, who were assassinated in 1918.
This advance was the product of a carefully planned international effort spanning 14 years. Research teams first generated a detailed physical map of the human genome, with clones derived from each chromosome organized into a series of long contigs (Fig. 9-17). Each contig contained landmarks in the form of STSs at a distance of every 100,000 bp or less. The genome thus mapped could be divided up between the international sequencing centers, each center sequencing the mapped BAC or YAC clones corresponding to its particular segments of the genome. Because many of the clones were more than 100,000 bp long, and modern sequencing techniques can resolve only 600 to 750 bp of sequence at a time, each clone had to be sequenced in pieces. The sequencing strategy used a shotgun approach, in which researchers used powerful new automated sequencers to sequence random segments of a given clone, then assembled the sequence of the entire clone by computerized identification of overlaps. The number of clone pieces sequenced was determined statistically so that the entire length of the clone was sequenced four to six times on average. The sequenced DNA was then made available in a database covering the entire genome. Construction of the physical map was a time-consuming task, and its progress was followed in annual reports in major journals throughout the 1990s—by the end of which the map was largely in place. Completion of the entire sequencing project was initially projected for the year 2005, but circumstances and technology intervened to accelerate the process.

A competing commercial effort to sequence the human genome was initiated by the newly established Celera Corporation in 1997. Led by J. Craig Venter, the Celera group made use of a different strategy called "whole genome shotgun sequencing," which eliminates the step of assembling a physical map of the genome. Instead, teams sequenced DNA segments from throughout the genome at random. The sequenced segments were ordered by the computerized identification of sequence overlaps (with some reference to the public project's detailed physical map). At the outset of the Human Genome Project, shotgun sequencing on this scale had been deemed impractical. However, advances in computer software and sequencing automation had made the approach feasible by 1997. The ensuing race between the private and public sequencing efforts substantially advanced the timeline for completion of the project. Publication of the draft human genome sequence in 2001 was followed by two years of follow-up work to eliminate nearly a thousand discontinuities and to provide high-quality sequence data that are contiguous throughout the genome.

The Human Genome Project marks the culmination of twentieth-century biology and promises a vastly changed scientific landscape for the new century. The human genome is only part of the story, as the genomes of many other species are also being (or have been) sequenced, including the yeasts Saccharomyces cerevisiae (completed in 1996) and Schizosaccharomyces pombe (2002), the nematode Caenorhabditis elegans (1998), the fruit fly Drosophila melanogaster (2000), the plant Arabidopsis thaliana (2000), the mouse Mus musculus (2002), and hundreds of bacterial and archaeal species (Fig. 9-18). Most of the early efforts were focused on species commonly used in laboratories. However, the technology continues to improve, and the complete genomic sequences of over 1,200 organisms of all types will be available by the time this book is published. Broad efforts to map genes, attempts to identify new proteins and disease genes, and many other initiatives are underway.
FIGURE 9–18 Genomic sequencing timeline. Discussions in the mid-1980s led to initiation of the Human Genome Project in 1990. Preparatory work, including extensive mapping to provide genome landmarks, occupied much of the 1990s. Separate projects were launched to sequence the genomes of other organisms important to research. The sequencing efforts completed to date include many bacterial species (such as *Haemophilus influenzae*), yeast (*S. cerevisiae*), nematode worms (e.g., *C. elegans*), insects (*D. melanogaster* and *A. mellifera*), plants (*A. thaliana* and *Oryza sativa* L.), rodents (*M. musculus* and *Rattus norvegicus*), primates (*H. sapiens* and *Pan troglodytes*), and some nasty human pathogens (e.g., *Trichomonas vaginalis*). Each genome project has a website that serves as a central repository for the latest data.

The result is a database with the potential not only to fuel rapid advances in biology but to change the way that humans think about themselves. Early insights provided by the human genome sequence are that we are not as complicated as we thought. Decades-old estimates that humans possessed about 100,000 genes within the approximately 3.2×10^6 bp in the human genome have been supplanted by the discovery that we have only 25,000 to 30,000 genes. This is perhaps three times more genes than a fruit fly (with 20,000) and twice as many as a nematode worm (23,000). Although humans evolved relatively recently, the human genome is very old. Of 1,278 protein families identified in one early screen, only 94 were unique to vertebrates. However, while we share many protein domain types with plants, worms, and flies, we use these domains in more complex arrangements. Alternative modes of gene expression (Chapter 26) allow the production of more than one protein from a single gene—a process that humans and other vertebrates engage in more than do bacteria, worms, or any other forms of life. This allows for greater complexity in the proteins generated from our gene complement.

We now know that only 1.1% to 1.4% of our DNA actually encodes proteins. More than 50% of our genome consists of short, repeated sequences, the vast majority of which—about 45% of our genome in all—come from transposons, short movable DNA sequences that are molecular parasites (Chapter 25). Many of the transposons have been there a long time, now altered so that they can no longer move to new genomic locations. Others are still actively moving at low frequencies, helping to make the genome an ever-dynamic and evolving entity. At least a few transposons have been co-opted by their host and appear to serve useful cellular functions.

What does all this information tell us about how much one human differs from another? Within the human population are millions of single-base differences, called single nucleotide polymorphisms, or SNPs (pronounced “snips”). Each human differs from the next by about 1 bp in every 1,000 bp. From these small genetic differences arises the human variety we are all aware of—differences in hair color, eyesight, allergies to medication, foot size, and even (to some unknown degree) behavior. Some of the SNPs are linked to particular human populations and can provide important information about human migrations that occurred thousands of years ago and about our more distant evolutionary past.

What does this information tell us about what makes us human? The sequence of our closest biological relative, the chimpanzee, might offer some clues. The human and chimpanzee genomes differ by only 1.2% at the level of base pairs, and the differences are less than that in genes encoding proteins. This value sounds small, but in these large genomes it translates into 35 million base pair changes, another 5 million short insertions or deletions, and a substantial number
of larger genomic rearrangements. Sorting out which of
these genomic distinctions are relevant to features that
are uniquely human is a daunting task. The analysis of
primate genomes with an eye to understanding human
biochemistry and evolution has much potential, but the
task remains in its infancy.

As spectacular as these advances are, genome se-
quencing itself is easy compared with what comes next—
the effort to understand all the information in each
genome. The genome sequences being added monthly to
international databases are roadmaps, parts of which are
written in a language we do not yet understand. However,
they have great utility in catalyzing the discovery of new
proteins and processes affecting every aspect of bio-
chemistry, as will become apparent in chapters to come.

SUMMARY 9.2 From Genes to Genomes

- The science of genomics broadly encompasses the
 study of genomes and their gene content.
- Genomic DNA segments can be organized in
 libraries—such as genomic libraries and cDNA
 libraries—with a wide range of designs and
 purposes.
- The polymerase chain reaction (PCR) can be used
 to amplify selected DNA segments from a DNA
 library or an entire genome.
- In international cooperative research efforts, the
 genomes of many organisms, including that of
 humans, have been sequenced in their entirety and
 are now available in public databases.

9.3 From Genomes to Proteomes

A gene is not simply a DNA sequence; it is information
that is converted to a useful product—a protein or func-
tional RNA molecule—when and if needed by the cell.
The first and most obvious step in exploring a large se-
quenced genome is to catalog the products of the genes
within that genome. Genes that encode RNA as their fi-
nal product are somewhat harder to identify than are
protein-encoding genes, and even the latter can be very
difficult to spot in a vertebrate genome. The explosion of
DNA sequence information has also revealed a sobering
truth. Despite many years of biochemical advances,
there are still thousands of proteins in every eukaryotic
cell (and quite a few in bacteria and archaea) that we
know nothing about. These proteins may have functions
in processes not yet discovered, or may contribute in
unexpected ways to processes we think we understand.
In addition, the genomic sequences tell us nothing about
the three-dimensional structure of proteins or how pro-
teins are modified after they are synthesized. The pro-
teins, with their myriad critical functions in every cell,
are now becoming the focus of new strategies for whole
cell biochemistry.

The complement of proteins expressed by a genome
is called its **proteome**, a term that first appeared in
the research literature in 1995. This concept rapidly
evolved into a separate field of investigation, called pro-
teomics. The problem addressed by proteomics research
is straightforward, although the solution is not. Each
genome presents us with thousands of genes encoding
proteins, and ideally we want to know the structure and
function of all those proteins. Given that many proteins
offer surprises even after years of study, the investigation
of an entire proteome is a daunting enterprise. Simply
discovering the function of new proteins requires inten-
sive work. Biochemists can now apply shortcuts in the
form of a broad array of new and updated technologies.

Protein function can be described on three levels. A
Phenotypic function describes the effects of a protein on
the entire organism. For example, the loss of the protein
may lead to slower growth of the organism, an altered de-
velopment pattern, or even death. **Cellular function** is a
description of the network of interactions engaged in by a
protein at the cellular level. Interactions with other pro-
teins in the cell can help define the kinds of metabolic
processes in which the protein participates. Finally, a
molecular function refers to the precise biochemical activity
of a protein, including details such as the reactions an en-
zyme catalyzes or the ligands a receptor binds.

For several genomes, such as those of the yeast
Saccharomyces cerevisiae and the plant *Arabidopsis
thaliana*, a massive effort is underway to inactivate
each gene by genetic engineering and to investigate the
effect on the organism. If the growth patterns or other
properties of the organism change (or if it does not grow
at all), this provides information on the phenotypic
function of the protein product of the gene.

There are three other main paths to investigating
protein function: (1) sequence and structural compar-
isons with genes and proteins of known function, (2) de-
termination of when and where a gene is expressed, and
(3) investigation of the interactions of the protein with
other proteins. We discuss each of these approaches
in turn.

Many of the same technologies that help elucidate
the function of one protein can be applied to many pro-
teins at once. The developing field of **systems biology**
uses the multitude of biochemical changes in a cell,
including the changes in the cellular protein population,
as a function of environmental or genetic stresses. We
identify approaches applicable to systems biology as
they are discussed.

**Sequence or Structural Relationships Provide
Information on Protein Function**

The rapid accumulation of genome sequence informa-
tion has greatly advanced our understanding of evolution (see
Section 3.4, p. 102). Another important reason to sequence
many genomes is to provide a database that can be used to
Assign gene functions by genome comparisons, an enterprise referred to as comparative genomics. Sometimes a newly discovered gene is related by sequence homologies to a gene previously studied in another or the same species, and its function can be entirely or partly defined by that relationship. Genes that occur in different species but possess a clear sequence and functional relationship to each other are called orthologs. Genes similarly related to each other within a single species are called paralogs (see p. 34). If the function of a gene has been characterized for one species, this information can be used to at least tentatively assign gene function to the ortholog found in the second species. The correlation is easiest to make when comparing genomes from relatively closely related species, such as mouse and human, although many clearly orthologous genes have been identified in species as distant as bacteria and humans. Sometimes even the order of genes on a chromosome is conserved over large segments of the genomes of closely related species (Fig. 9-20). Conserved gene order, called synteny, provides additional evidence for an orthologous relationship between genes at identical locations within the related segments.

Alternatively, certain sequences associated with particular structural motifs (Chapter 4) may be identified within a protein. The presence of a structural motif may suggest that it, say, catalyzes ATP hydrolysis, binds to DNA, or forms a complex with zinc ions, helping to define molecular function. These relationships are determined with the aid of increasingly sophisticated computer programs, limited only by the current information on gene and protein structure and our capacity to associate sequences with particular structural motifs.

To further the assignment of function based on structural relationships, a large-scale structural proteomics project has been initiated. The goal is to crystallize and determine the structure of as many proteins and protein domains as possible, in many cases with little or no existing information about protein function. The project has been assisted by the automation of some of the tedious steps of protein crystallization (see Box 4-5). As these structures are revealed, they will be made available in the structural databases described in Chapter 4. The effort should help define the extent of variation in structural motifs. When a newly discovered protein is found to have structural folds that are clearly related to motifs with known functions in the databases, this information can suggest a molecular function for the protein.

Cellular Expression Patterns Can Reveal the Cellular Function of a Gene

In every newly sequenced genome, researchers find genes that encode proteins with no evident structural relationships to known genes or proteins. In these cases, other approaches must be used to generate information about gene function. Determining which tissues a gene is expressed in, or what circumstances trigger the appearance of the gene product, can provide valuable clues. Many different approaches have been developed to study these patterns.

Two-Dimensional Gel Electrophoresis As shown in Figure 3-21, two-dimensional gel electrophoresis allows the separation and display of up to 1,000 different proteins on a single gel. Mass spectrometry (see Box 3-2) can then be used to partially sequence individual protein spots and assign each to a gene. The appearance and nonappearance (or disappearance) of particular protein spots in samples from different tissues, from similar tissues at different stages of development, or from tissues treated in ways that simulate a variety of biological conditions can help define cellular function.

Because many proteins are displayed at once in these gels, the technique is also applicable to systems biology. For example, a bacterial pathogen may evolve so as to become resistant to one or more antibiotics. The pattern of protein expression in that bacterial strain is likely to change, and multiple proteins may be affected.

DNA Microarrays Major refinements of the technology underlying DNA libraries, PCR, and hybridization have come together in the development of DNA microarrays (sometimes called DNA chips), which allow the rapid and simultaneous screening of many thousands of genes. DNA segments from known genes, a few dozen to hundreds of nucleotides long, are amplified by PCR and placed on a solid surface, using robotic devices that accurately deposit nanoliter quantities of DNA solution. Up to a million such spots are deposited in a predesigned array on a surface area of just a few square centimeters. An alternative strategy is to synthesize...
DNA directly on the solid surface, using photolithography (Fig. 9–21). Once the chip is constructed, it can be probed with mRNAs or cDNAs from a particular cell type or cell culture to identify the genes being expressed in those cells.

A microarray can answer such questions as which genes are expressed at a given stage in the development of an organism. The total complement of mRNA is isolated from cells at two different stages of development and converted to cDNA, using reverse transcriptase and fluorescently labeled deoxynucleotides. The fluorescent cDNAs are then mixed and used as probes, each hybridizing to complementary sequences on the microarray. In Figure 9–22, for example, the labeled nucleotides used to make the cDNA for each sample fluoresce in two different colors. The cDNA from the two samples is mixed and used to probe the microarray. Spots that fluoresce green represent mRNAs more abundant at the single-cell stage; those that fluoresce red represent sequences more abundant later in development. The mRNAs that are equally abundant at both stages of development fluoresce yellow. By using a mixture of two samples to measure relative rather than absolute abundance of sequences, the method corrects for variations in the amounts of DNA originally deposited in each spot on the grid and other possible inconsistencies among spots in the microarray. The spots that fluoresce provide a snapshot of all the genes being expressed in the cells at the moment they were harvested—gene expression examined on a genome-wide scale. For a gene

FIGURE 9–21 Photolithography. This technique for preparing a DNA microarray makes use of nucleotide precursors that are activated by light, joining one nucleotide to the next in a photoreaction (as opposed to the chemical process illustrated in Fig. 8–35). A computer is programmed with the oligonucleotide sequences to be synthesized at each point on a solid surface. The reactive groups on that surface are initially rendered inactive because of attached photoinactive blocking groups (●). A screen covering the surface is opened over the areas programmed to receive a particular nucleotide. A flash of light eliminates the blocking group in the uncovered spots, and then a solution with a particular nucleotide (e.g., *A●), activated to react at its 3'-hydroxyl group (●), is washed over the surface. A blocking group on the 5'-hydroxyl group of the nucleotide prevents unwanted reactions, and the nucleotide becomes linked to the surface in the illuminated spots via its 3'-hydroxyl group. The screen is then replaced with another screen that selectively illuminates only spots programmed to receive a G; light removes the 5' blocking groups of previously bound nucleotides, and *G● is then added to link G to those spots. The surface is washed successively with solutions containing each remaining type of activated nucleotide (*C●, *T●), using selective screening and light to ensure that the correct nucleotides are added at each spot in the correct sequence. This continues until the required sequences are built up on each spot on the surface. Many polymers with the same sequence are generated on each spot, not just the single polymer shown. The surface itself has thousands of spots, each with different sequences (see Fig. 9–22); this array shows just four spots, to illustrate the strategy.
Add the cDNAs to a microarray; fluorescent cDNAs anneal to complementary sequences on the microarray. Each fluorescent spot represents a gene expressed in the cells.

FIGURE 9-22 DNA microarray. A microarray can be prepared from any known DNA sequence, from any source, generated by chemical synthesis or by PCR. The DNA is positioned on a solid surface (usually specially treated glass slides) with the aid of a robotic device capable of depositing very small (nanoliter) drops in precise patterns. UV light cross-links the DNA to the glass slides. Once the DNA is attached to the surface, the microarray can be probed with other fluorescently labeled nucleic acids. Here, mRNA samples are collected from cells at two different stages in the development of a frog. The cDNA probes are made with nucleotides that fluoresce in different colors for each sample, a mixture of the cDNAs is used to probe the microarray. Green spots represent mRNAs more abundant at the single-cell stage; red spots, sequences more abundant later in development. The yellow spots indicate approximately equal abundance at both stages.

Microarrays are an invaluable tool of systems biology, allowing researchers to examine changes in gene expression on a cellular scale. The research focus may be one gene, or the entire genome. The same technology is also used to examine changes in DNA, such as genetic changes induced by natural selection or simple variation in a population. If a bacterial population has a new phenotype that signals the presence of one or more mutations, the mutations can often be identified quickly using microarrays. A microarray containing the wild-type sequence information is probed with DNA from the mutant cells. Hybridization will be reduced of unknown function, the time and circumstances of its expression can provide important clues about its role in the cell.

An example of this technique is illustrated in **Figure 9-23**, showing the dramatic results this technique can produce. Segments from each of the more than 6,000 genes in the completely sequenced yeast genome were separately amplified by PCR, and each segment was deposited in a defined pattern to create the illustrated microarray. In a sense, this array provides a snapshot of the entire yeast genome.

Microarrays are an invaluable tool of systems biology, allowing researchers to examine changes in gene expression on a cellular scale. The research focus may be one gene, or the entire genome. The same technology is also used to examine changes in DNA, such as genetic changes induced by natural selection or simple variation in a population. If a bacterial population has a new phenotype that signals the presence of one or more mutations, the mutations can often be identified quickly using microarrays. A microarray containing the wild-type sequence information is probed with DNA from the mutant cells. Hybridization will be reduced of unknown function, the time and circumstances of its expression can provide important clues about its role in the cell.

An example of this technique is illustrated in **Figure 9-23**, showing the dramatic results this technique can produce. Segments from each of the more than 6,000 genes in the completely sequenced yeast genome were separately amplified by PCR, and each segment was deposited in a defined pattern to create the illustrated microarray. In a sense, this array provides a snapshot of the entire yeast genome.
wherever the mutant cell DNA and the wild-type DNA do not match, producing a signal at the relevant spots. More detailed sequencing can then reveal the exact changes at each genomic region affected. This approach is providing new tools with which to track issues of medical interest, such as the development of new viral strains and the evolution of antibiotic resistance in bacterial pathogens.

The medical applications of microarrays already have an important role in cancer treatment. There are many different types of human cancer, and tumors—even within a particular tissue—can vary greatly in their growth rate, tendency to metastasize, and response to various therapies. It is often impossible to differentiate tumor types based solely on appearance. However, the cells making up a tumor exhibit characteristic patterns of gene expression, called a transcriptional profile, which often differ greatly from one tumor to the next. These can provide a kind of tumor fingerprint. Recent progress in the diagnosis and treatment of breast cancer provides a vivid example. Broad clinical studies over the past decade have used microarrays to develop transcriptional profiles of many thousands of breast cancers. Treatment protocols have been tracked, and successes and failures carefully documented. Particular genes and groups of genes are gradually being identified that, when expressed at higher levels, and in certain combinations, serve as prognostic predictors. The result is a growing database of correlations that allows the use of transcriptional profiles to develop prognoses and select the most beneficial therapies. These tools are becoming widespread in oncology clinics, and their value to oncologists and patients will only increase with time and experience.

Protein Chips Proteins, too, can be immobilized on a solid surface and used to help define the presence or absence of other proteins in a sample. For example, researchers prepare an array of antibodies to particular proteins by immobilizing them as individual spots on a solid surface. A sample of proteins is added, and if the protein that binds any of the antibodies is present in the sample, it can be detected by a solid-state form of the ELISA assay (see Fig. 5–26b). Many other types and applications of protein chips are being developed. This is another technology that can be applied to one protein, or all of the proteins within a biological system.

Detection of Protein-Protein Interactions Helps to Define Cellular and Molecular Function

A key to defining the function of a particular protein is to determine what it binds to. In the case of protein-protein interactions, the association of a protein of unknown function with one whose function is known can provide a useful and compelling "guilt by association." The techniques used in this effort are quite varied.

Comparisons of Genome Composition Although not evidence of direct association, the mere presence of combinations of genes in particular genomes can hint at protein function. We can simply search the genomic databases for particular genes, then determine what other genes are present in the same genomes (Fig. 9–24). When two genes always appear together in a genome, it suggests that the proteins they encode may be functionally related. Such correlations are most useful if the function of at least one of the proteins is known.

Purification of Protein Complexes With the construction of cDNA libraries in which each gene is contiguous with (fused to) an epitope tag, workers can immunoprecipitate the protein product of a gene by using the antibody that binds to the epitope (Fig. 9–15b). If the tagged protein is expressed in cells, other proteins that bind to it may also be precipitated with it. Identification of the associated proteins reveals some of the protein-protein interactions of the tagged protein. There are many variations of this process. For example, a crude extract of cells that express a similarly tagged protein is added to a column containing immobilized antibody. The tagged protein binds to the antibody, and proteins that interact with the tagged protein are sometimes also retained on the column. The connection between the protein and the tag is cleaved with a specific protease, and the protein complexes are eluted from the column and analyzed. Researchers can use these methods to define complex networks of interactions within a cell. Many of the terminal tags listed in Table 9–3 can be used in similar chromatographic protocols, employing the affinity of a tag for a particular ligand to identify proteins that bind to a particular tagged protein.
Yeast Two-Hybrid Analysis A sophisticated genetic approach to defining protein-protein interactions is based on the properties of the Gal4 protein (Gal4p), which activates transcription of certain genes in yeast (see Fig. 28–31). Gal4p has two domains, one that binds to a specific DNA sequence and another that activates the RNA polymerase that synthesizes mRNA from an adjacent reporter gene. The domains are stable when separated, but activation of the RNA polymerase requires interaction with the activation domain, which in turn requires positioning by the DNA-binding domain. Hence, the domains must be brought together to function correctly (Fig. 9–25a).

In this method, the protein-coding regions of genes to be analyzed are fused to the coding sequences of either the DNA-binding domain or the activation domain of Gal4p, and the resulting genes express a series of fusion proteins. If a protein fused to the DNA-binding domain interacts with a protein fused to the activation domain, transcription is activated. The reporter gene transcribed by this activation is generally one that yields a protein required for growth, or is an enzyme that catalyzes a reaction with a colored product. Thus, when grown on the proper medium, cells that contain a pair of interacting proteins are easily distinguished from those that do not. Typically, many genes are fused to the Gal4p DNA-binding domain gene in one yeast strain, and many other genes are fused to the Gal4p activation domain gene in another yeast strain, then the yeast strains are mated and individual diploid cells grown into colonies (Fig. 9–25b). This allows for large-scale screening for proteins that interact in the cell.

All these techniques provide important clues to protein function. However, they do not replace classical biochemistry. They simply provide researchers with an expedited entrance into important new biological problems. In the end, a detailed functional understanding of any new protein requires traditional biochemical analyses—such as were used for the many well-studied proteins described in this text. When paired with the simultaneously evolving tools of biochemistry and molecular biology, genomics and proteomics are speeding the discovery not only of new proteins but of new biological processes and mechanisms.

SUMMARY 9.3 From Genomes to Proteomes

- A proteome is the complement of proteins produced by a cell's genome. The new field of proteomics encompasses an effort to catalog and determine the functions of all the proteins in a cell. Integrated research to investigate multiple proteins or other macromolecules in a cell is sometimes called systems biology.
- One of the most effective ways to determine the function of a new gene is by comparative genomics, the search of databases for genes with similar
sequences. Paralogs and orthologs are proteins (and their genes) with clear functional and sequence relationships in the same or in different species. In some cases, the presence of a gene in combination with certain other genes, observed as a pattern in several genomes, can point toward a possible function.

- Cellular proteomes can be displayed by two-dimensional gel electrophoresis and explored with the aid of mass spectrometry.
- The cellular function of a protein can sometimes be inferred by determining when and where its gene is expressed. Researchers use DNA microarrays (chips) and protein chips to explore gene expression at the cellular level.
- Several new techniques, including comparative genomics, immunoprecipitation, and yeast two-hybrid analysis, can identify protein-protein interactions. These interactions provide important clues to protein function.

9.4 Genome Alterations and New Products of Biotechnology

We don’t need to look far to find practical applications for the new biotechnologies or to find new opportunities for breakthroughs in basic research. Herein lie both the promise and the challenge of genomics. We not only can understand genomes, we can change them. This is perhaps the ultimate manifestation of the new technologies. We will enhance our capacity to engineer organisms and produce new pharmaceutical agents and, as a consequence, will improve human nutrition and health. This promise can be realized only if practical safeguards are in place to ensure responsible application of these techniques.

A Bacterial Plant Parasite Aids Cloning in Plants

The introduction of recombinant DNA into plants has enormous implications for agriculture, making possible the alteration of the nutritional profile or yield of crops or their resistance to environmental stresses, such as insect pests, diseases, cold, salinity, and drought. Fertile plants of some species may be generated from a single transformed cell, so that an introduced gene passes to progeny through the seeds.

As yet, researchers have not found any naturally occurring plant cell plasmids to facilitate cloning in plants, so the biggest technical challenge is getting DNA into plant cells. An important and adaptable ally in this effort is the soil bacterium Agrobacterium tumefaciens. This bacterium can invade plants at the site of a wound, transform nearby cells, and induce them to form a tumor called a crown gall. Agrobacterium contains the large (200,000 bp) Ti plasmid (Fig. 9-26a). When the bacterium is in contact with a damaged plant cell, a 23,000 bp segment of the Ti plasmid called T DNA is transferred from the plasmid and integrated at a random position in one of the plant cell chromosomes (Fig. 9-26b). The transfer of T DNA from Agrobacterium to the plant cell chromosome depends on two 25 bp repeats that flank the T DNA and on the products of the virulence (vir) genes on the Ti plasmid (Fig. 9-26a).

The T DNA encodes enzymes that convert plant metabolites to two classes of compounds that benefit the bacterium (Fig. 9-27). The first group consists of plant growth hormones (auxins and cytokinins) that stimulate growth of the transformed plant cells to form the crown gall tumor. The second constitutes a series of unusual
FIGURE 9–27 Metabolites produced in *Agrobacterium*-infected plant cells. Auxins and cytokinins are plant growth hormones. The most common auxin, indoleacetate, is derived from tryptophan. Cytokinins are amino acids called opines, which serve as a food source for the bacterium. The opines are produced in high concentrations in the tumor cells and secreted to the surroundings, where they can be metabolized only by *Agrobacterium*, using enzymes encoded elsewhere on the Ti plasmid. The bacterium thereby diverts plant resources by converting them to a form that benefits only itself.

This rare example of DNA transfer from a bacterium to a eukaryotic cell is a natural genetic engineering process—one that researchers can harness to transfer recombinant DNA (instead of T DNA) to the plant genome. A common cloning strategy employs an *Agrobacterium* with two different recombinant plasmids. The first is a Ti plasmid from which the T DNA segment has been removed in the laboratory (Fig. 9–28a).

FIGURE 9–28 A two-plasmid strategy to create a recombinant plant. (a) One plasmid is a modified Ti plasmid that contains the vir genes but lacks T DNA. (b) The other plasmid contains a segment of DNA that bears both a foreign gene (the gene of interest, e.g., the gene for the insecticidal protein described in Fig. 9–30) and an antibiotic-resistance element (here, kanamycin resistance), flanked by the two 25 bp repeats of T DNA that are required for transfer of the plasmid genes to the plant chromosome. This plasmid also contains the replication origin needed for propagation in *Agrobacterium*.

When bacteria invade at the site of a wound (the edge of the cut leaf), the vir genes on the first plasmid mediate transfer into the plant genome of the segment of the second plasmid that is flanked by the 25 bp repeats. Leaf segments are placed on an agar dish that contains both kanamycin and appropriate levels of plant growth hormones, and new plants are generated from segments with the transformed cells. Non-transformed cells are killed by the kanamycin. The foreign gene and the antibiotic-resistance element are normally transferred together, so plant cells that grow in this medium generally contain the foreign gene.
The second is an *Agrobacterium*-E. coli shuttle vector in which the 25 bp repeats of the T DNA flank a foreign gene that the researcher wants to introduce into the plant cell, along with a selectable marker such as resistance to the antibiotic kanamycin (Fig. 9-28b). The engineered *Agrobacterium* is used to infect a leaf, but crown galls are not formed because the T DNA genes for the auxin, cytokinin, and opine biosynthetic enzymes are absent from both plasmids. Instead, the *vir* gene products from the altered Ti plasmid direct the transformation of the plant cells by the foreign gene—the gene flanked by the T DNA 25 bp repeats in the second plasmid. The transformed plant cells can be selected by growth on agar plates that contain kanamycin, and addition of growth hormones induces the formation of new plants that contain the foreign gene in every cell.

The successful transfer of recombinant DNA into plants was vividly illustrated by an experiment in which the luciferase gene from fireflies was introduced into the cells of a tobacco plant (Fig. 9-29)—a favorite plant for transformation experiments because its cells are particularly easy to transform with *Agrobacterium*. The potential of this technology is not limited to the production of glow-in-the-dark plants, of course. The same approach has been used to produce crop plants that are resistant to herbicides, plant viruses, and insect pests (Fig. 9-30). Potential benefits include increased yields and less need for environmentally harmful agricultural chemicals.

Biotechnology can introduce new traits into a plant much faster than traditional methods of plant breeding. A prominent example is the development of soybeans that are resistant to the general herbicide glyphosate (the active ingredient in the product RoundUp). Glyphosate breaks down in the environment more rapidly than many other herbicides (glyphosate-sensitive plants can be planted in a treated area after as little as 48 hours), and its use on fields does not generally lead to contamination of groundwater or carryover from one year to the next. A field of glyphosate-resistant soybeans can be treated once with glyphosate during a summer growing season to eliminate essentially all weeds in the field, while leaving the soybeans unaffected (Fig. 9-31). Potential pitfalls of the technology, such as the evolution of glyphosate-resistant weeds or the escape of difficult-to-control recombinant plants, remain a concern of researchers and the public.

Figure 9-30 Tomato plants engineered to be resistant to insect larvae. Two tomato plants were exposed to equal numbers of moth larvae. The plant on the left has not been genetically altered. The plant on the right expresses a gene for a protein toxin derived from the bacterium Bacillus thuringiensis. This protein, introduced by a protocol similar to that depicted in Figure 9-28, is toxic to the larvae of some moth species while being harmless to humans and other organisms. Insect resistance has also been genetically engineered in cotton and other plants.

Manipulation of Animal Cell Genomes Provides Information on Chromosome Structure and Gene Expression

The transformation of animal cells by foreign genetic material offers an important mechanism for expanding our knowledge of the structure and function of animal genomes, as well as for the generation of animals with new traits. This potential has stimulated intensive research into more-sophisticated means of cloning animals. Most work of this kind requires a source of cells into which DNA can be introduced. Although intact tissues are often difficult to maintain and manipulate in vitro, many types of animal cells can be isolated and grown in the laboratory if their growth requirements are carefully met. Cells derived from a particular animal tissue and grown under appropriate tissue culture conditions can maintain their differentiated properties (for example, a hepatocyte (liver cell) remains a hepatocyte) for weeks or even months.
electroporation, techniques roughly comparable to the common methods used to transform bacteria. They are inefficient in animal cells, however, transforming only 1 in 100 to 10,000 cells. Microinjection—the injection of DNA directly into a nucleus, using a very fine needle—has a high success rate for skilled practitioners, but the total number of cells that can be treated is small, because each must be injected individually.

The most efficient and widely used methods for transforming animal cells rely on liposomes or viral vectors. Liposomes are small vesicles consisting of a lipid bilayer that encloses an aqueous compartment (see Fig. 11-4). Liposomes that enclose a recombinant DNA molecule can be fused with the membranes of target cells to deliver DNA into the cell. The DNA sometimes reaches the nucleus, where it can integrate into a chromosome (mostly at random locations). Viral vectors are even more efficient at delivering DNA. Animal viruses have effective mechanisms for introducing their nucleic acids into cells, and several types also have mechanisms to integrate their DNA into a host-cell chromosome. Some of these, such as retroviruses (see Fig. 26-33) and adenoviruses, have been modified to serve as viral vectors to introduce foreign DNA into mammalian cells.

The work on retroviral vectors illustrates some of the strategies being used (Fig. 9-32). When an engineered retrovirus enters a cell, its RNA genome is transcribed to DNA by reverse transcriptase and then integrated into the host genome by the enzyme viral integrase. Special regions of DNA are required for this procedure: long terminal repeat (LTR) sequences to integrate retroviral DNA into the host chromosome and the psi (ψ) sequence to package the viral RNA in viral particles (see Fig. 26-34).

The gag, pol, and env genes of the retroviral genome, required for retroviral replication and assembly of viral particles, can be replaced with foreign DNA. To assemble viruses that contain the recombinant genetic information, researchers must introduce the DNA into cultured cells that are simultaneously infected with a “helper virus” that has the genes to produce viral particles but lacks the ψ sequence required for packaging. Thus the recombinant DNA can be transcribed and its RNA packaged into viral particles. These particles can act as vectors to introduce the recombinant RNA into target cells. Viral reverse transcriptase and integrase enzymes (produced by the helper virus) are also packaged in the viral particle and introduced into the target cells. Once the engineered viral genome is inside a cell, these enzymes create a DNA copy of the recombinant viral RNA genome and integrate it into a host chromosome. The integrated recombinant DNA then becomes a permanent part of the target cell’s chromosome and is replicated with the chromosome at every cell division. The cell itself is not endangered by the integrated viral DNA, because the recombinant virus lacks the genes needed to produce RNA copies of its genome and package them into new viral particles. The use of recombinant retroviruses is often the best method for introducing DNA into large numbers of mammalian cells.
Retroviral genome (single-stranded RNA)

<table>
<thead>
<tr>
<th>LTR</th>
<th>φ</th>
<th>gag</th>
<th>pol</th>
<th>env</th>
<th>LTR</th>
</tr>
</thead>
</table>

Reverse transcriptase converts RNA genome to double-stranded DNA.

DNA

<table>
<thead>
<tr>
<th>LTR</th>
<th>φ</th>
<th>gag</th>
<th>pol</th>
<th>env</th>
<th>LTR</th>
</tr>
</thead>
</table>

Viral genes are replaced with a foreign gene.

Recombinant defective retroviral DNA

<table>
<thead>
<tr>
<th>LTR</th>
<th>φ</th>
</tr>
</thead>
</table>

Recombinant DNA is introduced into cells in tissue culture.

RNA copies of recombinant viruses are produced in cells containing a helper virus and packaged into viral particles.

Reverse transcriptase and integrase

Retroviral RNA genome with foreign gene

Recombinant virus particles infect a target cell.

Retroviral genome with foreign gene is integrated into the target cell chromosome.

FIGURE 9-32 Use of retroviral vectors in mammalian cell cloning. A typical retroviral genome (somewhat simplified here), engineered to carry a foreign gene (pink), is added to a host-cell tissue culture. The helper virus (not shown) lacks the packaging sequence, φ, so its RNA transcripts cannot be packaged into viral particles, but it provides the gag, pol, and env gene products needed to package the engineered retrovirus into functional viral particles. This enables the foreign gene in the recombinant retroviral genome to be introduced efficiently into the target cells.

Each type of virus has different attributes, so several classes of animal viruses are being engineered as vectors to transform mammalian cells. Adenoviruses, for example, lack a mechanism for integrating DNA into a chromosome. Recombinant DNA introduced via an adenoviral vector is therefore expressed for only a short time and then destroyed. This can be useful if the objective is transient expression of a gene.

Transformation of animal cells by any of the above techniques has its problems. Introduced DNA is generally integrated into chromosomes at random locations. Even when the foreign DNA contains a sequence similar to a sequence in a host chromosome, allowing targeting to that position, nonhomologous integrants still outnumber the targeted ones by several orders of magnitude. If these integration events disrupt essential genes, they can sometimes alter cellular functions (most animal cells are diploid or polyploid, however, so an integration usually leaves at least one unaffected copy of any given gene). A particularly poor outcome would involve an integration event that inadvertently activated a gene that stimulated cell division, potentially creating a cancer cell. Although such an event was once thought to be rare, recent trials suggest it is a significant hazard (Box 9–2). Finally, the site of an integration can determine the level of expression of the integrated gene, because integrants are not transcribed equally well everywhere in the genome.

Despite these challenges, the transformation of animal cells has been used extensively to study chromosome structure and the function, regulation, and expression of genes. The successful introduction of recombinant DNA into an animal can be illustrated by an experiment that permanently altered an easily observable inheritable physical trait. Microinjection of DNA into the nuclei of fertilized mouse eggs can produce efficient transformation (chromosomal integration). When the injected eggs are introduced into a female mouse and allowed to develop, the new gene is often expressed in some of the newborn mice. Those in which the germ line has been altered can be identified by testing their offspring. By careful breeding of these mice, researchers can establish a transgenic mouse line in which all the mice are homozygous for the new gene or genes. Transgenic mice have now been produced with a wide range of genetic variations, including many relevant to human diseases and their control, pointing the way to human gene therapy (Box 9–2). A very similar approach is used to generate mice in which a particular gene has been inactivated ("knockout mice"), a way of establishing the function of the inactivated gene. This technology was used to introduce into mice defects in genes that help to control obesity (see Fig. 23–34).

Creating a Transgenic Mouse

The capacity to transform the genomes of animals is not limited to mice. The zebrafish, a common tropical aquarium fish, is also an important model organism for researchers. New strains of zebrafish, with their genomes altered so that they express one of the variants of the green fluorescent protein that fluoresce in the different parts of the light spectrum (see Fig. 9–15), may be found in a pet store near you (Fig. 9–33).
fluorescent Drotein have been introduced into different strains of zebrafish, making each of them literally glow in the dark. Each variant expressing it glow in a particular color (red, green, or yellow).

As biotechnology gained momentum in the 1980s, a rational approach to the treatment of genetic diseases became increasingly attractive. In principle, DNA can be introduced into human cells to correct inherited genetic deficiencies. Genetic correction may even be targeted to a specific tissue by inoculating an individual with a genetically engineered, tissue-specific virus carrying a payload of DNA to be incorporated into deficient cells. The goal is entrancing, but the research path is strewn with impediments.

Alterting chromosomal DNA entails substantial risk—a risk that cannot be quantified in the early stages of discovery. Consequently, early efforts at human gene therapy were directed at only a small subset of genetic diseases. Panels of scientists and ethicists developed a list of several conditions that should be satisfied to justify the risk involved, including the following. (1) The genetic defect must be a well-characterized, single-gene disorder. (2) Both the mutant and the normal gene must be cloned and sequenced. (3) In the absence of a technique for eliminating the existing mutant gene, the functional gene must function well in the presence of the mutant gene. (4) Finally, and most important, the risks inherent in a new technology must be outweighed by the seriousness of the disease. Protocols for human clinical trials were submitted by scientists in several nations and reviewed for scientific rigor and ethical compliance by carefully selected advisory panels in each country; then human trials commenced.

Early targets of gene therapy included cancer and genetic diseases affecting the immune system. Immunity is mediated by leukocytes (white blood cells) of several different types, all arising from undifferentiated stem cells in the bone marrow. These cells divide quickly and have special metabolic requirements. Differentiation can become blocked in several ways, resulting in a condition called severe combined immune deficiency (SCID). One form of SCID results from genetically inherited defects in the gene encoding adenosine deaminase (ADA), an enzyme involved in nucleotide biosynthesis (discussed in Chapter 22). Another form of SCID arises from a defect in a cell-surface receptor protein that binds chemical signals called cytokines, which trigger differentiation. In both cases, the progenitor stem cells cannot differentiate into the mature immune system cells, such as T and B lymphocytes (see p. 170). Children with these rare human diseases are highly susceptible to bacterial and viral infections, and often suffer from a range of related physiological and neurological problems. In the absence of an effective therapy, the children must be confined in a sterile environment. About 20% of these children have a human leukocyte antigen (HLA)–identical sibling who can serve as a bone marrow transplant donor, a procedure that can cure the disease. The remaining children need a different approach.

The first human gene therapy trial was carried out at the National Institutes of Health in Bethesda, Maryland, in 1990. The patient was a four-year-old girl crippled by ADA deficiency. Bone marrow cells from the child were transformed with an engineered retrovirus containing a functional ADA gene; when the alteration of cells is done in this way—in the laboratory rather than in the living patient—the procedure is said to be done ex vivo. The treated cells were reintroduced into the patient’s marrow. Four years later, the child was leading a normal life, going to school, and even testifying about her experiences before Congress. However, her recovery cannot be uniquely attributed to gene therapy. Before the gene therapy clinical trials began, researchers had developed a new treatment for ADA deficiency, in which synthetic ADA was administered in a complex with polyethylene (continued on next page)
glycol (PEG). For many ADA-SCID patients, injection of the ADA-PEG complex allowed some immune system development, with weight gain and reduced infection, although not full immune reconstitution. The new gene therapy was risky, and withdrawing the inoculation treatment from patients in the gene therapy trial was judged unethical. So trial participants received both treatments at once, making it unclear which treatment was primarily responsible for the positive clinical outcome. Nevertheless, the clinical trial provided important information: it was feasible to transfer genes ex vivo to large numbers of leukocytes, and cells bearing the transferred gene were still detectable years after treatment, suggesting that long-term correction was possible. In addition, the risk associated with use of the retroviral vectors appeared to be low.

Through the 1990s, hundreds of human gene therapy clinical trials were carried out, targeting a variety of genetic diseases, but the results in most cases were discouraging. One major impediment proved to be the inefficiency of introducing new genes into cells. Transformation failed in many cells, and the number of transformed cells often proved insufficient to reverse the disorder. In the ADA trials, achieving a sufficient population of transformed cells was particularly difficult, because of the ongoing ADA-PEG therapy. Normally, stem cells with the correct ADA gene would have a growth advantage over the untreated cells, expanding their population and gradually predominating in the bone marrow. However, the injections of ADA-PEG in the same patients allowed the untransformed (ADA-deficient) cells to live and develop, and the transformed cells did not have the needed growth advantage to expand their population at the expense of the others.

A gene therapy trial initiated in 1999 was successful in correcting a form of SCID caused by defective cytokine receptors (in particular a subunit called \(\gamma_c \)), as reported in 2000 by physician researchers in France, Italy, and Britain. These researchers introduced the corrected gene for the \(\gamma_c \) cytokine–receptor subunit into CD34\(^+\) cells. (The stem cells that give rise to immune system cells have a protein called CD34 on their surface; these cells can be separated from other bone marrow cells by antibodies to CD34.) The transformed cells were placed back into the patients’ bone marrow. In this trial, introduction of the corrected gene clearly conferred a growth advantage over the untreated cells. A functioning immune system was detected in nine of eleven patients within 6 to 12 weeks, and levels of mature immune system T lymphocytes reached the levels found in age-matched control subjects (who did not have SCID) within 6 to 8 months. Immune system function was restored, and nearly 4 years later (mid-2003) most of the children were leading normal lives. This provided dramatic confirmation that human gene therapy could cure a serious genetic disease.

In 2003 came a setback. Two of the patients who had received cells with the correct cytokine receptor gene developed a severe form of leukemia. During the gene therapy treatment in both cases, one of the introduced retroviruses had by chance inserted itself into a chromosome of one CD34\(^+\) cell, resulting in abnormally high expression of a gene called LMO-2. The affected cell differentiated into an immune system T cell, and the elevated expression of LMO-2 led to uncontrolled growth of the cell, giving rise to the leukemia. Both patients were successfully treated with chemotherapy, and no other patients developed problems. However, the incident shows that early worries about the risk associated with retroviral vectors were well founded. After a review of the gene therapy trial protocols, including consultations with ethicists and parents of children affected by these diseases, further gene therapy trials are still planned for children who are not candidates for bone marrow transplants. The reason is simple enough. The potential benefit to the children with these debilitating conditions has been judged to outweigh the demonstrated risk. Development of new viral vectors appears to be the most important prerequisite to more effective therapies.

Human gene therapy is not limited to genetic diseases. Cancer cells are being targeted by delivering genes for proteins that might destroy the cell or restore the normal control of cell division. Immune system cells associated with tumors, called tumor-infiltrating lymphocytes, can be genetically modified to produce tumor necrosis factor (TNF; see Fig. 12–51). When these lymphocytes are taken from a cancer patient, modified, and reintroduced, the engineered cells target the tumor, and the TNF they produce causes tumor shrinkage. AIDS may also be treatable with gene therapy; DNA that encodes an RNA molecule complementary to a viral HIV mRNA could be introduced into immune system cells (the targets of HIV). The RNA transcribed from the introduced DNA would pair with the HIV mRNA, preventing its translation and interfering with the virus’s life cycle. Alternatively, a gene could be introduced that encodes an inactive form of one subunit of a multisubunit HIV enzyme; with one nonfunctional subunit, the entire enzyme might be inactivated.

Our growing understanding of the human genome and the genetic basis for some diseases brings the promise of early diagnosis and constructive intervention. As the early results demonstrate, however, the road to effective therapies will be a long one, with many detours. We need to learn more about cellular metabolism, more about how genes interact, and more about how to manage the dangers. The prospect of vanquishing life-destroying genetic defects and other debilitating diseases provides the motivation to press on.
in some other organisms. The vasoconstriction it induces can cause or exacerbate hypertension, congestive heart failure, and coronary artery disease. Some of the methods described in Section 9.3 for elucidating protein-protein interactions have been used to demonstrate that urotensin II is bound by a G protein–coupled receptor called GPR14. As we shall see in Chapter 12, G proteins play an important role in many signaling pathways. However, GPR14 was an “orphan” receptor, in that human genome sequencing had identified it as a G protein–coupled receptor, but with no known function. The association of urotensin II with GPR14 now makes the latter protein a key target for drug therapies aimed at interfering with the action of urotensin II.

\[
\text{Glu-Thr-Pro-Asp-Cys-S-S-Cys-Val}
\]

Phe

\[
\text{Trp-Lys‘}
\]

Urotensin II

Another objective of medical research is to identify new agents that can treat the diseases caused by human pathogens. This now means identifying enzymatic targets in microbial pathogens that can be inactivated with a new drug. The ideal microbial target enzyme should be (1) essential to the pathogen cell's survival, (2) well-conserved among a wide range of pathogens, and (3) absent or significantly different in humans. The task of identifying metabolic processes that are critical to microorganisms but absent in humans is made much easier by comparative genomics, augmented by the functional information available from genomics and proteomics.

Recombinant DNA Technology Yields New Products and Challenges

The products of recombinant DNA technology range from proteins to engineered organisms. The technology can produce large amounts of commercially useful proteins, can design microorganisms for special tasks, and can engineer plants or animals with traits that are useful in agriculture or medicine. Some products of this technology have been approved for consumer or professional use, and many more are in development. Genetic engineering has been transformed over a few years from a promising new technology to a multibillion-dollar industry, with much of the growth occurring in the pharmaceutical industry. Some major classes of products are listed in Table 9-4.

Erythropoietin is typical of recent breakthrough products. This protein hormone (MW, 51,000) stimulates erythrocyte production. People with diseases that compromise kidney function often have a deficiency of this protein, resulting in anemia. Erythropoietin produced by recombinant DNA technology can be used to treat these individuals, reducing the need for repeated blood transfusions.

Other applications of this technology continue to emerge. Enzymes produced by recombinant DNA technology are already used in the production of detergents, sugars, and cheese. Engineered proteins are being used as

<table>
<thead>
<tr>
<th>Product category</th>
<th>Examples/uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticoagulants</td>
<td>Tissue plasminogen activator (TPA); activates plasmin, an enzyme involved in dissolving clots; effective in treating heart attack patients.</td>
</tr>
<tr>
<td>Blood factors</td>
<td>Factor VIII; promotes clotting; it is deficient in hemophiliacs; treatment with factor VIII produced by recombinant DNA technology eliminates infection risks associated with blood transfusions.</td>
</tr>
<tr>
<td>Colony-stimulating factors</td>
<td>Immune system growth factors that stimulate leukocyte production; treatment of immune deficiencies and infections.</td>
</tr>
<tr>
<td>Erythropoietin</td>
<td>Stimulates erythrocyte production; treatment of anemia in patients with kidney disease.</td>
</tr>
<tr>
<td>Growth factors</td>
<td>Stimulate differentiation and growth of various cell types; promote wound healing.</td>
</tr>
<tr>
<td>Human growth hormone</td>
<td>Treatment of dwarfism.</td>
</tr>
<tr>
<td>Human insulin</td>
<td>Treatment of diabetes.</td>
</tr>
<tr>
<td>Interferons</td>
<td>Interfere with viral reproduction; used to treat some cancers.</td>
</tr>
<tr>
<td>Interleukins</td>
<td>Activate and stimulate different classes of leukocytes; possible uses in treatment of wounds, HIV infection, cancer, and immune deficiencies.</td>
</tr>
<tr>
<td>Monoclonal antibodies</td>
<td>Extraordinary binding specificity is used in: diagnostic tests; targeted transport of drugs, toxins, or radioactive compounds to tumors as a cancer therapy; many other applications.</td>
</tr>
<tr>
<td>Superoxide dismutase</td>
<td>Prevents tissue damage from reactive oxygen species when tissues briefly deprived of O₂ during surgery suddenly have blood flow restored.</td>
</tr>
<tr>
<td>Vaccines</td>
<td>Proteins derived from viral coats are as effective in “priming” an immune system as is the killed virus more traditionally used for vaccines, and are safer; first developed was the vaccine for hepatitis B.</td>
</tr>
</tbody>
</table>
food additives to supplement nutrition, flavor, and fragrance. Microorganisms are being engineered with altered or entirely novel metabolic pathways to extract oil and minerals from ground deposits, to digest oil spills, to detoxify hazardous waste dumps and sewage, or to produce ethanol as fuel. Engineered plants with improved resistance to drought, frost, pests, and disease are increasing crop yields and reducing the need for agricultural chemicals. Complete animals can be cloned by moving an entire nucleus and all of its genetic material to a prepared egg from which the nucleus has been removed.

The extraordinary promise of modern biotechnology does not come without controversy. The cloning of mammals challenges societal mores and may be accompanied by serious deficiencies in the health and longevity of the cloned animal. If useful pharmaceutical agents can be produced, so can toxins suitable for biological warfare. The potential for hazards posed by the release of engineered plants and other organisms into the biosphere continues to be monitored carefully. The full range of the long-term consequences of this technology for our species and for the global environment is impossible to foresee, but will certainly demand our increasing understanding of both cellular metabolism and ecology.

SUMMARY 9.4 Genome Alterations and New Products of Biotechnology

- Advances in whole genome sequencing and genetic engineering methods are enhancing our ability to modify genomes in all species.
- Cloning in plants, which makes use of the Ti plasmid vector from *Agrobacterium*, allows the introduction of new plant traits.
- In animal cloning, researchers introduce foreign DNA primarily with the use of viral vectors or microinjection. These techniques can produce transgenic animals and provide new methods for human gene therapy.
- The use of genomics and proteomics in basic and pharmaceutical research is greatly advancing the discovery of new drugs. Biotechnology is also generating an ever-expanding range of other products and technologies.

Key Terms

Terms in bold are defined in the glossary.

- **cloning** 304
- **vector** 304
- **recombinant DNA** 304
- **restriction** 304
- **endonucleases** 304
- **DNA ligase** 304
- **plasmid** 307
- **bacterial artificial chromosome (BAC)** 309
- **yeast artificial chromosome (YAC)** 310
- **site-directed mutagenesis** 312
- **fusion protein** 313
- **restriction fragment length polymorphisms (RFLPs)** 319
- **short tandem repeats (STRs)** 319
- **Southern blot** 319
- **single nucleotide polymorphisms (SNPs)** 323
- **proteome** 324
- **proteomics** 324
- **systems biology** 324
- **orthologs** 325
- **synteny** 325
- **DNA microarray** 325
- **Ti plasmid** 330
- **transgenic** 334

Further Reading

General

- The first recombinant DNA experiment linking DNA from two species.
- Report of the first recombinant DNA experiment.
- Although supplanted by more recent manuals, this three-volume set includes much useful background information on the biological, chemical, and physical principles underlying both classic and current techniques.

Gene Cloning

- Successes and pitfalls in the retrieval of DNA from very old samples.
- Good description of how nucleic acid chemistry affects the retrieval of DNA in archaeology.
Problems

1. Cloning When joining two or more DNA fragments, a researcher can adjust the sequence at the junction in a variety of subtle ways, as seen in the following exercises.

(a) Draw the structure of each end of a linear DNA fragment produced by an EcoRI restriction digest (include those sequences remaining from the EcoRI recognition sequence).

(b) Draw the structure resulting from the reaction of this end sequence with DNA polymerase I and the four deoxynucleoside triphosphates (see Fig. 8-33).

(c) Draw the sequence produced at the junction that arises if two ends with the structure derived in (b) are ligated (see Fig. 25-17).

(d) Draw the structure produced if the structure derived in (a) is treated with a nuclease that degrades only single-stranded DNA.

(e) Draw the sequence of the junction produced if an end with structure (b) is ligated to an end with structure (d).

(f) Draw the structure of the end of a linear DNA fragment that was produced by a PstI restriction digest (include those sequences remaining from the PstI recognition sequence).

(g) Draw the sequence of the junction produced if an end with structure (b) is ligated to an end with structure (f).

(h) Suppose you can synthesize a short duplex DNA fragment with any sequence you desire. With this synthetic fragment and the procedures described in (a) through (g), design a protocol that would remove an EcoRI restriction site from a DNA molecule and incorporate a new BamHI restriction site at approximately the same location. (See Fig. 9-2.)

(i) Design four different short synthetic double-stranded DNA fragments that would permit ligation of structure (a) with a DNA fragment produced by a PstI restriction digest. In one of these fragments, design the sequence so that the final junction contains the recognition sequences for both EcoRI and PstI. In the second and third fragments, design the sequence so that the junction contains only the EcoRI and only the PstI sequence appears in the junction.

2. Selecting for Recombinant Plasmids When cloning a foreign DNA fragment into a plasmid, it is often useful to insert the fragment at a site that interrupts a selectable marker (such as the tetracycline-resistance gene of pBR322). The loss of function...
of the interrupted gene can be used to identify clones containing recombinant plasmids with foreign DNA. With a bacteriophage λ vector it is not necessary to do this, yet one can easily distinguish vectors that incorporate large foreign DNA fragments from those that do not. How are these recombinant vectors identified?

3. DNA Cloning The plasmid cloning vector pBR322 (see Fig. 9-3) is cleaved with the restriction endonuclease PstI. An isolated DNA fragment from a eukaryotic genome (also produced by PstI cleavage) is added to the prepared vector and ligated. The mixture of ligated DNAs is then used to transform bacteria, and plasmid-containing bacteria are selected by growth in the presence of tetracycline.

(a) In addition to the desired recombinant plasmid, what other types of plasmids might be found among the transformed bacteria that are tetracycline resistant? How can the types be distinguished?

(b) The cloned DNA fragment is 1,000 bp long and has an EcoRI site 250 bp from one end. Three different recombinant plasmids are cleaved with EcoRI and analyzed by gel electrophoresis, giving the patterns shown. What does each pattern say about the cloned DNA? Note that in pBR322, the PstI and EcoRI restriction sites are about 750 bp apart. The entire plasmid with no cloned insert is 4,361 bp. Size markers in lane 4 have the number of nucleotides noted.

4. Identifying the Gene for a Protein with a Known Amino Acid Sequence Using Figure 27-7 to translate the genetic code, design a DNA probe that would allow you to identify the gene for a protein with the following amino-terminal amino acid sequence. The probe should be 18 to 20 nucleotides long, a size that provides adequate specificity if there is sufficient homology between the probe and the gene.

\[\text{H}_3\text{N}^+\text{--Ala--Pro--Met--Thr--Trp--Tyr--Cys--Met--Asp--Trp--Ile--Ala--Gly--Pro--Trp--Phe--Arg--Lys--Asn--Thr--Lys--} \]

5. Designing a Diagnostic Test for a Genetic Disease Huntington's disease (HD) is an inherited neurodegenerative disorder, characterized by the gradual, irreversible impairment of psychological, motor, and cognitive functions. Symptoms typically appear in middle age, but onset can occur at almost any age. The course of the disease can last 15 to 20 years. The molecular basis of the disease is becoming better understood. The genetic mutation underlying HD has been traced to a gene encoding a protein (\(M_r 350,000 \)) of unknown function. In individuals who will not develop HD, a region of the gene that encodes the amino terminus of the protein has a sequence of CAG codons (for glutamine) that is repeated 6 to 39 times in succession. In individuals with adult-onset HD, this codon is typically repeated 40 to 55 times. In individuals with childhood-onset HD, this codon is repeated more than 70 times. The length of this simple trinucleotide repeat indicates whether an individual will develop HD, and at approximately what age the first symptoms will occur.

A small portion of the amino-terminal coding sequence of the 3,143-codon HD gene is given below. The nucleotide sequence of the DNA is shown in black, the amino acid sequence corresponding to the gene is shown in blue, and the CAG repeat is shaded. Using Figure 27-7 to translate the genetic code, outline a PCR-based test for HD that could be carried out using a blood sample. Assume the PCR primer must be 25 nucleotides long. By convention, unless otherwise specified a DNA sequence encoding a protein is displayed with the coding strand (the sequence identical to the mRNA transcribed from the gene) on top such that it is read 5' to 3', left to right.

6. Using PCR to Detect Circular DNA Molecules In a species of ciliated protist, a segment of genomic DNA is sometimes deleted. The deletion is a genetically programmed reaction associated with cellular mating. A researcher proposes that the DNA is deleted in a type of recombination called site-specific recombination, with the DNA on either end of the segment joined together and the deleted DNA ending up as a circular DNA reaction product.

Suggest how the researcher might use the polymerase chain reaction (PCR) to detect the presence of the circular form of the deleted DNA in an extract of the protist.

7. Glowing Plants When grown in ordinary garden soil and watered normally, a plant engineered to express green fluorescent protein (see Fig. 9-15a) will glow in the dark, whereas a plant engineered to express firefly luciferase (see Fig. 9-29) will not. Explain these observations.
8. RFLP Analysis for Paternity Testing DNA fingerprinting and RFLP analysis are often used to test for paternity. A child inherits chromosomes from both mother and father, so DNA from a child displays restriction fragments derived from each parent. In the gel shown here, which child, if any, can be excluded as being the biological offspring of the putative father? Explain your reasoning. Lane M is the sample from the mother, F from the putative father, and C1, C2, and C3 from the children.

9. Mapping a Chromosome Segment A group of overlapping clones, designated A through F, is isolated from one region of a chromosome. Each of the clones is separately cleaved by a restriction enzyme and the pieces resolved by agarose gel electrophoresis, with the results shown in the figure below. There are nine different restriction fragments in this chromosomal region, with a subset appearing in each clone. Using this information, deduce the order of the restriction fragments in the chromosome.

10. Cloning in Plants The strategy outlined in Figure 9-28 employs Agrobacterium cells that contain two separate plasmids. Suggest why the sequences on the two plasmids are not combined on one plasmid.

11. DNA Fingerprinting and RFLP Analysis DNA is extracted from the blood cells of two different humans, individuals 1 and 2. In separate experiments, the DNA from each individual is cleaved by restriction endonucleases A, B, and C, and the fragments separated by electrophoresis. A hypothetical map of a 10,000 bp segment of a human chromosome is shown (1 kbp = 1,000 bp). Individual 2 has point mutations that eliminate restriction recognition sites B* and C*. You probe the gel with a radioactive oligonucleotide complementary to the indicated sequence and expose a piece of x-ray film to the gel. Indicate where you would expect to see bands on the film. The lanes of the gel are marked in the accompanying diagram.

12. Use of Photolithography to Make a DNA Microarray Figure 9-21 shows the first steps in the process of making a DNA microarray, or DNA chip, using photolithography. Describe the remaining steps needed to obtain the desired sequences (a different four-nucleotide sequence on each of the four spots) shown in the first panel of the figure. After each step, give the resulting nucleotide sequence attached at each spot.

13. Cloning in Mammals The retroviral vectors described in Figure 9-32 make possible the efficient integration of foreign DNA into a mammalian genome. Explain how these vectors, which lack genes for replication and viral packaging (gag, pol, env), are assembled into infectious viral particles. Suggest why it is important that these vectors lack the replication and packaging genes.

Data Analysis Problem

14. HincII: The First Restriction Endonuclease Discovery of the first restriction endonuclease to be of practical use was reported in two papers published in 1970. In the first paper, Smith and Wilcox described the isolation of an enzyme that cleaved double-stranded DNA. They initially demonstrated the enzyme’s nuclease activity by measuring the decrease in viscosity of DNA samples treated with the enzyme.
(a) Why does treatment with a nuclease decrease the viscosity of a solution of DNA?

The authors determined whether the enzyme was an endo- or an exonuclease by treating P^{32}-labeled DNA with the enzyme, then adding trichloroacetic acid (TCA). Under the conditions used in their experiment, single nucleotides would be TCA-soluble and oligonucleotides would precipitate.

(b) No TCA-soluble P^{32}-labeled material formed on treatment of P^{32}-labeled DNA with the nuclease. Based on this finding, is the enzyme an endo- or exonuclease? Explain your reasoning.

When a polynucleotide is cleaved, the phosphate usually is not removed but remains attached to the 5' or 3' end of the resulting DNA fragment. Smith and Wilcox determined the location of the phosphate on the fragment formed by the nuclease in the following steps:

1. Treat unlabeled DNA with the nuclease.
2. Treat a sample (A) of the product with y-P^{32}-labeled ATP and polynucleotide kinase (which can attach the y-phosphate of ATP to a 5' OH but not to a 5' phosphate or to a 3' OH or 3' phosphate). Measure the amount of P^{32} incorporated into the DNA.
3. Treat another sample (B) of the product of step 1 with alkaline phosphatase (which removes phosphate groups from free 5' and 3' ends), followed by polynucleotide kinase and y-P^{32}-labeled ATP. Measure the amount of P^{32} incorporated into the DNA.

(c) Smith and Wilcox found that sample A had 136 counts/min of P^{32}; sample B had 3,740 counts/min. Did the nuclease cleavage leave the phosphate on the 5' or the 3' end of the DNA fragments? Explain your reasoning.

(d) Treatment of bacteriophage T7 DNA with the nuclease gave approximately 40 specific fragments of various lengths. How is this result consistent with the enzyme's recognizing a specific sequence in the DNA as opposed to making random double-strand breaks?

At this point, there were two possibilities for the site-specific cleavage: the cleavage occurred either (1) at the site of recognition or (2) near the site of recognition but not within the sequence recognized. To address this issue, Kelly and Smith determined the sequence of the 5' ends of the DNA fragments generated by the nuclease, in the following steps:

1. Treat phage T7 DNA with the enzyme.
2. Treat the resulting fragments with alkaline phosphatase to remove the 5' phosphates.
3. Treat the dephosphorylated fragments with polynucleotide kinase and y-P^{32}-labeled ATP to label the 5' ends.
4. Treat the labeled molecules with DNases to break them into a mixture of mono-, di-, and trinucleotides.
5. Determine the sequence of the labeled mono-, di-, and trinucleotides by comparing them with oligonucleotides of known sequence on thin-layer chromatography.

The labeled products were identified as follows: mononucleotides: A and G; dinucleotides: 5'-pApA-3' and 5'-pGpA-3'; trinucleotides: 5'-pApApC-3' and 5'-pGpApC-3'.

(e) Which model of cleavage is consistent with these results? Explain your reasoning.

Kelly and Smith went on to determine the sequence of the 3' ends of the fragments. They found a mixture of 5'-pTpC-3' and 5'-pTpT-3'. They did not determine the sequence of any trinucleotides at the 3' end.

(f) Based on these data, what is the recognition sequence for the nuclease and where in the sequence is the DNA backbone cleaved? Use Table 9-2 as a model for your answer.

References

Lipids

10.1 Storage Lipids 343
10.2 Structural Lipids in Membranes 349
10.3 Lipids as Signals, Cofactors, and Pigments 357
10.4 Working with Lipids 363

Biological lipids are a chemically diverse group of compounds, the common and defining feature of which is their insolubility in water. The biological functions of the lipids are as diverse as their chemistry. Fats and oils are the principal stored forms of energy in many organisms. Phospholipids and sterols are major structural elements of biological membranes. Other lipids, although present in relatively small quantities, play crucial roles as enzyme cofactors, electron carriers, light-absorbing pigments, hydrophobic anchors for proteins, "chaperones" to help membrane proteins fold, emulsifying agents in the digestive tract, hormones, and intracellular messengers. This chapter introduces representative lipids of each type, organized according to their functional roles, with emphasis on their chemical structure and physical properties. Although we follow a functional organization for our discussion, the literally thousands of different lipids can also be organized into eight general categories of chemical structure (see Table 10–3). We discuss the energy-yielding oxidation of lipids in Chapter 17 and their synthesis in Chapter 21.

10.1 Storage Lipids

The fats and oils used almost universally as stored forms of energy in living organisms are derivatives of fatty acids. The fatty acids are hydrocarbon derivatives, at about the same low oxidation state (that is, as highly reduced) as the hydrocarbons in fossil fuels. The cellular oxidation of fatty acids (to CO₂ and H₂O), like the controlled, rapid burning of fossil fuels in internal combustion engines, is highly exergonic.

We introduce here the structures and nomenclature of the fatty acids most commonly found in living organisms. Two types of fatty acid–containing compounds, triacylglycerols and waxes, are described to illustrate the diversity of structure and physical properties in this family of compounds.

Fatty Acids Are Hydrocarbon Derivatives

Fatty acids are carboxylic acids with hydrocarbon chains ranging from 4 to 36 carbons long (C₄ to C₃₆). In some fatty acids, this chain is unbranched and fully saturated (contains no double bonds); in others the chain contains one or more double bonds (Table 10–1). A few contain three-carbon rings, hydroxyl groups, or methyl-group branches.

KEY CONVENTION: A simplified nomenclature for unbranched fatty acids specifies the chain length and number of double bonds, separated by a colon (Fig. 10–1a);

![Figure 10-1](image-url)

(a) 18:1(Δ⁹) cis-9-Octadecenoic acid
(b) 20:5(Δ⁵,8,11,14,17) Eicosapentaenoic acid (EPA), an omega-3 fatty acid

FIGURE 10–1 Two conventions for naming fatty acids. (a) Standard nomenclature assigns the number 1 to the carboxyl carbon (C₁), and α to the carbon next to it. The position of any double bond(s) is indicated by Δ followed by a superscript number indicating the lower-numbered carbon in the double bond. (b) For polyunsaturated fatty acids (PUFAs), an alternative convention numbers the carbons in the opposite direction, assigning the number 1 to the methyl carbon at the other end of the chain; this carbon is also designated ω (omega; the last letter in the Greek alphabet). The positions of the double bonds are indicated relative to the ω carbon.
<table>
<thead>
<tr>
<th>Carbon skeleton</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:0</td>
<td>CH₃(CH₂)₁₂COOH</td>
</tr>
<tr>
<td>14:0</td>
<td>CH₃(CH₂)₁₄COOH</td>
</tr>
<tr>
<td>16:0</td>
<td>CH₃(CH₂)₁₆COOH</td>
</tr>
<tr>
<td>18:0</td>
<td>CH₃(CH₂)₁₈COOH</td>
</tr>
<tr>
<td>20:0</td>
<td>CH₃(CH₂)₂₀COOH</td>
</tr>
<tr>
<td>24:0</td>
<td>CH₃(CH₂)₂₄COOH</td>
</tr>
<tr>
<td>16:1(Δ⁹)</td>
<td>CH₃(CH₂)₉CH=CH(CH₂)₃COOH</td>
</tr>
<tr>
<td>18:1(Δ⁹)</td>
<td>CH₃(CH₂)₁₀CH=CH(CH₂)₅COOH</td>
</tr>
<tr>
<td>18:2(Δ⁹,12)</td>
<td>CH₃(CH₂)₁₂CH=CHCH₂CH=CH(CH₂)₃COOH</td>
</tr>
<tr>
<td>18:3(Δ⁹,12,15)</td>
<td>CH₃(CH₂)₁₃CH=CHCH₂CH=CHCH₂CH=CH(CH₂)₃COOH</td>
</tr>
<tr>
<td>20:4(Δ⁹,11,14)</td>
<td>CH₃(CH₂)₁₄CH=CHCH₂CH=CHCH₂CH=CHCH₂CH=CH(CH₂)₃COOH</td>
</tr>
</tbody>
</table>

*All acids are shown in their nonionized form. At pH 7, all free fatty acids have an ionized carboxylate. Note that numbering of carbon atoms begins at the carboxyl carbon.

The prefix n- indicates the "normal" unbranched structure. For instance, "dodecanoic" simply indicates 12 carbon atoms, which could be arranged in a variety of branched forms; "n-dodecanoic" specifies the linear, unbranched form. For unsaturated fatty acids, the configuration of each double bond is indicated; in biological fatty acids the configuration is almost always cis.

for example, the 16-carbon saturated palmitic acid is abbreviated 16:0, and the 18-carbon oleic acid, with one double bond, is 18:1. The positions of any double bonds are specified relative to the carboxyl carbon, numbered 1, by superscript numbers following Δ (delta); a 20-carbon fatty acid with one double bond between C-9 and C-10 (C-1 being the carboxyl carbon) and another between C-12 and C-13 is designated 20:2(Δ⁹,12).

There is also a common pattern in the location of double bonds; in most monounsaturated fatty acids the double bond is between C-9 and C-10 (Δ⁹), and the other double bonds of polyunsaturated fatty acids are generally Δ₁₂ and Δ₁₅. (Arachidonic acid is an exception to this generalization.) The double bonds of polyunsaturated fatty acids are almost never conjugated (alternating single and double bonds, as in —CH=CH—CH=CH—), but are separated by a methylene group: —CH=CH—CH₂—CH=CH— (Fig. 10-1b). In nearly all naturally occurring unsaturated fatty acids, the double bonds are in the cis configuration. Trans fatty acids are produced by fermentation in the rumen of dairy animals and are obtained from dairy products and meat.

The most commonly occurring fatty acids have even numbers of carbon atoms in an unbranched chain of 12 to 24 carbons (Table 10-1). As we shall see in Chapter 21, the even number of carbons results from the mode of synthesis of these compounds, which involves successive condensations of two-carbon (acetate) units.

Table 10-1: Some Naturally Occurring Fatty Acids: Structure, Properties, and Nomenclature

<table>
<thead>
<tr>
<th>Carbon skeleton</th>
<th>Structure</th>
<th>Systematic name</th>
<th>Common name (derivation)</th>
<th>Melting point (°C)</th>
<th>Solubility at 30 °C (mg/g solvent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:0</td>
<td>CH₃(CH₂)₁₂COOH</td>
<td>n-Dodecanoic acid</td>
<td>Lauric acid (Latin laurus, "laurel plant")</td>
<td>44.2</td>
<td>0.063 2,600</td>
</tr>
<tr>
<td>14:0</td>
<td>CH₃(CH₂)₁₄COOH</td>
<td>n-Tetradecanoic acid</td>
<td>Myristic acid (Latin Myristica, "nutmeg genus")</td>
<td>53.9</td>
<td>0.024 874</td>
</tr>
<tr>
<td>16:0</td>
<td>CH₃(CH₂)₁₆COOH</td>
<td>n-Hexadecanoic acid</td>
<td>Palmitic acid (Latin palma, "palm tree")</td>
<td>63.1</td>
<td>0.0083 348</td>
</tr>
<tr>
<td>18:0</td>
<td>CH₃(CH₂)₁₈COOH</td>
<td>n-Octadecanoic acid</td>
<td>Stearic acid (Greek stear, "hard fat")</td>
<td>69.6</td>
<td>0.0034 124</td>
</tr>
<tr>
<td>20:0</td>
<td>CH₃(CH₂)₂₀COOH</td>
<td>n-Eicosanoic acid</td>
<td>Arachidic acid (Latin Arachis, "legume genus")</td>
<td>76.5</td>
<td></td>
</tr>
<tr>
<td>24:0</td>
<td>CH₃(CH₂)₂₄COOH</td>
<td>n-Tetracosanoic acid</td>
<td>Lignoceric acid (Latin lignum, "wood")</td>
<td>86.0</td>
<td></td>
</tr>
<tr>
<td>16:1(Δ⁹)</td>
<td>CH₃(CH₂)₉CH=CH(CH₂)₃COOH</td>
<td>cis-9-Hexadecenoic acid</td>
<td>Palmitoleic acid</td>
<td>1 to -0.5</td>
<td></td>
</tr>
<tr>
<td>18:1(Δ⁹)</td>
<td>CH₃(CH₂)₁₀CH=CH(CH₂)₅COOH</td>
<td>cis-9-Octadecenoic acid</td>
<td>Oleic acid (Latin oleum, "oil")</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>18:2(Δ⁹,12)</td>
<td>CH₃(CH₂)₁₂CH=CHCH₂CH=CH(CH₂)₃COOH</td>
<td>cis,cis-9,12-Octadecadienoic acid</td>
<td>Linoleic acid (Greek linum, "flax")</td>
<td>1–5</td>
<td></td>
</tr>
<tr>
<td>18:3(Δ⁹,12,15)</td>
<td>CH₃(CH₂)₁₃CH=CHCH₂CH=CHCH₂CH=CH(CH₂)₃COOH</td>
<td>cis,cis,cis-9,12,15-Octadecatrienoic acid</td>
<td>α-Linolenic acid</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>20:4(Δ⁹,11,14)</td>
<td>CH₃(CH₂)₁₄CH=CHCH₂CH=CHCH₂CH=CHCH₂CH=CH(CH₂)₃COOH</td>
<td>cis,cis,cis,cis-5,8,11,14-Icosatetraenoic acid</td>
<td>Arachidonic acid</td>
<td>-49.5</td>
<td></td>
</tr>
</tbody>
</table>
KEY CONVENTION: The family of polyunsaturated fatty acids (PUFAs) with a double bond between the third and fourth carbon from the methyl end of the chain are of special importance in human nutrition. Because the physiological role of PUFAs is related more to the position of the first double bond near the methyl end of the chain than to the carboxyl end, an alternative nomenclature is sometimes used for these fatty acids. The carbon of the methyl group—that is, the carbon most distant from the carboxyl group—is called the omega (omega) carbon and is given the number 1 (Fig. 10-1b). In this convention, PUFAs with a double bond between C-3 and C-4 are called omega-3 (ω-3) fatty acids, and those with a double bond between C-6 and C-7 are omega-6 (ω-6) fatty acids.

Humans require but do not have the enzymatic capacity to synthesize the omega-3 PUFAs α-linolenic acid (ALA; 18:3(Δ[^6,12,15]), in the standard convention), and must therefore obtain it in the diet. From ALA, humans can synthesize two other omega-3 PUFAs important in cellular function: eicosapentaenoic acid (EPA; 20:5(Δ[^6,8,11,13,15]), shown in Fig. 10-1b) and docosahexaenoic acid (DHA; 22:6(Δ[^4,7,10,13,16,19])). An imbalance of omega-6 and omega-3 PUFAs in the diet is associated with an increased risk of cardiovascular disease. The optimal dietary ratio of omega-6 to omega-3 PUFAs is between 1:1 and 4:1, but the ratio in the diets of most North Americans is closer to 10:1 to 30:1, leading to an increased frequency of heart disease and stroke. The "Mediterranean diet," which has been associated with lowered cardiovascular risk, is richer in omega-3 PUFAs, obtained in leafy vegetables (salads) and fish oils. The latter oils are especially rich in EPA and DHA, and fish oil supplements are often prescribed for individuals with a history of cardiovascular disease.

The physical properties of the fatty acids, and of compounds that contain them, are largely determined by the length and degree of unsaturation of the hydrocarbon chain. The nonpolar hydrocarbon chain accounts for the poor solubility of fatty acids in water. Lauric acid (12:0, M, 200), for example, has a solubility in water of 0.063 mg/g—much less than that of glucose (M, 180), which is 1,100 mg/g. The longer the fatty acyl chain and the fewer the double bonds, the lower is the solubility in water. The carboxylic acid group is polar (and ionized at neutral pH) and accounts for the slight solubility of short-chain fatty acids in water.

Melting points are also strongly influenced by the length and degree of unsaturation of the hydrocarbon chain. At room temperature (25°C), the saturated fatty acids from 12:0 to 24:0 have a waxy consistency, whereas unsaturated fatty acids of these lengths are oily liquids. This difference in melting points is due to different degrees of packing of the fatty acid molecules (Fig. 10-2). In the fully saturated compounds, free rotation around each carbon–carbon bond gives the hydrocarbon chain great flexibility; the most stable conformation is the fully extended form, in which the steric hindrance of neighboring atoms is minimized. These molecules can pack together tightly in nearly crystalline arrays, with atoms all along their lengths in van der Waals contact with the atoms of neighboring molecules. In unsaturated fatty acids, a cis double bond forces a kink in the hydrocarbon chain. Fatty acids with one or several such kinks cannot pack together as tightly as fully saturated fatty acids, and their interactions with each other are therefore weaker. Because less thermal energy is needed to disorder these poorly ordered arrays of unsaturated fatty acids, they have markedly lower melting points than saturated fatty acids of the same chain length (Table 10-1).

In vertebrates, free fatty acids (unesterified fatty acids, with a free carboxylate group) circulate in the blood bound noncovalently to a protein carrier, serum albumin. However, fatty acids are present in blood plasma mostly as carboxylic acid derivatives such as esters or amides. Lacking the charged carboxylate group, these fatty acid derivatives are generally even less soluble in water than are the free fatty acids.
Triacylglycerols Are Fatty Acid Esters of Glycerol

The simplest lipids constructed from fatty acids are the **triacylglycerols**, also referred to as triglycerides, fats, or neutral fats. Triacylglycerols are composed of three fatty acids each in ester linkage with a single glycerol (Fig. 10-3). Those containing the same kind of fatty acid in all three positions are called simple triacylglycerols and are named after the fatty acid they contain. Simple triacylglycerols of 16:0, 18:0, and 18:1, for example, are tripalmitin, tristearin, and triolein, respectively. Most naturally occurring triacylglycerols are mixed; they contain two or three different fatty acids. To name these compounds unambiguously, the name and position of each fatty acid must be specified.

Because the polar hydroxyls of glycerol and the polar carboxylates of the fatty acids are bound in ester linkages, triacylglycerols are nonpolar, hydrophobic molecules, essentially insoluble in water. Lipids have lower specific gravities than water, which explains why mixtures of oil and water (oil-and-vinegar salad dressing, for example) have two phases: oil, with the lower specific gravity, floats on the aqueous phase.

Triacylglycerols Provide Stored Energy and Insulation

In most eukaryotic cells, triacylglycerols form a separate phase of microscopic, oily droplets in the aqueous cytosol, serving as depots of metabolic fuel. In vertebrates, specialized cells called adipocytes, or fat cells, store large amounts of triacylglycerols as fat droplets that nearly fill the cell (Fig. 10-4a). Triacylglycerols are also stored as oils in the seeds of many types of plants, providing energy and biosynthetic precursors during seed germination (Fig. 10-4b). Adipocytes and germinating seeds contain **lipases**, enzymes that catalyze the hydrolysis of stored triacylglycerols, releasing fatty acids for export to sites where they are required as fuel.

FIGURE 10–4 Fat stores in cells. (a) Cross section of four guinea pig adipocytes, showing huge fat droplets that virtually fill the cells. Also visible are several capillaries in cross section. (b) Cross section of a cotyledon cell from a seed of the plant Arabidopsis. The large dark structures are protein bodies, which are surrounded by stored oils in the light-colored oil bodies.
There are two significant advantages to using triacylglycerols as stored fuels, rather than polysaccharides such as glycogen and starch. First, the carbon atoms of fatty acids are more reduced than those of sugars, and oxidation of triacylglycerols yields more than twice as much energy, gram for gram, as the oxidation of carbohydrates. Second, because triacylglycerols are hydrophobic and therefore unhydrated, the organism that carries fat as fuel does not have to carry the extra weight of water of hydration that is associated with stored polysaccharides (2 g per gram of polysaccharide). Humans have fat tissue (composed primarily of adipocytes) under the skin, in the abdominal cavity, and in the mammary glands. Moderately obese people with 15 to 20 kg of triacylglycerols deposited in their adipocytes could meet their energy needs for months by drawing on their fat stores. In contrast, the human body can store less than a day's energy supply in the form of glycogen. Carbohydrates such as glucose and glycogen do offer certain advantages as quick sources of metabolic energy, one of which is their ready solubility in water.

In some animals, triacylglycerols stored under the skin serve not only as energy stores but as insulation against low temperatures. Seals, walruses, penguins, and other warm-blooded polar animals are amply padded with triacylglycerols. In hibernating animals (bears, for example), the huge fat reserves accumulated before hibernation serve the dual purposes of insulation and energy storage (see Box 17-1). The low density of triacylglycerols is the basis for another remarkable function of these compounds. In sperm whales, a store of triacylglycerols and waxes allows the animals to match the buoyancy of their bodies to that of their surroundings during deep dives in cold water (Box 10-1).

Partial Hydrogenation of Cooking Oils Produces Trans Fatty Acids

Most natural fats, such as those in vegetable oils, dairy products, and animal fat, are complex mixtures of simple and mixed triacylglycerols. These contain a variety of fatty acids differing in chain length and temperature of the oil is lowered several degrees during a deep dive, it congeals or crystallizes and becomes denser. Thus the buoyancy of the whale changes to match the density of seawater. Various physiological mechanisms promote rapid cooling of the oil during a dive. As the whale returns to the surface, the congealed spermaceti oil warms and melts, decreasing its density to match that of the surface water. Thus we see in the sperm whale a remarkable anatomical and biochemical adaptation. The triacylglycerols and waxes synthesized by the whale contain fatty acids of the necessary chain length and degree of unsaturation to give the spermaceti oil the proper melting point for the animal's diving habits.

Unfortunately for the sperm whale population, spermaceti oil was at one time considered the finest lamp oil and continues to be commercially valuable as a lubricant. Several centuries of intensive hunting of these mammals have driven sperm whales onto the endangered species list.
and degree of saturation (Fig. 10–5). Vegetable oils such as corn (maize) and olive oil are composed largely of triacylglycerols with unsaturated fatty acids and thus are liquids at room temperature. Triacylglycerols containing only saturated fatty acids, such as tristearin, the major component of beef fat, are white, greasy solids at room temperature.

When lipid-rich foods are exposed too long to the oxygen in air, they may spoil and become rancid. The unpleasant taste and smell associated with rancidity result from the oxidative cleavage of double bonds in unsaturated fatty acids, which produces aldehydes and carboxylic acids of shorter chain length and therefore higher volatility. To improve the shelf life of vegetable oils used in cooking, and to increase their stability at the high temperatures used in deep-frying, commercial vegetable oils are subjected to partial hydrogenation. This process converts many of the cis double bonds in the fatty acids to single bonds and increases the melting temperature of the oils so that they are more nearly solid at room temperature (margarine is produced from vegetable oil in this way). Partial hydrogenation has another, undesirable, effect: some cis double bonds are converted to trans double bonds. There is now strong evidence that dietary intake of trans fatty acids (often referred to simply as “trans fats”) leads to a higher incidence of cardiovascular disease, and that avoiding these fats in the diet substantially reduces the risk of coronary heart disease. Dietary trans fatty acids raise the level of triacylglycerols and of LDL (“bad”) cholesterol in the blood, and lower the level of HDL (“good”) cholesterol, and these changes alone are enough to increase the risk of coronary heart disease. But trans fatty acids may have further adverse effects. They seem, for example, to increase the body’s inflammatory response, which is another risk factor for heart disease. (See Chapter 21 for a description of LDL and HDL—low-density and high-density lipoprotein—cholesterol and their health effects.)

Many fast foods are deep-fried in partially hydrogenated vegetable oils and therefore contain high levels of trans fatty acids (Table 10–2). In view of the detrimental effects of these fats, some countries (Denmark, for example) and some cities (New York City and Philadelphia) severely restrict the use of partially hydrogenated oils in restaurants. French fries prepared in a chain fast-food restaurant in Denmark now contain almost no detectable trans fatty acids, whereas the same product prepared in the United States contains 5 to 10 g of trans fatty acids per serving (Table 10–2). The deleterious effects of trans fats occur at intakes of 2 to 7 g/day (20 to 60 kcal in a daily caloric intake of 2000 kcal; note that a nutritional Calorie is the equivalent of the kilocalorie used by chemists and biochemists, so a 2000 Calorie diet is the equivalent of a 2000 kcal diet). A single serving of french fries in a U.S. restaurant may contain this amount of trans fatty acid! Many other prepared foods, baked goods, and snacks on the shelves of supermarkets have comparably high levels of trans fats.

<table>
<thead>
<tr>
<th>Trans fatty acid content</th>
<th>In a typical serving (g)</th>
<th>As % of total fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>French fries</td>
<td>4.7–6.1</td>
<td>28–36</td>
</tr>
<tr>
<td>Breaded fish burger</td>
<td>5.6</td>
<td>28</td>
</tr>
<tr>
<td>Breaded chicken nuggets</td>
<td>5.0</td>
<td>25</td>
</tr>
<tr>
<td>Pizza</td>
<td>1.1</td>
<td>9</td>
</tr>
<tr>
<td>Corn tortilla chips</td>
<td>1.6</td>
<td>22</td>
</tr>
<tr>
<td>Doughnut</td>
<td>2.7</td>
<td>25</td>
</tr>
<tr>
<td>Muffin</td>
<td>0.7</td>
<td>14</td>
</tr>
<tr>
<td>Chocolate bar</td>
<td>0.2</td>
<td>2</td>
</tr>
</tbody>
</table>

Waxes Serve as Energy Stores and Water Repellents

Biological waxes are esters of long-chain (C_{14} to C_{36}) saturated and unsaturated fatty acids with long-chain (C_{16} to C_{36}) alcohols (Fig. 10-6). Their melting points (60 to 100 °C) are generally higher than those of triacylglycerols. In plankton, the free-floating microorganisms at the bottom of the food chain for marine animals, waxes are the chief storage form of metabolic fuel.

Waxes also serve a diversity of other functions related to their water-repellent properties and their firm consistency. Certain skin glands of vertebrates secrete waxes to protect hair and skin and keep it pliable, lubricated, and waterproof. Birds, particularly waterfowl, secrete waxes from their preen glands to keep their feathers water-repellent. The shiny leaves of holly, rhododendrons, poison ivy, and many tropical plants are coated with a thick layer of waxes, which prevents excessive evaporation of water and protects against parasites.

Biological waxes find a variety of applications in the pharmaceutical, cosmetic, and other industries. Lanolin (from lamb’s wool), beeswax (Fig. 10-6), carnauba wax (from a Brazilian palm tree), and wax extracted from spermaceti oil (from whales; see Box 10-1) are widely used in the manufacture of lotions, ointments, and polishes.

FIGURE 10-6 Biological wax. (a) Triacontanoylpalmitate, the major component of beeswax, is an ester of palmitic acid with the alcohol triacontanol. (b) A honeycomb, constructed of beeswax, is firm at 25 °C and completely impervious to water. The term “wax” originates in the Old English weax, meaning “the material of the honeycomb.”

SUMMARY 10.1 Storage Lipids

- Lipids are water-insoluble cellular components, of diverse structure, that can be extracted by nonpolar solvents.
- Almost all fatty acids, the hydrocarbon components of many lipids, have an even number of carbon atoms (usually 12 to 24); they are either saturated or unsaturated, with double bonds almost always in the cis configuration.
- Triacylglycerols contain three fatty acid molecules esterified to the three hydroxyl groups of glycerol. Simple triacylglycerols contain only one type of fatty acid; mixed triacylglycerols, two or three types. Triacylglycerols are primarily storage fats; they are present in many foods.
- Partial hydrogenation of vegetable oils in the food industry converts some cis double bonds to the trans configuration. Trans fatty acids in the diet are an important risk factor for coronary heart disease.

10.2 Structural Lipids in Membranes

The central architectural feature of biological membranes is a double layer of lipids, which acts as a barrier to the passage of polar molecules and ions. Membrane lipids are amphipathic: one end of the molecule is hydrophobic, the other hydrophilic. Their hydrophobic interactions with each other and their hydrophilic interactions with water direct their packing into sheets called membrane bilayers. In this section we describe five general types of membrane lipids: glycerophospholipids, in which the hydrophobic regions are composed of two fatty acids joined to glycerol; galactolipids and sulfolipids, which also contain two fatty acids esterified to glycerol, but lack the characteristic phosphate of phospholipids; archaeal tetraether lipids, in which two very long alkyl chains are ether-linked to glycerol at both ends; sphingolipids, in which a single fatty acid is joined to a fatty amine, sphingosine; and sterols, compounds characterized by a rigid system of four fused hydrocarbon rings.

The hydrophilic moieties in these amphipathic compounds may be as simple as a single —OH group at one end of the sterol ring system, or they may be much more complex. In glycerophospholipids and some sphingolipids, a polar head group is joined to the hydrophobic moiety by a phosphodiester linkage; these are the phospholipids. Other sphingolipids lack phosphate but have a simple sugar or complex oligosaccharide at their polar ends; these are the glycolipids (Fig. 10-7). Within these groups of membrane lipids, enormous diversity results from various combinations of fatty acid “tails” and polar “heads.” The arrangement of these lipids in membranes, and their structural and functional roles therein, are considered in the next chapter.
FIGURE 10–7 Some common types of storage and membrane lipids. All the lipid types shown here have either glycerol or sphingosine as the backbone (pink screen), to which are attached one or more long-chain alkyl groups (yellow) and a polar head group (blue). In triacylglycerols, glycerophospholipids, galactolipids, and sulfolipids, the alkyl groups are fatty acids in ester linkage. Sphingolipids contain a single fatty acid, in amide linkage to the sphingosine backbone. The membrane lipids of archaea are variable; that shown here has two very long, branched alkyl chains, each end in ether linkage. In phospholipids the polar head group is joined through a phosphodiester, whereas glycolipids have a direct glycosidic linkage between the head-group sugar and the backbone glycerol.

Glycerophospholipids Are Derivatives of Phosphatidic Acid

Glycerophospholipids, also called phosphoglycerides, are membrane lipids in which two fatty acids are attached in ester linkage to the first and second carbons of glycerol, and a highly polar or charged group is attached through a phosphodiester linkage to the third carbon. Glycerol is prochiral; it has no asymmetric carbons, but attachment of phosphate at one end converts it into a chiral compound, which can be correctly named either L-glycerol 3-phosphate, D-glycerol 1-phosphate, or sn-glycerol 3-phosphate (Fig. 10–8). Glycerophospholipids are named as derivatives of the parent compound, phosphatidic acid (Fig. 10–9), according to the polar alcohol in the head group. Phosphatidylcholine and phosphatidylethanolamine have choline and ethanolamine as their polar head groups, for example. In all these compounds, the head group is joined to glycerol through a phosphodiester bond, in which the phosphate group bears a negative charge at neutral pH. The polar alcohol may be negatively charged (as in phosphatidylinositol 4,5-bisphosphate), neutral (phosphatidylserine), or positively charged (phosphatidylcholine, phosphatidylethanolamine). As we shall see in Chapter 11, these charges contribute greatly to the surface properties of membranes.

The fatty acids in glycerophospholipids can be any of a wide variety, so a given phospholipid (phosphatidylcholine, for example) may consist of several molecular species, each with its unique complement of fatty acids. The distribution of molecular species is specific for different organisms, different tissues of the same organism, and different glycerophospholipids in the same cell or tissue. In general, glycerophospholipids contain a C\textsubscript{16} or C\textsubscript{18} saturated fatty acid at C-1 and a C\textsubscript{16} or C\textsubscript{20} unsaturated fatty acid at C-2. With few exceptions, the biological significance of the variation in fatty acids and head groups is not yet understood.

Some Glycerophospholipids Have Ether-Linked Fatty Acids

Some animal tissues and some unicellular organisms are rich in ether lipids, in which one of the two acyl chains is attached to glycerol in ether, rather than ester linkage. The ether-linked chain may be saturated, as in the alkyl ether lipids, or may contain a double bond between C-1 and C-2, as in plasmalogens (Fig. 10–10). Vertebrate heart tissue is uniquely enriched in ether lipids; about half of the heart phospholipids are plasmalogens. The membranes of halophilic bacteria, ciliated protists, and certain invertebrates also contain high proportions of ether lipids. The functional significance of ether lipids in these membranes is unknown; perhaps their resistance to the phospholipases that cleave ester-linked fatty acids from membrane lipids is important in some roles.

At least one ether lipid, platelet-activating factor, is a potent molecular signal. It is released from leukocytes called basophils and stimulates platelet aggregation and the release of serotonin (a vasoconstrictor).
Glycerophospholipids

<table>
<thead>
<tr>
<th>Name of glycerophospholipid</th>
<th>Name of X-O</th>
<th>Formula of X</th>
<th>Net charge (at pH 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphatidic acid</td>
<td></td>
<td>H</td>
<td>-1</td>
</tr>
<tr>
<td>Phosphatidylethanolamine</td>
<td>Ethanolamine</td>
<td>-CH₂-CH₃-NH₃</td>
<td>0</td>
</tr>
<tr>
<td>Phosphatidylcholine</td>
<td>Choline</td>
<td>-CH₂-CH₃-N(CH₃)₃</td>
<td>0</td>
</tr>
<tr>
<td>Phosphatidylserine</td>
<td>Serine</td>
<td>-CH₂-CH-NH₃</td>
<td>-1</td>
</tr>
<tr>
<td>Phosphatidylglycerol</td>
<td>Glycerol</td>
<td>-CH₃-CH-CH₂-OH</td>
<td>-1</td>
</tr>
<tr>
<td>Phosphatidylinositol 4,5-bisphosphate</td>
<td>myo-Inositol 4,5-bisphosphate</td>
<td></td>
<td>-4</td>
</tr>
<tr>
<td>Cardiolipin</td>
<td>Phosphatidylyglycerol</td>
<td>-CH₂</td>
<td>-2</td>
</tr>
</tbody>
</table>

FIGURE 10-9 Glycerophospholipids. The common glycerophospholipids are diacylglycerols linked to head-group alcohols through a phosphodiester bond. Phosphatidic acid, a phosphomonoester, is the parent compound. Each derivative is named for the head-group alcohol (X), with the prefix "phosphatidyl-". In cardiolipin, two phosphatidic acids share a single glycerol (R¹ and R² are fatty acyl groups).

FIGURE 10-10 Ether lipids. Plasmalogens have an ether-linked alkyl chain where most glycerophospholipids have an ester-linked fatty acid (compare Fig. 10-9). Platelet-activating factor has a long ether-linked alkyl chain at C-1 of glycerol, but C-2 is ester-linked to acetic acid, which makes the compound much more water-soluble than most glycerophospholipids and plasmalogens. The head-group alcohol is ethanolamine in plasmalogens and choline in platelet-activating factor.
Chloroplasts Contain Galactolipids and Sulfolipids

The second group of membrane lipids are those that predominate in plant cells: the **galactolipids**, in which one or two galactose residues are connected by a glycosidic linkage to C-3 of a 1,2-diacylglycerol (Fig. 10–11; see also Fig. 10–7). Galactolipids are localized in the thylakoid membranes (internal membranes) of chloroplasts; they make up 70% to 80% of the total membrane lipids of a vascular plant. They are probably the most abundant membrane lipids in the biosphere. Phosphate is often the limiting plant nutrient in soil, and perhaps the evolutionary pressure to conserve phosphate for more critical roles favored plants that made phosphate-free lipids. Plant membranes also contain sulfolipids, in which a sulfonated glucose residue is joined to a diacylglycerol in glycosidic linkage. In sulfolipids, the sulfonate on the head group bears a negative charge like that of the phosphate group in phospholipids (Fig. 10–11).

Archaea Contain Unique Membrane Lipids

The archaea, most of which live in ecological niches with extreme conditions—high temperatures (boiling water), low pH, high ionic strength, for example—have membrane lipids containing long-chain (32 carbons) branched hydrocarbons linked at each end to glycerol (Fig. 10–12). These linkages are through ether bonds, which are much more stable to hydrolysis at low pH and high temperature than are the ester bonds found in the lipids of bacteria and eukaryotes. In their fully extended form, these archaeal lipids are twice the length of phospholipids and sphingolipids, and can span the full width of the surface membrane. At each end of the extended molecule is a polar head consisting of glycerol linked to either phosphate or sugar residues. The general name for these compounds, glycerol dialkyl glycerol tetraethers (GDGTs), reflects their unique structure. The glycerol moiety of the archaeal lipids is not the same stereoisomer as that in the lipids of Bacteria and Eukarya; the central carbon is in the R configuration in Archaea, in the S configuration in the other domains (Fig. 10–8).

Sphingolipids Are Derivatives of Sphingosine

Sphingolipids, the fourth large class of membrane lipids, also have a polar head group and two nonpolar tails, but unlike glycerophospholipids and galactolipids they contain no glycerol. Sphingolipids are composed of one molecule of the long-chain amino alcohol sphingosine (also called 4-sphingenine) or one of its derivatives, one molecule of a long-chain fatty acid, and a polar head group that is joined by a glycosidic linkage in some cases and a phosphodiester in others (Fig. 10–13).

FIGURE 10–11 Three glycolipids of chloroplast thylakoid membranes. In monogalactosyldiacylglycerols (MGDGs) and digalactosyldiacylglycerols (DGDGs), almost all the acyl groups are derived from linoleic acid, 18:2(Δ9,12), and the head groups are uncharged. In the sulfolipid 6-sulfo-6-deoxy-α-D-glucopyranosylglycerol, the sulfonate carries a fixed negative charge.
10.2 Structural Lipids in Membranes

FIGURE 10–12 A typical membrane lipid of archaea. In this diphytanyl tetraether lipid, the diphytanyl moieties (yellow) are long hydrocarbons composed of eight five-carbon isoprene groups condensed end-to-end (on the condensation of isoprene units, see Fig. 21–36; also, compare the diphytanyl groups with the 20-carbon phytol side chain of chlorophylls in Fig. 19–47a). In this extended form, the diphytanyl groups are about twice the length of a 16-carbon fatty acid typically found in the membrane lipids of bacteria and eukaryotes. The glycerol moieties in the archaeal lipids are in the R configuration, in contrast to those of bacteria and eukaryotes, which have the S configuration. Archaeal lipids differ in the substituents on the glycerols. In the molecule shown here, one glycerol is linked to the disaccharide α-glucopyranosyl-(1→2)-β-galactofuranose; the other glycerol is linked to a glycerol phosphate head group.

FIGURE 10–13 Sphingolipids. The first three carbons at the polar end of sphingosine are analogous to the three carbons of glycerol in glycerophospholipids. The amino group at C-2 bears a fatty acid in amide linkage. The fatty acid is usually saturated or monounsaturated, with 16, 18, 22, or 24 carbon atoms. Ceramide is the parent compound for this group. Other sphingolipids differ in the polar head group (X) attached at C-1. Gangliosides have very complex oligosaccharide head groups. Standard symbols for sugars are used in this figure, as shown in Table 7–1.
Carbons C-1, C-2, and C-3 of the sphingosine molecule are structurally analogous to the three carbons of glycerol in glycerophospholipids. When a fatty acid is attached in amide linkage to the —NH2 on C-2, the resulting compound is a ceramide, which is structurally similar to a diacylglycerol. Ceramide is the structural parent of all sphingolipids.

There are three subclasses of sphingolipids, all derivatives of ceramide but differing in their head groups: sphingomyelins, neutral (uncharged) glycolipids, and gangliosides. Sphingomyelins contain phosphocholine or phosphoethanolamine as their polar head group and are therefore classified along with glycerophospholipids as phospholipids (Fig. 10–7). Indeed, sphingomyelins resemble phosphatidylycerolines in their general properties and three-dimensional structure, and in having no net charge on their head groups (Fig. 10–14). Sphingomyelins are present in the plasma membranes of animal cells and are especially prominent in myelin, a membranous sheath that surrounds and insulates the axons of some neurons—thus the name “sphingomyelins.”

Glycosphingolipids, which occur largely in the outer face of plasma membranes, have head groups with one or more sugars connected directly to the —OH at C-1 of the ceramide moiety; they do not contain phosphate. Ceramides have a single sugar linked to ceramide; those with galactose are characteristically found in the plasma membranes of cells in neural tissue, and those with glucose in the plasma membranes of cells in nonneural tissues. Globosides are glycosphingolipids with two or more sugars, usually D-glucose, D-galactose, or N-acetyl-D-galactosamine. Ceramides and globosides are sometimes called neutral glycolipids, as they have no charge at pH 7.

Gangliosides, the most complex sphingolipids, have oligosaccharides as their polar head groups and one or more residues of N-acetylenuraminic acid (Neu5Ac), a sialic acid (often simply called “sialic acid”), at the termini. Sialic acid gives gangliosides the negative charge at pH 7 that distinguishes them from globosides. Gangliosides with one sialic acid residue are in the GM (M for mono-) series, those with two are in the GD (D for di-) series, and so on (GT, three sialic acid residues; GQ, four).

Sphingolipids at Cell Surfaces Are Sites of Biological Recognition

When sphingolipids were discovered more than a century ago by the physician-chemist Johann Thudichum, their biological role seemed as enigmatic as the Sphinx, for which he therefore named them. In humans, at least 60 different sphingolipids have been identified in cellular membranes. Many of these are especially prominent in the plasma membranes of neurons, and some are clearly recognition sites on the cell surface, but a specific function for only a few sphingolipids has been discovered thus far. The carbohydrate moieties of certain sphingolipids define the human blood groups and therefore determine the type of blood that individuals can safely receive in blood transfusions (Fig. 10–15).

Gangliosides are concentrated in the outer face of cells, where they present points of recognition for extracellular molecules or surfaces of neighboring cells. The kinds and amounts of gangliosides in the plasma membrane change dramatically during embryonic development. Tumor formation induces the synthesis of a
new complement of gangliosides, and very low concentrations of a specific ganglioside have been found to induce differentiation of cultured neuronal tumor cells. Investigation of the biological roles of diverse gangliosides remains fertile ground for future research.

Phospholipids and Sphingolipids Are Degraded in Lysosomes

Most cells continually degrade and replace their membrane lipids. For each hydrolyzable bond in a glycerophospholipid, there is a specific hydrolytic enzyme in the lysosome (Fig. 10–16). Phospholipases of the A type remove one of the two fatty acids, producing a lysophospholipid. (These esterases do not attack the ether link of plasmalogens.) Lysophospholipases remove the remaining fatty acid.

Gangliosides are degraded by a set of lysosomal enzymes that catalyze the stepwise removal of sugar units, finally yielding a ceramide. A genetic defect in any of these hydrolytic enzymes leads to the accumulation of gangliosides in the cell, with severe medical consequences (Box 10–2).

Sterols Have Four Fused Carbon Rings

Sterols are structural lipids present in the membranes of most eukaryotic cells. The characteristic structure of this fifth group of membrane lipids is the steroid nucleus, consisting of four fused rings, three with six carbons and one with five (Fig. 10–17). The steroid nucleus is almost planar and is relatively rigid; the fused rings do not allow rotation about C—C bonds. **Cholesterol**, the major sterol

Figure 10–15 Glycosphingolipids as determinants of blood groups. The human blood groups (O, A, B) are determined in part by the oligosaccharide head groups of these glycosphingolipids. The same three oligosaccharides are also found attached to certain blood proteins of individuals of blood types O, A, and B, respectively. Standard symbols for sugars are used here (see Table 7–1).

Figure 10–16 The specificities of phospholipases. Phospholipases A1 and A2 hydrolyze the ester bonds of intact glycerophospholipids at C-1 and C-2 of glycerol, respectively. When one of the fatty acids has been removed by a type A phospholipase, the second fatty acid is removed by a lysophospholipase (not shown). Phospholipases C and D each split one of the phosphodiester bonds in the head group. Some phospholipases act on only one type of glycerophospholipid, such as phosphatidylinositol 4,5-bisphosphate (shown here) or phosphatidylcholine; others are less specific.

Figure 10–17 Cholesterol. The stick structure of cholesterol is visible through a transparent surface contour model of the molecule. In the chemical structure, the rings are labeled A through D to simplify reference to derivatives of the steroid nucleus; the carbon atoms are numbered in blue. The C-3 hydroxyl group (pink in both representations) is the polar head group. For storage and transport of the sterol, this hydroxyl group condenses with a fatty acid to form a sterol ester.
The polar lipids of membranes undergo constant metabolic turnover, the rate of their synthesis normally counterbalanced by the rate of breakdown. The breakdown of lipids is promoted by hydrolytic enzymes in lysosomes, each enzyme capable of hydrolyzing a specific bond. When sphingolipid degradation is impaired by a defect in one of these enzymes (Fig. 1), partial breakdown products accumulate in the tissues, causing serious disease.

For example, Niemann-Pick disease is caused by a rare genetic defect in the enzyme sphingomyelinase, which cleaves phosphocholine from sphingomyelin. Sphingomyelin accumulates in the brain, spleen, and liver. The disease becomes evident in infants and causes mental retardation and early death. More common is Tay-Sachs disease, in which ganglioside GM2 accumulates in the brain and spleen (Fig. 2) owing to lack of the enzyme hexosaminidase A. The symptoms of Tay-Sachs disease are progressive developmental retardation, paralysis, blindness, and death by the age of 3 or 4 years.

Genetic counseling can predict and avert many inheritable diseases. Tests on prospective parents can detect abnormal enzymes, then DNA testing can determine the exact nature of the defect and the risk it poses for offspring. Once a pregnancy occurs, fetal cells obtained by sampling a part of the placenta (chorionic villus sampling) or the fluid surrounding the fetus (amniocentesis) can be tested in the same way.

FIGURE 1 Pathways for the breakdown of GM1, globoside, and sphingomyelin to ceramide. A defect in the enzyme hydrolyzing a particular step is indicated by \otimes; the disease that results from accumulation of the partial breakdown product is noted.

FIGURE 2 Electron micrograph of a portion of a brain cell from an infant with Tay-Sachs disease, obtained post mortem, showing abnormal ganglioside deposits in the lysosomes.
are the fat-soluble vitamins, quinones, and dolichols described in Section 10.3.

In addition to their roles as membrane constituents, the sterols serve as precursors for a variety of products with specific biological activities. Steroid hormones, for example, are potent biological signals that regulate gene expression. **Bile acids** are polar derivatives of cholesterol that act as detergents in the intestine, emulsifying dietary fats to make them more readily accessible to digestive lipases.

Summary 10.2 Structural Lipids in Membranes

- The polar lipids, with polar heads and nonpolar tails, are major components of membranes. The most abundant are the glycerophospholipids, which contain fatty acids esterified to two of the hydroxyl groups of glycerol, and a second alcohol, the head group, esterified to the third hydroxyl of glycerol via a phosphodiester bond. Other polar lipids are the sterols.
- Glycerophospholipids differ in the structure of their head group; common glycerophospholipids are phosphatidylethanolamine and phosphatidylcholine. The polar heads of the glycerophospholipids are charged at pH near 7.
- Chloroplast membranes are rich in galactolipids, composed of a diacylglycerol with one or two linked galactose residues, and sulfolipids, diacylglycerols with a linked sulfonated sugar residue and thus a negatively charged head group.
- Archaea have unique membrane lipids, with long-chain alkyl groups ether-linked to glycerol at both ends and with sugar residues and/or phosphate joined to the glycerol to provide a polar or charged head group. These lipids are stable under the harsh conditions in which archaea live.
- The sphingolipids contain sphingosine, a long-chain aliphatic amino alcohol, but no glycerol. Sphingomyelin has, in addition to phosphoric acid and choline, two long hydrocarbon chains, one contributed by a fatty acid and the other by sphingosine. Three other classes of sphingolipids are cerebrosides, globosides, and gangliosides, which contain sugar components.
- Sterols have four fused rings and a hydroxyl group. Cholesterol, the major sterol in animals, is both a structural component of membranes and precursor to a wide variety of steroids.

10.3 Lipids as Signals, Cofactors, and Pigments

The two functional classes of lipids considered thus far (storage lipids and structural lipids) are major cellular components; membrane lipids make up 5% to 10% of the dry mass of most cells, and storage lipids more than 80% of the mass of an adipocyte. With some important exceptions, these lipids play a passive role in the cell; lipid fuels are stored until oxidized by enzymes, and membrane lipids form impermeable barriers around cells and cellular compartments. Another group of lipids, present in much smaller amounts, have active roles in the metabolic traffic as metabolites and messengers. Some serve as potent signals—as hormones, carried in the blood from one tissue to another, or as intracellular messengers generated in response to an extracellular signal (hormone or growth factor). Others function as enzyme cofactors in electron-transfer reactions in chloroplasts and mitochondria, or in the transfer of sugar moieties in a variety of glycosylation reactions. A third group consists of lipids with a system of conjugated double bonds; pigment molecules that absorb visible light. Some of these act as light-capturing pigments in vision and photosynthesis; others produce natural colorations, such as the orange of pumpkins and carrots and the yellow of canary feathers. Finally, a very large group of volatile lipids produced in plants serve as signals that pass through the air, allowing plants to communicate with each other, and to invite animal friends and deter foes. We describe in this section a few representatives of these biologically active lipids. In later chapters, their synthesis and biological roles are considered in more detail.

Phosphatidylinositols and Sphingosine Derivatives Act as Intracellular Signals

Phosphatidylinositol and its phosphorylated derivatives act at several levels to regulate cell structure and metabolism. Phosphatidylinositol 4,5-bisphosphate (Fig. 10–9) in the cytoplasmic (inner) face of plasma membranes serves as a reservoir of messenger molecules that are released inside the cell in response to extracellular signals interacting with specific surface receptors. Extracellular signals such as the hormone vasopressin activate a specific phospholipase C in the membrane, which hydrolyzes phosphatidylinositol 4,5-bisphosphate to release two products that act as intracellular messengers: inositol 1,4,5-trisphosphate (IP₃),...
which is water-soluble, and diacylglycerol, which remains associated with the plasma membrane. IP$_3$ triggers release of Ca$^{2+}$ from the endoplasmic reticulum, and the combination of diacylglycerol and elevated cytosolic Ca$^{2+}$ activates the enzyme protein kinase C. By phosphorylating specific proteins, this enzyme brings about the cell's response to the extracellular signal. This signaling mechanism is described more fully in Chapter 12 (see Fig. 12-10).

Inositol phospholipids also serve as points of nucleation for supramolecular complexes involved in signaling or in exocytosis. Certain signaling proteins bind specifically to phosphatidylinositol 3,4,5-trisphosphate in the plasma membrane, initiating the formation of multienzyme complexes at the membrane's cytosolic surface. Formation of phosphatidylinositol 3,4,5-trisphosphate in response to extracellular signals therefore brings the proteins together in signaling complexes at the surface of the plasma membrane (see Fig. 12-16).

Membrane sphingolipids also can serve as sources of intracellular messengers. Both ceramide and sphingomyelin (Fig. 10-13) are potent regulators of protein kinases, and ceramide or its derivatives are involved in the regulation of cell division, differentiation, migration, and programmed cell death (also called apoptosis; see Chapter 12).

Eicosanoids Carry Messages to Nearby Cells

Eicosanoids are paracrine hormones, substances that act only on cells near the point of hormone synthesis instead of being transported in the blood to act on cells in other tissues or organs. These fatty acid derivatives have a variety of dramatic effects on vertebrate tissues. They are involved in reproductive function; in the inflammation, fever, and pain associated with injury or disease; in the formation of blood clots and the regulation of blood pressure; in gastric acid secretion; and in various other processes important in human health or disease.

All eicosanoids are derived from arachidonic acid (20:4(Δ5,8,11,14)) (Fig. 10–18), the 20-carbon polyunsaturated fatty acid from which they take their general name (Greek *eikos*′, “twenty”). There are three classes of eicosanoids: prostaglandins, thromboxanes, and leukotrienes.

Prostaglandins (PG) contain a five-carbon ring originating from the chain of arachidonic acid. Their name derives from the prostate gland, the tissue from which they were first isolated by Bengt Samuelsson and Sune Bergström. Two groups of prostaglandins were originally defined: PGE (ether-soluble) and PGF (fosfat (Swedish for phosphate) buffer-soluble). Each group contains numerous subtypes, named PGE$_1$, PGE$_2$, PGF$_1$, and so forth. Prostaglandins have an array of functions. Some stimulate contraction of the smooth muscle of the uterus during menstruation and labor. Others affect blood flow to specific organs, the wake-sleep cycle, and the responsiveness of certain tissues to hormones such as epinephrine and glucagon. Prostaglandins in a third group elevate body temperature (producing fever) and cause inflammation and pain.

The **thromboxanes** have a six-membered ring containing an ether. They are produced by platelets (also called thrombocytes) and act in the formation of blood clots and the reduction of blood flow to the site of a clot. As shown by John Vane, the nonsteroidal antiinflammatory drugs (NSAIDs)—aspirin, ibuprofen, and meclofenamate, for example—inhibit the enzyme prostaglandin

FIGURE 10–18 Arachidonic acid and some eicosanoid derivatives. Arachidonic acid (arachidonate at pH 7) is the precursor of eicosanoids, including the prostaglandins, thromboxanes, and leukotrienes. In prostaglandin E$_1$, C-8 and C-12 of arachidonate are joined to form the characteristic five-membered ring. In thromboxane A$_2$, the C-8 and C-12 are joined and an oxygen atom is added to form the six-membered ring. Leukotriene A$_4$ has a series of three conjugated double bonds. Nonsteroidal antiinflammatory drugs (NSAIDs) such as aspirin and ibuprofen block the formation of prostaglandins and thromboxanes from arachidionate by inhibiting the enzyme cyclooxygenase (prostaglandin H$_2$ synthase).
Lipids as Signals, Cofactors, and Pigments

H₂ synthase (also called cyclooxygenase, or COX), which catalyzes an early step in the pathway from arachidonate to prostaglandins and thromboxanes (Fig. 10–18; see also Fig. 21–15).

Leukotrienes, first found in leukocytes, contain three conjugated double bonds. They are powerful biological signals. For example, leukotriene D₄, derived from leukotriene A₄, induces contraction of the smooth muscle lining the airways to the lung. Overproduction of leukotrienes causes asthmatic attacks, and leukotriene synthesis is one target of antiasthmatic drugs such as prednisone. The strong contraction of the smooth muscle of the lungs that occurs during anaphylactic shock is part of the potentially fatal allergic reaction in individuals hypersensitive to bee stings, penicillin, or other agents.

Steroid Hormones Carry Messages between Tissues

Steroids are oxidized derivatives of sterols; they have the sterol nucleus but lack the alkyl chain attached to ring D of cholesterol, and they are more polar than cholesterol. Steroid hormones move through the bloodstream (on protein carriers) from their site of production to target tissues, where they enter cells, bind to highly specific receptor proteins in the nucleus, and trigger changes in gene expression and thus metabolism. Because hormones have very high affinity for their receptors, very low concentrations of hormones (nanomolar or less) are sufficient to produce responses in target tissues. The major groups of steroid hormones are the male and female sex hormones and the hormones produced by the adrenal cortex, cortisol and aldosterone (Fig. 10–19). Prednisone and prednisolone are steroid drugs with potent antiinflammatory activities, mediated in part by the inhibition of arachidonate release by phospholipase A₂ (Fig. 10–18) and consequent inhibition of the synthesis of leukotrienes, prostaglandins, and thromboxanes. These drugs have a variety of medical applications, including the treatment of asthma and rheumatoid arthritis.

Vascular plants contain the steroidlike brassinolide (Fig. 10–19), a potent growth regulator that increases the rate of stem elongation and affects the orientation of cellulose microfibrils in the cell wall during growth.

Vascular Plants Produce Thousands of Volatile Signals

Plants produce literally thousands of different lipophilic compounds, volatile substances that are used to attract pollinators, to repel herbivores, to attract organisms that defend the plant against herbivores, and to communicate with other plants. Jasmonate, for example (see Fig. 12–32), derived from the fatty acid 18:3(Δ⁹,12,15) in membrane lipids, triggers the plant’s defenses in response to insect-inflicted damage. The methyl ester of jasmonate gives the characteristic fragrance of jasmine oil, which is widely used in the perfume industry. Many of the plant volatiles are derived from fatty acids, or

\[
\text{CH}_3
\]

\[
\text{CH}_2=\text{C}-(\text{CH})=\text{CH}_2
\]

Isoprene

\[
\begin{align*}
\text{Testosterone} & \\
\text{Estradiol} & \\
\text{Cortisol} & \\
\text{Aldosterone} & \\
\text{Prednisolone} & \\
\text{Prednisone} & \\
\text{Brassinolide} &
\end{align*}
\]

FIGURE 10–19 Steroids derived from cholesterol. Testosterone, the male sex hormone, is produced in the testes. Estradiol, one of the female sex hormones, is produced in the ovaries and placenta. Cortisol and aldosterone are hormones synthesized in the cortex of the adrenal gland; they regulate glucose metabolism and salt excretion, respectively. Prednisolone and prednisone are synthetic steroids used as antiinflammatory agents. Brassinolide is a growth regulator found in vascular plants.
Vitamins A and D Are Hormone Precursors

During the first third of the twentieth century, a major focus of research in physiological chemistry was the identification of vitamins, compounds that are essential to the health of humans and other vertebrates but cannot be synthesized by these animals and must therefore be obtained in the diet. Early nutritional studies identified two general classes of such compounds: those soluble in nonpolar organic solvents (fat-soluble vitamins) and those that could be extracted from foods with aqueous solvents (water-soluble vitamins). Eventually the fat-soluble group was resolved into the four vitamin groups A, D, E, and K, all of which are isoprenoid compounds synthesized by the condensation of multiple isoprene units. Two of these (D and A) serve as hormone precursors.

Vitamin D₃, also called cholecalciferol, is normally formed in the skin from 7-dehydrocholesterol in a photochemical reaction driven by the UV component of sunlight (Fig. 10–20a). Vitamin D₃ is not itself biologically active, but it is converted by enzymes in the liver and kidney to 1,25-dihydroxycholecalciferol, a hormone that regulates calcium uptake in the intestine and calcium levels in kidney and bone. Deficiency of vitamin D leads to defective bone formation and the disease rickets, for which administration of vitamin D produces a dramatic cure (Fig. 10–20b). Vitamin D₂ (ergocalciferol) is a commercial product formed by UV irradiation of the ergosterol of yeast. Vitamin D₂ is structurally similar to D₃, with slight modification to the side chain attached to the sterol D ring. Both have the same biological effects, and D₂ is commonly added to milk and butter as a dietary supplement. Like steroid hormones, the product of vitamin D metabolism, 1,25-dihydroxycholecalciferol, regulates gene expression by interacting with specific nuclear receptor proteins (see p. 1143).

Vitamin A (retinol), in its various forms, functions as a hormone and as the visual pigment of the vertebrate eye (Fig. 10–21). Acting through receptor proteins in the cell nucleus, the vitamin A derivative retinoic acid regulates gene expression in the development of epithelial tissue, including skin. Retinoic acid is the active ingredient in the drug tretinoin (Retin-A), used in the treatment of severe acne and wrinkled skin. Retinal, another vitamin A derivative, is the pigment that initiates the response of rod and cone cells of the retina to light, producing a neuronal signal to the brain. This role of retinal is described in detail in Chapter 12.

Vitamin A was first isolated from fish liver oils; liver, eggs, whole milk, and butter are also good dietary sources. In vertebrates, β-carotene, the pigment that gives carrots, sweet potatoes, and other yellow vegetables their characteristic color, can be enzymatically converted to vitamin A. Deficiency of vitamin A leads to a variety of symptoms in humans, including dryness of the skin, eyes, and mucous membranes; retarded development and growth; and night blindness, an early symptom commonly used in diagnosing vitamin A deficiency.
Vitamins E and K and the Lipid Quinones Are Oxidation-Reduction Cofactors

Vitamin E is the collective name for a group of closely related lipids called tocopherols, all of which contain a substituted aromatic ring and a long isoprenoid side chain (Fig. 10-22a). Because they are hydrophobic, tocopherols associate with cell membranes, lipid deposits, and lipoproteins in the blood. Tocopherols are biological antioxidants. The aromatic ring reacts with and destroys the most reactive forms of oxygen radicals and other free radicals, protecting unsaturated fatty acids from oxidation and preventing oxidative damage to membrane lipids, which can cause cell fragility. Tocopherols are found in eggs and vegetable oils and are especially abundant in wheat germ. Laboratory animals fed diets depleted of vitamin E develop scaly skin, muscular weakness and wasting, and sterility. Vitamin E deficiency in humans is very rare; the principal symptom is fragile erythrocytes.

The aromatic ring of **vitamin K** (Fig. 10-22b) undergoes a cycle of oxidation and reduction during the formation of active prothrombin, a blood plasma protein essential in blood clotting. Prothrombin is a proteolytic enzyme that splits peptide bonds in the blood protein fibrinogen to convert it to fibrin, the insoluble fibrous protein that holds blood clots together. Henrik Dam and Edward A. Doisy independently discovered that vitamin K deficiency slows blood clotting, which can be fatal. Vitamin K deficiency is very uncommon in humans, aside from a small percentage of infants who suffer from hemorrhagic disease of the newborn, a potentially fatal disorder. In the United States, newborns are routinely given a 1 mg injection of vitamin K. Vitamin K₁ (phylloquinone) is found in green plant leaves; a related form, vitamin K₂ (menaquinone), is formed by bacteria living in the vertebrate intestine.

Edward A. Doisy, 1893–1986
Henrik Dam, 1895–1976
Vitamin E: an antioxidant

Vitamin K₃: a blood-clotting cofactor (phylloquinone)

Warfarin: a blood anticoagulant

Ubiquinone: a mitochondrial electron carrier (coenzyme Q)
\((n = 4 \text{ to } 8)\)

Plastoquinone: a chloroplast electron carrier
\((n = 4 \text{ to } 8)\)

Dolichol: a sugar carrier
\((n = 9 \text{ to } 22)\)

FIGURE 10-22 Some other biologically active isoprenoid compounds or derivatives. Units derived from isoprene are set off by dashed red lines. In most mammalian tissues, ubiquinone (also called coenzyme Q) has 10 isoprene units. Dolichols of animals have 17 to 21 isoprene units (85 to 105 carbon atoms), bacterial dolichols have 11, and those of plants and fungi have 14 to 24.

Warfarin (Fig. 10–22c) is a synthetic compound that inhibits the formation of active prothrombin. It is particularly poisonous to rats, causing death by internal bleeding. Ironically, this potent rodenticide is also an invaluable anticoagulant drug for treating humans at risk for excessive blood clotting, such as surgical patients and those with coronary thrombosis.

Ubiquinone (also called coenzyme Q) and plastoquinone (Fig. 10–22d, e) are isoprenoids that function as lipophilic electron carriers in the oxidation-reduction reactions that drive ATP synthesis in mitochondria and chloroplasts, respectively. Both ubiquinone and plastoquinone can accept either one or two electrons and either one or two protons (see Fig. 19–2).

Dolichols Activate Sugar Precursors for Biosynthesis

During assembly of the complex carbohydrates of bacterial cell walls, and during the addition of polysaccharide units to certain proteins (glycoproteins) and lipids (glycolipids) in eukaryotes, the sugar units to be added are chemically activated by attachment to isoprenoid alcohols called dolichols (Fig. 10–22f). These compounds have strong hydrophobic interactions with membrane lipids, anchoring the attached sugars to the membrane, where they participate in sugar-transfer reactions.

Many Natural Pigments Are Lipidic Conjugated Dienes

Conjugated dienes have carbon chains with alternating single and double bonds. Because this structural arrangement allows the delocalization of electrons, the compounds can be excited by low-energy electromagnetic radiation (visible light), giving them colors visible to humans and other animals. Carotene (Fig. 10–21) is yellow-orange; similar compounds give bird feathers their striking reds, oranges, and yellows (Fig. 10–23). Like sterols, steroids, dolichols, vitamins A, E, D, and K,
Canthaxanthin (bright red)

Zeaxanthin (bright yellow)

Figure 10-23 Lipids as pigments in plants and bird feathers. Compounds with long conjugated systems absorb light in the visible region of the spectrum. Subtle differences in the chemistry of these compounds produce pigments of strikingly different colors. Birds acquire the pigments that color their feathers red or yellow by eating plant materials that contain carotenoid pigments, such as canthaxanthin and zeaxanthin. The differences in pigmentation between male and female birds are the result of differences in intestinal uptake and processing of carotenoids.

SUMMARY 10.3 Lipids as Signals, Cofactors, and Pigments

- Some types of lipids, although present in relatively small quantities, play critical roles as cofactors or signals.
- Phosphatidylinositol bisphosphate is hydrolyzed to yield two intracellular messengers, diacylglycerol and inositol 1,4,5-trisphosphate. Phosphatidylinositol 3,4,5-trisphosphate is a nucleation point for supramolecular protein complexes involved in biological signaling.
- Prostaglandins, thromboxanes, and leukotrienes (the eicosanoids), derived from arachidonate, are extremely potent hormones.
- Steroid hormones, derived from sterols, serve as powerful biological signals, such as the sex hormones.
- Vitamins D, A, E, and K are fat-soluble compounds made up of isoprene units. All play essential roles in the metabolism or physiology of animals. Vitamin D is precursor to a hormone that regulates calcium metabolism. Vitamin A furnishes the visual pigment of the vertebrate eye and is a regulator of gene expression during epithelial cell growth. Vitamin E functions in the protection of membrane lipids from oxidative damage, and vitamin K is essential in the blood-clotting process.
- Ubiquinones and plastoquinones, also isoprenoid derivatives, are electron carriers in mitochondria and chloroplasts, respectively.
- Dolichols activate and anchor sugars to cellular membranes; the sugar groups are then used in the synthesis of complex carbohydrates, glycolipids, and glycoproteins.
- Lipidic conjugated dienes serve as pigments in flowers and fruits and give bird feathers their striking colors.

10.4 Working with Lipids

Because lipids are insoluble in water, their extraction and subsequent fractionation require the use of organic solvents and some techniques not commonly used in the purification of water-soluble molecules such as proteins and carbohydrates. In general, complex mixtures of lipids are separated by differences in polarity or solubility in nonpolar solvents. Lipids that contain ester- or amide-linked fatty acids can be hydrolyzed by treatment with acid or alkali or with specific hydrolytic enzymes (phospholipases, glycosidases) to yield their components for analysis. Some methods commonly used in lipid analysis are shown in Figure 10-24 and discussed below.

Lipid Extraction Requires Organic Solvents

Neutral lipids (triacylglycerols, waxes, pigments, and so forth) are readily extracted from tissues with ethyl ether, chloroform, or benzene, solvents that do not permit lipid clustering driven by hydrophobic interactions. Membrane lipids are more effectively extracted by more polar organic solvents, such as ethanol or methanol, which reduce the hydrophobic interactions among lipid molecules while also weakening the hydrogen bonds and electrostatic interactions that bind membrane lipids to membrane proteins. A commonly used extractant is a
FIGURE 10–24 Common procedures in the extraction, separation, and identification of cellular lipids. (a) Tissue is homogenized in a chloroform/methanol/water mixture, which on addition of water and removal of unextractable sediment by centrifugation yields two phases. Different types of extracted lipids in the chloroform phase may be separated by (b) adsorption chromatography on a column of silica gel, through which solvents of increasing polarity are passed, or (c) thin-layer chromatography (TLC), in which lipids are carried up a silica gel-coated plate by a rising solvent front, less polar lipids traveling farther than more polar or charged lipids. TLC with appropriate solvents can also be used to separate closely related lipid species; for example, the charged lipids phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol are easily separated by TLC.

For the determination of fatty acid composition, a lipid fraction containing ester-linked fatty acids is transesterified in a warm aqueous solution of NaOH and methanol (d), producing a mixture of fatty acyl methyl esters. These methyl esters are then separated on the basis of chain length and degree of saturation by (e) gas-liquid chromatography (GLC) or (f) high-performance liquid chromatography (HPLC). Precise determination of molecular mass by mass spectrometry allows unambiguous identification of individual lipids.

mixture of chloroform, methanol, and water, initially in volume proportions (1:2:0.8) that are miscible, producing a single phase. After tissue is homogenized in this solvent to extract all lipids, more water is added to the resulting extract and the mixture separates into two phases, methanol/water (top phase) and chloroform (bottom phase). The lipids remain in the chloroform layer, and the more polar molecules such as proteins and sugars partition into the methanol/water layer.

Adsorption Chromatography Separates Lipids of Different Polarity

Complex mixtures of tissue lipids can be fractionated by chromatographic procedures based on the different polarities of each class of lipid. In adsorption chromatography (Fig. 10–24b), an insoluble, polar material such as silica gel (a form of silicic acid, Si(OH)$_4$) is packed into a glass column, and the lipid mixture (in chloroform solution) is applied to the top of the column. (In high-performance liquid chromatography, the column is of smaller diameter and solvents are forced through the column under high pressure.) The polar lipids bind tightly to the polar silicic acid, but the neutral lipids pass directly through the column and emerge in the first chloroform wash. The polar lipids are then eluted, in order of increasing polarity, by washing the column with solvents of progressively higher polarity. Uncharged but polar lipids (cerebrosides, for example) are eluted with acetone, and very polar or charged lipids (such as glycerophospholipids) are eluted with methanol.

Thin-layer chromatography on silicic acid employs the same principle (Fig. 10–24c). A thin layer of silica gel is spread onto a glass plate, to which it adheres. A small sample of lipids dissolved in chloroform is applied near
vapor. As the solvent rises on the plate by capillary action, the entire farthest edge of the plate, which is dipped in a shallow container of an organic solvent or solvent mixture; the entire farthest, as they have lesser tendency to bind to the silicic acid. The separated lipids can be detected by spraying the plate with a dye (rhodamine) that fluoresces when associated with lipids, or by exposing the plate to iodine fumes. Iodine reacts reversibly with the double bonds in fatty acids, such that lipids containing unsaturated fatty acids develop a yellow or brown color. Several other spray reagents are also useful in detecting specific lipids. For subsequent analysis, regions containing separated lipids can be scraped from the plate and the lipids recovered by extraction with an organic solvent.

Gas-Liquid Chromatography Resolves Mixtures of Volatile Lipid Derivatives

Gas-liquid chromatography separates volatile components of a mixture according to their relative tendencies to dissolve in the inert material packed in the chromatography column or to volatilize and move through the column, carried by a current of an inert gas such as helium. Some lipids are naturally volatile, but most must first be derivatized to increase their volatility (that is, lower their boiling point). For an analysis of the fatty acids in a sample of phospholipids, the lipids are first transesterified: heated in a methanol/HCl or methanol/NaOH mixture to convert fatty acids esterified to glycerol into their methyl esters (Fig. 10-24d). These fatty acyl methyl esters are then loaded onto the gas-liquid chromatography column, and the column is heated to volatilize the compounds. Those fatty acyl esters most soluble in the column material partition into (dissolve in) that material; the less soluble lipids are carried by the stream of inert gas and emerge first from the column. The order of elution depends on the nature of the solid adsorbant in the column and on the boiling point of the components of the lipid mixture. Using these techniques, mixtures of fatty acids of various chain lengths and various degrees of unsaturation can be completely resolved (Fig. 10-24e).

Specific Hydrolysis Aids in Determination of Lipid Structure

Certain classes of lipids are susceptible to degradation under specific conditions. For example, all ester-linked fatty acids in triacylglycerols, phospholipids, and sterol esters are released by mild acid or alkaline treatment, and somewhat harsher hydrolysis conditions release amide-bound fatty acids from sphingolipids. Enzymes that specifically hydrolyze certain lipids are also useful in the determination of lipid structure. Phospholipases A, C, and D (Fig. 10-16) each split particular bonds in phospholipids and yield products with characteristic solubilities and chromatographic behaviors. Phospholipase C, for example, releases a water-soluble phosphoryl alcohol (such as phosphocholine from phosphatidylcholine) and a chloroform-soluble diacylglycerol, each of which can be characterized separately to determine the structure of the intact phospholipid. The combination of specific hydrolysis with characterization of the products by thin-layer, gas-liquid, or high-performance liquid chromatography often allows determination of a lipid structure.

Mass Spectrometry Reveals Complete Lipid Structure

To establish unambiguously the length of a hydrocarbon chain or the position of double bonds, mass spectrometric analysis of lipids or their volatile derivatives is invaluable. The chemical properties of similar lipids (for example, two fatty acids of similar length unsaturated at different positions, or two isoprenoids with different numbers of isoprene units) are very much alike, and their order of elution from the various chromatographic procedures often does not distinguish between them. When the eluate from a chromatography column is sampled by mass spectrometry, however, the components of a lipid mixture can be simultaneously separated and identified by their unique pattern of fragmentation (Fig. 10-25).

Lipidomics Seeks to Catalog All Lipids and Their Functions

In exploring the biological role of lipids in cells and tissues, it is important to know which lipids are present and in what proportions, and to know how this lipid composition changes with embryonic development, disease, or drug treatment. As lipid biochemists have become aware of the thousands of different naturally occurring lipids, they have proposed a new nomenclature system, with the aim of making it easier to compile and search databases of lipid composition. The system places each lipid in one of eight chemical groups (Table 10-3) designated by two letters. Within these groups, finer distinctions are indicated by numbered classes and subclasses. For example, all glycerophosphocholines are GP01; the subgroup of glycerophosphocholines with two fatty acids in ester linkage is designated GP0101; with one fatty acid ether-linked at position 1 and one in ester linkage at position 2, this becomes GP0102. Specific fatty acids are designated by numbers that give every lipid its own unique identifier, so that each individual lipid, including lipid types not yet discovered, can be unambiguously described in terms of a 12-character identifier. One factor used in this classification is the nature of the biosynthetic precursor. For example, prenol lipids (dolichols and vitamins E and K, for example) are formed from isoprenyl precursors. Polyketides, which we have not discussed in this chapter, include some natural products, many toxic, with biosynthetic pathways related to those for fatty acids. The eight chemical categories in Table 10-3 do not coincide perfectly with the divisions according to biological function that we have
FIGURE 10–25 Determination of fatty acid structure by mass spectrometry. The fatty acid is first converted to a derivative that minimizes migration of the double bonds when the molecule is fragmented by electron bombardment. The derivative shown here is a picolinyl ester of linoleic acid—18:2(Δ⁶,1₂) (M, 371)—in which the alcohol is picolinol (red). When bombarded with a stream of electrons, this molecule is volatilized and converted to a parent ion (M⁺; M, 371), in which the N atom bears the positive charge, and a series of smaller fragments produced by breakage of C—C bonds in the fatty acid. The mass spectrometer separates these charged fragments according to their mass/charge ratio (m/z). (To review the principles of mass spectrometry, see Box 3–2.)

The prominent ions at m/z = 92, 108, 151, and 164 contain the pyridine ring of the picolinol and various fragments of the carboxyl group, showing that the compound is indeed a picolinyl ester. The molecular ion, M⁺ (m/z = 371), confirms the presence of a C₁₈ fatty acid with two double bonds. The uniform series of ions 14 atomic mass units (u) apart represents loss of each successive methyl and methylene group from the methyl end of the acyl chain (beginning at C-18; the right end of the molecule as shown here), until the ion at m/z = 300 is reached. This is followed by a gap of 26 u for the carbons of the terminal double bond, at m/z = 274; a further gap of 14 u for the C-11 methylene group, at m/z = 260; and so forth. By this means the entire structure is determined, although these data alone do not reveal the configuration (cis or trans) of the double bonds.

used in this chapter. For example, the structural lipids of membranes include both glycerophospholipids and sphingolipids, separate categories in Table 10–3. Each method of categorization has its advantages.

The application of mass spectrometric techniques with high throughput and high resolution can provide quantitative catalogs of all the lipids present in a specific cell type—the lipidome—under particular conditions, and of the ways in which the lipidome changes with differentiation, disease such as cancer, or drug treatment. An animal cell contains about a thousand different lipid species, each presumably having a specific function. These functions are known for a growing number of lipids, but the still largely unexplored lipidome offers a rich source of new problems for the next generation of biochemists and cell biologists to solve.

SUMMARY 10.4 Working with Lipids

- In the determination of lipid composition, the lipids are first extracted from tissues with organic solvents and separated by thin-layer, gas-liquid, or high-performance liquid chromatography.

TABLE 10–3 Eight Major Categories of Biological Lipids

<table>
<thead>
<tr>
<th>Category</th>
<th>Category code</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acids</td>
<td>FA</td>
<td>Oleate, stearoyl-CoA, palmitoyl carnitine</td>
</tr>
<tr>
<td>Glycerolipids</td>
<td>GL</td>
<td>Di- and triacylglycerols</td>
</tr>
<tr>
<td>Glycerophospholipids</td>
<td>GP</td>
<td>Phosphatidylcholine, phosphatidyserine, phosphatidylethanolamine</td>
</tr>
<tr>
<td>Sphingolipids</td>
<td>SP</td>
<td>Sphingomyelin, ganglioside GM2</td>
</tr>
<tr>
<td>Sterol lipids</td>
<td>ST</td>
<td>Cholesterol, progesterone, bile acids</td>
</tr>
<tr>
<td>Prenol lipids</td>
<td>PR</td>
<td>Farnesol, geraniol, retinol, ubiquinone</td>
</tr>
<tr>
<td>Saccharolipids</td>
<td>SL</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>Polyketides</td>
<td>PK</td>
<td>Tetracycline, aflatoxin B₁</td>
</tr>
</tbody>
</table>
Lipids as Nutrients

A succinct statement of the findings that omega-3 fatty acids reduce the risk of cardiovascular disease.

A summary of the evidence that dietary trans fatty acids predispose to coronary heart disease.

Structural Lipids in Membranes

A minireview of the role of membrane lipids in the folding of membrane proteins.

This article is one of many in a four-volume set that contains definitive descriptions of the clinical, biochemical, and genetic aspects of hundreds of human metabolic diseases—an authoritative source and fascinating reading.

Further Reading

General

A new system of nomenclature for biological lipids, separating them into eight major categories. The definitive reference on lipid classification.

A good general resource on lipid structure and metabolism, at the intermediate level.

An excellent collection of reviews on various aspects of lipid structure, biosynthesis, and function.

Lipids as Signals, Cofactors, and Pigments

Problems

1. **Operational Definition of Lipids** How is the definition of “lipid” different from the types of definitions used for other biomolecules that we have considered, such as amino acids, nucleic acids, and proteins?

2. **Melting Points of Lipids** The melting points of a series of 18-carbon fatty acids are: stearic acid, 69.6 °C; oleic acid, 13.4 °C; linoleic acid, −5 °C; and linolenic acid, −11 °C.

(a) What structural aspect of these 18-carbon fatty acids can be correlated with the melting point?

(b) Draw all the possible triacylglycerols that can be constructed from glycerol, palmitic acid, and oleic acid. Rank them in order of increasing melting point.

(c) Branched-chain fatty acids are found in some bacterial membrane lipids. Would their presence increase or decrease the fluidity of the membranes (that is, give them a lower or higher melting point)? Why?

3. **Preparation of Béarnaise Sauce** During the preparation of béarnaise sauce, egg yolks are incorporated into melted butter to stabilize the sauce and avoid separation. The stabilizing agent in the egg yolks is lecithin (phosphatidylcholine). Suggest why this works.

4. **Isoprene Units in Isoprenoids** Geraniol, farnesol, and squalene are called isoprenoids, because they are synthesized from five-carbon isoprene units. In each compound, circle the five-carbon units representing isoprene units (see Fig. 10–22).

![Geraniol](image1)

![Farnesol](image2)

![Squalene](image3)

5. **Naming Lipid Stereoisomers** The two compounds below are stereoisomers of carvone with quite different properties; the one on the left smells like spearmint, and that on the right, like caraway. Name the compounds using the RS system.

![Spearmint](image4)

![Caraway](image5)
6. RS Designations for Alanine and Lactate Draw (using wedge-bond notation) and label the (R) and (S) isomers of 2-aminopropanoic acid (alanine) and 2-hydroxypropanoic acid (lactic acid).

7. Hydrophobic and Hydrophilic Components of Membrane Lipids A common structural feature of membrane lipids is their amphipathic nature. For example, in phosphatidylcholine, the two fatty acid chains are hydrophobic and the phosphocholine head group is hydrophilic. For each of the following membrane lipids, name the components that serve as the hydrophobic and hydrophilic units: (a) phosphatidylethanolamine; (b) sphingomyelin; (c) galactosylcerebroside; (d) ganglioside; (e) cholesterol.

8. Structure of Omega-6 Fatty Acid Draw the structure of the omega-6 fatty acid 16:1.

9. Catalytic Hydrogenation of Vegetable Oils Catalytic hydrogenation, used in the food industry, converts double bonds in the fatty acids of the oil triacylglycerols to \(-\text{CH}_2-\text{CH}_2-\). How does this affect the physical properties of the oils?

10. Alkali Lability of Triacylglycerols A common procedure for cleaning the grease trap in a sink is to add a product that contains sodium hydroxide. Explain why this works.

11. Deducing Lipid Structure from Composition Compositional analysis of a certain lipid shows that it has exactly one mole of fatty acid per mole of inorganic phosphate. Could this be a glycerophospholipid? A ganglioside? A sphingomyelin?

12. Deducing Lipid Structure from Molar Ratio of Components Complete hydrolysis of a glycerophospholipid yields glycerol, two fatty acids (16:1(\(\Delta^6\)) and 16:0), phosphoric acid, and serine in the molar ratio 1:1:1:1. Name this lipid and draw its structure.

13. Impermeability of Waxes What property of the waxy cuticles that cover plant leaves makes the cuticles impermeable to water?

14. The Action of Phospholipases The venom of the Eastern diamondback rattler and the Indian cobra contains phospholipase A\(_2\), which catalyzes the hydrolysis of fatty acids at the C-2 position of glycerophospholipids. The phospholipid breakdown product of this reaction is lysollecithin (lecithin is phosphatidylcholine). At high concentrations, this and other lysophospholipids act as detergents, dissolving the membranes of erythrocytes and lysing the cells. Extensive hemolysis may be life-threatening.

(a) All detergents are amphipathic. What are the hydrophilic and hydrophobic portions of lysollecithin?
(b) The pain and inflammation caused by a snake bite can be treated with certain steroids. What is the basis of this treatment?
(c) Though the high levels of phospholipase A\(_2\) in venom can be deadly, this enzyme is necessary for a variety of normal metabolic processes. What are these processes?

15. Lipids in Blood Group Determination We refer to the structure of glycosphingolipids determines the blood groups A, B, and O in humans. It is also true that glycoproteins determine blood groups. How can both statements be true?

16. Intracellular Messengers from Phosphatidylinositol When the hormone vasopressin stimulates cleavage of phosphatidylinositol 4,5-bisphosphate by hormone-sensitive phospholipase C, two products are formed. What are they? Compare their properties and their solubilities in water, and predict whether either would diffuse readily through the cytosol.

17. Storage of Fat-Soluble Vitamins In contrast to water-soluble vitamins, which must be part of our daily diet, fat-soluble vitamins can be stored in the body in amounts sufficient for many months. Suggest an explanation for this difference.

18. Hydrolysis of Lipids Name the products of mild hydrolysis with dilute NaOH of (a) 1-stearoyl-2,3-dipalmitoylglycerol; (b) 1-palmitoyl-2-oleoylphosphatidylcholine.

19. Effect of Polarity on Solubility Rank the following in order of increasing solubility in water: a triacylglycerol, a dicarboxylic acid, and a monoacylglycerol, all containing only palmitic acid.

20. Chromatographic Separation of Lipids A mixture of lipids is applied to a silica gel column, and the column is then washed with increasingly polar solvents. The mixture consists of phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, cholesterol, and palmitate (a sterol ester), sphingomyelin, palmitate, \(n\)-tetradecanol, triacylglycerol, and cholesterol. In what order will the lipids elute from the column? Explain your reasoning.

21. Identification of Unknown Lipids Johann Thudichum, who practiced medicine in London about 100 years ago, also dabbled in lipid chemistry in his spare time. He isolated a variety of lipids from neural tissue, and characterized and named many of them. His carefully sealed and labeled vials of isolated lipids were rediscovered many years later.

(a) How would you confirm, using techniques not available to Thudichum, that the vials labeled "sphingomyelin" and "cerebroside" actually contain these compounds?
(b) How would you distinguish sphingomyelin from phosphatidylcholine by chemical, physical, or enzymatic tests?

22. Ninhydrin to Detect Lipids on TLC Plates Ninhydrin reacts specifically with primary amines to form a purplish-blue product. A thin-layer chromatogram of rat liver phospholipids
is sprayed with ninhydrin, and the color is allowed to develop. Which phospholipids can be detected in this way?

Data Analysis Problem

23. Determining the Structure of the Abnormal Lipid in Tay-Sachs Disease

Box 10-2, Figure 1, shows the pathway of breakdown of gangliosides in healthy (normal) individuals and individuals with certain genetic diseases. Some of the data on which the figure is based were presented in a paper by Lars Svennerholm (1962). Note that the sugar Neu5Ac, N-acetylneuraminic acid, represented in the Box 10-2 figure as O, is a sialic acid.

Svennerholm reported that “about 90% of the monosialo-gangliosides isolated from normal human brain” consisted of a compound with ceramide, hexose, N-acetylgalactosamine, and N-acetylneuraminic acid in the molar ratio 1:3:1:1.

(a) Which of the gangliosides (GM1 through GM3 and globoside) in Box 10-2, Figure 1, fits this description? Explain your reasoning.

(b) Svennerholm reported that 90% of the gangliosides from a patient with Tay-Sachs had a molar ratio (of the same four components given above) of 1:2:1:1. Is this consistent with the Box 10-2 figure? Explain your reasoning.

To determine the structure in more detail, Svennerholm treated the gangliosides with neuraminidase to remove the N-acetylneuraminic acid. This resulted in an asialoganglioside that was much easier to analyze. He hydrolyzed it with acid, collected the ceramide-containing products, and determined the molar ratio of the sugars in each product. He did this for both the normal and the Tay-Sachs gangliosides. His results are shown below.

<table>
<thead>
<tr>
<th>Ganglioside</th>
<th>Ceramide</th>
<th>Glucose</th>
<th>Galactose</th>
<th>Galactosamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragment 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fragment 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fragment 4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tay-Sachs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragment 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fragment 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Based on these data, what can you conclude about the structure of the normal ganglioside? Is this consistent with the structure in Box 10-2? Explain your reasoning.

(d) What can you conclude about the structure of the Tay-Sachs ganglioside? Is this consistent with the structure in Box 10-2? Explain your reasoning.

Svennerholm also reported the work of other researchers who “permethylated” the normal asialoganglioside. Permethylation is the same as exhaustive methylation: a methyl group is added to every free hydroxyl group on a sugar. They found the following permethylated sugars: 2,3,6-trimethylglucopyranose; 2,3,4,6-tetramethylgalactopyranose; 2,4,6-trimethylgalactopyranose; and 4,6-dimethyl-2-deoxy-2-aminogalactopyranose.

(e) To which sugar of GM1 does each of the permethylated sugars correspond? Explain your reasoning.

(f) Based on all the data presented so far, what pieces of information about normal ganglioside structure are missing?

Reference

The first cell probably came into being when a membrane formed, enclosing a small volume of aqueous solution and separating it from the rest of the universe. Membranes define the external boundaries of cells and regulate the molecular traffic across that boundary (Fig. 11-1); in eukaryotic cells, they divide the internal space into discrete compartments to segregate processes and components. They organize complex reaction sequences and are central to both biological energy conservation and cell-to-cell communication. The biological activities of membranes flow from their remarkable physical properties. Membranes are flexible, self-sealing, and selectively permeable to polar solutes.

Membrane bilayer

FIGURE 11-1 Biological membranes. Viewed in cross section, all cell membranes share a characteristic trilaminar appearance. This erythrocyte was stained with osmium tetroxide and viewed with an electron microscope. The plasma membrane appears as a three-layer structure, 5 to 8 nm (50 to 80 Å) thick. The trilaminar image consists of two electron-dense layers (the osmium, bound to the inner and outer surfaces of the membrane) separated by a less dense central region.

Their flexibility permits the shape changes that accompany cell growth and movement (such as amoeboid movement). With their ability to break and reseal, two membranes can fuse, as in exocytosis, or a single membrane-enclosed compartment can undergo fission to yield two sealed compartments, as in endocytosis or cell division, without creating gross leaks through cellular surfaces. Because membranes are selectively permeable, they retain certain compounds and ions within cells and within specific cellular compartments, while excluding others.

Membranes are not merely passive barriers. They include an array of proteins specialized for promoting or catalyzing various cellular processes. At the cell surface, transporters move specific organic solutes and inorganic ions across the membrane; receptors sense extracellular signals and trigger molecular changes in the cell; adhesion molecules hold neighboring cells together. Within the cell, membranes organize cellular processes such as the synthesis of lipids and certain proteins, and the energy transductions in mitochondria and chloroplasts. Because membranes consist of just two layers of molecules, they are very thin—essentially two-dimensional. Intermolecular collisions are far more probable in this two-dimensional space than in three-dimensional space, so the efficiency of enzyme-catalyzed processes organized within membranes is vastly increased.

In this chapter we first describe the composition of cellular membranes and their chemical architecture—the molecular structures that underlie their biological functions. Next, we consider the remarkable dynamic features of membranes, in which lipids and proteins move relative to each other. Cell adhesion, endocytosis, and the membrane fusion accompanying neurotransmitter secretion illustrate the dynamic roles of membrane proteins. We then turn to the protein-mediated passage of solutes across membranes via transporters and ion channels. In later chapters we discuss the roles of membranes in signal transduction (Chapters 12 and 23), energy transduction (Chapter 19), lipid synthesis (Chapter 21), and protein synthesis (Chapter 27).
11.1 The Composition and Architecture of Membranes

One approach to understanding membrane function is to study membrane composition—to determine, for example, which components are common to all membranes and which are unique to membranes with specific functions. So before describing membrane structure and function we consider the molecular components of membranes: proteins and polar lipids, which account for almost all the mass of biological membranes, and carbohydrates, present as part of glycoproteins and glycolipids.

Each Type of Membrane Has Characteristic Lipids and Proteins

The relative proportions of protein and lipid vary with the type of membrane (Table 11-1), reflecting the diversity of biological roles. For example, certain neurons have a myelin sheath, an extended plasma membrane that wraps around the cell many times and acts as a passive electrical insulator. The myelin sheath consists primarily of lipids, whereas the plasma membranes of bacteria and the membranes of mitochondria and chloroplasts, the sites of many enzyme-catalyzed processes, contain more protein than lipid (in mass per total mass).

For studies of membrane composition, the first task is to isolate a selected membrane. When eukaryotic cells are subjected to mechanical shear, their plasma membranes are torn and fragmented, releasing cytoplasmic components and membrane-bounded organelles such as mitochondria, chloroplasts, lysosomes, and nuclei. Plasma membrane fragments and intact organelles can be isolated by techniques described in Chapter 1 (see Fig. 1-8) and in Worked Example 2-1, p. 53.

Cells clearly have mechanisms to control the kinds and amounts of membrane lipid they synthesize and to target specific lipids to particular organelles. Each kingdom, each species, each tissue or cell type, and the organelles of each cell type have a characteristic set of membrane lipids. Plasma membranes, for example, are enriched in cholesterol and contain no detectable cardiolipin (Fig. 11-2); this distribution is reversed in the inner mitochondrial membrane, which has very low cholesterol and high cardiolipin. In all but a few cases, the functional significance of these combinations is not yet known.

![FIGURE 11-2 Lipid composition of the plasma membrane and organelle membranes of a rat hepatocyte. The functional specialization of each membrane type is reflected in its unique lipid composition.](image)

Cholesterol is prominent in plasma membranes but barely detectable in mitochondrial membranes. Cardiolipin is a major component of the inner mitochondrial membrane but not of the plasma membrane. Phosphatidylycerine, phosphatidylinositol, and phosphatidylglycerol are relatively minor components (yellow) of most membranes but serve critical functions; phosphatidylinositol and its derivatives, for example, are important in signal transductions triggered by hormones. Sphingolipids, phosphatidylcholine, and phosphatidylethanolamine are present in most membranes, but in varying proportions. Glycolipids, which are major components of the chloroplast membranes of plants, are virtually absent from animal cells.

<table>
<thead>
<tr>
<th>Major Components of Plasma Membranes in Various Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components (% by weight)</td>
</tr>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>Human myelin sheath</td>
</tr>
<tr>
<td>Mouse liver</td>
</tr>
<tr>
<td>Maize leaf</td>
</tr>
<tr>
<td>Yeast</td>
</tr>
<tr>
<td>Paramecium (ciliated protist)</td>
</tr>
<tr>
<td>E. coli</td>
</tr>
</tbody>
</table>

Note: Values do not add up to 100% in every case, because there are components other than protein, phospholipids, and sterol; plants, for example, have high levels of glycolipids.
The protein composition of membranes from different sources varies even more widely than their lipid composition, reflecting functional specialization. In addition, some membrane proteins are covalently linked to oligosaccharides. For example, in glycophorin, a glycoprotein of the erythrocyte plasma membrane, 60% of the mass consists of complex oligosaccharides covalently attached to specific amino acid residues. Ser, Thr, and Asn residues are the most common points of attachment (see Fig. 7-29). The sugar moieties of surface glycoproteins influence the folding of the proteins, as well as their stability and intracellular destination, and they play a significant role in the specific binding of ligands to glycoprotein surface receptors (see Fig. 7-35).

Some membrane proteins are covalently attached to one or more lipids, which serve as hydrophobic anchors that hold the proteins to the membrane, as we shall see.

All Biological Membranes Share Some Fundamental Properties

Membranes are impermeable to most polar or charged solutes, but permeable to nonpolar compounds; they are 5 to 8 nm (50 to 80 Å) thick and appear trilaminar when viewed in cross section with the electron microscope (Fig. 11-1). The combined evidence from electron microscopy and studies of chemical composition, as well as physical studies of permeability and the movement of individual protein and lipid molecules within membranes, led to the development of the fluid mosaic model for the structure of biological membranes (Fig. 11-3). Phospholipids form a bilayer in which the nonpolar regions of the lipid molecules in each layer face the core of the bilayer and their polar head groups face outward, interacting with the aqueous phase on either side. Proteins are embedded in this bilayer sheet, held by hydrophobic interactions between the membrane lipids and hydrophobic domains in the proteins. Some proteins protrude from only one side of the membrane; others have domains exposed on both sides. The orientation of proteins in the bilayer is asymmetric, giving the membrane "sidedness": the protein domains exposed on one side of the bilayer are different from those exposed on the other side, reflecting functional asymmetry. The individual lipid and protein units in a membrane form a fluid mosaic with a pattern that, unlike a mosaic of ceramic tile and mortar, is free to change constantly. The membrane mosaic is fluid because most of the interactions among its components are noncovalent, leaving individual lipid and protein molecules free to move laterally in the plane of the membrane.

We now look at some of these features of the fluid mosaic model in more detail and consider the experimental evidence that supports the basic model but has necessitated its refinement in several ways.
A Lipid Bilayer Is the Basic Structural Element of Membranes

Glycerophospholipids, sphingolipids, and sterols are virtually insoluble in water. When mixed with water, they spontaneously form microscopic lipid aggregates, clustering together, with their hydrophobic moieties in contact with each other and their hydrophilic groups interacting with the surrounding water. This clustering reduces the amount of hydrophobic surface exposed to water and thus minimizes the number of molecules in the shell of ordered water at the lipid-water interface (see Fig. 2–7), resulting in an increase in entropy. Hydrophobic interactions among lipid molecules provide the thermodynamic driving force for the formation and maintenance of these clusters.

Depending on the precise conditions and the nature of the lipids, three types of lipid aggregate can form when amphipathic lipids are mixed with water (Fig. 11–4). Micelles are spherical structures that contain anywhere from a few dozen to a few thousand amphipathic molecules. These molecules are arranged with their hydrophobic regions aggregated in the interior, where water is excluded, and their hydrophilic head groups at the surface, in contact with water. Micelle formation is favored when the cross-sectional area of the head group is greater than that of the acyl side chain(s), as in free fatty acids, lysophospholipids (phospholipids lacking one fatty acid), and detergents such as sodium dodecyl sulfate (SDS; p. 89).

A second type of lipid aggregate in water is the bilayer, in which two lipid monolayers (leaflet) form a two-dimensional sheet. Bilayer formation is favored if the cross-sectional areas of the head group and acyl side chain(s) are similar, as in glycerophospholipids and sphingolipids. The hydrophobic portions in each monolayer, excluded from water, interact with each other. The hydrophilic head groups interact with water at each surface of the bilayer. Because the hydrophobic regions at its edges (Fig. 11–4b) are in contact with water, the bilayer sheet is relatively unstable and spontaneously folds back on itself to form a hollow sphere, a vesicle (Fig. 11–4c). The continuous surface of vesicles eliminates exposed hydrophobic regions, allowing bilayers to achieve maximal stability in their aqueous environment. Vesicle formation also creates a separate aqueous compartment. It is likely that the precursors to the first living cells resembled lipid vesicles, their aqueous contents segregated from their surroundings by a hydrophobic shell.

The lipid bilayer is 3 nm (30 Å) thick. The hydrocarbon core, made up of the \(-\mathrm{CH}_2-\) and \(-\mathrm{CH}_3\) of the fatty acyl groups, is about as nonpolar as decane, and vesicles formed in the laboratory from pure lipids (liposomes) are essentially impermeable to polar solutes, as is the lipid bilayer of biological membranes (although the latter, as we shall see, are permeable to solutes for which they have specific transporters).

Plasma membrane lipids are asymmetrically distributed between the two monolayers of the bilayer, although the asymmetry, unlike that of membrane proteins, is not absolute. In the plasma membrane of the erythrocyte, for example, choline-containing lipids (phosphatidylcholine and sphingomyelin) are typically found in the outer (extracellular, or exoplasmic) leaflet (Fig. 11–5), whereas phosphatidylserine, phosphatidylethanolamine, and the phosphatidylinositol are much more common in the inner (cytoplasmic) leaflet. Changes in the distribution of lipids between plasma membrane leaflets have biological consequences. For example, only when the phosphatidylserine in the plasma membrane moves into the outer leaflet is a platelet able to play its role in formation of a blood clot. For many other cell types, phosphatidylserine exposure on the outer surface marks a cell for destruction by programmed cell death.

FIGURE 11–4 Amphipathic lipid aggregates that form in water. (a) In micelles, the hydrophobic chains of the fatty acids are sequestered at the core of the sphere. There is virtually no water in the hydrophobic interior. (b) In an open bilayer, all acyl side chains except those at the edges of the sheet are protected from interaction with water. (c) When a two-dimensional bilayer folds on itself, it forms a closed bilayer, a three-dimensional hollow vesicle (liposome) enclosing an aqueous cavity.
Membrane phospholipid	Percent of total membrane phospholipid	Distribution in membrane
Phosphatidylethanolamine | 30 | Inner monolayer 100, Outer monolayer 0
Phosphatidylcholine | 27 | Inner monolayer 60, Outer monolayer 0
Sphingomyelin | 23 | Inner monolayer 100, Outer monolayer 100
Phosphatidylserine | 15 | Inner monolayer 100, Outer monolayer 100
Phosphatidylinositol 4-phosphate | 5 | Inner monolayer 100, Outer monolayer 100
Phosphatidylinositol 4,5-bisphosphate | 1 | Inner monolayer 100, Outer monolayer 100
Phosphatidic acid | 1 | Inner monolayer 100, Outer monolayer 100

FIGURE 11-5 Asymmetric distribution of phospholipids between the inner and outer monolayers of the erythrocyte plasma membrane. The distribution of a specific phospholipid is determined by treating the intact cell with phospholipase C, which cannot reach lipids in the inner monolayer (leaflet) but removes the head groups of lipids in the outer monolayer. The proportion of each head group released provides an estimate of the fraction of each lipid in the outer monolayer.

Three Types of Membrane Proteins Differ in Their Association with the Membrane

Integral membrane proteins are very firmly associated with the lipid bilayer, and are removable only by agents that interfere with hydrophobic interactions, such as detergents, organic solvents, or denaturants (Fig. 11–6). **Peripheral membrane proteins** associate with the membrane through electrostatic interactions and hydrogen bonding with the hydrophilic domains of integral proteins and with the polar head groups of membrane lipids. They can be released by relatively mild treatments that interfere with electrostatic interactions or break hydrogen bonds; a commonly used agent is carbonate at high pH. **Amphitropic proteins** are found both in the cytosol and in association with membranes. Their affinity for membranes results in some cases from the protein’s noncovalent interaction with a membrane protein or lipid, and in other cases from the presence of one or more lipids covalently attached to the amphitropic protein (see Fig. 11–14). Generally, the reversible association of amphitropic proteins with the membrane is regulated; for example, phosphorylation or ligand binding can force a conformational change in the protein, exposing a membrane-binding site that was previously inaccessible.

Many Membrane Proteins Span the Lipid Bilayer

Membrane protein topology (the localization of protein domains relative to the lipid bilayer) can be determined with reagents that react with protein side chains but cannot cross membranes—polar chemical reagents that react with primary amines of Lys residues, for example, or enzymes such as trypsin that cleave proteins but cannot cross the membrane. The human erythrocyte is convenient for such studies because it has no membrane-bounded organelles; the plasma membrane is the only membrane present. If a membrane protein in an intact erythrocyte reacts with a membrane-impermeant reagent, that protein must have at least one domain exposed on the outer (extracellular) face of the membrane. Trypsin cleaves extracellular domains but does not affect domains buried within the bilayer or exposed on the inner surface only, unless the plasma membrane is broken to make these domains accessible to the enzyme.
Experiments with such topology-specific reagents show that the erythrocyte glycoprotein glycophorin spans the plasma membrane. Its amino-terminal domain (bearing the carbohydrate chains) is on the outer surface and is cleaved by trypsin. The carboxyl terminus protrudes on the inside of the cell, where it cannot react with impermeant reagents. Both the amino-terminal and carboxyl-terminal domains contain many polar or charged amino acid residues and are therefore hydrophilic. However, a segment in the center of the protein (residues 75 to 93) contains mainly hydrophobic amino acid residues, suggesting that glycophorin has a transmembrane segment arranged as shown in Figure 11-2.

These noncrystallographic experiments also revealed that the orientation of glycophorin in the membrane is asymmetric: its amino-terminal segment is always on the outside. Similar studies of other membrane proteins show that each has a specific orientation in the bilayer, giving the membrane a distinct sidedness. For glycophorin, and for all other glycoproteins of the plasma membrane, the glycosylated domains are invariably found on the extracellular face of the bilayer. As we shall see, the asymmetric arrangement of membrane proteins results in functional asymmetry. All the molecules of a given ion pump, for example, have the same orientation in the membrane and pump ions in the same direction.

Integral Proteins Are Held in the Membrane by Hydrophobic Interactions with Lipids

The firm attachment of integral proteins to membranes is the result of hydrophobic interactions between membrane lipids and hydrophobic domains of the protein. Some proteins have a single hydrophobic sequence in the middle (as in glycophorin) or at the amino or carboxyl terminus. Others have multiple hydrophobic sequences, each of which, when in the α-helical conformation, is long enough to span the lipid bilayer (Fig. 11-8).

One of the best-studied membrane-spanning proteins, bacteriorhodopsin, has seven very hydrophobic internal sequences and crosses the lipid bilayer seven times. Bacteriorhodopsin is a light-driven proton pump densely packed in regular arrays in the purple membrane of the bacterium *Halobacterium salinarum*. X-ray crystallography reveals a structure with seven α-helical segments, each traversing the lipid bilayer, connected by nonhelical loops at the inner and outer face of the membrane (Fig. 11-9). In the amino acid sequence of bacteriorhodopsin, seven segments of about 20 hydrophobic residues can be identified, each forming an α helix that spans the bilayer. The seven helices are clustered together and oriented not quite perpendicular to the bilayer plane, a pattern that (as we shall see in Chapter 12) is a common motif in membrane proteins involved in signal reception. Hydrophobic interactions between the nonpolar amino acids and the fatty acyl groups of the membrane lipids firmly anchor the protein in the membrane.

Crystallized membrane proteins solved (i.e., their molecular structure deduced) by crystallography often include molecules of phospholipids, which are presumed to be positioned in the crystals as they are in the native membranes. Many of these phospholipid molecules lie on the protein surface, their head groups interacting with polar amino acid residues at the inner and outer membrane–water interfaces and their side chains associated with nonpolar residues. These annular lipids form a bilayer shell (annulus) around the protein, oriented roughly as expected for phospholipids in a bilayer (Fig. 11-10). Other phospholipids are found at the interfaces between monomers of multisubunit membrane proteins, where they form a "grease seal." Yet others are embedded deep within a membrane protein, often with their head groups well below the plane of the bilayer. For example, succinate dehydrogenase (Complex II, found in mitochondria; see Fig. 19–10) has several deeply embedded phospholipid molecules.
Integral membrane proteins. For known proteins of the plasma membrane, the spatial relationships of protein domains to the lipid bilayer fall into six categories. Types I and II have a single transmembrane helix; the amino-terminal domain is outside the cell in type I proteins and inside in type II. Type III proteins have multiple transmembrane helices in a single polypeptide. In type IV proteins, transmembrane domains of several different polypeptides assemble to form a channel through the membrane. Type V proteins are held to the bilayer primarily by covalently linked lipids (see Fig. 11-14), and type VI proteins have both transmembrane helices and lipid (GPI) anchors.

In this figure, and in figures throughout the book, we represent transmembrane protein segments in their most likely conformations: as α helices of six to seven turns. Sometimes these helices are shown simply as cylinders. As relatively few membrane protein structures have been deduced by x-ray crystallography, our representation of the extramembrane domains is arbitrary and not necessarily to scale.

Lipid annuli associated with two integral membrane proteins. (a) The crystal structure of sheep aquaporin (PDB ID 2B60), a transmembrane water channel, includes a shell of phospholipids positioned with their head groups (blue) at the expected positions on the inner and outer membrane surfaces and their hydrophobic acyl chains (gold) intimately associated with the surface of the protein exposed to the bilayer. The lipid forms a “grease seal” around the protein, which is depicted as a green surface representation. (b) The crystal structure of the Fo integral protein complex of the V-type Na⁺-ATPase from Enterococcus hirae (PDB ID 2BL2) has 10 identical subunits, each with four transmembrane helices, surrounding a central cavity filled with phosphatidylglycerol (PG). Here five of the subunits have been cut away to reveal the PG molecules associated with each subunit around the interior of this structure.
The Topology of an Integral Membrane Protein Can Sometimes Be Predicted from Its Sequence

Determination of the three-dimensional structure of a membrane protein—that is, its topology—is generally much more difficult than determining its amino acid sequence, either directly or by gene sequencing. The amino acid sequences are known for thousands of membrane proteins, but relatively few three-dimensional structures have been established by crystallography or NMR spectroscopy. The presence of unbroken sequences of more than 20 hydrophobic residues in a membrane protein is commonly taken as evidence that these sequences traverse the lipid bilayer, acting as hydrophobic anchors or forming transmembrane channels. Virtually all integral proteins have at least one such sequence. Application of this logic to entire genomic sequences leads to the conclusion that in many species, 20% to 30% of all proteins are integral membrane proteins.

What can we predict about the secondary structure of the membrane-spanning portions of integral proteins? An α-helical sequence of 20 to 25 residues is just long enough to span the thickness (30 Å) of the lipid bilayer (recall that the length of an α helix is 1.5 Å (0.15 nm) per amino acid residue). A polypeptide chain surrounded by lipids, having no water molecules with which to hydrogen-bond, will tend to form α helices or β sheets, in which intrachain hydrogen bonding is maximized. If the side chains of all amino acids in a helix are nonpolar, hydrophobic interactions with the surrounding lipids further stabilize the helix.

Several simple methods of analyzing amino acid sequences yield reasonably accurate predictions of secondary structure for transmembrane proteins. The relative polarity of each amino acid has been determined experimentally by measuring the free-energy change accompanying the movement of that amino acid side chain from a hydrophobic solvent into water. This free energy of transfer, which can be expressed as a hydropathy index (see Table 3–1), ranges from very exergonic for charged or polar residues to very endergonic for amino acids with aromatic or aliphatic hydrocarbon side chains. The overall hydropathy index (hydrophobicity) of a sequence of amino acids is estimated by summing the free energies of transfer for the residues in the sequence. To scan a polypeptide sequence for potential membrane-spanning segments, an investigator calculates the hydropathy index for successive segments (called windows) of a given size, from 7 to 20 residues. For a window of seven residues, for example, the indices for residues 1 to 7, 2 to 8, 3 to 9, and so on, are plotted as in Figure 11–11 (plotted for the middle residue in each window—residue 4 for residues 1 to 7, for example). A region with more than 20 residues of high hydropathy index is presumed to be a transmembrane segment. When the sequences of membrane proteins of known three-dimensional structure are scanned in this way, we find a reasonably good correspondence between predicted and known membrane-spanning segments. Hydropathy analysis predicts a single hydrophobic helix for glycophorin (Fig. 11–11a) and seven transmembrane segments for bacteriorhodopsin (Fig. 11–11b)—in agreement with experimental studies.

On the basis of their amino acid sequences and hydropathy plots, many of the transport proteins described in this chapter are believed to have multiple membrane-spanning helical regions—that is, they are type III or type IV integral proteins (Fig. 11–8). When predictions are consistent with chemical studies of protein localization (such as those described above for glycophorin and bacteriorhodopsin), the assumption that hydrophobic regions correspond to membrane-spanning domains is much better justified.
I Charged residues
I Tyr and Trp residues of membrane proteins clustering at the water-lipid interface. The detailed structures of these five integral membrane proteins are known from crystallographic studies. The K+ channel (PDB ID 1BL8) is from the bacterium Streptomyces lividans (see Fig. 11–14); maltoporin (PDB ID 1AF6), outer membrane phospholipase A (PDB ID 1QD5), OmpX (PDB ID 1QJ9), and phosphoporin.

FIGURE 11–12 Tyr and Trp residues of membrane proteins clustering at the water-lipid interface. The detailed structures of these five integral membrane proteins are known from crystallographic studies. The K+ channel (PDB ID 1BL8) is from the bacterium Streptomyces lividans (see Fig. 11–48); maltoporin (PDB ID 1AF6), outer membrane phospholipase A (PDB ID 1QD5), OmpX (PDB ID 1QJ9), and phosphoporin.

A further remarkable feature of many transmembrane proteins of known structure is the presence of Tyr and Trp residues at the interface between lipid and water (Fig. 11–12). The side chains of these residues apparently serve as membrane interface anchors, able to interact simultaneously with the central lipid phase and the aqueous phases on either side of the membrane. Another generalization about amino acid location relative to the bilayer is described by the **positive-inside rule:** the positively charged Lys, His, and Arg residues of membrane proteins occur more commonly on the cytoplasmic face of membranes.

Not all integral membrane proteins are composed of transmembrane α helices. Another structural motif common in bacterial membrane proteins is the **β barrel** (see Fig. 4–17b), in which 20 or more transmembrane segments form β sheets that line a cylinder (Fig. 11–13). The same factors that favor α-helix formation in the hydrophobic interior of a lipid bilayer also stabilize β barrels: when no water molecules are available to hydrogen-bond with the carbonyl oxygen and nitrogen of the peptide bond, maximal intrachain hydrogen bonding gives the most stable conformation. Planar β sheets do not maximize these interactions and are generally not found in the membrane interior; β barrels allow all possible hydrogen bonds and are apparently common among membrane proteins. **Porins**, proteins that allow certain polar solutes to cross the outer membrane of gram-negative bacteria such as E. coli, have many-stranded β barrels lining the polar transmembrane passage.

A polypeptide is more extended in the β conformation than in an α helix; just seven to nine residues of β conformation are needed to span a membrane. Recall that in the β conformation, alternating side chains project above and below the sheet (see Fig. 4–6). In β strands of membrane proteins, every second residue in the membrane-spanning segment is hydrophobic and interacts with the lipid bilayer; aromatic side chains are commonly found at the lipid-protein interface. The other residues may or may not be hydrophilic. The hydropathy plot is not useful in predicting transmembrane segments for proteins with β barrel motifs, but as the database of known β-barrel motifs increases, sequence-based predictions of transmembrane β conformations have become feasible. For example, some outer membrane proteins of gram-negative bacteria (Fig. 11–13) have been correctly predicted, by sequence analysis, to contain β barrels.

Covalently Attached Lipids Anchor Some Membrane Proteins

Some membrane proteins contain one or more covalently linked lipids, which may be of several types: long-chain fatty acids, isoprenoids, sterols, or glycosylated

FIGURE 11–13 Membrane proteins with β-barrel structure. Three proteins of the E. coli outer membrane are shown, viewed in the plane of the membrane. FepA (PDB ID 1FEP), involved in iron uptake, has 22 membrane-spanning β strands. OmpLA (derived from PDB ID 1QD5), a phospholipase, is a 12-stranded β barrel that exists as a dimer in the membrane. Maltoporin (derived from PDB ID 1MAL), a maltose transporter, is a trimer; each monomer consists of 16 β strands.
derivatives of phosphatidylinositol (GPIs; Fig. 11-14). The attached lipid provides a hydrophobic anchor that inserts into the lipid bilayer and holds the protein at the membrane surface. The strength of the hydrophobic interaction between a bilayer and a single hydrocarbon chain linked to a protein is barely enough to anchor the protein securely, but many proteins have more than one attached lipid moiety. Other interactions, such as ionic attractions between positively charged Lys residues in the protein and negatively charged lipid head groups, probably contribute to the stability of the attachment. The association of these lipid-linked proteins with the membrane is certainly weaker than that for integral membrane proteins and is, in at least some cases, reversible. But treatment with alkaline carbonate does not release GPI-linked proteins, which are therefore, by the working definition, integral proteins.

Beyond merely anchoring a protein to the membrane, the attached lipid may have a more specific role. In the plasma membrane, proteins with GPI anchors are exclusively on the outer face and are clustered in certain regions, as we shall see (pp. 384–386), whereas other types of lipid-linked proteins (with farnesyl or geranylgeranyl groups attached; Fig. 11-14) are exclusively on the inner face. In polarized epithelial cells (such as intestinal epithelial cells, see Fig. 11-44), in which apical and basal surfaces have different roles, GPI-linked proteins are directed specifically to the apical surface. Attachment of a specific lipid to a newly synthesized membrane protein therefore has a targeting function, directing the protein to its correct membrane location.

SUMMARY 11.1 The Composition and Architecture of Membranes

- Biological membranes define cellular boundaries, divide cells into discrete compartments, organize complex reaction sequences, and act in signal reception and energy transformations.
- Membranes are composed of lipids and proteins in varying combinations particular to each species, cell type, and organelle. The lipid bilayer is the basic structural unit.
- Peripheral membrane proteins are loosely associated with the membrane through electrostatic interactions and hydrogen bonds or by covalently attached lipid anchors. Integral proteins associate firmly with membranes by hydrophobic interactions between the lipid bilayer and their nonpolar amino acid side chains, which are oriented toward the outside of the protein molecule. Amphitropic proteins associate reversibly with membranes.

FIGURE 11-14 Lipid-linked membrane proteins. Covalently attached lipids anchor membrane proteins to the lipid bilayer. A palmitoyl group is shown attached by thioester linkage to a Cys residue; an N-myristoyl group is generally attached to an amino-terminal Gly; the farnesyl and geranylgeranyl groups attached to carboxyl-terminal Cys residues are isoprenoids of 15 and 20 carbons, respectively. These three lipid-protein assemblies are found only on the inner face of the plasma membrane. Glycosyl phosphatidylinositol (GPI) anchors are derivatives of phosphatidylinositol in which the inositol bears a short oligosaccharide covalently joined to the carboxyl-terminal residue of a protein through phosphoethanolamine. GPI-linked proteins are always on the extracellular face of the plasma membrane.
11.2 Membrane Dynamics

One remarkable feature of all biological membranes is their flexibility—their ability to change shape without losing their integrity and becoming leaky. The basis for this property is the noncovalent interactions among lipids in the bilayer and the mobility allowed to individual lipids because they are not covalently anchored to one another. We turn now to the dynamics of membranes: the motions that occur and the transient structures allowed by these motions.

Acyl Groups in the Bilayer Interior Are Ordered to Varying Degrees

Although the lipid bilayer structure is quite stable, its individual phospholipid and sterol molecules have much freedom of motion (Fig. 11–15). The structure and flexibility of the lipid bilayer depend on the kinds of lipids present, and change with temperature. Below normal physiological temperatures, the lipids in a bilayer form a semisolid gel phase, in which all types of motion of individual lipid molecules are strongly constrained; the bilayer is paracrystalline (Fig. 11–15a). Above physiological temperatures, individual hydrocarbon chains of fatty acids are in constant motion produced by rotation about the carbon-carbon bonds of the long acyl side chains. In this liquid-disordered state, or fluid state, acyl chains undergo much thermal motion and have no regular organization. Intermediate between these extremes is the liquid-ordered state, in which individual phospholipid molecules can diffuse laterally but the acyl groups remain extended and more or less ordered.

Cells regulate their lipid composition to achieve a constant membrane fluidity under various growth conditions. For example, bacteria synthesize more unsaturated fatty acids and fewer saturated ones when cultured at low temperatures than when cultured at higher temperatures (Table 11–2). As a result of this adjustment in lipid composition, membranes of bacteria cultured at high or low temperatures have about the same degree of fluidity.

Transbilayer Movement of Lipids Requires Catalysis

At physiological temperatures, transbilayer—or “flip-flop”—diffusion of a lipid molecule from one leaflet of
the bilayer to the other (Fig. 11-16a) occurs very slowly if at all in most membranes, although lateral diffusion in the plane of the bilayer is very rapid (Fig. 11-16b). Transbilayer movement requires that a polar or charged head group leave its aqueous environment and move into the hydrophobic interior of the bilayer, a process with a large, positive free-energy change. There are, however, situations in which such movement is essential. For example, in the ER, membrane glycerophospholipids are synthesized on the cytosolic surface, whereas sphingolipids are synthesized or modified on the lumenal surface. To get from their site of synthesis to their eventual point of deposition, these lipids must undergo flip-flop diffusion.

Several families of proteins, including the flippases, floppases, and scramblases (Fig. 11-16c), facilitate the transbilayer movement of lipids, providing a path that is energetically more favorable and much faster than the uncatalyzed movement. The combination of asymmetric biosynthesis of membrane lipids, very slow uncatalyzed flip-flop diffusion, and the presence of selective, energy-dependent lipid translocators is responsible for the transbilayer asymmetry in lipid composition shown in Figure 11-5. Besides contributing to this asymmetry of composition, the energy-dependent transport of lipids to one bilayer leaflet may, by creating a larger surface on one side of the bilayer, be important in generating the membrane curvature essential in the budding of vesicles.

Flippases catalyze translocation of the aminophospholipids phosphatidylethanolamine and phosphatidylserine from the extracellular to the cytosolic leaflet of the plasma membrane, contributing to the asymmetric distribution of phospholipids: phosphatidylethanolamine and phosphatidylserine primarily in the cytosolic leaflet, and the sphingolipids and phosphatidycholine in the outer leaflet. Keeping phosphatidylserine out of the extracellular leaflet is important: its exposure on the outer

TABLE 11-2 Fatty Acid Composition of E. coli Cells Cultured at Different Temperatures

<table>
<thead>
<tr>
<th>Percentage of total fatty acids*</th>
<th>10 °C</th>
<th>20 °C</th>
<th>30 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristic acid (14:0)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Palmitic acid (16:0)</td>
<td>18</td>
<td>25</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td>Palmitoleic acid (16:1)</td>
<td>26</td>
<td>24</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Oleic acid (18:1)</td>
<td>38</td>
<td>34</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Hydroxymyristic acid</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Ratio of unsaturated to saturated</td>
<td>2.9</td>
<td>2.0</td>
<td>1.6</td>
<td>0.38</td>
</tr>
</tbody>
</table>

*The exact fatty acid composition depends not only on growth temperature but on growth stage and growth medium composition.

Ratios calculated as the total percentage of 16:1 plus 18:1 divided by the total percentage of 14:0 plus 16:0. Hydroxymyristic acid was omitted from this calculation.

FIGURE 11-16 Motion of single phospholipids in a bilayer. (a) Uncatalyzed movement from one leaflet to the other is very slow, but (b) lateral diffusion within the leaflet is very rapid, requiring no catalysis. (c) Three types of phospholipid translocators in the plasma membrane. Flippases translocate primarily aminophospholipids (phosphatidylethanolamine (PE), phosphatidylserine (PS)) from the outer (exoplasmic) leaflet to the inner (cytosolic) leaflet; they require ATP and are members of the P-type ATPase family. Floppases move phospholipids from the cytosolic to the outer leaflet, require ATP, and are members of the ABC transporter family. Scramblases equilibrate phospholipids across both leaflets; they do not require ATP but are activated by Ca²⁺.
surface triggers apoptosis (programmed cell death; see Chapter 12) and engulfment by macrophages that carry phosphatidylserine receptors. Flipases also act in the ER, where they move newly synthesized phospholipids from their site of synthesis in the cytosolic leaflet to the luminal leaflet. Flipases consume about one ATP per molecule of phospholipid translocated, and they are structurally and functionally related to the P-type ATPases (active transporters) described on page 306.

Floppases move plasma membrane phospholipids from the cytosolic to the extracellular leaflet, and like flipases are ATP-dependent. Floppases are members of the ABC transporter family described on page 400, all of which actively transport hydrophobic substrates outward across the plasma membrane. **Scramblases** are proteins that move any membrane phospholipid across the bilayer down its concentration gradient (from the leaflet where it has a higher concentration to the leaflet where it has a lower concentration); their activity is not dependent on ATP. Scramblase activity leads to controlled randomization of the head-group composition on the two faces of the bilayer. The activity rises sharply with an increase in cytosolic Ca\(^{2+}\) concentration, which may result from cell activation, cell injury, or apoptosis; as noted above, exposure of phosphatidylserine on the outer surface marks a cell for apoptosis and engulfment by macrophages. Finally, a group of proteins that act primarily to move phosphatidylinositol lipids across lipid bilayers, the phosphatidylinositol transfer proteins, are believed to have important roles in lipid signaling and membrane trafficking.

Lipids and Proteins Diffuse Laterally in the Bilayer

Individual lipid molecules can move laterally in the plane of the membrane by changing places with neighboring lipid molecules; that is, they undergo Brownian movement within the bilayer (Fig. 11-16b), which can be quite rapid. A molecule in the outer leaflet of the erythrocyte plasma membrane, for example, can diffuse laterally so fast that it circumnavigates the erythrocyte in seconds. This rapid lateral diffusion in the plane of the bilayer tends to randomize the positions of individual molecules in a few seconds.

Lateral diffusion can be shown experimentally by attaching fluorescent probes to the head groups of lipids and using fluorescence microscopy to follow the probes over time (Fig. 11-17). In one technique, a small region (5 \(\mu \text{m}^2 \)) of a cell surface with fluorescence-tagged lipids is bleached by intense laser radiation so that the irradiated patch no longer fluoresces when viewed with less-intense (nonbleaching) light in the fluorescence microscope. However, within milliseconds, the region recovers its fluorescence as unbleached lipid molecules diffuse into the bleached patch and bleached lipid molecules diffuse away from it. The rate of fluorescence recovery after photobleaching, or **FRAP**, is a measure of the rate of lateral diffusion of the lipids. Using the FRAP
technique, researchers have shown that some membrane lipids diffuse laterally at rates of up to 1 μm/s.

Another technique, single particle tracking, allows one to follow the movement of a single lipid molecule in the plasma membrane on a much shorter time scale. Results from these studies confirm rapid lateral diffusion within small, discrete regions of the cell surface and show that movement from one such region to a nearby region ("hop diffusion") is inhibited; membrane lipids behave as though corralled by fences that they can occasionally cross by hop diffusion (Fig. 11–18).

Many membrane proteins seem to be afloat in a sea of lipids. Like membrane lipids, these proteins are free to diffuse laterally in the plane of the bilayer and are in constant motion, as shown by the FRAP technique with fluorescence-tagged surface proteins. Some membrane proteins associate to form large aggregates ("patches") on the surface of a cell or organelle in which individual protein molecules do not move relative to one another; for example, acetylcholine receptors form dense, near-crystalline patches on neuronal plasma membranes at synapses. Other membrane proteins are anchored to internal structures that prevent their free diffusion. In the erythrocyte membrane, both glycophorin and the chloride-bicarbonate exchanger (p. 385) are tethered to spectrin, a filamentous cytoskeletal protein (Fig. 11–19).

One possible explanation for the pattern of lateral diffusion of lipid molecules shown in Figure 11–18 is that membrane proteins immobilized by their association with spectrin form the "fences" that define the regions of relatively unrestricted lipid motion.

Sphingolipids and Cholesterol Cluster Together in Membrane Rafts

We have seen that diffusion of membrane lipids from one bilayer leaflet to the other is very slow unless catalyzed, and that the different lipid species of the plasma membrane are asymmetrically distributed in the two leaflets of the bilayer (Fig. 11–5). Even within a single leaflet, the lipid distribution is not random. Glycosphingolipids (cerebrosides and gangliosides), which typically contain long-chain saturated fatty acids, form transient clusters in the outer leaflet that largely exclude glycerophospholipids, which typically contain one unsaturated fatty acyl group and a shorter saturated acyl group. The long, saturated acyl groups of sphingolipids can form more compact, more stable associations with the long ring system of cholesterol than can the shorter, often unsaturated, chains of phospholipids. The cholesterol-sphingolipid microdomains in the outer monolayer of the plasma membrane, visible with atomic force microscopy (Box 11–1), are slightly thicker and more ordered (less fluid) than neighboring microdomains rich in phospholipids and are more difficult to dissolve with nonionic detergents; they behave like liquid-ordered sphingolipid rafts adrift on an ocean of liquid-disordered phospholipids (Fig. 11–20, p. 386).

These lipid rafts are remarkably enriched in two classes of integral membrane proteins: those anchored to the membrane by two covalently attached long-chain saturated fatty acids (two palmitoyl groups or a palmitoyl and a myristoyl group) and GPI-anchored proteins.
In atomic force microscopy (AFM), the sharp tip of a microscopic probe attached to a flexible cantilever is drawn across an uneven surface such as a membrane (Fig. 1). Electrostatic and van der Waals interactions between the tip and the sample produce a force that moves the probe up and down (in the z dimension) as it encounters hills and valleys in the sample. A laser beam reflected from the cantilever detects motions of as little as 1 Å. In one type of atomic force microscope, the force on the probe is held constant (relative to a standard force, on the order of piconewtons) by a feedback circuit that causes the platform holding the sample to rise or fall to keep the force constant. A series of scans in the x and y dimensions (the plane of the membrane) yields a three-dimensional contour map of the surface with resolution near the atomic scale—0.1 nm in the vertical dimension, 0.5 to 1.0 nm in the lateral dimensions. The membrane rafts shown in Figure 11-20b were visualized by this technique.

In favorable cases, AFM can be used to study single membrane protein molecules. Single molecules of bacteriorhodopsin (see Fig. 11-9) in the purple membranes of the bacterium Halobacterium salinarum are seen as highly regular structures (Fig. 2a). When several images of individual units are superimposed with the help of a computer, the real parts of the image reinforce each other and the noise in individual images is averaged out, yielding a high-resolution image of the protein (inset in Fig. 2a). AFM of purified E. coli aquaporin, reconstituted into lipid bilayers and viewed as if from the outside of a cell, shows the fine details of the protein's periplasmic domains (Fig. 2b). And AFM reveals that F_o, the proton-driven rotor of the chloroplast ATP synthase (p. 760), is composed of many subunits (14 in Fig. 2c) arranged in a circle.

(Presumably these lipid anchors, like the acyl chains of sphingolipids, form more stable associations with the cholesterol and long acyl groups in rafts than with the surrounding phospholipids. (It is notable that other lipid-linked proteins, those with covalently attached isoprenyl groups such as farnesyl, are not preferentially associated with the outer leaflet of sphingolipid/cholesterol rafts (Fig. 11-20a).) The "raft" and "sea" domains of the plasma membrane are not rigidly separated; membrane proteins can move into and out of lipid rafts on a time scale of seconds. But in the shorter time scale (microseconds) more relevant to many membrane-mediated biochemical processes, many of these proteins reside primarily in a raft.

We can estimate the fraction of the cell surface occupied by rafts from the fraction of the plasma membrane that resists detergent solubilization, which can be as high as 50% in some cases: the rafts cover half of the ocean (Fig. 11-20b). Indirect measurements in cultured fibroblasts suggest a diameter of roughly 50 nm for an
Raft, enriched in sphingolipids, cholesterol

FIGURE 11-20 Membrane microdomains (rafts). (a) Stable associations of sphingolipids and cholesterol in the outer leaflet produce a microdomain, slightly thicker than other membrane regions, that is enriched with specific types of membrane proteins; GPI-linked proteins are common in the outer leaflet of these rafts, and proteins with one or several covalently attached long-chain acyl groups are common in the inner leaflet. Caveolin is especially common in inwardly curved rafts called caveolae (see Fig. 11-21). Proteins with attached prenyl groups (such as Ras; see Box 12-2) tend to be excluded from rafts. (b) In this artificial membrane—reconstituted (on a mica surface) from cholesterol, synthetic phospholipid (dioleoylphosphatidylcholine), and the GPI-linked protein placental alkaline phosphatase—the greater thickness of raft regions is visualized by atomic force microscopy (see Box 11-1). The rafts protrude from a lipid bilayer ocean (the black surface is the top of the upper monolayer; sharp peaks represent GPI-linked proteins. Note that these peaks are found almost exclusively in the rafts.

Caveolin is an integral membrane protein with two globular domains connected by a hairpin-shaped hydrophobic domain, which binds the protein to the cytoplasmic leaflet of the plasma membrane. Three palmitoyl groups attached to the carboxyl-terminal globular domain further anchor it to the membrane. Caveolin (actually, a family of related caveolins) binds cholesterol in the membrane, and the presence of caveolin forces the associated lipid bilayer to curve inward, forming caveolae (“little caves”) in the surface of the cell (Fig. 11-21). Caveolae are unusual rafts: they involve both leaflets of the bilayer—the cytoplasmic leaflet, from which the caveolin globular domains project, and the extracellular leaflet, a typical sphingolipid/cholesterol raft with associated GPI-anchored proteins. Caveolae are implicated in a variety of cellular functions, including membrane trafficking within cells and the transduction of external signals into cellular responses. The receptors for insulin and other growth factors, as well as certain GTP-binding proteins and protein kinases associated with transmembrane signaling, seem to be localized

FIGURE 11-21 Caveolin forces inward curvature of a membrane. Caveolae are small invaginations in the plasma membrane, as seen in (a) an electron micrograph of an adipocyte surface-labeled with an electron-dense marker. (b) Each caveolin monomer has a central hydrophobic domain and three long-chain acyl groups (red), which hold the molecule to the inside of the plasma membrane. When several caveolin dimers are concentrated in a small region (a raft), they force a curvature in the lipid bilayer, forming a caveola. Cholesterol molecules in the bilayer are shown in orange.
Membrane Curvature and Fusion Are Central to Many Biological Processes

Caveolin is not unique in its ability to induce curvature in membranes. Changes of curvature are central to one of the most remarkable features of biological membranes: their ability to undergo fusion with other membranes without losing their continuity. Although membranes are stable, they are by no means static. Within the eukaryotic endomembrane system (which includes the nuclear membrane, endoplasmic reticulum, Golgi, and various small vesicles), the membranous compartments constantly reorganize. Vesicles bud from the ER to carry newly synthesized lipids and proteins to other organelles and to the plasma membrane. Exocytosis, endocytosis, cell division, fusion of egg and sperm cells, and entry of a membrane-enveloped virus into its host cell all involve membrane reorganization in which the fundamental operation is fusion of two membrane segments without loss of continuity (Fig. 11-22). Most of these processes begin with a local increase in membrane curvature. Three mechanisms for inducing membrane curvature are shown in Figure 11-23. A protein that is intrinsically curved may force curvature in a bilayer by binding to it; the binding energy provides the driving force for the increase in bilayer curvature. Alternatively, many subunits of a scaffold protein may assemble into curved supramolecular complexes and stabilize curves that spontaneously form in the bilayer. Or, a protein may insert one or more hydrophobic helices into one face of the bilayer, expanding its area relative to the other face and thereby forcing curvature.

Specific fusion of two membranes requires that (1) they recognize each other; (2) their surfaces become closely apposed, which requires the removal of water molecules normally associated with the polar head groups of lipids; (3) their bilayer structures become locally disrupted, resulting in fusion of the outer leaflet of each membrane (hemifusion); and (4) their bilayers fuse to form a single continuous bilayer. The fusion occurring in receptor-mediated endocytosis, or regulated secretion, also requires that (5) the process is triggered at the appropriate time or in response to a specific signal. Integral proteins called fusion proteins mediate these events, bringing about specific recognition and a transient local distortion of the bilayer structure that favors membrane fusion. (Note that these fusion proteins are unrelated to the products encoded by two fused genes, also called fusion proteins, discussed in Chapter 9.)

![Diagram of membrane fusion](image)

FIGURE 11-22 Membrane fusion. The fusion of two membranes is central to a variety of cellular processes involving organelles and the plasma membrane.

FIGURE 11-23 Three models for protein-induced curvature of membranes.
A well-studied example of membrane fusion is that occurring at synapses, when intracellular vesicles loaded with neurotransmitter fuse with the plasma membrane. This process involves a family of proteins called SNARES (Fig. 11–24). SNAREs in the cytoplasmic face of the intracellular vesicle are called v-SNAREs; those in the target membrane with which the vesicle fuses (the plasma membrane during exocytosis) are t-SNAREs. Two other proteins, SNAP25 and NSF, are also involved. During fusion, a v-SNARE and t-SNARE bind to each other and undergo a structural change that produces a bundle of long thin rods made up of helices from both SNAREs and two helices from SNAP25 (Fig. 11–24). The two SNAREs initially interact at their ends, then zip up into the bundle of helices. This structural change pulls the two membranes into contact and initiates the fusion of their lipid bilayers.

The complex of SNAREs and SNAP25 is the target of the powerful Clostridium botulinum toxin, a protease that cleaves specific bonds in these proteins, preventing neurotransmission and thereby causing the death of the organism. Because of its very high specificity for these proteins, purified botulinum toxin has served as a powerful tool for dissecting the mechanism of neurotransmitter release in vivo and in vitro.

Integral Proteins of the Plasma Membrane Are Involved in Surface Adhesion, Signaling, and Other Cellular Processes

Several families of integral proteins in the plasma membrane provide specific points of attachment between cells, or between a cell and extracellular matrix proteins. **Integrins** are surface adhesion proteins that mediate a cell’s interaction with the extracellular matrix and with other cells, including some pathogens. Integrins also carry signals in both directions across the plasma membrane, integrating information about the extracellular and intracellular environments. All integrins are heterodimeric proteins composed of two unlike subunits, α and β, each anchored to the plasma membrane by a single transmembrane helix. The large extracellular domains of the α and β subunits combine to form a specific binding site for extracellular proteins such as collagen and fibronectin, which contain a common determinant of integrin binding, the sequence Arg–Gly–Asp (RGD). We discuss the signaling functions of integrins in more detail in Chapter 12 (p. 455).

Other plasma membrane proteins involved in surface adhesion are the **cadherins**, which undergo homophilic (“with same kind”) interactions with identical cadherins in an adjacent cell. **Selectins** have extracellular domains that, in the presence of Ca$^{2+}$, bind specific polysaccharides on the surface of an adjacent cell. Selectins are present primarily in the various types of blood cells and in the endothelial cells that line blood vessels (see Fig. 7–31). They are an essential part of the blood-clotting process.

Integral membrane proteins play roles in many other cellular processes. They serve as transporters and ion
channels (discussed in Section 11.3) and as receptors for hormones, neurotransmitters, and growth factors (Chapter 12). They are central to oxidative phosphorylation and photophosphorylation (Chapter 19) and to cell-cell and cell-antigen recognition in the immune system (Chapter 5). Integral proteins are also important players in the membrane fusion that accompanies exocytosis, endocytosis, and the entry of many types of viruses into host cells.

SUMMARY 11.2 Membrane Dynamics

- Lipids in a biological membrane can exist in liquid-ordered or liquid-disordered states; in the latter state, thermal motion of acyl chains makes the interior of the bilayer fluid. Fluidity is affected by temperature, fatty acid composition, and sterol content.
- Flip-flop diffusion of lipids between the inner and outer leaflets of a membrane is very slow except when specifically catalyzed by flipases, floppases, or scramblases.
- Lipids and proteins can diffuse laterally within the plane of the membrane, but this mobility is limited by interactions of membrane proteins with internal cytoskeletal structures and interactions of lipids with lipid rafts. One class of lipid rafts consists of sphingolipids and cholesterol with a subset of membrane proteins that are GPI-linked or attached to several long-chain fatty acyl moieties.

11.3 Solute Transport across Membranes

Every living cell must acquire from its surroundings the raw materials for biosynthesis and for energy production, and must release to its environment the byproducts of metabolism. A few nonpolar compounds can dissolve in the lipid bilayer and cross the membrane unassisted, but for transmembrane movement of any polar compound or ion, a membrane protein is essential. In some cases a membrane protein simply facilitates the diffusion of a solute down its concentration gradient, but transport can also occur against a gradient of concentration, electrical charge, or both, in which case the process requires energy (Fig. 11–25). The energy may come directly from ATP hydrolysis or may be supplied in the form of one solute moving down its electrochemical gradient, with the release of enough energy to drive another solute up its gradient. Ions may also move across membranes via ion channels formed by proteins, or they may be carried across by ionophores, small molecules that mask the charge of ions and allow them to diffuse through the lipid bilayer. With very few exceptions, the traffic of small molecules across the plasma membrane is mediated by proteins such as transmembrane channels, carriers, or pumps. Within the eukaryotic cell, different compartments have different concentrations of ions and of metabolic intermediates and products, and these, too, must move across intracellular membranes in tightly regulated, protein-mediated processes.

FIGURE 11–25 Summary of transport types.
Passive Transport Is Facilitated by Membrane Proteins

When two aqueous compartments containing unequal concentrations of a soluble compound or ion are separated by a permeable divider (membrane), the solute moves by simple diffusion from the region of higher concentration, through the membrane, to the region of lower concentration, until the two compartments have equal solute concentrations (Fig. 11–26a). When ions of opposite charge are separated by a permeable membrane, there is a transmembrane electrical gradient, a membrane potential, V_m (expressed in millivolts). This membrane potential produces a force opposing ion movements that increase V_m and driving ion movements that reduce V_m (Fig. 11–26b). Thus the direction in which a charged solute tends to move spontaneously across a membrane depends on both the chemical gradient (the difference in solute concentration) and the electrical gradient (V_m) across the membrane. Together, these two factors are referred to as the electrochemical gradient or electrochemical potential. This behavior of solutes is in accord with the second law of thermodynamics: molecules tend to spontaneously assume the distribution of greatest randomness and lowest energy.

To pass through a lipid bilayer, a polar or charged solute must first give up its interactions with the water molecules in its hydration shell, then diffuse about 3 nm (30 Å) through a substance (lipid) in which it is poorly soluble (Fig. 11–27). The energy used to strip away the hydration shell and to move the polar compound from water into lipid, then through the lipid bilayer, is regained as the compound leaves the membrane on the other side and is rehydrated. However, the intermediate stage of transmembrane passage is a high-energy state comparable to the transition state in an enzyme-catalyzed chemical reaction. In both cases, an activation barrier must be overcome to reach the intermediate stage (Fig. 11–27; compare with Fig. 6–3). The energy of activation (ΔG^*) for translocation of a polar solute across the bilayer is so large that pure lipid bilayers are virtually impermeable to polar and charged species over periods of time relevant to cell growth and division.

Membrane proteins lower the activation energy for transport of polar compounds and ions by providing an alternative path through the bilayer for specific solutes. Proteins that bring about this facilitated diffusion, or passive transport, are not enzymes in the usual sense; their “substrates” are moved from one compartment to another but are not chemically altered. Membrane proteins that speed
the movement of a solute across a membrane by facilitating diffusion are called transporters or permeases.

Like enzymes, transporters bind their substrates with stereochemical specificity through multiple weak, non-covalent interactions. The negative free-energy change associated with these weak interactions, \(\Delta G_{\text{binding}} \), counterbalances the positive free-energy change that accompanies loss of the water of hydration from the substrate, \(\Delta G_{\text{dehydration}} \), thereby lowering \(\Delta G^\circ \) for transmembrane passage (Fig. 11–27). Transporters span the lipid bilayer several times, forming a transmembrane channel lined with hydrophilic amino acid side chains. The channel provides an alternative path for a specific substrate to move across the lipid bilayer without its having to dissolve in the bilayer, further lowering \(\Delta G^\circ \) for transmembrane diffusion. The result is an increase of several to many orders of magnitude in the rate of transmembrane passage of the substrate.

Transporters Can Be Grouped into Superfamilies Based on Their Structures

We know from genomic studies that transporters constitute a significant fraction of all proteins encoded in the genomes of both simple and complex organisms. There are probably a thousand or more different transporters in the human genome. Transporters fall within two very broad categories: carriers and channels (Fig. 11–28). **Carriers** bind their substrates with high stereospecificity, catalyze transport at rates well below the limits of free diffusion, and are saturable in the same sense as are enzymes: there is some substrate concentration above which further increases will not produce a greater rate of transport. **Channels** generally allow transmembrane movement at rates orders of magnitude greater than those typical of carriers, rates approaching the limit of unhindered diffusion. Channels typically show less stereospecificity than carriers and are usually not saturable. Most channels are oligomeric complexes of several, often identical, subunits, whereas many carriers function as monomeric proteins. The classification as carrier or channel is the broadest distinction among transporters. Within each of these categories are superfamilies of various types, defined not only by their primary sequences but by their secondary structures. Some channels are constructed primarily of helical transmembrane segments, others have \(\beta \)-barrel structures. Among the carriers, some simply facilitate diffusion down a concentration gradient; they are the **passive transporter** superfamily. **Active transporters** can drive substrates across the membrane against a concentration gradient, some using energy provided directly by a chemical reaction (primary active transporters) and some coupling uphill transport of one substrate with downhill transport of another (secondary active transporters). We now consider some well-studied representatives of the main transporter superfamilies. You will encounter some of these transporters again in later chapters in the context of the metabolic pathways in which they participate.

The Glucose Transporter of Erythrocytes Mediates Passive Transport

Energy-yielding metabolism in erythrocytes depends on a constant supply of glucose from the blood plasma, where the glucose concentration is maintained at about 5 mM. Glucose enters the erythrocyte by facilitated diffusion via a specific glucose transporter, at a rate about 50,000 times greater than uncatalyzed transmembrane diffusion. The glucose transporter of erythrocytes (called GLUT1 to distinguish it from related glucose transporters in other tissues) is a type III integral protein \((M_r \sim 45,000) \) with 12 hydrophobic segments, each of which is believed to form a membrane-spanning helix. The detailed structure of GLUT1 is not yet known, but one plausible model suggests that the side-by-side assembly of several helices produces a transmembrane channel lined with hydrophilic residues that can hydrogen-bond with glucose as it moves through the channel (Fig. 11–29).

The process of glucose transport can be described by analogy with an enzymatic reaction in which the “substrate” is glucose outside the cell \((S_{\text{out}}) \), the “product” is glucose inside \((S_{\text{in}}) \), and the “enzyme” is the transporter, \(T \). When the initial rate of glucose uptake is measured as a function of external glucose concentration (Fig. 11–30), the resulting plot is hyperbolic; at high external glucose concentrations the rate of uptake approaches \(V_{\text{max}} \). Formally, such a transport process can be described by the equations

\[
S_{\text{out}} + T_1 \xrightarrow{k_1} S_{\text{in}} \cdot T_1 \\
S_{\text{in}} + T_2 \xrightarrow{k_2} S_{\text{out}} \cdot T_2
\]

in which \(k_1, k_2, k_{-1}, \) and \(k_{-2} \), and so forth, are the forward and reverse rate constants for each step; \(T_1 \) is the transporter conformation in which the glucose-binding site faces...
out, and T_3 the conformation in which it faces in. The steps are summarized in Figure 11–31. Given that every step in this sequence is reversible, the transporter is, in principle, equally able to move glucose into or out of the cell. However, glucose always moves down its concentration gradient, which normally means into the cell. Glucose that enters a cell is generally metabolized immediately, and the intracellular glucose concentration is thereby kept low relative to its concentration in the blood.

Figure 11–29 Proposed structure of GLUT1. (a) Transmembrane helices are represented here as oblique (angled) rows of three or four amino acid residues, each row depicting one turn of the α helix. Nine of the 12 helices contain three or more polar or charged residues (blue or red), often separated by several hydrophobic residues (yellow). This representation of topology is not intended to represent three-dimensional structure. (b) A helical wheel diagram shows the distribution of polar and nonpolar residues on the surface of a helical segment. The helix is diagrammed as though observed along its axis from the amino terminus. Adjacent residues in the linear sequence are connected, and each residue is placed around the wheel in the position it occupies in the helix; recall that 3.6 residues are required to make one complete turn of the α helix. In this example, the polar residues (blue) are on one side of the helix and the hydrophobic residues (yellow) on the other. This is, by definition, an amphipathic helix. (c) Side-by-side association of four amphipathic helices, each with its polar face oriented toward the central cavity, can produce a transmembrane channel lined with polar (and charged) residues. This channel provides many opportunities for hydrogen bonding with glucose as it moves through.

Figure 11–30 Kinetics of glucose transport into erythrocytes. (a) The initial rate of glucose entry into an erythrocyte, V_0, depends on the initial concentration of glucose on the outside, $[S]_{	ext{out}}$. (b) Double-reciprocal plot of the data in (a). The kinetics of facilitated diffusion is analogous to the kinetics of an enzyme-catalyzed reaction. Compare these plots with Figure 6–11, and with Figure 1 in Box 6–1. Note that K_1 is analogous to K_m, the Michaelis constant.

Figure 11–31 Model of glucose transport into erythrocytes by GLUT1. The transporter exists in two conformations: T_1, with the glucose-binding site exposed on the outer surface of the plasma membrane, and T_2, with the binding site exposed on the inner surface. Glucose transport occurs in four steps. 1. Glucose in blood plasma binds to a stereospecific site on T_1; this lowers the activation energy for a conformational change from T_1 to T_2, effecting the transmembrane passage of the glucose. 2. Glucose is released from T_2 into the cytoplasm, and 3. the transporter returns to the T_1 conformation, ready to transport another glucose molecule.
The rate equations for glucose transport can be derived exactly as for enzyme-catalyzed reactions (Chapter 6), yielding an expression analogous to the Michaelis-Menten equation:

\[
V_0 = \frac{V_{\text{max}} [S]_{\text{out}}}{K_i + [S]_{\text{out}}}
\]

(11-1)
in which \(V_0\) is the initial velocity of accumulation of glucose inside the cell when its concentration in the surrounding medium is \([S]_{\text{out}}\) and \(K_i\) \((K_{\text{transport}})\) is a constant analogous to the Michaelis constant, a combination of rate constants that is characteristic of each transport system. This equation describes the initial velocity, the rate observed when \([S]_{\text{in}} = 0\). As is the case for enzyme-catalyzed reactions, the slope-intercept form of the equation describes a linear plot of \(1/V_0\) against \(1/[S]_{\text{out}}\), from which we can obtain values of \(K_i\) and \(V_{\text{max}}\) (Fig. 11-30b). When \([S]_{\text{out}} = K_i\), the rate of uptake is \(\frac{1}{2}V_{\text{max}}\), the transport process is half-saturated. The concentration of glucose in blood is 4.5 to 5 mM, about three times \(K_i\), which ensures that GLUT1 is nearly saturated with substrate and operates near \(V_{\text{max}}\).

Because no chemical bonds are made or broken in the conversion of \(S_{\text{out}}\) to \(S_{\text{in}}\), neither “substrate” nor “product” is intrinsically more stable, and the process of entry is therefore fully reversible. As \([S]_{\text{in}}\) approaches \([S]_{\text{out}}\), the rates of entry and exit become equal. Such a system is therefore incapable of accumulating glucose within a cell at concentrations above that in the surrounding medium; it simply equilibrates glucose on the two sides of the membrane much faster than would occur in the absence of a specific transporter. GLUT1 is specific for \(\alpha\)-glucose, with a measured \(K_i\) of 1.5 mM. For the close analogs \(\alpha\)-mannose and \(\alpha\)-galactose, which differ only in the position of one hydroxyl group, the values of \(K_i\) are 20 and 30 mM, respectively; and for \(\alpha\)-glucose, \(K_i\) exceeds 3,000 mM. Thus GLUT1 shows the three hallmarks of passive transport: high rates of diffusion down a concentration gradient, saturation, and specificity.

Twelve glucose transporters are encoded in the human genome, each with its unique kinetic properties, patterns of tissue distribution, and function (Table 11-3). In liver, GLUT2 transports glucose out of hepatocytes when liver glycogen is broken down to replenish blood glucose. GLUT2 has a \(K_i\) of about 66 mM and can therefore respond to increased levels of intracellular glucose (produced by glycogen breakdown) by increasing outward transport. Skeletal and heart muscle and adipose tissue have yet another glucose transporter, GLUT4 (\(K_i = 5\) mM), which is distinguished by its response to insulin: its activity increases when insulin signals a high blood glucose concentration, thus increasing the rate of glucose uptake into muscle and adipose tissue (Box 11-2 describes some malfunctions of this transporter).

The Chloride-Bicarbonate Exchanger Catalyzes Electroneutral Cotransport of Anions across the Plasma Membrane

The erythrocyte contains another facilitated diffusion system, an anion exchanger that is essential in CO\(_2\) transport to the lungs from tissues such as skeletal muscle and liver. Waste CO\(_2\) released from respiring tissues into the blood plasma enters the erythrocyte, where it is converted to bicarbonate (HCO\(_3^-\)) by the enzyme carbonic anhydrase. (Recall that HCO\(_3^-\) is the primary buffer of blood pH; see Fig. 2-20.) The HCO\(_3^-\) reenters the blood plasma for
When ingestion of a carbohydrate-rich meal causes blood glucose to exceed the usual concentration between meals (about 5 mM), excess glucose is taken up by the myocytes of cardiac and skeletal muscle (which store it as glycogen) and by adipocytes (which convert it to triacylglycerols). Glucose uptake into myocytes and adipocytes is mediated by the glucose transporter GLUT4. Between meals, some GLUT4 is present in the plasma membrane, but most is sequestered in the membranes of small intracellular vesicles (Fig. 1). Insulin released from the pancreas in response to high blood glucose triggers the movement of these intracellular vesicles to the plasma membrane, where they fuse, thus exposing GLUT4 molecules on the outer surface of the cell (see Fig. 12–16). With more GLUT4 molecules in action, the rate of glucose uptake increases 15-fold or more. When blood glucose levels return to normal, insulin release slows and most GLUT4 molecules are removed from the plasma membrane and stored in vesicles.

In type 1 (juvenile-onset) diabetes mellitus, the inability to release insulin (and thus to mobilize glucose transporters) results in low rates of glucose uptake into muscle and adipose tissue. One consequence is a prolonged period of high blood glucose after a carbohydrate-rich meal. This condition is the basis for the glucose tolerance test used to diagnose diabetes (Chapter 23).

The water permeability of epithelial cells lining the renal collecting duct in the kidney is due to the presence of an aquaporin (AQP-2) in their apical plasma membranes (facing the lumen of the duct). Vasopressin (antidiuretic hormone, ADH) regulates the retention of water by mobilizing AQP-2 molecules stored in vesicle membranes within the epithelial cells, much as insulin mobilizes GLUT4 in muscle and adipose tissue. When the vesicles fuse with the epithelial cell plasma membrane, water permeability greatly increases and more water is reabsorbed from the collecting duct and returned to the blood. When the vasopressin level drops, AQP-2 is resequestered within vesicles, reducing water retention. In the relatively rare human disease diabetes insipidus, a genetic defect in AQP-2 leads to impaired water reabsorption by the kidney. The result is excretion of copious volumes of very dilute urine.

FIGURE 1 Transport of glucose into a myocyte by GLUT4 is regulated by insulin.
Chloride-bicarbonate exchange protein
In respiring tissues

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{HCO}_3^- + \text{H}^+ \]

In lungs

\[\text{HCO}_3^- + \text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

FIGURE 11–32 Chloride-bicarbonate exchanger of the erythrocyte membrane. This cotransport system allows the entry and exit of HCO$_3^-$ without changing the membrane potential. Its role is to increase the CO$_2$-carrying capacity of the blood.

transport to the lungs (Fig. 11–32). Because HCO$_3^-$ is much more soluble in blood plasma than is CO$_2$, this roundabout route increases the capacity of the blood to carry carbon dioxide from the tissues to the lungs. In the lungs, HCO$_3^-$ reenters the erythrocyte and is converted to CO$_2$, which is eventually released into the lung space and exhaled. To be effective, this shuttle requires very rapid movement of HCO$_3^-$ across the erythrocyte membrane.

The chloride-bicarbonate exchanger, also called the anion exchange (AE) protein, increases the rate of HCO$_3^-$ transport across the erythrocyte membrane more than a millionfold. Like the glucose transporter, it is an integral protein that probably spans the membrane at least 12 times. This protein mediates the simultaneous movement of two anions: for each HCO$_3^-$ ion that moves in one direction, one Cl$^- \text{ion moves in the opposite direction (Fig. 11–33), with no net transfer of charge; the exchange is electroneutral. The coupling of Cl$^- and HCO$_3^-$ movements is obligatory; in the absence of chloride, bicarbonate transport stops. In this respect, the anion exchanger is typical of those systems, called cotransport systems, that simultaneously carry two solutes across a membrane. When, as in this case, the two substrates move in opposite directions, the process is antiport. In symport, two substrates are moved simultaneously in the same direction. Transporters that carry only one substrate, such as the erythrocyte glucose transporter, are known as uniport systems (Fig. 11–33).

The human genome has genes for three closely related chloride-bicarbonate exchangers, all with the same predicted transmembrane topology. Erythrocytes contain the AE1 transporter, AE2 is prominent in liver, and AE3 is present in plasma membranes of the brain, heart, and retina. Similar anion exchangers are also found in plants and microorganisms.

Active Transport Results in Solute Movement against a Concentration or Electrochemical Gradient

In passive transport, the transported species always moves down its electrochemical gradient and is not accumulated above the equilibrium concentration. Active transport, by contrast, results in the accumulation of a solute above the equilibrium point. Active transport is thermodynamically unfavorable (endergonic) and takes place only when coupled (directly or indirectly) to an exergonic process such as the absorption of sunlight, an oxidation reaction, the breakdown of ATP, or the concomitant flow of some other chemical species down its electrochemical gradient. In primary active transport, solute accumulation is coupled directly to an exergonic chemical reaction, such as conversion of ATP to ADP + P$_i$ (Fig. 11–34).

FIGURE 11–33 Three general classes of transport systems. Transporters differ in the number of solutes (substrates) transported and the direction in which each solute moves. Examples of all three types of transporters are discussed in the text. Note that this classification tells us nothing about whether these are energy-requiring (active transport) or energy-independent (passive transport) processes.

FIGURE 11–34 Two types of active transport. (a) In primary active transport, the energy released by ATP hydrolysis drives solute movement against an electrochemical gradient. (b) In secondary active transport, a gradient of ion X (often Na$^+$) has been established by primary active transport. Movement of X down its electrochemical gradient now provides the energy to drive cotransport of a second solute (S) against its electrochemical gradient.
Secondary active transport occurs when endergonic (uphill) transport of one solute is coupled to the exergonic (downhill) flow of a different solute that was originally pumped uphill by primary active transport.

The amount of energy needed for the transport of a solute against a gradient can be calculated from the initial concentration gradient. The general equation for the free-energy change in the chemical process that converts S to P is

$$
\Delta G = \Delta G^\circ + RT \ln \left(\frac{[P]}{[S]} \right)
$$

where ΔG° is the standard free-energy change, R is the gas constant, 8.315 J/mol·K, and T is the absolute temperature. When the "reaction" is simply transport of a solute from a region where its concentration is C_1 to a region where its concentration is C_2, no bonds are made or broken and ΔG° is zero. The free-energy change for transport, ΔG_t, is then

$$
\Delta G_t = RT \ln \left(\frac{C_2}{C_1} \right)
$$

If there is a 10-fold difference in concentration between two compartments, the cost of moving 1 mol of an uncharged solute at 25 °C uphill across a membrane separating the compartments is

$$
\Delta G = (8.315 \text{ J/mol·K}) (298 \text{ K}) \ln (10/1) = 5,700 \text{ J/mol} = 5.7 \text{ kJ/mol}
$$

Equation 11-3 holds for all uncharged solutes.

WORKED EXAMPLE 11-1 Energy Cost of Pumping an Uncharged Solute

Calculate the energy cost (free-energy change) of pumping an uncharged solute against a 1.0 x 10^4-fold concentration gradient at 25 °C.

Solution: Begin with Equation 11-3. Substitute 1.0×10^4 for (C_2/C_1), 8.315 J/mol·K for R, and 298 K for T:

$$
\Delta G_t = RT \ln \left(\frac{C_2}{C_1} \right)
$$

$$
= (8.315 \text{ J/mol·K})(298 \text{ K}) \ln (1.0 \times 10^4)
$$

$$
= 23 \text{ kJ/mol}
$$

When the solute is an ion, its movement without an accompanying counterion results in the endergonic separation of positive and negative charges, producing an electrical potential; such a transport process is said to be **electrogenic**. The energetic cost of moving an ion depends on the electrochemical potential (p. 390), the sum of the chemical and electrical gradients:

$$
\Delta G_t = RT \ln \left(\frac{C_2}{C_1} \right) + Z \mathcal{F} \Delta \psi
$$

where Z is the charge on the ion, \mathcal{F} is the Faraday constant (96,480 J/V·mol), and $\Delta \psi$ is the transmembrane electrical potential (in volts). Eukaryotic cells typically have plasma membrane potentials of about 0.05 V (with the inside negative relative to the outside), so the second term of Equation 11-4 can make a significant contribution to the total free-energy change for transporting an ion. Most cells maintain more than a 10-fold difference in ion concentrations across their plasma or intracellular membranes, and for many cells and tissues active transport is therefore a major energy-consuming process.

WORKED EXAMPLE 11-2 Energy Cost of Pumping a Charged Solute

Calculate the energy cost (free-energy change) of pumping Ca^{2+} from the cytosol, where its concentration is about 1.0 x 10^{-7} M, to the extracellular fluid, where its concentration is about 1.0 M. Assume a temperature of 37 °C (body temperature in a mammal) and a standard transmembrane potential of 50 mV (inside negative) for the plasma membrane.

Solution: In this calculation, both the concentration gradient and the electrical potential must be taken into account. In Equation 11-4, substitute 8.315 J/mol·K for R, 310 K for T, 1.0×10^{-3} for C_2, 1.0×10^{-7} for C_1, 96,500 J/V·mol for \mathcal{F}, +2 (the charge on a Ca^{2+} ion) for Z, and 0.050 V for $\Delta \psi$. Note that the transmembrane potential is 50 mV (inside negative), so the change in potential when an ion moves from inside to outside is 50 mV.

$$
\Delta G_t = RT \ln \left(\frac{C_2}{C_1} \right) + Z \mathcal{F} \Delta \psi
$$

$$
= (8.315 \text{ J/mol·K})(310 \text{ K}) \ln \left(\frac{1.0 \times 10^{-3}}{1.0 \times 10^{-7}} \right)
$$

$$
+ 2 (96,500 \text{ J/V·mol}) (0.050 \text{ V})
$$

$$
= 33 \text{ kJ/mol}
$$

The mechanism of active transport is of fundamental importance in biology. As we shall see in Chapter 19, ATP is formed in mitochondria and chloroplasts by a mechanism that is essentially ATP-driven ion transport operating in reverse. The energy made available by the spontaneous flow of protons across a membrane is calculable from Equation 11-4; remember that ΔG for flow down an electrochemical gradient has a negative value, and ΔG for transport of ions against an electrochemical gradient has a positive value.

P-Type ATPases Undergo Phosphorylation during Their Catalytic Cycles

The family of active transporters called **P-type ATPases** are cation transporters that are reversibly phosphorylated by ATP (thus the name P-type) as part of the transport cycle. Phosphorylation forces a conformational change that is central to movement of the cation across the membrane. The human genome encodes at least 70 P-type ATPases that share similarities in amino acid sequence and topology, especially near the Asp residue.
that undergoes phosphorylation. All are integral proteins with 8 or 10 predicted membrane-spanning regions in a single polypeptide (type III in Fig. 11–8), and all are sensitive to inhibition by the phosphate analog vanadate.

The P-type ATPases are widespread in eukaryotes and bacteria. In animal tissues, the Ca\(^{2+}\) ATPase (a uniporter for Ca\(^{2+}\) ions) and the Na\(^+\)K\(^+\) ATPase (an antiporter for Na\(^+\) and K\(^+\) ions) are P-type ATPases that maintain differences in ionic composition between the cytosol and the extracellular medium. Parietal cells in the lining of the mammalian stomach have a P-type ATPase that pumps H\(^+\) and K\(^+\) across the plasma membrane, thereby acidifying the stomach contents. Lipid flippases, as we noted above, are structurally and functionally related to P-type transporters. In vascular plants, a P-type ATPase pumps protons out of cells, establishing an electrochemical difference of as much as 2 pH units and 250 mV across the plasma membrane. A similar P-type ATPase in the bread mold Neurospora pumps protons out of cells to establish an inside-negative membrane potential, which is used to drive the uptake of substrates and ions from the surrounding medium by secondary active transport. Bacteria use P-type ATPases to pump out toxic heavy metal ions such as Cd\(^{2+}\) and Cu\(^{2+}\).

The best-understood P-type pumps are the Ca\(^{2+}\) pumps that maintain a low concentration of Ca\(^{2+}\) in the cytosol of virtually all cells. The plasma membrane Ca\(^{2+}\) pump moves calcium ions out of the cell, and another P-type pump in the endoplasmic reticulum moves Ca\(^{2+}\) into the ER lumen. (In muscle cells, Ca\(^{2+}\) is normally sequestered in a specialized form of ER called the sarcoplasmic reticulum; release of this Ca\(^{2+}\) triggers muscle contraction.)

The sarcoplasmic and endoplasmic reticulum calcium (SERCA) pumps are P-type ATPases closely related in structure and mechanism. The SERCA pump of the sarcoplasmic reticulum, which comprises 80% of the protein in that membrane, is a single polypeptide (\(M_r \sim 110,000\)) that spans the membrane 10 times (Fig. 11–35). Three cytosolic domains formed by long loops connect the transmembrane helices: the N domain, where the nucleotide ATP and Mg\(^{2+}\) bind; the P domain, which contains the phosphorylated Asp residue characteristic of all P-type ATPases; and the A (actuator) domain, which communicates movements of the N and P domains to the two Ca\(^{2+}\)-binding sites. The M domain contains the transmembrane helices and the Ca\(^{2+}\)-binding sites, which are located near the middle of the membrane bilayer, 40 to 50 Å from the phosphorylated Asp residue—thus Asp phosphorylation-dephosphorylation does not directly affect Ca\(^{2+}\) binding.

The mechanism postulated for SERCA pumps (Fig. 11–36) takes into account the large conformational changes and the phosphorylation-dephosphorylation of the critical Asp residue in the P domain that is known to occur during a catalytic cycle. Each catalytic cycle moves two Ca\(^{2+}\) ions across the membrane and converts an ATP to ADP and P\(_i\). The role of ATP binding and hydrolysis is to bring about the interconversion of two conformations (E1 and E2) of the transporter. In the E1 conformation, the two Ca\(^{2+}\)-binding sites are exposed on the cytosolic side of the ER or sarcoplasmic reticulum and bind Ca\(^{2+}\) with high affinity. ATP binding and Asp phosphorylation drive a conformational change from E1 to E2 in which the Ca\(^{2+}\)-binding sites are now exposed on the luminal side of the membrane and their affinity for Ca\(^{2+}\) is greatly reduced, causing Ca\(^{2+}\) release into the lumen. By this mechanism, the energy released by hydrolysis of ATP during one
phosphorylation-dephosphorylation cycle drives Ca$^{2+}$ across the membrane against a large electrochemical gradient.

A variation on this basic mechanism is seen in the Na$^+$K$^+$ ATPase of the plasma membrane, discovered by Jens Skou in 1957. This cotransporter couples phosphorylation-dephosphorylation of the critical Asp residue to the simultaneous movement of both Na$^+$ and K$^+$ against their electrochemical gradients (Fig. 11-37). The Na$^+$K$^+$ ATPase is responsible for maintaining low Na$^+$ and high K$^+$ concentrations in the cell relative to the extracellular fluid (Fig. 11-38). For each molecule of

FIGURE 11-38 Role of the Na$^+$K$^+$ ATPase in animal cells. In animal cells, this active transport system is primarily responsible for setting and maintaining the intracellular concentrations of Na$^+$ and K$^+$ and for generating the membrane potential. It does this by moving three Na$^+$ out of the cell for every two K$^+$ it moves in. The electrical potential across the plasma membrane is central to electrical signaling in neurons, and the gradient of Na$^+$ is used to drive the uphill cotransport of solutes in many cell types.
ATP converted to ADP and P₁, the transporter moves two K⁺ ions inward and three Na⁺ ions outward across the plasma membrane. Cotransport is therefore electrogenic—it creates a net separation of charge across the membrane; in animals, this produces the membrane potential of −50 to −70 mV (inside negative relative to outside) that is characteristic of most cells and is essential to the conduction of action potentials in neurons. The central role of the Na⁺K⁺-ATPase is reflected in the energy invested in this single reaction: about 25% of the total energy consumption of a human at rest!

F-Type ATPases Are Reversible, ATP-Driven Proton Pumps

F-type ATPase active transporters catalyze the uphill transmembrane passage of protons driven by ATP hydrolysis. The "F-type" designation derives from the identification of these ATPases as energy-coupling factors. The F₀ integral membrane protein complex (Fig. 11–39; subscript o denotes its inhibition by the drug oligomycin) provides a transmembrane pathway for protons, and the peripheral protein F₁ (subscript 1 indicating this was the first of several factors isolated from mitochondria) uses the energy of ATP to drive protons uphill (into a region of higher H⁺ concentration).

The F₀F₁ organization of proton-pumping transporters must have developed very early in evolution. Bacteria such as E. coli use an F₀F₁ ATPase complex in their plasma membrane to pump protons outward, and archaea have a closely homologous proton pump, the A₀A₁ ATPase.

The reaction catalyzed by F-type ATPases is reversible, so a proton gradient can supply the energy to drive the reverse reaction, ATP synthesis (Fig. 11–40). When functioning in this direction, the F-type ATPases are more appropriately named ATP synthases. ATP synthases are central to ATP production in mitochondria during oxidative phosphorylation and in chloroplasts during photophosphorylation, as well as in bacteria and archaea. The proton gradient needed to drive ATP synthesis is produced by other types of proton pumps powered by substrate oxidation or sunlight. We provide a detailed description of these processes in Chapter 19.

V-type ATPases, a class of proton-transporting ATPases structurally (and possibly mechanistically) related to the F-type ATPases, are responsible for acidifying intracellular compartments in many organisms (thus V for vacuolar). Proton pumps of this type maintain the vacuoles of fungi and higher plants at a pH between 3 and 6, well below that of the surrounding cytosol (pH 7.5). V-type ATPases are also responsible for the acidification of lysosomes, endosomes, the Golgi complex, and secretory vesicles in animal cells. All V-type ATPases have a similar complex structure, with an integral (transmembrane) domain (V₀) that serves as a proton channel and a peripheral domain (V₁) that contains the ATP-binding site and the ATPase activity. The mechanism by which V-type ATPases couple ATP hydrolysis to the uphill transport of protons is not understood in detail.
ABC transporters (Fig. 11–41) constitute a large family of ATP-dependent transporters that pump amino acids, peptides, proteins, metal ions, various lipids, bile salts, and many hydrophobic compounds, including drugs, out of cells against a concentration gradient. One ABC transporter in humans, the multi-drug transporter (MDR1), is responsible for the striking resistance of certain tumors to some generally effective antitumor drugs. MDR1 has a broad substrate specificity for hydrophobic compounds, including, for example, the chemotherapeutic drugs adriamycin, doxorubicin, and vinblastine. By pumping these drugs out of the cell, the transporter prevents their accumulation within a tumor and thus blocks their therapeutic effects. MDR1 is an integral membrane protein (M, 170,000) with 12 transmembrane segments and two ATP-binding domains ("cassettes"), which give the family its name: ATP-binding cassette transporters.

All ABC transporters have two nucleotide-binding domains (NBDs) and two transmembrane domains. In some cases, all these domains are in a single long polypeptide; other ABC transporters have two subunits, each contributing an NBD and a domain with six (or in some cases 10; Fig. 11–41) transmembrane helices. Many ABC transporters are in the plasma membrane, but some types are also found in the endoplasmic reticulum and in the membranes of mitochondria and lysosomes. Most ABC transporters act as pumps, but at least some members of the superfamily act as ion channels that are opened and closed by ATP hydrolysis. The CFTR transporter (see Box 11–3) is a Cl⁻ channel operated by ATP hydrolysis.

The NBDs of all ABC proteins are similar in sequence and presumably in three-dimensional structure; they are the conserved molecular motor that can be coupled to a wide variety of pumps and channels. When coupled with a pump, the ATP-driven motor moves solutes against a concentration gradient; when coupled with an ion channel, the motor opens and closes the channel, using ATP as energy source. The stoichiometry of ABC pumps is about one ATP hydrolyzed per molecule of substrate transported, but neither the mechanism of coupling nor the site of substrate binding is known.

Some ABC transporters have very high specificity for a single substrate; others are more promiscuous. The human genome contains at least 48 genes that encode ABC transporters, many of which are involved in maintaining the lipid bilayer and in transporting steroids, steroid derivatives, and fatty acids throughout the body. The flipases that move membrane lipids from one leaflet of the bilayer to the other are ABC transporters, and the cellular machinery for exporting excess cholesterol includes an ABC transporter. Mutations in the genes that encode some of these proteins contribute to several genetic diseases, including cystic fibrosis (Box 11–3), Tangier disease (p. 843), and liver failure.

ABC transporters are also present in simpler animals and in plants and microorganisms. Yeast has 31 genes that encode ABC transporters, *Drosophila* has 56, and *E. coli* has 80, representing 2% of its entire genome. The presence of ABC transporters that confer antibiotic resistance in pathogenic microbes (*Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Candida albicans*, *Neisseria gonorrhoeae*, and *Plasmodium falciparum*) is a serious public health concern and makes these transporters attractive targets for drug design.

Ion Gradients Provide the Energy for Secondary Active Transport

The ion gradients formed by primary transport of Na⁺ or H⁺ can in turn provide the driving force for cotransport of other solutes. Many cell types contain transport systems that couple the spontaneous, downhill flow of these ions to the simultaneous uphill pumping of another ion, sugar, or amino acid (Table 11–4).

Table 11–4

<table>
<thead>
<tr>
<th>Organism / tissue / cell type</th>
<th>Transported solute (moving against its gradient)</th>
<th>Cotransported solute (moving down its gradient)</th>
<th>Type of transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>Lactose</td>
<td>H⁺</td>
<td>Symport</td>
</tr>
<tr>
<td></td>
<td>Proline</td>
<td>H⁺</td>
<td>Symport</td>
</tr>
<tr>
<td></td>
<td>Dicarboxylic acids</td>
<td>H⁺</td>
<td>Symport</td>
</tr>
<tr>
<td>Intestine, kidney (vertebrates)</td>
<td>Glucose</td>
<td>Na⁺</td>
<td>Symport</td>
</tr>
<tr>
<td></td>
<td>Amino acids</td>
<td>Na⁺</td>
<td>Symport</td>
</tr>
<tr>
<td>Vertebrate cells (many types)</td>
<td>Ca²⁺</td>
<td>Na⁺</td>
<td>Antiport</td>
</tr>
<tr>
<td>Higher plants</td>
<td>K⁺</td>
<td>H⁺</td>
<td>Antiport</td>
</tr>
<tr>
<td>Fungi (Neurospora)</td>
<td>K⁺</td>
<td>H⁺</td>
<td>Antiport</td>
</tr>
</tbody>
</table>
Cystic fibrosis (CF) is a serious and relatively common hereditary disease of humans. About 5% of white Americans are carriers, having one defective and one normal copy of the gene. Only individuals with two defective copies show the severe symptoms of the disease: obstruction of the gastrointestinal and respiratory tracts, commonly leading to bacterial infection of the airways and death due to respiratory insufficiency before the age of 30. In CF, the thin layer of mucus that normally coats the internal surfaces of the lungs is abnormally thick, obstructing air flow and providing a haven for pathogenic bacteria, particularly Staphylococcus aureus and Pseudomonas aeruginosa.

The defective gene in CF patients was discovered in 1989. It encodes a membrane protein called cystic fibrosis transmembrane conductance regulator, or CFTR. This protein has two segments, each containing six transmembrane helices, two nucleotide-binding domains (NBDs), and a regulatory region (Fig. 1). CFTR is therefore very similar to other ABC transporter proteins. The normal CFTR protein proved to be an ion channel specific for Cl⁻ ions. The channel conducts Cl⁻ across the plasma membrane when both NBDs have bound ATP, and it closes when the ATP on one of the NBDs is broken down to ADP and Pᵢ. The Cl⁻ channel is further regulated by phosphorylation of several Ser residues in the regulatory domain, catalyzed by cAMP-dependent protein kinase (Chapter 12). When the regulatory domain is not phosphorylated, the Cl⁻ channel is closed. The mutation responsible for CF in 70% of cases results from deletion of a Phe residue at position 508. The mutant protein folds incorrectly, which interferes with its insertion in the plasma membrane, resulting in reduced Cl⁻ movement across the plasma membranes of epithelial cells that line the airways (Fig. 2), the digestive tract, and exocrine glands (pancreas, sweat glands, bile ducts, and vas deferens).

Diminished export of Cl⁻ is accompanied by diminished export of water from cells, causing the mucus on their surfaces to become dehydrated, thick, and excessively sticky. In normal circumstances, cilia on the epithelial cells that line the inner surface of the lungs constantly sweep away bacteria that settle in this mucus, but the thick mucus in individuals with CF hinders this process. Frequent infections by bacteria such as S. aureus and P. aeruginosa result, causing progressive damage to the lungs and reduced respiratory efficiency. Respiratory failure is commonly the cause of death in people with CF.

Figure 1 Three states of the cystic fibrosis transmembrane conductance regulator, CFTR. The protein has two segments, each with six transmembrane helices, and three functionally significant domains extend from the cytoplasmic surface: NBD₁ and NBD₂ (green) are nucleotide-binding domains that bind ATP, and a regulatory domain (blue) is the site of phosphorylation by cAMP-dependent protein kinase. When this R domain is phosphorylated but no ATP is bound to the NBDs (left), the channel is closed. The binding of ATP opens the channel (middle) until the bound ATP is hydrolyzed. When the regulatory domain is unphosphorylated (right), it binds the NBD domains and prevents ATP binding and channel opening. The most commonly occurring mutation leading to CF is the deletion of Phe⁵⁰⁸ in the NBD₁ domain (left). CFTR is a typical ABC transporter in all but two respects: most ABC transporters lack the regulatory domain, and CFTR acts as an ion channel (for Cl⁻), not as a typical transporter.

Figure 2 Mucus lining the surface of the lungs traps bacteria. In healthy lungs (shown here), these bacteria are killed and swept away by the action of cilia. In CF, this mechanism is impaired, resulting in recurring infections and progressive damage to the lungs.
The lactose transporter (lactose permease) of *E. coli* is the well-studied prototype for proton-driven cotransporters. This protein consists of a single polypeptide chain (417 residues) that functions as a monomer to transport one proton and one lactose molecule into the cell, with the net accumulation of lactose (Fig. 11-42). *E. coli* normally produces a gradient of protons and charge across its plasma membrane by oxidizing fuels and using the energy of oxidation to pump protons outward. (This mechanism is discussed in detail in Chapter 19.) The lipid bilayer is impermeable to protons, but the lactose transporter provides a route for proton reentry, and lactose is simultaneously carried into the cell by symport. The endergonic accumulation of lactose is thereby coupled to the exergonic flow of protons into the cell, with a negative overall free-energy change.

The lactose transporter is one member of the major facilitator superfamily (MFS) of transporters, which comprises 28 families. Almost all proteins in this superfamily have 12 transmembrane domains (the few exceptions have 14). The proteins share relatively little sequence homology, but the similarity of their secondary structures and topology suggests a common tertiary structure. The crystallographic solution of the *E. coli* lactose transporter may provide a glimpse of this general structure (Fig. 11-43a). The protein has 12 transmembrane helices, and connecting loops protrude into the cytoplasm or the periplasmic space (between the plasma membrane and outer membrane or cell wall). The six amino-terminal and six carboxyl-terminal helices form very similar domains, to produce a structure with a rough twofold symmetry. In the crystallized form of the protein, a large aqueous cavity is exposed on the cytoplasmic side of the membrane. The substrate-binding site is in this cavity, more or less in the middle of the membrane. The side of the transporter facing outward (the periplasmic face) is closed tightly, with no channel big enough for lactose to enter. The proposed mechanism for dependent on this inflow of protons driven by the electrochemical gradient. (b) When the energy-yielding oxidation reactions of metabolism are blocked by cyanide (CN⁻), the lactose transporter allows equilibration of lactose across the membrane via passive transport. Mutations that affect Glu325 or Arg302 have the same effect as cyanide. The dashed line represents the concentration of lactose in the surrounding medium.

![Figure 11-42: Lactose uptake in *E. coli*. (a) The primary transport of H⁺ out of the cell, driven by the oxidation of a variety of fuels, establishes both a proton gradient and an electrical potential (inside negative) across the membrane. Secondary active transport of lactose into the cell involves symport of H⁺ and lactose by the lactose transporter. The uptake of lactose against its concentration gradient is entirely](image-a)

![Figure 11-43: The lactose transporter (lactose permease) of *E. coli*. (a) Ribbon representation viewed parallel to the plane of the membrane shows the 12 transmembrane helices arranged in two nearly symmetric domains, shown in different shades of purple, in the form of the protein for which the crystal structure was determined, the substrate sugar (red) is bound near the middle of the membrane where it is exposed to the cytoplasm (derived from PDB ID 1PV7). (b) The postulated second conformational change in which the substrate-binding site is exposed first to the periplasm (conformation on the right), where lactose is picked up, then to the cytoplasm (conformation on the left), where the lactose is released. The interconversion of the two forms is driven by changes in the pairing of charged (protonatable) side chains such as those of Glu325 and Arg302 (green), which is affected by the transmembrane proton gradient.](image-b)
transmembrane passage of the substrate (Fig. 11-43b) involves a rocking motion between the two domains, driven by substrate binding and proton movement, alternately exposing the substrate-binding domain to the cytoplasm and to the periplasm. This "rocking banana" model is similar to that shown in Figure 11-31 for GLUT1.

How is proton movement into the cell coupled with lactose uptake? Extensive genetic studies of the lactose transporter have established that of the 417 residues in the protein, only 6 are absolutely essential for cotransport of H⁺ and lactose—some for lactose binding, others for proton transport. Mutation in either of two residues (Glu³²⁵ and Arg³⁰²; Fig. 11-43) results in a protein still able to catalyze facilitated diffusion of lactose but incapable of coupling H⁺ flow to uphill lactose transport. A similar effect is seen in wild-type (unmutated) cells when their ability to generate a proton gradient is blocked with CN⁻: the transporter carries out facilitated diffusion normally, but it cannot pump lactose against a concentration gradient (Fig. 11-42b). The balance between the two conformations of the lactose transporter is affected by changes in charge pairing between side chains.

In intestinal epithelial cells, glucose and certain amino acids are accumulated by symport with Na⁺, down the Na⁺ gradient established by the Na⁺K⁺ ATPase of the plasma membrane (Fig. 11-44). The apical surface of the intestinal epithelial cell is covered with microvilli, long thin projections of the plasma membrane that greatly increase the surface area exposed to the intestinal contents. Na⁺-glucose symporters in the apical plasma membrane take up glucose from the intestine in a process driven by the downhill flow of Na⁺:

$$2\text{Na}^+_{\text{out}} + \text{glucose}_{\text{out}} \rightarrow 2\text{Na}^+_{\text{in}} + \text{glucose}_{\text{in}}$$

The energy required for this process comes from two sources: the greater concentration of Na⁺ outside than inside (the chemical potential) and the membrane (electrical) potential, which is inside negative and therefore draws Na⁺ inward.

WORKED EXAMPLE 11-3

Energetics of Pumping by Symport

Calculate the maximum concentration ratio that can be achieved by the plasma membrane Na⁺-glucose symporter of an epithelial cell, when [Na⁺]ₘₐₜ is 12 mM, [Na⁺]ₒᵤₜ is 145 mM, the membrane potential is -50 mV (inside negative), and the temperature is 37 °C.

Solution: Using Equation 11-4 (p. 396), we can calculate the energy inherent in an electrochemical Na⁺ gradient—that is, the cost of moving one Na⁺ ion up this gradient:

$$\Delta G_i = RT \ln \frac{[\text{Na}^+]_{\text{out}}}{[\text{Na}^+]_{\text{in}}} + ZF \Delta \psi$$

We then substitute standard values for R, T, and F, and the given values for [Na⁺] (expressed as molar concentrations), +1 for Z (because Na⁺ has a positive charge), and 0.050 V for $\Delta \psi$. Note that the membrane potential is -50 mV (inside negative), so the change in potential when an ion moves from inside to outside is 50 mV.

$$\Delta G_i = (8.315 \text{ J/mol·K})(310 \text{ K}) \ln \frac{145 \times 10^{-1}}{1.2 \times 10^{-2}} + (96,500 \text{ J/V·mol})(0.050 \text{ V})$$

$$= 11.2 \text{ kJ/mol}$$

This ΔG_i is the potential energy per mole of Na⁺ in the Na⁺ gradient that is available to pump glucose. Given that two Na⁺ ions pass down their electrochemical gradient and into the cell for each glucose carried in by symport, the energy available to pump 1 mol of glucose is $2 \times 11.2 \text{ kJ/mol} = 22.4 \text{ kJ/mol}$. We can now calculate the concentration ratio of glucose that can be achieved by this pump (from Equation 11-3, p. 396):

$$\Delta G_i = RT \ln \frac{[\text{glucose}]_{\text{in}}}{[\text{glucose}]_{\text{out}}}$$

Rearranging, then substituting the values of ΔG_i, R, and T, gives

$$\ln \frac{[\text{glucose}]_{\text{in}}}{[\text{glucose}]_{\text{out}}} = \frac{22.4 \text{ kJ/mol}}{8.315 \text{ J/mol·K}(310 \text{ K})} = 8.69$$

$$\frac{[\text{glucose}]_{\text{in}}}{[\text{glucose}]_{\text{out}}} = e^{8.69}$$

$$= 5.94 \times 10^8$$

Thus the cotransporter can pump glucose inward until its concentration inside the epithelial cell is about 6,000 times that outside (in the intestine).
As glucose is pumped from the intestine into the epithelial cell at the apical surface, it is simultaneously moved from the cell into the blood by passive transport through a glucose transporter (GLUT2) in the basal surface (Fig. 11–44). The crucial role of Na⁺ in symport and antiport systems such as this requires the continued outward pumping of Na⁺ to maintain the transmembrane Na⁺ gradient. Because of the essential role of ion gradients in active transport and energy conservation, compounds that collapse ion gradients across cellular membranes are effective poisons, and those that are specific for infectious microorganisms can serve as antibiotics. One such substance is valinomycin, a small cyclic peptide that neutralizes the K⁺ charge by surrounding it with six carbonyl oxygens (Fig. 11–45). The hydrophobic peptide then acts as a shuttle, carrying K⁺ across membranes down its concentration gradient and deflating that gradient. Compounds that shuttle ions across membranes in this way are called ionophores (“ion bearers”). Both valinomycin and monensin (a Na⁺-carrying ionophore) are antibiotics; they kill microbial cells by disrupting secondary transport processes and energy-conserving reactions. Monensin is widely used as an antifungal and antiparasitic agent.

Aquaporins Form Hydrophilic Transmembrane Channels for the Passage of Water

A family of integral membrane proteins discovered by Peter Agre, the aquaporins (AQPs), provide channels for rapid movement of water molecules across all plasma membranes. Eleven aquaporins are known in mammals, each with a specific localization and role (Table 11–5, p. 406). Erythrocytes, which swell or shrink rapidly in response to abrupt changes in extracellular osmolarity as blood travels through the renal medulla, have a high density of aquaporin in their plasma membrane (2 × 10⁶ copies of AQP-1 per cell). Water secretion by the exocrine glands that produce sweat, saliva, and tears occurs through aquaporins. Seven different aquaporins play roles in urine production and water retention in the nephron (the functional unit of the kidney). Each renal AQP has a specific localization in the nephron, and each has specific properties and regulatory features. For example, AQP-2 in the epithelial cells of the renal collecting duct is regulated by vasopressin (also called antidiuretic hormone): more water is reabsorbed in the kidney when the vasopressin level is high. Mutant mice with no AQP-1 gene have increased urine output (polyuria) and decreased urine-concentrating ability, the result of decreased water permeability of the proximal tubule. In humans, genetically defective AQPs are known to be responsible for a variety of diseases, including a relatively rare form of diabetes that is accompanied by polyuria (Box 11–2).

Aquaporins are found in all organisms. The plant Arabidopsis thaliana has 38 AQP genes, reflecting the critical roles of water movement in plant physiology. Changes in turgor pressure, for example, require rapid movement of water across a membrane (see p. 52).

Water molecules flow through an AQP-1 channel at a rate of about 10⁹ s⁻¹. For comparison, the highest known turnover number for an enzyme is that for catalase, 4 × 10⁷ s⁻¹, and many enzymes have turnover numbers between 1 s⁻¹ and 10⁴ s⁻¹ (see Table 6–7). The low activation energy for passage of water through aquaporin channels (ΔG° < 15 kJ/mol) suggests that water moves through the channels in a continuous stream, in the direction dictated by the osmotic gradient. (For a discussion of osmosis, see p. 52.) Aquaporins do not allow passage of protons (hydronium ions, H₃O⁺), which would collapse membrane electrochemical gradients. What is the basis for this extraordinary selectivity?

We find an answer in the structure of AQP-1, as determined by x-ray crystallography. AQP-1 (Fig. 11–46a) consists of four identical monomers (each M, 28,000), each of which forms a transmembrane pore with a
FIGURE 11-46 Aquaporin. The protein is a tetramer of identical subunits, each with a transmembrane pore. (a) A monomer of spinach aquaporin SoPIP2;1 (derived from PDB ID 285F), viewed in the plane of the membrane. The helices form a central pore, and two short helical segments (green) contain the Asn-Pro-Ala (NPA) sequences, found in all aquaporins, that form part of the water channel. (b) This cartoon of bovine aquaporin 1 (derived from PDB ID 1J4N) shows that the pore (brown; filled with water molecules shown in red and white) diameter sufficient to allow passage of water molecules in single file. Each monomer has six transmembrane helical segments and two shorter helices, both of which contain the sequence Asn-Pro-Ala (NPA). The six transmembrane helices form the pore through the monomer, and the two short loops containing the NPA sequences extend toward the middle of the bilayer from opposite sides. Their NPA regions overlap in the middle of the membrane to form part of the specificity filter—the structure that allows only water to pass (Fig. 11-46b).

The water channel narrows to a diameter of 2.8 Å near the center of the membrane, severely restricting the size of molecules that can travel through. The positive charge of a highly conserved Arg residue at this bottleneck discourages the passage of cations such as H$_3$O$^+$. The residues that line the channel of each AQP-1 monomer are generally nonpolar, but carbonyl oxygens in the peptide backbone, projecting into the narrow part of the channel at intervals, can hydrogen-bond with individual water molecules as they pass through; the two Asn residues (Asn76 and Asn102) in the NPA loops also form hydrogen bonds with the water. The structure of the channel does not permit formation of a chain of water molecules close enough to allow proton hopping (see Fig. 2-13), which would effectively move protons across the membrane. Critical Arg and His residues and electric dipoles formed by the short helices of the NPA loops provide positive charges in positions that repel any protons that might leak through the pore, and prevent hydrogen bonding between adjacent water molecules.

An aquaporin isolated from spinach is known to be "gated"—open when two critical Ser residues near the intracellular end of the channel are phosphorylated, and closed when they are dephosphorylated. Both the open and closed structures have been determined by crystallography. Phosphorylation favors a conformation that presses two nearby Leu residues and a His residue into the channel, blocking the movement of water past that point and effectively closing the channel. Other aquaporins are regulated in other ways, allowing rapid changes in membrane permeability to water.

Although generally highly specific for water, some AQPs also allow glycerol or urea to pass at high rates (Table 11-5); these AQPs are believed to be important in the metabolism of glycerol. AQP-7, for example, found in the plasma membranes of adipocytes (fat
Aquaporin	Permeant (permeability)	Tissue distribution	Subcellular distribution*
AQP-0 | Water (low) | Lens | Plasma membrane
AQP-1 | Water (high) | Erythrocyte, kidney, lung, vascular endothelium, brain, eye | Plasma membrane
AQP-2 | Water (high) | Kidney, vas deferens | Apical plasma membrane, intracellular vesicles
AQP-3 | Water (high), glycerol (high), urea (moderate) | Kidney, skin, lung, eye, colon | Basolateral plasma membrane
AQP-4 | Water (high) | Brain, muscle, kidney, lung, stomach, small intestine | Basolateral plasma membrane
AQP-5 | Water (high) | Salivary gland, lacrimal gland, sweat gland, lung, cornea | Apical plasma membrane
AQP-6 | Water (low), anions (NO₃⁻ > Cl⁻) | Kidney | Intracellular vesicles
AQP-7 | Water (high), glycerol (high), urea (high), arsenite | Adipose tissue, kidney, testis | Plasma membrane
AQP-8⁺ | Water (high) | Testis, kidney, liver, pancreas, small intestine, colon | Plasma membrane, intracellular vesicles
AQP-9 | Water (low), glycerol (high), urea (high), arsenite | Liver, leukocyte, brain, testis | Plasma membrane
AQP-10 | Water (low), glycerol (high), urea (high) | Small intestine | Intracellular vesicles

*Aquaporins that are present primarily in the apical or in the basolateral membrane are noted as localized in one of these membranes; those present in both membranes are described as localized in the plasma membrane.

⁺AQP-8 might also be permeated by urea.

cells), transports glycerol efficiently. Mice with defective AQP-7 develop obesity and adult-onset diabetes, presumably as a result of their inability to move glycerol into or out of adipocytes as triacylglycerols are converted to free fatty acids and glycerol, and vice versa.

Ion-Selective Channels Allow Rapid Movement of Ions across Membranes

Ion-selective channels—first recognized in neurons and now known to be present in the plasma membranes of all cells, as well as in the intracellular membranes of eukaryotes—provide another mechanism for moving inorganic ions across membranes. Ion channels, together with ion pumps such as the Na⁺K⁺ ATPase, determine a plasma membrane’s permeability to specific ions and regulate the cytosolic concentration of ions and the membrane potential. In neurons, very rapid changes in the activity of ion channels cause the changes in membrane potential (action potentials) that carry signals from one end of a neuron to the other. In myocytes, rapid opening of Ca²⁺ channels in the sarcoplasmic reticulum releases the Ca²⁺ that triggers muscle contraction. We discuss the signaling functions of ion channels in Chapter 12. Here we describe the structural basis for ion-channel function, using as examples a voltage-gated K⁺ channel, the neuronal Na⁺ channel, and the acetylcholine receptor ion channel.

Ion channels are distinct from ion transporters in at least three ways. First, the rate of flux through channels can be several orders of magnitude greater than the turnover number for a transporter—10⁷ to 10⁸ ions/s for an ion channel, approaching the theoretical maximum for unrestricted diffusion. By contrast, the turnover rate of the Na⁺ K⁺ ATPase is about 100 s⁻¹! Second, ion channels are not saturable: rates do not approach a maximum at high substrate concentration. Third, they are gated in response to some cellular event. In ligand-gated channels (which are generally oligomeric), binding of an extracellular or intracellular small molecule forces an allosteric transition in the protein, which opens or closes the channel. In voltage-gated ion channels, a change in transmembrane electrical potential (V_m) causes a charged protein domain to move relative to the membrane, opening or closing the channel. Both types of gating can be very fast. A channel typically opens in a fraction of a millisecond and may remain open for only milliseconds, making these molecular devices effective for very fast signal transmission in the nervous system.
Ion-Channel Function Is Measured Electrically

Because a single ion channel typically remains open for only a few milliseconds, monitoring this process is beyond the limit of most biochemical measurements. Ion fluxes must therefore be measured electrically, either as changes in V_m (in the millivolt range) or as electric currents I (in the microampere or picoampere range), using microelectrodes and appropriate amplifiers. In patch-clamping, a technique developed by Erwin Neher and Bert Sakmann in 1976, very small currents are measured through a tiny region of the membrane surface containing only one or a few ion-channel molecules (Fig. 11-47). The researcher can measure the size and duration of the current that flows during one opening of an ion channel and can determine how often a channel opens and how that frequency is affected by membrane potential, regulatory ligands, toxins, and other agents. Patch-clamp studies have revealed that as many as 10^4 ions can move through a single ion channel in 1 ms. Such an ion flux represents a huge amplification of the initial signal; for example, only two acetylcholine molecules are needed to open an acetylcholine receptor channel (as described below).

The Structure of a K+ Channel Reveals the Basis for Its Specificity

The structure of a potassium channel from the bacterium *Streptomyces lividans*, determined crystallographically by Roderick MacKinnon in 1998, provides much insight into the way ion channels work. This bacterial ion channel is related in sequence to all other known K+ channels and serves as the prototype for such channels, including the voltage-gated K+ channel of neurons. Among the members of this protein family, the similarities in sequence are greatest in the “pore region,” which contains the ion selectivity filter that allows K+ (radius 1.33 Å) to pass 10,000 times more readily than Na+ (radius 0.95 Å)—at a rate (about 10^8 ions/s) approaching the theoretical limit for unrestricted diffusion.

The K+ channel consists of four identical subunits that span the membrane and form a cone within a cone surrounding the ion channel, with the wide end of the double cone facing the extracellular space (Fig. 11-48). Each subunit has two transmembrane helices as well as a third, shorter helix that contributes to the pore region. The outer cone is formed by one of the transmembrane helices of each subunit. The inner cone, formed by the other four transmembrane helices, surrounds the ion channel and cradles the ion selectivity filter.

Both the ion specificity and the high flux through the channel are understandable from what we know of the channel’s structure. At the inner and outer plasma
membrane surfaces, the entryways to the channel have several negatively charged amino acid residues, which presumably increase the local concentration of cations such as K⁺ and Na⁺. The ion path through the membrane begins (on the inner surface) as a wide, water-filled channel in which the ion can retain its hydration sphere. Further stabilization is provided by the short helices in the pore region of each subunit, with the partial negative charges of their electric dipoles pointed at K⁺ in the channel. About two-thirds of the way through the membrane, this channel narrows in the region of the selectivity filter, forcing the ion to give up its hydrating water molecules. Carbonyl oxygen atoms in the backbone of the selectivity filter replace the water molecules in the hydration sphere, forming a series of perfect coordination shells through which the K⁺ moves. This favorable interaction with the filter is not possible for Na⁺, which is too small to make contact with all the potential oxygen ligands. The preferential stabilization of K⁺ is the basis for the ion selectivity of the filter, and mutations that change residues in this part of the protein eliminate the channel's ion selectivity. The K⁺-binding sites of the filter are flexible enough to collapse to fit any Na⁺ that enters the channel, and this conformational change closes the channel.

There are four potential K⁺-binding sites along the selectivity filter, each composed of an oxygen "cage" that provides ligands for the K⁺ ions (Fig. 11-49). In the crystal structure, two K⁺ ions are visible within the selectivity filter, about 7.5 Å apart, and two water molecules occupy the unfilled positions. K⁺ ions pass through the filter in single file; their mutual electrostatic repulsion most likely just balances the interaction of each ion with the selectivity filter and keeps them moving. Movement of the two K⁺ ions is concerted: first they occupy positions 1 and 3, then they hop to positions 2 and 4 (Fig. 11-48c). The energetic difference between

![Diagram of a K⁺ channel in cross section, showing the structural features critical to function. (See also Fig. 11-49.)](image-url)

...
these two configurations (1, 3 and 2, 4) is very small; energetically, the selectivity pore is not a series of hills and valleys but a flat surface, which is ideal for rapid ion movement through the channel. The structure of the channel seems to have been optimized during evolution to give maximal flow rates and high specificity.

Voltage-gated K⁺ channels are more complex structures than that illustrated in Figure 11–48, but they are variations on the same theme. For example, the mammalian voltage-gated K⁺ channels in the Shaker family have an ion channel like that of the bacterial channel shown in Figure 11–48, but with additional protein domains that sense the membrane potential, move in response to a change in potential, and in moving trigger

![Figure 11-50](image-url)

Figure 11-50 Structural basis for voltage gating in the K⁺ channel. (PDB ID 2A79) This crystal structure of the Kv1.2-β2 subunit complex from rat brain shows the basic K⁺ channel (corresponding to that shown in Fig. 11–48) with the extra machinery necessary to make the channel sensitive to gating by membrane potential: four transmembrane helical extensions of each subunit and four β subunits. The entire complex, viewed (a) in the plane of the membrane and (b) perpendicular to the membrane plane (as viewed from outside the membrane), is represented as in Figure 11–48, with each subunit in a different color; each of the four β subunits is colored like the subunit with which it associates. In (b), each transmembrane helix of one subunit (red) is numbered, S1 to S6. S5 and S6 from each of four subunits form the channel itself, and are comparable to the two transmembrane helices of each subunit in Figure 11–48. S1 to S4 are four transmembrane helices. The S4 helix contains the highly conserved Arg residues and is believed to be the chief moving part of the voltage-sensing mechanism. (c) A schematic diagram of the voltage-gated channel, showing the basic pore structure (center) and the extra structures that make the channel voltage-sensitive; S4, the Arg-containing helix, is orange. For clarity, the β subunits are not shown in this view. Normally, the transmembrane electrical potential (inside negative) exerts a pull on positively charged Arg side chains in S4, toward the cytosolic side. When the membrane is depolarized the pull is lessened, and with complete reversal of the membrane potential, S4 is drawn toward the extracellular side. (d) This movement of S4 is physically coupled to opening and closing of the K⁺ channel, which is shown here in its open and closed conformations. Although K⁺ is present in the closed channel, the pore closes on the bottom, near the cytosol, preventing K⁺ passage.
with molecules smaller than proteins; for example, valinomycin (Fig. 11-45) can provide the precise fit that gives high specificity for the binding of one ion rather than another. Chemists have designed small molecules with very high specificity for binding of Li⁺ (radius 0.60 Å), Na⁺ (radius 0.95 Å), K⁺ (radius 1.33 Å), or Rb⁺ (radius 1.48 Å). The biological versions, however—the channel proteins—not only bind specifically but conduct ions across membranes in a gated fashion.

Gated Ion Channels Are Central in Neuronal Function

Virtually all rapid signaling between neurons and their target tissues (such as muscle) is mediated by the rapid opening and closing of ion channels in plasma membranes. For example, Na⁺ channels in neuronal plasma membranes sense the transmembrane electrical gradient and respond to changes by opening or closing. These voltage-gated ion channels are typically very selective for Na⁺ over other monovalent or divalent cations (by factors of 100 or more) and have very high flux rates (>10⁷ ions/s). Closed in the resting state, Na⁺ channels are opened—activated—by a reduction in the membrane potential; they then undergo very rapid inactivation. Within milliseconds of opening, a channel closes and remains inactive for many milliseconds. Activation followed by inactivation of Na⁺ channels is the basis for signaling by neurons (see Fig. 12-25).

Another very well-studied ion channel is the nicotinic acetylcholine receptor, which functions in the passage of an electrical signal from a motor neuron to a muscle fiber at the neuromuscular junction (signaling the muscle to contract). Acetylcholine released by the motor neuron diffuses a few micrometers to the plasma membrane of a myocyte, where it binds to an acetylcholine receptor. This forces a conformational change in the receptor, causing its ion channel to open. The resulting inward movement of positively charged ions into the myocyte depolarizes its plasma membrane and triggers contraction. The acetylcholine receptor allows Na⁺, Ca²⁺, and K⁺ to pass through its channel with equal ease, but other cations and all anions are unable to pass. Movement of Na⁺ through an acetylcholine receptor ion channel is unsaturable (its rate is linear with respect to extracellular [Na⁺]) and very fast—about 2 × 10⁷ ions/s under physiological conditions.

The acetylcholine receptor channel is typical of many other ion channels that produce or respond to electrical signals: it has a "gate" that opens in response to stimulation by a signal molecule (in this case acetylcholine) and an intrinsic timing mechanism that closes the gate after a split second. Thus the acetylcholine signal is transient—an essential feature of all electrical signal conduction.

Based on similarities between the amino acid sequences of other ligand-gated ion channels and the acetylcholine receptor, neuronal receptor channels that respond to the extracellular signals γ-aminobutyric acid (GABA), glycine, and serotonin are grouped together in the acetylcholine receptor superfamily, and probably share three-dimensional structure and gating mechanisms. The GABA₆ and glycine receptors are anion channels specific for Cl⁻ or HCO₃⁻, whereas the serotonin receptor, like the acetylcholine receptor, is cation-specific.

Another class of ligand-gated ion channels respond to intracellular ligands: 3',5'-cyclic guanosine mononucleotide (cGMP) in the vertebrate eye, cGMP and cAMP in olfactory neurons, and ATP and inositol 1,4,5-trisphosphate (IP₃) in many cell types. These channels are composed of multiple subunits, each with six transmembrane helical domains. We discuss the signaling functions of these ion channels in Chapter 12.

Table 11-6 shows some transporters discussed in other chapters in the context of the pathways in which they act.

Defective Ion Channels Can Have Severe Physiological Consequences

The importance of ion channels to physiological processes is clear from the effects of mutations in specific ion-channel proteins (Table 11-7, Box 11-3). Genetic defects in the voltage-gated Na⁺ channel of the myocyte plasma membrane result in diseases in which muscles are periodically either paralyzed (as in hyperkalemic periodic paralysis) or stiff (as in paramyotonia congenita). Cystic fibrosis is the result of a mutation that changes one amino acid in the protein CFTR, a Cl⁻ ion channel; the defective process here is not neurotransmission but secretion by various exocrine gland cells with activities tied to Cl⁻ ion fluxes.

Many naturally occurring toxins act on ion channels, and the potency of these toxins further illustrates the importance of normal ion-channel function. Tetrodotoxin (produced by the puffer fish, Sphaeroides rubripes) and saxitoxin (produced by the marine dinoflagellate Gonyaulax, which causes "red tides") act by binding to the voltage-gated Na⁺ channels of neurons and preventing normal action potentials. Puffer fish is an ingredient of the Japanese delicacy fugu, which may be prepared only by chefs specially trained to separate succulent morsel from deadly poison. Eating shellfish that have fed on Gonyaulax can also be fatal; shellfish are not sensitive to saxitoxin, but they concentrate it in their muscles, which become highly poisonous to organisms higher up the food chain. The venom of the black mamba snake contains dendrotoxin, which interferes with voltage-gated K⁺ channels. Tubocurarine, the active
component of curare (used as an arrow poison in the Amazon region), and two other toxins from snake venoms, cobrotoxin and bungarotoxin, block the acetylcholine receptor or prevent the opening of its ion channel. By blocking signals from nerves to muscles, all these toxins cause paralysis and possibly death. On the positive side, the extremely high affinity of bungarotoxin for the acetylcholine receptor (\(K_a = 10^{-15} \text{ M}\)) has

<table>
<thead>
<tr>
<th>Transport system and location</th>
<th>Figure number</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenine nucleotide antiporter of mitochondrial inner membrane</td>
<td>19-28</td>
<td>Imports substrate ADP for oxidative phosphorylation, and exports product ATP</td>
</tr>
<tr>
<td>Acyl-carnitine/carnitine transporter of mitochondrial inner membrane</td>
<td>17-6</td>
<td>Imports fatty acids into matrix for (\beta) oxidation</td>
</tr>
<tr>
<td>(P_i-H^+) symporter of mitochondrial inner membrane</td>
<td>19-28</td>
<td>Supplies (P_i) for oxidative phosphorylation</td>
</tr>
<tr>
<td>Malate-(\alpha)-ketoglutarate transporter of mitochondrial inner membrane</td>
<td>19-29</td>
<td>Shuttles reducing equivalents (as malate) from matrix to cytosol</td>
</tr>
<tr>
<td>Glutamate-aspartate transporter of mitochondrial inner membrane</td>
<td>19-29</td>
<td>Completes shuttling begun by malate-(\alpha)-ketoglutarate shuttle</td>
</tr>
<tr>
<td>Citrate transporter of mitochondrial inner membrane</td>
<td>21-10</td>
<td>Provides cytosolic citrate as source of acetyl-CoA for lipid synthesis</td>
</tr>
<tr>
<td>Pyruvate transporter of mitochondrial inner membrane</td>
<td>21-10</td>
<td>Is part of mechanism for shuttling citrate from matrix to cytosol</td>
</tr>
<tr>
<td>Fatty acid transporter of myocyte plasma membrane</td>
<td>17-3</td>
<td>Imports fatty acids for fuel</td>
</tr>
<tr>
<td>Complex I, III, and IV proton transporters of mitochondrial inner membrane</td>
<td>19-16</td>
<td>Acts as energy-conserving mechanism in oxidative phosphorylation, converting electron flow into proton gradient</td>
</tr>
<tr>
<td>Thermogenin (uncoupler protein), a proton pore of mitochondrial inner membrane</td>
<td>19-34, 23-35</td>
<td>Allows dissipation of proton gradient in mitochondria as means of thermogenesis and/or disposal of excess fuel</td>
</tr>
<tr>
<td>Cytochrome b/f complex, a proton transporter of chloroplast thylakoid</td>
<td>19-59</td>
<td>Acts as proton pump, driven by electron flow through the Z scheme; source of proton gradient for photosynthetic ATP synthesis</td>
</tr>
<tr>
<td>Bacteriorhodopsin, a light-driven proton pump</td>
<td>19-66</td>
<td>Is light-driven source of proton gradient for ATP synthesis in halophilic bacteria</td>
</tr>
<tr>
<td>(P_i-F_1) ATPase/ATP synthase of mitochondrial inner membrane, chloroplast thylakoid, and bacterial plasma membrane</td>
<td>19-64</td>
<td>Interconverts energy of proton gradient and ATP during oxidative phosphorylation and photophosphorylation</td>
</tr>
<tr>
<td>(P_i)-triose phosphate antiporter of chloroplast inner membrane</td>
<td>20-15, 20-16</td>
<td>Exports photosynthetic product from stroma; imports (P_i) for ATP synthesis</td>
</tr>
<tr>
<td>Bacterial protein transporter</td>
<td>27-44</td>
<td>Exports secreted proteins through plasma membrane</td>
</tr>
<tr>
<td>Protein translocase of ER</td>
<td>27-38</td>
<td>Transports into ER proteins destined for plasma membrane, secretion, or organelles</td>
</tr>
<tr>
<td>Nuclear pore protein translocase</td>
<td>27-42</td>
<td>Shuttles proteins between nucleus and cytoplasm</td>
</tr>
<tr>
<td>LDL receptor in animal cell plasma membrane</td>
<td>21-42</td>
<td>Imports, by receptor-mediated endocytosis, lipid carrying particles</td>
</tr>
<tr>
<td>Glucose transporter of animal cell plasma to membrane; regulated by insulin</td>
<td>12-16</td>
<td>Increases capacity of muscle and adipose tissue to take up excess glucose from blood</td>
</tr>
<tr>
<td>IP_3-gated Ca^{2+} channel of endoplasmic reticulum</td>
<td>12-10</td>
<td>Allows signaling via changes of cytosolic Ca^{2+} concentration</td>
</tr>
<tr>
<td>cGMP-gated Ca^{2+} channel of retinal rod and cone cells</td>
<td>12-36</td>
<td>Allows signaling via rhodopsin linked to cAMP phosphodiesterase in vertebrate eye</td>
</tr>
<tr>
<td>Voltage-gated Na^{+} channel of neuron</td>
<td>12-25</td>
<td>Creates action potentials in neuronal signal transmission</td>
</tr>
</tbody>
</table>
proven useful experimentally: the radiolabeled toxin was used to quantify the receptor during its purification.

TABLE 11–7 Some Diseases Resulting from Ion Channel Defects

<table>
<thead>
<tr>
<th>Ion channel</th>
<th>Affected gene</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺ (voltage-gated, skeletal muscle)</td>
<td>SCN4A</td>
<td>Hyperkalemic periodic paralysis (or paramyotonia congenita)</td>
</tr>
<tr>
<td>Na⁺ (voltage-gated, neuronal)</td>
<td>SCN1A</td>
<td>Generalized epilepsy with febrile seizures</td>
</tr>
<tr>
<td>Na⁺ (voltage-gated, cardiac muscle)</td>
<td>SCN5A</td>
<td>Long QT syndrome 3</td>
</tr>
<tr>
<td>Ca²⁺ (neuronal)</td>
<td>CACNA1A</td>
<td>Familial hemiplegic migraine</td>
</tr>
<tr>
<td>Ca²⁺ (voltage-gated, retina)</td>
<td>CACNA1F</td>
<td>Congenital stationary night blindness</td>
</tr>
<tr>
<td>Ca²⁺ (polycystin-1)</td>
<td>PKD1</td>
<td>Polycystic kidney disease</td>
</tr>
<tr>
<td>K⁺ (neuronal)</td>
<td>KCNQ4</td>
<td>Dominant deafness</td>
</tr>
<tr>
<td>K⁺ (voltage-gated, neuronal)</td>
<td>KCNQ2</td>
<td>Benign familial neonatal convulsions</td>
</tr>
<tr>
<td>Nonspecific cation (cGMP-gated, retinal)</td>
<td>CNCG1</td>
<td>Retinitis pigmentosa</td>
</tr>
<tr>
<td>Acetylcholine receptor (skeletal muscle)</td>
<td>CHRNA1</td>
<td>Congenital myasthenic syndrome</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>CFTR</td>
<td>Cystic fibrosis</td>
</tr>
</tbody>
</table>

SUMMARY 11.3 Solute Transport across Membranes

- Movement of polar compounds and ions across biological membranes requires transporter proteins. Some transporters simply facilitate passive diffusion across the membrane from the side with higher concentration to the side with lower. Others transport solutes against an electrochemical gradient; this requires a source of metabolic energy.

- Carriers, like enzymes, show saturation and stereospecificity for their substrates. Transport via these systems may be passive or active. Primary active transport is driven by ATP or electron-transfer reactions; secondary active transport is driven by coupled flow of two solutes, one of which (often H⁺ or Na⁺) flows down its electrochemical gradient as the other is pulled up its gradient.

- The GLUT transporters, such as GLUT1 of erythrocytes, carry glucose into cells by facilitated diffusion. These transporters are uniproters, carrying only one substrate. Symporters permit simultaneous passage of two substances in the same direction; examples are the lactose transporter of *E. coli*, driven by the energy of a proton gradient (lactose-H⁺ symport), and the glucose transporter of intestinal epithelial cells, driven by a Na⁺ gradient (glucose-Na⁺ symport). Antiporters mediate simultaneous passage of two substances in opposite directions; examples are the chloride-bicarbonate exchanger of erythrocytes and the ubiquitous Na⁺K⁺ ATPase.

- In animal cells, Na⁺K⁺ ATPase maintains the differences in cytosolic and extracellular concentrations of Na⁺ and K⁺, and the resulting Na⁺ gradient is used as the energy source for a variety of secondary active transport processes.

- The Na⁺K⁺ ATPase of the plasma membrane and the Ca²⁺ transporters of the sarcoplasmic and endoplasmic reticulum (the SERCA pumps) are examples of P-type ATPases; they undergo reversible phosphorylation during their catalytic cycle. F-type ATPase proton pumps (ATP synthases) are central to energy-conserving
mechanisms in mitochondria and chloroplasts. V-type ATPases produce gradients of protons across some intracellular membranes, including plant vacuolar membranes.

- ABC transporters carry a variety of substrates (including many drugs) out of cells, using ATP as an energy source.
- Ionophores are lipid-soluble molecules that bind specific ions and carry them passively across membranes, dissipating the energy of electrochemical ion gradients.
- Water moves across membranes through aquaporins. Some aquaporins are regulated; some also transport glycerol or urea.
- Ion channels provide hydrophilic pores through which select ions can diffuse, moving down their electrical or chemical concentration gradients; they characteristically are unsaturable, have very high flux rates, and are highly specific for one ion. Most are voltage- or ligand-gated. The neuronal Na⁺ channel is voltage-gated, and the acetylcholine receptor ion channel is gated by acetylcholine, which triggers conformational changes that open and close the transmembrane path.

Key Terms

Terms in bold are defined in the glossary.

- **fluid mosaic model** 373
- **micelle** 374
- **bilayer** 374
- **integral proteins** 375
- **peripheral proteins** 375
- **amphiprotic proteins** 375
- **hydropathy index** 378
- **β barrel** 379
- **gel phase** 381
- **liquid-disordered state** 381
- **liquid-ordered state** 381
- **fippases** 382
- **flippases** 383
- **scramblases** 383
- **FRAP** 383
- **microdomains** 384
- **rafts** 384
- **caveolin** 386
- **caveolae** 386
- **fusion proteins** 387
- **SNAREs** 388
- **simple diffusion** 390
- **membrane potential** 390
- **electrochemical gradient** 390
- **electrochemical potential** 390
- **facilitated diffusion** 390
- **passive transport** 390
- **transporters** 391
- **carriers** 391
- **channels** 391
- **electroneutral** 395
- **cotransport systems** 395
- **antiport** 395
- **symport** 395
- **uniport** 395
- **active transport** 395
- **electrogenic** 396
- **P-type ATPases** 396
- **SERCA pump** 397
- **F-type ATPases** 399
- **ATP synthase** 399
- **V-type ATPases** 399
- **ABC transporters** 400
- **ionophores** 404
- **aquaporins (AQPs)** 404
- **ion channel** 406

Further Reading

Composition and Architecture of Membranes

 - Intermediate-level review of phospholipid asymmetry and factors that influence it.
 - Short review of how the notion of a lipid bilayer membrane was developed and confirmed.
 - Good discussion of the secondary and tertiary structures of membrane proteins and the factors that stabilize them.
 - Brief, intermediate-level review of the forces that shape transmembrane helices.
 - Intermediate-level review.

Membrane Dynamics

 - Intermediate-level review.
 - Intermediate-level review of studies of membrane dynamics, with fluorescent and other probes.
 - Advanced review.
 - The classic demonstration of membrane protein mobility.
 - Intermediate review of flippase function.
 - Excellent intermediate-level review of the role of SNAREs in membrane fusion, and the fusion mechanism itself.

Intermediate-level review.

Intermediate-level review of the methods and results of studies on molecular motions in the membrane.

Advanced review of membrane fusion, with emphasis on the conserved general features.

A concise historical review of caveolae, caveolin, and rafts.

Advanced review of the role of these proteins in lipid signaling and membrane trafficking.

Intermediate-level review.

Transporters

The supplementary materials available with the online version of this article include an excellent model of the putative gating mechanism.

Ion Channels

A short review of the many known cases in which genetic defects in ion channels lead to disease in humans.

The first crystal structure of an ion channel is described.

Advanced discussion of the conformational changes induced by acetylcholine.

This is one of seven excellent reviews of ion channels published together in this issue of Nature.

Short review of the architectural features of channels and pumps that give each protein its ion specificity.

Intermediate-level text emphasizing the function of ion channels.

Intermediate-level review of the localization of aquaporins in mammalian tissues and the effects of aquaporin defects on physiology.

These two articles by Long and coauthors describe the structural studies that led to models for voltage sensing and gating in the K⁺ channel.

Intermediate-level review.

Clear description of the electrophysiological methods used to measure the activity of single ion channels, by the Nobel Prize-winning developers of this technique.

One of 11 reviews in this journal issue on the CFTR chloride channel; the reviews cover structure, activity, regulation, biosynthesis, and pathophysiology.

Crystallographic study of an ion channel that admits both Na⁺ and K⁺, and the structural explanation for this dual specificity.

Advanced review of the mechanisms of voltage gating of ion channels.

Problems

1. **Determining the Cross-Sectional Area of a Lipid Molecule** When phospholipids are layered gently onto the surface of water, they orient at the air-water interface with their head groups in the water and their hydrophobic tails in the air. An experimental apparatus (a) has been devised that reduces the surface area available to a layer of lipids. By measuring the force necessary to push the lipids together, it is possible to determine when the molecules are packed tightly in a continuous monolayer; as that area is approached, the force needed to further reduce the surface area increases sharply (b). How would you use this apparatus to determine the average area occupied by a single lipid molecule in the monolayer?

2. **Evidence for a Lipid Bilayer** In 1925, E. Gorter and F. Grendel used an apparatus like that described in Problem 1 to determine the surface area of a lipid monolayer formed by lipids extracted from erythrocytes of several animal species. They used a microscope to measure the dimensions of individual cells, from which they calculated the average surface area of one erythrocyte. They obtained the data shown in the table. Were these investigators justified in concluding that “chromocytes [erythrocytes] are covered by a layer of fatty substances that is two molecules thick” (i.e., a lipid bilayer)?

<table>
<thead>
<tr>
<th>Animal</th>
<th>Volume of packed cells (mL)</th>
<th>Number of cells (per mm²)</th>
<th>Total surface area of lipid monolayer from cells (m²)</th>
<th>Total surface area of one cell (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>40</td>
<td>8,000,000</td>
<td>62</td>
<td>98</td>
</tr>
<tr>
<td>Sheep</td>
<td>10</td>
<td>9,900,000</td>
<td>6.0</td>
<td>29.8</td>
</tr>
<tr>
<td>Human</td>
<td>1</td>
<td>4,740,000</td>
<td>0.92</td>
<td>99.4</td>
</tr>
</tbody>
</table>

3. **Number of Detergent Molecules per Micelle** When a small amount of the detergent sodium dodecyl sulfate (SDS; Na⁺CH₃(CH₂)₉SO₃⁻) is dissolved in water, the detergent ions enter the solution as monomeric species. As more detergent is added, a concentration is reached (the critical micelle concentration) at which the monomers associate to form micelles. The critical micelle concentration of SDS is 8.2 mM. The micelles have an average particle weight (the sum of the molecular weights of the constituent monomers) of 18,000. Calculate the number of detergent molecules in the average micelle.

4. **Properties of Lipids and Lipid Bilayers** Lipid bilayers formed between two aqueous phases have this important property: they form two-dimensional sheets, the edges of which close upon each other and undergo self-sealing to form vesicles (liposomes).

(a) What properties of lipids are responsible for this property of bilayers? Explain.

(b) What are the consequences of this property for the structure of biological membranes?

5. **Length of a Fatty Acid Molecule** The carbon–carbon bond distance for single-bonded carbons such as those in a saturated fatty acyl chain is about 1.5 Å. Estimate the length of a single molecule of palmitate in its fully extended form. If two molecules of palmitate were placed end to end, how would their total length compare with the thickness of the lipid bilayer in a biological membrane?

6. **Temperature Dependence of Lateral Diffusion** The experiment described in Figure 11–17 was performed at 37 °C. If the experiment were carried out at 10 °C, what effect would you expect on the rate of diffusion? Why?

7. **Synthesis of Gastric Juice: Energetics** Gastric juice (pH 1.5) is produced by pumping HCl from blood plasma (pH 7.4) into the stomach. Calculate the amount of free energy
required to concentrate the H⁺ in 1 L of gastric juice at 37 °C. Under cellular conditions, how many moles of ATP must be hydrolyzed to provide this amount of free energy? The free-energy change for ATP hydrolysis under cellular conditions is about \(-58 \text{kJ/mol}\) (as explained in Chapter 13). Ignore the effects of the transmembrane electrical potential.

8. Energetics of the Na⁺K⁺ ATPase For a typical vertebrate cell with a membrane potential of \(-0.070 \text{V}\) (inside negative), what is the free-energy change for transporting 1 mol of Na⁺ from the cell into the blood at 37 °C? Assume the concentration of Na⁺ inside the cell is 12 mm and that in blood plasma is 145 mm.

9. Action of Ouabain on Kidney Tissue Ouabain specifically inhibits the Na⁺K⁺ ATPase activity of animal tissues but is not known to inhibit any other enzyme. When ouabain is added to thin slices of living kidney tissue, it inhibits oxygen consumption by 66%. Why? What does this observation tell us about the use of respiratory energy by kidney tissue?

10. Energetics of Symport Suppose you determined experimentally that a cellular transport system for glucose, driven by symport of Na⁺, could accumulate glucose to concentrations 25 times greater than in the external medium, while the external [Na⁺] was only 10 times greater than the intracellular [Na⁺]. Would this violate the laws of thermodynamics? If not, how could you explain this observation?

11. Location of a Membrane Protein The following observations are made on an unknown membrane protein, X. It can be extracted from disrupted erythrocyte membranes into a concentrated salt solution, and it can be cleaved into fragments by proteolytic enzymes. Treatment of erythrocytes with proteolytic enzymes followed by disruption and extraction of membrane components yields intact X. However, treatment of erythrocyte "ghosts" (which consist of just plasma membranes, produced by disrupting the cells and washing out the hemoglobin) with proteolytic enzymes followed by disruption and extraction yields extensively fragmented X. What do these observations indicate about the location of X in the plasma membrane? Do the properties of X resemble those of an integral or peripheral membrane protein?

12. Membrane Self-sealing Cellular membranes are self-sealing—if they are punctured or disrupted mechanically, they quickly and automatically reseal. What properties of membranes are responsible for this important feature?

13. Lipid Melting Temperatures Membrane lipids in tissue samples obtained from different parts of the leg of a reindeer have different fatty acid compositions. Membrane lipids from tissue near the hooves contain a larger proportion of unsaturated fatty acids than those from tissue in the upper leg. What is the significance of this observation?

14. Flip-Flop Diffusion The inner leaflet (monolayer) of the human erythrocyte membrane consists predominantly of phosphatidylethanolamine and phosphatidylserine, while the outer leaflet consists predominantly of phosphatidylcholine and sphingomyelin. Although the phospholipid components of the membrane can diffuse in the fluid bilayer, this sidedness is preserved at all times. How?

15. Membrane Permeability At pH 7, tryptophan crosses a lipid bilayer at about one-thousandth the rate of indole, a closely related compound:

Suggest an explanation for this observation.

16. Water Flow through an Aquaporin A human erythrocyte has about \(2 \times 10^{8}\) AQP-1 monomers. If water molecules flow through the plasma membrane at a rate of \(5 \times 10^{8}\) per AQP-1 tetramer per second, and the volume of an erythrocyte is \(5 \times 10^{-11}\) mL, how rapidly could an erythrocyte halve its volume as it encountered the high osmolarity (1 M) in the interstitial fluid of the renal medulla? Assume that the erythrocyte consists entirely of water.

17. Labeling the Lactose Transporter A bacterial lactose transporter, which is highly specific for lactose, contains a Cys residue that is essential to its transport activity. Covalent reaction of N-ethylmaleimide (NEM) with this Cys residue irreversibly inactivates the transporter. A high concentration of lactose in the medium prevents inactivation by NEM, presumably by sterically protecting the Cys residue, which is in or near the lactose-binding site. You know nothing else about the transporter protein. Suggest an experiment that might allow you to determine the \(M_r\) of the Cys-containing transporter polypeptide.

18. Predicting Membrane Protein Topology from Sequence You have cloned the gene for a human erythrocyte protein, which you suspect is a membrane protein. From the nucleotide sequence of the gene, you know the amino acid sequence. From this sequence alone, how would you evaluate the possibility that the protein is an integral protein? Suppose the protein proves to be an integral protein, either type I or type II. Suggest biochemical or chemical experiments that might allow you to determine which type it is.

19. Intestinal Uptake of Leucine You are studying the uptake of l-leucine by epithelial cells of the mouse intestine. Measurements of the rate of uptake of l-leucine and several of its analogs, with and without Na⁺ in the assay buffer, yield the results given in the table. What can you conclude about the properties and mechanism of the leucine transporter? Would you expect l-leucine uptake to be inhibited by ouabain?

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(V_{max}) ((\mu\text{mol/min per g tissue}))</th>
<th>(K_i) ((\mu\text{mol}))</th>
<th>(V_{max}) ((\mu\text{mol/min per g tissue}))</th>
<th>(K_i) ((\mu\text{mol}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Leucine</td>
<td>420</td>
<td>0.24</td>
<td>23</td>
<td>0.2</td>
</tr>
<tr>
<td>D-Leucine</td>
<td>310</td>
<td>4.7</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td>L-Valine</td>
<td>225</td>
<td>0.31</td>
<td>19</td>
<td>0.31</td>
</tr>
</tbody>
</table>
20. Effect of an Ionophore on Active Transport
Consider the leucine transporter described in Problem 19. Would V_{max} and/or K_t change if you added a Na$^+$ ionophore to the assay solution containing Na$^+$? Explain.

21. Surface Density of a Membrane Protein
E. coli can be induced to make about 10,000 copies of the lactose transporter (M, 31,000) per cell. Assume that E. coli is a cylinder 1 μm in diameter and 2 μm long. What fraction of the plasma membrane surface is occupied by the lactose transporter molecules? Explain how you arrived at this conclusion.

22. Use of the Helical Wheel Diagram
A helical wheel is a two-dimensional representation of a helix, a view along its central axis (see Fig. 11-29b; see also Fig. 4-4d). Use the helical wheel diagram below to determine the distribution of amino acid residues in a helical segment with the sequence -Val-Asp-Arg-Val-Phe-Ser-Asn-Val-Cys-Thr-His-Leu-Lys-Thr-Leu-Gln-Asp-Lys-

What can you say about the surface properties of this helix? How would you expect the helix to be oriented in the tertiary structure of an integral membrane protein?

23. Molecular Species in the E. coli Membrane
The plasma membrane of E. coli is about 75% protein and 25% phospholipid by weight. How many molecules of membrane lipid are present for each molecule of membrane protein? Assume an average protein M, of 50,000 and an average phospholipid M, of 750. What more would you need to know to estimate the fraction of the membrane surface that is covered by lipids?

Biochemistry on the Internet

24. Membrane Protein Topology
The receptor for the hormone epinephrine in animal cells is an integral membrane protein (M, 64,000) that is believed to have seven membrane-spanning regions.

(a) Show that a protein of this size is capable of spanning the membrane seven times.

(b) Given the amino acid sequence of this protein, how would you predict which regions of the protein form the membrane-spanning helices?

(c) Go to the Protein Data Bank (www.rcsb.org). Use the PDB identifier 1DEP to retrieve the data page for a portion of the α-adrenergic receptor (one type of epinephrine receptor) isolated from a turkey. Using Jmol to explore the structure, predict whether this portion of the receptor is located within the membrane or at the membrane surface. Explain.

(d) Retrieve the data for a portion of another receptor, the acetylcholine receptor of neurons and myocytes, using the PDB identifier 1AC. As in (c), predict where this portion of the receptor is located and explain your answer.

If you have not used the PDB, see Box 4-4 (p. 129) for more information.

Data Analysis Problem

25. The Fluid Mosaic Model of Biological Membrane Structure
Figure 11-3 shows the currently accepted fluid mosaic model of biological membrane structure. This model was presented in detail in a review article by S. J. Singer in 1971. In the article, Singer presented the three models of membrane structure that had been proposed by that time:

A. The Davson-Danielli-Robertson Model. This was the most widely accepted model in 1971, when Singer's review was published. In this model, the phospholipids are arranged as a bilayer. Proteins are found on both surfaces of the bilayer, attached to it by ionic interactions between the charged head groups of the phospholipids and charged groups in the proteins. Crucially, there is no protein in the interior of the bilayer.

B. The Benson Lipoprotein Subunit Model. Here, the proteins are globular and the membrane is a protein-lipid mixture. The hydrophobic tails of the lipids are embedded in the hydrophobic parts of the proteins. The lipid head groups are exposed to the solvent. There is no lipid bilayer.

C. The Fluid Mosaic Model. This model proposes that the membrane is a fluid mosaic, with proteins and lipids intermingled. The proteins are embedded in the lipid bilayer, but they are not fixed in place and can move laterally within the membrane.
C. The Lipid-Globular Protein Mosaic Model. This is the model shown in Figure 11-3. The lipids form a bilayer and proteins are embedded in it, some extending through the bilayer and others not. Proteins are anchored in the bilayer by hydrophobic interactions between the hydrophobic tails of the lipids and hydrophobic portions of the protein.

For the data given below, consider how each piece of information aligns with each of the three models of membrane structure. Which model(s) are supported, which are not supported, and what reservations do you have about the data or their interpretation? Explain your reasoning.

(a) When cells were fixed, stained with osmium tetroxide, and examined in the electron microscope, they gave images like that in Figure 11-1: the membranes showed a "railroad track" appearance, with two dark-staining lines separated by a light space.

(b) The thickness of membranes in cells fixed and stained in the same way was found to be 5 to 9 nm. The thickness of a "naked" phospholipid bilayer, without proteins, was 4 to 4.5 nm. The thickness of a single monolayer of proteins was about 1 nm.

(c) In Singer's words: "The average amino acid composition of membrane proteins is not distinguishable from that of soluble proteins. In particular, a substantial fraction of the residues is hydrophobic" (p. 165).

(d) As described in Problems 1 and 2 of this chapter, researchers had extracted membranes from cells, extracted the lipids, and compared the area of the lipid monolayer with the area of the original cell membrane. The interpretation of the results was complicated by the issue illustrated in the graph of Problem 1: the area of the monolayer depended on how hard it was pushed. With very light pressures, the ratio of monolayer area to cell membrane area was about 2.0. At higher pressures—thought to be more like those found in cells—the ratio was substantially lower.

(e) Circular dichroism spectroscopy uses changes in polarization of UV light to make inferences about protein secondary structure (see Fig. 4-9). On average, this technique showed that membrane proteins have a large amount of α helix and little or no β sheet. This finding was consistent with most membrane proteins having a globular structure.

(f) Phospholipase C is an enzyme that removes the polar head group (including the phosphate) from phospholipids. In several studies, treatment of intact membranes with phospholipase C removed about 70% of the head groups without disrupting the "railroad track" structure of the membrane.

(g) Singer described a study in which "a glycoprotein of molecular weight about 31,000 in human red blood cell membranes is cleaved by trypsin treatment of the membranes into soluble glycopeptides of about 10,000 molecular weight, while the remaining portions are quite hydrophobic" (p. 199). Trypsin treatment did not cause gross changes in the membranes, which remained intact.

Singer's review also included many more studies in this area. In the end, though, the data available in 1971 did not conclusively prove Model C was correct. As more data have accumulated, this model of membrane structure has been accepted by the scientific community.

Reference

medium. In multicellular organisms, cells with different functions exchange a wide variety of signals. Plant cells respond to growth hormones and to variations in sunlight. Animal cells exchange information about the concentrations of ions and glucose in extracellular fluids, the interdependent metabolic activities taking place in different tissues, and, in an embryo, the correct placement of cells during development. In all these cases, the signal represents information that is detected by specific receptors and converted to a cellular response, which always involves a chemical process. This conversion of information into a chemical change, signal transduction, is a universal property of living cells.

12.1 General Features of Signal Transduction

Signal transductions are remarkably specific and exquisitely sensitive. Specificity is achieved by precise molecular complementarity between the signal and receptor molecules (Fig. 12–1a), mediated by the same kinds of weak (noncovalent) forces that mediate enzyme-substrate and antigen-antibody interactions. Multicellular organisms have an additional level of specificity, because the receptors for a given signal, or the intracellular targets of a given signal pathway, are present only in certain cell types. Thyrotropin-releasing hormone, for example, triggers responses in the cells of the anterior pituitary but not in hepatocytes, which lack receptors for this hormone. Epinephrine alters glycogen metabolism in hepatocytes but not in adipocytes; in this case, both cell types have receptors for the hormone, but whereas hepatocytes contain glycogen and the glycogen-metabolizing enzyme that is stimulated by epinephrine, adipocytes contain neither.

Three factors account for the extraordinary sensitivity of signal transducers: the high affinity of receptors for signal molecules, cooperativity (often but not always) in the ligand-receptor interaction, and amplification of the signal by enzyme cascades. The affinity
(a) **Specificity**
Signal molecule fits binding site on its complementary receptor; other signals do not fit.

(b) **Amplification**
When enzymes activate enzymes, the number of affected molecules increases geometrically in an enzyme cascade.

(c) **Desensitization/Adaptation**
Receptor activation triggers a feedback circuit that shuts off the receptor or removes it from the cell surface.

(d) **Integration**
When two signals have opposite effects on a metabolic characteristic such as the concentration of a second messenger X, or the membrane potential V_m, the regulatory outcome results from the integrated input from both receptors.

FIGURE 12–1 Four features of signal-transducing systems.

between signal (ligand) and receptor can be expressed as the dissociation constant K_d, usually 10^{-10} M or less—meaning that the receptor detects picomolar concentrations of a signal molecule. Receptor-ligand interactions are quantified by Scatchard analysis, which yields a quantitative measure of affinity (K_d) and the number of ligand-binding sites in a receptor sample (Box 12–1).

Cooperativity in receptor-ligand interactions results in large changes in receptor activation with small changes in ligand concentration (recall the effect of cooperativity on oxygen binding to hemoglobin; see Fig. 5–12). Amplification by enzyme cascades results when an enzyme associated with a signal receptor is activated and, in turn, catalyzes the activation of many molecules of a second enzyme, each of which activates many molecules of a third enzyme, and so on (Fig. 12–1b). Such cascades can produce amplifications of several orders of magnitude within milliseconds. The response to a signal must also be terminated such that the downstream effects are in proportion to the strength of the original stimulus.

The sensitivity of receptor systems is subject to modification. When a signal is present continuously, desensitization of the receptor system results (Fig. 12–1c); when the stimulus falls below a certain threshold, the system again becomes sensitive. Think of what happens to your visual transduction system when you walk from bright sunlight into a darkened room or from darkness into the light.

A final noteworthy feature of signal-transducing systems is integration (Fig. 12–1d), the ability of the system to receive multiple signals and produce a unified response appropriate to the needs of the cell or organism. Different signaling pathways converse with each other at several levels, generating a wealth of interactions that maintain homeostasis in the cell and the organism.

One of the revelations of research on signaling is the remarkable degree to which signaling mechanisms have been conserved during evolution. Although the number of different biological signals (Table 12–1) is probably in the thousands, and the kinds of responses elicited by these signals are comparably numerous, the machinery for transducing all of these signals is built from about 10 basic types of protein components.

In this chapter we examine some examples of the major classes of signaling mechanisms, looking at how they are integrated in specific biological functions such as the transmission of nerve signals; responses to hormones and growth factors; the senses of sight, smell, and taste; and control of the cell cycle. Often, the end result of a signaling pathway is the phosphorylation of a few specific target-cell proteins, which changes their activities and thus the activities of the cell. Throughout our discussion we emphasize the conservation of fundamental mechanisms for the transduction of biological signals and the adaptation of these basic mechanisms to a wide range of signaling pathways.

We consider the molecular details of several representative signal-transduction systems, classified according

<table>
<thead>
<tr>
<th>TABLE 12–1</th>
<th>Some Signals to Which Cells Respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigens</td>
<td>Light</td>
</tr>
<tr>
<td>Cell surface glycoproteins/oligosaccharides</td>
<td>Mechanical touch</td>
</tr>
<tr>
<td>Developmental signals</td>
<td>Neurotransmitters</td>
</tr>
<tr>
<td>Extracellular matrix components</td>
<td>Nutrients</td>
</tr>
<tr>
<td>Growth factors</td>
<td>Odorants</td>
</tr>
<tr>
<td>Hormones</td>
<td>Pheromones</td>
</tr>
<tr>
<td>Tastants</td>
<td></td>
</tr>
</tbody>
</table>
12.1 General Features of Signal Transduction

The cellular actions of a hormone begin when the hormone (ligand, L) binds specifically and tightly to its protein receptor (R) on or in the target cell. Binding is mediated by noncovalent interactions (hydrogen-bonding, hydrophobic, and electrostatic) between the complementary surfaces of ligand and receptor. Receptor-ligand interaction brings about a conformational change that alters the biological activity of the receptor, which may be an enzyme, an enzyme regulator, an ion channel, or a regulator of gene expression.

Receptor-ligand binding is described by the equation

\[R + L \rightleftharpoons RL \]

This binding, like that of an enzyme to its substrate, depends on the concentrations of the interacting components and can be described by an equilibrium constant:

\[K_a = \frac{[RL]}{[R][L]} = \frac{k_{+1}}{k_{-1}} = 1/K_d \]

where \(K_a \) is the association constant and \(K_d \) is the dissociation constant.

Like enzyme-substrate binding, receptor-ligand binding is saturable. As more ligand is added to a fixed amount of receptor, an increasing fraction of receptor molecules is occupied by ligand (Fig. 1a). A rough measure of receptor-ligand affinity is given by the concentration of ligand needed to give half-saturation of the receptor. Using Scatchard analysis of receptor-ligand binding, we can estimate both the dissociation constant \(K_d \) and the number of receptor-binding sites in a given preparation. When binding has reached equilibrium, the total number of possible binding sites, \(B_{\text{max}} \), equals the number of unoccupied sites, represented by \([R] \), plus the number of occupied or ligand-bound sites, \([RL] \); that is, \(B_{\text{max}} = [R] + [RL] \). The number of unbound sites can be expressed in terms of total sites minus occupied sites: \([R] = B_{\text{max}} - [RL] \). The equilibrium expression can now be written

\[K_a = \frac{[RL]}{[L](B_{\text{max}} - [RL])} \]

Rearranging to obtain the ratio of receptor-bound ligand to free (unbound) ligand, we get

\[\frac{[\text{Bound}]}{[\text{Free}]} = \frac{[RL]}{[L]} = K_d(B_{\text{max}} - [RL]) \]

\[= \frac{1}{K_d} (B_{\text{max}} - [RL]) \]

From this slope-intercept form of the equation, we can see that a plot of [bound ligand]/[free ligand] versus [bound ligand] should give a straight line with a slope of \(-K_a(-1/K_d)\) and an intercept on the abscissa of \(B_{\text{max}} \), the total number of binding sites (Fig. 1b). Hormone-ligand interactions typically have \(K_d \) values of \(10^{-9} \) to \(10^{-11} \) M, corresponding to very tight binding.

Scatchard analysis is reliable for the simplest cases, but as with Lineweaver-Burk plots for enzymes, when the receptor is an allosteric protein, the plots deviate from linearity.
to the type of receptor. The trigger for each system is different, but the general features of signal transduction are common to all: a signal interacts with a receptor; the activated receptor interacts with cellular machinery, producing a second signal or a change in the activity of a cellular protein; the metabolic activity of the target cell undergoes a change; and finally, the transduction event ends. To illustrate these general features of signaling systems, we will look at examples of six basic receptor types (Fig. 12-2).

1. **G protein-coupled receptors** that indirectly activate (through GTP-binding proteins, or G proteins) enzymes that generate intracellular second messengers. This type of receptor is illustrated by the β-adrenergic receptor system that detects epinephrine (adrenaline) (Section 12.2).

2. **Receptor tyrosine kinases**, plasma membrane receptors that are also enzymes. When one of these receptors is activated by its extracellular ligand, it catalyzes the phosphorylation of several cytosolic or plasma membrane proteins. The insulin receptor is one example (Section 12.3); the receptor for epidermal growth factor (EGF-R) is another.

3. **Receptor guanylyl cyclases**, which are also plasma membrane receptors with an enzymatic cytoplasmic domain. The intracellular second messenger for these receptors, cyclic guanosine monophosphate (cGMP), activates a cytosolic protein kinase that phosphorylates cellular proteins and thereby changes their activities (Section 12.4).

4. **Gated ion channels** of the plasma membrane that open and close (hence the term “gated”) in response to the binding of chemical ligands or changes in transmembrane potential. These are the simplest signal transducers. The acetylcholine receptor ion channel is an example of this mechanism (Section 12.6).

5. **Adhesion receptors** that interact with macromolecular components of the extracellular matrix (such as collagen) and convey instructions to the cytoskeletal system about cell migration or adherence to the matrix. Integrins illustrate this general type of transduction mechanism (Section 12.7).

6. **Nuclear receptors** (steroid receptors) that bind specific ligands (such as the hormone estrogen) and alter the rate at which specific genes are transcribed and translated into cellular proteins. Because steroid hormones function through mechanisms intimately related to the regulation of gene expression, we consider them here only briefly (Section 12.8) and defer a detailed discussion of their action until Chapter 28.

As we begin this discussion of biological signaling, a word about the nomenclature of signaling proteins is in order. These proteins are typically discovered in one context and named accordingly, then prove to be involved in a broader range of biological functions for which the original name is not helpful. For example, the retinoblastoma protein, pRb, was initially identified as the site of a mutation that contributes to cancer of the retina (retinoblastoma), but it is now known to function in many pathways essential to cell division in all cells, not just those of the retina. Some genes and proteins are
12.2 G Protein-Coupled Receptors and 5econd Messengers

Three essential components define signal transduction through G protein-coupled receptors (GPCRs): a plasma membrane receptor with seven transmembrane helical segments, an effector enzyme in the plasma membrane that generates an intracellular second messenger, and a guanosine nucleotide-binding protein (G protein) that activates the effector enzyme. The G protein, stimulated by the activated receptor, exchanges bound GDP for GTP, the GTP-protein dissociates from the occupied receptor and binds to a nearby enzyme, altering its activity. The human genome encodes about 350 GPCRs for detecting hormones, growth factors, and other endogenous ligands, and perhaps 500 that serve as olfactory (smell) and gustatory (taste) receptors.

GPCRs have been implicated in many common human diseases, including allergies, depression, blindness, diabetes, and various cardiovascular defects with serious health consequences. Close to half of all drugs on the market target one GPCR or another. For example, the β-adrenergic receptor, which mediates the effects of epinephrine, is the target of the “beta blockers,” prescribed for such diverse conditions as hypertension, cardiac arrhythmia, glaucoma, anxiety, and migraine headache. At least 150 of the GPCRs found in the human genome are still “orphan receptors”: their natural ligands are not yet identified, and so we know nothing about their biology. The β-adrenergic receptor, with well-understood biology and pharmacology, is the prototype for all GPCRs, and our discussion of signal-transducing systems begins there.

The β-Adrenergic Receptor System Acts through the Second Messenger cAMP

Epinephrine sounds the alarm when some threat requires the organism to mobilize its energy-generating machinery; it signals the need to fight or flee. Epinephrine action begins when the hormone binds to a protein receptor in the plasma membrane of an epinephrine-sensitive cell. Adrenergic receptors (“adrenergic” reflects the alternative name for epinephrine, adrenaline) are of four general types, α1, α2, β1, and β2, defined by differences in their affinities and responses to a group of agonists and antagonists. Agonists are structural analogs that bind to a receptor and mimic the effects of its natural ligand; antagonists are analogs that bind the receptor without triggering the normal effect and thereby block the effects of agonists, including the biological ligand. In some cases, the affinity of the synthetic agonist or antagonist for the receptor is greater than that of the natural agonist (Fig. 12-3). The four types of adrenergic receptors are found in different target tissues and mediate different responses to epinephrine. Here we focus on the β-adrenergic receptors of muscle, liver, and adipose tissue. These

![Figure 12-3 Epinephrine and its synthetic analogs.](image-url)
receptors mediate changes in fuel metabolism, as described in Chapter 23, including the increased breakdown of glycogen and fat. Adrenergic receptors of the \(\beta_1 \) and \(\beta_2 \) subtypes act through the same mechanism, so in our discussion, "\(\beta \)-adrenergic" applies to both types.

The \(\beta \)-adrenergic receptor is an integral protein with seven hydrophobic regions of 20 to 28 amino acid residues that "snake" back and forth across the plasma membrane seven times (thus the alternative names for GPCRs: serpentine receptors or heptahelical receptors). The binding of epinephrine to a site on the receptor deep within the plasma membrane (Fig. 12-4a, step 1) promotes a conformational change in the receptor's intracellular domain that affects its interaction with the second protein in the signal-transduction pathway, stimulatory G protein, or \(G_s \), on the cytoplasmic side of the membrane. Alfred G. Gilman and Martin Rodbell discovered that active \(G_s \) stimulates the production of cAMP (cyclic AMP) by adenylyl cyclase (see below) in the plasma membrane. \(G_s \), the prototype for a family of G proteins that act in biosignaling (see Box 12–2), is heterotrimeric, with subunit structure \(\alpha \beta \gamma \). When the nucleotide-binding site of \(G_s \) (on the \(\alpha \) subunit) is occupied by GTP, \(G_s \) is turned on and can activate adenylyl cyclase (AC in Fig. 12–4a); with GDP bound to the site, \(G_s \) is switched off. The activated \(\beta \)-adrenergic receptor interacts with \(G_s \), catalyzing replacement of bound GDP with GTP and converting \(G_s \) to its active form (step 2). As this occurs, the \(\beta \) and \(\gamma \) subunits of \(G_s \) dissociate from the \(\alpha \) subunit as a \(\beta \gamma \) dimer, and \(G_{sa} \), with its bound GTP, moves in the plane of the membrane from the receptor to a nearby molecule of adenylyl cyclase (step 3). \(G_{sa} \) is held to the membrane by a covalently attached palmitoyl group (see Fig. 11–14).

![Figure 12-4](image-url)
Alfred G. Gilman and Martin Rodbell (Fig. 1) discovered the critical roles of guanosine nucleotide–binding proteins (G proteins) in a wide variety of cellular processes, including sensory perception, signaling for cell division, growth and differentiation, intracellular movements of proteins and membrane vesicles, and protein synthesis. The human genome encodes nearly 200 of these proteins, which differ in size and subunit structure, intracellular location, and function. But all G proteins share a common feature: they can become activated and then, after a brief period, can inactivate themselves, thereby serving as molecular binary switches with built-in timers. This superfamily of proteins includes the trimeric G proteins involved in adrenergic signaling (G_s and G₁) and vision (transducin); small G proteins such as that involved in insulin signaling (Ras) and others that function in vesicle trafficking (ARF and Rab), transport into and out of the nucleus (Ran; see Fig. 27–42), and timing of the cell cycle (Rho); and several proteins involved in protein synthesis (initiation factor IF2 and elongation factors EF-Tu and EF-G; see Chapter 26). Many G proteins have covalently bound lipids, which give them an affinity for membranes and dictate their locations in the cell.

All G proteins have the same core structure and use the same mechanism for switching between an inactive conformation, favored when GDP is bound, and an active conformation, favored when GTP is bound. We can use the Ras protein (~20 kDa), a minimal signaling unit, as a prototype for all members of this superfamily (Fig. 2).

In the GTP-bound conformation, the G protein exposes previously buried regions (called **switch I** and **switch II**) that interact with proteins downstream in the signaling pathway, until the G protein inactivates itself by hydrolyzing its bound GTP to GDP. The critical determinant of G-protein conformation is the γ phosphate of GTP, which interacts with a region called the P loop (phosphate-binding; Fig. 3). In Ras, GTP phosphates bind to a Lys residue in the P loop and to two critical residues, Thr³⁵ in switch I and Gly⁵⁰ in switch II, that hydrogen-bond with the oxygens of the γ phosphate of GTP. These hydrogen bonds act like a pair of springs (continued on next page)
holding the protein in its active conformation. When GTP is cleaved to GDP and P_i is released, these hydrogen bonds are lost; the protein relaxes into its inactive conformation, burying the sites that interact with other partners in its active state. Ala^{146} hydrogen-bonds to the guanine oxygen, allowing GTP, but not ATP, to bind.

The intrinsic GTPase activity of G proteins is increased up to 10^5-fold by GTPase activator proteins (GAPs), also called, in the case of heterotrimeric G proteins, regulators of G protein signaling (RGSs; Fig. 4). GAPs (and RGSs) thus determine how long the switch remains "on." They contribute a critical Arg residue that reaches into the G-protein GTPase active site and assists in catalysis. The intrinsically slow process of replacing bound GDP with GTP, switching the protein on, is catalyzed by guanosine nucleotide-exchange factors (GEFs) associated with the G protein (Fig. 4).

Because G proteins play crucial roles in so many signaling processes, it is not surprising that defects in G proteins lead to a variety of diseases. In about 25% of all human cancers (and in a much higher proportion of certain types of cancer), there is a mutation in a Ras protein—typically in one of the critical residues around the GTP-binding site or in the P loop—that virtually eliminates its GTPase activity. Once activated by GTP binding, this Ras protein remains constitutively active, promoting cell division in cells that should not divide. The tumor suppressor gene NF1 encodes a GAP that enhances the GTPase activity of normal Ras. Mutations in NF1 that result in a nonfunctioning GAP leave Ras with only its intrinsic GTPase activity; once activated by GTP binding, Ras stays active, continuing to send the signal: divide.

Defective heterotrimeric G proteins can also lead to disease. Mutations in the gene that encodes the α subunit of G_{s} (which mediates changes in [cAMP] in response to hormonal stimuli) may result in a G_{α} that is permanently active or permanently inactive. “Activating” mutations generally occur in residues crucial to GTPase activity; they lead to a continuously elevated [cAMP], with significant downstream consequences, including undesirable cell proliferation. For example, such mutations are found in about 40% of pituitary tumors (adenomas). Individuals with “inactivating” mutations in G_{α} are unresponsive to hormones (such as thyroid hormone) that act through cAMP. Mutation in the gene for the transducin α subunit (T_{α}), which is involved in visual signaling, leads to a type of night blindness, apparently due to defective interaction between the activated T_{α} subunit and the phosphodiesterase of the rod outer segment (see Fig. 12-38). A sequence variation in the gene encoding the β subunit of a heterotrimeric G protein is commonly found in individuals with hypertension (high blood pressure), and this variant gene is suspected of involvement in obesity and atherosclerosis.

The pathogenic bacteria that cause cholera and pertussis (whooping cough) produce toxins that target G proteins, interfering with normal signaling in host cells. Cholera toxin, secreted by *Vibrio cholerae* in the intestine of an infected person, is a heterodimeric protein. Subunit B recognizes and binds to specific gangliosides on the surface of intestinal epithelial cells and provides a route for subunit A to enter these cells. After entry, subunit A is broken into two pieces: the A1 fragment and adenyl cyclase is possible only when the “switch” regions of G_{αs} are exposed by a GTP-induced conformational change.

The stimulation by G_{αs} is self-limiting; G_{αs} is a GTPase that turns itself off by converting its bound GTP to GDP (Fig. 12–5). The now inactive G_{αs} dissociates
12.2 G Protein-Coupled Receptors and Second Messengers

Normal Gα: GTPase activity terminates the signal from receptor to adenylyl cyclase.

ADP-ribosylated Gα: GTPase activity is inactivated; Gα constantly activates adenylyl cyclase.

FIGURE 5 The bacterial toxins that cause cholera and whooping cough (pertussis) are enzymes that catalyze transfer of the ADP-ribose moiety of NAD⁺ to an Arg residue of Gα (in the case of cholera toxin, as shown here) or a Cys residue of Gβ (pertussis toxin). The G proteins thus modified fail to respond to normal hormonal stimuli. The pathology of both diseases results from defective regulation of adenylyl cyclase and overproduction of cAMP.

and the A2 fragment. A1 then associates with the ADP-ribosylation factor ARF6, a small G protein in host cells, through residues in its switch I and switch II regions—which are accessible only when ARF6 is in its active (GTP-bound) form. This association with ARF6 activates A1, which catalyzes the transfer of ADP-ribose from NAD⁺ to the critical Arg residue in the P loop of the α subunit of Gα (Fig. 5). ADP-ribosylation blocks the GTPase activity of Gα and thereby renders Gα permanently active. This results in continuous activation of the adenylyl cyclase of intestinal epithelial cells, chronically high [cAMP], and chronically active PKA. PKA phosphorylates the CFTR Cl⁻ channel (see Box 11–3) and a Na⁺-H⁺ exchanger in the intestinal epithelial cells. The resultant efflux of NaCl triggers massive water loss through the intestine as cells respond to the ensuing osmotic imbalance. Severe dehydration and electrolyte loss are the major pathologies in cholera. These can be fatal in the absence of prompt rehydration therapy.

The pertussis toxin, produced by Bordetella pertussis, catalyzes ADP-ribosylation of the α subunit of Gβ in this case preventing GDP-GTP exchange and blocking inhibition of adenylyl cyclase by Gα. The bacterium infects the respiratory tract, where it destroys the ciliated epithelial cells that normally sweep away mucus. Without this ciliary action, vigorous coughing is needed to clear the tract; this is the gasping cough that gives the disease its name (and spreads the bacterium to others). How the defect in G-protein signaling kills ciliated epithelial cells is not yet clear.

Given the large number of G protein–coupled receptors in the human genome, it seems likely that future studies will reveal many more examples of how defective G-protein signaling affects human health.

from adenylyl cyclase, rendering the cyclase inactive. Gαα reassociates with the βγ dimer (Gαβγ), and inactive Gα is again available to interact with a hormone-bound receptor. A variety of G proteins act as binary switches in signaling systems with GPCRs and in many processes that involve membrane fusion or fission (Box 12–2). Trimeric G Proteins: Molecular On/Off Switches

Epinephrine exerts its downstream effects through the increase in [cAMP] that results from the activation of adenylyl cyclase. Cyclic AMP, in turn, allosterically activates cAMP-dependent protein kinase, also called
protein kinase A or PKA (Fig. 12-4a, step 5), which catalyzes the phosphorylation of other proteins, including glycogen phosphorylase b kinase. This enzyme is active when phosphorylated and can begin the process of mobilizing glycogen stores in muscle and liver in anticipation of the need for energy.

The inactive form of PKA contains two identical catalytic subunits (C) and two identical regulatory subunits (R) (Fig. 12-6a). The tetrameric \(R_2C_2 \) complex is catalytically inactive, because an autoinhibitory domain of each R subunit occupies the substrate-binding cleft of each C subunit. When cAMP binds to the R subunits, they undergo a conformational change that moves the autoinhibitory domain of R out of the catalytic domain of C, and the \(R_2C_2 \) complex dissociates to yield two free, catalytically active C subunits. This same basic mechanism—displacement of an autoinhibitory domain—mediates the allosteric activation of many types of protein kinases by their second messengers (as in Figs 12-14 and 12-22, for example). The structure of the substrate-binding cleft in PKA is the prototype for all known protein kinases (Fig. 12-6b); certain residues in this cleft region have identical counterparts in all of the more than 1,000 known protein kinases.

As indicated in Figure 12-4a (step 5), PKA regulates several enzymes downstream in the signaling pathway (Table 12-2). Although these downstream targets...
have diverse functions, they share a region of sequence similarity around the Ser or Thr residue that undergoes phosphorylation, a sequence that marks them for regulation by PKA. The substrate-binding cleft of PKA recognizes these sequences and phosphorylates their Thr or Ser residue. Comparison of the sequences of various protein substrates for PKA has yielded the consensus sequence—the neighboring residues needed to mark a Ser or Thr residue for phosphorylation (see Table 12–2).

Signal transduction by adenylyl cyclase entails several steps that amplify the original hormone signal (Fig. 12–7). First, the binding of one hormone molecule to one receptor molecule catalytically activates several G_{s} molecules. Next, by activating a molecule of adenylyl cyclase, each active G_{s} molecule stimulates the catalytic synthesis of many molecules of cAMP. The second messenger cAMP now activates PKA, each molecule of which catalyzes the phosphorylation of many molecules of the target protein—phosphorylase b kinase in Figure 12–7. This kinase activates glycogen phosphorylase b, which leads to the rapid mobilization of glucose from glycogen. The net effect of the cascade is amplification of the hormonal signal by several orders of magnitude, which

FIGURE 12–7 Epinephrine cascade. Epinephrine triggers a series of reactions in hepatocytes in which catalysts activate catalysts, resulting in great amplification of the signal. Binding of a small number of molecules of epinephrine to specific β-adrenergic receptors on the cell surface activates adenylyl cyclase. The numbers of molecules shown are simply to illustrate amplification and are probably gross underestimates. (Because two molecules of cAMP are required to activate one PKA catalytic subunit, this step does not amplify the signal.)
accounts for the very low concentration of epinephrine (or any other hormone) required for hormone activity.

Several Mechanisms Cause Termination of the β-Adrenergic Response

To be useful, a signal-transducing system has to turn off after the hormonal or other stimulus has ended, and mechanisms for shutting off the signal are intrinsic to all signaling systems. Most systems also adapt to the continued presence of the signal by becoming less sensitive to it, in the process of desensitization. The β-adrenergic system illustrates both. When the concentration of epinephrine in the blood drops below the K_d for its receptor, the hormone dissociates from the receptor and the latter resumes the inactive conformation, in which it can no longer activate G_o.

A second means of ending the response to β-adrenergic stimulation is the hydrolysis of GTP bound to the G_o, subunit, catalyzed by the intrinsic GTPase activity of the G protein. Conversion of bound GTP to GDP favors the return of G_o to the conformation in which it binds the $G_{βγ}$ subunits—the conformation in which the G protein is unable to interact with or stimulate adenylyl cyclase. This ends the production of cAMP. The rate of inactivation of G_o depends on the GTPase activity, which for G_o alone is very feeble. However, GTPase activator proteins (GAPs) strongly stimulate this GTPase activity, causing more rapid inactivation of the G protein (see Box 12–2). GAPs can themselves be regulated by other factors, providing a fine-tuning of the response to β-adrenergic stimulation. A third mechanism for terminating the response is to remove the second messenger: hydrolysis of cAMP to 5’-AMP (not active as a second messenger) by cyclic nucleotide phosphodiesterase (Fig. 12–4a, step 7; 12–4b).

Finally, at the end of the signaling pathway, the metabolic effects that result from enzyme phosphorylation are reversed by the action of phosphoprotein phosphatases, which hydrolyze phosphorylated Ser, Thr, or Tyr residues, releasing inorganic phosphate (P_i). About 150 genes in the human genome encode phosphoprotein phosphatases, fewer than the number encoding protein kinases (~500). Some of these phosphatases are known to be regulated; others may act constitutively. When [cAMP] drops and PKA returns to its inactive form (step 7 in Fig. 12–4a), the balance between phosphorylation and dephosphorylation is tipped toward dephosphorylation by these phosphatases.

The β-Adrenergic Receptor Is Desensitized by Phosphorylation and by Association with Arrestin

The mechanisms for signal termination described above take effect when the stimulus ends. A different mechanism, desensitization, damps the response even while the signal persists. Desensitization of the β-adrenergic receptor is mediated by a protein kinase that phosphorylates the receptor on the intracellular domain that normally interacts with G_o (Fig. 12–8). When the receptor is

![Diagram of desensitization of the β-adrenergic receptor](image)

FIGURE 12–8 Desensitization of the β-adrenergic receptor in the continued presence of epinephrine. This process is mediated by two proteins: β-adrenergic protein kinase (βARK) and β-arrestin (βarr; also known as arrestin 2).
occupied by epinephrine, \textit{\beta}-adrenergic receptor kinase, or \textit{\beta}ARK (also commonly called GRK2; see below), phosphorylates several Ser residues near the carboxyl terminus of the receptor, which is on the cytoplasmic side of the plasma membrane. Normally located in the cytosol, \textit{\beta}ARK is drawn to the plasma membrane by its association with the G\textsubscript{\alpha\beta} subunits and is thus positioned to phosphorylate the receptor. Receptor phosphorylation creates a binding site for the protein \textit{\beta}-arrestin, or \textit{\beta}arr (also called arrestin 2), and binding of \textit{\beta}-arrestin effectively prevents further interaction between the receptor and the G protein. The binding of \textit{\beta}-arrestin also facilitates receptor sequestration, the removal of receptor molecules from the plasma membrane by endocytosis into small intracellular vesicles. Receptors in the endocytotic vesicles are eventually dephosphorylated and returned to the plasma membrane, completing the circuit and resensitizing the system to epinephrine. \textit{\beta}-Adrenergic receptor kinase is a member of a family of \textbf{G protein–coupled receptor kinases (GRKs)}, all of which phosphorylate GPCRs on their carboxyl-terminal cytoplasmic domains and play roles similar to that of \textit{\beta}ARK in desensitization and resensitization of their receptors. At least five different GRKs and four different arrestins are encoded in the human genome; each GRK is capable of desensitizing a particular subset of GPCRs, and each arrestin can interact with many different types of phosphorylated receptors.

\textbf{Cyclic AMP Acts as a Second Messenger for Many Regulatory Molecules}

Epinephrine is just one of many hormones, growth factors, and other regulatory molecules that act by changing the intracellular [cAMP] and thus the activity of PKA (Table 12–3). For example, glucagon binds to its receptors in the plasma membrane of adipocytes, activating (via a G\textsubscript{\alpha} protein) adenyl cyclase. PKA, stimulated by the resulting rise in [cAMP], phosphorylates and activates two proteins critical to the mobilization of the fatty acids of stored fats (see Fig. 17–3). Similarly, the peptide hormone ACTH (adrenocorticotropic hormone, also called corticotropin), produced by the anterior pituitary, binds to specific receptors in the adrenal cortex, activating adenyl cyclase and raising the intracellular [cAMP]. PKA then phosphorylates and activates several of the enzymes required for the synthesis of cortisol and other steroid hormones. In many cell types, the catalytic subunit of PKA can also move into the nucleus, where it phosphorylates the \textbf{cAMP response element binding protein (CREB)}, which alters the expression of specific genes regulated by cAMP.

Some hormones act by \textit{inhibiting} adenyl cyclase, thus lowering [cAMP] and \textit{suppressing} protein phosphorylation. For example, the binding of somatostatin to its receptor leads to activation of an \textbf{inhibitory G protein}, or G\textsubscript{i}, structurally homologous to G\textsubscript{s}, that inhibits adenyl cyclase and lowers [cAMP]. Somatostatin therefore counterbalances the effects of glucagon. In adipose tissue, prostaglandin E\textsubscript{1} (PGE\textsubscript{1}; see Fig. 10–18) inhibits adenyl cyclase, thus lowering [cAMP] and slowing the mobilization of lipid reserves triggered by epinephrine and glucagon. In certain other tissues PGE\textsubscript{1} stimulates cAMP synthesis: its receptors are coupled to adenyl cyclase through a stimulatory G protein, G\textsubscript{s}. In tissues with \textgalpha\textsubscript{2}-adrenergic receptors, epinephrine lowers [cAMP]; in this case, the receptors are coupled to adenyl cyclase through an inhibitory G protein, G\textsubscript{i}. In short, an extracellular signal such as epinephrine or PGE\textsubscript{1} can have quite different effects on different tissues or cell types, depending on three factors: the type of receptor in the tissue, the type of G protein (G\textsubscript{s} or G\textsubscript{i}) with which the receptor is coupled, and the set of PKA target enzymes in the cells. By summing the influences that tend to increase and decrease [cAMP], a cell achieves the integration of signals that we noted as a general feature of signal-transducing mechanisms (Fig. 12–1d).

A fourth factor that explains how so many types of signals can be mediated by a single second messenger (cAMP) is the confinement of the signaling process to a specific region of the cell by \textbf{adaptor proteins}—noncatalytic proteins that hold together other protein molecules that function in concert (further described below). \textbf{AKAPs (A kinase anchoring proteins)} are multivalent adaptor proteins; one part binds to the R subunits of PKA (see Fig. 12–6a) and another to a specific structure in the cell, confining the PKA to the vicinity of that structure. For example, specific AKAPs bind PKA to microtubules, actin filaments, ion channels, mitochondria, or the nucleus. Different types of cells

\begin{table}
\centering
\begin{tabular}{|l|}
\hline
\textbf{TABLE 12–3} \textbf{Some Signals That Use cAMP as Second Messenger} \\
\hline
Corticotropin (ACTH) & \\
Corticotropin-releasing hormone (CRH) & \\
Dopamine [D\textsubscript{1}, D\textsubscript{2}] & \\
Epinephrine (\textit{\beta}-adrenergic) & \\
Follicle-stimulating hormone (FSH) & \\
Glucagon & \\
Histamine [H\textsubscript{2}] & \\
Luteinizing hormone (LH) & \\
Melanocyte-stimulating hormone (MSH) & \\
Odorants (many) & \\
Parathyroid hormone & \\
Prostaglandins E\textsubscript{1}, E\textsubscript{2} (PGE\textsubscript{1}, PGE\textsubscript{2}) & \\
Serotonin [5-HT-1a, 5-HT-2] & \\
Somatostatin & \\
Tastants (sweet, bitter) & \\
Thyroid-stimulating hormone (TSH) & \\
\hline
\end{tabular}
\end{table}

\textbf{Note:} Receptor subtypes in square brackets. Subtypes may have different transduction mechanisms. For example, serotonin is detected in some tissues by receptor subtypes 5-HT-1a and 5-HT-1d, which act through adenyl cyclase and cAMP, and in other tissues by receptor subtype 5-HT-1c, acting through the phospholipase C-IP\textsubscript{3} mechanism (see Table 12–4).
FIGURE 12–9 Nucleation of supramolecular complexes by A kinase anchoring proteins (AKAPs). Several types of AKAPs (green) act as multivalent scaffolds, holding PKA catalytic subunits (blue), through the AKAP's interaction with the PKA regulatory subunits (red), in proximity to a particular region or organelle in the cell. AKAP79, at the cytoplasmic surface of the plasma membrane, binds both PKA and adenyl cyclase (AC). The cAMP produced by AC reaches the nearby PKA quickly and with very little dilution. AKAP79 can also bind (not shown here) PKA, PKA's target protein (an ion channel), and phosphoprotein phosphatase, which removes phosphate from the target protein. AKAP250, also known as gravin, holds PKA to the plasma membrane while also binding cAMP phosphodiesterase (PDE), which terminates the PKA signal by converting cAMP to AMP. In both examples, the AKAP brings about a high local concentration of enzymes and second messengers so that the signaling circuit remains highly localized.

have different complements of AKAPs, so cAMP might stimulate phosphorylation of mitochondrial proteins in one cell and phosphorylation of actin filaments in another. In some cases, an AKAP connects PKA with the enzyme that triggers PKA activation (adenyl cyclase) or terminates PKA action (cAMP phosphodiesterase or phosphoprotein phosphatase) (Fig. 12–9). The very close proximity of these activating and inactivating enzymes presumably achieves a highly localized, and very brief, response. We will see later that some membrane-bound signaling proteins (including adenyl cyclase) are localized to specific areas of the membrane in rafts or caveolae (see Section 12.5).

As is now clear, to fully understand cellular signaling researchers need tools precise enough to detect and study the spatiotemporal aspects of signaling processes at the subcellular level and in real time. In studies of the intracellular localization of biochemical changes, biochemistry meets cell biology, and techniques that cross this boundary have become essential in understanding signaling pathways. Fluorescent probes have found wide application in signaling studies. Labeling of functional proteins with a fluorescent tag such as the green fluorescent protein (GFP) reveals their subcellular localizations (see Fig. 9–15a). Changes in the state of association of two proteins (such as the R and C subunits of PKA) can be seen by measuring the nonradiative transfer of energy between fluorescent probes attached to each protein, a technique called fluorescence resonance energy transfer (FRET; Box 12–3).

Diacylglycerol, Inositol Trisphosphate, and Ca$^{2+}$ Have Related Roles as Second Messengers

A second broad class of GPCRs are coupled through a G protein to a plasma membrane phospholipase C (PLC) that is specific for the membrane phospholipid phosphatidylinositol 4,5-bisphosphate, or PIP$_2$ (see Fig. 10–16). When one of the hormones that acts by this mechanism (Table 12–4) binds its specific receptor in the plasma membrane (Fig. 12–10, step 1), the receptor-hormone complex catalyzes GTP-GDP exchange on an associated G protein, G_o (step 2), activating it much like the β-adrenergic receptor activates G_o (Fig. 12–4). The activated G_o in turn activates the PIP$_2$-specific PLC (Fig. 12–10, step 3), which catalyzes (step 4) the production of two potent second messengers, diacylglycerol and inositol 1,4,5-trisphosphate, or IP$_3$ (not to be confused with PIP$_3$, p. 441).

![Diagram of Inositol 1,4,5-trisphosphate (IP$_3$)](image)

| TABLE 12–4 Some Signals That Act through Phospholipase C, IP$_3$, and Ca$^{2+}$ |
|---------------------------------|---------------------------------|---------------------------------|
| Acetylcholine [muscarinic M$_1$] | Gastrin-releasing peptide | Platelet-derived growth factor (PDGF) |
| α_1-Adrenergic agonists | Glutamate | Serotonin [5-HT-1c] |
| Angiogenin | Gonadotropin-releasing hormone (GRH) | Thyrotropin-releasing hormone (TRH) |
| Angiotensin II | Histamine [H$_1$] | Vasopressin |
| ATP [P$_{2x}$, P$_{2y}$] | Light (Drosophila) | |
| Auxin | Oxytocin | |

Note: Receptor subtypes are in square brackets; see footnote to Table 12-3.
Inositol trisphosphate, a water-soluble compound, diffuses from the plasma membrane to the endoplasmic reticulum (ER), where it binds to specific IP₃-gated Ca²⁺ channels, causing them to open. The action of the SERCA pump (see Fig. 11–36) ensures that [Ca²⁺] in the ER is orders of magnitude higher than that in the cytosol, so when these gated Ca²⁺ channels open, Ca²⁺ rushes into the cytosol (Fig. 12–10, step 5), and the cytosolic [Ca²⁺] rises sharply to about 10⁻⁶ M. One effect of elevated [Ca²⁺] is the activation of protein kinase C (PKC). Diacylglycerol cooperates with Ca²⁺ in activating PKC, thus also acting as a second messenger (step 6). Activation involves the movement of a PKC domain (the pseudosubstrate domain) away from its location in the substrate-binding region of the enzyme, allowing the enzyme to bind and phosphorylate proteins that contain a PKC consensus sequence—Ser or Thr residues embedded in an amino acid sequence recognized by PKC (step 7). There are several isozymes of PKC, each with a characteristic tissue distribution, target protein specificity, and role. Their targets include cytoskeletal proteins, enzymes, and nuclear proteins that regulate gene expression. Taken together, this family of enzymes has a wide range of cellular actions, affecting neuronal and immune function and the regulation of cell division, for example.
Fluorescent probes are commonly used to detect rapid biochemical changes in single living cells. They can be designed to give an essentially instantaneous report (within nanoseconds) on the changes in intracellular concentration of a second messenger or in the activity of a protein kinase. Furthermore, fluorescence microscopy has sufficient resolution to reveal where in the cell such changes are occurring. In one widely used procedure, the fluorescent probes are derived from a naturally occurring fluorescent protein, the **green fluorescent protein** (GFP) of the jellyfish *Aequorea victoria* (Fig. 1).

When excited by absorption of a photon of light, GFP emits a photon (that is, it fluoresces) in the green region of the spectrum. GFP is an 11-stranded β barrel, and the light-absorbing/emitting center of the protein (its chromophore) comprises a modified (oxidized) form of the tripeptide -Ser⁶⁵–Tyr⁶⁶–Gly⁶⁷– located within the barrel (Fig. 2). Oxidation of the tripeptide is catalyzed by the GFP protein itself (Fig. 3), with no other protein or cofactors required (other than molecular oxygen), so it is possible to clone the protein into virtually any cell, where it can serve as a fluorescent marker for itself or for any protein to which it is fused (see Fig. 9–15a). Variants of GFP, with different fluorescence spectra, are produced by genetic engineering of its gene. For example, in the yellow fluorescent protein (YFP), Ala²⁰⁰ in GFP is replaced by a Lys residue, changing the wavelength of light absorption and fluorescence. Other variants of GFP fluoresce blue (BFP) or cyan (CFP) light, and a related protein (mRFP1) fluoresces red light (Fig. 4). GFP and its variants are compact structures that retain their ability to fold into their native β-barrel conformation even when fused with another protein. Investigators are using these fluorescent hybrid proteins as spectroscopic rulers to measure distances between...
interacting components within a cell and, indirectly, to measure local concentrations of compounds that change the distance between two proteins.

An excited fluorescent molecule such as GFP or YFP can dispose of the energy from the absorbed photon in either of two ways: (1) by fluorescence, emitting a photon of slightly longer wavelength (lower energy) than the exciting light, or (2) by nonradiative fluorescence resonance energy transfer (FRET), in which the energy of the excited molecule (the donor) passes directly to a nearby molecule (the acceptor) without emission of a photon, exciting the acceptor (Fig. 5). The acceptor can now decay to its ground state by fluorescence; the emitted photon has a longer wavelength (lower energy) than both the original exciting light and the fluorescence emission of the donor. This second mode of decay (FRET) is possible only when donor and acceptor are close to each other (within 1 to 50 Å); the efficiency of FRET is inversely proportional to the sixth power of the distance between donor and acceptor. Thus very small changes in the distance between donor and acceptor register as very large changes in FRET, measured as the fluorescence of the acceptor molecule when the donor is excited. With sufficiently sensitive light detectors, this fluorescence signal can be located to specific regions of a single, living cell.

FRET has been used to measure [cAMP] in living cells. The gene for GFP is fused with that for the regulatory subunit (R) of cAMP-dependent protein kinase (PKA), and the gene for BFP is fused with that for the catalytic subunit (C) (Fig. 6). When these two hybrid proteins are expressed in a cell, BFP (donor; excitation at 380 nm, emission at 460 nm) and GFP (acceptor; excitation at 475 nm, emission at 545 nm) in the inactive

(continued on next page)
FRET: Biochemistry Visualized in a Living Cell (continued from previous page)

PKA (R₂C₂ tetramer) are close enough to undergo FRET. Wherever in the cell [cAMP] increases, the R₂C₂ complex dissociates into R₂ and C₂ and the FRET signal is lost, because donor and acceptor are now too far apart for efficient FRET. Viewed in the fluorescence microscope, the region of higher [cAMP] has a minimal GFP signal and higher BFP signal. Measuring the ratio of emission at 460 nm and 545 nm gives a sensitive measure of the change in [cAMP]. By determining this ratio for all regions of the cell, the investigator can generate a false color image of the cell in which the ratio, or relative [cAMP], is represented by the intensity of the color. Images recorded at timed intervals reveal changes in [cAMP] over time.

A variation of this technology has been used to measure the activity of PKA in a living cell (Fig. 7). Researchers create a phosphorylation target for PKA by producing a hybrid protein containing four elements: YFP (acceptor); a short peptide with a Ser residue surrounded by the consensus sequence for phosphorylation by PKA, and the 14-3-3 [P]-Ser-binding domain. Active PKA phosphorylates the Ser residue, which docks with the 14-3-3 binding domain, bringing the fluorescence proteins close enough to allow FRET to occur, revealing the presence of active PKA.

Active in the cell, it phosphorylates the Ser residue of the hybrid protein, and 14-3-3 binds to the [P]-Ser. In doing so, it draws YFP and CFP together and a FRET signal is detected with the fluorescence microscope, revealing the presence of active PKA.

The action of a group of compounds known as tumor promoters is attributable to their effects on PKC. The best understood of these are the phorbol esters, synthetic compounds that are potent activators of PKC. They apparently mimic cellular diacylglycerol as second messengers, but unlike the naturally occurring diacylglycerols they are not rapidly removed by metabolism. By continuously activating PKC, these synthetic tumor promoters interfere with the normal regulation of cell growth and division (as discussed in Section 12.12), thus promoting the formation of tumors.

Calcium Is a Second Messenger That May Be Localized in Space and Time

There are many variations on this basic scheme for Ca²⁺ signaling. In many cell types that respond to extracellular signals, Ca²⁺ serves as a second messenger that triggers intracellular responses, such as exocytosis in neurons and endocrine cells, contraction in muscle, and cytoskeletal rearrangements during amoeboid movement. In unstimulated cells, cytosolic [Ca²⁺] is kept very low (<10⁻⁷ M) by the action of Ca²⁺ pumps in the ER, mitochondria, and plasma membrane (as further discussed below). Hormonal, neural, or other stimuli cause either an influx of Ca²⁺ into the cell through specific Ca²⁺ channels in the plasma membrane or the release of sequestered Ca²⁺ from the ER or mitochondria, in either case raising the cytosolic [Ca²⁺] and triggering a cellular response.

Changes in intracellular [Ca²⁺] are detected by Ca²⁺-binding proteins that regulate a variety of Ca²⁺-dependent enzymes. Calmodulin (CaM; Mr 17,000) is an acidic protein with four high-affinity Ca²⁺-binding sites. When intracellular [Ca²⁺] rises to about 10⁻⁷ M (1 µM), the binding of Ca²⁺ to calmodulin drives a conformational change in the protein (Fig. 12-11a). Calmodulin associates with a variety of proteins and,
FIGURE 12-11 Calmodulin. This is the protein mediator of many Ca²⁺-stimulated enzymatic reactions. Calmodulin has four high-affinity Ca²⁺-binding sites (Kᵦ = 0.1 to 1 μM). (a) A ribbon model of the crystal structure of calmodulin (PDB ID 1CLL). The four Ca²⁺-binding sites are occupied by Ca²⁺ (purple). The amino-terminal domain is on the left; the carboxyl-terminal domain on the right. (b) Calmodulin associated with a helical domain (red) of one of the many enzymes it regulates, calmodulin-dependent protein kinase II (PDB ID 1CDL). Notice that the long central α helix of calmodulin visible in (a) has bent back on itself in binding to the helical substrate domain. The central helix of calmodulin is clearly more flexible in solution than in the crystal. (e) Each of the four Ca²⁺-binding sites occurs in a helix-loop-helix motif called the EF hand, also found in many other Ca²⁺-binding proteins.

Calmodulin is an integral subunit of the Ca²⁺/calmodulin-dependent protein kinases (CaM kinases, types I through IV). When intracellular [Ca²⁺] increases in response to a stimulus, calmodulin binds Ca²⁺, undergoes a change in conformation, and activates the CaM kinase. The kinase then phosphorylates target enzymes, regulating their activities. Calmodulin is also a regulatory subunit of phosphorylase b kinase of muscle, which is activated by Ca²⁺. Thus Ca²⁺ triggers ATP-requiring muscle contraction while also activating glycogen breakdown, providing fuel for ATP synthesis. Many other enzymes are also known to be modulated by Ca²⁺ through calmodulin (Table 12-5). The activity of the second messenger Ca²⁺, like that of cAMP, can be spatially restricted; after its release triggers a local response, Ca²⁺ is generally removed before it can diffuse to distant parts of the cell.

Very commonly, Ca²⁺ level does not simply rise and then decrease, but rather oscillates with a period of a few seconds (Fig. 12-12)—even when the extracellular concentration of the triggering hormone remains constant. The mechanism underlying [Ca²⁺] oscillations presumably entails feedback regulation by Ca²⁺ on some part of the Ca²⁺-release process. Whatever the mechanism, the effect is that one kind of signal (hormone concentration, for example) is converted into another (frequency and amplitude of intracellular [Ca²⁺] “spikes”). Another variation is the occurrence of localized Ca²⁺ “blips,” “puffs,” and “waves”—transient increases in [Ca²⁺] that are limited to specific subcellular regions (Fig. 12-13). The Ca²⁺ signal diminishes as Ca²⁺ diffuses away from the initial source (the Ca²⁺ channel), is sequestered in the ER, or is pumped out of the cell.

There is significant cross-talk between the Ca²⁺ and cAMP signaling systems. In some tissues, both the enzyme that produces cAMP (adenylyl cyclase) and the enzyme that degrades cAMP (phosphodiesterase) are stimulated by Ca²⁺. Temporal and spatial changes in [Ca²⁺] can therefore produce transient, localized changes in [cAMP]. We have noted already that PKA, the enzyme that responds to cAMP, is often part of a highly localized supramolecular complex assembled on scaffold proteins such as AKAPs. This subcellular localization of target enzymes, combined with temporal and spatial gradients in [Ca²⁺] and [cAMP], allow a cell to respond to one or several signals with subtly nuanced metabolic changes, localized in space and time.

<table>
<thead>
<tr>
<th>TABLE 12-5</th>
<th>Some Proteins Regulated by Ca²⁺ and Calmodulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenylyl cyclase (brain)</td>
<td>Calcium/calmodulin-dependent protein kinases (CaM kinases I to IV)</td>
</tr>
<tr>
<td>Ca²⁺/calmodulin-dependent Na⁺ channel (Paramecium)</td>
<td>Ca²⁺-dependent Na⁺ channel (Paramacium)</td>
</tr>
<tr>
<td>Ca²⁺-release channel of sarcoplasmic reticulum</td>
<td>Calcium/calmodulin-dependent Na⁺ channel</td>
</tr>
<tr>
<td>Calcineurin (phosphoprotein phosphatase 2B)</td>
<td>CGMP-gated Na⁺, Ca²⁺ channels (rod and cone cells)</td>
</tr>
<tr>
<td>cAMP phosphodiesterase</td>
<td>Glutamate decarboxylase</td>
</tr>
<tr>
<td>cAMP-gated olfactory channel</td>
<td>Myosin light chain kinases</td>
</tr>
<tr>
<td>cGMP-gated Na⁺, Ca²⁺ channels (rod and cone cells)</td>
<td>NAD⁺ kinase</td>
</tr>
<tr>
<td>Glutamate decarboxylase</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>Myosin light chain kinases</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>NAD⁺ kinase</td>
<td>Plasma membrane Ca²⁺ ATPase (Ca²⁺ pump)</td>
</tr>
<tr>
<td>Nitric oxide synthase</td>
<td>RNA helicase (p68)</td>
</tr>
</tbody>
</table>

Long central helix
FIGURE 12-12 Triggering of oscillations in intracellular $[\text{Ca}^{2+}]$ by extracellular signals. (a) A dye (fura) that undergoes fluorescence changes when it binds Ca$^{2+}$ is allowed to diffuse into cells, and its instantaneous light output is measured by fluorescence microscopy. Fluorescence intensity is represented by color; the color scale relates intensity of color to $[\text{Ca}^{2+}]$, allowing determination of the absolute $[\text{Ca}^{2+}]$. In this case, thymocytes (cells of the thymus) have been stimulated with extracellular ATP, which raises their internal $[\text{Ca}^{2+}]$. The cells are heterogeneous in their responses; some have high intracellular $[\text{Ca}^{2+}]$ (red), others much lower (blue). (b) When such a probe is used in a single hepatocyte, the agonist norepinephrine (added at the arrow) causes oscillations of $[\text{Ca}^{2+}]$ from 200 to 500 nM. Similar oscillations are induced in other cell types by other extracellular signals.

FIGURE 12-13 Transient and highly localized increases in $[\text{Ca}^{2+}]$. (a) The IP$_3$-gated Ca$^{2+}$ channels of the endoplasmic reticulum occur in clusters, each capable of independently responding to the IP$_3$ signal. A relatively weak stimulus that produces a small rise in [IP$_3$] may cause a single channel to open briefly, resulting in a highly localized and transient “blip” in $[\text{Ca}^{2+}]$. (b) A somewhat stronger stimulus that generates a larger increase in [IP$_3$] may cause all the Ca$^{2+}$ channels in a cluster to open, producing a “puff” of Ca$^{2+}$ in which the increase in $[\text{Ca}^{2+}]$, its duration, and the area (volume) affected are larger than in a blip. (c) A sufficiently large puff produces elevated $[\text{Ca}^{2+}]$ over an area great enough to include neighboring clusters of Ca$^{2+}$ channels. Opening of the channels in neighboring clusters propagates this effect, and the result is a wave of elevated $[\text{Ca}^{2+}]$ moving along the ER.
SUMMARY 12.2 G Protein–Coupled Receptors and Second Messengers

- G protein–coupled receptors (GPCRs) act through heterotrimeric G proteins. On ligand binding, GPCRs catalyze the exchange of GTP for GDP on the G protein, causing dissociation of the G_o subunit; G_o then stimulates or inhibits the activity of an effector enzyme, changing the level of its second-messenger product.

- The β-adrenergic receptor activates a stimulatory G protein, G_o, thereby activating adenyl cyclase and raising the concentration of the second messenger cAMP. Cyclic AMP stimulates cAMP-dependent protein kinase to phosphorylate key target enzymes, changing their activities.

- Enzyme cascades, in which a single molecule of hormone activates a catalyst to activate another catalyst, and so on, result in the large signal amplification that is characteristic of hormone receptor systems.

- Cyclic AMP concentration is eventually reduced by cAMP phosphodiesterase, and G_o turns itself off by hydrolysis of its bound GTP to GDP, acting as a self-limiting binary switch.

- When the epinephrine signal persists, β-adrenergic receptor–specific protein kinase and β-arrestin temporarily desensitize the receptor and cause it to move into intracellular vesicles.

- Some receptors stimulate adenyl cyclase through G_o; others inhibit it through G_i. Thus cellular [cAMP] reflects the integrated input of two (or more) signals.

- Noncatalytic adaptor proteins such as AKAPs hold together proteins involved in a signaling process, increasing the efficiency of their interactions and in some cases confining the process to a specific subcellular location.

- Some GPCRs act via a plasma membrane phospholipase C that cleaves PIP2 to diacylglycerol and IP3. By opening Ca$^{2+}$ channels in the endoplasmic reticulum, IP3 raises cytosolic [Ca$^{2+}$]. Diacylglycerol and Ca$^{2+}$ act together to activate protein kinase C, which phosphorylates and changes the activity of specific cellular proteins. Cellular [Ca$^{2+}$] also regulates (often through calmodulin) many other enzymes and proteins involved in secretion, cytoskeleton rearrangements, or contraction.

12.3 Receptor Tyrosine Kinases

The receptor tyrosine kinases (RTKs), a large family of plasma membrane receptors with intrinsic protein kinase activity, transduce extracellular signals by a mechanism fundamentally different from that of GPCRs. RTKs have a ligand-binding domain on the extracellular face of the plasma membrane and an enzyme active site on the cytoplasmic face, connected by a single transmembrane segment. The cytoplasmic domain is a protein kinase that phosphorylates Tyr residues in specific target proteins—a Tyr kinase. The receptors for insulin and epidermal growth factor are prototypes for this group.

Stimulation of the Insulin Receptor Initiates a Cascade of Protein Phosphorylation Reactions

Insulin regulates both metabolic enzymes and gene expression. Insulin does not enter cells, but initiates a signal that travels a branched pathway from the plasma membrane receptor to insulin-sensitive enzymes in the cytosol and to the nucleus, where it stimulates the transcription of specific genes. The active insulin receptor protein (INS-R) consists of two identical α subunits protruding from the outer face of the plasma membrane and two transmembrane β subunits with their carboxyl termini protruding into the cytosol (Fig. 12–14). The α subunits contain the insulin-binding domain, and the intracellular domains of the β subunits contain the protein kinase activity that transfers a phosphoryl group from ATP to the hydroxyl group of Tyr residues in specific target proteins. Signaling through INS-R begins when the binding of insulin activates the Tyr kinase activity, and each β subunit phosphorylates three critical Tyr residues near the carboxyl terminus of the other β subunit in the $\alpha\beta_2$ dimer. This autophosphorylation opens up the active site so that the enzyme can phosphorylate Tyr residues of other target proteins. The mechanism of activation of the INS-R protein kinase is similar to that described for PKA and PKC: a region of the cytoplasmic domain (an autoinhibitory sequence) that normally occludes the active site moves out of the active site after being phosphorylated, opening up the site for the binding of target proteins (Fig. 12–14).

One of the target proteins of INS-R (Fig. 12–15, step ①) is insulin receptor substrate-1 (IRS-1; step ②). Once phosphorylated on several of its Tyr residues, IRS-1 becomes the point of nucleation for a complex of proteins (step ③) that carry the message from the insulin receptor to end targets in the cytosol and nucleus, through a long series of intermediate proteins. First, a Φ–Tyr residue of IRS-1 binds to the SH2 domain of the protein Grb2. (SH2 is an abbreviation of Src homology 2, so named because the sequence of an SH2 domain is similar to that of a domain in Src [pronounced sark], another protein Tyr kinase.) Several signaling proteins contain SH2 domains, all of which bind Φ–Tyr residues in a protein partner. Grb2 is an adaptor protein, with no intrinsic enzymatic activity. Its function is to bring together two proteins (in this case, IRS-1 and the protein Sos) that must interact to enable signal transduction. In addition to its SH2 (Φ–Tyr-binding) domain, Grb2 also contains a second protein-binding domain, SH3, that binds to a proline-rich region of Sos, recruiting Sos to the growing receptor complex. When bound to Grb2,
FIGURE 12–14 Activation of the insulin-receptor tyrosine kinase by autophosphorylation. (a) The insulin-binding region of the insulin receptor lies outside the cell and comprises (b) two α subunits and the extracellular portions of two β subunits, intertwined to form the insulin binding site (pink; shown as a surface contour model of the crystal structure, derived from PDB ID 2DTC). (The structure of the transmembrane domain has not been solved by crystallography.) The binding of insulin (red; PDB ID 2CEU) is communicated through the single transmembrane helix of each β subunit to the paired Tyr kinase domains inside the cell, activating them to phosphorylate each other on three Tyr residues. (c) In the inactive form of the Tyr kinase domain (PDB ID 1IRK), the activation loop (blue) sits in the active site, and none of the critical Tyr residues (black and red ball-and-stick structures) are phosphorylated. This conformation is stabilized by hydrogen bonding between Tyr162 and Asp132. (d) Activation of the Tyr kinase allows each β subunit to phosphorylate three Tyr residues (Tyr158, Tyr162, Tyr163) on the other β subunit, shown here (PDB ID 1IR3). (Phosphoryl groups are depicted as an orange space-filling phosphorus atom and red ball-and-stick oxygen atoms.) The introduction of three highly charged @Tyr residues forces a 30 Å change in the position of the activation loop, away from the substrate-binding site, which becomes available to bind and phosphorylate a target protein, shown here as a red arrow.

Sos acts as a guanosine nucleotide-exchange factor (GEF), catalyzing the replacement of bound GDP with GTP on Ras, a G protein. Ras is the prototype of a family of small G proteins that mediate a wide variety of signal transductions (see Box 12–2). Like the trimeric G protein that functions with the β-adrenergic system (Fig. 12–5), Ras can exist in either the GTP-bound (active) or GDP-bound (inactive) conformation, but Ras (~20 kDa) acts as a monomer. When GTP binds, Ras can activate a protein kinase, Raf-1 (Fig. 12–15, step 4), the first of three protein kinases—Raf-1, MEK, and ERK—that form a cascade in which each kinase activates the next by phosphorylation (step 5). The protein kinases MEK and ERK are activated by phosphorylation of both a Thr and a Tyr residue. When activated, ERK mediates some of the biological effects of insulin by entering the nucleus and phosphorylating transcription factors, such as Elk1 (step 6), that modulate the transcription of about 100 insulin-regulated genes (step 7).

The proteins Raf-1, MEK, and ERK are members of three larger families, for which several nomenclatures are employed. ERK is in the MAPK family (mitogen-activated protein kinases; mitogens are extracellular signals that induce mitosis and cell division). Soon after discovery of the first MAPK enzyme, that enzyme was found to be activated by another protein kinase, which was named MAP kinase kinase (MEK belongs to this family); and when a third kinase that activated MAP kinase kinase was discovered, it was given the slightly ludicrous family name MAP kinase kinase kinase (Raf-1 is in this family; Fig. 12–15, step 4). Somewhat less cumbersome are the abbreviations for these three families: MAPK, MAPKK, and MAPKKK. Kinases in the MAPK and
Insulin receptor binds insulin and undergoes autophosphorylation on its carboxyl-terminal Tyr residues.

Insulin receptor phosphorylates IRS-1 on its Tyr residues.

SH2 domain of Grb2 binds to (P)-Tyr of IRS-1. Sos binds to Grb2, then to Ras, causing GDP release and GTP binding to Ras.

Activated Ras binds and activates Raf-1.

Raf-1 phosphorylates MEK on two Ser residues, activating it. MEK phosphorylates ERK on a Thr and a Tyr residue, activating it.

ERK moves into the nucleus and phosphorylates nuclear transcription factors such as Elk1, activating them.

Phosphorylated Elk1 joins SRF to stimulate the transcription and translation of a set of genes needed for cell division.

MAPK cascades (Fig. 12–15) mediate signaling initiated by a variety of growth factors, such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). Another general scheme exemplified by the insulin receptor pathway is the use of nonenzymatic adaptor proteins to bring together the components of a branched signaling pathway, to which we now turn.

FIGURE 12–15 Regulation of gene expression by insulin through a MAP kinase cascade. The insulin receptor (INS-R) consists of two α subunits on the outer face of the plasma membrane and two β subunits that traverse the membrane and protrude from the cytosolic face. Binding of insulin to the α subunits triggers a conformational change that allows the autophosphorylation of Tyr residues in the carboxyl-terminal domain of the β subunits. Autophosphorylation further activates the Tyr kinase domain, which then catalyzes phosphorylation of other target proteins. The signaling pathway by which insulin regulates the expression of specific genes consists of a cascade of protein kinases, each of which activates the next. INS-R is a Tyr-specific kinase; the other kinases (all shown in blue) phosphorylate Ser or Thr residues. MEK is a dual-specificity kinase, which phosphorylates both a Thr and a Tyr residue in ERK (extracellular regulated kinase); MEK is mitogen-activated, ERK-activating kinase; SRF is serum response factor.

MAPKK families are specific for Ser or Thr residues, and MAPKKs (here, MEK) phosphorylate both a Ser and a Tyr residue in their substrate, a MAPK (here, ERK).

Biochemists now recognize the insulin pathway as but one instance of a more general scheme in which hormone signals, via pathways similar to that shown in Figure 12–15, result in phosphorylation of target enzymes by protein kinases. The target of phosphorylation is often another protein kinase, which then phosphorylates a third protein kinase, and so on. The result is a cascade of reactions that amplifies the initial signal by many orders of magnitude (see Fig. 12–1b). MAPK cascades (Fig. 12–15) mediate signaling initiated by a variety of growth factors, such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). Another general scheme exemplified by the insulin receptor pathway is the use of nonenzymatic adaptor proteins to bring together the components of a branched signaling pathway, to which we now turn.

The Membrane Phospholipid PIP_3 Functions at a Branch in Insulin Signaling

The signaling pathway from insulin branches at IRS-1 (Fig. 12–15, step 3). Grb2 is not the only protein that associates with phosphorylated IRS-1. The enzyme phosphoinositide 3-kinase (PI-3K) binds IRS-1 through PI-3K’s SH2 domain (Fig. 12–16). Thus activated, PI-3K converts the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP_2; see Fig. 10–16) to phosphatidylinositol 3,4,5-trisphosphate (PIP_3). The multiply charged head group of PIP_3, protruding on the cytoplasmic side of the plasma membrane, is the starting point for a second signaling branch involving another cascade of protein kinases. When bound to PIP_3, protein kinase B (PKB; also called Akt) is phosphorylated and activated by yet another protein kinase, PDK1. The activated PKB then phosphorylates Ser or Thr residues in its target proteins, one of which is glycogen synthase kinase 3 (GSK3). In its active, nonphosphorylated form, GSK3 phosphorylates glycogen synthase, inactivating it and thereby contributing to the slowing of glycogen synthesis. (This mechanism is only part of the explanation for the effects of insulin on glycogen metabolism.) When phosphorylated by PKB, GSK3 is inactivated. By thus preventing inactivation of glycogen synthase in liver and muscle, the cascade of protein phosphorylations initiated by insulin stimulates glycogen synthesis (Fig. 12–16). In a third signaling branch in muscle and fat tissue, PKB triggers the movement of glucose transporters (GLUT4) from internal vesicles to the plasma...
FIGURE 12-16 Activation of glycogen synthase by insulin.
Transmission of the signal is mediated by PI-3 kinase (PI-3K) and protein kinase B (PKB).

1. IRS-1, phosphorylated by the insulin receptor, activates PI-3K by binding to its SH2 domain. PI-3K converts PIP2 to PIP3.
2. PKB bound to PIP3 is phosphorylated by PDK1 (not shown). Thus activated, PKB phosphorylates GSK3 on a Ser residue, inactivating it.
3. GSK3, inactivated by phosphorylation, cannot convert glycogen synthase (GS) to its inactive form by phosphorylation, so GS remains active.
4. Synthesis of glycogen from glucose is accelerated.
5. PKB stimulates movement of glucose transporter GLUT4 from internal membrane vesicles to the plasma membrane, increasing the uptake of glucose.

As in all signaling pathways, there is a mechanism for terminating the activity of the PI-3K–PKB pathway. A PIP3-specific phosphatase (PTEN in humans) removes the phosphoryl group at the 3 position of PIP3 to produce PIP2, which no longer serves as a binding site for PKB, and the signaling chain is broken. In various types of cancer, it is often found that the PTEN gene has undergone mutation, resulting in a defective regulatory circuit and abnormally high levels of PIP3 and of PKB activity. The result seems to be a continuing signal for cell division and thus tumor growth.

In addition to the many receptors that act as protein Tyr kinases (the RTKs), several receptorlike plasma membrane proteins have protein Tyr phosphatase activity. Based on the structures of these proteins, we can surmise that their ligands are components of the extracellular matrix or are surface molecules on other cells. Although their signaling roles are not yet as well understood as those of the RTKs, they clearly have the potential to reverse the actions of signals that stimulate RTKs.

The insulin receptor is the prototype for several receptor enzymes with a similar structure and RTK activity (Fig. 12–17). The receptors for EGF and PDGF, for example, have structural and sequence similarities to INS-R, and both have a protein Tyr kinase activity that phosphorylates IRS-1. Many of these receptors dimerize after binding ligand; INS-R is the exception, as it is already an (αβ)2 dimer before insulin binds. (The protomer of the insulin receptor is one αβ unit.) The binding of adaptor proteins such as Grb2 to P–Tyr residues...
Receptor tyrosine kinases. Growth factor receptors that signal through Tyr kinase activity include those for insulin (INS-R), vascular epidermal growth factor (VEGF-R), platelet-derived growth factor (PDGF-R), epidermal growth factor (EGF-R), nerve growth factor (NGF-R), and fibroblast growth factor (FGF-R). All these receptors have a Tyr kinase domain on the cytoplasmic side of the plasma membrane (blue). The extracellular domain is unique to each type of receptor, reflecting the different growth-factor specificities. These extracellular domains are typically combinations of structural motifs such as cysteine- or leucine-rich segments and segments containing one of several motifs common to immunoglobulins (lg-like domains; see p. 137). Many other receptors of this type are encoded in the human genome, each with a different extracellular domain.

The JAK-STAT Signaling System Also Involves Tyrosine Kinase Activity

A variation on the basic theme of receptor Tyr kinases is receptors that have no intrinsic protein kinase activity but, when occupied by their ligand, bind a cytosolic Tyr kinase. One example is the system that regulates the formation of erythrocytes in mammals. The developmental signal, or cytokine, for this system is erythropoietin (EPO), a 165 amino acid protein produced in the kidneys. When EPO binds to its plasma membrane receptor (Fig. 12–18) the receptor dimerizes, and the dimer can bind and activate the soluble protein kinase JAK (Janus kinase). The activated JAK phosphorylates several Tyr residues in the cytoplasmic domain of the EPO receptor. A family of transcription factors, collectively called STATs (signal transducers and activators of transcription), are also targets of JAK. An SH2 domain in STAT5 binds P-Tyr residues in the EPO receptor, positioning the STAT for phosphorylation by JAK in
response to EPO. The phosphorylated STAT5 forms dimers, exposing a signal that causes it to be transported into the nucleus. There, STAT5 induces the expression (transcription) of specific genes essential for erythrocyte maturation. This JAK-STAT system also operates in other signaling pathways, including that for the hormone leptin, described in detail in Chapter 23 (see Fig. 23–37). Activated JAK can also trigger, through Grb2, the MAPK cascade (Fig. 12–18b), which leads to altered expression of specific genes.

Src is another soluble protein Tyr kinase that associates with certain receptors when they bind their ligands. Src was the first protein found to have the characteristic P-Tyr-binding domain that was subsequently named the Src homology (SH2) domain.

Cross Talk among Signaling Systems
Is Common and Complex

Although, for simplicity, we have treated individual signaling pathways as separate sequences of events leading to separate metabolic consequences, there is in fact extensive cross talk among signaling systems. The regulatory circuitry that governs metabolism is richly interwoven and multilayered. We have discussed the signaling pathways for insulin and epinephrine separately, but they do not operate independently. Insulin opposes the metabolic effects of epinephrine in most tissues, and activation of the insulin signaling pathway directly attenuates signaling through the β-adrenergic signaling system. For example, the INS-R kinase directly phosphorylates two Tyr residues in the cytoplasmic tail of a β2-adrenergic receptor, and PKB, activated by insulin (Fig. 12–19), phosphorylates two Ser residues in the same region. Phosphorylation of these four residues triggers internalization of the β2-adrenergic receptor, taking it out of service and lowering the cell's sensitivity to epinephrine. A second type of cross talk between these receptors occurs when P-Tyr residues on the β2-adrenergic receptor, phosphorylated by INS-R, serve as nucleation points for SH2 domain–containing proteins such as Grb2 (Fig. 12–19, left side). Activation of the MAPK ERK by insulin (see Fig. 12–15) is 5- to 10-fold greater in the presence of the β2-adrenergic receptor, presumably because of this cross talk. Signaling systems that use cAMP and Ca2+ also show extensive interaction; each second messenger affects the generation and concentration of the other. One of the major challenges of systems biology is to sort out the effects of such interactions on the overall metabolic patterns in each tissue—a daunting task!

SUMMARY 12.3 Receptor Tyrosine Kinases

- The insulin receptor, INS-R, is the prototype of receptor enzymes with Tyr kinase activity. When insulin binds, each αβ unit of INS-R phosphorylates the β subunit of its partner, activating the receptor’s Tyr kinase activity. The kinase catalyzes the phosphorylation of Tyr residues on other proteins such as IRS-1.

- Phosphotyrosine residues in IRS-1 serve as binding sites for proteins with SH2 domains. Some of these proteins, such as Grb2, have two or more protein-binding domains and can serve as adaptors that bring two proteins into proximity.

- Sos bound to Grb2 catalyzes GDP-GTP exchange on Ras (a small G protein), which in turn activates a MAPK cascade that ends with the phosphorylation of IRS-1.
of target proteins in the cytosol and nucleus. The result is specific metabolic changes and altered gene expression.

- The enzyme PI-3K, activated by interaction with IRS-1, converts the membrane lipid PIP₂ to PIP₃, which becomes the point of nucleation for proteins in a second and third branch of insulin signaling.

- In the JAK-STAT signaling system, a soluble protein Tyr kinase (JAK) is activated by association with a receptor, and then phosphorylates the transcription factor STAT, which enters the nucleus and alters the expression of a set of genes.

- There are extensive interconnections among signaling pathways, allowing integration and fine-tuning of multiple hormonal effects.

12.4 Receptor Guanylyl Cyclases, cGMP, and Protein Kinase G

Guanylyl cyclases (Fig. 12-20) are receptor enzymes that, when activated, convert GTP to the second messenger **guanosine 3',5'-cyclic monophosphate** (cyclic GMP, cGMP):

![Guanylyl cyclase enzyme](image)

Many of the actions of cGMP in animals are mediated by **cGMP-dependent protein kinase** (PKG). On activation by cGMP, PKG phosphorylates Ser and Thr residues in target proteins.

FIGURE 12-20 Two isozymes of guanylyl cyclase that participate in signal transduction. (a) One isozyme exists in two similar membrane-spanning forms that are activated by their extracellular ligands: atrial natriuretic factor (ANF; receptors in cells of the renal collecting ducts and vascular smooth muscle) and guanylin (receptors in intestinal epithelial cells). The guanylin receptor is also the target of a bacterial endotoxin that triggers severe diarrhea. (b) The other isozyme is a soluble heme-containing enzyme that is activated by intracellular nitric oxide (NO); this form is found in many tissues, including smooth muscle of the heart and blood vessels.

The catalytic and regulatory domains of this enzyme are in a single polypeptide ($M_r \sim 80,000$). Part of the regulatory domain fits snugly in the substrate-binding cleft. Binding of cGMP forces this pseudo-substrate out of the binding site, opening the site to target proteins containing the PKG consensus sequence.

Cyclic GMP carries different messages in different tissues. In the kidney and intestine it triggers changes in ion transport and water retention; in cardiac muscle (a type of smooth muscle) it signals relaxation; in the brain it may be involved both in development and in adult brain function. Guanylyl cyclase in the kidney is activated by the peptide hormone **atrial natriuretic factor** (ANF), which is released by cells in the cardiac atrium when the heart is stretched by increased blood volume. Carried in the blood to the kidney, ANF activates guanylyl cyclase in cells of the collecting ducts (Fig. 12-20a). The resulting rise in [cGMP] triggers increased renal excretion of Na⁺ and consequently of water, driven by the change in osmotic pressure. Water loss reduces the blood volume, countering the stimulus that initially led to ANF secretion. Vascular smooth muscle also has an ANF receptor–guanylyl cyclase; on binding to this receptor, ANF causes relaxation (vasodilation) of the blood vessels, which increases blood flow while decreasing blood pressure.
A similar receptor guanylyl cyclase in the plasma membrane of epithelial cells lining the intestine is activated by the peptide guanylin (Fig. 12–20a), which regulates Cl⁻ secretion in the intestine. This receptor is also the target of a heat-stable peptide endotoxin produced by *Escherichia coli* and other gram-negative bacteria. The elevation in [cGMP] caused by the endotoxin increases Cl⁻ secretion and consequently decreases reabsorption of water by the intestinal epithelium, producing diarrhea.

A distinctly different type of guanylyl cyclase is a cytosolic protein with a tightly associated heme group (Fig. 12–20b), an enzyme activated by nitric oxide (NO). Nitric oxide is produced from arginine by Ca²⁺-dependent NO synthase, present in many mammalian tissues, and diffuses from its cell of origin into nearby cells.

Cyclic GMP has another mode of action in the vertebrate eye: it causes ion-specific channels to open in the retinal rod and cone cells. We return to this role of cGMP in the discussion of vision in Section 12.10.

SUMMARY 12.4 Receptor Guanylyl Cyclases, cGMP, and Protein Kinase G

- Several signals, including atrial natriuretic factor and guanylin, act through receptor enzymes with guanylyl cyclase activity. The cGMP so produced is a second messenger that activates cGMP-dependent protein kinase (PKG). This enzyme alters metabolism by phosphorylating specific enzyme targets.

- Nitric oxide is a short-lived messenger that stimulates a soluble guanylyl cyclase, raising [cGMP] and stimulating PKG.

12.5 Multivalent Adaptor Proteins and Membrane Rafts

Two generalizations have emerged from studies of signaling systems such as those we have discussed so far: (1) protein kinases that phosphorylate Tyr, Ser, and Thr residues are central to signaling, and (2) reversible protein-protein interactions brought about by the reversible phosphorylation of Tyr, Ser, and Thr residues in signaling proteins create docking sites for other proteins. In fact, many signaling proteins are multivalent—they can interact with several different proteins simultaneously to form multiprotein signaling complexes. In this section we present a few examples to illustrate the general principles of phosphorylation-dependent protein interactions in signaling pathways.

Protein Modules Bind Phosphorylated Tyr, Ser, or Thr Residues in Partner Proteins

The protein Grb2 in the insulin signaling pathway (Figs 12–15 and 12–19) binds through its SH2 domain to other proteins that have exposed P-Tyr residues. The human genome encodes at least 87 SH2-containing proteins, many already known to participate in signaling. The
favors a certain sequence around the phosphorylated residue, so the domains represent families of highly specific recognition sites, able to bind to a specific subset of phosphorylated proteins.

In some cases, the region on a protein that binds \(\mathbb{P} \)-Tyr of a substrate protein is masked by its interaction with a \(\mathbb{P} \)-Tyr in the same protein. For example, the soluble protein Tyr kinase Src, when phosphorylated on a critical Tyr residue, is rendered inactive; an SH2 domain needed to bind to the substrate protein instead binds to the internal \(\mathbb{P} \)-Tyr. When this \(\mathbb{P} \)-Tyr residue is hydrolyzed by a phosphoprotein phosphatase, the Tyr kinase activity of Src is activated (Fig. 12-22a). Similarly, glycogen synthase kinase 3 (GSK3) is inactive when phosphorylated on a Ser residue in its autoinhibitory domain (Fig. 12-22b). Dephosphorylation of that domain frees the enzyme to bind (and then phosphorylate) its target proteins.

Phosphotyrosine-binding domains (PTB domains) are another binding partner for \(\mathbb{P} \)-Tyr proteins, but their critical sequences and three-dimensional structure distinguish them from SH2 domains. The human genome encodes 24 proteins that contain PTB domains, including IRS-1, which we have already encountered in its role as an adaptor protein in insulin-signal transduction (Fig. 12-15). The \(\mathbb{P} \)-Tyr binding sites for SH2 and PTB domains on partner proteins are created by Tyr kinases and eliminated by phosphoprotein phosphatases (PTPases).

Other signaling protein kinases, including PKA, PKC, PKG, and members of the MAPK cascade, phosphorylate Ser or Thr residues in their target proteins, which in some cases acquire the ability to interact with partner proteins through the phosphorylated residue, triggering a downstream process. An alphabet soup of domains that bind \(\mathbb{P} \)-Ser or \(\mathbb{P} \)-Thr residues has been identified, and more are sure to be found. Each domain

\[
\begin{align*}
\text{PTB domain} & \quad \text{SH2 domain} \\
\text{事关精确的识别位点} & \quad \text{SH2 domain} \\
\text{SH2 domain} & \quad \text{SH2 domain} \\
\text{SH2 domain} & \quad \text{SH2 domain} \\
\text{SH2 domain} & \quad \text{SH2 domain} \\
\end{align*}
\]
In addition to the three commonly phosphorylated residues in proteins, there is a fourth structure that nucleates the formation of supramolecular complexes of signaling proteins: the phosphorylated head group of the membrane phosphatidylinositols. Many signaling proteins contain domains such as SH3 and PH (plextrin homology domain) that bind tightly to PIP3 protruding from the inner leaflet of the plasma membrane. Whenever the enzyme PI-3K creates this head group (as it does in response to the insulin signal), proteins that bind it will congregate at the membrane surface.

Most of the proteins involved in signaling at the plasma membrane have one or more protein- or phospholipid-binding domains; many have three or more, and thus are multivalent in their interactions with other signaling proteins. Figure 12-23 shows just a few of the multivalent proteins known to participate in signaling. Many of the complexes include components with membrane-binding domains. Given the location of so many signaling processes at the inner surface of the plasma membrane, the molecules that must collide to produce the signaling response are effectively confined to two-dimensional space—the membrane surface; collisions here are far more likely than in the three-dimensional space of the cytosol.

In summary, a remarkable picture of signaling pathways has emerged from studies of many signaling proteins and their multiple binding domains. An initial signal results in phosphorylation of the receptor or a target protein, triggering the assembly of large multiprotein complexes, held together on scaffolds made from adaptor proteins with multivalent binding capacities. Some of these complexes contain several protein kinases that activate each other in turn, producing a cascade of phosphorylation and a great amplification of the initial signal. The interactions between cascade kinases are not left to the vagaries of random collisions in three-dimensional space. In the MAPK cascade, for example, a family of adaptor proteins binds all three kinases (MAPK, MAPKK, and MAPKKK), assuring their activities. The name of each protein is given at its carboxyl-terminal end. These signaling proteins interact with phosphorylated proteins or phospholipids in many permutations and combinations to form integrated signaling complexes.
proximity and correct orientation and even conferring allosteric properties on the interactions among the kinases, which makes their serial phosphorylation sensitive to very small stimuli.

Phosphotyrosine phosphatases remove the phosphate from \(\mathbf{P} \)-Tyr residues, reversing the effect of phosphorylation. Some of these are receptorlike membrane proteins, presumably controlled by extracellular factors not yet identified; other PTPases are soluble and contain SH2 domains. In addition, animal cells have protein \(\mathbf{P} \)-Ser and \(\mathbf{P} \)-Thr phosphatases, which reverse the effects of Ser- and Thr-specific protein kinases. We can see, then, that signaling occurs in protein circuits, which are effectively hard-wired from signal receptor to response effector and can be switched off instantly by the hydrolysis of a single upstream phosphate ester bond.

The multivalency of signaling proteins allows for the assembly of many different combinations of signaling modules, each combination suited to particular signals, cell types, and metabolic circumstances, yielding diverse signaling circuits of extraordinary complexity.

Membrane Rafts and Caveolae Segregate Signaling Proteins

Membrane rafts (Chapter 11) are regions of the membrane bilayer enriched in sphingolipids, sterols, and certain proteins, including many attached to the bilayer by GPI anchors. The \(\beta \)-adrenergic receptor is segregated in rafts that contain G proteins, adenyl cyclase, PKA, and a specific protein phosphatase, PP2, which together provide a highly integrated signaling unit. By segregating in a small region of the plasma membrane all of the elements required for responding to and ending the signal, the cell is able to produce a highly localized and brief “puff” of second messenger.

Some RTKs (EGF-R and PDGF-R) seem to be localized in rafts, and this sequestration is very probably functionally significant. When cholesterol is removed from rafts by treatment of the membrane with cydextrin (which binds and removes cholesterol), the rafts are disrupted and the RTK signaling pathways become defective.

If an RTK in a raft is phosphorylated, and the only locally available PTPase that reverses this phosphorylation is in another raft, then dephosphorylation of the RTK is slowed or prevented. Interactions between adaptor proteins might be strong enough to recruit into a raft a signaling protein not normally located there, or might even be strong enough to pull receptors out of a raft. For example, the EGF-R in isolated fibroblasts is normally concentrated in specialized rafts called caveolae (see Fig. 11–21), but treatment with EGF causes the receptor to leave the raft. This migration depends on the receptor’s protein kinase activity; mutant receptors lacking this activity remain in the raft during treatment with EGF. Caveolin, an integral membrane protein localized in caveolae, is phosphorylated on Tyr residues in response to insulin, and the now-activated EGF-R may be able to draw its binding partners into the raft. Spatial segregation of signaling proteins in rafts adds yet another dimension to the already complex processes initiated by extracellular signals.

SUMMARY 12.5 Multivalent Adaptor Proteins and Membrane Rafts

- Many signaling proteins have domains that bind phosphorylated Tyr, Ser, or Thr residues in other proteins; the binding specificity for each domain is determined by sequences that adjoin the phosphorylated residue in the substrate.
- SH2 and PTB domains bind to proteins containing \(\mathbf{P} \)-Tyr residues; other domains bind \(\mathbf{P} \)-Ser and \(\mathbf{P} \)-Thr residues in various contexts.
- SH3 and PH domains bind the membrane phospholipid PIP3.
- Many signaling proteins are multivalent, with several different binding modules. By combining the substrate specificities of various protein kinases with the specificities of domains that bind phosphorylated Ser, Thr, or Tyr residues, and with phosphatases that can rapidly inactivate a signaling pathway, cells create a large number of multiprotein signaling complexes.
- Membrane rafts and caveolae sequester groups of signaling proteins in small regions of the plasma membrane, enhancing their interactions and making signaling more efficient.

12.6 Gated Ion Channels

Ion Channels Underlie Electrical Signaling in Excitable Cells

Certain cells in multicellular organisms are “excitable”: they can detect an external signal, convert it into an electrical signal (specifically, a change in membrane potential), and pass it on. Excitable cells play central roles in nerve conduction, muscle contraction, hormone secretion, sensory processes, and learning and memory. The excitability of sensory cells, neurons, and myocytes depends on ion channels, signal transducers that provide a regulated path for the movement of inorganic ions such as Na\(^+\), K\(^+\), Ca\(^{2+}\), and Cl\(^-\) across the plasma membrane in response to various stimuli. Recall from Chapter 11 that these ion channels are “gated”: they may be open or closed, depending on whether the associated receptor has been activated by the binding of its specific
FIGURE 12-24 Transmembrane electrical potential. (a) The electrogenic Na⁺K⁺ ATPase produces a transmembrane electrical potential of about −60 mV (inside negative). (b) Blue arrows show the direction in which ions tend to move spontaneously across the plasma membrane in an animal cell, driven by the combination of chemical and electrical gradients. The chemical gradient drives Na⁺ and Ca²⁺ inward (producing depolarization) and K⁺ outward (producing hyperpolarization). The electrical gradient drives Cl⁻ outward, against its concentration gradient (producing depolarization).

ligand (a neurotransmitter, for example) or by a change in the transmembrane electrical potential, V_m. The Na⁺K⁺ ATPase is electrogenic; it creates a charge imbalance across the plasma membrane by carrying 3 Na⁺ out of the cell for every 2 K⁺ carried in (Fig. 12-24a), making the inside negative relative to the outside. The membrane is said to be polarized.

KEY CONVENTION: V_m is negative when the inside of the cell is negative relative to the outside. For a typical animal cell, $V_m = −50$ to $−70$ mV.

Because ion channels generally allow passage of either anions or cations but not both, ion flux through a channel causes a redistribution of charge on the two sides of the membrane, changing V_m. Influx of a positively charged ion such as Na⁺, or efflux of a negatively charged ion such as Cl⁻, depolarizes the membrane and brings V_m closer to zero. Conversely, efflux of K⁺ hyperpolarizes the membrane and V_m becomes more negative. These ion fluxes through channels are passive, in contrast to active transport by the Na⁺K⁺ ATPase.

The direction of spontaneous ion flow across a polarized membrane is dictated by the electrochemical potential of that ion across the membrane, which has two components: the difference in concentration (C) of the ion on the two sides of the membrane, and the difference in electrical potential, typically expressed in millivolts. The force (ΔG) that causes a cation (say, Na⁺) to pass spontaneously inward through an ion channel is a function of the ratio of its concentrations on the two sides of the membrane (C_{in}/C_{out}) and of the difference in electrical potential (V_m or ΔV):

$$\Delta G = RT \ln \left(\frac{C_{in}}{C_{out}}\right) + ZFV_m$$ (12-1)

where R is the gas constant, T the absolute temperature, Z the charge on the ion, and F the Faraday constant. (Note that the sign of the charge on the ion determines the sign of the second term in Eqn 12-1.) In a typical neuron or myocyte, the concentrations of Na⁺, K⁺, Ca²⁺, and Cl⁻ in the cytosol are very different from those in the extracellular fluid (Table 12-6). Given these concentration differences, the resting V_m of about −60 mV, and the relationship shown in Equation 12-1, the opening of a Na⁺ or Ca²⁺ channel will result in a spontaneous inward flow of Na⁺ or Ca²⁺ (and depolarization), whereas opening of a K⁺ channel will result in a spontaneous outward flux of K⁺ (and hyperpolarization) (Fig. 12-24b).

A given ionic species continues to flow through a channel only as long as the combination of concentration gradient and electrical potential provides a driving force. For example, as Na⁺ flows down its concentration gradient, it depolarizes the membrane. When the membrane potential reaches +70 mV, the effect of this membrane potential (resistance to further entry of Na⁺) exactly equals the effect of the [Na⁺] gradient (promotion of Na⁺ flow inward). At this equilibrium potential (E), the driving force (ΔG) tending to move a Na⁺ ion is zero. The equilibrium potential is different for each ionic species because the concentration gradients differ.

The number of ions that must flow to produce a physiologically significant change in the membrane potential is negligible relative to the concentrations of Na⁺, K⁺, and Cl⁻ in cells and extracellular fluid, so the ion fluxes that occur during signaling in excitable cells have essentially no effect on the concentrations of these ions. With Ca²⁺, the situation is different; because the intracellular [Ca²⁺] is generally very low (∼10⁻⁷ M), inward flow of Ca²⁺ can significantly alter the cytosolic [Ca²⁺].

The membrane potential of a cell at a given time is the result of the types and numbers of ion channels open at that instant. In most cells at rest, more K⁺ channels than Na⁺, Cl⁻, or Ca²⁺ channels are open and thus the resting potential is closer to the E for K⁺ (−98 mV) than that for any other ion. When channels for Na⁺, Ca²⁺, or Cl⁻ open, the membrane potential moves toward the E for that ion. The precisely timed opening and closing of ion channels and the resulting transient changes in
membrane potential underlie the electrical signaling by which the nervous system stimulates the skeletal muscles to contract, the heart to beat, or secretory cells to release their contents. Moreover, many hormones exert their effects by altering the membrane potential of their target cells. These mechanisms are not limited to animals; ion channels play important roles in the responses of bacteria, protists, and plants to environmental signals.

To illustrate the action of ion channels in cell-to-cell signaling, we describe the mechanisms by which a neuron passes a signal along its length and across a synapse to the next neuron (or to a myocyte) in a cellular circuit, using acetylcholine as the neurotransmitter.

Voltage-Gated Ion Channels Produce Neuronal Action Potentials

Signaling in the nervous system is accomplished by networks of neurons, specialized cells that carry an electrical impulse (action potential) from one end of the cell (the cell body) through an elongated cytoplasmic extension (the axon). The electrical signal triggers release of neurotransmitter molecules at the synapse, carrying the signal to the next cell in the circuit. Three types of **voltage-gated ion channels** are essential to this signaling mechanism. Along the entire length of the axon are **voltage-gated Na⁺ channels** (Fig. 12-25), which are closed when the membrane is at rest ($V_m = -60$ mV) but open briefly when the membrane is depolarized locally in response to acetylcholine (or some other neurotransmitter). Also distributed along the axon are **voltage-gated K⁺ channels**, which open, a second later, in response to the depolarization when nearby Na⁺ channels open. The depolarizing flow of Na⁺ into the axon (influx) is thus rapidly countered by a repolarizing flow of K⁺ out (efflux). At the distal end of the axon are **voltage-gated Ca²⁺ channels**, which open when the wave of depolarization and repolarization caused by the activity of Na⁺ and K⁺ channels arrives, triggering release of the neurotransmitter acetylcholine—which carries the signal to another neuron (fire an action potential) or to a muscle fiber: (contract!).

FIGURE 12-25 Role of voltage-gated and ligand-gated ion channels in neural transmission

Initially, the plasma membrane of the presynaptic neuron is polarized (inside negative) through the action of the electrogenic Na⁺K⁺ ATPase, which pumps out 3 Na⁺ for every 2 K⁺ pumped in (see Fig. 12-24). 1 A stimulus to this neuron (not shown) causes an action potential to move along the axon (white arrow), away from the cell body. The opening of a voltage-gated Na⁺ channel allows Na⁺ entry, and the resulting local depolarization causes the adjacent Na⁺ channel to open, and so on. The directionality of movement of the action potential is ensured by the brief refractory period that follows the opening of each voltage-gated Na⁺ channel. 2 When the wave of depolarization reaches the axon tip, voltage-gated Ca²⁺ channels open, allowing Ca²⁺ entry. 3 The resulting increase in internal [Ca²⁺] triggers exocytic release of the neurotransmitter acetylcholine into the synaptic cleft. 4 Acetylcholine binds to a receptor on the postsynaptic neuron (or myocyte), causing its ligand-gated ion channel to open. 5 Extracellular Na⁺ and Ca²⁺ enter through this channel, depolarizing the postsynaptic cell. The electrical signal has thus passed to the cell body of the postsynaptic neuron (or myocyte) and will move along its axon to a third neuron (or a myocyte) by this same sequence of events.

<table>
<thead>
<tr>
<th>TABLE 12-6</th>
<th>Ion Concentrations in Cells and Extracellular Fluids (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type</td>
<td>K⁺</td>
</tr>
<tr>
<td>Squid axon</td>
<td>In 400</td>
</tr>
<tr>
<td>Frog muscle</td>
<td>In 124</td>
</tr>
<tr>
<td></td>
<td>≤0.4</td>
</tr>
<tr>
<td></td>
<td>560</td>
</tr>
</tbody>
</table>
The voltage-gated Na^+ channels are very selective for Na^+ over other cations (by a factor of 100 or more) and have a very high flux rate ($>10^7$ ions/s). After being opened—activated—by a reduction in transmembrane electrical potential, a Na^+ channel undergoes very rapid inactivation—within milliseconds, the channel closes and remains inactive for many milliseconds. As voltage-gated K^+ channels open in response to the depolarization induced by the opening of Na^+ channels, the resulting efflux of K^+ repolarizes the membrane locally. A brief pulse of depolarization thus traverses the axon as local depolarization triggers the brief opening of neighboring Na^+ channels, then K^+ channels (Fig. 12–25). The short refractory period that follows the opening of each Na^+ channel, during which it cannot open again, ensures that a unidirectional wave of depolarization—the action potential—sweeps from the nerve cell body toward the end of the axon (step 1 in Fig. 12–25).

When the wave of depolarization reaches the voltage-gated Ca^{2+} channels, they open (step 2), and Ca^{2+} enters from the extracellular space. The rise in cytoplasmic [Ca$^{2+}$] then triggers release of acetylcholine by exocytosis into the synaptic cleft (step 3). Acetylcholine diffuses to the postsynaptic cell (another neuron or a myocyte), where it binds to acetylcholine receptors and triggers depolarization. Thus the message is passed to the next cell in the circuit. We see, then, that gated ion channels convey signals in either of two ways: by changing the cytoplasmic concentration of an ion (such as Ca$^{2+}$), which then serves as an intracellular second messenger, or by changing V_m and affecting other membrane proteins that are sensitive to V_m. The passage of an electrical signal through one neuron and on to the next illustrates both types of mechanism.

We discussed the structure and mechanism of voltage-gated K^+ channels in some detail in Section 11.3 (see Figs 11–48 through 11–50). Here we take a closer look at Na^+ channels. The essential component of a Na^+ channel is a single, large polypeptide (1,840 amino acid residues) organized into four domains clustered around a central channel (Fig. 12–26a, b), providing a path for Na^+ through the membrane. The path is made Na^+-specific by a “pore region” composed of the segments between transmembrane helices 5 and 6 of each domain, which fold into the channel. Helix 4 of each domain has a high density of positively charged Arg residues; this segment is believed to be the voltage sensor (Fig. 12–26). The voltage-sensing mechanism involves movement of helix 4 (blue) perpendicular to the plane of the membrane in response to a change in transmembrane potential. As shown at the top, the strong positive charge on helix 4 allows it to be pulled inward in response to the inside-negative membrane potential (V_m). Depolarization lessens this pull, and helix 4 relaxes by moving outward (bottom). This movement is communicated to the activation gate (orange), inducing conformational changes that open the channel in response to depolarization.

![Voltage-gated Na⁺ channels of neurons.](image)
to move within the membrane in response to changes in the transmembrane voltage, from the resting potential of about −60 mV to about +30 mV. The movement of helix 4 triggers opening of the channel, and this is the basis for the voltage gating (Fig. 12-26c).

Inactivation of the channel is thought to occur by a ball-and-chain mechanism. A protein domain on the cytoplasmic surface of the Na⁺ channel, the inactivation gate (the ball), is tethered to the channel by a short segment of the polypeptide (the chain; Fig. 12-26b). This domain is free to move about when the channel is closed, but when it opens, a site on the inner face of the channel becomes available for the tethered ball to bind, blocking the channel. The length of the tether seems to determine how long an ion channel stays open: the longer the tether, the longer the open period. Other gated ion channels may be inactivated by a similar mechanism.

The Acetylcholine Receptor Is a Ligand-Gated Ion Channel

The nicotinic acetylcholine receptor mediates the passage of an electrical signal at some types of synapses and at a neuromuscular junction (between motor neuron and muscle fiber), signaling the muscle to contract. (Nicotinic acetylcholine receptors were originally distinguished from muscarinic acetylcholine receptors by the sensitivity of the former to nicotine, the latter to the mushroom alkaloid muscarine. They are structurally and functionally different.) Acetylcholine released by the presynaptic neuron or motor neuron diffuses a few micrometers to the plasma membrane of the postsynaptic neuron or myocyte, where it binds to the acetylcholine receptor. This forces a conformational change in the receptor, causing its ion channel to open. The resulting inward movement of cations depolarizes the plasma membrane. In a muscle fiber, this triggers contraction. The acetylcholine receptor allows ready passage to Na⁺, Ca²⁺, and K⁺ ions, but other cations and all anions are unable to pass. Movement of Na⁺ through an acetylcholine receptor ion channel is unsaturable (its rate is linear with respect to extracellular [Na⁺]) and very fast—about 2 × 10⁹ ions/s under physiological conditions.

![Acetylcholine](image)

Like other gated ion channels, the acetylcholine receptor opens in response to stimulation by its signal molecule and has an intrinsic timing mechanism that closes the gate milliseconds later. Thus the acetylcholine signal is transient—as we have seen, an essential feature of electrical signal conduction. We understand the structural changes underlying gating in the acetylcholine re-

ceptor, but not the exact mechanism of “desensitization,” in which the gate remains closed even in the continued presence of acetylcholine.

The nicotinic acetylcholine receptor has five subunits: single copies of subunits β, γ, and δ, and two identical α subunits that each contain an acetylcholine-binding site. All five subunits are related in sequence and tertiary structure, each having four transmembrane helical segments (M1 to M4) (Fig. 12-27a). The five subunits surround a central pore, which is lined with their M2 helices (Fig. 12-27b, c). The pore is about 20 Å wide in the parts of the channel that protrude on the cytoplasmic and extracellular surfaces, but narrows as it passes through the lipid bilayer. Near the center of the bilayer is a ring of bulky hydrophobic side chains of Leu residues in the M2 helices, positioned so close together that they prevent ions from passing through the channel (Fig. 12-27d). Allosteric conformational changes induced by acetylcholine binding to the two α subunits include a slight twisting of the M2 helices, which draws these hydrophobic side chains away from the center of the channel, opening it to the passage of ions.

Neurons Have Receptor Channels That Respond to Different Neurotransmitters

Animal cells, especially those of the nervous system, contain a variety of ion channels gated by ligands, voltage, or both. We have so far focused on acetylcholine as neurotransmitter, but there are many others. 5-Hydroxytryptamine (serotonin), glutamate, and glycine all can act through receptor channels that are structurally related to the acetylcholine receptor. Serotonin and glutamate trigger the opening of cation (K⁺, Na⁺, Ca²⁺) channels, whereas glycine opens Cl⁻-specific channels. Cation and anion channels are distinguished by subtle differences in the amino acid residues that line the hydrophilic channel. Cation channels have negatively charged Glu and Asp side chains at crucial positions. When a few of these acidic residues are experimentally replaced with basic residues, the cation channel is converted to an anion channel.

![Serotonin](image)

![Glutamate](image)

Depending on which ion passes through a channel, binding of the ligand (neurotransmitter) for that channel results in either depolarization or hyperpolarization of the target cell. A single neuron normally receives input from many other neurons, each releasing its own characteristic neurotransmitter with its characteristic depolarizing or hyperpolarizing effect. The target cell's
FIGURE 12-27 The acetylcholine receptor ion channel. (a) Each of the five homologous subunits (α2βγδ) has four transmembrane helices, M1 to M4. The M2 helices are amphipathic; the others have mainly hydrophobic residues. (b) The five subunits are arranged around a central transmembrane channel, which is lined with the polar sides of the M2 helices. At the top and bottom of the channel are rings of negatively charged amino acid residues. (c) A model of the acetylcholine receptor, based on electron microscopy and x-ray structure determination of a related protein (the acetylcholine-binding protein from a mollusk). (d) This top view of a cross section through the center of the M2 helices shows five Leu side chains (yellow), one from each M2 helix, protruding into the channel and constricting it to a diameter too small to allow passage of Ca2+, Na+, or K+. When both acetylcholine receptor sites (one on each α subunit) are occupied, a conformational change occurs. As the M2 helices twist slightly, the five Leu residues rotate away from the channel and are replaced by smaller, polar residues (blue). This gating mechanism opens the channel, allowing the passage of Ca2+, Na+, or K+.

\[V_m \] therefore reflects the integrated input (Fig. 12-1d) from multiple neurons. The cell responds with an action potential only if the integrated input adds up to a net depolarization of sufficient size.

The receptor channels for acetylcholine, glycine, glutamate, and γ-aminobutyric acid (GABA) are gated by extracellular ligands. Intracellular second messengers—such as cAMP, cGMP, IP3, Ca2+, and ATP—regulate ion channels of another class, which, as we shall see in Section 12.10, participate in the sensory transductions of vision, olfaction, and gustation.

Toxins Target Ion Channels

Many of the most potent toxins found in nature act on ion channels. As we noted in Section 11.3, for example, dendrotoxin (from the black mamba snake) blocks the action of voltage-gated K+ channels, tetrodotoxin (produced by puffer fish) acts on voltage-gated Na+ channels, and cobrotoxin disables acetylcholine receptor ion channels. Why, in the course of evolution, have ion channels become the preferred target of toxins, rather than some critical metabolic target such as an enzyme essential in energy metabolism?

Ion channels are extraordinary amplifiers; opening of a single channel can allow the flow of 10 million ions per second. Consequently, relatively few molecules of an ion channel protein are needed per neuron for signaling functions. This means that a relatively small number of toxin molecules with high affinity for ion channels, acting from outside the cell, can have a very pronounced effect on neurosignaling throughout the body. A comparable effect by way of a metabolic enzyme, typically present in cells at much higher concentrations than ion channels, would require far more copies of the toxin molecule.
12.7 Integrins: Bidirectional Cell Adhesion Receptors

Integrins are proteins of the plasma membrane that mediate the adhesion of cells to each other and to the extracellular matrix, and carry signals in both directions across the membrane (Fig. 12-28). The mammalian genome encodes 18 different α subunits and 8 different β subunits, which are found in a range of combinations with various ligand-binding specificities in various tissues. Each of the 24 different integrins found thus far seems to have a unique function. Because they can inform cells about the extracellular neighborhood, integrins play crucial roles in processes that require selective cell-cell interactions, such as embryonic development, blood clotting, immune cell function, and tumor growth and metastasis.

The extracellular ligands that interact with integrins include collagen, fibrinogen, fibronectin, and many other proteins that have the sequence recognized by integrins: Arg-Gly-Asp (RGD). The short, cytoplasmic extensions of the α and β subunits interact with cytoskeletal proteins just beneath the plasma membrane—talin, α-actinin, vinculin, paxillin, and others—modulating the assembly of actin-based cytoskeletal structures. The dual association of integrins with the extracellular matrix and the cytoskeleton allows the cell to integrate information about its extracellular and intracellular environments, and to coordinate cytoskeletal positioning with extracellular adhesion sites. In this capacity, integrins govern the shape, motility, polarity, and differentiation of many cell types. In “outside-in” signaling, the extracellular domains of an integrin undergo dramatic, global conformational changes when ligand binds at a site many angstroms from the transmembrane helices. These changes somehow alter the dispositions of the cytoplasmic tails of the α and β subunits, changing their interactions with intracellular proteins and thereby conducting the signal inward.

The conformation and adheriveness of integrin extracellular domains are also dramatically altered by signals from inside the cell. In one conformation, the extracellular domains have no affinity for the proteins of the extracellular matrix, but signals from the cell can favor another conformation in which integrins adhere tightly to extracellular proteins (Fig. 12-28).
Regulation of adhesiveness is central to leukocyte homing to the site of an infection (see Fig. 7–31), interactions between immune cells, and phagocytosis by macrophages. During an immune response, for example, leukocyte integrins are activated (exposing their extracellular ligand-binding sites) from inside the cell via a signaling pathway triggered by cytokines (extracellular developmental signals). Thus activated, the integrins can mediate the attachment of leukocytes to other immune cells or can target cells for phagocytosis. Mutation in an integrin gene encoding the β subunit known as CD18 is the cause of leukocyte adhesion deficiency, a rare human genetic disease in which leukocytes fail to pass out of blood vessels to reach sites of infection. Infants with a severe defect in CD18 commonly die of infections before the age of two.

An integrin specific to platelets (αIbb3) is involved in both normal and pathological blood clotting. Local damage to blood vessels at a site of injury exposes high-affinity binding sites (RGD sequences in thrombin and collagen, for example) for the integrins of platelets, which attach themselves to the lesion, to other platelets, and to the clotting protein fibrinogen, leading to clot formation that prevents further bleeding. Mutations in the α or β subunit of platelet integrin αIbb3 lead to a bleeding disorder known as Glanzmann thrombasthenia, in which individuals bleed excessively after a relatively minor injury. Overly effective blood coagulation is also undesirable. Dysregulation of platelet adhesion can lead to pathological blood clot formation, resulting in blockage of the arteries that supply blood to the heart and brain and increasing the risk of heart attack and stroke. Drugs such as tirofiban and epifibatide that block the external ligand-binding sites of platelet integrin reduce clot formation and are useful in treating and preventing heart attacks and strokes.

When tumors metastasize, tumor cells lose their adhesion to the originating tissue and invade new locations. Both the changes in tumor cell adhesion and the development of new blood vessels (angiogenesis) to support the tumor at a new location are modulated by specific integrins. These proteins are therefore potential targets for drugs that suppress the migration and relocation of tumor cells.

SUMMARY 12.7 Integrins: Bidirectional Cell Adhesion Receptors

- Integrins are a family of dimeric (αβ) plasma membrane receptors that interact with extracellular macromolecules and the cytoskeleton, carrying signals in and out of the cell.
- The active and inactive forms of an integrin differ in the conformation of their extracellular domains. Intracellular events and signals can interconvert the active and inactive forms.
- Integrins mediate various aspects of the immune response, blood clotting, and angiogenesis, and they play a role in tumor metastasis.

12.8 Regulation of Transcription by Steroid Hormones

The steroid, retinoic acid (retinoid), and thyroid hormones form a large group of hormones (receptor ligands) that exert at least part of their effects by a mechanism fundamentally different from that of other hormones: they act in the nucleus to alter gene expression. We discuss their mode of action in detail in Chapter 28, along with other mechanisms for regulating gene expression. Here we give a brief overview.

Steroid hormones (estrogen, progesterone, and cortisol, for example), too hydrophobic to dissolve readily in the blood, are transported on specific carrier proteins from their point of release to their target tissues. In target cells, these hormones pass through the plasma membrane by simple diffusion and bind to specific receptor proteins in the nucleus (Fig. 12–29). Steroid hormone receptors with no bound ligand (aporereceptors) often act to suppress the transcription of target genes. Hormone binding triggers changes in the conformation of a receptor protein so that it becomes capable of interacting with specific regulatory sequences in DNA called **hormone response elements (HREs)**, thus altering gene expression (see Fig. 28–34). The bound receptor-hormone complex enhances the expression of specific genes adjacent to HREs, with the help of several other proteins essential for transcription. Hours or days are required for these regulators to have their full effect—the time required for the changes in RNA synthesis and subsequent protein synthesis to become evident in altered metabolism.

The specificity of the steroid-receptor interaction is exploited in the use of the drug **tamoxifen** to treat breast cancer. In some types of breast cancer, division of the cancerous cells depends on the continued presence of estrogen. Tamoxifen is an estrogen antagonist; it competes with estrogen for binding to the estrogen receptor, but the tamoxifen-receptor complex has little or no effect on gene expression. Consequently, tamoxifen administered after surgery or during chemotherapy for hormone-dependent breast cancer slows or stops the growth of remaining cancerous cells. Another steroid analog, the drug mifepristone (RU486), binds to the progesterone receptor and blocks hormone actions essential to implantation of the fertilized ovum in the uterus.
Hormone (H), carried to the target tissue on serum binding proteins, diffuses across the plasma membrane and binds to its specific receptor protein (Rec) in the nucleus.

Hormone binding changes the conformation of Rec; it forms homo- or heterodimers with other hormone-receptor complexes and binds to specific regulatory regions called hormone response elements (HREs) in the DNA adjacent to specific genes.

Receptor attracts coactivator or corepressor protein(s) and, with them, regulates transcription of the adjacent gene(s), increasing or decreasing the rate of mRNA formation.

Altered levels of the hormone-regulated gene product produce the cellular response to the hormone.

FIGURE 12-29 General mechanism by which steroid and thyroid hormones, retinoids, and vitamin D regulate gene expression. The details of transcription and protein synthesis are discussed in Chapters 26 and 27. Some steroids also act through plasma membrane receptors by a completely different mechanism.

Certain effects of steroids seem to occur too fast to be the result of altered protein synthesis via the classic mechanism of steroid hormone action through nuclear receptors. For example, the estrogen-mediated dilation of blood vessels is known to be independent of gene transcription or protein synthesis, as is the steroid-induced decrease in cellular [cAMP]. Another transduction mechanism involving plasma membrane receptors may be responsible for some of these effects.

SUMMARY 12.8 Regulation of Transcription by Steroid Hormones

- Steroid hormones enter cells and bind to specific receptor proteins.
- The hormone-receptor complex binds specific regions of DNA, the hormone response elements, and interacts with other proteins to regulate the expression of nearby genes.
- Certain effects of steroid hormones may occur through a different, faster, signaling pathway.

12.9 Signaling in Microorganisms and Plants

Much of what we have said here about signaling relates to mammalian tissues or cultured cells from such tissues. Bacteria, archaea, eukaryotic microorganisms, and vascular plants must also respond to a variety of external signals—O₂, nutrients, light, noxious chemicals, and so on. We turn here to a brief consideration of the kinds of signaling machinery used by microorganisms and plants.

Bacterial Signaling Entails Phosphorylation in a Two-Component System

Escherichia coli responds to nutrients in its environment, including sugars and amino acids, by swimming toward them, propelled by one or a few flagella. A family of membrane proteins have binding domains on the outside of the plasma membrane to which specific attractants (sugars or amino acids) bind (Fig. 12–30). Ligand binding causes another domain on the inside of the plasma membrane to autophosphorylate a His residue. This first component of the two-component system, the receptor histidine kinase, then catalyzes transfer of the phosphoryl group from the His residue to an Asp residue on a second, soluble protein,
FIGURE 12-30 The two-component signaling mechanism in bacterial chemotaxis. When an attractant ligand (A) binds to the receptor domain of the membrane-bound receptor, a protein His kinase in the cytosolic domain (component 1) is activated and autophosphorylates a His residue. This phosphoryl group is then transferred to an Asp residue on component 2 (in some cases, as shown here, a separate protein; in others, another domain of the receptor protein). After phosphorylation, component 2 moves to the base of the flagellum, where it reverses the direction of rotation of the flagellar motor.

The response regulator; this phosphoprotein moves to the base of the flagellum, carrying the signal from the membrane receptor. The flagellum is driven by a rotary motor that can propel the cell through its medium or cause it to stall, depending on the direction of motor rotation. Information from the receptor allows the cell to determine whether it is moving toward or away from the source of the attractant. If its motion is toward the attractant, the response regulator signals the cell to continue in a straight line; if away from it, the cell tumbles momentarily, acquiring a new direction. Repetition of this behavior results in a random path, biased toward movement in the direction of increasing attractant concentration.

E. coli detects not only sugars and amino acids but also *O*₂, extremes of temperature, and other environmental factors, using this basic two-component system. Two-component systems have been detected in many other bacteria, both gram-positive and gram-negative, and in archaea, as well as in protists and fungi. Clearly, this signaling mechanism developed early in the course of cellular evolution and has been conserved.

Various signaling systems used by animal cells also have analogs in bacteria. As the full genomic sequences of more, and more diverse, bacteria become known, researchers have discovered genes that encode proteins similar to protein Ser or Thr kinases, Ras-like proteins regulated by GTP binding, and proteins with SH3 domains. Receptor Tyr kinases have not been detected in bacteria, but Tyr residues do occur in some bacterial proteins, so there must be an enzyme that phosphorylates Tyr residues.

Signaling Systems of Plants Have Some of the Same Components Used by Microbes and Mammals

Like animals, vascular plants must have a means of communication between tissues to coordinate and direct growth and development; to adapt to conditions of *O*₂, nutrients, light, temperature, and water availability; and to warn of the presence of noxious chemicals and damaging pathogens (Fig. 12–31). At least a billion years of evolution have passed since the plant and animal branches of the eukaryotes diverged, which is reflected in the differences in signaling mechanisms: some plant mechanisms are conserved—that is, are similar to those in animals (protein kinases, adaptor proteins, cyclic nucleotides, electrogenic ion pumps, and gated ion channels); some are similar to bacterial two-component systems; and some are unique to plants (light-sensing mechanisms, for example) (Table 12–7). The genome of the plant *Arabidopsis thaliana*, for example, encodes about 1,000 protein Ser/Thr kinases, including about 60 MAPKs and nearly 400 membrane-associated receptor kinases that phosphorylate Ser or Thr residues; a variety of protein phosphatases; adaptor proteins that form scaffolds on which proteins assemble in signaling complexes;
enzymes for the synthesis and degradation of cyclic nucleotides; and 100 or more ion channels, including about 20 gated by cyclic nucleotides. Inositol phospholipids are present, as are kinases that interconvert them by phosphorylation of inositol head groups.

However, some types of signaling proteins common in animal tissues are not present in plants, or are represented by only a few genes. Cyclic nucleotide–dependent protein kinases (PKA and PKG) seem to be absent, for example. Heterotrimeric G proteins and protein Tyr kinase genes are much less prominent in the plant genome, and genes for GPCRs, the largest family of proteins in the human genome (~1,000 genes), are very sparsely represented in the plant genome. DNA-binding nuclear steroid receptors are certainly not prominent, and may be absent from plants. Although plants lack the most widely conserved light-sensing mechanism present in animals (rhodopsin, with retinal as pigment), they have a rich collection of other light-detecting mechanisms not found in animal tissues—phytochromes and cryptochromes, for example (Chapter 19).

The kinds of compounds that elicit signals in plants are similar to certain signaling molecules in mammals (Fig. 12–32). Instead of prostaglandins, plants have jasmonate; instead of steroid hormones, brassinosteroids. About 100 different small peptides serve as plant signals, and both plants and animals use compounds derived from aromatic amino acids as signals.

![Fig 12-32](image-url) Structural similarities between plant and animal signals.
Plants Detect Ethylene through a Two-Component System and a MAPK Cascade

The gaseous plant hormone ethylene ($CH_2=CH_2$), which stimulates the ripening of fruits (among other functions), acts through receptors that are related in primary sequence to the receptor His kinases of the bacterial two-component systems and probably evolved from them. In *Arabidopsis*, the two-component signaling system is contained within a single integral membrane protein of the endoplasmic reticulum (not the plasma membrane). Ethylene diffuses into the cell through the plasma membrane and into the ER. The first downstream component affected by ethylene signaling is a protein Ser/Thr kinase (CTR1; Fig. 12–33) with sequence homology to Raf, the protein kinase that begins the MAPK cascade in the mammalian response to insulin (see Fig. 12–15). In plants, in the absence of ethylene, the CTR1 kinase is active and inhibits the MAPK cascade, preventing transcription of ethylene-responsive genes. Exposure to ethylene inactivates the CTR1 kinase, thereby activating the MAPK cascade that leads to activation of the transcription factor EIN3. Active EIN3 stimulates the synthesis of a second transcription factor (ERF1), which in turn activates transcription of ethylene-responsive genes; the gene products affect processes ranging from seedling development to fruit ripening. Although apparently derived from the bacterial two-component signaling system, the ethylene system in *Arabidopsis* is different in that the His kinase activity that defines component 1 in bacteria is not essential to signal transduction in *Arabidopsis*.

Receptorlike Protein Kinases Transduce Signals from Peptides and brassinosteroids

One common motif in plant signaling involves receptorlike kinases (RLKs), which have a single helical segment in the plasma membrane that connects a receptor domain on the outside with a protein Ser/Thr kinase on the cytoplasmic side. This type of receptor participates in the defense mechanism triggered by infection with a bacterial pathogen (Fig. 12–34a). The signal to turn on the genes needed for defense against infection is a peptide (flg22) released by breakdown of flagellin, the major protein of the bacterial flagellum. Binding of flg22 to the FLS2 receptor of *Arabidopsis* induces receptor dimerization and autophosphorylation on Ser and Thr residues, and the downstream effect is activation of a MAPK cascade like that described above for insulin action (Fig. 12–15). The final kinase in this cascade activates a specific transcription factor, triggering synthesis of the proteins that defend against the bacterial infection. The steps between receptor phosphorylation and the MAPK cascade are not yet known. A phosphoprotein phosphatase (KAPP) associates with the active receptor protein and inactivates it by dephosphorylation to end the response.

The MAPK cascade in the plant’s defense against bacterial pathogens is remarkably similar to the innate immune response in mammals (Fig. 12–34b) that is triggered by bacterial lipopolysaccharide and mediated by the Toll-like receptors (TLRs, a name derived from a *Drosophila* mutant originally called Toll (German, “mad”); TLRs were subsequently found in many other organisms and were shown to function in embryonic development). Other membrane receptors use similar mechanisms to activate a MAPK cascade, ultimately activating transcription factors and turning on the genes essential to the defense response.

Most of the several hundred RLKs in plants are presumed to act in similar ways: ligand binding induces dimerization and autophosphorylation, and the activated receptor kinase triggers downstream responses by phosphorylating key proteins at Ser or Thr residues.
FIGURE 12-34 Similarities between the signaling pathways that trigger immune responses in plants and animals. (a) In Arabidopsis thaliana, the peptide flg22, derived from the flagella of a bacterial pathogen, binds to its receptor (FLS) in the plasma membrane, causing the receptor to form dimers and triggering autophosphorylation of the cytosolic protein kinase domain on a Ser or Thr residue (not a Tyr). Thus activated, the protein kinase phosphorylates downstream proteins (not shown). The activated receptor also activates (by means unknown) a MAPK cascade, which leads to phosphorylation of a nuclear protein that normally inhibits the transcription factors WRKY22 and 29; this phosphorylation triggers proteolytic degradation of the inhibitor and frees the transcription factors to stimulate gene expression related to the immune response. (b) In mammals, a toxic bacterial lipopolysaccharide (LPS; see Fig. 7-30) is detected by plasma membrane receptors, which then associate with and activate a soluble protein kinase (IRAK). The major flagellar protein of pathogenic bacteria acts through a similar receptor, also activating IRAK. The activated IRAK initiates two distinct MAPK cascades that end in the nucleus, causing the synthesis of proteins needed in the immune response. Jun, Fos, and NFκB are transcription factors.

SUMMARY 12.9 Signaling in Microorganisms and Plants

- Bacteria and eukaryotic microorganisms have a variety of sensory systems that allow them to sample and respond to their environment. In the two-component system, a receptor His kinase senses the signal and autophosphorylates a His residue, then phosphorylates an Asp residue of the response regulator.
- Plants respond to many environmental stimuli and employ hormones and growth factors to coordinate the development and metabolic activities of their tissues. Plant genomes encode hundreds of signaling proteins, including some very similar to those of mammals.
- Two-component signaling mechanisms common in bacteria are found in modified forms in plants, used in the detection of chemical signals and light.

- Plant receptorlike kinases (RLKs) participate in detecting a wide variety of stimuli, including brassinosteroids, peptides that originate from pathogens, and developmental signals. RLKs autophosphorylate Ser/Thr residues, then activate downstream proteins, which in some cases are MAPK cascades. The end result is increased transcription of specific genes.

12.10 Sensory Transduction in Vision, Olfaction, and Gustation

The detection of light, odors, and tastes (vision, olfaction, and gustation, respectively) in animals is accomplished by specialized sensory neurons that use signal-transduction mechanisms fundamentally similar to those that detect hormones, neurotransmitters, and growth factors. An initial sensory signal is amplified greatly by mechanisms that include gated ion channels and intracellular second
messengers; the system adapts to continued stimulation by changing its sensitivity to the stimulus (desensitization); and sensory input from several receptors is integrated before the final signal goes to the brain.

The Visual System Uses Classic GPCR Mechanisms

In the vertebrate eye, light entering through the pupil is focused on a highly organized collection of light-sensitive neurons (Fig. 12–35). The light-sensing cells are of two types: rods (about 10^9 per retina), which sense low levels of light but cannot discriminate colors, and cones (about 3×10^9 per retina), which are less sensitive to light but can discriminate colors. Both cell types are long, narrow, specialized sensory neurons with two distinct cellular compartments: the outer segment contains dozens of membranous disks loaded with receptor proteins and their photosensitive chromophore retinal; the inner segment contains the nucleus and many mitochondria, which produce the ATP essential to phototransduction.

Like other neurons, rods and cones have a transmembrane electrical potential (V_m), produced by the electrogenic pumping of the Na\(^+\)K\(^+\) ATPase in the plasma membrane of the inner segment (Fig. 12–36).

FIGURE 12–35 Light reception in the vertebrate eye. The lens focuses light on the retina, which is composed of layers of neurons. The primary photosensory neurons are rod cells (yellow), which are responsible for high-resolution and night vision, and cone cells of three subtypes (pink), which initiate color vision. The rods and cones form synapses with several ranks of interconnecting neurons that convey and integrate the electrical signals. The signals eventually pass from ganglion neurons through the optic nerve to the brain.

FIGURE 12–36 Light-induced hyperpolarization of rod cells. The rod cell consists of an outer segment, filled with stacks of membranous disks (not shown) containing the photoreceptor rhodopsin, and an inner segment that contains the nucleus and other organelles (not shown). The inner segment synapses with interconnecting neurons (see Fig. 12–35). Cones have a similar structure. ATP in the inner segment powers the Na\(^+\)K\(^+\) ATPase, which creates a transmembrane electrical potential by pumping 3 Na\(^+\) out for every 2 K\(^+\) pumped in. The membrane potential is reduced by the inflow of Na\(^+\) and Ca\(^{2+}\) through cGMP-gated cation channels in the outer-segment plasma membrane. When rhodopsin absorbs light, it triggers degradation of cGMP (green dots) in the outer segment, causing closure of the ion channel. Without cation influx through this channel, the cell becomes hyperpolarized. This electrical signal is passed to the brain through the ranks of neurons shown in Figure 12–35.
Also contributing to the membrane potential is an ion channel in the outer segment that permits passage of either Na⁺ or Ca²⁺ and is gated (opened) by cGMP. In the dark, rod cells contain enough cGMP to keep this channel open. The membrane potential is therefore determined by the difference between the amount of Na⁺ and K⁺ pumped by the inner segment (which polarizes the membrane) and the influx of Na⁺ through the ion channels of the outer segment (which tends to depolarize the membrane).

The essence of signaling in the rod or cone cell is a light-induced decrease in [cGMP], which causes the cGMP-gated ion channel to close. The plasma membrane then becomes hyperpolarized by the Na⁺-K⁺ ATPase. Rod and cone cells synapse with interconnecting neurons (Fig. 12-35) that carry information about the electrical activity to ganglion neurons near the inner surface of the retina. The ganglion neurons integrate the output from many rod or cone cells and send the resulting signal through the optic nerve to the visual cortex of the brain.

Visual transduction begins when light falls on rhodopsin, many thousands of molecules of which are present in each disk of the outer segments of rod and cone cells. Rhodopsin (Mr 40,000) is an integral protein with seven membrane-spanning α helices (Fig. 12-37), the characteristic GPCR architecture. The light-absorbing pigment (chromophore) 11-cis-retinal is covalently attached to opsin, the protein component of rhodopsin, through a Schiff base to a Lys residue. The retinal molecule lies near the middle of the bilayer (Fig. 12-37), oriented with its long axis approximately in the plane of the membrane. When a photon is absorbed by the retinal component of rhodopsin, the energy causes a photochemical change; 11-cis-retinal is converted to all-trans-retinal (see Figs 1-18b and 10-21). This change in the structure of the chromophore forces conformational changes in the rhodopsin molecule—the first stage in visual transduction.

Retinal is derived from vitamin A₁ (retinol), which is produced from β-carotene (see Fig. 10-21). Dietary deficiency of vitamin A leads to night blindness (the inability to adapt to low light levels), which is relatively common in some developing countries. Vitamin A supplements or vegetables rich in carotene (such as carrots) supply the vitamin and reverse the night blindness.

Excited Rhodopsin Acts through the G Protein Transducin to Reduce the cGMP Concentration

In its excited conformation, rhodopsin interacts with a second protein, transducin, which hovers nearby on the cytoplasmic face of the disk membrane (Fig. 12-37). Transducin (T) belongs to the same family of heterotrimeric GTP-binding proteins as Gₛ and G₁. Although specialized for visual transduction, transducin shares many functional features with Gₛ and G₁. It can bind either GDP or GTP. In the dark, GDP is bound, all three subunits of the protein (Tα, Tβ, and Tγ) remain together, and no signal is sent. When rhodopsin is excited by light, it interacts with transducin, catalyzing the replacement of bound GDP by GTP from the cytosol (Fig. 12-38, steps 1 and 2). Transducin then dissociates into Tα and Tβγ, and the Tα-GTP carries the signal from the excited receptor to the next element in the transduction pathway, a cGMP phosphodiesterase; this enzyme converts cGMP to 5'-GMP (steps 3 and 4). Note that this is not the same cyclic nucleotide phosphodiesterase that hydrolyzes cAMP to terminate the β-adrenergic response. One isoform of the cGMP-specific PDE is unique to the visual cells of the retina.
Light absorption converts 11-cis-retinal to all-trans-retinal, activating rhodopsin (Rh).

Activated rhodopsin catalyzes replacement of GDP by GTP on transducin (T), which then dissociates into Tγ-GTP and Tβγ.

Tγ-GTP activates cGMP phosphodiesterase (PDE) by binding and removing its inhibitory subunit (I).

Active PDE reduces [cGMP] to below the level needed to keep cation channels open.

Activated cGMP phosphodiesterase (PDE) degrades the cGMP-gated ion channels.

Rhodopsin kinase (RK) phosphorylates "bleached" rhodopsin; low [Ca2+] and recoverin (Recover) stimulate this reaction. Arrestin (Arr) binds phosphorylated carboxyl terminus, inactivating rhodopsin.

Slowly, arrestin dissociates, rhodopsin is dephosphorylated, and all-trans-retinal is replaced with 11-cis-retinal. Rhodopsin is ready for another phototransduction cycle.

Cation channels close, preventing influx of Na+ and Ca2+; membrane is hyperpolarized. This signal passes to the brain.

Continued efflux of Ca2+ through the Na+-Ca2+ exchanger reduces cytosolic [Ca2+]i.

The top half of the figure (steps 1 to 5) describes excitation; the bottom (steps 6 to 9), recovery and adaptation after illumination.

The PDE of the retina is an integral protein with its active site on the cytoplasmic side of the disk membrane. In the dark, a tightly bound inhibitory subunit very effectively suppresses the PDE activity. When Tγ-GTP encounters the PDE, the inhibitory subunit leaves the enzyme and instead binds Tα, and the enzyme’s activity immediately increases by several orders of magnitude. Each molecule of the active PDE degrades many molecules of cGMP to the biologically inactive 5′-GMP, lowering [cGMP] in the outer segment within a fraction of a second. At the new, lower [cGMP], the cGMP-gated ion channels close, blocking reentry of Na+ and Ca2+ into the outer segment and hyperpolarizing the membrane of the rod or cone cell (step 5). Through this process, the initial stimulus—a photon—changes the Vm of the cell.

Several steps in the visual-transduction process result in a huge amplification of the signal. Each excited rhodopsin molecule activates at least 500 molecules of transducin, each of which can activate a molecule of the PDE. This phosphodiesterase has a remarkably high turnover number, each activated molecule hydrolyzing 4,200 molecules of cGMP per second. The binding of cGMP to cGMP-gated ion channels is cooperative, and a relatively small change in [cGMP] therefore registers as a large change in ion conductance. The result of these amplifications is exquisite sensitivity to light. Absorption of a single photon closes 1,000 or more ion channels and changes the cell’s membrane potential by about 1 mV.

The Visual Signal Is Quickly Terminated

As your eyes move across this line, the retinal images of the first words disappear rapidly—before you see the next series of words. In that short interval, a great deal of biochemistry has taken place. Very shortly after illumination of the rod or cone cells stops, the photosensory system shuts off. The α subunit of transducin (with bound GTP) has intrinsic GTPase activity. Within
millions of nanoseconds after the decrease in light intensity, GTP is hydrolyzed and \(T_\alpha \) reassociates with \(T_\beta \). The inhibitory subunit of the PDE, which had been bound to \(T_\alpha \)-GTP, is released and reassociates with the enzyme, strongly inhibiting its activity. To return \([\text{cGMP}]\) to its "dark" level, the enzyme guanylyl cyclase converts GTP to cGMP (step 7 in Fig. 12-38) in a reaction that is inhibited by high \([\text{Ca}^{2+}]\) (>100 nM). Calcium levels drop during illumination, because the steady-state \([\text{Ca}^{2+}]\) in the outer segment is the result of outward pumping of \(\text{Ca}^{2+} \) through the \(\text{Na}^+-\text{Ca}^{2+} \) exchanger of the plasma membrane (see Fig. 12-36) and influx of \(\text{Ca}^{2+} \) through open cGMP-gated channels. In the dark, this produces a \([\text{Ca}^{2+}]\) of about 500 nM—enough to inhibit cGMP synthesis. After brief illumination, \(\text{Ca}^{2+} \) entry slows and \([\text{Ca}^{2+}]\) declines (step 6). The inhibition of guanylyl cyclase by \(\text{Ca}^{2+} \) is relieved, and the cyclase converts GTP to cGMP to return the system to its prestimulus state (step 7).

Rhodopsin itself also undergoes changes in response to prolonged illumination. The conformational change induced by light absorption exposes several Thr and Ser residues in the carboxyl-terminal domain. These residues are quickly phosphorylated by rhodopsin kinase (step 8 in Fig. 12-38), which is functionally and structurally homologous to the \(\beta \)-adrenergic kinase (\(\beta \)-ARK) that desensitizes the \(\beta \)-adrenergic receptor (Fig. 12-8). The \(\text{Ca}^{2+} \)-binding protein recoverin inhibits rhodopsin kinase at high \([\text{Ca}^{2+}]\), but the inhibition is relieved when \([\text{Ca}^{2+}]\) drops after illumination, as described above. The phosphorylated carboxyl-terminal domain of rhodopsin is bound by the protein arrestin 1, preventing further interaction between activated rhodopsin and transducin. Arrestin 1 is a close homolog of arrestin 2 (\(\beta \)-AR; Fig. 12-8). On a relatively long time scale (seconds to minutes), the all-trans-retinal of an excited rhodopsin molecule is removed and replaced by 11-cis-retinal, to produce rhodopsin that is ready for another round of excitation (step 9 in Fig. 12-38).

Cone Cells Specialize in Color Vision

Color vision involves a path of sensory transduction in cone cells essentially identical to that described above, but triggered by slightly different light receptors. Three types of cone cells are specialized to detect light from different regions of the spectrum, using three related photoreceptor proteins (opsins). Each cone cell expresses only one kind of opsin, but each type is closely related to rhodopsin in size, amino acid sequence, and presumably three-dimensional structure. The differences among the opsins, however, are great enough to place the chromophore, 11-cis-retinal, in three slightly different environments, with the result that the three photoreceptors have different absorption spectra (Fig. 12-39). We discriminate colors and hues by integrating the output from the three types of cone cells, each containing one of the three photoreceptors.

Vertebrate Olfaction and Gustation Use Mechanisms Similar to the Visual System

The sensory cells that detect odors and tastes have much in common with the rod and cone cells. Olfactory neurons have long thin cilia extending from one end of the cell into a mucous layer that overlays the cell. These cilia present a large surface area for interaction with olfactory signals. The receptors for olfactory stimuli are ciliary membrane proteins with the familiar GPCR structure of seven transmembrane \(\alpha \) helices. The olfactory signal can be any one of the many volatile compounds for which there are specific receptor proteins. Our ability to discriminate odors stems from hundreds of different olfactory receptors in the tongue and nasal passages and from the brain's ability to integrate input from...
The chemist John Dalton (of atomic theory fame) was color-blind. He thought it probable that the vitreous humor of his eyes (the fluid that fills the eyeball behind the lens) was tinted blue, unlike the colorless fluid of normal eyes. He proposed that after his death, his eyes should be dissected and the color of the vitreous humor determined. His wish was honored. The day after Dalton’s death in July 1844, Joseph Ransome dissected his eyes and found the vitreous humor to be perfectly colorless. Ransome, like many scientists, was reluctant to throw samples away. He placed Dalton’s eyes in a jar of preservative, where they stayed for a century and a half.

Then, in the mid-1990s, molecular biologists in England took small samples of Dalton’s retinas and extracted DNA. Using the known gene sequences for the opsins of the red and green light receptors, they amplified the relevant sequences (using techniques described in Chapter 9) and determined that Dalton had the opsin gene for the red photopigment but lacked the opsin gene for the green photopigment. Dalton was a green dichromat. So, 150 years after his death, the experiment Dalton started—by hypothesizing about the cause of his color blindness—was finally finished.

FIGURE 1 Dalton’s eyes.

FIGURE 12-40 Molecular events of olfaction. These interactions occur in the cilia of olfactory receptor cells.
The activated Go11 then activates adenylyl cyclase of the ciliary membrane, which synthesizes cAMP from ATP, raising the local [cAMP]. The cAMP-gated Na⁺ and Ca²⁺ channels of the ciliary membrane open, and the influx of Na⁺ and Ca²⁺ produces a small depolarization called the receptor potential. If a sufficient number of odorant molecules encounter receptors, the receptor potential is strong enough to cause the neuron to fire an action potential. This is relayed to the brain in several stages and registers as a specific smell. All these events occur within 100 to 200 ms.

When the olfactory stimulus is no longer present, the transducing machinery shuts itself off in several ways. A cAMP phosphodiesterase returns [cAMP] to the prestimulus level. Go6 hydrolyzes its bound GTP to GDP, thereby inactivating itself. Phosphorylation of the receptor by a specific kinase prevents its interaction with Go11, by a mechanism analogous to that used to desensitize the β-adrenergic receptor and rhodopsin. And lastly, some odorants are enzymatically destroyed by oxidases.

The sense of taste in vertebrates reflects the activity of gustatory neurons clustered in taste buds on the surface of the tongue. In these sensory neurons, GPCRs are coupled to the heterotrimeric G protein gustducin (very similar to the transducin of rod and cone cells). Sweet-tasting molecules are those that bind receptors in “sweet” taste buds. When the molecule (tastant) binds, gustducin is activated by replacement of bound GDP with GTP and then stimulates cAMP production by adenylyl cyclase. The resulting elevation of [cAMP] activates PKA, which phosphorylates K⁺ channels in the plasma membrane, causing them to close. Reduced efflux of K⁺ depolarizes the cell (Fig. 12-41). Other taste buds specialize in detecting bitter, sour, salty, or umami (savory) tastants, using various combinations of second messengers and ion channels in the transduction mechanisms.

GPCRs of the Sensory Systems Share Several Features with GPCRs of Hormone Signaling Systems

We have now looked at several types of signaling systems (hormone signaling, vision, olfaction, and gustation) in which membrane receptors are coupled to second messenger-generating enzymes through G proteins. As we have intimated, signaling mechanisms must have arisen early in evolution; genomic studies have revealed hundreds of genes encoding GPCRs in vertebrates, arthropods (Drosophila and mosquito), and the roundworm Caenorhabditis elegans. Even the common baker’s yeast Saccharomyces uses GPCRs and G proteins to detect the opposite mating type. Overall patterns have been conserved, and the introduction of variety has given modern organisms the ability to respond to a wide range of stimuli (Table 12-8). Of the approximately 30,000 genes in the human genome, as many as 1,000 encode GPCRs, including hundreds for olfactory stimuli and many “orphan receptors” for which the natural ligand is not yet known.

All well-studied transducing systems that act through heterotrimeric G proteins share some common features, which reflect their evolutionary relatedness (Fig. 12-42). The receptors have seven transmembrane segments, a domain (generally the loop between transmembrane helices 6 and 7) that interacts with a G protein, and a carboxyl-terminal cytoplasmic domain that undergoes reversible phosphorylation on several Ser or Thr residues.
TABLE 12-8 Some Signals Transduced by GPCRs

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine (muscarinic)</td>
<td>Follicle-stimulating hormone (FSH)</td>
</tr>
<tr>
<td>Adenosine</td>
<td>GABA (y-aminobutyric acid)</td>
</tr>
<tr>
<td>Angiotensin</td>
<td>Glucagon</td>
</tr>
<tr>
<td>ATP (extracellular)</td>
<td>Glutamate</td>
</tr>
<tr>
<td>Bradykinin</td>
<td>Growth hormone–releasing hormone (GHRH)</td>
</tr>
<tr>
<td>Calcitonin</td>
<td>Histamine</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>Light</td>
</tr>
<tr>
<td>Cholecystokinin</td>
<td>Luteinizing hormone (LH)</td>
</tr>
<tr>
<td>Corticotropin-releasing</td>
<td>Melatonin</td>
</tr>
<tr>
<td>factor (CRF)</td>
<td>Odorants</td>
</tr>
<tr>
<td>Cyclic AMP</td>
<td>Oxytocin</td>
</tr>
<tr>
<td>(Dictyostelium discoidum)</td>
<td>Platelet-activating factor</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Prostaglandins</td>
</tr>
<tr>
<td></td>
<td>Secretin</td>
</tr>
<tr>
<td></td>
<td>Serotonin</td>
</tr>
<tr>
<td></td>
<td>Somatostatin</td>
</tr>
<tr>
<td></td>
<td>Tastants</td>
</tr>
<tr>
<td></td>
<td>Thyrotropin</td>
</tr>
<tr>
<td></td>
<td>Thyrotropin–releasing hormone (TRH)</td>
</tr>
<tr>
<td></td>
<td>Vasoactive intestinal peptide</td>
</tr>
<tr>
<td></td>
<td>Yeast mating factors</td>
</tr>
</tbody>
</table>

The ligand-binding site (or, in the case of light reception, the light receptor) is buried deep in the membrane and includes residues from several of the transmembrane segments. Ligand binding (or light) induces a conformational change in the receptor, exposing a domain that can interact with a G protein. Heterotrimeric G proteins activate or inhibit effector enzymes (adenylyl cyclase, PDE, or PLC), which change the concentration of a second messenger (cAMP, cGMP, IP3, or Ca2+). In the hormone-detecting systems, the final output is an activated protein kinase that regulates some cellular process by phosphorylating a protein critical to that process. In sensory neurons, the output is a change in membrane potential and a consequent electrical signal that passes to another neuron in the pathway connecting the sensory cell to the brain.

All these systems self-inactivate. Bound GTP is converted to GDP by the intrinsic GTPase activity of G proteins, often augmented by GTPase-activating proteins (GAPs) or RGS proteins (regulators of G-protein signaling; see Fig. 12–5). In some cases, the effectors that are the targets of modulation by G proteins also serve as GAPs. The desensitization mechanism involving phosphorylation of the carboxyl-terminal region followed by arrestin binding is widespread, and may be universal.

![FIGURE 12-42 Common features of signaling systems that detect hormones, light, smells, and tastes.](image)

GPCRs provide signal specificity, and their interaction with G proteins provides signal amplification. Heterotrimeric G proteins activate effector enzymes: adenylyl cyclase (AC), phospholipase C (PLC), and phosphodiesterases (PDEs) that degrade cAMP or cGMP. Changes in concentration of the second messengers (cAMP, cGMP, IP3) result in alterations of enzymatic activities by phosphorylation or alterations in the permeability (p) of surface membranes to Ca2+, Na+, and K+. The resulting depolarization or hyperpolarization of the sensory cell (the signal) passes through relay neurons to sensory centers in the brain. In the best-studied cases, desensitization includes phosphorylation of the receptor and binding of a protein (arrestin) that interrupts receptor–G protein interactions. VR is the vasopressin receptor; β-AR is the β-adrenergic receptor. Other receptor and G-protein abbreviations are as used in earlier illustrations.
SUMMARY 12.10 Sensory Transduction in Vision, Olfaction, and Gustation

- Vision, olfaction, and gustation in vertebrates employ GPCRs, which act through heterotrimeric G proteins to change the V_m of a sensory neuron.
- In rod and cone cells of the retina, light activates rhodopsin, which activates the G protein transducin. The freed α subunit of transducin activates a cGMP phosphodiesterase, which lowers [cGMP] and thus closes cGMP-dependent ion channels in the outer segment of the neuron. The resulting hyperpolarization of the rod or cone cell carries the signal to the next neuron in the pathway, and eventually to the brain.
- In olfactory neurons, olfactory stimuli, acting through GPCRs and G proteins, trigger either an increase in [cAMP] (by activating adenylyl cyclase) or an increase in [Ca$^{2+}$] (by activating PLC). These second messengers affect ion channels and thus the V_m.
- Gustatory neurons have GPCRs that respond to tastants by altering levels of cAMP, which changes V_m by gating ion channels.
- There is a high degree of conservation of signaling proteins and transduction mechanisms across signaling systems and across species.

12.11 Regulation of the Cell Cycle by Protein Kinases

One of the most dramatic manifestations of signaling pathways is the regulation of the eukaryotic cell cycle. During embryonic growth and later development, cell division occurs in virtually every tissue. In the adult organism most tissues become quiescent. A cell's "decision" to divide or not is of crucial importance to the organism. When the regulatory mechanisms that limit cell division are defective and cells undergo unregulated division, the result is catastrophic—cancer. Proper cell division requires a precisely ordered sequence of biochemical events that assures every daughter cell a full complement of the molecules required for life. Investigations into the control of cell division in diverse eukaryotic cells have revealed universal regulatory mechanisms. Signaling mechanisms much like those discussed above are central in determining whether and when a cell undergoes cell division, and they also ensure orderly passage through the stages of the cell cycle.

The Cell Cycle Has Four Stages

Cell division accompanying mitosis in eukaryotes occurs in four well-defined stages (Fig. 12–43). In the S (synthesis) phase, the DNA is replicated to produce copies for both daughter cells. In the G2 phase (G indicates the gap between divisions), new proteins are synthesized and the cell approximately doubles in size. In the M phase (mitosis), the maternal nuclear envelope breaks down, paired chromosomes are pulled to opposite poles of the cell, each set of daughter chromosomes is surrounded by a newly formed nuclear envelope, and cytokinesis pinches the cell in half, producing two daughter cells (see Fig. 24–25). In embryonic or rapidly proliferating tissue, each daughter cell divides again, but only after a waiting period (G1). In cultured animal cells the entire process takes about 24 hours.

After passing through mitosis and into G1, a cell either continues through another division or ceases to divide, entering a quiescent phase (G0) that may last hours, days, or the lifetime of the cell. When a cell in G0 begins to divide again, it reenters the division cycle through the G1 phase. Differentiated cells such as hepatocytes or adipocytes have acquired their specialized function and form; they remain in the G0 phase. Stem cells retain their potential to divide and to differentiate into any of a number of cell types.

Levels of Cyclin-Dependent Protein Kinases Oscillate

The timing of the cell cycle is controlled by a family of protein kinases with activities that change in response to cellular signals. By phosphorylating specific proteins at precisely timed intervals, these protein kinases orchestrate the metabolic activities of the cell to produce orderly cell division. The kinases are heterodimers with a regulatory subunit, cyclin, and a catalytic subunit, cyclin-dependent protein kinase (CDK). In the absence of
cyclin, the catalytic subunit is virtually inactive. When cyclin binds, the catalytic site opens up, a residue essential to catalysis becomes accessible (Fig. 12–44), and the activity of the catalytic subunit increases 10,000-fold. Animal cells have at least 10 different cyclins (designated A, B, and so forth) and at least 8 CDKs (CDK1 through CDK8), which act in various combinations at specific points in the cell cycle. Plants also use a family of CDKs to regulate their cell division in root and shoot meristems, the principal tissues in which division occurs.

In a population of animal cells undergoing synchronous division, some CDK activities show striking oscillations (Fig. 12–45). These oscillations are the result of four mechanisms for regulating CDK activity: phosphorylation or dephosphorylation of the CDK, controlled degradation of the cyclin subunit, periodic synthesis of CDKs and cyclins, and the action of specific CDK-inhibiting proteins. In general, active CDKs enable a cell to enter a stage of cell division.

Regulation of CDKs by Phosphorylation The activity of a CDK is strikingly affected by phosphorylation and dephosphorylation of two critical residues in the protein (Fig. 12–46a). Phosphorylation of Tyr\(^{16}\) near the amino terminus renders CDK2 inactive; the \(\text{P}^-\text{Y}^-\text{Y}^-\text{r}\) residue is in the ATP-binding site of the kinase, and the negatively charged phosphate group blocks the entry of ATP. A specific phosphatase (a PTPase) dephosphorylates this \(\text{P}^-\text{Y}^-\text{Y}^-\text{r}\) residue, permitting the binding of ATP. Phosphorylation of Thr\(^{16}\) in the “T loop” of CDK, catalyzed by the CDK-activating kinase, forces the T loop out of the substrate-binding cleft, permitting substrate binding and catalytic activity (see Fig. 12–44c).
12.11 Regulation of the Cell Cycle by Protein Kinases

Cyclin synthesis leads to its accumulation.

No cyclin present; CDK is inactive.

Cyclin-CDK complex forms, but phosphorylation on Tyr^{15} blocks ATP-binding site; still inactive.

Phosphorylation of Thr^{160} in T loop and removal of Tyr^{15} phosphoryl group activates cyclin-CDK manyfold.

CDK phosphorylates phosphatase, which activates more CDK.

CDK phosphorylates DBRP, activating it.

DBRP triggers addition of ubiquitin molecules to cyclin by ubiquitin ligase.

Cyclin is degraded by proteasome, leaving CDK inactive.

CDK activates more CDK.

Phosphorylation of Thr^{160} in T loop activates cyclin-CDK manyfold.

Controlled Degradation of Cyclin

Highly specific and precisely timed proteolytic breakdown of mitotic cyclins regulates CDK activity throughout the cell cycle. Progress through mitosis requires first the activation of the catalytic subunit of the M-phase CDK. These cyclins contain near their amino terminus the sequence -Arg-Thr-Ala-Leu-Gly-Asp-Ile-Gly-Asn-, the “destruction box,” which targets them for degradation. This usage of “box” derives from the common practice, in diagramming the sequence of a nucleic acid or protein, of enclosing within a box a short sequence of nucleotide or amino acid residues with some specific function. It does not imply any three-dimensional structure.) The protein DBRP (destruction box recognizing protein) recognizes this sequence and initiates the process of cyclin degradation by bringing together the cyclin and another protein, ubiquitin. Cyclin and activated ubiquitin are covalently joined by the enzyme ubiquitin ligase (Fig. 12-46b). Several more ubiquitin molecules are then appended, providing the signal for a proteolytic enzyme complex, or proteasome, to degrade cyclin.

What controls the timing of cyclin breakdown? A feedback loop occurs in the overall process shown in Figure 12-46. Increased CDK activity activates cyclin proteolysis. Newly synthesized cyclin associates with and activates CDK, which phosphorylates and activates DBRP. Active DBRP then causes proteolysis of cyclin. The lowered cyclin level causes a decline in CDK activity, and the activity of DBRP also drops through slow,

One circumstance that triggers this control mechanism is the presence of single-strand breaks in DNA, which leads to arrest of the cell cycle in G2. A specific protein kinase (called Rad3 in yeast), which is activated by single-strand breaks, triggers a cascade leading to the inactivation of the PTPase that dephosphorylates Thr^{160} of CDK. The CDK remains inactive and the cell is arrested in G2. The cell cannot divide until the DNA is repaired and the effects of the cascade are reversed.

FIGURE 12-46 Regulation of CDK by phosphorylation and proteolysis. (a) The cyclin-dependent protein kinase activated at the time of mitosis (the M-phase CDK) has a “T loop” that can fold into the substrate-binding site. When Thr^{160} in the T loop is phosphorylated, the loop moves out of the substrate-binding site, activating the CDK.

(b) The active cyclin-CDK complex triggers its own inactivation by phosphorylation of DBRP (destruction box recognizing protein; step 5). DBRP and ubiquitin ligase then attach several molecules of ubiquitin (U) to cyclin (step 7), targeting it for destruction by proteasomes, proteolytic enzyme complexes (step 8).
constant dephosphorylation and inactivation by a DBRP phosphatase. The cyclin level is ultimately restored by synthesis of new cyclin molecules.

The role of ubiquitin and proteasomes is not limited to the regulation of cyclin; as we shall see in Chapter 27, both also take part in the turnover of cellular proteins, a process fundamental to cellular housekeeping.

Regulated Synthesis of CDKs and Cyclins The third mechanism for changing CDK activity is regulation of the rate of synthesis of cyclin or CDK or both. For example, cyclin D, cyclin E, CDK2, and CDK4 are synthesized only when a specific transcription factor, E2F, is present in the nucleus to activate transcription of their genes. Synthesis of E2F is in turn regulated by extracellular signals such as growth factors and cytokines (developmental signals that induce cell division), compounds found to be essential for the division of mammalian cells in culture. They induce the synthesis of specific nuclear transcription factors essential to the production of the enzymes of DNA synthesis. Growth factors trigger phosphorylation of the nuclear proteins Jun and Fos, transcription factors that promote the synthesis of a variety of gene products, including cyclins, CDKs, and E2F. In turn, E2F controls production of several enzymes essential for the synthesis of deoxynucleotides and DNA, enabling cells to enter the S phase (Fig. 12-47).

Inhibition of CDKs Finally, specific protein inhibitors bind to and inactivate specific CDKs. One such protein is p21, which we discuss below.

These four control mechanisms modulate the activity of specific CDKs that, in turn, control whether a cell will divide, differentiate, become permanently quiescent, or begin a new cycle of division after a period of quiescence. The details of cell cycle regulation, such as the number of different cyclins and kinases and the combinations in which they act, differ from species to species, but the basic mechanism has been conserved in the evolution of all eukaryotic cells.

CDKs Regulate Cell Division by Phosphorylating Critical Proteins

We have examined how cells maintain close control of CDK activity, but how does the activity of CDK control the cell cycle? The list of target proteins that CDKs are known to act upon continues to grow, and much remains to be learned. But we can see a general pattern behind CDK regulation by inspecting the effect of CDKs on the structures of lamin and myosin and on the activity of retinoblastoma protein.

The structure of the nuclear envelope is maintained in part by highly organized meshworks of intermediate filaments composed of the protein lamin. Breakdown of the nuclear envelope before segregation of the sister chromatids in mitosis is partly due to the phosphorylation of lamin by a CDK, which causes lamin filaments to depolymerize.

A second kinase target is the ATP-driven contractile machinery (actin and myosin) that pinches a dividing cell into two equal parts during cytokinesis. After the division, CDK phosphorylates a small regulatory subunit of myosin, causing dissociation of myosin from actin filaments and inactivating the contractile machinery. Subsequent dephosphorylation allows reassembly of the contractile apparatus for the next round of cytokinesis.

A third and very important CDK substrate is the retinoblastoma protein, pRb; when DNA damage is detected, this protein participates in a mechanism that arrests cell division in G1 (Fig. 12-48). Named for the retinal tumor cell line in which it was discovered, pRb functions in most, perhaps all, cell types to regulate cell division in response to a variety of stimuli. Unphosphorylated pRb binds the transcription factor E2F; while bound to pRb, E2F cannot promote transcription of a group of genes necessary for DNA synthesis (the genes for DNA polymerase α, ribonucleotide reductase, and other proteins; see Chapter 25). In this state, the cell cycle cannot proceed from the G1 to the S phase, the step that commits a cell to mitosis and cell division. The pRb-E2F blocking mechanism is relieved when pRb is phosphorylated by cyclin E-CDK2, which occurs in response to a signal for cell division to proceed.

When the protein kinases ATM and ATR detect damage to DNA (signaled by the presence of the protein MRN
cells. When the damage is too severe to allow effective repair, this same machinery triggers a process (apoptosis, described below) that leads to the death of the cell, preventing the possible development of a cancer.

SUMMARY 12.11 Regulation of the Cell Cycle by Protein Kinases

- Progression through the cell cycle is regulated by the cyclin-dependent protein kinases (CDKs), which act at specific points in the cycle, phosphorylating key proteins and modulating their activities. The catalytic subunit of CDKs is inactive unless associated with the regulatory cyclin subunit.

- The activity of a cyclin-CDK complex changes during the cell cycle through differential synthesis of CDKs, specific degradation of cyclin, phosphorylation and dephosphorylation of critical residues in CDKs, and binding of inhibitory proteins to specific cyclin-CDKs.

12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death

Tumors and cancer are the result of uncontrolled cell division. Normally, cell division is regulated by a family of extracellular growth factors, proteins that cause resting cells to divide and, in some cases, differentiate. The result is a precise balance between the formation of new cells (such as skin cells that die and are replaced every few weeks, or white blood cells that are replaced every few days) and cell destruction. When this balance is disturbed by defects in regulatory proteins, the result is sometimes the formation of a clone of cells that divide repeatedly and without regulation (a tumor) until their presence interferes with the function of normal tissues—cancer. The direct cause is almost always a genetic defect in one or more of the proteins that regulate cell division. In some cases, a defective gene is inherited from one parent; in other cases, the mutation occurs when a toxic compound from the environment (a mutagen or carcinogen) or high-energy radiation interacts with the DNA of a single cell to damage it and introduce a mutation. In most cases there is both an inherited and an environmental contribution, and in most cases, more than one mutation is required to cause completely unregulated division and full-blown cancer.

Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle

Oncogenes were originally discovered in tumor-causing viruses, then later found to be derived from genes in the animal host cells, proto-oncogenes, which encode growth-regulating proteins. During a viral infection, the host DNA sequence of a proto-oncogene is sometimes copied into the viral genome, where
it proliferates with the virus. In subsequent viral infection cycles, the proto-oncogenes can become defective by truncation or mutation. Viruses, unlike animal cells, do not have effective mechanisms for correcting mistakes during DNA replication, so they accumulate mutations rapidly. When a virus carrying an oncogene infects a new host cell, the viral DNA (and oncogene) can be incorporated into the host cell's DNA, where it can now interfere with the regulation of cell division in the host cell. In an alternative, nonviral mechanism, a single cell in a tissue exposed to carcinogens may suffer DNA damage that renders one of its regulatory proteins defective, with the same effect as the oncogenic mechanism: failed regulation of cell division.

The mutations that produce oncogenes are genetically dominant; if either of a pair of chromosomes contains a defective gene, that gene product sends the signal "divide" and a tumor will result. The oncogenic defect can be in any of the proteins involved in communicating the "divide" signal. Oncogenes discovered thus far include those that encode secreted proteins, growth factors, transmembrane proteins (receptors), cytoplasmic proteins (G proteins and protein kinases), and the nuclear transcription factors that control the expression of genes essential for cell division (Jun, Fos).

Some oncogenes encode surface receptors with defective or missing signal-binding sites, such that their intrinsic Tyr kinase activity is unregulated. For example, the oncoprotein ErbB is essentially identical to the normal receptor for epidermal growth factor, except that ErbB lacks the amino-terminal domain that normally binds EGF (Fig. 12–49) and as a result sends the "divide" signal whether EGF is present or not. Mutations in erbB2, the gene for a receptor Tyr kinase related to ErbB, are commonly associated with cancers of the glandular epithelium in breast, stomach, and ovary. (For an explanation of the use of abbreviations in naming genes and their products, see Chapter 25.)

The prominent role played by protein kinases in signaling processes related to normal and abnormal cell division has made them a prime target in the development of drugs for the treatment of cancer (Box 12–5). Mutant forms of the G protein Ras are common in tumor cells. The ras oncogene encodes a protein with normal GTP binding but no GTPase activity. The mutant Ras protein is therefore always in its activated (GTP-bound) form, regardless of the signals arriving through normal receptors. The result can be unregulated growth. Mutations in ras are associated with 30% to 50% of lung and colon carcinomas and more than 90% of pancreatic carcinomas.

Defects in Certain Genes Remove Normal Restraints on Cell Division

Tumor suppressor genes encode proteins that normally restrain cell division. Mutation in one or more of these genes can lead to tumor formation. Unregulated growth due to defective tumor suppressor genes, unlike that due to oncogenes, is genetically recessive; tumors form only if both chromosomes of a pair contain a defective gene. This is because the function of these genes is to prevent cell division, and if either copy of the gene for such a protein is normal, the normal inhibition of division will take place. In a person who inherits one correct copy and one defective copy, every cell begins with one defective copy of the gene. If any one of those 10^{12} somatic cells undergoes mutation in the one good copy, a tumor may grow from that doubly mutant cell. Mutations in both copies of the genes for pRb, p53, or p21 yield cells in which the normal restraint on cell division is lost and a tumor forms.

Retinoblastoma occurs in children and causes blindness if not surgically treated. The cells of a retinoblastoma have two defective versions of the Rb gene (two defective alleles). Very young children who develop retinoblastoma commonly have multiple tumors in both eyes. These children have inherited one defective copy of the Rb gene, which is present in every cell; each tumor is derived from a single retinal cell that has undergone a mutation in its one good copy of the Rb gene. (A fetus with two mutant alleles in every cell is nonviable.) People with retinoblastoma who survive childhood also have a high incidence of cancers of the lung, prostate, and breast later in life.

A far less likely event is that a person born with two good copies of the Rb gene will have independent mutations in both copies in the same cell. Some individuals do develop retinoblastomas later in childhood, usually with only one tumor in one eye. These individuals were presumably born with two good copies (alleles) of Rb in
When a single cell divides without any regulatory limitation, it eventually gives rise to a clone of cells so large that it interferes with normal physiological functions (Fig. 1). This is cancer, a leading cause of death in the developed world, and increasingly so in the developing world. In all types of cancer, the normal regulation of cell division has become dysfunctional due to defects in one or more genes. For example, genes encoding proteins that normally send intermittent signals for cell division become oncogenes, producing constitutively active signaling proteins; or genes encoding proteins that normally restrain cell division (tumor suppressor genes) mutate to produce proteins that lack this braking function. In many tumors, both kinds of mutation have occurred.

Many oncogenes and tumor suppressor genes encode protein kinases or proteins that act in pathways upstream from protein kinases. It is therefore reasonable to hope that specific inhibitors of protein kinases could prove valuable in the treatment of cancer. For example, a mutant form of the EGF receptor is a constantly active receptor tyrosine kinase (RTK), signaling cell division whether EGF is present or not (see Fig. 12-49). In about 30% of all women with invasive breast cancer, a mutation in the receptor gene HER2/neu yields an RTK with activity increased up to 100-fold. Another RTK, vascular endothelial growth factor receptor (VEGF-R), must be activated for the formation of new blood vessels (angiogenesis) to produce a solid tumor with its own blood supply, and inhibition of VEGF-R might starve a tumor of essential nutrients. Nonreceptor Tyr kinases can also mutate, resulting in constant signaling and unregulated cell division. For example, the oncogene Abl (from the Abelson leukemia virus) is associated with acute myeloid leukemia, a relatively rare blood disease (~5,000 cases a year in the United States). Another group of oncogenes encode unregulated cyclin-dependent protein kinases. In each of these cases, specific protein kinase inhibitors might be valuable chemotherapeutic agents in the treatment of disease. Not surprisingly, huge efforts are under way to develop such inhibitors. How should one approach this challenge?

Protein kinases of all types show striking conservation of structure at the active site. All share with the prototypical PKA structure the features shown in Figure 2: two lobes that enclose the active site, with a P loop that helps to align and bind the phosphoryl groups of ATP, an activation loop that moves to open the active site to the protein substrate, and a C helix that changes position as the enzyme is activated, bringing the residues in the substrate-binding cleft into their binding positions.

The simplest protein kinase inhibitors are ATP analogs that occupy the ATP-binding site but cannot serve as phosphoryl group donors. Many such compounds are known, but their clinical usefulness is limited by their lack of selectivity—they inhibit virtually all protein kinases and would produce unacceptable side effects. (continued on next page)
effects. More selectivity is seen with compounds that fill part of the ATP-binding site but also interact outside this site, with parts of the protein unique to the target protein kinase. A third possible strategy is based on the fact that although the active conformations of all protein kinases are similar, their inactive conformations are not. Drugs that target the inactive conformation of a specific protein kinase and prevent its conversion to the active form may have a higher specificity of action. A fourth approach employs the great specificity of antibodies. For example, monoclonal antibodies (p. 173) that bind the extracellular portions of specific RTKs could eliminate the receptors' kinase activity by preventing dimerization or by causing their removal from the cell surface. In some cases, an antibody selectively binding to the surface of cancer cells could cause the immune system to attack those cells.

Between 1998 and mid-2006, only eight new drugs were approved in the United States for use in cancer therapy: five small molecules and three monoclonal antibodies, each having shown efficacy in clinical trials. For example, imatinib mesylate (Gleevec; Fig. 3a), one of the small molecule inhibitors, has proved nearly 100% effective in bringing about remission in patients with early-stage chronic myeloid leukemia. Erlotinib (Tarceva; Fig. 3b), which targets EGF-R, is effective against advanced non-small-cell lung cancer (NSCLC). Because many cell-division signaling systems involve more than one protein kinase, inhibitors that act on several protein kinases may be useful in the treatment of cancer. Sunitinib (Sutent) and sorafenib (Nexavar) target several protein kinases, including VEGF-R and PDGF-R. These two drugs are in clinical use for patients with gastrointestinal stromal tumors and advanced renal cell carcinoma, respectively. Trastuzumab (Herceptin), cetuximab (Erbitux), and bevacizumab (Avastin) are monoclonal antibodies that target HER2/neu, EGF-R, and VEGF-R, respectively; all three drugs are in clinical use for certain types of cancer.

At least a hundred more compounds are in preclinical trials. Among the drugs being evaluated are some obtained from natural sources and some produced by synthetic chemistry. Indirubin is a component of a Chinese herbal preparation traditionally used to treat certain leukemias; it inhibits CDK2 and CDK5. Flavopiridol (Fig. 3d), a synthetic analog of an alkaloid extracted from the stem bark of the Indian plant Ampelopsis rohituka, is a general CDK inhibitor. With several hundred potential anticancer drugs heading toward clinical testing, it is realistic to hope that some will prove more effective or more target-specific than those now in use.
every cell, but both Rb alleles in a single retinal cell have undergone mutation, leading to a tumor. After about age three, retinal cells stop dividing, and retinoblastomas at later ages are quite rare.

Stability genes (also called caretaker genes) encode proteins that function in the repair of major genetic defects that result from aberrant DNA replication, ionizing radiation, or environmental carcinogens. Mutations in these genes lead to a high frequency of unrepaired damage (mutations) in other genes, including proto-oncogenes and tumor suppressor genes, and thus to cancer. Among the stability genes are ATM (see Fig. 12–48); the XP gene family, in which mutations lead to xeroderma pigmentosum; and the BRCAI genes associated with some types of breast cancer (see Box 25–1).

Mutations in the gene for p53 also cause tumors; in more than 90% of human cutaneous squamous cell carcinomas (skin cancers) and in about 50% of all other human cancers, p53 is defective. Those very rare individuals who inherit one defective copy of p53 commonly have the Li-Fraumeni cancer syndrome, with multiple cancers (of the breast, brain, bone, blood, lung, and skin) occurring at high frequency and at an early age. The explanation for multiple tumors in this case is the same as that for Rb mutations: an individual born with one defective copy of p53 in every somatic cell is likely to suffer a second p53 mutation in more than one cell during his or her lifetime.

In summary, then, three classes of defects can contribute to the development of cancer: oncogenes, in which the defect is the equivalent of a car's accelerator pedal being stuck down, with the engine racing; mutated tumor suppressor genes, in which the defect leads to the equivalent of brake failure; and mutated stability genes, with the defect leading to unrepaired damage to the cell's replication machinery, the equivalent of an unskilled car mechanic.

Mutations in oncogenes and tumor suppressor genes do not have an all-or-none effect. In some cancers, perhaps in all, the progression from a normal cell to a malignant tumor requires an accumulation of mutations (sometimes over several decades), none of which, alone, is responsible for the end effect. For example, the development of colorectal cancer has several recognizable stages, each associated with a mutation (Fig. 12–50). If an epithelial cell in the colon undergoes mutation of both copies of the tumor suppressor gene APC (adenomatous polyposis coli), it begins to divide faster than normal and produces a clone of itself, a benign polyp (early adenoma). For reasons not yet known, the APC mutation results in chromosomal instability, and whole regions of a chromosome are lost or rearranged during cell division. This instability can lead to another mutation, commonly in ras, that converts the clone into an intermediate adenoma. A third mutation (often in the tumor suppressor gene DCC) leads to a late adenoma. Only when both copies of p53 become defective does this cell mass become a carcinoma—a malignant, life-threatening tumor. The full sequence therefore requires at least seven genetic “hits”: two on each of three tumor suppressor genes (APC, DCC, and p53) and one on the proto-oncogene ras. There are probably several other routes to colorectal cancer as well, but the principle that full malignancy results only from multiple mutations is likely to hold true for all of them. When a polyp is detected in the early adenoma stage and the cells containing the first mutations are removed surgically, late adenomas and carcinomas will not develop; hence the importance of early detection. Cells and organisms, too, have their early detection systems. For example, the ATM and ATR proteins described in Section 12.11 can detect DNA damage too extensive to be repaired effectively. They then trigger, through a pathway that includes p53, the process of apoptosis, in which a cell that has become dangerous to the organism kills itself.

Apoptosis Is Programmed Cell Suicide

Many cells can precisely control the time of their own death by the process of programmed cell death, or apoptosis (app'-a-toe'-sis; from the Greek for “dropping off,” as in leaves dropping in the fall). One trigger for apoptosis is irreparable damage to DNA. Programmed cell death also occurs during the development of an
embryo, when some cells must die to give a tissue or organ its final shape. Carving fingers from stubby limb buds requires the precisely timed death of cells between developing finger bones. During development of the nematode *C. elegans* from a fertilized egg, exactly 131 cells (of a total of 1,090 somatic cells in the embryo) must undergo programmed death in order to construct the adult body.

Apoptosis also has roles in processes other than development. If a developing antibody-producing cell generates antibodies against a protein or glycoprotein normally present in the body, that cell undergoes programmed death in the thymus gland—an essential mechanism for eliminating anti-self antibodies. The monthly sloughing of cells of the uterine wall (menstruation) is another case of apoptosis mediating normal cell death. The dropping of leaves in the fall is the result of apoptosis in specific cells of the stem. Sometimes cell suicide is not programmed but occurs in response to biological circumstances that threaten the rest of the organism. For example, a virus-infected cell that dies before completion of the infection cycle prevents spread of the virus to nearby cells. Severe stresses such as heat, hyperosmolarity, UV light, and gamma irradiation also trigger cell suicide; presumably the organism is better off with any aberrant, potentially mutated cells dead.

The regulatory mechanisms that trigger apoptosis involve some of the same proteins that regulate the cell cycle. The signal for suicide often comes from outside, through a surface receptor. Tumor necrosis factor (TNF), produced by cells of the immune system, interacts with cells through specific TNF receptors. These receptors have TNF-binding sites on the outer face of the plasma membrane and a "death domain" (~80 amino acid residues) that carries the self-destruct signal through the membrane to cytosolic proteins such as TRADD (TNF receptor-associated death domain) (Fig. 12–51). Another receptor, Fas, has a similar death domain that allows it to interact with the cytosolic protein FADD (Fas-associated death domain), which activates the cytosolic protease caspase 8. This enzyme belongs to a family of proteases that participate in apoptosis; all are synthesized as inactive proenzymes, all have a critical Cys residue at the active site, and all hydrolyze their target proteins on the carboxyl-terminal side of specific Asp residues (hence the name caspase, from Cys and Asp).

When caspase 8, an "initiator" caspase, is activated by an apoptotic signal carried through FADD, it further self-activates by cleaving its own proenzyme form. Mitochondria are one target of active caspase 8. The protease causes the release of certain proteins contained between the inner and outer mitochondrial membranes: cytochrome *c* (Chapter 19) and several "effector" caspases. Cytochrome *c* binds to the proenzyme form of the effector enzyme caspase 9 and stimulates its proteolytic activation. The activated caspase 9 in turn catalyzes wholesale destruction of cellular proteins—a major cause of apoptotic cell death. One specific target of caspase action is a caspase-activated deoxyribonuclease.

In apoptosis, the monomeric products of protein and DNA degradation (amino acids and nucleotides) are released in a controlled process that allows them to be taken up and reused by neighboring cells. Apoptosis thus allows the organism to eliminate a cell that is unneeded or potentially dangerous without wasting its components.

SUMMARY 12.12 Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death

- Oncogenes encode defective signaling proteins. By continually giving the signal for cell division, they lead to tumor formation. Oncogenes are genetically dominant and may encode defective growth factors, receptors, G proteins, protein kinases, or nuclear regulators of transcription.
- Tumor suppressor genes encode regulatory proteins that normally inhibit cell division; mutations in these genes are genetically recessive but can lead to tumor formation.
Cancer is generally the result of an accumulation of mutations in oncogenes and tumor suppressor genes.

When stability genes, which encode proteins necessary for the repair of genetic damage, are mutated, other mutations go unrepaired, including mutations in proto-oncogenes and tumor suppressor genes that can lead to cancer.

Apoptosis can be triggered by extracellular signals such as TNF, acting through plasma membrane receptors.

Further Reading

General

Historical account of protein phosphorylation.

A short, intermediate level review of FRET.

G Protein-Coupled Receptors (GPCRs)

Advanced review; one of five reviews on arrestins in this issue.

The editorial introduction to a series of 20 papers on GPCRs.

Introduction to a series of short reviews on G proteins.

This introduces five excellent advanced reviews on the roles of arrestin.
Receptor Enzymes

The basis for techniques such as those described in Box 12-3.

Adaptor Proteins and Membrane Rafts

Intermediate review of AKAPs.

Receptor Ion Channels

See also Chapter 11, Further Reading, Ion Channels.

Short, intermediate-level review of human diseases associated with defects in ion channels.

Short, intermediate-level description of receptor allosteroy, using the acetylcholine receptor as example.

Calcium Ions in Signaling

Intermediate review.

Advanced review of methods for estimating intracellular Ca²⁺ levels in real time.

Integrins

Steroid Hormone Receptors and Action

Brief, intermediate-level review.

Signaling in Plants and Bacteria

Intermediate review.

Advanced review.

Intermediate-level review.

Advanced review.

Vision, Olfaction, and Gustation

One of six short reviews on vision in this journal issue.

Cell Cycle and Cancer

Problems

1. Hormone Experiments in Cell-Free Systems In the 1950s, Earl W. Sutherland, Jr., and his colleagues carried out pioneering experiments to elucidate the mechanism of action of epinephrine and glucagon. Given what you have learned in this chapter about hormone action, interpret each of the experiments described below. Identify substance X and indicate the significance of the results.

(a) Addition of epinephrine to a homogenate of normal liver resulted in an increase in the activity of glycogen phosphorylase. However, when the homogenate was centrifuged at a high speed and epinephrine or glucagon was added to the clear supernatant fraction that contains phosphorylase, no increase in the phosphorylase activity occurred.

(b) When the particulate fraction from the centrifugation in (a) was treated with epinephrine, substance X was produced. The substance was isolated and purified. Unlike epinephrine, substance X activated glycogen phosphorylase when added to the clear supernatant fraction of the centrifuged homogenate.

(c) Substance X was heat-stable; that is, heat treatment did not affect its capacity to activate phosphorylase. (Hint: Would this be the case if substance X were a protein?) Substance X was nearly identical to a compound obtained when pure ATP was treated with barium hydroxide. (Fig. 8-6 will be helpful.)

2. Effect of Dibutyryl cAMP versus cAMP on Intact Cells The physiological effects of epinephrine should in principle be mimicked by addition of cAMP to the target cells. In practice, addition of cAMP to intact target cells elicits only a minimal physiological response. Why? When the structurally related derivative dibutyryl cAMP (shown below) is added to intact cells, the expected physiological response is readily apparent. Explain the basis for the difference in cellular response to these two substances. Dibutyryl cAMP is widely used in studies of cAMP function.

![Dibutyryl cAMP](image)

3. Effect of Cholera Toxin on Adenylyl Cyclase

The gram-negative bacterium Vibrio cholerae produces a protein, cholera toxin (Mr, 90,000), that is responsible for the characteristic symptoms of cholera: extensive loss of body water and Na⁺ through continuous, debilitating diarrhea. If body fluids and Na⁺ are not replaced, severe dehydration results; untreated, the disease is often fatal. When the cholera toxin gains access to the human intestinal tract it binds tightly to specific sites in the plasma membrane of the epithelial cells lining the small intestine,
causing adenyl cyclase to undergo prolonged activation (hours or days).

(a) What is the effect of cholera toxin on [cAMP] in the intestinal cells?

(b) Based on the information above, suggest how cAMP normally functions in intestinal epithelial cells.

(c) Suggest a possible treatment for cholera.

4. Mutations in PKA Explain how mutations in the R or C subunit of cAMP-dependent protein kinase (PKA) might lead to (a) a constantly active PKA or (b) a constantly inactive PKA.

5. Therapeutic Effects of Albuterol The respiratory symptoms of asthma result from constriction of the bronchi and bronchioles of the lungs, caused by contraction of the smooth muscle of their walls. This constriction can be reversed by raising [cAMP] in the smooth muscle. Explain the therapeutic effects of albuterol, a β-adrenergic agonist taken (by inhalation) for asthma. Would you expect this drug to have any side effects? How might one design a better drug that did not have these effects?

6. Termination of Hormonal Signals Signals carried by hormones must eventually be terminated. Describe several different mechanisms for signal termination.

7. Using FRET to Explore Protein-Protein Interactions in Vivo Figure 12–8 shows the interaction between β-arrestin and the β-adrenergic receptor. How would you use FRET (see Box 12–3) to demonstrate this interaction in living cells? Which proteins would you fuse? Which wavelengths would you use to illuminate the cells, and which would you monitor? What would you expect to observe if the interaction occurred? If it did not occur? How might you explain the failure of this approach to demonstrate this interaction?

8. EGTA Injection EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid) is a chelating agent with high affinity and specificity for Ca2+. By microinjecting a cell with an appropriate Ca2+–EGTA solution, an experimenter can prevent cytosolic [Ca2+] from rising above 10−7 M. How would EGTA microinjection affect a cell’s response to vasopressin (see Table 12–4)? To glucagon?

9. Amplification of Hormonal Signals Describe all the sources of amplification in the insulin receptor system.

10. Mutations in ras How would a mutation in ras that leads to formation of a Ras protein with no GTPase activity affect a cell’s response to insulin?

11. Differences among G Proteins Compare the G proteins Gα, which acts in transducing the signal from β-adrenergic receptors, and Ras. What properties do they share? How do they differ? What is the functional difference between Gα and Gβ?

12. Mechanisms for Regulating Protein Kinases Identify eight general types of protein kinases found in eukaryotic cells, and explain what factor is directly responsible for activating each type.

13. Nonhydrolyzable GTP Analogs Many enzymes can hydrolyze GTP between the β and γ phosphates. The GTP analog β,γ-imidoguanosine 5’-triphosphate (Gpp(NH)p), shown below, cannot be hydrolyzed between the β and γ phosphates.

![Gpp(NH)p](image)

Predict the effect of microinjection of Gpp(NH)p into a myocyte on the cell’s response to β-adrenergic stimulation.

14. Use of Toxin Binding to Purify a Channel Protein α-Bungarotoxin is a powerful neurotoxin found in the venom of a poisonous snake (Bungarus multicinctus). It binds with high specificity to the nicotinic acetylcholine receptor (AChR) protein and prevents the ion channel from opening. This interaction was used to purify AChR from the electric organ of the electric fish.

(a) Outline a strategy for using α-bungarotoxin covalently bound to chromatography beads to purify the AChR protein. (Hint: See Fig. 3–17c.)

(b) Outline a strategy for the use of [125I]α-bungarotoxin to purify the AChR protein.

15. Resting Membrane Potential A variety of unusual invertebrates, including giant clams, mussels, and polychaete worms, live on the fringes of deep-sea hydrothermal vents, where the temperature is 60 °C.

(a) The adductor muscle of a giant clam has a resting membrane potential of −95 mV. Given the intracellular and extracellular ionic compositions shown below, would you have predicted this membrane potential? Why or why not?

<table>
<thead>
<tr>
<th>Ion</th>
<th>Intracellular</th>
<th>Extracellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>50</td>
<td>440</td>
</tr>
<tr>
<td>K⁺</td>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>21</td>
<td>560</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.4</td>
<td>10</td>
</tr>
</tbody>
</table>

(b) Assume that the adductor muscle membrane is permeable to only one of the ions listed above. Which ion could determine the \(V_m \)?

16. Membrane Potentials in Frog Eggs Fertilization of a frog oocyte by a sperm cell triggers ionic changes similar to those observed in neurons (during movement of the action potential) and initiates the events that result in cell division and development of the embryo. Oocytes can be stimulated to divide
without fertilization, by suspending them in 80 mM KCl (normal pond water contains 9 mM KCl).

(a) Calculate how much the change in extracellular [KCl] changes the resting membrane potential of the oocyte. (Hint: Assume the oocyte contains 120 mM K⁺ and is permeable only to K⁺.) Assume a temperature of 20 °C.

(b) When the experiment is repeated in Ca²⁺-free water, elevated [KCl] has no effect. What does this suggest about the mechanism of the KCl effect?

17. Excitation Triggered by Hyperpolarization In most neurons, membrane depolarization leads to the opening of voltage-dependent ion channels, generation of an action potential, and ultimately an influx of Ca²⁺, which causes release of neurotransmitter at the axon terminus. Devise a cellular strategy by which hyperpolarization in rod cells could produce excitation of the visual pathway and passage of visual signals to the brain. (Hint: The neuronal signaling pathway in higher organisms consists of a series of neurons that relay information to the brain (see Fig. 12-35). The signal released by one neuron can be either excitatory or inhibitory to the following, postsynaptic neuron.)

18. Genetic “Channelopathies” There are many genetic diseases that result from defects in ion channels. For each of the following, explain how the molecular defect might lead to the symptoms described.

(a) A loss-of-function mutation in the gene encoding the α subunit of the cGMP-gated cation channel of retinal cone cells leads to a complete inability to distinguish colors.

(b) Loss-of-function alleles of the gene encoding the α subunit of the ATP-gated K⁺ channel shown in Figure 23–29 lead to a condition known as congenital hyperinsulinism—persistently high levels of insulin in the blood.

(c) Mutations affecting the β subunit of the ATP-gated K⁺ channel that prevent ATP binding lead to neonatal diabetes—persistently low levels of insulin in the blood in newborn babies.

19. Visual Desensitization Oguchi’s disease is an inherited form of night blindness. Affected individuals are slow to recover vision after a flash of bright light against a dark background, such as the headlights of a car on the freeway. Suggest what the molecular defect(s) might be in Oguchi’s disease. Explain in molecular terms how this defect would account for night blindness.

20. Effect of a Permeant cGMP Analog on Rod Cells An analog of cGMP, 8-Br-cGMP, will permeate cellular membranes, is only slowly degraded by a rod cell’s PDE activity, and is as effective as cGMP in opening the gated channel in the cell’s outer segment. If you suspended rod cells in a buffer containing a relatively high [8-Br-cGMP], then illuminated the cells while measuring their membrane potential, what would you observe?

21. Hot and Cool Taste Sensations The sensations of heat and cold are transduced by a group of temperature-gated cation channels. For example, TRPV1, TRPV3, and TRPM8 are usually closed, but open under the following conditions: TRPV1 at ≥43 °C; TRPV3 at ≥33 °C; and TRPM8 at <25 °C. These channels are expressed in sensory neurons known to be responsible for temperature sensation.

(a) Propose a reasonable model to explain how exposing a sensory neuron containing TRPV1 to high temperature leads to a sensation of heat.

(b) Capsaicin, one of the active ingredients in “hot” peppers, is an agonist of TRPV1. Capsaicin shows 50% activation of the TRPV1 response at a concentration (i.e., it has an EC₅₀) of 32 nM. Explain why even a very few drops of hot pepper sauce can taste very “hot” without actually burning you.

(c) Menthol, one of the active ingredients in mint, is an agonist of TRPM8 (EC₅₀ = 30 μM) and TRPV3 (EC₅₀ = 20 μM). What sensation would you expect from contact with low levels of menthol? With high levels?

22. Oncogenes, Tumor-Suppressor Genes, and Tumors For each of the following situations, provide a plausible explanation for how it could lead to unrestricted cell division.

(a) Colon cancer cells often contain mutations in the gene encoding the prostaglandin E₂ receptor. PGE₂ is a growth factor required for the division of cells in the gastrointestinal tract.

(b) Kaposi sarcoma, a common tumor in people with untreated AIDS, is caused by a virus carrying a gene for a protein similar to the chemokine receptors CXCR1 and CXCR2. Chemokines are cell-specific growth factors.

(c) Adenovirus, a tumor virus, carries a gene for the protein E1A, which binds to the retinoblastoma protein, pRb. (Hint: See Fig. 12–48.)

An important feature of many oncogenes and tumor suppressor genes is their cell-type specificity. For example, mutations in the PGE₂ receptor are not typically found in lung tumors.

(d) Explain this observation. (Note that PGE₂ acts through a GPCR in the plasma membrane.)

23. Mutations in Tumor Suppressor Genes and Oncogenes Explain why mutations in tumor suppressor genes are recessive (both copies of the gene must be defective for the regulation of cell division to be defective) whereas mutations in oncogenes are dominant.

24. Retinoblastoma in Children Explain why some children with retinoblastoma develop multiple tumors of the retina in both eyes, whereas others have a single tumor in only one eye.

25. Specificity of a Signal for a Single Cell Type Discuss the validity of the following proposition. A signaling molecule (hormone, growth factor, or neurotransmitter) elicits identical responses in different types of target cells if they contain identical receptors.
26. Exploring Taste Sensation in Mice Figure 12–41 shows the signal-transduction pathway for sweet taste in mammals. Pleasing tastes are an evolutionary adaptation to encourage animals to consume nutritious foods. Zhao and coauthors (2003) examined the two major pleasurable taste sensations: sweet and umami. Umami is a “distinct savory taste” triggered by amino acids, especially aspartate and glutamate, and probably encourages animals to consume protein-rich foods. Monosodium glutamate (MSG) is a flavor enhancer that exploits this sensitivity.

At the time the article was published, specific taste receptor proteins (labeled SR in Fig. 12–41) for sweet and umami had been tentatively characterized. Three such proteins were known—T1R1, T1R2, and T1R3—which function as heterodimeric receptor complexes: T1R1–T1R3 was tentatively identified as the umami receptor, and T1R2–T1R3 as the sweet receptor. It was not clear how taste sensation was encoded and sent to the brain, and two possible models had been suggested. In the cell-based model, individual taste-sensing cells express only one kind of receptor; that is, there are “sweet cells,” “bitter cells,” “umami cells,” and so on, and each type of cell sends its information to the brain via a different nerve. The brain “knows” which taste is detected by the identity of the nerve fiber that transmits the message. In the receptor-based model, individual taste-sensing cells have several kinds of receptors and send different messages along the same nerve fiber to the brain, the message depending on which receptor is activated. Also unclear at the time was whether there was any interaction between the different taste sensations, or whether parts of one taste-sensing system were required for other taste sensations.

(a) Previous work had shown that different taste receptor proteins are expressed in nonoverlapping sets of taste receptor cells. Which model does this support? Explain your reasoning.

Zhao and colleagues constructed a set of “knockout mice”—mice homozygous for loss-of-function alleles for one of the three receptor proteins, T1R1, T1R2, or T1R3—and double-knockout mice with nonfunctioning T1R2 and T1R3. The researchers measured the taste perception of these mice by measuring their “lick rate” of solutions containing different taste molecules. Mice will lick the spout of a feeding bottle with a pleasant-tasting solution more often than one with an unpleasant-tasting solution. The researchers measured relative lick rates: how often the mice licked a sample solution compared with water. A relative lick rate of 1 indicated no preference; <1, an aversion; and >1, a preference.

(b) All four types of knockout strains had the same responses to salt and bitter tastes as did wild-type mice. Which of the above issues did this experiment address? What do you conclude from these results?

The researchers then studied umami taste reception by measuring the relative lick rates of the different mouse strains with different quantities of MSG in the feeding solution. Note that the solutions also contained inosine monophosphate (IMP), a strong potentiator of umami taste reception (and a common ingredient in ramen soups, along with MSG), and ameloride, which suppresses the pleasant salty taste imparted by the sodium of MSG. The results are shown in the graph.

(c) Are these data consistent with the umami taste receptor consisting of a heterodimer of T1R1 and T1R3? Why or why not?

(d) Which model(s) of taste encoding does this result support? Explain your reasoning.

Zhao and coworkers then performed a series of similar experiments using sucrose as a sweet taste. These results are shown below.

(e) Are these data consistent with the sweet taste receptor consisting of a heterodimer of T1R2 and T1R3? Why or why not?

(f) There were some unexpected responses at very high sucrose concentrations. How do these complicate the idea of a heterodimeric system as presented above?

In addition to sugars, humans also taste other compounds (e.g., the peptides monellin and aspartame) as sweet; mice do not taste these as sweet. Zhao and coworkers inserted into TIR2 knockout mice a copy of the human T1R2 gene under the control of the mouse T1R2 promoter. These modified mice now tasted monellin and saccharin as sweet. The researchers then went further, adding to T1R1 knockout mice the RASSL protein—a G protein-linked receptor for the synthetic opiate spiradoline; the RASSL gene was under the control of the mouse T1R2 promoter. These modified mice now tasted monellin and saccharin as sweet. The researchers then went further, adding to T1R1 knockout mice the RASSL protein—a G protein-linked receptor for the synthetic opiate spiradoline; the RASSL gene was under the control of the promoter that could be induced by feeding the mice tetracycline. These mice did not prefer spiradoline in the absence of tetracycline; in the presence of tetracycline, they showed a strong preference for nanomolar concentrations of spiradoline.

(g) How do these results strengthen Zhao and coauthors’ conclusions about the mechanism of taste sensation?

Reference
Metabolism is a highly coordinated cellular activity in which many multienzyme systems (metabolic pathways) cooperate to (1) obtain chemical energy by capturing solar energy or degrading energy-rich nutrients from the environment; (2) convert nutrient molecules into the cell’s own characteristic molecules, including precursors of macromolecules; (3) polymerize monomeric precursors into macromolecules: proteins, nucleic acids, and polysaccharides; and (4) synthesize and degrade biomolecules required for specialized cellular functions, such as membrane lipids, intracellular messengers, and pigments.

Although metabolism embraces hundreds of different enzyme-catalyzed reactions, our major concern in Part II is the central metabolic pathways, which are few in number and remarkably similar in all forms of life. Living organisms can be divided into two large groups according to the chemical form in which they obtain carbon from the environment. Autotrophs (such as photosynthetic bacteria, green algae, and vascular plants) can use carbon dioxide from the atmosphere as their sole source of carbon, from which they construct all their carbon-containing biomolecules (see Fig. 1-5). Some autotrophic organisms, such as cyanobacteria, can also use atmospheric nitrogen to generate all their nitrogenous components. Heterotrophs cannot use atmospheric carbon dioxide and must obtain carbon from their environment in the form of relatively complex
organic molecules such as glucose. Multicellular animals and most microorganisms are heterotrophic. Autotrophic cells and organisms are relatively self-sufficient, whereas heterotrophic cells and organisms, with their requirements for carbon in more complex forms, must subsist on the products of other organisms.

Many autotrophic organisms are photosynthetic and obtain their energy from sunlight, whereas heterotrophic organisms obtain their energy from the degradation of organic nutrients produced by autotrophs. In our biosphere, autotrophs and heterotrophs live together in a vast, interdependent cycle in which autotrophic organisms use atmospheric carbon dioxide to build their organic biomolecules, some of them generating oxygen from water in the process. Heterotrophs in turn use the organic products of autotrophs as nutrients and return carbon dioxide to the atmosphere. Some of the oxidation reactions that produce carbon dioxide also consume oxygen, converting it to water. Thus carbon, oxygen, and water are constantly cycled between the heterotrophic and autotrophic worlds, with solar energy as the driving force for this global process (Fig. 1).

All living organisms also require a source of nitrogen, which is necessary for the synthesis of amino acids, nucleotides, and other compounds. Bacteria and plants can generally use either ammonia or nitrate as their sole source of nitrogen, but vertebrates must obtain nitrogen in the form of amino acids or other organic compounds. Only a few organisms—the cyanobacteria and many species of soil bacteria that live symbiotically on the roots of some plants—are capable of converting (“fixing”) atmospheric nitrogen (N₂) into ammonia. Other bacteria (the nitrifying bacteria) oxidize ammonia to nitrites and nitrates; yet others convert nitrate to N₂. The anammox bacteria convert ammonia and nitrite to N₂. Thus, in addition to the global carbon and oxygen cycle, a nitrogen cycle operates in the biosphere, turning over huge amounts of nitrogen (Fig. 2). The cycling of carbon, oxygen, and nitrogen, which ultimately involves all species, depends on a proper balance between the activities of the producers (autotrophs) and consumers (heterotrophs) in our biosphere.

These cycles of matter are driven by an enormous flow of energy into and through the biosphere, beginning with the capture of solar energy by photosynthetic organisms and use of this energy to generate energy-rich carbohydrates and other organic nutrients; these nutrients are then used as energy sources by heterotrophic organisms. In metabolic processes, and in all energy transformations, there is a loss of useful energy (free energy) and an inevitable increase in the amount of unusable energy (heat and entropy). In contrast to the cycling of matter, therefore, energy flows one way through the biosphere; organisms cannot regenerate useful energy from energy dissipated as heat and entropy. Carbon, oxygen, and nitrogen recycle continuously, but energy is constantly transformed into unusable forms such as heat.

Metabolism, the sum of all the chemical transformations taking place in a cell or organism, occurs through a series of enzyme-catalyzed reactions that constitute **metabolic pathways**. Each of the consecutive steps in a metabolic pathway brings about a specific, small chemical change, usually the removal, transfer, or addition of a particular atom or functional group. The precursor is converted into a product through a series of metabolic intermediates called **metabolites**. The term **intermediary metabolism** is often applied to the combined activities of all the metabolic pathways that interconvert precursors, metabolites, and products of low molecular weight (generally, $M_r < 1,000$).
Catabolism is the degradative phase of metabolism in which organic nutrient molecules (carbohydrates, fats, and proteins) are converted into smaller, simpler end products (such as lactic acid, CO₂, NH₃). Catabolic pathways release energy, some of which is conserved in the formation of ATP and reduced electron carriers (NADH, NADPH, and FADH₂); the rest is lost as heat. In anabolism, also called biosynthesis, small, simple precursors are built up into larger and more complex molecules, including lipids, polysaccharides, proteins, and nucleic acids. Anabolic reactions require an input of energy, generally in the form of the phosphoryl group transfer potential of ATP and the reducing power of NADH, NADPH, and FADH₂ (Fig. 3).

Some metabolic pathways are linear, and some are branched, yielding multiple useful end products from a single precursor or converting several starting materials into a single product. In general, catabolic pathways are convergent and anabolic pathways divergent (Fig. 4). Some pathways are cyclic: one starting component of the pathway is regenerated in a series of reactions that converts another starting component into a product. We shall see examples of each type of pathway in the following chapters.

Most cells have the enzymes to carry out both the degradation and the synthesis of the important categories of biomolecules—fatty acids, for example. The simultaneous synthesis and degradation of fatty acids would be wasteful, however, and this is prevented by reciprocally regulating the anabolic and catabolic reaction sequences: when one sequence is active, the other is suppressed. Such regulation could not occur if anabolic and catabolic pathways were catalyzed by exactly the same set of enzymes, operating in one direction for anabolism, the opposite direction for catabolism: inhibition of an enzyme involved in catabolism would also inhibit the reaction sequence in the anabolic direction. Catabolic and anabolic pathways that connect the same two end points (glucose → pyruvate, and pyruvate → glucose, for example) may employ many of the same enzymes, but invariably at least one of the steps is catalyzed by different enzymes in the catabolic and anabolic directions, and these enzymes are the sites of separate regulation. Moreover, for both anabolic and catabolic pathways to be essentially irreversible, the reactions unique to each direction must include at least one that is thermodynamically very favorable—in other words, a reaction for which the reverse reaction is very unfavorable. As a further contribution to the separate regulation of catabolic and anabolic reaction sequences, paired catabolic and anabolic pathways commonly take place in different cellular compartments: for example, fatty acid catabolism in mitochondria, fatty acid synthesis in the cytosol. The concentrations of intermediates, enzymes, and regulators can be maintained at different levels in these different compartments. Because metabolic pathways are subject to kinetic control by substrate concentration, separate pools of anabolic and catabolic intermediates also contribute to the control of metabolic rates. Devices that separate anabolic and catabolic processes will be of particular interest in our discussions of metabolism.

Metabolic pathways are regulated at several levels, from within the cell and from outside. The most immediate regulation is by the availability of substrate; when the intracellular concentration of an enzyme's substrate is near or below K_m (as is commonly the case), the rate of the reaction depends strongly upon substrate concentration (see Fig. 6–11). A second type of rapid control from within is allosteric regulation (p. 220) by a metabolic intermediate or coenzyme—an amino acid or ATP, for example—that signals the cell's internal metabolic state.
When the cell contains an amount of, say, aspartate sufficient for its immediate needs, or when the cellular level of ATP indicates that further fuel consumption is unnecessary at the moment, these signals allosterically inhibit the activity of one or more enzymes in the relevant pathway. In multicellular organisms the metabolic activities of different tissues are regulated and integrated by growth factors and hormones that act from outside the cell. In some cases this regulation occurs virtually instantaneously (sometimes in less than a millisecond) through changes in the levels of intracellular messengers that modify the activity of existing enzyme molecules by allosteric mechanisms or by covalent modification such as phosphorylation. In other cases, the extracellular signal changes the cellular concentration of an enzyme by altering the rate of its synthesis or degradation, so the effect is seen only after minutes or hours.

We begin Part II with a discussion of the basic energetic principles that govern all metabolism (Chapter 13). We then consider the major catabolic pathways by which cells obtain energy from the oxidation of various fuels (Chapters 14 through 19). Chapter 19 is the pivotal point of our discussion of metabolism; it concerns chemiosmotic energy coupling, a universal mechanism in which a transmembrane electrochemical potential, produced either by substrate oxidation or by light absorption, drives the synthesis of ATP.

Chapters 20 through 22 describe the major anabolic pathways by which cells use the energy in ATP to produce carbohydrates, lipids, amino acids, and nucleotides from simpler precursors. In Chapter 23 we step back from our detailed look at the metabolic pathways—as they occur in all organisms, from Escherichia coli to humans—and consider how they are regulated and integrated in mammals by hormonal mechanisms.

As we undertake our study of intermediary metabolism, a final word. Keep in mind that the myriad reactions described in these pages take place in, and play crucial roles in, living organisms. As you encounter each reaction and each pathway ask, What does this chemical transformation do for the organism? How does this pathway interconnect with the other pathways operating simultaneously in the same cell to produce the energy and products required for cell maintenance and growth? How do the multilayered regulatory mechanisms cooperate to balance metabolic and energy inputs and outputs, achieving the dynamic steady state of life? Studied with this perspective, metabolism provides fascinating and revealing insights into life, with countless applications in medicine, agriculture, and biotechnology.
Life cells and organisms must perform work to stay alive, to grow, and to reproduce. The ability to harness energy and to channel it into biological work is a fundamental property of all living organisms; it must have been acquired very early in cellular evolution. Modern organisms carry out a remarkable variety of energy transductions, conversions of one form of energy to another. They use the chemical energy in fuels to bring about the synthesis of complex, highly ordered macromolecules from simple precursors. They also convert the chemical energy of fuels into concentration gradients and electrical gradients, into motion and heat, and, in a few organisms such as fireflies and deep-sea fish, into light. Photosynthetic organisms transduce light energy into all these other forms of energy.

The chemical mechanisms that underlie biological energy transductions have fascinated and challenged biologists for centuries. The French chemist Antoine Lavoisier recognized that animals somehow transform chemical fuels (foods) into heat and that this process of respiration is essential to life. He observed that

\[\ldots \text{in general, respiration is nothing but a slow combustion of carbon and hydrogen, which is entirely similar to that which occurs in a lighted lamp or candle, and that, from this point of view, animals that respire are true combustible bodies that burn and consume themselves \ldots} \]

One may say that this analogy between combustion and respiration has not escaped the notice of the poets, or rather the philosophers of antiquity, and which they had expounded and interpreted. This fire stolen from heaven, this torch of Prometheus, does not only represent an ingenious and poetic idea, it is a faithful picture of the operations of nature, at least for animals that breathe; one may therefore say, with the ancients, that the torch of life lights itself at the moment the infant breathes for the first time, and it does not extinguish itself except at death.*

In the twentieth century, we began to understand much of the chemistry underlying that "torch of life." Biological energy transductions obey the same chemical and physical laws that govern all other natural processes. It is therefore essential for a student of biochemistry to understand these laws and how they apply to the flow of energy in the biosphere.

In this chapter we first review the laws of thermodynamics and the quantitative relationships among free energy, enthalpy, and entropy. We then review the common types of biochemical reactions that occur in living cells, reactions that harness, store, transfer, and release the

energy taken up by organisms from their surroundings. Our focus then shifts to reactions that have special roles in biological energy exchanges, particularly those involving ATP. We finish by considering the importance of oxidation-reduction reactions in living cells, the energetics of biological electron transfers, and the electron carriers commonly employed as cofactors in these processes.

13.1 Bioenergetics and Thermodynamics

Bioenergetics is the quantitative study of energy transductions—changes of one form of energy into another—that occur in living cells, and of the nature and function of the chemical processes underlying these transductions. Although many of the principles of thermodynamics have been introduced in earlier chapters and may be familiar to you, a review of the quantitative aspects of these principles is useful here.

Biological Energy Transformations Obey the Laws of Thermodynamics

Many quantitative observations made by physicists and chemists on the interconversion of different forms of energy led, in the nineteenth century, to the formulation of two fundamental laws of thermodynamics. The first law is the principle of the conservation of energy: for any physical or chemical change, the total amount of energy in the universe remains constant; energy may change form or it may be transported from one region to another; but it cannot be created or destroyed. The second law of thermodynamics, which can be stated in several forms, says that the universe always tends toward increasing disorder: in all natural processes, the entropy of the universe increases.

Living organisms consist of collections of molecules much more highly organized than the surrounding materials from which they are constructed, and organisms maintain and produce order, seemingly oblivious to the second law of thermodynamics. But living organisms do not violate the second law; they operate strictly within it. To discuss the application of the second law to biological systems, we must first define those systems and their surroundings.

The reacting system is the collection of matter that is undergoing a particular chemical or physical process; it may be an organism, a cell, or two reacting compounds. The reacting system and its surroundings together constitute the universe. In the laboratory, some chemical or physical processes can be carried out in isolated or closed systems, in which no material or energy is exchanged with the surroundings. Living cells and organisms, however, are open systems, exchanging both material and energy with their surroundings; living systems are never at equilibrium with their surroundings, and the constant transactions between system and surroundings explain how organisms can create order within themselves while operating within the second law of thermodynamics.

In Chapter 1 (p. 22) we defined three thermodynamic quantities that describe the energy changes occurring in a chemical reaction:

- **Gibbs Free Energy**, \(G \), expresses the amount of energy capable of doing work during a reaction at constant temperature and pressure. When a reaction proceeds with the release of free energy (that is, when the system changes so as to possess less free energy), the free-energy change, \(\Delta G \), has a negative value and the reaction is said to be exergonic. In endergonic reactions, the system gains free energy and \(\Delta G \) is positive.

- **Enthalpy**, \(H \), is the heat content of the reacting system. It reflects the number and kinds of chemical bonds in the reactants and products. When a chemical reaction releases heat, it is said to be exothermic; the heat content of the products is less than that of the reactants and \(\Delta H \) has, by convention, a negative value. Reacting systems that take up heat from their surroundings are endothermic and have positive values of \(\Delta H \).

- **Entropy**, \(S \), is a quantitative expression for the randomness or disorder in a system (see Box 1–3). When the products of a reaction are less complex and more disordered than the reactants, the reaction is said to proceed with a gain in entropy.

The units of \(\Delta G \) and \(\Delta H \) are joules/mole or calories/mole (recall that 1 cal = 4.184 J); units of entropy are joules/mole · Kelvin (J/mol · K) (Table 13–1).

Under the conditions existing in biological systems (including constant temperature and pressure), changes in free energy, enthalpy, and entropy are related to each other quantitatively by the equation

\[
\Delta G = \Delta H - T\Delta S
\]

(13–1)
in which ΔG is the change in Gibbs free energy of the reacting system, ΔH is the change in enthalpy of the system, T is the absolute temperature, and ΔS is the change in entropy of the system. By convention, ΔS has a positive sign when entropy increases and ΔH, as noted above, has a negative sign when heat is released by the system to its surroundings. Either of these conditions, which are typical of energetically favorable processes, tend to make ΔG negative. In fact, ΔG of a spontaneously reacting system is always negative.

The second law of thermodynamics states that the entropy of the universe increases during all chemical and physical processes, but it does not require that the entropy increase take place in the reacting system itself. The order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division (see Box 1-3, case 2). In short, living organisms preserve their internal order by taking from the surroundings free energy in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy.

Cells Require Sources of Free Energy

Cells are isothermal systems—they function at essentially constant temperature (and also function at constant pressure). Heat flow is not a source of energy for cells, because heat can do work only as it passes to a zone or object at a lower temperature. The energy that cells can and must use is free energy, described by the Gibbs free-energy function G, which allows prediction of the direction of chemical reactions, their exact equilibrium position, and the amount of work they can (in theory) perform at constant temperature and pressure. Heterotrophic cells acquire free energy from nutrient molecules, and photosynthetic cells acquire it from absorbed solar radiation. Both kinds of cells transform this free energy into ATP and other energy-rich compounds capable of providing energy for biological work at constant temperature.

Standard Free-Energy Change Is Directly Related to the Equilibrium Constant

The composition of a reacting system (a mixture of chemical reactants and products) tends to continue changing until equilibrium is reached. At the equilibrium concentration of reactants and products, the rates of the forward and reverse reactions are exactly equal and no further net change occurs in the system. The concentrations of reactants and products at equilibrium define the equilibrium constant, K_{eq} (p. 24). In the general reaction aA + bB ⇌ cC + dD, where a, b, c, and d are the number of molecules of A, B, C, and D participating, the equilibrium constant is given by

$$K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

where [A], [B], [C], and [D] are the molar concentrations of the reaction components at the point of equilibrium.

When a reacting system is not at equilibrium, the tendency to move toward equilibrium represents a driving force, the magnitude of which can be expressed as the free-energy change for the reaction, ΔG. Under standard conditions (298 K = 25°C), when reactants and products are initially present at 1 M concentrations or, for gases, at partial pressures of 101.3 kilopascals (kPa), or 1 atm, the force driving the system toward equilibrium is defined as the standard free-energy change, ΔG°. By this definition, the standard state for reactions that involve hydrogen ions is [H^+] = 1 M, or pH 0. Most biochemical reactions, however, occur in well-buffered aqueous solutions near pH 7; both the pH and the concentration of water (55.5 M) are essentially constant.

KEY CONVENTION: For convenience of calculations, biochemists define a standard state different from that used in chemistry and physics: in the biochemical standard state, [H^+] is 10^{-7} M (pH 7) and [H_2O] is 55.5 M. For reactions that involve Mg^{2+} (which include most of those with ATP as a reactant), [Mg^{2+}] in solution is commonly taken to be constant at 1 mM.

Physical constants based on this biochemical standard state are called **standard transformed constants** and are written with a prime (such as ΔG°' and K_{eq}') to distinguish them from the untransformed constants used by chemists and physicists. (Note that most other textbooks use the symbol ΔG°" rather than ΔG°'. Our use of ΔG°', recommended by an international committee of chemists and biochemists, is intended to emphasize that the transformed free energy, G', is the criterion for equilibrium.) For simplicity, we will hereafter refer to these transformed constants as **standard free-energy changes**.

Table 13–1 Some Physical Constants and Units Used in Thermodynamics

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boltzmann constant, k</td>
<td>1.381×10^{-23} J/K</td>
</tr>
<tr>
<td>Avogadro's number, N</td>
<td>6.022×10^{23} mol$^{-1}$</td>
</tr>
<tr>
<td>Faraday constant, F</td>
<td>96,480 J/V · mol</td>
</tr>
<tr>
<td>Gas constant, R</td>
<td>8.315 J/mol · K</td>
</tr>
<tr>
<td>Units of ΔG and ΔH are J/mol</td>
<td>(or cal/mol)</td>
</tr>
<tr>
<td>Units of ΔS are J/mol · K</td>
<td>(or cal/mol · K)</td>
</tr>
<tr>
<td>1 cal</td>
<td>4.184 J</td>
</tr>
<tr>
<td>Units of absolute temperature, T</td>
<td>are Kelvin, K</td>
</tr>
<tr>
<td>25°C</td>
<td>298 K</td>
</tr>
<tr>
<td>At 25°C, RT</td>
<td>2.478 kJ/mol</td>
</tr>
<tr>
<td></td>
<td>(0.592 kcal/mol)</td>
</tr>
</tbody>
</table>
KEY CONVENTION: In another simplifying convention used by biochemists, when H_2O, H^+, and/or Mg^{2+} are reactants or products, their concentrations are not included in equations such as Equation 13-2 but are instead incorporated into the constants K'_{eq} and $\Delta G'^o$.

Just as K'_{eq} is a physical constant characteristic for each reaction, so too is $\Delta G'^o$ a constant. As we noted in Chapter 6, there is a simple relationship between K'_{eq} and $\Delta G'^o$:

$$\Delta G'^o = -RT \ln K'_ {eq} \quad (13-3)$$

The standard free-energy change of a chemical reaction is simply an alternative mathematical way of expressing its equilibrium constant. Table 13-2 shows the relationship between $\Delta G'^o$ and $K'_ {eq}$. If the equilibrium constant for a given chemical reaction is 1.0, the standard free-energy change of that reaction is 0.0 (the natural logarithm of 1.0 is zero). If $K'_ {eq}$ of a reaction is greater than 1.0, its $\Delta G'^o$ is negative. If $K'_ {eq}$ is less than 1.0, $\Delta G'^o$ is positive. Because the relationship between $\Delta G'^o$ and $K'_ {eq}$ is exponential, relatively small changes in $\Delta G'^o$ correspond to large changes in $K'_ {eq}$.

It may be helpful to think of the standard free-energy change in another way. $\Delta G'^o$ is the difference between the free-energy content of the products and the free-energy content of the reactants, under standard conditions. When $\Delta G'^o$ is negative, the products contain less free energy than the reactants and the reaction will proceed spontaneously under standard conditions; all chemical reactions tend to go in the direction that results in a decrease in the free energy of the system. A positive value of $\Delta G'^o$ means that the products of the reaction contain more free energy than the reactants, and this reaction will tend to go in the reverse direction if we start with 1.0 m concentrations of all components (standard conditions). Table 13-3 summarizes these points.

WORKED EXAMPLE 13-1 Calculation of $\Delta G'^o$

Calculate the standard free-energy change of the reaction catalyzed by the enzyme phosphoglucomutase

$$\text{Glucose 1-phosphate} \rightleftharpoons \text{glucose 6-phosphate}$$

given that, starting with 20 mM glucose 1-phosphate and no glucose 6-phosphate, the final equilibrium mixture at 25 °C and pH 7.0 contains 1.0 mM glucose 1-phosphate and 19 mM glucose 6-phosphate. Does the reaction in the direction of glucose 6-phosphate formation proceed with a loss or a gain of free energy?

Solution: First we calculate the equilibrium constant:

$$K'_ {eq} = \frac{[\text{glucose 6-phosphate}]}{[\text{glucose 1-phosphate}]} = \frac{19 \text{ mM}}{1.0 \text{ mM}} = 19$$

We can now calculate the standard free-energy change:

$$\Delta G'^o = -RT \ln K'_ {eq} = -[8.315 \text{ J/mol} \cdot \text{K} / 298 \text{ K} \ln 19] = -7.3 \text{ kJ/mol}$$

Because the standard free-energy change is negative, the conversion of glucose 1-phosphate to glucose 6-phosphate proceeds with a loss (release) of free energy. (For the reverse reaction, $\Delta G'^o$ has the same magnitude but the opposite sign.)

Table 13-4 gives the standard free-energy changes for some representative chemical reactions. Note that hydrolysis of simple esters, amides, peptides, and glycosides, as well as rearrangements and eliminations, proceed with relatively small standard free-energy changes, whereas hydrolysis of acid anhydrides is accompanied by relatively large decreases in standard free energy. The complete oxidation of organic compounds such as glucose or palmitate to CO$_2$ and H$_2$O, which in cells requires many steps, results in very large decreases in standard free energy. However, standard free-energy

TABLE 13-2

<table>
<thead>
<tr>
<th>$K'_ {eq}$ (kd/mol)</th>
<th>$\Delta G'^o$ (kJ/mol)</th>
<th>$\Delta G'^o$ (kcal/mol)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td>-17.1</td>
<td>-4.1</td>
</tr>
<tr>
<td>10^2</td>
<td>-11.4</td>
<td>-2.7</td>
</tr>
<tr>
<td>10^1</td>
<td>-5.7</td>
<td>-1.4</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>5.7</td>
<td>1.4</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>11.4</td>
<td>2.7</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>17.1</td>
<td>4.1</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>22.8</td>
<td>5.5</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>28.5</td>
<td>6.8</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>34.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

*Although joules and kilojoules are the standard units of energy and are used throughout this text, biochemists and nutritionists sometimes express $\Delta G'^o$ values in kilocalories per mole. We have therefore included values in both kilojoules and kilocalories in this table and in Tables 13-4 and 13-6. To convert kilojoules to kilocalories, divide the number of kilojoules by 4.184.
changes such as those in Table 13-4 indicate how much free energy is available from a reaction under standard conditions. To describe the energy released under the conditions existing in cells, an expression for the actual free-energy change is essential.

Actual Free-Energy Changes Depend on Reactant and Product Concentrations

We must be careful to distinguish between two different quantities: the actual free-energy change, ΔG, and the standard free-energy change, ΔG°. Each chemical reaction has a characteristic standard free-energy change, which may be positive, negative, or zero, depending on the equilibrium constant of the reaction. The standard free-energy change tells us in which direction and how far a given reaction must go to reach equilibrium when the initial concentration of each component is 1.0 M, the pH is 7.0, the temperature is 25 °C, and the pressure is 101.3 kPa (1 atm). Thus ΔG° is a constant: it has a characteristic, unchanging value for a given reaction. But the actual free-energy change, ΔG, is a function of reactant and product concentrations and of the temperature prevailing during the reaction, none of which will necessarily match the standard conditions as defined above. Moreover, the ΔG of any reaction proceeding spontaneously toward its equilibrium is always negative, becomes less negative as the reaction proceeds, and is zero at the point of equilibrium, indicating that no more work can be done by the reaction.

ΔG and ΔG° for any reaction $aA + bB \rightarrow cC + dD$ are related by the equation

$$\Delta G = \Delta G^\circ + RT \ln \frac{[C][D]^{d}}{[A]^{a}[B]^{b}}$$

in which the terms in red are those actually prevailing in the system under observation. The concentration terms in this equation express the effects commonly called mass action, and the term $[C][D]^{d}/[A]^{a}[B]^{b}$ is called the mass-action ratio, Q. Thus Equation 13-4 can be expressed as $\Delta G = \Delta G^\circ + RT \ln Q$. As an example, let us suppose that the reaction $A + B \rightarrow C + D$ is taking place under the standard conditions of temperature (25 °C) and pressure (101.3 kPa) but that the concentrations of A, B, C, and D are not equal and none of the components is present at the standard concentration of 1.0 M. To determine the actual free-energy change, ΔG, under these nonstandard conditions of concentration as the

<table>
<thead>
<tr>
<th>Table 13-4 Standard Free-Energy Changes of Some Chemical Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction type</th>
<th>ΔG° (kJ/mol)</th>
<th>ΔG° (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid anhydrides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetic anhydride $+ H_2O \rightarrow 2$ acetate</td>
<td>-91.1</td>
<td>-21.8</td>
</tr>
<tr>
<td>ATP $+ H_2O \rightarrow ADP + P_i$</td>
<td>-30.5</td>
<td>-7.3</td>
</tr>
<tr>
<td>ATP $+ H_2O \rightarrow AMP + PP_i$</td>
<td>-45.6</td>
<td>-10.9</td>
</tr>
<tr>
<td>PP_i $+ H_2O \rightarrow 2P_i$</td>
<td>-19.2</td>
<td>-4.6</td>
</tr>
<tr>
<td>UDP-glucose $+ H_2O \rightarrow UMP + glucose 1$-phosphate</td>
<td>-43.0</td>
<td>-10.3</td>
</tr>
<tr>
<td>Esters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate $+ H_2O \rightarrow ethanol + acetate$</td>
<td>-19.6</td>
<td>-4.7</td>
</tr>
<tr>
<td>Glucose 6-phosphate $+ H_2O \rightarrow glucose + P_i$</td>
<td>-13.8</td>
<td>-3.3</td>
</tr>
<tr>
<td>Amides and peptides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamine $+ H_2O \rightarrow glutamate + NH_4^+$</td>
<td>-14.2</td>
<td>-3.4</td>
</tr>
<tr>
<td>Glycylglycine $+ H_2O \rightarrow 2$ glycine</td>
<td>-9.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>Glycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maltose $+ H_2O \rightarrow 2$ glucose</td>
<td>-15.5</td>
<td>-3.7</td>
</tr>
<tr>
<td>Lactose $+ H_2O \rightarrow glucose + galactose$</td>
<td>-15.9</td>
<td>-3.8</td>
</tr>
<tr>
<td>Rearrangements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose 1-phosphate $\rightarrow glucose 6$-phosphate</td>
<td>-7.3</td>
<td>-1.7</td>
</tr>
<tr>
<td>Fructose 6-phosphate $\rightarrow glucose 6$-phosphate</td>
<td>-1.7</td>
<td>-0.4</td>
</tr>
<tr>
<td>Elimination of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malate \rightarrow fumarate + H_2O</td>
<td>3.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Oxidations with molecular oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose $+ 6O_2 \rightarrow 6CO_2 + 6H_2O$</td>
<td>$-2,840$</td>
<td>-686</td>
</tr>
<tr>
<td>Palmitate $+ 23O_2 \rightarrow 16CO_2 + 16H_2O$</td>
<td>$-9,770$</td>
<td>$-2,338$</td>
</tr>
</tbody>
</table>
reaction proceeds from left to right, we simply enter the actual concentrations of A, B, C, and D in Equation 13-4; the values of \(R, \frac{T}{RT} \), and \(\Delta G'\circ \) are the standard values. \(\Delta G \) is negative and approaches zero as the reaction proceeds, because the actual concentrations of A and B decrease and the concentrations of C and D increase. Notice that when a reaction is at equilibrium—when there is no force driving the reaction in either direction and \(\Delta G \) is zero—Equation 13-4 reduces to

\[
0 = \Delta G = \Delta G'\circ + \frac{RT}{K_{eq}} \ln \left(\frac{[C]_{eq}[D]_{eq}}{[A]_{eq}[B]_{eq}} \right)
\]

or

\[
\Delta G'\circ = -RT \ln K_{eq}
\]

which is the equation relating the standard free-energy change and equilibrium constant (Eqn 13-3).

The criterion for spontaneity of a reaction is the value of \(\Delta G \), not \(\Delta G'\circ \). A reaction with a positive \(\Delta G'\circ \) can go in the forward direction if \(\Delta G \) is negative. It is possible if the term \(RT \ln ([\text{products}]/[\text{reactants}] \right) \) in Equation 13-4 is negative and has a larger absolute value than \(\Delta G'\circ \). For example, the immediate removal of the products of a reaction can keep the ratio \([\text{products}]/[\text{reactants}] \) well below 1, such that the term \(RT \ln ([\text{products}]/[\text{reactants}] \right) \) has a large, negative value. \(\Delta G'\circ \) and \(\Delta G \) are expressions of the maximum amount of free energy that a given reaction can theoretically deliver—an amount of energy that could be realized only if a perfectly efficient device were available to trap or harness it. Given that no such device is possible (some energy is always lost to entropy during any process), the amount of work done by the reaction at constant temperature and pressure is always less than the theoretical amount.

Another important point is that some thermodynamically favorable reactions (that is, reactions for which \(\Delta G'\circ \) is large and negative) do not occur at measurable rates. For example, combustion of firewood to CO\(_2\) and H\(_2\)O is very favorable thermodynamically, but firewood remains stable for years because the activation energy (see Figs 6-2 and 6-3) for the combustion reaction is higher than the energy available at room temperature. If the necessary activation energy is provided (with a lighted match, for example), combustion will begin, converting the wood to the more stable products CO\(_2\) and H\(_2\)O and releasing energy as heat and light. The heat released by this exothermic reaction provides the activation energy for combustion of neighboring regions of the firewood; the process is self-perpetuating.

In living cells, reactions that would be extremely slow if uncataylized are caused to proceed not by supplying additional heat but by lowering the activation energy through use of an enzyme. An enzyme provides an alternative reaction pathway with a lower activation energy than the uncatalyzed reaction, so that at room temperature a large fraction of the substrate molecules have enough thermal energy to overcome the activation barrier, and the reaction rate increases dramatically. The free-energy change for a reaction is independent of the pathway by which the reaction occurs; it depends only on the nature and concentration of the initial reactants and the final products. Enzymes cannot, therefore, change equilibrium constants; but they can and do increase the rate at which a reaction proceeds in the direction dictated by thermodynamics (see Section 6.2).

Standard Free-Energy Changes Are Additive

In the case of two sequential chemical reactions, \(A \rightleftharpoons B \) and \(B \rightleftharpoons C \), each reaction has its own equilibrium constant and each has its characteristic standard free-energy change, \(\Delta G'\circ1 \) and \(\Delta G'\circ2 \). As the two reactions are sequential, B cancels out to give the overall reaction \(A \rightleftharpoons C \), which has its own equilibrium constant and thus its own standard free-energy change, \(\Delta G'\circ\text{total} \). The \(\Delta G'\circ \) values of sequential chemical reactions are additive. For the overall reaction \(A \rightleftharpoons C \), \(\Delta G'\circ\text{total} \) is the sum of the individual standard free-energy changes, \(\Delta G'\circ1 \) and \(\Delta G'\circ2 \), of the two reactions:

\[
\Delta G'\circ\text{total} = \Delta G'\circ1 + \Delta G'\circ2.
\]

This principle of bioenergetics explains how a thermodynamically unfavorable (endergonic) reaction can be driven in the forward direction by coupling it to a highly exergonic reaction through a common intermediate. For example, the synthesis of glucose 6-phosphate is the first step in the utilization of glucose by many organisms:

\[
\text{Glucose} + \text{P}_i \rightarrow \text{glucose 6-phosphate} + \text{H}_2\text{O} \\
\Delta G'\circ = 13.8 \text{ kJ/mol}
\]

The positive value of \(\Delta G'\circ \) predicts that under standard conditions the reaction will tend not to proceed spontaneously in the direction written. Another cellular reaction, the hydrolysis of ATP to ADP and P\(_i\), is very exergonic:

\[
\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + \text{P}_i \\
\Delta G'\circ = -30.5 \text{ kJ/mol}
\]

These two reactions share the common intermediates P\(_i\) and H\(_2\)O and may be expressed as sequential reactions:

\[
\begin{align*}
\text{(1) } \text{Glucose} + \text{P}_i & \rightarrow \text{glucose 6-phosphate} + \text{H}_2\text{O} \\
\text{(2) } \text{ATP} + \text{H}_2\text{O} & \rightarrow \text{ADP} + \text{P}_i
\end{align*}
\]

Sum: \(\text{ATP} + \text{glucose} \rightarrow \text{ADP} + \text{glucose 6-phosphate} \)

The overall standard free-energy change is obtained by adding the \(\Delta G'\circ \) values for individual reactions:

\[
\Delta G' = 13.8 \text{ kJ/mol} + (-30.5 \text{ kJ/mol}) = -16.7 \text{ kJ/mol}
\]

The overall reaction is exergonic. In this case, energy stored in ATP is used to drive the synthesis of glucose 6-phosphate, even though its formation from glucose and inorganic phosphate (P\(_i\)) is endergonic. The pathway of glucose 6-phosphate formation from glucose by phosphoryl transfer from ATP is different from reactions
(1) and (2) above, but the net result is the same as the sum of the two reactions. In thermodynamic calculations, all that matters is the state of the system at the beginning of the process and its state at the end; the route between the initial and final states is immaterial.

We have said that ΔG° is a way of expressing the equilibrium constant for a reaction. For reaction (1) above,

$$K_{eq}^1 = \frac{[\text{glucose 6-phosphate}]}{[\text{glucose}][\text{P}]} = 3.9 \times 10^{-3} \text{M}^{-1}$$

Notice that H$_2$O is not included in this expression, as its concentration (55.5 M) is assumed to remain unchanged by the reaction. The equilibrium constant for the hydrolysis of ATP is

$$K_{eq}^2 = \frac{[\text{ADP}][\text{P}]}{[\text{ATP}]} = 2.0 \times 10^5 \text{M}$$

The equilibrium constant for the two coupled reactions is

$$K_{eq} = \frac{[\text{glucose 6-phosphate}][\text{ADP}][\text{P}]}{[\text{glucose}][\text{P}][\text{ATP}]} = (3.9 \times 10^{-3} \text{M}^{-1})(2.0 \times 10^5 \text{M})$$

$$= 7.8 \times 10^2$$

This calculation illustrates an important point about equilibrium constants: although the ΔG° values for two reactions that sum to a third, overall reaction are additive, the K_{eq} for the overall reaction is the product of the individual K_{eq} values for the two reactions. Equilibrium constants are multiplicative. By coupling ATP hydrolysis to glucose 6-phosphate synthesis, the K_{eq} for formation of glucose 6-phosphate from glucose has been raised by a factor of about 2×10^5.

This common-intermediate strategy is employed by all living cells in the synthesis of metabolic intermediates and cellular components. Obviously, the strategy works only if compounds such as ATP are continuously available. In the following chapters we consider several of the most important cellular pathways for producing ATP.

SUMMARY 13.1 Bioenergetics and Thermodynamics

- Living cells constantly perform work. They require energy for maintaining their highly organized structures, synthesizing cellular components, generating electric currents, and many other processes.
- Bioenergetics is the quantitative study of energy relationships and energy conversions in biological systems. Biological energy transformations obey the laws of thermodynamics.
- All chemical reactions are influenced by two forces: the tendency to achieve the most stable bonding state (for which enthalpy, H, is a useful expression) and the tendency to achieve the highest degree of randomness, expressed as entropy, S. The net driving force in a reaction is ΔG, the free-energy change, which represents the net effect of these two factors: $\Delta G = \Delta H - T\Delta S$.
- The standard transformed free-energy change, ΔG°, is a physical constant that is characteristic for a given reaction and can be calculated from the equilibrium constant for the reaction: $\Delta G^\circ = -RT \ln K_{eq}$.
- The actual free-energy change, ΔG, is a variable that depends on ΔG° and on the concentrations of reactants and products: $\Delta G = \Delta G^\circ + RT \ln ([\text{products}]/[\text{reactants}])$.
- When ΔG is large and negative, the reaction tends to go in the forward direction; when ΔG is large and positive, the reaction tends to go in the reverse direction; and when $\Delta G = 0$, the system is at equilibrium.
- The free-energy change for a reaction is independent of the pathway by which the reaction occurs. Free-energy changes are additive; the net chemical reaction that results from successive reactions sharing a common intermediate has an overall free-energy change that is the sum of the ΔG values for the individual reactions.

13.2 Chemical Logic and Common Biochemical Reactions

The biological energy transductions we are concerned with in this book are chemical reactions. Cellular chemistry does not encompass every kind of reaction learned in a typical organic chemistry course. Which reactions take place in biological systems and which do not is determined by (1) their relevance to that particular metabolic system and (2) their rates. Both considerations play major roles in shaping the metabolic pathways we consider throughout the rest of the book. A relevant reaction is one that makes use of an available substrate and converts it to a useful product. However, even a potentially relevant reaction may not occur. Some chemical transformations are too slow (have activation energies that are too high) to contribute to living systems even with the aid of powerful enzyme catalysts. The reactions that do occur in cells represent a toolbox that evolution has used to construct metabolic pathways that circumvent the "impossible" reactions. Learning to recognize the plausible reactions can be a great aid in developing a command of biochemistry.

Even so, the number of metabolic transformations taking place in a typical cell can seem overwhelming. Most cells have the capacity to carry out thousands of specific, enzyme-catalyzed reactions: for example, transformation of a simple nutrient such as glucose into amino acids, nucleotides, or lipids; extraction of energy from fuels by oxidation; and polymerization of monomeric subunits into macromolecules.
To study these reactions, some organization is essential. There are patterns within the chemistry of life; you do not need to learn every individual reaction to comprehend the molecular logic of biochemistry. Most of the reactions in living cells fall into one of five general categories: (1) reactions that make or break carbon–carbon bonds; (2) internal rearrangements, isomerizations, and eliminations; (3) free-radical reactions; (4) group transfers; and (5) oxidation-reductions. We discuss each of these in more detail below and refer to some examples of each type in later chapters. Note that the five reaction types are not mutually exclusive; for example, an isomerization reaction may involve a free-radical intermediate.

Before proceeding, however, we should review two basic chemical principles. First, a covalent bond consists of a shared pair of electrons, and the bond can be broken in two general ways (Fig. 13-1). In homolytic cleavage, each atom leaves the bond as a radical, carrying one unpaired electron. In heterolytic cleavage, which is more common, one atom retains both bonding electrons. The species most often generated when C—C and C—H bonds are cleaved are illustrated in Figure 13-1. Carbanions, carbocations, and hydride ions are highly unstable; this instability shapes the chemistry of these ions, as we shall see.

The second basic principle is that many biochemical reactions involve interactions between nucleophiles (functional groups rich in and capable of donating electrons) and electrophiles (electron-deficient functional groups that seek electrons). Nucleophiles combine with and give up electrons to electrophiles. Common biological nucleophiles and electrophiles are shown in Figure 13-2. Note that a carbon atom can act as either a nucleophile or an electrophile, depending on which bonds and functional groups surround it.

Reactions That Make or Break Carbon–Carbon Bonds Heterolytic cleavage of a C—C bond yields a carbanion and a carbocation (Fig. 13-1). Conversely, the formation of a C—C bond involves the combination of a nucleophilic carbanion and an electrophilic carbocation. Carbanions and carbocations are generally so unstable that their formation as reaction intermediates can be energetically inaccessible even with enzyme catalysts. For the purpose of cellular biochemistry they are impossible reactions—unless chemical assistance is provided in the form of functional groups containing electronegative atoms (O and

Homolytic cleavage

\[\text{C—H} \rightarrow \text{C}^+ \cdot \cdot \text{H} \]

Carbon radical

\[\text{C—C} \rightarrow \text{C}^+ \cdot \cdot \text{C}^- \]

Carbon radicals

Heterolytic cleavage

\[\text{C—H} \rightarrow \text{C}^- \cdot \cdot \text{H}^+ \]

Carbanion Proton

\[\text{C—C} \rightarrow \text{C}^- \cdot \cdot \text{C}^+ \]

Carbocation Hydride

\[\text{C—C} \rightarrow \text{C}^- \cdot \cdot \text{C}^- \]

Carbanion Carbanion

Nucleophiles

- \(\text{O}^- \)
 - Negatively charged oxygen (as in an unprotonated hydroxyl group or an ionized carboxylic acid)
- \(\text{Si}^- \)
 - Negatively charged sulfhydryl
- \(\text{C}^- \)
 - Carbanion
- \(\text{N}^- \)
 - Uncharged amine group
- \(\text{Imidazole} \)
 - Imidazole
- \(\text{H—O}^- \)
 - Hydroxide ion

Electrophiles

- \(\text{R—C}^+ \)
 - Carbon atom of a carbonyl group (the more electronegative oxygen of the carbonyl group pulls electrons away from the carbon)
- \(\text{R—C—N}^- \)
 - Pronated imine group (activated for nucleophilic attack at the carbon by protonation of the imine)
- \(\text{O—P—O}^- \)
 - Phosphorus of a phosphate group
- \(\text{H}^+ \)
 - Proton

FIGURE 13-1 Two mechanisms for cleavage of a C—C or C—H bond.

In a homolytic cleavage, each atom keeps one of the bonding electrons, resulting in the formation of carbon radicals (carbons having unpaired electrons) or uncharged hydrogen atoms. In a heterolytic cleavage, one of the atoms retains both bonding electrons. This can result in the formation of carbanions, carbocations, protons, or hydride ions.
N) that can alter the electronic structure of adjacent carbon atoms so as to stabilize and facilitate the formation of carbanion and carbocation intermediates.

Carbonyl groups are particularly important in the chemical transformations of metabolic pathways. The carbon of a carbonyl group has a partial positive charge due to the electron-withdrawing property of the carbonyl oxygen, and thus is an electrophilic carbon (Fig. 13-3a). A carbonyl group can thus facilitate the formation of a carbanion on an adjoining carbon by delocalizing the carbanion’s negative charge (Fig. 13-3b). An imine (C=NH₂) group can serve a similar function (Fig. 13-3c). The capacity of carbonyl and imine groups to delocalize electrons can be further enhanced by a general acid catalyst or by a metal ion such as Mg²⁺ (Fig. 13-3d; see also Figs 6–21 and 6–23).

The importance of a carbonyl group is evident in three major classes of reactions in which C—C bonds are formed or broken (Fig. 13-4): aldol condensations, Claisen ester condensations, and decarboxylations. In each type of reaction, a carbanion intermediate is stabilized by a carbonyl group, and in many cases another carbonyl provides the electrophile with which the nucleophilic carbanion reacts.

An **aldol condensation** is a common route to the formation of a C—C bond; the aldolase reaction, which converts a six-carbon compound to two three-carbon compounds in glycolysis, is an aldol condensation in reverse (see Fig. 14–5). In a **Claisen condensation**, the carbanion is stabilized by the carbonyl of an adjacent thioester; an example is the synthesis of citrate in the citric acid cycle (see Fig. 16–9). Decarboxylation also commonly involves the formation of a carbanion stabilized by a carbonyl group; the acetoacetate decarboxylase reaction that occurs in the formation of ketone bodies during fatty acid catabolism provides an example (see Fig. 17–18). Entire metabolic pathways are organized around the introduction of a carbonyl group in a particular location so that a nearby carbon–carbon bond can be formed or cleaved. In some reactions, an imine or a specialized cofactor such as pyridoxal phosphate plays the electron-withdrawing role of the carbonyl group.

The carbocation intermediate occurring in some reactions that form or cleave C—C bonds is generated by the elimination of a very good leaving group, such as pyrophosphate (see Group Transfer Reactions below). An example is the prenyltransferase reaction (Fig. 13-5), an early step in the pathway of cholesterol biosynthesis.

Internal Rearrangements, Isomerizations, and Eliminations Another common type of cellular reaction is an intramolecular rearrangement in which redistribution of electrons results in alterations of many different types without a change in the overall oxidation state of the molecule. For example, different groups in a molecule may undergo oxidation-reduction, with no net change in oxidation state of the molecule; groups at a double bond may undergo a cis-trans rearrangement; or the positions of double bonds may be transposed. An example of an isomerization entailing oxidation-reduction is the formation of fructose 6-phosphate from glucose.
6-phosphate in glycolysis (Fig. 13–6; this reaction is discussed in detail in Chapter 14): C-1 is reduced (aldehyde to alcohol) and C-2 is oxidized (alcohol to ketone). Figure 13–6b shows the details of the electron movements in this type of isomerization. A cis-trans rearrangement is illustrated by the prolyl cis-trans isomerase reaction in the folding of certain proteins (see Fig. 4–7b). A simple transposition of a C≡C bond occurs during metabolism of oleic acid, a common fatty acid (see Fig. 17–9). Some spectacular examples of double-bond repositioning occur in the biosynthesis of cholesterol (see Fig. 21–33).

An example of an elimination reaction that does not affect overall oxidation state is the loss of water from an alcohol, resulting in the introduction of a C≡C bond:

\[
\begin{align*}
\text{R}-\text{C}≡\text{C}-\text{R}_1 & \xrightarrow{\text{H}_2\text{O}} \text{R}-\text{C}≡\text{C}-\text{H} \\
\text{R}_2 & \quad \text{H} \\
\end{align*}
\]

Similar reactions can result from eliminations in amines.

Free-Radical Reactions Once thought to be rare, the homolytic cleavage of covalent bonds to generate free radicals has now been found in a wide range of biochemical processes. These include: isomerizations that make use of adenosylcobalamin (vitamin B₁₂) or S-adenosylmethionine, which are initiated with a 5'-deoxyadenosyl radical (see the methylmalonyl-CoA mutase reaction in Box 17–2); certain radical-initiated decarboxylation reactions (Fig. 13–7); some reductase reactions, such as that catalyzed by ribonucleotide reductase (see Fig. 22–41); and some rearrangement reactions, such as that catalyzed by DNA photolyase (see Fig. 25–27).

FIGURE 13–5 Carbocations in carbon–carbon bond formation. In one of the early steps in cholesterol biosynthesis, the enzyme prenyl transferase catalyzes condensation of isopentenyl pyrophosphate and dimethylallyl pyrophosphate to form geranyl pyrophosphate (see Fig. 21–36). The reaction is initiated by elimination of pyrophosphate from the dimethylallyl pyrophosphate to generate a carbocation, stabilized by resonance with the adjacent C≡C bond.

FIGURE 13–6 Isomerization and elimination reactions. (a) The conversion of glucose 6-phosphate to fructose 6-phosphate, a reaction of sugar metabolism catalyzed by phosphohexose isomerase. (b) This reaction proceeds through an enediol intermediate. The curved blue arrows represent movement of bonding electron pairs. Pink screens indicate nucleophilic groups; blue, electrophilic.
FIGURE 13-7 A free radical-initiated decarboxylation reaction. The biosynthesis of heme (see Fig. 22–24) in Escherichia coli includes a decarboxylation step in which propionyl side chains on the coproporphyrinogen III intermediate are converted to the vinyl side chains of protoporphyrinogen IX. When the bacteria are grown anaerobically, the enzyme oxygen-independent coproporphyrinogen III oxidase, also called HemN protein, promotes decarboxylation via the free-radical mechanism shown here. The acceptor of the released electron is not known. For simplicity, only the relevant portions of the large coproporphyrinogen III and protoporphyrinogen molecules are shown; the entire structures are given in Figure 22–24. When E. coli are grown in the presence of oxygen, this reaction is an oxidative decarboxylation and is catalyzed by a different enzyme.

Group Transfer Reactions The transfer of acyl, glycosyl, and phosphoryl groups from one nucleophile to another is common in living cells. Acyl group transfer generally involves the addition of a nucleophile to the carbonyl carbon of an acyl group to form a tetrahedral intermediate:

The chymotrypsin reaction is one example of acyl group transfer (see Fig. 6–21). Glycosyl group transfers involve nucleophilic substitution at C-1 of a sugar ring, which is the central atom of an acetal. In principle, the substitution could proceed by an S_N 1 or S_N 2 pathway, as described in Figure 6–25 for the enzyme lysozyme.

Phosphoryl group transfers play a special role in metabolic pathways, and these transfer reactions are discussed in detail in Section 13.3. A general theme in metabolism is the attachment of a good leaving group to a metabolic intermediate to “activate” the intermediate for subsequent reaction. Among the better leaving groups in nucleophilic substitution reactions are inorganic orthophosphate (the ionized form of H_3PO_4 at neutral pH, a mixture of H_2PO_4^- and HPO_4^{2-}, commonly abbreviated P) and inorganic pyrophosphate (P_2O_7^{4-}, abbreviated PP); esters and anhydrides of phosphoric acid are effectively activated for reaction. Nucleophilic substitution is made more favorable by the attachment of a phosphoryl group to an otherwise poor leaving group such as —OH. Nucleophilic substitutions in which the phosphoryl group (—PO_3^{3-}) serves as a leaving group occur in hundreds of metabolic reactions.

Phosphorus can form five covalent bonds. The conventional representation of P, (Fig. 13–8a), with three P—O bonds and one P==O bond, is a convenient but

FIGURE 13-8 Alternative ways of showing the structure of inorganic orthophosphate. (a) In one (inadequate) representation, three oxygens are single-bonded to phosphorus, and the fourth is double-bonded, allowing the four different resonance structures shown here. (b) The resonance structures can be represented more accurately by showing all four phosphorus—oxygen bonds with some double-bond character; the hybrid orbitals so represented are arranged in a tetrahedron with P at its center. (c) When a nucleophile Z (in this case, the —OH on C-6 of glucose) attacks ATP, it displaces ADP (W). In this S_N 2 reaction, a pentacovalent intermediate (d) forms transiently.
inaccurate picture. In P₄, four equivalent phosphorus–oxygen bonds share some double-bond character, and the anion has a tetrahedral structure (Fig. 13–8b). Because oxygen is more electronegative than phosphorus, the sharing of electrons is unequal: the central phosphorus bears a partial positive charge and can therefore act as an electrophile. In a great many metabolic reactions, a phosphoryl group (—PO₄³⁻) is transferred from ATP to an alcohol, forming a phosphate ester (Fig. 13–8c), or to a carboxylic acid, forming a mixed anhydride. When a nucleophile attacks the electrophilic phosphoryl atom in ATP, a relatively stable pentacoordinate structure forms as a reaction intermediate (Fig. 13–8d). With departure of the leaving group (ADP), the transfer of a phosphoryl group is complete. The large family of enzymes that catalyze phosphoryl group transfers with ATP as donor are called kinases (Greek kinein, “to move”). Hexokinase, for example, “moves” a phosphoryl group from ATP to glucose.

Phosphoryl groups are not the only groups that activate molecules for reaction. Thioalcohols (thiols), in which the oxygen atom of an alcohol is replaced with a sulfur atom, are also good leaving groups. Thiols activate carboxylic acids by forming thioesters (thioesters). In later chapters we discuss several reactions, including those catalyzed by the fatty acyl synthases in lipid synthesis (Fig. 21–2), in which nucleophilic substitution at the carbonyl carbon of a thioester results in transfer of the acyl group to another moiety.

Oxidation-Reduction Reactions

Carbon atoms can exist in five oxidation states, depending on the elements with which they share electrons (Fig. 13–9), and transitions between these states are of crucial importance in metabolism (oxidation-reduction reactions are the topic of Section 13.4). In many biological oxidations, a compound loses two electrons and two hydrogen ions (that is, two hydrogen atoms); these reactions are commonly called dehydrogenations and the enzymes that catalyze them are called dehydrogenases (Fig. 13–10). In some, but not all, biological oxidations, a carbon atom becomes covalently bonded to an oxygen atom. The enzymes that catalyze these oxidations are generally called oxidases or, if the oxygen atom is derived directly from molecular oxygen (O₂), oxygenases.

Every oxidation must be accompanied by a reduction, in which an electron acceptor acquires the electrons removed by oxidation. Oxidation reactions generally release energy (think of camp fires: the compounds in wood are oxidized by oxygen molecules in the air). Most living cells obtain the energy needed for cellular work by oxidizing metabolic fuels such as carbohydrates or fat (photosynthetic organisms can also trap and use the energy of sunlight). The catabolic (energy-yielding) pathways described in Chapters 14 through 19 are oxidative reaction sequences that result in the transfer of electrons from fuel molecules, through a series of electron carriers, to oxygen. The high affinity of O₂ for electrons makes the overall electron-transfer process highly exergonic, providing the energy that drives ATP synthesis—the central goal of catabolism.

Many of the reactions within these five classes are facilitated by cofactors, in the form of coenzymes and metals (vitamin B₁₂, S-adenosylmethionine, folate, nicotinamide, and iron are some examples). Cofactors bind to enzymes—in some cases reversibly, in other cases almost irreversibly—and confer on them the capacity to promote a particular kind of chemistry (p. 184). Most cofactors participate in a narrow range of closely related reactions. In the following chapters, we will introduce and discuss each important cofactor at the point where we first encounter it. The cofactors provide another way to organize the study of biochemical processes, since the reactions facilitated by a given cofactor generally are mechanistically related.

Biochemical and Chemical Equations Are Not Identical

Biochemists write metabolic equations in a simplified way, and this is particularly evident for reactions involving ATP. Phosphorylated compounds can exist in several
ionization states and, as we have noted, the different species can bind Mg$^{2+}$. For example, at pH 7 and 2 mM Mg$^{2+}$, ATP exists in the forms ATP$^4^-$, HATP$^3^-$, H$_2$ATP$^2^-$, MgHATP$^-$, and Mg$_2$ATP. In thinking about the biological role of ATP, however, we are not always interested in all this detail, and so we consider ATP as an entity made up of a sum of species, and we write its hydrolysis as the biochemical equation

$$ATP + H_2O \rightarrow ADP + P_i$$

where ATP, ADP, and P$_i$ are sums of species. The corresponding standard transformed equilibrium constant, $K'_e = [ADP][P_i]/[ATP]$, depends on the pH and the concentration of free Mg$^{2+}$. Note that H$^+$ and Mg$^{2+}$ do not appear in the biochemical equation because they are held constant. Thus a biochemical equation does not necessarily balance H, Mg, or charge, although it does balance all other elements involved in the reaction (C, N, O, and P in the equation above).

We can write a chemical equation that does balance for all elements and for charge. For example, when ATP is hydrolyzed at a pH above 8.5 in the absence of Mg$^{2+}$, the chemical reaction is represented by

$$ATP^4^- + H_2O \rightarrow ADP^3^- + HPO_4^{2-} + H^+$$

The corresponding equilibrium constant, $K'_e = [ADP^3^-][HPO_4^{2-}]/[ATP^4^-]$, depends only on temperature, pressure, and ionic strength.

Both ways of writing a metabolic reaction have value in biochemistry. Chemical equations are needed when we want to account for all atoms and charges in a reaction, as when we are considering the mechanism of a chemical reaction. Biochemical equations are used to determine in which direction a reaction will proceed spontaneously, given a specified pH and [Mg$^{2+}$], or to calculate the equilibrium constant of such a reaction.

Throughout this book we use biochemical equations, unless the focus is on chemical mechanism, and we use values of ΔG° and K'_e, as determined at pH 7 and 1 mM Mg$^{2+}$.

SUMMARY 13.2 Chemical Logic and Common Biochemical Reactions

- Living systems make use of a large number of chemical reactions that can be classified into five general types.
- Carbonyl groups play a special role in reactions that form or cleave C–C bonds. Carbanion intermediates are common and are stabilized by adjacent carbonyl groups or, less often, by imines or certain cofactors.
- A redistribution of electrons can produce internal rearrangements, isomerizations, and eliminations.
- Such reactions include intramolecular oxidation-reduction, change in cis-trans arrangement at a double bond, and transposition of double bonds.
- Homolytic cleavage of covalent bonds to generate free radicals occurs in some pathways, such as in certain isomerization, decarboxylation, reductase, and rearrangement reactions.
- Phosphoryl transfer reactions are an especially important type of group transfer in cells, required for the activation of molecules for reactions that would otherwise be highly unfavorable.
- Oxidation-reduction reactions involve the loss or gain of electrons: one reactant gains electrons and is reduced, while the other loses electrons and is oxidized. Oxidation reactions generally release energy and are important in catabolism.

13.3 Phosphoryl Group Transfers and ATP

Having developed some fundamental principles of energy changes in chemical systems and reviewed the common classes of reactions, we can now examine the energy cycle in cells and the special role of ATP as the energy currency that links catabolism and anabolism (see Fig. 1-28). Heterotrophic cells obtain free energy in a chemical form by the catabolism of nutrient molecules, and they use that energy to make ATP from ADP and P$_i$. ATP then donates some of its chemical energy to endergonic processes such as the synthesis of metabolic intermediates and macromolecules from smaller precursors, the transport of substances across membranes against concentration gradients, and mechanical motion. This donation of energy from ATP generally involves the covalent participation of ATP in the reaction that is to be driven, with the eventual result that ATP is converted to ADP and P$_i$ or, in some reactions, to AMP and 2 P$_i$. We discuss here the chemical basis for the large free-energy changes that accompany hydrolysis of ATP and other high-energy phosphate compounds, and we show that most cases of energy donation by ATP involve group transfer, not simple hydrolysis of ATP. To illustrate the range of energy transductions in which ATP provides the energy, we consider the synthesis of information-rich macromolecules, the transport of solutes across membranes, and motion produced by muscle contraction.

The Free-Energy Change for ATP Hydrolysis Is Large and Negative

Figure 13-11 summarizes the chemical basis for the relatively large, negative, standard free energy of hydrolysis of ATP. The hydrolytic cleavage of the terminal
Bioenergetics and Biochemical Reaction Types

ATP$^4-$ + H_2O \rightarrow ADP$^{3-}$ + P$_r$ + H$^+$

ΔG° = -30.5 kJ/mol

The charge separation that results from hydrolysis relieves electrostatic repulsion among the four negative charges on ATP. The product inorganic phosphate (P$_r$) is stabilized by formation of a resonance hybrid, in which each of the four phosphorus-oxygen bonds has the same degree of double-bond character and the hydrogen ion is not permanently associated with any one of the oxygens. Some degree of resonance stabilization also occurs in phosphates involved in ester or anhydride linkages, but fewer resonance forms are possible than for P$_r$.

The product ADP$^{2-}$ immediately ionizes, releasing a proton into a medium of very low [H$^+$] (pH 7). A fourth factor (not shown) that favors ATP hydrolysis is the greater degree of solvation (hydration) of the products P$_r$ and ADP relative to ATP, which further stabilizes the products relative to the reactants immediately ionizes, releasing H$^+$ into a medium of very low [H$^+$] (\sim10$^{-7}$ M). Because the concentrations of the direct products of ATP hydrolysis are, in the cell, far below the concentrations at equilibrium (Table 13–5), mass action favors the hydrolysis reaction in the cell.

The free-energy change for ATP hydrolysis is -30.5 kJ/mol under standard conditions, but the actual free energy of hydrolysis (ΔG) of ATP in living cells is very different: the cellular concentrations of ATP, ADP, and P$_r$ are not identical and are much lower than the 1.0 M of standard conditions (Table 13–5). Furthermore, Mg$^{2+}$ in the cytosol binds to ATP and ADP (Fig. 13–12), and for most enzymatic reactions that involve ATP as phosphoryl group donor, the true substrate is MgATP$^{2-}$. The relevant ΔG° is therefore that for MgATP$^{2-}$ hydrolysis. We can calculate ΔG for ATP hydrolysis using data such as those in Table 13–5. The actual free energy of hydrolysis of ATP under intracellular conditions is often called its phosphorylation potential, ΔG_p.

TABLE 13–5 Adenine Nucleotide, Inorganic Phosphate, and Phosphocreatine Concentrations in Some Cells

<table>
<thead>
<tr>
<th></th>
<th>Concentration (mM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATP</td>
</tr>
<tr>
<td>Rat hepatocyte</td>
<td>3.38</td>
</tr>
<tr>
<td>Rat myocyte</td>
<td>8.05</td>
</tr>
<tr>
<td>Rat neuron</td>
<td>2.59</td>
</tr>
<tr>
<td>Human erythrocyte</td>
<td>2.25</td>
</tr>
<tr>
<td>E. coli cell</td>
<td>7.90</td>
</tr>
</tbody>
</table>

*For erythrocytes the concentrations are those of the cytosol (human erythrocytes lack a nucleus and mitochondria). In the other types of cells the data are for the entire cell contents, although the cytosol and the mitochondria have very different concentrations of ADP, PCR is phosphocreatine, discussed on p. 510.

This value reflects total concentration; the true value for free ADP may be much lower (p. 503).

FIGURE 13–11 Chemical basis for the large free-energy change associated with ATP hydrolysis. 1. The charge separation that results from hydrolysis relieves electrostatic repulsion among the four negative charges on ATP. 2. The product inorganic phosphate (P$_r$) is stabilized by formation of a resonance hybrid, in which each of the four phosphorus-oxygen bonds has the same degree of double-bond character and the hydrogen ion is not permanently associated with any one of the oxygens. Some degree of resonance stabilization also occurs in phosphates involved in ester or anhydride linkages, but fewer resonance forms are possible than for P$_r$. 3. The product ADP$^{2-}$ immediately ionizes, releasing H$^+$ into a medium of very low [H$^+$] (pH 7). A fourth factor (not shown) that favors ATP hydrolysis is the greater degree of solvation (hydration) of the products P$_r$ and ADP relative to ATP, which further stabilizes the products relative to the reactants.

FIGURE 13–12 Mg$^{2+}$ and ATP. Formation of Mg$^{2+}$ complexes partially shields the negative charges and influences the conformation of the phosphate groups in nucleotides such as ATP and ADP.
WORKED EXAMPLE 13-2 Calculation of ΔG_p

Calculate the actual free energy of hydrolysis of ATP, ΔG_p, in human erythrocytes. The standard free energy of hydrolysis of ATP is -30.5 kJ/mol, and the concentrations of ATP, ADP, and P$_i$ in erythrocytes are as shown in Table 13-5. Assume that the pH is 7.0 and the temperature is 37°C (body temperature). What does this reveal about the amount of energy required to synthesize ATP under the same cellular conditions?

Solution: The concentrations of ATP, ADP, and P$_i$ in human erythrocytes are 2.25, 0.25, and 1.65 mM, respectively. The actual free energy of hydrolysis of ATP under these conditions is given by the relationship (see Eqn 13-4)

$$\Delta G_p = \Delta G^\circ + RT \ln \left(\frac{[\text{ADP}][\text{P}_i]}{[\text{ATP}]} \right)$$

Substituting the appropriate values we get

$$\Delta G_p = -30.5 \text{ kJ/mol} + \left[(8.315 \text{ J/mol} \cdot \text{K})(310 \text{ K}) \ln \left(\frac{0.25 \times 10^{-3})(1.65 \times 10^{-3})}{(2.25 \times 10^{-3})} \right) \right]$$

$$= -30.5 \text{ kJ/mol} + (2.58 \text{ kJ/mol}) \ln 1.8 \times 10^{-4}$$

$$= -30.5 \text{ kJ/mol} + (2.58 \text{ kJ/mol})(-8.6)$$

$$= -30.5 \text{ kJ/mol} - 22 \text{ kJ/mol}$$

$$= -52 \text{ kJ/mol}$$

(Note that the final answer has been rounded to the correct number of significant figures (52.5 rounded to 52), following rules for rounding 5 down to the nearest even number to avoid the bias inherent in rounding “up.”) Thus ΔG_p, the actual free-energy change for ATP hydrolysis in the intact erythrocyte (-52 kJ/mol), is much larger than the standard free-energy change (-30.5 kJ/mol). By the same token, the free energy required to synthesize ATP from ADP and P$_i$ under the conditions prevailing in the erythrocyte would be 52 kJ/mol.

Because the concentrations of ATP, ADP, and P$_i$ differ from one cell type to another, ΔG_p for ATP likewise differs among cells. Moreover, in any given cell, ΔG_p can vary from time to time, depending on the metabolic conditions and how they influence the concentrations of ATP, ADP, P$_i$, and H$^+$ (pH). We can calculate the actual free-energy change for any given metabolic reaction as it occurs in a cell, providing we know the concentrations of all the reactants and products and other factors (such as pH, temperature, and [Mg$^{2+}$]) that may affect the actual free-energy change.

To further complicate the issue, the total concentrations of ATP, ADP, P$_i$, and H$^+$ in a cell may be substantially higher than the free concentrations, which are the thermodynamically relevant values. The difference is due to tight binding of ATP, ADP, and P$_i$ to cellular proteins. For example, the free [ADP] in resting muscle has been variously estimated at between 1 and 37 μM. Using the value 25 μM in Worked Example 13-2, we would get a ΔG_p of -64 kJ/mol. Calculation of the exact value of ΔG_p, however, is perhaps less instructive than the generalization we can make about actual free-energy changes: in vivo, the energy released by ATP hydrolysis is greater than the standard free-energy change, ΔG°.

In the following discussions we use the ΔG° value for ATP hydrolysis because this allows comparison, on the same basis, with the energetics of other cellular reactions. Always keep in mind, however, that in living cells ΔG is the relevant quantity—for ATP hydrolysis and all other reactions—and may be quite different from ΔG°.

Here we must make an important point about cellular ATP levels. We have shown (and will discuss further) how the chemical properties of ATP make it a suitable form of energy currency in cells. But it is not merely the molecule's intrinsic chemical properties that give it this ability to drive metabolic reactions and other energy-requiring processes. Even more important is that, in the course of evolution, there has been a very strong selective pressure for regulatory mechanisms that hold cellular ATP concentrations far above the equilibrium concentrations for the hydrolysis reaction. When the ATP level drops, not only does the amount of fuel decrease, but the fuel itself loses its potency: ΔG for its hydrolysis (that is, its phosphorylation potential, ΔG_p) is diminished. As our discussions of the metabolic pathways that produce and consume ATP will show, living cells have developed elaborate mechanisms—often at what might seem to us the expense of efficiency and common sense—to maintain high concentrations of ATP.
FIGURE 13–13 Hydrolysis of phosphoenolpyruvate (PEP). Catalyzed by pyruvate kinase, this reaction is followed by spontaneous tautomerization of the product, pyruvate. Tautomerization is not possible in PEP and thus the products of hydrolysis are stabilized relative to the reactants. Resonance stabilization of P\textsubscript{i} also occurs, as shown in Figure 13–11.

Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis

Phosphoenolpyruvate (PEP, Fig. 13–13) contains a phosphate ester bond that undergoes hydrolysis to yield the enol form of pyruvate, and this direct product can immediately tautomerize to the more stable keto form. Because the reactant (PEP) has only one form (enol) and the product (pyruvate) has two possible forms, the product is stabilized relative to the reactant. This is the greatest contributing factor to the high standard free energy of hydrolysis of phosphoenolpyruvate: ΔG° = -61.9 kJ/mol.

Another three-carbon compound, 1,3-bisphosphoglycerate (Fig. 13–14), contains an anhydride bond between the C-1 carboxyl group and phosphoric acid. Hydrolysis of this acyl phosphate is accompanied by a large, negative, standard free-energy change (ΔG° = -49.3 kJ/mol), which can, again, be explained in terms of the structure of reactant and products. When H\textsubscript{2}O is added across the anhydride bond of 1,3-bisphosphoglycerate, one of the direct products, 3-phosphoglyceric acid, can immediately lose a proton to give the carboxylate ion, 3-phosphoglycerate, which has two equally probable resonance forms (Fig. 13–14). Removal of the direct product (3-phosphoglyceric acid) and formation of the resonance-stabilized ion favor the forward reaction.

In phosphocreatine (Fig. 13–15), the P–N bond can be hydrolyzed to generate free creatine and P\textsubscript{i}. The release of P\textsubscript{i} and the resonance stabilization of creatine favor the forward reaction. The standard free-energy change of phosphocreatine hydrolysis is again large, -43.0 kJ/mol.

In all these phosphate-releasing reactions, the several resonance forms available to P\textsubscript{i} (Fig. 13–11) stabilize this product relative to the reactant, contributing to an already negative free-energy change. Table 13–6 lists

FIGURE 13–14 Hydrolysis of 1,3-bisphosphoglycerate. The direct product of hydrolysis is 3-phosphoglyceric acid, with an undissociated carboxylic acid group, but dissociation occurs immediately. This ionization and the resonance structures it makes possible stabilize the product relative to the reactants. Resonance stabilization of P\textsubscript{i} further contributes to the negative free-energy change.

FIGURE 13–15 Hydrolysis of phosphocreatine. Breakage of the P–N bond in phosphocreatine produces creatine, which is stabilized by formation of a resonance hybrid. The other product, P\textsubscript{i}, is also resonance stabilized.
TABLE 13–6 Standard Free Energies of Hydrolysis of Some Phosphorylated Compounds and Acetyl-CoA (a Thioester)

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔG° (kJ/mol)</th>
<th>ΔG° (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoenolpyruvate</td>
<td>-61.9</td>
<td>-14.8</td>
</tr>
<tr>
<td>1,3-bisphosphoglycerate</td>
<td>-49.3</td>
<td>-11.8</td>
</tr>
<tr>
<td>Phosphocreatine</td>
<td>-43.0</td>
<td>-10.3</td>
</tr>
<tr>
<td>ADP (→ AMP + P$_i$)</td>
<td>-32.8</td>
<td>-7.8</td>
</tr>
<tr>
<td>ATP (→ ADP + P$_i$)</td>
<td>-30.5</td>
<td>-7.3</td>
</tr>
<tr>
<td>AMP (→ adenosine + P$_i$)</td>
<td>-14.2</td>
<td>-3.4</td>
</tr>
<tr>
<td>PP$_i$ (→ 2P$_i$)</td>
<td>-19.2</td>
<td>-4.0</td>
</tr>
<tr>
<td>Glucose 3-phosphate</td>
<td>-20.9</td>
<td>-5.0</td>
</tr>
<tr>
<td>Fructose 6-phosphate</td>
<td>-15.9</td>
<td>-3.8</td>
</tr>
<tr>
<td>Glucose 6-phosphate</td>
<td>-13.8</td>
<td>-3.3</td>
</tr>
<tr>
<td>Glycerol 3-phosphate</td>
<td>-9.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>Acetyl-CoA</td>
<td>-31.4</td>
<td>-7.5</td>
</tr>
</tbody>
</table>

The standard free energies of hydrolysis for some biologically important phosphorylated compounds.

Thioesters, in which a sulfur atom replaces the usual oxygen in the ester bond, also have large, negative, standard free energies of hydrolysis. Acetyl-coenzyme A, or acetyl-CoA (Fig. 13–16), is one of many thioesters important in metabolism. The acyl group in these compounds is activated for transacylation, condensation, or oxidation-reduction reactions. Thioesters undergo much less resonance stabilization than do oxygen esters; consequently, the difference in free energy between the reactant and its hydrolysis products, which

FIGURE 13–16 Hydrolysis of acetyl-coenzyme A. Acetyl-CoA is a thioester with a large, negative, standard free energy of hydrolysis. Thioesters contain a sulfur atom in the position occupied by an oxygen atom in oxygen esters. The complete structure of coenzyme A (CoA, or CoASH) is shown in Figure 8–38.

are resonance-stabilized, is greater for thioesters than for comparable oxygen esters (Fig. 13–17). In both cases, hydrolysis of the ester generates a carboxylic acid, which can ionize and assume several resonance forms. Together, these factors result in the large, negative ΔG° (\sim31.4 kJ/mol) for acetyl-CoA hydrolysis.

To summarize, for hydrolysis reactions with large, negative, standard free-energy changes, the products are more stable than the reactants for one or more of the following reasons: (1) the bond strain in reactants due to electrostatic repulsion is relieved by charge separation, as for ATP; (2) the products are stabilized by ionization, as for ATP, acyl phosphates, and thioesters; (3) the products are stabilized by isomerization (tautomerization), as

FIGURE 13–17 Free energy of hydrolysis for thioesters and oxygen esters. The products of both types of hydrolysis reaction have about the same free-energy content (G), but the thioester has a higher free-energy content than the oxygen ester. Orbital overlap between the O and C atoms allows resonance stabilization in oxygen esters; orbital overlap between S and C atoms is poorer and provides little resonance stabilization.
for PEP; and/or (4) the products are stabilized by resonance, as for creatine released from phosphocreatine, carboxylate ion released from acyl phosphates and thioesters, and phosphate (P_i) released from anhydride or ester linkages.

ATP Provides Energy by Group Transfers, Not by Simple Hydrolysis

Throughout this book you will encounter reactions or processes for which ATP supplies energy, and the contribution of ATP to these reactions is commonly indicated as in Figure 13–18a, with a single arrow showing the conversion of ATP to ADP and P_i (or, in some cases, ATP to AMP and pyrophosphate, PP_i). When written this way, these reactions of ATP seem to be simple hydrolysis reactions in which water displaces P_i (or PP_i), and one is tempted to say that an ATP-dependent reaction is “driven by the hydrolysis of ATP.” This is not the case; ATP hydrolysis per se usually accomplishes nothing but the liberation of heat, which cannot drive a chemical process in an isothermal system. A single reaction arrow such as that in Figure 13–18a almost invariably represents a two-step process (Fig. 13–18b) in which part of the ATP molecule, a phosphoryl or pyrophosphoryl group or the adenylate moiety (AMP), is first transferred to a substrate molecule or to an amino acid residue in an enzyme, becoming covalently attached to the substrate or the enzyme and raising its free-energy content. Then, in a second step, the phosphate-containing moiety transferred in the first step is displaced, generating P_i, PP_i, or AMP. Thus ATP participates *covalently* in the enzyme-catalyzed reaction to which it contributes free energy.

Some processes do involve direct hydrolysis of ATP (or GTP), however. For example, noncovalent binding of ATP (or GTP), followed by its hydrolysis to ADP (or GDP) and P_i, can provide the energy to cycle some proteins between two conformations, producing mechanical motion. This occurs in muscle contraction (see Fig. 5–31), and in the movement of enzymes along DNA (see Fig. 25–35) or of ribosomes along messenger RNA (see Fig. 27–30). The energy-dependent reactions catalyzed by helicases, RecA protein, and some topoisomerases (Chapter 25) also involve direct hydrolysis of phosphoanhydride bonds. The AAA+ ATPases involved in DNA replication and other processes described in Chapter 25 use ATP hydrolysis to cycle associated proteins between active and inactive forms. GTP-binding proteins that act in signaling pathways directly hydrolyze GTP to drive conformational changes that terminate signals triggered by hormones or by other extracellular factors (Chapter 12).

The phosphate compounds found in living organisms can be divided somewhat arbitrarily into two groups, based on their standard free energies of hydrolysis (Fig. 13–19). “High-energy” compounds have a ΔG° of hydrolysis more negative than -25 kJ/mol; “low-energy” compounds have a less negative ΔG°. Based on this criterion, ATP, with a ΔG° of hydrolysis of -30.5 kJ/mol (-7.3 kcal/mol), is a high-energy compound; glucose 6-phosphate, with a ΔG° of hydrolysis of -13.8 kJ/mol (-3.3 kcal/mol), is a low-energy compound.

The term “high-energy phosphate bond,” long used by biochemists to describe the P—O bond broken in hydrolysis reactions, is incorrect and misleading as it wrongly suggests that the bond itself contains the energy. In fact, the breaking of all chemical bonds requires an input of energy. The free energy released by hydrolysis of phosphate compounds does not come from the specific bond that is broken; it results from the products of the reaction having a lower free-energy content than the reactants. For simplicity, we will sometimes use the term “high-energy phosphate compound” when referring to ATP or other phosphate compounds with a large, negative, standard free energy of hydrolysis.

As is evident from the additivity of free-energy changes of sequential reactions (see Section 13.1), any phosphorylated compound can be synthesized by coupling the synthesis to the breakdown of another phosphorylated compound with a more negative free energy of hydrolysis. For example, because cleavage of P_i from

FIGURE 13–18 ATP hydrolysis in two steps. (a) The contribution of ATP to a reaction is often shown as a single step, but is almost always a two-step process. (b) Shown here is the reaction catalyzed by ATP-dependent glutamine synthetase. 1. A phosphoryl group is transferred from ATP to glutamate, then 2. the phosphoryl group is displaced by NH3 and released as P_i.
phosphoenolpyruvate releases more energy than is needed to drive the condensation of P_i with ADP, the direct donation of a phosphoryl group from PEP to ADP is thermodynamically feasible:

$$
\Delta G^\circ = -31.4 \text{ kJ/mol}
$$

Notice that while the overall reaction is represented as the algebraic sum of the first two reactions, the overall reaction is actually a third, distinct reaction that does not involve P_i; PEP donates a phosphoryl group directly to ADP. We can describe phosphorylated compounds as having a high or low phosphoryl group transfer potential, on the basis of their standard free energies of hydrolysis (as listed in Table 13-6). The phosphoryl group transfer potential of PEP is very high, that of ATP is high, and that of glucose 6-phosphate is low (Fig. 13-19).

Much of catabolism is directed toward the synthesis of high-energy phosphate compounds, but their formation is not an end in itself; they are the means of activating a very wide variety of compounds for further chemical transformation. The transfer of a phosphoryl group to a compound effectively puts free energy into that compound, so that it has more free energy to give up during subsequent metabolic transformations. We described above how the synthesis of glucose 6-phosphate is accomplished by phosphoryl group transfer from ATP. In the next chapter we see how this phosphorylation of glucose activates, or "primes," the glucose for catabolic reactions that occur in nearly every living cell. Because of its intermediate position on the scale of group transfer potential, ATP can carry energy from high-energy phosphate compounds produced by catabolism to compounds such as glucose, converging them into more reactive species. ATP thus serves as the universal energy currency in all living cells.

One more chemical feature of ATP is crucial to its role in metabolism: although in aqueous solution ATP is thermodynamically unstable and is therefore a good phosphoryl group donor, it is kinetically stable. Because of the huge activation energies (200 to 400 kJ/mol) required for uncatalyzed cleavage of its phosphoanhydride bonds, ATP does not spontaneously donate phosphoryl groups to water or to the hundreds of other potential acceptors in the cell. Only when specific enzymes are present to lower the energy of activation does phosphoryl group transfer from ATP proceed. The cell is therefore able to regulate the disposition of the energy carried by ATP by regulating the various enzymes that act on it.

ATP Donates Phosphoryl, Pyrophosphoryl, and Adenylyl Groups

The reactions of ATP are generally S_N2 nucleophilic displacements (see Section 13.2) in which the nucleophile may be, for example, the oxygen of an alcohol or carboxylate, or a nitrogen of creatine or of the side chain of arginine or histidine. Each of the three phosphates of ATP is susceptible to nucleophilic attack (Fig. 13-20), and each position of attack yields a different type of product.

Nucleophilic attack by an alcohol on the γ phosphate (Fig. 13-20a) displaces ADP and produces a new phosphate ester. Studies with ^{18}O-labeled reactants have shown that the bridge oxygen in the new compound is...
FIGURE 13–20 Nucleophilic displacement reactions of ATP. Any of the three P atoms (α, β, or γ) may serve as the electrophilic target for nucleophilic attack—in this case, by the labeled nucleophile R18O−. The nucleophile may be an alcohol (ROH), a carboxyl group (RCOO−), or a phosphoanhydride (a nucleoside mono- or diphosphate, for example). (a) When the oxygen of the nucleophile attacks the γ position, the bridge oxygen of the product is labeled, indicating that the group transferred from ATP is a phosphoryl (−PO2−), not a phosphate (−PO3−). Phosphoryl group transfer from ATP to glutamate (Fig. 13–18) or to glucose (p. 212) involves attack at the γ position of the ATP molecule.

Attack at the β phosphate of ATP displaces AMP and transfers a pyrophosphoryl (not pyrophosphate) group to the attacking nucleophile (Fig. 13–20b). For example, the formation of 5-phosphoribosyl-1-pyrophosphate (p. 861), a key intermediate in nucleotide synthesis, results from attack of an −OH of the ribose on the β phosphate.

Nucleophilic attack at the α position of ATP displaces PP\textsubscript{i} and transfers adenylate (5′-AMP) as an adenyllyl group (Fig. 13–20c); the reaction is an adenylylation (a-den′-i-lā′-shun, one of the most ungainly words in the biochemical language). Notice that hydrolysis of the α-β phosphoanhydride bond releases considerably more energy (~46 kJ/mol) than hydrolysis of the β-γ bond (~31 kJ/mol) (Table 13–6). Furthermore, the PP\textsubscript{i} formed as a byproduct of the adenylylation is hydrolyzed to two P\textsubscript{i} by the ubiquitous enzyme inorganic pyrophosphatase, releasing 19 kJ/mol and thereby providing a further energy “push” for the adenylylation reaction. In effect, both phosphoanhydride bonds of ATP are split in the overall reaction. Adenylylation reactions are therefore thermodynamically very favorable. When the energy of ATP is used to drive a particularly unfavorable metabolic reaction, adenylylation is often the mechanism of energy coupling. Fatty acid activation is a good example of this energy-coupling strategy.

The first step in the activation of a fatty acid—either for energy-yielding oxidation or for use in the synthesis of more complex lipids—is the formation of its thiol ester (see Fig. 17–5). The direct condensation of a fatty acid with coenzyme A is endergonic, but the formation of fatty acyl-CoA is made exergonic by stepwise removal of two phosphoryl groups from ATP. First, adenylate (AMP) is transferred from ATP to the carboxyl group of the fatty acid, forming a mixed anhydride (fatty acyl adenylate) and liberating PP\textsubscript{i}. The thiol group of coenzyme A then displaces the adenyl group and forms a thioester with the fatty acid. The sum of these two reactions is energetically equivalent to the exergonic hydrolysis of ATP to AMP and PP\textsubscript{i} (ΔG° = −45.6 kJ/mol) and the endergonic formation of fatty acyl-CoA (ΔG° = 31.4 kJ/mol). The formation of fatty acyl-CoA is made energetically favorable by hydrolysis of the PP\textsubscript{i} by inorganic pyrophosphatase. Thus, in the activation of a fatty acid, both phosphoanhydride bonds of ATP are broken. The resulting ΔG° is the sum of the ΔG° values for the breakdown of these bonds, or −45.6 kJ/mol + (−19.2) kJ/mol:

\[
\text{ATP} + 2\text{H}_2\text{O} \rightarrow \text{AMP} + 2\text{PP}_i \quad \Delta G^\circ = -64.8 \text{kJ/mol}
\]

The activation of amino acids before their polymerization into proteins (see Fig. 27–19) is accomplished by an analogous set of reactions in which a transfer RNA molecule takes the place of coenzyme A. An interesting use of the cleavage of ATP to AMP and PP\textsubscript{i} occurs in the firefly, which uses ATP as an energy source to produce light flashes (Box 13–1).

Assembly of Informational Macromolecules Requires Energy

When simple precursors are assembled into high molecular weight polymers with defined sequences (DNA, RNA, proteins), as described in detail in Part III, energy is required both for the condensation of monomeric units and for the creation of ordered sequences. The precursors for DNA and RNA synthesis are nucleoside triphosphates, and polymerization is accompanied by cleavage of the phosphoanhydride linkage between the α and β phosphates, with the release of PP\textsubscript{i} (Fig. 13–20). The moieties transferred to the growing polymer in these reactions are adenylate (AMP), guanylate (GMP), cytidylate (CMP), or uridylate (UMP) for RNA synthesis, and their deoxy analogs (with TMP in place of UMP).
13.3 Phosphoryl Group Transfers and ATP

Bioluminescence requires considerable amounts of energy. In the firefly, ATP is used in a set of reactions that converts chemical energy into light energy. In the 1950s, from many thousands of fireflies collected by children in and around Baltimore, William McElroy and his colleagues at The Johns Hopkins University isolated the principal biochemical components: luciferin, a complex carboxylic acid, and luciferase, an enzyme. The generation of a light flash requires activation of luciferin by an enzymatic reaction involving pyrophosphate cleavage of ATP to form luciferyl adenylate (Fig. 1). In the presence of molecular oxygen and luciferase, the luciferin undergoes a multistep oxidative decarboxylation to oxyluciferin. This process is accompanied by emission of light. The color of the light flash differs with the firefly species and seems to be determined by differences in the structure of the luciferase. Luciferin is regenerated from oxyluciferin in a subsequent series of reactions.

In the laboratory, pure firefly luciferin and luciferase are used to measure minute quantities of ATP by the intensity of the light flash produced. As little as a few picomoles (10⁻¹² mol) of ATP can be measured in this way. An enlightening extension of the studies in luciferase was the cloning of the luciferase gene into tobacco plants. When watered with a solution containing luciferin, the plants glowed in the dark (see Fig. 9–29).

FIGURE 1 Important components in the firefly bioluminescence cycle.

for DNA synthesis. As noted above, the activation of amino acids for protein synthesis involves the donation of adenylyl groups from ATP, and we shall see in Chapter 27 that several steps of protein synthesis on the ribosome are also accompanied by GTP hydrolysis. In all these cases, the exergonic breakdown of a nucleoside triphosphate is coupled to the endergonic process of synthesizing a polymer of a specific sequence.

ATP Energizes Active Transport and Muscle Contraction

ATP can supply the energy for transporting an ion or a molecule across a membrane into another aqueous compartment where its concentration is higher (see Fig. 11–38). Transport processes are major consumers of energy; in human kidney and brain, for example, as much as two-thirds of the energy consumed at rest is used to pump Na⁺ and K⁺ across plasma membranes via the Na⁺K⁺ ATPase. The transport of Na⁺ and K⁺ is driven by cyclic phosphorylation and dephosphorylation of the transporter protein, with ATP as the phosphoryl group donor (see Fig. 11–37). Na⁺-dependent phosphorylation of the Na⁺K⁺ ATPase forces a change in the protein’s conformation, and K⁺-dependent dephosphorylation favors return to the original conformation. Each cycle in the transport process results in the conversion of ATP to ADP and Pᵢ, and it is the free-energy change of ATP hydrolysis that drives the cyclic changes in protein conformation that result in the electrogenic pumping of Na⁺ and K⁺. Note that in this case ATP interacts covalently by phosphoryl group transfer to the enzyme, not the substrate.

In the contractile system of skeletal muscle cells, myosin and actin are specialized to transduce the chemical energy of ATP into motion (see Fig. 5–31). ATP binds tightly but noncovalently to one conformation of...
myosin, holding the protein in that conformation. When myosin catalyzes the hydrolysis of its bound ATP, the ADP and P_i dissociate from the protein, allowing it to relax into a second conformation until another molecule of ATP binds. The binding and subsequent hydrolysis of ATP (by myosin ATPase) provide the energy that forces cyclic changes in the conformation of the myosin head. The change in conformation of many individual myosin molecules results in the sliding of myosin fibrils along actin filaments (see Fig. 5–30), which translates into macroscopic contraction of the muscle fiber. As we noted earlier, this production of mechanical motion at the expense of ATP is one of the few cases in which ATP hydrolysis per se, rather than group transfer from ATP, is the source of the chemical energy in a coupled process.

Transphosphorylations between Nucleotides Occur in All Cell Types

Although we have focused on ATP as the cell's energy currency and donor of phosphoryl groups, all other nucleoside triphosphates (GTP, UTP, and CTP) and all deoxynucleoside triphosphates (dATP, dGTP, dTTP, and dCTP) are energetically equivalent to ATP. The standard free-energy changes associated with hydrolysis of their phosphoanhydride linkages are very nearly identical with those shown in Table 13–6 for ATP. In preparation for their various biological roles, these other nucleotides are generated and maintained as the nucleoside triphosphate (NTP) forms by phosphoryl group transfer from the corresponding nucleoside diphosphates (NDPs) and monophosphates (NMPs).

ATP is the primary high-energy phosphate compound produced by catabolism, in the processes of glycolysis, oxidative phosphorylation, and, in photosynthetic cells, photophosphorylation. Several enzymes then carry phosphoryl groups from ATP to the other nucleotides. Nucleoside diphosphate kinase, found in all cells, catalyzes the reaction

\[
\text{ATP} + \text{NDP (or dNDP)} \rightarrow \text{ADP} + \text{NTP (or dNTP)} \quad \Delta G^\circ = 0
\]

Although this reaction is fully reversible, the relatively high [ATP]/[ADP] ratio in cells normally drives the reaction to the right, with the net formation of NTPs and dNTPs. The enzyme actually catalyzes a two-step phosphoryl group transfer, which is a classic case of a double-displacement (Ping-Pong) mechanism (Fig. 13–21; see also Fig. 6–13b). First, phosphoryl group transfer from ATP to an active-site His residue produces a phosphoenzyme intermediate; then the phosphoryl group is transferred from the His–His residue to an NDP acceptor. Because the enzyme is nonspecific for the base in the NDP and works equally well on dNDPs and NDPs, it can synthesize all NTPs and dNTPs, given the corresponding NDPs and a supply of ATP.

Phosphoryl group transfers from ATP result in an accumulation of ADP; for example, when muscle is contracting vigorously, ADP accumulates and interferes with ATP-dependent contraction. During periods of intense demand for ATP, the cell lowers the ADP concentration, and at the same time replenishes ATP, by the action of adenylate kinase:

\[
2\text{ADP} \rightarrow \text{ATP} + \text{AMP} \quad \Delta G^\circ = 0
\]

This reaction is fully reversible, so after the intense demand for ATP ends, the enzyme can recycle AMP by converting it to ADP, which can then be phosphorylated to ATP in mitochondria. A similar enzyme, guanylate kinase, converts GMP to GDP at the expense of ATP. By pathways such as these, energy conserved in the catabolic production of ATP is used to supply the cell with all required NTPs and dNTPs.

Phosphocreatine (PCr; Fig. 13–15), also called creatine phosphate, serves as a ready source of phosphoryl groups for the quick synthesis of ATP from ADP. The PCr concentration in skeletal muscle is approximately 30 μmol, nearly 10 times the concentration of ATP, and in other tissues such as smooth muscle, brain, and kidney [PCr] is 5 to 10 mm. The enzyme creatine kinase catalyzes the reversible reaction

\[
\text{ADP} + \text{PCr} \rightarrow \text{ATP} + \text{Cr} \quad \Delta G^\circ = -12.5 \text{kJ/mol}
\]

When a sudden demand for energy depletes ATP, the PCr reservoir is used to replenish ATP at a rate considerably faster than ATP can be synthesized by catabolic pathways. When the demand for energy...
slackens, ATP produced by catabolism is used to replenish the PCr reservoir by reversal of the creatine kinase reaction. Organisms in the lower phyla employ other PCr-like molecules (collectively called phosphagens) as phosphoryl reservoirs.

Inorganic Polyphosphate Is a Potential Phosphoryl Group Donor

Inorganic polyphosphate, polyP (or (polyP)

Inorganic polyphosphate, polyP (or (polyP)

One potential role for polyP is to serve as a phosphagen, a reservoir of phosphoryl groups that can be used to generate ATP, as creatine phosphate is used in muscle. PolyP has about the same phosphoryl group transfer potential as PP1. The shortest polyphosphate, PP1 (n = 2), can serve as the energy source for active transport of H+ across the vacuolar membrane in plant cells. For at least one form of the enzyme phosphofructokinase in plants, PP1 is the phosphoryl group donor, a role played by ATP in animals and microbes (p. 533). The finding of high concentrations of polyP in volcanic condensates and steam vents suggests that it could have served as an energy source in prebiotic and early cellular evolution.

In bacteria, the enzyme *polyphosphate kinase-1* (PPK-1) catalyzes the reversible reaction

\[
ATP + polyP_{n} \xrightleftharpoons{Mg^{+}} ADP + polyP_{n+1}
\]

\[
\Delta G^\circ = -20 \text{kJ/mol}
\]

by a mechanism involving an enzyme-bound \(\Phi\)-His intermediate (recall the mechanism of nucleoside diphosphate kinase, described in Fig. 13-22). A second enzyme, *polyphosphate kinase-2* (PPK-2), catalyzes the reversible synthesis of GTP (or ATP) from polyphosphate and GDP (or ADP):

\[
GDP + polyP_{n+1} \xrightarrow{Mg^{+}} GTP + polyP_{n}
\]

PPK-2 is believed to act primarily in the direction of GTP and ATP synthesis, and PPK-1 in the direction of polyphosphate synthesis. PPK-1 and PPK-2 are present in a wide variety of bacteria, including many pathogenic species.

In bacteria, elevated levels of polyP have been shown to promote expression of genes involved in adaptation of the organism to conditions of starvation or other threats to survival. In *Escherichia coli*, for example, polyP accumulates when cells are starved for amino acids or Pi, and this accumulation confers a survival advantage. Deletion of the genes for polyphosphate kinases diminishes the ability of certain pathogenic bacteria to invade animal tissues. The enzymes may therefore prove to be suitable targets in the development of new antimicrobial drugs.

No yeast gene encodes a PPK-like protein, but four genes—unrelated to bacterial PPK genes—are necessary for the synthesis of polyphosphate. The mechanism for polyphosphate synthesis in eukaryotes seems to be quite different from that in bacteria.

SUMMARY 13.3 Phosphoryl Group Transfers and ATP

- ATP is the chemical link between catabolism and anabolism. It is the energy currency of the living cell. The exergonic conversion of ATP to ADP and Pi, or to AMP and PPi, is coupled to many endergonic reactions and processes.

- Direct hydrolysis of ATP is the source of energy in some processes driven by conformational changes, but in general it is not ATP hydrolysis but the transfer of a phosphoryl, pyrophosphoryl, or adenylyl group from ATP to a substrate or enzyme that couples the energy of ATP breakdown to endergonic transformations of substrates.

- Through these group transfer reactions, ATP provides the energy for anabolic reactions, including the synthesis of informational macromolecules, and for the transport of molecules and ions across membranes against concentration gradients and electrical potential gradients.

- To maintain its high group transfer potential, ATP concentration must be held far above the equilibrium concentration by energy-yielding reactions of catabolism.

- Cells contain other metabolites with large, negative, free energies of hydrolysis, including phosphoenolpyruvate, 1,3-bisphosphoglycerate, and phosphocreatine. These high-energy compounds, like ATP, have a high phosphoryl group transfer potential. Thioesters also have high free energies of hydrolysis.

- Inorganic polyphosphate, present in all cells, may serve as a reservoir of phosphoryl groups with high group transfer potential.
13.4 Biological Oxidation-Reduction Reactions

The transfer of phosphoryl groups is a central feature of metabolism. Equally important is another kind of transfer, electron transfer in oxidation-reduction reactions. These reactions involve the loss of electrons by one chemical species, which is thereby oxidized, and the gain of electrons by another, which is reduced. The flow of electrons in oxidation-reduction reactions is responsible, directly or indirectly, for all work done by living organisms. In nonphotosynthetic organisms, the sources of electrons are reduced compounds (foods); in photosynthetic organisms, the initial electron donor is a chemical species excited by the absorption of light. The path of electron flow in metabolism is complex. Electrons move from various metabolic intermediates to specialized electron carriers in enzyme-catalyzed reactions. The carriers in turn donate electrons to acceptors with higher electron affinities, with the release of energy. Cells contain a variety of molecular energy transducers, which convert the energy of electron flow into useful work.

We begin by discussing how work can be accomplished by an electromotive force (emf), then consider the theoretical and experimental basis for measuring energy changes in oxidation reactions in terms of emf and the relationship between this force, expressed in volts, and the free-energy change, expressed in joules. We conclude by describing the structures and oxidation-reduction chemistry of the most common of the specialized electron carriers, which you will encounter repeatedly in later chapters.

The Flow of Electrons Can Do Biological Work

Every time we use a motor, an electric light or heater, or a spark to ignite gasoline in a car engine, we use the flow of electrons to accomplish work. In the circuit that powers a motor, the source of electrons can be a battery containing two chemical species that differ in affinity for electrons. Electrical wires provide a pathway for electron flow from the chemical species at one pole of the battery, through the motor, to the chemical species at the other pole of the battery. Because the two chemical species differ in their affinity for electrons, electrons flow spontaneously through the circuit, driven by a force proportional to the difference in electron affinity, the electromotive force, emf. The emf (typically a few volts) can accomplish work if an appropriate energy transducer—in this case a motor—is placed in the circuit. The motor can be coupled to a variety of mechanical devices to do useful work.

Living cells have an analogous biological "circuit," with a relatively reduced compound such as glucose as the source of electrons. As glucose is enzymatically oxidized, the released electrons flow spontaneously through a series of electron-carrier intermediates to another chemical species, such as O₂. This electron flow is exergonic, because O₂ has a higher affinity for electrons than do the electron-carrier intermediates. The resulting emf provides energy to a variety of molecular energy transducers (enzymes and other proteins) that do biological work. In the mitochondrion, for example, membrane-bound enzymes couple electron flow to the production of a transmembrane pH difference and a transmembrane electrical potential, accomplishing osmotic and electrical work. The proton gradient thus formed has potential energy, sometimes called the proton-motive force by analogy with electromotive force. Another enzyme, ATP synthase in the inner mitochondrial membrane, uses the proton-motive force to do chemical work: synthesis of ATP from ADP and P_i as protons flow spontaneously across the membrane. Similarly, membrane-localized enzymes in E. coli convert emf to proton-motive force, which is then used to power flagellar motion. The principles of electrochemistry that govern energy changes in the macroscopic circuit with a motor and battery apply with equal validity to the molecular processes accompanying electron flow in living cells.

Oxidation-Reductions Can Be Described as Half-Reactions

Although oxidation and reduction must occur together, it is convenient when describing electron transfers to consider the two halves of an oxidation-reduction reaction separately. For example, the oxidation of ferrous ion by cupric ion,

\[
\text{Fe}^{2+} + \text{Cu}^{2+} \rightleftharpoons \text{Fe}^{3+} + \text{Cu}^+
\]

can be described in terms of two half-reactions:

\[
\begin{align*}
\text{(1)} & \quad \text{Fe}^{2+} \rightleftharpoons \text{Fe}^{3+} + e^- \\
\text{(2)} & \quad \text{Cu}^{2+} + e^- \rightleftharpoons \text{Cu}^+
\end{align*}
\]

The electron-donating molecule in an oxidation-reduction reaction is called the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. A given agent, such as an iron cation existing in the ferrous (Fe^{2+}) or ferric (Fe^{3+}) state, functions as a conjugate reductant-oxidant pair (redox pair), just as an acid and corresponding base function as a conjugate acid-base pair. Recall from Chapter 2 that in acid-base reactions we can write a general equation: proton donor \(\rightleftharpoons\) proton acceptor. In redox reactions we can write a similar general equation: electron donor (reductant) \(\rightleftharpoons\) electron acceptor (oxidant). In the reversible half-reaction (1) above, Fe^{2+} is the electron donar and Fe^{3+} is the electron acceptor; together, Fe^{3+} and Fe^{2+} constitute a conjugate redox pair.

The electron transfers in the oxidation-reduction reactions of organic compounds are not fundamentally different from those of inorganic species. In Chapter 7 we considered the oxidation of a reducing sugar (an aldehyde or ketone) by cupric ion (see Fig. 7–10):

\[
\text{R} - \text{C}^\text{O}_\text{H} + 4\text{OH}^- + 2\text{Cu}^{2+} \rightleftharpoons \text{R} - \text{C}^\text{O}_\text{OH} + \text{Cu}_2\text{O} + 2\text{H}_2\text{O}
\]
This overall reaction can be expressed as two half-reactions:

1. \[R-C\text{O} + 2OH^- \rightarrow R-C\text{O}^- + 2e^- + H_2O \]
2. \[2Cu^{2+} + 2e^- + 2OH^- \rightarrow Cu_2O + H_2O \]

Because two electrons are removed from the aldehyde carbon, the second half-reaction (the one-electron reduction of cupric to cuprous ion) must be doubled to balance the overall equation.

Biological Oxidations Often Involve Dehydrogenation

The carbon in living cells exists in a range of oxidation states (Fig. 13-22). When a carbon atom shares an electron pair with another atom (typically H, C, S, N, or O), the sharing is unequal in favor of the more electronegative atom. The order of increasing electronegativity is H < C < S < N < O. In oversimplified but useful terms, the more electronegative atom “owns” the bonding electrons it shares with another atom. For example, in methane (CH₄), carbon is more electronegative than the four hydrogens bonded to it, and the C atom therefore “owns” all eight bonding electrons (Fig. 13-22). In ethane, the electrons in the C—C bond are shared equally, so each C atom “owns” only seven of its eight bonding electrons. In ethanol, C-1 is less electronegative than the oxygen to which it is bonded, and the O atom therefore “owns” both electrons of the C—O bond, leaving C-1 with only five bonding electrons. With each formal loss of “owned” electrons, the carbon atom has undergone oxidation—even when no oxygen is involved, as in the conversion of an alkane (—CH₂—CH₂—) to an alkene (—CH=CH—). In this case, oxidation (loss of electrons) is coincident with the loss of hydrogen. In biological systems, as we noted earlier in the chapter, oxidation is often synonymous with **dehydrogenation** and many enzymes that catalyze oxidation reactions are **dehydrogenases**. Notice that the more reduced compounds in Figure 13-22 (top) are richer in hydrogen than in oxygen, whereas the more oxidized compounds (bottom) have more oxygen and less hydrogen.

Not all biological oxidation-reduction reactions involve carbon. For example, in the conversion of molecular nitrogen to ammonia, \(6H^+ + 6e^- + N_2 \rightarrow 2NH_3\), the nitrogen atoms are reduced.

Electrons are transferred from one molecule (electron donor) to another (electron acceptor) in one of four ways:

1. **Directly as electrons.** For example, the \(Fe^{2+}/Fe^{3+}\) redox pair can transfer an electron to the \(Cu^{+}/Cu^{2+}\) redox pair:
 \[Fe^{2+} + Cu^{2+} \rightarrow Fe^{3+} + Cu^{+} \]
2. As hydrogen atoms. Recall that a hydrogen atom consists of a proton (H\(^+\)) and a single electron (e\(^-\)). In this case we can write the general equation

\[
\text{AH}_2 \rightleftharpoons \text{A} + 2e^- + 2\text{H}^+
\]

where \(\text{AH}_2\) is the hydrogen/electron donor. (Do not mistake the above reaction for an acid dissociation, which involves a proton and no electron.) \(\text{AH}_2\) and \(\text{A}\) together constitute a conjugate redox pair (\(\text{A}/\text{AH}_2\)), which can reduce another compound \(\text{B}\) (or redox pair, \(\text{B}/\text{BH}_2\)) by transfer of hydrogen atoms:

\[
\text{AH}_2 + \text{B} \rightleftharpoons \text{A} + \text{BH}_2
\]

3. As a hydride ion (\(\text{H}^-\)), which has two electrons. This occurs in the case of NAD-linked dehydrogenases, described below.

4. Through direct combination with oxygen. In this case, oxygen combines with an organic reductant and is covalently incorporated in the product, as in the oxidation of a hydrocarbon to an alcohol:

\[
\text{R} - \text{CH}_3 + \frac{1}{2}\text{O}_2 \rightarrow \text{R} - \text{CH}_2 - \text{OH}
\]

The hydrocarbon is the electron donor and the oxygen atom is the electron acceptor.

All four types of electron transfer occur in cells. The neutral term reducing equivalent is commonly used to designate a single electron equivalent participating in an oxidation-reduction reaction, no matter whether this equivalent is an electron per se or part of a hydrogen atom or a hydride ion, or whether the electron transfer takes place in a reaction with oxygen to yield an oxygenated product. Because biological fuel molecules are usually enzymatically dehydrogenated to lose two reducing equivalents at a time, and because each oxygen atom can accept two reducing equivalents, biochemists by convention regard the unit of biological oxidations as two reducing equivalents passing from substrate to oxygen.

Reduction Potentials Measure Affinity for Electrons

When two conjugate redox pairs are together in solution, electron transfer from the electron donor of one pair to the electron acceptor of the other may proceed spontaneously. The tendency for such a reaction depends on the relative affinity of the electron acceptor of each redox pair for electrons. The **standard reduction potential**, \(E^o\), a measure (in volts) of this affinity, can be determined in an experiment such as that described in Figure 13-23. Electrochemists have chosen as a standard of reference the half-reaction

\[
\text{H}^+ + e^- \rightarrow \frac{1}{2}\text{H}_2
\]

The electrode at which this half-reaction occurs (called a half-cell) is arbitrarily assigned an \(E^o\) of 0.00 V.

When this hydrogen electrode is connected through an external circuit to another half-cell in which an oxidized species and its corresponding reduced species are present at standard concentrations (25 °C, each solute at 1 M, each gas at 101.3 kPa), electrons tend to flow through the external circuit from the half-cell of lower \(E^o\) to the half-cell of higher \(E^o\). By convention, a half-cell that takes electrons from the standard hydrogen cell is assigned a positive value of \(E^o\), and one that donates electrons to the hydrogen cell, a negative value. When any two half-cells are connected, that with the larger (more positive) \(E^o\) will get reduced; it has the greater reduction potential.

The reduction potential of a half-cell depends not only on the chemical species present but also on their activities, approximated by their concentrations. About
a century ago, Walther Nernst derived an equation that relates standard reduction potential \((E^\circ) \) to the actual reduction potential \((E) \) at any concentration of oxidized and reduced species in a living cell:

\[
E = E^\circ + \frac{RT}{nF} \ln \left(\frac{[\text{electron acceptor}]}{[\text{electron donor}]} \right) \tag{13-5}
\]

where \(R \) and \(T \) have their usual meanings, \(n \) is the number of electrons transferred per molecule, and \(F \) is the Faraday constant (Table 13-1). At 298 K (25 °C), this expression reduces to

\[
E = E^\circ + 0.026V \ln \left(\frac{[\text{electron acceptor}]}{[\text{electron donor}]} \right) \tag{13-6}
\]

KEY CONVENTION: Many half-reactions of interest to biochemists involve protons. As in the definition of \(\Delta G^\circ \), biochemists define the standard state for oxidation-reduction reactions as pH 7 and express a standard transformed reduction potential, \(E^\circ \), the standard reduction potential at pH 7 and 25 °C. By convention, \(\Delta E^\circ \) for any redox reaction is given as \(E^\circ \) of the electron acceptor minus \(E^\circ \) of the electron donor.

The standard reduction potentials given in Table 13-7 and used throughout this book are values for \(E^\circ \) and are therefore valid only for systems at neutral pH. Each value represents the potential difference when the conjugate redox pair, at 1 M concentrations, 25 °C, and pH 7, is connected with the standard (pH 0) hydrogen electrode. Notice in Table 13-7 that when the conjugate pair \(2H^+ / H_2 \) at pH 7 is connected with the standard hydrogen electrode (pH 0), electrons tend to flow from the pH 7 cell to the standard (pH 0) cell; the measured \(E^\circ \) for the \(2H^+ / H_2 \) pair is -0.414 V.

Standard Reduction Potentials Can Be Used to Calculate Free-Energy Change

Why are reduction potentials so useful to the biochemist? When \(E \) values have been determined for any two half-cells, relative to the standard hydrogen electrode, we also know their reduction potentials relative to each other. We can then predict the direction in which electrons will tend to flow when the two half-cells are connected through an external circuit or when components of both half-cells are present in the same solution. Electrons tend to flow to the half-cell with the more positive \(E \), and the strength of that tendency is proportional to \(\Delta E \), the difference in reduction potential. The energy made available by this spontaneous electron flow (the free-energy change, \(\Delta G \), for the oxidation-reduction reaction) is proportional to \(\Delta E \):

\[
\Delta G = -nF\Delta E \quad \text{or} \quad \Delta G^\circ = -nF\Delta E^\circ \tag{13-7}
\]

where \(n \) is the number of electrons transferred in the reaction. With this equation we can calculate the actual free-energy change for any oxidation-reduction reaction from the values of \(E^\circ \) in a table of reduction potentials (Table 13-7) and the concentrations of reacting species.
WORKED EXAMPLE 13–3 Calculation of ΔG° and ΔG of a Redox Reaction

Calculate the standard free-energy change, ΔG°, for the reaction in which acetaldehyde is reduced by the biological electron carrier NADH:

$$\text{Acetaldehyde} + \text{NADH} + \text{H}^+ \longrightarrow \text{ethanol} + \text{NAD}^+$$

Then calculate the actual free-energy change, ΔG, when [acetaldehyde] and [NADH] are 1.00 M, and [ethanol] and [NAD$^+$] are 0.100 M. The relevant half-reactions and their E° values are:

1. Acetaldehyde + 2H$^+$ + 2e$^-$ \longrightarrow ethanol
 $$E^\circ = -0.197 \text{ V}$$

2. NAD$^+$ + 2H$^+$ + 2e$^-$ \longrightarrow NADH + H$^+$
 $$E^\circ = -0.320 \text{ V}$$

Remember that, by convention, ΔE° is E° of the electron acceptor minus E° of the electron donor.

Solution: Because acetaldehyde is accepting electrons ($n = 2$) from NADH, $\Delta E^\circ = -0.197 \text{ V} - (-0.320 \text{ V}) = 0.123 \text{ V}$. Therefore,

$$\Delta G^\circ = -nF \Delta E^\circ = -2(96.5 \text{ kJ/V} \cdot \text{mol})(0.123 \text{ V}) = -23.7 \text{ kJ/mol}$$

This is the free-energy change for the oxidation-reduction reaction at 25 °C and pH 7, when acetaldehyde, ethanol, NAD$^+$, and NADH are all present at 1.00 M concentrations.

To calculate ΔG when [acetaldehyde] and [NADH] are 1.00 M, and [ethanol] and [NAD$^+$] are 0.100 M, we first determine E for each reductant, using Equation 13–5:

$$E_{\text{acetaldehyde}} = E^\circ + \frac{RT}{nF} \ln \frac{[\text{acetaldehyde}]}{[\text{ethanol}]}$$
$$= -0.197 \text{ V} + \frac{0.026 \text{ V}}{2} \ln \frac{1.00}{0.100}$$
$$= -0.197 \text{ V} + 0.013 \text{ V} (2.303) = -0.167 \text{ V}$$

$$E_{\text{NADH}} = E^\circ + \frac{RT}{nF} \ln \frac{[\text{NAD}^+]}{[\text{NADH}]}$$
$$= -0.320 \text{ V} + \frac{0.026 \text{ V}}{2} \ln \frac{1.00}{0.100}$$
$$= -0.320 \text{ V} + 0.013 \text{ V} (2.303) = -0.350 \text{ V}$$

From this we can calculate ΔE, then use Equation 13–6 to calculate ΔG:

$$\Delta E = -0.167 \text{ V} - (-0.350 \text{ V}) = 0.183 \text{ V}$$

$$\Delta G = -nF \Delta E = -2(96.5 \text{ kJ/V} \cdot \text{mol})(0.183 \text{ V})$$
$$= -35.3 \text{ kJ/mol}$$

This is the actual free-energy change at the specified concentrations of the redox pairs.

Cellular Oxidation of Glucose to Carbon Dioxide Requires Specialized Electron Carriers

The principles of oxidation-reduction energetics described above apply to the many metabolic reactions that involve electron transfers. For example, in many organisms, the oxidation of glucose supplies energy for the production of ATP. The complete oxidation of glucose:

$$\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \longrightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$$

has a ΔG° of $-2,840 \text{ kJ/mol}$. This is a much larger release of free energy than is required for ATP synthesis in cells (50 to 60 kJ/mol; see Worked Example 13–2). Cells convert glucose to CO$_2$ not in a single, high-energy-releasing reaction but rather in a series of controlled reactions, some of which are oxidations. The free energy released in these oxidation steps is of the same order of magnitude as that required for ATP synthesis from ADP, with some energy to spare. Electrons removed in these oxidation steps are transferred to coenzymes specialized for carrying electrons, such as NAD$^+$ and FAD (described below).

A Few Types of Coenzymes and Proteins Serve as Universal Electron Carriers

The multitude of enzymes that catalyze cellular oxidation processes releases the conservation of free energy released by substrate oxidation. NAD, NADP, FMN, and FAD are water-soluble coenzymes that undergo reversible oxidation and reduction in many of the electron-transfer reactions of metabolism. The nucleotides NAD and NADP move readily from one enzyme to another; the flavin nucleotides FMN and FAD are usually very tightly bound to the enzymes, called flavoproteins, for which they serve as prosthetic groups. Lipid-soluble quinones such as ubiquinone and plastoquinone act as electron carriers and proton donors in the nonaqueous environment of membranes. Iron-sulfur proteins and cytochromes, which have tightly bound prosthetic groups that undergo reversible oxidation and reduction, also serve as electron carriers in many oxidation-reduction reactions. Some of these proteins are water-soluble, but others are peripheral or integral membrane proteins (see Fig. 11–6).

We conclude this chapter by describing some chemical features of nucleotide coenzymes and some of the enzymes (dehydrogenases and flavoproteins) that use them. The oxidation-reduction chemistry of quinones, iron-sulfur proteins, and cytochromes is discussed in Chapter 19.

NADH and NADPH Act with Dehydrogenases as Soluble Electron Carriers

Nicotinamide adenine dinucleotide (NAD; NAD$^+$ in its oxidized form) and its close analog nicotinamide adenine dinucleotide phosphate (NADP; NADP$^+$ when oxidized) are composed of two nucleotides joined through their phosphate groups by a phosphoanhydride bond.
13.4 Biological Oxidation-Reduction Reactions

In NADP⁺ this hydroxyl group is esterified with phosphate.

FIGURE 13-24 NAD and NADP. (a) Nicotinamide adenine dinucleotide, NAD⁺, and its phosphorylated analog NADP⁺ undergo reduction to NADH and NADPH, accepting a hydride ion (two electrons and one proton) from an oxidizable substrate. The hydride ion is added to either the front (the A side) or the back (the B side) of the planar nicotinamide ring (see Table 13–B). (b) The UV absorption spectra of NAD⁺ and NADH. Reduction of the nicotinamide ring produces a new, broad absorption band with a maximum at 340 nm. The production of NADH during an enzyme-catalyzed reaction can be conveniently followed by observing the appearance of the absorbance at 340 nm (molar extinction coefficient ε_{340} = 6,200 M⁻¹ cm⁻¹).

(Fig. 13–24a). Because the nicotinamide ring resembles pyridine, these compounds are sometimes called **pyridine nucleotides.** The vitamin niacin is the source of the nicotinamide moiety in nicotinamide nucleotides.

Both coenzymes undergo reversible reduction of the nicotinamide ring (Fig. 13–24). As a substrate molecule undergoes oxidation (dehydrogenation), giving up two hydrogen atoms, the oxidized form of the nucleotide (NAD⁺ or NADP⁺) accepts a hydride ion (dH⁻, the equivalent of a proton and two electrons) and is reduced (to NADH or NADPH). The second proton removed from the substrate is released to the aqueous solvent. The half-reactions for these nucleotide cofactors are

\[
NAD^+ + 2e^- + 2H^+ \rightarrow NADH + H^+
\]

\[
NADP^+ + 2e^- + 2H^+ \rightarrow NADPH + H^+
\]

Reduction of NAD⁺ or NADP⁺ converts the benzenoid ring of the nicotinamide moiety (with a fixed positive charge on the ring nitrogen) to the quinonoid form (with no charge on the nitrogen). The reduced nucleotides absorb light at 340 nm; the oxidized forms do not (Fig. 13–24b); this difference in absorption is used by biochemists to assay reactions involving these coenzymes. Note that the plus sign in the abbreviations NAD⁺ and NADP⁺ does not indicate the net charge on these molecules (in fact, both are negatively charged); rather, it indicates that the nicotinamide ring is in its oxidized form, with a positive charge on the nitrogen atom. In the abbreviations NADH and NADPH, the “H” denotes the added hydride ion. To refer to these nucleotides without specifying their oxidation state, we use NAD and NADP.

The total concentration of NAD⁺ + NADH in most tissues is about 10⁻⁵ M; that of NADP⁺ + NADPH is about 10⁻⁶ M. In many cells and tissues, the ratio of NAD⁺ (oxidized) to NADH (reduced) is high, favoring hydride transfer from a substrate to NAD⁺ to form NADH. By contrast, NADPH is generally present at a higher concentration than NADP⁺, favoring hydride transfer from NADPH to a substrate. This reflects the specialized metabolic roles of the two coenzymes: NAD⁺ generally functions in oxidations—usually as part of a catabolic reaction; NADPH is the usual coenzyme in reductions—nearly always as part of an anabolic reaction. A few enzymes can use either coenzyme, but most show a strong preference for one over the other. Also, the processes in which these two cofactors function are segregated in eukaryotic cells: for example, oxidations of fuels such as pyruvate, fatty acids, and α-keto acids derived from amino acids occur in the mitochondrial matrix, whereas reductive biosynthetic processes such as fatty acid synthesis take place in the cytosol. This functional and spatial specialization allows a cell to maintain two distinct pools of electron carriers, with two distinct functions.
Bioenergetics and Biochemical Reaction Types

More than 200 enzymes are known to catalyze reactions in which NAD\(^+\) (or NADP\(^+\)) accepts a hydride ion from a reduced substrate, or NADPH (or NADH) donates a hydride ion to an oxidized substrate. The general reactions are:

\[
\begin{align*}
\text{AH}_2 + \text{NAD}^+ & \rightarrow \text{A} + \text{NADH} + \text{H}^+ \\
\text{A} + \text{NADPH} + \text{H}^+ & \rightarrow \text{AH}_2 + \text{NADP}^+
\end{align*}
\]

where \(\text{AH}_2\) is the reduced substrate and \(\text{A}\) the oxidized substrate. The general name for an enzyme of this type is oxidoreductase; they are also commonly called dehydrogenases. For example, alcohol dehydrogenase catalyzes the first step in the catabolism of ethanol, in which ethanol is oxidized to acetaldehyde:

\[
\text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ \rightarrow \text{CH}_3\text{CHO} + \text{NADH} + \text{H}^+ \\
\text{Ethanol} \quad \text{Acetaldehyde}
\]

Notice that one of the carbon atoms in ethanol has lost a hydrogen; the compound has been oxidized from an alcohol to an aldehyde (refer again to Fig. 13–22 for the oxidation states of carbon).

When NAD\(^+\) or NADP\(^+\) is reduced, the hydride ion could in principle be transferred to either side of the nicotinamide ring: the front (A side) or the back (B side), as represented in Figure 13–24a. Studies with isotopically labeled substrates have shown that a given enzyme catalyzes either an A-type or a B-type transfer, but not both. For example, yeast alcohol dehydrogenase and lactate dehydrogenase of vertebrate heart transfer a hydride ion to (or remove a hydride ion from) the A side of the nicotinamide ring; they are classed as type A dehydrogenases to distinguish them from another group of enzymes that transfer a hydride ion to (or remove a hydride ion from) the B side of the nicotinamide ring (Table 13–8). The specificity for one side or another can be very striking; lactate dehydrogenase, for example, prefers the A side over the B side by a factor of \(5 \times 10^7\). The basis for this preference lies in the exact positioning of the enzyme groups involved in hydrogen bonding with the \(–\text{CONH}_2\) group of the nicotinamide.

![Figure 13–25 The Rossmann fold. This structural motif is found in the NAD-binding site of many dehydrogenases, (a) It consists of a pair of structurally similar motifs, each having three parallel \(\beta\) sheets and two \(\alpha\) helices (\(\beta\)-\(\alpha\)-\(\beta\)-\(\alpha\)-\(\beta\)). (b) The nucleotide-binding domain of the enzyme lactate dehydrogenase (derived from PDB ID 3LDH) with NAD (ball-and-stick structure) bound in an extended conformation through hydrogen bonds and salt bridges to the paired \(\beta\)-\(\alpha\)-\(\beta\)-\(\alpha\)-\(\beta\) motifs of the Rossmann fold (shades of green).](image)

Most dehydrogenases that use NAD or NADP bind the cofactor in a conserved protein domain called the Rossmann fold (named for Michael Rossmann, who deduced the structure of lactate dehydrogenase and first described this structural motif). The Rossmann fold typically consists of a six-stranded parallel \(\beta\) sheet and four associated \(\alpha\) helices (Fig. 13–25).

The association between a dehydrogenase and NAD or NADP is relatively loose; the coenzyme readily diffuses from one enzyme to another, acting as a water-soluble

Table 13–8 Stereospecificity of Dehydrogenases That Employ NAD\(^+\) or NADP\(^+\) as Coenzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Coenzyme</th>
<th>Stereoelectrical specificity for nicotinamide ring (A or B)</th>
<th>Text page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isocitrate dehydrogenase</td>
<td>NAD(^+)</td>
<td>A</td>
<td>624</td>
</tr>
<tr>
<td>(\alpha)-Ketoglutarate dehydrogenase</td>
<td>NAD(^+)</td>
<td>B</td>
<td>625</td>
</tr>
<tr>
<td>Glucose 6-phosphate dehydrogenase</td>
<td>NADP(^+)</td>
<td>B</td>
<td>560</td>
</tr>
<tr>
<td>Malate dehydrogenase</td>
<td>NAD(^+)</td>
<td>A</td>
<td>628</td>
</tr>
<tr>
<td>Glutamate dehydrogenase</td>
<td>NAD(^+) or NADP(^+)</td>
<td>B</td>
<td>680</td>
</tr>
<tr>
<td>Glyceroldehyde 3-phosphate dehydrogenase</td>
<td>NAD(^+)</td>
<td>B</td>
<td>535</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>NAD(^+)</td>
<td>A</td>
<td>547</td>
</tr>
<tr>
<td>Alcohol dehydrogenase</td>
<td>NAD(^+)</td>
<td>A</td>
<td>547</td>
</tr>
</tbody>
</table>
carrier of electrons from one metabolite to another. For example, in the production of alcohol during fermentation of glucose by yeast cells, a hydride ion is removed from glyceraldehyde 3-phosphate by one enzyme (glyceraldehyde 3-phosphate dehydrogenase, a type B enzyme) and transferred to NAD⁺. The NADH produced then leaves the enzyme surface and diffuses to another enzyme (alcohol dehydrogenase, a type A enzyme), which transfers a hydride ion to acetaldehyde, producing ethanol:

\[
(1) \text{Glyceraldehyde 3-phosphate} + \text{NAD}^+ \rightarrow 3\text{-phosphoglycerate} + \text{NADH} + \text{H}^+
\]

\[
(2) \text{Acetaldehyde} + \text{NADH} + \text{H}^+ \rightarrow \text{ethanol} + \text{NAD}^+
\]

Sum: Glyceraldehyde 3-phosphate + acetaldehyde \(\rightarrow\) 3-phosphoglycerate + ethanol

Notice that in the overall reaction there is no net production or consumption of NAD⁺ or NADH; the coenzymes function catalytically and are recycled repeatedly without a net change in the concentration of NAD⁺ + NADH.

Dietary Deficiency of Niacin, the Vitamin Form of NAD and NADP, Causes Pellagra

As we noted in Chapter 6, and will discuss further in the chapters to follow, most coenzymes are derived from the substances we call vitamins. The pyridine-like rings of NAD and NADP are derived from the vitamin niacin (nicotinic acid; Fig. 13-26), which is synthesized from tryptophan. Humans generally cannot synthesize sufficient quantities of niacin, and this is especially so for individuals with diets low in tryptophan (maize, for example, has a low tryptophan content). Niacin deficiency, which affects all the NAD(P)-dependent dehydrogenases, causes the serious human disease pellagra (Italian for “rough skin”) and a related disease in dogs, black-tongue. These diseases are characterized by the “three Ds”: dermatitis, diarrhea, and dementia, followed in many cases by death. A century ago, pellagra was a common human disease; in the southern United States, where maize was a dietary staple, about 100,000 people were afflicted and about 10,000 died as a result of this disease between 1912 and 1916. In 1920 Joseph Goldberger showed pellagra to be caused by a dietary insufficiency, and in 1937 Frank Strong, D. Wayne Woolley, and Conrad Elvehjem identified niacin as the curative agent for blacktongue. Supplementation of the human diet with this inexpensive compound has eradicated pellagra in the populations of the developed world, with one significant exception: people with alcoholism, or who drink excessive amounts of alcohol. In these individuals, intestinal absorption of niacin is much reduced, and caloric needs are often met with distilled spirits that are virtually devoid of vitamins, including niacin. In some parts of the world, including the Deccan Plateau in India, pellagra still occurs in the general population, especially among people living in poverty.

Flavin Nucleotides Are Tightly Bound in Flavoproteins

Flavoproteins (Table 13-9) are enzymes that catalyze oxidation-reduction reactions using either flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) as coenzyme (Fig. 13-27). These coenzymes, the flavin nucleotides, are derived from the vitamin riboflavin. The fused ring structure of flavin nucleotides (the isoalloxazine ring) undergoes reversible reduction, accepting either one or two electrons in the form of one or two hydrogen atoms (each atom an electron plus a proton) from a reduced substrate. The fully reduced forms are abbreviated FADH₂ and FMNH₂. When a fully oxidized flavin nucleotide accepts only one electron (one hydrogen atom), the semiquinone form of the isoolalloxazine ring is produced, abbreviated FADH⁺ and FMNH⁺. Because flavin nucleotides have a slightly different chemical specialty from that of the nicotinamide coenzymes—

FIGURE 13-26 Niacin (nicotinic acid) and its derivative nicotinamide. The biosynthetic precursor of these compounds is tryptophan. In the laboratory, nicotinic acid was first produced by oxidation of the natural product nicotine—thus the name. Both nicotinic acid and nicotinamide cure pellagra, but nicotine (from cigarettes or elsewhere) has no curative activity.
the ability to participate in either one- or two-electron transfers—flavoproteins are involved in a greater diversity of reactions than the NAD(P)-linked dehydrogenases.

Like the nicotinamide coenzymes (Fig. 13-24), the flavin nucleotides undergo a shift in a major absorption band on reduction (again, useful to biochemists who want to monitor reactions involving these coenzymes). Flavoproteins that are fully reduced (two electrons accepted) generally have an absorption maximum near 360 nm. When partially reduced (one electron), they acquire another absorption maximum at about 450 nm; when fully oxidized, the flavin has maxima at 370 and 440 nm.

The flavin nucleotide in most flavoproteins is bound rather tightly to the protein, and in some enzymes, such as succinate dehydrogenase, it is bound covalently. Such tightly bound coenzymes are properly called prosthetic groups. They do not transfer electrons by diffusing from one enzyme to another; rather, they provide a means by which the flavoprotein can temporarily hold electrons while it catalyzes electron transfer from a reduced substrate to an electron acceptor. One important feature of the flavoproteins is the variability in the standard reduction potential (E^red) of the bound flavin nucleotide. Tight association between the enzyme and prosthetic group confers on the flavin ring a reduction potential typical of that particular flavoprotein, sometimes quite different from the reduction potential of the free flavin nucleotide. FAD bound to succinate dehydrogenase, for example, has an E^red close to 0.0 V, compared with −0.219 V for free FAD; E^red for other flavoproteins ranges from −0.40 V to +0.06 V. Flavoproteins are often very complex; some have, in addition to a flavin nucleotide, tightly bound inorganic ions (iron or molybdenum, for example) capable of participating in electron transfers.

Certain flavoproteins act in a quite different role, as light receptors. **Cryptochromes** are a family of flavoproteins, widely distributed in the eukaryotic phyla, that mediate the effects of blue light on plant development and the effects of light on mammalian circadian rhythms (oscillations in physiology and biochemistry, with a 24-hour period). The cryptochromes are homologs of another family of flavoproteins, the photolyases. Found in both bacteria and eukaryotes, **photolyases** use the energy of absorbed light to repair chemical defects in DNA.

![Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)](image-url)

FIGURE 13-27 Oxidized and reduced FAD and FMN. FMN consists of the structure above the dashed line on the FAD (oxidized form). The flavin nucleotides accept two hydrogen atoms (two electrons and two protons), both of which appear in the flavin ring system. When FAD or FMN accepts only one hydrogen atom, the semiquinone, a stable free radical, forms.
We examine the function of flavoproteins as electron carriers in Chapter 19, when we consider their roles in oxidative phosphorylation (in mitochondria) and photophosphorylation (in chloroplasts), and we describe the photolyase reactions in Chapter 25.

SUMMARY 13.4 Biological Oxidation-Reduction Reactions

- In many organisms, a central energy-conserving process is the stepwise oxidation of glucose to CO₂, in which some of the energy of oxidation is conserved in ATP as electrons are passed to O₂.

- Biological oxidation-reduction reactions can be described in terms of two half-reactions, each with a characteristic standard reduction potential, \(E^{\circ} \).

- When two electrochemical half-cells, each containing the components of a half-reaction, are connected, electrons tend to flow to the half-cell with the higher reduction potential. The strength of this tendency is proportional to the difference between the two reduction potentials (\(\Delta E \)) and is a function of the concentrations of oxidized and reduced species.

- The standard free-energy change for an oxidation-reduction reaction is directly proportional to the difference in standard reduction potentials of the two half-cells: \(\Delta G^{\circ} = -nF \Delta E^{\circ} \).

- Many biological oxidation reactions are dehydrogenations in which one or two hydrogen atoms (H⁺ + e⁻) are transferred from a substrate to a hydrogen acceptor. Oxidation-reduction reactions in living cells involve specialized electron carriers.

- NAD and NADP are the freely diffusible coenzymes of many dehydrogenases. Both NAD⁺ and NADP⁺ accept two electrons and one proton.

- FAD and FMN, the flavin nucleotides, serve as tightly bound prosthetic groups of flavoproteins. They can accept either one or two electrons and one or two protons. Flavoproteins also serve as light receptors in cryptochromes and photolyases.

Key Terms

- **carbanion**: 496
- **carbocation**: 496
- **aldol condensation**: 497
- **Claisen condensation**: 497
- **kinase**: 500
- **phosphorylation potential**: 502
- **(DG_p)**
- **thioester**: 505
- **adenylation**: 508
- **inorganic**
 - **pyrophosphatase**: 508
- **nucleoside diphosphate**
 - **kinase**: 510
- **adenylate kinase**: 510
- **creatine kinase**: 510
- **phosphagens**: 511
- **polyphosphate kinase-1, kinase-2**: 511
- **electromotive force**: 512
- **conjugate redox pair**: 512
- **dehydrogenation**: 513
- **dehydrogenases**: 513
- **reducing equivalent**: 514
- **standard reduction potential**
 - **(E°)**
- **pyridine nucleotide**: 517
- **oxidoReducase**: 518
- **flavoprotein**: 519
- **flavin nucleotides**: 519
- **cryptochrome**: 520
- **photolyase**: 520

Further Reading

Bioenergetics and Thermodynamics

 - A well-illustrated and elementary discussion of the second law and its implications.

 - A classic treatment of the roles of ATP, ADP, and AMP in controlling the rate of catabolism.

 - Chapters 11 through 13 of this book, and the books by Tinoco et al. and van Holde et al. (below), are excellent general references for physical biochemistry, with good discussions of the applications of thermodynamics to biochemistry.

 - Clearly written, well illustrated, with excellent examples and problems.

 - Clearly written, well illustrated, with excellent examples and problems.

 - A beautifully clear discussion of thermodynamics in biological processes.

 - A short, clearly written account of cellular energetics, including introductory chapters on thermodynamics.

 - Highly accessible discussions of thermodynamics and kinetics in biological systems.

 - Beautifully written discussion of the relationship between entropy and information.

 - Clear, well-illustrated, intermediate-level discussion of the theory of bioenergetics and the mechanisms of energy transductions.
Chemical Logic and Common Biochemical Reactions

A very useful survey of reactions that proceed by free-radical mechanisms.

An authoritative and up-to-date resource on the reactions that occur in living systems.

A good summary of the principles of enzyme catalysis as currently understood, and what we still do not understand.

Phosphoryl Group Transfers and ATP

Explains the distinction between biochemical and chemical equations, and the calculation and meaning of transformed thermodynamic properties for ATP and other phosphorylated compounds.

The chemistry of ATP, its place in metabolic regulation, and its catalytic and anabolic roles.

Excellent summary of the chemistry and biology of ATP.

Intermediate-level discussion of the history of ATP studies, in which the author was a major player.

The classic description of the role of high-energy phosphate compounds in biology.

An advanced discussion of the chemistry of ATP and other “energy-rich” compounds.

Discussion of the structural basis for the efficient coupling of two energetic processes by way of changes in conformational states.

Experimental determination of ATP, ADP, and Pᵢ concentrations in brain, muscle, and liver, and a discussion of the difficulties in determining the real free-energy change for ATP synthesis in cells.

A chemist’s description of the unique suitability of phosphate esters and anhydrides for metabolic transformations.

Biological Oxidation-Reduction Reactions

An excellent two-volume collection of authoritative reviews. Among the most useful are the chapters by Kaplan, Westheimer, Veech, and Ohno and Ushio.

A short review of the chemistry of flavin–oxygen interactions in flavoproteins.

Advanced review of the types of metal ion clusters found in enzymes and their modes of action.

Good overview of the different classes of electron carriers that participate in respiration.

Problems

1. **Entropy Changes during Egg Development** Consider a system consisting of an egg in an incubator. The white and yolk of the egg contain proteins, carbohydrates, and lipids. If fertilized, the egg is transformed from a single cell to a complex organism. Discuss this irreversible process in terms of the entropy changes in the system, surroundings, and universe. Be sure that you first clearly define the system and surroundings.

2. **Calculation of ΔG° from an Equilibrium Constant** Calculate the standard free-energy change for each of the following metabolically important enzyme-catalyzed reactions, using the equilibrium constants given for the reactions at 25 °C and pH 7.0.
3. Calculation of the Equilibrium Constant from ΔG°
Calculate the equilibrium constant K'_{eq} for each of the following reactions at pH 7.0 and 25 °C, using the ΔG° values in Table 13-4.

(a) Glucose 6-phosphate + H$_2$O \rightarrow glucose + P$_i$

(b) Lactose + H$_2$O \rightarrow glucose + galactose

(c) Malate \rightarrow fumarate + H$_2$O

4. Experimental Determination of K'_{eq} and ΔG° If a 0.1 M solution of glucose 1-phosphate at 25 °C is incubated with a catalytic amount of phosphoglucomutase, the glucose 1-phosphate is transformed to glucose 6-phosphate. At equilibrium, the concentrations of the reaction components are:

Glucose 1-phosphate \rightleftharpoons glucose 6-phosphate

4.5×10^{-3} M $\quad 9.6 \times 10^{-2}$ M

Calculate K'_{eq} and ΔG° for this reaction.

5. Experimental Determination of ΔG° for ATP Hydrolysis A direct measurement of the standard free-energy change associated with the hydrolysis of ATP is technically demanding because the minute amount of ATP remaining at equilibrium is difficult to measure accurately. The value of ΔG° can be calculated indirectly, however, from the equilibrium constants of two other enzymatic reactions having less favorable equilibrium constants:

Glucose 6-phosphate + H$_2$O \rightarrow glucose + P$_i$

ATP + glucose \rightarrow ADP + glucose 6-phosphate

K'_{eq} = 270

K'_{eq} = 890

Using this information for equilibrium constants determined at 25 °C, calculate the standard free energy of hydrolysis of ATP.

6. Difference between ΔG° and ΔG Consider the following interconversion, which occurs in glycolysis (Chapter 14):

Fructose 6-phosphate \rightleftharpoons glucose 6-phosphate

K'_{eq} = 1.97

(a) What is ΔG° for the reaction (K'_{eq} measured at 25 °C)?

(b) If the concentration of fructose 6-phosphate is adjusted to 1.5 M and that of glucose 6-phosphate is adjusted to 0.50 M, what is ΔG?

(c) Why are ΔG° and ΔG different?

7. Free Energy of Hydrolysis of CTP Compare the structure of the nucleoside triphosphate CTP with the structure of ATP.

8. Dependence of ΔG on pH The free energy released by the hydrolysis of ATP under standard conditions is -30.5 kJ/mol. If ATP is hydrolyzed under standard conditions except at pH 5.0, is more or less free energy released? Explain. Use the Living Graph to explore this relationship.

9. The ΔG° for Coupled Reactions Glucose 1-phosphate is converted into fructose 6-phosphate in two successive reactions:

Glucose 1-phosphate \rightarrow glucose 6-phosphate

Glucose 6-phosphate \rightarrow fructose 6-phosphate

Using the ΔG° values in Table 13-4, calculate the equilibrium constant, K'_{eq}, for the sum of the two reactions:

Glucose 1-phosphate \rightarrow fructose 6-phosphate

10. Effect of [ATP]/[ADP] Ratio on Free Energy of Hydrolysis of ATP Using Equation 13-4, plot ΔG against ln Q (mass-action ratio) at 25 °C for the concentrations of ATP, ADP, and P$_i$ in the table below. ΔG° for the reaction is -30.5 kJ/mol. Use the resulting plot to explain why metabolism is regulated to keep the ratio [ATP]/[ADP] high.

<table>
<thead>
<tr>
<th>Concentration (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
</tr>
<tr>
<td>ADP</td>
</tr>
<tr>
<td>P$_i$</td>
</tr>
</tbody>
</table>

11. Strategy for Overcoming an Unfavorable Reaction: ATP-Dependent Chemical Coupling The phosphorylation of glucose to glucose 6-phosphate is the initial step in the
catabolism of glucose. The direct phosphorylation of glucose by P_i is described by the equation

$$\text{Glucose} + P_i \rightarrow \text{glucose 6-phosphate} + H_2O$$

$$\Delta G^{\circ} = 13.8 \text{ kJ/mol}$$

(a) Calculate the equilibrium constant for the above reaction at $37^\circ C$. In the rat hepatocyte the physiological concentrations of glucose and P_i are maintained at approximately 4.8 mM. What is the equilibrium concentration of glucose 6-phosphate obtained by the direct phosphorylation of glucose by P_i? Does this reaction represent a reasonable metabolic step for the catabolism of glucose? Explain.

(b) In principle, at least, one way to increase the concentration of glucose 6-phosphate is to drive the equilibrium reaction to the right by increasing the intracellular concentrations of glucose and P_i. Assuming a fixed concentration of P_i at 4.8 mM, how high would the intracellular concentration of glucose have to be to give an equilibrium concentration of glucose 6-phosphate of 250 μM (the normal physiological concentration)? Would this route be physiologically reasonable, given that the maximum solubility of glucose is less than 1 M?

(c) The phosphorylation of glucose in the cell is coupled to the hydrolysis of ATP; that is, part of the free energy of ATP hydrolysis is used to phosphorylate glucose:

(1) $$\text{Glucose} + P_i \rightarrow \text{glucose 6-phosphate} + H_2O$$

$$\Delta G^{\circ} = 13.8 \text{ kJ/mol}$$

(2) $$\text{ATP} + H_2O \rightarrow \text{ADP} + P_i$$

$$\Delta G^{\circ} = -30.5 \text{ kJ/mol}$$

Sum: $$\text{Glucose} + \text{ATP} \rightarrow \text{glucose 6-phosphate} + \text{ADP}$$

Calculate K_{eq} at $37^\circ C$ for the overall reaction. For the ATP-dependent phosphorylation of glucose, what concentration of glucose is needed to achieve a 250μM intracellular concentration of glucose 6-phosphate when the concentrations of ATP and ADP are 3.38 mM and 1.32 mM, respectively? Does this coupling process provide a feasible route, at least in principle, for the phosphorylation of glucose in the cell? Explain.

(d) Although coupling ATP hydrolysis to glucose phosphorylation makes thermodynamic sense, we have not yet specified how this coupling is to take place. Given that coupling requires a common intermediate, one conceivable route is to use ATP hydrolysis to raise the intracellular concentration of P_i and thus drive the unfavorable phosphorylation of glucose by P_i. Is this a reasonable route? (Think about the solubility products of metabolic intermediates.)

(e) The ATP-coupled phosphorylation of glucose is catalyzed in hepatocytes by the enzyme glucokinase. This enzyme binds ATP and glucose to form a glucose-ATP-enzyme complex, and the phosphoryl group is transferred directly from ATP to glucose. Explain the advantages of this route.

12. Calculations of ΔG° for ATP-Coupled Reactions
From data in Table 13-6 calculate the ΔG° value for the following reactions.

(a) Phosphocreatine + ADP \rightarrow creatine + ATP

(b) ATP + fructose \rightarrow ADP + fructose 6-phosphate

13. Coupling ATP Cleavage to an Unfavorable Reaction
To explore the consequences of coupling ATP hydrolysis under physiological conditions to a thermodynamically unfavorable biochemical reaction, consider the hypothetical transformation $X \rightarrow Y$, for which $\Delta G^{\circ} = 20 \text{ kJ/mol}$.

(a) What is the ratio $[Y]/[X]$ at equilibrium?

(b) Suppose X and Y participate in a sequence of reactions during which ATP is hydrolyzed to ADP and P_i. The overall reaction is

$$X + ATP + H_2O \rightarrow Y + ADP + P_i$$

Calculate $[Y]/[X]$ for this reaction at equilibrium. Assume that the temperature is $25^\circ C$ and the equilibrium concentrations of ATP, ADP, and P_i are 1 M.

(c) We know that [ATP], [ADP], and [P_i] are not 1 M under physiological conditions. Calculate $[Y]/[X]$ for the ATP-coupled reaction when the values of [ATP], [ADP], and [P_i] are those found in rat myocytes (Table 13-5).

14. Calculations of ΔG at Physiological Concentrations
Calculate the actual, physiological ΔG for the reaction

$$\text{Phosphocreatine} + \text{ADP} \rightarrow \text{creatine} + \text{ATP}$$

at $37^\circ C$, as it occurs in the cytosol of neurons, with phosphocreatine at 4.7 mM, creatine at 1.0 mM, ADP at 0.73 mM, and ATP at 2.6 mM.

15. Free Energy Required for ATP Synthesis under Physiological Conditions
In the cytosol of rat hepatocytes, the temperature is $37^\circ C$ and the mass-action ratio, Q, is

$$\frac{[\text{ATP}]}{[\text{ADP}][P_i]} = 5.33 \times 10^2 \text{ M}^{-1}$$

Calculate the free energy required to synthesize ATP in a rat hepatocyte.

16. Chemical Logic
In the glycolytic pathway, a six-carbon sugar (fructose 1,6-bisphosphate) is cleaved to form two three-carbon sugars, which undergo further metabolism (see Fig. 14-5). In this pathway, an isomerization of glucose 6-phosphate to fructose 6-phosphate (shown below) occurs two steps before the cleavage reaction (the intervening step is phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate (p. 532)).

What does the isomerization step accomplish from a chemical perspective? (Hint: Consider what might happen if the C--C bond cleavage were to proceed without the preceding isomerization.)
17. Enzymatic Reaction Mechanisms I Lactate dehydrogenase is one of the many enzymes that require NADH as coenzyme. It catalyzes the conversion of pyruvate to lactate:

\[
\text{Pyruvate} + \text{NADH} + \text{H}^+ \rightarrow \text{l-Lactate} + \text{NAD}^+
\]

Draw the mechanism of this reaction (show electron-pushing arrows). (Hint: This is a common reaction throughout metabolism; the mechanism is similar to that catalyzed by other dehydrogenases that use NADH, such as alcohol dehydrogenase.)

18. Enzymatic Reaction Mechanisms II Biochemical reactions often look more complex than they really are. In the pentose phosphate pathway (Chapter 14), sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate react to form erythrose 4-phosphate and fructose 6-phosphate in a reaction catalyzed by transaldolase.

\[
\begin{align*}
\text{Sedoheptulose 7-phosphate} & \rightarrow \text{Erythrose 4-phosphate} + \text{Fructose 6-phosphate} \\
\text{Glyceraldehyde 3-phosphate} & \rightarrow \text{Erythrose 4-phosphate} + \text{Fructose 6-phosphate}
\end{align*}
\]

Draw a mechanism for this reaction (show electron-pushing arrows). (Hint: Take another look at aldol condensations, then consider the name of this enzyme.)

19. Daily ATP Utilization by Human Adults
(a) A total of 30.5 kJ/mol of free energy is needed to synthesize ATP from ADP and P\textsubscript{i} when the reactants and products are at 1 M concentrations and the temperature is 25 °C (standard state). Because the actual physiological concentrations of ATP, ADP, and P\textsubscript{i} are not 1 M, and the temperature is 37 °C, the free energy required to synthesize ATP under physiological conditions is different from ΔGo*. Calculate the free energy required to synthesize ATP in the human hepatocyte when the physiological concentrations of ATP, ADP, and P\textsubscript{i} are 3.5, 1.50, and 5.0 mM, respectively.

(b) A 68 kg (150 lb) adult requires a caloric intake of 2,000 kcal (8,360 kJ) of food per day (24 hours). The food is metabolized and the free energy is used to synthesize ATP, which then provides energy for the body's daily chemical and mechanical work. Assuming that the efficiency of converting food energy into ATP is 50%, calculate the weight of ATP used by a human adult in 24 hours. What percentage of the body weight does this represent?

(c) Although adults synthesize large amounts of ATP daily, their body weight, structure, and composition do not change significantly during this period. Explain this apparent contradiction.

20. Rates of Turnover of γ and β Phosphates of ATP If a small amount of ATP labeled with radioactive phosphorus in the terminal position, [γ-32P]ATP, is added to a yeast extract, about half of the 32P activity is found in P\textsubscript{i} within a few minutes, but the concentration of ATP remains unchanged. Explain. If the same experiment is carried out using ATP labeled with 32P in the central position, [β-32P]ATP, the 32P does not appear in P\textsubscript{i} within such a short time. Why?

21. Cleavage of ATP to AMP and P\textsubscript{i} during Metabolism Synthesis of the activated form of acetate (acetyl-CoA) is carried out in an ATP-dependent process:

\[
\text{Acetate} + \text{CoA} + \text{ATP} \rightarrow \text{acetyl-CoA} + \text{AMP} + \text{PP}_i
\]

(a) The ΔGo* for hydrolysis of acetyl-CoA to acetate and CoA is −32.2 kJ/mol and that for hydrolysis of ATP to AMP and P\textsubscript{i} is −30.5 kJ/mol. Calculate ΔGo* for the ATP-dependent synthesis of acetyl-CoA.

(b) Almost all cells contain the enzyme inorganic pyrophosphatase, which catalyzes the hydrolysis of P\textsubscript{i} to P\textsubscript{i}. What effect does the presence of this enzyme have on the synthesis of acetyl-CoA? Explain.

22. Energy for H+ Pumping The parietal cells of the stomach lining contain membrane “pumps” that transport hydrogen ions from the cytosol (pH 7.0) into the stomach, contributing to the acidity of gastric juice (pH 1.0). Calculate the free energy required to transport 1 mol of hydrogen ions through these pumps. (Hint: See Chapter 11.) Assume a temperature of 37 °C.

23. Standard Reduction Potentials The standard reduction potential, Eo*, of any redox pair is defined for the half-cell reaction:

\[
\text{Oxidizing agent} + n \text{ electrons} \rightarrow \text{reducing agent}
\]

The Eo* values for the NAD+/NADH and pyruvate/lactate conjugate redox pairs are −0.32 V and −0.19 V, respectively.

(a) Which redox pair has the greater tendency to lose electrons? Explain.

(b) Which pair is the stronger oxidizing agent? Explain.

(c) Beginning with 1 M concentrations of each reactant and product at pH 7 and 25 °C, in which direction will the following reaction proceed?

\[
\text{Pyruvate} + \text{NADH} + \text{H}^+ \rightleftharpoons \text{l-Lactate} + \text{NAD}^+
\]
Bioenergetics and Biochemical Reaction Types

(d) What is the standard free-energy change (ΔG°) for the conversion of pyruvate to lactate?

(e) What is the equilibrium constant (K_{eq}) for this reaction?

24. Energy Span of the Respiratory Chain Electron transfer in the mitochondrial respiratory chain may be represented by the net reaction equation:

$$\text{NADH} + H^+ + \frac{1}{2}O_2 \rightleftharpoons H_2O + \text{NAD}^+$$

(a) Calculate ΔE° for the net reaction of mitochondrial electron transfer. Use E° values from Table 13–7.

(b) Calculate ΔG° for this reaction.

(c) How many ATP molecules can theoretically be generated by this reaction if the free energy of ATP synthesis under cellular conditions is 52 kJ/mol?

25. Dependence of Electromotive Force on Concentrations Calculate the electromotive force (in volts) registered by an electrode immersed in a solution containing the following mixtures of NAD$^+$ and NADH at pH 7.0 and 25 °C, with reference to a half-cell of E° 0.00 V.

(a) 1.0 mM NAD$^+$ and 10 mM NADH
(b) 1.0 mM NAD$^+$ and 1.0 mM NADH
(c) 10 mM NAD$^+$ and 1.0 mM NADH

26. Electron Affinity of Compounds List the following in order of increasing tendency to accept electrons: α-ketoglutarate + CO$_2$ (yielding isocitrate); oxaloacetate; O$_2$; NADP$^+$.

27. Direction of Oxidation-Reduction Reactions Which of the following reactions would you expect to proceed in the direction shown, under standard conditions, in the presence of the appropriate enzymes?

(a) Malate + NAD$^+$ \rightarrow oxaloacetate + NADH + H$^+$
(b) Acetoacetate + NADH + H$^+$ \rightarrow β-hydroxybutyrate + NAD$^+$
(c) Pyruvate + NADH + H$^+$ \rightarrow lactate + NAD$^+$
(d) Pyruvate + β-hydroxybutyrate \rightarrow lactate + acetoacetate
(e) Malate + pyruvate \rightarrow oxaloacetate + lactate
(f) Acetaldehyde + succinate \rightarrow ethanol + fumarate

The figure legend reads: “Model of the unidirectional diffusion of dye between coupled oligodendrocytes and astrocytes, based on differences in connection pore diameter. Like a fish in a fish trap, dye molecules (black circles) can pass from an astrocyte to an oligodendrocyte (A) but not back in the other direction (B).”

Although this article clearly passed review at a well-respected journal, several letters to the editor (1994) followed, showing that Robinson and coauthors’ model violated the second law of thermodynamics.

(a) Explain how the model violates the second law. Hint: Consider what would happen to the entropy of the system if one started with equal concentrations of dye in the astrocyte and oligodendrocyte connected by the “fish trap” type of gap junctions.

(b) Explain why this model cannot work for small molecules, although it may allow one to catch fish.

(c) Explain why a fish trap does work for fish.

(d) Provide two plausible mechanisms for the unidirectional transport of dye molecules between the cells that do not violate the second law of thermodynamics.

References

Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway

14.1 Glycolysis 528
14.2 Feeder Pathways for Glycolysis 543
14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation 546
14.4 Gluconeogenesis 551
14.5 Pentose Phosphate Pathway of Glucose Oxidation 558

Glucose occupies a central position in the metabolism of plants, animals, and many microorganisms. It is relatively rich in potential energy, and thus a good fuel; the complete oxidation of glucose to carbon dioxide and water proceeds with a standard free-energy change of $-2,840 \text{ kJ/mol}$. By storing glucose as a high molecular weight polymer such as starch or glycogen, a cell can stockpile large quantities of hexose units while maintaining a relatively low cytosolic osmolarity. When energy demands increase, glucose can be released from these intracellular storage polymers and used to produce ATP either aerobically or anaerobically.

Glucose is not only an excellent fuel, it is also a remarkably versatile precursor, capable of supplying a huge array of metabolic intermediates for biosynthetic reactions. A bacterium such as *Escherichia coli* can obtain from glucose the carbon skeletons for every amino acid, nucleotide, coenzyme, fatty acid, or other metabolic intermediate it needs for growth. A comprehensive study of the metabolic fates of glucose would encompass hundreds or thousands of transformations. In animals and vascular plants, glucose has four major fates: it may be used in the synthesis of complex polysaccharides destined for the extracellular space; stored in cells (as a polysaccharide or as sucrose); oxidized to a three-carbon compound (pyruvate) via glycolysis to provide ATP and metabolic intermediates; or oxidized via the pentose phosphate (phosphogluconate) pathway to yield ribose 5-phosphate for nucleic acid synthesis and NADPH for reductive biosynthetic processes (Fig. 14–1).

Organisms that do not have access to glucose from other sources must make it. Photosynthetic organisms make glucose by first reducing atmospheric CO$_2$ to trioses, then converting the trioses to glucose. Nonphotosynthetic cells make glucose from simpler three- and four-carbon precursors by the process of gluconeogenesis, effectively reversing glycolysis in a pathway that uses many of the glycolytic enzymes.

In this chapter we describe the individual reactions of glycolysis, gluconeogenesis, and the pentose phosphate pathway and the functional significance of each pathway. We also describe the various metabolic fates of the pyruvate produced by glycolysis. They include the fermentations that are used by many organisms in anaerobic niches to produce ATP and that are exploited industrially as sources of ethanol, lactic acid, and other products.
commercially useful products. And we look at the pathways that feed various sugars from mono-, di-, and polysaccharides into the glycolytic pathway. The discussion of glucose metabolism continues in Chapter 15, where we use the processes of carbohydrate synthesis and degradation to illustrate the many mechanisms by which organisms regulate metabolic pathways. The biosynthetic pathways from glucose to extracellular matrix and cell wall polysaccharides and storage polysaccharides are discussed in Chapter 20.

14.1 Glycolysis

In **glycolysis** (from the Greek *glykys*, "sweet" or "sugar," and *lysis*, "splitting"), a molecule of glucose is degraded in a series of enzyme-catalyzed reactions to yield two molecules of the three-carbon compound pyruvate. During the sequential reactions of glycolysis, some of the free energy released from glucose is conserved in the form of ATP and NADH. Glycolysis was the first metabolic pathway to be elucidated and is probably the best understood. From Eduard Buchner's discovery in 1897 of fermentation in broken extracts of yeast cells until the elucidation of the whole pathway in yeast (by Otto Warburg and Hans von Euler-Chelpin) and in muscle (by Gustav Embden and Otto Meyerhof) in the 1930s, the reactions of glycolysis in extracts of yeast and muscle were a major focus of biochemical research. The philosophical shift that accompanied these discoveries was announced by Jacques Loeb in 1906:

> Through the discovery of Buchner, Biology was relieved of another fragment of mysticism. The splitting up of sugar into CO₂ and alcohol is no more the effect of a "vital principle" than the splitting up of cane sugar by invertase. The history of this problem is instructive, as it warns us against considering problems as beyond our reach because they have not yet found their solution.

The development of methods of enzyme purification, the discovery and recognition of the importance of coenzymes such as NAD, and the discovery of the pivotal metabolic role of ATP and other phosphorylated compounds all came out of studies of glycolysis. The glycolytic enzymes of many species have long since been purified and thoroughly studied.

Glycolysis is an almost universal central pathway of glucose catabolism, the pathway with the largest flux of carbon in most cells. The glycolytic breakdown of glucose is the sole source of metabolic energy in some mammalian tissues and cell types (erythrocytes, renal medulla, brain, and sperm, for example). Some plant tissues that are modified to store starch (such as potato tubers) and some aquatic plants (watercress, for example) derive most of their energy from glycolysis; many anaerobic microorganisms are entirely dependent on glycolysis.

Fermentation is a general term for the anaerobic degradation of glucose or other organic nutrients to obtain energy, conserved as ATP. Because living organisms first arose in an atmosphere without oxygen, anaerobic breakdown of glucose is probably the most ancient biological mechanism for obtaining energy from organic fuel molecules. And as genome sequencing of a wide variety of organisms has revealed, some archaea and some parasitic microorganisms lack one or more of the enzymes of glycolysis but retain the core of the pathway; they presumably carry out variant forms of glycolysis. In the course of evolution, the chemistry of this reaction sequence has been completely conserved; the glycolytic enzymes of vertebrates are closely similar, in amino acid sequence and three-dimensional structure, to their homologs in yeast and spinach. Glycolysis differs among species only in the details of its regulation and in the subsequent metabolic fate of the pyruvate formed. The thermodynamic principles and the types of regulatory mechanisms that govern glycolysis are common to all pathways of cell metabolism. The glycolytic pathway, of central importance in itself, can also serve as a model for many aspects of the pathways discussed throughout this book.

Before examining each step of the pathway in some detail, we take a look at glycolysis as a whole.

An Overview: Glycolysis Has Two Phases

The breakdown of the six-carbon glucose into two molecules of the three-carbon pyruvate occurs in 10 steps, the first 5 of which constitute the preparatory phase (Fig. 14-2a). In these reactions, glucose is first phosphorylated at the hydroxyl group on C-6 (step 1). The D-glucose 6-phosphate thus formed is converted to D-fructose 6-phosphate (step 2), which is again phosphorylated, this time at C-1, to yield D-fructose 1,6-bisphosphate (step 3). For both phosphorylations, ATP is the phosphoryl group donor. As all sugar derivatives in glycolysis are the D isomers, we
14.1 Glycolysis

(a) Glucose first priming reaction

Glucose → ATP → ADP

Glucose 6-phosphate

Fructose 6-phosphate second priming reaction

Fructose 1,6-bisphosphate → ATP → ADP

Fructose 1,6-bisphosphate

Preparatory phase

Phosphorylation of glucose and its conversion to glyceraldehyde 3-phosphate

Hexokinase
Phosphohexose isomerase
Phosphofructokinase-1
Aldolase
Triose phosphate isomerase

(b) Payoff phase

Oxidative conversion of glyceraldehyde 3-phosphate to pyruvate and the coupled formation of ATP and NADH

Glyceraldehyde 3-phosphate (2)

1,3-Bisphosphoglycerate (2)

First ATP-forming reaction (substrate-level phosphorylation)

3-Phosphoglycerate (2)

Phosphoglycerate kinase

2-Phosphoglycerate (2)

Enolase

Second ATP-forming reaction (substrate-level phosphorylation)

Pyruvate (2)

Pyruvate kinase

FIGURE 14-2 The two phases of glycolysis. For each molecule of glucose that passes through the preparatory phase (a), two molecules of glyceraldehyde 3-phosphate are formed; both pass through the payoff phase (b). Pyruvate is the end product of the second phase of glycolysis. For each glucose molecule, two ATP are consumed in the preparatory phase and four ATP are produced in the payoff phase, giving a net yield of two ATP per molecule of glucose converted to pyruvate. The numbered reaction steps are catalyzed by the enzymes listed on the right, and also correspond to the numbered headings in the text discussion. Keep in mind that each phosphoryl group, represented here as $\overset{\text{PO}_3^-}{\text{P}}$, has two negative charges ($-\text{PO}_2^-$).
will usually omit the D designation except when emphasizing stereochemistry.

Fructose 1,6-bisphosphate is split to yield two three-carbon molecules, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (step 4); this is the "lysis" step that gives the pathway its name. The dihydroxyacetone phosphate is isomerized to a second molecule of glyceraldehyde 3-phosphate (step 5), ending the first phase of glycolysis. From a chemical perspective, the isomerization in step 6 is critical for setting up the phosphorylation and C-C bond cleavage reactions in steps 7 and 8, as detailed later. Note that two molecules of ATP are invested before the cleavage of glucose into two three-carbon pieces; there will be a good return on this investment. To summarize: in the preparatory phase of glycolysis the energy of ATP is invested, raising the free-energy content of the intermediates, and the carbon chains of all the metabolized hexoses are converted to a common product, glyceraldehyde 3-phosphate.

The energy gain comes in the payoff phase of glycolysis (Fig. 14-2b). Each molecule of glyceraldehyde 3-phosphate is oxidized and phosphorylated by inorganic phosphate (not by ATP) to form 1,3-bisphosphoglycerate (step 6). Energy is then released as the two molecules of 1,3-bisphosphoglycerate are converted to two molecules of pyruvate (steps 7 through 10). Much of this energy is conserved by the coupled phosphorylation of four molecules of ADP to ATP. The net yield is two molecules of ATP per molecule of glucose used, because two molecules of ATP were invested in the preparatory phase. Energy is also conserved in the payoff phase in the formation of two molecules of the electron carrier NADH per molecule of glucose.

In the sequential reactions of glycolysis, three types of chemical transformations are particularly noteworthy: (1) degradation of the carbon skeleton of glucose to yield pyruvate; (2) phosphorylation of ADP to ATP by compounds with high phosphoryl group transfer potential, formed during glycolysis; and (3) transfer of a hydride ion to NAD*, forming NADH.

Fates of Pyruvate With the exception of some interesting variations in the bacterial realm, the pyruvate formed by glycolysis is further metabolized via one of three catabolic routes. In aerobic organisms or tissues, under aerobic conditions, glycolysis is only the first stage in the complete degradation of glucose (Fig. 14-3). Pyruvate is oxidized, with loss of its carboxyl group as CO$_2$, to yield the acetyl group of acetyl-coenzyme A; the acetyl group is then oxidized completely to CO$_2$ by the citric acid cycle (Chapter 16). The electrons from these oxidations are passed to O$_2$ through a chain of carriers in mitochondria, to form H$_2$O. The energy from the electron-transfer reactions drives the synthesis of ATP in mitochondria (Chapter 19).

The second route for pyruvate is its reduction to lactate via lactic acid fermentation. When vigorously contracting skeletal muscle must function under low-oxygen conditions (hypoxia), NADH cannot be reoxidized to NAD$, but NAD$^+$ is required as an electron acceptor for the further oxidation of pyruvate. Under these conditions pyruvate is reduced to lactate, accepting electrons from NADH and thereby regenerating the NAD$^+$ necessary for glycolysis to continue. Certain tissues and cell types (retina and erythrocytes, for example) convert glucose to lactate even under aerobic conditions, and lactate is also the product of glycolysis under anaerobic conditions in some microorganisms (Fig. 14-3).

The third major route of pyruvate catabolism leads to ethanol. In some plant tissues and in certain invertebrates, protists, and microorganisms such as brewer's or baker's yeast, pyruvate is converted under hypoxic or anaerobic conditions to ethanol and CO$_2$, a process called ethanol (alcohol) fermentation (Fig. 14-3).

The oxidation of pyruvate is an important catabolic process, but pyruvate has anabolic fates as well. It can, for example, provide the carbon skeleton for the synthesis of the amino acid alanine or for the synthesis of fatty acids. We return to these anabolic reactions of pyruvate in later chapters.

ATP and NADH Formation Coupled to Glycolysis During glycolysis some of the energy of the glucose molecule is conserved in ATP, while much remains in the product, pyruvate. The overall equation for glycolysis is

\[
\text{Glucose} + 2\text{NAD}^+ + 2\text{ADP} + 2\text{P}_i \rightarrow 2 \text{pyruvate} + 2\text{NADH} + 2\text{H}^+ + 2\text{ATP} + 2\text{H}_2\text{O} \quad (14-1)
\]
For each molecule of glucose degraded to pyruvate, two molecules of ATP are generated from ADP and P_i, and two molecules of NADH are produced by the reduction of NAD^+. The hydrogen acceptor in this reaction is NAD^+ (see Fig. 13-24), bound to a Rossmann fold as shown in Figure 13-25. The reduction of NAD^+ proceeds by the enzymatic transfer of a hydride ion (H^-) from the aldehyde group of glyceraldehyde 3-phosphate to the nicotinamide ring of NAD^+, yielding the reduced coenzyme NADH. The other hydrogen atom of the substrate molecule is released to the solution as H^+.

We can now resolve the equation of glycolysis into two processes—the conversion of glucose to pyruvate, which is exergonic:

\[
\text{Glucose} + 2\text{NAD}^+ \rightarrow 2 \text{pyruvate} + 2\text{NADH} + 2\text{H}^+ \quad (14-2)
\]

and the formation of ATP from ADP and P_i, which is endergonic:

\[
2\text{ADP} + 2\text{P}_i \rightarrow 2\text{ATP} + 2\text{H}_2\text{O} \quad (14-3)
\]

The sum of Equations 14-2 and 14-3 gives the overall standard free-energy change of glycolysis, \(\Delta G_{\text{r}}^{\circ} \):

\[
\Delta G_{\text{r}}^{\circ} = \Delta G_{\text{r}}^{\circ} + \Delta G_{\text{f}}^{\circ} = -146 \text{kJ/mol} + 61 \text{kJ/mol} = -85 \text{kJ/mol}
\]

Under standard conditions, and under the (nonstandard) conditions that prevail in a cell, glycolysis is an essentially irreversible process, driven to completion by a large net decrease in free energy.

Energy Remaining in Pyruvate Glycolysis releases only a small fraction of the total available energy of the glucose molecule; the two molecules of pyruvate formed by glycolysis still contain most of the chemical potential energy of glucose, energy that can be extracted by oxidative reactions in the citric acid cycle (Chapter 16) and oxidative phosphorylation (Chapter 19).

Importance of Phosphorylated Intermediates Each of the nine glycolytic intermediates between glucose and pyruvate is phosphorylated (Fig. 14–2). The phosphoryl groups seem to have three functions.

1. Because the plasma membrane generally lacks transporters for phosphorylated sugars, the phosphorylated glycolytic intermediates cannot leave the cell. After the initial phosphorylation, no further energy is necessary to retain phosphorylated intermediates in the cell, despite the large difference in their intracellular and extracellular concentrations.

2. Phosphoryl groups are essential components in the enzymatic conservation of metabolic energy. Energy released in the breakage of phosphoanhydride bonds (such as those in ATP) is partially conserved in the formation of phosphate esters such as glucose 6-phosphate. High-energy phosphate compounds formed in glycolysis (1,3-bisphosphoglycerate and phosphoenolpyruvate) donate phosphoryl groups to ADP to form ATP.

3. Binding energy resulting from the binding of phosphate groups to the active sites of enzymes lowers the activation energy and increases the specificity of the enzymatic reactions (Chapter 6). The phosphate groups of ADP, ATP, and the glycolytic intermediates form complexes with Mg^{2+}, and the substrate binding sites of many glycolytic enzymes are specific for these Mg^{2+} complexes. Most glycolytic enzymes require Mg^{2+} for activity.

The Preparatory Phase of Glycolysis Requires ATP

In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. The realization that phosphorylated hexoses were intermediates in glycolysis came slowly and serendipitously. In 1906, Arthur Harden and William Young tested their hypothesis that inhibitors of proteolytic enzymes would stabilize the glucose-fermenting enzymes in yeast extract. They added blood serum (known to contain inhibitors of proteolytic enzymes) to yeast extracts and observed the predicted stimulation of glucose metabolism. However, in a control experiment intended to show that boiling the serum destroyed the stimulatory activity, they discovered that boiled serum was just as effective at stimulating glycolysis! Careful examination and testing of the contents of the boiled serum revealed that inorganic phosphate was responsible for the stimulation. Harden and Young soon discovered that glucose added to their yeast extract was converted to a hexose bisphosphate (the “Harden-Young ester,” eventually identified as fructose 1,6-bisphosphate). This was the beginning of a long series of investigations on the role of organic esters and anhydrides of phosphate in biochemistry, which has led to our current understanding of the central role of phosphoryl group transfer in biology.
① Phosphorylation of Glucose In the first step of glycolysis, glucose is activated for subsequent reactions by its phosphorylation at C-6 to yield glucose 6-phosphate, with ATP as the phosphoryl donor:

\[
\begin{align*}
\text{Glucose} & \rightarrow \text{Glucose 6-phosphate} \\
\Delta G^\circ &= -16.7 \text{ kJ/mol}
\end{align*}
\]

This reaction, which is irreversible under intracellular conditions, is catalyzed by hexokinase. Recall that kinases are enzymes that catalyze the transfer of the terminal phosphoryl group from ATP to an acceptor nucleophile (see Fig. 13-20). Kinases are a subclass of transferases (see Table 6-3). The acceptor in the case of hexokinase is a hexose, normally D-glucose, although hexokinase also catalyzes the phosphorylation of other common hexoses, such as D-fructose and D-mannose, in some tissues.

Hexokinase, like many other kinases, requires Mg\(^{2+}\) for its activity, because the true substrate of the enzyme is not ATP\(^{4-}\) but the MgATP\(^{2-}\) complex (see Fig. 13-12). Mg\(^{2+}\) shields the negative charges of the phosphoryl groups in ATP, making the terminal phosphorus atom an easier target for nucleophilic attack by an —OH of glucose. Hexokinase undergoes a profound change in shape, an induced fit, when it binds glucose; two domains of the protein move about 8 Å closer to each other when ATP binds (see Fig. 6-22). This movement brings bound ATP closer to a molecule of glucose also bound to the enzyme and blocks the access of water (from the solvent), which might otherwise enter the active site and attack (hydrolyze) the phosphoanhydride bonds of ATP. Like the other nine enzymes of glycolysis, hexokinase is a soluble, cytosolic protein.

Hexokinase is present in nearly all organisms. The human genome encodes four different hexokinases (I to IV), all of which catalyze the same reaction. Two or more enzymes that catalyze the same reaction but are encoded by different genes are called isozymes (see Box 15–2). One of the isozymes present in hepatocytes, hexokinase IV (also called glucokinase), differs from other forms of hexokinase in kinetic and regulatory properties, with important physiological consequences that are described in Section 15.3.

② Conversion of Glucose 6-Phosphate to Fructose 6-Phosphate The enzyme phosphohexose isomerase (phosphoglucose isomerase) catalyzes the reversible isomerization of glucose 6-phosphate, an aldose, to fructose 6-phosphate, a ketose:

\[
\begin{align*}
\text{Glucose 6-phosphate} & \rightleftharpoons \text{Fructose 6-phosphate} \\
\Delta G^\circ &= -1.7 \text{ kJ/mol}
\end{align*}
\]

The mechanism for this reaction involves an enediol intermediate (Fig. 14–4). The reaction proceeds readily in either direction, as might be expected from the relatively small change in standard free energy. This isomerization has a critical role in the overall chemistry of the glycolytic pathway, as the rearrangement of the carbonyl and hydroxyl groups at C-1 and C-2 is a necessary prelude to the next two steps. The phosphorylation that occurs in the next reaction (step ③) requires that the group at C-1 first be converted from a carbonyl to an alcohol, and in the subsequent reaction (step ④) cleavage of the bond between C-3 and C-4 requires a carbonyl group at C-2 (p. 497).

③ Phosphorylation of Fructose 6-Phosphate to Fructose 1,6-Bisphosphate In the second of the two priming reactions of glycolysis, phosphofructokinase-1 (PFK-1) catalyzes the transfer of a phosphoryl group from ATP to fructose 6-phosphate to yield fructose 1,6-bisphosphate:

\[
\begin{align*}
\text{Fructose 6-phosphate} & \rightarrow \text{Fructose 1,6-bisphosphate} \\
\Delta G^\circ &= -14.2 \text{ kJ/mol}
\end{align*}
\]

KEY CONVENTION: Compounds that contain two phosphate or phosphoryl groups attached at different positions in the molecule are named bisphosphates (or bisphospho compounds); for example, fructose 1,6-bisphosphate and 1,3-bisphosphoglycerate. Compounds with two phosphates linked together as a pyrophosphoryl group are named diphosphates; for example, adenosine diphosphate (ADP). Similar rules apply for the naming of trisphosphates (such
Glucose 6-phosphate

Fructose 6-phosphate

Phosphohexose isomerase

MECHANISM FIGURE 14-4 The phosphohexose isomerase reaction.

The ring opening and closing reactions (steps 1 and 4) are catalyzed by an active-site His residue, by mechanisms omitted here for simplicity. The proton (pink) initially at C-2 is made more easily abstractable by electron withdrawal by the adjacent carbonyl and nearby hydroxyl as inositol 1,4,5-trisphosphate; see p. 432) and triphosphates (such as adenosine triphosphate, ATP).

The enzyme that forms fructose 1,6-bisphosphate is called PFK-1 to distinguish it from a second enzyme (PFK-2) that catalyzes the formation of fructose 2,6-bisphosphate from fructose 6-phosphate in a separate pathway (the roles of PFK-2 and fructose 2,6-bisphosphate are discussed in Chapter 15). The PFK-1 reaction is essentially irreversible under cellular conditions, and it is the first “committed” step in the glycolytic pathway; glucose 6-phosphate and fructose 6-phosphate have other possible fates, but fructose 1,6-bisphosphate is targeted for glycolysis.

Some bacteria and protists and perhaps all plants have a phosphofructokinase that uses pyrophosphate (PP), not ATP, as the phosphoryl group donor in the synthesis of fructose 1,6-bisphosphate:

\[
\text{Fructose 6-phosphate} + \text{PP} \rightarrow \text{Fructose 1,6-bisphosphate} + \text{P}_1
\]

\[\Delta G^\circ = -2.9 \text{ kJ/mol}\]

Phosphofructokinase-1 is subject to complex allosteric regulation; its activity is increased whenever the cell’s ATP supply is depleted or when the ATP breakdown products, ADP and AMP (particularly the latter), accumulate. The enzyme is inhibited whenever the cell has ample ATP and is well supplied by other fuels such as fatty acids. In some organisms, fructose 2,6-bisphosphate (not to be confused with the PFK-1 reaction product, fructose 1,6-bisphosphate) is a potent allosteric activator of PFK-1. Ribulose 5-phosphate, an intermediate in the pentose phosphate pathway discussed later in this chapter, also activates phosphofructokinase indirectly. The multiple layers of regulation of this step in glycolysis are discussed in greater detail in Chapter 15.

4 Cleavage of Fructose 1,6-Bisphosphate The enzyme fructose 1,6-bisphosphate aldolase, often called simply aldolase, catalyzes a reversible aldol condensation (see Fig. 13-4). Fructose 1,6-bisphosphate is cleaved to yield two different triose phosphates, glyceraldehyde 3-phosphate, an aldose, and dihydroxyacetone phosphate, a ketose:

\[
\text{Fructose 1,6-bisphosphate} \rightarrow \text{Glyceraldehyde 3-phosphate} + \text{Dihydroxyacetone phosphate}
\]

\[\Delta G^\circ = 23.8 \text{ kJ/mol}\]
There are two classes of aldolases. Class I aldolases, found in animals and plants, use the mechanism shown in Figure 14-5. Class II enzymes, in fungi and bacteria, do not form the Schiff base intermediate. Instead, a zinc ion at the active site is coordinated with the carbonyl oxygen at C-2; the Zn$^{2+}$ polarizes the carbonyl group and stabilizes the enolate intermediate created in the C—C bond cleavage step.

Although the aldolase reaction has a strongly positive standard free-energy change in the direction of fructose 1,6-bisphosphate cleavage, at the lower concentrations of reactants present in cells the actual free-energy change is small and the aldolase reaction is readily reversible. We shall see later that aldolase acts in the reverse direction during the process of gluconeogenesis (see Fig. 14-16).

Interconversion of the Triose Phosphates Only one of the two triose phosphates formed by aldolase, glyceraldehyde 3-phosphate, can be directly degraded in the subsequent steps of glycolysis. The other product, dihydroxyacetone phosphate, is rapidly and reversibly converted to glyceraldehyde 3-phosphate by the fifth enzyme of the glycolytic sequence, triose phosphate isomerase:

\[
\begin{align*}
\text{Dihydroxyacetone phosphate} & \quad \text{Glyceraldehyde 3-phosphate} \\
\text{AG}^\circ & = 7.5 \text{ kJ/mol}
\end{align*}
\]

Mechanism Figure 14-5 The class I aldolase reaction. The reaction shown here is the reverse of an aldol condensation. Note that cleavage between C-3 and C-4 depends on the presence of the carbonyl group at C-2. A and B represent amino acid residues that serve as general acid (A) or base (B).
FIGURE 14-6 Fate of the glucose carbons in the formation of glycer-aldehyde 3-phosphate. (a) The origin of the carbons in the two three-carbon products of the aldolase and triose phosphate isomerase reactions. The end product of the two reactions is glycer-aldehyde 3-phosphate (two molecules). (b) Each carbon of glycer-aldehyde 3-phosphate is derived from either of two specific carbons of glucose. Note that the numbering of the carbon atoms of glycer-aldehyde 3-phosphate differs from that of the glucose from which it is derived. In glycer-aldehyde 3-phosphate, the most complex functional group (the carboxyl) is specified as C-1. This numbering change is important for interpreting experiments with glucose in which a single carbon is labeled with a radioisotope. (See Problems 6 and 9 at the end of this chapter.)

Oxidation of Glycer-aldehyde 3-Phosphate to 1,3-Bisphosphoglycerate The first step in the payoff phase is the oxidation of glycer-aldehyde 3-phosphate to 1,3-bisphosphoglycerate, catalyzed by glycer-aldehyde 3-phosphate dehydrogenase:

This is the first of the two energy-conserving reactions of glycolysis that eventually lead to the formation of ATP. The aldehyde group of glycer-aldehyde 3-phosphate is oxidized, not to a free carboxyl group but to a carboxylic acid anhydride with phosphoric acid. This

The Payoff Phase of Glycolysis Yields ATP and NADH

The payoff phase of glycolysis (Fig. 14–2b) includes the energy-conserving phosphorylation steps in which some of the chemical energy of the glucose molecule is conserved in the form of ATP and NADH. Remember that one molecule of glucose yields two molecules of glycer-aldehyde 3-phosphate, and both halves of the glucose molecule follow the same pathway in the second phase of glycolysis. The conversion of two molecules of glycer-aldehyde 3-phosphate to two molecules of pyruvate is accompanied by the formation of four molecules of ATP from ADP. However, the net yield of ATP per molecule of glucose degraded is only two, because two ATP were invested in the preparatory phase of glycolysis to phosphorylate the two ends of the hexose molecule.
Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway

MECHANISM FIGURE 14–7 The glyceraldehyde 3-phosphate dehydrogenase reaction.

The glyceraldehyde 3-phosphate dehydrogenase reaction involves a covalent thiohemiacetal linkage forming between the substrate and the -SH group of the Cys residue. The enzyme-substrate complex undergoes phosphorolysis (attack by P1) releasing the second product, 1,3-bisphosphoglycerate.

The amount of NAD⁺ in a cell (\(10^{-5} \text{ M}\)) is far smaller than the amount of glucose metabolized in a few minutes. Glycolysis would soon come to a halt if the NADH formed in this step of glycolysis were not continuously reoxidized and recycled. We return to a discussion of this recycling of NAD⁺ later in the chapter.

Phosphoryl Transfer from 1,3-Bisphosphoglycerate to ADP The enzyme phosphoglycerate kinase transfers the high-energy phosphoryl group from the carboxyl group of 1,3-bisphosphoglycerate to ADP, forming ATP and 3-phosphoglycerate:

\[
\text{HCOH} + \text{CH}_2\text{OPO}_3^- \rightarrow \text{ATP} + 3\text{-phosphoglycerate}
\]

\(\Delta G^{\circ} = -18.5 \text{ kJ/mol}\)
Notice that phosphoglycerate kinase is named for the reverse reaction, in which it transfers a phosphoryl group from ATP to 3-phosphoglycerate. Like all enzymes, it catalyzes the reaction in both directions. This enzyme acts in the direction suggested by its name during gluconeogenesis (see Fig. 14–16) and during photosynthetic CO₂ assimilation (see Fig. 20–4). In glycolysis, the reaction it catalyzes proceeds as shown above, in the direction of ATP synthesis.

Steps 6 and 7 of glycolysis together constitute an energy-coupling process in which 1,3-bisphosphoglycerate is the common intermediate; it is formed in the first reaction (which would be endergonic in isolation), and its acyl phosphate group is transferred to ADP in the second reaction (which is strongly exergonic). The sum of these two reactions is

\[
\text{Glyceraldehyde 3-phosphate + ADP + Pi + NAD}^+ \rightleftharpoons 3\text{-phosphoglycerate + ATP + NADH + H}^+ \\
\Delta G^o = -12.2 \text{kJ/mol}
\]

Thus the overall reaction is exergonic.

Recall from Chapter 13 that the actual free-energy change, \(\Delta G\), is determined by the standard free-energy change, \(\Delta G^o\), and the mass-action ratio, \(Q\), which is the ratio [products]/[reactants] (see Eqn 13–4). For step 6,

\[
\Delta G = \Delta G^o + RT \ln Q
\]

\[
= \Delta G^o + RT \ln \left(\frac{[1,3\text{-bisphosphoglycerate}][\text{NAD}]}{[\text{glyceraldehyde 3-phosphate}][\text{Pi}][\text{NAD}^+]}} \right)
\]

Notice that \([\text{H}^+]\) is not included in \(Q\). In biochemical calculations, \([\text{H}^+]\) is assumed to be a constant (10^-7 m), and this constant is included in the definition of \(\Delta G^o\) (p. 491).

When the mass-action ratio is less than 1.0, its natural logarithm has a negative sign. Step 7, by consuming the product of step 6 (1,3-bisphosphoglycerate), keeps [1,3-bisphosphoglycerate] relatively low in the steady state and thereby keeps \(Q\) for the overall energy-coupling process small. When \(Q\) is small, the contribution of \(\ln Q\) can make \(\Delta G\) strongly negative. This is simply another way of showing how the two reactions, steps 6 and 7, are coupled through a common intermediate.

The outcome of these coupled reactions, both reversible under cellular conditions, is that the energy released on oxidation of an aldehyde to a carboxylate group is conserved by the coupled formation of ATP from ADP and Pi. The formation of ATP by phosphoryl group transfer from a substrate such as 1,3-bisphosphoglycerate is referred to as a substrate-level phosphorylation, to distinguish this mechanism from respiration-linked phosphorylation. Substrate-level phosphorylations involve soluble enzymes and chemical intermediates (1,3-bisphosphoglycerate in this case). Respiration-linked phosphorylations, on the other hand, involve membrane-bound enzymes and transmembrane gradients of protons (Chapter 19).

Conversion of 3-Phosphoglycerate to 2-Phosphoglycerate The enzyme phosphoglycerate mutase catalyzes a reversible shift of the phosphoryl group between C-2 and C-3 of glycerate; Mg²⁺ is essential for this reaction:

\[
\begin{align*}
\text{3-Phosphoglycerate} & \rightleftharpoons \text{2-Phosphoglycerate} \\
\Delta G^o & = 4.4 \text{kJ/mol}
\end{align*}
\]

The reaction occurs in two steps (Fig. 14–8). A phosphoryl group initially attached to a His residue of the mutase is transferred to the hydroxyl group at C-2 of 3-phosphoglycerate, forming 2,3-bisphosphoglycerate (2,3-BPG). The phosphoryl group at C-3 of 2,3-BPG is then transferred to the same His residue, producing 2-phosphoglycerate and regenerating the phosphorylated
enzyme. Phosphoglycerate mutase is initially phosphorylated by phosphoryl transfer from 2,3-BPG, which is required in small quantities to initiate the catalytic cycle and is continuously regenerated by that cycle.

9 Dehydration of 2-Phosphoglycerate to Phosphoenolpyruvate In the second glycolytic reaction that generates a compound with high phosphoryl group transfer potential (the first was step 6), enolase promotes reversible removal of a molecule of water from 2-phosphoglycerate to yield phosphoenolpyruvate (PEP):

\[
\begin{align*}
\text{2-Phosphoglycerate} & \quad \overset{\text{enolase}}{\longrightarrow} \quad \text{Phosphoenolpyruvate} \\
\text{HCO}_3^- & \quad \overset{\text{H}_2\text{O}}{\longrightarrow} \quad \text{C}_3\text{H}_4\text{O}_4^- \\
\Delta G^\circ & = 7.5 \text{ kJ/mol}
\end{align*}
\]

The mechanism of the enolase reaction involves an enolic intermediate stabilized by Mg\(^{2+}\) (see Fig. 6-23). The reaction converts a compound with a relatively low phosphoryl group transfer potential (\(\Delta G^\circ\) for hydrolysis of 2-phosphoglycerate is -17.6 kJ/mol) to one with high phosphoryl group transfer potential (\(\Delta G^\circ\) for PEP hydrolysis is -61.9 kJ/mol) (see Fig. 13-13, Table 13-6).

10 Transfer of the Phosphoryl Group from Phosphoenolpyruvate to ADP The last step in glycolysis is the transfer of the phosphoryl group from phosphoenolpyruvate to ADP, catalyzed by pyruvate kinase, which requires K\(^+\) and either Mg\(^{2+}\) or Mn\(^{2+}\).

\[
\begin{align*}
\text{Phosphoenolpyruvate} & \quad \text{ADP} \\
\text{Mg}^{2+}, \text{K}^+ & \quad \text{pyruvate kinase} \\
\text{CH}_2 & \quad \overset{\text{P}}{\longrightarrow} \quad \text{C} = \text{O} \\
\Delta G^\circ & = -31.4 \text{ kJ/mol}
\end{align*}
\]

In this substrate-level phosphorylation, the product pyruvate first appears in its enol form, then tautomerizes rapidly and nonenzymatically to its keto form, which predominates at pH 7:

\[
\begin{align*}
\text{Pyruvate (enol form)} & \quad \overset{\text{tautomerization}}{\longrightarrow} \quad \text{Pyruvate (keto form)} \\
\text{C} & \quad \overset{\text{OH}}{\longrightarrow} \quad \text{C} = \text{O} \\
\text{CH}_3 & \quad \overset{\text{H}}{\longrightarrow} \quad \text{CH}_3
\end{align*}
\]

The overall reaction has a large, negative standard free-energy change, due in large part to the spontaneous conversion of the enol form of pyruvate to the keto form (see Fig. 13-13). About half of the energy released by PEP hydrolysis (\(\Delta G^\circ = -61.9 \text{ kJ/mol}\)) is conserved in the formation of the phosphoanhydride bond of ATP (\(\Delta G^\circ = -30.5 \text{ kJ/mol}\)), and the rest (-31.4 kJ/mol) constitutes a large driving force pushing the reaction toward ATP synthesis. We discuss the regulation of pyruvate kinase in Chapter 15.

The Overall Balance Sheet Shows a Net Gain of ATP We can now construct a balance sheet for glycolysis to account for (1) the fate of the carbon skeleton of glucose, (2) the input of P\(_i\) and ADP and output of ATP, and (3) the pathway of electrons in the oxidation-reduction reactions. The left-hand side of the following equation shows all the inputs of ATP, NAD\(^{+}\), ADP, and P\(_i\) (consult Fig. 14-2), and the right-hand side shows all the outputs (keep in mind that each molecule of glucose yields two molecules of pyruvate):

\[
\text{Glucose} + 2\text{ATP} + 2\text{NAD}^{+} + 4\text{ADP} + 2\text{P}_i \longrightarrow 2\text{pyruvate} + 2\text{ADP} + 2\text{NADH} + 2\text{H}^{+} + 4\text{ATP} + 2\text{H}_2\text{O}
\]

Canceling out common terms on both sides of the equation gives the overall equation for glycolysis under aerobic conditions:

\[
\text{Glucose} + 2\text{NAD}^{+} + 2\text{ADP} + 2\text{P}_i \longrightarrow 2\text{pyruvate} + 2\text{NADH} + 2\text{H}^{+} + 2\text{ATP} + 2\text{H}_2\text{O}
\]

The two molecules of NADH formed by glycolysis in the cytosol are, under aerobic conditions, reoxidized to NAD\(^{+}\) by transfer of their electrons to the electron-transfer chain, which in eukaryotic cells is located in the mitochondria. The electron-transfer chain passes these electrons to their ultimate destination, O\(_2\):

\[
2\text{NADH} + 2\text{H}^{+} + \text{O}_2 \longrightarrow 2\text{NAD}^{+} + 2\text{H}_2\text{O}
\]

Electron transfer from NADH to O\(_2\) in mitochondria provides the energy for synthesis of ATP by respiration-linked phosphorylation (Chapter 19).

In the overall glycolytic process, one molecule of glucose is converted to two molecules of pyruvate (the pathway of carbon). Two molecules of ADP and two of P\(_i\) are converted to two molecules of ATP (the pathway
of phosphoryl groups). Four electrons, as two hydride ions, are transferred from two molecules of glyceraldehyde 3-phosphate to two of NAD\(^+\) (the pathway of electrons).

Glycolysis Is under Tight Regulation

During his studies on the fermentation of glucose by yeast, Louis Pasteur discovered that both the rate and the total amount of glucose consumption were many times greater under anaerobic than aerobic conditions. Later studies of muscle showed the same large difference in the rates of anaerobic and aerobic glycolysis. The biochemical basis of this “Pasteur effect” is now clear. The ATP yield from glycolysis under anaerobic conditions (2 ATP per molecule of glucose) is much smaller than that from the complete oxidation of glucose to \(\text{CO}_2\) under aerobic conditions (30 or 32 ATP per glucose; see Table 19–5). About 15 times as much glucose must therefore be consumed anaerobically as aerobically to yield the same amount of ATP.

The flux of glucose through the glycolytic pathway is regulated to maintain nearly constant ATP levels (as well as adequate supplies of glycolytic intermediates that serve biosynthetic roles). The required adjustment in the rate of glycolysis is achieved by a complex interplay among ATP consumption, NADH regeneration, and allosteric regulation of several glycolytic enzymes—including hexokinase, PFK-I, and pyruvate kinase—and by second-to-second fluctuations in the concentration of key metabolites that reflect the cellular balance between ATP production and consumption. On a slightly longer time scale, glycolysis is regulated by the hormones glucagon, epinephrine, and insulin, and by changes in the expression of the genes for several glycolytic enzymes. An especially interesting case of abnormal regulation of glycolysis is seen in cancer. The German biochemist Otto Warburg first observed in 1928 that tumors of nearly all types carry out glycolysis at a much higher rate than normal tissue, even when oxygen is available. This “Warburg effect” is the basis for several methods of detecting and treating cancer (Box 14–1).

Warburg is generally considered the preeminent biochemist of the first half of the twentieth century. He made seminal contributions to many other areas of biochemistry, including respiration, photosynthesis, and the enzymology of intermediary metabolism. Beginning in 1930, Warburg and his associates purified and crystallized seven of the enzymes of glycolysis. They developed an experimental tool that revolutionized biochemical studies of oxidative metabolism: the Warburg manometer, which directly measured the oxygen consumption of tissues by monitoring changes in gas volume, and thus allowed quantitative measurement of any enzyme with oxidase activity.

Trained in carbohydrate chemistry in the laboratory of the great Emil Fischer (who won the Nobel Prize in Chemistry in 1902), Warburg himself won the Nobel Prize in Physiology or Medicine in 1931. Several of Warburg’s students and colleagues also were awarded Nobel Prizes: Otto Meyerhof in 1922, Hans Krebs and Fritz Lipmann in 1953, and Hugo Theorell in 1955. Meyerhof’s laboratory provided training for Lipmann, and for several other Nobel Prize winners: Severo Ochoa (1959), Andre Lwoff (1965), and George Wald (1967).

Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus

The metabolism of glucose in mammals is limited by the rate of glucose uptake into cells and its phosphorylation by hexokinase. Glucose uptake from the blood is mediated by the GLUT family of glucose transporters (see Table 11–3). The transporters of hepatocytes (GLUT1, GLUT2) and of brain neurons (GLUT3) are always present in plasma membranes. In contrast, the main glucose transporter in the cells of skeletal muscle, cardiac muscle, and adipose tissue (GLUT4) is sequestered in small intracellular vesicles and moves into the plasma membrane only in response to an insulin signal (Fig. 14–9). We discussed this insulin signaling mechanism in Chapter 12 (see Fig. 12–16). Thus in skeletal muscle, heart, and adipose tissue, glucose uptake and metabolism depend on the normal release of insulin by pancreatic \(\beta\) cells in response to elevated blood glucose (see Fig. 23–27).

Individuals with type 1 diabetes mellitus (also called insulin-dependent diabetes) have too few \(\beta\) cells and cannot release sufficient insulin to trigger glucose uptake by the cells of skeletal muscle, heart, or adipose tissue. Thus, after a meal containing carbohydrates, glucose accumulates to abnormally high levels in the blood, a condition known as hyperglycemia. Unable to take up glucose, muscle and fat tissue use the fatty acids of stored triacylglycerols as their principal fuel. In the liver, acetyl-CoA derived from this fatty acid breakdown is converted to “ketone bodies”—acetocacetate and \(\beta\)-hydroxybutyrate—which are exported and carried to other tissues to be used as fuel (Chapter 17). These compounds are especially critical to the brain, which uses ketone bodies as alternative fuel when glucose is unavailable. (Fatty acids cannot pass through the blood-brain barrier and thus are not a fuel for brain neurons.)

In untreated type 1 diabetes, overproduction of acetocacetate and \(\beta\)-hydroxybutyrate leads to their accumulation in the blood, and the consequent lowering of blood pH produces ketoacidosis, a life-threatening condition. Insulin injection reverses this sequence of events: GLUT4 moves into the plasma membranes of
In many types of tumors found in humans and other animals, glucose uptake and glycolysis proceed about 10 times faster than in normal, noncancerous tissues. Most tumor cells grow under hypoxic conditions (i.e., with limited oxygen supply) because, at least initially, they lack the capillary network to supply sufficient oxygen. Cancer cells located more than 100 to 200 μm from the nearest capillaries must depend on glycolysis alone (without further oxidation of pyruvate) for much of their ATP production. The energy yield (2 ATP per glucose) is far lower than can be obtained by the complete oxidation of pyruvate to CO₂ in mitochondria (about 30 ATP per glucose; Chapter 19). So, to make the same amount of ATP, tumor cells must take up much more glucose than do normal cells, converting it to pyruvate and then to lactate as they recycle NADH. It is likely that two early steps in the transformation of a normal cell into a tumor cell are (1) the change to dependence on glycolysis for ATP production, and (2) the development of tolerance to a low pH in the extracellular fluid (caused by release of the end product of glycolysis, lactic acid). In general, the more aggressive the tumor, the greater is its rate of glycolysis.

This increase in glycolysis is achieved at least in part by increased synthesis of the glycolytic enzymes and of the plasma membrane transporters GLUT1 and GLUT3 (see Table 11–3) that carry glucose into cells. (Recall that GLUT1 and GLUT3 are not dependent on insulin.) The hypoxia-inducible transcription factor (HIF-1) is a protein that acts at the level of mRNA synthesis to stimulate the production of at least eight glycolytic enzymes and the glucose transporters when oxygen supply is limited (Fig. 1). With the resulting high rate of glycolysis, the tumor cell can survive anaerobic conditions until the supply of blood vessels has caught up with tumor growth. Another protein induced by HIF-1 is the peptide hormone VEGF (vascular endothelial growth factor), which stimulates the outgrowth of blood vessels (angiogenesis) toward the tumor.

There is also evidence that the tumor suppressor protein p53, which is mutated in most types of cancer (p. 477), controls the synthesis and assembly of mitochondrial proteins essential to the passage of electrons to O₂. Cells with mutant p53 are defective in mitochondrial electron transport and are forced to rely more heavily on glycolysis for ATP production (Fig. 1).

This heavier reliance of tumors than of normal tissue on glycolysis suggests a possibility for anticancer therapy: inhibitors of glycolysis might target and kill tumors by depleting their supply of ATP. Three inhibitors of hexokinase have shown promise as chemotherapeutic agents: 2-deoxyglucose, lonidamine, and 3-bromopyruvate. By
preventing the formation of glucose 6-phosphate, these compounds not only deprive tumor cells of glycolytically produced ATP but also prevent the formation of pentose phosphates via the pentose phosphate pathway, which also begins with glucose 6-phosphate. Without pentose phosphates, a cell cannot synthesize the nucleotides essential to DNA and RNA synthesis and thus cannot grow or divide. Another anticancer drug already approved for clinical use is imatinib (Gleevec), described in Box 12–5. It inhibits a specific tyrosine kinase, preventing the increased synthesis of hexokinase normally triggered by that kinase. The thiamine analog oxythiamine, which blocks the action of a transketolase-like enzyme that converts xylulose 5-phosphate to glyceraldehyde 3-phosphate (Fig. 1), is in preclinical trials as an antitumor drug.

The high glycolytic rate in tumor cells also has diagnostic usefulness. The relative rates at which tissues take up glucose can be used in some cases to pinpoint the location of tumors. In positron emission tomography (PET), individuals are injected with a harmless, isotopically labeled glucose analog that is taken up but not metabolized by tissues. The labeled compound is 2-fluoro-2-deoxyglucose (FdG), in which the hydroxyl group at the C-2 of glucose is replaced with 18F (Fig. 2). This compound is taken up via GLUT transporters and is a good substrate for hexokinase, but it cannot be converted to the enediol intermediate in the phosphohexose isomerase reaction (see Fig. 14–4) and therefore accumulates as 6-phospho-FdG. The extent of its accumulation depends on its rate of uptake and phosphorylation, which as noted above is typically 10 or more times higher in tumors than in normal tissue. Decay of 18F yields positrons (two per 18F atom) that can be detected by a series of sensitive detectors positioned around the body, which allows accurate localization of accumulated 6-phospho-FdG (Fig. 3).
hepatocytes and adipocytes, glucose is taken up into the cells and phosphorylated, and the blood glucose level falls, greatly reducing the production of ketone bodies.

Diabetes mellitus has profound effects on the metabolism of both carbohydrates and fats. We return to this topic in Chapter 23, after considering lipid metabolism (Chapters 17 and 21).

SUMMARY 14.1 Glycolysis

- Glycolysis is a near-universal pathway by which a glucose molecule is oxidized to two molecules of pyruvate, with energy conserved as ATP and NADH.
- All 10 glycolytic enzymes are in the cytosol, and all 10 intermediates are phosphorylated compounds of three or six carbons.
- In the preparatory phase of glycolysis, ATP is invested to convert glucose to fructose 1,6-biphosphate. The bond between C-3 and C-4 is then broken to yield two molecules of triose phosphate.
- In the payoff phase, each of the two molecules of glyceraldehyde 3-phosphate derived from glucose
undergoes oxidation at C-1; the energy of this oxidation reaction is conserved in the form of one NADH and two ATP per triose phosphate oxidized. The net equation for the overall process is

\[
\text{Glucose} + 2\text{NAD}^+ + 2\text{ADP} + 2\text{Pi} \rightarrow 2\text{pyruvate} + 2\text{NADH} + 2\text{H}^+ + 2\text{ATP} + 2\text{H}_2\text{O}
\]

- Glycolysis is tightly regulated in coordination with other energy-yielding pathways to assure a steady supply of ATP.
- In type 1 diabetes, defective uptake of glucose by muscle and adipose tissue has profound effects on the metabolism of carbohydrates and fats.

14.2 Feeder Pathways for Glycolysis

Many carbohydrates besides glucose meet their catabolic fate in glycolysis, after being transformed into one of the glycolytic intermediates. The most significant are the storage polysaccharides glycogen and starch, either within cells (endogenous) or obtained in the diet; the disaccharides maltose, lactose, trehalose, and sucrose; and the monosaccharides fructose, mannose, and galactose (Fig. 14-10).

Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides

For most humans, starch is the major source of carbohydrates in the diet (Fig. 14-10). Digestion begins in the mouth, where salivary \(\alpha\)-amylase hydrolyzes the internal \((\alpha 1\rightarrow 4)\) glycosidic linkages of starch, producing short polysaccharide fragments or oligosaccharides. (Note that in this hydrolysis reaction, water, not \(\text{P}_i\), is the attacking species.) In the stomach, salivary \(\alpha\)-amylase is inactivated by the low pH, but a second form of \(\alpha\)-amylase, secreted by the pancreas into the small intestine, continues the breakdown process. Pancreatic \(\alpha\)-amylase yields mainly maltose and maltotriose (the di- and trisaccharides of glucose) and oligosaccharides called limit dextrins, fragments of amylopectin containing \((\alpha 1\rightarrow 6)\) branch points. Maltose and dextrins are degraded to glucose by enzymes of the intestinal brush border (the fingerlike microvilli of intestinal epithelial cells, which greatly increase the area of the intestinal surface). Dietary glycogen has essentially the same structure as starch, and its digestion proceeds by the same pathway.
Endogenous Glycogen and Starch Are Degraded by Phosphorolysis

Glycogen stored in animal tissues (primarily liver and skeletal muscle), in microorganisms, or in plant tissues can be mobilized for use within the same cell by a phosphorolysis reaction catalyzed by glycogen phosphorylase (starch phosphorylase in plants) (Fig. 14-11). These enzymes catalyze an attack by P₁ on the (α₁→4) glycosidic linkage that joins the last two glucose residues at a nonreducing end, generating glucose 1-phosphate and a polymer one glucose unit shorter. Phosphorolysis preserves some of the energy of the glycosidic bond in the phosphate ester glucose 1-phosphate. Glycogen phosphorylase (or starch phosphorylase) acts repetitively until it approaches an (α₁→6) branch point (see Fig. 7-14), where its action stops. A debranching enzyme removes the branches. The mechanisms and control of glycogen degradation are described in greater detail in Chapter 15.

Glucose 1-phosphate produced by glycogen phosphorylase is converted to glucose 6-phosphate by phosphoglucomutase, which catalyzes the reversible reaction

\[
\text{Glucose 1-phosphate} \rightleftharpoons \text{glucose 6-phosphate}
\]

Phosphoglucomutase employs essentially the same mechanism as phosphoglycerate mutase (p. 537): both entail a bisphosphate intermediate, and the enzyme is transiently phosphorylated in each catalytic cycle. The general name mutase is given to enzymes that catalyze the transfer of a functional group from one position to another in the same molecule. Mutases are a subclass of isomerases, enzymes that interconvert stereoisomers or structural or positional isomers (see Table 6-3). The glucose 6-phosphate formed in the phosphoglucomutase reaction can enter glycolysis or another pathway such as the pentose phosphate pathway, described in Section 14.5.

WORKED EXAMPLE 14-1 Energy Savings for Glycogen Breakdown by Phosphorolysis

Calculate the energy savings (in ATP molecules per glucose monomer) achieved by breaking down glycogen by phosphorolysis rather than hydrolysis to begin the process of glycolysis.

Solution: Phosphorolysis produces a phosphorylated glucose (glucose 1-phosphate), which is then converted to glucose 6-phosphate—without expenditure of the cellular energy (1 ATP) needed for formation of glucose 6-phosphate from free glucose. Thus only 1 ATP is consumed per glucose monomer in the preparatory phase, compared with 2 ATP when glycolysis starts with free glucose. The cell therefore gains 3 ATP per glucose monomer (4 ATP produced in the payoff phase minus 1 ATP used in the preparatory phase), rather than 2—a saving of 1 ATP per glucose monomer.

Breakdown of dietary polysaccharides such as glycogen and starch in the gastrointestinal tract by phosphorolysis rather than hydrolysis would produce no energy gain: sugar phosphates are not transported into the cells that line the intestine, but must first be dephosphorylated to the free sugar.

Disaccharides must be hydrolyzed to monosaccharides before entering cells. Intestinal disaccharides and dextrins are hydrolyzed by enzymes attached to the outer surface of the intestinal epithelial cells:

- Dextrin + nH₂O → n D-glucose
- Maltose + H₂O → 2 D-glucose
- Lactose + H₂O → D-galactose + D-glucose
- Sucrose + H₂O → D-fructose + D-glucose
- Trehalose + H₂O → 2 D-glucose

The monosaccharides so formed are actively transported into the epithelial cells (see Fig. 11-44), then passed into the blood to be carried to various tissues, where they are phosphorylated and funneled into the glycolytic sequence.
Lactose intolerance, common among adults of most human populations except those originating in Northern Europe and some parts of Africa, is due to the disappearance after childhood of most or all of the lactase activity of the intestinal epithelial cells. Without intestinal lactase, lactose cannot be completely digested and absorbed in the small intestine, and it passes into the large intestine, where bacteria convert it to toxic products that cause abdominal cramps and diarrhea. The problem is further complicated because undigested lactose and its metabolites increase the osmolarity of the intestinal contents, favoring retention of water in the intestine. In most parts of the world where lactose intolerance is prevalent, milk is not used as a food by adults, although milk products predigested with lactase are commercially available in some countries. In certain human disorders, several or all of the intestinal disaccharidases are missing. In these cases, the digestive disturbances triggered by dietary disaccharides can sometimes be minimized by a controlled diet.

Other Monosaccharides Enter the Glycolytic Pathway at Several Points

In most organisms, hexoses other than glucose can undergo glycolysis after conversion to a phosphorylated derivative. D-Fructose, present in free form in many fruits and formed by hydrolysis of sucrose in the small intestine of vertebrates, is phosphorylated by hexokinase:

\[
\text{Fructose} + \text{ATP} \overset{\text{Mg}^{2+}}{\longrightarrow} \text{fructose 6-phosphate} + \text{ADP}
\]

This is a major pathway of fructose entry into glycolysis in the muscles and kidney. In the liver, fructose enters by a different pathway. The liver enzyme fructokinase catalyzes the phosphorylation of fructose at C-1 rather than C-6:

\[
\text{Fructose} + \text{ATP} \overset{\text{Mg}^{2+}}{\longrightarrow} \text{fructose 1-phosphate} + \text{ADP}
\]

The fructose 1-phosphate is then cleaved to glyceraldehyde and dihydroxyacetone phosphate by fructose 1-phosphate aldolase:

\[
\text{Fructose 1-phosphate aldolase:}
\]

\[
\begin{align*}
\text{CH}_2\text{PO}_4^- & \quad \text{C} = \text{O} \\
\text{CH}_2\text{OH} & \\
\text{HOCH} & \\
\text{HCOH} & \\
\text{CH}_2\text{OH} & \\
\end{align*}
\]

Dihydroxyacetone phosphate is converted to glyceraldehyde 3-phosphate by the glycolytic enzyme triose phosphate isomerase. Glyceraldehyde is phosphorylated by ATP and triose kinase to glyceraldehyde 3-phosphate:

\[
\text{Glyceraldehyde} + \text{ATP} \overset{\text{Mg}^{2+}}{\longrightarrow} \text{glyceraldehyde 3-phosphate} + \text{ADP}
\]

Thus both products of fructose 1-phosphate hydrolysis enter the glycolytic pathway as glyceraldehyde 3-phosphate.

D-Galactose, a product of the hydrolysis of lactose (milk sugar), passes in the blood from the intestine to the liver, where it is first phosphorylated at C-1, at the expense of ATP, by the enzyme galactokinase:

\[
\text{Galactose} + \text{ATP} \overset{\text{Mg}^{2+}}{\longrightarrow} \text{galactose 1-phosphate} + \text{ADP}
\]

The galactose 1-phosphate is then converted to its epimer at C-4, glucose 1-phosphate, by a set of reactions in which uridine diphosphate (UDP) functions as a coenzyme-like carrier of hexose groups (Fig. 14-12). The epimerization involves first the oxidation of the C-4 -OH group to a ketone, then reduction of the ketone to an -OH, with inversion of the configuration at C-4. NAD is the cofactor for both the oxidation and the reduction.

A defect in any of the three enzymes in this pathway causes galactosemia in humans. In galactokinase-deficiency galactosemia, high galactose concentrations are found in blood and urine. Affected individuals develop cataracts in infancy, caused by deposition of the galactose metabolite galactitol in the lens.

\[
\begin{align*}
\text{CH}_2\text{OH} & \\
\text{H} & \quad \text{C} \quad \text{OH} \\
\text{HO} & \quad \text{C} \quad \text{H} \\
\text{HO} & \quad \text{C} \quad \text{H} \\
\text{H} & \quad \text{C} \quad \text{OH} \\
\text{CH}_2\text{OH} & \\
\end{align*}
\]

The other symptoms in this disorder are relatively mild, and strict limitation of galactose in the diet greatly diminishes their severity.

Transferase-deficiency galactosemia is more serious; it is characterized by poor growth in childhood, speech abnormality, mental deficiency, and liver damage that may be fatal, even when galactose is withheld from the diet. Epimerase-deficiency galactosemia leads to similar symptoms, but is less severe when dietary galactose is carefully controlled.

D-Mannose, released in the digestion of various polysaccharides and glycoproteins of foods, can be phosphorylated at C-6 by hexokinase:

\[
\text{Mannose} + \text{ATP} \overset{\text{Mg}^{2+}}{\longrightarrow} \text{mannose 6-phosphate} + \text{ADP}
\]

Mannose 6-phosphate is isomerized by phosphomannose isomerase to yield fructose 6-phosphate, an intermediate of glycolysis.
Phosphorolytic cleavage of a glucose residue from an end of the polymer, forming glucose 1-phosphate, is catalyzed by glycogen phosphorylase or starch phosphorylase. Phosphoglucomutase then converts the glucose 1-phosphate to glucose 6-phosphate, which can enter glycolysis.

- Ingested polysaccharides and disaccharides are converted to monosaccharides by intestinal hydrolytic enzymes, and the monosaccharides then enter intestinal cells and are transported to the liver or other tissues.
- A variety of d-hexoses, including fructose, galactose, and mannose, can be funneled into glycolysis. Each is phosphorylated and converted to glucose 6-phosphate, fructose 6-phosphate, or fructose 1-phosphate.
- Conversion of galactose 1-phosphate to glucose 1-phosphate involves two nucleotide derivatives: UDP-galactose and UDP-glucose. Genetic defects in any of the three enzymes that catalyze conversion of galactose to glucose 1-phosphate result in galactosemias of varying severity.

14.3 Fates of Pyruvate under Anaerobic Conditions: Fermentation

Under aerobic conditions, the pyruvate formed in the final step of glycolysis is oxidized to acetate (acetyl-CoA), which enters the citric acid cycle and is oxidized to CO₂ and H₂O. The NADH formed by dehydrogenation of glyceraldehyde 3-phosphate is ultimately reoxidized to NAD⁺ by passage of its electrons to O₂ in mitochondrial respiration. Under hypoxic (low-oxygen) conditions, however—as in very active skeletal muscle, in submerged plant tissues, solid tumors, or in lactic acid bacteria—NAD⁺ generated by glycolysis cannot be reoxidized by O₂. Failure to regenerate NAD⁺ would leave the cell with no electron acceptor for the oxidation of glyceraldehyde 3-phosphate, and the energy-yielding reactions of glycolysis would stop. NAD⁺ must therefore be regenerated in some other way.

The earliest cells lived in an atmosphere almost devoid of oxygen and had to develop strategies for deriving energy from fuel molecules under anaerobic conditions. Most modern organisms have retained the ability to continually regenerate NAD⁺ during anaerobic glycolysis by transferring electrons from NADH to form a reduced end product such as lactate or ethanol.

Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation

When animal tissues cannot be supplied with sufficient oxygen to support aerobic oxidation of the pyruvate and NADH produced in glycolysis, NAD⁺ is regenerated...
from NADH by the reduction of pyruvate to lactate. As mentioned earlier, some tissues and cell types (such as erythrocytes, which have no mitochondria and thus cannot oxidize pyruvate to CO₂) produce lactate from glucose even under aerobic conditions. The reduction of pyruvate in this pathway is catalyzed by lactate dehydrogenase, which forms the l. isomer of lactate at pH 7:

The overall equilibrium of the reaction strongly favors lactate formation, as shown by the large negative standard free-energy change.

In glycolysis, dehydrogenation of the two molecules of glyceraldehyde 3-phosphate derived from each molecule of glucose converts two molecules of NAD⁺ to two of NADH. Because the reduction of two molecules of pyruvate to two of lactate regenerates two molecules of NAD⁺, there is no net change in NAD⁺ or NADH:

The lactate formed by active skeletal muscles (or by erythrocytes) can be recycled; it is carried in the blood to the liver, where it is converted to glucose during the recovery from strenuous muscular activity. When lactate is produced in large quantities during vigorous muscle contraction (during a sprint, for example), the acidification that results from ionization of lactic acid in muscle and blood limits the period of vigorous activity. The best-conditioned athletes can sprint at top speed for no more than a minute (Box 14-2). Although conversion of glucose to lactate includes two oxidation-reduction steps, there is no net change in the oxidation state of carbon; in glucose (C₆H₁₂O₆) and lactic acid (C₃H₆O₃), the H:C ratio is the same. Nevertheless, some of the energy of the glucose molecule has been extracted by its conversion to lactate—enough to give a net yield of two molecules of ATP for every glucose molecule consumed. Fermentation is the general term for such processes, which extract energy (as ATP) but do not consume oxygen or change the concentrations of NAD⁺ or NADH. Fermentations are carried out by a wide range of organisms, many of which occupy anaerobic niches, and they yield a variety of end products, some of which find commercial uses.

Ethanol is the reduced product in ethanol fermentation

Yeast and other microorganisms ferment glucose to ethanol and CO₂, rather than to lactate. Glucose is converted to pyruvate by glycolysis, and the pyruvate is converted to ethanol and CO₂ in a two-step process:

In the first step, pyruvate is decarboxylated in an irreversible reaction catalyzed by pyruvate decarboxylase. This reaction is a simple decarboxylation and does not involve the net oxidation of pyruvate. Pyruvate decarboxylase requires Mg²⁺ and has a tightly bound coenzyme, thiamine pyrophosphate, which is discussed below. In the second step, acetalddehyde is reduced to ethanol through the action of alcohol dehydrogenase, with the reducing power furnished by NADH derived from the dehydrogenation of glyceraldehyde 3-phosphate. This reaction is a well-studied case of hydride transfer from NADH (Fig. 14-13). Ethanol and CO₂ are thus the end products of ethanol fermentation, and the overall equation is:

Glucose + 2ADP + 2Pi → 2 ethanol + 2CO₂ + 2ATP + 2H₂O

As in lactic acid fermentation, there is no net change in the ratio of hydrogen to carbon atoms when glucose (H:C ratio = 12/6 = 2) is fermented to two ethanol and two CO₂ (combined H:C ratio = 12/6 = 2). In all
fermentations, the H:C ratio of the reactants and products remains the same.

Pyruvate decarboxylase is present in brewer's and baker's yeast (Saccharomyces cerevisiae) and in all other organisms that ferment glucose to ethanol, including some plants. The CO₂ produced by pyruvate decarboxylation in brewer's yeast is responsible for the characteristic carbonation of champagne. The ancient

BOX 14–2 Athletes, Alligators, and Coelacanths: Glycolysis at Limiting Concentrations of Oxygen

Most vertebrates are essentially aerobic organisms; they convert glucose to pyruvate by glycolysis, then use molecular oxygen to oxidize the pyruvate completely to CO₂ and H₂O. Anaerobic catabolism of glucose to lactate occurs during short bursts of extreme muscular activity, for example in a 100 m sprint, during which oxygen cannot be carried to the muscles fast enough to oxidize pyruvate. Instead, the muscles use their stored glucose (glycogen) as fuel to generate ATP by fermentation, with lactate as the end product. In a sprint, lactate in the blood builds up to high concentrations. It is slowly converted back to glucose by gluconeogenesis in the liver in the subsequent rest or recovery period, during which oxygen is consumed at a gradually diminishing rate until the breathing rate returns to normal. The excess oxygen consumed in the recovery period represents a repayment of the oxygen debt. This is the amount of oxygen required to supply ATP for gluconeogenesis during recovery respiration, in order to regenerate the glycogen "borrowed" from liver and muscle to carry out intense muscular activity in the sprint. The cycle of reactions that includes glucose conversion to lactate in muscle and lactate conversion to glucose in liver is called the Cori cycle, for Carl and Gerty Cori, whose studies in the 1930s and 1940s clarified the pathway and its role (see Box 15–4).

The circulatory systems of most small vertebrates can carry oxygen to their muscles fast enough to avoid having to use muscle glycogen anaerobically. For example, migrating birds often fly great distances at high speeds without rest and without incurring an oxygen debt. Many running animals of moderate size also maintain an essentially aerobic metabolism in their skeletal muscle. However, the circulatory systems of larger animals, including humans, cannot completely sustain aerobic metabolism in skeletal muscles over long periods of intense muscular activity. These animals generally are slow-moving under normal circumstances and engage in intense muscular activity only in the gravest emergencies, because such bursts of activity require long recovery periods to repay the oxygen debt.

Alligators and crocodiles, for example, are normally sluggish animals. Yet when provoked they are capable of lightning-fast charges and dangerous lashings of their powerful tails. Such intense bursts of activity are short and must be followed by long periods of recovery. The fast emergency movements require lactic acid fermentation to generate ATP in skeletal muscles. The stores of muscle glycogen are rapidly expended in intense muscular activity, and lactate reaches very high concentrations in myocytes and extracellular fluid. Whereas a trained athlete can recover from a 100 m sprint in 30 min or less, an alligator may require many hours of rest and extra oxygen consumption to clear the excess lactate from its blood and regenerate muscle glycogen after a burst of activity.

Other large animals, such as the elephant and rhinoceros, have similar metabolic characteristics, as do diving mammals such as whales and seals. Dinosaurs and other huge, now-extinct animals probably had to depend on lactic acid fermentation to supply energy for muscular activity, followed by very long recovery periods during which they were vulnerable to attack by smaller predators better able to use oxygen and thus better adapted to continuous, sustained muscular activity.

Deep-sea explorations have revealed many species of marine life at great ocean depths, where the oxygen concentration is near zero. For example, the primitive coelacanth, a large fish recovered from depths of 4,000 m or more off the coast of South Africa, has an essentially anaerobic metabolism in virtually all its tissues. It converts carbohydrates to lactate and other products, most of which must be excreted. Some marine vertebrates ferment glucose to ethanol and CO₂ in order to generate ATP.
The art of brewing beer involves several enzymatic processes in addition to the reactions of ethanol fermentation (Box 14–3). In baking, CO₂ released by pyruvate decarboxylase when yeast is mixed with a fermentable sugar causes dough to rise. The enzyme is absent in vertebrate tissues and in other organisms that carry out lactic acid fermentation.

Alcohol dehydrogenase is present in many organisms that metabolize ethanol, including humans. In the liver it catalyzes the oxidation of ethanol, either ingested or produced by intestinal microorganisms, with the concomitant reduction of NAD⁺ to NADH. In this case, the reaction proceeds in the direction opposite to that involved in the production of ethanol by fermentation.

Thiamine Pyrophosphate Carries “Active Acetaldehyde” Groups

The pyruvate decarboxylase reaction provides our first encounter with thiamine pyrophosphate.

BOX 14–3 Ethanol Fermentations: Brewing Beer and Producing Biofuels

Beer brewing was a science learned early in human history, and later refined for larger-scale production. Brewers prepare beer by ethanol fermentation of the carbohydrates in cereal grains (seeds) such as barley, carried out by yeast glycolytic enzymes. The carbohydrates, largely polysaccharides, must first be degraded to disaccharides and monosaccharides. In a process called malting, the barley seeds are allowed to germinate until they form the hydrolytic enzymes required to break down their polysaccharides, at which point germination is stopped by controlled heating. The product is malt, which contains enzymes that catalyze the hydrolysis of the β linkages of cellulose and other cell wall polysaccharides of the barley husks, and enzymes such as α-amylase and maltase.

The brewer next prepares the wort, the nutrient medium required for fermentation by yeast cells. The malt is mixed with water and then mashed or crushed. This allows the enzymes formed in the malting process to act on the cereal polysaccharides to form maltose, glucose, and other simple sugars, which are soluble in the aqueous medium. The remaining cell matter is then separated, and the liquid wort is boiled with hops to give flavor. The wort is cooled and then aerated.

Now the yeast cells are added. In the aerobic wort the yeast grows and reproduces very rapidly, using energy obtained from available sugars. No ethanol forms during this stage, because the yeast, amply supplied with oxygen, oxidizes the pyruvate formed by glycolysis to CO₂ and H₂O via the citric acid cycle. When all the dissolved oxygen in the vat of wort has been consumed, the yeast cells switch to anaerobic metabolism, and from this point they ferment the sugars into ethanol and CO₂. The fermentation process is controlled in part by the concentration of the ethanol formed, by the pH, and by the amount of remaining sugar. After fermentation has been stopped, the cells are removed and the “raw” beer is ready for final processing.

In the final steps of brewing, the amount of foam (or head) on the beer, which results from dissolved proteins, is adjusted. Normally this is controlled by proteolytic enzymes that arise in the malting process. If these enzymes act on the proteins too long, the beer will have very little head and will be flat; if they do not act long enough, the beer will not be clear when it is cold. Sometimes proteolytic enzymes from other sources are added to control the head.

Much of the technology developed for large-scale production of alcoholic beverages is now finding application to a wholly different problem: the production of ethanol as a renewable fuel. With the continuing depletion of the known stores of fossil fuels and the rising cost of fuel for internal combustion engines, there is increased interest in the use of ethanol as a fuel substitute or extender. The principal advantage of ethanol as a fuel is that it can be produced from relatively inexpensive and renewable resources rich in sucrose, starch, or cellulose—starch from corn or wheat, sucrose from beets or cane, and cellulose from straw, forest industry waste, or municipal solid waste. Typically, the raw material (feedstock) is first converted chemically to monosaccharides, then fed to a hardy strain of yeast in an industrial-scale fermenter (Fig. 1). The fermentation can yield not only ethanol for fuel but also side products such as proteins that can be used as animal feed.

FIGURE 1 Industrial-scale fermentations to produce biofuel and other products are typically carried out in tanks that hold thousands of liters of medium.
Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway

Thiamine pyrophosphate (TPP) (Fig. 14-14), a coenzyme derived from vitamin B₁, Lack of vitamin B₁ in the human diet leads to the condition known as beriberi, characterized by an accumulation of body fluids (swelling), pain, paralysis, and ultimately death.

Thiamine pyrophosphate plays an important role in the cleavage of bonds adjacent to a carbonyl group, such as the decarboxylation of α-keto acids, and in chemical rearrangements in which an activated acetaldehyde group is transferred from one carbon atom to another (Table 14-1). The functional part of TPP, the thiazolium ring, has a relatively acidic proton at C-2. Loss of this proton produces a carbanion that is the active species in TPP-dependent reactions (Fig. 14-14). The carbanion readily adds to carbonyl groups, and the thiazolium ring is thereby positioned to act as an “electron sink” that greatly facilitates reactions such as the decarboxylation catalyzed by pyruvate decarboxylase.

Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals

Our progenitors learned millennia ago to use fermentation in the production and preservation of foods. Certain microorganisms present in raw food products ferment the carbohydrates and yield metabolic products that give the foods their characteristic forms, textures, and tastes. Yogurt, already known in Biblical times, is produced when the bacterium Lactobacillus bulgaricus ferments the carbohydrate in milk, producing lactic acid; the resulting drop in pH causes the milk proteins to precipitate, producing the thick texture and sour taste

MECHANISM FIGURE 14-14 Thiamine pyrophosphate (TPP) and its role in pyruvate decarboxylation. (a) TPP is the coenzyme form of vitamin B₁ (thiamine). The reactive carbon atom in the thiazolium ring of TPP is shown in red. In the reaction catalyzed by pyruvate decarboxylase, two of the three carbons of pyruvate are carried transiently on TPP in the form of a hydroxyethyl, or “active acetaldehyde,” group (b), which is subsequently released as acetaldehyde. (c) The thiazolium ring of TPP stabilizes carbanion intermediates by providing an electrophilic (electron-deficient) structure into which the carbanion electrons can be delocalized by resonance. Structures with this property, often called “electron sinks,” play a role in many biochemical reactions—here, facilitating carbon–carbon bond cleavage. Thiamine Pyrophosphate Mechanism
14.4 Gluconeogenesis

The central role of glucose in metabolism arose early in evolution, and this sugar remains the nearly universal fuel and building block in modern organisms, from microbes to humans. In mammals, some tissues depend almost completely on glucose for their metabolic energy. For the human brain and nervous system, as well as the erythrocytes, testes, renal medulla, and embryonic tissues, glucose from the blood is the sole or major fuel source. The brain alone requires about 120 g of glucose...
each day—more than half of all the glucose stored as
glycogen in muscle and liver. However, the supply of glu-
cose from these stores is not always sufficient; between
meals and during longer fasts, or after vigorous exercise,
glycogen is depleted. For these times, organisms need a
method for synthesizing glucose from noncarbohydrate
precursors. This is accomplished by a pathway called
gluconeogenesis ("new formation of sugar"), which
converts pyruvate and related three- and four-carbon
compounds to glucose.

Gluconeogenesis occurs in all animals, plants,
fungi, and microorganisms. The reactions are essen-
tially the same in all tissues and all species. The impor-
tant precursors of glucose in animals are three-carbon
compounds such as lactate, pyruvate, and glycerol, as
well as certain amino acids (Fig. 14-15). In mammals,
gluconeogenesis takes place mainly in the liver, and to
a lesser extent in renal cortex and in the epithelial
cells that line the inside of the small intestine. The glu-
cose produced passes into the blood to supply other
tissues. After vigorous exercise, lactate produced by
anaerobic glycolysis in skeletal muscle returns to the
liver and is converted to glucose, which moves back to
muscle and is converted to glycogen—a circuit called
the Cori cycle (Box 14-2; see also Fig. 23-20). In plant
seedlings, stored fats and proteins are converted, via
paths that include gluconeogenesis, to the disaccha-
ride sucrose for transport throughout the developing
plant. Glucose and its derivatives are precursors for
the synthesis of plant cell walls, nucleotides and coen-
zymes, and a variety of other essential metabolites. In
many microorganisms, gluconeogenesis starts from
simple organic compounds of two or three carbons,
such as acetate, lactate, and propionate, in their
growth medium.

Although the reactions of gluconeogenesis are the
same in all organisms, the metabolic context and the
regulation of the pathway differ from one species to an-
other and from tissue to tissue. In this section we focus
on gluconeogenesis as it occurs in the mammalian liver.
In Chapter 20 we show how photosynthetic organisms
use this pathway to convert the primary products of
photosynthesis into glucose, to be stored as sucrose or
starch.

Gluconeogenesis and glycolysis are not identical
pathways running in opposite directions, although
they do share several steps (Fig. 14-16); 7 of the 10
enzymatic reactions of gluconeogenesis are the re-
verse of glycolytic reactions. However, three reactions
of glycolysis are essentially irreversible in vivo and
cannot be used in gluconeogenesis: the conversion of
glucose to glucose 6-phosphate by hexokinase, the
phosphorylation of fructose 6-phosphate to fructose
1,6-bisphosphate by phosphofructokinase-1, and the
conversion of phosphoenolpyruvate to pyruvate by
pyruvate kinase (Fig. 14-16). In cells, these three
reactions are characterized by a large negative free-en-
ergy change, whereas other glycolytic reactions have a
\(\Delta G \) near 0 (Table 14-2). In gluconeogenesis, the three
irreversible steps are bypassed by a separate set of en-
zymes, catalyzing reactions that are sufficiently exer-
gonic to be effectively irreversible in the direction of
glucose synthesis. Thus, both glycolysis and gluconeo-
genesis are irreversible processes in cells. In animals,
both pathways occur largely in the cytosol, necessitat-
ing their reciprocal and coordinated regulation. Separa-
rate regulation of the two pathways is brought about
through controls exerted on the enzymatic steps
unique to each.

We begin by considering the three bypass reac-
tions of gluconeogenesis. (Keep in mind that “bypass”
refers throughout to the bypass of irreversible glyco-
lytic reactions.)

FIGURE 14-15 Carbohydrate synthesis from simple precursors. The
pathway from phosphoenolpyruvate to glucose 6-phosphate is common
to the biosynthetic conversion of many different precursors of carbohy-
drates in animals and plants. The path from pyruvate to phospho-
enolpyruvate leads through oxaloacetate, an intermediate of the citric
acid cycle, which we discuss in Chapter 16. Any compound that can be
converted to either pyruvate or oxaloacetate can therefore serve as start-
ing material for gluconeogenesis. This includes alanine and aspartate,
which are convertible to pyruvate and oxaloacetate, respectively, and
other amino acids that can also yield three- or four-carbon fragments,
the so-called glucogenic amino acids (Table 14-4; see also Fig. 18-15).
Plants and photosynthetic bacteria are uniquely able to convert CO₂ to
carbohydrates, using the glyoxylate cycle (p. 639).
TABLE 14-2 Free-Energy Changes of Glycolytic Reactions in Erythrocytes

<table>
<thead>
<tr>
<th>Glycolytic reaction step</th>
<th>(\Delta G^{\circ}) (kJ/mol)</th>
<th>(\Delta G) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Glucose + ATP (\rightarrow) glucose 6-phosphate + ADP</td>
<td>-16.7</td>
<td>-33.4</td>
</tr>
<tr>
<td>2 Glucose 6-phosphate (\rightarrow) fructose 6-phosphate</td>
<td>1.7</td>
<td>0 to 25</td>
</tr>
<tr>
<td>3 Fructose 6-phosphate + ATP (\rightarrow) fructose 1,6-bisphosphate + ADP</td>
<td>-14.2</td>
<td>-22.2</td>
</tr>
<tr>
<td>4 Fructose 1,6-bisphosphate (\rightarrow) dihydroxyacetone phosphate + glyceraldehyde 3-phosphate</td>
<td>23.8</td>
<td>-6 to 0</td>
</tr>
<tr>
<td>5 Dihydroxyacetone phosphate (\rightarrow) glyceraldehyde 3-phosphate</td>
<td>7.5</td>
<td>0 to 4</td>
</tr>
<tr>
<td>6 Glyceraldehyde 3-phosphate + P_i + NAD^+ (\rightarrow) 1,3-bisphosphoglycerate + NADH + H^+</td>
<td>6.3</td>
<td>-2 to 2</td>
</tr>
<tr>
<td>7 1,3-Bisphosphoglycerate + ADP (\rightarrow) 3-phosphoglycerate + ATP</td>
<td>-18.8</td>
<td>0 to 2</td>
</tr>
<tr>
<td>8 3-Phosphoglycerate (\rightarrow) 2-phosphoglycerate</td>
<td>4.4</td>
<td>0 to 0.8</td>
</tr>
<tr>
<td>9 2-Phosphoglycerate (\rightarrow) phosphoenolpyruvate + H_2O</td>
<td>7.5</td>
<td>0 to 3.3</td>
</tr>
<tr>
<td>10 Phosphoenolpyruvate + ADP (\rightarrow) pyruvate + ATP</td>
<td>-31.4</td>
<td>-16.7</td>
</tr>
</tbody>
</table>

Note: \(\Delta G^{\circ} \) is the standard free-energy change, as defined in Chapter 13 (pp. 491-492). \(\Delta G \) is the free-energy change calculated from the actual concentrations of glycolytic intermediates present under physiological conditions in erythrocytes, at pH 7. The glycolytic reactions bypassed in gluconeogenesis are shown in red. Biochemical equations are not necessarily balanced for H or charge (p. 501).

Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions

The first of the bypass reactions in gluconeogenesis is the conversion of pyruvate to phosphoenolpyruvate (PEP). This reaction cannot occur by simple reversal of the pyruvate kinase reaction of glycolysis (p. 538), which has a large, negative free-energy change and is therefore irreversible under the conditions prevailing in intact cells (Table 14-2, step (10)). Instead, the phosphorylation of pyruvate is achieved by a roundabout sequence of reactions that in eukaryotes requires enzymes in both the cytosol and mitochondria. As we shall see, the pathway shown in Figure 14-16 and described in detail here is one of two routes from pyruvate to PEP; it is the predominant path when pyruvate or alanine is the glucogenic precursor. A second pathway, described later, predominates when lactate is the glucogenic precursor.

Pyruvate is first transported from the cytosol into mitochondria or is generated from alanine within mitochondria by transamination, in which the \(\alpha \)-amino group is transferred from alanine (leaving pyruvate) to an \(\alpha \)-keto carboxylic acid (transamination reactions are discussed in detail in Chapter 18). Then pyruvate carboxylase, a mitochondrial enzyme that requires the
coenzyme biotin, converts the pyruvate to oxaloacetate (Fig. 14-17):

\[
\text{Pyruvate} + \text{HCO}_3^- + \text{ATP} \rightarrow \text{oxaloacetate} + \text{ADP} + \text{Pi}
\]

The carboxylation reaction involves biotin as a carrier of activated bicarbonate, as shown in Figure 14-18; the reaction mechanism is shown in Figure 16-16. (Note that \(\text{HCO}_3^-\) is formed by ionization of carbonic acid formed from \(\text{CO}_2 + \text{H}_2\text{O}\).) \(\text{HCO}_3^-\) is phosphorylated by ATP to form a mixed anhydride (a carboxyphosphate); then biotin displaces the phosphate in the formation of carboxybiotin.

Pyruvate carboxylase is the first regulatory enzyme in the gluconeogenic pathway, requiring acetyl-CoA as a positive effector. (Acetyl-CoA is produced by fatty acid oxidation (Chapter 17), and its accumulation signals the availability of fatty acids as fuel.) As we shall see in Chapter 16 (see Fig. 16-15), the pyruvate carboxylase reaction can replenish intermediates in another central metabolic pathway, the citric acid cycle.

FIGURE 14-17 Synthesis of phosphoenolpyruvate from pyruvate.

(a) In mitochondria, pyruvate is converted to oxaloacetate in a biotin-requiring reaction catalyzed by pyruvate carboxylase. (b) In the cytosol, oxaloacetate is converted to phosphoenolpyruvate by PEP carboxykinase. The \(\text{CO}_2\) incorporated in the pyruvate carboxylase reaction is lost here as \(\text{CO}_2\). The decarboxylation leads to a rearrangement of electrons that facilitates attack of the carbonyl oxygen of the pyruvate moiety on the \(\gamma\) phosphate of GTP.

FIGURE 14-18 Role of biotin in the pyruvate carboxylase reaction.

The cofactor biotin is covalently attached to the enzyme through an amide linkage to the \(\epsilon\)-amino group of a Lys residue, forming a biotinyl-enzyme. The reaction occurs in two phases, which occur at two different sites in the enzyme. At catalytic site 1, bicarbonate ion is converted to \(\text{CO}_2\) at the expense of ATP. Then \(\text{CO}_2\) reacts with biotin, forming carboxybiotinyl-enzyme. The long arm composed of biotin and the Lys side chain to which it is attached then carry the \(\text{CO}_2\) of carboxybiotinyl-enzyme to catalytic site 2 on the enzyme surface, where \(\text{CO}_2\) is released and reacts with the pyruvate, forming oxaloacetate and regenerating the biotinyl-enzyme. The general role of flexible arms in carrying reaction intermediates between enzyme active sites is described in Figure 16-17, and the mechanistic details of the pyruvate carboxylase reaction are shown in Figure 16-16. Similar mechanisms occur in other biotin-dependent carboxylation reactions, such as those catalyzed by propionyl-CoA carboxylase (see Fig. 17-11) and acetyl-CoA carboxylase (see Fig. 21-1).
Because the mitochondrial membrane has no transporter for oxaloacetate, before export to the cytosol the oxaloacetate formed from pyruvate must be reduced to malate by mitochondrial malate dehydrogenase, at the expense of NADH:

\[
\text{Oxaloacetate} + \text{NADH} + H^+ \rightarrow \text{l-malate} + \text{NAD}^+ \quad (14-5)
\]

The standard free-energy change for this reaction is quite high, but under physiological conditions (including a very low concentration of oxaloacetate) \(\Delta G = 0 \) and the reaction is readily reversible. Mitochondrial malate dehydrogenase functions in both gluconeogenesis and the citric acid cycle, but the overall flow of metabolites in the two processes is in opposite directions.

Malate leaves the mitochondrion through a specific transporter in the inner mitochondrial membrane (see Fig. 19-30), and in the cytosol it is reoxidized to oxaloacetate, with the production of cytosolic NADH:

\[
\text{Malate} + \text{NAD}^+ \rightarrow \text{oxaloacetate} + \text{NADH} + H^+ \quad (14-6)
\]

The oxaloacetate is then converted to PEP by phosphoenolpyruvate carboxykinase (Fig. 14-17). This Mg\(^{2+}\)-dependent reaction requires GTP as the phosphoryl group donor:

\[
\text{Oxaloacetate} + \text{GTP} \rightarrow \text{PEP} + \text{CO}_2 + \text{GDP} \quad (14-7)
\]

The reaction is reversible under intracellular conditions; the formation of one high-energy phosphate compound (PEP) is balanced by the hydrolysis of another (GTP).

The overall equation for this set of bypass reactions, the sum of Equations 14-4 through 14-7, is

\[
\text{Pyruvate} + \text{ATP} + \text{GTP} + \text{HCO}_3^- \rightarrow \text{PEP} + \text{ADP} + \text{GDP} + \text{P}_i + \text{CO}_2 \quad (14-8)
\]

\[\Delta G^{\circ} = 0.9 \text{ kJ/mol}\]

Two high-energy phosphate equivalents (one from ATP and one from GTP), each yielding about 50 kJ/mol under cellular conditions, must be expended to phosphorylate one molecule of pyruvate to PEP. In contrast, when PEP is converted to pyruvate during glycolysis, only one ATP is generated from ADP. Although the standard free-energy change (\(\Delta G^{\circ} \)) of the two-step path from pyruvate to PEP is 0.9 kJ/mol, the actual free-energy change (\(\Delta G \)), calculated from measured cellular concentrations of intermediates, is very strongly negative (\(-25 \text{ kJ/mol}\)); this results from the ready consumption of PEP in other reactions such that its concentration remains relatively low. The reaction is thus effectively irreversible in the cell.

Note that the CO\(_2\) added to pyruvate in the pyruvate carboxylase step is the same molecule that is lost in the PEP carboxykinase reaction (Fig. 14-17b). This carboxylation-decarboxylation sequence represents a way of “activating” pyruvate, in that the decarboxylation of oxaloacetate facilitates PEP formation. In Chapter 21 we shall see how a similar carboxylation-decarboxylation sequence is used to activate acetyl-CoA for fatty acid biosynthesis (see Fig. 21-1).

There is a logic to the route of these reactions through the mitochondrion. The [NADH]/[NAD\(^+\)] ratio in the cytosol is \(8 \times 10^{-4}\), about \(10^5\) times lower than in mitochondria. Because cytosolic NADH is consumed in gluconeogenesis (in the conversion of 1,3-bisphosphoglycerate to glyceraldehyde 3-phosphate; Fig. 14-16), glucose biosynthesis cannot proceed unless NADH is available. The transport of malate from the mitochondrion to the cytosol and its reconversion there to oxaloacetate effectively moves reducing equivalents to the cytosol, where they are scarce. This path from pyruvate to PEP therefore provides an important balance between NADH produced and consumed in the cytosol during gluconeogenesis.

A second pyruvate → PEP bypass predominates when lactate is the glucogenic precursor (Fig. 14-19). This pathway makes use of lactate produced by glycolysis in erythrocytes or anaerobic muscle, for example, and it is particularly important in large vertebrates after vigorous exercise (Box 14-2). The conversion of lactate

\[
\text{FIGURE 14-19 Alternative paths from pyruvate to phosphoenolpyruvate. The relative importance of the two pathways depends on the availability of lactate or pyruvate and the cytosolic requirements for NADH for gluconeogenesis. The path on the right predominates when lactate is the precursor, because cytosolic NADH is generated in the lactate dehydrogenase reaction and does not have to be shuttled out of the mitochondrion (see text).}
\]
to pyruvate in the cytosol of hepatocytes yields NADH, and the export of reducing equivalents (as malate) from mitochondria is therefore unnecessary. After the pyruvate produced by the lactate dehydrogenase reaction is transported into the mitochondrion, it is converted to oxaloacetate by pyruvate carboxylase, as described above. This oxaloacetate, however, is converted directly to PEP by a mitochondrial isozyme of PEP carboxykinase, and the PEP is transported out of the mitochondrion to continue on the gluconeogenic path. The mitochondrial and cytosolic isozymes of PEP carboxykinase are encoded by separate genes in the nuclear chromosomes, providing another example of two distinct enzymes catalyzing the same reaction but having different cellular locations or metabolic roles (recall the isozymes of hexokinase).

Conversion of Fructose 1,6-Bisphosphate to Fructose 6-Phosphate Is the Second Bypass

The second glycolytic reaction that cannot participate in gluconeogenesis is the phosphorylation of fructose 6-phosphate by PFK-1 (Table 14-2, step 5). Because this reaction is highly exergonic and therefore irreversible in intact cells, the generation of fructose 6-phosphate from fructose 1,6-bisphosphate (Fig. 14-16) is catalyzed by a different enzyme, Mg²⁺-dependent fructose 1,6-bisphosphatase (FBPase-1), which promotes the essentially irreversible hydrolysis of the C-1 phosphate (not phosphoryl group transfer to ADP):

\[
\text{Fructose 1,6-bisphosphate} + \text{H}_2\text{O} \rightarrow \text{fructose 6-phosphate} + \text{P}_i
\]

\[\Delta G^{\circ} = -16.3 \text{ kJ/mol}\]

FBPase-1 is so named to distinguish it from another, similar enzyme (FBPase-2) with a regulatory role, which we discuss in Chapter 15.

Gluconeogenesis Is Energetically Expensive, but Essential

The sum of the biosynthetic reactions leading from pyruvate to free blood glucose (Table 14-3) is

\[
2 \text{ Pyruvate} + 4\text{ ATP} + 2\text{ GTP} + 2\text{ NADH} + 2\text{H}^+ + 4\text{H}_2\text{O} \rightarrow \text{glucose} + 4\text{ADP} + 2\text{GDP} + 6\text{P}_i + 2\text{NAD}^+ \quad \text{(14–9)}
\]

For each molecule of glucose formed from pyruvate, six high-energy phosphate groups are required, four from ATP and two from GTP. In addition, two molecules of glucose 6-phosphate are required to supply glucose to the blood. If other tissues had glucose 6-phosphatase, this enzyme's activity would hydrolyze the glucose 6-phosphate needed within those tissues for glycolysis. Glucose produced by gluconeogenesis in the liver or kidney or ingested in the diet is delivered to these other tissues, including brain and muscle, through the bloodstream.

Table 14–3

Sequential Reactions in Gluconeogenesis Starting from Pyruvate

<table>
<thead>
<tr>
<th>Reaction</th>
<th>NADH</th>
<th>ATP</th>
<th>GTP</th>
<th>ADP</th>
<th>ADP + P_i</th>
<th>GDP</th>
<th>P_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate + HCO_3^- + ATP ⎨ oxaloacetate + ADP + P_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxaloacetate + GTP ⎨ phosphoenolpyruvate + CO_2 + GDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphoenolpyruvate + H_2O ⎨ 2-phosphoglcerate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Phosphoglycerate ⎨ 3-phosphoglycerate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Phosphoglycerate + ATP ⎨ 1,3-bisphosphoglycerate + ADP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Bisphosphoglycerate + NADH + H^+ ⎨ glyceraldehyde 3-phosphate + NAD^+ + P_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate ⎨ dihydroxyacetone phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate + dihydroxyacetone phosphate ⎨ fructose 1,6-bisphosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructose 1,6-bisphosphate ⎨ fructose 6-phosphate + P_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructose 6-phosphate ⎨ glucose 6-phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum: 2 Pyruvate + 4ATP + 2GTP + 2NADH + 2H^+ + 4H_2O ⎨ glucose + 4ADP + 2GDP + 6P_i + 2NAD^+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion of Glucose 6-Phosphate to Glucose Is the Third Bypass

The third bypass is the final reaction of gluconeogenesis, the dephosphorylation of glucose 6-phosphate to yield glucose (Fig. 14-16). Reversal of the hexokinase reaction (p. 532) would require phosphoryl group transfer from glucose 6-phosphate to ADP, forming ATP, an energetically unfavorable reaction (Table 14–2, step 1). The reaction catalyzed by glucose 6-phosphatase does not require synthesis of ATP; it is a simple hydrolysis of a phosphate ester:

\[
\text{Glucose 6-phosphate} + \text{H}_2\text{O} \rightarrow \text{glucose} + \text{P}_i
\]

\[\Delta G^{\circ} = -13.8 \text{ kJ/mol}\]

This Mg²⁺-activated enzyme is found on the luminal side of the endoplasmic reticulum of hepatocytes, renal cells, and epithelial cells of the small intestine (see Fig. 15–28), but not in other tissues, which are therefore unable to supply glucose to the blood. If other tissues had glucose 6-phosphatase, this enzyme's activity would hydrolyze the glucose 6-phosphate needed within those tissues for glycolysis. Glucose produced by gluconeogenesis in the liver or kidney or ingested in the diet is delivered to these other tissues, including brain and muscle, through the bloodstream.

Note: The bypass reactions are in red; all other reactions are reversible steps of glycolysis. The figures at the right indicate that the reaction is to be counted twice, because two three-carbon precursors are required to make a molecule of glucose. The reactions required to replace the cytosolic NADH consumed in the glyceraldehyde 3-phosphate dehydrogenase reaction (the conversion of lactate to pyruvate in the cytosol or the transport of reducing equivalents from mitochondria to the cytosol in the form of malate) are not considered in this summary. Biochemical equations are not necessarily balanced for H and charge (p. 501).
NADH are required for the reduction of two molecules of 1,3-bisphosphoglycerate. Clearly, Equation 14-9 is not simply the reverse of the equation for conversion of glucose to pyruvate by glycolysis, which would require only two molecules of ATP:

\[
\text{Glucose + 2ADP + 2Pi + NAD}^+ \longrightarrow 2 \text{ pyruvate + 2ATP + 2NADH + 2H}^+ + 2\text{H}_2\text{O}
\]

The synthesis of glucose from pyruvate is a relatively expensive process. Much of this high energy cost is necessary to ensure the irreversibility of gluconeogenesis. Under intracellular conditions, the overall free-energy change of glycolysis is at least \(-63\) kJ/mol. Under the same conditions the overall \(\Delta G\) of gluconeogenesis is \(-16\) kJ/mol. Thus both glycolysis and gluconeogenesis are essentially irreversible processes in cells.

Citric Acid Cycle Intermediates and Some Amino Acids Are Glucogenic

The biosynthetic pathway to glucose described above allows the net synthesis of glucose not only from pyruvate but also from the four-, five-, and six-carbon intermediates of the citric acid cycle (Chapter 16). Citrate, isocitrate, \(\alpha\)-ketoglutarate, succinyl-CoA, succinate, fumarate, and malate—all are citric acid cycle intermediates that can undergo oxidation to oxaloacetate (see Fig. 16-7). Some or all of the carbon atoms of most amino acids derived from proteins are ultimately catabolized to pyruvate or to intermediates of the citric acid cycle. Such amino acids can therefore undergo net conversion to glucose and are said to be glucogenic (Table 14–4). Alanine and glutamine, the principal molecules that transport amino groups from extrahepatic tissues to the liver (see Fig. 18–9), are particularly important glucogenic amino acids in mammals. After removal of their amino groups in liver mitochondria, the carbon skeletons remaining (pyruvate and \(\alpha\)-ketoglutarate, respectively) are readily funneled into gluconeogenesis.

Mammals Cannot Convert Fatty Acids to Glucose

No net conversion of fatty acids to glucose occurs in mammals. As we shall see in Chapter 17, the catabolism of most fatty acids yields only acetyl-CoA. Mammals cannot use acetyl-CoA as a precursor of glucose, because the pyruvate dehydrogenase reaction is irreversible and cells have no other pathway to convert acetyl-CoA to pyruvate. Plants, yeast, and many bacteria do have a pathway (the glyoxylate cycle; see Fig. 16–20) for converting acetyl-CoA to oxaloacetate, so these organisms can use fatty acids as the starting material for gluconeogenesis. This is important during the germination of seedlings, for example; before leaves develop and photosynthesis can provide energy and carbohydrates, the seedling relies on stored seed oils for energy production and cell wall biosynthesis.

Although mammals cannot convert fatty acids to carbohydrate, they can use the small amount of glycerol produced from the breakdown of fats (triacylglycerols) for gluconeogenesis. Phosphorylation of glycerol by glycerol kinase, followed by oxidation of the central carbon, yields dihydroxyacetone phosphate, an intermediate in gluconeogenesis in liver.

As we will see in Chapter 21, glycerol phosphate is an essential intermediate in triacylglycerol synthesis in adipocytes, but these cells lack glycerol kinase and so cannot simply phosphorylate glycerol. Instead, adipocytes carry out a truncated version of gluconeogenesis, known as glyceroneogenesis: the conversion of pyruvate to dihydroxyacetone phosphate via the early reactions of gluconeogenesis, followed by reduction of the dihydroxyacetone phosphate to glycerol phosphate (see Fig. 21–21).

Glycolysis and Gluconeogenesis Are Reciprocally Regulated

If glycolysis (the conversion of glucose to pyruvate) and gluconeogenesis (the conversion of pyruvate to glucose) were allowed to proceed simultaneously at high rates, the result would be the consumption of ATP and the production of heat. For example, PFK-1 and FBPase-1 catalyze opposing reactions:

\[
\text{ATP + fructose 6-phosphate \xrightarrow{PFK-1} ADP + fructose 1,6-bisphosphate}
\]

\[
\text{Fructose 1,6-bisphosphate + H}_2\text{O \xrightarrow{FBPase-1} ADP + Pi + heat}
\]

The sum of these two reactions is

\[
\text{ATP + H}_2\text{O \longrightarrow ADP + Pi + heat}
\]

These two enzymatic reactions, and several others in the two pathways, are regulated allosterically and by

TABLE 14–4 Glucogenic Amino Acids, Grouped by Site of Entry

<table>
<thead>
<tr>
<th>Pyruvate</th>
<th>Succinyl-CoA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Isoleucine*</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Methionine</td>
</tr>
<tr>
<td>Glycine</td>
<td>Threonine</td>
</tr>
<tr>
<td>Serine</td>
<td>Valine</td>
</tr>
<tr>
<td>Threonine</td>
<td>Phenylalanine*</td>
</tr>
<tr>
<td>Tryptophan*</td>
<td>Tyrosine*</td>
</tr>
<tr>
<td>(\alpha)-Ketoglutarate</td>
<td>Oxaloacetate</td>
</tr>
<tr>
<td>Arginine</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Aspartate</td>
</tr>
<tr>
<td>Glutamine</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td></td>
</tr>
</tbody>
</table>

Note: All these amino acids are precursors of blood glucose or liver glycogen, because they can be converted to pyruvate or citric acid cycle intermediates. Of the 20 common amino acids, only leucine and lysine are unable to furnish carbon for net glucose synthesis.

*These amino acids are also ketogenic (see Fig. 18–21).
covalent modification (phosphorylation). In Chapter 15 we take up the mechanisms of this regulation in detail. For now, suffice it to say that the pathways are regulated so that when the flux of glucose through glycolysis goes up, the flux of pyruvate toward glucose goes down, and vice versa.

SUMMARY 14.4 Gluconeogenesis

- Gluconeogenesis is a ubiquitous multistep process in which glucose is produced from lactate, pyruvate, or oxaloacetate, or any compound (including citric acid cycle intermediates) that can be converted to one of these intermediates. Seven of the steps in gluconeogenesis are catalyzed by the same enzymes used in glycolysis; these are the reversible reactions.

- Three irreversible steps in glycolysis are bypassed by reactions catalyzed by gluconeogenic enzymes: (1) conversion of pyruvate to PEP via oxaloacetate, catalyzed by pyruvate carboxylase and PEP carboxykinase; (2) dephosphorylation of fructose 1,6-bisphosphate by FBPase-1; and (3) dephosphorylation of glucose 6-phosphate by glucose 6-phosphatase.

- Formation of one molecule of glucose from pyruvate requires 4 ATP, 2 GTP, and 2 NADH; it is expensive.

- In mammals, gluconeogenesis in the liver, kidney, and small intestine provides glucose for use by the brain, muscles, and erythrocytes.

- Pyruvate carboxylase is stimulated by acetyl-CoA, increasing the rate of gluconeogenesis when the cell has adequate supplies of other substrates (fatty acids) for energy production.

- Animals cannot convert acetyl-CoA derived from fatty acids into glucose; plants and microorganisms can.

- Glycolysis and gluconeogenesis are reciprocally regulated to prevent wasteful operation of both pathways at the same time.

14.5 Pentose Phosphate Pathway of Glucose Oxidation

In most animal tissues, the major catabolic fate of glucose 6-phosphate is glycolytic breakdown to pyruvate, much of which is then oxidized via the citric acid cycle, ultimately leading to the formation of ATP. Glucose 6-phosphate does have other catabolic fates, however, which lead to specialized products needed by the cell. Of particular importance in some tissues is the oxidation of glucose 6-phosphate to pentose phosphates by the pentose phosphate pathway (also called the phosphogluconate pathway or the hexose monophosphate pathway; Fig. 14-20). In this oxidative pathway, NADP\(^+\) is the electron acceptor, yielding NADPH. Rapidly dividing cells, such as those of bone marrow, skin, and intestinal mucosa, and those of tumors, use the pentose ribose 5-phosphate to make RNA, DNA, and such coenzymes as ATP, NADH, FADH\(_2\), and coenzyme A.

In other tissues, the essential product of the pentose phosphate pathway is not the pentoses but the electron donor NADPH, needed for reductive biosynthesis or to counter the damaging effects of oxygen radicals. Tissues that carry out extensive fatty acid synthesis (liver, adipose, lactating mammary gland) or very active synthesis of cholesterol and steroid hormones (liver, adrenal glands, gonads) require the NADPH provided by this pathway. Erythrocytes and the cells of the lens and cornea are directly exposed to oxygen and thus to the damaging free radicals generated by oxygen. By maintaining a reducing atmosphere (a high ratio of NADPH to NADP\(^+\) and a high ratio of reduced to oxidized glutathione), such cells can prevent or undo oxidative damage to proteins, lipids, and other sensitive molecules. In erythrocytes, the NADPH produced by the pentose phosphate pathway is so important in preventing oxidative damage that a genetic defect in glucose 6-phosphate dehydrogenase, the first enzyme of the pathway, can have serious medical consequences (Box 14-4).
Fava beans, an ingredient of falafel, have been an important food source in the Mediterranean and Middle East since antiquity. The Greek philosopher and mathematician Pythagoras prohibited his followers from dining on fava beans, perhaps because they make many people sick with a condition called favism, which can be fatal. In favism, erythrocytes begin to lyse 24 to 48 hours after ingestion of the beans, releasing free hemoglobin into the blood. Jaundice and sometimes kidney failure can result. Similar symptoms can occur with ingestion of the antimalarial drug primaquine or of sulfa antibiotics, or following exposure to certain herbicides. These symptoms have a genetic basis: glucose 6-phosphate dehydrogenase (G6PD) deficiency, which affects about 400 million people worldwide. Most G6PD-deficient individuals are asymptomatic; only the combination of G6PD deficiency and certain environmental factors produces the clinical manifestations.

Glucose 6-phosphate dehydrogenase catalyzes the first step in the pentose phosphate pathway (see Fig. 14–21), which produces NADPH. This reductant, essential in many biosynthetic pathways, also protects cells from oxidative damage by hydrogen peroxide (H₂O₂) and superoxide free radicals, highly reactive oxidants generated as metabolic byproducts and through the actions of drugs such as primaquine and natural products such as divicine—the toxic ingredient of fava beans. During normal detoxification, H₂O₂ is converted to H₂O by reduced glutathione and glutathione peroxidase, and the oxidized glutathione is converted back to the reduced form by glutathione reductase and NADPH (Fig. 1). H₂O₂ is also broken down to H₂O and O₂ by catalase, which also requires NADPH. In G6PD-deficient individuals, the NADPH production is diminished and detoxification of H₂O₂ is inhibited. Cellular damage results: lipid peroxidation leading to breakdown of erythrocyte membranes and oxidation of proteins and DNA.

The geographic distribution of G6PD deficiency is instructive. Frequencies as high as 25% occur in tropical Africa, parts of the Middle East, and Southeast Asia, areas where malaria is most prevalent. In addition to such epidemiological observations, in vitro studies show that growth of one malaria parasite, Plasmodium falciparum, is inhibited in G6PD-deficient erythrocytes. The parasite is very sensitive to oxidative damage and is killed by a level of oxidative stress that is tolerable to a G6PD-deficient human host. Because the advantage of resistance to malaria balances the disadvantage of lowered resistance to oxidative damage, natural selection sustains the G6PD-deficient genotype in human populations where malaria is prevalent. Only under overwhelming oxidative stress, caused by drugs, herbicides, or divicine, does G6PD deficiency cause serious medical problems.

An antimalarial drug such as primaquine is believed to act by causing oxidative stress to the parasite. It is ironic that antimalarial drugs can cause human illness through the same biochemical mechanism that provides resistance to malaria. Divicine also acts as an antimalarial drug, and ingestion of fava beans may protect against malaria. By refusing to eat falafel, many Pythagoreans with normal G6PD activity may have unwittingly increased their risk of malaria!

The Oxidative Phase Produces Pentose Phosphates and NADPH

The first reaction of the pentose phosphate pathway (Fig. 14–21) is the oxidation of glucose 6-phosphate by glucose 6-phosphate dehydrogenase (G6PD) to form 6-phosphoglucono-6-lactone, an intramolecular ester. NADP⁺ is the electron acceptor, and the overall equilibrium lies far in the direction of NADPH formation. The lactone is hydrolyzed to the free acid 6-phosphogluconate by a specific lactonase, then 6-phosphogluconate undergoes oxidation and decarboxylation by
6-phosphogluconate dehydrogenase to form the ketopentose ribulose 5-phosphate; the reaction generates a second molecule of NADPH. (This ribulose 5-phosphate is important in the regulation of glycolysis and gluconeogenesis, as we shall see in Chapter 15.) Phosphopentose isomerase converts ribulose 5-phosphate to its aldose isomer, ribose 5-phosphate. In some tissues, the pentose phosphate pathway ends at this point, and its overall equation is

\[
\text{Glucose 6-phosphate} + 2\text{NADP}^+ + \text{H}_2\text{O} \rightarrow \text{ribose 5-phosphate} + \text{CO}_2 + 2\text{NADPH} + 2\text{H}^+
\]

The net result is the production of NADPH, a reductant for biosynthetic reactions, and ribose 5-phosphate, a precursor for nucleotide synthesis.

The Nonoxidative Phase Recycles Pentose Phosphates to Glucose 6-Phosphate

In tissues that require primarily NADPH, the pentose phosphates produced in the oxidative phase of the pathway are recycled into glucose 6-phosphate. In this nonoxidative phase, ribulose 5-phosphate is first epimerized to xylulose 5-phosphate:

Then, in a series of rearrangements of the carbon skeletons (Fig. 14–22), six five-carbon sugar phosphates are converted to five six-carbon sugar phosphates, completing the cycle and allowing continued oxidation of glucose 6-phosphate with production of NADPH. Continued recycling leads ultimately to the conversion of glucose 6-phosphate to six CO₂. Two enzymes unique to the pentose phosphate pathway act in these interconversions of sugars: transketolase and transaldolase. Transketolase catalyzes the transfer of a two-carbon fragment from a ketose donor to an aldose acceptor (Fig. 14–23a). In its first appearance in the pentose phosphate pathway, transketolase transfers C-1 and C-2 of xylulose 5-phosphate to ribose 5-phosphate, forming the seven-carbon product sedoheptulose 7-phosphate (Fig. 14–23b). The remaining three-carbon fragment from xylulose is glyceraldehyde 3-phosphate.

Next, transaldolase catalyzes a reaction similar to the aldolase reaction of glycolysis: a three-carbon fragment is removed from sedoheptulose 7-phosphate and condensed with glyceraldehyde 3-phosphate, forming...
FIGURE 14-22 Nonoxidative reactions of the pentose phosphate pathway. (a) These reactions convert pentose phosphates to hexose phosphates, allowing the oxidative reactions (see Fig. 14-21) to continue. Transketolase and transaldolase are specific to this pathway; the other enzymes also serve in the glycolytic or gluconeogenic pathways. (b) A schematic diagram showing the pathway from six pentoses (5C) to five hexoses (6C). Note that this involves two sets of the interconversions shown in (a). Every reaction shown here is reversible; unidirectional arrows are used only to make clear the direction of the reactions during continuous oxidation of glucose 6-phosphate. In the light-independent reactions of photosynthesis, the direction of these reactions is reversed (see Fig. 20-10).

FIGURE 14-23 The first reaction catalyzed by transketolase. (a) The general reaction catalyzed by transketolase is the transfer of a two-carbon group, carried temporarily on enzyme-bound TPP, from a ketose donor to an aldose acceptor. (b) Conversion of two pentose phosphates to a triose phosphate and a seven-carbon sugar phosphate, sedoheptulose 7-phosphate.
fructose 6-phosphate and the tetrose erythrose 4-phosphate (Fig. 14–24). Now transketolase acts again, forming fructose 6-phosphate and glyceraldehyde 3-phosphate from erythrose 4-phosphate and xylulose 5-phosphate (Fig. 14–25). Two molecules of glyceraldehyde 3-phosphate formed by two iterations of these reactions can be converted to a molecule of fructose 1,6-bisphosphate as in gluconeogenesis (Fig. 14–16), and finally FBPase-1 and phosphohexose isomerase convert fructose 1,6-bisphosphate to glucose 6-phosphate. Overall, six pentose phosphates have been converted to five hexose phosphates (Fig. 14–22b)—the cycle is now complete!

Transketolase requires the cofactor thiamine pyrophosphate (TPP), which stabilizes a two-carbon carbanion in this reaction (Fig. 14–26a), just as it does in the pyruvate decarboxylase reaction (Fig. 14–14). Transaldolase uses a Lys side chain to form a Schiff base with the carbonyl group of its substrate, a ketone, thereby stabilizing a carbanion (Fig. 14–26b) that is central to the reaction mechanism.

The process described in Figure 14–21 is known as the oxidative pentose phosphate pathway. The first and third steps are oxidations with large, negative standard free-energy changes and are essentially irreversible in the cell. The reactions of the nonoxidative part of the pentose phosphate pathway (Fig. 14–22) are readily reversible and thus also provide a means of converting hexose phosphates to pentose phosphates. As we shall see in Chapter 20, a process that converts hexose phosphates to pentose phosphates is crucial to the photosynthetic assimilation of CO₂ by plants. That pathway, the reductive pentose phosphate pathway, is essentially the reversal of the reactions shown in Figure 14–22 and employs many of the same enzymes.

All the enzymes in the pentose phosphate pathway are located in the cytosol, like those of glycolysis and most of those of gluconeogenesis. In fact, these three pathways are connected through several shared intermediates and enzymes. The glyceraldehyde 3-phosphate formed by the action of transketolase is readily converted...
to dihydroxyacetone phosphate by the glycolytic enzyme triose phosphate isomerase, and these two trioses can be joined by the aldolase as in gluconeogenesis, forming fructose 1,6-bisphosphate. Alternatively, the triose phosphates can be oxidized to pyruvate by the glycolytic reactions. The fate of the trioses is determined by the cell's relative needs for pentose phosphates, NADPH, and ATP.

Wernicke-Korsakoff Syndrome Is Exacerbated by a Defect in Transketolase

Wernicke-Korsakoff syndrome is a disorder caused by a severe deficiency of thiamine, a component of TPP. The syndrome is more common among people with alcoholism than in the general population, because chronic, heavy alcohol consumption interferes with the intestinal absorption of thiamine. The syndrome can be exacerbated by a mutation in the gene for transketolase that results in an enzyme with a lowered affinity for TPP—an affinity one-tenth that of the normal enzyme. This defect makes individuals much more sensitive to a thiamine deficiency: even a moderate thiamine deficiency (tolerable in individuals with an unmutated transketolase) can drop the level of TPP below that needed to saturate the enzyme. The result is a slowing down of the whole pentose phosphate pathway. In people with Wernicke-Korsakoff syndrome this results in a worsening of symptoms, which can include severe memory loss, mental confusion, and partial paralysis.

Glucose 6-Phosphate Is Partitioned between Glycolysis and the Pentose Phosphate Pathway

Whether glucose 6-phosphate enters glycolysis or the pentose phosphate pathway depends on the current needs of the cell and on the concentration of NADP⁺ in the cytosol. Without this electron acceptor, the first reaction of the pentose phosphate pathway (catalyzed by G6PD) cannot proceed. When a cell is rapidly converting NADPH to NADP⁺ in biosynthetic reductions, the level of NADP⁺ rises, allosterically stimulating G6PD and thereby increasing the flux of glucose 6-phosphate through the pentose phosphate pathway (Fig. 14-27). When the demand for NADPH slows, the level of NADP⁺ drops, the pentose phosphate pathway slows, and glucose 6-phosphate is instead used to fuel glycolysis.

SUMMARY 14.5 Pentose Phosphate Pathway of Glucose Oxidation

- The *oxidative* pentose phosphate pathway (phosphogluconate pathway, or hexose monophosphate pathway) brings about oxidation and decarboxylation at C-1 of glucose 6-phosphate, reducing NADP⁺ to NADPH and producing pentose phosphates.

- NADPH provides reducing power for biosynthetic reactions, and ribose 5-phosphate is a precursor for nucleotide and nucleic acid synthesis. Rapidly growing tissues and tissues carrying out active biosynthesis of fatty acids, cholesterol, or steroid hormones send more glucose 6-phosphate through the pentose phosphate pathway than do tissues with less demand for pentose phosphates and reducing power.

- The first phase of the pentose phosphate pathway consists of two oxidations that convert glucose 6-phosphate to ribulose 5-phosphate and reduce NADP⁺ to NADPH. The second phase comprises nonoxidative steps that convert pentose phosphates to glucose 6-phosphate, which begins the cycle again.

- In the second phase, transketolase (with TPP as cofactor) and transaldolase catalyze the interconversion of three-, four-, five-, six-, and seven-carbon sugars, with the reversible conversion of six pentose phosphates to five hexose phosphates. In the carbon-assimilating reactions of photosynthesis, the same enzymes catalyze the reverse process, the *reductive* pentose phosphate pathway: conversion of five hexose phosphates to six pentose phosphates.

- A genetic defect in transketolase that lowers its affinity for TPP exacerbates the Wernicke-Korsakoff syndrome.

- Entry of glucose 6-phosphate either into glycolysis or into the pentose phosphate pathway is largely determined by the relative concentrations of NADP⁺ and NADPH.
Key Terms

Terms in bold are defined in the glossary.

glycolysis 528
fermentation 528
lactic acid fermentation 530
hypoxia 530
ethanol (alcohol) fermentation 530
isozymes 532
acyl phosphate 536
substrate-level phosphorylation 537
respiration-linked phosphorylation 537
phosphoenolpyruvate (PEP) 538
mutases 544
isomerases 544
lactose intolerance 545
galactosemia 545
thiamine pyrophosphate (TPP) 549
gluconeogenesis 552
biotin 554
pentose phosphate pathway 558
phosphogluconate pathway 558
hexose monophosphate pathway 558

Further Reading

General

This text includes a detailed historical account of research on glycolysis.

Glycolysis

Intermediate-level review of the pathway and the classic view of its control.

Intermediate-level review of the bioinformatic view of the evolution of glycolysis.

Brief review of the molecular basis for increased glycolysis in tumors.

Intermediate-level review of the structures of the glycolytic enzymes.

Intermediate-level review.

Brief review of classic papers, which are also available online.

Intermediate-level review.

A collection of excellent reviews on the enzymes of glycolysis, written at a level challenging but comprehensible to a beginning student of biochemistry.

Very helpful review of the subcellular localization of glycolytic enzymes and the regulation of glycolysis in plants.

Intermediate-level review of the mechanisms of these enzymes.

A review of the four hexokinase isozymes of mammals: their properties and tissue distributions and their expression during the development of tumors.

Feeder Pathways for Glycolysis

Fermentations

Classic introduction to all aspects of industrial fermentations.

The use of microorganisms in industry for the synthesis of valuable products from inexpensive starting materials.

Gluconeogenesis

Intermediate-level review of the contribution of kidney tissue to gluconeogenesis.

Oxidative Pentose Phosphate Pathway

An intermediate-level review.

Brief review of classic papers, which are also available online.

The four-volume treatise in which this article appears is filled with fascinating information about the clinical and biochemical features of hundreds of inherited diseases of metabolism.

An intermediate-level review of glucose 6-phosphate dehydrogenase, the effects of mutations in this enzyme in humans, and the effects of knock-out mutations in mice.

Problems

1. Equation for the Preparatory Phase of Glycolysis

Write balanced biochemical equations for all the reactions in the catabolism of glucose to two molecules of glyceraldehyde 3-phosphate (the preparatory phase of glycolysis), including the standard free-energy change for each reaction. Then write the overall or net equation for the preparatory phase of glycolysis, with the net standard free-energy change.

2. The Payoff Phase of Glycolysis in Skeletal Muscle

In working skeletal muscle under anaerobic conditions, glyceraldehyde 3-phosphate is converted to pyruvate (the payoff phase of glycolysis), and the pyruvate is reduced to lactate. Write balanced biochemical equations for all the reactions in this process, with the standard free-energy change for each reaction. Then write the overall or net equation for the payoff phase of glycolysis (with lactate as the end product), including the net standard free-energy change.

3. GLUT Transporters

Compare the localization of GLUT4 with that of GLUT2 and GLUT3, and explain why these localizations are important in the response of muscle, adipose tissue, brain, and liver to insulin.

4. Ethanol Production in Yeast

When grown anaerobically on glucose, yeast (S. cerevisiae) converts pyruvate to acetaldehyde, then reduces acetaldehyde to ethanol using electrons from NADH. Write the equation for the second reaction, and calculate its equilibrium constant at 25 °C, given the standard reduction potentials in Table 13-7.

5. Energetics of the Aldolase Reaction

Aldolase catalyzes the glycolytic reaction.

Fructose 1,6-bisphosphate → glyceraldehyde 3-phosphate + dihydroxyacetone phosphate

The standard free-energy change for this reaction in the direction written is +23.8 kJ/mol. The concentrations of the three intermediates in the hepatocyte of a mammal are: fructose 1,6-bisphosphate, 1.4 × 10^{-3} m; glyceraldehyde 3-phosphate, 3 × 10^{-6} m; and dihydroxyacetone phosphate, 1.6 × 10^{-5} m. At body temperature (37 °C), what is the actual free-energy change for the reaction?

6. Pathway of Atoms in Fermentation

A “pulse-chase” experiment using 14C-labeled carbon sources is carried out on a yeast extract maintained under strictly anaerobic conditions to produce ethanol. The experiment consists of incubating a small amount of 14C-labeled substrate (the pulse) with the yeast extract just long enough for each intermediate in the fermentation pathway to become labeled. The label is then “chased” through the pathway by the addition of excess unlabeled glucose. The chase effectively prevents any further entry of labeled glucose into the pathway.

(a) If [1-14C]glucose (glucose labeled at C-1 with 14C) is used as a substrate, what is the location of 14C in the product ethanol? Explain.

(b) Where would 14C have to be located in the starting glucose to ensure that all the 14C activity is liberated as 14CO2 during fermentation to ethanol? Explain.

7. Heat from Fermentations

Large-scale industrial fermenters generally require constant, vigorous cooling. Why?

8. Fermentation to Produce Soy Sauce

Soy sauce is prepared by fermenting a salted mixture of soybeans and wheat with several microorganisms, including yeast, over a period of 8 to 12 months. The resulting sauce (after solids are removed) is rich in lactate and ethanol. How are these two compounds produced? To prevent the soy sauce from having a strong vinegary taste (vinegar is dilute acetic acid), oxygen must be kept out of the fermentation tank. Why?
9. Equivalence of Triose Phosphates ¹⁴C-Labeled glyceraldehyde 3-phosphate was added to a yeast extract. After a short time, fructose 1,6-bisphosphate labeled with ¹⁴C at C-3 and C-4 was isolated. What was the location of the ¹⁴C label in the starting glyceraldehyde 3-phosphate? Where did the second ¹⁴C label in fructose 1,6-bisphosphate come from? Explain.

10. Glycolysis Shortcut Suppose you discovered a mutant yeast whose glycolytic pathway was shorter because of the presence of a new enzyme catalyzing the reaction:

\[
\text{Glyceraldehyde 3-phosphate} + \text{H}_2\text{O} \rightarrow \text{3-phosphoglycerate}
\]

NAD⁺ NADH + H⁺

Would shortening the glycolytic pathway in this way benefit the cell? Explain.

11. Role of Lactate Dehydrogenase During strenuous activity, the demand for ATP in muscle tissue is vastly increased. In rabbit leg muscle or turkey flight muscle, the ATP is produced almost exclusively by lactic acid fermentation. ATP is formed in the payoff phase of glycolysis by two reactions, promoted by phosphoglycerate kinase and pyruvate kinase. Suppose skeletal muscle were devoid of lactate dehydrogenase. Could it carry out strenuous physical activity; that is, could it generate ATP at a high rate by glycolysis? Explain.

12. Efficiency of ATP Production in Muscle The transformation of glucose to lactate in myocytes releases only about 7% of the free energy released when glucose is completely oxidized to CO₂ and H₂O. Does this mean that anaerobic glycolysis in muscle is a wasteful use of glucose? Explain.

13. Free-Energy Change for Triose Phosphate Oxidation The oxidation of glyceraldehyde 3-phosphate to 3-bisphosphoglycerate, catalyzed by glyceraldehyde 3-phosphate dehydrogenase, proceeds with an unfavorable equilibrium constant (\(K_{eq} = 0.08\); \(\Delta G^\circ = 6.3 \text{ kJ/mol}\)), yet the flow through this point in the glycolytic pathway proceeds smoothly. How does the cell overcome the unfavorable equilibrium?

14. Arsenate Poisoning Arsenate is structurally and chemically similar to inorganic phosphate (P_4), and many enzymes that require phosphate will also use arsenate. Organic compounds of arsenate are less stable than analogous phosphate compounds, however. For example, acyl arsenates decompose rapidly by hydrolysis:

\[
\begin{align*}
\text{R-C-O-As-O} + \text{H}_2\text{O} & \rightarrow \\
\text{R-C-O-As-O}^{-} + \text{H}^+ & \\
\text{R-C-O}^{-} + \text{HO-As-O}^{-} & \\
\end{align*}
\]

On the other hand, acyl phosphates, such as 1,3-bisphosphoglycerate, are more stable and undergo further enzyme-catalyzed transformation in cells.

(a) Predict the effect on the net reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase if phosphate were replaced by arsenate.

(b) What would be the consequence to an organism if arsenate were substituted for phosphate? Arsenate is very toxic to most organisms. Explain why.

15. Requirement for Phosphate in Ethanol Fermentation In 1906 Harden and Young, in a series of classic studies on the fermentation of glucose to ethanol and CO₂ by extracts of brewer’s yeast, made the following observations. (1) Inorganic phosphate was essential to fermentation; when the supply of phosphate was exhausted, fermentation ceased before all the glucose was used. (2) During fermentation under these conditions, ethanol, CO₂, and a hexose bisphosphate accumulated. (3) When arsenate was substituted for phosphate, no hexose bisphosphate accumulated, but the fermentation proceeded until all the glucose was converted to ethanol and CO₂.

(a) Why did fermentation cease when the supply of phosphate was exhausted?

(b) Why did ethanol and CO₂ accumulate? Was the conversion of pyruvate to ethanol and CO₂ essential? Why? Identify the hexose bisphosphate that accumulated. Why did it accumulate?

(c) Why did the substitution of arsenate for phosphate prevent the accumulation of the hexose bisphosphate yet allow fermentation to ethanol and CO₂ to go to completion? (See Problem 14.)

16. Role of the Vitamin Niacin Adults engaged in strenuous physical activity require an intake of about 160 g of carbohydrate daily but only about 20 mg of niacin for optimal nutrition. Given the role of niacin in glycolysis, how do you explain the observation?

17. Synthesis of Glycerol Phosphate The glycerol 3-phosphate required for the synthesis of glycerophospholipids can be synthesized from a glycolytic intermediate. Propose a reaction sequence for this conversion.

18. Severity of Clinical Symptoms Due to Enzyme Deficiency The clinical symptoms of two forms of galactosemia—deficiency of galactokinase or of UDP-glucose:galactose 1-phosphate uridylyltransferase—show radically different severity. Although both types produce gastric discomfort after milk ingestion, deficiency of the transferase also leads to liver, kidney, spleen, and brain dysfunction and eventual death. What products accumulate in the blood and tissues with each type of enzyme deficiency? Estimate the relative toxicities of these products from the above information.

19. Muscle Wasting in Starvation One consequence of starvation is a reduction in muscle mass. What happens to the muscle proteins?

20. Pathway of Atoms in Gluconeogenesis A liver extract capable of carrying out all the normal metabolic reactions of
the liver is briefly incubated in separate experiments with the following 14C-labeled precursors.

(a) $[^{14}$C]Bicarbonate, HO—14C—O

(b) $[^{14}$C]Pyruvate, CH$_3$—C—14COO$^-$

Trace the pathway of each precursor through gluconeogenesis. Indicate the location of 14C in all intermediates and in the product, glucose.

21. Energy Cost of a Cycle of Glycolysis and Gluconeogenesis What is the cost (in ATP equivalents) of transforming glucose to pyruvate via glycolysis and back again to glucose via gluconeogenesis?

22. Relationship between Gluconeogenesis and Glycolysis Why is it important that gluconeogenesis is not the exact reversal of glycolysis?

23. Energetics of the Pyruvate Kinase Reaction Explain in bioenergetic terms how the conversion of pyruvate to phosphoenolpyruvate in gluconeogenesis overcomes the large, negative standard free-energy change of the pyruvate kinase reaction in glycolysis.

24. Glucogenic Substrates A common procedure for determining the effectiveness of compounds as precursors of glucose in mammals is to starve the animal until the liver glycogen stores are depleted and then administer the compound in question. A substrate that leads to a net increase in liver glycogen is termed glucogenic, because it must first be converted to glucose 6-phosphate. Show by means of known enzymatic reactions which of the following substances are glucogenic.

(a) Succinate, $^\text{OOOC—CH$_2$—CH$_2$—COO}^-$

(b) Glycerol, $^\text{OH—OH}$

(c) Acetyl-CoA, $^\text{CH$_3$—C—S-CoA}$

(d) Pyruvate, $^\text{CH$_3$—C—COO}^-$

(e) Butyrate, $^\text{CH$_3$—CH$_2$—CH$_2$—COO}^-$

25. Ethanol Affects Blood Glucose Levels The consumption of alcohol (ethanol), especially after periods of strenuous activity or after not eating for several hours, results in a deficiency of glucose in the blood, a condition known as hypoglycemia. The first step in the metabolism of ethanol by the liver is oxidation to acetaldehyde, catalyzed by liver alcohol dehydrogenase:

$$\text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ \rightarrow \text{CH}_3\text{CHO} + \text{NADH} + \text{H}^+$$

Explain how this reaction inhibits the transformation of lactate to pyruvate. Why does this lead to hypoglycemia?

26. Blood Lactate Levels during Vigorous Exercise The concentrations of lactate in blood plasma before, during, and after a 400 m sprint are shown in the graph.

(a) What causes the rapid rise in lactate concentration?

(b) What causes the decline in lactate concentration after completion of the sprint? Why does the decline occur more slowly than the increase?

(c) Why is the concentration of lactate not zero during the resting state?

27. Relationship between Fructose 1,6-Bisphosphatase and Blood Lactate Levels A congenital defect in the liver enzyme fructose 1,6-bisphosphatase results in abnormally high levels of lactate in the blood plasma. Explain.

28. Effect of Phloridzin on Carbohydrate Metabolism Phloridzin, a toxic glycoside from the bark of the pear tree, blocks the normal reabsorption of glucose from the kidney tubule, thus causing blood glucose to be almost completely excreted in the urine. In an experiment, rats fed phloridzin and sodium succinate excreted about 0.5 mol of glucose (made by gluconeogenesis) for every 1 mol of sodium succinate ingested. How is the succinate transformed to glucose? Explain the stoichiometry.

29. Excess O$_2$ Uptake during Gluconeogenesis Lactate absorbed by the liver is converted to glucose, with the input of
Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway

6 mol of ATP for every mole of glucose produced. The extent of this process in a rat liver preparation can be monitored by administering $[^{14}\text{C}]$lactate and measuring the amount of $[^{14}\text{C}]$glucose produced. Because the stoichiometry of O$_2$ consumption and ATP production is known (about 5 ATP per O$_2$), we can predict the extra O$_2$ consumption above the normal rate when a given amount of lactate is administered. However, when the extra O$_2$ used in the synthesis of glucose from lactate is actually measured, it is always higher than predicted by known stoichiometric relationships. Suggest a possible explanation for this observation.

30. Role of the Pentose Phosphate Pathway If the oxidation of glucose 6-phosphate via the pentose phosphate pathway were being used primarily to generate NADPH for biosynthesis, the other product, ribose 5-phosphate, would accumulate. What problems might this cause?

Data Analysis Problem

31. Engineering a Fermentation System Fermentation of plant matter to produce ethanol for fuel is one potential method for reducing the use of fossil fuels and thus the CO$_2$ emissions that lead to global warming. Many microorganisms can break down cellulose then ferment the glucose to ethanol. However, many potential cellulose sources, including agricultural residues and switchgrass, also contain substantial amounts of arabinose, which is not as easily fermented.

Escherichia coli is capable of fermenting arabinose to ethanol, but it is not naturally tolerant of high ethanol levels, thus limiting its utility for commercial ethanol production. Another bacterium, Zymomonas mobilis, is naturally tolerant of high levels of ethanol but cannot ferment arabinose. Deanda, Zhang, Eddy, and Picataggio (1996) described their efforts to combine the most useful features of these two organisms by introducing the E. coli genes for the arabinose-metabolizing enzymes into Z. mobilis.

(a) Why is this a simpler strategy than the reverse: engineering E. coli to be more ethanol-tolerant?

Deanda and colleagues inserted five E. coli genes into the Z. mobilis genome: araA, coding for l-arabinose isomerase, which interconverts l-arabinose and l-ribulose; araB, l-ribulokinase, which uses ATP to phosphorylate l-ribulose at C-5; araD, l-ribulose 5-phosphate epimerase, which interconverts l-ribulose 5-phosphate and l-xylulose 5-phosphate; talB, transaldolase; and tktA, transketolase.

(b) For each of the three ara enzymes, briefly describe the chemical transformation it catalyzes and, where possible, name an enzyme discussed in this chapter that carries out an analogous reaction.

The five E. coli genes inserted in Z. mobilis allowed the entry of arabinose into the nonoxidative phase of the pentose phosphate pathway (Fig. 14-22), where it was converted to glucose 6-phosphate and fermented to ethanol.

(c) The three ara enzymes eventually converted arabinose into which sugar?

(d) The product from part (c) feeds into the pathway shown in Figure 14-22. Combining the five E. coli enzymes listed above with the enzymes of this pathway, describe the overall pathway for the fermentation of 6 molecules of arabinose to ethanol.

(e) What is the stoichiometry of the fermentation of 6 molecules of arabinose to ethanol and CO$_2$? How many ATP molecules would you expect this reaction to generate?

(f) Z. mobilis uses a slightly different pathway for ethanol fermentation from the one described in this chapter. As a result, the expected ATP yield is only 1 ATP per molecule of arabinose. Although this is less beneficial for the bacterium, it is better for ethanol production. Why?

Another sugar commonly found in plant matter is xylose.

(g) What additional enzymes would you need to introduce into the modified Z. mobilis strain described above to enable it to use xylose as well as arabinose to produce ethanol? You don't need to name the enzymes (they may not even exist in the real world!); just give the reactions they would need to catalyze.

Reference
Formation of liver glycogen from lactic acid is thus seen to establish an important connection between the metabolism of the muscle and that of the liver. Muscle glycogen becomes available as blood sugar through the intervention of the liver, and blood sugar in turn is converted into muscle glycogen. There exists therefore a complete cycle of the glucose molecule in the body . . . Epinephrine was found to accelerate this cycle in the direction of muscle glycogen to liver glycogen . . . Insulin, on the other hand, was found to accelerate the cycle in the direction of blood glucose to muscle glycogen.

—C. F. Cori and G. T. Cori, article in Journal of Biological Chemistry, 1929

Principles of Metabolic Regulation

15.1 Regulation of Metabolic Pathways 570
15.2 Analysis of Metabolic Control 577
15.3 Coordinated Regulation of Glycolysis and Gluconeogenesis 582
15.4 The Metabolism of Glycogen in Animals 594
15.5 Coordinated Regulation of Glycogen Synthesis and Breakdown 602

Metabolic regulation, a central theme in biochemistry, is one of the most remarkable features of living organisms. Of the thousands of enzyme-catalyzed reactions that can take place in a cell, there is probably not one that escapes some form of regulation. This need to regulate every aspect of cellular metabolism becomes clear as one examines the complexity of metabolic reaction sequences. Although it is convenient for the student of biochemistry to divide metabolic processes into "pathways" that play discrete roles in the cell's economy, no such separation exists in the living cell. Rather, every pathway we discuss in this book is inextricably intertwined with all the other cellular pathways in a multidimensional network of reactions (Fig. 15-1). For example, in Chapter 14 we discussed four possible fates for glucose 6-phosphate in a hepatocyte: breakdown by glycolysis for the production of ATP, breakdown in the pentose phosphate pathway for the production of NADPH and pentose phosphates, use in the synthesis of complex polysaccharides of the extracellular matrix, or hydrolysis to glucose and phosphate to replenish blood glucose. In fact, glucose 6-phosphate has other possible fates in hepatocytes, too; it may, for example, be used to synthesize other sugars, such as glucosamine, galactose, galactosamine, fucose, and neuraminic acid, for use in protein glycosylation, or it may be partially degraded to provide acetyl-CoA for fatty acid and sterol synthesis. And the bacterium *Escherichia coli* can use glucose to produce the carbon skeleton of *every one* of its several thousand types of molecules. When any cell uses glucose 6-phosphate for one purpose, that "decision" affects all the other pathways for which glucose 6-phosphate is a precursor or intermediate: any change in the allocation of glucose 6-phosphate to one pathway affects, directly or indirectly, the flow of metabolites through all the others.

Such changes in allocation are common in the life of a cell. Louis Pasteur was the first to describe the more than 10-fold increase in glucose consumption by a yeast culture when it was shifted from aerobic to anaerobic conditions. This "Pasteur effect" occurs without a significant change in the concentrations of ATP or most of the hundreds of metabolic intermediates and products derived from glucose. A similar effect occurs in the cells of skeletal muscle when a sprinter leaves the starting blocks. The ability of a cell to carry out all these interlocking metabolic processes simultaneously—obtaining every product in the amount needed and at the right time, in the face of major perturbations from outside, and without generating leftovers—is an astounding accomplishment.

In this chapter we use the metabolism of glucose to illustrate some general principles of metabolic regulation. First we look at the general roles of regulation in achieving metabolic homeostasis and introduce metabolic control analysis, a system for analyzing complex metabolic interactions quantitatively. We then describe the specific regulatory properties of the individual enzymes of glucose metabolism; for glycolysis and gluconeogenesis, we described the catalytic activities of the enzymes in Chapter 14. Here we also discuss both the catalytic and regulatory properties of the enzymes of glycogen synthesis and breakdown, one of the best-studied cases of metabolic regulation. Note that in
selecting carbohydrate metabolism to illustrate the principles of metabolic regulation, we have artificially separated the metabolism of fats and carbohydrates. In fact, these two activities are very tightly integrated, as we shall see in Chapter 23.

15.1 Regulation of Metabolic Pathways

The pathways of glucose metabolism provide, in the catabolic direction, the energy essential to oppose the forces of entropy and, in the anabolic direction, biosynthetic precursors and a storage form of metabolic energy. These reactions are so important to survival that very complex regulatory mechanisms have evolved to ensure that metabolites move through each pathway in the correct direction and at the correct rate to match exactly the cell's or the organism's changing circumstances. By a variety of mechanisms operating on different time scales, adjustments are made in the rate of metabolite flow through an entire pathway when external circumstances change.

Circumstances do change, sometimes dramatically. For example, the demand for ATP in insect flight muscle increases 100-fold in a few seconds when the insect takes flight. In humans, the availability of oxygen may decrease due to hypoxia (diminished delivery of oxygen to tissues) or ischemia (diminished flow of blood to tissues). The relative proportions of carbohydrate, fat, and
protein in the diet vary from meal to meal, and the supply of fuels obtained in the diet is intermittent, requiring metabolic adjustments between meals and during periods of starvation. Wound healing requires huge amounts of energy and biosynthetic precursors.

Cells and Organisms Maintain a Dynamic Steady State

Fuels such as glucose enter a cell, and waste products such as CO₂ leave, but the mass and the gross composition of a typical cell, organ, or adult animal do not change appreciably over time; cells and organisms exist in a dynamic steady state. For each metabolic reaction in a pathway, the substrate is provided by the preceding reaction at the same rate at which it is converted to product. Thus, although the rate \(v \) of metabolite flow, or **flux**, through this step of the pathway may be high and variable, the concentration of substrate, \(S \), remains constant. So, for the two-step reaction

\[
A \xrightarrow{v_1} S \xrightarrow{v_2} P
\]

when \(v_1 = v_2 \), \([S] \) is constant. For example, changes in \(v_1 \) for the entry of glucose from various sources into the blood are balanced by changes in \(v_2 \) for the uptake of glucose from the blood into various tissues, so the concentration of glucose in the blood \(([S]) \) is held nearly constant at 5 mm. This is **homeostasis** at the molecular level. The failure of homeostatic mechanisms is often at the root of human disease. In diabetes mellitus, for example, the regulation of blood glucose concentration is defective as a result of the lack of or insensitivity to insulin, with profound medical consequences.

When the external perturbation is not merely transient, or when one kind of cell develops into another, the adjustments in cell composition and metabolism can be more dramatic and may require significant and lasting changes in the allocation of energy and synthetic precursors to bring about a new dynamic steady state. Consider, for example, the differentiation of stem cells in the bone marrow into erythrocytes. The precursor cell contains a nucleus, mitochondria, and little or no hemoglobin, whereas the fully differentiated erythrocyte contains prodigious amounts of hemoglobin but has neither nucleus nor mitochondria; the cell's composition has permanently changed in response to external developmental signals, with accompanying changes in metabolism. This **cellular differentiation** requires precise regulation of the levels of cellular proteins.

In the course of evolution, organisms have acquired a remarkable collection of regulatory mechanisms for maintaining homeostasis at the molecular, cellular, and organismal levels, as reflected in the proportion of genes that encode regulatory machinery. In humans, about 4,000 genes (~12% of all genes) encode regulatory proteins, including a variety of receptors, regulators of gene expression, and more than 500 different protein kinases! In many cases, the regulatory mechanisms overlap: one enzyme is subject to regulation by several different mechanisms.

Both the Amount and the Catalytic Activity of an Enzyme Can Be Regulated

The flux through an enzyme-catalyzed reaction can be modulated by changes in the **number** of enzyme molecules or by changes in the **catalytic activity** of each enzyme molecule already present. Such changes occur on time scales from milliseconds to many hours, in response to signals from within or outside the cell. Very rapid allosteric changes in enzyme activity are generally triggered locally, by changes in the local concentration of a small molecule—a substrate of the pathway in which that reaction is a step (say, glucose for glycolysis), a product of the pathway (ATP from glycolysis), or a key metabolite or cofactor (such as NADH) that indicates the cell's metabolic state. Second messengers (such as cyclic AMP and Ca²⁺) generated intracellularly in response to extracellular signals (hormones, cytokines, and so forth) also mediate allosteric regulation, on a slightly slower time scale set by the rate of the signal-transduction mechanism (see Chapter 12).

Extracellular signals (Fig. 15-2, @) may be hormonal (insulin or epinephrine, for example) or neuronal (acetylcholine), or may be growth factors or cytokines. The number of molecules of a given enzyme in a cell is a function of the relative rates of synthesis and degradation of that enzyme. The rate of synthesis can be adjusted by the activation (in response to some outside signal) of a transcription factor (Fig. 15-2, ②; described in more detail in Chapter 28). **Transcription factors** are nuclear proteins that, when activated, bind specific DNA regions (**response elements**) near a gene's promoter (its transcriptional starting point) and activate or repress the transcription of that gene, leading to increased or decreased synthesis of the encoded protein. Activation of a transcription factor is sometimes the result of its binding of a specific ligand and sometimes the result of its phosphorylation or dephosphorylation. Each gene is controlled by one or more response elements that are recognized by specific transcription factors. Some genes have several response elements and are therefore controlled by several different transcription factors, responding to several different signals. Groups of genes encoding proteins that act together, such as the enzymes of glycolysis or gluconeogenesis, often share common response element sequences, so that a single signal, acting through a particular transcription factor, turns all of these genes on and off together. The regulation of carbohydrate metabolism by specific transcription factors is described in Section 15.3.

The stability of messenger RNAs— their resistance to degradation by cellular ribonucleases (Fig. 15-2, ③)—varies, and the amount of a given mRNA in the cell is a function of its rates of synthesis and degradation (Chapter 26). The rate at which an mRNA is translated into a protein by ribosomes (Fig. 15-2, ④) is also regulated, and depends on several factors described in detail in Chapter 27. Note that an \(n \)-fold increase in an mRNA does not always mean an \(n \)-fold increase in its protein product.
Once synthesized, protein molecules have a finite lifetime, which may range from minutes to many days (Table 15–1). The rate of protein degradation (Fig. 15–2, 6) differs from one enzyme to another and depends on the conditions in the cell. Some proteins are tagged by the covalent attachment of ubiquitin for degradation in proteasomes, as discussed in Chapter 28 (see, for example, the case of cyclin, in Fig. 12–46). Rapid turnover (synthesis followed by degradation) is energetically expensive, but proteins with a short half-life can reach new steady state levels much faster than those with a long half-life, and the benefit of this quick responsiveness must balance or outweigh the cost to the cell.

Yet another way to alter the effective activity of an enzyme is to sequester the enzyme and its substrate in different compartments (Fig. 15–2, 6). In muscle, for example, hexokinase cannot act on glucose until the sugar enters the myocyte from the blood, and the rate at which it enters depends on the activity of glucose transporters (see Table 11–3) in the plasma membrane. Within cells, membrane-bounded compartments segregate certain enzymes and enzyme systems, and the transport of substrate across these intracellular membranes may be the limiting factor in enzyme action.

By these several mechanisms for regulating enzyme level, cells can dramatically change their complement of enzymes in response to changes in metabolic circumstances. In vertebrates, liver is the most adaptable tissue; a change from a high-carbohydrate to high-lipid diet, for example, affects the transcription of hundreds of genes and thus the levels of hundreds of proteins. These global changes in gene expression can be quantified by the use of DNA microarrays (see Fig. 9–22) that display the entire complement of mRNAs present in a given cell type or organ (the transcriptome) or by two-dimensional gel electrophoresis (see Fig. 3–21) that displays the protein complement of a cell type or organ (its proteome). Both techniques offer great insights into metabolic regulation. The effect of changes in the
proteome is often a change in the total ensemble of low molecular weight metabolites, the metabolome.

Once the regulatory mechanisms that involve protein synthesis and degradation have produced a certain number of molecules of each enzyme in a cell, the activity of those enzymes can be further regulated in several other ways: by the concentration of substrate, the presence of allosteric effectors, covalent modifications, or binding of regulatory proteins—all of which can change the activity of an individual enzyme molecule (Fig. 15–2, 7 to 10).

All enzymes are sensitive to the concentration of their substrate(s) (Fig. 15–2, 7). Recall that in the simplest case (an enzyme that follows Michaelis-Menten kinetics), the initial rate of the reaction is half-maximal when the substrate is present at a concentration equal to \(K_m \) (that is, when the enzyme is half-saturated with substrate). Activity drops off at lower [S], and when [S] \(< K_m \), the reaction rate is linearly dependent on [S]. This is important because intracellular concentrations of substrate are often in the same range as, or lower than, \(K_m \). The activity of hexokinase, for example, changes with [glucose], and intracellular [glucose] varies with the concentration of glucose in the blood. As we will see, the different forms (isozymes) of hexokinase have different \(K_m \) values and are therefore differently affected by changes in intracellular [glucose], in ways that make sense physiologically.

WORKED EXAMPLE 15–1 Activity of a Glucose Transporter

If \(K_t \) (the equivalent of \(K_m \)) for the glucose transporter in liver (GLUT2) is 40 mm, calculate the effect on the rate of glucose flux into a hepatocyte of increasing the blood glucose concentration from 3 mm to 10 mm.

Solution: We use Equation 11–1 (p. 393) to find the initial velocity (flux) of glucose uptake.

\[
V_o = \frac{V_{\text{max}} [S]_{\text{out}}}{K_t + [S]_{\text{out}}}
\]

At 3 mm glucose

\[
V_o = \frac{V_{\text{max}} (3 \text{ mm})}{(40 \text{ mm} + 3 \text{ mm})} = \frac{V_{\text{max}} (3 \text{ mm})}{43 \text{ mm}} = 0.07 V_{\text{max}}
\]

At 10 mm glucose

\[
V_o = \frac{V_{\text{max}} (10 \text{ mm})}{(40 \text{ mm} + 10 \text{ mm})} = \frac{V_{\text{max}} (10 \text{ mm})}{50 \text{ mm}} = 0.20 V_{\text{max}}
\]

So a rise in blood glucose from 3 mm to 10 mm increases the rate of glucose influx into a hepatocyte by a factor of \(0.20/0.07 \approx 3 \).

Enzyme activity can be either increased or decreased by an allosteric effector (Fig. 15–2, 8; see Fig. 6–34). Allosteric effectors typically convert hyperbolic kinetics to sigmoid kinetics, or vice versa (see Fig. 15–14b, for example). In the steepest part of the sigmoid curve, a small change in the concentration of substrate, or of allosteric effector, can have a large impact on reaction rate. Recall from Chapter 5 (p. 164) that the cooperativity of an allosteric enzyme can be expressed as a Hill coefficient, with higher coefficients meaning greater cooperativity. For an allosteric enzyme with a Hill coefficient of 4, activity increases from 10% \(V_{\text{max}} \) to 90% \(V_{\text{max}} \) with only a 3-fold increase in [S], compared with the 81-fold rise in [S] needed by an enzyme with no cooperative effects (Hill coefficient of 1; Table 15–2).

Covalent modifications of enzymes or other proteins (Fig. 15–2, 9) occur within seconds or minutes of a regulatory signal, typically an extracellular signal. By far the most common modifications are phosphorylation and dephosphorylation (Fig. 15–3); up to half the proteins in a eukaryotic cell are phosphorylated under some circumstances. Phosphorylation by a specific protein kinase may alter the electrostatic features of an enzyme's active site, cause movement of an inhibitory region of the enzyme protein out of the active site, alter the enzyme's interaction with other proteins, or force conformational changes that translate into changes in \(V_{\text{max}} \) or \(K_m \). For

<table>
<thead>
<tr>
<th>TABLE 15–2</th>
<th>Relationship between Hill Coefficient and the Effect of Substrate Concentration on Reaction Rate for Allosteric Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hill coefficient (a_H)</td>
<td>Required change in [S] to increase (V_o) from 10% to 90% (V_{\text{max}})</td>
</tr>
<tr>
<td>0.5</td>
<td>(\times 6,600)</td>
</tr>
<tr>
<td>1.0</td>
<td>(\times 81)</td>
</tr>
<tr>
<td>2.0</td>
<td>(\times 9)</td>
</tr>
<tr>
<td>3.0</td>
<td>(\times 4.3)</td>
</tr>
<tr>
<td>4.0</td>
<td>(\times 3)</td>
</tr>
</tbody>
</table>

FIGURE 15–3 Protein phosphorylation and dephosphorylation. Protein kinases transfer a phosphoryl group from ATP to a Ser, Thr, or Tyr residue in an enzyme or other protein substrate. Protein phosphatases remove the phosphoryl group as Pi.
covalent modification to be useful in regulation, the cell must be able to restore the altered enzyme to its original activity state. A family of phosphoprotein phosphatases, at least some of which are themselves under regulation, catalyzes the dephosphorylation of proteins.

Finally, many enzymes are regulated by association with and dissociation from another, regulatory protein (Fig. 15–2, 3). For example, the cyclic AMP–dependent protein kinase (PKA; see Fig. 12–6) is inactive until cAMP binding separates catalytic from regulatory subunits.

These several mechanisms for altering the flux through a step in a metabolic pathway are not mutually exclusive. It is very common for a single enzyme to be regulated at the level of transcription and by both allosteric and covalent mechanisms. The combination provides fast, smooth, effective regulation in response to a very wide array of perturbations and signals.

In the discussions that follow, it is useful to think of changes in enzymatic activity as serving two distinct though complementary roles. We use the term metabolic regulation to refer to processes that serve to maintain homeostasis at the molecular level—to hold some cellular parameter (concentration of a metabolite, for example) at a steady level over time, as even the flow of metabolites through the pathway changes. The term metabolic control refers to a process that leads to a change in the output of a metabolic pathway over time, in response to some outside signal or change in circumstances. The distinction, although useful, is not always easy to make.

Reactions Far from Equilibrium in Cells Are Common Points of Regulation

For some steps in a metabolic pathway the reaction is close to equilibrium, with the cell in its dynamic steady state (Fig. 15–4). The net flow of metabolites through these steps is the small difference between the rates of the forward and reverse reactions, rates that are very similar when a reaction is near equilibrium. Small changes in substrate or product concentration can produce large changes in the net rate, and can even change the direction of the net flow. We can identify these near-equilibrium reactions in a cell by comparing the mass action ratio, Q, with the equilibrium constant for the reaction, K_{eq}. Recall that for the reaction $A + B \rightarrow C + D$, $Q = \frac{[C][D]}{[A][B]}$. When Q and K_{eq} are within 1 to 2 orders of magnitude of each other, the reaction is near equilibrium. This is the case for 6 of the 10 steps in the glycolytic pathway (Table 15–3).

Other reactions are far from equilibrium in the cell. For example, K_{eq} for the phosphofructokinase-1 (PFK-1) reaction is about 1,000, but Q ([fructose 1,6-bisphosphate][ADP]/[fructose 6-phosphate][ATP]) in a hepatocyte in the steady state is about 0.1 (Table 15–3). It is because the reaction is so far from equilibrium that the process is exergonic under cellular conditions and tends to go in the forward direction. The reaction is held far from equilibrium because, under prevailing cellular conditions of substrate, product, and effector concentrations, the rate of conversion of fructose 6-phosphate to fructose 1,6-bisphosphate is limited by the activity of PFK-1, which is itself limited by the number of PFK-1 molecules present and by the actions of allosteric effectors. Thus the net forward rate of the enzyme-catalyzed reaction is equal to the net flow of glycolytic intermediates through other steps in the pathway, and the reverse flow through PFK-1 remains near zero.

The cell cannot allow reactions with large equilibrium constants to reach equilibrium. If [fructose 6-phosphate], [ATP], and [ADP] in the cell were held at typical levels (low millimolar concentrations) and the PFK-1 reaction were allowed to reach equilibrium by an increase in [fructose 1,6-bisphosphate], the concentration of fructose 1,6-bisphosphate would rise into the molar range, wreaking osmotic havoc on the cell. Consider another case: if the reaction ATP → ADP + P_i were allowed to approach equilibrium in the cell, the actual free-energy change ($\Delta G'$) for that reaction ($\Delta G'_{p}$; see Worked Example 13–2, p. 503) would approach zero, and ATP would lose the high phosphoryl group transfer potential that makes it valuable to the cell. It is therefore essential that enzymes catalyzing ATP breakdown and other highly exergonic reactions in a cell be sensitive to regulation, so that when metabolic changes are forced by external circumstances, the flow through these enzymes will be adjusted to ensure that [ATP] remains far above its equilibrium level. When such metabolic changes occur, the activities of enzymes in all interconnected pathways adjust to keep these critical steps away from equilibrium. Thus, not surprisingly, many enzymes (such as PFK-1) that catalyze highly exergonic reactions are subject to a variety of subtle regulatory mechanisms. The multiplicity of these adjustments is so great that we cannot predict by examining the properties of any one enzyme in a pathway whether that enzyme has a strong influence on net flow through the entire pathway. This complex problem can be approached by metabolic control analysis, as described in Section 15.2.
Adenine Nucleotides Play Special Roles in Metabolic Regulation

After the protection of its DNA from damage, perhaps nothing is more important to a cell than maintaining a constant supply and concentration of ATP. Many ATP-using enzymes have K_m values between 0.1 and 1 mM, and the ATP concentration in a typical cell is about 5 mM. If [ATP] were to drop significantly, these enzymes would be less than fully saturated by their substrate (ATP), and the rates of hundreds of reactions that involve ATP would decrease (Fig. 15-5); the cell would probably not survive this kinetic effect on so many reactions.

There is also an important thermodynamic effect of lowered [ATP]. Because ATP is converted to ADP or AMP when “spent” to accomplish cellular work, the [ATP]/[ADP] ratio profoundly affects all reactions that employ these cofactors. (The same is true for other important cofactors, such as NADH/NAD$^+$ and NADPH/NAD$^+$.) For example, consider the reaction catalyzed by hexokinase:

$$\text{ATP} + \text{glucose} \longrightarrow \text{ADP} + \text{glucose 6-phosphate}$$

$$K_{eq} = \frac{[\text{ADP}]_eq[\text{glucose 6-phosphate}]_eq}{[\text{ATP}]_eq[\text{glucose}]_eq} = 2 \times 10^3$$

Note that this expression holds true only when reactants and products are at their equilibrium concentrations, where $\Delta G_r = 0$. At any other set of concentrations, ΔG_r is not zero. Recall (from Chapter 13) that the ratio of products to substrates (the mass action ratio, Q) determines the magnitude and sign of ΔG_r and therefore the driving force, ΔG_r, of the reaction:

$$\Delta G_r = \frac{\Delta G^o + RT \ln \frac{[\text{ADP}]_eq[\text{glucose 6-phosphate}]_eq}{[\text{ATP}]_eq[\text{glucose}]_eq}}$$

Because an alteration of this driving force profoundly influences every reaction that involves ATP, organisms have evolved under strong pressure to develop regulatory mechanisms responsive to the [ATP]/[ADP] ratio.

AMP concentration is an even more sensitive indicator of a cell’s energetic state than is [ATP]. Normally

TABLE 15-3 Equilibrium Constants, Mass Action Coefficients, and Free-Energy Changes for Enzymes of Carbohydrate Metabolism

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>K_{eq}</th>
<th>Mass action ratio, Q</th>
<th>Reaction near equilibrium in vivo?*</th>
<th>ΔG_r^o (kJ/mol)</th>
<th>ΔG^o (kJ/mol) in heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase</td>
<td>1×10^3</td>
<td>2×10^{-2}</td>
<td>8 $\times 10^{-2}$</td>
<td>No</td>
<td>-17</td>
</tr>
<tr>
<td>PFK-1</td>
<td>1.0×10^2</td>
<td>9×10^{-2}</td>
<td>3 $\times 10^{-2}$</td>
<td>No</td>
<td>-14</td>
</tr>
<tr>
<td>Aldolase</td>
<td>1.0×10^{-4}</td>
<td>1.2×10^{-6}</td>
<td>9 $\times 10^{-6}$</td>
<td>Yes</td>
<td>$+24$</td>
</tr>
<tr>
<td>Triose phosphate isomerase</td>
<td>4×10^{-2}</td>
<td>---</td>
<td>2.4×10^{-1}</td>
<td>Yes</td>
<td>$+7.5$</td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate dehydrogenase + phosphoglycerate kinase</td>
<td>2×10^3</td>
<td>6×10^2</td>
<td>9.0</td>
<td>Yes</td>
<td>-13</td>
</tr>
<tr>
<td>Phosphoglycerate mutase</td>
<td>1×10^{-1}</td>
<td>1×10^{-1}</td>
<td>1.2×10^{-1}</td>
<td>Yes</td>
<td>$+4.4$</td>
</tr>
<tr>
<td>Erolase</td>
<td>3</td>
<td>2.9</td>
<td>1.4</td>
<td>Yes</td>
<td>-3.2</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>2×10^4</td>
<td>7×10^{-1}</td>
<td>40</td>
<td>No</td>
<td>-31</td>
</tr>
<tr>
<td>Phosphoglucose isomerase</td>
<td>4×10^{-1}</td>
<td>3.1×10^{-1}</td>
<td>2.4×10^{-1}</td>
<td>Yes</td>
<td>$+2.2$</td>
</tr>
<tr>
<td>Pyruvate carboxylase + PEP carboxykinase</td>
<td>7</td>
<td>1×10^{-3}</td>
<td>---</td>
<td>No</td>
<td>-5.0</td>
</tr>
<tr>
<td>Glucose 6-phosphatase</td>
<td>8.5×10^2</td>
<td>1.2×10^2</td>
<td>---</td>
<td>Yes</td>
<td>-17</td>
</tr>
</tbody>
</table>

Source: K_{eq} and Q from Newsholme, E.A. & Start, C. (1973) Regulation in Metabolism, Wiley Press, New York, pp. 97, 263. ΔG^o and ΔG_r^o were calculated from these data.

*For simplicity, any reaction for which the absolute value of the calculated ΔG_r^o is less than 6 is considered near equilibrium.

FIGURE 15-5 Effect of ATP concentration on the initial velocity of a typical ATP-dependent enzyme. These experimental data yield a K_m for ATP of 5 mM. The concentration of ATP in animal tissues is ~5 mM.
cells have a far higher concentration of ATP (5 to 10 mM) than of AMP (<0.1 mM). When some process (say, muscle contraction) consumes ATP, AMP is produced in two steps. First, hydrolysis of ATP produces ADP, then the reaction catalyzed by adenylate kinase produces AMP:

$$2\text{ADP} \rightarrow \text{AMP} + \text{ATP}$$

If ATP is consumed such that its concentration drops 10%, the relative increase in [AMP] is much greater than that of [ADP] (Table 15–4). It is not surprising, therefore, that many regulatory processes are keyed to changes in [AMP]. Probably the most important mediator of regulation by AMP is AMP-activated protein kinase (AMPK), which responds to an increase in [AMP] by phosphorylating key proteins and thus regulating their activities. The rise in [AMP] may be caused by a reduced nutrient supply or by increased exercise. The action of AMPK (not to be confused with the cyclic AMP-dependent protein kinase; see Section 15.5) increases glucose transport and activates glycolysis and fatty acid oxidation, while suppressing energy-requiring processes such as the synthesis of fatty acids, cholesterol, and protein (Fig. 15–6). We discuss AMPK further, and the detailed mechanisms by which it effects these changes, in Chapter 23.

In addition to ATP, hundreds of metabolic intermediates also must be present at appropriate concentrations in the cell. To take just one example: the glycolytic intermediates dihydroxyacetone phosphate and 3-phosphoglycerate are precursors of triacylglycerols and serine, respectively. When these products are needed, the rate of glycolysis must be adjusted to provide them without reducing the glycolytic production of ATP. The

![Figure 15-6](image-url) **FIGURE 15-6** Role of AMP-activated protein kinase (AMPK) in carbohydrate and fat metabolism. AMPK is activated by elevated [AMP] or decreased [ATP], by exercise, by the sympathetic nervous system (SNS), or by peptide hormones produced in adipose tissue (leptin and adiponectin, described in more detail in Chapter 23). When activated, AMPK phosphorylates target proteins and shifts metabolism in a variety of tissues away from energy-consuming processes such as the synthesis of glycogen, fatty acids, and cholesterol; shifts metabolism in extrahepatic tissues to the use of fatty acids as a fuel; and triggers gluconeogenesis in the liver to provide glucose for the brain. In the hypothalamus, AMPK stimulates feeding behavior to provide more dietary fuel.
same is true for maintaining the levels of other important cofactors, such as NADH and NADPH: changes in their mass action ratios (that is, in the ratio of reduced to oxidized cofactor) have global effects on metabolism.

Of course, priorities at the organismal level have also driven the evolution of regulatory mechanisms. In mammals, the brain has virtually no stored source of energy, depending instead on a constant supply of glucose from the blood. If blood glucose drops from its normal concentration of 4 to 5 mM to half that level, mental confusion results, and a fivefold reduction in blood glucose can lead to coma and death. To buffer against changes in blood glucose concentration, release of the hormones insulin and glucagon, elicited by high or low blood glucose, respectively, triggers metabolic changes that tend to return the blood glucose concentration to normal.

Other selective pressures must also have operated throughout evolution, selecting for regulatory mechanisms that accomplish the following:

1. Maximize the efficiency of fuel utilization by preventing the simultaneous operation of pathways in opposite directions (such as glycolysis and gluconeogenesis).
2. Partition metabolites appropriately between alternative pathways (such as glycolysis and the pentose phosphate pathway).
3. Draw on the fuel best suited for the immediate needs of the organism (glucose, fatty acids, glycogen, or amino acids).
4. Slow down biosynthetic pathways when their products accumulate.

The remaining chapters of this book present many examples of each kind of regulatory mechanism.

SUMMARY 15.1 Regulation of Metabolic Pathways

- In a metabolically active cell in a steady state, intermediates are formed and consumed at equal rates. When a transient perturbation alters the rate of formation or consumption of a metabolite, compensating changes in enzyme activities return the system to the steady state.
- Cells regulate their metabolism by a variety of mechanisms over a time scale ranging from less than a millisecond to days, either by changing the activity of existing enzyme molecules or by changing the number of molecules of a specific enzyme.
- Various signals activate or inactivate transcription factors, which act in the nucleus to regulate gene expression. Changes in the transcriptome lead to changes in the proteome, and ultimately in the metabolome of a cell or tissue.
- In multistep processes such as glycolysis, certain reactions are essentially at equilibrium in the steady state; the rates of these reactions rise and fall with substrate concentration. Other reactions are far from equilibrium; these steps are typically the points of regulation of the overall pathway.
- Regulatory mechanisms maintain nearly constant levels of key metabolites such as ATP and NADH in cells and glucose in the blood, while matching the use or production of glucose to the organism's changing needs.
- The levels of ATP and AMP are a sensitive reflection of a cell's energy status, and when the \([\text{ATP}] / [\text{AMP}]\) ratio decreases, the AMP-activated protein kinase (AMPK) triggers a variety of cellular responses to raise [ATP] and lower [AMP].

15.2 Analysis of Metabolic Control

Detailed studies of metabolic regulation were not feasible until the basic chemical steps in a pathway had been clarified and the responsible enzymes characterized. Beginning with Eduard Buchner's discovery (c. 1900) that an extract of broken yeast cells could convert glucose to ethanol and CO₂, a major thrust of biochemical research was to deduce the steps by which this transformation occurred and to purify and characterize the enzymes that catalyzed each step. By the middle of the twentieth century, all 10 enzymes of the glycolytic pathway had been purified and characterized. In the next 50 years much was learned about the regulation of these enzymes by intracellular and extracellular signals, through the kinds of allosteric and covalent mechanisms described in this chapter. The conventional wisdom was that in a linear pathway such as glycolysis, catalysis by one enzyme must be the slowest and must therefore determine the rate of metabolite flow, or flux, through the whole pathway. For glycolysis, PFK-1 was considered the rate-limiting enzyme, because it was known to be closely regulated by fructose 2,6-bisphosphate and other allosteric effectors.

With the advent of genetic engineering technology, it became possible to test this "single rate-determining step" hypothesis by increasing the concentration of the enzyme that catalyzes the "rate-limiting step" in a pathway and determining whether flux through the pathway increases proportionally. Most often it does not; the simple solution (a single rate-determining step) is wrong. It has now become clear that in most pathways the control of flux is distributed among several enzymes, and the
extent to which each contributes to the control varies with metabolic circumstances—the supply of the starting material (say, glucose), the supply of oxygen, the need for other products derived from intermediates of the pathway (say, glucose 6-phosphate for the pentose phosphate pathway in cells synthesizing large amounts of nucleotides), the effects of metabolites with regulatory roles, and the hormonal status of the organism (such as the levels of insulin and glucagon), among other factors.

Why are we interested in what limits the flux through a pathway? To understand the action of hormones or drugs, or the pathology that results from a failure of metabolic regulation, we must know where control is exercised. If researchers wish to develop a drug that stimulates or inhibits a pathway, the logical target is the enzyme that has the greatest impact on the flux through that pathway. And the bioengineering of a microorganism to overproduce a product of commercial value (p. 312) requires a knowledge of what limits the flux of metabolites toward that product.

The Contribution of Each Enzyme to Flux through a Pathway Is Experimentally Measurable

There are several ways to determine experimentally how a change in the activity of one enzyme in a pathway affects metabolite flux through that pathway. Consider the experimental results shown in Figure 15-7. When a sample of rat liver was homogenized to release all soluble enzymes, the extract carried out the glycolytic conversion of glucose to fructose 1,6-bisphosphate at a measurable rate. (This experiment, for simplicity, focused on just the first part of the glycolytic pathway.)

![Figure 15-7](image)

Figure 15-7 Dependence of glycolytic flux in a rat liver homogenate on added enzymes. Purified enzymes in the amounts shown on the x axis were added to an extract of liver carrying out glycolysis in vitro. The increase in flux through the pathway is shown on the y axis.

When increasing amounts of purified hexokinase IV (glucokinase) were added to the extract, the rate of glycolysis progressively increased. The addition of purified PFK-1 to the extract also increased the rate of glycolysis, but not as dramatically as did hexokinase. Purified phosphohexose isomerase was without effect. These results suggest that hexokinase and PFK-1 both contribute to setting the flux through the pathway (hexokinase more than PFK-1), and that phosphohexose isomerase does not.

Similar experiments can be done on intact cells or organisms, using specific inhibitors or activators to change the activity of one enzyme while observing the effect on flux through the pathway. The amount of an enzyme can also be altered genetically; bioengineering can produce a cell that makes extra copies of the enzyme under investigation or has a version of the enzyme that is less active than the normal enzyme. Increasing the concentration of an enzyme genetically sometimes has significant effects on flux; sometimes it has no effect.

Three critical parameters, which together describe the responsiveness of a pathway to changes in metabolic circumstances, lie at the center of **metabolic control analysis**. We turn now to a qualitative description of these parameters and their meaning in the context of a living cell. Box 15–1 provides a more rigorous quantitative discussion.

The Control Coefficient Quantifies the Effect of a Change in Enzyme Activity on Metabolite Flux through a Pathway

Quantitative data on metabolic flux, obtained as described in Figure 15–7, can be used to calculate a **flux control coefficient**, \(C \), for each enzyme in a pathway. This coefficient expresses the relative contribution of each enzyme to setting the rate at which metabolites flow through the pathway—that is, the flux, \(J \). \(C \) can have any value from 0.0 (for an enzyme with no impact on the flux) to 1.0 (for an enzyme that wholly determines the flux). An enzyme can also have a **negative** flux control coefficient. In a branched pathway, an enzyme in one branch, by drawing intermediates away from the other branch, can have a negative impact on the flux through that other branch (Fig. 15–8). \(C \) is not a constant, and it
The factors that influence the flow of intermediates (flux) through a pathway may be determined quantitatively by experiment and expressed in terms useful for predicting the change in flux when some factor involved in the pathway changes. Consider the simple reaction sequence in Figure 1, in which a substrate X (say, glucose) is converted in several steps to a product Z (perhaps pyruvate, formed glycolytically). An enzyme late in the pathway is a dehydrogenase (ydh) that acts on substrate Y. Because the action of a dehydrogenase is easily measured (see Fig. 1B-24), we can use the flux (J) through this step (JvarJ to measure the flux through the whole path. We manipulate experimentally the level of an early enzyme in the pathway (xase, which acts on the substrate X) and measure the flux through the path (JvorJ for several levels of the enzyme xase.

The relationship between the flux through the pathway from X to Z in the intact cell and the concentration of each enzyme in the path should be hyperbolic, with virtually no flux at infinitely low enzyme activity and near-maximum flux at very high enzyme activity. In a plot of Jydh against the concentration of xase, E_xase, the change in flux with a small change in enzyme level is \(\partial J_{ydh}/\partial E_{xase} \), which is simply the slope of the tangent to the curve at any concentration of enzyme, E_xase, and which tends toward zero at saturating E_xase. At low E_xase, the slope is steep; the flux increases with each incremental increase in enzyme activity. At very high E_xase, the slope is much smaller; the system is less responsive to added xase because it is already present in excess over the other enzymes in the pathway.

To show quantitatively the dependence of flux through the pathway, \(\partial J_{ydh} / \partial E_{xase} \), we could use the ratio \(\partial J_{ydh} / \partial E_{xase} \). However, its usefulness is limited because its value depends on the units used to express flux and enzyme activity. By expressing the fractional changes in flux and enzyme activity, \(\partial J_{ydh} / J_{ydh} \) and \(\partial E_{xase} / E_{xase} \), we obtain a unitless expression for the flux control coefficient, C, in this case \(C_{xase} \):

\[
C_{xase} = \frac{\partial J_{ydh}}{J_{ydh}} \frac{\partial E_{xase}}{E_{xase}}
\]

This can be rearranged to

\[
C_{xase} = \frac{\partial J_{ydh}}{J_{ydh}} \frac{E_{xase}}{E_{xase}}
\]

which is mathematically identical to

\[
C_{xase} = \frac{\partial \ln J_{ydh}}{\partial \ln E_{xase}}
\]

This equation suggests a simple graphical means for determining the flux control coefficient: \(C_{xase} \) is the slope of the tangent to the plot of ln J_ydh versus ln E_xase, which can be obtained by replotted the experimental data in Figure 2a to obtain Figure 2b. Notice that \(C_{xase} \) is not a constant; it depends on the starting E_xase from which the change in enzyme level takes place. For the cases shown in Figure 2, \(C_{xase} \) is about 1.0 at the lowest E_xase, but only about 0.2 at high E_xase. A value near 1.0 for \(C_{xase} \) means that the enzyme's concentration wholly determines the flux through the pathway; a value near 0.0 means that the enzyme's concentration does not limit the flux through the path. Unless the flux control coefficient is greater than about 0.5, changes in the activity of the enzyme will not have a strong effect on the flux.

The elasticity, \(e \), of an enzyme is a measure of how that enzyme's catalytic activity changes when the concentration of a metabolite—substrate, product, or effector—changes. It is obtained from an experimental plot of the rate of the reaction catalyzed by the enzyme versus the concentration of the metabolite, at metabolite concentrations that prevail in the cell. By arguments analogous to those used to derive C, we can show e to be the slope of the tangent to a plot of ln V versus ln [substrate, or product, or effector]:

\[
e_{xase} = \frac{\partial V_{xase}}{\partial S} \cdot \frac{S}{V_{xase}} = \frac{\partial \ln V_{xase}}{\partial \ln S}
\]

For an enzyme with typical Michaelis-Menten kinetics, the value of \(e \) ranges from about 1 at substrate concentrations far below \(K_m \) to near 0 as \(V_{max} \) is approached. Allosteric enzymes can have elasticities greater than 1.0, but not larger than their Hill coefficient (p. 164).

Finally, the effect of controllers outside the pathway itself (that is, not metabolites) can be measured and expressed as the response coefficient, R. The change in flux through the pathway is measured for changes in the concentration of the controlling parameter \(P \), and \(R \) is defined in a form analogous to that of Equation 1, yielding the expression

\[
R_{P} = \frac{\partial J_{ydh}}{\partial P} \cdot \frac{P}{J_{ydh}}
\]

(continued on next page)
BOX 15–1 METHODS Metabolic Control Analysis: Quantitative Aspects (continued from previous page)

Using the same logic and graphical methods as described above for determining C, we can obtain R as the slope of the tangent to the plot of $\ln J$ versus $\ln P$.

The three coefficients we have described are related in this simple way:

$$R_{ydh}^{\text{flux}} = C^{\text{ef}}_{xase} \cdot e^{\text{ef}}_{xase}$$

Thus the responsiveness of each enzyme in a pathway to a change in an outside controlling factor is a simple function of two things: the control coefficient, a variable that expresses the extent to which that enzyme influences the flux under a given set of conditions, and the elasticity, an intrinsic property of the enzyme that reflects its sensitivity to substrate and effector concentrations.

is not intrinsic to a single enzyme; it is a function of the whole system of enzymes, and its value depends on the concentrations of substrates and effectors.

When real data from the experiment on glycolysis in a rat liver extract (Fig. 15–7) were subjected to this kind of analysis, investigators found flux control coefficients (for enzymes at the concentrations found in the extract) of 0.79 for hexokinase, 0.21 for PFK-1, and 0.0 for phosphohexose isomerase. It is not just fortuitous that these values add up to 1.0; we can show that for any complete pathway, the sum of the flux control coefficients must equal unity.

The Elasticity Coefficient Is Related to an Enzyme's Responsiveness to Changes in Metabolite or Regulator Concentrations

A second parameter, the elasticity coefficient, e, expresses quantitatively the responsiveness of a single enzyme to changes in the concentration of a metabolite or regulator; it is a function of the enzyme’s intrinsic kinetic properties. For example, an enzyme with typical Michaelis-Menten kinetics shows a hyperbolic response to increasing substrate concentration (Fig. 15–9). At

![FIGURE 15-9 Elasticity coefficient, e, of an enzyme with typical Michaelis-Menten kinetics. At substrate concentrations far below the K_m, each increase in [S] produces a correspondingly large increase in the reaction velocity, v. For this region of the curve, the enzyme has an e of about 1.0. At $[S] \gg K_m$, increasing [S] has little effect on v; e here is close to 0.0.](image)
low concentrations of substrate (say, 0.1 K_m) each increment in substrate concentration results in a comparable increase in enzymatic activity, yielding an e near 1.0. At relatively high substrate concentrations (say, 10 K_m), increasing the substrate concentration has little effect on the reaction rate, because the enzyme is already saturated with substrate. The elasticity in this case approaches zero. For allosteric enzymes that show positive cooperativity, e may exceed 1.0, but it cannot exceed the Hill coefficient, which is typically between 1.0 and 4.0.

The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a Pathway

We can also derive a quantitative expression for the relative impact of an outside factor (such as a hormone or growth factor), which is neither a metabolite nor an enzyme in the pathway, on the flux through the pathway. The experiment would measure the flux through the pathway (glycolysis, in this case) at various levels of the parameter P (the insulin concentration, for example) to obtain the response coefficient, R, which expresses the change in pathway flux when P ([insulin]) changes.

The three coefficients C, e, and R are related in a simple way: the responsiveness (R) of a pathway to an outside factor that affects a certain enzyme is a function of (1) how sensitive the pathway is to changes in the activity of that enzyme (the control coefficient, C) and (2) how sensitive that specific enzyme is to changes in the outside controlling factor (the elasticity, e):

$$R = C \cdot e$$

Each enzyme in the pathway can be examined in this way, and the effects of any of several outside factors on flux through the pathway can be separately determined. Thus, in principle, we can predict how the flux of substrate through a series of enzymatic steps will change when there is a change in one or more controlling factors external to the pathway. Box 15–1 shows how these qualitative concepts are treated quantitatively.

Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising Results

Metabolic control analysis provides a framework within which we can think quantitatively about regulation, interpret the significance of the regulatory properties of each enzyme in a pathway, identify the steps that most affect the flux through the pathway, and distinguish between regulatory mechanisms that act to maintain metabolite concentrations and control mechanisms that actually alter the flux through the pathway. Analysis of the glycolytic pathway in yeast, for example, has revealed an unexpectedly low flux control coefficient for PFK-1, which, as we have noted, has been viewed as the main point of flux control—the “rate-determining step”—in glycolysis. Experimentally raising the level of PFK-1 fivefold led to a change in flux through glycolysis of less than 10%, suggesting that the real role of PFK-1 regulation is not to control flux through glycolysis but to mediate metabolite homeostasis—to prevent large changes in metabolite concentrations when the flux through glycolysis increases in response to elevated blood glucose or insulin. Recall that the study of glycolysis in a liver extract (Fig. 15–7) also yielded a flux control coefficient that contradicted the conventional wisdom; it showed that hexokinase, not PFK-1, is most influential in setting the flux through glycolysis. We must note here that a liver extract is far from equivalent to a hepatocyte; the ideal way to study flux control is by manipulating one enzyme at a time in the living cell. This is already feasible in many cases.

Investigators have used nuclear magnetic resonance (NMR) as a noninvasive means to determine the concentration of glycogen and metabolites in the five-step pathway from glucose in the blood to glycogen in myocytes (Fig. 15–10) in rat and human muscle. They found that the flux control coefficient for glycogen synthase was smaller than that for the steps catalyzed by the glucose transporter and hexokinase. (We discuss glycogen synthase and other enzymes of glycogen metabolism in Sections 15.4 and 15.5.) This finding contradicts the conventional wisdom that glycogen synthase is the locus of flux control and suggests that the importance of the phosphorylation/dephosphorylation of glycogen synthase is related instead to the maintenance of metabolite homeostasis—that is, regulation, not control. Two metabolites in this pathway, glucose and glucose 6-phosphate, are key intermediates in other pathways, including glycolysis, the

![Diagram of glycogen synthesis from blood glucose in muscle](image-url)
pentose phosphate pathway, and the synthesis of glucosamine. Metabolic control analysis suggests that when the blood glucose level rises, insulin acts in muscle to (1) increase glucose transport into cells by conveying GLUT4 to the plasma membrane, (2) induce the synthesis of hexokinase, and (3) activate glycogen synthase by covalent alteration (see Fig. 15–39). The first two effects of insulin increase glucose flux through the pathway (control), and the third serves to adapt the activity of glycogen synthase so that metabolite levels (glucose 6-phosphate, for example) will not change dramatically with the increased flux (regulation).

Metabolic Control Analysis Suggests a General Method for Increasing Flux through a Pathway

How could an investigator engineer a cell to increase the flux through one pathway without altering the concentrations of other metabolites or the fluxes through other pathways? More than three decades ago Henrik Kacser predicted, on the basis of metabolic control analysis, that this could be accomplished by increasing the concentrations of every enzyme in a pathway. The prediction has been confirmed in several experimental tests, and it also fits with the way cells normally control fluxes through a pathway. For example, rats fed a high-protein diet dispose of excess amino groups by converting them to urea in the urea cycle (Chapter 18). After such a dietary shift, the urea output increases fourfold, and the amount of all eight enzymes in the urea cycle increases two- to threefold. Similarly, when increased fatty acid oxidation is triggered by activation of peroxisome proliferator-activated receptor γ (PPARγ, a ligand-activated transcription factor; see Fig. 21–22), synthesis of the whole set of fatty acid oxidative enzymes is increased. With the growing use of DNA microarrays to study the expression of whole sets of genes in response to various perturbations, we should soon learn whether this is the general mechanism by which cells make long-term adjustments in flux through specific pathways.

SUMMARY 15.2 Analysis of Metabolic Control

- Metabolic control analysis shows that control of the rate of metabolite flux through a pathway is distributed among several of the enzymes in that path.
- The flux control coefficient, C, is an experimentally determined measure of the effect of an enzyme’s concentration on flux through a multienzyme pathway. It is characteristic of the whole system, not intrinsic to the enzyme.
- The elasticity coefficient, e, of an enzyme is an experimentally determined measure of its responsiveness to changes in the concentration of a metabolite or regulator molecule.

- The response coefficient, R, is a measure of the experimentally determined change in flux through a pathway in response to a regulatory hormone or second messenger. It is a function of C and e: $R = C \cdot e$.
- Some regulated enzymes control the flux through a pathway, while others rebalance the level of metabolites in response to the change in flux. The first activity is control; the second, rebalancing activity is regulation.
- Metabolic control analysis predicts, and experiments have confirmed, that flux toward a specific product is most effectively increased by raising the concentration of all enzymes in the pathway.

15.3 Coordinated Regulation of Glycolysis and Gluconeogenesis

In mammals, gluconeogenesis occurs primarily in the liver, where its role is to provide glucose for export to other tissues when glycogen stores are exhausted and when no dietary glucose is available. As we discussed in Chapter 14, gluconeogenesis employs several of the enzymes that act in glycolysis, but it is not simply the reversal of glycolysis. Seven of the glycolytic reactions are freely reversible, and the enzymes that catalyze these reactions also function in gluconeogenesis (Fig. 15–11). Three reactions of glycolysis are so exergonic as to be essentially irreversible: those catalyzed by hexokinase, PFK-1, and pyruvate kinase. All three reactions have a large, negative $\Delta G'$ (Table 15–3 shows the values in heart muscle). Gluconeogenesis uses detours around each of these irreversible steps; for example, the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate is catalyzed by fructose 1,6-bisphosphatase (FBPase-1). Each of these bypass reactions also has a large, negative $\Delta G'$.

At each of the three points where glycolytic reactions are bypassed by alternative, gluconeogenic reactions, simultaneous operation of both pathways would consume ATP without accomplishing any chemical or biological work. For example, PFK-1 and FBPase-1 catalyze opposing reactions:

$$\text{ATP + fructose 6-phosphate} \xrightarrow{\text{PFK-1}} \text{ADP + fructose 1,6-bisphosphate}$$
$$\text{Fructose 1,6-bisphosphate + H}_2\text{O} \xrightarrow{\text{FBPase-1}} \text{fructose 6-phosphate + P}_i$$

The sum of these two reactions is

$$\text{ATP + H}_2\text{O} \rightarrow \text{ADP + P}_i + \text{heat}$$

that is, hydrolysis of ATP without any useful metabolic work being done. Clearly, if these two reactions were allowed to proceed simultaneously at a high rate in the same cell, a large amount of chemical energy would be dissipated as heat. This uneconomical process has been
called a **futile cycle**. However, as we shall see later, such cycles may provide advantages for controlling pathways, and the term **substrate cycle** is a better description. Similar substrate cycles also occur with the other two sets of bypass reactions of gluconeogenesis (Fig. 15-11).

We look now in some detail at the mechanisms that regulate glycolysis and gluconeogenesis at the three points where these pathways diverge.

Hexokinase Isozymes of Muscle and Liver Are Affected Differently by Their Product, Glucose 6-Phosphate

Hexokinase, which catalyzes the entry of glucose into the glycolytic pathway, is a regulatory enzyme. Humans have four isozymes (designated I to IV), encoded by four different genes. Isozymes are different proteins that catalyze the same reaction (Box 15-2). The predominant hexokinase isozyme of myocytes (**hexokinase II**) has a high affinity for glucose—it is half-saturated at about 0.1 mM. Because glucose entering myocytes from the blood (where the glucose concentration is 4 to 5 mM) produces an intracellular glucose concentration high enough to saturate hexokinase II, the enzyme normally acts at or near its maximal rate. Muscle **hexokinase I** and hexokinase II are allosterically inhibited by their product, glucose 6-phosphate, so whenever the cellular concentration of glucose 6-phosphate rises above its normal level, these isozymes are temporarily and reversibly inhibited, bringing the rate of glucose 6-phosphate
The four forms of hexokinase found in mammalian tissues are but one example of a common biological situation: the same reaction catalyzed by two or more different molecular forms of an enzyme. These multiple forms, called isozymes or isoenzymes, may occur in the same species, in the same tissue, or even in the same cell. The different forms (isoforms) of the enzyme generally differ in kinetic or regulatory properties, in the cofactor they use (NADH or NADPH for dehydrogenase isozymes, for example), or in their subcellular distribution (soluble or membrane-bound). Isozymes may have similar, but not identical, amino acid sequences, and in many cases they clearly share a common evolutionary origin.

One of the first enzymes found to have isozymes was lactate dehydrogenase (LDH; p. 547), which in vertebrate tissues exists as at least five different isozymes separable by electrophoresis. All LDH isozymes contain four polypeptide chains (each of Mr 33,500), each type containing a different ratio of two kinds of polypeptides. The M (for muscle) chain and the H (for heart) chain are encoded by two different genes.

In skeletal muscle the predominant isozyme contains four M chains, and in heart the predominant isozyme contains four H chains. Other tissues have some combination of the five possible types of LDH isozymes:

<table>
<thead>
<tr>
<th>Type</th>
<th>Composition</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH1</td>
<td>HHHH</td>
<td>Heart and erythrocyte</td>
</tr>
<tr>
<td>LDH2</td>
<td>HHHM</td>
<td>Heart and erythrocyte</td>
</tr>
<tr>
<td>LDH3</td>
<td>HHMM</td>
<td>Brain and kidney</td>
</tr>
<tr>
<td>LDH4</td>
<td>HMMM</td>
<td>Skeletal muscle and liver</td>
</tr>
<tr>
<td>LDH5</td>
<td>MMMM</td>
<td>Skeletal muscle and liver</td>
</tr>
</tbody>
</table>

The differences in the isozyme content of tissues can be used to assess the timing and extent of heart damage due to myocardial infarction (heart attack). Damage to heart tissue results in the release of heart LDH into the blood. Shortly after a heart attack, the blood level of total LDH increases, and there is more LDH2 than LDH1. After 12 hours the amounts of LDH1 and LDH2 are very similar, and after 24 hours there is more LDH1 than LDH2. This switch in the \([\text{LDH}_1]/[\text{LDH}_2]\) ratio, combined with increased concentrations in the blood of another heart enzyme, creatine kinase, is very strong evidence of a recent myocardial infarction.

The different LDH isozymes have significantly different values of \(V_{\text{max}}\) and \(K_m\), particularly for pyruvate. The properties of LDH2 favor rapid reduction of very low concentrations of pyruvate to lactate in skeletal muscle, whereas those of isozyme LDH1 favor rapid oxidation of lactate to pyruvate in the heart.

In general, the distribution of different isozymes of a given enzyme reflects at least four factors:

1. **Different metabolic patterns in different organs.** For glycogen phosphorylase, the isozymes in skeletal muscle and liver have different regulatory properties, reflecting the different roles of glycogen breakdown in these two tissues.

2. **Different locations and metabolic roles for isozymes in the same cell.** The isocitrate dehydrogenase isozymes of the cytosol and the mitochondrion are an example (Chapter 16).

3. **Different stages of development in embryonic or fetal tissues and in adult tissues.** For example, the fetal liver has a characteristic isozyme distribution of LDH, which changes as the organ develops into its adult form. Some enzymes of glucose catabolism in malignant (cancer) cells occur as their fetal, not adult, isozymes.

4. **Different responses of isozymes to allosteric modulators.** This difference is useful in fine-tuning metabolic rates. Hexokinase IV (glucokinase) of liver and the hexokinase isozymes of other tissues differ in their sensitivity to inhibition by glucose 6-phosphate.
Glucose concentration (mM)

FIGURE 15-12 Comparison of the kinetic properties of hexokinase IV (glucokinase) and hexokinase I. Note the sigmoidicity for hexokinase IV and the much lower K_m for hexokinase I. When blood glucose rises above 5 mM, hexokinase IV activity increases, but hexokinase I is already operating near V_{max} and cannot respond to an increase in glucose concentration. Hexokinases I, II, and III have similar kinetic properties.

of low blood glucose, the glucose concentration in a hepatocyte is low relative to the K_m of hexokinase IV, and the glucose generated by gluconeogenesis leaves the cell before being trapped by phosphorylation.

Second, hexokinase IV is not inhibited by glucose 6-phosphate, and it can therefore continue to operate when the accumulation of glucose 6-phosphate completely inhibits hexokinases I-III. Finally, hexokinase IV is subject to inhibition by the reversible binding of a regulatory protein specific to liver (Fig. 15-13). The binding is much tighter in the presence of the allosteric effector fructose 6-phosphate. Glucose competes with fructose 6-phosphate for binding and causes dissociation of the regulatory protein from the hexokinase, relieving the inhibition. Immediately after a carbohydrate-rich meal, when blood glucose is high, glucose enters the hepatocyte via GLUT2 and activates hexokinase IV by this mechanism. During a fast, when blood glucose drops below 5 mM, fructose 6-phosphate triggers the inhibition of hexokinase IV by the regulatory protein, so the liver does not compete with other organs for the scarce glucose. The mechanism of inhibition by the regulatory protein is interesting: the protein anchors hexokinase IV inside the nucleus, where it is segregated from the other enzymes of glycolysis in the cytosol (Fig. 15-13). When the glucose concentration in the cytosol rises, it equilibrates with glucose in the nucleus by transport through the nuclear pores. Glucose causes dissociation of the regulatory protein, and hexokinase IV enters the cytosol and begins to phosphorylate glucose.

Hexokinase IV (Glucokinase) and Glucose 6-Phosphatase Are Transcriptionally Regulated

Hexokinase IV is also regulated at the level of protein synthesis. Circumstances that call for greater energy production (low [ATP], high [AMP], vigorous muscle contraction) or for greater glucose consumption (high blood glucose, for example) cause increased transcription of the hexokinase IV gene. Glucose 6-phosphatase, the gluconeogenic enzyme that bypasses the hexokinase step of glycolysis, is transcriptionally regulated by factors that call for increased production of glucose (low blood glucose, glucagon signaling). The transcriptional regulation of these two enzymes (along with other enzymes of glycolysis and gluconeogenesis) is described below.

Phosphofructokinase-1 and Fructose 1,6-bisphosphatase Are Reciprocally Regulated

As we have noted, glucose 6-phosphate can flow either into glycolysis or through any of several other pathways, including glycogen synthesis and the pentose phosphate pathway. The metabolically irreversible reaction catalyzed by PFK-1 is the step that commits glucose to glycolysis. In addition to its substrate-binding sites, this complex enzyme has several regulatory sites at which allosteric activators or inhibitors bind.
ATP is not only a substrate for PFK-1 but also an end product of the glycolytic pathway. When high cellular [ATP] signals that ATP is being produced faster than it is being consumed, ATP inhibits PFK-1 by binding to an allosteric site and lowering the affinity of the enzyme for its substrate fructose 6-phosphate (Fig. 15–14). ADP and AMP, which increase in concentration as consumption of ATP outpaces production, act allosterically to relieve this inhibition by ATP. These effects combine to produce higher enzyme activity when ADP or AMP accumulates and lower activity when ATP accumulates.

Citrate (the ionized form of citric acid), a key intermediate in the aerobic oxidation of pyruvate, fatty acids, and amino acids, is also an allosteric regulator of PFK-1; high citrate concentration increases the inhibitory effect of ATP, further reducing the flow of glucose through glycolysis. In this case, as in several others encountered later, citrate serves as an intracellular signal that the cell is meeting its current needs for energy-yielding metabolism by the oxidation of fats and proteins.

The corresponding step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate (Fig. 15–15). The enzyme that catalyzes this reaction, FBPase-1, is strongly inhibited (allosterically) by AMP; when the cell’s supply of ATP is low (corresponding to high [AMP]), the ATP-requiring synthesis of glucose slows.

Thus these opposing steps in the glycolytic and gluconeogenic pathways—PFK-1 and FBPase-1—are regulated in a coordinated and reciprocal manner. In general, when sufficient concentrations of acetyl-CoA or citrate (the
product of acetyl-CoA condensation with oxaloacetate) are present, or when a high proportion of the cell’s adenylate is in the form of ATP, gluconeogenesis is favored. When the level of AMP increases, it promotes glycolysis by stimulating PFK-1 (and, as we shall see in Section 15.5, promotes glycogen degradation by activating glycogen phosphorylase).

Fructose 2,6-Bisphosphate Is a Potent Allosteric Regulator of PFK-1 and FBPase-1

The special role of liver in maintaining a constant blood glucose level requires additional regulatory mechanisms to coordinate glucose production and consumption. When the blood glucose level decreases, the hormone glucagon signals the liver to produce and release more glucose and to stop consuming it for its own needs. One source of glucose is glycogen stored in the liver; another source is gluconeogenesis, using pyruvate, lactate, glycerol, or certain amino acids as starting material. When blood glucose is high, insulin signals the liver to use glucose as a fuel and as a precursor for the synthesis and storage of glycogen and triacylglycerol.

The rapid hormonal regulation of glycolysis and gluconeogenesis is mediated by **fructose 2,6-bisphosphate**, an allosteric effector for the enzymes PFK-1 and FBPase-1:

![Fructose 2,6-bisphosphate](image)

When fructose 2,6-bisphosphate binds to its allosteric site on PFK-1, it increases the enzyme's affinity for its substrate fructose 6-phosphate and reduces its affinity for the allosteric inhibitors ATP and citrate (Fig. 15-16). At the physiological concentrations of its substrates, ATP and fructose 6-phosphate, and of other positive and negative effectors (ATP, AMP, citrate), PFK-1 is virtually inactive in the absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate has the opposite effect on FBPase-1: it reduces its

FIGURE 15-16 Role of fructose 2,6-bisphosphate in regulation of glycolysis and gluconeogenesis. Fructose 2,6-bisphosphate (F26BP) has opposite effects on the enzymatic activities of phosphofructokinase-1 (PFK-1, a glycolytic enzyme) and fructose 1,6-bisphosphatase (FBPase-1, a gluconeogenic enzyme). (a) PFK-1 activity in the absence of F26BP (blue curve) is half-maximal when the concentration of fructose 6-phosphate is 2 mM (that is, K_{0.5} = 2 mM). When 0.13 μM F26BP is present (red curve), the K_{0.5} for fructose 6-phosphate is only 0.08 mM. Thus F26BP activates PFK-1 by increasing its apparent affinity for fructose 6-phosphate (see Fig. 15-14b). (b) FBPase-1 activity is inhibited by as little as 1 μM F26BP and is strongly inhibited by 25 μM. In the absence of this inhibitor (blue curve) the K_{0.5} for fructose 1,6-bisphosphate is 5 μM, but in the presence of 25 μM F26BP (red curve) the K_{0.5} is >70 μM. Fructose 2,6-bisphosphate also makes FBPase-1 more sensitive to inhibition by another allosteric regulator, AMP. (c) Summary of regulation by F26BP.
FIGURE 15–17 Regulation of fructose 2,6-bisphosphate level. (a) The cellular concentration of the regulator fructose 2,6-bisphosphate (F26BP) is determined by the rates of its synthesis by phosphofructokinase-2 (PFK-2) and its breakdown by fructose 2,6-bisphosphatase (FBPase-2). (b) Both enzyme activities are part of the same polypeptide chain, and they are reciprocally regulated by insulin and glucagon.

affinity for its substrate (Fig. 15–16c), thereby slowing gluconeogenesis.

The cellular concentration of the allosteric regulator fructose 2,6-bisphosphate is set by the relative rates of its formation and breakdown (Fig. 15–17a). It is formed by phosphorylation of fructose 6-phosphate, catalyzed by phosphofructokinase-2 (PFK-2), and is broken down by fructose 2,6-bisphosphatase (FBPase-2). (Note that these enzymes are distinct from PFK-1 and FBPase-1, which catalyze the formation and breakdown, respectively, of fructose 1,6-bisphosphate.) PFK-2 and FBPase-2 are two separate enzymatic activities of a single, bifunctional protein. The balance of these two activities in the liver, which determines the cellular level of fructose 2,6-bisphosphate, is regulated by glucagon and insulin (Fig. 15–17b).

As we saw in Chapter 12 (p. 431), glucagon stimulates the adenyl cyclase of liver to synthesize 3',5'-cyclic AMP (cAMP) from ATP. Cyclic AMP then activates cAMP-dependent protein kinase, which transfers a phosphoryl group from ATP to the bifunctional protein PFK-2/FBPase-2. Phosphorylation of this protein enhances its FBPase-2 activity and inhibits its PFK-2 activity. Glucagon thereby lowers the cellular level of fructose 2,6-bisphosphate, inhibiting glycolysis and stimulating gluconeogenesis. The resulting production of more glucose enables the liver to replenish blood glucose in response to glucagon. Insulin has the opposite effect, stimulating the activity of a phosphoprotein phosphatase that catalyzes removal of the phosphoryl group from the bifunctional protein PFK-2/FBPase-2, activating its PFK-2 activity, increasing the level of fructose 2,6-bisphosphate, stimulating glycolysis, and inhibiting gluconeogenesis.

Xylulose 5-Phosphate Is a Key Regulator of Carbohydrate and Fat Metabolism

Another regulatory mechanism also acts by controlling the level of fructose 2,6-bisphosphate. In the mammalian liver, xylulose 5-phosphate (see p. 560), a product of the pentose phosphate pathway (hexose monophosphate pathway), mediates the increase in glycolysis that follows ingestion of a high-carbohydrate meal. The xylulose 5-phosphate concentration rises as glucose entering the liver is converted to glucose 6-phosphate and enters both the glycolytic and pentose phosphate pathways. Xylulose 5-phosphate activates phosphoprotein phosphatase 2A (PP2A; Fig. 15–18), which dephosphorylates the bifunctional PFK-2/FBPase-2 enzyme (Fig. 15–17). Dephosphorylation activates PFK-2 and inhibits FBPase-2, and the resulting rise in fructose 2,6-bisphosphate concentration stimulates glycolysis and inhibits gluconeogenesis. The increased glycolysis boosts the production of acetyl-CoA, while the increased flow of hexose through the pentose phosphate pathway generates NADPH. Acetyl-CoA and NADPH are the starting materials for fatty acid synthesis, which has long been known to increase dramatically in response to intake of a high-carbohydrate meal. Xylulose 5-phosphate also increases the synthesis of all the enzymes required for fatty acid synthesis, meeting the prediction from metabolic control analysis. We return to this effect in our discussion of the integration of carbohydrate and lipid metabolism in Chapter 23.

The Glycolytic Enzyme Pyruvate Kinase Is Allosterically Inhibited by ATP

At least three isoforms of pyruvate kinase are found in vertebrates, differing in their tissue distribution and
their response to modulators. High concentrations of ATP, acetyl-CoA, and long-chain fatty acids (signs of abundant energy supply) allosterically inhibit all isozymes of pyruvate kinase (Fig. 15–19). The liver isozyme (L form), but not the muscle isozyme (M form), is subject to further regulation by phosphorylation. When low blood glucose causes glucagon release, cAMP-dependent protein kinase phosphorylates the L isozyme of pyruvate kinase, inactivating it. This slows the use of glucose as a fuel in liver, sparing it for export to the brain and other organs. In muscle, the effect of increased [cAMP] is quite different. In response to epinephrine, cAMP activates glycogen breakdown and glycolysis and provides the fuel needed for the fight-or-flight response.

![Diagram of phosphoprotein phosphatase 2A (PP2A)](a) The catalytic subunit has two Mn²⁺ ions in its active site, positioned close to the substrate recognition surface formed by the interface between the catalytic subunit and the regulatory subunit (PDB ID 2NPP). Microcystin-LR, shown here in red, is a specific inhibitor of PP2A. The catalytic and regulatory subunits rest in a scaffold (the A subunit) that positions them relative to each other and shapes the substrate recognition site. (b) PP2A recognizes several target proteins, its specificity provided by the regulatory subunit. Each of several regulatory subunits fits the scaffold containing the catalytic subunit, and each regulatory subunit creates its unique substrate-binding site.

FIGURE 15–18 Structure and action of phosphoprotein phosphatase 2A (PP2A). (a) The catalytic subunit has two Mn²⁺ ions in its active site, positioned close to the substrate recognition surface formed by the interface between the catalytic subunit and the regulatory subunit (PDB ID 2NPP). Microcystin-LR, shown here in red, is a specific inhibitor of PP2A. The catalytic and regulatory subunits rest in a scaffold (the A subunit) that positions them relative to each other and shapes the substrate recognition site. (b) PP2A recognizes several target proteins, its specificity provided by the regulatory subunit. Each of several regulatory subunits fits the scaffold containing the catalytic subunit, and each regulatory subunit creates its unique substrate-binding site.

![Diagram of glycolysis regulation](Liver only) The enzyme is allosterically inhibited by ATP, acetyl-CoA, and long-chain fatty acids (all signs of an abundant energy supply), and the accumulation of fructose 1,6-bisphosphate triggers its activation. Accumulation of alanine, which can be synthesized from pyruvate in one step, allosterically inhibits pyruvate kinase, slowing the production of pyruvate by glycolysis. The liver isozyme (L form) is also regulated hormonally. Glucagon activates cAMP-dependent protein kinase (PKA; see Fig. 15–35), which phosphorylates the pyruvate kinase L isozyme, inactivating it. When the glucagon level drops, a protein phosphatase (PP) dephosphorylates pyruvate kinase, activating it. This mechanism prevents the liver from consuming glucose by glycolysis when blood glucose is low; instead, the liver exports glucose. The muscle isozyme (M form) is not affected by this phosphorylation mechanism.

FIGURE 15–19 Regulation of pyruvate kinase. The enzyme is allosterically inhibited by ATP, acetyl-CoA, and long-chain fatty acids (all signs of an abundant energy supply), and the accumulation of fructose 1,6-bisphosphate triggers its activation. Accumulation of alanine, which can be synthesized from pyruvate in one step, allosterically inhibits pyruvate kinase, slowing the production of pyruvate by glycolysis. The liver isozyme (L form) is also regulated hormonally. Glucagon activates cAMP-dependent protein kinase (PKA; see Fig. 15–35), which phosphorylates the pyruvate kinase L isozyme, inactivating it. When the glucagon level drops, a protein phosphatase (PP) dephosphorylates pyruvate kinase, activating it. This mechanism prevents the liver from consuming glucose by glycolysis when blood glucose is low; instead, the liver exports glucose. The muscle isozyme (M form) is not affected by this phosphorylation mechanism.
The Gluconeogenic Conversion of Pyruvate to Phosphoenolpyruvate Is Under Multiple Types of Regulation

In the pathway leading from pyruvate to glucose, the first control point determines the fate of pyruvate in the mitochondrion: its conversion either to acetyl-CoA (by the pyruvate dehydrogenase complex) to fuel the citric acid cycle (Chapter 16) or to oxaloacetate (by pyruvate carboxylase) to start the process of gluconeogenesis (Fig. 15–20). When fatty acids are readily available as fuels, their breakdown in liver mitochondria yields acetyl-CoA, a signal that further oxidation of glucose for fuel is not necessary. Acetyl-CoA is a positive allosteric modulator of pyruvate carboxylase and a negative modulator of pyruvate dehydrogenase, through stimulation of a protein kinase that inactivates the dehydrogenase. When the cell’s energy needs are being met, oxidative phosphorylation slows, NADH rises relative to NAD⁺ and inhibits the citric acid cycle, and acetyl-CoA accumulates. The increased concentration of acetyl-CoA inhibits the pyruvate dehydrogenase complex, slowing the formation of acetyl-CoA from pyruvate, and stimulates gluconeogenesis by activating pyruvate carboxylase, allowing conversion of excess pyruvate to oxaloacetate (and, eventually, glucose).

Oxaloacetate formed in this way is converted to phosphoenolpyruvate (PEP) in the reaction catalyzed by PEP carboxykinase (Fig. 15–11). In mammals, the regulation of this key enzyme occurs primarily at the level of its synthesis and breakdown, in response to dietary and hormonal signals. Fasting or high glucagon levels act through cAMP to increase the rate of transcription and to stabilize the mRNA. Insulin, or high blood glucose, has the opposite effects. We discuss this transcriptional regulation in more detail below. Generally triggered by a signal from outside the cell (diet, hormones), these changes take place on a time scale of minutes to hours.

Transcriptional Regulation of Glycolysis and Gluconeogenesis Changes the Number of Enzyme Molecules

Most of the regulatory actions discussed thus far are mediated by fast, quickly reversible mechanisms: allosteric effects, covalent alteration (phosphorylation) of the enzyme, or binding of a regulatory protein. Another set of regulatory processes involves changes in the number of molecules of an enzyme in the cell, through changes in the balance of enzyme synthesis and breakdown, and our discussion now turns to regulation of transcription through signal-activated transcription factors.

In Chapter 12 we encountered nuclear receptors and transcription factors in the context of insulin signaling. Insulin acts through its receptor in the plasma membrane to turn on at least two distinct signaling pathways, each involving activation of a protein kinase. The MAP kinase ERK, for example, phosphorylates the transcription factors SRF and Elk1 (see Fig. 12–15), which then stimulate the synthesis of enzymes needed for cell growth and division. Protein kinase B (PKB; also called Akt) phosphorylates another set of transcription factors (PDX1, for example), and these stimulate the synthesis of enzymes that metabolize carbohydrates and the fats formed and stored following excess carbohydrate intake in the diet. In pancreatic β cells, PDX1 also stimulates the synthesis of insulin itself.

More than 150 genes are transcriptionally regulated by insulin; humans have at least seven general types of insulin response elements, each recognized by a subset of transcription factors activated by insulin under various conditions. Insulin stimulates the transcription of the genes that encode hexokinases II and IV, PFK-1, pyruvate kinase, and PFK-2/FBPase-2 (all involved in glycolysis and its regulation); several enzymes of fatty acid synthesis; and glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, enzymes of the pentose phosphate pathway that generate the NADPH required for fatty acid synthesis. Insulin also slows the
expression of the genes for two enzymes of gluconeogenesis: PEP carboxykinase and glucose 6-phosphatase (Table 15-5).

One transcription factor important to carbohydrate metabolism is ChREBP (carbohydrate response element binding protein; Fig. 15-21), which is expressed primarily in liver, adipose tissue, and kidney. It serves to coordinate the synthesis of enzymes needed for carbohydrate and fat synthesis. ChREBP in its inactive state is phosphorylated, and is located in the cytosol. When the phosphoprotein phosphatase PP2A (Fig. 15-18) removes a phosphoryl group from ChREBP, the transcription factor can enter the nucleus. Here, nuclear PP2A removes another phosphoryl group, and ChREBP now joins with a partner protein, Mlx, and turns on the synthesis of several enzymes: pyruvate kinase, fatty acid synthase, and acetyl-CoA carboxylase, the first enzyme in the path to fatty acid synthesis (Fig. 15-21).

FIGURE 15-21 Mechanism of gene regulation by the transcription factor ChREBP. When ChREBP in the cytosol of a hepatocyte is phosphorylated on a Ser and a Thr residue, it cannot enter the nucleus. De-phosphorylation of (P)-Ser by protein phosphatase PP2A allows ChREBP to enter the nucleus, where a second dephosphorylation, of (P)-Thr, activates ChREBP so that it can associate with its partner protein, Mlx. ChREBP-Mlx now binds to the carbohydrate response element (ChoRE) in the promoter and stimulates transcription. PP2A is allosterically activated by xylulose 5-phosphate, an intermediate in the pentose phosphate pathway.
Controlling the activity of PP2A—and thus, ultimately, the synthesis of this group of metabolic enzymes—is xylulose 5-phosphate, an intermediate not of glycolysis or gluconeogenesis but of the pentose phosphate pathway. When blood glucose concentration is high, glucose enters the liver and is phosphorylated by hexokinase IV. The glucose 6-phosphate thus formed can enter either the glycolytic pathway or the pentose phosphate pathway. If the latter, two initial oxidations produce xylulose 5-phosphate, which serves as a signal that the glucose-utilizing pathways are well-supplied with substrate. It accomplishes this by allosterically activating PP2A, which then dephosphorylates ChREBP, allowing the transcription factor to turn on the expression of genes for enzymes of glycolysis and fat synthesis (Fig. 15–21). Glycolysis yields pyruvate, and conversion of pyruvate to acetyl-CoA provides the starting material for fatty acid synthesis: acetyl-CoA carboxylase converts acetyl-CoA to malonyl-CoA, the first committed intermediate in the path to fatty acids. The fatty acid synthase complex produces fatty acids for export to adipose tissue and storage as triacylglycerols (Chapter 21). In this way, excess dietary carbohydrate is stored as fat.

Another transcription factor in the liver, SREBP-1c, a member of the family of sterol response element binding proteins (see Fig. 21–43), turns on the synthesis of pyruvate kinase, hexokinase IV, lipoprotein lipase, acetyl-CoA carboxylase, and the fatty acid synthase complex that will convert acetyl-CoA (produced from pyruvate) into fatty acids for storage in adipocytes. The synthesis of SREBC-1c is stimulated by insulin and depressed by glucagon. SREBP-1c also suppresses the expression of several gluconeogenic enzymes: glucose 6-phosphatase, PEP carboxykinase, and FBPase-1.

The transcription factor CREB (cyclic AMP response element binding protein) turns on the synthesis of glucose 6-phosphatase and PEP carboxykinase in response to the increase in [cAMP] triggered by glucagon. In contrast, insulin-stimulated inactivation of other transcription factors turns off several gluconeogenic enzymes in the liver: PEP carboxykinase, fructose 1,6-bisphosphatase, the glucose 6-phosphate transporter of the endoplasmic reticulum, and glucose 6-phosphatase. For example, FOXO1 (forkhead box other) stimulates the synthesis of gluconeogenic enzymes and suppresses the synthesis of the enzymes of glycolysis, the pentose phosphate pathway, and triacylglycerol synthesis (Fig. 15–22). In its unphosphorylated form, FOXO1 acts as a nuclear transcription factor. In response to insulin, FOXO1 leaves the nucleus and in the cytosol is phosphorylated by PKB, then tagged with ubiquitin and degraded by the proteasome. Glucagon prevents this phosphorylation by PKB, and FOXO1 remains active in the nucleus.

Complicated though the processes outlined above may seem, regulation of the genes encoding enzymes of carbohydrate and fat metabolism is proving far more complex and more subtle than we have shown here.

Multiple transcription factors can act on the same gene promoter; multiple protein kinases and phosphatases can activate or inactivate these transcription factors; and a variety of protein accessory factors modulate the action of the transcription factors. This complexity is apparent, for example, in the gene encoding PEP carboxykinase, a very well-studied case of transcriptional control. Its promoter region (Fig. 15–23) has 15 or more response elements that are recognized by at least a dozen known transcription factors, with more likely to be discovered. The transcription factors act in combination on this promoter region, and on hundreds of other gene promoters, to fine-tune the levels of hundreds of metabolic enzymes, coordinating their activity in the metabolism of carbohydrates and fats. The critical importance of transcription factors in metabolic regulation is made clear by observing the effects of mutations in their genes. For example, at least five different types of maturity-onset diabetes of the young (MODY) are associated with mutations in specific transcription factors (Box 15–3).

FIGURE 15–22 Mechanism of gene regulation by the transcription factor FOXO1. Insulin activates the signaling cascade shown in Figure 12–16, leading to activation of protein kinase B (PKB). FOXO1 in the cytosol is phosphorylated by PKB, and the phosphorylated transcription factor is tagged by the attachment of ubiquitin for degradation by proteasomes. FOXO1 that remains unphosphorylated or is dephosphorylated can enter the nucleus, bind to a response element, and trigger transcription of the associated genes. Insulin therefore has the effect of turning off the expression of these genes, which include PEP carboxykinase and glucose 6-phosphatase.
Transcription factors
- FOXO1: forkhead box other 1
- PPARγ2: peroxisome proliferator-activated receptor γ2
- HNF-3β: hepatic nuclear factor-3β
- SREBP-1: sterol regulatory element binding protein-1
- HNF-4α: hepatic nuclear factor-4α
- COUP-TF: chicken ovalbumin upstream promoter-transcription factor
- RAR: retinoic acid receptor
- GR: glucocorticoid receptor
- T3R: thyroid hormone receptor
- C/EBP: CAAT/enhancer binding protein
- HNF-1: hepatic nuclear factor-1
- NF1: nuclear factor 1
- ATF3: activating transcription factor 3
- CREB: cAMP regulatory element binding protein
- NFκB: nuclear factor κB
- TBP: TATA-box binding protein
- Med.: mediator
- TFIIH: transcription factor IIH

Response elements and regulatory binding sites in promoter
- dAF2: distal accessory factor 2
- dAF1: distal accessory factor 1
- SRE: sterol regulatory element
- AF1: accessory factor 1
- AF2: accessory factor 2
- GRE: glucocorticoid regulatory element
- TRE: thyroid hormone regulatory element
- CRE: cAMP regulatory element

FIGURE 15–23 The PEP carboxykinase promoter region, showing the complexity of regulatory input to this gene. This diagram shows the transcription factors (smaller icons, bound to the DNA) known to regulate the transcription of the PEP carboxykinase gene. The extent to which this gene is expressed depends on the combined input affecting all of these factors, which can reflect the availability of nutrients, blood glucose level, and other factors that go into making up the cell’s need for this enzyme at this particular time. P1, P2, P3I, P3II, and P4 are protein binding sites identified by DNase I footprinting (see Box 26–1). The TATA box is the assembly point for the RNA polymerase II (Pol II) transcription complex.

BOX 15–3 MEDICINE Genetic Mutations That Lead to Rare Forms of Diabetes

The term “diabetes” describes a variety of medical conditions that have in common an excessive production of urine. In Box 11–2 we described diabetes insipidus, in which defective water reabsorption in the kidney results from a mutation in the gene for aquaporin. “Diabetes mellitus” refers specifically to disease in which the ability to metabolize glucose is defective, due either to the failure of the pancreas to produce insulin or to tissue resistance to the actions of insulin.

There are two common types of diabetes mellitus. Type 1, also called insulin-dependent diabetes mellitus (IDDM), is caused by autoimmune attack on the insulin-producing β cells of the pancreas. Individuals with IDDM must take insulin by injection or inhalation to compensate for their missing β cells. IDDM develops in childhood or in the teen years; an older name for the disease is juvenile diabetes. Type 2, also called non-insulin-dependent diabetes mellitus (NIDDM), typically develops in adults over 40 years old. It is far more common than IDDM, and its occurrence in the population is strongly correlated with obesity. The current epidemic of obesity in the more developed countries brings with it the promise of an epidemic of NIDDM, providing a strong incentive to understand the relationship between obesity and the onset of NIDDM at the genetic and biochemical levels. After completing our look at the metabolism of fats and proteins in later chapters, we will return (in Chapter 23) to the discussion of diabetes, which has a broad effect on metabolism: of carbohydrates, fats, and proteins.

Here we consider another type of diabetes in which carbohydrate and fat metabolism is deranged: mature onset diabetes of the young (MODY), in which genetic mutation affects a transcription factor important in carrying the insulin signal into the nucleus, or affects an enzyme that responds to insulin. In MODY2, a mutation in the hexokinase IV (glucokinase) gene affects the liver and pancreas, tissues in which this is the main isoform of hexokinase. The glucokinase of pancreatic β cells functions as a glucose sensor. Normally, when blood glucose

(continued on next page)
rises, so does the glucose level in β cells, and because glucokinase has a relatively high K_m for glucose, its activity increases with rising blood glucose levels. Metabolism of the glucose 6-phosphate formed in this reaction raises the ATP level in β cells, and this triggers insulin release by the mechanism shown in Figure 23-28. In healthy individuals, blood glucose concentrations of ~5 mM trigger this insulin release. But individuals with inactivating mutations in both copies of the glucokinase gene have very high thresholds for insulin release, and consequently, from birth, they have severe hyperglycemia—permanent neonatal diabetes. In individuals with one mutated and one normal copy of the glucokinase gene, the glucose threshold for insulin release rises to about 7 mM. As a result these individuals have blood glucose levels only slightly above normal: they generally have only mild hyperglycemia and no symptoms. This condition (MODY2) is generally discovered by accident during routine blood glucose analysis.

There are at least five other types of MODY, each the result of an inactivating mutation in one or another of the transcription factors essential to the normal development and function of pancreatic β cells. Individuals with these mutations have varying degrees of reduced insulin production and the associated defects in blood glucose homeostasis. In MODY1 and MODY3, the defects are severe enough to produce the long-term complications associated with IDDM and NIDDM—cardiovascular problems, kidney failure, and blindness. MODY4, 5, and 6 are less severe forms of the disease. Altogether, MODY disorders represent a small percentage of NIDDM cases. Also very rare are individuals with mutations in the insulin gene itself; they have defects in insulin signaling of varying severity.

SUMMARY 15.3 Coordinated Regulation of Glycolysis and Gluconeogenesis

- Gluconeogenesis and glycolysis share seven enzymes, catalyzing the freely reversible reactions of the pathways. For the other three steps, the forward and reverse reactions are catalyzed by different enzymes, and these are the points of regulation of the two pathways.

- Hexokinase IV (glucokinase) has kinetic properties related to its special role in the liver: releasing glucose to the blood when blood glucose is low, and taking up and metabolizing glucose when blood glucose is high.

- PFK-1 is allosterically inhibited by ATP and citrate. In most mammalian tissues, including liver, fructose 2,6-bisphosphate is an allosteric activator of this enzyme.

- Pyruvate kinase is allosterically inhibited by ATP, and the liver isozyme also is inhibited by cAMP-dependent phosphorylation.

- Gluconeogenesis is regulated at the level of pyruvate carboxylase (which is activated by acetyl-CoA) and FBPase-1 (which is inhibited by fructose 2,6-bisphosphate and AMP).

- To limit substrate cycling between glycolysis and gluconeogenesis, the two pathways are under reciprocal allosteric control, mainly achieved by the opposing effects of fructose 2,6-bisphosphate on PFK-1 and FBPase-1.

- Glucagon or epinephrine decreases [fructose 2,6-bisphosphate], by raising [cAMP] and bringing about phosphorylation of the bifunctional enzyme PFK-2/FBPase-2. Insulin increases [fructose 2,6-bisphosphate] by activating a phosphoprotein phosphatase that dephosphorylates and thus activates PFK-2.

- Xylose 5-phosphate, an intermediate of the pentose phosphate pathway, activates phosphoprotein phosphatase PP2A, which dephosphorylates several target proteins, including PFK-2/FBPase-2, tilting the balance toward glucose uptake, glycogen synthesis, and lipid synthesis in the liver.

- Transcription factors including ChREBP, CREB, SREBP, and FOXO1 act in the nucleus to regulate the expression of specific genes coding for enzymes of the glycolytic and gluconeogenic pathways. Insulin and glucagon act antagonistically in activating these transcription factors, thus turning on and off large numbers of genes.

15.4 The Metabolism of Glycogen in Animals

Our discussion of metabolic regulation, using carbohydrate metabolism as the primary example, now turns to the synthesis and breakdown of glycogen. In this section we focus on the metabolic pathways; in Section 15.5 we turn to the regulatory mechanisms.

In organisms from bacteria to plants to vertebrates, excess glucose is converted to polymeric forms for storage—glycogen in vertebrates and many microorganisms, starch in plants. In vertebrates, glycogen is found primarily in the liver and skeletal muscle; it may represent up to 10% of the weight of liver and 1% to 2% of the weight of muscle. If this much glucose were dissolved in the cytosol of a hepatocyte, its concentration would be about 0.4 M, enough
Glycogen granules in a hepatocyte. Glycogen, a storage form of carbohydrate, appears as electron-dense particles, often in aggregates or rosettes. In hepatocytes glycogen is closely associated with tubules of the smooth endoplasmic reticulum. Many mitochondria are also evident in this micrograph.

to dominate the osmotic properties of the cell. When stored as a large polymer (glycogen), however, the same mass of glucose has a concentration of only 0.01 μM. Glycogen is stored in large cytosolic granules. The elementary particle of glycogen, the β-particle, is about 21 nm in diameter and consists of up to 55,000 glucose residues with about 2,000 nonreducing ends. Twenty to 40 of these particles cluster together to form α-rosettes, easily seen with the microscope in tissue samples from well-fed animals (Fig. 15–24) but essentially absent after a 24-hour fast.

The glycogen in muscle is there to provide a quick source of energy for either aerobic or anaerobic metabolism. Muscle glycogen can be exhausted in less than an hour during vigorous activity. Liver glycogen serves as a reservoir of glucose for other tissues when dietary glucose is not available (between meals or during a fast); this is especially important for the neurons of the brain, which cannot use fatty acids as fuel. Liver glycogen can be depleted in 12 to 24 hours. In humans, the total amount of energy stored as glycogen is far less than the amount stored as fat (triacylglycerol) (see Table 23–5), but fats cannot be converted to glucose in mammals and cannot be catabolized anaerobically.

Glycogen granules are complex aggregates of glycogen and the enzymes that synthesize it and degrade it, as well as the machinery for regulating these enzymes. The general mechanisms for storing and mobilizing glycogen are the same in muscle and liver, but the enzymes differ in subtle yet important ways that reflect the different roles of glycogen in the two tissues. Glycogen is also obtained in the diet and broken down in the gut, and this involves a separate set of hydrolytic enzymes that convert glycogen to free glucose. (Dietary starch is hydrolyzed in a similar way.) We begin our discussion with the breakdown of glycogen to glucose 1-phosphate (glycogenolysis), then turn to synthesis of glycogen (glycogenesis).

Glycogen Breakdown Is Catalyzed by Glycogen Phosphorylase

In skeletal muscle and liver, the glucose units of the outer branches of glycogen enter the glycolytic pathway through the action of three enzymes: glycogen phosphorylase, glycogen debranching enzyme, and phosphoglucomutase. Glycogen phosphorylase catalyzes the reaction in which an (α1→4) glycosidic linkage between two glucose residues at a nonreducing end of glycogen undergoes attack by inorganic phosphate (P_i), removing the terminal glucose residue as α-D-glucose 1-phosphate (Fig. 15–25). This phosphorolysis reaction is different from the hydrolysis of glycosidic bonds by amylase during intestinal degradation of dietary glycogen and starch. In phosphorolysis, some of the energy of the glycosidic

FIGURE 15–24 Glycogen granules in a hepatocyte. Glycogen, a storage form of carbohydrate, appears as electron-dense particles, often in aggregates or rosettes. In hepatocytes glycogen is closely associated with tubules of the smooth endoplasmic reticulum. Many mitochondria are also evident in this micrograph.

FIGURE 15–25 Removal of a glucose residue from the nonreducing end of a glycogen chain by glycogen phosphorylase. This process is repetitive; the enzyme removes successive glucose residues until it reaches the fourth glucose unit from a branch point (see Fig. 15–26).
bond is preserved in the formation of the phosphate ester, glucose 1-phosphate (see Section 14.2).

Pyridoxal phosphate is an essential cofactor in the glycogen phosphorylase reaction; its phosphate group acts as a general acid catalyst, promoting attack by P1 on the glycosidic bond. (This is an unusual role for pyridoxal phosphate; its more typical role is as a cofactor in amino acid metabolism; see Fig. 18–6.)

Glycogen phosphorylase acts repetitively on the nonreducing ends of glycogen branches until it reaches a point four glucose residues away from an (α1→6) branch point (see Fig. 7-14), where its action stops. Further degradation by glycogen phosphorylase can occur only after the debranching enzyme, formally known as oligo (α1→6) to (α1→4) glucan-transferase, catalyzes two successive reactions that transfer branches (Fig. 15–26). Once these branches are transferred and the glucosyl residue at C-6 is hydrolyzed, glycogen phosphorylase activity can continue.

Glucose 1-Phosphate Can Enter Glycolysis or, in Liver, Replenish Blood Glucose

Glucose 1-phosphate, the end product of the glycogen phosphorylase reaction, is converted to glucose 6-phosphate by phosphoglucomutase, which catalyzes the reversible reaction

\[
\text{Glucose 1-phosphate} \rightleftharpoons \text{glucose 6-phosphate}
\]

Initially phosphorylated at a Ser residue, the enzyme donates a phosphoryl group to C-6 of the substrate, then accepts a phosphoryl group from C-1 (Fig. 15–27).

The glucose 6-phosphate formed from glycogen in skeletal muscle can enter glycolysis and serve as an energy source to support muscle contraction. In liver, glycogen breakdown serves a different purpose: to release glucose into the blood when the blood glucose level drops, as it does between meals. This requires the enzyme glucose 6-phosphatase, present in liver and kidney but not in other tissues. The enzyme is an integral membrane protein of the endoplasmic reticulum, predicted to contain nine transmembrane helices, with its active site on the luminal side of the ER. Glucose 6-phosphate formed in the cytosol is transported into the ER lumen by a specific transporter (T1) (Fig. 15–28) and hydrolyzed at the luminal surface by the glucose 6-phosphatase. The resulting P1 and glucose are thought to be carried back into the cytosol by two different transporters (T2 and T3), and the glucose leaves the hepatocyte via the plasma membrane transporter, GLUT2. Notice that by having the active site of glucose 6-phosphatase inside the ER lumen, the cell separates this reaction from the process of glycolysis, which takes place in the cytosol and would be aborted by the action of glucose 6-phosphatase. Genetic defects in either glucose 6-phosphatase or T1 lead to serious derangement of glycogen metabolism, resulting in type Ia glycogen storage disease (Box 15–4).

Because muscle and adipose tissue lack glucose 6-phosphatase, they cannot convert the glucose 6-phosphate formed by glycogen breakdown to glucose, and these tissues therefore do not contribute glucose to the blood.

The Sugar Nucleotide UDP-Glucose Donates Glucose for Glycogen Synthesis

Many of the reactions in which hexoses are transformed or polymerized involve sugar nucleotides, compounds in which the anomeric carbon of a sugar is activated by attachment to a nucleotide through a phosphate ester linkage. Sugar nucleotides are the substrates for polymerization of monosaccharides into disaccharides, glycogen,
starch, cellulose, and more complex extracellular polysaccharides. They are also key intermediates in the production of the aminohexoses and deoxyhexoses found in some of these polysaccharides, and in the synthesis of vitamin C (L-ascorbic acid). The role of sugar nucleotides in the biosynthesis of glycogen and many other carbohydrate derivatives was discovered in 1953 by the Argentine biochemist Luis Leloir.
Much of what is written in present-day biochemistry textbooks about the metabolism of glycogen was discovered between about 1925 and 1950 by the remarkable husband and wife team of Carl F. Cori and Gerty T. Cori. Both trained in medicine in Europe at the end of World War I (she completed premedical studies and medical school in one year!). They left Europe together in 1922 to establish research laboratories in the United States, first for nine years in Buffalo, New York, at what is now the Roswell Park Memorial Institute, then from 1931 until the end of their lives at Washington University in St. Louis.

In their early physiological studies of the origin and fate of glycogen in animal muscle, the Coris demonstrated the conversion of glycogen to lactate in tissues, movement of lactate in the blood to the liver, and, in the liver, reconversion of lactate to glycogen—a pathway that came to be known as the Cori cycle (see Fig. 23-20). Pursuing these observations at the biochemical level, they showed that glycogen was mobilized in a phosphorolysis reaction catalyzed by the enzyme they discovered, glycogen phosphorylase. They identified the product of this reaction (the "Cori ester") as glucose 1-phosphate and showed that it could be reincorporated into glycogen in the reverse reaction. Although this did not prove to be the reaction by which glycogen is synthesized in cells, it was the first in vitro demonstration of the synthesis of a macromolecule from simple monomeric subunits, and it inspired others to search for polymerizing enzymes. Arthur Kornberg, discoverer of the first DNA polymerase, said of his experience in the Coris’ lab, “Glycogen phosphorylase, not base pairing, was what led me to DNA polymerase.”

Gerty Cori became interested in human genetic diseases in which too much glycogen is stored in the liver. She was able to identify the biochemical defect in several of these diseases and to show that the diseases could be diagnosed by assays of the enzymes of glycogen metabolism in small samples of tissue obtained by biopsy. Table 1 summarizes what we now know about 13 genetic diseases of this sort.

Carl and Gerty Cori shared the Nobel Prize in Physiology or Medicine in 1947 with Bernardo Houssay of Argentina, who was cited for his studies of hormonal regulation of carbohydrate metabolism. The Cori laboratories in St. Louis became an international center of biochemical research in the 1940s and 1950s, and at least six scientists who trained with the Coris became Nobel laureates: Arthur Kornberg (for DNA synthesis, 1959), Severo Ochoa (for RNA synthesis, 1959), Luis Leloir (for the role of sugar nucleotides in polysaccharide synthesis, 1970), Earl Sutherland (for the discovery of actual free-energy change in the cell is favorable. In effect, rapid removal of the product, driven by the large, negative free-energy change of PP, hydrolysis, pulls the synthetic reaction forward, a common strategy in biological polymerization reactions.

2. Although the chemical transformations of sugar nucleotides do not involve the atoms of the nucleotide itself, the nucleotide moiety has many groups that can undergo noncovalent interactions with enzymes; the additional free energy of binding can contribute significantly to catalytic activity (Chapter 6; see also p. 297).

<table>
<thead>
<tr>
<th>Type (name)</th>
<th>Enzyme affected</th>
<th>Primary organ affected</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 0</td>
<td>Glycogen synthase</td>
<td>Liver</td>
<td>Low blood glucose, high ketone bodies, early death</td>
</tr>
<tr>
<td>Type Ia (von Gierke’s)</td>
<td>Glucose 6-phosphatase</td>
<td>Liver</td>
<td>Enlarged liver, kidney failure</td>
</tr>
<tr>
<td>Type Ib</td>
<td>Microsomal glucose 6-phosphate translocase</td>
<td>Liver</td>
<td>As in Ia; also high susceptibility to bacterial infections</td>
</tr>
<tr>
<td>Type Ic</td>
<td>Microsomal P1 transporter</td>
<td>Liver</td>
<td>As in Ia</td>
</tr>
<tr>
<td>Type II (Pompe’s)</td>
<td>Lysosomal glucosidase</td>
<td>Skeletal and cardiac muscle</td>
<td>Infantile form: death by age 2; juvenile form: muscle defects (myopathy); adult form: as in muscular dystrophy</td>
</tr>
<tr>
<td>Type IIIa (Cori’s or Forbes’s)</td>
<td>Debranching enzyme</td>
<td>Liver, skeletal and cardiac muscle</td>
<td>Enlarged liver in infants; myopathy</td>
</tr>
<tr>
<td>Type IIIb</td>
<td>Liver debranching enzyme (muscle enzyme normal)</td>
<td>Liver</td>
<td>Enlarged liver in infants</td>
</tr>
<tr>
<td>Type IV (Andersen’s)</td>
<td>Branching enzyme</td>
<td>Liver, skeletal muscle</td>
<td>Enlarged liver and spleen, myoglobin in urine</td>
</tr>
<tr>
<td>Type V (McArdie’s)</td>
<td>Muscle phosphorylase</td>
<td>Skeletal muscle</td>
<td>Exercise-induced cramps and pain; myoglobin in urine</td>
</tr>
<tr>
<td>Type VI (Hers’s)</td>
<td>Liver phosphorylase</td>
<td>Liver</td>
<td>Enlarged liver</td>
</tr>
<tr>
<td>Type VII (Tarui’s)</td>
<td>Muscle PFK-1</td>
<td>Muscle, erythrocytes</td>
<td>As in type V; also hemolytic anemia</td>
</tr>
<tr>
<td>Type VIIb, VIII, or IX</td>
<td>Phosphorylase kinase</td>
<td>Liver, leukocytes, muscle</td>
<td>Enlarged liver</td>
</tr>
<tr>
<td>Type XI (Fanconi-Bickel)</td>
<td>Glucose transporter (GLUT2)</td>
<td>Liver</td>
<td>Failure to thrive, enlarged liver, rickets, kidney dysfunction</td>
</tr>
</tbody>
</table>

3. Like phosphate, the nucleotidyl group (UMP or AMP, for example) is an excellent leaving group, facilitating nucleophilic attack by activating the sugar carbon to which it is attached.

4. By “tagging” some hexoses with nucleotidyl groups, cells can set them aside in a pool for one purpose (glycogen synthesis, for example), separate from hexose phosphates destined for another purpose (such as glycolysis).

Glycogen synthesis takes place in virtually all animal tissues but is especially prominent in the liver and skeletal muscles. The starting point for synthesis of glycogen is glucose 6-phosphate. As we have seen, this can be derived from free glucose in a reaction catalyzed by the isozymes hexokinase I and hexokinase II in muscle and hexokinase IV (glucokinase) in liver:

\[
\text{d-Glucose} + \text{ATP} \rightarrow \text{d-glucose 6-phosphate} + \text{ADP}
\]

However, some ingested glucose takes a more roundabout path to glycogen. It is first taken up by erythrocytes and converted to lactate glycolytically, the lactate is then taken up by the liver and converted to glucose 6-phosphate by gluconeogenesis.

To initiate glycogen synthesis, the glucose 6-phosphate is converted to glucose 1-phosphate in the phosphoglucomutase reaction:

\[
\text{Glucose 6-phosphate} \rightleftharpoons \text{glucose 1-phosphate}
\]
FIGURE 15–29 Formation of a sugar nucleotide. A condensation reaction occurs between a nucleoside triphosphate (NTP) and a sugar phosphate. The negatively charged oxygen on the sugar phosphate serves as a nucleophile, attacking the α phosphate of the nucleoside triphosphate and displacing pyrophosphate. The reaction is pulled in the forward direction by the hydrolysis of PP\textsubscript{i} by inorganic pyrophosphatase.

The product of this reaction is converted to UDP-glucose by the action of UDP-glucose pyrophosphorylase, in a key step of glycogen biosynthesis:

\[
\text{Glucose 1-phosphate} + \text{UTP} \rightarrow \text{UDP-glucose} + \text{PP}_i
\]

Notice that this enzyme is named for the reverse reaction; in the cell, the reaction proceeds in the direction of UDP-glucose formation, because pyrophosphate is rapidly hydrolyzed by inorganic pyrophosphatase (Fig. 15–29).

UDP-glucose is the immediate donor of glucose residues in the reaction catalyzed by glycogen synthase, which promotes the transfer of the glucose residue from UDP-glucose to a nonreducing end of a branched glycogen molecule (Fig. 15–30). The overall

FIGURE 15–30 Glycogen synthesis. A glycogen chain is elongated by glycogen synthase. The enzyme transfers the glucose residue of UDP-glucose to the nonreducing end of a glycogen branch (see Fig. 7–14) to make a new (α1→4) linkage.
15.4 The Metabolism of Glycogen in Animals

Glycogenin Primes the Initial Sugar Residues in Glycogen

Glycogen synthase cannot initiate a new glycogen chain de novo. It requires a primer, usually a preformed (α1→4) polyglucose chain or branch having at least eight glucose residues. So, how is a new glycogen molecule initiated? The intriguing protein glycogenin (Fig. 15–32) is both the primer on which new chains are assembled and the enzyme that catalyzes their assembly. The first step in the synthesis of a new glycogen molecule is the transfer of a glucose residue from UDP-glucose to the hydroxyl group of Tyr\(^{194}\) of glycogenin, catalyzed by the protein’s intrinsic glucosyltransferase activity (Fig. 15–33). The nascent chain is extended by the sequential addition of seven more glucose residues, each derived from UDP-glucose; the reactions are catalyzed by the chain-extending activity of glycogenin. At this point, glycogen synthase takes over, further extending the glycogen chain. Glycogenin remains buried within the β-particle, covalently attached to the single reducing end of the glycogen molecule (Fig. 15–33b).

FIGURE 15–32 Glycogenin structure. (PDB 1D1LL2) Muscle glycogenin (Mr, 37,000) forms dimers in solution. Humans have a second isoform in liver, glycogenin-2. The substrate, UDP-glucose (shown as a red ball-and-stick structure), is bound to a Rossmann fold near the amino terminus and is some distance from the Tyr\(^{194}\) residues (turquoise)—15 Å from the Tyr in the same monomer, 12 Å from the Tyr in the dimeric partner. Each UDP-glucose is bound through its phosphates to a Mn\(^{2+}\) ion (green) that is essential to catalysis. Mn\(^{2+}\) is believed to function as an electron-pair acceptor (Lewis acid) to stabilize the leaving group, UDP. The glycosidic bond in the product has the same configuration about the C-1 of glucose as the substrate UDP-glucose, suggesting that the transfer of glucose from UDP to Tyr\(^{194}\) occurs in two steps. The first step is probably a nucleophilic attack by Asp\(^{162}\) (orange), forming a temporary intermediate with inverted configuration. A second nucleophilic attack by Tyr\(^{194}\) then restores the starting configuration.
Principles of Metabolic Regulation

Glycogenin

UDP-glucose

Repeats six times

SUMMARY 15.4 The Metabolism of Glycogen in Animals

- Glycogen is stored in muscle and liver as large particles. Contained within the particles are the enzymes that metabolize glycogen, as well as regulatory enzymes.
- Glycogen phosphorylase catalyzes phosphorolytic cleavage at the nonreducing ends of glycogen chains, producing glucose 1-phosphate. The debranching enzyme transfers branches onto main chains and releases the residue at the (α1→6) branch as free glucose.
- Phosphoglucomutase interconverts glucose 1-phosphate and glucose 6-phosphate. Glucose 6-phosphate can enter glycolysis or, in liver, can be converted to free glucose by glucose 6-phosphatase in the endoplasmic reticulum, then released to replenish blood glucose.

15.5 Coordinated Regulation of Glycogen Synthesis and Breakdown

As we have seen, the mobilization of stored glycogen is brought about by glycogen phosphorylase, which degrades glycogen to glucose 1-phosphate (Fig. 15–25).
Glycogen phosphorylase provides an especially instructive case of enzyme regulation. It was one of the first known examples of an allosterically regulated enzyme and the first enzyme shown to be controlled by reversible phosphorylation. It was also one of the first allosteric enzymes for which the detailed three-dimensional structures of the active and inactive forms were revealed by x-ray crystallographic studies. Glycogen phosphorylase is also another illustration of how isozymes play their tissue-specific roles.

Glycogen Phosphorylase Is Regulated Allosterically and Hormonally

In the late 1930s, Carl and Gerty Cori (Box 15–4) discovered that the glycogen phosphorylase of skeletal muscle exists in two interconvertible forms: glycogen phosphorylase \(a\), which is catalytically active, and glycogen phosphorylase \(b\), which is less active (Fig. 15–34). Subsequent studies by Earl Sutherland showed that phosphorylase \(b\) predominates in resting muscle, but during vigorous muscular activity epinephrine triggers phosphorylation of a specific Ser residue in phosphorylase \(b\), converting it to its more active form, phosphorylase \(a\). (Note that glycogen phosphorylase is often referred to simply as phosphorylase—so honored because it was the first phosphorylase to be discovered; the shortened name has persisted in common usage and in the literature.)

The enzyme (phosphorylase \(b\) kinase) responsible for activating phosphorylase by transferring a phosphoryl group to its Ser residue is itself activated by epinephrine or glucagon through a series of steps shown in Figure 15–35. Sutherland discovered the second messenger cAMP, which increases in concentration in response to stimulation by epinephrine (in muscle) or glucagon (in liver). Elevated \([cAMP]\) initiates an enzyme cascade, in which a catalyst activates a catalyst, which activates a catalyst (see Section 12.1). Such cascades allow for large amplification of the initial signal (see pink boxes in Fig. 15–35). The rise in \([cAMP]\) activates cAMP-dependent protein kinase, also called protein kinase A (PKA). PKA then phosphorylates and activates phosphorylase \(b\) kinase, which catalyzes the phosphorylation of Ser residues in each of the two identical subunits of glycogen phosphorylase, activating it and thus stimulating glycogen breakdown. In muscle, this provides fuel for glycolysis to sustain muscle contraction for the flight-or-flight response signaled by epinephrine. In liver, glycogen breakdown counters the low blood glucose signaled by glucagon, releasing glucose. These different roles are reflected in subtle differences in the regulatory mechanisms in muscle and liver. The glycogen phosphorylases of liver and muscle are isozymes, encoded by different genes and differing in their regulatory properties.

In muscle, superimposed on the regulation of phosphorylase by covalent modification are two allosteric control mechanisms (Fig. 15–35). \(Ca^{2+}\), the signal for muscle contraction, binds to and activates phosphorylase \(b\) kinase, promoting conversion of phosphorylase \(b\) to the active \(a\) form. \(Ca^{2+}\) binds to phosphorylase \(b\) kinase through its \(\delta\) subunit, which is calmodulin (see Fig. 12–11). AMP, which accumulates in vigorously contracting muscle as a result of ATP breakdown, binds to and activates phosphorylase, speeding the release of glucose 1-phosphate from glycogen. When ATP levels are adequate, ATP blocks the allosteric site to which AMP binds, inactivating phosphorylase.

When the muscle returns to rest, a second enzyme, phosphorylase \(a\) phosphatase, also called phosphoprotein phosphatase 1 (PP1), removes the phosphoryl groups from phosphorylase \(a\), converting it to the less active form, phosphorylase \(b\).

Like the enzyme of muscle, the glycogen phosphorylase of liver is regulated hormonally (by phosphorylation/dephosphorylation) and allosterically. The dephosphorylated form is essentially inactive. When the blood glucose level is too low, glucagon (acting through the cascade mechanism shown in Fig. 15–35) activates phosphorylase \(b\) kinase, promoting conversion of phosphorylase \(b\) to the active \(a\) form.

![Figure 15-34](image-url) Regulation of muscle glycogen phosphorylase by covalent modification. In the more active form of the enzyme, phosphorylase \(a\), Ser\(^{14}\) residues, one on each subunit, are phosphorylated. Phosphorylase \(a\) is converted to the less active form, phosphorylase \(b\), by enzymatic loss of these phosphoryl groups, catalyzed by phosphorylase \(a\) phosphatase (also known as phosphoprotein phosphatase 1, PP1). Phosphorylase \(b\) can be reconverted (reactivated) to phosphorylase \(a\) by the action of phosphorylase \(b\) kinase. (See also Fig. 6–36 on glycogen phosphorylase regulation.)
FIGURE 15–35 Cascade mechanism of epinephrine and glucagon action. By binding to specific surface receptors, either epinephrine acting on a myocyte (left) or glucagon acting on a hepatocyte (right) activates a GTP-binding protein $G_{	ext{ia}}$ (see Fig. 12–4). Active $G_{	ext{ia}}$ triggers a rise in [cAMP], activating PKA. This sets off a cascade of phosphorylations; PKA activates phosphorylase b kinase, which then activates glycogen phosphorylase. Such cascades effect a large amplification of the initial signal; the figures in pink boxes are probably low estimates of the actual increase in number of molecules at each stage of the cascade. The resulting breakdown of glycogen provides glucose, which in the myocyte can supply ATP (via glycolysis) for muscle contraction and in the hepatocyte is released into the blood to counter the low blood glucose.

Phosphorylase b kinase, which in turn converts phosphorylase b to its active a form, initiating the release of glucose into the blood. When blood glucose levels return to normal, glucose enters hepatocytes and binds to an inhibitory allosteric site on phosphorylase a. This binding also produces a conformational change that exposes the phosphorylated Ser residues to PP1, which catalyzes their dephosphorylation and inactivates the phosphorylase (Fig. 15–36). The allosteric site for glucose allows liver glycogen phosphorylase to act as its own glucose sensor and to respond appropriately to changes in blood glucose.

FIGURE 15–36 Glycogen phosphorylase of liver as a glucose sensor. Glucose binding to an allosteric site of the phosphorylase a isozyme of liver induces a conformational change that exposes its phosphorylated Ser residues to the action of phosphorylase a phosphatase (PP1). This phosphatase converts phosphorylase a to phosphorylase b, sharply reducing the activity of phosphorylase and slowing glycogen breakdown in response to high blood glucose. Insulin also acts indirectly to stimulate PP1 and slow glycogen breakdown.
Glycogen Synthase Is Also Regulated by Phosphorylation and Dephosphorylation

Like glycogen phosphorylase, glycogen synthase can exist in phosphorylated and dephosphorylated forms (Fig. 15–37). Its active form, glycogen synthase a, is unphosphorylated. Phosphorylation of the hydroxyl side chains of several Ser residues of both subunits converts glycogen synthase a to glycogen synthase b, which is inactive unless its allosteric activator, glucose 6-phosphate, is present. Glycogen synthase is remarkable for its ability to be phosphorylated on various residues by at least 11 different protein kinases. The most important regulatory kinase is glycogen synthase kinase 3 (GSK3).

Figure 15–37 Effects of GSK3 on glycogen synthase activity. Glycogen synthase a, the active form, has three Ser residues near its carboxyl terminus, which are phosphorylated by glycogen synthase kinase 3 (GSK3). This converts glycogen synthase to the inactive (b) form. GSK3 action requires prior phosphorylation (priming) by casein kinase II (CKII). Insulin triggers activation of glycogen synthase b by blocking the activity of GSK3 (see the pathway for this action in Fig. 12–16) and activating a phosphoprotein phosphatase (PP1 in muscle, another phosphatase in liver). In muscle, epinephrine activates PKA, which phosphorylates the glycogen-targeting protein Gm (see Fig. 15–40) on a site that causes dissociation of PP1 from glycogen. Glucose 6-phosphate favors dephosphorylation of glycogen synthase by binding to it and promoting a conformation that is a good substrate for PP1. Glucose also promotes dephosphorylation; the binding of glucose to glycogen phosphorylase a forces a conformational change that favors dephosphorylation to glycogen phosphorylase b, thus relieving its inhibition of PP1 (see Fig. 15–39).

Figure 15–38 Priming of GSK3 phosphorylation of glycogen synthase. (a) Glycogen synthase kinase 3 first associates with its substrate (glycogen synthase) by interaction between three positively charged residues (Arg¹⁶⁰, Arg¹⁸⁰, Lys⁷⁰⁵) and a phosphoserine residue at position +4 in the substrate. (For orientation, the Ser or Thr residue to be phosphorylated in the substrate is assigned the index 0. Residues on the amino-terminal side of this residue are numbered −1, −2, and so forth; residues on the carboxyl-terminal side are numbered +1, +2, and so forth.) This association aligns the active site of the enzyme with a Ser residue at position 0, which it phosphorylates. This creates a new priming site, and the enzyme moves down the protein to phosphorylate the Ser residue at position −4, and then the Ser at −8. (b) GSK3 has a Ser residue near its amino terminus that can be phosphorylated by PKA or PKB (see Fig. 15–39). This produces a “pseudosubstrate” region in GSK3 that folds into the priming site and makes the active site inaccessible to another protein substrate, inhibiting GSK3 until the priming phosphoryl group of its pseudosubstrate region is removed by PP1. Other proteins that are substrates for GSK3 also have a priming site at position +4, which must be phosphorylated by another protein kinase before GSK3 can act on them. (See also Figs 6–37 and 12–22b on glycogen synthase regulation.)
from the three Ser residues phosphorylated by GSK3. Glucose 6-phosphate binds to an allosteric site on glycogen synthase b, making the enzyme a better substrate for dephosphorylation by PP1 and causing its activation. By analogy with glycogen phosphorylase, which acts as a glucose sensor, glycogen synthase can be regarded as a glucose 6-phosphate sensor. In muscle, a different phosphatase may have the role played by PP1 in liver, activating glycogen synthase by dephosphorylating it.

Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin

As we saw in Chapter 12, one way in which insulin triggers intracellular changes is by activating a protein kinase (PKB) that in turn phosphorylates and inactivates GSK3 (Fig. 12–16). Phosphorylation of a Ser residue near the amino terminus of GSK3 converts that region of the protein to a pseudosubstrate, which folds into the site at which the priming phosphorylated Ser residue normally binds (Fig. 15–38b). This prevents GSK3 from binding the priming site of a real substrate, thereby inactivating the enzyme and tipping the balance in favor of dephosphorylation of glycogen synthase by PP1. Glycogen phosphorylase can also affect the phosphorylation of glycogen synthase: active glycogen phosphorylase directly inhibits PP1, preventing it from activating glycogen synthase (Fig. 15–37).

Although first discovered in its role in glycogen metabolism (hence the name glycogen synthase kinase), GSK3 clearly has a much broader role than the regulation of glycogen synthase. It mediates signaling by insulin and other growth factors and nutrients, and it acts in the specification of cell fates during embryonic development. Among its targets are cytoskeletal proteins and proteins essential for mRNA and protein synthesis. These targets, like glycogen synthase, must first undergo a priming phosphorylation by another protein kinase before they can be phosphorylated by GSK3.

Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism

A single enzyme, PP1, can remove phosphoryl groups from all three of the enzymes phosphorylated in response to glucagon (liver) and epinephrine (liver and muscle): phosphorylase kinase, glycogen phosphorylase, and glycogen synthase. Insulin stimulates glycogen synthesis by activating PP1 and by inactivating GSK3.

Phosphoprotein phosphatase 1 does not exist free in the cytosol, but is tightly bound to its target proteins by one of a family of glycogen-targeting proteins that bind glycogen and each of the three enzymes, glycogen phosphorylase, phosphorylase kinase, and glycogen synthase (Fig. 15–40). PP1 is itself subject to covalent and allosteric regulation: it is inactivated when phosphorylated by PKA and is allosterically activated by glucose 6-phosphate.

Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally

Having looked at the mechanisms that regulate individual enzymes, we can now consider the overall shifts in carbohydrate metabolism that occur in the well-fed state, during fasting, and in the fight-or-flight response—signaled by insulin, glucagon, and epinephrine, respectively. We need to contrast two cases in which regulation serves different ends: (1) the role of hepatocytes in supplying glucose to the blood, and (2) the selfish use of carbohydrate fuels by nonhepatic tissues, typified by skeletal muscle (myocytes), to support their own activities.

After ingestion of a carbohydrate-rich meal, the elevation of blood glucose triggers insulin release (Fig. 15–41, top). In a hepatocyte, insulin has two imme-
15.5 Coordinated Regulation of Glycogen Synthesis and Breakdown

FIGURE 15-40 Glycogen-targeting protein Gm. The glycogen-targeting protein Gm is one of a family of proteins that bind other proteins (including PP1) to glycogen particles. Gm can be phosphorylated at two different sites in response to insulin or epinephrine. ① Insulin-stimulated phosphorylation of Gm site 1 activates PP1, which dephosphorylates phosphorylase kinase, glycogen phosphorylase, and glycogen synthase (not shown). ② Epinephrine-stimulated phosphorylation of Gm site 2 causes dissociation of PP1 from the glycogen particle, preventing its access to glycogen phosphorylase and glycogen synthase. PKA also phosphorylates a protein (inhibitor 1) that, when phosphorylated, inhibits PP1. By these means, insulin inhibits glycogen breakdown and stimulates glycogen synthesis, and epinephrine (or glucagon in the liver) has the opposite effects.

FIGURE 15-41 Regulation of carbohydrate metabolism in the liver. Arrows indicate causal relationships between the changes they connect. For example, an arrow from ↓A to ↑B means that a decrease in A causes an increase in B. Pink arrows connect events that result from high blood glucose; blue arrows connect events that result from low blood glucose.
Neural stimulation of muscle contraction, cytosolic [Ca^{2+}] rises briefly and activates phosphorylase kinase through its calmodulin subunit.

Elevated insulin triggers increased glycogen synthesis in myocytes by activating PP1 and inactivating GSK3. Unlike hepatocytes, myocytes have a reserve of GLUT4 sequestered in intracellular vesicles. Insulin triggers their movement to the plasma membrane (see Fig. 12–16), where they allow increased glucose uptake. In response to insulin, therefore, myocytes help to lower blood glucose by increasing their rates of glucose uptake, glycogen synthesis, and glycolysis.

Carbohydrate and Lipid Metabolism Are Integrated by Hormonal and Allosteric Mechanisms

As complex as the regulation of carbohydrate metabolism is, it is far from the whole story of fuel metabolism. The metabolism of fats and fatty acids is very closely tied to that of carbohydrates. Hormonal signals such as insulin and changes in diet or exercise are equally important in regulating fat metabolism and integrating it with that of carbohydrates. We return to this overall metabolic integration in mammals in Chapter 23, after first considering the metabolic pathways for fats and amino acids (Chapters 17 and 18). The message we wish to convey here is that metabolic pathways are overlaid with complex regulatory controls that are exquisitely sensitive to changes in metabolic circumstances. These mechanisms act to adjust the flow of metabolites through various metabolic pathways, as needed by the cell and organism, and to do so without causing major changes in the concentrations of intermediates shared with other pathways.
SUMMARY 15.5 Coordinated Regulation of Glycogen Synthesis and Breakdown

- Glycogen phosphorylase is activated in response to glucagon or epinephrine, which raise [cAMP] and activate PKA. PKA phosphorylates and activates phosphorylase kinase, which converts glycogen phosphorylase b to its active a form. Phosphoprotein phosphatase 1 (PP1) reverses the phosphorylation of glycogen phosphorylase a, inactivating it. Glucose binds to the liver isozyme of glycogen phosphorylase a, favoring its dephosphorylation and inactivation.

- Glycogen synthase a is inactivated by phosphorylation catalyzed by GSK3. Insulin blocks GSK3. PP1, which is activated by insulin, reverses the inhibition by dephosphorylating glycogen synthase b.

- Insulin increases glucose uptake into myocytes and adipocytes by triggering movement of the glucose transporter GLUT4 to the plasma membrane.

- Insulin stimulates the synthesis of hexokinases II and IV, PFK-1, pyruvate kinase, and several enzymes involved in lipid synthesis. Insulin stimulates glycogen synthesis in muscle and liver.

- In liver, glucagon stimulates glycogen breakdown and gluconeogenesis while blocking glycolysis, thereby sparing glucose for export to the brain and other tissues.

- In muscle, epinephrine stimulates glycogen breakdown and glycolysis, providing ATP to support contraction.

Key Terms

Terms in bold are defined in the glossary.

- glucose 6-phosphate 569
- flux 571
- homeostasis 571
- cellular differentiation 571
- transcription factor 571
- response element 571
- turnover 572
- transcriptome 572
- proteome 572
- metabolome 573
- metabolic regulation 574
- metabolic control 574
- mass action ratio, Q 574
- adenylyl kinase 576
- AMP-activated protein kinase (AMPK) 576
- flux control coefficient, C 578
- flux, J 578
- elasticity coefficient, ε 580
- response coefficient, R 581
- gluconeogenesis 582
- futile cycle 583
- substrate cycle 583
- hexokinase II 583
- hexokinase I 583
- hexokinase IV 584
- GLUT2 584
- glucagon 587
- fructose 2,6-bisphosphate 587
- phosphofructokinase-2 (PFK-2) 588
- UDP-glucose pyrophosphorylase 600
- amylo (1→4) to (1→6) transglycosylase 601
- glycogenin 601
- glycogen phosphorylase a 603
- glycogen phosphorylase b 603
- enzyme cascade 603
- phosphoprotein phosphatase 1 (PP1) 603
- glycogen synthase a 605
- glycogen synthase b 605
- glycogen synthase kinase 3 (GSK3) 605
- casein kinase II (CKII) 605
- priming 605
- glycogen-targeting proteins 606
- freeze-clamping 606

Further Reading

Regulation of Metabolic Pathways

Advanced and comprehensive review.

Excellent, readable account of metabolic regulation.

Excellent discussion of the principles of metabolic regulation, signal transduction, transcriptional control, and energy metabolism in health and disease.

Analysis of Metabolic Control

Clear statement of the principles of metabolic control analysis.

An excellent, clear exposition of metabolic regulation, from the point of view of metabolic control analysis. If you read only one treatment on metabolic control analysis, this should be it.

Early statement of principles of metabolic control analysis. See also the paper by Kacser & Burns, listed below.

Brief, intermediate-level review.

A classic paper in the field. See also the paper by Heinrich & Rapoport, listed above.
Coordinated Regulation of Glycolysis and Gluconeogenesis

Intermediate-level review of the transcription factor's effects on carbohydrate metabolism.

Intermediate-level review.

Intermediate-level review of AMPK and its role in energy metabolism.

An excellent, highly readable, downloadable book (free).

It includes an introduction to diabetes, a history of studies of diabetes, and chapters on the genetic factors in IDDM, NIDDM, and MODY.

Extensive, advanced review of transcription factors, including those that regulate carbohydrate and fat metabolism.

Advanced review, with emphasis on the possible role of this enzyme in type II diabetes.

Beautifully illustrated, intermediate-level review.

Classic description of this regulatory molecule and its role in regulating carbohydrate metabolism.

Well-illustrated, intermediate-level review.

Advanced, short review of AMPK role in metabolism, including data on knockout mice.

Advanced review.

Advanced review of the role of transcription factor ChREBP in carbohydrate metabolism.

Intermediate-level review.

Short review of the work from K. Uyeda’s laboratory on the role of xylulose 5-phosphate in carbohydrate and fat metabolism; Uyeda’s papers are cited in this review.

The Metabolism of Glycogen in Animals

Intermediate review of the discovery, properties and role of glycogenin.

Coordinated Regulation of Glycogen Synthesis and Breakdown

Intermediate-level, well-illustrated review.
1. Measurement of Intracellular Metabolite Concentrations

Measuring the concentrations of metabolic intermediates in a living cell presents great experimental difficulties—usually a cell must be destroyed before metabolite concentrations can be measured. Yet enzymes catalyze metabolic interconversions very rapidly, so a common problem associated with these types of measurements is that the findings reflect not the physiological concentrations of metabolites but the equilibrium concentrations. A reliable experimental technique requires all enzyme-catalyzed reactions to be instantaneously stopped in the intact tissue so that the metabolic intermediates do not undergo change. This objective is accomplished by rapidly compressing the tissue between large aluminum plates cooled with liquid nitrogen (−190 °C), a process called freeze-clamping. After freezing, which stops enzyme action instantly, the tissue is powdered and the enzymes are inactivated by precipitation with perchloric acid. The precipitate is removed by centrifugation, and the clear supernatant extract is analyzed for metabolites. To calculate intracellular concentrations, the intracellular volume is determined from the total water content of the tissue and a measurement of the extracellular volume.

The intracellular concentrations of the substrates and products of the phosphofructokinase-1 reaction in isolated rat heart tissue are given in the table below.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose 6-phosphate</td>
<td>87.0</td>
</tr>
<tr>
<td>Fructose 1,6-bisphosphate</td>
<td>22.0</td>
</tr>
<tr>
<td>ATP</td>
<td>11,400</td>
</tr>
<tr>
<td>ADP</td>
<td>1,320</td>
</tr>
</tbody>
</table>

*Calculated as µmol/mL of intracellular water.

(a) Calculate Q, [fructose 1,6-bisphosphate][ADP]/[fructose 6-phosphate][ATP], for the PFK-1 reaction under physiological conditions,

(b) Given a ΔG° for the PFK-1 reaction of −14.2 kJ/mol, calculate the equilibrium constant for this reaction.

(c) Compare the values of Q and Keq. Is the physiological reaction near or far from equilibrium? Explain. What does this experiment suggest about the role of PFK-1 as a regulatory enzyme?

2. Are All Metabolic Reactions at Equilibrium?

(a) Phosphoenolpyruvate (PEP) is one of the two phosphoryl group donors in the synthesis of ATP during glycolysis. In human erythrocytes, the steady-state concentration of ATP is 2.24 mM, that of ADP is 0.25 mM, and that of pyruvate is 0.051 mM. Calculate the concentration of PEP at 25 °C, assuming that the pyruvate kinase reaction (see Fig. 13–13) is at equilibrium in the cell.

(b) The physiological concentration of PEP in human erythrocytes is 0.023 mM. Compare this with the value obtained in (a). Explain the significance of this difference.

3. Effect of O2 Supply on Glycolytic Rates

The regulated steps of glycolysis in intact cells can be identified by studying the catabolism of glucose in whole tissues or organs. For example, the glucose consumption by heart muscle can be measured by artificially circulating blood through an isolated intact heart and measuring the concentration of glucose before and after the blood passes through the heart. If the circulating blood is deoxygenated, heart muscle consumes glucose at a steady rate. When oxygen is added to the blood, the rate of glucose consumption drops dramatically, then is maintained at the new, lower rate. Explain.

4. Regulation of PFK-1

The effect of ATP on the allosteric enzyme PFK-1 is shown below. For a given concentration of fructose 6-phosphate, the PFK-1 activity increases with increasing concentrations of ATP, but a point is reached beyond which increasing the concentration of ATP inhibits the enzyme.

(a) Explain how ATP can be both a substrate and an inhibitor of PFK-1. How is the enzyme regulated by ATP?

(b) In what ways is glycolysis regulated by ATP levels?

(c) The inhibition of PFK-1 by ATP is diminished when the ADP concentration is high, as shown in the illustration. How can this observation be explained?

5. Cellular Glucose Concentration

The concentration of glucose in human blood plasma is maintained at about 5 mM. The concentration of free glucose inside a myocyte is much lower. Why is the concentration so low in the cell? What happens to glucose after entry into the cell? Glucose is administered intravenously as a food source in certain clinical situations. Given that the transformation of glucose to glucose 6-phosphate consumes ATP, why not administer intravenous glucose 6-phosphate instead?

6. Enzyme Activity and Physiological Function

The Vmax of the glycogen phosphorylase from skeletal muscle is much greater than the Vmax of the same enzyme from liver tissue.

(a) What is the physiological function of glycogen phosphorylase in skeletal muscle? In liver tissue?

(b) Why does the Vmax of the muscle enzyme need to be greater than that of the liver enzyme?

7. Glycogen Phosphorylase Equilibrium

Glycogen phosphorylase catalyzes the removal of glucose from glycogen. The ΔG° for this reaction is 3.1 kJ/mol.

(a) Calculate the ratio of [P1] to [glucose 1-phosphate] when the reaction is at equilibrium. (Hint: The removal of glucose units from glycogen does not change the glycogen concentration.)
What does this indicate about the direction of metabolite flow through the glycogen phosphorylase reaction in muscle?

(c) Why are the equilibrium and physiological ratios different? What is the possible significance of this difference?

8. Regulation of Glycogen Phosphorylase In muscle tissue, the rate of conversion of glycogen to glucose 6-phosphate is determined by the ratio of phosphorylase a (active) to phosphorylase b (less active). Determine what happens to the rate of glycogen breakdown if a muscle preparation containing glycogen phosphorylase is treated with (a) phosphorylase kinase and ATP; (b) PP1; (c) epinephrine.

9. Glycogen Breakdown in Rabbit Muscle The intracellular use of glucose and glycogen is tightly regulated at four points. To compare the regulation of glycolysis when oxygen is plentiful and when it is depleted, consider the utilization of glucose and glycogen by rabbit leg muscle in two physiological settings: a resting rabbit, with low ATP demands, and a rabbit that sights its mortal enemy, the coyote, and dashes into its burrow. For each setting, determine the relative levels (high, intermediate, or low) of AMP, ATP, citrate, and acetyl-CoA and describe how these levels affect the flow of metabolites through glycolysis by regulating specific enzymes. In periods of stress, rabbit leg muscle produces much of its ATP by anaerobic glycolysis (lactate fermentation) and very little by oxidation of acetyl-CoA derived from fat breakdown.

10. Glycogen Breakdown in Migrating Birds Unlike the rabbit with its short dash, migratory birds require energy for extended periods of time. For example, ducks generally fly several thousand miles during their annual migration. The flight muscles of migratory birds have a high oxidative capacity and obtain the necessary ATP through the oxidation of acetyl-CoA (obtained from fats) via the citric acid cycle. Compare the regulation of muscle glycolysis during short-term intense activity, as in the fleeing rabbit, and during extended activity, as in the migrating duck. Why must the regulation in these two settings be different?

11. Enzyme Defects in Carbohydrate Metabolism Summaries of four clinical case studies follow. For each case determine which enzyme is defective and designate the appropriate treatment, from the lists provided at the end of the problem. Justify your choices. Answer the questions contained in each case study. (You may need to refer to information in Chapter 14.)

Case A The patient develops vomiting and diarrhea shortly after milk ingestion. A lactose tolerance test is administered. (The patient ingests a standard amount of lactose, and the glucose and galactose concentrations of blood plasma are measured at intervals. In individuals with normal carbohydrate metabolism, the levels increase to a maximum in about 1 hour, then decline.) The patient’s blood glucose and galactose concentrations do not increase during the test. Why do blood glucose and galactose increase and then decrease during the test in healthy individuals? Why do they fail to rise in the patient?

Case B The patient develops vomiting and diarrhea after ingestion of milk. His blood is found to have a low concentration of glucose but a much higher than normal concentration of reducing sugars. The urine tests positive for galactose. Why is the concentration of reducing sugar in the blood high? Why does galactose appear in the urine?

Case C The patient complains of painful muscle cramps when performing strenuous physical exercise but has no other symptoms. A muscle biopsy indicates a muscle glycogen concentration much higher than normal. Why does glycogen accumulate?

Case D The patient is lethargic, her liver is enlarged, and a biopsy of the liver shows large amounts of excess glycogen. She also has a lower than normal blood glucose level. What is the reason for the low blood glucose in this patient?

Defective Enzyme
(a) Muscle PFK-1
(b) Phosphomannose isomerase
(c) Galactose 1-phosphate uridylyltransferase
(d) Liver glycogen phosphorylase
(e) Triose kinase
(f) Lactase in intestinal mucosa
(g) Malate in intestinal mucosa
(h) Muscle debranching enzyme
Treatment
1. Jogging 5 km each day
2. Fat-free diet
3. Low-lactose diet
4. Avoiding strenuous exercise
5. Large doses of niacin (the precursor of NAD+*)
6. Frequent feedings (smaller portions) of a normal diet

12. Effects of Insufficient Insulin in a Person with Diabetes A man with insulin-dependent diabetes is brought to the emergency room in a near-comatose state. While vacationing in an isolated place, he lost his insulin medication and has not taken any insulin for two days.

(a) For each tissue listed below, is each pathway faster, slower, or unchanged in this patient, compared with the normal level when he is getting appropriate amounts of insulin?
(b) For each pathway, describe at least one control mechanism responsible for the change you predict.

Tissue and Pathways
1. Adipose: fatty acid synthesis
2. Muscle: glycolysis; fatty acid synthesis; glycogen synthesis
3. Liver: glycolysis; gluconeogenesis; glycogen synthesis; fatty acid synthesis; pentose phosphate pathway

13. Blood Metabolites in Insulin Insufficiency For the patient described in Problem 12, predict the levels of the following metabolites in his blood before treatment in the emergency room, relative to levels maintained during adequate insulin treatment: (a) glucose; (b) ketone bodies; (c) free fatty acids.

14. Metabolic Effects of Mutant Enzymes Predict and explain the effect on glycogen metabolism of each of the following
defects caused by mutation: (a) loss of the cAMP-binding site on the regulatory subunit of protein kinase A (PKA); (b) loss of the protein phosphatase inhibitor (inhibitor 1 in Fig. 15–40); (c) overexpression of phosphorylase b kinase in liver; (d) defective glucagon receptors in liver.

15. Hormonal Control of Metabolic Fuel Between your evening meal and breakfast, your blood glucose drops and your liver becomes a net producer rather than consumer of glucose. Describe the hormonal basis for this switch, and explain how the hormonal change triggers glucose production by the liver.

16. Altered Metabolism in Genetically Manipulated Mice Researchers can manipulate the genes of a mouse so that a single gene in a single tissue either produces an inactive protein (a “knockout” mouse) or produces a protein that is always (constitutively) active. What effects on metabolism would you predict for mice with the following genetic changes: (a) knockout of glycogen debranching enzyme in the liver; (b) knockout of hexokinase IV in liver; (c) knockout of FBPase-2 in liver; (d) constitutively active FBPase-2 in liver; (e) constitutively active AMPK in muscle; (f) constitutively active ChREBP in liver?

Data Analysis Problem

17. Optimal Glycogen Structure Muscle cells need rapid access to large amounts of glucose during heavy exercise. This glucose is stored in liver and skeletal muscle in polymeric form as particles of glycogen. The typical glycogen particle contains about 55,000 glucose residues (see Fig. 15–33b). Meléndez-Hevia, Waddell, and Shelton (1993) explored some theoretical aspects of the structure of glycogen, as described in this problem.

(a) The cellular concentration of glycogen in liver is about 0.01 μM. What cellular concentration of free glucose would be required to store an equivalent amount of glucose? Why would this concentration of free glucose present a problem for the cell?

Glucose is released from glycogen by glycogen phosphorylase, an enzyme that can remove glucose molecules, one at a time, from one end of a glycogen chain. Glycogen chains are branched (see Figs 15–26 and 15–33b), and the degree of branching—the number of branches per chain—has a powerful influence on the rate at which glycogen phosphorylase can release glucose.

(b) Why would a degree of branching that was too low (i.e., below an optimum level) reduce the rate of glucose release? (Hint: Consider the extreme case of no branches in a chain of 55,000 glucose residues.)

(c) Why would a degree of branching that was too high also reduce the rate of glucose release? (Hint: Think of the physical constraints.)

Meléndez-Hevia and colleagues did a series of calculations and found that two branches per chain (see Fig. 15–33b) was optimal for the constraints described above. This is what is found in glycogen stored in muscle and liver.

To determine the optimum number of glucose residues per chain, Meléndez-Hevia and coauthors considered two key parameters that define the structure of a glycogen particle: $t =$ the number of tiers of glucose chains in a particle (the molecule in Fig. 15–33b has five tiers); $g_c =$ the number of glucose residues in each chain. They set out to find the values of t and g_c that would maximize three quantities: (1) the amount of glucose stored in the particle (G_T) per unit volume; (2) the number of unbranched glucose chains (C_A) per unit volume (i.e., number of chains in the outermost tier, readily accessible to glycogen phosphorylase); and (3) the amount of glucose available to phosphorylase in these unbranched chains (G_{PT}).

(d) Show that $C_A = 2^t - 1$, This is the number of chains available to glycogen phosphorylase before the action of the debranching enzyme.

(e) Show that G_T, the total number of chains in the particle, is given by $G_T = g_c(C_A) = g_c(2^t - 1)$, the total number of glucose residues in the particle.

(f) Glycogen phosphorylase cannot remove glucose from glycogen chains that are shorter than five glucose residues. Show that $G_{PT} = (g_c - 4)(2^t - 1)$. This is the amount of glucose readily available to glycogen phosphorylase.

(g) Based on the size of a glucose residue and the location of branches, the thickness of one tier of glycogen is 0.127 nm + 0.35 nm. Show that the volume of a particle, V_s, is given by the equation $V_s = \frac{4}{3} \pi t^3(0.127 + 0.35)^3$ nm3.

Meléndez-Hevia and coauthors then determined the optimum values of t and g_c—those that gave the maximum value of a quality function, f, that maximizes G_T, C_A, and G_{PT}, while minimizing V_s: $f = \frac{G_T C_A G_{PT}}{V_s}$. They found that the optimum value of g_c is independent of t.

(h) Choose a value of t between 5 and 15 and find the optimum value of g_c. How does this compare with the g_c found in liver glycogen (see Fig. 15–33b)? (Hint: You may find it useful to use a spreadsheet program.)

Reference

If citrate is added the rate of respiration is often increased . . . the extra oxygen uptake is by far greater than can be accounted for by the complete oxidation of citrate . . . Since citric acid reacts catalytically in the tissue it is probable that it is removed by a primary reaction but regenerated by a subsequent reaction.

—H. A. Krebs and W. A. Johnson, article in Enzymologia, 1937

The Citric Acid Cycle

16.1 Production of Acetyl-CoA (Activated Acetate) 616
16.2 Reactions of the Citric Acid Cycle 620
16.3 Regulation of the Citric Acid Cycle 635
16.4 The Glyoxylate Cycle 638

As we saw in Chapter 14, some cells obtain energy (ATP) by fermentation, breaking down glucose in the absence of oxygen. For most eukaryotic cells and many bacteria, which live under aerobic conditions and oxidize their organic fuels to carbon dioxide and water, glycolysis is but the first stage in the complete oxidation of glucose. Rather than being reduced to lactate, ethanol, or some other fermentation product, the pyruvate produced by glycolysis is further oxidized to H₂O and CO₂. This aerobic phase of catabolism is called respiration. In the broader physiological or macroscopic sense, respiration refers to a multicellular organism’s uptake of O₂ and release of CO₂. Biochemists and cell biologists, however, use the term in a narrower sense to refer to the molecular processes by which cells consume O₂ and produce CO₂—processes more precisely termed cellular respiration.

Cellular respiration occurs in three major stages (Fig. 16–1). In the first, organic fuel molecules—glucose, fatty acids, and some amino acids—are oxidized to yield two-carbon fragments in the form of the acetyl group of acetyl-coenzyme A (acetyl-CoA). In the second stage, the acetyl groups are fed into the citric acid cycle, which enzymatically oxidizes them to CO₂; the energy released is conserved in the reduced electron carriers NADH and FADH₂. In the third stage of respiration, these reduced coenzymes are themselves oxidized, giving up protons (H⁺) and electrons.

The electrons are transferred to O₂—the final electron acceptor—via a chain of electron-carrying molecules known as the respiratory chain. In the course of electron transfer, the large amount of energy released is conserved in the form of ATP, by a process called oxidative phosphorylation (Chapter 19). Respiration is more complex than glycolysis and is believed to have evolved much later, after the appearance of cyanobacteria. The metabolic activities of cyanobacteria account for the rise of oxygen levels in the earth’s atmosphere, a dramatic turning point in evolutionary history.

We consider first the conversion of pyruvate to acetyl groups, then the entry of those groups into the citric acid cycle, also called the tricarboxylic acid (TCA) cycle or the Krebs cycle (after its discoverer, Hans Krebs). We next examine the cycle reactions and the enzymes that catalyze them. Because intermediates of the citric acid cycle are also siphoned off as biosynthetic precursors, we go on to consider some ways in which these intermediates are replenished. The citric acid cycle is a hub in metabolism, with degradative pathways leading in and anabolic pathways leading out, and it is closely regulated in coordination with other pathways. The chapter ends with a description of the glyoxylate pathway, a metabolic sequence in some organisms that employs several of the same enzymes and reactions used in the citric acid cycle, bringing about the net synthesis of glucose from stored triacylglycerols.
FIGURE 16–1 Catabolism of proteins, fats, and carbohydrates in the three stages of cellular respiration. Stage 1: oxidation of fatty acids, glucose, and some amino acids yields acetyl-CoA. Stage 2: oxidation of acetyl groups in the citric acid cycle includes four steps in which electrons are abstracted. Stage 3: electrons carried by NADH and FADH₂ are funneled into a chain of mitochondrial (or, in bacteria, plasma membrane-bound) electron carriers—the respiratory chain—ultimately reducing O₂ to H₂O. This electron flow drives the production of ATP.

16.1 Production of Acetyl-CoA (Activated Acetate)

In aerobic organisms, glucose and other sugars, fatty acids, and most amino acids are ultimately oxidized to CO₂ and H₂O via the citric acid cycle and the respiratory chain. Before entering the citric acid cycle, the carbon skeletons of sugars and fatty acids are degraded to the acetyl group of acetyl-CoA, the form in which the cycle accepts most of its fuel input. Many amino acid carbons also enter the cycle this way, although several amino acids are degraded to other cycle intermediates. Here we focus on how pyruvate, derived from glucose and other sugars by glycolysis, is oxidized to acetyl-CoA and CO₂ by the pyruvate dehydrogenase (PDH) complex, a cluster of enzymes—multiple copies of each of three enzymes—located in the mitochondria of eukaryotic cells and in the cytosol of bacteria.

A careful examination of this enzyme complex is rewarding in several respects. The PDH complex is a classic, much-studied example of a multienzyme complex in which a series of chemical intermediates remain bound to the enzyme molecules as a substrate is transformed into the final product. Five cofactors, four derived from vitamins, participate in the reaction mechanism. The regulation of this enzyme complex also illustrates how a combination of covalent modification and allosteric regulation results in precisely regulated flux through a metabolic step. Finally, the PDH complex is the prototype for two other important enzyme complexes: α-ketoglutarate dehydrogenase, of the citric acid cycle, and the branched-chain α-keto acid dehydrogenase, of the oxidative pathways of several amino acids (see Fig. 18–28). The remarkable similarity in the protein structure, cofactor requirements, and reaction mechanisms of these three complexes doubtless reflects a common evolutionary origin.

Pyruvate Is Oxidized to Acetyl-CoA and CO₂

The overall reaction catalyzed by the pyruvate dehydrogenase complex is an oxidative decarboxylation, an irreversible oxidation process in which the carboxyl group is removed from pyruvate as a molecule of CO₂ and the two remaining carbons become the acetyl group of acetyl-CoA (Fig. 16–2). The NADH formed in this reaction gives up a hydride ion (\(\text{H}^- \)) to the respiratory chain (Fig. 16–1), which carries the two electrons to the respiratory chain.
The combined dehydrogenation and decarboxylation of pyruvate to the acetyl group of acetyl-CoA (Fig. 16-2) requires the sequential action of three different enzymes and five different coenzymes or prosthetic groups—thiamine pyrophosphate (TPP), flavin adenine dinucleotide (FAD), coenzyme A (CoA, sometimes denoted CoA-SH, to emphasize the role of the —SH group), nicotinamide adenine dinucleotide (NAD), and lipoate. Four different vitamins required in human nutrition are vital components of this system: thiamine (in TPP), riboflavin (in FAD), niacin (in NAD), and pantothenate (in CoA). We have already described the roles of FAD and NAD as electron carriers (Chapter 13), and we have encountered TPP as the coenzyme of pyruvate decarboxylase (see Fig. 14-14).

Coenzyme A (Fig. 16-3) has a reactive thiol (—SH) group that is critical to the role of CoA as an acyl carrier in a number of metabolic reactions. Acyl groups are covalently linked to the thiol group, forming thioesters. Because of their relatively high standard free energies of hydrolysis (see Figs 13-16, 13-17), thioesters have a high acyl group transfer potential and can donate their acyl groups to a variety of acceptor molecules. The acyl group attached to coenzyme A may thus be thought of as “activated” for group transfer.

The fifth cofactor of the PDH complex, lipoate (Fig. 16-4), has two thiol groups that can undergo reversible oxidation to a disulfide bond (—S—S—), similar to that between two Cys residues in a protein. Because of its capacity to undergo oxidation-reduction reactions, lipoate can serve both as an electron (hydrogen) carrier and as an acyl carrier, as we shall see.

FIGURE 16-3 Coenzyme A (CoA). A hydroxyl group of pantothenic acid is joined to a modified ADP moiety by a phosphate ester bond, and its carboxyl group is attached to β-mercaptoethylamine in amide linkage. The hydroxyl group at the 3’ position of the ADP moiety has oxygen or, in anaerobic microorganisms, to an alternative electron acceptor such as nitrate or sulfate. The transfer of electrons from NADH to oxygen ultimately generates 2.5 molecules of ATP per pair of electrons. The irreversibility of the PDH complex reaction has been demonstrated by isotopic labeling experiments: the complex cannot reattach radioactively labeled CO₂ to acetyl-CoA to yield carboxyl-labeled pyruvate.

The Pyruvate Dehydrogenase Complex Requires Five Coenzymes

FIGURE 16-4 Lipoic acid (lipoate) in amide linkage with a Lys residue.

The lipooyllysyl moiety is the prosthetic group of dihydrolipoyl transacetylase (E₂ of the PDH complex). The lipooyl group occurs in oxidized (disulfide) and reduced (dithiol) forms and acts as a carrier of both hydrogen and an acetyl (or other acyl) group.
The Pyruvate Dehydrogenase Complex Consists of Three Distinct Enzymes

The PDH complex contains three enzymes—pyruvate dehydrogenase (E₁), dihydrolipoyl transacetylase (E₂), and dihydrolipoyl dehydrogenase (E₃)—each present in multiple copies. The number of copies of each enzyme and therefore the size of the complex varies among species. The PDH complex isolated from mammals is about 50 nm in diameter—more than five times the size of an entire ribosome and big enough to be visualized with the electron microscope (Fig. 16-5a). In the bovine enzyme, 60 identical copies of E₂ form a pentagonal dodecahedron (the core) with a diameter of about 25 nm (Fig. 16-5b). (The core of the Escherichia coli enzyme contains 24 copies of E₂.) E₂ is the point of connection for the prosthetic group lipoate, attached through an amide bond to the ε-amino group of a Lys residue (Fig. 16-4). E₂ has three functionally distinct domains (Fig. 16-5c): the amino-terminal lipoyl domain, containing the lipoyl-Lys residue(s); the central E₁- and E₂-binding domain; and the inner-core acyltransferase domain, which contains the acyltransferase active site. The yeast PDH complex has a single lipoyl domain with a lipoate attached, but the mammalian complex has two, and E. coli has three (Fig. 16-5c). The domains of E₂ are separated by linkers, sequences of 20 to 30 amino acid residues, rich in Ala and Pro and interspersed with charged residues; these linkers tend to assume their extended forms, holding the three domains apart.

The active site of E₁ has bound TPP, and that of E₃ has bound FAD. Also part of the complex are two

FIGURE 16-5 The pyruvate dehydrogenase complex. (a) Cryoelectron micrograph of PDH complexes isolated from bovine kidney. In cryoelectron microscopy, biological samples are viewed at extremely low temperatures; this avoids potential artifacts introduced by the usual process of dehydrating, fixing, and staining. (b) Three-dimensional image of PDH complex, showing the subunit structure: E₁, pyruvate dehydrogenase; E₂, dihydrolipoyl transacetylase; and E₃, dihydrolipoyl dehydrogenase. This image is reconstructed by analysis of a large number of images such as those in (a), combined with crystallographic studies of individual subunits. The core (green) consists of 60 molecules of E₂, arranged in 20 trimers to form a pentagonal dodecahedron. The lipoyl domain of E₂ (blue) reaches outward to touch the active sites of E₁ molecules (yellow) arranged on the E₂ core. Several E₁ subunits (red) are also bound to the core, where the swinging arm on E₂ can reach their active sites. An asterisk marks the site where a lipoyl group is attached to the lipoyl domain of E₂. To make the structure clearer, about half of the complex has been cut away from the front. This model was prepared by Z. H. Zhou and colleagues (2001); in another model, proposed by J. L. S. Milne and colleagues (2002), the E₁ subunits are located more toward the periphery (see Further Reading). (c) E₂ consists of three types of domains linked by short polypeptide linkers: a catalytic acyltransferase domain; a binding domain, involved in the binding of E₂ to E₁ and E₃; and one or more (depending on the species) lipoyl domains.
regulatory proteins, a protein kinase and a phosphoprotein phosphatase, discussed below. This basic E1–E2–E3 structure has been conserved during evolution and used in a number of similar metabolic reactions, including the oxidation of α-ketoglutarate in the citric acid cycle (described below) and the oxidation of α-keto acids derived from the breakdown of the branched-chain amino acids valine, isoleucine, and leucine (see Fig. 1B–28). Within a given species, E3 of PDH is identical to E3 of the other two enzyme complexes. The attachment of lipoate to the end of a Lys side chain in E2 produces a long, flexible arm that can move from the active site of E1 to the active sites of E2 and E3, a distance of perhaps 5 nm or more.

In Substrate Channeling, Intermediates Never Leave the Enzyme Surface

Figure 16–6 shows schematically how the pyruvate dehydrogenase complex carries out the five consecutive reactions in the decarboxylation and dehydrogenation of pyruvate. Step 1 is essentially identical to the reaction catalyzed by pyruvate decarboxylase (see Fig. 14–14c); C-1 of pyruvate is released as CO₂, and C-2, which in pyruvate has the oxidation state of an aldehyde, is attached to TPP as a hydroxyethyl group. This first step is the slowest and therefore limits the rate of the overall reaction. It is also the point at which the PDH complex exercises its substrate specificity. In step 2 the hydroxyethyl group is oxidized to the level of a carboxylic acid (acetate). The two electrons removed in this reaction reduce the —S—S— of a lipoyl group on E₂ to two thiol (—SH) groups. The acetyl moiety produced in this oxidation-reduction reaction is first esterified to one of the lipoyl —SH groups, then transesterified to CoA to form acetyl-CoA (step 3). Thus the energy of oxidation drives the formation of a high-energy thioester of acetate. The remaining reactions catalyzed by the PDH complex (by E₃, in steps 4 and 5) are electron transfers necessary to regenerate the oxidized (disulfide) form of the lipoyl group of E₂ to prepare the enzyme complex for another round of oxidation. The electrons removed from the hydroxyethyl group derived from pyruvate pass through FAD to NAD⁺.

Central to the mechanism of the PDH complex are the swinging lipoyleysyl arms of E₂, which accept from E₁ the two electrons and the acetyl group derived from pyruvate, passing them to E₃. All these enzymes and coenzymes are clustered, allowing the intermediates to react quickly without diffusing away from the surface of the enzyme complex. The five-reaction sequence shown in Figure 16–6 is thus an example of substrate channeling. The intermediates of the multistep sequence never leave the complex, and the local concentration of the substrate of E₂ is kept very high. Channeling also prevents theft of the activated acetyl group by other enzymes that use this group as substrate. As we shall see, a similar tethering mechanism for the channeling of substrate between active sites is used in some other enzymes, with lipoate, biotin, or a CoA-like moiety serving as cofactors.

FIGURE 16–6 Oxidative decarboxylation of pyruvate to acetyl-CoA by the PDH complex. The fate of pyruvate is traced in red. In step 1 pyruvate reacts with the bound thiamine pyrophosphate (TPP) of pyruvate dehydrogenase (E₁), undergoing decarboxylation to the hydroxyethyl derivative (see Fig. 14–14). Pyruvate dehydrogenase also carries out step 2, the transfer of two electrons and the acetyl group from TPP to the oxidized form of the lipoyleysyl group of the core enzyme, dihydrolipoyl transacetylase (E₂), to form the acetyl thioester of the reduced lipoyl group. Step 3 is a transesterification in which the —SH group of CoA replaces the —SH group of E₂ to yield acetyl-CoA and the fully reduced (dithiol) form of the lipoyl group. In step 4 dihydrolipoyl dehydrogenase (E₃) promotes transfer of two hydrogen atoms from the reduced lipoyl groups of E₂ to the FAD prosthetic group of E₃, restoring the oxidized form of the lipoyleysyl group of E₂. In step 5 the reduced FADH₂ of E₃ transfers a hydride ion to NAD⁺, forming NADH. The enzyme complex is now ready for another catalytic cycle. (Subunit colors correspond to those in Fig. 16–5b.)
As one might predict, mutations in the genes for the subunits of the PDH complex, or a dietary thiamine deficiency, can have severe consequences. Thiamine-deficient animals are unable to oxidize pyruvate normally. This is of particular importance to the brain, which usually obtains all its energy from the aerobic oxidation of glucose in a pathway that necessarily includes the oxidation of pyruvate. Beriberi, a disease that results from thiamine deficiency, is characterized by loss of neural function. This disease occurs primarily in populations that rely on a diet consisting mainly of white (polished) rice, which lacks the hulls in which most of the thiamine of rice is found. People who habitually consume large amounts of alcohol can also develop thiamine deficiency, because much of their dietary intake consists of the vitamin-free “empty calories” of distilled spirits. An elevated level of pyruvate in the blood is often an indicator of defects in pyruvate oxidation due to one of these causes.

SUMMARY 16.1 Production of Acetyl-CoA (Activated Acetate)

- Pyruvate, the product of glycolysis, is converted to acetyl-CoA, the starting material for the citric acid cycle, by the pyruvate dehydrogenase complex.
- The PDH complex is composed of multiple copies of three enzymes: pyruvate dehydrogenase, E₁ (with its bound cofactor TPP); dihydrolipoyl transacetylase, E₂ (with its covalently bound lipoyl group); and dihydrolipoyl dehydrogenase, E₃ (with its cofactors FAD and NAD).
- E₁ catalyzes the transfer of the acetyl group to E₂, forming acetyl-CoA.
- E₃ catalyzes the regeneration of the disulfide (oxidized) form of lipoate; electrons pass first to FAD, then to NAD⁺.
- The long lipoyllysyl arm swings from the active site of E₁ to E₂ to E₃, tethering the intermediates to the enzyme complex to allow substrate channeling.
- The organization of the PDH complex is very similar to that of the enzyme complexes that catalyze the oxidation of α-ketoglutarate and the branched-chain α-keto acids.

16.2 Reactions of the Citric Acid Cycle

We are now ready to trace the process by which acetyl-CoA undergoes oxidation. This chemical transformation is carried out by the citric acid cycle, the first cyclic pathway we have encountered (Fig. 16–7). To begin a turn of the cycle, acetyl-CoA donates its acetyl group to the four-carbon compound oxaloacetate to form the six-carbon citrate. Citrate is then transformed into isocitrate, also a six-carbon molecule, which is dehydrogenated with loss of CO₂ to yield the five-carbon compound α-ketoglutarate (also called oxoglutarate). α-Ketoglutarate undergoes loss of a second molecule of CO₂ and ultimately yields the four-carbon compound succinate. Succinate is then enzymatically converted in three steps into the four-carbon oxaloacetate—which is then ready to react with another molecule of acetyl-CoA. In each turn of the cycle, one acetyl group enters as acetyl-CoA and two molecules of CO₂ leave; one molecule of oxaloacetate is used to form citrate and one molecule of oxaloacetate is regenerated. No net removal of oxaloacetate occurs; one molecule of oxaloacetate can theoretically bring about oxidation of an infinite number of acetyl groups, and, in fact, oxaloacetate is present in cells in very low concentrations. Four of the eight steps in this process are oxidations, in which the energy of oxidation is very efficiently conserved in the form of the reduced coenzymes NADH and FADH₂.

As noted earlier, although the citric acid cycle is central to energy-yielding metabolism its role is not limited to energy conservation. Four- and five-carbon intermediates of the cycle serve as precursors for a wide variety of products. To replace intermediates removed for this purpose, cells employ anaplerotic (replenishing) reactions, which are described below.

Eugene Kennedy and Albert Lehninger showed in 1948 that, in eukaryotes, the entire set of reactions of the citric acid cycle takes place in mitochondria. Isolated mitochondria were found to contain not only all the enzymes and coenzymes required for the citric acid cycle, but also all the enzymes and proteins necessary for the last stage of respiration—electron transfer and ATP synthesis by oxidative phosphorylation. As we shall see in later chapters, mitochondria also contain the enzymes for the oxidation of fatty acids and some amino acids to acetyl-CoA, and the oxidative degradation of other amino acids to α-ketoglutarate, succinyl-CoA, or oxaloacetate. Thus, in nonphotosynthetic eukaryotes, the mitochondria is the site of most energy-yielding oxidative reactions and of the coupled synthesis of ATP. In photosynthetic eukaryotes, mitochondria are the major site of ATP production in the dark, but in daylight chloroplasts produce most of the organism's ATP. In most bacteria, the enzymes of the citric acid cycle are in the cytosol, and the plasma membrane plays a role analogous to that of the inner mitochondrial membrane in ATP synthesis (Chapter 19).
The Citric Acid Cycle Has Eight Steps

In examining the eight successive reaction steps of the citric acid cycle, we place special emphasis on the chemical transformations taking place as citrate formed from acetyl-CoA and oxaloacetate is oxidized to yield CO₂ and the energy of this oxidation is conserved in the reduced coenzymes NADH and FADH₂.
Formation of Citrate The first reaction of the cycle is the condensation of acetyl-CoA with oxaloacetate to form citrate, catalyzed by citrate synthase:

\[
\begin{align*}
\text{Acetyl-CoA} + \text{Oxaloacetate} & \rightarrow \text{Citrate} \\
\Delta G^\circ & = -32.2 \text{ kJ/mol}
\end{align*}
\]

In this reaction the methyl carbon of the acetyl group is joined to the carbonyl group (C-2) of oxaloacetate. Citroyl-CoA is a transient intermediate formed on the active site of the enzyme (see Fig. 16-9). It rapidly undergoes hydrolysis to free CoA and citrate, which are released from the active site. The hydrolysis of this high-energy thioester intermediate makes the forward reaction highly exergonic. The large, negative standard free-energy change of the citrate synthase reaction is essential to the operation of the cycle because, as noted earlier, the concentration of oxaloacetate is normally very low. The CoA liberated in this reaction is recycled to participate in the oxidative decarboxylation of another molecule of pyruvate by the PDH complex.

Citrate synthase from mitochondria has been crystallized and visualized by x-ray diffraction in the presence and absence of its substrates and inhibitors (Fig. 16-8). Each subunit of the homodimeric enzyme is a single polypeptide with two domains, one large and rigid, the other smaller and more flexible, with the active site between them. Oxaloacetate, the first substrate to bind to the enzyme, induces a large conformational change in the flexible domain, creating a binding site for the second substrate, acetyl-CoA. When citroyl-CoA has formed in the enzyme active site, another conformational change brings about thioester hydrolysis, releasing CoA-SH. This induced fit of the enzyme first to its substrate and then to its reaction intermediate decreases the likelihood of premature and unproductive cleavage of the thioester bond of acetyl-CoA. Kinetic studies of the enzyme are consistent with this ordered bisubstrate mechanism (see Fig. 6-13). The reaction catalyzed by citrate synthase is essentially a Claisen condensation (p. 497), involving a thioester (acetyl-CoA) and a ketone (oxaloacetate) (Fig. 16-9).

Formation of Isocitrate via cis-Aconitate The enzyme aconitase (more formally, aconitate hydratase) catalyzes the reversible transformation of citrate to isocitrate, through the intermediary formation of the tricarboxylic acid cis-aconitate, which normally does not dissociate from the active site. Aconitase can promote the reversible addition of H_2O to the double bond of enzyme-bound cis-aconitate in two different ways, one leading to citrate and the other to isocitrate:

\[
\begin{align*}
\text{Citrate} + \text{H}_2\text{O} & \rightarrow \text{isocitrate} \\
\Delta G^\circ & = -13.3 \text{ kJ/mol}
\end{align*}
\]

FIGURE 16-8 Structure of citrate synthase. The flexible domain of each subunit undergoes a large conformational change on binding oxaloacetate, creating a binding site for acetyl-CoA. (a) Open form of the enzyme alone (PDB ID 5CSC); (b) closed form with bound oxaloacetate and a stable analog of acetyl-CoA (carboxymethyl-CoA) (derived from PDB ID 5CTS). In these representations one subunit is colored tan and one green.
Although the equilibrium mixture at pH 7.4 and 25°C contains less than 10% isocitrate, in the cell the reaction is pulled to the right because isocitrate is rapidly consumed in the next step of the cycle, lowering its steady-state concentration. Aconitase contains an iron-sulfur center (Fig. 16-10), which acts both in the binding of the substrate at the active site and in the catalytic addition or removal of H₂O. In iron-depleted cells, aconitase loses its iron-sulfur center and acquires a new role in the regulation of iron homeostasis. Aconitase is one of many enzymes known to "moonlight" in a second role (Box 16-1).

Oxidation of Isocitrate to α-Ketoglutarate and CO₂

In the next step, isocitrate dehydrogenase catalyzes oxidative decarboxylation of isocitrate to form α-ketoglutarate (Fig. 16-11). Mn²⁺ in the active site interacts with the carbonyl group of the intermediate oxaloacetate, which is formed transiently but does not leave the binding site until decarboxylation converts it to α-ketoglutarate. Mn²⁺ also stabilizes the enol formed transiently by decarboxylation.

There are two different forms of isocitrate dehydrogenase in all cells, one requiring NAD⁺ as electron acceptor.
The "one gene—one enzyme" dictum, put forward by George Beadle and Edward Tatum in 1940 (see Chapter 24), went unchallenged for much of the twentieth century, as did the associated assumption that each protein had only one role. But in recent years, many striking exceptions to this simple formula have been discovered—cases in which a single protein encoded by a single gene clearly does more than one job in the cell. Acconitase is one such protein: it acts both as an enzyme and as a regulator of protein synthesis.

Eukaryotic cells have two isozymes of acconitase. The mitochondrial isozyme converts citrate to isocitrate in the citric acid cycle. The cytosolic isozyme has two distinct functions. It catalyzes the conversion of citrate to isocitrate, providing the substrate for a cytosolic isocitrate dehydrogenase that generates NADPH as reducing power for fatty acid synthesis and other anabolic processes in the cytosol. It also has a role in cellular iron homeostasis.

All cells must obtain iron for the activity of the many proteins that require it as a cofactor. In humans, severe iron deficiency results in anemia, an insufficient supply of erythrocytes and a reduced oxygen-carrying capacity that can be life-threatening. Too much iron is also harmful: it accumulates in and damages the liver in hemochromatosis and other diseases. Iron obtained in the diet is carried in the blood by the protein transferrin and enters cells via endocytosis mediated by the transferrin receptor. Once inside cells, iron is used in the synthesis of hemes, cytochromes, Fe-S proteins, and other Fe-dependent proteins, and excess iron is stored bound to the protein ferritin. The levels of transferrin, transferrin receptor, and ferritin are therefore crucial to cellular iron homeostasis. The synthesis of these three proteins is regulated in response to iron availability—and acconitase, in its "moonlighting" job, plays a key regulatory role.

Acconitase has an essential Fe-S cluster at its active site (see Fig. 16–10). When a cell is depleted of iron, this Fe-S cluster is disassembled and the enzyme loses its acconitase activity. But the apoenzyme (apo-acconitase, lacking its Fe-S cluster) so formed has now acquired its second activity—the ability to bind to specific sequences in the mRNAs for the transferrin receptor and ferritin, thus regulating protein synthesis at the translational level. Two iron regulatory proteins, IRP1 and IRP2, were independently discovered as regulators of iron metabolism. As it turned out, IRP1 is identical to cytosolic apo-acconitase, and IRP2 is very closely related to IRP1 in structure and function, but unlike IRP1 it cannot be converted to enzymatically active acconitase. Both IRP1 and IRP2 bind to regions in the mRNAs encoding ferritin and the transferrin receptor, with effects on iron mobilization and iron uptake. These mRNA sequences are part of hairpin structures (p. 285) called iron response elements (IREs), located at the 5' and 3' ends of the mRNAs (Fig. 1). When bound...
to the 5'-untranslated IRE sequence in the ferritin mRNA, IRPs block ferritin synthesis; when bound to the 3'-untranslated IRE sequences in the transferrin receptor mRNA, they stabilize the mRNA, preventing its degradation and thus allowing the synthesis of more copies of the receptor protein per mRNA molecule. So, in iron-deficient cells, iron uptake becomes more efficient and iron storage (bound to ferritin) is reduced. When cellular iron concentrations return to normal levels, IRP1 is converted to aconitase, and IRP2 undergoes proteolytic degradation, ending the low-iron response.

The enzymatically active aconitase and the moonlighting, regulatory apo-aconitase have different structures. As the active aconitase, the protein has two lobes that close around the Fe-S cluster; as IRP1, the two lobes open, exposing the mRNA-binding site (Fig. 2).

Aconitase is just one of a growing list of enzymes known (or believed) to moonlight in a second role. Many of the glycolytic enzymes are included in this group. Pyruvate kinase acts in the nucleus to regulate the transcription of genes that respond to thyroid hormone. Glyceraldehyde 3-phosphate dehydrogenase moonlights both as uracil DNA glycosylase, effecting the repair of damaged DNA, and as a regulator of histone H2B transcription. The crystallins in the lens of the vertebrate eye are several moonlighting glycolytic enzymes, including phosphoglycerate kinase, triose phosphate isomerase, and lactate dehydrogenase.

Until recently, the discovery that a protein has more than one function was largely a matter of serendipity: two groups of investigators studying two unrelated questions discovered that “their” proteins had similar properties, compared them carefully, and found them to be identical. With the growth of annotated protein and DNA sequence databases, researchers can now deliberately look for moonlighting proteins by searching the databases for any other protein with the same sequence as the one under study, but with a different function. This also means that in the databases, a protein annotated as having a given function doesn’t necessarily have only that function. Protein moonlighting may also explain some puzzling findings: experiments in which a protein with a known function is made inactive by a mutation, and the resulting mutant organisms show a phenotype with no obvious relation to that function.

FIGURE 2 Two forms of cytosolic aconitase/IRP1 with two distinct functions. (a) In aconitase, the two major lobes are closed and the Fe-S cluster is buried; the protein has been made transparent here to show the Fe-S cluster (PDB ID 2B3Y). (b) In IRP1, the lobes open up, exposing a binding site for the mRNA hairpin of the substrate (PDB ID 2IPY).

and the other requiring NADP⁺. The overall reactions are otherwise identical. In eukaryotic cells, the NAD-dependent enzyme occurs in the mitochondrial matrix and serves in the citric acid cycle. The main function of the NAD-dependent enzyme, found in both the mitochondrial matrix and the cytosol, may be the generation of NADPH, which is essential for reductive anabolic reactions.

4 Oxidation of α-Ketoglutarate to Succinyl-CoA and CO₂ The next step is another oxidative decarboxylation, in which α-ketoglutarate is converted to succinyl-CoA and CO₂ by the action of the α-ketoglutarate dehydrogenase complex; NAD⁺ serves as electron acceptor and CoA as the carrier of the succinyl group. The energy of oxidation of α-ketoglutarate is conserved in the formation of the thioester bond of succinyl-CoA:

\[\Delta G^{\circ} = -33.5 \text{ kJ/mol} \]
This reaction is virtually identical to the pyruvate dehydrogenase reaction discussed above, and the \(\alpha \)-ketoglutarate dehydrogenase complex closely resembles the PDH complex in both structure and function. It includes three enzymes, homologous to \(E_1 \), \(E_2 \), and \(E_3 \) of the PDH complex, as well as enzyme-bound TPP, bound lipoate, FAD, NAD, and coenzyme A. Both complexes are certainly derived from a common evolutionary ancestor. Although the \(E_1 \) components of the two complexes are structurally similar, their amino acid sequences differ and, of course, they have different binding specificities: \(E_1 \) of the PDH complex binds pyruvate, and \(E_1 \) of the \(\alpha \)-ketoglutarate dehydrogenase complex binds \(\alpha \)-ketoglutarate. The \(E_2 \) components of the two complexes are also very similar, both having covalently bound lipoil moieties. The subunits of \(E_3 \) are identical in the two enzyme complexes.

5 Conversion of Succinyl-CoA to Succinate

Succinyl-CoA, like acetyl-CoA, has a thioester bond with a strongly negative standard free energy of hydrolysis (\(\Delta G^{\circ} = -36 \text{ kJ/mol} \)). In the next step of the citric acid cycle, energy released in the breakage of this bond is used to drive the synthesis of a phosphoanhydride bond in either GTP or ATP, with a net \(\Delta G^{\circ} \) of only \(-2.9 \text{ kJ/mol} \).

Succinate is formed in the process:

\[
\begin{align*}
\text{Succinyl-CoA} & \quad \text{GDP} + P_i \quad \text{GTP} \\
\text{CoA-SH} & \quad \text{COO}^- \\
\text{Succinate} & \quad \text{His} \\
\end{align*}
\]

\(\Delta G^{\circ} = -2.9 \text{ kJ/mol} \)

The enzyme that catalyzes this reversible reaction is called succinyl-CoA synthetase or succinic thiokinase; both names indicate the participation of a nucleoside triphosphate in the reaction (Box 16–2).

This energy-conserving reaction involves an intermediate step in which the enzyme molecule itself becomes phosphorylated at a His residue in the active site (Fig. 16–12a). This phosphoryl group, which has

FIGURE 16–12 The succinyl-CoA synthetase reaction. (a) In step 1 a phosphoryl group replaces the CoA of succinyl-CoA bound to the enzyme, forming a high-energy acyl phosphate. In step 2 the succinyl phosphate donates its phosphoryl group to a His residue of the enzyme, forming a high-energy phosphohistidyl enzyme. In step 3 the phosphoryl group is transferred from the His residue to the terminal phosphate of GDP (or ADP), forming GTP (or ATP). (b) Active site of succinyl-CoA synthetase of E. coli (derived from PDB 1D1S). The active site includes part of both the \(\alpha \) (blue) and the \(\beta \) (brown) subunits. The power helices (blue, brown) place the partial positive charges of the helix dipole near the phosphate group of \(\beta \text{-His}^{245} \) in the \(\alpha \) chain, stabilizing the phosphohistidyl enzyme. The bacterial and mammalian enzymes have similar amino acid sequences and three-dimensional structures.
Citrate synthase is one of many enzymes that catalyze condensation reactions, yielding a product more chemically complex than its precursors. **Synthases** catalyze condensation reactions in which no nucleoside triphosphate (ATP, GTP, and so forth) is required as an energy source. **Synthetases** catalyze condensations that do use ATP or another nucleoside triphosphate as a source of energy for the synthetic reaction. Succinyl-CoA synthetase is such an enzyme. **Ligases** (from the Latin *ligare*, “to tie together”) are enzymes that catalyze condensation reactions in which two atoms are joined, using ATP or another energy source. (Thus synthetases are ligases.) DNA ligase, for example, closes breaks in DNA molecules, using energy supplied by either ATP or NAD⁺; it is widely used in joining DNA pieces for genetic engineering. Ligases are not to be confused with **lyases**, enzymes that catalyze cleavages (or, in the reverse direction, additions) in which electronic rearrangements occur. The PDH complex, which oxidatively cleaves CO₂ from pyruvate, is a member of the large class of lyases.

The name **kinase** is applied to enzymes that transfer a phosphoryl group from a nucleoside triphosphate such as ATP to an acceptor molecule—a sugar (as in hexokinase and glucokinase), a protein (as in glycogen phosphorylase kinase), another nucleotide (as in nucleoside diphosphate kinase), or a metabolic intermediate such as oxaloacetate (as in PEP carboxykinase). The reaction catalyzed by a kinase is a phosphorylation. On the other hand, **phosphorolysis** is a displacement reaction in which phosphate is the attacking species and becomes covalently attached at the point of bond breakage. Such reactions are catalyzed by **phosphorylases**. Glycogen phosphorylase, for example, catalyzes the phosphorolysis of glycogen, producing glucose 1-phosphate. **Dephosphorylation**, the removal of a phosphoryl group from a phosphate ester, is catalyzed by **phosphatases**.

A high group transfer potential, is transferred to ADP (or GDP) to form ATP (or GTP). Animal cells have two isozymes of succinyl-CoA synthetase, one specific for ADP and the other for GDP. The enzyme has two subunits, α (*M*, 32,000), which has the Ω-His residue (His²⁴⁶) and the binding site for CoA, and β (*M*, 42,000), which confers specificity for either ADP or GDP. The active site is at the interface between subunits. The crystal structure of succinyl-CoA synthetase reveals two “power helices” (one from each subunit), oriented so that their electric dipoles situate partial positive charges close to the negatively charged Ω-His (Fig. 16-12b), stabilizing the phosphoenzyme intermediate. (Recall the similar role of helix dipoles in stabilizing K⁺ ions in the K⁺ channel; see Fig. 11-48.)

The formation of ATP (or GTP) at the expense of the energy released by the oxidative decarboxylation of α-ketoglutarate is a substrate-level phosphorylation, like the synthesis of ATP in the glycolytic reactions catalyzed by glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase (see Fig. 14-2). The GTP formed by succinyl-CoA synthetase can donate its terminal phosphoryl group to ADP to form ATP, in a reversible reaction catalyzed by **nucleoside diphosphate kinase** (p. 510):

\[
GTP + ADP \longrightarrow GDP + ATP \quad \Delta G^\circ = 0 \text{kJ/mol}
\]

Thus the net result of the activity of either isozyme of succinyl-CoA synthetase is the conservation of energy as ATP. There is no change in free energy for the nucleoside diphosphate kinase reaction; ATP and GTP are energetically equivalent.
6. **Oxidation of Succinate to Fumarate** The succinate formed from succinyl-CoA is oxidized to fumarate by the flavoprotein succinate dehydrogenase:

\[
\text{Succinate} \quad \text{FAD} \quad \text{FADH}_2 \quad \text{Fumarate}
\]

\[
\Delta G^{\circ} = 0 \text{ kJ/mol}
\]

In eukaryotes, succinate dehydrogenase is tightly bound to the mitochondrial inner membrane; in bacteria, to the plasma membrane. The enzyme contains three different iron-sulfur clusters and one molecule of covalently bound FAD (see Fig. 19–10). Electrons pass from succinate through the FAD and iron-sulfur centers before entering the chain of electron carriers in the mitochondrial inner membrane (the plasma membrane in bacteria). Electron flow from succinate through these carriers to the final electron acceptor, O\(_2\), is coupled to the synthesis of about 1.5 ATP molecules per pair of electrons (respiration-linked phosphorylation). Malonate, an analog of succinate not normally present in cells, is a strong competitive inhibitor of succinate dehydrogenase, and its addition to mitochondria blocks the activity of the citric acid cycle.

7. **Hydration of Fumarate to Malate** The reversible hydration of fumarate to l-malate is catalyzed by fumarase (formally, fumarate hydratase). The transition state in this reaction is a carbanion:

\[
\text{Fumarate} \quad \text{OH}^- \quad \text{Malate}
\]

\[
\Delta G^{\circ} = -3.9 \text{ kJ/mol}
\]

This enzyme is highly stereospecific; it catalyzes hydration of the trans double bond of fumarate but not the cis double bond of maleate (the cis isomer of fumarate). In the reverse direction (from l-malate to fumarate), fumarase is equally stereospecific: D-malate is not a substrate.

8. **Oxidation of Malate to Oxaloacetate** In the last reaction of the citric acid cycle, NAD-linked l-malate dehydrogenase catalyzes the oxidation of l-malate to oxaloacetate:

\[
\text{Oxaloacetate} \quad \text{NAD}^+ \quad \text{NADH} + \text{H}^+ \quad \text{Malate}
\]

\[
\Delta G^{\circ} = 29.7 \text{ kJ/mol}
\]

The equilibrium of this reaction lies far to the left under standard thermodynamic conditions, but in intact cells oxaloacetate is continually removed by the highly exergonic citrate synthase reaction (step 1 of Fig. 16–7). This keeps the concentration of oxaloacetate in the cell extremely low (<10\(^{-6}\) M), pulling the malate dehydrogenase reaction toward the formation of oxaloacetate.

Although the individual reactions of the citric acid cycle were initially worked out in vitro, using minced muscle tissue, the pathway and its regulation have also been studied extensively in vivo. By using radioactively labeled precursors such as \(\text{[14C]}\)pyruvate and \(\text{[14C]}\)acetate, researchers have traced the fate of individual carbon atoms through the citric acid cycle. Some of the earliest experiments with isotopes produced an unexpected result, however, which aroused considerable controversy about the pathway and mechanism of the citric acid cycle. In fact, these experiments at first seemed to show that citrate was not the first tricarboxylic acid to be formed. Box 16–3 gives some details of this episode in the history of citric acid cycle research. Metabolic flux through the cycle can now be monitored in living tissue by using \(\text{[13C]}\)-labeled precursors and whole-tissue NMR spectroscopy. Because the NMR signal is unique to the compound containing the \(\text{[13C]}\), biochemists can trace the
When compounds enriched in the heavy-carbon isotope 13C and the radioactive carbon isotopes 11C and 14C became available about 60 years ago, they were soon put to use in tracing the pathway of carbon atoms through the citric acid cycle. One such experiment initiated the controversy over the role of citrate. Acetate labeled in the carboxyl group (designated $[1^{-13}$C] acetate) was incubated aerobically with an animal tissue preparation. Acetate is enzymatically converted to acetyl-CoA in animal tissues, and the pathway of the labeled carboxyl carbon of the acetyl group in the cycle reactions could thus be traced. α-Ketoglutarate was isolated from the tissue after incubation, then degraded by known chemical reactions to establish the position(s) of the isotopic carbon.

Condensation of unlabeled oxaloacetate with carboxyl-labeled acetate would be expected to produce citrate labeled in one of the two primary carboxyl groups. Citrate is a symmetric molecule, its two terminal carboxyl groups being chemically indistinguishable. Therefore, half the labeled citrate molecules were expected to yield α-ketoglutarate labeled in the α-carboxyl group and the other half to yield α-ketoglutarate labeled in the γ-carboxyl group; that is, the α-ketoglutarate isolated was expected to be a mixture of the two types of labeled molecules (Fig. 1, pathways (1) and (2)). Contrary to this expectation, the labeled α-ketoglutarate isolated from the tissue suspension contained 13C only in the γ-carboxyl group (Fig. 1, pathway (1)). The investigators concluded that citrate (or any other symmetric molecule) could not be an intermediate in the pathway from acetate to α-ketoglutarate. Rather, an asymmetric tricarboxylic acid, presumably cis-aconitate or isocitrate, must be the first product formed from condensation of acetate and oxaloacetate.

In 1948, however, Alexander Ogston pointed out that although citrate has no chiral center (see Fig. 1–19), it has the potential to react asymmetrically if an enzyme with which it interacts has an active site that is asymmetric. He suggested that the active site of aconitase may have three points to which the citrate must be bound and that the citrate must undergo a specific three-point attachment to these binding points. As seen in Figure 2, the binding of citrate to three such points could happen in only one way, and this would account for the formation of only one type of labeled α-ketoglutarate. Organic molecules such as citrate that have no chiral center but are potentially capable of reacting asymmetrically with an asymmetric active site are now called prochiral molecules.

![Figure 1](image1.png) Incorporation of the isotopic carbon (13C) of the labeled acetyl group into α-ketoglutarate by the citric acid cycle. The carbon atoms of the entering acetyl group are shown in red.

![Figure 2](image2.png) The prochiral nature of citrate. (a) Structure of citrate; (b) schematic representation of citrate: $X = -$OH; $Y = -$COO$^-; Z = -$CH$_2$COO$^-$. (c) Correct complementary fit of citrate to the binding site of aconitase. There is only one way in which the three specified groups of citrate can fit on the three points of the binding site. Thus only one of the two -CH_2COO$^-$ groups is bound by aconitase.
movement of precursor carbons into each cycle intermediate and into compounds derived from the intermediates. This technique has great promise for studies of regulation of the citric acid cycle and its interconnections with other metabolic pathways such as glycolysis.

The Energy of Oxidations in the Cycle Is Efficiently Conserved

We have now covered one complete turn of the citric acid cycle (Fig. 16-13). A two-carbon acetyl group entered the cycle by combining with oxaloacetate. Two carbon atoms emerged from the cycle as CO₂ from the oxidation of isocitrate and α-ketoglutarate. The energy released by these oxidations was conserved in the reduction of three NAD⁺ and one FAD and the production of one ATP or GTP. At the end of the cycle a molecule of oxaloacetate was regenerated. Note that the two carbon atoms appearing as CO₂ are not the same two carbons that entered in the form of the acetyl group; additional turns around the cycle are required to release these carbons as CO₂ (Fig. 16-7).

Although the citric acid cycle directly generates only one ATP per turn (in the conversion of succinyl-CoA to succinate), the four oxidation steps in the cycle provide a large flow of electrons into the respiratory chain via NADH and FADH₂ and thus lead to formation of a large number of ATP molecules during oxidative phosphorylation.

We saw in Chapter 14 that the energy yield from the production of two molecules of pyruvate from one molecule of glucose in glycolysis is 2 ATP and 2 NADH. In oxidative phosphorylation (Chapter 19), passage of two electrons from NADH to O₂ drives the formation of about 2.5 ATP, and passage of two electrons from FADH₂ to O₂ yields about 1.5 ATP. This stoichiometry allows us to calculate the overall yield of ATP from the complete oxidation of glucose. When both pyruvate molecules are oxidized to 6 CO₂ via the pyruvate dehydrogenase complex and the citric acid cycle, and the electrons are transferred to O₂ via oxidative phosphorylation, as many as 32 ATP are obtained per glucose (Table 16-1). In round numbers, this represents the conservation of 32 × 30.5 kJ/mol = 976 kJ/mol, or 34% of the theoretical maximum.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Number of ATP or reduced coenzyme directly formed</th>
<th>Number of ATP ultimately formed*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose → glucose 6-phosphate</td>
<td>1 ATP</td>
<td>1</td>
</tr>
<tr>
<td>Fructose 6-phosphate → fructose 1,6-bisphosphate</td>
<td>1 ATP</td>
<td>1</td>
</tr>
<tr>
<td>2 Glyceraldehyde 3-phosphate → 2 1,3-bisphosphoglycerate</td>
<td>2 NADH</td>
<td>3 or 5¹</td>
</tr>
<tr>
<td>2 1,3-Bisphosphoglycerate → 2 3-phosphoglycerate</td>
<td>2 ATP</td>
<td>3</td>
</tr>
<tr>
<td>2 Phosphoenolpyruvate → 2 pyruvate</td>
<td>2 ATP</td>
<td>4</td>
</tr>
<tr>
<td>2 Pyruvate → 2 acetyl-CoA</td>
<td>2 NADH</td>
<td>5</td>
</tr>
<tr>
<td>2 α-Ketoglutarate → 2 α-ketoglutarate</td>
<td>2 NADH</td>
<td>6</td>
</tr>
<tr>
<td>2 Succinyl-CoA → 2 succinate</td>
<td>2 ATP (or 2 GTP)</td>
<td>7</td>
</tr>
<tr>
<td>2 Succinate → 2 fumarate</td>
<td>2 FADH₂</td>
<td>8</td>
</tr>
<tr>
<td>2 Maleate → 2 oxaloacetate</td>
<td>2 NADH</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>30-32</td>
<td></td>
</tr>
</tbody>
</table>

*This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH₂. A negative value indicates consumption.

¹This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19-30 and 19-31.
of about 2,840 kJ/mol available from the complete oxidation of glucose. These calculations employ the standard free-energy changes; when corrected for the actual free energy required to form ATP within cells (see Worked Example 13-2, p. 503), the calculated efficiency of the process is closer to 65%.

Why Is the Oxidation of Acetate So Complicated?

The eight-step cyclic process for oxidation of simple two-carbon acetyl groups to \(\text{CO}_2 \) may seem unnecessarily cumbersome and not in keeping with the biological principle of maximum economy. The role of the citric acid cycle is not confined to the oxidation of acetate, however. This pathway is the hub of intermediary metabolism. Four- and five-carbon end products of many catabolic processes feed into the cycle to serve as fuels. Oxaloacetate and \(\alpha \)-ketoglutarate, for example, are produced from aspartate and glutamate, respectively, when proteins are degraded. Under some metabolic circumstances, intermediates are drawn out of the cycle to be used as precursors in a variety of biosynthetic pathways.

The citric acid cycle, like all other metabolic pathways, is the product of evolution, and much of this evolution occurred before the advent of aerobic organisms. It does not necessarily represent the shortest pathway from acetate to \(\text{CO}_2 \), but it is the pathway that has, over time, conferred the greatest selective advantage. Early anaerobes most probably used some of the reactions of the citric acid cycle in linear biosynthetic processes. In fact, some modern anaerobic microorganisms use an incomplete citric acid cycle as a source of, not energy, but biosynthetic precursors (Fig. 16-14). These organisms use the first three reactions of the cycle to make \(\alpha \)-ketoglutarate but, lacking \(\alpha \)-ketoglutarate dehydrogenase, they cannot carry out the complete set of citric acid cycle reactions. They do have the four enzymes that catalyze the reversible conversion of oxaloacetate to succinyl-CoA and can produce malate, fumarate, succinate, and succinyl-CoA from oxaloacetate in a reversal of the “normal” (oxidative) direction of flow through the cycle. This pathway is a fermentation, with the NADH produced by isocitrate oxidation recycled to NAD\(^+\) by reduction of oxaloacetate to succinate.

With the evolution of cyanobacteria that produced \(\text{O}_2 \) from water, the earth's atmosphere became aerobic and organisms were under selective pressure to develop aerobic metabolism, which, as we have seen, is much more efficient than anaerobic fermentation.

Citric Acid Cycle Components Are Important Biosynthetic Intermediates

In aerobic organisms, the citric acid cycle is an amphi-bolic pathway, one that serves in both catabolic and anabolic processes. Besides its role in the oxidative catabolism of carbohydrates, fatty acids, and amino acids, the cycle provides precursors for many biosynthetic pathways (Fig. 16-15), through reactions that served the same purpose in anaerobic ancestors. \(\alpha \)-Ketoglutarate and oxaloacetate can, for example, serve as precursors of the amino acids aspartate and glutamate by simple transamination (Chapter 22). Through aspartate and glutamate, the carbons of oxaloacetate and \(\alpha \)-ketoglutarate are then used to build other amino acids, as well as purine and pyrimidine nucleotides. Oxaloacetate is converted to glucose in gluconeogenesis (see Fig. 15-11). Succinyl-CoA is a central intermediate in the synthesis of the porphyrin ring of heme groups, which serve as oxygen carriers (in hemoglobin and myoglobin) and electron carriers (in cytochromes) (see Fig. 22-23). And the citrate produced in some organisms is used commercially for a variety of purposes (Box 16-4).

Anaplerotic Reactions Replenish Citric Acid Cycle Intermediates

As intermediates of the citric acid cycle are removed to serve as biosynthetic precursors, they are replenished by anaplerotic reactions (Fig. 16-15; Table 16-2). Under normal circumstances, the reactions by which cycle intermediates are siphoned off into other pathways and those by which they are replenished are in dynamic balance, so that the concentrations of the citric acid cycle intermediates remain almost constant.
FIGURE 16-15 Role of the citric acid cycle in anabolism. Intermediates of the citric acid cycle are drawn off as precursors in many biosynthetic pathways. Shown in red are four anaplerotic reactions that replenish depleted cycle intermediates (see Table 16–2).

Pyruvate carboxylase is a regulatory enzyme and is virtually inactive in the absence of acetyl-CoA, its positive allosteric modulator. Whenever acetyl-CoA, the fuel for the citric acid cycle, is present in excess, it stimulates the pyruvate carboxylase reaction to produce more oxaloacetate, enabling the cycle to use more acetyl-CoA in the citrate synthase reaction.

The other anaplerotic reactions shown in Table 16–2 are also regulated to keep the level of intermediates high enough to support the activity of the citric acid cycle. Phosphoenolpyruvate (PEP) carboxylase, for example, is activated by the glycolytic intermediate fructose 1,6-bisphosphate, which accumulates when the

Table 16–2 shows the most common anaplerotic reactions, all of which, in various tissues and organisms, convert either pyruvate or phosphoenolpyruvate to oxaloacetate or malate. The most important anaplerotic reaction in mammalian liver and kidney is the reversible carboxylation of pyruvate by CO₂ to form oxaloacetate, catalyzed by pyruvate carboxylase. When the citric acid cycle is deficient in oxaloacetate or any other intermediates, pyruvate is carboxylated to produce more oxaloacetate. The enzymatic addition of a carboxyl group to pyruvate requires energy, which is supplied by ATP—the free energy required to attach a carboxyl group to pyruvate is about equal to the free energy available from ATP.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Tissue(s)/organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate + HCO₃⁻ + ATP</td>
<td>Liver, kidney</td>
</tr>
<tr>
<td>Phosphoenolpyruvate + CO₂ + GDP</td>
<td>Heart, skeletal muscle</td>
</tr>
<tr>
<td>Phosphoenolpyruvate + HCO₅⁻</td>
<td>Higher plants, yeast, bacteria</td>
</tr>
<tr>
<td>Pyruvate + HCO₅⁻ + NAD(P)H</td>
<td>Widely distributed in eukaryotes and bacteria</td>
</tr>
</tbody>
</table>
Citrate has a number of important industrial applications. A quick examination of the ingredients in most soft drinks reveals the common use of citric acid to provide a tart or fruity flavor. Citric acid is also used as a plasticizer and foam inhibitor in the manufacture of certain resins, as a mordant to brighten colors, and as an antioxidant to preserve the flavors of foods. Citric acid is produced industrially by growing the fungus Aspergillus niger in the presence of an inexpensive sugar source, usually beet molasses. Culture conditions are designed to inhibit the reactions of the citric acid cycle such that citrate accumulates.

On a grander scale, citric acid may one day play a spectacular role in the alleviation of world hunger. With its three negatively charged carboxyl groups, citrate is a good chelator of metal ions, and some plants exploit this property by releasing citrate into the soil, where it binds metal ions and prevents their absorption by the plant. Of particular importance is the aluminum ion (Al$^{3+}$), which is toxic to many plants and causes decreased crop yields on 30% to 40% of the world's arable land. Aluminum is the most abundant metal in the earth's crust, yet it occurs mostly in chemical compounds, such as Al(OH)$_3$, that are biologically inert. However, when soil pH is less than 5, Al$^{3+}$ becomes soluble and thus can be absorbed by plant roots. Acidic soil and Al$^{3+}$ toxicity are most prevalent in the tropics, where maize yields can be depressed by as much as 80%. In Mexico, Al$^{3+}$ toxicity limits papaya production to 20,000 hectares, instead of the 3 million hectares that could theoretically be cultivated. One solution would be to raise soil pH with lime, but this is economically and environmentally unsound. An alternative would be to breed Al$^{3+}$-resistant plants. Naturally resistant plants do exist, and these provide the means for a third solution: transferring resistance to crop plants by genetic engineering.

A group of researchers in Mexico has genetically engineered tobacco and papaya plants to express elevated levels of bacterial citrate synthase. These plants secrete five to six times their normal amount of Al$^{3+}$-chelating citric acid and can grow in soils with Al$^{3+}$ levels 10 times those at which control plants can grow. This degree of resistance would allow Mexico to grow papaya on the 3 million hectares of land currently rendered unsuitable by Al$^{3+}$.

Given projected levels of population growth, world food production must more than triple in the next 50 years to adequately feed 9.6 billion people. A long-term solution may turn on increasing crop productivity on the arable land affected by aluminum toxicity, and citric acid may play an important role in achieving this goal.

citric acid cycle operates too slowly to process the pyruvate generated by glycolysis.

Biotin in Pyruvate Carboxylase Carries CO$_2$ Groups

The pyruvate carboxylase reaction requires the vitamin biotin (Fig. 16–16), which is the prosthetic group of the enzyme. Biotin plays a key role in many carboxylation reactions. It is a specialized carrier of one-carbon groups in their most oxidized form: CO$_2$. (The transfer of one-carbon groups in more reduced forms is mediated by other cofactors, notably tetrahydrofolate and S-adenosylmethionine, as described in Chapter 18.) Carboxyl groups are activated in a reaction that consumes ATP and joins CO$_2$ to enzyme-bound biotin. This “activated” CO$_2$ is then passed to an acceptor (pyruvate in this case) in a carboxylation reaction.

Pyruvate carboxylase has four identical subunits, each containing a molecule of biotin covalently attached through an amide linkage to the e-amino group of a specific Lys residue in the enzyme active site. Carboxylation of pyruvate proceeds in two steps (Fig. 16–16): first, a carboxyl group derived from HCO$_3^-$ is attached to biotin, then the carboxyl group is transferred to pyruvate to form oxaloacetate. These two steps occur at separate active sites; the long flexible arm of biotin transfers activated carboxyl groups from the first active site (on one monomer of the tetramer) to the second (on the adjacent monomer), functioning much like the long lipoyllysyl arm of E$_2$ in the PDH complex (Fig. 16–6) and the long arm of the CoA-like moity in the acyl carrier protein involved in fatty acid synthesis (see Fig. 21–5); these are compared in Figure 16–17. Lipoate, biotin, and panthothenate all enter cells on the same transporter; all become covalently attached to proteins by similar reactions; and all provide a flexible tether that allows bound reaction intermediates to move from one active site to another in an enzyme complex, without dissociating from it—all, that is, participate in substrate channeling.

Biotin is a vitamin required in the human diet; it is abundant in many foods and is synthesized by intestinal bacteria. Biotin deficiency is rare, but can sometimes be caused by a diet rich in raw eggs. Egg whites contain a large amount of the protein avidin (M_r 70,000), which binds very tightly to biotin and prevents its absorption in the intestine. The avidin of egg whites may be a defense mechanism for the potential chick embryo, inhibiting the growth of bacteria. When eggs are cooked, avidin is denatured (and thereby inactivated) along with all other
The citric acid cycle

Bicarbonate is activated by ATP, forming carboxyphosphate.

Carboxyphosphate breaks down to CO₂.

CO₂ reacts with biotin to form carboxybiotin.

Biotin transmits the CO₂ from one active site to the other.

Biotin is decarboxylated. Pyruvate is converted to its enolate form.

Pyruvate enolate reacts with CO₂ to form oxaloacetate.

Oxaloacetate is released.

Pyruvate carboxylase

MECHANISM FIGURE 16–16 The role of biotin in the reaction catalyzed by pyruvate carboxylase. Biotin is attached to the enzyme through an amide bond with the ε-amino group of a Lys residue, forming biotinyl-enzyme. Biotin-mediated carboxylation reactions occur in two phases, generally catalyzed in separate active sites on the enzyme as exemplified by the pyruvate carboxylase reaction. In the first phase (steps 1 to 3), bicarbonate is converted to the more activated CO₂, and then used to carboxylate biotin. The biotin acts as a carrier to transport the CO₂ from one active site to another on an adjacent monomer of the tetrameric enzyme (step 4). In the second phase (steps 5 to 7), catalyzed in this second active site, the CO₂ reacts with pyruvate to form oxaloacetate.

Egg white proteins. Purified avidin is a useful reagent in biochemistry and cell biology. A protein that contains covalently bound biotin (derived experimentally or produced in vivo) can be recovered by affinity chromatography (see Fig. 3–17c) based on biotin's strong affinity for avidin. The protein is then eluted from the column with an excess of free biotin. The very high affinity of biotin for avidin is also used in the laboratory in the form of a molecular glue that can hold two structures together (see Fig. 19–28).
FIGURE 16–17 Biological tethers. The cofactors lipoate, biotin, and the combination of β-mercaptoethylamine and pantothenate form long, flexible arms (blue) on the enzymes to which they are covalently bound, acting as tethers that move intermediates from one active site to the next. The group shaded pink is in each case the point of attachment of the activated intermediate to the tether.

SUMMARY 16.2 Reactions of the Citric Acid Cycle

- The citric acid cycle (Krebs cycle, TCA cycle) is a nearly universal central catabolic pathway in which compounds derived from the breakdown of carbohydrates, fats, and proteins are oxidized to CO₂, with most of the energy of oxidation temporarily held in the electron carriers FADH₂ and NADH. During aerobic metabolism, these electrons are transferred to O₂ and the energy of electron flow is trapped as ATP.

- Acetyl-CoA enters the citric acid cycle (in the mitochondria of eukaryotes, the cytosol of bacteria) as citrate synthase catalyzes its condensation with oxaloacetate to form citrate.

- In seven sequential reactions, including two decarboxylations, the citric acid cycle converts citrate to oxaloacetate and releases two CO₂. The pathway is cyclic in that the intermediates of the cycle are not used up; for each oxaloacetate consumed in the path, one is produced.

- For each acetyl-CoA oxidized by the citric acid cycle, the energy gain consists of three molecules of NADH, one FADH₂, and one nucleoside triphosphate (either ATP or GTP).

- Besides acetyl-CoA, any compound that gives rise to a four- or five-carbon intermediate of the citric acid cycle—for example, the breakdown products of many amino acids—can be oxidized by the cycle.

- The citric acid cycle is amphibolic, serving in both catabolism and anabolism; cycle intermediates can be drawn off and used as the starting material for a variety of biosynthetic products.

- When intermediates are shunted from the citric acid cycle to other pathways, they are replenished by several anaplerotic reactions, which produce four-carbon intermediates by carboxylation of three-carbon compounds; these reactions are catalyzed by pyruvate carboxylase, PEP carboxykinase, PEP carboxylase, and malic enzyme. Enzymes that catalyze carboxylations commonly employ biotin to activate CO₂ and to carry it to acceptors such as pyruvate or phosphoenolpyruvate.

16.3 Regulation of the Citric Acid Cycle

As we have seen in Chapter 15, the regulation of key enzymes in metabolic pathways, by allosteric effectors and by covalent modification, ensures the production of intermediates at the rates required to keep the cell in a stable steady state while avoiding wasteful overproduction. The flow of carbon atoms from pyruvate into and through the citric acid cycle is under tight regulation at two levels: the conversion of pyruvate to acetyl-CoA, the starting material for the cycle (the pyruvate dehydrogenase complex reaction), and the entry of acetyl-CoA into the cycle (the citrate synthase reaction). Acetyl-CoA is also produced by pathways other than the PDH complex reaction—most cells produce acetyl-CoA from the oxidation of fatty acids and certain amino acids—and the availability of intermediates from these other pathways is important in the regulation of pyruvate oxidation and of the citric acid cycle. The cycle is also regulated at the isocitrate dehydrogenase and α-ketoglutarate dehydrogenase reactions.

Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by Allosteric and Covalent Mechanisms

The PDH complex of mammals is strongly inhibited by ATP and by acetyl-CoA and NADH, the products of the reaction catalyzed by the complex (Fig. 16–18). The allosteric inhibition of pyruvate oxidation is greatly enhanced when long-chain fatty acids are available. AMP, CoA, and NAD⁺, all of which accumulate when too little acetate flows into the citric acid cycle, allosterically activate the PDH complex. Thus, this enzyme activity is turned off when ample fuel is available in the form of fatty acids and acetyl-CoA and when the cell's [ATP]/[ADP] and [NADH]/[NAD⁺] ratios are high, and it is turned on again...
The Citric Acid Cycle

FIGURE 16-18 Regulation of metabolite flow from the PDH complex through the citric acid cycle in mammals. The PDH complex is allosterically inhibited when [ATP]/[ADP], [NADH]/[NAD⁺], and [acetyl-CoA]/[CoA] ratios are high, indicating an energy-sufficient metabolic state. When these ratios decrease, allosteric activation of pyruvate oxidation results. The rate of flow through the citric acid cycle can be limited by the availability of the citrate synthase substrates, oxaloacetate and acetyl-CoA, or of NAD⁺, which is depleted by its conversion to NADH, slowing the three NAD-dependent oxidation steps. Feedback inhibition by succinyl-CoA, citrate, and ATP also slows the cycle by inhibiting early steps. In muscle tissue, Ca²⁺ signals contraction and, as shown here, stimulates energy-yielding metabolism to replace the ATP consumed by contraction.

In mammals, these allosteric regulatory mechanisms are complemented by a second level of regulation: covalent protein modification. The PDH complex is inhibited by reversible phosphorylation of a specific Ser residue on one of the two subunits of E₁. As noted earlier, in addition to the enzymes E₁, E₂, and E₃, the mammalian PDH complex contains two regulatory proteins whose sole purpose is to regulate the activity of the complex. A specific protein kinase phosphorylates and thereby inactivates E₁, and a specific phosphoprotein phosphatase removes the phosphoryl group by hydrolysis and thereby activates E₁. The kinase is allosterically activated by ATP; when [ATP] is high (reflecting a sufficient supply of energy), the PDH complex is inactivated by phosphorylation of E₁. When [ATP] declines, kinase activity decreases and phosphatase action removes the phosphoryl groups from E₁, activating the complex.

The PDH complex of plants, located in the mitochondrial matrix and in plastids, is inhibited by its products, NADH and acetyl-CoA. The plant mitochondrial enzyme is also regulated by reversible phosphorylation; pyruvate inhibits the kinase, thus activating the PDH complex, and NH₄⁺ stimulates the kinase, causing inactivation of the complex. The PDH complex of E. coli is under allostery regulation similar to that of the mammalian enzyme, but it does not seem to be regulated by phosphorylation.

The Citric Acid Cycle Is Regulated at Its Three Exergonic Steps

The flow of metabolites through the citric acid cycle is under stringent regulation. Three factors govern the rate of flux through the cycle: substrate availability, inhibition by accumulating products, and allosteric feedback inhibition of the enzymes that catalyze early steps in the cycle.

Each of the three strongly exergonic steps in the cycle—those catalyzed by citrate synthase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase (Fig. 16-18)—can become the rate-limiting step under some circumstances. The availability of the substrates for citrate synthase (acetyl-CoA and oxaloacetate) varies with the metabolic state of the cell and sometimes limits the rate of citrate formation. NADH, a product of isocitrate and α-ketoglutarate oxidation, accumulates under some conditions, and at high [NADH]/[NAD⁺] both dehydrogenase reactions are severely inhibited by mass action. Similarly, in the cell, the malate dehydrogenase reaction is essentially at equilibrium (that is, it is...
substrate-limited), and when [NADH]/[NAD⁺] is high the concentration of oxaloacetate is low, slowing the first step in the cycle. Product accumulation inhibits all three limiting steps of the cycle: succinyl-CoA inhibits α-ketoglutarate dehydrogenase (and also citrate synthase); citrate blocks citrate synthase; and the end product, ATP, inhibits both citrate synthase and isocitrate dehydrogenase. The inhibition of citrate synthase by ATP is relieved by ADP, an allosteric activator of this enzyme. In vertebrate muscle, Ca²⁺, the signal for contraction and for a concomitant increase in demand for ATP, activates both isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, as well as the PDH complex. In short, the concentrations of substrates and intermediates in the citric acid cycle set the flux through this pathway at a rate that provides optimal concentrations of ATP and NADH.

Under normal conditions, the rates of glycolysis and of the citric acid cycle are integrated so that only as much glucose is metabolized to pyruvate as is needed to supply the citric acid cycle with its fuel, the acetyl groups of acetyl-CoA. Pyruvate, lactate, and acetyl-CoA are normally maintained at steady-state concentrations. The rate of glycolysis is matched to the rate of the citric acid cycle not only through its inhibition by high levels of ATP and NADH, which are common to both the glycolytic and respiratory stages of glucose oxidation, but also by the concentration of citrate. Citrate, the product of the first step of the citric acid cycle, is an important allosteric inhibitor of phosphofructokinase-1 in the glycolytic pathway (see Fig. 15-14).

Substrate Channeling through Multienzyme Complexes May Occur in the Citric Acid Cycle

Although the enzymes of the citric acid cycle are usually described as soluble components of the mitochondrial matrix (except for succinate dehydrogenase, which is membrane-bound), growing evidence suggests that within the mitochondrion these enzymes exist as multienzyme complexes. The classic approach of enzymology—purification of individual proteins from extracts of broken cells—was applied with great success to the citric acid cycle enzymes. However, the first casualty of cell breakage is higher-level organization within the cell—the noncovalent, reversible interaction of one protein with another, or of an enzyme with some structural component such as a membrane, microtubule, or microfilament. When cells are broken open, their contents, including enzymes, are diluted 100- or 1,000-fold (Fig. 16-19).

Several types of evidence suggest that, in cells, multienzyme complexes ensure efficient passage of the product of one enzyme reaction to the next enzyme in the pathway. Such complexes are called metabolons. Certain enzymes of the citric acid cycle have been isolated together as supramolecular complexes, or have been found associated with the inner mitochondrial membrane, or have been shown to diffuse in the mitochondrial matrix more slowly than expected for the individual protein in solution. There is strong evidence for substrate channeling through multienzyme complexes in other metabolic pathways, and many enzymes thought of as “soluble” probably function in the cell as highly organized complexes that channel intermediates. We will encounter other examples of channeling when we discuss the biosynthesis of amino acids and nucleotides in Chapter 22.

Some Mutations in Enzymes of the Citric Acid Cycle Lead to Cancer

When the mechanisms for regulating a pathway such as the citric acid cycle are overwhelmed by a major metabolic perturbation, the result can be serious disease. Mutations in citric acid cycle enzymes are very rare in humans and other mammals, but those that do occur are devastating. Genetic defects in the fumarase gene lead to tumors of smooth muscle (leiomas) and kidney; mutations in succinate dehydrogenase lead to tumors of the adrenal gland (pheochromocytomas). In cultured cells with these mutations, fumarate (in the case of fumarase mutations) and, to a lesser extent, succinate (in the case of succinate dehydrogenase mutations) accumulate, and this accumulation induces the hypoxia-inducible transcription factor HIF-1α (see Box 14-1). The mechanism of tumor formation may be the
production of a pseudohypoxic state. In cells with these mutations, there is an up-regulation of genes normally regulated by HIF-1α. These effects of mutations in the fumarase and succinate dehydrogenase genes define them as tumor suppressor genes (see p. 474).

SUMMARY 16.3 Regulation of the Citric Acid Cycle

- The overall rate of the citric acid cycle is controlled by the rate of conversion of pyruvate to acetyl-CoA and by the flux through citrate synthase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase. These fluxes are largely determined by the concentrations of substrates and products: the end products ATP and NADH are inhibitory, and the substrates NAD⁺ and ADP are stimulatory.

- The production of acetyl-CoA for the citric acid cycle by the PDH complex is inhibited allosterically by metabolites that signal a sufficiency of metabolic energy (ATP, acetyl-CoA, NADH, and fatty acids) and stimulated by metabolites that indicate a reduced energy supply (AMP, NAD⁺, CoA).

- Complexes of consecutive enzymes in a pathway allow substrate channeling between them.

16.4 The Glyoxylate Cycle

Vertebrates cannot convert fatty acids, or the acetate derived from them, to carbohydrates. Conversion of phosphoenolpyruvate to pyruvate (p. 538) and of pyruvate to acetyl-CoA (Fig. 16–2) are so exergonic as to be essentially irreversible. If a cell cannot convert acetate into phosphoenolpyruvate, acetate cannot serve as the starting material for the gluconeogenic pathway, which leads from phosphoenolpyruvate to glucose (see Fig. 15–11). Without this capacity, then, a cell or organism is unable to convert fuels or metabolites that are degraded to acetate (fatty acids and certain amino acids) into carbohydrates.

As noted in the discussion of anaplerotic reactions (Table 16–2), phosphoenolpyruvate can be synthesized from oxaloacetate in the reversible reaction catalyzed by PEP carboxykinase:

\[
\text{oxaloacetate} + \text{GTP} \rightleftharpoons \text{phosphoenolpyruvate} + \text{CO}_2 + \text{GDP}
\]

Because the carbon atoms of acetate molecules that enter the citric acid cycle appear eight steps later in oxaloacetate, it might seem that this pathway could generate oxaloacetate from acetate and thus generate phosphoenolpyruvate for gluconeogenesis. However, as an examination of the stoichiometry of the citric acid cycle shows, there is no net conversion of acetate to oxaloacetate; in vertebrates, for every two carbons that enter the cycle as acetyl-CoA, two leave as CO₂. In many organisms other than vertebrates, the glyoxylate cycle serves as a mechanism for converting acetate to carbohydrate.

The Glyoxylate Cycle Produces Four-Carbon Compounds from Acetate

In plants, certain invertebrates, and some microorganisms (including *E. coli* and yeast) acetate can serve both as an energy-rich fuel and as a source of phosphoenolpyruvate for carbohydrate synthesis. In these organisms, enzymes of the glyoxylate cycle catalyze the net conversion of acetate to succinate or other four-carbon intermediates of the citric acid cycle:

\[
2 \text{Acetyl-CoA} + \text{NAD}^+ + 2\text{H}_2\text{O} \longrightarrow \text{succinate} + 2\text{CoA} + \text{NADH} + \text{H}^+
\]

In the glyoxylate cycle, acetyl-CoA condenses with oxaloacetate to form citrate, and citrate is converted to isocitrate exactly as in the citric acid cycle. The next step, however, is not the breakdown of isocitrate by isocitrate dehydrogenase but the cleavage of isocitrate by isocitrate lyase, forming succinate and glyoxylate. The glyoxylate then condenses with a second molecule of acetyl-CoA to yield succinate, in a reaction catalyzed by malate synthase. The malate is subsequently oxidized to oxaloacetate, which can condense with another molecule of acetyl-CoA to start another turn of the cycle (Fig. 16–20). Each turn of the glyoxylate cycle consumes two molecules of acetyl-CoA and produces one molecule of succinate, which is then available for biosynthetic purposes. The succinate may be converted through fumarate and malate into oxaloacetate, which can then be converted to phosphoenolpyruvate by PEP carboxykinase, and thus to glucose by gluconeogenesis. Vertebrates do not have the enzymes specific to the glyoxylate cycle (isocitrate lyase and malate synthase) and therefore cannot bring about the net synthesis of glucose from lipids.

In plants, the enzymes of the glyoxylate cycle are sequestered in membrane-bounded organelles called glyoxysomes, which are specialized peroxisomes (Fig. 16–21). Those enzymes common to the citric acid and glyoxylate cycles have two isoforms, one specific to mitochondria, the other to glyoxysomes. Glyoxysomes are not present in all plant tissues at all times. They develop in lipid-rich seeds during germination, before the developing plant acquires the ability to make glucose by photosynthesis. In addition to glyoxylate cycle enzymes, glyoxysomes contain all the enzymes needed for the degradation of the fatty acids stored in seed oils (see Fig. 17–13). Acetyl-CoA formed from lipid breakdown is converted to succinate via the glyoxylate cycle, and the succinate is exported to mitochondria, where citric acid cycle enzymes transform it to malate. A cytosolic isoform of malate dehydrogenase oxidizes malate to oxaloacetate, a precursor for gluconeogenesis. Germinating seeds can therefore convert the carbon of stored lipids into glucose.
The Citric Acid and Glyoxylate Cycles Are Coordinateley Regulated

In germinating seeds, the enzymatic transformations of dicarboxylic and tricarboxylic acids occur in three intracellular compartments: mitochondria, glyoxysomes, and the cytosol. There is a continuous interchange of metabolites among these compartments (Fig. 16-22).

The carbon skeleton of oxaloacetate from the citric acid cycle (in the mitochondrion) is carried to the glyoxysome in the form of aspartate. Aspartate is converted to oxaloacetate, which condenses with acetyl-CoA derived from fatty acid breakdown. The citrate thus formed is converted to isocitrate by aconitase, then split into glyoxylate and succinate by isocitrate lyase. The succinate returns to the mitochondrion, where it reenters the citric acid cycle.

FIGURE 16-20 Glyoxylate cycle. The citrate synthase, aconitase, and malate dehydrogenase of the glyoxylate cycle are isozymes of the citric acid cycle enzymes; isocitrate lyase and malate synthase are unique to the glyoxylate cycle. Notice that two acetyl groups (pink) enter the cycle and four carbons leave as succinate (blue). The glyoxylate cycle was elucidated by Hans Kornberg and Neil Madsen in the laboratory of Hans Krebs.

FIGURE 16-21 Electron micrograph of a germinating cucumber seed, showing a glyoxysome, mitochondria, and surrounding lipid bodies.

FIGURE 16-22 Relationship between the glyoxylate and citric acid cycles. The reactions of the glyoxylate cycle (in glyoxysomes) proceed simultaneously with, and mesh with, those of the citric acid cycle (in mitochondria), as intermediates pass between these compartments. The conversion of succinate to oxaloacetate is catalyzed by citric acid cycle enzymes. The oxidation of fatty acids to acetyl-CoA is described in Chapter 17; the synthesis of hexoses from oxaloacetate is described in Chapter 20.
the citric acid cycle and is transformed into malate, which enters the cytosol and is oxidized (by cytosolic malate dehydrogenase) to oxaloacetate. Oxaloacetate is converted via gluconeogenesis into hexoses and sucrose, which can be transported to the growing roots and shoot. Four distinct pathways participate in these conversions: fatty acid breakdown to acetyl-CoA (in glyoxysomes), the glyoxylate cycle (in glyoxysomes), the citric acid cycle (in mitochondria), and gluconeogenesis (in the cytosol).

The sharing of common intermediates requires that these pathways be coordinately regulated. Isocitrate is a crucial intermediate, at the branch point between the glyoxylate and citric acid cycles (Fig. 16–23). Isocitrate dehydrogenase is regulated by covalent modification: a specific protein kinase phosphorylates and thereby inactivates the dehydrogenase. This inactivation shunts isocitrate to the glyoxylate cycle, where it begins the synthetic route toward glucose. A phosphoprotein phosphatase removes the phosphoryl group from isocitrate dehydrogenase, reactivating the enzyme and sending more isocitrate through the energy-yielding citric acid cycle. The regulatory protein kinase and phosphoprotein phosphatase are separate enzymatic activities of a single polypeptide.

Some bacteria, including *E. coli*, have the full complement of enzymes for the glyoxylate and citric acid cycles in the cytosol and can therefore grow on acetate as their sole source of carbon and energy. The phosphoprotein phosphatase that activates isocitrate dehydrogenase is stimulated by intermediates of the citric acid cycle and glycolysis and by indicators of reduced cellular energy supply (Fig. 16–23). The same metabolites inhibit the protein kinase activity of the bifunctional polypeptide. Thus, the accumulation of intermediates of the central energy-yielding pathways—indicating energy depletion—results in the activation of isocitrate dehydrogenase. When the concentration of these regulators falls, signaling a sufficient flux through the energy-yielding citric acid cycle, isocitrate dehydrogenase is inactivated by the protein kinase.

The same intermediates of glycolysis and the citric acid cycle that activate isocitrate dehydrogenase are allosteric inhibitors of isocitrate lyase. When energy-yielding metabolism is sufficiently fast to keep the concentrations of glycolytic and citric acid cycle intermediates low, isocitrate dehydrogenase is inactivated, the inhibition of isocitrate lyase is relieved, and isocitrate flows into the glyoxylate pathway, to be used in the biosynthesis of carbohydrates, amino acids, and other cellular components.

SUMMARY 16.4 The Glyoxylate Cycle

- The glyoxylate cycle is active in the germinating seeds of some plants and in certain microorganisms that can live on acetate as the sole carbon source. In plants, the pathway takes place in glyoxysomes in seedlings. It involves several citric acid cycle enzymes and two additional enzymes: isocitrate lyase and malate synthase.

- In the glyoxylate cycle, the bypassing of the two decarboxylation steps of the citric acid cycle makes possible the net formation of succinate, oxaloacetate, and other cycle intermediates from acetyl-CoA. Oxaloacetate thus formed can be used to synthesize glucose via gluconeogenesis.

- Vertebrates lack the glyoxylate cycle and cannot synthesize glucose from acetate or the fatty acids that give rise to acetyl-CoA.

- The partitioning of isocitrate between the citric acid cycle and the glyoxylate cycle is controlled at the level of isocitrate dehydrogenase, which is regulated by reversible phosphorylation.
Key Terms

Terms in bold are defined in the glossary.
respiration 615
cellular respiration 615
citric acid cycle 615
tricarboxylic acid (TCA) cycle 615
Krebs cycle 615
pyruvate dehydrogenase (PDH) complex 616
oxidative decarboxylation 616
thioester 617
substrate channeling 619
iron-sulfur center 623
moonlighting enzymes 624
α-ketoglutarate dehydrogenase complex 625
nucleoside diphosphate kinase 627
synthases 627
synthetases 627
ligases 627
lyases 627
kinases 627
phosphorylases 627
phosphatases 627
prochiral molecule 629
amphibolic pathway 631
anaplerotic reaction 631
biotin 633
avidin 633
metabolon 637
glyoxylate cycle 638

Further Reading

General
A scientific and personal biography of Krebs by an eminent historian of science, with a thorough description of the work that revealed the urea and citric acid cycles.
A multiauthour book on the citric acid cycle, including molecular genetics, regulatory mechanisms, variations on the cycle in microorganisms from unusual ecological niches, and evolution of the pathway. Especially relevant are the chapters by H. Gest (Evolutionary Roots of the Citric Acid Cycle in Prokaryotes), W. H. Holms (Control of Flux through the Citric Acid Cycle and the Glyoxylate Bypass in Escherichia coli), and R. N. Perham et al. (α-Keto Acid Dehydrogenase Complexes).

Pyruvate Dehydrogenase Complex
A thorough review of this enzyme.
Beautiful illustration of the power of image reconstruction methodology with cryoelectron microscopy, here used to develop a plausible model for the structure of the PDH complex. Compare this model with that in the paper by Zhou et al. (below).
Review of the roles of swinging arms containing lipoate, biotin, and pantothenate in substrate channeling through multienzyme complexes.

Another striking paper in which image reconstruction with cryoelectron microscopy yields a model of the PDH complex. Compare this model with that in the paper by Milne et al. (above).

Citic Acid Cycle Enzymes
A good, short review.
A review of the structure and function of succinate dehydrogenases.
Advanced review of the evidence for channeling and metabolons.
A thorough review of this enzyme.
A description of the structure and role of the iron-sulfur centers in this enzyme.

Moonlighting Enzymes
Intermediate-level review of moonlighting enzymes.
An advanced review.

Regulation of the Citric Acid Cycle
Intermediate-level review of clinical effects of mutations in succinate dehydrogenase, fumarase, and α-ketoglutarate dehydrogenase.

A detailed review of the regulation of the citric acid cycle.

An excellent general discussion of the importance of the [NADH]/[NAD+] ratio in cellular regulation.

Glyoxylate Cycle

Intermediate-level review of studies of the glyoxylate cycle in Arabidopsis.

Problems

1. **Balance Sheet for the Citric Acid Cycle**
 The citric acid cycle has eight enzymes: citrate synthase, aconitase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase.

 (a) Write a balanced equation for the reaction catalyzed by each enzyme.

 (b) Name the cofactor(s) required by each enzyme reaction.

 (c) For each enzyme determine which of the following describes the type of reaction(s) catalyzed: condensation (carbon–carbon bond formation); dehydration (loss of water); hydration (addition of water); decarboxylation (loss of CO2); oxidation-reduction; substrate-level phosphorylation; isomerization.

 (d) Write a balanced net equation for the catabolism of acetyl-CoA to CO2.

2. **Net Equation for Glycolysis and the Citric Acid Cycle**
 Write the net biochemical equation for the metabolism of a molecule of glucose by glycolysis and the citric acid cycle, including all cofactors.

3. **Recognizing Oxidation and Reduction Reactions**
 One biochemical strategy of many living organisms is the stepwise oxidation of organic compounds to CO2 and H2O and the conservation of a major part of the energy thus produced in the form of ATP. It is important to be able to recognize oxidation-reduction processes in metabolism. Reduction of an organic molecule results from the hydrogenation of a double bond (Eqn 1, below) or of a single bond with accompanying cleavage (Eqn 2). Conversely, oxidation results from dehydrogenation. In biochemical redox reactions, the coenzymes NAD and FAD dehydrogenate/hydrogenate organic molecules in the presence of the proper enzymes.

 \[
 \text{CH}_3-\text{C}=\text{O} + \text{H}^+ + \text{H}^- \rightarrow \text{CH}_3-\text{C}=\text{H} + \text{CO}_2
 \]

 For each of the metabolic transformations in (a) through (h), determine whether oxidation or reduction has occurred. Balance each transformation by inserting H—H and, where necessary, H2O.
4. Relationship between Energy Release and the Oxidation State of Carbon A eukaryotic cell can use glucose ($\text{C}_6\text{H}_{12}\text{O}_6$) and hexanoic acid ($\text{C}_6\text{H}_{10}\text{O}_2$) as fuels for cellular respiration. On the basis of their structural formulas, which substance releases more energy per gram on complete combustion to CO_2 and H_2O?

5. Nicotinamide Coenzymes as Reversible Redox Carriers The nicotinamide coenzymes (see Fig. 13-24) can undergo reversible oxidation-reduction reactions with specific substrates in the presence of the appropriate dehydrogenase. In these reactions, $\text{NAD}^+ + \text{H}^+$ serves as the hydrogen source, as described in Problem 3. Whenever the coenzyme is oxidized, a substrate must be simultaneously reduced:

$$\text{Substrate} + \text{NAD}^+ + \text{H}^+ \rightleftharpoons \text{product} + \text{NAD}^+$$

For each of the reactions in (a) through (f), determine whether the substrate has been oxidized or reduced or is unchanged in oxidation state (see Problem 3). If a redox change has occurred, balance the reaction with the necessary amount of NAD^+, NADH, H^+, and H_2O. The objective is to recognize when a redox coenzyme is necessary in a metabolic reaction.

6. Pyruvate Dehydrogenase Cofactors and Mechanism Describe the role of each cofactor involved in the reaction catalyzed by the pyruvate dehydrogenase complex.

7. Thiamine Deficiency Individuals with a thiamine-deficient diet have relatively high levels of pyruvate in their blood. Explain this in biochemical terms.

8. Isocitrate Dehydrogenase Reaction What type of chemical reaction is involved in the conversion of isocitrate to α-ketoglutarate? Name and describe the role of any cofactors. What other reaction(s) of the citric acid cycle are of this same type?

9. Stimulation of Oxygen Consumption by Oxaloacetate and Malate In the early 1930s, Albert Szent-Györgyi reported the interesting observation that the addition of small amounts of oxaloacetate or malate to suspensions of minced pigeon breast muscle stimulated the oxygen consumption of the preparation. Surprisingly, the amount of oxygen consumed was about seven times more than the amount necessary for complete oxidation (to CO_2 and H_2O) of the added oxaloacetate or malate. Why did the addition of oxaloacetate or malate stimulate oxygen consumption? Why was the amount of oxygen consumed so much greater than the amount necessary to completely oxidize the added oxaloacetate or malate?

10. Formation of Oxaloacetate in a Mitochondrion In the last reaction of the citric acid cycle, malate is dehydrogenated to regenerate the oxaloacetate necessary for the entry of acetyl-CoA into the cycle:

$$\text{L-Malate} + \text{NAD}^+ \rightarrow \text{oxaloacetate} + \text{NADH} + \text{H}^+ \quad \Delta G^{\circ} = 30.0 \text{kJ/mol}$$

(a) Calculate the equilibrium constant for this reaction at 25°C.

(b) Because ΔG° assumes a standard pH of 7, the equilibrium constant calculated in (a) corresponds to

$$K_{eq} = \frac{[\text{oxaloacetate}]\text{[NADH]}}{[\text{L-malate}]\text{[NAD}^+]$$

The measured concentration of L-malate in rat liver mitochondria is about 0.20 mM when $[\text{NAD}^+]\text{[NADH]}$ is 10. Calculate the concentration of oxaloacetate at pH 7 in these mitochondria.

(c) To appreciate the magnitude of the mitochondrial oxaloacetate concentration, calculate the number of oxaloacetate molecules in a single rat liver mitochondrion. Assume the mitochondrion is a sphere of diameter 2.0 μm.
11. Cofactors for the Citric Acid Cycle Suppose you have prepared a mitochondrial extract that contains all of the soluble enzymes of the matrix but has lost (by dialysis) all the low molecular weight cofactors. What must you add to the extract so that the preparation will oxidize acetyl-CoA to CO_2?

12. Riboflavin Deficiency How would a riboflavin deficiency affect the functioning of the citric acid cycle? Explain your answer.

13. Oxaloacetate Pool What factors might decrease the pool of oxaloacetate available for the activity of the citric acid cycle? How can the pool of oxaloacetate be replenished?

14. Energy Yield from the Citric Acid Cycle The reaction catalyzed by succinyl-CoA synthetase produces the high-energy compound GTP. How is the free energy contained in GTP incorporated into the cellular ATP pool?

15. Respiration Studies in Isolated Mitochondria Cellular respiration can be studied in isolated mitochondria by measuring oxygen consumption under different conditions. If 0.01 M sodium malonate is added to actively respiring mitochondria that are using pyruvate as fuel source, respiration soon stops and a metabolic intermediate accumulates.

(a) What is the structure of this intermediate?
(b) Explain why it accumulates.
(c) Explain why oxygen consumption stops.
(d) Aside from removal of the malonate, how can this inhibition of respiration be overcome? Explain.

16. Labeling Studies in Isolated Mitochondria The metabolic pathways of organic compounds have often been delineated by using a radioactively labeled substrate and following the fate of the label.

(a) How can you determine whether glucose added to a suspension of isolated mitochondria is metabolized to CO_2 and H_2O?

(b) Suppose you add a brief pulse of [3-14C]pyruvate (labeled in the methyl position) to the mitochondria. After one turn of the citric acid cycle, what is the location of the 14C in the oxaloacetate? Explain by tracing the 14C label through the pathway. How many turns of the cycle are required to release all the [3-14C]pyruvate as CO_2?

17. Pathway of CO_2 in Gluconeogenesis In the first bypass step of gluconeogenesis, the conversion of pyruvate to phosphoenolpyruvate (PEP), pyruvate is carboxylated by pyruvate carboxylase to oxaloacetate, which is subsequently decarboxylated to PEP by PEP carboxykinase (Chapter 14). Because the addition of CO_2 is directly followed by the loss of CO_2, you might expect that in tracer experiments, the 14C of 14CO_2 would not be incorporated into PEP, glucose, or any intermediates in gluconeogenesis. However, investigators find that when a rat liver preparation synthesizes glucose in the presence of 14CO_2, 14C slowly appears in PEP and eventually at C-3 and C-4 of glucose. How does the 14C label get into the PEP and glucose? (Hint: During gluconeogenesis in the presence of 14CO_2, several of the four-carbon citric acid cycle intermediates also become labeled.)

18. [1-14C]Glucose Catabolism An actively respiring bacterial culture is briefly incubated with [1-14C]glucose, and the glycolytic and citric acid cycle intermediates are isolated. Where is the 14C in each of the intermediates listed below? Consider only the initial incorporation of 14C, in the first pass of labeled glucose through the pathways.

(a) Fructose 1,6-bisphosphate
(b) Glyceroldehyde 3-phosphate
(c) Phosphoenolpyruvate
(d) Acetyl-CoA
(e) Citrate
(f) α-Ketoglutarate
(g) Oxaloacetate

19. Role of the Vitamin Thiamine People with beriberi, a disease caused by thiamine deficiency, have elevated levels of blood pyruvate and α-ketoglutarate, especially after consuming a meal rich in glucose. How are these effects related to a deficiency of thiamine?

20. Synthesis of Oxaloacetate by the Citric Acid Cycle Oxaloacetate is formed in the last step of the citric acid cycle by the NAD^+ dependent oxidation of L-malate. Can a net synthesis of oxaloacetate from acetyl-CoA occur using only the enzymes and cofactors of the citric acid cycle, without depleting the intermediates of the cycle? Explain. How is oxaloacetate that is lost from the cycle (to biosynthetic reactions) replenished?

21. Oxaloacetate Depletion Mammalian liver can carry out gluconeogenesis using oxaloacetate as the starting material (Chapter 14). Would the operation of the citric acid cycle be affected by extensive use of oxaloacetate for gluconeogenesis? Explain your answer.

22. Mode of Action of the Rodenticide Fluoroacetate Fluoroacetate, prepared commercially for rodent control, is also produced by a South African plant. After entering a cell, fluoracetate is converted to fluoroacetyl-CoA in a reaction catalyzed by the enzyme acetate thiokinase:

\[
\text{F}--\text{CH}_2\text{C}--\text{S-CoA} + \text{ATP} \rightarrow \text{F}--\text{CH}_2\text{C}--\text{S-CoA} + \text{AMP} + \text{PP}_i
\]

The toxic effect of fluoracetate was studied in an experiment using intact isolated rat heart. After the heart was perfused with 0.22 mM fluoracetate, the measured rate of glucose uptake and glycolysis decreased, and glucose 6-phosphate and fructose 6-phosphate accumulated. Examination of the citric acid cycle intermediates revealed that their concentrations were below normal, except for citrate, with a concentration 10 times higher than normal.

(a) Where did the block in the citric acid cycle occur? What caused citrate to accumulate and the other cycle intermediates to be depleted?

(b) Fluoroacetyl-CoA is enzymatically transformed in the citric acid cycle. What is the structure of the end product of fluoracetate metabolism? Why does it block the citric acid cycle? How might the inhibition be overcome?
(c) In the heart perfusion experiments, why did glucose uptake and glycolysis decrease? Why did hexose monophosphates accumulate?

(d) Why is fluoroacetate poisoning fatal?

23. Synthesis of L-Malate in Wine Making The tartness of some wines is due to high concentrations of L-malate. Write a sequence of reactions showing how yeast cells synthesize L-malate from glucose under anaerobic conditions in the presence of dissolved CO₂ (HCO₃⁻). Note that the overall reaction for this fermentation cannot involve the consumption of nicotinamide coenzymes or citric acid cycle intermediates.

24. Net Synthesis of α-Ketoglutarate α-Ketoglutarate plays a central role in the biosynthesis of several amino acids. Write a sequence of enzymatic reactions that could result in the net synthesis of α-ketoglutarate from pyruvate. Your proposed sequence must not involve the net consumption of other citric acid cycle intermediates. Write an equation for the overall reaction and identify the source of each reactant.

25. Amphibolic Pathways Explain, giving examples, what is meant by the statement that the citric acid cycle is amphibolic.

26. Regulation of the Pyruvate Dehydrogenase Complex In animal tissues, the rate of conversion of pyruvate to acetyl-CoA is regulated by the ratio of active, phosphorylated to inactive, unphosphorylated PDH complex. Determine what happens to the rate of this reaction when a preparation of rabbit muscle mitochondria containing the PDH complex is treated with (a) pyruvate dehydrogenase kinase, ATP, and NADH; (b) pyruvate dehydrogenase phosphatase and Ca²⁺; (c) malonate.

27. Commercial Synthesis of Citric Acid Citric acid is used as a flavoring agent in soft drinks, fruit juices, and many other foods. Worldwide, the market for citric acid is valued at hundreds of millions of dollars per year. Commercial production uses the mold Aspergillus niger, which metabolizes sucrose under carefully controlled conditions.

(a) The yield of citric acid is strongly dependent on the concentration of FeCl₃ in the culture medium, as indicated in the graph. Why does the yield decrease when the concentration of Fe³⁺ is above or below the optimal value of 0.5 mg/L?

(b) Write the sequence of reactions by which A. niger synthesizes citric acid from sucrose. Write an equation for the overall reaction.

(c) Does the commercial process require the culture medium to be aerated—that is, is this a fermentation or an aerobic process? Explain.

28. Regulation of Citrate Synthase In the presence of saturating amounts of oxaloacetate, the activity of citrate synthase from pig heart tissue shows a sigmoid dependence on the concentration of acetyl-CoA, as shown in the graph. When succinyl-CoA is added, the curve shifts to the right and the sigmoid dependence is more pronounced.

On the basis of these observations, suggest how succinyl-CoA regulates the activity of citrate synthase. (Hint: See Fig. 6–54.) Why is succinyl-CoA an appropriate signal for regulation of the citric acid cycle? How does the regulation of citrate synthase control the rate of cellular respiration in pig heart tissue?

29. Regulation of Pyruvate Carboxylase The carboxylation of pyruvate by pyruvate carboxylase occurs at a very low rate unless acetyl-CoA, a positive allosteric modulator, is present. If you have just eaten a meal rich in fatty acids (triacylglycerols) but low in carbohydrates (glucose), how does this regulatory property shut down the oxidation of glucose to CO₂ and H₂O but increase the oxidation of acetyl-CoA derived from fatty acids?

30. Relationship between Respiration and the Citric Acid Cycle Although oxygen does not participate directly in the citric acid cycle, the cycle operates only when O₂ is present. Why?

31. Effect of [NADH]/[NAD⁺] on the Citric Acid Cycle How would you expect the operation of the citric acid cycle to respond to a rapid increase in the [NADH]/[NAD⁺] ratio in the mitochondrial matrix? Why?

32. Thermodynamics of Citrate Synthase Reaction in Cells Citrate is formed by the condensation of acetyl-CoA with oxaloacetate, catalyzed by citrate synthase:

\[\text{Oxaloacetate + acetyl-CoA + H₂O} \rightarrow \text{citrate + CoA + H⁺} \]

In rat heart mitochondria at pH 7.0 and 25 °C, the concentrations of reactants and products are: oxaloacetate, 1 μM; acetyl-CoA, 1 μM; citrate, 220 μM; and CoA, 65 μM. The standard free-energy change for the citrate synthase reaction is -32.2 kJ/mol. What is the direction of metabolite flow through the citrate synthase reaction in rat heart cells? Explain.

33. Reactions of the Pyruvate Dehydrogenase Complex Two of the steps in the oxidative decarboxylation of pyruvate (steps 4 and 5 in Fig. 16–6) do not involve any of the three carbons of pyruvate yet are essential to the operation of the PDH complex. Explain.
34. Citric Acid Cycle Mutants There are many cases of human disease in which one or another enzyme activity is lacking due to genetic mutation. However, cases in which individuals lack one of the enzymes of the citric acid cycle are extremely rare. Why?

35. Partitioning between the Citric Acid and Glyoxylate Cycles In an organism (such as E. coli) that has both the citric acid cycle and the glyoxylate cycle, what determines which of these pathways isocitrate will enter?

Data Analysis Problem

36. How the Citric Acid Cycle Was Determined The detailed biochemistry of the citric acid cycle was determined by several researchers over a period of decades. In a 1937 article, Krebs and Johnson summarized their work and the work of others in the first published description of this pathway.

The methods used by these researchers were very different from those of modern biochemistry. Radioactive tracers were not commonly available until the 1940s, so Krebs and other researchers had to use nontracer techniques to work out the pathway. Using freshly prepared samples of pigeon breast muscle, they determined oxygen consumption by suspending minced muscle in buffer in a sealed flask and measuring the volume (in µL) of oxygen consumed under different conditions. They measured levels of substrates (intermediates) by treating samples with acid to remove contaminating proteins, then assaying the quantities of various small organic molecules. The two key observations that led Krebs and colleagues to propose a citric acid cycle as opposed to a linear pathway (like that of glycolysis) were made in the following experiments.

Experiment I. They incubated 460 mg of minced muscle in 3 mL of buffer at 40 °C for 150 minutes. Addition of citrate increased O₂ consumption by 893 µL compared with samples without added citrate. They calculated, based on the O₂ consumed during respiration of other carbon-containing compounds, that the expected O₂ consumption for complete respiration of this quantity of citrate was only 302 µL.

Experiment II. They measured O₂ consumption by 460 mg of minced muscle in 3 mL of buffer when incubated with citrate and/or with 1-phosphoglycerol (glycerol-1-phosphate; this was known to be readily oxidized by cellular respiration) at 40 °C for 140 minutes. The results are shown in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Substrate(s) added</th>
<th>µL O₂ absorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No extra</td>
<td>342</td>
</tr>
<tr>
<td>2</td>
<td>0.3 mL 0.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-phosphoglycerol</td>
<td>757</td>
</tr>
<tr>
<td>3</td>
<td>0.15 mL 0.02 m citrate</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.3 mL 0.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-phosphoglycerol and 0.15 mL 0.02 m citrate</td>
<td>1,385</td>
</tr>
</tbody>
</table>

(a) Why is O₂ consumption a good measure of cellular respiration?
(b) Why does sample 1 (unsupplemented muscle tissue) consume some oxygen?
(c) Based on the results for samples 2 and 3, can you conclude that 1-phosphoglycerol and citrate serve as substrates for cellular respiration in this system? Explain your reasoning.
(d) Krebs and colleagues used the results from these experiments to argue that citrate was "catalytic"—that it helped the muscle tissue samples metabolize 1-phosphoglycerol more completely. How would you use their data to make this argument?
(e) Krebs and colleagues further argued that citrate was not simply consumed by these reactions, but had to be regenerated. Therefore, the reactions had to be a cycle rather than a linear pathway. How would you make this argument?

Other researchers had found that arsenate (AsO₄³⁻) inhibits α-ketoglutarate dehydrogenase and that malonate inhibits succinate dehydrogenase.

(f) Krebs and coworkers found that muscle tissue samples treated with arsenate and citrate would consume citrate only in the presence of oxygen; and under these conditions, oxygen was consumed. Based on the pathway in Figure 16-7, what was the citrate converted to in this experiment, and why did the samples consume oxygen?

In their article, Krebs and Johnson further reported the following. (1) In the presence of arsenate, 5.48 mmol of citrate was converted to 5.07 mmol of α-ketoglutarate. (2) In the presence of malonate, citrate was quantitatively converted to large amounts of succinate and small amounts of α-ketoglutarate. (3) Addition of oxaloacetate in the absence of oxygen led to production of a large amount of citrate, the amount was increased if glucose was also added.

Other workers had found the following pathway in similar muscle tissue preparations:

Succinate → fumarate → malate → oxaloacetate → pyruvate

(g) Based only on the data presented in this problem, what is the order of the intermediates in the citric acid cycle? How does this compare with Figure 16-7? Explain your reasoning.

(h) Why was it important to show the quantitative conversion of citrate to α-ketoglutarate?

The Krebs and Johnson article also contains other data that filled in most of the missing components of the cycle. The only component left unresolved was the molecule that reacted with oxaloacetate to form citrate.

Reference

17 Fatty Acid Catabolism

17.1 Digestion, Mobilization, and Transport of Fats 648
17.2 Oxidation of Fatty Acids 652
17.3 Ketone Bodies 666

The oxidation of long-chain fatty acids to acetyl-CoA is a central energy-yielding pathway in many organisms and tissues. In mammalian heart and liver, for example, it provides as much as 80% of the energetic needs under all physiological circumstances. The electrons removed from fatty acids during oxidation pass through the respiratory chain, driving ATP synthesis; the acetyl-CoA produced from the fatty acids may be completely oxidized to CO₂ in the citric acid cycle, resulting in further energy conservation. In some species and in some tissues, the acetyl-CoA has alternative fates. In liver, acetyl-CoA may be converted to ketone bodies—water-soluble fuels exported to the brain and other tissues when glucose is not available. In higher plants, acetyl-CoA serves primarily as a biosynthetic precursor, only secondarily as fuel. Although the biological role of fatty acid oxidation differs from organism to organism, the mechanism is essentially the same. The repetitive four-step process, called β oxidation, by which fatty acids are converted into acetyl-CoA is the main topic of this chapter.

In Chapter 10 we described the properties of triacylglycerols (also called triglycerides or neutral fats) that make them especially suitable as storage fuels. The long alkyl chains of their constituent fatty acids are essentially hydrocarbons, highly reduced structures with an energy of complete oxidation (~38 kJ/g) more than twice that for the same weight of carbohydrate or protein. This advantage is compounded by the extreme insolubility of lipids in water; cellular triacylglycerols aggregate in lipid droplets, which do not raise the osmolarity of the cytosol, and they are unsolvated. (In storage polysaccharides, by contrast, water of solvation can account for two-thirds of the overall weight of the stored molecules.) And because of their relative chemical inertness, triacylglycerols can be stored in large quantity in cells without the risk of undesired chemical reactions with other cellular constituents.

The properties that make triacylglycerols good storage compounds, however, present problems in their role as fuels. Because they are insoluble in water, ingested triacylglycerols must be emulsified before they can be digested by water-soluble enzymes in the intestine, and triacylglycerols absorbed in the intestine or mobilized from storage tissues must be carried in the blood bound to proteins that counteract their insolubility. To overcome the relative stability of the C—C bonds in a fatty acid, the carboxyl group at C-1 is activated by attachment to coenzyme A, which allows stepwise oxidation of the fatty acyl group at the C-3, or β, position—hence the name β oxidation.

We begin this chapter with a brief discussion of the sources of fatty acids and the routes by which they travel to the site of their oxidation, with special emphasis on the process in vertebrates. We then describe the chemical steps of fatty acid oxidation in mitochondria. The complete oxidation of fatty acids to CO₂ and H₂O takes place in three stages: the oxidation of long-chain fatty acids to two-carbon fragments, in the form of acetyl-CoA (β oxidation); the oxidation of acetyl-CoA to CO₂ in the citric acid cycle (Chapter 16); and the transfer of electrons from reduced electron carriers to the mitochondrial respiratory chain (Chapter 19). In this chapter we focus on the first of these stages. We begin our discussion of β oxidation with the simple case in which a fully saturated fatty acid with an even number of carbon atoms is degraded to acetyl-CoA. We then look briefly at the extra transformations necessary for the degradation of unsaturated fatty acids and fatty acids with an odd number of carbons. Finally, we discuss variations on the β-oxidation theme in specialized organelles—peroxisomes and glyoxysomes—and two less common pathways of fatty acid catabolism, α and ω oxidation. The chapter concludes with a description of an alternative fate for the acetyl-CoA formed by β oxidation in vertebrates: the production of ketone bodies in the liver.

Jack Sprat could eat no fat,
His wife could eat no lean,
And so between them both you see,
They licked the platter clean.

—John Clarke, Paroemologia Anglo-Latina (Proverbs English and Latin), 1639
17.1 Digestion, Mobilization, and Transport of Fats

Cells can obtain fatty acid fuels from three sources: fats consumed in the diet, fats stored in cells as lipid droplets, and fats synthesized in one organ for export to another. Some species use all three sources under various circumstances, others use one or two. Vertebrates, for example, obtain fats in the diet, mobilize fats stored in specialized tissue (adipose tissue, consisting of cells called adipocytes), and, in the liver, convert excess dietary carbohydrates to fats for export to other tissues. On average, 40% or more of the daily energy requirement of humans in highly industrialized countries is supplied by dietary triacylglycerols (although most nutritional guidelines recommend no more than 30% of daily caloric intake from fats). Triacylglycerols provide more than half the energy requirements of some organs, particularly the liver, heart, and resting skeletal muscle. Stored triacylglycerols are virtually the sole source of energy in hibernating animals and migrating birds. Proto-
tists obtain fats by consuming organisms lower in the food chain, and some also store fats as cytosolic lipid droplets. Vascular plants mobilize fats stored in seeds during germination, but do not otherwise depend on fats for energy.

Dietary Fats Are Absorbed in the Small Intestine

In vertebrates, before ingested triacylglycerols can be absorbed through the intestinal wall they must be converted from insoluble macroscopic fat particles to finely dispersed microscopic micelles. This solubilization is carried out by bile salts, such as taurocholic acid (p. 357), which are synthesized from cholesterol in the liver, stored in the gallbladder, and released into the small intestine after ingestion of a fatty meal. Bile salts are amphipathic compounds that act as biological detergents, converting dietary fats into mixed micelles of bile salts and triacylglycerols (Fig. 17–1, step 1). Micelle formation enormously increases the fraction of lipid molecules accessible to the action of water-soluble lipases in the intestine, and lipase action converts fatty acids released from triacylglycerols are packaged and delivered to muscle and adipose tissues. The eight steps are discussed in the text.
triacylglycerols to monoacylglycerols (monoglycerides) and diacylglycerols (diglycerides), free fatty acids, and glycerol (step 2). These products of lipase action diffuse into the epithelial cells lining the intestinal surface (the intestinal mucosa) (step 3), where they are reconverted to triacylglycerols and packaged with dietary cholesterol and specific proteins into lipoprotein aggregates called chylomicrons (Fig. 17-2; see also Fig. 17-1, step 4).

Apolipoproteins are lipid-binding proteins in the blood, responsible for the transport of triacylglycerols, phospholipids, cholesterol, and cholesteryl esters between organs. Apolipoproteins (“apo” means “detached” or “separate,” designating the protein in its lipid-free form) combine with lipids to form several classes of lipoprotein particles, spherical aggregates with hydrophobic lipids at the core and hydrophilic protein side chains and lipid head groups at the surface. Various combinations of lipid and protein produce particles of different densities, ranging from chylomicrons and very-low-density lipoproteins (VLDL) to very-high-density lipoproteins (VHDL), which can be separated by ultracentrifugation. The structures of these lipoprotein particles and their roles in lipid transport are detailed in Chapter 21.

The protein moieties of lipoproteins are recognized by receptors on cell surfaces. In lipid uptake from the intestine, chylomicrons, which contain apolipoprotein C-II (apoC-II), move from the intestinal mucosa into the lymphatic system, and then enter the blood, which carries them to muscle and adipose tissue (Fig. 17-1, step 5). In the capillaries of these tissues, the extracellular enzyme lipoprotein lipase, activated by apoC-II, hydrolyzes triacylglycerols to fatty acids and glycerol (step 6), which are taken up by cells in the target tissues (step 7). In muscle, the fatty acids are oxidized for energy; in adipose tissue, they are reesterified for storage as triacylglycerols (step 8).

The remnants of chylomicrons, depleted of most of their triacylglycerols but still containing cholesterol and apolipoproteins, travel in the blood to the liver, where they are taken up by endocytosis, mediated by receptors for their apolipoproteins. Triacylglycerols that enter the liver by this route may be oxidized to provide energy or to provide precursors for the synthesis of ketone bodies, as described in Section 17.3. When the diet contains more fatty acids than are needed immediately for fuel or as precursors, the liver converts them to triacylglycerols, which are packaged with specific apolipoproteins into VLDLs. The VLDLs are transported in the blood to adipose tissues, where the triacylglycerols are removed and stored in lipid droplets within adipocytes.

Hormones Trigger Mobilization of Stored Triacylglycerols

Neutral lipids are stored in adipocytes (and in steroid-synthesizing cells of the adrenal cortex, ovary, and testes) in the form of lipid droplets, with a core of sterol esters and triacylglycerols surrounded by a monolayer of phospholipids. The surface of these droplets is coated with perilipins, a family of proteins that restrict access to lipid droplets, preventing untimely lipid mobilization. When hormones signal the need for metabolic energy, triacylglycerols stored in adipose tissue are mobilized (brought out of storage) and transported to tissues (skeletal muscle, heart, and renal cortex) in which fatty acids can be oxidized for energy production. The hormones epinephrine and glucagon, secreted in response to low blood glucose levels, activate the enzyme adenylyl cyclase in the adipocyte plasma membrane (Fig. 17-3), which produces the intracellular second messenger cyclic AMP (cAMP; see Fig. 12-4). Cyclic AMP-dependent protein kinase (PKA) phosphorylates perilipin A, and the phosphorylated perilipin causes hormone-sensitive lipase in the cytosol to move to the lipid droplet surface, where it can begin hydrolyzing triacylglycerols to free fatty acids and glycerol. PKA also phosphorylates hormone-sensitive lipase, doubling or tripling its activity, but the more than 50-fold increase in fat mobilization triggered by epinephrine is due primarily to perilipin phosphorylation. Cells with defective perilipin genes have almost no response to increases in cAMP concentration; their hormone-sensitive lipase does not associate with lipid droplets.

As hormone-sensitive lipase hydrolyzes triacylglycerol in adipocytes, the fatty acids thus released (free fatty acids, FFA) pass from the adipocyte into the blood, where they bind to the blood protein serum albumin.
Fatty Acid Catabolism

Fatty Acid Catabolism

Figure 17-3 Mobilization of triacylglycerols stored in adipose tissue.
When low levels of glucose in the blood trigger the release of glucagon, the hormone binds its receptor in the adipocyte membrane and thus stimulates adenylyl cyclase, via a G protein, to produce cAMP. This activates PKA, which phosphorylates the hormone-sensitive lipase and perilipin molecules on the surface of the lipid droplet. Phosphorylation of perilipin permits hormone-sensitive lipase access to the surface of the lipid droplet, where it hydrolyzes triacylglycerols to free fatty acids. Fatty acids leave the adipocyte, bind serum albumin in the blood, and are carried in the blood; they are released from the albumin and enter a myocyte via a specific fatty acid transporter. In the myocyte, fatty acids are oxidized to CO₂, and the energy of oxidation is conserved in ATP, which fuels muscle contraction and other energy-requiring metabolism in the myocyte.

This protein (Mr 66,000), which makes up about half of the total serum protein, noncovalently binds as many as 10 fatty acids per protein monomer. Bound to this soluble protein, the otherwise insoluble fatty acids are carried to tissues such as skeletal muscle, heart, and renal cortex. In these target tissues, fatty acids dissociate from albumin and are moved by plasma membrane transporters into cells to serve as fuel.

About 95% of the biologically available energy of triacylglycerols resides in their three long-chain fatty acids; only 5% is contributed by the glycerol moiety. The glycerol released by lipase action is phosphorylated by glycerol kinase (Fig. 17-4), and the resulting glycerol 3-phosphate is oxidized to dihydroxyacetone phosphate. The glycolytic enzyme triose phosphate isomerase converts this compound to glyceraldehyde 3-phosphate, which is oxidized via glycolysis.

Figure 17-4 Entry of glycerol into the glycolytic pathway.

Fatty Acids Are Activated and Transported into Mitochondria

The enzymes of fatty acid oxidation in animal cells are located in the mitochondrial matrix, as demonstrated in 1948 by Eugene P. Kennedy and Albert Lehninger. The fatty acids with chain lengths of 12 or fewer carbons enter mitochondria without the help of membrane transporters. Those with 14 or more carbons, which constitute the majority of the FFA obtained in the diet or released from adipose tissue, cannot pass directly through the mitochondrial membranes—they must first undergo the three enzymatic reactions of the carnitine shuttle. The first reaction is catalyzed by a family of isozymes (different isozymes specific for fatty acids having short, intermediate, or long carbon chains) present in the outer mitochondrial membrane, the acyl-CoA synthetases, which promote the general reaction

Fatty acid + CoA + ATP \(\rightleftharpoons \) fatty acyl-CoA + AMP + PPᵢ

Thus, acyl-CoA synthetases catalyze the formation of a thioester linkage between the fatty acid carboxyl group and the thiol group of coenzyme A to yield a fatty acyl-CoA.
MECHANISM FIGURE 17–5 Conversion of a fatty acid to a fatty acyl-CoA. The conversion is catalyzed by fatty acyl-CoA synthetase and inorganic pyrophosphatase. Fatty acid activation by formation of the fatty acyl-CoA derivative occurs in two steps. The overall reaction is highly exergonic.

Fatty Acyl-CoA Synthetase Mechanism

Conversion of a fatty acid to a fatty acyl-CoA

\[
\text{Fatty acid} + \text{CoA} + \text{ATP} \rightarrow \text{fatty acyl-CoA} + \text{AMP} + 2\text{PP}_1 \quad (17-1)
\]

\[
\Delta G^\circ = -34 \text{ kJ/mol}
\]

Fatty acyl-CoAs, like acetyl-CoA, are high-energy compounds; their hydrolysis to FFA and CoA has a large, negative standard free-energy change \((\Delta G^\circ = -31 \text{ kJ/mol})\). The formation of a fatty acyl-CoA is made more favorable by the hydrolysis of two high-energy bonds in ATP; the pyrophosphate formed in the activation reaction is immediately hydrolyzed by inorganic pyrophosphatase (left side of Fig. 17–5), which pulls the preceding activation reaction in the direction of fatty acyl-CoA formation. The overall reaction is:

\[
\text{Fatty acid} + \text{CoA} + \text{ATP} \rightarrow \text{fatty acyl-CoA} + \text{AMP} + 2\text{PP}_1
\]

\[
\Delta G^\circ = -34 \text{ kJ/mol}
\]

Fatty acyl-CoAs, like acetyl-CoA, are high-energy compounds; their hydrolysis to FFA and CoA has a large, negative standard free-energy change \((\Delta G^\circ = -31 \text{ kJ/mol})\). The formation of a fatty acyl-CoA is made more favorable by the hydrolysis of two high-energy bonds in ATP; the pyrophosphate formed in the activation reaction is immediately hydrolyzed by inorganic pyrophosphatase (left side of Fig. 17–5), which pulls the preceding activation reaction in the direction of fatty acyl-CoA formation. The overall reaction is:

\[
\text{Fatty acid} + \text{CoA} + \text{ATP} \rightarrow \text{fatty acyl-CoA} + \text{AMP} + 2\text{PP}_1
\]

\[
\Delta G^\circ = -34 \text{ kJ/mol}
\]

Fatty acyl-CoAs, like acetyl-CoA, are high-energy compounds; their hydrolysis to FFA and CoA has a large, negative standard free-energy change \((\Delta G^\circ = -31 \text{ kJ/mol})\). The formation of a fatty acyl-CoA is made more favorable by the hydrolysis of two high-energy bonds in ATP; the pyrophosphate formed in the activation reaction is immediately hydrolyzed by inorganic pyrophosphatase (left side of Fig. 17–5), which pulls the preceding activation reaction in the direction of fatty acyl-CoA formation. The overall reaction is:

\[
\text{Fatty acid} + \text{CoA} + \text{ATP} \rightarrow \text{fatty acyl-CoA} + \text{AMP} + 2\text{PP}_1
\]

\[
\Delta G^\circ = -34 \text{ kJ/mol}
\]

Fatty acyl-CoAs, like acetyl-CoA, are high-energy compounds; their hydrolysis to FFA and CoA has a large, negative standard free-energy change \((\Delta G^\circ = -31 \text{ kJ/mol})\). The formation of a fatty acyl-CoA is made more favorable by the hydrolysis of two high-energy bonds in ATP; the pyrophosphate formed in the activation reaction is immediately hydrolyzed by inorganic pyrophosphatase (left side of Fig. 17–5), which pulls the preceding activation reaction in the direction of fatty acyl-CoA formation. The overall reaction is:

\[
\text{Fatty acid} + \text{CoA} + \text{ATP} \rightarrow \text{fatty acyl-CoA} + \text{AMP} + 2\text{PP}_1
\]

\[
\Delta G^\circ = -34 \text{ kJ/mol}
\]

In the third and final step of the carnitine shuttle, the fatty acyl group is enzymatically transferred from carnitine to intramitochondrial coenzyme A by carnitine acyltransferase II. This isozyme, located on the inner face of the inner mitochondrial membrane, regenerates fatty acyl-CoA and releases it, along with free carnitine, into the matrix (Fig. 17–6). Carnitine reenters the intermembrane space via the acyl-carnitine/carnitine transporter.

This three-step process for transferring fatty acids into the mitochondrial—esterification to CoA, transesterification to carnitine followed by transport, and transesterification back to CoA—links two separate
poools of coenzyme A and of fatty acyl-CoA, one in the cytosol, the other in mitochondria. These pools have different functions. Coenzyme A in the mitochondrial matrix is largely used in oxidative degradation of pyruvate, fatty acids, and some amino acids, whereas cytosolic coenzyme A is used in the biosynthesis of fatty acids (see Fig. 21–10). Fatty acyl-CoA in the cytosolic pool can be used for membrane lipid synthesis or can be moved into the mitochondrial matrix for oxidation and ATP production. Conversion to the carnitine ester commits the fatty acyl moiety to the oxidative fate.

The carnitine-mediated entry process is the rate-limiting step for oxidation of fatty acids in mitochondria and, as discussed later, is a regulation point. Once inside the mitochondrion, the fatty acyl-CoA is acted upon by a set of enzymes in the matrix.

SUMMARY 17.1 Digestion, Mobilization, and Transport of Fats

- The fatty acids of triacylglycerols furnish a large fraction of the oxidative energy in animals. Dietary triacylglycerols are emulsified in the small intestine by bile salts, hydrolyzed by intestinal lipases, absorbed by intestinal epithelial cells, reconverted into triacylglycerols, then formed into chylomicrons by combination with specific apolipoproteins.

- Chylomicrons deliver triacylglycerols to tissues, where lipoprotein lipase releases free fatty acids for entry into cells. Triacylglycerols stored in adipose tissue are mobilized by a hormone-sensitive triacylglycerol lipase. The released fatty acids bind to serum albumin and are carried in the blood to the heart, skeletal muscle, and other tissues that use fatty acids for fuel.

- Once inside cells, fatty acids are activated at the outer mitochondrial membrane by conversion to fatty acyl-CoA thioesters. Fatty acyl-CoA to be oxidized enters mitochondria in three steps, via the carnitine shuttle.

17.2 Oxidation of Fatty Acids

As noted earlier, mitochondrial oxidation of fatty acids takes place in three stages (Fig. 17–7). In the first stage—β oxidation—fatty acids undergo oxidative removal of successive two-carbon units in the form of acetyl-CoA, starting from the carboxyl end of the fatty acyl chain. For example, the 16-carbon palmitic acid (palmitate at pH 7) undergoes seven passes through the oxidative sequence, in each pass losing two carbons as acetyl-CoA. At the end of seven cycles the last two carbons of palmitate (originally C-15 and C-16) remain as acetyl-CoA. The overall result is the conversion of the 16-carbon chain of palmitate to eight two-carbon acetyl groups of acetyl-CoA molecules. Formation of each acetyl-CoA requires removal of four hydrogen atoms (two pairs of electrons and four H+) from the fatty acyl moiety by dehydrogenases.

In the second stage of fatty acid oxidation, the acetyl groups of acetyl-CoA are oxidized to CO₂ in the citric acid cycle, which also takes place in the mitochondrial matrix. Acetyl-CoA derived from fatty acids thus enters a final common pathway of oxidation with the acetyl-CoA derived from glucose via glycolysis and pyruvate oxidation (see Fig. 16–1). The first two stages of fatty acid oxidation produce the reduced electron carriers NADH and FADH₂, which in the third stage donate electrons to the mitochondrial respiratory chain, through which the electrons pass to oxygen.
17.2 Oxidation of Fatty Acids

17.2 Oxidation of Fatty Acids

The \(\beta \)-Oxidation of Saturated Fatty Acids Has Four Basic Steps

Four enzyme-catalyzed reactions make up the first stage of fatty acid oxidation (Fig. 17-8a). First, dehydrogenation of fatty acyl-CoA produces a double bond between the \(\alpha \) and \(\beta \) carbon atoms (C-2 and C-3), yielding a \textit{trans-}\(\Delta^2 \)-enoyl-CoA (the symbol \(\Delta^2 \) designates the position of the double bond; you may want to review fatty acid nomenclature, p. 343.) Note that the new double bond has the trans configuration, whereas the double bonds in naturally occurring unsaturated fatty acids are normally in the cis configuration. We consider the significance of this difference later.

We now take a closer look at the first stage of fatty acid oxidation, beginning with the simple case of a saturated fatty acyl chain with an even number of carbons, then turning to the slightly more complicated cases of unsaturated and odd-number chains. We also consider the regulation of fatty acid oxidation, the \(\beta \)-oxidative processes as they occur in organelles other than mitochondria, and, finally, two less-general modes of fatty acid catabolism, \(\alpha \) oxidation and \(\omega \) oxidation.

FIGURE 17-7 Stages of fatty acid oxidation. Stage 1: A long-chain fatty acid is oxidized to yield acetyl residues in the form of acetyl-CoA. This process is called \(\beta \) oxidation. Stage 2: The acetyl groups are oxidized to \(\text{CO}_2 \) via the citric acid cycle. Stage 3: Electrons derived from the oxidations of stages 1 and 2 pass to \(\text{O}_2 \) via the mitochondrial respiratory chain, providing the energy for ATP synthesis by oxidative phosphorylation.

with the concomitant phosphorylation of ADP to ATP (Fig. 17-7). The energy released by fatty acid oxidation is thus conserved as ATP.

FIGURE 17-8 The \(\beta \)-oxidation pathway. (a) In each pass through this four-step sequence, one acetyl residue (shaded in pink) is removed in the form of acetyl-CoA from the carboxyl end of the fatty acyl chain—in this example palmitate \((\text{C}_{16})\), which enters as palmitoyl-CoA. (b) Six more passes through the pathway yield seven more molecules of acetyl-CoA, the seventh arising from the last two carbon atoms of the 16-carbon chain. Eight molecules of acetyl-CoA are formed in all.
This first step is catalyzed by three isozymes of acyl-CoA dehydrogenase, each specific for a range of fatty-acyl chain lengths: very-long-chain acyl-CoA dehydrogenase (VLCAD), acting on fatty acids of 12 to 18 carbons; medium-chain (MCAD), acting on fatty acids of 4 to 14 carbons; and short-chain (SCAD), acting on fatty acids of 4 to 8 carbons. All three isozymes are flavoproteins with FAD (see Fig. 13-27) as a prosthetic group. The electrons removed from the fatty acyl-CoA are transferred to FAD, and the reduced form of the dehydrogenase immediately donates its electrons to an electron carrier of the mitochondrial respiratory chain, the electron-transferring flavoprotein (ETF) (see Fig. 19–8). The oxidation catalyzed by an acyl-CoA dehydrogenase is analogous to succinate dehydrogenation in the citric acid cycle (p. 628); in both reactions the enzyme is bound to the inner membrane, a double bond is introduced into a carboxylic acid between the α and β carbons, FAD is the electron acceptor, and electrons from the reaction ultimately enter the respiratory chain and pass to O₂, with the concomitant synthesis of about 1.5 ATP molecules per electron pair.

In the second step of the β-oxidation cycle (Fig. 17–8a), water is added to the double bond of the trans-Δ⁴-enoyl-CoA to form the L stereoisomer of β-hydroxyacyl-CoA (3-hydroxyacyl-CoA). This reaction, catalyzed by enoyl-CoA hydratase, is formally analogous to the fumarase reaction in the citric acid cycle, in which H₂O adds across an α-β double bond (p. 628).

In the third step, L, β-hydroxyacyl-CoA is dehydrogenated to form β-ketoacyl-CoA, by the action of β-hydroxyacyl-CoA dehydrogenase; NAD⁺ is the electron acceptor. This enzyme is absolutely specific for the L stereoisomer of hydroxyacyl-CoA. The NADH formed in the reaction donates its electrons to NADH dehydrogenase, an electron carrier of the respiratory chain, and ATP is formed from ADP as the electrons pass to O₂. The reaction catalyzed by β-hydroxyacyl-CoA dehydrogenase is closely analogous to the malate dehydrogenase reaction of the citric acid cycle (p. 628).

The fourth and last step of the β-oxidation cycle is catalyzed by acyl-CoA acetyltransferase, more commonly called thiolase, which promotes reaction of β-ketoacyl-CoA with a molecule of free coenzyme A to split off the carboxyl-terminal two-carbon fragment of the original fatty acid as acetyl-CoA. The other product is the coenzyme A thioester of the fatty acid, now shortened by two carbon atoms (Fig. 17–8a). This reaction is called thiolysis, by analogy with the process of hydrolysis, because the β-ketoacyl-CoA is cleaved by reaction with the thiol group of coenzyme A.

The last three steps of this four-step sequence are catalyzed by either of two sets of enzymes, with the enzymes employed depending on the length of the fatty acyl chain. For fatty acyl chains of 12 or more carbons, the reactions are catalyzed by a multienzyme complex associated with the inner mitochondrial membrane, the trifunctional protein (TFP). TFP is a hetero-octamer of αβ₄ subunits. Each α subunit contains two activities, the enoyl-CoA hydratase and the β-hydroxyacyl-CoA dehydrogenase; the β subunits contain the thiolase activity. This tight association of three enzymes may allow efficient substrate channeling from one active site to the next, without diffusion of the intermediates away from the enzyme surface. When TFP has shortened the fatty acyl chain to 12 or fewer carbons, further oxidations are catalyzed by a set of four soluble enzymes in the matrix.

As noted earlier, the single bond between methyl (—CH₃)— groups in fatty acids is relatively stable. The β-oxidation sequence is an elegant mechanism for destabilizing and breaking these bonds. The first three reactions of β oxidation create a much less stable C—C bond, in which the α carbon (C-2) is bonded to two carbonyl carbons (the β-ketoacyl-CoA intermediate). The keto function on the β carbon (C-3) makes it a good target for nucleophilic attack by the—SH of coenzyme A, catalyzed by thiolase. The acidity of the α hydrogen and the resonance stabilization of the carbocation generated by the departure of this hydrogen make the terminal—CH₂—CO—S-CoA a good leaving group, facilitating breakage of the α-β bond.

The Four β-Oxidation Steps Are Repeated to Yield Acetyl-CoA and ATP

In one pass through the β-oxidation sequence, one molecule of acetyl-CoA, two pairs of electrons, and four protons (H⁺) are removed from the long-chain fatty acyl-CoA, shortening it by two carbon atoms. The equation for one pass, beginning with the coenzyme A ester of our example, palmitate, is

\[
Palmityl-CoA + CoA + FAD + NAD⁺ + H₂O → myristoyl-CoA + acetyl-CoA + FADH₂ + NADH + H⁺\]
(17-2)

Following removal of one acetyl-CoA unit from palmityl-CoA, the coenzyme A thioester of the shortened fatty acid (now the 14-carbon myristate) remains. The myristoyl-CoA can now go through another set of four β-oxidation reactions, exactly analogous to the first, to yield a second molecule of acetyl-CoA and lauroyl-CoA, the coenzyme A thioester of the 12-carbon laurate. Altogether, seven passes through the β-oxidation sequence are required to oxidize one molecule of palmitoyl-CoA to eight molecules of acetyl-CoA (Fig. 17–8b). The overall equation is

\[
Palmityl-CoA + 7CoA + 7FAD + 7NAD⁺ + 7H₂O → 8 acetyl-CoA + 7FADH₂ + 7NADH + 7H⁺\]
(17-3)

Each molecule of FADH₂ formed during oxidation of the fatty acid donates a pair of electrons to ETF of the respiratory chain, and about 1.5 molecules of ATP are generated during the ensuing transfer of each electron pair.
to \(\text{O}_2 \). Similarly, each molecule of NADH formed delivers a pair of electrons to the mitochondrial NADH dehydrogenase, and the subsequent transfer of each pair of electrons to \(\text{O}_2 \) results in formation of about 2.5 molecules of ATP. Thus four molecules of ATP are formed for each two-carbon unit removed in one pass through the sequence. Note that water is also produced in this process. Transfer of electrons from NADH or FADH\(_2\) to \(\text{O}_2 \) yields one \(\text{H}_2\text{O} \) per electron pair. Reduction of \(\text{O}_2 \) by NADH also consumes one \(\text{H}^+ \) per NADH molecule: \(\text{NADH} + \text{H}^+ + \frac{1}{2}\text{O}_2 \rightarrow \text{NAD}^+ + \text{H}_2\text{O} \).

In hibernating animals, fatty acid oxidation provides metabolic energy, heat, and water—all essential for survival of an animal that neither eats nor drinks for long periods (Box 17-1). Camels obtain water to supplement the meager supply available in their natural environment by oxidation of fats stored in their hump.

The overall equation for the oxidation of palmitoyl-CoA to eight molecules of acetyl-CoA, including the electron transfers and oxidative phosphorylations, is:

\[
\text{Palmitoyl-CoA} + 7\text{CoA} + 7\text{O}_2 + 28\text{Pi} + 28\text{ADP} \rightarrow 8\text{acetyl-CoA} + 28\text{ATP} + 7\text{H}_2\text{O} \quad (17-4)
\]

Acetyl-CoA Can Be Further Oxidized in the Citric Acid Cycle

The acetyl-CoA produced from the oxidation of fatty acids can be oxidized to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) by the citric acid cycle. The following equation represents the balance sheet for the second stage in the oxidation of palmitoyl-CoA, together with the coupled phosphorylations of the third stage:

\[
8\text{Acetyl-CoA} + 16\text{O}_2 + 80\text{Pi} + 80\text{ADP} \rightarrow 8\text{CoA} + 80\text{ATP} + 16\text{CO}_2 + 16\text{H}_2\text{O} \quad (17-5)
\]

Box 17-1 **Fat Bears Carry Out \(\beta \) Oxidation in Their Sleep**

Many animals depend on fat stores for energy during hibernation, during migratory periods, and in other situations involving radical metabolic adjustments. One of the most pronounced adjustments of fat metabolism occurs in hibernating grizzly bears. These animals remain in a continuous state of dormancy for periods as long as seven months. Unlike most hibernating species, the bear maintains a body temperature of between 32 and 35 \(^\circ\)C, close to the normal (nonhibernating) level. Although expending about 25,000 kJ/day (6,000 kcal/day), the bear does not eat, drink, urinate, or defecate for months at a time.

Experimental studies have shown that hibernating grizzly bears use body fat as their sole fuel. Fat oxidation yields sufficient energy for maintenance of body temperature, active synthesis of amino acids and proteins, and other energy-requiring activities, such as membrane transport. Fat oxidation also releases large amounts of water, as described in the text, which replenishes water lost in breathing. The glycerol released by degradation of triacylglycerols is converted into blood glucose by gluconeogenesis. Urea formed during breakdown of amino acids is reabsorbed in the kidneys and recycled, the amino groups reused to make new amino acids for maintaining body proteins.

Bears store an enormous amount of body fat in preparation for their long sleep. An adult grizzly consumes about 38,000 kJ/day during the late spring and summer, but as winter approaches it feeds 20 hours a day, consuming up to 84,000 kJ daily. This change in feeding is a response to a seasonal change in hormone secretion. Large amounts of triacylglycerols are formed from the huge intake of carbohydrates during the fattening-up period. Other hibernating species, including the tiny dormouse, also accumulate large amounts of body fat.
Acylo-CoA dehydrogenase

β-Hydroxyacyl-CoA dehydrogenase

Isocitrate dehydrogenase

α-Ketoglutarate dehydrogenase

Succinyl-CoA synthetase

Succinate dehydrogenase

Malate dehydrogenase

Total

The calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH₂ oxidized and 2.5 ATP per NADH oxidized.

1GTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p. 510).

Combining Equations 17–4 and 17–5, we obtain the overall equation for the complete oxidation of palmitoyl-CoA to carbon dioxide and water:

\[
\text{Palmitoyl-CoA} + 23O₂ + 108Pᵢ + 108\text{ADP} \rightarrow \text{CoA} + 108\text{ATP} + 16\text{CO}_₂ + 23\text{H}_₂\text{O} \quad (17-6)
\]

Table 17–1 summarizes the yields of NADH, FADH₂, and ATP in the successive steps of palmitoyl-CoA oxidation. Note that because the activation of palmitate to palmitoyl-CoA breaks both phosphoanhydride bonds in ATP (Fig. 17–5), the energetic cost of activating a fatty acid is equivalent to two ATP, and the net gain per molecule of palmitate is 106 ATP. The standard free-energy change for the oxidation of palmitate to CO₂ and H₂O is about 9,800 kJ/mol. Under standard conditions, the energy recovered as the phosphate bond energy of ATP is 106 × 30.5 kJ/mol = 3,230 kJ/mol, about 33% of the theoretical maximum. However, when the free-energy changes are calculated from actual concentrations of reactants and products under intracellular conditions (see Worked Example 13–2, p. 503), the free-energy recovery is more than 60%; the energy conservation is remarkably efficient.

Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions

The fatty acid oxidation sequence just described is typical when the incoming fatty acid is saturated (that is, has only single bonds in its carbon chain). However, most of the fatty acids in the triacylglycerols and phospholipids of animals and plants are unsaturated, having one or more double bonds. These bonds are in the cis configuration and cannot be acted upon by enoyl-CoA hydratase, the enzyme catalyzing the addition of H₂O to the trans double bond of the Δ⁹-enoyl-CoA generated during β oxidation. Two auxiliary enzymes are needed for β oxidation of the common unsaturated fatty acids: an isomerase and a reductase. We illustrate these auxiliary reactions with two examples.

Oleate is an abundant 18-carbon monounsaturated fatty acid with a cis double bond between C-9 and C-10 (denoted Δ⁹). In the first step of oxidation, oleate is converted to oleoyl-CoA and, like the saturated fatty acids, enters the mitochondrial matrix via the carnitine shuttle (Fig. 17–6). Oleoyl-CoA then undergoes three passes through the fatty acid oxidation cycle to yield three molecules of acetyl-CoA and the coenzyme A ester of a Δ³, 12-carbon unsaturated fatty acid, cis-Δ³-dodecenoyl-CoA (Fig. 17–9). This product cannot serve as a substrate for

![Figure 17-9](attachment://figure17-9.pdf) Oxidation of a monounsaturated fatty acid. Oleic acid, as oleoyl-CoA (Δ⁹), is the example used here. Oxidation requires an additional enzyme, enoyl-CoA isomerase, to reposition the double bond, converting the cis isomer to a trans isomer, a normal intermediate in β oxidation.
enoyl-CoA hydratase, which acts only on trans double bonds. The auxiliary enzyme \(\Delta^3, \Delta^2\)-enoyl-CoA isomerase isomerizes the cis-\(\Delta^3\)-enoyl-CoA to the trans-\(\Delta^3\)-enoyl-CoA, which is converted by enoyl-CoA hydratase into the corresponding \(\ell-\beta \)-hydroxyacyl-CoA (trans-\(\Delta^3\)-dodecenoyl-CoA). This intermediate is now acted upon by the remaining enzymes of \(\beta \) oxidation to yield acetyl-CoA and the coenzyme A ester of a 10-carbon saturated fatty acid, decanoyl-CoA. The latter undergoes four more passes through the pathway to yield five more molecules of acetyl-CoA. Altogether, nine acetyl-CoAs are produced from one molecule of the 18-carbon oleate.

The other auxiliary enzyme (a reductase) is required for oxidation of polyunsaturated fatty acids—for example, the 18-carbon linoleate, which has a cis-\(\Delta^9\),cis-\(\Delta^{12} \) configuration (Fig. 17–10). Linoleoyl-CoA undergoes three passes through the \(\beta \)-oxidation sequence to yield three molecules of acetyl-CoA and the coenzyme A ester of a 12-carbon unsaturated fatty acid with a cis-\(\Delta^3\),cis-\(\Delta^6 \) configuration. This intermediate cannot be used by the enzymes of the \(\beta \)-oxidation pathway; its double bonds are in the wrong position and have the wrong configuration (cis, not trans). However, the combined action of enoyl-CoA isomerase and 2,4-dienoyl-CoA reductase, as shown in Figure 17–10, allows reentry of this intermediate into the \(\beta \)-oxidation pathway and its degradation to six acetyl-CoAs. The overall result is conversion of linoleate to nine molecules of acetyl-CoA.

Complete Oxidation of Odd-Number Fatty Acids Requires Three Extra Reactions

Although most naturally occurring lipids contain fatty acids with an even number of carbon atoms, fatty acids with an odd number of carbons are common in the lipids of many plants and some marine organisms. Cattle and other ruminant animals form large amounts of the three-carbon propionate (\(\text{CH}_3-\text{CH}_2-\text{COO}^- \)) during fermentation of carbohydrates in the rumen. The propionate is absorbed into the blood and oxidized by the liver and other tissues. Small quantities of propionate are added as a mold inhibitor to some breads and cereals, thus entering the human diet.

Long-chain odd-number fatty acids are oxidized in the same pathway as the even-number acids, beginning at the carboxyl end of the chain. However, the substrate for the last pass through the \(\beta \)-oxidation sequence is a fatty acyl-CoA with a five-carbon fatty acid. When this is oxidized and cleaved, the products are acetyl-CoA and propionyl-CoA. The acetyl-CoA can be oxidized in the citric acid cycle, of course, but propionyl-CoA enters a different pathway involving three enzymes.

Propionyl-CoA is first carboxylated to form the \(\ell \) stereoisomer of methylmalonyl-CoA (Fig. 17–11) by propionyl-CoA carboxylase, which contains the cofactor biotin. In this enzymatic reaction, as in the pyruvate carboxylase reaction (see Fig. 16–16), \(\text{CO}_2 \) (or its hydrated ion, \(\text{HCO}_3^- \)) is activated by attachment to biotin before its transfer to the substrate, in this case the propionate moiety. Formation of the carboxybiotin intermediate requires energy, which is provided by the cleavage of ATP to ADP and \(\text{P}_i \). The \(\ell \)-methylmalonyl-CoA thus formed is enzymatically epimerized to its \(\ell \) stereoisomer by methylmalonyl-CoA epimerase (Fig. 17–11). The \(\ell \)-methylmalonyl-CoA then undergoes an intramolecular rearrangement to form succinyl-CoA, which can enter the citric acid cycle. This rearrangement is catalyzed by methylmalonyl-CoA mutase, which requires as its coenzyme \(5'\)-deoxyadenosylcobalamin, or coenzyme \(\text{B}_{12} \), which is derived from vitamin \(\text{B}_{12} \) (cobalamin).

Box 17–2 describes the role of coenzyme \(\text{B}_{12} \) in this remarkable exchange reaction.
In the methylmalonyl-CoA mutase reaction (see Fig. 17–11), the group \(-\text{CO-S-CoA}\) at C-2 of the original propionate exchanges position with a hydrogen atom at C-3 of the original propionate (Fig. 1a). Coenzyme B_{12} is the cofactor for this reaction, as it is for almost all enzymes that catalyze reactions of this general type (Fig. 1b). These coenzyme B_{12}-dependent processes are among the very few enzymatic reactions in biology in which there is an exchange of an alkyl or substituted alkyl group (X) with a hydrogen atom on an adjacent carbon, with no mixing of the transferred hydrogen atom with the hydrogen of the solvent, H_{2}O. How can the hydrogen atom move between two carbons without mixing with the enormous excess of hydrogen atoms in the solvent?

Coenzyme B_{12} is the cofactor form of vitamin B_{12}, which is unique among all the vitamins in that it contains not only a complex organic molecule but an essential trace element, cobalt. The complex corrin ring system of vitamin B_{12} (colored blue in Fig. 2), to which cobalt (as Co^{3+}) is coordinated, is chemically related to the porphyrin ring system of heme and heme proteins (see Fig. 5–1). A fifth coordination position of cobalt is filled by dimethylbenzimidazole ribonucleotide (shaded yellow), bound covalently by its 3'-phosphate group to a side chain of the corrin ring, through aminoisopropanol. The formation of this complex cofactor occurs in one of only two known reactions in which triphosphate is cleaved from ATP (Fig. 3); the other reaction is the formation of S-adenosylmethionine from ATP and methionine (see Fig. 18–18).

Vitamin B_{12} as usually isolated is called cyano-cobalamin, because it contains a cyano group (picked up during purification) attached to cobalt in the sixth coordination position. In 5'-deoxyadenosylcobalamin, the cofactor for methylmalonyl-CoA mutase, the cyano group is replaced by the 5'-deoxyadenosyl group (red in Fig. 2), covalently bound through C-5' to the cobalt. The three-dimensional structure of the cofactor was determined by Dorothy Crowfoot Hodgkin in 1956, using x-ray crystallography.

The key to understanding how coenzyme B_{12} catalyzes hydrogen exchange lies in the properties of the covalent bond between cobalt and C-5' of the deoxyadenosyl group (Fig. 2). This is a relatively weak bond; its bond dissociation energy is about 110 kJ/mol, compared with 348 kJ/mol for a typical C–C bond or 414 kJ/mol for a C–H bond. Merely illuminating the compound with visible light is enough to break this Co–C bond. (This extreme photolability probably accounts for the absence of vitamin B_{12} in plants.) Dissociation produces a 5'-deoxyadenosyl radical and the Co^{3+} form of the vitamin. The chemical function of 5'-deoxyadenosylcobalamin is to generate free radicals in this way, thus initiating a series of transformations such as that illustrated in Figure 4—a postulated mechanism for the reaction catalyzed by methylmalonyl-CoA mutase.
mutase and several other coenzyme B_{12}-dependent transformations. In this postulated mechanism, the migrating hydrogen atom never exists as a free species and is thus never free to exchange with the hydrogen of surrounding water molecules.

Vitamin B_{12} deficiency results in serious disease. This vitamin is not made by plants or animals and can be synthesized only by a few species of microorganisms. It is required by healthy people in only minute amounts, about 3 μg/day. The severe disease pernicious anemia results from failure to absorb vitamin B_{12} efficiently from the intestine, where it is synthesized by intestinal bacteria or obtained from digestion of meat. Individuals with this disease do not produce sufficient amounts of intrinsic factor, a glycoprotein essential to vitamin B_{12} absorption. The pathology in pernicious anemia includes reduced production of erythrocytes, reduced levels of hemoglobin, and severe, progressive impairment of the central nervous system. Administration of large doses of vitamin B_{12} alleviates these symptoms in at least some cases.
Fatty Acid Catabolism

Fatty Acid Oxidation Is Tightly Regulated

Oxidation of fatty acids consumes a precious fuel, and it is regulated so as to occur only when the need for energy requires it. In the liver, fatty acyl-CoA formed in the cytosol has two major pathways open to it: (1) β oxidation by enzymes in mitochondria or (2) conversion into triacylglycerols and phospholipids by enzymes in the cytosol. The pathway taken depends on the rate of transfer of long-chain fatty acyl-CoA into mitochondria. The three-step process (carnitine shuttle) by which fatty acyl groups are carried from cytosolic fatty acyl-CoA into the mitochondrial matrix (Fig. 17-6) is rate-limiting for fatty acid oxidation and is an important point of regulation. Once fatty acyl groups have entered the mitochondrion, they are committed to oxidation to acetyl-CoA.

Malonyl-CoA, the first intermediate in the cytosolic biosynthesis of long-chain fatty acids from acetyl-CoA (see Fig. 21-1), increases in concentration whenever the animal is well supplied with carbohydrate; excess glucose that cannot be oxidized or stored as glycogen is converted in the cytosol into fatty acids for storage as triacylglycerol. The inhibition of carnitine acyltransferase I by malonyl-CoA ensures that the oxidation of fatty acids is inhibited whenever the liver is amply supplied with glucose as fuel and is actively making triacylglycerols from excess glucose.

Two of the enzymes of β oxidation are also regulated by metabolites that signal energy sufficiency. When the [NADH]/[NAD+] ratio is high, β-hydroxyacyl-CoA dehydrogenase is inhibited; in addition, high concentrations of acetyl-CoA inhibit thioloase (Fig. 17-12).

Recall from Chapter 15 that during periods of vigorous muscle contraction or during fasting, the fall in [ATP] and the rise in [AMP] activate AMPK, the AMP-activated protein kinase. AMPK phosphorylates several target enzymes, including acetyl-CoA carboxylase, which catalyzes malonyl-CoA synthesis. This phosphorylation and thus inhibition of acetyl-CoA carboxylase lowers the concentration of malonyl-CoA, relieving the inhibition of fatty acyl-carnitine transport into mitochondria (Fig. 17-12) and allowing β oxidation to replenish the supply of ATP.

Transcription Factors Turn on the Synthesis of Proteins for Lipid Catabolism

In addition to the various short-term regulatory mechanisms that modulate the activity of existing enzymes, transcriptional regulation can change the number of molecules of the enzymes of fatty acid oxidation on a longer time scale, minutes to hours. The PPAR family of nuclear receptors are transcription factors that affect many metabolic processes in response to a variety of fatty acid–like ligands. (They were originally recognized as peroxisome proliferator-activated receptors, then were found to function more broadly.) PPARα acts in muscle, adipose tissue, and liver to turn on a set of genes essential for fatty acid oxidation, including the fatty acid transporter, carnitine acyltransferases I and II, fatty acyl-CoA dehydrogenases for short, medium, long, and very long acyl chains, and related enzymes. This response is triggered when a cell or organism has an increased demand for energy from fat catabolism, such as during a fast between meals or under conditions of longer-term starvation. Glucagon, released in response to low blood glucose, can act through cAMP and the transcription factor CREB to turn on certain genes for lipid catabolism.

Another situation that is accompanied by major changes in the expression of the enzymes of fatty acid oxidation is the transition from fetal to neonatal metabolism in the heart. In the fetus the principal fuels are glucose and lactate, but in the neonatal heart, fatty acids are the main fuel. At the time of this transition, PPARα is activated and in turn activates the genes essential for...
Dietary carbohydrate + High blood glucose → Fatty acids

Low blood glucose

1. Oxidation of Fatty Acids
2. Dietary carbohydrate → Glucose
3. Glucose → Glycolysis, pyruvate dehydrogenase complex
4. Acetyl-CoA
5. Malonyl-CoA
6. Fatty acid synthesis
7. Fatty acid β oxidation
8. NADH
9. FADH2
10. Carnitine acyltransferase I
11. Fatty acyl-CoA
12. CoASH

FIGURE 17-12 Coordinated regulation of fatty acid synthesis and breakdown. When the diet provides a ready source of carbohydrate as fuel, β oxidation of fatty acids is unnecessary and is therefore downregulated. Two enzymes are key to the coordination of fatty acid metabolism: acetyl-CoA carboxylase (ACC), the first enzyme in the synthesis of fatty acids (see Fig. 21-1), and carnitine acyltransferase I, which limits the transport of fatty acids into the mitochondrial matrix for β oxidation (see Fig. 17-6). Ingestion of a high-carbohydrate meal raises the blood glucose level and thus triggers the release of insulin. Insulin-dependent protein phosphatase dephosphorylates ACC, activating it. ACC catalyzes the formation of malonyl-CoA, inhibiting carnitine acyltransferase I, thereby preventing fatty acid entry into the mitochondrial matrix.

When blood glucose levels drop between meals, glucagon release activates cAMP-dependent protein kinase (PKA), which phosphorylates and inactivates ACC. The concentration of malonyl-CoA falls, the inhibition of fatty acid entry into mitochondria is relieved, and fatty acids enter the mitochondrial matrix and become the major fuel. Because glucagon also triggers the mobilization of fatty acids in adipose tissue, a supply of fatty acids begins arriving in the blood.

The disease is characterized by recurring episodes of a syndrome that includes fat accumulation in the liver, high blood levels of octanoic acid, low blood glucose (hypoglycemia), sleepiness, vomiting, and coma. The pattern of organic acids in the urine helps in the diagnosis of this disease: the urine commonly contains high levels of 6-carbon to 10-carbon dicarboxylic acids (produced by ω oxidation) and low levels of urinary ketone bodies (we discuss ω oxidation below and ketone bodies in Section 17.3). Although individuals may have no symptoms between episodes, the episodes are very serious; mortality from this disease is 25% to 60% in early childhood. If the genetic defect is detected shortly after birth, the infant can be started on a low-fat, high-carbohydrate diet. With early detection and careful management of the diet—including avoiding long intervals between meals, to prevent the body from turning to its fat reserves for energy—the prognosis for these individuals is good.

More than 20 other human genetic defects in fatty acid transport or oxidation have been documented, most much less common than the defect in MCAD. One of the most severe disorders results from loss of the long-chain β-hydroxyacyl-CoA dehydrogenase activity of the trifunctional protein, TFP. Other disorders include defects in the α or β subunits that affect all three activities of TFP and cause serious heart disease and abnormal skeletal muscle.

Genetic Defects in Fatty Acyl-CoA Dehydrogenases Cause Serious Disease

Stored triacylglycerols are typically the chief source of energy for muscle contraction, and an inability to oxidize fatty acids from triacylglycerols has serious consequences for health. The most common genetic defect in fatty acid catabolism in U.S. and northern European populations is due to a mutation in the gene encoding the medium-chain acyl-CoA dehydrogenase (MCAD). Among northern Europeans, the frequency of carriers (individuals with this recessive mutation on one of the two homologous chromosomes) is about 1 in 40, and about 1 individual in 10,000 has the disease—that is, has two copies of the mutant MCAD allele and is unable to oxidize fatty acids of 6 to 12 carbons.

The disease is characterized by recurring episodes of a syndrome that includes fat accumulation in the liver, high blood levels of octanoic acid, low blood glucose (hypoglycemia), sleepiness, vomiting, and coma. The pattern of organic acids in the urine helps in the diagnosis of this disease: the urine commonly contains high levels of 6-carbon to 10-carbon dicarboxylic acids (produced by ω oxidation) and low levels of urinary ketone bodies (we discuss ω oxidation below and ketone bodies in Section 17.3). Although individuals may have no symptoms between episodes, the episodes are very serious; mortality from this disease is 25% to 60% in early childhood. If the genetic defect is detected shortly after birth, the infant can be started on a low-fat, high-carbohydrate diet. With early detection and careful management of the diet—including avoiding long intervals between meals, to prevent the body from turning to its fat reserves for energy—the prognosis for these individuals is good.

More than 20 other human genetic defects in fatty acid transport or oxidation have been documented, most much less common than the defect in MCAD. One of the most severe disorders results from loss of the long-chain β-hydroxyacyl-CoA dehydrogenase activity of the trifunctional protein, TFP. Other disorders include defects in the α or β subunits that affect all three activities of TFP and cause serious heart disease and abnormal skeletal muscle.
Peroxisomes Also Carry Out β Oxidation

The mitochondrial matrix is the major site of fatty acid oxidation in animal cells, but in certain cells other compartments also contain enzymes capable of oxidizing fatty acids to acetyl-CoA, by a pathway similar to, but not identical with, that in mitochondria. In plant cells, the major site of β oxidation is not mitochondria but peroxisomes.

In peroxisomes, membrane-enclosed organelles of animal and plant cells, the intermediates for β oxidation of fatty acids are coenzyme A derivatives, and the process consists of four steps, as in mitochondrial β oxidation (Fig. 17-13): (1) dehydrogenation, (2) addition of water to the resulting double bond, (3) oxidation of the β-hydroxyacyl-CoA to a ketone, and (4) thiolic cleavage by coenzyme A. (The identical reactions also occur in glyoxysomes, as discussed below.)

One difference between the peroxosomal and mitochondrial pathways is in the chemistry of the first step. In peroxisomes, the flavoprotein acyl-CoA oxidase that introduces the double bond passes electrons directly to O₂, producing H₂O₂ (Fig. 17-13). This strong and potentially damaging oxidant is immediately cleaved to H₂O and O₂ by catalase. Recall that in mitochondria, the electrons removed in the first oxidation step pass through the respiratory chain to O₂ to produce H₂O, and this process is accompanied by ATP synthesis. In peroxisomes, the energy released in the first oxidative step of fatty acid breakdown is not conserved as ATP, but is dissipated as heat.

A second important difference between mitochondrial and peroxosomal β oxidation in mammals is in the specificity for fatty acyl-CoAs; the peroxosomal system is much more active on very-long-chain fatty acids such as hexacosanoic acid (26:0) and on branched-chain fatty acids such as phytyl acid and pristanic acid (see Fig. 17-17). These less-common fatty acids are obtained in the diet from dairy products, the fat of ruminant animals, meat, and fish. Their catabolism in the peroxisome involves several auxiliary enzymes unique to this organelle. The inability to oxidize these compounds is responsible for several serious human diseases. Individuals with Zellweger syndrome are unable to make peroxisomes and therefore lack all the metabolism unique to that organelle. In X-linked adrenoleukodystrophy (XALD), peroxisomes fail to oxidize very-long-chain fatty acids, apparently for lack of a functional transporter for these fatty acids in the peroxosomal membrane. Both defects lead to accumulation in the blood of very-long-chain fatty acids, especially 26:0. XALD affects young boys before the age of 10 years, causing loss of vision, behavioral disturbances, and death within a few years.

In mammals, high concentrations of fats in the diet result in increased synthesis of the enzymes of peroxosomal β oxidation in the liver. Liver peroxisomes do not contain the enzymes of the citric acid cycle and cannot catalyze the oxidation of acetyl-CoA to CO₂.

Plant Peroxisomes and Glyoxysomes Use Acetyl-CoA from β Oxidation as a Biosynthetic Precursor

In plants, fatty acid oxidation does not occur primarily in mitochondria (as noted earlier) but in the peroxisomes of leaf tissue and in the glyoxysomes of germinating seeds. Plant peroxisomes and glyoxysomes are similar in structure and function; glyoxysomes, which occur only in germinating seeds, may be considered specialized peroxisomes. The biological role of β oxidation in these organelles is to use stored lipids primarily to provide biosynthetic precursors, not energy.
During seed germination, stored triacylglycerols are converted into glucose, sucrose, and a wide variety of essential metabolites (Fig. 17-14). Fatty acids released from the triacylglycerols are first activated to their coenzyme A derivatives and oxidized in glyoxysomes by the same four-step process that takes place in peroxisomes (Fig. 17-13). The acetyl-CoA produced is converted via the glyoxylate cycle (see Fig. 16-20) to four-carbon precursors for gluconeogenesis (see Fig. 14-19). Glyoxysomes, like peroxisomes, contain high concentrations of catalase, which converts the H_2O_2 produced by β oxidation to H_2O and O_2.

The β-Oxidation Enzymes of Different Organelles Have Diverged during Evolution

Although the β-oxidation reactions in mitochondria are essentially the same as those in peroxisomes and glyoxysomes, the enzymes (isoenzymes) differ significantly between the two types of organelles. The differences apparently reflect an evolutionary divergence that occurred very early, with the separation of gram-positive and gram-negative bacteria (see Fig. 1-6).

In mitochondria, the four β-oxidation enzymes that act on short-chain fatty acyl-CoAs are separate, soluble proteins (as noted earlier), similar in structure to the analogous enzymes of gram-positive bacteria (Fig. 17-15a). The gram-negative bacteria have four activities in three soluble subunits (Fig. 17-15b), and the eukaryotic enzyme system that acts on long-chain fatty acids—the trifunctional protein, TFP—has three enzyme activities in two subunits that are membrane-associated (Fig. 17-15c). The β-oxidation enzymes

![Diagram of metabolic pathways and enzyme structures](attachment:image.png)
of plant peroxisomes and glyoxysomes, however, form a complex of proteins, one of which contains four enzymatic activities in a single polypeptide chain (Fig. 17–15d). The first enzyme, acyl-CoA oxidase, is a single polypeptide chain; the multifunctional protein (MFP) contains the second and third enzyme activities (enoyl-CoA hydratase and hydroxyacyl-CoA dehydrogenase) as well as two auxiliary activities needed for the oxidation of unsaturated fatty acids (δ-3-hydroxyacyl-CoA epimerase and Δ^2,Δ^3-enoyl-CoA isomerase); the fourth enzyme, thiolase, is a separate, soluble polypeptide.

It is interesting that the enzymes that catalyze essentially the reversal of β oxidation in the synthesis of fatty acids are also organized differently in bacteria and eukaryotes; in bacteria, the seven enzymes needed for fatty acid synthesis are separate polypeptides, but in mammals, all seven activities are part of a single, huge polypeptide chain. One advantage to the cell in having several enzymes of the same pathway encoded in a single polypeptide chain is that this solves the problem of regulating the synthesis of enzymes that must interact functionally; regulation of the expression of one gene ensures production of the same number of active sites for all enzymes in the path. When each enzyme activity is on a separate polypeptide, some mechanism is required to coordinate the synthesis of all the gene products. The disadvantage of having several activities on the same polypeptide is that the longer the polypeptide chain, the greater is the probability of a mistake in its synthesis: a single incorrect amino acid in the chain may make all the enzyme activities in that chain useless. Comparison of the gene structures for these proteins in many species may shed light on the reasons for the selection of one or the other strategy in evolution.

The ω Oxidation of Fatty Acids Occurs in the Endoplasmic Reticulum

Although mitochondrial β oxidation, in which enzymes act at the carboxyl end of a fatty acid, is by far the most important catabolic fate for fatty acids in animal cells, there is another pathway in some species, including vertebrates, that involves oxidation of the ω (omega) carbon—the carbon most distant from the α carbon group. The enzymes unique to ω oxidation are located (in vertebrates) in the endoplasmic reticulum of liver and kidney, and the preferred substrates are fatty acids of 10 or 12 carbon atoms. In mammals ω oxidation is normally a minor pathway for fatty acid degradation, but when β oxidation is defective (because of mutation or a carnitine deficiency, for example) it becomes more important.

The first step introduces a hydroxyl group onto the ω carbon (Fig. 17–16). The oxygen for this group comes from molecular oxygen (O_2) in a complex reaction that involves cytochrome P450 and the electron donor NADPH. Reactions of this type are catalyzed by mixed-function oxidases, described in Box 21–1. Two more enzymes now act on the ω carbon: alcohol dehydrogenase oxidizes the hydroxyl group to an aldehyde, and aldehyde dehydrogenase oxidizes the aldehyde group to a carboxylic acid, producing a fatty acid with a carboxyl group at each end. This fatty acid, usually a medium-chain fatty acid, is then attached to coenzyme A, and the molecule can enter the mitochondrion and undergo β oxidation by the normal route. In each pass through the β-oxidation pathway, the “double-ended” fatty acid yields dicarboxylic acids such as succinic acid, which can enter the citric acid cycle, and adipic acid (Fig. 17–16).

Phytanic Acid Undergoes α Oxidation in Peroxisomes

The presence of a methyl group on the β carbon of a fatty acid makes β oxidation impossible, and these branched fatty acids are catabolized in peroxisomes of animal cells by α oxidation. In the oxidation of phytanic acid, for example (Fig. 17–17), phytanoyl-CoA...
FIGURE 17-17 The α oxidation of a branched-chain fatty acid (phytanic acid) in peroxisomes. Phytanic acid has a methyl-substituted β carbon and therefore cannot undergo β oxidation. The combined action of the enzymes shown here removes the carboxyl carbon of phytanic acid to produce pristanic acid, in which the β carbon is unsubstituted, allowing β oxidation. Notice that β oxidation of pristanic acid releases propionyl-CoA, not acetyl-CoA. This is further catabolized as in Figure 17-11. (The details of the reaction that produces pristanal remain controversial.)

is hydroxylated on its α carbon, in a reaction that involves molecular oxygen; decarboxylated to form an aldehyde one carbon shorter; and then oxidized to the corresponding carboxylic acid, which now has no substituent on the β carbon and can be oxidized further by β oxidation. **Refsum's disease**, resulting from a genetic defect in phytanoyl-CoA hydroxylase, leads to very high blood levels of phytanic acid and severe neurological problems, including blindness and deafness.

SUMMARY 17.2 Oxidation of Fatty Acids

- In the first stage of β oxidation, four reactions remove each acetyl-CoA unit from the carboxyl end of a saturated fatty acyl-CoA: (1) dehydrogenation of the α and β carbons (C-2 and C-3) by FAD-linked acyl-CoA dehydrogenases, (2) hydration of the resulting trans-Δ² double bond by enoyl-CoA hydratase, (3) dehydrogenation of the resulting l-β-hydroxyacyl-CoA by NAD-linked β-hydroxyacyl-CoA dehydrogenase, and (4) CoA-requiring cleavage of the resulting β-ketoacyl-CoA by thiolase, to form acetyl-CoA and a fatty acyl-CoA shortened by two carbons. The shortened fatty acyl-CoA then reenters the sequence.

- In the second stage of fatty acid oxidation, the acetyl-CoA is oxidized to CO₂ in the citric acid cycle. A large fraction of the theoretical yield of free energy from fatty acid oxidation is recovered as ATP by oxidative phosphorylation, the final stage of the oxidative pathway.

- Malonyl-CoA, an early intermediate of fatty acid synthesis, inhibits carnitine acyltransferase I, preventing fatty acid entry into mitochondria. This blocks fatty acid breakdown while synthesis is occurring.

- Genetic defects in the medium-chain acyl-CoA dehydrogenase result in serious human disease, as do mutations in other components of the β-oxidation system.

- Oxidation of unsaturated fatty acids requires two additional enzymes: enoyl-CoA isomerase and 2,4-dienoyl-CoA reductase. Odd-number fatty acids are oxidized by the β-oxidation pathway to yield acetyl-CoA and a molecule of propionyl-CoA. This is carboxylated to methylmalonyl-CoA, which is isomerized to succinyl-CoA in a reaction catalyzed by methylmalonyl-CoA mutase, an enzyme requiring coenzyme B₁₂.

- Peroxisomes of plants and animals, and glyoxysomes of plants, carry out β oxidation in four steps similar to those of the mitochondrial pathway in animals. The first oxidation step, however, transfers electrons directly to O₂, generating H₂O₂. Peroxisomes of animal tissues specialize in the oxidation of very-long-chain fatty acids and branched fatty acids. In glyoxysomes, in germinating seeds, β oxidation is one step in the conversion of stored lipids into a variety of intermediates and products.

- The reactions of ω oxidation, occurring in the endoplasmic reticulum, produce dicarboxylic fatty acyl intermediates, which can undergo β oxidation at either end to yield short dicarboxylic acids such as succinate.
17.3 Ketone Bodies

In humans and most other mammals, acetyl-CoA formed in the liver during oxidation of fatty acids can either enter the citric acid cycle (stage 2 of Fig. 17-7) or undergo conversion to the “ketone bodies,” acetone, acetoacetate, and d-β-hydroxybutyrate, for export to other tissues. (The term “bodies” is a historical artifact; the term is occasionally applied to insoluble particles, but these compounds are quite soluble in blood and urine.) Acetone, produced in smaller quantities than the other ketone bodies, is exhaled. Acetoacetate and d-β-hydroxybutyrate are transported by the blood to tissues other than the liver (extrahepatic tissues), where they are converted to acetyl-CoA and oxidized in the citric acid cycle, providing much of the energy required by tissues such as skeletal and heart muscle and the renal cortex. The brain, which preferentially uses glucose as fuel, can adapt to the use of acetoacetate or d-β-hydroxybutyrate under starvation conditions, when glucose is unavailable. The production and export of ketone bodies from the liver to extrahepatic tissues allows continued oxidation of fatty acids in the liver when acetyl-CoA is not being oxidized in the citric acid cycle.

Ketone Bodies, Formed in the Liver, Are Exported to Other Organs as Fuel

The first step in the formation of acetoacetate, occurring in the liver (Fig. 17-18), is the enzymatic condensation of two molecules of acetyl-CoA, catalyzed by thiolase; this is simply the reversal of the last step of β oxidation. The acetoacetyl-CoA then condenses with acetyl-CoA to form β-hydroxy-β-methylglutaryl-CoA (HMG-CoA), which is cleaved to free acetoacetate and acetyl-CoA. The acetoacetate is reversibly reduced by d-β-hydroxybutyrate dehydrogenase, a mitochondrial enzyme, to d-β-hydroxybutyrate. This enzyme is specific for the d stereoisomer; it does not act on L-β-hydroxyacyl-CoAs and is not to be confused with L-β-hydroxyacyl-CoA dehydrogenase of the β-oxidation pathway.

In healthy people, acetone is formed in very small amounts from acetoacetate, which is easily decarboxylated, either spontaneously or by the action of acetoacetate decarboxylase (Fig. 17-18). Because individuals with untreated diabetes produce large quantities of acetoacetate, their blood contains significant amounts of acetone, which is toxic. Acetone is volatile and imparts a characteristic odor to the breath, which is sometimes useful in diagnosing diabetes.

In extrahepatic tissues, d-β-hydroxybutyrate is oxidized to acetoacetate by d-β-hydroxybutyrate dehydrogenase (Fig. 17-19). The acetoacetate is activated to its coenzyme A ester by transfer of CoA from succinyl-CoA,
an intermediate of the citric acid cycle (see Fig. 16-7), in a reaction catalyzed by \textit{\beta-ketoacyl-CoA transferase}, also called thiolase. The acetoacyl-CoA is then cleaved by thiolase to yield two acetyl-CoAs, which enter the citric acid cycle. Thus the ketone bodies are used as fuels in all tissues except liver, which lacks thiolase. The liver is therefore a producer of ketone bodies for the other tissues, but not a consumer.

The production and export of ketone bodies by the liver allows continued oxidation of fatty acids with only minimal oxidation of acetyl-CoA. When intermediates of the citric acid cycle are being siphoned off for glucose synthesis by gluconeogenesis, for example, oxidation of cycle intermediates slows—and so does acetyl-CoA oxidation. Moreover, the liver contains only a limited amount of coenzyme A, and when most of it is tied up in acetyl-CoA, \(\beta \) oxidation slows for want of the free coenzyme. The production and export of ketone bodies frees coenzyme A, allowing continued fatty acid oxidation.

Ketone Bodies Are Overproduced in Diabetes and during Starvation

Starvation and untreated diabetes mellitus lead to overproduction of ketone bodies, with several associated medical problems. During starvation, gluconeogenesis depletes citric acid cycle intermediates, diverting acetyl-CoA to ketone body production (Fig. 17-20). In untreated diabetes, when the insulin level is insufficient, extrahepatic tissues cannot take up glucose efficiently from the blood, either for fuel or for conversion to fat. Under these conditions, levels of malonyl-CoA (the starting material for fatty acid synthesis) fall, inhibition of carnitine acyltransferase I is relieved, and fatty acids enter mitochondria to be degraded to acetyl-CoA—which cannot pass through the citric acid cycle because cycle intermediates have been drawn off for use as substrates in gluconeogenesis. The resulting accumulation of acetyl-CoA accelerates the formation of ketone bodies beyond the capacity of extrahepatic tissues to oxidize them. The increased blood levels of acetoacetate and \(\alpha\)-\(\beta \)-hydroxybutyrate lower the blood pH, causing the condition known as \textit{acidosis}. Extreme acidosis can lead to coma and in some cases death. Ketone bodies in the blood and urine of individuals with untreated diabetes can reach extraordinary levels—a blood concentration of 90 mg/100 mL (compared with a normal level of <3 mg/100 mL) and urinary excretion of 5,000 mg/24 hr (compared with a normal rate of ≤125 mg/24 hr). This condition is called \textit{ketoacidosis}. Individuals on very low-calorie diets, using the fats stored in adipose tissue as their major energy source, also have increased levels of ketone bodies in their blood and urine. These levels must be monitored to avoid the dangers of acidosis and ketosis (ketoacidosis).
SUMMARY 17.3 Ketone Bodies

- The ketone bodies—acetone, acetoacetate, and δ-ß-hydroxybutyrate—are formed in the liver. The latter two compounds serve as fuel molecules in extrahepatic tissues, through oxidation to acetyl-CoA and entry into the citric acid cycle.
- Overproduction of ketone bodies in uncontrolled diabetes or severely reduced calorie intake can lead to acidosis or ketosis.

Key Terms

Terms in bold are defined in the glossary.

- β oxidation
- chylomicron
- apolipoprotein
- lipoprotein
- perilipin
- lipoprotein
- hormone-sensitive lipase
- free fatty acids
- serum albumin
- carnitine shuttle
- carnitine acyltransferase I
- acyl-carnitine/carnitine transporter
- carnitine acyltransferase II
- trifunctional protein (TFP)
- carnitine palmitoyltransferase II (CPT II)
- coenzyme B12
- pernicious anemia
- intrinsic factor
- malonyl-CoA
- PPAR (peroxisome proliferator-activated receptor)
- medium-chain acyl-CoA dehydrogenase (MCAD)
- multifunctional protein (MFP)
- α oxidation
- mixed-function oxidases
- β oxidation
- acidosis
- ketosis

Further Reading

General

Advanced-level discussion of the enzyme that releases fatty acids from lipoproteins in the capillaries of muscle and adipose tissue.

Mitochondrial β Oxidation

- A review of the biochemistry of coenzyme B12 reactions, including the methylmalonyl-CoA mutase reaction.

- An extensive review of the regulation of metabolism, including fat metabolism, by transcription factors.

- A review of the enzymology of β oxidation, inherited defects in this pathway, and regulation of the process in mitochondria.

- Short, intermediate-level review.

- A very readable, intermediate-level account of the discovery of the PPARs and their functions.

- This paper is one of a series that reviews the factors that influence fat mobilization and utilization during exercise.

- A good historical account and a useful comparison of β oxidation in different systems.

- A review of the genes controlled by PPARα.

- Advanced review of metabolic defects in fat oxidation, including MCAD mutations.
by different enzymes, are very similar. The first stage of fatty acid oxidation follows a reaction sequence closely resembling a reaction sequence in the citric acid cycle. Use equations to show the enzymatic reaction pattern for analogous metabolic conversions under such starvation conditions (1 lb : 0.454 kg)?

Recall that 1.00 kcal : 4.18 kJ.

Triacylglycerols, with their hydrocarbon-like fatty acids, have the highest energy content of the major nutrients.

(a) If 15% of the body mass of a 70.0 kg adult consists of triacylglycerols, what is the total available fuel reserve, in both kilojoules and kilocalories, in the form of triacylglycerols? Recall that 1.00 kcal = 4.18 kJ.

(b) If the basal energy requirement is approximately 8,400 kJ/day (2,000 kcal/day), how long could this person survive if the oxidation of fatty acids stored as triacylglycerols provided the only source of energy?

(c) What would be the weight loss in pounds per day under such starvation conditions (1 lb = 0.454 kg)?

3. Common Reaction Steps in the Fatty Acid Oxidation Cycle and Citric Acid Cycle Cells often use the same reaction pattern for analogous metabolic conversions. For example, the steps in the oxidation of pyruvate to acetyl-CoA and of α-ketoglutarate to succinyl-CoA, although catalyzed by different enzymes, are very similar. The first stage of fatty acid oxidation follows a reaction sequence closely resembling a sequence in the citric acid cycle. Use equations to show the analogous reaction sequences in the two pathways.

4. β Oxidation: How Many Cycles? How many cycles of β oxidation are required for the complete oxidation of activated oleic acid, 18:1(Δ9)?

5. Chemistry of the Acyl-CoA Synthetase Reaction Fatty acids are converted to their coenzyme A esters in a reversible reaction catalyzed by acyl-CoA synthetase:

\[
\text{R-COO}^- + \text{ATP} + \text{CoA} \rightleftharpoons \text{R-C-COA} + \text{AMP} + \text{PP}_i
\]

(a) The enzyme-bound intermediate in this reaction has been identified as the mixed anhydride of the fatty acid and adenosine monophosphate (AMP), acyl-AMP:

Write two equations corresponding to the two steps of the reaction catalyzed by acyl-CoA synthetase.

(b) The acyl-CoA synthetase reaction is readily reversible, with an equilibrium constant near 1. How can this reaction be made to favor formation of fatty acyl-CoA?

6. Intermediates in Oleic Acid Oxidation What is the structure of the partially oxidized fatty acyl group that is formed when oleic acid, 18:1(Δ9), has undergone three cycles of β oxidation? What are the next two steps in the continued oxidation of this intermediate?

7. β Oxidation of an Odd-Chain Fatty Acid What are the direct products of β oxidation of a fully saturated, straight-chain fatty acid of 11 carbons?

8. Oxidation of Trinitiated Palmitate Palmitate uniformly labeled with tritium (3H) to a specific activity of 2.48 × 10⁸ counts per minute (cpm) per micromole of palmitate is added to a mitochondrial preparation that oxidizes it to acetyl-CoA. The acetyl-CoA is isolated and hydrolyzed to acetate. The specific activity of the isolated acetate is 1.00 × 10⁷ cpm/μmol. Is this result consistent with the β-oxidation pathway? Explain. What is the final fate of the removed tritium?

9. Compartmentation in β Oxidation Free palmitate is activated to its coenzyme A derivative (palmitoyl-CoA) in the cytosol before it can be oxidized in the mitochondrion. If palmitate and [1⁴C]coenzyme A are added to a liver homogenate, palmitoyl-CoA isolated from the cytosolic fraction is radioactive, but that isolated from the mitochondrial fraction is not. Explain.

10. Comparative Biochemistry: Energy-Generating Pathways in Birds One indication of the relative importance of various ATP-producing pathways is the \(V_{max} \) of certain enzymes of these pathways. The values of \(V_{max} \) of several
enzymes from the pectoral muscles (chest muscles used for flying) of pigeon and pheasant are listed below.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Pigeon</th>
<th>Pheasant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase</td>
<td>3.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Glycogen phosphorylase</td>
<td>18.0</td>
<td>120.0</td>
</tr>
<tr>
<td>Phosphofructokinase-1</td>
<td>24.0</td>
<td>143.0</td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>100.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Triacylglycerol lipase</td>
<td>0.07</td>
<td>0.01</td>
</tr>
</tbody>
</table>

(a) Discuss the relative importance of glycogen metabolism and fat metabolism in generating ATP in the pectoral muscles of these birds.

(b) Compare oxygen consumption in the two birds.

(c) Judging from the data in the table, which bird is the long-distance flyer? Justify your answer.

(d) Why were these particular enzymes selected for comparison? Would the activities of triose phosphate isomerase and malate dehydrogenase be equally good bases for comparison? Explain.

11. Mutant Carnitine Acyltransferase What changes in metabolic pattern would result from a mutation in the muscle carnitine acyltransferase I in which the mutant protein has lost its affinity for malonyl-CoA but not its catalytic activity?

12. Effect of Carnitine Deficiency An individual developed a condition characterized by progressive muscular weakness and aching muscle cramps. The symptoms were aggravated by fasting, exercise, and a high-fat diet. The homogenate of a skeletal muscle specimen from the patient oxidized added oleate more slowly than did control homogenates, consisting of muscle specimens from healthy individuals. When carnitine was added to the patient’s muscle homogenate, the rate of oleate oxidation equaled that in the control homogenates. The patient was diagnosed as having a carnitine deficiency.

(a) Why did added carnitine increase the rate of oleate oxidation in the patient’s muscle homogenate?

(b) Why were the patient’s symptoms aggravated by fasting, exercise, and a high-fat diet?

(c) Suggest two possible reasons for the deficiency of muscle carnitine in this individual.

13. Fatty Acids as a Source of Water Contrary to legend, camels do not store water in their humps, which actually consist of large fat deposits. How can these fat deposits serve as a source of water? Calculate the amount of water (in liters) that a camel can produce from 1.0 kg of fat. Assume for simplicity that the fat consists entirely of tripalmitoylglycerol.

14. Petroleum as a Microbial Food Source Some microorganisms of the genera Nocardiia and Pseudomonas can grow in an environment where hydrocarbons are the only food source. These bacteria oxidize straight-chain aliphatic hydrocarbons, such as octane, to their corresponding carboxylic acids:

\[
\text{CH}_3(\text{CH}_2)_6\text{CH}_3 + \text{NAD}^+ + \text{O}_2 \rightarrow \text{CH}_3(\text{CH}_2)_6\text{COOH} + \text{NADH} + \text{H}^+
\]

How could these bacteria be used to clean up oil spills? What would be some of the limiting factors to the efficiency of this process?

15. Metabolism of a Straight-Chain Phenylated Fatty Acid A crystalline metabolite was isolated from the urine of a rabbit that had been fed a straight-chain fatty acid containing a terminal phenyl group:

\[
\text{CH}_3-C-(\text{CH}_2)_n-C\equiv C-(\text{CH}_2)_n-COO^-
\]

A 302 mg sample of the metabolite in aqueous solution was completely neutralized by 22.2 mL of 0.100 M NaOH.

(a) What is the probable molecular weight and structure of the metabolite?

(b) Did the straight-chain fatty acid contain an even or an odd number of methylene (—CH₂—) groups (i.e., is n even or odd)? Explain.

16. Fatty Acid Oxidation in Uncontrolled Diabetes When the acetyl-CoA produced during β oxidation in the liver exceeds the capacity of the citric acid cycle, the excess acetyl-CoA forms ketone bodies—acetone, acetoacetate, and β-hydroxybutyrate. This occurs in severe, uncontrolled diabetes: because the tissues cannot use glucose, they oxidize large amounts of fatty acids instead. Although acetyl-CoA is not toxic, the mitochondrion must divert the acetyl-CoA to ketone bodies. What problem would arise if acetyl-CoA were not converted to ketone bodies? How does the diversion to ketone bodies solve the problem?

17. Consequences of a High-Fat Diet with No Carbohydrates Suppose you had to subsist on a diet of whale blubber and seal blubber, with little or no carbohydrate.

(a) What would be the effect of carbohydrate deprivation on the utilization of fats for energy?

(b) If your diet were totally devoid of carbohydrate, would it be better to consume odd- or even-numbered fatty acids? Explain.

18. Even- and Odd-Chain Fatty Acids in the Diet In a laboratory experiment, two groups of rats are fed two different fatty acids as their sole source of carbon for a month. The first group gets heptanoic acid (7:0), and the second gets octanoic acid (8:0). After the experiment, a striking difference is seen between the two groups. Those in the first group are healthy and have gained weight, whereas those in the second group are weak and have lost weight as a result of losing muscle mass. What is the biochemical basis for this difference?

19. Metabolic Consequences of Ingesting ω-Fluorooleate The shrub Dichapetalum toxica, native to Sierra Leone, produces ω-fluorooleate, which is highly toxic to warm-blooded animals:

\[
\text{F-CH}_2-(\text{CH}_2)_n-C\equiv C-(\text{CH}_2)_n-COO^-
\]

This substance has been used as an arrow poison, and powdered fruit from the plant is sometimes used as a rat poison (hence the plant’s common name, ratsbane). Why is this substance so toxic? (Hint: Review Chapter 16, Problem 22.)
20. Mutant Acetyl-CoA Carboxylase What would be the consequences for fat metabolism of a mutation in acetyl-CoA carboxylase that replaced the Ser residue normally phosphorylated by AMPK to an Ala residue? What might happen if the same Ser were replaced by Asp? (Hint: See Fig. 17-12.)

21. Effect of PDE Inhibitor on Adipocytes How would an adipocyte’s response to epinephrine be affected by the addition of an inhibitor of cAMP phosphodiesterase (PDE)? (Hint: See Fig. 12-4.)

22. Role of FAD as Electron Acceptor Acetyl-CoA dehydrogenase uses enzyme-bound FAD as a prosthetic group to dehydrogenate the α and β carbons of fatty acyl-CoA. What is the advantage of using FAD as an electron acceptor rather than NAD⁺? Explain in terms of the standard reduction potentials for the Enz-FAD/FADH₂ (E°⁺ = -0.219 V) and NAD⁺/NADH (E°⁺ = -0.320 V) half-reactions.

23. β Oxidation of Arachidic Acid How many turns of the fatty acid oxidation cycle are required for complete oxidation of arachidic acid (see Table 10-1) to acetyl-CoA?

24. Fate of Labeled Propionate If [3-¹⁴C]propionate (¹⁴C in the methyl group) is added to a liver homogenate, ¹⁴C-labeled oxaloacetate is rapidly produced. Draw a flow chart for the pathway by which propionate is transformed to oxaloacetate, and indicate the location of the ¹⁴C in oxaloacetate.

25. Phytic Acid Metabolism When phytic acid uniformly labeled with ¹⁴C is fed to a mouse, radioactivity can be detected in malate, a citric acid cycle intermediate, within minutes. Draw a metabolic pathway that could account for this. Which of the carbon atoms in malate would contain ¹⁴C label?

26. Sources of H₂O Produced in β Oxidation The complete oxidation of palmitoyl-CoA to carbon dioxide and water is represented by the overall equation

\[
\text{Palmitoyl-CoA + 2CO₂ + 108P} + 108\text{ADP} \rightarrow \text{CoA} + 16\text{CO₂} + 108\text{ATP} + 23\text{H₂O}
\]

Water is also produced in the reaction

\[
\text{ADP + P} \rightarrow \text{ATP + H₂O}
\]

but is not included as a product in the overall equation. Why?

27. Biological Importance of Cobalt In cattle, deer, sheep, and other ruminant animals, large amounts of propionate are produced in the rumen through the bacterial fermentation of ingested plant matter. Propionate is the principal source of glucose for these animals, via the route propionate → oxaloacetate → glucose. In some areas of the world, notably Australia, ruminant animals sometimes show symptoms of anemia with concomitant loss of appetite and retarded growth, resulting from an inability to transform propionate to oxaloacetate. This condition is due to a cobalt deficiency caused by very low cobalt levels in the soil and thus in plant matter. Explain.

28. Fat Loss during Hibernation Bears expend about 25 x 10⁶ J/day during periods of hibernation, which may last as long as seven months. The energy required to sustain life is obtained from fatty acid oxidation. How much weight loss (in kilograms) has occurred after seven months? How might ketosis be minimized during hibernation? (Assume the oxidation of fat yields 38 kJ/g.)

Data Analysis Problem

29. β Oxidation of Trans Fats Unsaturated fats with trans double bonds are commonly referred to as “trans fats.” There has been much discussion about the effects of dietary trans fats on health. In their investigations of the effects of trans fatty acid metabolism on health, Yu and colleagues (2004) showed that a model trans fatty acid was processed differently from its cis isomer. They used three related 18-carbon fatty acids to explore the difference in β oxidation between cis and trans isomers of the same-size fatty acid.

Table

<table>
<thead>
<tr>
<th>Acid</th>
<th>Structure</th>
<th>Molecule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearic Acid</td>
<td></td>
<td>C₁₈-CoA</td>
</tr>
<tr>
<td>Oleic Acid (cis-Δ⁹-octadecenoic acid)</td>
<td></td>
<td>C₁₈-CoA</td>
</tr>
<tr>
<td>Elaidic Acid (trans-Δ⁹-octadecenoic acid)</td>
<td></td>
<td>C₁₈-CoA</td>
</tr>
</tbody>
</table>

The researchers incubated the coenzyme A derivative of each acid with rat liver mitochondria for 5 minutes, then separated the remaining CoA derivatives in each mixture by HPLC (high-performance liquid chromatography). The results are shown below, with separate panels for the three experiments.

![HPLC Chart](image)
(a) Why did Yu and colleagues need to use CoA derivatives rather than the free fatty acids in these experiments?

(b) Why were no lower molecular weight CoA derivatives found in the reaction with stearoyl-CoA?

(c) How many rounds of β oxidation would be required to convert the oleoyl-CoA and the elaidoyl-CoA to cis-Δ⁵-tetradecenoyl-CoA and trans-Δ⁵-tetradecenoyl-CoA, respectively?

There are two forms of the enzyme acyl-CoA dehydrogenase (see Fig. 17–8a): long-chain acyl-CoA dehydrogenase (LCAD) and very-long-chain acyl-CoA dehydrogenase (VLCAD). Yu and coworkers measured the kinetic parameters of both enzymes. They used the CoA derivatives of three fatty acids: tetradecanoyl-CoA (C₁₄-CoA), cis-Δ⁵-tetradecenoyl-CoA (cΔ⁵C₁₄-CoA), and trans-Δ⁵-tetradecenoyl-CoA (tΔ⁵C₁₄-CoA). The results are shown below. (See Chapter 6 for definitions of the kinetic parameters.)

(d) For LCAD, the K_m differs dramatically for the cis and trans substrates. Provide a plausible explanation for this observation in terms of the structures of the substrate molecules. (Hint: You may want to refer to Fig. 10–2.)

(e) The kinetic parameters of the two enzymes are relevant to the differential processing of these fatty acids only if the LCAD or VLCAD reaction (or both) is the rate-limiting step in the pathway. What evidence is there to support this assumption?

(f) How do these different kinetic parameters explain the different levels of the CoA derivatives found after incubation of rat liver mitochondria with stearoyl-CoA, oleoyl-CoA, and elaidoyl-CoA (shown in the three-panel figure)?

Yu and coworkers measured the substrate specificity of rat liver mitochondrial thioesterase, which hydrolyzes acyl-CoA to CoA and free fatty acid (see Chapter 21). This enzyme was approximately twice as active with C_{14}-CoA thioesters as with C_{16}-CoA thioesters.

(g) Other research has suggested that free fatty acids can pass through membranes. In their experiments, Yu and colleagues found trans-Δ⁵-tetradecenoic acid outside mitochondria (i.e., in the medium) that had been incubated with elaidoyl-CoA. Describe the pathway that led to this extramitochondrial trans-Δ⁵-tetradecenoic acid. Be sure to indicate where in the cell the various transformations take place, as well as the enzymes that catalyze the transformations.

(h) It is often said in the popular press that “trans fats are not broken down by your cells and instead accumulate in your body.” In what sense is this statement correct and in what sense is it an oversimplification?

Reference

Amino Acid Oxidation and the Production of Urea

18.1 Metabolic Fates of Amino Groups 674
18.2 Nitrogen Excretion and the Urea Cycle 682
18.3 Pathways of Amino Acid Degradation 687

We now turn our attention to the amino acids, the final class of biomolecules that, through their oxidative degradation, make a significant contribution to the generation of metabolic energy. The fraction of metabolic energy obtained from amino acids, whether they are derived from dietary protein or from tissue protein, varies greatly with the type of organism and with metabolic conditions. Carnivores can obtain (immediately following a meal) up to 90% of their energy requirements from amino acid oxidation, whereas herbivores may fill only a small fraction of their energy needs by this route. Most microorganisms can scavenge amino acids from their environment and use them as fuel when required by metabolic conditions. Plants, however, rarely if ever oxidize amino acids to provide energy; the carbohydrate produced from CO$_2$ and H$_2$O in photosynthesis is generally their sole energy source. Amino acid concentrations in plant tissues are carefully regulated to just meet the requirements for biosynthesis of proteins, nucleic acids, and other molecules needed to support growth. Amino acid catabolism does occur in plants, but its purpose is to produce metabolites for other biosynthetic pathways.

In animals, amino acids undergo oxidative degradation in three different metabolic circumstances:

1. During the normal synthesis and degradation of cellular proteins (protein turnover; Chapter 27), some amino acids that are released from protein breakdown and are not needed for new protein synthesis undergo oxidative degradation.

2. When a diet is rich in protein and the ingested amino acids exceed the body's needs for protein synthesis, the surplus is catabolized; amino acids cannot be stored.

3. During starvation or in uncontrolled diabetes mellitus, when carbohydrates are either unavailable or not properly utilized, cellular proteins are used as fuel.

Under all these metabolic conditions, amino acids lose their amino groups to form α-keto acids, the "carbon skeletons" of amino acids. The α-keto acids undergo oxidation to CO$_2$ and H$_2$O or, often more importantly, provide three- and four-carbon units that can be converted by gluconeogenesis into glucose, the fuel for brain, skeletal muscle, and other tissues.

The pathways of amino acid catabolism are quite similar in most organisms. The focus of this chapter is on the pathways in vertebrates, because these have received the most research attention. As in carbohydrate and fatty acid catabolism, the processes of amino acid degradation converge on the central catabolic pathways, with the carbon skeletons of most amino acids finding their way to the citric acid cycle. In some cases the reaction pathways of amino acid breakdown closely parallel steps in the catabolism of fatty acids (Chapter 17).

One important feature distinguishes amino acid degradation from other catabolic processes described to this point: every amino acid contains an amino group, and the pathways for amino acid degradation therefore include a key step in which the α-amino group is separated from the carbon skeleton and shunted into the
pathways of amino group metabolism (Fig. 18–1). We deal first with amino group metabolism and nitrogen excretion, then with the fate of the carbon skeletons derived from the amino acids; along the way we see how the pathways are interconnected.

18.1 Metabolic Fates of Amino Groups

Nitrogen, N₂, is abundant in the atmosphere but is too inert for use in most biochemical processes. Because only a few microorganisms can convert N₂ to biologically useful forms such as NH₃ (Chapter 22), amino groups are carefully husbanded in biological systems.

Figure 18–2a provides an overview of the catabolic pathways of ammonia and amino groups in vertebrates. Amino acids derived from dietary protein are the source of most amino groups. Most amino acids are metabolized in the liver. Some of the ammonia generated in this process is recycled and used in a variety of biosynthetic pathways; the excess is either excreted directly or converted to urea or uric acid for excretion, depending on the organism (Fig. 18–2b). Excess ammonia generated in other (extrahepatic) tissues travels to the liver (in the form of amino groups, as described below) for conversion to the excretory form.

Glutamate and glutamine play especially critical roles in nitrogen metabolism, acting as a kind of general collection point for amino groups. In the cytosol of hepatocytes, amino groups from most amino acids are transferred to α-ketoglutarate to form glutamate, which enters mitochondria and gives up its amino group to form NH₄⁺. Excess ammonia generated in most other tissues is converted to the amide nitrogen of glutamine, which passes to the liver, then into liver mitochondria. Glutamine or glutamate or both are present in higher concentrations than other amino acids in most tissues.

In skeletal muscle, excess amino groups are generally transferred to pyruvate to form alanine, another important molecule in the transport of amino groups to the liver.

We begin with a discussion of the breakdown of dietary proteins, then give a general description of the metabolic fates of amino groups.

Dietary Protein Is Enzymatically Degraded to Amino Acids

In humans, the degradation of ingested proteins to their constituent amino acids occurs in the gastrointestinal tract. Entry of dietary protein into the stomach stimulates the gastric mucosa to secrete the hormone
18.1 Metabolic Fates of Amino Groups

Amino acids from ingested protein

FIGURE 18-2 Amino group catabolism. (a) Overview of catabolism of amino groups (shaded) in vertebrate liver. (b) Excretory forms of nitrogen. Excess NH₄⁺ is excreted as ammonia (microbes, bony fishes), urea (most terrestrial vertebrates), or uric acid (birds and terrestrial reptiles).

gastrin, which in turn stimulates the secretion of hydrochloric acid by the parietal cells and pepsinogen by the chief cells of the gastric glands (Fig. 18–3a). The acidic gastric juice (pH 1.0 to 2.5) is both an antiseptic, killing most bacteria and other foreign cells, and a denaturing agent, unfolding globular proteins and rendering their internal peptide bonds more accessible to enzymatic hydrolysis. Pepsinogen (M, 40,554), an inactive precursor, or zymogen (p. 227), is converted to active pepsin (M, 34,614) by an autocatalytic cleavage (a cleavage mediated by the pepsinogen itself) that occurs only at low pH. In the stomach, pepsin hydrolyzes ingested proteins at peptide bonds on the amino-terminal side of the aromatic amino acid residues Phe, Trp, and Tyr (see Table 3–7), cleaving long polypeptide chains into a mixture of smaller peptides.

As the acidic stomach contents pass into the small intestine, the low pH triggers secretion of the hormone secretin into the blood. Secretin stimulates the pancreas to secrete bicarbonate into the small intestine to neutralize the gastric HCl, abruptly increasing the pH to about 7. (All pancreatic secretions pass into the small intestine through the pancreatic duct.) The digestion of proteins now continues in the small intestine. Arrival of amino acids in the upper part of the intestine (duodenum) causes release into the blood of the hormone cholecystokinin, which stimulates secretion of several pancreatic enzymes with activity optima at pH 7 to 8. Trypsinogen,
chymotrypsinogen, and procarboxypeptidases A and B—the zymogens of trypsin, chymotrypsin, and carboxypeptidases A and B—are synthesized and secreted by the exocrine cells of the pancreas (Fig. 18–3b). Trypsinogen is converted to its active form, trypsin, by enteropeptidase, a proteolytic enzyme secreted by intestinal cells. Free trypsin then catalyzes the conversion of additional trypsinogen to trypsin (see Fig. 6–38). Trypsin also activates chymotrypsinogen, the procarboxypeptidases, and proelastase.

Why this elaborate mechanism for getting active digestive enzymes into the gastrointestinal tract? Synthesis of the enzymes as inactive precursors protects the exocrine cells from destructive proteolytic attack. The pancreas further protects itself against self-digestion by making a specific inhibitor, a protein called pancreatic trypsin inhibitor (p. 227), that effectively prevents premature production of active proteolytic enzymes within the pancreatic cells.

Trypsin and chymotrypsin further hydrolyze the peptides that were produced by pepsin in the stomach. This stage of protein digestion is accomplished very efficiently, because pepsin, trypsin, and chymotrypsin have different amino acid specificities (see Table 3–7). Degradation of the short peptides in the small intestine is then completed by other intestinal peptidases. These include carboxypeptidases A and B (both of which are zinc-containing enzymes), which remove successive carboxyl-terminal residues from peptides, and an aminopeptidase that hydrolyzes successive amino-terminal residues from short peptides. The resulting mixture of free amino acids is transported into the epithelial cells lining the small intestine (Fig. 18–3c), through which the amino acids enter the blood capillaries in the villi and travel to the liver. In humans, most globular proteins from animal sources are almost completely hydrolyzed to amino acids in the gastrointestinal tract, but some fibrous proteins, such as keratin, are only partly digested. In addition, the
protein content of some plant foods is protected against breakdown by indigestible cellulose husks.

Acute pancreatitis is a disease caused by obstruction of the normal pathway by which pancreatic secretions enter the intestine. The zymogens of the proteolytic enzymes are converted to their catalytically active forms prematurely, inside the pancreatic cells, and attack the pancreatic tissue itself. This causes excruciating pain and damage to the organ that can prove fatal.

Pyridoxal Phosphate Participates in the Transfer of α-Amino Groups to α-Ketoglutarate

The first step in the catabolism of most L-amino acids, once they have reached the liver, is removal of the α-amino groups, promoted by enzymes called aminotransferases or transaminases. In these transamination reactions, the α-amino group is transferred to the α-carbon atom of α-ketoglutarate, leaving behind the corresponding α-keto acid analog of the amino acid (Fig. 18-4). There is no net deamination (loss of amino groups) in these reactions, because the α-ketoglutarate becomes aminated as the α-amino acid is deaminated. The effect of transamination reactions is to collect the amino groups from many different amino acids in the form of L-glutamate. The glutamate then functions as an amino group donor for biosynthetic pathways or for excretion pathways that lead to the elimination of nitrogenous waste products.

Cells contain different types of aminotransferases. Many are specific for α-ketoglutarate as the amino group acceptor but differ in their specificity for the L-amino acid. The enzymes are named for the amino group donor (alanine aminotransferase, aspartate aminotransferase, for example). The reactions catalyzed by aminotransferases are freely reversible, having an equilibrium constant of about 1.0 ($\Delta G' \approx 0 \text{ kJ/mol}$).

All aminotransferases have the same prosthetic group and the same reaction mechanism. The prosthetic group is pyridoxal phosphate (PLP), the coenzyme form of pyridoxine, or vitamin B₆. We encountered pyridoxal phosphate in Chapter 15, as a coenzyme in the glycolgen phosphorylase reaction, but its role in that reaction is not representative of its usual coenzyme function. Its primary role in cells is in the metabolism of molecules with amino groups.

Pyridoxal phosphate functions as an intermediate carrier of amino groups at the active site of aminotransferases. It undergoes reversible transformations between its aldehyde form, pyridoxal phosphate, which can accept an amino group, and its aminated form, pyridoxamine phosphate, which can donate its amino group to an α-keto acid (Fig. 18-5a). Pyridoxal phosphate is generally covalently bound to the enzyme’s active site through an aldimine (Schiff base) linkage to the ε-amino group of a Lys residue (Fig. 18-5b, d).

Pyridoxal phosphate participates in a variety of reactions at the α, β, and γ carbons (C-2 to C-4) of amino acids. Reactions at the α carbon (Fig. 18-6) include racemizations (interconverting L- and D-amino acids) and decarboxylations, as well as transaminations. Pyridoxal phosphate plays the same chemical role in each of these reactions. A bond to the α carbon of the substrate is broken, removing either a proton or a carboxyl group. The electron pair left behind on the α carbon would form a highly unstable carbanion, but pyridoxal phosphate provides resonance stabilization of this intermediate (Fig. 18-6 inset). The highly conjugated structure of PLP (an electron sink) permits delocalization of the negative charge.

Aminotransferases (Fig. 18-5) are classic examples of enzymes catalyzing bimolecular Ping-Pong reactions (see Fig. 6-13b), in which the first substrate reacts and the product must leave the active site before the second substrate can bind. Thus the incoming amino acid binds to the active site, donates its amino group to pyridoxal phosphate, and departs in the form of an α-keto acid. The incoming α-keto acid then binds, accepts the amino group from pyridoxamine phosphate, and departs in the form of an amino acid. As described in Box 18–1 on page 678, measurement of the alanine aminotransferase and aspartate aminotransferase levels in blood serum is important in some medical diagnoses.

Glutamate Releases Its Amino Group As Ammonia in the Liver

As we have seen, the amino groups from many of the α-amino acids are collected in the liver in the form of the amino group of L-glutamate molecules. These amino
Amino Acid Oxidation and the Production of Urea

FIGURE 18–5 Pyridoxal phosphate, the prosthetic group of aminotransferases. (a) Pyridoxal phosphate (PLP) and its aminated form, pyridoxamine phosphate, are the tightly bound coenzymes of aminotransferases. The functional groups are shaded. (b) Pyridoxal phosphate is bound to the enzyme through noncovalent interactions and a Schiff-base (aldimine) linkage to a Lys residue at the active site. The steps in the formation of a Schiff base from a primary amine and a carbonyl group are detailed in Figure 14–5. (c) PLP (red) bound to one of the two active sites of the dimeric enzyme aspartate aminotransferase, a typical aminotransferase; (d) close-up view of the active site, with PLP (red, with yellow phosphorus) in aldime linkage with the side chain of Lys258 (purple); (e) another close-up view of the active site, with PLP linked to the substrate analog 2-methylaspartate (green) via a Schiff base (PDB ID 1AJS).

BOX 18–1 **MEDICINE** Assays for Tissue Damage

Analyses of certain enzyme activities in blood serum give valuable diagnostic information for several disease conditions.

Alanine aminotransferase (ALT; also called glutamate-pyruvate transaminase, GPT) and aspartate aminotransferase (AST; also called glutamate-oxaloacetate transaminase, GOT) are important in the diagnosis of heart and liver damage caused by heart attack, drug toxicity, or infection. After a heart attack, a variety of enzymes, including these aminotransferases, leak from injured heart cells into the bloodstream. Measurements of the blood serum concentrations of the two aminotransferases by the SGPT and SGOT tests (S for serum)—and of another enzyme, creatine kinase, by the SCK test—can provide information about the severity of the damage. Creatine kinase is the first heart enzyme to appear in the blood after a heart attack; it also disappears quickly from the blood. GOT is the next to appear, and GPT follows later. Lactate dehydrogenase also leaks from injured or anaerobic heart muscle.

The SGOT and SGPT tests are also important in occupational medicine, to determine whether people exposed to carbon tetrachloride, chloroform, or other industrial solvents have suffered liver damage. Liver degeneration caused by these solvents is accompanied by leakage of various enzymes from injured hepatocytes into the blood. Aminotransferases are most useful in the monitoring of people exposed to these chemicals, because these enzyme activities are high in liver and thus are likely to be among the proteins leaked from damaged hepatocytes; also, they can be detected in the bloodstream in very small amounts.
18.1 Metabolic Fates of Amino Groups

Some amino acid transformations at the α carbon that are facilitated by pyridoxal phosphate. Pyridoxal phosphate is generally bonded to the enzyme through a Schiff base, also called an internal aldimine. This activated form of PLP readily undergoes transamination to form a new Schiff base (external aldimine) with the α-amino group of the substrate amino acid (see Fig. 18–5b, d). Three alternative fates for the external aldimine are shown: (A) transamination, (B) racemization, and (C) decarboxylation. The PLP–amino acid Schiff base is in conjugation with the pyridine ring, an electron sink that permits delocalization of an electron pair to avoid formation of an unstable carbanion on the α carbon (inset). A quinonoid intermediate is involved in all three types of reactions. The transamination route is especially important in the pathways described in this chapter. The pathway highlighted here (shown left to right) represents only part of the overall reaction catalyzed by aminotransferases. To complete the process, a second α-keto acid replaces the one that is released, and this is converted to an amino acid in a reversal of the reaction steps (right to left). Pyridoxal phosphate is also involved in certain reactions at the β and γ carbons of some amino acids (not shown).

Pyridoxal
Phosphate Reaction Mechanisms

unstable carbanion on the α carbon (inset). A quinonoid intermediate is involved in all three types of reactions. The transamination route is especially important in the pathways described in this chapter. The pathway highlighted here (shown left to right) represents only part of the overall reaction catalyzed by aminotransferases. To complete the process, a second α-keto acid replaces the one that is released, and this is converted to an amino acid in a reversal of the reaction steps (right to left). Pyridoxal phosphate is also involved in certain reactions at the β and γ carbons of some amino acids (not shown).

Pyridoxal
Phosphate Reaction Mechanisms

groups must next be removed from glutamate to prepare them for excretion. In hepatocytes, glutamate is transported from the cytosol into mitochondria, where it undergoes oxidative deamination catalyzed by L-glutamate dehydrogenase (Mr 330,000). In mammals, this enzyme is present in the mitochondrial matrix. It is the only enzyme that can use either NAD+ or NADP+ as the acceptor of reducing equivalents (Fig. 18–7).

The combined action of an aminotransferase and glutamate dehydrogenase is referred to as trans-
deamination. A few amino acids bypass the trans-deamination pathway and undergo direct oxidative deamination. The fate of the NH₃ produced by any of these deamination processes is discussed in detail in Section 18.2. The α-ketoglutarate formed from glutamate deamination can be used in the citric acid cycle and for glucose synthesis.

Glutamate dehydrogenase operates at an important intersection of carbon and nitrogen metabolism. An allosteric enzyme with six identical subunits, its
Amino Acid Oxidation and the Production of Urea

FIGURE 18–7 Reaction catalyzed by glutamate dehydrogenase. The glutamate dehydrogenase of mammalian liver has the unusual capacity to use either NAD+ or NADP+ as cofactor. The glutamate dehydrogenases of plants and microorganisms are generally specific for one or the other. The mammalian enzyme is allosterically regulated by GTP and ADP.

activity is influenced by a complicated array of allosteric modulators. The best-studied of these are the positive modulator ADP and the negative modulator GTP. The metabolic rationale for this regulatory pattern has not been elucidated in detail. Mutations that alter the allosteric binding site for GTP or otherwise cause permanent activation of glutamate dehydrogenase lead to a human genetic disorder called hyperinsulinism-hyperammonemia syndrome, characterized by elevated levels of ammonia in the bloodstream and hypoglycemia.

Glutamine Transports Ammonia in the Bloodstream

Ammonia is quite toxic to animal tissues (we examine some possible reasons for this toxicity later), and the levels present in blood are regulated. In many tissues, including the brain, some processes such as nucleotide degradation generate free ammonia. In most animals much of the free ammonia is converted to a nontoxic compound before export from the extrahepatic tissues into the blood and transport to the liver or kidneys. For this transport function, glutamate, critical to intracellular amino group metabolism, is supplanted by L-glutamine. The free amino produced in tissues is combined with glutamate to yield glutamine by the action of glutamine synthetase. This reaction requires ATP and occurs in two steps (Fig. 18–8). First, glutamate and ATP react to form ADP and a γ-glutamyl phosphate intermediate, which then reacts with ammonia to produce glutamine and inorganic phosphate. Glutamine is a nontoxic transport form of ammonia; it is normally present in blood in much higher concentrations than other amino acids. Glutamine also serves as a source of amino groups in a variety of biosynthetic reactions. Glutamine synthetase is found in all organisms, always playing a central metabolic role. In microorganisms, the enzyme serves as an essential portal for the entry of fixed nitrogen into biological systems. (The roles of glutamine and glutamine synthetase in metabolism are further discussed in Chapter 22.)

In most terrestrial animals, glutamine in excess of that required for biosynthesis is transported in the blood to the intestine, liver, and kidneys for processing. In these tissues, the amide nitrogen is released as ammonium ion in the mitochondria, where the enzyme glutaminase converts glutamine to glutamate and NH4+. (Fig. 18–8). The NH4+ from intestine and kidney is transported in the blood to the liver. In the liver, the
ammonia from all sources is disposed of by urea synthesis. Some of the glutamate produced in the glutaminase reaction may be further processed in the liver by glutamate dehydrogenase, releasing more ammonia and producing carbon skeletons for metabolic fuel. However, most glutamate enters the transamination reactions required for amino acid biosynthesis and other processes (Chapter 22).

In metabolic acidosis (p. 667) there is an increase in glutamine processing by the kidneys. Not all the excess NH₄⁺ thus produced is released into the bloodstream or converted to urea; some is excreted directly into the urine. In the kidney, the NH₄⁺ forms salts with metabolic acids, facilitating their removal in the urine. Bicarbonate produced by the decarboxylation of α-ketoglutarate in the citric acid cycle can also serve as a buffer in blood plasma. Taken together, these effects of glutamine metabolism in the kidney tend to counteract acidosis.

Alanine Transports Ammonia from Skeletal Muscles to the Liver

Alanine also plays a special role in transporting amino groups to the liver in a nontoxic form, via a pathway called the glucose-alanine cycle (Fig. 18–9). In muscle and certain other tissues that degrade amino acids for fuel, amino groups are collected in the form of glutamate by transamination (Fig. 18–2a). Glutamate can be converted to glutamine for transport to the liver, as described above, or it can transfer its α-amino group to pyruvate, a readily available product of muscle glycolysis, by the action of alanine aminotransferase (Fig. 18–9). The alanine so formed passes into the blood and travels to the liver. In the cytosol of hepatocytes, alanine aminotransferase transfers the amino group from alanine to α-ketoglutarate, forming pyruvate and glutamate. Glutamate can then enter mitochondria, where the glutamate dehydrogenase reaction releases NH₄⁺ (Fig. 18–7), or can undergo transamination with oxaloacetate to form aspartate, another nitrogen donor in urea synthesis, as we shall see.

The use of alanine to transport ammonia from skeletal muscles to the liver is another example of the intrinsic economy of living organisms. Vigorously contracting skeletal muscles operate anaerobically, producing pyruvate and lactate from glycolysis as well as ammonia from protein breakdown. These products must find their way to the liver, where pyruvate and lactate are incorporated into glucose, which is returned to the muscles, and ammonia is converted to urea for excretion. The glucose-alanine cycle, in concert with the Cori cycle (see Box 14–2 and Fig. 23–20), accomplishes this transaction. The energetic burden of gluconeogenesis is thus imposed on the liver rather than the muscle, and all available ATP in muscle is devoted to muscle contraction.

Ammonia Is Toxic to Animals

The catabolic production of ammonia poses a serious biochemical problem, because ammonia is very toxic. The molecular basis for this toxicity is not entirely understood. The terminal stages of ammonia intoxication in humans are characterized by onset of a comatose state accompanied by cerebral edema (an increase in the brain’s water content) and increased cranial pressure, so research and speculation on ammonia toxicity have focused on this tissue. Speculation centers on a potential depletion of ATP in brain cells.

Ridding the cytosol of excess ammonia requires reductive amination of α-ketoglutarate to glutamate by glutamate dehydrogenase (the reverse of the reaction...
described earlier; Fig. 18–7) and conversion of glutamate to glutamine by glutamine synthetase. Both enzymes are present at high levels in the brain, although the glutamine synthetase reaction is almost certainly the more important pathway for removal of ammonia. High levels of NH_4^+ lead to increased levels of glutamine, which acts as an osmotically active solute (osmolyte) in brain astrocytes, star-shaped cells of the nervous system that provide nutrients, support, and insulation for neurons. This triggers an uptake of water into the astrocytes to maintain osmotic balance, leading to swelling of the cells and the brain, leading to coma.

Depletion of glutamate in the glutamine synthetase reaction may have additional effects on the brain. Glutamate and its derivative γ-aminobutyrate (GABA; see Fig. 22–29) are important neurotransmitters; the sensitivity of the brain to ammonia may reflect a depletion of neurotransmitters as well as changes in cellular osmotic balance.

As we close this discussion of amino group metabolism, note that we have described several processes that deposit excess ammonia in the mitochondria of hepatocytes (Fig. 18–2). We now look at the fate of that ammonia.

SUMMARY 18.1 Metabolic Fates of Amino Groups

- Humans derive a small fraction of their oxidative energy from the catabolism of amino acids. Amino acids are derived from the normal breakdown (recycling) of cellular proteins, degradation of ingested proteins, and breakdown of body proteins in lieu of other fuel sources during starvation or in uncontrolled diabetes mellitus.

- Proteases degrade ingested proteins in the stomach and small intestine. Most proteases are initially synthesized as inactive zymogens.

- An early step in the catabolism of amino acids is the separation of the amino group from the carbon skeleton. In most cases, the amino group is transferred to α-ketoglutarate to form glutamate. This transamination reaction requires the coenzyme pyridoxal phosphate.

- Glutamate is transported to liver mitochondria, where glutamate dehydrogenase liberates the amino group as ammonium ion (NH_4^+). Ammonia formed in other tissues is transported to the liver as the amide nitrogen of glutamine or, in transport from skeletal muscle, as the amino group of alanine.

- The pyruvate produced by deamination of alanine in the liver is converted to glucose, which is transported back to muscle as part of the glucose-alanine cycle.

18.2 Nitrogen Excretion and the Urea Cycle

If not reused for the synthesis of new amino acids or other nitrogenous products, amino groups are channeled into a single excretory end product (Fig. 18–10). Most aquatic species, such as the bony fishes, are amnonotelic, excreting amino nitrogen as ammonia. The toxic ammonia is simply diluted in the surrounding water. Terrestrial animals require pathways for nitrogen excretion that minimize toxicity and water loss. Most terrestrial animals are ureotelic, excreting amino nitrogen in the form of urea; birds and reptiles are uricotelic, excreting amino nitrogen as uric acid. (The pathway of uric acid synthesis is described in Fig. 22–45.) Plants recycle virtually all amino groups, and nitrogen excretion occurs only under very unusual circumstances.

In ureotelic organisms, the ammonia deposited in the mitochondria of hepatocytes is converted to urea in the **urea cycle.** This pathway was discovered in 1932 by Hans Krebs (who later also discovered the citric acid cycle) and a medical student associate, Kurt Henseleit. Urea production occurs almost exclusively in the liver and is the fate of most of the ammonia channeled there. The urea passes into the bloodstream and thus to the kidneys and is excreted into the urine. The production of urea now becomes the focus of our discussion.

Urea Is Produced from Ammonia in Five Enzymatic Steps

The urea cycle begins inside liver mitochondria, but three of the subsequent steps take place in the cytosol; the cycle thus spans two cellular compartments (Fig. 18–10). The first amino group to enter the urea cycle is derived from ammonia in the mitochondrial matrix—NH_4^+ arising by the pathways described above. The liver also receives some ammonia via the portal vein from the intestine, from the bacterial oxidation of amino acids. Whatever its source, the NH_4^+ generated in liver mitochondria is immediately used, together with CO$_2$ (as HCO$_3^-$) produced by mitochondrial respiration, to

FIGURE 18–10 Urea cycle and reactions that feed amino groups into the cycle. The enzymes catalyzing these reactions (named in the text) are distributed between the mitochondrial matrix and the cytosol. One amino group enters the urea cycle as carbamoyl phosphate, formed in the matrix; the other enters as aspartate, formed in the matrix by transamination of oxaloacetate and glutamate, catalyzed by aspartate amino transferase. The urea cycle consists of four steps. ① Formation of citrulline from ornithine and carbamoyl phosphate (entry of the first amino group); the citrulline passes into the cytosol. ② Formation of argininosuccinate through a citrullyl-AMP intermediate (entry of the second amino group). ③ Formation of arginine from argininosuccinate; this reaction releases fumarate, which enters the citric acid cycle. ④ Formation of urea; this reaction also regenerates ornithine. The pathways by which NH_4^+ arrives in the mitochondrial matrix of hepatocytes were discussed in Section 18.1.
18.2 Nitrogen Excretion and the Urea Cycle

- Glutamine (from extrahepatic tissues) can be converted to glutamate.
- Glutamate can be deaminated to form α-ketoglutarate and ammonia (NH₃).
- α-Ketoglutarate can be converted to glutamate.
- Glutamine can also be converted to glutamine dehydrogenase and aspartate aminotransferase.
- Alanine (from muscle) can be converted to pyruvate.
- Pyruvate can be converted to α-ketoglutarate.
- Glutamate can be converted to α-ketoglutarate.
- α-Ketoglutarate can be converted to glutamate.
- Glutamate can be converted to glutamine dehydrogenase.
- Ornithine can be converted to citrulline.
- Citrulline can be converted to arginine.
- Arginine can be converted to urea.

The urea cycle involves the following reactions:
1. Carbamoyl phosphate synthetase
2. Argininosuccinate synthetase
3. Argininosuccinase
4. Ornithine transcarbamoylase

The final product of the urea cycle is urea, which is excreted in the urine.
form carbamoyl phosphate in the matrix (Fig. 18–11a; see also Fig. 18–10). This ATP-dependent reaction is catalyzed by carbamoyl phosphate synthetase I, a regulatory enzyme (see below). The mitochondrial form of the enzyme is distinct from the cytosolic (II) form, which has a separate function in pyrimidine biosynthesis (Chapter 22).

The carbamoyl phosphate, which functions as an activated carbamoyl group donor, now enters the urea cycle. The cycle has four enzymatic steps. First, carbamoyl phosphate donates its carbamoyl group to ornithine to form citrulline, with the release of P_i (Fig. 18–10, step 1). Ornithine plays a role resembling that of oxaloacetate in the citric acid cycle, accepting material at each turn of the cycle. The reaction is catalyzed by ornithine transcarbamoylase, and the citrulline passes from the mitochondrion to the cytosol.

The second amino group now enters from aspartate (generated in mitochondria by transamination and transported into the cytosol) by a condensation reaction between the amino group of aspartate and the ureido (carbonyl) group of citrulline, forming argininosuccinate (step 2 in Fig. 18–10). This cytosolic reaction, catalyzed by argininosuccinate synthetase, requires ATP and proceeds through a citrullyl-AMP intermediate (Fig. 18–11b). The argininosuccinate is then cleaved by argininosuccinate (step 3 in Fig. 18–10) to form free arginine and fumarate, the latter entering mitochondria to join the pool of citric acid cycle intermediates. This is the only reversible step in the urea cycle. In the last reaction of the urea cycle (step 4), the cytosolic enzyme arginase cleaves arginine to yield urea and ornithine. Ornithine is transported into the mitochondrion to initiate another round of the urea cycle.

As we noted in Chapter 16, the enzymes of many metabolic pathways are clustered (p. 619), with the product of one enzyme reaction being channeled directly to the next enzyme in the pathway. In the urea cycle, the mitochondrial and cytosolic enzymes seem to be clustered in this way. The citrulline transported out of the mitochondrion is not diluted into the general pool of metabolites in the cytosol but is passed directly to the active site of argininosuccinate synthetase. This channeling between enzymes continues for argininosuccinate, arginine, and ornithine. Only urea is released into the general cytosolic pool of metabolites.

The Citric Acid and Urea Cycles Can Be Linked

Because the fumarate produced in the argininosuccinate synthetase reaction is also an intermediate of the citric acid cycle, the cycles are, in principle, interconnected—in a process dubbed the “Krebs bicycle” (Fig. 18–12). However, each cycle can operate independently, and communication

![Mechanism Figure 18–11](image_url)
FIGURE 18–12 Links between the urea cycle and citric acid cycle. The interconnected cycles have been called the “Krebs bicycle.” The pathways linking the citric acid and urea cycles are known as the aspartate-argininosuccinate shunt; these effectively link the fates of the amino groups and the carbon skeletons of amino acids. The interconnections are even more elaborate than the arrows suggest. For example, between them depends on the transport of key intermediates between the mitochondrion and cytosol. Several enzymes of the citric acid cycle, including fumarase (fumarate hydratase) and malate dehydrogenase (p. 628), are also present as isozymes in the cytosol. The fumarate generated in cytosolic arginine synthesis can therefore be converted to malate in the cytosol, and these intermediates can be further metabolized in the cytosol or transported into mitochondria for use in the citric acid cycle. Aspartate formed in mitochondria by transamination between oxaloacetate and glutamate can be transported to the cytosol, where it serves as nitrogen donor in the urea cycle reaction catalyzed by argininosuccinate synthetase. These reactions, making up the aspartate-argininosuccinate shunt, provide metabolic links between the separate pathways by which the amino groups and carbon skeletons of amino acids are processed.

The Activity of the Urea Cycle Is Regulated at Two Levels

The flux of nitrogen through the urea cycle in an individual animal varies with diet. When the dietary intake is primarily protein, the carbon skeletons of amino acids are used for fuel, producing much urea from the excess amino groups. During prolonged starvation, when breakdown of muscle protein begins to supply much of the organism’s metabolic energy, urea production also increases substantially.

These changes in demand for urea cycle activity are met over the long term by regulation of the rates of synthesis of the four urea cycle enzymes and carbamoyl phosphate synthetase I in the liver. All five enzymes are synthesized at higher rates in starving animals and in animals on very-high-protein diets than in well-fed animals eating primarily carbohydrates and fats. Animals on protein-free diets produce lower levels of urea cycle enzymes.

On a shorter time scale, allosteric regulation of at least one key enzyme adjusts the flux through the urea cycle. The first enzyme in the pathway, carbamoyl phosphate synthetase I, is allosterically activated by N-acetylglutamate, which is synthesized from acetyl-CoA and glutamate by N-acetylglutamate synthase (Fig. 18–13). In plants and microorganisms this enzyme catalyzes the first step in the de novo synthesis of arginine from glutamate (see Fig. 22–10), but in mammals N-acetylglutamate synthase activity in the liver has a purely regulatory function (mammals lack the other enzymes needed to convert glutamate to arginine). The steady-state levels
Amino Acid Oxidation and the Production of Urea

![Diagram](image)

Figure 18-13 Synthesis of N-acetylglutamate and its activation of carbamoyl phosphate synthetase I.

The synthesis of N-acetylglutamate is determined by the concentrations of glutamate and acetyl-CoA (the substrates for N-acetylglutamate synthase) and arginine (an activator of N-acetylglutamate synthase, and thus an activator of the urea cycle).

Pathway Interconnections Reduce the Energetic Cost of Urea Synthesis

If we consider the urea cycle in isolation, we see that the synthesis of one molecule of urea requires four high-energy phosphate groups (Fig. 18-10). Two ATP molecules are required to make carbamoyl phosphate, and one ATP to make argininosuccinate—the latter ATP undergoing a pyrophosphate cleavage to AMP and PP\(_\text{i}\), which is hydrolyzed to two P\(_\text{i}\). The overall equation of the urea cycle is

\[
2\text{NH}_3^+ + \text{HCO}_3^- + 3\text{ATP}^4^- + \text{H}_2\text{O} \rightarrow \text{urea} + 2\text{ADP}^3^- + 4\text{P}_i^2^- + \text{AMP}^2^- + 2\text{H}^+
\]

However, the urea cycle also causes a net conversion of oxaloacetate to fumarate (via aspartate), and the regeneration of oxaloacetate (Fig. 18-12) produces NADH in the malate dehydrogenase reaction. Each NADH molecule can generate up to 2.5 ATP during mitochondrial respiration (Chapter 19), greatly reducing the overall energetic cost of urea synthesis.

Genetic Defects in the Urea Cycle Can Be Life-Threatening

People with genetic defects in any enzyme involved in urea formation cannot tolerate protein-rich diets. Amino acids ingested in excess of the minimum daily requirements for protein synthesis are deaminated in the liver, producing free ammonia that cannot be converted to urea and exported into the bloodstream, and, as we have seen, ammonia is highly toxic. The absence of a urea cycle enzyme can result in hyperammonemia or in the build-up of one or more urea cycle intermediates, depending on the enzyme that is missing. Given that most urea cycle steps are irreversible, the absent enzyme activity can often be identified by determining which cycle intermediate is present in especially elevated concentration in the blood and/or urine. Although the breakdown of amino acids can have serious health consequences in individuals with urea cycle deficiencies, a protein-free diet is not a treatment option. Humans are incapable of synthesizing half of the 20 common amino acids, and these essential amino acids (Table 18-1) must be provided in the diet.

A variety of treatments are available for individuals with urea cycle defects. Careful administration of the aromatic acids benzoate or phenylbutyrate in the diet can help lower the level of ammonia in the blood. Benzoate is converted to benzoyl-CoA, which combines with glycine to form hippurate (Fig. 18-14, left). The glycine used up in this reaction must be regenerated, and ammonia is thus taken up in the glycine synthase reaction. Phenylbutyrate is converted to phenylacetate by β oxidation. The phenylacetate is then converted to phenylacetyl-CoA, which combines with glutamine to form phenylacetylglutamine (Fig. 18-14, right). The resulting removal of glutamine triggers its further synthesis by glutamine synthetase (see Eqn 22-1) in a

<table>
<thead>
<tr>
<th>Nonessential</th>
<th>Conditionally essential*</th>
<th>Essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Arginine</td>
<td>Histidine</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Cysteine</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>Aspartate</td>
<td>Glutamine</td>
<td>Leucine</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Glycine</td>
<td>Lysine</td>
</tr>
<tr>
<td>Serine</td>
<td>Proline</td>
<td>Methionine</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Phenylalanine</td>
<td>Thrreonine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tryptophan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valine</td>
</tr>
</tbody>
</table>

*Required to some degree in young, growing animals, and/or sometimes during illness.
reaction that takes up ammonia. Both hippurate and phenylacetylglutamine are nontoxic compounds that are excreted in the urine. The pathways shown in Figure 18–14 make only minor contributions to normal metabolism, but they become prominent when aromatic acids are ingested.

Other therapies are more specific to a particular enzyme deficiency. Deficiency of N-acetylglutamate synthase results in the absence of the normal activator of carbamoyl phosphate synthetase I (Fig. 18–13). This condition can be treated by administering carbamoyl glutamate, an analog of N-acetylglutamate that is effective in activating carbamoyl phosphate synthetase I.

Supplementing the diet with arginine is useful in treating deficiencies of ornithine transcarbamoylase, argininosuccinate synthetase, and argininosuccinase. Many of these treatments must be accompanied by strict dietary control and supplements of essential amino acids. In the rare cases of arginase deficiency, arginine, the substrate of the defective enzyme, must be excluded from the diet.

SUMMARY 18.2 Nitrogen Excretion and the Urea Cycle

- Ammonia is highly toxic to animal tissues. In the urea cycle, ornithine combines with ammonia, in the form of carbamoyl phosphate, to form citrulline. A second amino group is transferred to citrulline from aspartate to form arginine—the immediate precursor of urea. Arginase catalyzes hydrolysis of arginine to urea and ornithine; thus ornithine is regenerated in each turn of the cycle.

- The urea cycle results in a net conversion of oxaloacetate to fumarate, both of which are intermediates in the citric acid cycle. The two cycles are thus interconnected.

- The activity of the urea cycle is regulated at the level of enzyme synthesis and by allosteric regulation of the enzyme that catalyzes the formation of carbamoyl phosphate.

18.3 Pathways of Amino Acid Degradation

The pathways of amino acid catabolism, taken together, normally account for only 10% to 15% of the human body's energy production; these pathways are not nearly as active as glycolysis and fatty acid oxidation. Flux through these catabolic routes also varies greatly, depending on the balance between requirements for biosynthetic processes and the availability of a particular amino acid. The 20 catabolic pathways converge to form only six major products,
all of which enter the citric acid cycle (Fig. 18–15). From here the carbon skeletons are diverted to gluconeogenesis or ketogenesis or are completely oxidized to CO₂ and H₂O.

All or part of the carbon skeletons of seven amino acids are ultimately broken down to acetyl-CoA. Five amino acids are converted to α-ketoglutarate, four to succinyl-CoA, two to fumarate, and two to oxaloacetate. Parts or all of six amino acids are converted to pyruvate, which can be converted to either acetyl-CoA or oxaloacetate. We later summarize the individual pathways for the 20 amino acids in flow diagrams, each leading to a specific point of entry into the citric acid cycle. In these diagrams the carbon atoms that enter the citric acid cycle are shown in color. Note that some amino acids appear more than once, reflecting different fates for different parts of their carbon skeletons. Rather than examining every step of every pathway in amino acid catabolism, we single out for special discussion some enzymatic reactions that are particularly noteworthy for their mechanisms or their medical significance.

Some Amino Acids Are Converted to Glucose, Others to Ketone Bodies

The seven amino acids that are degraded entirely or in part to acetoacetyl-CoA and/or acetyl-CoA—phenylalanine, tyrosine, isoleucine, leucine, tryptophan, threonine, and lysine—can yield ketone bodies in the liver, where acetoacetyl-CoA is converted to acetoacetate and then to acetone and β-hydroxybutyrate (see Fig. 17–18). These are the ketogenic amino acids (Fig. 18–15). Their ability to form ketone bodies is particularly evident in uncontrolled diabetes mellitus, in which the liver produces large amounts of ketone bodies from both fatty acids and the ketogenic amino acids.

The amino acids that are degraded to pyruvate, α-ketoglutarate, succinyl-CoA, fumarate, and/or oxaloacetate can be converted to glucose and glycogen by pathways described in Chapters 14 and 15. They are the glucogenic amino acids. The division between ketogenic and glucogenic amino acids is not sharp; five amino acids—tryptophan, phenylalanine, tyrosine, threonine, and isoleucine—are both ketogenic and glucogenic.
Catabolism of amino acids is particularly critical to the survival of animals with high-protein diets or during starvation. Leucine is an exclusively ketogenic amino acid that is very common in proteins. Its degradation makes a substantial contribution to ketosis under starvation conditions.

Several Enzyme Cofactors Play Important Roles in Amino Acid Catabolism

A variety of interesting chemical rearrangements occur in the catabolic pathways of amino acids. It is useful to begin our study of these pathways by noting the classes of reactions that recur and introducing their enzyme cofactors. We have already considered one important class: transamination reactions requiring pyridoxal phosphate. Another common type of reaction in amino acid catabolism is one-carbon transfers, which usually involve one of three cofactors: biotin, tetrahydrofolate, or S-adenosylmethionine (Fig. 18–16). These cofactors transfer one-carbon groups in different oxidation states; biotin transfers carbon in its most oxidized state, CO₂ (see Fig. 14–18); tetrahydrofolate transfers one-carbon groups in intermediate oxidation states and sometimes as methyl groups; and S-adenosylmethionine transfers methyl groups, the most reduced state of carbon. The latter two cofactors are especially important in amino acid and nucleotide metabolism.

Tetrahydrofolate (H₄ folate), synthesized in bacteria, consists of substituted pterin (6-methylpterin), p-aminobenzoate, and glutamate moieties (Fig. 18–16). The oxidized form, folate, is a vitamin for mammals; it is converted in two steps to tetrahydrofolate by the enzyme dihydrofolate reductase. The one-carbon group undergoing transfer, in any of three oxidation states, is bonded to N-5 or N-10 or both. The most reduced form of the cofactor carries a methyl group, a more oxidized form carries a methylene group, and the most oxidized forms carry a methenyl, formyl, or formimino group (Fig. 18–17). Most forms of tetrahydrofolate are interconvertible and serve as donors of one-carbon units in a variety of metabolic reactions. The primary source of one-carbon units for tetrahydrofolate is the carbon removed in the conversion of serine to glycine, producing N⁵,N¹⁰-methylenetetrahydrofolate.

Although tetrahydrofolate can carry a methyl group at N-5, the transfer potential of this methyl group is insufficient for most biosynthetic reactions. S-Adenosylmethionine (adoMet) is the preferred cofactor for biological methyl group transfers. It is synthesized from ATP and methionine by the action of methionine adenosyl transferase (Fig. 18–18, step 1). This reaction is unusual in that the nucleophilic sulfur atom of methionine attacks the 5’ carbon of the ribose moiety of ATP rather than one of the phosphorus atoms. Triphosphate is released and is cleaved to P₁ and PP₁ on the enzyme, and the PP₁ is cleaved by inorganic pyrophosphatase; thus three bonds, including two bonds of high-energy phosphate groups, are broken in this reaction. The only other known reaction in which triphosphate is displaced from ATP occurs in the synthesis of coenzyme B₁₂ (see Box 17–2, Fig. 3).

S-Adenosylmethionine is a potent alkylating agent by virtue of its destabilizing sulfonium ion. The methyl group is subject to attack by nucleophiles and is about 1,000 times more reactive than the methyl group of N⁵-methyltetrahydrofolate.
Transfer of the methyl group from S-adenosylmethionine to an acceptor yields \textit{S}-adenosylhomocysteine (Fig. 18–18, step 2), which is subsequently broken down to homocysteine and adenosine (step 3). Methionine is regenerated by transfer of a methyl group to homocysteine in a reaction catalyzed by methionine synthase (step 4), and methionine is reconverted to \textit{S}-adenosylmethionine to complete an activated-methyl cycle.

One form of methionine synthase common in bacteria uses \(N^6 \)-methyltetrahydrofolate as a methyl donor. Another form of the enzyme present in some bacteria and mammals uses \(N^5 \)-methyltetrahydrofolate, but the methyl group is first transferred to cobalamin, derived from coenzyme B12, to form methylcobalamin as the methyl donor in methionine formation. This reaction and the rearrangement of L-methylmalonyl-CoA to

\[
\begin{align*}
\text{Serine} & \xrightarrow{\text{COO}^-} \text{H}_2\text{N}^+\text{CH}_2\text{OH} + \text{PLP} \\
\text{Glycine} & \xrightarrow{\text{COO}^-} \text{H}_2\text{N}^+\text{CH}_2\text{OH} \\
\text{N}^5,\text{N}^{10}-\text{Methylene}-\text{tetrahydrofolate} & \xrightarrow{\text{NAD}^+} \text{NADH} + \text{H}^+ \\
\text{N}^5,\text{N}^{10}-\text{Formyl}-\text{tetrahydrofolate} & \xrightarrow{\text{NADP}^+} \text{NADPH} + \text{H}^+ \\
\end{align*}
\]
FIGURE 18–18 Synthesis of methionine and S-adenosylmethionine in an activated-methyl cycle. The steps are described in the text. In the methionine synthase reaction (step 4), the methyl group is transferred to cobalamin to form methylcobalamin, which in turn is the methyl donor in the formation of methionine. S-Adenosylmethionine, which has a positively charged sulfur (and is thus a sulfonium ion), is a powerful methylating agent in several biosynthetic reactions. The methyl group acceptor (step 2) is designated R.

The anemia can be traced to the methionine synthase reaction. As noted above, the methyl group of methylcobalamin is derived from N5-methyltetrahydrofolate, and this is the only reaction in mammals that uses N5-methyltetrahydrofolate. The reaction converting the N5,N10-methylene form to the N5-methyl form of tetrahydrofolate is irreversible (Fig. 18–17). Thus, if coenzyme B12 is not available for the synthesis of methylcobalamin, metabolic folates become trapped in the N5-methyl form. The anemia associated with vitamin B12 deficiency is called megaloblastic anemia. It manifests as a decline in the production of mature erythrocytes (red blood cells) and the appearance in the bone marrow of immature precursor cells, or megaloblasts. Erythrocytes are gradually replaced in the blood by smaller numbers of abnormally large erythrocytes called macrocytes. The defect in erythrocyte development is a direct consequence of the depletion of the N5,N10-methylene-tetrahydrofolate, which is required for synthesis of the thymidine nucleotides needed for DNA synthesis (see Chapter 22). Folate deficiency, in which all forms of tetrahydrofolate are depleted, also produces anemia, for much the same reasons. The anemia symptoms of B12 deficiency can be alleviated by administering either vitamin B12 or folate.

However, it is dangerous to treat pernicious anemia by folate supplementation alone, because the neurological symptoms of B12 deficiency will progress. These symptoms do not arise from the defect in the methionine synthase reaction. Instead, the impaired methylmalonyl-CoA mutase causes accumulation of unusual, odd-number fatty acids in neuronal membranes. The anemia associated with folate deficiency is thus often treated by administering both folate and vitamin B12, at least until the metabolic source of the anemia is unambiguously defined. Early diagnosis of B12 deficiency is important because some of its associated neurological conditions may be irreversible.

Folate deficiency also reduces the availability of the N5-methyltetrahydrofolate required for methionine synthase function. This leads to a rise in homocysteine levels in blood, a condition linked to heart disease, hypertension, and stroke. High levels of homocysteine
may be responsible for 10% of all cases of heart disease. The condition is treated with folate supplements.

Tetrahydrobiopterin, another cofactor of amino acid catabolism, is similar to the pterin moiety of tetrahydrofolate, but it is not involved in one-carbon transfers; instead it participates in oxidation reactions. We consider its mode of action when we discuss phenylalanine degradation (see Fig. 18–24).

Six Amino Acids Are Degraded to Pyruvate

The carbon skeletons of six amino acids are converted in whole or in part to pyruvate. The pyruvate can then be converted to acetyl-CoA and eventually oxidized via the citric acid cycle, or to oxaloacetate and shunted into gluconeogenesis. The six amino acids are alanine, tryptophan, cysteine, serine, glycine, and threonine (Fig. 18–19). Alanine yields pyruvate directly on transamination with α-ketoglutarate, and the side chain of tryptophan is cleaved to yield alanine and thus pyruvate. Cysteine is converted to pyruvate in two steps; one removes the sulfur atom, the other is a transamination.

Serine is converted to pyruvate by serine dehydratase. Both the β-hydroxyl and the α-amino groups of serine are removed in this single pyridoxal phosphate–dependent reaction (Fig. 18–20a).

Glycine is degraded via three pathways, only one of which leads to pyruvate. Glycine is converted to serine by enzymatic addition of a hydroxymethyl group (Figs 18–19, 18–20b). This reaction, catalyzed by serine hydroxymethyltransferase, requires the coenzymes tetrahydrofolate and pyridoxal phosphate. The serine is converted to pyruvate as described above. In the second pathway, which predominates in animals, glycine undergoes oxidative cleavage to CO₂, NH₄⁺, and a methylene group (—CH₂—) (Figs 18–19, 18–20c). This readily reversible reaction, catalyzed by glycine cleavage enzyme (also called glycine synthase), also requires tetrahydrofolate, which accepts the methylene group. In this oxidative cleavage pathway, the two carbon atoms of glycine do not enter the citric acid cycle. One carbon is lost as CO₂ and the other becomes the methylene group of N⁶,N¹⁰-methylenetetrahydrofolate (Fig. 18–17), a one-carbon group donor in certain biosynthetic pathways.
MECHANISM FIGURE 18–20 Interplay of the pyridoxal phosphate and tetrahydrofolate cofactors in serine and glycine metabolism. The first step in each of these reactions (not shown) involves the formation of a covalent imine linkage between enzyme-bound PLP and the substrate amino acid—serine in (a), glycine in (b) and (c). (a) A PLP-catalyzed elimination of water in the serine dehydratase reaction (step 1) begins the pathway to pyruvate. (b) In the serine hydroxymethyltransferase reaction, a PLP-stabilized carbanion (product of step 1) is a key intermediate in the reversible transfer of the methylene group (as methyl is transferred to H4 folate with elimination of ammonia. (c) The glycine cleavage enzyme is a multienzyme complex, with components P, H, T, and L. The overall reaction, which is reversible, converts glycine to CO2 and NH4+. With the second glycine carbon taken up by tetrahydrofolate to form N5,N10-methylene tetrahydrofolate. Pyridoxal phosphate activates the α carbon of amino acids at critical stages in all these reactions, and tetrahydrofolate carries one-carbon units in two of them (see Figs 18–6, 18–17).
This second pathway for glycine degradation seems to be critical in mammals. Humans with serious defects in glycine cleavage enzyme activity suffer from a condition known as nonketotic hyperglycinemia. The condition is characterized by elevated serum levels of glycine, leading to severe mental deficiencies and death in very early childhood. At high levels, glycine is an inhibitory neurotransmitter, perhaps explaining the neurological effects of the disease. Many genetic defects of amino acid metabolism have been identified in humans (Table 18–2). We will encounter several more in this chapter.

In the third and final pathway of glycine degradation, the achiral glycine molecule is a substrate for the enzyme o-amino acid oxidase. The glycine is converted to glyoxylate, an alternative substrate for hepatic lactate dehydrogenase (p. 547). Glyoxylate is oxidized in an NAD⁺-dependent reaction to oxalate:

\[
\begin{align*}
\text{NH}_3 & \quad \text{H}_2\text{O} & \quad \text{NH}_3 \\
\text{CH}_2 & \quad \text{O} & \quad \text{CH} \\
\text{COO}^- & \quad \text{COO}^- & \quad \text{COO}^-
\end{align*}
\]

Glyoxylate

The primary function of o-amino acid oxidase, present at high levels in the kidney, is thought to be the detoxification of ingested o-amino acids derived from bacterial cell walls and from grilled foodstuffs (high heat causes some spontaneous racemization of the L-amino acids in proteins). Oxalate, whether obtained in foods or produced enzymatically in the kidneys, has medical significance. Crystals of calcium oxalate account for up to 75% of all kidney stones.

There are two significant pathways for threonine degradation. One pathway leads to pyruvate via glycine (Fig. 18–19). The conversion to glycine occurs in two steps, with threonine first converted to 2-amino-3-ketobutyrate by the action of threonine dehydrogenase. This is a relatively minor pathway in humans, accounting for 10% to 30% of threonine catabolism, but is more important in some other mammals. The major pathway in humans leads to succinyl-CoA and is described later.

In the laboratory, serine hydroxymethyltransferase will catalyze the conversion of threonine to glycine and acetaldehyde in one step, but this is not a significant pathway for threonine degradation in mammals.

TABLE 18–2

<table>
<thead>
<tr>
<th>Medical condition</th>
<th>Approximate incidence (per 100,000 births)</th>
<th>Defective process</th>
<th>Defective enzyme</th>
<th>Symptoms and effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albinism</td>
<td><3</td>
<td>Melanin synthesis from tyrosine</td>
<td>Tyrosine 3-monooxygenase (tyrosinase)</td>
<td>Lack of pigmentation; white hair, pink skin</td>
</tr>
<tr>
<td>Alkaptonuria</td>
<td><0.4</td>
<td>Tyrosine degradation</td>
<td>Homogentisate 1,2-dioxygenase</td>
<td>Dark pigment in urine; late-developing arthritis</td>
</tr>
<tr>
<td>Argininenia</td>
<td><0.5</td>
<td>Urea synthesis</td>
<td>Arginase</td>
<td>Mental retardation</td>
</tr>
<tr>
<td>Argininosuccinic acidemia</td>
<td><1.5</td>
<td>Urea synthesis</td>
<td>Argininosuccinase</td>
<td>Vomiting; convulsions</td>
</tr>
<tr>
<td>Carbamoyl phosphate synthetase 1 deficiency</td>
<td><0.5</td>
<td>Urea synthesis</td>
<td>Carbamoyl phosphate synthetase 1</td>
<td>Lethargy; convulsions; early death</td>
</tr>
<tr>
<td>Homocystinuria</td>
<td><0.5</td>
<td>Methionine degradation</td>
<td>Cystathionine β-synthase</td>
<td>Faulty bone development; mental retardation</td>
</tr>
<tr>
<td>Maple syrup urine disease (branched-chain ketoaciduria)</td>
<td><0.4</td>
<td>Isoleucine, leucine, and valine degradation</td>
<td>Branched-chain α-keto acid dehydrogenase complex</td>
<td>Vomiting; convulsions; mental retardation; early death</td>
</tr>
<tr>
<td>Methylmalonic acidemia</td>
<td><0.5</td>
<td>Conversion of propionyl-CoA to succinyl-CoA</td>
<td>Methylmalonyl-CoA mutase</td>
<td>Vomiting; convulsions; mental retardation; early death</td>
</tr>
<tr>
<td>Phenylketonuria</td>
<td><8</td>
<td>Conversion of phenylalanine to tyrosine</td>
<td>Phenylalanine hydroxylase</td>
<td>Neonatal vomiting; mental retardation</td>
</tr>
</tbody>
</table>
Seven Amino Acids Are Degraded to Acetyl-CoA

Portions of the carbon skeletons of seven amino acids—tryptophan, lysine, phenylalanine, tyrosine, leucine, isoleucine, and threonine—yield acetyl-CoA and/or acetoacetyl-CoA, the latter being converted to acetyl-CoA (Fig. 18–21). Some of the final steps in the degradative pathways for leucine, lysine, and tryptophan resemble steps in the oxidation of fatty acids. Threonine (not shown in Fig. 18–21) yields some acetyl-CoA via the minor pathway illustrated in Figure 18–19.

The degradative pathways of two of these seven amino acids deserve special mention. Tryptophan breakdown is the most complex of all the pathways of amino acid catabolism in animal tissues; portions of tryptophan (four of its carbons) yield acetyl-CoA via acetoacetyl-CoA. Some of the intermediates in tryptophan catabolism are precursors for the synthesis of other biomolecules (Fig. 18–22), including nicotinate, a precursor of NAD and NADP in animals; serotonin, a neurotransmitter in vertebrates; and indoleacetate, a growth factor in plants. Some of these biosynthetic pathways are described in more detail in Chapter 22 (see Figs 22–28, 22–29).

The breakdown of phenylalanine is noteworthy because genetic defects in the enzymes of this pathway...
lead to several inheritable human diseases (Fig. 18–23), as discussed below. Phenylalanine and its oxidation product tyrosine (both with nine carbons) are degraded into two fragments, both of which can enter the citric acid cycle: four of the nine carbon atoms yield free acetoacetate, which is converted to acetoacetyl-CoA and thus acetyl-CoA, and a second four-carbon fragment is recovered as fumarate. Eight of the nine carbons of these two amino acids thus enter the citric acid cycle; the remaining carbon is lost as CO₂. Phenylalanine, after its hydroxylation to tyrosine, is also the precursor of dopamine, a neurotransmitter, and of norepinephrine and epinephrine, hormones secreted by the adrenal medulla (see Fig. 22–29). Melanin, the black pigment of skin and hair, is also derived from tyrosine.

Phenylalanine Catabolism Is Genetically Defective in Some People

Given that many amino acids are either neurotransmitters or precursors or antagonists of neurotransmitters, genetic defects of amino acid metabolism
can cause defective neural development and mental retardation. In most such diseases specific intermediates accumulate. For example, a genetic defect in phenylalanine hydroxylase, the first enzyme in the catabolic pathway for phenylalanine (Fig. 18–23), is responsible for the disease phenylketonuria (PKU), the most common cause of elevated levels of phenylalanine (hyperphenylalaninemia).

Phenylalanine hydroxylase (also called phenylalanine-4-monooxygenase) is one of a general class of enzymes called mixed-function oxidases (see Box 21–1), all of which catalyze simultaneous hydroxylation of a substrate by an oxygen atom of O2 and reduction of the other oxygen atom to H2O. Phenylalanine hydroxylase requires the cofactor tetrahydrobiopterin, which carries electrons from NADPH to O2 and becomes oxidized to dihydrobiopterin in the process (Fig. 18–24). It is subsequently reduced by the enzyme dihydrobiopterin reductase in a reaction that requires NADPH.

In individuals with PKU, a secondary, normally little-used pathway of phenylalanine metabolism comes into play. In this pathway phenylalanine undergoes transamination with pyruvate to yield phenylpyruvate (Fig. 18–25). Phenylalanine and phenylpyruvate accumulate in the blood and tissues and are excreted in the urine—hence the name “phenylketonuria.” Much of the phenylpyruvate, rather than being excreted as such, is either decarboxylated to phenylacetate or reduced to phenyllactate. Phenylacetate imparts a characteristic odor to the urine, which nurses have traditionally used to detect PKU in infants. The accumulation of phenylalanine or its metabolites in early life impairs normal development of the brain, causing severe mental retardation. This may be caused by excess phenylalanine competing with other amino acids for transport across the blood-brain barrier, resulting in a deficit of required metabolites.

Phenylketonuria was among the first inheritable metabolic defects discovered in humans. When this condition is recognized early in infancy, mental retardation can largely be prevented by rigid dietary control. The diet must supply only enough phenylalanine and tyrosine to meet the needs for protein synthesis. Consumption of protein-rich foods must be curtailed. Natural proteins, such as casein of milk, must first be hydrolyzed and much of the phenylalanine removed to provide an appropriate diet, at least through childhood. Because the artificial sweetener aspartame is a dipeptide of aspartate and the methyl ester of phenylalanine (see Fig. 1–23b), foods sweetened with aspartame bear warnings addressed to individuals on phenylalanine-controlled diets.

The NIH shift. The H atom shaded pink is transferred directly from C-4 to C-3 in the reaction. This feature, discovered at the National Institutes of Health, is called the NIH shift.

Phenylketonuria was among the first inheritable metabolic defects discovered in humans. When this condition is recognized early in infancy, mental retardation can largely be prevented by rigid dietary control.
Phenylketonuria can also be caused by a defect in the enzyme that catalyzes the regeneration of tetrahydrobiopterin (Fig. 18-24). The treatment in this case is more complex than restricting the intake of phenylalanine and tyrosine. Tetrahydrobiopterin is also required for the formation of L-3,4-dihydroxyphenylalanine (L-dopa) and 5-hydroxytryptophan—precursors of the neurotransmitters norepinephrine and serotonin, respectively—and in phenylketonuria of this type, these precursors must be supplied in the diet. Supplementing the diet with tetrahydrobiopterin itself is ineffective because it is unstable and does not cross the blood-brain barrier.

Screening newborns for genetic diseases can be highly cost-effective, especially in the case of PKU. The tests (no longer relying on urine odor) are relatively inexpensive, and the detection and early treatment of PKU in infants (eight to ten cases per 100,000 newborns) saves millions of dollars in later health care costs each year. More importantly, the emotional trauma avoided by early detection with these simple tests is inestimable.

Another inheritable disease of phenylalanine catabolism is alkaptonuria, in which the defective enzyme is homogentisate dioxygenase (Fig. 18-23). Less serious than PKU, this condition produces few ill effects, although large amounts of homogentisate are excreted and its oxidation turns the urine black. Individuals with alkaptonuria are also prone to develop a form of arthritis. Archibald Garrod discovered in the early 1900s that this condition is inherited, and he traced the cause to the absence of a single enzyme. Garrod was the first to make a connection between an inheritable trait and an enzyme—a great advance on the path that ultimately led to our current understanding of genes and the information pathways described in Part III.

Five Amino Acids Are Converted to α-Ketoglutarate

The carbon skeletons of five amino acids (proline, glutamate, glutamine, arginine, and histidine) enter the citric acid cycle as α-ketoglutarate (Fig. 18-26). Proline, glutamate, and glutamine have five-carbon skeletons.

![Catabolic pathways for arginine, histidine, glutamate, glutamine, and proline.](image-url) These amino acids are converted to α-ketoglutarate. The numbered steps in the histidine pathway are catalyzed by 1 histidine ammonia lyase, 2 urocanate hydratase, 3 imidazolonepropionase, and 4 glutamate formimino transferase.
The cyclic structure of proline is opened by oxidation of the carbon most distant from the carboxyl group to create a Schiff base, then hydrolysis of the Schiff base to a linear semialdehyde, glutamate γ-semialdehyde. This intermediate is further oxidized at the same carbon to produce glutamate. The action of glutaminase, or any of several enzyme reactions in which glutamine donates its amide nitrogen to an acceptor, converts glutamine to glutamate. Transamination or deamination of glutamate produces α-ketoglutarate.

Arginine and **histidine** contain five adjacent carbons and a sixth carbon attached through a nitrogen atom. The catabolic conversion of these amino acids to glutamate is therefore slightly more complex than the path from proline or glutamine (Fig. 18–26). Arginine is converted to the five-carbon skeleton of ornithine in the urea cycle (Fig. 18–10), and the ornithine is transaminated to glutamate γ-semialdehyde. Conversion of histidine to the five-carbon glutamate occurs in a multistep pathway; the extra carbon is removed in a step that uses tetrahydrofolate as cofactor.

Four Amino Acids Are Converted to Succinyl-CoA

The carbon skeletons of methionine, isoleucine, threonine, and valine are degraded by pathways that yield succinyl-CoA (Fig. 18–27), an intermediate of the citric acid cycle. **Methionine** donates its methyl group to one of several possible acceptors through S-adenosylmethionine, and three of its four remaining carbon atoms are converted to the propionate of propionyl-CoA, a precursor of succinyl-CoA. **Isoleucine** undergoes transamination, followed by oxidative decarboxylation of the resulting α-keto acid. The remaining five-carbon skeleton is further oxidized to acetyl-CoA and propionyl-CoA. **Valine** undergoes transamination and decarboxylation, then a series of oxidation reactions that convert the remaining four carbons to propionyl-CoA. Some parts of the valine and isoleucine degradative pathways closely parallel steps in fatty acid degradation (see Fig. 17–8a). In human tissues, **threonine** is also converted in two steps to propionyl-CoA. This is the primary pathway for threonine degradation in humans (see Fig. 18–19 for the alternative pathway). The
mechanism of the first step is analogous to that catalyzed by serine dehydratase, and the serine and threonine dehydratases may actually be the same enzyme.

The propionyl-CoA derived from these three amino acids is converted to succinyl-CoA by a pathway described in Chapter 17: carboxylation to methylmalonyl-CoA, epimerization of the methylmalonyl-CoA, and conversion to succinyl-CoA by the coenzyme B_{12}-dependent methylmalonyl-CoA mutase (see Fig. 17–11). In the rare genetic disease known as methylmalonic acidaemia, methylmalonyl-CoA mutase is lacking—with serious metabolic consequences (Table 18–2; Box 18–2).

BOX 18–2 MEDICINE Scientific Sleuths Solve a Murder Mystery

Truth can sometimes be stranger than fiction—or at least as strange as a made-for-TV movie. Take, for example, the case of Patricia Stallings. Convicted of the murder of her infant son, she was sentenced to life in prison—but was later found innocent, thanks to the medical sleuthing of three persistent researchers.

The story began in the summer of 1989 when Stallings brought her three-month-old son, Ryan, to the emergency room of Cardinal Glennon Children’s Hospital in St. Louis. The child had labored breathing, uncontrollable vomiting, and gastric distress. According to the attending physician, a toxicologist, the child’s symptoms indicated that he had been poisoned with ethylene glycol, an ingredient of antifreeze, a conclusion apparently confirmed by analysis at a commercial lab.

After he recovered, the child was placed in a foster home, and Stallings and her husband, David, were allowed to see him in supervised visits. But when the infant became ill, and subsequently died, after a visit in which Stallings had been briefly left alone with him, she was charged with first-degree murder and held without bail. At the time, the evidence seemed compelling as both the commercial lab and the hospital lab found large amounts of ethylene glycol in the boy’s blood and traces of it in a bottle of milk Stallings had fed her son during the visit.

But without knowing it, Stallings had performed a brilliant experiment. While in custody, she learned she was pregnant; she subsequently gave birth to another son, David Stallings Jr., in February 1990. He was placed immediately in a foster home, but within two weeks he started having symptoms similar to Ryan’s. David was eventually diagnosed with a rare metabolic disorder called methylmalonic acidaemia (MMA). A recessive genetic disorder of amino acid metabolism, MMA affects about 1 in 48,000 newborns and presents symptoms almost identical with those caused by ethylene glycol poisoning.

Stallings couldn’t possibly have poisoned her second son, but the Missouri state prosecutor’s office was not impressed by the new developments and pressed forward with her trial anyway. The court wouldn’t allow the MMA diagnosis of the second child to be introduced as evidence, and in January 1991 Patricia Stallings was convicted of assault with a deadly weapon and sentenced to life in prison.

Fortunately for Stallings, however, William Sly, chairman of the Department of Biochemistry and Molecular Biology at St. Louis University, and James Shoemaker, head of a metabolic screening lab at the university, got interested in her case when they heard about it from a television broadcast. Shoemaker performed his own analysis of Ryan’s blood and didn’t detect ethylene glycol. He and Sly then contacted Piero Rinaldo, a metabolic disease expert at Yale University School of Medicine whose lab is equipped to diagnose MMA from blood samples.

When Rinaldo analyzed Ryan’s blood serum, he found high concentrations of methylmalonic acid, a breakdown product of the branched-chain amino acids isoleucine and valine, which accumulates in MMA patients because the enzyme that should convert it to the next product in the metabolic pathway is defective. And particularly telling, he says, the child’s blood and urine contained massive amounts of ketones, another metabolic consequence of the disease. Like Shoemaker, he did not find any ethylene glycol in a sample of the baby’s bodily fluids. The bottle couldn’t be tested, since it had mysteriously disappeared. Rinaldo’s analyses convinced him that Ryan had died from MMA, but how to account for the results from two labs, indicating that the boy had ethylene glycol in his blood? Could they both be wrong?

When Rinaldo obtained the lab reports, what he saw was, he says, “scary.” One lab said that Ryan Stallings’ blood contained ethylene glycol, even though the blood sample analysis did not match the lab’s own profile for a known sample containing ethylene glycol. “This was not just a matter of questionable interpretation. The quality of their analysis was unacceptable,” Rinaldo says. And the second laboratory? According to Rinaldo, that lab detected an abnormal component in Ryan’s blood and just “assumed it was ethylene glycol.” Samples from the bottle had produced nothing unusual, says Rinaldo, yet the lab claimed evidence of ethylene glycol in that, too.

Rinaldo presented his findings to the case’s prosecutor, George McElroy, who called a press conference the very next day. “I no longer believe the laboratory data,” he told reporters. Having concluded that Ryan Stallings had died of MMA after all, McElroy dismissed all charges against Patricia Stallings on September 20, 1991.

By Michelle Hoffman (1991) Science 253, 931. Copyright 1991 by the American Association for the Advancement of Science.
Branched-Chain Amino Acids Are Not Degraded in the Liver

Although much of the catabolism of amino acids takes place in the liver, the three amino acids with branched side chains (leucine, isoleucine, and valine) are oxidized as fuels primarily in muscle, adipose, kidney, and brain tissue. These extrahepatic tissues contain an aminotransferase, absent in liver, that acts on all three branched-chain amino acids to produce the corresponding a-keto acids (Fig. 18–28). The branched-chain a-keto acid dehydrogenase complex then catalyzes oxidative decarboxylation of all three a-keto acids, in each case releasing the carboxyl group as CO_2 and producing the acyl-CoA derivative. This reaction is formally analogous to two other oxidative decarboxylations encountered in Chapter 16: oxidation of pyruvate to acetyl-CoA by the pyruvate dehydrogenase complex (see Fig. 16-6) and oxidation of a-ketoglutarate to succinyl-CoA by the a-ketoglutarate dehydrogenase complex (p. 625). In fact, all three enzyme complexes are similar in structure and share essentially the same reaction mechanism. Five cofactors (thiamine pyrophosphate, FAD, NAD, lipoate, and coenzyme A) participate, and the three proteins in each complex catalyze homologous reactions. This is clearly a case in which enzymatic machinery that evolved to catalyze one reaction was “borrowed” by gene duplication and further evolved to catalyze similar reactions in other pathways.

Experiments with rats have shown that the branched-chain a-keto acid dehydrogenase complex is regulated by covalent modification in response to the content of branched-chain amino acids in the diet. With little or no excess dietary intake of branched-chain amino acids, the enzyme complex is phosphorylated and thereby inactivated by a protein kinase. Addition of excess branched-chain amino acids to the diet results in dephosphorylation and consequent activation of the enzyme. Recall that the pyruvate dehydrogenase complex is subject to similar regulation by phosphorylation and dephosphorylation (p. 636).

There is a relatively rare genetic disease in which the three branched-chain a-keto acids (as well as their precursor amino acids, especially leucine) accumulate in the blood and “spill over” into the urine. This condition, called maple syrup urine disease because of the characteristic odor imparted to the urine by the a-keto acids, results from a defective branched-chain a-keto acid dehydrogenase complex. Untreated, the disease results in abnormal development of the brain, mental retardation, and death in early infancy. Treatment entails rigid control of the diet, limiting the intake of valine, isoleucine, and leucine to the minimum required to permit normal growth.

Asparagine and Aspartate Are Degraded to Oxaloacetate

The carbon skeletons of asparagine and aspartate ultimately enter the citric acid cycle as oxaloacetate. The
Amino Acid Oxidation and the Production of Urea

FIGURE 18-29 Catabolic pathway for asparagine and aspartate. Both amino acids are converted to oxaloacetate.

enzyme *asparaginase* catalyzes the hydrolysis of asparagine to aspartate, which undergoes transamination with α-ketoglutarate to yield glutamate and oxaloacetate (Fig. 18-29).

We have now seen how the 20 common amino acids, after losing their nitrogen atoms, are degraded by dehydrogenation, decarboxylation, and other reactions to yield portions of their carbon backbones in the form of six central metabolites that can enter the citric acid cycle. Those portions degraded to acetyl-CoA are completely oxidized to carbon dioxide and water, with generation of ATP by oxidative phosphorylation.

As was the case for carbohydrates and lipids, the degradation of amino acids results ultimately in the generation of reducing equivalents (NADH and FADH₂) through the action of the citric acid cycle. Our survey of catabolic processes concludes in the next chapter with a discussion of respiration, in which these reducing equivalents fuel the ultimate oxidative and energy-generating process in aerobic organisms.

SUMMARY 18.3 Pathways of Amino Acid Degradation

- After the removal of amino groups, the carbon skeletons of amino acids undergo oxidation to compounds that can enter the citric acid cycle for oxidation to CO₂ and H₂O. The reactions of these pathways require several cofactors, including tetrahydrofolate and S-adenosylmethionine in one-carbon transfer reactions and tetrahydrobiopterin in the oxidation of phenylalanine by phenylalanine hydroxylase.

- Depending on their degradative end product, some amino acids can be converted to ketone bodies, some to glucose, and some to both. Thus amino acid degradation is integrated into intermediary metabolism and can be critical to survival under conditions in which amino acids are a significant source of metabolic energy.

- The carbon skeletons of amino acids enter the citric acid cycle through five intermediates: acetyl-CoA, α-ketoglutarate, succinyl-CoA, fumarate, and oxaloacetate. Some are also degraded to pyruvate, which can be converted to either acetyl-CoA or oxaloacetate.

- The amino acids producing pyruvate are alanine, cysteine, glycine, serine, threonine, and tryptophan. Leucine, lysine, phenylalanine, and tryptophan yield acetyl-CoA via acetoacetyl-CoA. Isoleucine, leucine, threonine, and tryptophan also form acetyl-CoA directly.

- Arginine, glutamate, glutamine, histidine, and proline produce α-ketoglutarate; isoleucine, methionine, threonine, and valine produce succinyl-CoA; four carbon atoms of phenylalanine and tyrosine give rise to fumarate; and asparagine and aspartate produce oxaloacetate.

- The branched-chain amino acids (isoleucine, leucine, and valine), unlike the other amino acids, are degraded only in extrahepatic tissues.

- Several serious human diseases can be traced to genetic defects in the enzymes of amino acid catabolism.

Key Terms

Terms in bold are defined in the glossary.

- aminotransferases 677
- transaminases 677
- transamination 677
- pyridoxal phosphate (PLP) 677
- creatine kinase 678
- oxidative deamination 679
- L-glutamate dehydrogenase 679
- glutamine synthetase 680
- glutaminase 680
- glucose-alanine cycle 681
- ammonotelic 682
- ureotelic 682
- uricotelic 682
- urea cycle 682
- urea 684
- essential amino acids 686
- ketogenic 688
- glucogenic 688
- tetrahydrofolate 689
- S-adenosylmethionine (adoMet) 689
- phenylketonuria (PKU) 697
- mixed-function oxidases 697
- alkaptonuria 698
- maple syrup urine disease 701
Further Reading

General

An interesting tour through the life of this important biochemist.

A discussion of the various fates of amino acids in plants.

Amino Acid Metabolism

Determination of which amino acids are essential in the human diet is not a trivial problem, as this review relates.

The Urea Cycle

An authoritative source on this pathway.

A medical historian reconstructs the events leading to the discovery of the urea cycle.

This review details what is known about some levels of regulation not covered in the chapter, such as hormonal and nutritional regulation.

Disorders of Amino Acid Degradation

Nyhan, W.L. (1984) Abnormalities in Amino Acid Metabolism in Clinical Medicine, Appleton-Century-Crofts, Norwalk, CT.

Problems

1. Products of Amino Acid Transamination Name and draw the structure of the α-keto acid resulting when each of the following amino acids undergoes transamination with α-ketoglutarate: (a) aspartate, (b) glutamate, (c) alanine, (d) phenylalanine.

2. Measurement of Alanine Aminotransferase Activity The activity (reaction rate) of alanine aminotransferase is usually measured by including an excess of pure lactate dehydrogenase and NADH in the reaction system. The rate of alanine disappearance is equal to the rate of NADH disappearance measured spectrophotometrically. Explain how this assay works.

3. Alanine and Glutamine in the Blood Normal human blood plasma contains all the amino acids required for the synthesis of body proteins, but not in equal concentrations. Alanine and glutamine are present in much higher concentrations than any other amino acids. Suggest why.

4. Distribution of Amino Nitrogen If your diet is rich in alanine but deficient in aspartate, will you show signs of aspartate deficiency? Explain.

5. Lactate versus Alanine as Metabolic Fuel: The Cost of Nitrogen Removal The three carbons in lactate and alanine have identical oxidation states, and animals can use either carbon source as a metabolic fuel. Compare the net ATP yield (mole of ATP per mole of substrate) for the complete oxidation (to CO2 and H2O) of lactate versus alanine when the cost of nitrogen excretion as urea is included.

6. Ammonia Toxicity Resulting from an Arginine-Deficient Diet In a study conducted some years ago, cats were fasted overnight then given a single meal complete in all
amino acids except arginine. Within 2 hours, blood ammonia levels increased from a normal level of 18 μg/L to 140 μg/L, and the cats showed the clinical symptoms of ammonia toxicity. A control group fed a complete amino acid diet or an amino acid diet in which arginine was replaced by ornithine showed no unusual clinical symptoms.

(a) What was the role of fasting in the experiment?
(b) What caused the ammonia levels to rise in the experimental group? Why did the absence of arginine lead to ammonia toxicity? Is arginine an essential amino acid in cats? Why or why not?
(c) Why can ornithine be substituted for arginine?

7. Oxidation of Glutamate
Write a series of balanced equations, and an overall equation for the net reaction, describing the oxidation of 2 mol of glutamate to 2 mol of α-ketoglutarate and 1 mol of urea.

8. Transamination and the Urea Cycle
Aspartate aminotransferase has the highest activity of all the mammalian liver aminotransferases. Why?

9. The Case against the Liquid Protein Diet
A weight-reducing diet heavily promoted some years ago required the daily intake of “liquid protein” (soup of hydrolyzed gelatin), water, and an assortment of vitamins. All other food and drink were to be avoided. People on this diet typically lost 10 to 14 lb in the first week.

(a) Opponents argued that the weight loss was almost entirely due to water loss and would be regained very soon after a normal diet was resumed. What is the biochemical basis for this argument?
(b) A few people on this diet died. What are some of the dangers inherent in the diet, and how can they lead to death?

10. Ketogenic Amino Acids
Which amino acids are exclusively ketogenic?

11. A Genetic Defect in Amino Acid Metabolism: A Case History
A two-year-old child was taken to the hospital. His mother said that he vomited frequently, especially after feedings. The child's weight and physical development were below normal. His hair, although dark, contained patches of white. A urine sample treated with ferric chloride (FeCl₃) gave a green color characteristic of the presence of phenylpyruvate. Quantitative analysis of urine samples gave the results shown in the table.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Patient's urine</th>
<th>Normal urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylalanine</td>
<td>7.0</td>
<td>0.01</td>
</tr>
<tr>
<td>Phenylpyruvate</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Phenyllactate</td>
<td>10.3</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Suggest which enzyme might be deficient in this child. Propose a treatment.
(b) Why does phenylalanine appear in the urine in large amounts?
(c) What is the source of phenylpyruvate and phenyllactate? Why does this pathway (normally not functional) come into play when the concentration of phenylalanine rises?

12. Role of Cobalamin in Amino Acid Catabolism
Pernicious anemia is caused by impaired absorption of vitamin B₁₂. What is the effect of this impairment on the catabolism of amino acids? Are all amino acids equally affected? (Hint: See Box 17-2.)

13. Vegetarian Diets
Vegetarian diets can provide high levels of antioxidants and a lipid profile that can help prevent coronary disease. However, there can be some associated problems. Blood samples were taken from a large group of volunteer subjects who were vegans (strict vegetarians: no animal products), lactovegetarians (vegetarians who eat dairy products), or omnivores (individuals with a normal, varied diet including meat). In each case, the volunteers had followed the diet for several years. The blood levels of both homocysteine and methylmalonate were elevated in the vegan group, somewhat lower in the lactovegetarian group, and much lower in the omnivore group. Explain.

14. Pernicious Anemia
Vitamin B₁₂ deficiency can arise from a few rare genetic diseases that lead to low B₁₂ levels despite a normal diet that includes B₁₂-rich meat and dairy sources. These conditions cannot be treated with dietary B₁₂ supplements. Explain.

15. Pyridoxal Phosphate Reaction Mechanisms
Threonine can be broken down by the enzyme threonine dehydratase, which catalyzes the conversion of threonine to α-ketobutyrate and ammonia. The enzyme uses PLP as a co-factor. Suggest a mechanism for this reaction, based on the mechanisms in Figure 18-6. Note that this reaction includes an elimination at the β carbon of threonine.

\[
\text{OH} \quad \text{NH}_3 \\
\text{CH}_3-\text{CH}-\text{CH}-\text{COO}^- \quad \text{PLP} \\
\text{Threonine} \quad \text{threonine dehydratase} \\
\text{O} \\
\text{CH}_3-\text{CH}_2-\text{C}-\text{COO}^- + \text{NH}_3 + \text{H}_2\text{O} \\
\alpha\text{-Ketobutyrate}
\]

16. Pathway of Carbon and Nitrogen in Glutamate Metabolism
When [2-¹⁴C, ¹⁵N] glutamate undergoes oxidative degradation in the liver of a rat, in which atoms of the following metabolites will each isotope be found: (a) urea, (b) succinate, (c) arginine, (d) citrulline, (e) ornithine, (f) aspartate?

17. Chemical Strategy of Isoleucine Catabolism
Isoleucine is degraded in six steps to propionyl-CoA and acetyl-CoA.
(a) The chemical process of isoleucine degradation includes strategies analogous to those used in the citric acid cycle and the β oxidation of fatty acids. The intermediates of isoleucine degradation (I to V) shown below are not in the proper order. Use your knowledge and understanding of the citric acid cycle and β-oxidation pathway to arrange the intermediates in the proper metabolic sequence for isoleucine degradation.

(b) For each step you propose, describe the chemical process, provide an analogous example from the citric acid cycle or β-oxidation pathway (where possible), and indicate any necessary cofactors.

18. Role of Pyridoxal Phosphate in Glycine Metabolism
The enzyme serine hydroxymethyltransferase requires pyridoxal phosphate as cofactor. Propose a mechanism for the reaction catalyzed by this enzyme, in the direction of serine degradation (glycine production). (Hint: See Figs 18–19 and 18–20b.)

19. Parallel Pathways for Amino Acid and Fatty Acid Degradation
The carbon skeleton of leucine is degraded by a series of reactions closely analogous to those of the citric acid cycle and β oxidation. For each reaction, (a) through (f), shown at right, indicate its type, provide an analogous example from the citric acid cycle or β-oxidation pathway (where possible), and note any necessary cofactors.

Data Analysis Problem

20. Maple Syrup Urine Disease
Figure 18–28 shows the pathway for the degradation of branched-chain amino acids and the site of the biochemical defect that causes maple syrup urine disease. The initial findings that eventually led to the discovery of the defect in this disease were presented in three papers published in the late 1950s and early 1960s. This problem traces the history of the findings from initial clinical observations to proposal of a biochemical mechanism.

Menkes, Hurst, and Craig (1954) presented the cases of four siblings, all of whom died following a similar course of symptoms. In all four cases, the mother's pregnancy and the birth had been normal. The first 3 to 5 days of each child's life were also normal. But soon thereafter each child began having
convulsions, and the children died between the ages of 11 days and 3 months. Autopsy showed considerable swelling of the brain in all cases. The children’s urine had a strong, unusual “maple syrup” odor, starting from about the third day of life.

Menkes (1959) reported data collected from six more children. All showed symptoms similar to those described above, and died within 15 days to 20 months of birth. In one case, Menkes was able to obtain urine samples during the last months of the infant’s life. When he treated the urine with 2,4-dinitrophenylhydrazine, which forms colored precipitates with keto compounds, he found three α-keto acids in unusually large amounts:

- α-Ketoisocaproate
- α-Ketoisovalerate
- α-Keto-β-methyl-n-valerate

(a) These α-keto acids are produced by the deamination of amino acids. For each of the α-keto acids above, draw and name the amino acid from which it was derived.

Dancis, Levitz, and Westall (1960) collected further data that led them to propose the biochemical defect shown in Figure 18-28. In one case, they examined a patient whose urine first showed the maple syrup odor when he was 4 months old. At the age of 10 months (March 1956), the child was admitted to the hospital because he had a fever, and he showed grossly retarded motor development. At the age of 20 months (January 1957), he was readmitted and was found to have the degenerative neurological symptoms seen in previous cases of maple syrup urine disease; he died soon after. Results of his blood and urine analyses are shown in the table below, along with normal values for each component.

(b) The table includes taurine, an amino acid not normally found in proteins. Taurine is often produced as a by-product of cell damage. Its structure is:

\[
\text{H}_2\text{N}^-\text{C}_2\text{H}_4\text{C}_2\text{O}_2\text{H}^+
\]

Based on its structure and the information in this chapter, what is the most likely amino acid precursor of taurine? Explain your reasoning.

(c) Compared with the normal values given in the table, which amino acids showed significantly elevated levels in the patient’s blood in January 1957? Which ones in the patient’s urine?

Based on their results and their knowledge of the pathway shown in Figure 18-28, Dancis and coauthors concluded: “although it appears most likely to the authors that the primary block is in the metabolic degradative pathway of the branched-chain amino acids, this cannot be considered established beyond question.”

(d) How do the data presented here support this conclusion?

(e) Which data presented here do not fit this model of maple syrup urine disease? How do you explain these seemingly contradictory data?

(f) What data would you need to collect to be more secure in your conclusion?

References

<table>
<thead>
<tr>
<th>Amino acid(s)</th>
<th>Normal Urine (mg/24 h)</th>
<th>Patient Urine (mg/24 h)</th>
<th>Normal Plasma (mg/ml)</th>
<th>Patient Plasma (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mar. 1956</td>
<td>Jan. 1957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>5-15</td>
<td>0.2</td>
<td>3.0-4.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Asparagine and glutamine</td>
<td>5-15</td>
<td>0.4</td>
<td>3.0-5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>1-2</td>
<td>0.2</td>
<td>0.1-0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Arginine</td>
<td>1.5-3</td>
<td>0.3</td>
<td>0.8-1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Cystine</td>
<td>2-4</td>
<td>0.5</td>
<td>1.0-1.5</td>
<td>0</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>1.5-3</td>
<td>0.7</td>
<td>1.0-1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Glycine</td>
<td>20-40</td>
<td>4.6</td>
<td>1.0-2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Histidine</td>
<td>8-15</td>
<td>0.3</td>
<td>1.0-1.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>2-5</td>
<td>2.0</td>
<td>0.8-1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Leucine</td>
<td>3-8</td>
<td>2.7</td>
<td>1.7-2.4</td>
<td>14.5</td>
</tr>
<tr>
<td>Lysine</td>
<td>2-12</td>
<td>1.6</td>
<td>1.5-2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Methionine</td>
<td>2-5</td>
<td>1.4</td>
<td>0.3-0.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Ornithine</td>
<td>1-2</td>
<td>0.2</td>
<td>0.6-0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>2-4</td>
<td>0.4</td>
<td>1.0-1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Proline</td>
<td>2-4</td>
<td>0.5</td>
<td>1.5-3.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Serine</td>
<td>5-15</td>
<td>1.2</td>
<td>1.3-2.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Taurine</td>
<td>1-10</td>
<td>0.2</td>
<td>0.9-1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Threonine</td>
<td>5-10</td>
<td>0.6</td>
<td>1.2-1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>3-8</td>
<td>0.9</td>
<td>Not measured</td>
<td>0</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>4-8</td>
<td>0.3</td>
<td>1.5-2.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Valine</td>
<td>2-4</td>
<td>1.6</td>
<td>2.0-3.0</td>
<td>13.1</td>
</tr>
</tbody>
</table>
If an idea presents itself to us, we must not reject it simply because it does not agree with the logical deductions of a reigning theory.

—Claude Bernard, An Introduction to the Study of Experimental Medicine, 1813

The aspect of the present position of consensus that I find most remarkable and admirable, is the altruism and generosity with which former opponents of the chemiosmotic hypothesis have not only come to accept it, but have actively promoted it to the status of a theory.

—Peter Mitchell, Nobel Address, 1978

Oxidative Phosphorylation and Photophosphorylation

OXIDATIVE PHOSPHORYLATION
19.1 Electron-Transfer Reactions in Mitochondria 708
19.2 ATP Synthesis 723
19.3 Regulation of Oxidative Phosphorylation 732
19.4 Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis 735
19.5 Mitochondrial Genes: Their Origin and the Effects of Mutations 738

PHOTOSYNTHESIS: HARVESTING LIGHT ENERGY
19.6 General Features of Photophosphorylation 742
19.7 Light Absorption 744
19.8 The Central Photochemical Event: Light-Driven Electron Flow 749
19.9 ATP Synthesis by Photophosphorylation 759
19.10 The Evolution of Oxygenic Photosynthesis 761

Oxidative phosphorylation is the culmination of energy-yielding metabolism in aerobic organisms. All oxidative steps in the degradation of carbohydrates, fats, and amino acids converge at this final stage of cellular respiration, in which the energy of oxidation drives the synthesis of ATP. Photophosphorylation is the means by which photosynthetic organisms capture the energy of sunlight—the ultimate source of energy in the biosphere—and harness it to make ATP. Together, oxidative phosphorylation and photophosphorylation account for most of the ATP synthesized by most organisms most of the time.

In eukaryotes, oxidative phosphorylation occurs in mitochondria, photophosphorylation in chloroplasts. Oxidative phosphorylation involves the reduction of O_2 to H_2O with electrons donated by NADH and FADH_2; it occurs equally well in light or darkness. Photophosphorylation involves the oxidation of H_2O to O_2, with NADP^+ as ultimate electron acceptor; it is absolutely dependent on the energy of light. Despite their differences, these two highly efficient energy-converting processes have fundamentally similar mechanisms.

Our current understanding of ATP synthesis in mitochondria and chloroplasts is based on the hypothesis, introduced by Peter Mitchell in 1961, that transmembrane differences in proton concentration are the reservoir for the energy extracted from biological oxidation reactions. This chemiosmotic theory has been accepted as one of the great unifying principles of twentieth century biology. It provides insight into the processes of oxidative phosphorylation and photophosphorylation, and into such apparently disparate energy transactions as active transport across membranes and the motion of bacterial flagella.

Oxidative phosphorylation and photophosphorylation are mechanistically similar in three respects. (1) Both processes involve the flow of electrons through a chain of membrane-bound carriers. (2) The free energy made available by this “downhill” (exergonic) electron flow is coupled to the “uphill” transport of protons.
across a proton-impermeable membrane, conserving the free energy of fuel oxidation as a transmembrane electrochemical potential (p. 390). (3) The transmembrane flow of protons down their concentration gradient through specific protein channels provides the free energy for synthesis of ATP, catalyzed by a membrane protein complex (ATP synthase) that couples proton flow to phosphorylation of ADP.

The chapter begins with oxidative phosphorylation. We first describe the components of the electron-transfer chain, their organization into large functional complexes in the inner mitochondrial membrane, the path of electron flow through them, and the proton movements that accompany this flow. We then consider the remarkable enzyme complex that, by “rotational catalysis,” captures the energy of proton flow in ATP, and the regulatory mechanisms that coordinate oxidative phosphorylation with the many catabolic pathways by which fuels are oxidized. We also describe the roles that mitochondria play in thermogenesis, steroid synthesis, and apoptosis. With this understanding of mitochondrial oxidative phosphorylation, we turn to photophosphorylation, looking first at the absorption of light by photosynthetic pigments, then at the light-driven flow of electrons from \(\text{H}_2\text{O} \) to \(\text{NADP}^+ \) and the molecular basis for coupling electron and proton flow. We also consider the similarities of structure and mechanism between the ATP synthases of chloroplasts and mitochondria, and the evolutionary basis for this conservation of mechanism.

OXIDATIVE PHOSPHORYLATION

19.1 Electron-Transfer Reactions in Mitochondria

The discovery in 1948 by Eugene Kennedy and Albert Lehninger that mitochondria are the site of oxidative phosphorylation in eukaryotes marked the beginning of the modern phase of studies in biological energy transductions. Mitochondria, like gram-negative bacteria, have two membranes (Fig. 19–1). The outer mitochondrial membrane is readily permeable to small molecules \((M_r < 5,000)\) and ions, which move freely through transmembrane channels formed by a family of integral membrane proteins called porins. The inner membrane is impermeable to most small molecules and ions, including protons \((\text{H}^+)\); the only species that cross this membrane do so through specific transporters. The inner membrane bears the components of the respiratory chain and the ATP synthase.

FIGURE 19–1 Biochemical anatomy of a mitochondrion. The convolutions (cristae) of the inner membrane provide a very large surface area. The inner membrane of a single liver mitochondrion may have more than 10,000 sets of electron-transfer systems (respiratory chains) and ATP synthase molecules, distributed over the membrane surface. The mitochondria of heart muscle, which have more profuse cristae and thus a much larger area of inner membrane, contain more than three times as many sets of electron-transfer systems as liver mitochondria. The mitochondrial pool of coenzymes and intermediates is functionally separate from the cytosolic pool. The mitochondria of invertebrates, plants, and microbial eukaryotes are similar to those shown here, but with much variation in size, shape, and degree of convolution of the inner membrane.

The mitochondrial matrix, enclosed by the inner membrane, contains the pyruvate dehydrogenase complex and the enzymes of the citric acid cycle, the fatty acid \(\beta \)-oxidation pathway, and the pathways of amino acid oxidation—all the pathways of fuel oxidation except glycolysis, which takes place in the cytosol. The selectively permeable inner membrane segregates the intermediates and enzymes of cytosolic metabolic pathways
Electrons Are Funneled to Universal Electron Acceptors

Oxidative phosphorylation begins with the entry of electrons into the respiratory chain. Most of these electrons arise from the action of dehydrogenases that collect electrons from catabolic pathways and funnel them into universal electron acceptors—nicotinamide nucleotides (NAD⁺ or NADP⁺) or flavin nucleotides (FMN or FAD).

Nicotinamide nucleotide–linked dehydrogenases catalyze reversible reactions of the following general types:

\[
\text{Reduced substrate} + \text{NAD}^+ \rightleftharpoons \text{oxidized substrate} + \text{NADH} + \text{H}^+ \\
\text{Reduced substrate} + \text{NADP}^+ \rightleftharpoons \text{oxidized substrate} + \text{NADPH} + \text{H}^+
\]

Most dehydrogenases that act in catabolism are specific for NAD⁺ as electron acceptor (Table 19–1). Some are in the cytosol, others are in mitochondria, and still others have mitochondrial and cytosolic isozymes.

NAD-linked dehydrogenases remove two hydrogen atoms from their substrates. One of these is transferred as a hydride ion (\(\text{H}^-\)) to NAD⁺; the other is released as \(\text{H}^+\) in the medium (see Fig. 13–24). NADH and NADPH are water-soluble electron carriers that associate reversibly with dehydrogenases. NADH carries electrons from catabolic reactions to their point of entry into the respiratory chain, the NADH dehydrogenase complex described below. NADPH generally supplies electrons to anabolic reactions. Cells maintain separate pools of NADPH and NADH, with different redox potentials. This is accomplished by holding the ratio of [reduced form]/[oxidized form] relatively high for NADPH and relatively low for NADH. Neither NADH nor NADPH can cross the inner mitochondrial membrane, but the electrons they carry can be shuttled across indirectly, as we shall see.

Flavoproteins contain a very tightly, sometimes covalently, bound flavin nucleotide, either FMN or FAD (see Fig. 13–27). The oxidized flavin nucleotide can accept either one electron (yielding the semiquinone form) or two (yielding FADH₂ or FMNH₂). Electron transfer occurs because the flavoprotein has a higher reduction potential than the compound oxidized. The standard reduction potential of a flavin nucleotide, unlike that of NAD or NADP, depends on the protein with which it is associated. Local interactions with functional groups in the protein distort the electron orbitals in the flavin ring, changing the relative stabilities of oxidized and reduced forms. The relevant standard reduction potential is therefore that of the particular flavoprotein, not that of isolated FAD or FMN. The flavin nucleotide should be considered part of the flavoprotein’s active site rather than a reactant or product in the electron-transfer reaction. Because flavoproteins can participate in either one- or two-electron transfers, they can serve as intermediates between reactions in which two electrons are donated (as in dehydrogenations) and those in which only one electron is accepted (as in the reduction of a quinone to a hydroquinone, described below).

<table>
<thead>
<tr>
<th>Reaction*</th>
<th>Location†</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Ketoglutarate + CoA + NAD⁺ ⇌ succinyl-CoA + CO₂ + NADH + H⁺</td>
<td>M</td>
</tr>
<tr>
<td>L-Malate + NAD⁺ ⇌ oxaloacetate + NADH + H⁺</td>
<td>M</td>
</tr>
<tr>
<td>Pyruvate + CoA + NAD⁺ ⇌ acetyl-CoA + CO₂ + NADH + H⁺</td>
<td>M</td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate + P₁ + NAD⁺ ⇌ 1,3-bisphosphoglycerate + NADH + H⁺</td>
<td>C</td>
</tr>
<tr>
<td>Lactate + NAD⁺ ⇌ pyruvate + NADH + H⁺</td>
<td>C</td>
</tr>
<tr>
<td>β-Hydroxyacyl-CoA + NAD⁺ ⇌ β-ketoacyl-CoA + NADH + H⁺</td>
<td>M</td>
</tr>
<tr>
<td>Glucose 6-phosphate + NADP⁺ ⇌ 6-phosphogluconate + NADPH + H⁺</td>
<td>C</td>
</tr>
<tr>
<td>L-Glutamate + H₂O + NAD(P)⁺ ⇌ α-ketoglutarate + NH₄⁺ + NAD(P)H</td>
<td>M</td>
</tr>
<tr>
<td>Isocitrate + NAD(P)⁺ ⇌ α-ketoglutarate + CO₂ + NAD(P)H + H⁺</td>
<td>M and C</td>
</tr>
</tbody>
</table>

*These reactions and their enzymes are discussed in Chapters 14 through 18.
†M designates mitochondria; C, cytosol.
Electrons Pass through a Series of Membrane-Bound Carriers

The mitochondrial respiratory chain consists of a series of sequentially acting electron carriers, most of which are integral proteins with prosthetic groups capable of accepting and donating either one or two electrons. Three types of electron transfers occur in oxidative phosphorylation: (1) direct transfer of electrons, as in the reduction of \(\text{Fe}^{3+} \) to \(\text{Fe}^{2+} \); (2) transfer as a hydrogen atom (\(\text{H}^+ + e^- \)); and (3) transfer as a hydride ion (\(\text{H}^- \)), which bears two electrons. The term reducing equivalent is used to designate a single electron equivalent transferred in an oxidation-reduction reaction.

In addition to NAD and flavoproteins, three other types of electron-carrying molecules function in the respiratory chain: a hydrophobic quinone (ubiquinone) and two different types of iron-containing proteins (cytochromes and iron-sulfur proteins). Ubiquinone (also called coenzyme Q, or simply Q) is a lipid-soluble benzoquinone with a long isoprenoid side chain (Fig. 19–2). The closely related compounds plastoquinone (of plant chloroplasts) and menaquinone (of bacteria) play roles analogous to that of ubiquinone, carrying electrons in membrane-associated electron-transfer chains. Ubiquinone can accept one electron to become the semiquinone radical (\(\cdot \text{QH} \)) or two electrons to form ubiquinol (\(\text{QH}_2 \)) (Fig. 19–2) and, like flavoprotein carriers, it can act at the junction between a two-electron donor and a one-electron acceptor. Because ubiquinone is both small and hydrophobic, it is freely diffusible within the lipid bilayer of the inner mitochondrial membrane and can shuttle reducing equivalents between other, less mobile electron carriers in the membrane. And because it carries both electrons and protons, it plays a central role in coupling electron flow to proton movement.

The cytochromes are proteins with characteristic strong absorption of visible light, due to their iron-containing heme prosthetic groups (Fig. 19–3). Mitochondria contain three classes of cytochromes, designated \(\alpha \), \(\beta \), and \(\gamma \). Each group consists of four five-membered, nitrogen-containing rings in a cyclic structure called a porphyrin. The four nitrogen atoms are coordinated with a central Fe ion, either \(\text{Fe}^{2+} \) or \(\text{Fe}^{3+} \). Iron protoporphyrin IX is found in \(\beta \)-type cytochromes and in hemoglobin and myoglobin (see Fig. 4–16). Heme \(c \) is covalently bound to the protein of cytochrome \(c \) through thioether bonds to two Cys residues. Heme \(a \), found in \(\alpha \)-type cytochromes, has a long isoprenoid tail attached to one of the five-membered rings. The conjugated double-bond system (shaded pink) of the porphyrin ring accounts for the absorption of visible light by these hemes.
Wavelength (nm)

FIGURE 19-4 Absorption spectra of cytochrome c (cyt c) in its oxidized (red) and reduced (blue) forms. Also labeled are the characteristic α, β, and γ bands of the reduced form.

The heme cofactors of a and b cytochromes are tightly, but not covalently, bound to their associated proteins; the hemes of c-type cytochromes are covalently attached through Cys residues (Fig. 19-3). As with the flavoproteins, the standard reduction potential of the heme iron atom of a cytochrome depends on its interaction with protein side chains and is therefore different for each cytochrome. The cytochromes of type a and b and some of type c are integral proteins of the inner mitochondrial membrane. One striking exception is the cytochrome c of mitochondria, a soluble protein that associates through electrostatic interactions with the outer surface of the inner membrane.

In iron-sulfur proteins, the iron is present not in heme but in association with inorganic sulfur atoms or with the sulfur atoms of Cys residues in the protein, or both. These iron-sulfur (Fe-S) centers range from simple structures with a single Fe atom coordinated to four Cys—SH groups to more complex Fe-S centers with two or four Fe atoms (Fig. 19-5). **Rieske iron-sulfur proteins** (named after their discoverer, John S. Rieske) are a variation on this theme, in which one Fe atom is coordinated to two His residues rather than two Cys residues. All iron-sulfur proteins participate in one-electron transfers in which one iron atom of the iron-sulfur cluster is oxidized or reduced. At least eight Fe-S proteins function in mitochondrial electron transfer. The reduction potential of Fe-S proteins varies from −0.65 V to +0.45 V, depending on the microenvironment of the iron within the protein.

In the overall reaction catalyzed by the mitochondrial respiratory chain, electrons move from NADH, succinate, or some other primary electron donor through flavoproteins, ubiquinone, iron-sulfur proteins, and cytochromes, and finally to O₂. A look at the methods used to determine the sequence in which the carriers act is instructive, as the same general approaches have been used to study other electron-transfer chains, such as those of chloroplasts.

First, the standard reduction potentials of the individual electron carriers have been determined experimentally (Table 19-2). We would expect the carriers to function in order of increasing reduction potential, because electrons tend to flow spontaneously from carriers of lower E^red to carriers of higher E^red. The order of carriers deduced by this method is NADH → Q → cytochrome b → cytochrome c₁ → cytochrome c → cytochrome a → cytochrome a₃ → O₂. Note, however, that the order of standard reduction potentials is not necessarily the same as the order of actual reduction potentials under cellular conditions, which depend on the concentration of reduced and oxidized forms (see [Note that in these designations only the inorganic S atoms are counted. For example, in the 2Fe-2S center (b), each Fe ion is actually surrounded by four S atoms.) The exact standard reduction potential of the iron in these centers depends on the type of center and its interaction with the associated protein.

![Image of iron-sulfur centers]
TABLE 19–2 | Standard Reduction Potentials of Respiratory Chain and Related Electron Carriers

<table>
<thead>
<tr>
<th>Redox reaction (half-reaction)</th>
<th>E^{\circledast} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2H^+ + 2e^- \rightarrow H_2$</td>
<td>-0.414</td>
</tr>
<tr>
<td>NAD$^+$ + H$^+$ + 2e$^- \rightarrow$ NADH</td>
<td>-0.320</td>
</tr>
<tr>
<td>NADP$^+$ + H$^+$ + 2e$^- \rightarrow$ NADPH</td>
<td>-0.324</td>
</tr>
<tr>
<td>NADH dehydrogenase (FMN) + 2H$^+$ + 2e$^- \rightarrow$ NADH dehydrogenase (FMNH$_2$)</td>
<td>-0.30</td>
</tr>
<tr>
<td>Ubiquinone + 2H$^+$ + 2e$^- \rightarrow$ ubiquinol</td>
<td>0.045</td>
</tr>
<tr>
<td>Cytochrome b (Fe$^{3+}$) + e$^- \rightarrow$ cytochrome b (Fe$^{2+}$)</td>
<td>0.077</td>
</tr>
<tr>
<td>Cytochrome c_1 (Fe$^{3+}$) + e$^- \rightarrow$ cytochrome c_1 (Fe$^{2+}$)</td>
<td>0.22</td>
</tr>
<tr>
<td>Cytochrome c (Fe$^{3+}$) + e$^- \rightarrow$ cytochrome c (Fe$^{2+}$)</td>
<td>0.254</td>
</tr>
<tr>
<td>Cytochrome a (Fe$^{3+}$) + e$^- \rightarrow$ cytochrome a (Fe$^{2+}$)</td>
<td>0.29</td>
</tr>
<tr>
<td>Cytochrome a_3 (Fe$^{3+}$) + e$^- \rightarrow$ cytochrome a_3 (Fe$^{2+}$)</td>
<td>0.35</td>
</tr>
<tr>
<td>$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow$ H$_2$O</td>
<td>0.8166</td>
</tr>
</tbody>
</table>

Equation 13-5, p. 515). A second method for determining the sequence of electron carriers involves reducing the entire chain of carriers experimentally by providing an electron source but no electron acceptor (no O$_2$). When O$_2$ is suddenly introduced into the system, the rate at which each electron carrier becomes oxidized (measured spectrophotometrically) reveals the order in which the carriers function. The carrier nearest O$_2$ (at the end of the chain) gives up its electrons first, the second carrier from the end is oxidized next, and so on. Such experiments have confirmed the sequence deduced from standard reduction potentials.

In a final confirmation, agents that inhibit the flow of electrons through the chain have been used in combination with measurements of the degree of oxidation of each carrier. In the presence of O$_2$ and an electron donor, carriers that function before the inhibited step become fully reduced, and those that function after this step are completely oxidized (Fig. 19–6). By using several inhibitors that block different steps in the chain, investigators have determined the entire sequence; it is the same as deduced in the first two approaches.

Electron Carriers Function in Multienzyme Complexes

The electron carriers of the respiratory chain are organized into membrane-embedded supramolecular complexes that can be physically separated. Gentle treatment of the inner mitochondrial membrane with detergents allows the resolution of four unique electron-carrier complexes, each capable of catalyzing electron transfer through a portion of the chain (Table 19–3; Fig. 19–7). Complexes I and II catalyze electron transfer to ubiquinone from two different electron donors: NADH (Complex I) and succinate (Complex II). Complex III carries electrons from reduced ubiquinone to cytochrome c, and Complex IV completes the sequence by transferring electrons from cytochrome c to O$_2$.

We now look in more detail at the structure and function of each complex of the mitochondrial respiratory chain.

Complex I: NADH to Ubiquinone Figure 19–8 illustrates the relationship between Complexes I and II and ubiquinone. Complex I, also called NADH:ubiquinone

Figure 19–6 Method for determining the sequence of electron carriers. This method measures the effects of inhibitors of electron transfer on the oxidation state of each carrier. In the presence of an electron donor and O$_2$, each inhibitor causes a characteristic pattern of oxidized/reduced carriers: those before the block become reduced (blue), and those after the block become oxidized (pink).
TABLE 19-3 The Protein Components of the Mitochondrial Electron-Transfer Chain

<table>
<thead>
<tr>
<th>Enzyme complex/protein</th>
<th>Mass (kDa)</th>
<th>Number of subunits*</th>
<th>Prosthetic group(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I NADH dehydrogenase</td>
<td>850</td>
<td>43 (14)</td>
<td>FMN, Fe-S</td>
</tr>
<tr>
<td>II Succinate dehydrogenase</td>
<td>140</td>
<td>4</td>
<td>FAD, Fe-S</td>
</tr>
<tr>
<td>III Ubiquinone:cytochrome c oxidoreductase</td>
<td>250</td>
<td>11</td>
<td>Hemes, Fe-S</td>
</tr>
<tr>
<td>Cytochrome c†</td>
<td>13</td>
<td>1</td>
<td>Heme</td>
</tr>
<tr>
<td>IV Cytochrome oxidase</td>
<td>160</td>
<td>13 (3-4)</td>
<td>Hemes, Cu₆₃, Cu₆₅</td>
</tr>
</tbody>
</table>

*Numbers of subunits in the bacterial equivalents in parentheses.
†Cytochrome c is not part of an enzyme complex; it moves between Complexes III and IV as a freely soluble protein.

FIGURE 19-7 Separation of functional complexes of the respiratory chain.
The outer mitochondrial membrane is first removed by treatment with the detergent digitonin. Fragments of inner membrane are then obtained by osmotic rupture of the mitochondria, and the fragments are gently dissolved in a second detergent. The resulting mixture of inner membrane proteins is resolved by ion-exchange chromatography into different complexes (I through IV) of the respiratory chain, each with its unique protein composition (see Table 19-3), and the enzyme ATP synthase (sometimes called Complex V). The isolated Complexes I through IV catalyze transfers between donors (NADH and succinate), intermediate carriers (Q and cytochrome c), and O₂, as shown. In vitro, isolated ATP synthase has only ATP-hydrolyzing (ATPase), not ATP-synthesizing, activity.

FIGURE 19-8 Path of electrons from NADH, succinate, fatty acyl-CoA, and glycerol 3-phosphate to ubiquinone. Electrons from NADH pass through a flavoprotein to a series of iron-sulfur proteins (in Complex I) and then to Q. Electrons from succinate pass through a flavoprotein and several Fe-S centers (in Complex II) on the way to Q. Glycerol 3-phosphate donates electrons to a flavoprotein (glycerol 3-phosphate dehydrogenase) on the outer face of the inner mitochondrial membrane, from which they pass to Q. Acyl-CoA dehydrogenase (the first enzyme of β oxidation) transfers electrons to electron-transporting flavoprotein (ETF), from which they pass to Q via ETF:ubiquinone oxidoreductase.

oxidoreductase or **NADH dehydrogenase**, is a large enzyme composed of 42 different polypeptide chains, including an FMN-containing flavoprotein and at least six iron-sulfur centers. High-resolution electron microscopy shows Complex I to be L-shaped, with one arm of the L in the membrane and the other extending into the matrix. As shown in Figure 19-9, Complex I catalyzes two simultaneous and obligately coupled processes: (1) the exergonic transfer to ubiquinone of a hydride ion from NADH and a proton from the matrix, expressed by

NADH + H⁺ + Q → NAD⁺ + QH₂ \hspace{1cm} \text{(19-1)}

and (2) the endergonic transfer of four protons from the matrix to the intermembrane space. Complex I is therefore a proton pump driven by the energy of electron transfer, and the reaction it catalyzes is **vectorial**: it moves protons in a specific direction from one location (the matrix, which becomes negatively charged with the
departure of protons) to another (the intermembrane space, which becomes positively charged). To emphasize the vectorial nature of the process, the overall reaction is often written with subscripts that indicate the location of the protons: \(p \) for the positive side of the inner membrane (the intermembrane space), \(N \) for the negative side (the matrix):

\[
\text{NADH} + 5\text{H}^+ + \text{Q} \rightarrow \text{NAD}^+ + \text{QH}_2 + 4\text{H}^+_p \quad (19-2)
\]

Amytal (a barbiturate drug), rotenone (a plant product commonly used as an insecticide), and piericidin A (an antibiotic) inhibit electron flow from the Fe-S centers of Complex I to ubiquinone (Table 19-4) and therefore block the overall process of oxidative phosphorylation.

Ubiquinol (\(\text{QH}_2 \), the fully reduced form; Fig. 19-2) diffuses in the inner mitochondrial membrane from Complex I to Complex III, where it is oxidized to \(\text{Q} \) in a process that also involves the outward movement of \(\text{H}^+ \).

FIGURE 19-9 NADH:ubiquinone oxidoreductase (Complex I). Complex I catalyzes the transfer of a hydride ion from NADH to FMN, from which two electrons pass through a series of Fe-S centers to the iron-sulfur protein N-2 in the matrix arm of the complex. The domain that extends into the matrix has been crystallized and its structure solved (PDB ID 2FUC); the structure of the membrane domain of Complex I is not yet known. Electron transfer from N-2 to ubiquinone on the membrane arm forms \(\text{QH}_2 \), which diffuses into the lipid bilayer. This electron transfer also drives the expulsion from the matrix of four protons per pair of electrons. The detailed mechanism that couples electron and proton transfer in Complex I is not yet known, but probably involves a Q cycle similar to that in Complex III in which \(\text{QH}_2 \) participates twice per electron pair (see Fig. 19-12). Proton flux produces an electrochemical potential across the inner mitochondrial membrane (\(N \) side negative, \(p \) side positive), which conserves some of the energy released by the electron-transfer reactions. This electrochemical potential drives ATP synthesis.

TABLE 19-4 Agents That Interfere with Oxidative Phosphorylation or Photophosphorylation

<table>
<thead>
<tr>
<th>Type of interference</th>
<th>Compound*</th>
<th>Target/mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition of electron transfer</td>
<td>Cyanide</td>
<td>Inhibit cytochrome oxidase</td>
</tr>
<tr>
<td></td>
<td>Carbon monoxide</td>
<td>Blocks electron transfer from cytochrome (b) to cytochrome (c_1)</td>
</tr>
<tr>
<td></td>
<td>Antimycin A</td>
<td>Prevent electron transfer from Fe-S center to ubiquinone</td>
</tr>
<tr>
<td></td>
<td>Myxothiazol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amytal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piericidin A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCMU</td>
<td>Competes with (Q_0) for binding site in PSII</td>
</tr>
<tr>
<td></td>
<td>Aurovertin</td>
<td>Inhibits (F_1)</td>
</tr>
<tr>
<td></td>
<td>Oligomycin</td>
<td>Inhibit (F_c) and (CF_o)</td>
</tr>
<tr>
<td></td>
<td>Venturicidin</td>
<td></td>
</tr>
<tr>
<td>Inhibition of ATP synthase</td>
<td>DCCD</td>
<td>Blocks proton flow through (F_o) and (CF_o)</td>
</tr>
<tr>
<td>Uncoupling of phosphorylation from electron transfer</td>
<td>FCCP</td>
<td>Hydrophobic proton carriers</td>
</tr>
<tr>
<td></td>
<td>DNP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valinomycin</td>
<td>(K^+) ionophore</td>
</tr>
<tr>
<td></td>
<td>Thermogenin</td>
<td>In brown adipose tissue, forms proton-conducting pores in inner mitochondrial membrane</td>
</tr>
<tr>
<td>Inhibition of ATP-ADP exchange</td>
<td>Atractyloside</td>
<td>Inhibits adenine nucleotide translocase</td>
</tr>
</tbody>
</table>

*DCMU is 3-(3,4-dichlorophenyl)-1,1-dimethylurea; DCCD, dicyclohexylcarbodiimide; FCCP, cyanide-p-trifluoromethoxyphenylhydrazone; DNP, 2,4-dinitrophenol.
Complex II: Succinate to Ubiquinone

We encountered Complex II in Chapter 16 as succinate dehydrogenase, the only membrane-bound enzyme in the citric acid cycle (p. 628). Although smaller and simpler than Complex I, it contains five prosthetic groups of two types and four different protein subunits (Fig. 19-10). Subunits C and D are integral membrane proteins, each with three transmembrane helices. They contain a heme group, heme b, and a binding site for ubiquinone, the final electron acceptor in the reaction catalyzed by Complex II. Subunits A and B extend into the matrix; they contain three 2Fe-2S centers, bound FAD, and a binding site for the substrate, succinate. The path of electron transfer from the succinate-binding site to FAD, then through the Fe-S centers to the Q-binding site, is more than 40 Å long, but none of the individual electron-transfer distances exceeds about 11 Å—a reasonable distance for rapid electron transfer (Fig. 19-10).

The heme b of Complex II is apparently not in the direct path of electron transfer; it may serve instead to reduce the frequency with which electrons “leak” out of the system, moving from succinate to molecular oxygen to produce the **reactive oxygen species (ROS)** hydrogen peroxide (H$_2$O$_2$) and the **superoxide radical** (O$_2^-$), as described below. Humans with point mutations in Complex II subunits near heme b or the quinone-binding site suffer from hereditary paraganglioma. This inherited condition is characterized by benign tumors of the head and neck, commonly in the carotid body, an organ that senses O$_2$ levels in the blood. These mutations result in greater production of ROS and perhaps greater tissue damage during succinate oxidation.

Other substrates for mitochondrial dehydrogenases pass electrons into the respiratory chain at the level of ubiquinone, but not through Complex II. The first step in the β oxidation of fatty acyl-CoA, catalyzed by the flavoprotein **acyl-CoA dehydrogenase** (see Fig. 17-8), involves transfer of electrons from the substrate to the FAD of the dehydrogenase, then to electron-transferring flavoprotein (ETF), which in turn passes its electrons to ETF:ubiquinone oxidoreductase (Fig. 19-8). This enzyme transfers electrons into the respiratory chain by reducing ubiquinone. Glycerol 3-phosphate, formed either from glycerol released by triacylglycerol breakdown or by the reduction of dihydroxyacetone phosphate from glycolysis, is oxidized by **glycerol 3-phosphate dehydrogenase** (see Fig. 17-4). This enzyme transfers electrons into the respiratory chain by reducing ubiquinone. Glycerol 3-phosphate, formed either from glycerol released by triacylglycerol breakdown or by the reduction of dihydroxyacetone phosphate from glycolysis, is oxidized by **glycerol 3-phosphate dehydrogenase** (see Fig. 17-4). This enzyme transfers electrons into the respiratory chain by reducing ubiquinone.

Complex III: Ubiquinone to Cytochrome c

The next respiratory complex, Complex III, also called **cytochrome $b$$_{1}$ complex or ubiquinone:cytochrome c oxidoreductase**, couples the transfer of electrons from ubiquinol (QH$_2$) to cytochrome c with the vectorial transport of protons from the matrix to the intermembrane space. The determinations of the complete structure of this huge complex (Fig. 19-11) and of Complex IV (below) by x-ray crystallography, achieved between 1995 and 1998, were landmarks in the study of mitochondrial electron transfer, providing the structural framework to integrate the many biochemical observations on the functions of the respiratory complexes.

The functional unit of Complex III is a dimer, with the two monomeric units of cytochrome b surrounding a “cavern” in the middle of the membrane, in which ubiquinone is free to move from the matrix side of the membrane (site Q_N on one monomer) to the intermembrane space (site Q_O of the other monomer) as it shuttles electrons and protons across the inner mitochondrial membrane (Fig. 19-11b).
Oxidative Phosphorylation and Photophosphorylation

(a)

Interrnembrane space (p side)

- Heme c₁
- Heme b₁
- Heme b₉
- Cavern
- Cytochrome c₁
- Cytochrome b

Matrix (N side)

- Cyt c
- Rieske iron-sulfur protein

(b)

Interrnembrane space (p side)

- Heme c₁
- Heme b₁
- Heme b₉
- Cavern
- Cytochrome c₁
- Cytochrome b
- Rieske iron-sulfur proteins

Matrix (N side)

- Cytochrome b

FIGURE 19-11 Cytochrome bc₁ complex (Complex III). The complex is a dimer of identical monomers, each with 11 different subunits. (a) The functional core of each monomer is three subunits: cytochrome b (green) with its two hemes (b₁ and b₉); the Rieske iron-sulfur protein (purple) with its 2Fe-2S centers; and cytochrome c₁ (blue) with its heme (PDB ID 1BCY). (b) This cartoon view of the complex shows how cytochrome c₁ and the Rieske iron-sulfur protein project from the p surface and can interact with cytochrome c (not part of the functional complex) in the intermembrane space. The complex has two distinct binding sites for ubiquinone, Qᵦ and Qₑ, which correspond to the sites of inhibition by two drugs that block oxidative phosphorylation. Antimycin A, which blocks electron flow from heme b₁ to Q, binds at Qᵦ, close to heme b₁ on the N (matrix) side of the membrane. Myxothiazol, which prevents electron flow from QH₂ to the Rieske iron-sulfur protein, binds at Qₑ near the 2Fe-2S center and heme b₉ on the p side. The dimeric structure is essential to the function of Complex III. The interface between monomers forms two caverns, each containing a Qₑ site from one monomer and a Qᵦ site from the other. The ubiquinone intermediates move within these sheltered caverns.

Complex III crystallizes in two distinct conformations (not shown). In one, the Rieske Fe-S center is close to its electron acceptor, the heme of cytochrome c₁, but relatively distant from cytochrome b and the QH₂-binding site at which the Rieske Fe-S center receives electrons. In the other, the Fe-S center has moved away from cytochrome c₁ and toward cytochrome b. The Rieske protein is thought to oscillate between these two conformations as it is first reduced, then oxidized.

Based on the structure of Complex III and detailed biochemical studies of the redox reactions, a reasonable model, the Q cycle, has been proposed for the passage of electrons and protons through the complex. The net equation for the redox reactions of the Q cycle (Fig. 19–12) is

\[
\text{QH}_2 + 2 \text{cyt c}_1 \text{ (oxidized)} + 2\text{H}_2\text{O}^+ \rightarrow \text{Q} + 2 \text{cyt c}_1 \text{ (reduced)} + 4\text{H}_2\text{O} \quad (19-3)
\]

The Q cycle accommodates the switch between the two-electron carrier ubiquinone and the one-electron carriers—cytochromes b₉₆₉, b₆₆₆, c₁, and c—and explains the measured stoichiometry of four protons translocated per pair of electrons passing through Complex III to cytochrome c. Although the path of electrons through this segment of the respiratory chain is complicated, the net effect of the transfer is simple: QH₂ is oxidized to Q and two molecules of cytochrome c are reduced.

Cytochrome c is a soluble protein of the intermembrane space. After its single heme accepts an electron from Complex III, cytochrome c moves to Complex IV to donate the electron to a binuclear copper center.

Complex IV: Cytochrome c to O₂ In the final step of the respiratory chain, Complex IV, also called cytochrome oxidase, carries electrons from cytochrome c to molecular oxygen, reducing it to H₂O. Complex IV is a large enzyme (13 subunits; Mₙ 204,000) of the inner mitochondrial membrane. Bacteria contain a form that is much simpler, with only three or four subunits, but still capable of catalyzing both electron transfer and proton pumping. Comparison of the mitochondrial and bacterial complexes suggests that three subunits are critical to the function (Fig. 19–13).

Mitochondrial subunit II contains two Cu ions complexed with the —SH groups of two Cys residues in a binuclear center (Cuₐ; Fig. 19–13b) that resembles the 2Fe-2S centers of iron-sulfur proteins. Subunit I contains two heme groups, designated a and a₃, and another copper ion (Cu₃). Heme a₃ and Cu₃ form a second
Matrix (N side)

Cytochrome b

QH₂ + Q + cyt c₁ (oxidized) ---->
'Q' + Q + 2H⁺ + cyt c₁ (reduced)

Net equation: QH₂ + 2 cyt c₁ (oxidized) + 2H⁺ ----> Q + 2 cyt c₁ (reduced) + 4H⁺

FIGURE 19-12 The Q cycle, shown in two stages. The path of electrons through Complex III is shown by blue arrows. In the first stage (left), Q on the N side is reduced to the semiquinone radical, which in the second stage (right) is converted to QH₂. Meanwhile, on the p side of the membrane, two molecules of QH₂ are oxidized to Q, releasing two protons per Q molecule (four protons in all) into the intermembrane space. Each QH₂ donates one electron (via the Rieske Fe-S center) to cytochrome c₁, and one electron (via cytochrome b) to a molecule of Q near the N side, reducing it in two steps to QH₂. This reduction also uses two protons per Q, which are taken up from the matrix.

FIGURE 19-13 Structure of cytochrome oxidase (Complex IV). This complex from bovine mitochondria has 13 subunits, but only four core proteins are shown here (PDB ID 1OCC). (a) Complex IV, with four subunits in each of two identical units of a dimer. Subunit I (yellow) has two heme groups, a and a₃, near a single copper ion, Cuo (green sphere). Heme a₃ and Cuo form a binuclear Fe-Cu center. Subunit II (purple) contains two Cu ions complexed with the —SH groups of two Cys residues in a binuclear center, Cua, that resembles the 2Fe-2S centers of iron-sulfur proteins. This binuclear center and the cytochrome c-binding site are located in a domain of subunit II that protrudes from the p side of the inner membrane (into the intermembrane space). Subunit III (light blue) is essential for rapid proton movement through subunit II. The role of subunit IV (green) is not yet known. (b) The binuclear center of Cuo. The Cu ions share electrons equally. When the center is reduced, the ions have the formal charges Cu¹⁺Cu²⁺; when oxidized, Cu¹⁺Cu²⁺. Six amino acids residues are ligands around the Cu ions: two His, two Cys, Glu, and Met.
binuclear center that accepts electrons from heme α and transfers them to O_2 bound to heme α_3.

Electron transfer through Complex IV is from cytochrome c to the CuA center, to heme α, to the heme α_3–CuB center, and finally to O_2 (Fig. 19–14). For every four electrons passing through this complex, the enzyme consumes four “substrate” H^+ from the matrix (N side) in converting O_2 to $2H_2O$. It also uses the energy of this redox reaction to pump one proton outward into the intermembrane space (P side) for each electron that passes through, adding to the electrochemical potential produced by redox-driven proton transport through Complexes I and III. The overall reaction catalyzed by Complex IV is

$$4 \text{Cyt } c \text{ (reduced)} + 8H_2^+ + O_2 \rightarrow 4 \text{ cyt } c \text{ (oxidized)} + 4H_2^+ + 2H_2O \quad (19-4)$$

This four-electron reduction of O_2 involves redox centers that carry only one electron at a time, and it must occur without the release of incompletely reduced intermediates such as hydrogen peroxide or hydroxyl free radicals—very reactive species that would damage cellular components. The intermediates remain tightly bound to the complex until completely converted to water.

Mitochondrial Complexes May Associate in Respirasomes

There is growing experimental evidence that in the intact mitochondrion, the respiratory complexes tightly associate with each other in the inner membrane to form **respirasomes**, functional combinations of two or more electron-transfer complexes. For example, when complex III is gently extracted from mitochondrial membranes, it is found to be associated with Complex I and remains associated during gentle electrophoresis. SupercorporalComplexes of Complex III and IV can also be isolated, and when viewed with the electron microscope are of the right size and shape to accommodate the crystal structures of both complexes (Fig. 19–15). The kinetics of electron flow through the series of respiratory complexes would be very different in the two extreme cases of tight versus no association: (1) if complexes were tightly associated, electron transfers would essentially occur through a solid state; and (2) if the complexes functioned separately, electrons would be carried between them by ubiquinone and cytochrome c. The kinetic evidence supports electron transfer through a solid state, and thus the respirasome model.

Cardiolipin, the lipid that is especially abundant in the inner mitochondrial membrane (see Figs 10–9 and 11–2), may be critical to the integrity of respirasomes; its removal with detergents, or its absence in certain yeast mutants, results in defective mitochondrial electron transfer and a loss of affinity between the respiratory complexes.

The Energy of Electron Transfer Is Efficiently Conserved in a Proton Gradient

The transfer of two electrons from NADH through the respiratory chain to molecular oxygen can be written as

$$\text{NADH} + H^+ + \frac{1}{2}O_2 \rightarrow \text{NAD}^+ + H_2O \quad (19-5)$$

This net reaction is highly exergonic. For the redox pair NADH/o2, E° is -0.320 V, and for the pair O_2/H_2O, E° is 0.816 V. The ΔE° for this reaction is therefore 1.14 V, and the standard free-energy change (see Eqn 13–7, p. 515) is

$$\Delta G^{\circ} = -n \Delta E^{\circ}$$

$$-2(96.5 \text{ kJ/V } \cdot \text{ mol})(1.14 \text{ V}) = -220 \text{ kJ/mol (of NADH)}$$

This standard free-energy change is based on the assumption of equal concentrations (1 m) of NADH and
FIGURE 19-15 A putative respirasome composed of Complexes III and IV. (a) Purified supercomplexes containing Complexes III and IV, from yeast, visualized by electron microscopy after staining with uranyl acetate. The electron densities of hundreds of images were averaged to yield this composite view. (b) The x-ray structures of one molecule of Complex III (red; from yeast) and two of Complex IV (green; from bovine heart) could be fitted to the electron-density map to suggest one possible mode of interaction of these complexes in a respirasome. This view is in the plane of the bilayer (yellow).

NAD$^+$. In actively respiring mitochondria, the actions of many dehydrogenases keep the actual [NADH]/[NAD$^+$] ratio well above unity, and the real free-energy change for the reaction shown in Equation 19-5 is therefore substantially greater (more negative) than −220 kJ/mol. A similar calculation for the oxidation of succinate shows that electron transfer from succinate (E° for fumarate/succinate = 0.031 V) to O$_2$ has a smaller, but still negative, standard free-energy change of about −150 kJ/mol.

Much of this energy is used to pump protons out of the matrix. For each pair of electrons transferred to O$_2$, four protons are pumped out by Complex I, four by Complex III, and two by Complex IV (Fig. 19-16). The vectorial equation for the process is therefore

$$\text{NADH} + 1\text{H}^+ + \frac{1}{2}\text{O}_2 \rightarrow \text{NAD}^+ + 1\text{H}_2\text{O}$$ (19-7)

The electrochemical energy inherent in this difference in proton concentration and separation of charge

![Diagram of electron flow through the respiratory chain](image)

FIGURE 19-16 Summary of the flow of electrons and protons through the four complexes of the respiratory chain. Electrons reach Q through Complexes I and II. The reduced Q (QH$_2$) serves as a mobile carrier of electrons and protons. It passes electrons to Complex III, which passes them to another mobile connecting link, cytochrome c. Complex IV then transfers electrons from reduced cytochrome c to O$_2$. Electron flow through Complexes I, III, and IV is accompanied by proton flow from the matrix to the intermembrane space. Recall that electrons from β oxidation of fatty acids can also enter the respiratory chain through Q (see Fig. 19-8). The structures shown here are from several sources: Complex I, Thermus thermophilus (PDB ID 2FUC); Complex II, porcine heart (PDB ID 1Z0Y); Complex III, bovine heart (PDB ID 1BCY); cytochrome c, equine heart (PDB ID 1HRC); Complex IV, bovine heart (PDB ID 1OCC).
represents a temporary conservation of much of the energy of electron transfer. The energy stored in such a gradient, termed the proton-motive force, has two components: (1) the chemical potential energy due to the difference in concentration of a chemical species (H\(^+\)) in the two regions separated by the membrane, and (2) the electrical potential energy that results from the separation of charge when a proton moves across the membrane without a counterion (Fig. 19–17).

As we showed in Chapter 11, the free-energy change for the creation of an electrochemical gradient by an ion pump is

\[
\Delta G = RT \ln \left(\frac{C_2}{C_1} \right) + Z \Delta \psi
\]

(19–8)

where \(C_2\) and \(C_1\) are the concentrations of an ion in two regions, and \(C_2 > C_1\); \(Z\) is the absolute value of its electrical charge (1 for a proton); and \(\Delta \psi\) is the transmembrane difference in electrical potential, measured in volts.

For protons at 25 °C,

\[
\ln \left(\frac{C_2}{C_1} \right) = 2.3(\log [H^+]_p - \log [H^+]_N)
\]

\[
= 2.3(pH_p - pH_N) = 2.3 \Delta pH
\]

and Equation 19–8 reduces to

\[
\Delta G = 2.3RT \Delta pH + Z \Delta \psi
\]

(19–9)

In actively respiring mitochondria, the measured \(\Delta \psi\) is 0.15 to 0.20 V and the pH of the matrix is about 0.75 units more alkaline than that of the intermembrane space.

![Proton-motive force](image-url)

FIGURE 19–17 Proton-motive force. The inner mitochondrial membrane separates two compartments of different \([H^+]\), resulting in differences in chemical concentration (\(\Delta pH\)) and charge distribution (\(\Delta \psi\)) across the membrane. The net effect is the proton-motive force (\(\Delta G\)), which can be calculated as shown here. This is explained more fully in the text.

When protons flow spontaneously down their electrochemical gradient, energy is made available to do work. In mitochondria, chloroplasts, and aerobic bacteria, the electrochemical energy in the proton gradient drives the synthesis of ATP from ADP and \(P_i\). We return to the energetics and stoichiometry of ATP synthesis driven by the electrochemical potential of the proton gradient in Section 19.2.

Reactive Oxygen Species Are Generated during Oxidative Phosphorylation

Several steps in the path of oxygen reduction in mitochondria have the potential to produce highly reactive free radicals that can damage cells. The passage of electrons from \(QH_2\) to Complex III, and passage of electrons from Complex I to \(QH_2\), involve the radical \('Q'\) as an intermediate. The \('Q'\) can, with a low probability, pass an electron to \(O_2\) in the reaction

\[
O_2 + e^- \rightarrow 'O_2
\]

The superoxide free radical thus generated is highly reactive; its formation also leads to production of the even more reactive hydroxyl free radical, \('OH\) (Fig. 19–18).

These reactive oxygen species can wreak havoc, reacting with and damaging enzymes, membrane lipids, and nucleic acids. In actively respiring mitochondria, 0.1% to as much as 4% of the \(O_2\) used in respiration forms \('O_2\) more than enough to have lethal effects unless the free radical is quickly disposed of. Factors that slow the flow of electrons through the respiratory chain increase the formation of superoxide, perhaps by prolonging the lifetime of \('O_2\) generated in the \(Q\) cycle.

To prevent oxidative damage by \('O_2\)', cells have several forms of the enzyme superoxide dismutase, which catalyzes the reaction

\[
2'O_2^- + 2H^+ \rightarrow H_2O_2 + O_2
\]
produced by a process known as photorespiration, is converted to serine (see Fig. 20–21):

\[
2 \text{Glycine} + \text{NAD}^+ \rightarrow \text{serine} + \text{CO}_2 + \text{NH}_3 + \text{NADH} + \text{H}^+
\]

For reasons discussed in Chapter 20, plants must carry out this reaction even when they do not need NADH for ATP production. To regenerate NAD\(^+\) from unneeded NADH, plant mitochondria transfer electrons from NADH directly to ubiquinone and from ubiquinone directly to O\(_2\), bypassing Complexes III and IV and their proton pumps. In this process the energy in NADH is dissipated as heat, which can sometimes be of value to the plant (Box 19–1). Unlike cytochrome oxidase (Complex IV), the alternative QH\(_2\) oxidase is not inhibited by cyanide. Cyanide-resistant NADH oxidation is therefore the hallmark of this unique plant electron-transfer pathway.

SUMMARY 19.1 Electron-Transfer Reactions in Mitochondria

- Chemiosmotic theory provides the intellectual framework for understanding many biological energy transductions, including oxidative phosphorylation and photophosphorylation. The mechanism of energy coupling is similar in both cases: the energy of electron flow is conserved by the concomitant pumping of protons across the membrane, producing an electrochemical gradient, the proton-motive force.
- In mitochondria, hydride ions removed from substrates by NAD-linked dehydrogenases donate electrons to the respiratory (electron-transfer) chain, which transfers the electrons to molecular O\(_2\), reducing it to H\(_2\)O.
- Shuttle systems convey reducing equivalents from cytosolic NADH to mitochondrial NADH. Reducing equivalents from all NAD-linked dehydrogenations are transferred to mitochondrial NADH dehydrogenase (Complex I).
- Reducing equivalents are then passed through a series of Fe-S centers to ubiquinone, which transfers the electrons to cytochrome \(b\), the first carrier in Complex III. In this complex, electrons take two separate paths through two \(b\)-type cytochromes and cytochrome \(c\) to an Fe-S center. The Fe-S center passes electrons, one at a time, through cytochrome \(c\) and into Complex IV, cytochrome oxidase. This copper-containing enzyme, which also contains cytochromes \(a\) and \(a_3\), accumulates electrons, then passes them to O\(_2\), reducing it to H\(_2\)O.
- Some electrons enter this chain of carriers through alternative paths. Succinate is oxidized by succinate dehydrogenase (Complex II), which contains a flavoprotein that passes electrons...
Oxidative Phosphorylation and Photophosphorylation

Through several Fe-S centers to ubiquinone. Electrons derived from the oxidation of fatty acids pass to ubiquinone via the electron-transferring flavoprotein.

- Potentially harmful reactive oxygen species produced in mitochondria are inactivated by a set of protective enzymes, including superoxide dismutase and glutathione peroxidase.

- Plants, fungi, and unicellular eukaryotes have, in addition to the typical cyanide-sensitive path for electron transfer, an alternative, cyanide-resistant NADH oxidation pathway.

Box 19-1 Hot, Stinking Plants and Alternative Respiratory Pathways

Many flowering plants attract insect pollinators by releasing odorant molecules that mimic an insect’s natural food sources or potential egg-laying sites. Plants pollinated by flies or beetles that normally feed on or lay their eggs in dung or carrion sometimes use foul-smelling compounds to attract these insects.

One family of stinking plants is the Araceae, which includes philodendrons, arum lilies, and skunk cabbages. These plants have tiny flowers densely packed on an erect structure, the spadix, surrounded by a modified leaf, the spathe. The spadix releases odors of rotting flesh or dung. Before pollination the spadix also heats up, in some species to as much as 20 to 40 °C above the ambient temperature. Heat production (thermogenesis) helps evaporate odorant molecules for better dispersal, and because rotting flesh and dung are usually warm from the hyperactive metabolism of scavenging microbes, the heat itself might also attract insects. In the case of the eastern skunk cabbage (Fig. 1), which flowers in late winter or early spring when snow still covers the ground, thermogenesis allows the spadix to grow up through the snow.

How does a skunk cabbage heat its spadix? The mitochondria of plants, fungi, and unicellular eukaryotes have electron-transfer systems that are essentially the same as those in animals, but they also have an alternative respiratory pathway. A cyanide-resistant QH₂ oxidase transfers electrons from the ubiquinone pool directly to oxygen, bypassing the two proton-translocating steps of Complexes III and IV (Fig. 2). Energy that might have been conserved as ATP is instead released as heat. Plant mitochondria also have an alternative NADH dehydrogenase, insensitive to the Complex I inhibitor rotenone (see Table 19-4), that transfers electrons from NADH in the matrix directly to ubiquinone, bypassing Complex I and its associated proton pumping. And plant mitochondria have yet another NADH dehydrogenase, on the external face of the inner membrane, that transfers electrons from NADPH or NADH in the intermembrane space to ubiquinone, again bypassing Complex I. Thus when electrons enter the alternative respiratory pathway through the rotenone-insensitive NADH dehydrogenase, the external NADH dehydrogenase, or succinate dehydrogenase (Complex II), and pass to O₂ via the cyanide-resistant alternative oxidase, energy is not conserved as ATP but is released as heat. A skunk cabbage can use the heat to melt snow, produce a foul stench, or attract beetles or flies.

Figure 1 Eastern skunk cabbage.

Figure 2 Electron carriers of the inner membrane of plant mitochondria. Electrons can flow through Complexes I, III, and IV, as in animal mitochondria, or through plant-specific alternative carriers by the paths shown with blue arrows.
19.2 ATP Synthesis

How is a concentration gradient of protons transformed into ATP? We have seen that electron transfer releases, and the proton-motive force conserves, more than enough free energy (about 200 kJ) per "mole" of electron pairs to drive the formation of a mole of ATP, which requires about 50 kJ (p. 503). Mitochondrial oxidative phosphorylation therefore poses no thermodynamic problem. But what is the chemical mechanism that couples proton flux with phosphorylation?

The **chemiosmotic model**, proposed by Peter Mitchell, is the paradigm for this mechanism. According to the model (Fig. 19–19), the electrochemical energy inherent in the difference in proton concentration and the separation of charge across the inner mitochondrial membrane—the proton-motive force—drives the synthesis of ATP as protons flow passively back into the matrix through a proton pore associated with ATP synthase. To emphasize this crucial role of the proton-motive force, the equation for ATP synthesis is sometimes written

\[
\text{ADP} + P_i + nH^+ \rightarrow \text{ATP} + H_2O + nH_2O \quad (19-10)
\]

Mitchell used "chemiosmotic" to describe enzymatic reactions that involve, simultaneously, a chemical reaction and a transport process. The operational definition of "coupling" is shown in Figure 19–20. When isolated mitochondria are suspended in a buffer containing ADP, P_i, and an oxidizable substrate such as succinate, three easily measured processes occur: (1) the substrate is oxidized (succinate yields fumarate), (2) O_2 is consumed, and (3) ATP is synthesized. Oxygen consumption and ATP synthesis depend on the presence of an oxidizable substrate (succinate in this case) as well as ADP and P_i.

Because the energy of substrate oxidation drives ATP synthesis in mitochondria, we would expect inhibitors of the passage of electrons to O_2 (such as cyanide, carbon monoxide, and antimycin A) to block ATP synthesis (Fig. 19–20a). More surprising is the finding that the converse is also true: inhibition of ATP synthesis blocks electron transfer in intact mitochondria. This obligatory coupling can be demonstrated in isolated mitochondria by providing O_2 and oxidizable substrates, but not ADP (Fig. 19–20b). Under these conditions, no ATP synthesis can occur and electron transfer to O_2 does not proceed. Coupling of oxidation and phosphorylation can also be demonstrated using oligomycin or venturicidin, toxic antibiotics that bind to the ATP synthase in mitochondria. These compounds are potent inhibitors of both ATP synthesis and the transfer of electrons through the chain of carriers to O_2 (Fig. 19–20b). Because oligomycin is known to interact not directly with the electron carriers but with ATP synthase, it follows that electron transfer and ATP synthesis are obligately coupled: neither reaction occurs without the other.

Figure 19–19 Chemiosmotic model. In this simple representation of the chemiosmotic theory applied to mitochondria, electrons from NADH and other oxidizable substrates pass through a chain of carriers arranged asymmetrically in the inner membrane. Electron flow is accompanied by proton transfer across the membrane, producing both a chemical gradient (ΔpH) and an electrical gradient (Δψ). The inner mitochondrial membrane is impermeable to protons; protons can reenter the matrix only through proton-specific channels (F_o). The proton-motive force that drives protons back into the matrix provides the energy for ATP synthesis, catalyzed by the F_1 complex associated with F_o.
Chemiosmotic theory readily explains the dependence of electron transfer on ATP synthesis in mitochondria. When the flow of protons into the matrix through the proton channel of ATP synthase is blocked (with oligomycin, for example), no path exists for the return of protons to the matrix, and the continued extrusion of protons driven by the activity of the respiratory chain generates a large proton gradient. The proton-motive force builds up until the cost (free energy) of pumping protons out of the matrix against this gradient equals or exceeds the energy released by the transfer of electrons from NADH to O₂. At this point, electron flow must stop; the free energy for the overall process of electron flow coupled to proton pumping becomes zero, and the system is at equilibrium.

Certain conditions and reagents, however, can uncouple oxidation from phosphorylation. When intact mitochondria are disrupted by treatment with detergent or by physical shear, the resulting membrane fragments can still catalyze electron transfer from succinate or NADH to O₂, but no ATP synthesis is coupled to this respiration. Certain chemical compounds cause uncoupling without disrupting mitochondrial structure. Chemical uncouplers include 2,4-dinitrophenol (DNP) and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (Table 19-4, Fig. 19-21), weak acids with hydrophobic properties that permit them to diffuse readily across mitochondrial membranes. After entering the matrix in the protonated form, they can release a proton, thus dissipating the proton gradient. Ionophores such as valinomycin (see Fig. 11-4b) allow inorganic ions to pass easily through membranes. Ionophores uncouple electron transfer from oxidative phosphorylation by dissipating the electrical contribution to the electrochemical gradient across the mitochondrial membrane.

A prediction of the chemiosmotic theory is that, because the role of electron transfer in mitochondrial ATP synthesis is simply to pump protons to create the electrochemical potential of the proton-motive force, an artificially created proton gradient should be able to replace electron transfer in driving ATP synthesis. This has been experimentally confirmed (Fig. 19-22). Mitochondria manipulated so as to impose a difference of proton concentration and a separation of charge across the inner membrane synthesize ATP in the absence of an oxidizable substrate; the proton-motive force alone suffices to drive ATP synthesis.

FIGURE 19-20 Coupling of electron transfer and ATP synthesis in mitochondria. In experiments to demonstrate coupling, mitochondria are suspended in a buffered medium and an O₂ electrode monitors O₂ consumption. At intervals, samples are removed and assayed for the presence of ATP. (a) Addition of ADP and P, alone results in little or no increase in either respiration (O₂ consumption; black) or ATP synthesis (red). When succinate is added, respiration begins immediately and ATP is synthesized. Addition of cyanide (CN⁻), which blocks electron transfer between cytochrome oxidase (Complex IV) and O₂, inhibits both respiration and ATP synthesis. (b) Mitochondria provided with succinate respire and synthesize ATP only when ADP and P, are added. Subsequent addition of venturicidin or oligomycin, inhibitors of ATP synthase, blocks both ATP synthesis and respiration. Dinitrophenol (DNP) is an uncoupler, allowing respiration to continue without ATP synthesis.

FIGURE 19-21 Two chemical uncouplers of oxidative phosphorylation. Both DNP and FCCP have a dissociable proton and are very hydrophobic. They carry protons across the inner mitochondrial membrane, dissipating the proton gradient. Both also uncouple photophosphorylation (see Fig. 19-63).
ATP Synthase Has Two Functional Domains, \(F_0 \) and \(F_1 \)

Mitochondrial ATP synthase is an F-type ATPase (see Fig. 11-39) similar in structure and mechanism to the ATP synthases of chloroplasts and bacteria. This large enzyme complex of the inner mitochondrial membrane catalyzes the formation of ATP from ADP and Pi, accompanied by the flow of protons from the P to the N side of the membrane (Eqn 19-10). ATP synthase, also called Complex V, has two distinct components: \(F_1 \), a peripheral membrane protein, and \(F_0 \) (o denoting oligomycin-sensitive), which is integral to the membrane. \(F_1 \), the first factor recognized as essential for oxidative phosphorylation, was identified and purified by Efraim Racker and his colleagues in the early 1960s.

In the laboratory, small membrane vesicles formed from inner mitochondrial membranes carry out ATP synthesis coupled to electron transfer. When \(F_1 \) is gently extracted, the "stripped" vesicles still contain intact respiratory chains and the \(F_0 \) portion of ATP synthase. The vesicles can catalyze electron transfer from NADH to \(\text{O}_2 \) but cannot produce a proton gradient; \(F_0 \) has a proton pore through which protons leak as fast as they are pumped by electron transfer, and without a proton gradient the \(F_1 \)-depleted vesicles cannot make ATP. Isolated \(F_1 \) catalyzes ATP hydrolysis (the reversal of synthesis) and was therefore originally called \(F_1 \text{ATPase} \). When purified \(F_1 \) is added back to the depleted vesicles, it reassociates with \(F_0 \), plugging its proton pore and restoring the membrane's capacity to couple electron transfer and ATP synthesis.

ATP is Stabilized Relative to ADP on the Surface of \(F_1 \)

Isotope exchange experiments with purified \(F_1 \) reveal a remarkable fact about the enzyme's catalytic mechanism: on the enzyme surface, the reaction \(\text{ADP} + \text{Pi} \rightarrow \text{ATP} + \text{H}_2\text{O} \) is readily reversible—the free-energy change for ATP synthesis is close to zero! When ATP is hydrolyzed by \(F_1 \) in the presence of \(^{18}\text{O} \)-labeled water, the \(\text{Pi} \) released contains an \(^{18}\text{O} \) atom. Careful measurement of the \(^{18}\text{O} \) content of \(\text{Pi} \) formed in vitro by \(F_1 \)-catalyzed hydrolysis of ATP reveals that the \(\text{Pi} \) has not one, but three or four \(^{18}\text{O} \) atoms (Fig. 19-23). This indicates that the terminal pyrophosphate bond in ATP is cleaved and re-formed repeatedly before \(\text{Pi} \) leaves the enzyme surface. With \(\text{Pi} \) free to tumble in its binding site, each hydrolysis inserts \(^{18}\text{O} \) randomly at one of the four positions in the molecule. This exchange reaction occurs in unenergized \(F_0F_1 \) complexes (with no proton gradient) and with isolated \(F_1 \)—the exchange does not require the input of energy.

Kinetic studies of the initial rates of ATP synthesis and hydrolysis confirm the conclusion that \(\Delta G^\circ \) for ATP synthesis on the enzyme is near zero. From the measured rates of hydrolysis \((k_1 = 10 \text{ s}^{-1}) \) and synthesis \((k_1 = 24 \text{ s}^{-1}) \), the calculated equilibrium constant for the reaction

\[
\text{Enz-ATP} \rightleftharpoons \text{Enz-(ADP} + \text{P}_i)
\]

is

\[
K_{eq} = \frac{k_+}{k_1} = \frac{24 \text{ s}^{-1}}{10 \text{ s}^{-1}} = 2.4
\]

From this \(K_{eq} \), the calculated apparent \(\Delta G^\circ \) is close to zero. This is much different from the \(K_{eq} \) of about \(10^5 \)
Oxidative Phosphorylation and Photophosphorylation

ATP + H218O
ADP + 18O
Enzyme (Ft)

FIGURE 19-23 Catalytic mechanism of F1. (a) 18O-exchange experiment. F1 solubilized from mitochondrial membranes is incubated with ATP in the presence of 18O-labeled water. At intervals, a sample of the solution is withdrawn and analyzed for the incorporation of 18O into the P, produced from ATP hydrolysis. In minutes, the P: contains three or four 18O atoms, indicating that both ATP hydrolysis and ATP synthesis have occurred several times during the incubation. (b) The likely transition state complex for ATP hydrolysis and synthesis by ATP synthase (derived from PDB ID 1BMF). The α subunit is shown in green, β in gray. The positively charged residues β-Arg182 and α-Arg376 coordinate two oxygens of the pentavalent phosphate intermediate; β-Lys155 interacts with a third oxygen, and the Mg2+ ion (green sphere) further stabilizes the intermediate. The blue sphere represents the leaving group (H2O). These interactions result in the ready equilibration of ATP and ADP + P, in the active site.

(a)

(b)

FIGURE 19-24 Reaction coordinate diagrams for ATP synthase and for a more typical enzyme. In a typical enzyme-catalyzed reaction (left), reaching the transition state (†) between substrate and product is the major energy barrier to overcome. In the reaction catalyzed by ATP synthase (right), release of ATP from the enzyme, not formation of ATP, is the major energy barrier. The free-energy change for the formation of ATP from ADP and P, in aqueous solution is large and positive, but on the enzyme surface, the very tight binding of ATP provides sufficient binding energy to bring the free energy of the enzyme-bound ATP close to that of ADP + P, so the reaction is readily reversible. The equilibrium constant is near 1. The free energy required for the release of ATP is provided by the proton-motive force.

The Proton Gradient Drives the Release of ATP from the Enzyme Surface

Although ATP synthase equilibrates ATP with ADP + P, in the absence of a proton gradient the newly synthesized ATP does not leave the surface of the enzyme. It is the proton gradient that causes the enzyme to release the ATP formed on its surface. The reaction coordinate diagram of the process (Fig. 19-24) illustrates the difference between the mechanism of ATP synthase and that of many other enzymes that catalyze endergonic reactions.

For the continued synthesis of ATP, the enzyme must cycle between a form that binds ATP very tightly and a form that releases ATP. Chemical and crystallographic studies of the ATP synthase have revealed the structural basis for this alternation in function.

Each β Subunit of ATP Synthase Can Assume Three Different Conformations

Mitochondrial F1 has nine subunits of five different types, with the composition α3β3γ6ε6. Each of the three β subunits has one catalytic site for ATP synthesis. The crystallographic determination of the F1 structure by John E. Walker and colleagues revealed structural details...
very helpful in explaining the catalytic mechanism of the enzyme. The knoblike portion of F1 is a flattened sphere, 8 nm high and 10 nm across, consisting of alternating α and β subunits arranged like the sections of an orange (Fig. 19–25a, b, c). The polypeptides that make up the stalk in the F1 crystal structure are asymmetrically arranged, with one domain of the single γ subunit making up a central shaft that passes through F1, and another domain of γ associated primarily with one of the three β subunits, designated β-empty (Fig. 19–25c). Although the amino acid sequences of the three β subunits are identical, their conformations differ, in part because of the association of the γ subunit with just one of the three. The structures of the δ and ε subunits are not revealed in these crystallographic studies.

The conformational differences among β subunits extend to differences in their ATP/ADP-binding sites. When researchers crystallized the protein in the presence of ADP and App(NH)p, a close structural analog of ATP that cannot be hydrolyzed by the ATPase activity of F1, the binding site of one of the three β subunits was filled with App(NH)p, the second was filled with ADP, and the third was empty. The corresponding β subunit conformations are designated β-ATP, β-ADP, and β-empty (Fig. 19–25c). This difference in nucleotide binding among the three subunits is critical to the mechanism of the complex.

The F₀ complex making up the proton pore is composed of three subunits, α, β, and c, in the proportion αβ₂cγ2. Subunit c is a small (M, 8,000), very hydrophobic...
FIGURE 19–25 (continued) (d) Side view of the FoF₁ structure. This is a composite, in which the crystallographic coordinates of bovine mitochondrial F₁ (shades of purple and gray) have been combined with those of yeast mitochondrial Fo (shades of yellow and orange) (PDB ID 1QOl). Subunits α, β, δ, and ε were not part of the crystal structure shown here. (e) The FoF₁ structure, viewed end-on in the direction p side to n side. The major structures visible in this cross section are the two transmembrane helices of each of 10 c subunits arranged in concentric circles. (f) Diagram of the FoF₁ complex, deduced from biochemical and crystallographic studies. The two b subunits (b₂) of F₂ associate firmly with the α and β subunits of F₁, holding them fixed relative to the membrane. In Fo, the membrane-embedded cylinder of c subunits (c₁₀) is attached to the shaft made up of F₁ subunits γ and ε. As protons flow through the membrane from the p side to the n side through Fo, the cylinder and shaft rotate, and the β subunits of F₁ change conformation as the γ subunit associates with each in turn.

On the basis of detailed kinetic and binding studies of the reactions catalyzed by FoF₁, Paul Boyer proposed a rotational catalysis mechanism in which the three active sites of F₁ take turns catalyzing ATP synthesis (Fig. 19–26). A given β subunit starts in the β-ADP conformation, which binds ADP and Pₐ from the surrounding medium. The subunit now changes conformation, as-
assuming the β-ATP form that tightly binds and stabilizes ATP, bringing about the ready equilibration of ADP + P_i with ATP on the enzyme surface. Finally, the subunit changes to the β-empty conformation, which has very low affinity for ATP, and the newly synthesized ATP leaves the enzyme surface. Another round of catalysis begins when this subunit again assumes the β-ADP form and binds ADP and P_i.

The conformational changes central to this mechanism are driven by the passage of protons through the F_o portion of ATP synthase. The streaming of protons through the F_o "pore" causes the cylinder of c subunits and the attached γ subunit to rotate about the long axis of γ, which is perpendicular to the plane of the membrane. The γ subunit passes through the center of the αβγ spherical, which is held stationary relative to the membrane surface by the β_2 and δ subunits (Fig. 19-25f). With each rotation of 120°, γ comes into contact with a different β subunit, and the contact forces that β subunit into the β-empty conformation.

The three β subunits interact in such a way that when one assumes the β-empty conformation, its neighbor to one side must assume the β-ADP form, and the other neighbor the β-ATP form. Thus one complete rotation of the γ subunit causes each β subunit to cycle through all three of its possible conformations, and for each rotation, three ATP are synthesized and released from the enzyme surface.

One strong prediction of this binding-change model is that the γ subunit should rotate in one direction when F_oF_1 is synthesizing ATP and in the opposite direction when the enzyme is hydrolyzing ATP. This prediction was confirmed in elegant experiments in the laboratories of Masasuke Yoshida and Kazuhiko Kinosita, Jr. The rotation of γ in a single F_1 molecule was observed microscopically by attaching a long, thin, fluorescent actin polymer to γ and watching it move relative to αβγ immobilized on a microscope slide, as ATP was hydrolyzed. When the entire F_oF_1 complex (not just F_1) was used in a similar experiment, the entire ring of c subunits rotated with γ (Fig. 19-27). The "shaft" rotated in the predicted direction through 360°. The rotation was not smooth, but occurred in three discrete steps of 120°. As calculated from the known rate of ATP hydrolysis by one F_1 molecule and from the frictional drag on the long actin polymer, the efficiency of this mechanism in converting chemical energy into motion is close to 100%. It is, in Boyer's words, "a splendid molecular machine!"

Chemiosmotic Coupling Allows Nonintegral Stoichiometries of O_2 Consumption and ATP Synthesis

Before the general acceptance of the chemiosmotic model for oxidative phosphorylation, the assumption was that the overall reaction equation would take the following form:

\[x\text{ADP} + x\text{P}_i + \frac{1}{2}\text{O}_2 + \text{H}^+ + \text{NADH} \rightarrow x\text{ATP} + \text{H}_2\text{O} + \text{NAD}^+ \]

(19-11)

with the value of x—sometimes called the P/O ratio or the P/2e⁺ ratio—always an integer. When intact mitochondria are suspended in solution with an oxidizable substrate such as succinate or NADH and are provided with O_2, ATP synthesis is readily measurable, as is the decrease in O_2. Measurement of P/O, however, is complicated by the fact that intact mitochondria consume ATP in many reactions taking place in the matrix, and they consume O_2 for purposes other than oxidative phosphorylation. Most experiments have yielded P/O (ATP to \(\frac{1}{2}\text{O}_2\)) ratios of between 2 and 3 when NADH was the electron donor, and between 1 and 2 when succinate was the...
donor. Given the assumption that P/O should have an integral value, most experimenters agreed that the P/O ratios must be 3 for NADH and 2 for succinate, and for years those values appeared in research papers and textbooks.

With introduction of the chemiosmotic paradigm for coupling ATP synthesis to electron transfer, there was no theoretical requirement for P/O to be integral. The relevant questions about stoichiometry became, How many protons are pumped outward by electron transfer from one NADH to O₂, and how many protons must flow inward through the FoF₁ complex to drive the synthesis of one ATP? The measurement of proton fluxes is technically complicated; the investigator must take into account the buffering capacity of mitochondria, nonproductive leakage of protons across the inner membrane, and use of the proton gradient for functions other than ATP synthesis, such as driving the transport of substrates across the inner mitochondrial membrane (described below). The consensus values for number of protons pumped out per pair of electrons are 10 for NADH and 6 for succinate. The most widely accepted experimental value for number of protons required to drive the synthesis of an ATP molecule is 4, of which 1 is used in transporting Pᵢ, ATP, and ADP across the mitochondrial membrane (see below). The number 4, used to pump protons out, is also the number that drives ATP synthesis in the FoF₁ complex; thus the proton-motive force is responsible for both processes.

The Proton-Motive Force Energizes Active Transport

Although the primary role of the proton gradient in mitochondria is to furnish energy for the synthesis of ATP, the proton-motive force also drives several transport processes essential to oxidative phosphorylation. The inner mitochondrial membrane is generally impermeable to charged species, but two specific systems transport ADP and Pᵢ into the matrix and ATP out to the cytosol (Fig. 19–28).

FIGURE 19–27 Experimental demonstration of rotation of Fo and γ. Fo genetically engineered to contain a run of His residues adheres tightly to a microscope slide coated with a Ni complex; biotin is covalently attached to a c subunit of Fo. The protein avidin, which binds biotin very tightly, is covalently attached to long filaments of actin labeled with a fluorescent probe. Biotin-avidin binding now attaches the actin filaments to the c subunit. When ATP is provided as substrate for the ATPase activity of F₁, the labeled filament is seen to rotate continuously in one direction, proving that the Fo cylinder of c subunits rotates. In another experiment, a fluorescent actin filament was attached directly to the γ subunit. The series of fluorescence micrographs (read left to right) shows the position of the actin filament at intervals of 133 ms. Note that as the filament rotates, it makes a discrete jump about every eleventh frame. Presumably the cylinder and shaft move as one unit.

FIGURE 19–28 Adenine nucleotide and phosphate translocases. Transport systems of the inner mitochondrial membrane carry ADP and Pᵢ into the matrix and newly synthesized ATP into the cytosol. The adenine nucleotide translocase is an antiporter; the same protein moves ADP into the matrix and ATP out. The effect of replacing ATPα⁻ with ADPβ⁻ in the matrix is the net efflux of one negative charge, which is favored by the charge difference across the inner membrane (outside positive). At pH 7, Pᵢ is present as both HPO₄²⁻ and H₂PO₄⁻; the phosphate translocase is specific for H₂PO₄⁻. There is no net flow of charge during symport of H₂PO₄⁻ and H⁺, but the relatively low proton concentration in the matrix favors the inward movement of H⁺. Thus the proton-motive force is responsible both for providing the energy for ATP synthesis and for transporting substrates (ADP and Pᵢ) into and product (ATP) out of the mitochondrial matrix. All three of these transport systems can be isolated as a single membrane-bound complex (ATP synthasome).
The adenine nucleotide translocase, integral to the inner membrane, binds ADP in the intermembrane space and transports it into the matrix in exchange for an ATP molecule simultaneously transported outward (see Fig. 13-11 for the ionic forms of ATP and ADP). Because this antiporter moves four negative charges out for every three moved in, its activity is favored by the transmembrane electrochemical gradient, which gives the matrix a net negative charge; the proton-motive force drives ATP-ADP exchange. Adenine nucleotide translocase is specifically inhibited by atractyloside, a toxic glycoside formed by a species of thistle. If the transport of ADP into and ATP out of mitochondria is inhibited, cytosolic ATP cannot be regenerated from ADP, explaining the toxicity of atractyloside.

A second membrane transport system essential to oxidative phosphorylation is the phosphate translocase, which promotes import of one HPO₄ and one H⁺ into the matrix. This transport process, too, is favored by the transmembrane proton gradient (Fig. 19-28). Notice that the process requires movement of one proton from the P to the N side of the inner membrane, consuming some of the energy of electron transfer. A complex of the ATP synthase and both translocases, the ATP synthasome, can be isolated from mitochondria by gentle dissection with detergents, suggesting that the functions of these three proteins are very tightly integrated.

Shuttle Systems Indirectly Convey Cytosolic NADH into Mitochondria for Oxidation

The NADH dehydrogenase of the inner mitochondrial membrane of animal cells can accept electrons only from NADH in the matrix. Given that the inner membrane is not permeable to NADH, how can the NADH generated by glycolysis in the cytosol be reoxidized to NAD⁺ by O₂ via the respiratory chain? Special shuttle systems carry reducing equivalents from cytosolic NADH into mitochondria by an indirect route. The most active NADH shuttle, which functions in liver, kidney, and heart mitochondria, is the malate-aspartate shuttle (Fig. 19-29). The reducing equivalents of cytosolic NADH are first transferred to cytosolic oxaloacetate to yield malate, catalyzed by cytosolic

![Diagram of the Malate-aspartate shuttle](image-url)

FIGURE 19–29 Malate-aspartate shuttle. This shuttle for transporting reducing equivalents from cytosolic NADH into the mitochondrial matrix is used in liver, kidney, and heart. 1 NADH in the cytosol (intermembrane space) passes two reducing equivalents to oxaloacetate, producing malate. 2 Malate crosses the inner membrane via the malate-α-ketoglutarate transporter. 3 In the matrix, malate passes two reducing equivalents to NAD⁺, and the resulting NADH is oxidized by the respiratory chain; the oxaloacetate formed from malate cannot pass directly into the cytosol. 4 Oxaloacetate is first transaminated to aspartate, and 5 aspartate can leave via the glutamate-aspartate transporter. 6 Oxaloacetate is regenerated in the cytosol, completing the cycle.
malate dehydrogenase. The malate thus formed passes through the inner membrane via the malate-α-ketoglutarate transporter. Within the matrix the reducing equivalents are passed to NADH by the action of matrix malate dehydrogenase, forming NADH which can pass electrons directly to the respiratory chain. About 2.5 molecules of ATP are generated as this pair of electrons passes to O₂. Cytosolic oxaloacetate must be regenerated by transamination reactions and the activity of membrane transporters to start another cycle of the shuttle.

Skeletal muscle and brain use a different NADH shuttle, the glycerol 3-phosphate shuttle (Fig. 19-30). It differs from the malate-aspartate shuttle in that it delivers the reducing equivalents from NADH to ubiquinone and thus into Complex III, not Complex I (Fig. 19-8), providing only enough energy to synthesize 1.5 ATP molecules per pair of electrons.

The mitochondria of plants have an externally oriented NADH dehydrogenase that can transfer electrons directly from cytosolic NADH into the respiratory chain at the level of ubiquinone. Because this pathway bypasses the NADH dehydrogenase of Complex I and the associated proton movement, the yield of ATP from cytosolic NADH is less than that from NADH generated in the matrix (Box 19-1).

SUMMARY 19.2 ATP Synthesis
- The flow of electrons through Complexes I, III, and IV results in pumping of protons across the inner mitochondrial membrane, making the matrix alkaline relative to the intermembrane space. This proton gradient provides the energy (in the form of the proton-motive force) for ATP synthesis from ADP and P₃ by ATP synthase (FₐF₁ complex) in the inner membrane.
- ATP synthase carries out "rotational catalysis," in which the flow of protons through Fₐ causes each of three nucleotide-binding sites in F₁ to cycle from (ADP + P₃)-bound to ATP-bound to empty conformations.
- ATP formation on the enzyme requires little energy; the role of the proton-motive force is to push ATP from its binding site on the synthase.
- The ratio of ATP synthesized per 1O₂ reduced to H₂O (the P/O ratio) is about 2.5 when electrons enter the respiratory chain at Complex I, and 1.5 when electrons enter at ubiquinone.
- Energy conserved in a proton gradient can drive solute transport uphill across a membrane.
- The inner mitochondrial membrane is impermeable to NADH and NAD⁺, but NADH equivalents are moved from the cytosol to the matrix by either of two shuttles. NADH equivalents moved in by the malate-aspartate shuttle enter the respiratory chain at Complex I and yield a P/O ratio of 2.5; those moved in by the glycerol 3-phosphate shuttle enter at ubiquinone and give a P/O ratio of 1.5.

19.3 Regulation of Oxidative Phosphorylation
Oxidative phosphorylation produces most of the ATP made in aerobic cells. Complete oxidation of a molecule of glucose to CO₂ yields 30 or 32 ATP (Table 19-5). By comparison, glycolysis under anaerobic conditions (lactate fermentation) yields only 2 ATP per glucose. Clearly, the evolution of oxidative phosphorylation provided a tremendous increase in the energy efficiency of catabolism. Complete oxidation to CO₂ of the coenzyme A derivative of palmitate (16:0), which also occurs in the mitochondrial matrix, yields 108 ATP per palmitoyl-CoA (see Table 17-1). A similar calculation can be made for the ATP yield from oxidation of each of the amino acids (Chapter 18). Aerobic oxidative pathways that result in electron transfer to O₂ accompanied by oxidative phosphorylation therefore account for the vast majority of the ATP produced in catabolism, so the regulation of ATP production by oxidative phosphorylation to match the cell's fluctuating needs for ATP is absolutely essential.
19.3 Regulation of Oxidative Phosphorylation

Oxidative Phosphorylation Is Regulated by Cellular Energy Needs

The rate of respiration (O_2 consumption) in mitochondria is tightly regulated; it is generally limited by the availability of ADP as a substrate for phosphorylation. Dependence of the rate of O_2 consumption on the availability of the P_i acceptor ADP (Fig. 19–20b), the acceptor control of respiration, can be remarkable. In some animal tissues, the acceptor control ratio, the ratio of the maximal rate of ADP-induced O_2 consumption to the basal rate in the absence of ADP, is at least 10.

The intracellular concentration of ADP is one measure of the energy status of cells. Another, related measure is the mass-action ratio of the ATP-ADP system, $[ATP]/([ADP][P_i])$. Normally this ratio is very high, so the ATP-ADP system is almost fully phosphorylated. When the rate of some energy-requiring process (protein synthesis, for example) increases, the rate of breakdown of ATP to ADP and P_i increases, lowering the mass-action ratio. With more ADP available for oxidative phosphorylation, the rate of respiration increases, causing regeneration of ATP. This continues until the mass-action ratio returns to its normal high level, at which point respiration slows again. The rate of oxidation of cellular fuels is regulated with such sensitivity and precision that the $[ATP]/([ADP][P_i])$ ratio fluctuates only slightly in most tissues, even during extreme variations in energy demand. In short, ATP is formed only as fast as it is used in energy-requiring cellular activities.

An Inhibitory Protein Prevents ATP Hydrolysis during Hypoxia

We have already encountered ATP synthase as an ATP-driven proton pump (see Fig. 11–30), catalyzing the reverse of ATP synthesis. When a cell is hypoxic (deprived of oxygen), as in a heart attack or stroke, electron transfer to oxygen slows, and so does the pumping of protons. The proton-motive force soon collapses. Under these conditions, the ATP synthase could operate in reverse, hydrolyzing ATP to pump protons outward and causing a disastrous drop in ATP levels. This is prevented by a small (84 amino acids) protein inhibitor, IF$_1$, which simultaneously binds to two ATP synthase molecules, inhibiting their ATPase activity (Fig. 19–31). IF$_1$ is inhibitory only in its dimeric form, which is favored at pH lower than 6.5. In a cell starved for oxygen, the main source of ATP becomes glycolysis, and the pyruvic or lactic acid thus formed lowers the pH in the cytosol and the mitochondrial matrix. This favors IF$_1$ dimerization, leading to inhibition of the ATPase activity of ATP synthase and thereby preventing wasteful hydrolysis of ATP. When aerobic metabolism resumes, production of pyruvic acid slows, the pH of the cytosol rises, the IF$_1$ dimer is destabilized, and the inhibition of ATP synthase is lifted.

Hypoxia Leads to ROS Production and Several Adaptive Responses

In hypoxic cells there is an imbalance between the input of electrons from fuel oxidation in the mitochondrial matrix and transfer of electrons to molecular oxygen, leading to increased formation of reactive oxygen...
FIGURE 19–32 Hypoxia-inducible factor (HIF-1) regulates gene expression to reduce ROS formation. Under conditions of low oxygen (hypoxia), HIF-1 is synthesized in greater amounts and acts as a transcription factor, increasing the synthesis of glucose transporter, glycolytic enzymes, pyruvate dehydrogenase kinase (PDH kinase), lactate dehydrogenase, a protease that degrades the cytochrome oxidase subunit COX4-1, and cytochrome oxidase subunit COX4-2. These changes counter the formation of ROS by decreasing the supply of NADH and FADH₂ and making cytochrome oxidase of Complex IV more effective. Thick gray arrows signify reactions stimulated by HIF-1; thin, broken arrows show reactions slowed by HIF-1.

When these mechanisms for dealing with ROS are insufficient, due to genetic mutation affecting one of the protective proteins or under conditions of very high rates of ROS production, mitochondrial function is compromised. Mitochondrial damage is thought to be involved in aging, heart failure, certain rare cases of diabetes (described below), and several maternally inherited genetic diseases that affect the nervous system.

ATP-Producing Pathways Are Coordinately Regulated

The major catabolic pathways have interlocking and concerted regulatory mechanisms that allow them to function together in an economical and self-regulating manner to produce ATP and biosynthetic precursors. The relative concentrations of ATP and ADP control not only the rates of electron transfer and oxidative phosphorylation but also the rates of the citric acid cycle, pyruvate oxidation, and glycolysis (Fig. 19–33).
Whenever ATP consumption increases, the rate of electron transfer and oxidative phosphorylation increases. Simultaneously, the rate of pyruvate oxidation via the citric acid cycle increases, increasing the flow of electrons into the respiratory chain. These events can in turn evoke an increase in the rate of glycolysis, increasing the rate of pyruvate formation. When conversion of ADP to ATP lowers the ADP concentration, acceptor control slows electron transfer and thus oxidative phosphorylation. Glycolysis and the citric acid cycle are also slowed, because ATP is an allosteric inhibitor of the glycolytic enzyme phosphofructokinase-1 (see Fig. 15–14) and of pyruvate dehydrogenase (see Fig. 16–18).

Phosphofructokinase-1 is also inhibited by citrate, the first intermediate of the citric acid cycle. When the cycle is "idling," citrate accumulates within mitochondria, then is transported into the cytosol. When the concentrations of both ATP and citrate rise, they produce a concerted allosteric inhibition of phosphofructokinase-1 that is greater than the sum of their individual effects, slowing glycolysis.

SUMMARY 19.3 Regulation of Oxidative Phosphorylation

- Oxidative phosphorylation is regulated by cellular energy demands. The intracellular [ADP] and the mass-action ratio [ATP]/(IADP][Pi]) are measures of a cell's energy status.
- In hypoxic (oxygen-deprived) cells, a protein inhibitor blocks ATP hydrolysis by the reverse activity of ATP synthase, preventing a drastic drop in [ATP].
- The adaptive responses to hypoxia, mediated by HIF-1, slow electron transfer into the respiratory chain and modify Complex IV to act more efficiently under low-oxygen conditions.
- ATP and ADP concentrations set the rate of electron transfer through the respiratory chain via a series of interlocking controls on respiration, glycolysis, and the citric acid cycle.

19.4 Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis

Although ATP production is a central role for the mitochondrion, this organelle has other functions that, in specific tissues or under specific circumstances, are also crucial. In adipose tissue, mitochondria generate heat to protect vital organs from low ambient temperature; in the adrenal glands and the gonads, mitochondria are the sites of steroid hormone synthesis; and in most or all tissues they are key participants in apoptosis (programmed cell death).
Uncoupled Mitochondria in Brown Adipose Tissue Produce Heat

We noted above that respiration slows when the cell is adequately supplied with ATP. There is a remarkable and instructive exception to this general rule. Most newborn mammals, including humans, have a type of adipose tissue called brown adipose tissue (BAT; p. 917) in which fuel oxidation serves, not to produce ATP, but to generate heat to keep the newborn warm. This specialized adipose tissue is brown because of the presence of large numbers of mitochondria and thus high concentrations of cytochromes, with heme groups that are strong absorbers of visible light.

The mitochondria of brown adipocytes are much like those of other mammalian cells, except in having a unique protein in their inner membrane. Thermogenin, also called the uncoupling protein (the product of the UCP1 gene), provides a path for protons to return to the matrix without passing through the F_0F_1 complex (Fig. 19–34). As a result of this short-circuiting of protons, the energy of oxidation is not conserved by ATP formation but is dissipated as heat, which contributes to maintaining the body temperature (see Fig. 23–17). Hibernating animals also depend on the activity of uncoupled BAT mitochondria to generate heat during their long dormancy (see Box 17–1). We will return to the role of thermogenin when we discuss the regulation of body mass in Chapter 23 (pp. 931–932).

Mitochondrial P-450 Oxygenases Catalyze Steroid Hydroxylations

Mitochondria are the site of biosynthetic reactions that produce steroid hormones, including the sex hormones, glucocorticoids, mineralocorticoids, and vitamin D hormone. These compounds are synthesized from cholesterol or a related sterol in a series of hydroxylations catalyzed by enzymes of the cytochrome P-450 family, all of which have a critical heme group (its absorption at 450 nm gives this family its name). In the hydroxylation reactions, one atom of molecular oxygen is incorporated into the substrate and the second is reduced to H_2O:

$$R-H + O_2 + NADPH \rightarrow R-OH + H_2O + NADP^+$$

There are dozens of P-450 enzymes, all situated in the inner mitochondrial membrane with their catalytic site exposed to the matrix. Steroidogenic cells are packed with mitochondria specialized for steroid synthesis; the mitochondria are generally larger than those in other tissues and have more extensive and highly convoluted inner membranes (Fig. 19–35).

The path of electron flow in the mitochondrial P-450 system is complex, involving a flavoprotein and an iron-sulfur protein that carry electrons from NADPH to the P-450 heme (Fig. 19–36). The detailed structure of a P-450 enzyme confers its substrate specificity, and its heme group, which interacts directly with O_2, anchors the catalytic activity shared by all P-450 enzymes.

Another large family of P-450 enzymes is found in the endoplasmic reticulum of hepatocytes. These enzymes catalyze reactions similar to the mitochondrial P-450 reactions, but their substrates include a wide variety of hydrophobic compounds, many of which are xenobiotics—compounds not found in nature but synthesized industrially. The P-450 enzymes of the ER have very broad and overlapping substrate specificities.
Hydroxylation of the hydrophobic compounds makes them more water soluble, and they can then be cleared by the kidneys and excreted in urine. Among the substrates for these P-450 oxygenases are many commonly used prescription drugs. Metabolism by P-450 enzymes limits the drugs' lifetime in the bloodstream and their therapeutic effects. Humans differ in their genetic complement of P-450 enzymes in the ER, and in the extent to which certain P-450 enzymes have been induced, such as by a history of ethanol ingestion. In principle, therefore, an individual's genetics and personal history could figure into determinations of therapeutic drug dose; in practice, this precise tailoring of dosage is not yet economically feasible, but it may become so.

Mitochondria Are Central to the Initiation of Apoptosis

Apoptosis, also called programmed cell death, is a process in which individual cells die for the good of the organism (for example, in the course of normal embryonic development), and the organism conserves the cells' molecular components (amino acids, nucleotides, and so forth). Apoptosis may be triggered by an external signal, acting at a plasma membrane receptor, or by internal events such as a DNA damage, viral infection, oxidative stress from the accumulation of ROS, or another stress such as a heat shock.

Mitochondria play a critical role in triggering apoptosis. When a stressor gives the signal for cell death, one early consequence is an increase in the permeability of the outer mitochondrial membrane, allowing cytochrome c to escape from the intermembrane space into the cytosol (Fig. 19–37). The increased permeability is due to the opening of the permeability transition pore complex (PTPC), a multisubunit protein in the outer membrane; its opening and closing are affected by several proteins that stimulate or suppress apoptosis. When released into the cytosol, cytochrome c...
interacts with monomers of the protein \textit{Apaf-1 (apoptosis protease activating factor-1)}, causing the formation of an \textit{apoptosome} composed of seven Apaf-1 and seven cytochrome \textit{c} molecules. The apoptosome provides the platform on which the protease pro-caspase-9 is activated to caspase-9, a member of a family of highly specific proteases (the \textit{caspases}) involved in apoptosis. They share a critical Cys residue at their active site, and all cleave proteins only on the carboxyl-terminal side of Asp residues, thus the name "caspases." Activated caspase-9 initiates a cascade of proteolytic activations, with one caspase activating a second, and it in turn activating a third, and so forth (see Fig. 12–51). (This role of cytochrome \textit{c} in apoptosis is a clear case of "moonlighting," in that one protein plays two very different roles in the cell; see Box 16–1.)

SUMMARY 19.4 Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis

- In the brown adipose tissue of newborns, electron transfer is uncoupled from ATP synthesis and the energy of fuel oxidation is dissipated as metabolic heat.
- Hydroxylation reaction steps in the synthesis of steroid hormones in steroidogenic tissues (adrenal gland, gonads, liver, and kidney) take place in specialized mitochondria.

- Mitochondrial cytochrome \textit{c}, released into the cytosol, participates in activation of caspase-9, one of the proteases involved in apoptosis.

19.5 Mitochondrial Genes: Their Origin and the Effects of Mutations

Mitochondria contain their own genome, a circular, double-stranded DNA (mtDNA) molecule. Each of the hundreds or thousands of mitochondria in a typical cell has about five copies of this genome. The human mitochondrial chromosome (Fig. 19–38) contains 37 genes (16,569 bp), including 13 that encode subunits of proteins of the respiratory chain (Table 19–6); the remaining genes code for rRNA and tRNA molecules essential to the protein-synthesizing machinery of mitochondria. The great majority of mitochondrial proteins—about 900 different types—are encoded by nuclear genes, synthesized on cytoplasmic ribosomes, then imported into and assembled in the mitochondria (Chapter 27).

FIGURE 19–38 Mitochondrial genes and mutations. (a) Map of human mitochondrial DNA, showing the genes that encode proteins of Complex I, the NADH dehydrogenase (ND1 to ND6); the cytochrome \textit{b} of Complex III (Cyt \textit{b}); the subunits of cytochrome oxidase (Complex IV) (COI to COIII); and two subunits of ATP synthase (\textit{ATPase}6 and \textit{ATPase}8). The colors of the genes correspond to those of the complexes shown in Figure 19–7. Also included here are the genes for ribosomal RNAs (\textit{rRNA}) and for some mitochondrion-specific transfer RNAs; \textit{rRNA} specificity is indicated by the one-letter codes for amino acids. Arrows indicate the positions of mutations that cause Leber's hereditary optic neuropathy (LHON) and myoclonic epilepsy and ragged-red fiber disease (MERRF). Numbers in parentheses indicate the position of the altered nucleotides (nucleotide 1 is at the top of the circle and numbering proceeds counterclockwise). (b) Electron micrograph of an abnormal mitochondrion from the muscle of an individual with MERRF, showing the paracrystalline protein inclusions sometimes present in the mutant mitochondria.
Mitochondria Evolved from Endosymbiotic Bacteria

The existence of mitochondrial DNA, ribosomes, and tRNAs supports the hypothesis of the endosymbiotic origin of mitochondria (see Fig. 1-36), which holds that the first organisms capable of aerobic metabolism, including respiration-linked ATP production, were bacteria. Primitive eukaryotes that lived anaerobically (by fermentation) acquired the ability to carry out oxidative phosphorylation when they established a symbiotic relationship with bacteria living in their cytosol. After much evolution and the movement of many bacterial genes into the nucleus of the “host” eukaryote, the endosymbiotic bacteria eventually became mitochondria.

This hypothesis presumes that early free-living bacteria had the enzymatic machinery for oxidative phosphorylation and predicts that their modern bacterial descendants must have respiratory chains closely similar to those of modern eukaryotes. They do. Aerobic bacteria carry out NAD-linked electron transfer from substrates to O₂, coupled to the phosphorylation of cytosolic ADP. The dehydrogenases are located in the bacterial cytosol and the respiratory chain in the plasma membrane. The electron carriers translocate protons outward across the plasma membrane as electrons are transferred to O₂. Bacteria such as Escherichia coli have F₀F₁ complexes in their plasma membranes; the F₁ portion protrudes into the cytosol and catalyzes ATP synthesis from ADP and P₃ as protons flow back into the cell through the proton channel of F₀.

The respiration-linked extrusion of protons across the bacterial plasma membrane also provides the driving force for other processes. Certain bacterial transport systems bring about uptake of extracellular nutrients (lactose, for example) against a concentration gradient, in symport with protons (see Fig. 11-42). And the rotary motion of bacterial flagella is provided by “proton turbines,” molecular rotary motors driven not by ATP but directly by the transmembrane electrochemical potential generated by respiration-linked proton pumping (Fig. 19-39). It seems likely that the chemiosmotic mechanism evolved early, before the emergence of eukaryotes.

Mutations in Mitochondrial DNA Accumulate throughout the Life of the Organism

The respiratory chain is the major producer of reactive oxygen species in cells, so mitochondrial contents, including the mitochondrial genome, suffer the greatest exposure to, and damage by, ROS. Moreover, the mitochondrial DNA replication system is less effective than the nuclear system at correcting mistakes made during replication and at repairing DNA damage. As a consequence of these two factors, defects in mtDNA accumulate over time. One theory of aging is that this gradual accumulation of defects with increasing age is the primary cause of many of the “symptoms” of aging, which include, for example, progressive weakening of skeletal and heart muscle.

A unique feature of mitochondrial inheritance is the variation among individual cells, and between one individual organism and another, in the effects of a mtDNA mutation. A typical cell has hundreds or thou-

TABLE 19-6 Respiratory Proteins Encoded by Mitochondrial Genes in Humans

<table>
<thead>
<tr>
<th>Complex</th>
<th>Number of subunits</th>
<th>Number of subunits encoded by mitochondrial DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I NADH dehydrogenase</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>II Succinate dehydrogenase</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>III Ubiquinone-cytochrome c oxidoreductase</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>IV Cytochrome oxidase</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>V ATP synthase</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
sand of mitochondria, each with its own genome copy (Fig. 19-40). Suppose that, in a female organism, damage to one mitochondrial genome occurs in a germ cell from which oocytes develop, such that the germ cell contains mainly mitochondria with wild-type genes but one mitochondrion with a mutant gene. During the course of oocyte maturation, as this germ cell and its descendants repeatedly divide, the defective mitochondrion replicates and its progeny, all defective, are randomly distributed to daughter cells. Eventually, the mature egg cells contain different proportions of the defective mitochondria. When an egg cell is fertilized and undergoes the many divisions of embryonic development, the resulting somatic cells differ in their proportion of mutant mitochondria (Fig. 19-41a). (Keep in mind that a developing embryo derives all of its mitochondria from the egg, none from the sperm cell.) This heteroplasmy (in contrast to homoplasmy, in which every mitochondrial genome in every cell is the same) results in mutant phenotypes of varying degrees of severity. Cells (and tissues) containing mostly wild-type mitochondria have the wild-type phenotype; they are essentially normal. Other heteroplasmic cells will have intermediate phenotypes, some almost normal, others (with a high proportion of mutant mitochondria) abnormal (Fig. 19-41b). If the abnormal phenotype is associated with a disease (see below), individuals with the same mtDNA mutation may have disease symptoms of differing severity—depending on the number and distribution of affected mitochondria.

Some Mutations in Mitochondrial Genomes Cause Disease

A growing number of human diseases have been attributed to mutations in mitochondrial genes that reduce the cell’s capacity to produce ATP. Some tissues and cell types—neurons, myocytes of both skeletal and cardiac muscle, and β cells of the pancreas—are less able than others to tolerate lowered ATP production and are therefore more affected by mutations in mitochondrial proteins.

A group of genetic diseases known as the mitochondrial encephalomyopathies affect primarily the brain and skeletal muscle. These diseases are invariably

![Heteroplasmy in mitochondrial genomes.](b)
inherited from the mother, because, as noted above, a developing embryo derives all its mitochondria from the egg. The rare disease Leber's hereditary optic neuropathy (LHON) affects the central nervous system, including the optic nerves, causing bilateral loss of vision in early adulthood. A single base change in the mitochondrial gene ND4 (Fig. 19-38a) changes an Arg residue to a His residue in a polypeptide of Complex I, and the result is mitochondria partially defective in electron transfer from NADH to ubiquinone. Although these mitochondria can produce some ATP by electron transfer from succinate, they apparently cannot supply sufficient ATP to support the very active metabolism of neurons. One result is damage to the optic nerve, leading to blindness. A single base change in the mitochondrial gene for cytochrome b, a component of Complex III, also produces LHON, demonstrating that the pathology results from a general reduction of mitochondrial function, not specifically from a defect in electron transfer through Complex I.

A mutation (in ATP6) that affects the proton pore in ATP synthase leads to low rates of ATP synthesis while leaving the respiratory chain intact. The oxidative stress due to the continued supply of electrons from NADH increases the production of ROS, and the damage to mitochondria caused by ROS sets up a vicious cycle. Half of individuals with this mutant gene die within days or months of birth.

Myoclonic epilepsy and ragged-red fiber disease (MERRF) is caused by a mutation in the mitochondrial gene that encodes a tRNA specific for lysine (tRNAlys). This disease, characterized by uncontrollable muscular jerking, apparently results from defective production of several of the proteins that require mitochondrial tRNAs for their synthesis. Skeletal muscle fibers of individuals with MERRF have abnormally shaped mitochondria that sometimes contain paracrystalline structures (Fig. 19-38b). Other mutations in mitochondrial genes are believed to be responsible for the progressive muscular weakness that characterizes mitochondrial myopathy and for enlargement and deterioration of the heart muscle in hypertrophic cardiomyopathy. According to one hypothesis on the progressive changes that accompany aging, the accumulation of mutations in mtDNA during a lifetime of exposure to DNA-damaging agents such as O_2 results in mitochondria that cannot supply sufficient ATP for normal cellular function. Mitochondrial disease can also result from mutations in any of the 900 nuclear genes that encode mitochondrial proteins.

Diabetes Can Result from Defects in the Mitochondria of Pancreatic β Cells

The mechanism that regulates the release of insulin from pancreatic β cells hinges on the ATP concentration in those cells. When blood glucose is high, β cells take up glucose and oxidize it by glycolysis and the citric acid cycle, raising [ATP] above a threshold level (Fig. 19-42). When [ATP] exceeds this threshold, an ATP-gated K⁺ channel in the plasma membrane closes, depolarizing the membrane and triggering insulin release (see Fig. 23-28). Pancreatic β cells with defects in oxidative phosphorylation cannot increase [ATP] above this threshold, and the resulting failure of insulin release effectively produces diabetes. For example, defects in the gene for glucokinase, the hexokinase IV isozyme present in β cells, lead to a rare form of diabetes, MODY2 (see Box 15-3); low glucokinase activity prevents the generation of above-threshold [ATP], blocking insulin secretion. Mutations in the mitochondrial tRNAlys or tRNAleu genes also compromise mitochondrial ATP production, and type 2 diabetes mellitus is common among individuals with these defects (although these cases make up a very small fraction of all cases of diabetes).

When nicotinamide nucleotide transhydrogenase, which is part of the mitochondrial defense against ROS (see Fig. 19-18), is genetically defective, the accumulation of ROS damages mitochondria, slowing ATP production and blocking insulin release by β cells (Fig. 19-42). Damage caused by ROS, including damage to mtDNA, may also underlie other human diseases; there is some evidence for its involvement in Alzheimer's, Parkinson's, and Huntington's diseases and in heart failure, as well as in aging.
A small proportion of human mitochondrial proteins, 13 in all, are encoded by the mitochondrial genome and synthesized in mitochondria. About 900 mitochondrial proteins are encoded in nuclear genes and imported into mitochondria after their synthesis.

Mitochondria arose from aerobic bacteria that entered into an endosymbiotic relationship with ancestral eukaryotes.

Mutations in the mitochondrial genome accumulate over the life of the organism. Mutations in the genes that encode components of the respiratory chain, ATP synthase, and the ROS-scavenging system, and even in tRNA genes, can cause a variety of human diseases, which often most severely affect muscle, heart, pancreatic B cells, and brain.

PHOTOSYNTHESIS: HARVESTING LIGHT ENERGY

We now turn to another reaction sequence in which the flow of electrons is coupled to the synthesis of ATP: light-driven phosphorylation. The capture of solar energy by photosynthetic organisms and its conversion to the chemical energy of reduced organic compounds is the ultimate source of nearly all biological energy. Photosynthetic and heterotrophic organisms live in a balanced steady state in the biosphere (Fig. 19-43). Photosynthetic organisms trap solar energy and form ATP and NADPH, which they use as energy sources to make carbohydrates and other organic compounds from CO₂ and H₂O; simultaneously, they release O₂ into the atmosphere. Aerobic heterotrophs (humans, for example, as well as plants during dark periods) use the O₂ so formed to degrade the energy-rich organic products of photosynthesis to CO₂ and H₂O, generating ATP. The CO₂ returns to the atmosphere, to be used again by photosynthetic organisms. Solar energy thus provides the driving force for the continuous cycling of CO₂ and O₂ through the biosphere and provides the reduced substrates—fuels, such as glucose—on which nonphotosynthetic organisms depend.

Photosynthesis occurs in a variety of bacteria and in unicellular eukaryotes (algae) as well as in vascular plants. Although the process in these organisms differs in detail, the underlying mechanisms are remarkably similar, and much of our understanding of photosynthesis in vascular plants is derived from studies of simpler organisms. The overall equation for photosynthesis in vascular plants describes an oxidation-reduction reaction in which H₂O donates electrons (as hydrogen) to reduce CO₂ to carbohydrate (CH₂O):

\[
\text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{light}} \text{O}_2 + (\text{CH}_2\text{O})
\]
FIGURE 19–44 The light reactions of photosynthesis generate energy-rich NADPH and ATP at the expense of solar energy. NADPH and ATP are used in the carbon-assimilation reactions, which occur in light or darkness, to reduce CO$_2$ to form trioses and more complex compounds (such as glucose) derived from trioses.

NADPH are used to reduce CO$_2$ to form triose phosphates, starch, and sucrose, and other products derived from them. In this chapter we are concerned only with the light-dependent reactions that lead to the synthesis of ATP and NADPH. The reduction of CO$_2$ is described in Chapter 20.

Photosynthesis in Plants Takes Place in Chloroplasts

In photosynthetic eukaryotic cells, both the light-dependent and the carbon-assimilation reactions take place in the chloroplasts (Fig. 19–45), intracellular organelles that are variable in shape and generally a few micrometers in diameter. Like mitochondria, they are surrounded by two membranes, an outer membrane that is permeable to small molecules and ions, and an inner membrane that encloses the internal compartment. This compartment contains many flattened, membrane-surrounded vesicles or sacs, the thylakoids, usually arranged in stacks called grana (Fig. 19–45b). Embedded in the thylakoid membranes (commonly called lamellae) are the photosynthetic pigments and the enzyme complexes that carry out the light reactions and ATP synthesis. The stroma (the aqueous phase enclosed by the inner membrane) contains most of the enzymes required for the carbon-assimilation reactions.

Light Drives Electron Flow in Chloroplasts

In 1937 Robert Hill found that when leaf extracts containing chloroplasts were illuminated, they (1) evolved O$_2$ and (2) reduced a nonbiological electron acceptor added to the medium, according to the Hill reaction:

$$2\text{H}_2\text{O} \rightarrow_{\text{light}} 2\text{AH}_2 + \text{O}_2$$

where A is the artificial electron acceptor, or Hill reagent. One Hill reagent, the dye 2,6-dichlorophenolindophenol, is blue when oxidized (A) and colorless when reduced (AH$_2$), making the reaction easy to follow.

Dichlorophenolindophenol

When a leaf extract supplemented with the dye was illuminated, the blue dye became colorless and O$_2$ was evolved. In the dark, neither O$_2$ evolution nor dye reduction took place. This was the first evidence that absorbed...
light energy causes electrons to flow from H$_2$O to an electron acceptor. Moreover, Hill found that CO$_2$ was neither required nor reduced to a stable form under these conditions; O$_2$ evolution could be dissociated from CO$_2$ reduction. Several years later Severo Ochoa showed that NADP$^+$ is the biological electron acceptor in chloroplasts, according to the equation

$$2\text{H}_2\text{O} + 2\text{NADP}^+ \xrightarrow{\text{light}} 2\text{NADPH} + 2\text{H}^+ + \text{O}_2$$

To understand this photochemical process, we must first consider the more general topic of the effects of light absorption on molecular structure.

SUMMARY 19.6 General Features of Photophosphorylation

- The light reactions of photosynthesis are those directly dependent on the absorption of light; the resulting photochemistry takes electrons from H$_2$O and drives them through a series of membrane-bound carriers, producing NADPH and ATP.
- The carbon-assimilation reactions of photosynthesis reduce CO$_2$ with electrons from NADPH and energy from ATP.

19.7 Light Absorption

Visible light is electromagnetic radiation of wavelengths 400 to 700 nm, a small part of the electromagnetic spectrum (Fig. 19-46), ranging from violet to red. The energy of a single photon (a quantum of light) is greater at the violet end of the spectrum than at the red end; shorter wavelength (and higher frequency) corresponds to higher energy. The energy, E, in a single photon of visible light is given by the Planck equation:

$$E = h\nu = \frac{hc}{\lambda}$$

where h is Planck’s constant (6.626×10^{-34} J · s), ν is the frequency of the light in cycles/s, c is the speed of light (3.00×10^8 m/s), and λ is the wavelength in meters.

The energy of a photon of visible light ranges from 150 kJ/einstein for red light to ~300 kJ/einstein for violet light.

WORKED EXAMPLE 19-2 Energy of a Photon

The light used by vascular plants for photosynthesis has a wavelength of about 700 nm. Calculate the energy in a “mole” of photons (an einstein) of light of this wavelength, and compare this with the energy needed to synthesize a mole of ATP.

Solution: The energy in a single photon is given by the Planck equation. At a wavelength of 700 × 10$^{-9}$ m, the energy of a photon is

$$E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{(7.00 \times 10^{-7} \text{ m})} = 2.84 \times 10^{-19} \text{ J}$$

An einstein of light is Avogadro’s number (6.022×10^{23}) of photons, thus the energy of one einstein of photons at 700 nm is given by

$$(2.84 \times 10^{-19} \text{ J/photon})(6.022 \times 10^{23} \text{ photons/einstein}) = 17.1 \times 10^4 \text{ J/einstein} = 171 \text{ kJ/einstein}.$$ So, a “mole” of photons of red light has about five times the energy needed to produce a mole of ATP from ADP and Pi (30.5 kJ/mol).

When a photon is absorbed, an electron in the absorbing molecule (chromophore) is lifted to a higher energy level. This is an all-or-nothing event; to be absorbed, the photon must contain a quantity of energy (a quantum) that exactly matches the energy of the electronic transition. A molecule that has absorbed a photon is in an excited state, which is generally unstable. An electron lifted into a higher-energy orbital usually returns rapidly to its lower-energy orbital; the excited molecule decays to the stable ground state, giving up the absorbed quantum as light or heat or using

<table>
<thead>
<tr>
<th>Type of radiation</th>
<th>Gamma rays</th>
<th>X rays</th>
<th>UV</th>
<th>Infrared</th>
<th>Microwaves</th>
<th>Radio waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td><1 nm</td>
<td>100 nm</td>
<td><1 millimeter</td>
<td>1 meter</td>
<td>Thousands of meters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>380</th>
<th>430</th>
<th>500</th>
<th>560</th>
<th>600</th>
<th>650</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ/einstein)</td>
<td>300</td>
<td>240</td>
<td>200</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 19-46 Electromagnetic radiation. The spectrum of electromagnetic radiation, and the energy of photons in the visible range. One einstein is 6.022×10^{23} photons.
it to do chemical work. Light emission accompanying decay of excited molecules (called \textbf{fluorescence}) is always at a longer wavelength (lower energy) than that of the absorbed light (see Box 12–3). An alternative mode of decay important in photosynthesis involves direct transfer of excitation energy from an excited molecule to a neighboring molecule. Just as the photon is a quantum of light energy, so the \textbf{exciton} is a quantum of energy passed from an excited molecule to another molecule in a process called \textbf{exciton transfer}.

Chlorophylls Absorb Light Energy for Photosynthesis

The most important light-absorbing pigments in the thylakoid membranes are the \textbf{chlorophylls}, green pigments with polycyclic, planar structures resembling the protoporphyrin of hemoglobin (see Fig. 5–1), except that Mg$^{2+}$, not Fe$^{2+}$, occupies the central position (Fig. 19–47). The four inward-oriented nitrogen atoms of chlorophyll are coordinated with the Mg$^{2+}$. All chlorophylls have a long \textbf{phytol} side chain, esterified to

![Figure 19-47 Primary and secondary photopigments.](image-url)
FIGURE 19-48 Absorption of visible light by photopigments. Plants are green because their pigments absorb light from the red and blue regions of the spectrum, leaving primarily green light to be reflected or transmitted. Compare the absorption spectra of the pigments with the spectrum of sunlight reaching the earth's surface; the combination of chlorophylls (a and b) and accessory pigments enables plants to harvest most of the energy available in sunlight.

The heterocyclic five-ring system that surrounds the Mg$^{2+}$ has an extended polyene structure, with alternating single and double bonds. Such polyenes characteristically show strong absorption in the visible region of the spectrum (Fig. 19-48); the chlorophylls have unusually high molar extinction coefficients (see Box 3-1) and are therefore particularly well-suited for absorbing visible light during photosynthesis.

Chloroplasts always contain both chlorophyll a and chlorophyll b (Fig. 19-47a). Although both are green, their absorption spectra are sufficiently different (Fig. 19-48) that they complement each other's range of light absorption in the visible region. Most plants contain about twice as much chlorophyll a as chlorophyll b. The pigments in algae and photosynthetic bacteria include chlorophylls that differ only slightly from the plant pigments.

Chlorophyll is always associated with specific binding proteins, forming light-harvesting complexes (LHCs) in which chlorophyll molecules are fixed in relation to each other, to other protein complexes, and to the membrane. One light-harvesting complex (LHCII; Fig. 19-49) contains seven molecules of chlorophyll a, five of chlorophyll b, and two of the accessory pigment lutein (see below).

Cyanobacteria and red algae employ phycobilins such as phycoerythrobilin and phycocyanobilin (Fig. 19-47b) as their light-harvesting pigments. These open-chain tetrapyrroles have the extended polyene system found in chlorophylls, but not their cyclic structure or central Mg$^{2+}$. Phycobilins are covalently linked to specific binding proteins, forming phycobiliproteins, which associate in highly ordered complexes called

The relative amounts of chlorophylls and accessory pigments are characteristic of a particular plant species. Variation in the proportions of these pigments is responsible for the range of colors of photosynthetic organisms, from the deep blue-green of spruce needles, to the greener green of maple leaves, to the red, brown, or purple color of some species of multicellular algae and the leaves of some foliage plants favored by gardeners.
phycobilisomes (Fig. 19-50) that constitute the primary light-harvesting structures in these microorganisms.

Accessory Pigments Extend the Range of Light Absorption

In addition to chlorophylls, thylakoid membranes contain secondary light-absorbing pigments, or accessory pigments, called carotenoids. Carotenoids may be yellow, red, or purple. The most important are β-carotene, which is a red-orange isoprenoid, and the yellow carotenoid lutein (Fig. 19-47c, d). The carotenoid pigments absorb light at wavelengths not absorbed by the chlorophylls (Fig. 19-48) and thus are supplementary light receptors.

Experimental determination of the effectiveness of light of different colors in promoting photosynthesis yields an action spectrum (Fig. 19-51), often useful in identifying the pigment primarily responsible for a biological effect of light. By capturing light in a region of the spectrum not used by other organisms, a photosynthetic organism can claim a unique ecological niche. For example, the phycobilins in red algae and cyanobacteria absorb light in the range 520 to 630 nm (Fig. 19-48), allowing them to occupy niches where light of lower or higher wavelength has been filtered out by the pigments of other organisms living in the water above them, or by the water itself.

Chlorophyll Funnels the Absorbed Energy to Reaction Centers by Exciton Transfer

The light-absorbing pigments of thylakoid or bacterial membranes are arranged in functional arrays called photosystems. In spinach chloroplasts, for example, each photosystem contains about 200 chlorophyll and 50 carotenoid molecules. All the pigment molecules in a photosystem can absorb photons, but only a few chlorophyll molecules associated with the photochemical reaction center are specialized to transduce light into chemical energy. The other pigment molecules in a photosystem are called light-harvesting or antenna molecules. They absorb light energy
Antenna molecules absorb light energy, transferring it between molecules until it reaches the reaction center.

Reaction center
Photochemical reaction here converts the energy of a photon into a separation of charge, initiating electron flow.

FIGURE 19-52 Organization of photosystems in the thylakoid membrane. Photosystems are tightly packed in the thylakoid membrane, with several hundred antenna chlorophylls and accessory pigments surrounding a photoreaction center. Absorption of a photon by any of the antenna chlorophylls leads to excitation of the reaction center by exciton transfer (black arrow). Also embedded in the thylakoid membrane are the cytochrome b6f complex and ATP synthase (see Fig. 19-60).

and transmit it rapidly and efficiently to the reaction center (Fig. 19-52).

The chlorophyll molecules in light-harvesting complexes have light-absorption properties that are subtly different from those of free chlorophyll. When isolated chlorophyll molecules in vitro are excited by light, the absorbed energy is quickly released as fluorescence and heat, but when chlorophyll in intact leaves is excited by visible light (Fig. 19-53, step 1), very little fluorescence is observed. Instead, the excited antenna chlorophyll transfers energy directly to a neighboring chlorophyll molecule, which becomes excited as the first

FIGURE 19-53 Exciton and electron transfer. This generalized scheme shows conversion of the energy of an absorbed photon into separation of charges at the reaction center. The steps are further described in the text. Note that step 1 may repeat between successive antenna molecules until the exciton reaches a reaction-center chlorophyll. The asterisk (*) represents the excited state of an antenna molecule.
molecule returns to its ground state (step 2). This transfer of energy, exciton transfer, extends to a third, fourth, or subsequent neighbor, until one of a special pair of chlorophyll a molecules at the photochemical reaction center is excited (step 3). In this excited chlorophyll molecule, an electron is promoted to a higher-energy orbital. This electron then passes to a nearby electron acceptor that is part of the electron-transfer chain, leaving the reaction-center chlorophyll with a missing electron (an "electron hole," denoted by + in Fig. 19-53) (step 4). The electron acceptor acquires a negative charge in this transaction. The electron lost by the reaction-center chlorophyll is replaced by an electron from a neighboring electron-donor molecule (step 5), which thereby becomes positively charged. In this way, excitation by light causes electric charge separation and initiates an oxidation-reduction chain.

SUMMARY 19.7 Light Absorption

- Photophosphorylation in the chloroplasts of green plants and in cyanobacteria involves electron flow through a series of membrane-bound carriers.
- In the light reactions of plants, absorption of a photon excites chlorophyll molecules and other (accessory) pigments, which funnel the energy into reaction centers in the thylakoid membranes. In the reaction centers, photoexcitation results in a charge separation that produces a strong electron donor (reducing agent) and a strong electron acceptor.

19.8 The Central Photochemical Event: Light-Driven Electron Flow

Light-driven electron transfer in plant chloroplasts during photosynthesis is accomplished by multienzyme systems in the thylakoid membrane. Our current picture of photosynthetic mechanisms is a composite, drawn from studies of plant chloroplasts and a variety of bacteria and algae. Determination of the molecular structures of bacterial photosynthetic complexes (by x-ray crystallography) has given us a much improved understanding of the molecular events in photosynthesis in general.

Bacteria Have One of Two Types of Single Photochemical Reaction Center

One major insight from studies of photosynthetic bacteria came in 1952 when Louis Duyssens found that illumination of the photosynthetic membranes of the purple bacterium *Rhodospirillum rubrum* with a pulse of light of a specific wavelength (870 nm) caused a temporary decrease in the absorption of light at that wavelength; a pigment was "bleached" by 870 nm light. Later studies by Bessel Kok and Horst Witt showed similar bleaching of plant chloroplast pigments by light of 680 and 700 nm. Furthermore, addition of the (nonbiological) electron acceptor [Fe(CN)₆]³⁻ (ferricyanide) caused bleaching at these wavelengths without illumination. These findings indicated that bleaching of the pigments was due to the loss of an electron from a photochemical reaction center. The pigments were named for the wavelength of maximum bleaching: P870, P680, and P700.

Photosynthetic bacteria have relatively simple phototransduction machinery, with one of two general types of reaction center. One type (found in purple bacteria) passes electrons through pheophytin (chlorophyll lacking the central Mg²⁺ ion) to a quinone. The other (in green sulfur bacteria) passes electrons through a quinone to an iron-sulfur center. Cyanobacteria and plants have two photosystems (PSI, PSII), one of each type, acting in tandem. Biochemical and biophysical studies have revealed many of the molecular details of reaction centers of bacteria, which therefore serve as prototypes for the more complex phototransduction systems of plants.

The Pheophytin-Quinone Reaction Center (Type II Reaction Center)

The photosynthetic machinery in purple bacteria consists of three basic modules (Fig. 19-54a): a single reaction center (P870), a cytochrome *bc₁*, electron-transfer complex similar to Complex III of the mitochondrial electron-transfer chain, and an ATP synthase, also similar to that of mitochondria. Illumination drives electrons through pheophytin and a quinone to the cytochrome *bc₁* complex; after passing through the complex, electrons flow through cytochrome *c₂* back to the reaction center, restoring its preillumination state. This light-driven cyclic flow of electrons provides the energy for proton pumping by the cytochrome *bc₁* complex. Powered by the resulting proton gradient, ATP synthase produces ATP, exactly as in mitochondria.

The three-dimensional structures of the reaction centers of purple bacteria (*Rhodopseudomonas viridis* and *Rhodobacter sphaeroides*), deduced from x-ray crystallography, shed light on how phototransduction takes place in a pheophytin-quinone reaction center. The *R. viridis* reaction center (Fig. 19-55a) is a large protein complex containing four polypeptide subunits and 13 cofactors: two pairs of bacterial chlorophylls, a pair of pheophytins, two quinones, a nonheme iron, and four hemes in the associated *c*-type cytochrome.

The extremely rapid sequence of electron transfers shown in Figure 19-55b has been deduced from physical studies of the bacterial pheophytin-quinone centers, using brief flashes of light to trigger phototransduction and a variety of spectroscopic techniques to follow the flow of electrons through several carriers. A pair of bacteriochlorophylls—the “special pair,” designated (Chl)_2—is the site of the initial photochemistry in the bacterial reaction center. Energy from a photon absorbed by one of the
FIGURE 19-54 Functional modules of photosynthetic machinery in purple bacteria and green sulfur bacteria. (a) In purple bacteria, light energy drives electrons from the reaction-center P870 through pheophytin (Pheo), a quinone (Q), and the cytochrome bc₁ complex, then through cytochrome c₂ and thus back to the reaction center. Electron flow through the cytochrome bc₁ complex causes proton pumping, creating an electrochemical potential that powers ATP synthesis. (b) Green sulfur bacteria have two routes for electrons driven by excitation of P840: a cyclic route through a quinone to the cytochrome bc₁ complex and back to the reaction center via cytochrome c, and a noncyclic route from the reaction center through the iron-sulfur protein ferredoxin (Fd), then to NAD⁺ in a reaction catalyzed by ferredoxin:NAD reductase.

Oxidative Phosphorylation and Photophosphorylation

Many antenna chlorophyll molecules surrounding the reaction center reach (Chl)₂ by exciton transfer. When these two chlorophyll molecules—so close that their bonding orbitals overlap—absorb an exciton, the redox potential of (Chl)₂ is shifted, by an amount equivalent to the energy of the photon, converting the special pair to a very strong electron donor. The (Chl)₂ donates an electron that passes through a neighboring chlorophyll monomer to pheophytin (Pheo). This produces two radicals, one positively charged (the special pair of chlorophylls) and one negatively charged (the pheophytin):

\[(\text{Chl})₂ + 1 \text{ exciton} \rightarrow (\text{Chl})₂^\bullet \quad \text{(excitation)}\]

\[(\text{Chl})₂^\bullet + \text{Pheo} \rightarrow (\text{Chl})₂^\bullet + \text{Pheo}^- \quad \text{(charge separation)}\]

The pheophytin radical now passes its electron to a tightly bound molecule of quinone (Qₐ), converting it to a semiquinone radical, which immediately donates its extra electron to a second, loosely bound quinone (Qₚ). Two such electron transfers convert Qₚ to its fully reduced form, QₚH₂, which is free to diffuse in the membrane bilayer, away from the reaction center:

\[2 \text{ Pheo}^- + 2\text{H}^+ + \text{Qₚ} \rightarrow 2 \text{ Pheo} + \text{QₚH₂} \quad \text{(quinone reduction)}\]

The hydroquinone (QₚH₂), carrying in its chemical bonds some of the energy of the photons that originally excited P870, enters the pool of reduced quinone (QₚH₂) dissolved in the membrane and moves through the lipid phase of the bilayer to the cytochrome bc₁ complex.

Like the homologous Complex III in mitochondria, the cytochrome bc₁ complex of purple bacteria carries electrons from a quinol donor (QₚH₂) to an electron acceptor, using the energy of electron transfer to pump protons across the membrane, producing a proton-motive force. The path of electron flow through this complex is believed to be very similar to that through mitochondrial Complex III, involving a Q cycle (Fig. 19-12) in which protons are consumed on one side of the membrane and released on the other. The ultimate electron acceptor in purple bacteria is the electron-depleted form of P870, '(Chl)₂⁺ (Fig. 19-54a). Electrons move from the cytochrome bc₁ complex to P870 via a soluble c-type cytochrome, cytochrome cₙ. The electron-transfer process completes the cycle, returning the reaction center to its unbleached state, ready to absorb another exciton from antenna chlorophyll.

A remarkable feature of this system is that all the chemistry occurs in the solid state, with reacting species moving through the membrane. The reaction center, P870, is a highly organized complex, with a distance of a few angstroms between the donor and acceptor molecules, allowing efficient energy transfer and electron transfer. The proton gradient created by the cytochrome bc₁ complex drives ATP synthesis through ATP synthase, a process that is highly efficient and energy-conserving.
The Central Photochemical Event: Light-Driven Electron Flow

Hemes of c-type cytochrome (2)
Bacteriochlorophyll ((Chl)₂, the special pair) (3 ps)
Bacteriochlorophyll (2) (accessory pigments)
Bacteriopheophytin (2) (200 ps)

FIGURE 19-55 Photoreaction center of the purple bacterium Rhodopseudomonas viridis. (PDB ID 1PRC) (a) The system has four components: three subunits, H, M, and L (brown, blue, and gray, respectively), with a total of 11 transmembrane helical segments, and a fourth protein, cytochrome c (yellow), associated with the complex at the membrane surface. Subunits L and M are paired transmembrane proteins that together form a cylindrical structure with roughly bilateral symmetry about its long axis. Shown as space-filling models (and in (b) as ball-and-stick structures) are the prosthetic groups that participate in the photochemical events. Bound to the L and M chains are two pairs of bacteriochlorophyll molecules (green); one of the pairs—the “special pair,” (Chl)₂—is the site of the first photochemical changes after light absorption. Also incorporated in the system are a pair of pheophytin a (Pheo a) molecules (blue); two quinones, menaquinone (Q₁) and ubiquinone (Q₀) (orange and yellow), also arranged with bilateral symmetry; and a single nonheme Fe (red) located approximately on the axis of symmetry between the quinones. Shown at the top of the figure are four heme groups (red) associated with the c-type cytochrome of the reaction center. The reaction center of another purple bacterium, Rhodobacter sphaeroides, is very similar, except that cytochrome c is not part of the crystalline complex.

(b) Sequence of events following excitation of the special pair of bacteriochlorophylls (all components colored as in (a)), with the time scale of the electron transfers in parentheses. (1) The excited special pair passes an electron to pheophytin, (2) from which the electron moves rapidly to the tightly bound menaquinone, Q₁. (3) This quinone passes electrons much more slowly to the diffusible ubiquinone, Q₀, through the nonheme Fe. Meanwhile, (4) the “electron hole” in the special pair is filled by an electron from a heme of cytochrome c.
or random diffusion. Exciton transfer from antenna chlorophyll to the special pair of the reaction center is accomplished in less than 100 ps with >90% efficiency. Within 3 ps of the excitation of P870, pheophytin has received an electron and become a negatively charged radical; less than 200 ps later, the electron has reached the quinone Q_{12} (Fig. 19–55b). The electron-transfer reactions not only are fast but are thermodynamically "downhill"; the excited special pair (Chl)_{3}, is a very good electron donor (E'' = -1 V), and each successive electron transfer is to an acceptor of substantially less negative E'''. The standard free-energy change for the process is therefore negative and large; recall from Chapter 13 that \Delta G'' = -nF \Delta E''', where \Delta E''' is the difference between the standard reduction potentials of the two half-reactions

\begin{align*}
(1) & \quad (\text{Chl})_2^+ \rightarrow (\text{Chl})_2^+ + e^- \quad E''' = -1.0 \text{ V} \\
(2) & \quad Q + 2H^+ + 2e^- \rightarrow QH_2 \quad E''' = -0.045 \text{ V}
\end{align*}

Thus

\[\Delta E''' = -0.045 \text{ V} - (-1.0 \text{ V}) = 0.95 \text{ V} \]

and

\[\Delta G'' = -2(96.5 \text{ kJ/V} \cdot \text{ mol})(0.95 \text{ V}) = -180 \text{ kJ/mol} \]

The combination of fast kinetics and favorable thermodynamics makes the process virtually irreversible and highly efficient. The overall energy yield (the percentage of the photon's energy conserved in QH_{2}) is >30%, with the remainder of the energy dissipated as heat and entropy.

In Plants, Two Reaction Centers Act in Tandem

The photosynthetic apparatus of modern cyanobacteria, algae, and vascular plants is more complex than the one-center bacterial systems, and it seems to have evolved through the combination of two simpler bacterial photocenters. The thylakoid membranes of chloroplasts have two different kinds of photosystems, each with its own type of photochemical reaction center and set of antenna molecules. The two systems have distinct and complementary functions (Fig. 19–56). Photosystem II (PSII) is a pheophytin-quinone type of
system (like the single photosystem of purple bacteria) containing roughly equal amounts of chlorophylls a and b. Excitation of its reaction-center P680 drives electrons through the cytochrome b6f complex with concomitant movement of protons across the thylakoid membrane. Photosystem I (PSI) is structurally and functionally related to the type I reaction center of green sulfur bacteria. It has a reaction center designated P700 and a high ratio of chlorophyll a to chlorophyll b. Excited P700 passes electrons to the Fe-S protein ferredoxin, then to NADP$, producing NADPH. The thylakoid membranes of a single spinach chloroplast have many hundreds of each kind of photosystem.

These two reaction centers in plants act in tandem to catalyze the light-driven movement of electrons from H$_2$O to NADP$^+$ (Fig. 19–56). Electrons are carried between the two photosystems by the soluble protein plastocyanin, a one-electron carrier functionally similar to cytochrome c of mitochondria. To replace the electrons that move from PSII through PSI to NADP$, cyanobacteria and plants oxidize H$_2$O (as green sulfur bacteria oxidize H$_2$S), producing O$_2$ (Fig. 19–56, bottom left). This process is called oxygenic photosynthesis to distinguish it from the anoxygenic photosynthesis of purple and green sulfur bacteria. All O$_2$-evolving photosynthetic cells—those of plants, algae, and cyanobacteria—contain both PSI and PSII; organisms with only one photosystem do not evolve O$_2$. The diagram in Figure 19–56, often called the Z scheme because of its overall form, outlines the pathway of electron flow between the two photosystems and the energy relationships in the light reactions. The Z scheme thus describes the complete route by which electrons flow from H$_2$O to NADP$, according to the equation

$$2\text{H}_2\text{O} + 2\text{NADP}^+ + 8 \text{photons} \rightarrow \text{O}_2 + 2\text{NADPH} + 2\text{H}^+$$

For every two photons absorbed (one by each photosystem), one electron is transferred from H$_2$O to NADP$. To form one molecule of O$_2$, which requires transfer of four electrons from two H$_2$O to two NADP$, a total of eight photons must be absorbed, four by each photosystem.

The mechanistic details of the photochemical reactions in PSII and PSI are essentially similar to those of the two bacterial photosystems, with several important additions. In PSII, two very similar proteins, D1 and D2, each with its set of cofactors. Although the two subunits are nearly symmetric, electron flow occurs through only one of the two branches of cofactors, that on the right (on D1). The excited reaction-center P700 passes an electron to another, more loosely bound plastoquinone, PQ$_b$ (or Q$_b$). When PQ$_b$ has acquired two electrons in two such transfers from PQ$_A$ and two protons from the solvent water, it is in its fully reduced quinol form, PQ$_b$$H_2$. The overall reaction initiated by light in PSII is

$$4\text{P680} + 4\text{H}^+ + 2\text{PQ}_b + 4 \text{photons} \rightarrow 4\text{P680}^* + 2\text{PQ}_b\text{H}_2 \text{ (19–12)}$$

Eventually, the electrons in PQ$_b$$H_2$ pass through the cytochrome b$_6$f complex (Fig. 19–56). The electron initially removed from P680 is replaced with an electron obtained from the oxidation of water, as described below. The binding site for plastoquinone is the point of action of many commercial herbicides that kill plants by blocking electron transfer through the cytochrome b$_6$f complex and preventing photosynthetic ATP production.

The photochemical events that follow excitation of PSI at the reaction-center P700 are formally similar to those in PSII. The excited reaction-center P700* loses an electron to an acceptor, A$_0$ (believed to be a special form of chlorophyll, functionally homologous to the pheophytin of PSII), creating A$_0^-$ and P700* (Fig. 19–56, right side); again, excitation results in charge separation at the photochemical reaction center. P700* is a strong oxidizing agent, which quickly acquires an electron from plastocyanin, a soluble Cu-containing electron-transfer protein. A$_0^-$ is an exceptionally strong reducing agent that passes its electron through a chain of carriers that leads to NADP$. First, phylloquinone (A$_1$) accepts an electron and passes it to an iron-sulfur protein (through three Fe-S centers in PSI). From here, the electron moves to ferredoxin (Fd), another iron-sulfur protein loosely associated with the thylakoid membrane. Spinach ferredoxin (M$_r$ 10,700) contains a 2Fe-2S center (Fig. 19–5) that undergoes one-electron oxidation and reduction reactions. The fourth electron carrier in
the chain is the flavoprotein **ferredoxin:NADP⁺ oxidoreductase**, which transfers electrons from reduced ferredoxin (Fd_red) to NADP⁺:

\[2\text{Fd}_{\text{red}} + 2\text{H}^+ + \text{NADP}^+ \rightarrow 2\text{Fd}_{\text{ox}} + \text{NADPH} + \text{H}^+ \]

This enzyme is homologous to the ferredoxin:NAD reductase of green sulfur bacteria (Fig. 19-54b).

Antenna Chlorophylls Are Tightly Integrated with Electron Carriers

The electron-carrying cofactors of PSI and the light-harvesting complexes are part of a supramolecular complex (Fig. 19-58a), the structure of which has been solved crystallographically. The protein consists of three...
identical complexes, each composed of 11 different proteins (Fig. 19–58b). In this remarkable structure the many antenna chlorophyll and carotenoid molecules are precisely arrayed around the reaction center (Fig. 19–58c). The reaction center's electron-carrying cofactors are therefore tightly integrated with antenna chlorophylls. This arrangement allows very rapid and efficient exciton transfer from antenna chlorophylls to the reaction center. In contrast to the single path of electrons in PSII, the electron flow initiated by absorption of a photon is believed to occur through both branches of carriers in PSI.

The Cytochrome b_{6f} Complex Links Photosystems II and I

Electrons temporarily stored in plastoquinol as a result of the excitation of P680 in PSII are carried to P700 of PSI via the cytochrome b_{6f} complex and the soluble protein plastocyanin (Fig. 19–56, center). Like Complex III of mitochondria, the cytochrome b_{6f} complex (Fig. 19–59) contains a b-type cytochrome with two heme groups (designated b_{1} and b_{2}), a Rieske iron-sulfur protein (M, 20,000), and cytochrome f (named for the Latin frons, “leaf”). Electrons flow through the cytochrome b_{6f}
complex from PQ$_2$H$_2$ to cytochrome f, then to plastocyanin, and finally to P700, thereby reducing it.

Like Complex III of mitochondria, cytochrome b_{6f} conveys electrons from a reduced quinone—a mobile, lipid-soluble carrier of two electrons (Q in mitochondria, PQ in chloroplasts)—to a water-soluble protein that carries one electron (cytochrome c in mitochondria, plastocyanin in chloroplasts). As in mitochondria, the function of this complex involves a Q cycle (Fig. 19–12) in which electrons pass, one at a time, from PQ$_2$H$_2$ to cytochrome b_6. This cycle results in the pumping of protons across the membrane; in chloroplasts, the direction of proton movement is from the stromal compartment to the thylakoid lumen, up to four protons moving for each pair of electrons. The result is production of a proton gradient across the thylakoid membrane as electrons pass from PSII to PSI. Because the volume of the flattened thylakoid lumen is small, the influx of a small number of protons has a relatively large effect on luminal pH. The measured difference in pH between the stroma (pH 8) and the thylakoid lumen (pH 5) represents a 1,000-fold difference in proton concentration—a powerful driving force for ATP synthesis.

Cyclic Electron Flow between PSI and the Cytochrome b_{6f} Complex Increases the Production of ATP Relative to NADPH

Electron flow from PSII through the cytochrome b_{6f} complex, then through PSI to NADP$^+$, is sometimes called **noncyclic electron flow**, to distinguish it from **cyclic electron flow**, which occurs to varying degrees depending primarily on the light conditions. The noncyclic path produces a proton gradient, which is used to drive ATP synthesis, and NADPH, which is used in reductive biosynthetic processes. Cyclic electron flow involves only PSI, not PSII (Fig. 19–56). Electrons passing from P700 to ferredoxin do not continue to NADP$^+$, but move back through the cytochrome b_{6f} complex to plastocyanin. (This electron path parallels that in green sulfur bacteria, shown in Fig. 19–54b.) Plastocyanin then donates electrons to P700, which transfers them to ferredoxin. In this way, electrons are repeatedly recycled through the cytochrome b_{6f} complex and the reaction center of PSI, each electron propelled around the cycle by the energy of one photon. Cyclic electron flow is not accompanied by net formation of NADPH or evolution of O$_2$. However, it is accompanied by proton pumping by the cytochrome b_{6f} complex and by phosphorylation of ADP to ATP, referred to as **cyclic photophosphorylation**. The overall equation for cyclic electron flow and photophosphorylation is simply

$$\text{ADP + P}_i \xrightarrow{\text{light}} \text{ATP} + \text{H}_2\text{O}$$

By regulating the partitioning of electrons between NADP$^+$ reduction and cyclic photophosphorylation, a plant adjusts the ratio of ATP to NADPH produced in the light-dependent reactions to match its needs for these products in the carbon-assimilation reactions and other biosynthetic processes. As we shall see in Chapter 20, the carbon-assimilation reactions require ATP and NADPH in the ratio 3:2.

This regulation of electron-transfer pathways is part of a short-term adaptation to changes in light color (wavelength) and quantity (intensity), as further described below.

State Transitions Change the Distribution of LHCII between the Two Photosystems

The energy required to excite PSI (P700) is less (light of longer wavelength, lower energy) than that needed to excite PSII (P680). If PSI and PSII were physically contiguous, excitons originating in the antenna system of PSII would migrate to the reaction center of PSI, leaving PSII chronically underexcited and interfering with the operation of the two-center system. This imbalance in the supply of excitons is prevented by separation of the two photosystems in the thylakoid membrane (Fig. 19–60). PSII is located almost exclusively in the tightly appressed membrane stacks of thylakoid grana; its associated light-harvesting complex (LHCII) mediates the tight association of adjacent membranes in the grana. PSI and the ATP synthase complex are located almost exclusively in the nonappressed thylakoid membranes (the stromal lamellae), where they have access to the contents of the stroma, including ADP and NADP$^+$. The cytochrome b_{6f} complex is present primarily in the grana.

The association of LHCII with PSI and PSII depends on light intensity and wavelength, which can change in the short term, leading to **state transitions** in the chloroplast. In state 1, a critical Ser residue in LHCII is not phosphorylated, and LHCII associates with PSI. Under conditions of intense or blue light, which favors absorption by PSI, that photosystem reduces plastoquinone to plastoquinol (PQH$_2$) faster than PSI can oxidize it. The resulting accumulation of PQH$_2$ activates a protein kinase that triggers the transition to state 2 by phosphorylating a Thr residue on LHCII (Fig. 19–61). Phosphorylation weakens the interaction of LHCII with PSI, and some LHCII dissociates and moves to the stromal lamellae; here it captures photons (excitons) for PSI, speeding the oxidation of PQH$_2$ and reversing the imbalance between electron flow in PSI and PSII. In less intense light (in the shade, with more red light), PSI oxidizes PQH$_2$ faster than PSI can make it, and the resulting increase in [PQ] triggers dephosphorylation of LHCII, reversing the effect of phosphorylation.

The state transition in LHCII localization is mutually regulated with the transition from cyclic to noncyclic photophosphorylation, described above; the path of electrons is primarily noncyclic in state 1 and primarily cyclic in state 2.

Water Is Split by the Oxygen-Evolving Complex

The ultimate source of the electrons passed to NADPH in plant (oxygenic) photosynthesis is water. Having given up an electron to phytyl, P680$^+$ (of PSII) must acquire
an electron to return to its ground state in preparation for capture of another photon. In principle, the required electron might come from any number of organic or inorganic compounds. Photosynthetic bacteria use a variety of electron donors for this purpose—acetate, succinate, malate, or sulfide—depending on what is available in a particular ecological niche. About 3 billion years ago, evolution of primitive photosynthetic bacteria (the progenitors of the modern cyanobacteria) produced a photosystem capable of taking electrons from a donor that is always available—
The process that produces a four-electron oxidizing agent—a multinuclear center with several Mn ions—in the water-splitting complex of PSII, the sequential absorption of four photons (excitons), water. Two water molecules are split, yielding four electrons, four protons, and molecular oxygen:

\[2 \text{H}_2\text{O} \rightarrow 4 \text{H}^+ + 4e^- + \text{O}_2 \]

A single photon of visible light does not have enough energy to break the bonds in water; four photons are required in this photolytic cleavage reaction.

The four electrons abstracted from water do not pass directly to P680⁺, which can accept only one electron at a time. Instead, a remarkable molecular device, the oxygen-evolving complex (also called the water-splitting complex), passes four electrons one at a time to P680⁺ (Fig. 19–62). The immediate electron donor to P680⁺ is a Tyr residue (often designated Z or Tyr) in subunit D1 of the PSII reaction center. The Tyr residue loses both a proton and an electron, generating the electrically neutral Tyr free radical, Tyr⁺:

\[4 \text{P680}^+ + 4 \text{Tyr} \rightarrow 4 \text{P680} + 4 \text{Tyr}^+ \] (19–13)

The Tyr radical regains its missing electron and proton by oxidizing a cluster of four manganese ions in the water-splitting complex. With each single-electron transfer, the Mn cluster becomes more oxidized; four single-electron transfers, each corresponding to the absorption of one photon, produce a charge of 4⁺ on the Mn complex (Fig. 19–62):

\[4 \text{Tyr} + [\text{Mn complex}]^0 \rightarrow 4 \text{Tyr} + [\text{Mn complex}]^{4+} \] (19–14)

In this state, the Mn complex can take four electrons from a pair of water molecules, releasing 4 H⁺ and O₂:

\[[\text{Mn complex}]^{4+} + 2\text{H}_2\text{O} \rightarrow [\text{Mn complex}]^0 + 4\text{H}^+ + \text{O}_2 \] (19–15)

Because the four protons produced in this reaction are released into the thylakoid lumen, the oxygen-evolving complex acts as a proton pump, driven by electron transfer. The sum of Equations 19–12 through 19–15 is

\[2\text{H}_2\text{O} + 2\text{PQ}_{680} + 4 \text{photons} \rightarrow \text{O}_2 + 2\text{PQ}_{680}\text{H}_2 \] (19–16)

The oxygen-evolving complex is associated with a peripheral membrane protein (M, 33,000) on the luminal side of the thylakoid membrane that stabilizes the cluster of four Mn ions (in various oxidation states), one Ca²⁺ ion, five O atoms, and a Cl⁻ ion, with precise geometry. The chemical changes that take place in this cluster are not fully understood, but this chemistry is essential to life on Earth and of great interest both for its biological significance and as a challenge in bioinorganic chemistry. Manganese can exist in stable oxidation states from 2⁺ to 7⁺, so a cluster of Mn ions can certainly donate or accept four electrons. Determination of the structure of the polymetallic center has inspired several reasonable and testable hypotheses. Stay tuned.

SUMMARY 19.8 The Central Photochemical Event: Light-Driven Electron Flow

- Bacteria have a single reaction center; in purple bacteria, it is of the pheophytin-quinone type, and in green sulfur bacteria, the Fe-S type.
- Structural studies of the reaction center of a purple bacterium have provided information about light-driven electron flow from an excited special pair of chlorophyll molecules, through pheophytin, to quinones. Electrons then pass from quinones through the cytochrome bc₁ complex, and back to the photoreaction center.
- An alternative path, in green sulfur bacteria, sends electrons from reduced quinones to NAD⁺.
- Cyanobacteria and plants have two different photoreaction centers, arranged in tandem.
- Plant photosystem I passes electrons from its excited reaction center, P700, through a series of carriers to ferredoxin, which then reduces NADP⁺ to NADPH.
- The reaction center of plant photosystem II, P680, passes electrons to plastoquinone, and the electrons lost from P680 are replaced by electrons from H₂O (electron donors other than H₂O are used in other organisms).
- Flow of electrons through the photosystems produces NADPH and ATP, in the ratio of about 2:3. A second type of electron flow (cyclic flow) produces ATP only and allows variability in the proportions of NADPH and ATP formed.
The localization of PSI and PSII between the granal and stromal lamellae can change and is indirectly controlled by light intensity, optimizing the distribution of excitons between PSI and PSII for efficient energy capture.

The light-driven splitting of H₂O is catalyzed by a Mn-containing protein complex; O₂ is produced. The reduced plastoquinone carries electrons to the cytochrome b₆f complex; from here they pass to plastocyanin, and then to P₇₀₀ to replace those lost during its photoexcitation.

Electron flow through the cytochrome b₆f complex drives protons across the plasma membrane, creating a proton-motive force that provides the energy for ATP synthesis by an ATP synthase.

19.9 ATP Synthesis by Photophosphorylation

The combined activities of the two plant photosystems move electrons from water to NADP⁺, conserving some of the energy of absorbed light as NADPH (Fig. 19-56). Simultaneously, protons are pumped across the thylakoid membrane and energy is conserved as an electrochemical potential. We turn now to the process by which this proton gradient drives the synthesis of ATP, the other energy-conserving product of the light-dependent reactions.

In 1954 Daniel Arnon and his colleagues discovered that ATP is generated from ADP and P₁ during photosynthetic electron transfer in illuminated spinach chloroplasts. Support for these findings came from the work of Albert Frenkel, who detected light-dependent ATP production in pigment-containing membranous structures called chromatophores, derived from photosynthetic bacteria. Investigators concluded that some of the light energy captured by the photosynthetic systems of these organisms is transformed into the phosphate bond energy of ATP. This process is called photophosphorylation, to distinguish it from oxidative phosphorylation in respiring mitochondria.

Daniel Arnon, 1910–1994

A Proton Gradient Couples Electron Flow and Phosphorylation

Several properties of photosynthetic electron transfer and photophosphorylation in chloroplasts indicate that a proton gradient plays the same role as in mitochondrial oxidative phosphorylation. (1) The reaction centers, electron carriers, and ATP-forming enzymes are located in a proton-impermeable membrane—the thylakoid membrane—which must be intact to support photophosphorylation. (2) Photophosphorylation can be uncoupled from electron flow by reagents that promote the passage of protons through the thylakoid membrane. (3) Photophosphorylation can be blocked by venturicidin and similar agents that inhibit the formation of ATP from ADP and P₁ by the mitochondrial ATP synthase (Table 19-4). (4) ATP synthesis is catalyzed by Fₒ-F₁ complexes, located on the outer surface of the thylakoid membranes, that are very similar in structure and function to the Fₒ-F₁ complexes of mitochondria.

Electron-transferring molecules in the chain of carriers connecting PSII and PSI are oriented asymmetrically in the thylakoid membrane, so photoinduced electron flow results in the net movement of protons across the membrane, from the stromal side to the thylakoid lumen (Fig. 19-63). In 1966 André Jagendorf showed that a pH gradient across the thylakoid membrane (alkaline outside) could furnish the driving force to generate ATP. His early observations provided some of the most important experimental evidence in support of Mitchell’s chemiosmotic hypothesis.

FIGURE 19–63 Proton and electron circuits in thylakoids. Electrons (blue arrows) move from H₂O through PSII, through the intermediate chain of carriers, through PSI, and finally to NADP⁺. Protons (red arrows) are pumped into the thylakoid lumen by the flow of electrons through the carriers linking PSII and PSI, and reenter the stroma through proton channels formed by the Fₒ (designated CFₒ) of ATP synthase. The F₁ subunit (CF₁) catalyzes synthesis of ATP.
Jagendorf incubated chloroplasts, in the dark, in a pH 4 buffer; the buffer slowly penetrated into the inner compartment of the thylakoids, lowering their internal pH. He added ADP and P_i to the dark suspension of chloroplasts and then suddenly raised the pH of the outer medium to 8, momentarily creating a large pH gradient across the membrane. As protons moved out of the thylakoids into the medium, ATP was generated from ADP and P_i. Because the formation of ATP occurred in the dark (with no input of energy from light), this experiment showed that a pH gradient across the membrane is a high-energy state that, as in mitochondrial oxidative phosphorylation, can mediate the transduction of energy from electron transfer into the chemical energy of ATP.

The Approximate Stoichiometry of Photophosphorylation Has Been Established

As electrons move from water to NADP^+ in plant chloroplasts, about 12 H^+ move from the stroma to the thylakoid lumen per four electrons passed (that is, per O_2 formed). Four of these protons are moved by the oxygen-evolving complex, and up to eight by the cytochrome b_6f complex. The measurable result is a 1,000-fold difference in proton concentration across the thylakoid membrane (∆pH = 3). Recall that the energy stored in a proton gradient (the electrochemical potential) has two components: a proton concentration difference (∆pH) and an electrical potential (∆ψ) due to charge separation. In chloroplasts, ∆pH is the dominant component; counterion movement apparently dissipates most of the electrical potential. In illuminated chloroplasts, the energy stored in the proton gradient per mole of protons is

$$\Delta G = 2.3RT\Delta pH + 2.3\Delta \psi = -17 \text{ kJ/mol}$$

so the movement of 12 mol of protons across the thylakoid membrane represents conservation of about 200 kJ of energy—enough energy to drive the synthesis of several moles of ATP (ΔG°' ≈ 30.5 kJ/mol). Experimental measurements yield values of about 3 ATP per O_2 produced.

At least eight photons must be absorbed to drive four electrons from H_2O to NADPH (one photon per electron at each reaction center). The energy in eight photons of visible light is more than enough for the synthesis of three molecules of ATP.

ATP synthesis is not the only energy-conserving reaction of photosynthesis in plants; the NADPH formed in the final electron transfer is also energetically rich. The overall equation for noncyclic photophosphorylation (a term explained below) is

$$2H_2O + 8 \text{photons} + 2NADP^+ + 3ADP + 3P_i \rightarrow O_2 + 3\text{ATP} + 2NADPH$$ (19–17)

The ATP Synthase of Chloroplasts Is Like That of Mitochondria

The enzyme responsible for ATP synthesis in chloroplasts is a large complex with two functional components, CF_o and CF_1 (C denoting its location in chloroplasts). CF_o is a transmembrane proton pore composed of several integral membrane proteins and is homologous to mitochondrial F_o. CF_1 is a peripheral membrane protein complex very similar in subunit composition, structure, and function to mitochondrial F_1.

Electron microscopy of sectioned chloroplasts shows ATP synthase complexes as knoblike projections on the outside (stromal, or N) surface of thylakoid membranes; these complexes correspond to the ATP synthase complexes seen to project on the inside (matrix, or N) surface of the inner mitochondrial membrane. Thus the relationship between the orientation of the ATP synthase and the direction of proton pumping is the same in chloroplasts and mitochondria. In both cases, the F_1 portion of ATP synthase is located on the more alkaline (N) side of the membrane through which protons flow down their concentration gradient; the direction of proton flow relative to F_1 is the same in both cases: p to N (Fig. 19–64).
The mechanism of chloroplast ATP synthase is also believed to be essentially identical to that of its mitochondrial analog; ADP and P_i readily condense to form ATP on the enzyme surface, and the release of this enzyme-bound ATP requires a proton-motive force. Rotational catalysis sequentially engages each of the three B subunits of the ATP synthase in ATP synthesis, ATP release, and ADP + P_i binding (Figs 19-26, 19-27).

SUMMARY 19.9 ATP Synthesis by Photophosphorylation

- In plants, both the water-splitting reaction and electron flow through the cytochrome b_6f complex are accompanied by proton pumping across the thylakoid membrane. The proton-motive force thus created drives ATP synthesis by a CF_o,CF_i complex similar to the mitochondrial F_o,F_i complex.
- The ATP synthase of chloroplasts (CF_o,CF_i) is very similar in both structure and catalytic mechanism to the ATP synthases of mitochondria and bacteria. Physical rotation driven by the proton gradient is accompanied by ATP synthesis at sites that cycle through three conformations, one with high affinity for ATP, one with high affinity for ADP + P_i, and one with low affinity for both nucleotides.

19.10 The Evolution of Oxygenic Photosynthesis

The appearance of oxygenic photosynthesis on Earth about 2.5 billion years ago was a crucial event in the evolution of the biosphere. Until then, the earth had been essentially devoid of molecular oxygen and lacked the ozone layer that protects living organisms from solar UV radiation. Oxygenic photosynthesis made available a nearly limitless supply of reducing agent to drive the production of organic compounds by reductive biosynthetic reactions. And mechanisms evolved that allowed organisms to use O_2 as a terminal electron acceptor in highly energetic electron transfers from organic substrates, employing the energy of oxidation to support their metabolism. The complex photosynthetic apparatus of a modern vascular plant is the culmination of a series of evolutionary events, the most recent of which was the acquisition by eukaryotic cells of a cyanobacterial endosymbiont.

Chloroplasts Evolved from Ancient Photosynthetic Bacteria

Chloroplasts in modern organisms resemble mitochondria in several properties, and are believed to have originated by the same mechanism that gave rise to mitochondria: endosymbiosis. Like mitochondria, chloroplasts contain their own DNA and protein-synthesizing machinery. Some of the polypeptides of chloroplast proteins are encoded by chloroplast genes and synthesized in the chloroplast; others are encoded by nuclear genes, synthesized outside the chloroplast, and imported (Chapter 27). When plant cells grow and divide, chloroplasts give rise to new chloroplasts by division, during which their DNA is replicated and divided between daughter chloroplasts. The machinery and mechanism for light capture, electron flow, and ATP synthesis in modern cyanobacteria are similar in many respects to those in plant chloroplasts. These observations led to the now widely accepted hypothesis that the evolutionary progenitors of modern plant cells were primitive eukaryotes that engulfed photosynthetic cyanobacteria and established stable endosymbiotic relationships with them (see Fig. 1-36).

At least half of the photosynthetic activity on Earth now occurs in microorganisms—algae, other photosynthetic eukaryotes, and photosynthetic bacteria. Cyanobacteria have PSII and PSI in tandem, and the PSII has an associated water-splitting activity resembling that of plants. However, the other groups of photosynthetic bacteria have single reaction centers and do not split H_2O or produce O_2. Many are obligate anaerobes and cannot tolerate O_2; they must use some compound other than H_2O as electron donor. Some photosynthetic bacteria use inorganic compounds as electron (and hydrogen) donors. For example, green sulfur bacteria use hydrogen sulfide:

$$2H_2S + CO_2 \xrightarrow{light} (CH_2O) + H_2O + 2S$$

These bacteria, instead of producing molecular O_2, form elemental sulfur as the oxidation product of H_2S. (They further oxidize the S to SO_2^{2-}.) Other photosynthetic bacteria use organic compounds such as lactate as electron donors:

$$2Lactate + CO_2 \xrightarrow{light} (CH_2O) + H_2O + 2pyruvate$$

The fundamental similarity of photosynthesis in plants and bacteria, despite the differences in the electron donors they employ, becomes more obvious when the equation of photosynthesis is written in the more general form

$$2H_2D + CO_2 \xrightarrow{light} (CH_2O) + H_2O + 2D$$

in which H_2D is an electron (and hydrogen) donor and D is its oxidized form. H_2D may be water, hydrogen sulfide, lactate, or some other organic compound, depending on the species. Most likely, the bacteria that first developed photosynthetic ability used H_2S as their electron source.

The ancient relatives of modern cyanobacteria probably arose by the combination of genetic material from two types of photosynthetic bacteria, with systems of the type seen in modern purple bacteria (with a PSII-like electron path) and green sulfur bacteria (with an electron path resembling that in PSI). The bacterium with two independent photosystems may have used one in one set of conditions, the other in different conditions. Over time, a mechanism to connect the two photosystems for simultaneous use evolved, and the PSII-like system acquired the water-splitting capacity found in modern cyanobacteria.
Modern cyanobacteria can synthesize ATP by oxidative phosphorylation or by photophosphorylation, although they have neither mitochondria nor chloroplasts. The enzymatic machinery for both processes is in a highly convoluted plasma membrane (see Fig. 1–6). Three protein components function in both processes, giving evidence that the processes have a common evolutionary origin (Fig. 19–65). First, the proton-pumping cytochrome \(b_{6,f} \) complex carries electrons from plastoquinone to cytochrome \(c_{6} \) in photosynthesis, and also carries electrons from ubiquinone to cytochrome \(c_{6} \) in oxidative phosphorylation—the role played by cytochrome \(bc_{1} \) in mitochondria. Second, cytochrome \(c_{6} \), homologous to mitochondrial cytochrome \(c \), carries electrons from Complex III to Complex IV in cyanobacteria; it can also carry electrons from the cytochrome \(b_{6,f} \) complex to PSI—a role performed in plants by plastocyanin. We therefore see the functional homology between the cyanobacterial cytochrome \(b_{6,f} \) complex and the mitochondrial cytochrome \(bc_{1} \) complex, and between cyanobacterial cytochrome \(c_{6} \) and plant plastocyanin. The third conserved component is the ATP synthase, which functions in oxidative phosphorylation and photophosphorylation in cyanobacteria, and in the mitochondria and chloroplasts of photosynthetic eukaryotes. The structure and remarkable mechanism of this enzyme have been strongly conserved throughout evolution.

In Halobacterium, a Single Protein Absorbs Light and Pumps Protons to Drive ATP Synthesis

In some modern archaea, a quite different mechanism for converting the energy of light into an electrochemical gradient has evolved. The halophilic ("salt-loving") archaean *Halobacterium salinarum* is descended from ancient evolutionary progenitors. This archaean (commonly referred to as a halobacterium) lives only in brine ponds and salt lakes (Great Salt Lake and the Dead Sea, for example), where the high salt concentration—which can exceed 4 M—results from water loss by evaporation; indeed, halobacteria cannot live in NaCl concentrations lower than 3 M. These organisms are aerobes and normally use \(O_{2} \) to oxidize organic fuel molecules. However, the solubility of \(O_{2} \) is so low in brine ponds that sometimes oxidative metabolism must be supplemented by sunlight as an alternative source of energy.

The plasma membrane of *H. salinarum* contains patches of the light-absorbing pigment bacteriorhodopsin, which contains retinal (the aldehyde derivative of vitamin A; see Fig. 10–21) as a light-harvesting prosthetic group. When the cells are illuminated, all-trans-retinal bound to the bacteriorhodopsin absorbs a photon and undergoes photoisomerization to 13-cis-retinal, forcing a conformational change in the protein. The restoration of all-trans-retinal is accompanied by the outward movement of protons through the plasma membrane. Bacteriorhodopsin, with only 247 amino acid residues, is the simplest light-driven proton pump known. The difference in the three-dimensional structure of bacteriorhodopsin in the dark and after illumination (Fig. 19–66a) suggests a pathway by which a concerted series of proton “hops” could effectively move a proton across the membrane. The chromophore retinal is bound through a Schiff-base linkage to the e-amino group of a Lys residue. In the dark, the nitrogen of this Schiff base is protonated; in the light, photoisomerization of retinal lowers the \(pK_a \) of this group and it releases its proton to a nearby Asp residue, triggering a series of proton hops that ultimately result in the release of a proton at the outer surface of the membrane (Fig. 19–66b).

The electrochemical potential across the membrane drives protons back into the cell through a membrane ATP synthase complex very similar to that of mitochondria.
FIGURE 19-66 Evolution of a second mechanism for light-driven proton pumping in a halophilic archaean. (a) Bacteriorhodopsin (M, 26,000) of Halobacterium halobium has seven membrane-spanning a helices (PDB ID 1C8R). The chromophore all-trans-retinal (purple) is covalently attached via a Schiff base to the ε-amino group of a Lys residue deep in the membrane interior. Running through the protein are a series of Asp and Glu residues and a series of closely associated water molecules that together provide the transmembrane path for protons (red arrows). Steps 1 through 5 indicate proton movements, described below.

(b) In the dark (left panel), the Schiff base is protonated. Illumination (right panel) photoisomerizes the retinal, forcing subtle conformational changes in the protein that alter the distance between the Schiff base and its neighboring amino acid residues. Interaction with these neighbors lowers the pKₐ of the protonated Schiff base, and the base gives up its proton to a nearby carboxyl group on Asp⁸⁵ (step 1 in (a)). This initiates a series of concerted proton hops between water molecules (see Fig. 2-13) in the interior of the protein, which ends with 5 the release of a proton that was shared by Glu¹⁹⁴ and Glu²⁰⁴ near the extracellular surface. 3 The Schiff base reacquires a proton from Asp⁸⁵, which 4 takes up a proton from the cytosol. 5 Finally, Asp⁸⁵ gives up its proton, leading to reprotonation of the Glu²⁰⁴-Glu¹⁹⁴ pair. The system is now ready for another round of proton pumping.
Oxidative Phosphorylation and Photophosphorylation

dria and chloroplasts. Thus, when \(\text{O}_2 \) is limited, halobacteria can use light to supplement the ATP synthesized by oxidative phosphorylation. Halobacteria do not evolve \(\text{O}_2 \), nor do they carry out photoreduction of \(\text{NADP}^+ \); their phototransducing machinery is therefore much simpler than that of cyanobacteria or plants. Nevertheless, its proton-pumping mechanism may prove to be prototypical for the many other, more complex, ion pumps.

Bacteriorhodopsin

SUMMARY 19.10 The Evolution of Oxygenic Photosynthesis

- Modern cyanobacteria are derived from an ancient organism that acquired two photosystems, one of the type now found in purple bacteria, and the other of the type found in green sulfur bacteria.

- Many photosynthetic microorganisms obtain electrons for photosynthesis not from water but from donors such as \(\text{H}_2\text{S} \).

- Cyanobacteria with the tandem photosystems and a water-splitting activity that released oxygen into the atmosphere appeared on Earth about 2.5 billion years ago.

- Chloroplasts, like mitochondria, evolved from bacteria living endosymbiotically in early eukaryotic cells. The ATP synthases of bacteria, cyanobacteria, mitochondria, and chloroplasts share a common evolutionary precursor and a common enzymatic mechanism.

- An entirely different mechanism for converting light energy to a proton gradient has evolved in the modern archaea, in which the light-harvesting pigment is retinal.

Key Terms

Terms in bold are defined in the glossary.

- chemiosmotic theory 707
- nicotinamide nucleotide-linked dehydrogenases 709
- flavoproteins 709
- reducing equivalent 710
- ubiquinone (coenzyme Q, Q) 710
- cytochromes 710
- iron-sulfur proteins 711
- Rieske iron-sulfur proteins 711
- malate-aspartate shuttle 731
- glycerol 3-phosphate shuttle 732
- acceptor control 733
- mass-action ratio 733
- brown adipose tissue (BAT) 736
- thermogenin 736
- cytochrome P-450 736
- xenobiotics 736
- apoptosis 737
- apoptosome 738
- caspase 738
- heteroplasmy 740
- homoplasmy 740
- light-dependent reactions 742
- light reactions 742
- carbon-assimilation reactions 742
- carbon-fixation reaction 742
- thylakoid 743
- grana 743
- stroma 743
- Hill reaction 743
- photon 744
- quantum 744
- excited state 744
- ground state 744
- fluorescence 745
- exciton 745
- chlorophylls 745
- light-harvesting complexes (LHcs) 746
- accessory pigments 747
- carotenoids 747
- action spectrum 747
- photosystem 747
- photochemical reaction center 747
- light-harvesting (antenna) molecules 747
- photosystem II (PSII) 752
- photosystem I (PSI) 753
- plastocyanin 753
- oxygenic photosynthesis 753
- plastoquinone (PQ) 753
- ferredoxin 753
- cyclic electron flow 756
- noncyclic electron flow 756
- cyclic photophosphorylation 756
- oxygen-evolving complex 758
- water-splitting complex 758
- photophosphorylation 759

Further Reading

History and General Background

- An engaging personal account of the exciting period when the biochemistry of respiratory electron transfer was worked out.
- A middle-level discussion of all aspects of photosynthesis.
- A wonderful description of the historical background to discoveries in photosynthesis, told by the people who made that history.
- A very readable synthesis of the principles of bioenergetics and their application to energy transductions.
A textbook of plant biochemistry with excellent discussions of photophosphorylation.

An authoritative and absorbing account of the discovery of cytochromes and their roles in respiration, written by the man who discovered cytochromes.

A JBC Classic (on the website under "Classic Articles") describing the technology used to determine the sequence of electron carriers.

A JBC Classic Article.

An entry-level description of the roles of mitochondria in energy conservation and in apoptosis.

Mitchell’s Nobel lecture, outlining the evolution of the chemiosmotic hypothesis.

Up-to-date, comprehensive, well-illustrated treatment of all aspects of mitochondrial and chloroplast energy transductions.

An excellent survey of mitochondrial structure and function.

A clear and critical account of the evolution of the chemiosmotic model.

OXIDATIVE PHOSPHORYLATION

Electron-Transfer Reactions in Mitochondria

Advanced discussion of the reduction of water and pumping of protons by cytochrome oxidase.

Advanced discussion of models for electron movement through Complex I.

Advanced discussion of the structure of Complex I and the implications for function.

Advanced description of the possible mechanisms of the Q cycle.

Primary research supporting the existence of supercomplexes in mitochondria.

Advanced description of electron transfer.

Intermediate-level review of Complex I structure and function.

Test of the hypothesis that supercomplexes exist in mitochondria.

Advanced review of Complex IV structure and function.

Intermediate-level review of the Q cycle.

Primary research paper on structure of Complex I.

Intermediate-level discussion of the many organisms in which mitochondria do not depend on oxygen as the final electron donor.

The solution by x-ray crystallography of the structure of this huge membrane protein.

Report revealing the crystallographic structure of Complex III.

Advanced review of this class of electron-transfer processes.

Primary research paper.

ATP Synthesis

Research paper that provided important structural detail in support of the catalytic mechanism.

An account of the historical development and current state of the binding-change model, written by its principal architect.

A careful analysis of experimental results and theoretical considerations on the question of nonintegral P/O ratios.

Detailed review of the structures that underlie proton-driven rotary motion of ATP synthase and bacterial flagella.

A JBC Classic Article.

A JBC Classic Article.

Beautifull demonstration of the rotary motion of ATP synthase.

The experimental evidence for rotation of the entire cylinder of c subunits in F$_1$F$_0$.

The first crystallographic view of the F$_0$ subunit, in the yeast F$_0$F$_1$. See also R. H. Fillingame’s editorial comment in the same issue of Science.

An advanced review of kinetic, structural, and biochemical evidence for the ATP synthase mechanism.

Regulation of Oxidative Phosphorylation

An advanced description of respiratory control.

Advanced discussion of the regulation of ATP synthase by Ca$^{2+}$ and other factors.

Advanced review.

Intermediate-level review.

Short, intermediate-level review of the hypoxia-inducible factor.

Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis

Advanced, comprehensive review of role of cytochrome c in apoptosis.

Intermediate-level review.

Mitochondrial Genes: Their Origin and Effects of Mutations

Intermediate-level review.

Intermediate-level discussion of the evidence for the endosymbiotic origins of mitochondria and chloroplasts.

Intermediate-level review of defects in oxidative phosphorylation and heart disease.

PHOTOSYNTHESIS

Light Absorption

A short, intermediate-level review of the structure and function of the light-harvesting complex of the purple bacteria and exciton flow to the reaction center.

An intermediate-level description of the proteins that orient chlorophyll molecules in chloroplasts.

Light-Driven Electron Flow

Determination of PSI structure by crystallography.

A short, intermediate-level summary of the structure of PSI.

A collection of 16 papers on photosystem II.

This journal issue contains 10 reviews on the structure and function of photosystems.

An advanced and lengthy review.

One of several papers in this issue dealing with models for the water-splitting mechanism.

Description of the structure of the reaction center of purple bacteria and implications for the function of bacterial and plant reaction centers.

Advanced review.

Intermediate-level review of photosystems I and II.

Huber's Nobel lecture, describing the physics and chemistry of phototransductions; an exceptionally clear and well-illustrated discussion, based on crystallographic studies of reaction centers.

Classic experiment showing the need for four photons to split water.

Intermediate-level review of regulation of state transitions.

ATP Synthesis by Photophosphorylation

Classic experiment establishing the ability of a proton gradient to drive ATP synthesis in the dark.

The Evolution of Oxygenic Photosynthesis

Short, intermediate-level discussion of how the modern Z scheme evolved.

Further Reading

Advanced review of a proton pump that employs an internal chain of water molecules.

This article, accompanied by an editorial comment in the same *Science* issue, describes the model for H⁺ translocation by proton hopping.

Intermediate-level discussion of the endosymbiont-origin theory.

Problems

1. **Oxidation-Reduction Reactions**
 The NADH dehydrogenase complex of the mitochondrial respiratory chain promotes the following series of oxidation-reduction reactions, in which Fe³⁺ and Fe²⁺ represent the iron in iron-sulfur centers, Q is ubiquinone, QH₂ is ubiquinol, and E is the enzyme:

 (1) \[\text{NADH} + H^+ + E\text{-FMN} \rightarrow \text{NAD}^+ + E\text{-FMNH}_2 \]

 (2) \[E\text{-FMNH}_2 + 2\text{Fe}^{3+} \rightarrow E\text{-FMN} + 2\text{Fe}^{2+} + 2H^+ \]

 (3) \[2\text{Fe}^{2+} + 2H^+ + Q \rightarrow 2\text{Fe}^{3+} + QH_2 \]

 Sum: \[\text{NADH} + H^+ + Q \rightarrow \text{NAD}^+ + QH_2 \]

 For each of the three reactions catalyzed by the NADH dehydrogenase complex, identify (a) the electron donor, (b) the electron acceptor, (c) the conjugate redox pair, (d) the reducing agent, and (e) the oxidizing agent.

2. **All Parts of Ubiquinone Have a Function**
 In electron transfer, only the quinone portion of ubiquinone undergoes oxidation-reduction; the isoprenoid side chain remains unchanged. What is the function of this chain?

3. **Use of FAD Rather Than NAD⁺ in Succinate Oxidation**
 All the dehydrogenases of glycolysis and the citric acid cycle use NAD⁺ (E° = 0 V for NAD⁺/NADH) as electron acceptor except succinate dehydrogenase, which uses covalently bound FAD (E° = 0.060 V) in this enzyme. Suggest why FAD is a more appropriate electron acceptor than NAD⁺ in the dehydrogenation of succinate, based on the E° values of fumarate/succinate (E° = 0.031), NAD⁺/NADH, and the succinate dehydrogenase FAD/FADH₂.

4. **Degree of Reduction of Electron Carriers in the Respiratory Chain**
 The degree of reduction of each carrier in the respiratory chain is determined by conditions in the mitochondrion. For example, when NADH and O₂ are abundant, the steady-state degree of reduction of the carriers decreases as electrons pass from the substrate to O₂. When electron transfer is blocked, the carriers before the block become more reduced and those beyond the block become more oxidized (see Fig. 19–6). For each of the conditions below, predict the state of oxidation of ubiquinone and cytochromes b, c₁, c, and a + a₃.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Predicted State of Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Abundant NADH and O₂, but cyanide added</td>
<td>NADH reduced, O₂ oxidized</td>
</tr>
<tr>
<td>(b) Abundant NADH, but O₂ exhausted</td>
<td>NADH oxidized, O₂ reduced</td>
</tr>
<tr>
<td>(c) Abundant O₂, but NADH exhausted</td>
<td>NADH reduced, O₂ reduced</td>
</tr>
<tr>
<td>(d) Abundant NADH and O₂</td>
<td>NADH oxidized, O₂ oxidized</td>
</tr>
</tbody>
</table>

5. **Effect of Rotenone and Antimycin A on Electron Transfer**
 Rotenone, a toxic natural product from plants, strongly inhibits NADH dehydrogenase of insect and fish mitochondria. Antimycin A, a toxic antibiotic, strongly inhibits the oxidation of ubiquinol.

 a. Explain why rotenone ingestion is lethal to some insect and fish species.
 b. Explain why antimycin A is a poison.
 c. Given that rotenone and antimycin A are equally effective in blocking their respective sites in the electron-transfer chain, which would be a more potent poison? Explain.

6. **Uncouplers of Oxidative Phosphorylation**
 In normal mitochondria the rate of electron transfer is tightly coupled to the demand for ATP. When the rate of use of ATP is relatively low, the rate of electron transfer is low; when demand for ATP increases, electron-transfer rate increases. Under these conditions of tight coupling, the number of ATP molecules produced per atom of oxygen consumed when NADH is the electron donor—the P/O ratio—is about 2.5.

 a. Predict the effect of a relatively low and a relatively high concentration of uncoupling agent on the rate of electron transfer and the P/O ratio.

 b. Ingestion of uncouplers causes profuse sweating and an increase in body temperature. Explain this phenomenon in molecular terms. What happens to the P/O ratio in the presence of uncouplers?

 c. The uncoupler 2,4-dinitrophenol was once prescribed as a weight-reducing drug. How could this agent, in principle, serve as a weight-reducing aid?Uncoupling agents are no longer prescribed, because some deaths occurred following their use. Why might the ingestion of uncouplers lead to death?

7. **Effects of Valinomycin on Oxidative Phosphorylation**
 When the antibiotic valinomycin is added to actively respiring mitochondria, several things happen: the yield of ATP decreases, the rate of O₂ consumption increases, heat is released, and the pH gradient across the inner mitochondrial membrane increases. Does valinomycin act as an uncoupler or as an inhibitor of oxidative phosphorylation? Explain the experimental observations in terms of the antibiotic’s ability to transfer K⁺ ions across the inner mitochondrial membrane.

8. **Mode of Action of Dicyclohexylcarbodiimide (DCCD)**
 When DCCD is added to a suspension of tightly coupled, actively respiring mitochondria, the rate of electron transfer (measured by O₂ consumption) and the rate of ATP production dramatically decrease. If a solution of 2,4-dinitrophenol is now added to the preparation, O₂ consumption returns to normal but ATP production remains inhibited.

 a. What process in electron transfer or oxidative phosphorylation is affected by DCCD?
There is growing evidence that mitochondrial Complexes I, II, III, and IV are part of a larger supercomplex. What might be the advantage of having all four complexes within a supercomplex?

16. How Many Protons in a Mitochondrion? Electron transfer translocates protons from the mitochondrial matrix to the external medium, establishing a pH gradient across the inner membrane (outside more acidic than inside). The tendency of protons to diffuse back into the matrix is the driving force for ATP synthesis by ATP synthase. During oxidative phosphorylation by a suspension of mitochondria in a medium of pH 7.4, the pH of the matrix has been measured as 7.7.

(a) Calculate $[H^+]$ in the external medium and in the matrix under these conditions.

(b) What is the outside-to-inside ratio of $[H^+]$? Comment on the energy inherent in this concentration difference. (Hint: See Eqn 11-4, p. 396.)

(c) Calculate the number of protons in a respiring liver mitochondrion, assuming its inner matrix compartment is a sphere of diameter 1.5 μm.

(d) From these data, is the pH gradient alone sufficient to generate ATP?

(e) If not, suggest how the necessary energy for synthesis of ATP arises.

17. Rate of ATP Turnover in Rat Heart Muscle Rat heart muscle operating aerobically fills more than 90% of its ATP needs by oxidative phosphorylation. Each gram of tissue consumes O$_2$ at the rate of 10.0 μmol/min, with glucose as the fuel source.

(a) Calculate the rate at which the heart muscle consumes glucose and produces ATP.

(b) For a steady-state concentration of ATP of 5.0 μmol/g of heart muscle tissue, calculate the time required (in seconds) to completely turn over the cellular pool of ATP. What does this result indicate about the need for tight regulation of ATP production? (Note: Concentrations are expressed as micromoles per gram of muscle tissue because the tissue is mostly water.)

18. Rate of ATP Breakdown in Insect Flight Muscle ATP production in the flight muscle of the fly $L_{ucilia sericata}$ results almost exclusively from oxidative phosphorylation. During flight, 187 mL of O$_2$/hr * g of body weight is needed to maintain an ATP concentration of 7.0 μmol/g of flight muscle. Assuming that flight muscle makes up 20% of the weight of the fly, calculate the rate at which the flight-muscle ATP pool turns over. How long would the reservoir of ATP last in the absence of oxidative phosphorylation? Assume that reducing equivalents are transferred by the glycerol 3-phosphate shuttle and that O$_2$ is at 25 °C and 101.3 kPa (1 atm).

19. Mitochondrial Disease and Cancer Mutations in the genes that encode certain mitochondrial proteins are associated with a high incidence of some types of cancer. How might defective mitochondria lead to cancer?

20. Variable Severity of a Mitochondrial Disease Individuals with a disease caused by a specific defect in the mitochondrial genome may have symptoms ranging from mild to severe. Explain why.

21. Transmembrane Movement of Reducing Equivalents Under aerobic conditions, extramitochondrial NADH
must be oxidized by the mitochondrial electron-transfer chain. Consider a preparation of rat hepatocytes containing mitochondria and all the cytosolic enzymes. If \([4^-3\text{H}]\text{NADH}\) is introduced, radioactivity soon appears in the mitochondrial matrix. However, if \([7^-14\text{C}]\text{NADH}\) is introduced, no radioactivity appears in the matrix. What do these observations reveal about the oxidation of extramitochondrial NADH by the electron-transfer chain?

22. High Blood Alanine Level Associated with Defects in Oxidative Phosphorylation Most individuals with genetic defects in oxidative phosphorylation are found to have relatively high concentrations of alanine in their blood. Explain this in biochemical terms.

23. NAD Pools and Dehydrogenase Activities Although both pyruvate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase use \(\text{NAD}^+\) as their electron acceptor, the two enzymes do not compete for the same cellular NAD pool. Why?

24. Diabetes as a Consequence of Mitochondrial Defects Glucokinase is essential in the metabolism of glucose in pancreatic \(\beta\) cells. Humans with two defective copies of the glucokinase gene exhibit a severe, neonatal diabetes, whereas those with only one defective copy of the gene have a much milder form of the disease (mature onset diabetes of the young, MODY2). Explain this difference in terms of the biology of the \(\beta\) cell.

25. Effects of Mutations in Mitochondrial Complex II Single nucleotide changes in the gene for succinate dehydrogenase (Complex II) are associated with midgut carcinoid tumors. Suggest a mechanism to explain this observation.

26. Photochemical Efficiency of Light at Different Wavelengths The rate of photosynthesis, measured by \(\text{O}_2\) production, is higher when a green plant is illuminated with light of wavelength 680 nm than with light of 700 nm. However, illumination by a combination of light of 680 nm and 700 nm gives a higher rate of photosynthesis than light of either wavelength alone. Explain.

27. Balance Sheet for Photosynthesis In 1804 Theodore de Saussure observed that the total weight of oxygen and dry organic matter produced by plants is greater than the weight of carbon dioxide consumed during photosynthesis. Where does the extra weight come from?

28. Role of \(\text{H}_2\text{S}\) in Some Photosynthetic Bacteria Illuminated purple sulfur bacteria carry out photosynthesis in the presence of \(\text{H}_2\text{O}\) and \(^{14}\text{CO}_2\), but only if \(\text{H}_2\text{S}\) is added and \(\text{O}_2\) is absent. During the course of photosynthesis, measured by formation of \(^{14}\text{C}\)-carbohydrate, \(\text{H}_2\text{S}\) is converted to elemental sulfur, but no \(\text{O}_2\) is evolved. What is the role of the conversion of \(\text{H}_2\text{S}\) to sulfur? Why is no \(\text{O}_2\) evolved?

29. Boosting the Reducing Power of Photosystem I by Light Absorption When photosystem I absorbs red light at 700 nm, the standard reduction potential of \(\text{P}700\) changes from 0.40 V to about –1.2 V. What fraction of the absorbed light is trapped in the form of reducing power?

30. Electron Flow through Photosystems I and II Predict how an inhibitor of electron passage through photochrome would affect electron flow through (a) photosystem II and (b) photosystem I. Explain your reasoning.

31. Limited ATP Synthesis in the Dark In a laboratory experiment, spinach chloroplasts are illuminated in the absence of \(\text{ADP}\) and \(\text{P}_i\), then the light is turned off and \(\text{ADP}\) and \(\text{P}_i\) are added. ATP is synthesized for a short time in the dark. Explain this finding.

32. Mode of Action of the Herbicide DCMU When chloroplasts are treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, or diuron), a potent herbicide, \(\text{O}_2\) evolution and photophosphorylation cease. Oxygen evolution, but not photophosphorylation, can be restored by addition of an external electron acceptor, or Hill reagent. How does DCMU act as a weed killer? Suggest a location for the inhibitory action of this herbicide in the scheme shown in Figure 19–56. Explain.

33. Effect of Venturicidin on Oxygen Evolution Venturicidin is a powerful inhibitor of the chloroplast ATP synthase, interacting with the \(\text{CF}_o\) part of the enzyme and blocking proton passage through the \(\text{CF}_o\) complex. How would venturicidin affect oxygen evolution in a suspension of well-illuminated chloroplasts? Would your answer change if the experiment were done in the presence of an uncoupling reagent such as 2,4-dinitrophenol (DNP)? Explain.

34. Bioenergetics of Photophosphorylation The steady-state concentrations of ATP, ADP, and P, in isolated spinach chloroplasts under full illumination at pH 7.0 are 120.0, 6.0, and 700.0 \(\mu\text{M}\), respectively.

(a) What is the free-energy requirement for the synthesis of 1 mol of ATP under these conditions?

(b) The energy for ATP synthesis is furnished by light-induced electron transfer in the chloroplasts. What is the minimum voltage drop necessary (during transfer of a pair of electrons) to synthesize ATP under these conditions? (You may need to refer to Eqn 19–7, p. 515.)

35. Light Energy for a Redox Reaction Suppose you have isolated a new photosynthetic microorganism that oxidizes \(\text{H}_2\text{S}\) and passes the electrons to \(\text{NAD}^+\). What wavelength of light would provide enough energy for \(\text{H}_2\text{S}\) to reduce \(\text{NAD}^+\) under standard conditions? Assume 100% efficiency in the photochemical event, and use \(E^\circ\) of \(-243\) mV for \(\text{H}_2\text{S}\) and \(-320\) mV for \(\text{NAD}^+\). See Figure 19–46 for the energy equivalents of wavelengths of light.
36. Equilibrium Constant for Water-Splitting Reactions
The coenzyme NADP$^+$ is the terminal electron acceptor in chloroplasts, according to the reaction

$$2H_2O + 2NADP^+ \rightarrow 2NADPH + 2H^+ + O_2$$

Use the information in Table 19-2 to calculate the equilibrium constant for this reaction at 25 °C. (The relationship between K_w and ΔG° is discussed on p. 492.) How can the chloroplast overcome this unfavorable equilibrium?

37. Energetics of Phototransduction During photosynthesis, eight photons must be absorbed (four by each photosystem) for every O$_2$ molecule produced:

$$2H_2O + 2NADP^+ + 8\text{ photons} \rightarrow 2NADPH + 2H^+ + O_2$$

Assuming that these photons have a wavelength of 700 nm (red) and that the light absorption and use of light energy are 100% efficient, calculate the free-energy change for the process.

38. Electron Transfer to a Hill Reagent
Isolated spinach chloroplasts evolve O$_2$ when illuminated in the presence of potassium ferricyanide (a Hill reagent), according to the equation

$$2H_2O + 4Fe^{3+} \rightarrow O_2 + 4H^+ + 4Fe^{2+}$$

where Fe$^{3+}$ represents ferricyanide and Fe$^{2+}$, ferrocyanide. Is NADPH produced in this process? Explain.

39. How Often Does a Chlorophyll Molecule Absorb a Photon? The amount of chlorophyll a (M, 892) in a spinach leaf is about 20 µg/cm2 of leaf surface. In noonday sunlight (average energy reaching the leaf is 5.4 J/cm2 • min), the leaf absorbs about 50% of the radiation. How often does a single chlorophyll molecule absorb a photon? Given that the average lifetime of an excited chlorophyll molecule in vivo is 1 ns, what fraction of the chlorophyll molecules are excited at any one time?

40. Effect of Monochromatic Light on Electron Flow
The extent to which an electron carrier is oxidized or reduced during photosynthetic electron transfer can sometimes be observed directly with a spectrophotometer. When chloroplasts are illuminated with 700 nm light, cytochrome f, plastocyanin, and plastocyanin are oxidized. When chloroplasts are illuminated with 680 nm light, however, these electron carriers are reduced. Explain.

41. Function of Cyclic Photophosphorylation
When the [NADPH]/[NADP$^+$] ratio in chloroplasts is high, photophosphorylation is predominantly cyclic (see Fig. 19-56). Is O$_2$ evolved during cyclic photophosphorylation? Is NADPH produced? Explain. What is the main function of cyclic photophosphorylation?

42. Photophosphorylation: Discovery, Rejection, and Rediscovery
In the 1930s and 1940s, researchers were beginning to make progress toward understanding the mechanism of photosynthesis. At the time, the role of “energy-rich phosphate bonds” (today, “ATP”) in glycolysis and cellular respiration was just becoming known. There were many theories about the mechanism of photosynthesis, especially about the role of light. This problem focuses on what was then called the “primary photochemical process”—that is, on what it is, exactly, that the energy from captured light produces in the photosynthetic cell. Interestingly, one important part of the modern model of photosynthesis was proposed early on, only to be rejected, ignored for several years, then finally revived and accepted.

In 1944, Emerson, Stauffer, and Umbreit proposed that “the function of light energy in photosynthesis is the formation of ‘energy-rich’ phosphate bonds” (p. 107). In their model (hereafter, the “Emerson model”), the free energy necessary to drive both CO$_2$ fixation and reduction came from these “energy-rich phosphate bonds” (i.e., ATP), produced as a result of light absorption by a chlorophyll-containing protein.

This model was explicitly rejected by Rabinowitch (1945). After summarizing Emerson and coauthors’ findings, Rabinowitch stated: “Until more positive evidence is provided, we are inclined to consider as more convincing a general argument against this hypothesis, which can be derived from energy considerations. Photosynthesis is eminently a problem of energy accumulation. What good can be served, then, by converting light quanta (even those of red light, which amount to about 43 kcal per Einstein) into ‘phosphate quanta’ of only 10 kcal per mole? This appears to be a start in the wrong direction—toward dissipation rather than toward accumulation of energy” (Vol. I, p. 228). This argument, along with other evidence, led to the abandonment of the Emerson model until the 1950s, when it was found to be correct—albeit in a modified form.

For each piece of information from Emerson and coauthors’ article presented in (a) through (d) below, answer the following three questions:

1. How does this information support the Emerson model, in which light energy is used directly by chlorophyll to make ATP, and the ATP then provides the energy to drive CO$_2$ fixation and reduction?

2. How would Rabinowitch explain this information, based on his model (and most other models of the day), in which light energy is used directly by chlorophyll to make reducing compounds? Rabinowitch wrote: “Theoretically, there is no reason why all electronic energy contained in molecules excited by the absorption of light should not be available for oxidation-reduction” (Vol. I, p. 152). In this model, the reducing compounds are then used to fix and reduce CO$_2$, and the energy for these reactions comes from the large amounts of free energy released by the reduction reactions.

3. How is this information explained by our modern understanding of photosynthesis?

(a) Chlorophyll contains a Mg$^{2+}$ ion, which is known to be an essential cofactor for many enzymes that catalyze phosphorylation and dephosphorylation reactions.

(b) A crude “chlorophyll protein” isolated from photosynthetic cells showed phosphorylating activity.
The phosphorylating activity of the “chlorophyll protein” was inhibited by light.

The levels of several different phosphorylated compounds in photosynthetic cells changed dramatically in response to light exposure. (Emerson and coworkers were not able to identify the specific compounds involved.)

As it turned out, the Emerson and Rabinowitch models were both partly correct and partly incorrect.

Explain how the two models relate to our current model of photosynthesis.

In his rejection of the Emerson model, Rabinowitch went on to say: “The difficulty of the phosphate storage theory appears most clearly when one considers the fact that, in weak light, eight or ten quanta of light are sufficient to reduce one molecule of carbon dioxide. If each quantum should produce one molecule of high-energy phosphate, the accumulated energy would be only 80–100 kcal per Einstein—while photosynthesis requires at least 112 kcal per mole, and probably more, because of losses in irreversible partial reactions” (Vol. 1, p. 228).

How does Rabinowitch’s value of 8 to 10 photons per molecule of CO₂ reduced compare with the value accepted today? You need to consult Chapter 20 for some of the information required here.

How would you rebut Rabinowitch’s argument, based on our current knowledge about photosynthesis?

References

Carbohydrate Biosynthesis in Plants and Bacteria

20.1 Photosynthetic Carbohydrate Synthesis 773
20.2 Photorespiration and the C4 and CAM Pathways 786
20.3 Biosynthesis of Starch and Sucrose 791
20.4 Synthesis of Cell Wall Polysaccharides: Plant Cellulose and Bacterial Peptidoglycan 794
20.5 Integration of Carbohydrate Metabolism in the Plant Cell 797

We have now reached a turning point in our study of cellular metabolism. Thus far in Part II we have described how the major metabolic fuels—carbohydrates, fatty acids, and amino acids—are degraded through converging catabolic pathways to enter the citric acid cycle and yield their electrons to the respiratory chain, and how this exergonic flow of electrons to oxygen is coupled to the endergonic synthesis of ATP. We now turn to anabolic pathways, which use chemical energy in the form of ATP and NADH or NADPH to synthesize cellular components from simple precursor molecules. Anabolic pathways are generally reductive rather than oxidative. Catabolism and anabolism proceed simultaneously in a dynamic steady state, so the energy-yielding degradation of cellular components is counterbalanced by biosynthetic processes, which create and maintain the intricate orderliness of living cells.

Plants must be especially versatile in their handling of carbohydrates, for several reasons. First, plants are autotrophs, able to convert inorganic carbon (as CO2) into organic compounds. Second, biosynthesis occurs primarily in plastids, membrane-bounded organelles unique to photosynthetic organisms, and the movement of intermediates between cellular compartments is an important aspect of metabolism. Third, plants are not motile; they cannot move to find better supplies of water, sunlight, or nutrients. They must have sufficient metabolic flexibility to allow them to adapt to changing conditions in the place where they are rooted. Finally, plants have thick cell walls made of carbohydrate polymers, which must be assembled outside the plasma membrane and which constitute a significant proportion of the cell’s carbohydrate.

The chapter begins with a description of the process by which CO2 is assimilated into trioses and hexoses, then considers photorespiration, an important side reaction during CO2 fixation, and the ways in which certain plants avoid this side reaction. We then look at how the biosynthesis of sucrose (for sugar transport) and starch (for energy storage) is accomplished by mechanisms analogous to those employed by animal cells to make glycogen. The next topic is the synthesis of the cellulose of plant cell walls and the peptidoglycan of bacterial cell walls, illustrating the problems of energy-dependent biosynthesis outside the plasma membrane. Finally, we discuss how the various pathways that share pools of common intermediates are segregated within organelles yet integrated with one another.

20.1 Photosynthetic Carbohydrate Synthesis

The synthesis of carbohydrates in animal cells always employs precursors having at least three carbons, all of which are less oxidized than the carbon in CO2. Plants and photosynthetic microorganisms, by contrast, can synthesize carbohydrates from CO2 and water, reducing CO2 at the expense of the energy and reducing power furnished by the ATP and NADPH that are generated by the light-dependent reactions of photosynthesis (Fig. 20-1). Plants (and other autotrophs) can use CO2 as the sole source of the carbon atoms required for the biosynthesis of cellulose and starch, lipids and proteins, and the many other organic components of plant cells. By contrast, heterotrophs cannot bring about the net reduction of CO2 to achieve a net synthesis of glucose.
Green plants contain in their chloroplasts unique enzymatic machinery that catalyzes the conversion of CO₂ to simple (reduced) organic compounds, a process called CO₂ assimilation. This process has also been called CO₂ fixation or carbon fixation, but we reserve these terms for the specific reaction in which CO₂ is incorporated (fixed) into a three-carbon organic compound, the triose phosphate 3-phosphoglycerate. This simple product of photosynthesis is the precursor of more complex biomolecules, including sugars, polysaccharides, and the metabolites derived from them, all of which are synthesized by metabolic pathways similar to those of animal tissues. Carbon dioxide is assimilated via a cyclic pathway, its key intermediates constantly regenerated. The pathway was elucidated in the early 1950s by Melvin Calvin, Andrew Benson, and James A. Bassham, and is often called the Calvin cycle or, more descriptively, the photosynthetic carbon reduction cycle.

Carbohydrate metabolism is more complex in plant cells than in animal cells or in nonphotosynthetic microorganisms. In addition to the universal pathways of glycolysis and gluconeogenesis, plants have the unique reaction sequences for reduction of CO₂ to triose phosphates and the associated reductive pentose phosphate pathway—all of which must be coordinately regulated to ensure proper allocation of carbon to energy production and synthesis of starch and sucrose. Key enzymes are regulated, as we shall see, by (1) reduction of disulfide bonds by electrons flowing from photosystem I and (2) changes in pH and Mg²⁺ concentration that result from illumination. When we look at other aspects of plant carbohydrate metabolism, we also find enzymes that are modulated by (3) conventional allosteric regulation by one or more metabolic intermediates and (4) covalent modification (phosphorylation).

Plastids Are Organelles Unique to Plant Cells and Algae

Most of the biosynthetic activities in plants (including CO₂ assimilation) occur in plastids, a family of self-reproducing organelles bounded by a double membrane and containing a small genome that encodes some of their proteins. Most proteins destined for plastids are encoded in nuclear genes, which are transcribed and translated like other nuclear genes; then the proteins are imported into plastids. Plastids reproduce by binary fission, replicating their genome (a single circular DNA molecule) and using their own enzymes and ribosomes to synthesize the proteins encoded by that genome. Chloroplasts (see Fig. 19–45) are the sites of CO₂ assimilation. The enzymes for this process are contained in the stroma, the soluble phase bounded by the inner chloroplast membrane. Amyloplasts are colorless plastids (that is, they lack chlorophyll and other pigments found in chloroplasts). They have no internal membranes analogous to the photosynthetic membranes (thylakoids) of chloroplasts, and in plant tissues rich in starch these plastids are packed with starch granules (Fig. 20–2). Chloroplasts can be converted to

Figure 20–1 Assimilation of CO₂ into biomass in plants. The light-driven synthesis of ATP and NADPH, described in Chapter 19, provides energy and reducing power for the fixation of CO₂ into trioses, from which all the carbon-containing compounds of the plant cell are synthesized. The processes shown with red arrows are the focus of this chapter.

Figure 20–2 Amyloplasts filled with starch (dark granules) are stained with iodine in this section of Ranunculus root cells. Starch granules in various tissues range from 1 to 100 μm in diameter.
proplastids by the loss of their internal membranes and chlorophyll, and proplastids are interconvertible with amyloplasts (Fig. 20–3). In turn, both amyloplasts and proplastids can develop into chloroplasts. The relative proportions of the plastid types depend on the type of plant tissue and on the intensity of illumination. Cells of green leaves are rich in chloroplasts, whereas amyloplasts dominate in nonphotosynthetic tissues that store starch in large quantities, such as potato tubers.

The inner membranes of all types of plastids are impermeable to polar and charged molecules. Traffic across these membranes is mediated by sets of specific transporters.

Carbon Dioxide Assimilation Occurs in Three Stages

The first stage in the assimilation of CO₂ into biomolecules (Fig. 20–4) is the **carbon-fixation reaction**: condensation of CO₂ with a five-carbon acceptor, ribulose 1,5-bisphosphate, to form two molecules of 3-phosphoglycerate. In the second stage, the 3-phosphoglycerate is reduced to triose phosphates. Overall, three molecules of CO₂ are fixed to three molecules of ribulose 1,5-bisphosphate to form six molecules of glyceraldehyde 3-phosphate (18 carbons) in equilibrium with dihydroxyacetone phosphate. In the third stage, five of the six molecules of triose phosphate (15 carbons) are used to regenerate three molecules of ribulose 1,5-bisphosphate (15 carbons), the starting material. The sixth molecule of triose phosphate, the net product of photosynthesis, can be used to make hexoses for fuel and building materials, sucrose for transport to nonphotosynthetic tissues, or starch for storage. Thus the overall process is cyclical, with the continuous conversion of CO₂ to triose and hexose phosphates. Fructose 6-phosphate is a key intermediate in stage 3 of CO₂ assimilation; it stands at a branch point, leading either to regeneration of ribulose 1,5-bisphosphate or to synthesis of starch. The pathway from hexose phosphate to pentose bisphosphate involves many of the same reactions used in animal cells for the conversion of pentose phosphates to hexose phosphates during the nonoxidative phase of the **pentose phosphate pathway** (see Fig. 14–22). In the photosynthetic assimilation of CO₂, essentially the same set of reactions operates in the other direction, converting hexose phosphates to pentose phosphates. This

FIGURE 20–4 The three stages of CO₂ assimilation in photosynthetic organisms. Stoichiometries of three key intermediates (numbers in parentheses) reveal the fate of carbon atoms entering and leaving the cycle. As shown here, three CO₂ are fixed for the net synthesis of one molecule of glyceraldehyde 3-phosphate. This cycle is the photosynthetic carbon reduction cycle, or the Calvin cycle.
Stage 1: Fixation of CO₂ into 3-Phosphoglycerate

An important clue to the nature of the CO₂-assimilation mechanisms in photosynthetic organisms came in the late 1940s. Calvin and his associates illuminated a suspension of green algae in the presence of radioactive carbon dioxide (¹⁴CO₂) for just a few seconds, then quickly killed the cells, extracted their contents, and with the help of chromatographic methods searched for the metabolites in which the labeled carbon first appeared. The first compound that became labeled was 3-phosphoglycerate, with the ¹⁴C predominantly located in the carboxyl carbon atom. These experiments strongly suggested that 3-phosphoglycerate is an early intermediate in photosynthesis. The many plants in which this three-carbon compound is the first intermediate are called C₃ plants, in contrast to the C₄ plants described below.

The enzyme that catalyzes incorporation of CO₂ into an organic form is ribulose 1,5-bisphosphate carboxylase/oxygenase, a name mercifully shortened to rubisco. As a carboxylase, rubisco catalyzes the covalent attachment of CO₂ to the five-carbon sugar ribulose 1,5-bisphosphate and cleavage of the unstable six-carbon intermediate to form two molecules of 3-phosphoglycerate, one of which bears the carbon introduced as CO₂ in its carboxyl group (Fig. 20-4). The enzyme’s oxygenase activity is discussed in Section 20.2.

There are two distinct forms of rubisco. Form I is found in vascular plants, algae, and cyanobacteria; form II is confined to certain photosynthetic bacteria. Plant rubisco, the crucial enzyme in the production of biomass from CO₂, has a complex form I structure (Fig. 20-5a), with eight identical large subunits (M₉, 53,000; encoded in the chloroplast genome, or plastome), each containing a catalytic site, and eight identical small subunits (M₉, 14,000; encoded in the nuclear genome) of uncertain function. The form II rubisco of photosynthetic bacteria is simpler in structure, having two subunits that in many respects resemble the large subunits of the plant enzyme (Fig. 20-5b). This similarity is consistent with the endosymbiont hypothesis for the origin of chloroplasts (p. 33). The plant enzyme has an exceptionally low turnover number; only three molecules of CO₂ are fixed per second per molecule of rubisco at 25 °C. To achieve high rates of CO₂ fixation, plants therefore need large amounts of this enzyme. In fact, rubisco makes up almost 50% of soluble protein in chloroplasts and is probably one of the most abundant enzymes in the biosphere.

Central to the proposed mechanism for plant rubisco is a carbamoylated Lys side chain with a bound...
Rubisco 11.294
Glu Ribulose 1,5-bisphosphate forms an enediolate at the active site.

Figure 20-7 First stage of CO₂ assimilation: Rubisco's carboxylase activity. The CO₂-fixation reaction is catalyzed by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). The overall reaction accomplishes the combination of one CO₂ and one ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate, one of which contains the carbon atom from CO₂ (red). Additional proton transfers (not shown), involving Lys²⁰¹, Lys²⁷⁸, and His²⁹⁴, occur in several of these steps. (Rubisco Mechanism; Rubisco Tutorial)

Figure 20-6 Central role of Mg²⁺ in the catalytic mechanism of Rubisco. (Derived from PDB ID 1RX0) Mg²⁺ is coordinated in a roughly octahedral complex with six oxygen atoms: one oxygen in the carbamate on Lys²⁰¹; two in the carboxyl groups of Glu²⁰⁴ and Asp²⁰³; two at C-2 and C-3 of the substrate, ribulose 1,5-bisphosphate; and one in the other substrate, CO₂. A water molecule occupies the CO₂-binding site in this crystal structure. In this figure a CO₂ molecule is modeled in its place. (Residue numbers refer to the spinach enzyme.)

Mg²⁺ ion. The Mg²⁺ ion brings together and orients the reactants at the active site (Fig. 20-6) and polarizes the CO₂, opening it to nucleophilic attack by the five-carbon enediolate reaction intermediate formed on the enzyme (Fig. 20-7). The resulting six-carbon...
Intermediate breaks down to yield two molecules of 3-phosphoglycerate.

As the catalyst for the first step of photosynthetic CO₂ assimilation, rubisco is a prime target for regulation. The enzyme is inactive until carbamoylated on the ε amino group of Lys²⁰¹ (Fig. 20–8). Ribulose 1,5-bisphosphate inhibits carbamoylation by binding tightly to the active site and locking the enzyme in the “closed” conformation, in which Lys²⁰¹ is inaccessible. Rubisco activase overcomes the inhibition by promoting ATP-dependent release of the ribulose 1,5-bisphosphate, exposing the Lys amino group to nonenzymatic carbamoylation by CO₂; this is followed by Mg²⁺ binding, which activates the rubisco. Rubisco activase in some species is activated by light through a redox mechanism (see Fig. 20–19).

Another regulatory mechanism involves the “nocturnal inhibitor” 2-carboxyarabinitol 1-phosphate, a naturally occurring transition-state analog (see Box 6–3) with a structure similar to that of the β-keto acid intermediate of the rubisco reaction (Fig. 20–7; see also Fig. 20–20). This compound, synthesized in the dark in some plants, is a potent inhibitor of carbamoylated rubisco. It is either broken down when light returns or is expelled by rubisco activase, activating the rubisco.

Stage 2: Conversion of 3-Phosphoglycerate to Glyceraldehyde 3-Phosphate The 3-phosphoglycerate formed in stage 1 is converted to glyceraldehyde 3-phosphate in two steps that are essentially the reversal of the corresponding steps in glycolysis, with one exception: the nucleotide cofactor for the reduction of 1,3-bisphosphoglycerate is NADPH rather than NADH (Fig. 20–9). The chloroplast stroma contains all the glycolytic enzymes except phosphoglycerate mutase. The stromal and cytosolic enzymes are isozymes; both sets of enzymes catalyze the same reactions, but they are the products of different genes.

In the first step of stage 2, the stromal 3-phosphoglycerate kinase catalyzes the transfer of a phosphoryl group from ATP to 3-phosphoglycerate, yielding 1,3-bisphosphoglycerate. Next, NADPH donates electrons in a reduction catalyzed by the chloroplast-specific isozyme of glyceraldehyde 3-phosphate dehydrogenase, producing glyceraldehyde 3-phosphate and P₇. Triose phosphate isomerase then interconverts glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Most of the triose phosphate thus produced is used to regenerate ribulose 1,5-bisphosphate; the rest is either converted to starch in the chloroplast and stored for later use or immediately exported to the cytosol and converted to sucrose for transport to growing regions of the plant. In developing leaves, a significant portion of the triose phosphate may be degraded by glycolysis to provide energy.

Stage 3: Regeneration of Ribulose 1,5-Bisphosphate from Triose Phosphates The first reaction in
FIGURE 20–9 Second stage of CO₂ assimilation. 3-Phosphoglycerate is converted to glyceraldehyde 3-phosphate (red arrows). Also shown are the alternative fates of the fixed carbon of glyceraldehyde 3-phosphate (blue arrows). Most of the glyceraldehyde 3-phosphate is recycled to ribulose 1,5-bisphosphate as shown in Figure 20–10. A small fraction of the “extra” glyceraldehyde 3-phosphate may be used immediately as a source of energy, but most is converted to sucrose for transport or is stored in the chloroplast as starch. In the latter case, glyceraldehyde 3-phosphate condenses with dihydroxyacetone phosphate in the stroma to form fructose 1,6-bisphosphate, a precursor of starch. In other situations the glyceraldehyde 3-phosphate is converted to dihydroxyacetone phosphate, which leaves the chloroplast via a specific transporter (see Fig. 20–15) and, in the cytosol, can be degraded glycolytically to provide energy or used to form fructose 6-phosphate and hence sucrose.

The assimilation of CO₂ into triose phosphates consumes ribulose 1,5-bisphosphate and, for continuous flow of CO₂ into carbohydrate, ribulose 1,5-bisphosphate must be constantly regenerated. This is accomplished in a series of reactions (Fig. 20–10) that, together with stages 1 and 2, constitute the cyclic pathway shown in Figure 20–4. The product of the first assimilation reaction (3-phosphoglycerate) thus undergoes transformations that regenerate ribulose 1,5-bisphosphate. The intermediates in this pathway include three-, four-, five-, six-, and seven-carbon sugars. In the following discussion, all step numbers refer to Figure 20–10.

Steps 1 and 4 are catalyzed by the same enzyme, aldolase. It first catalyzes the reversible condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, yielding fructose 1,6-bisphosphate (step 1); this is cleaved to fructose 6-phosphate and P₁ by fructose 1,6-bisphosphatase (FBPase-1) in step 2. The reaction is strongly exergonic and essentially irreversible. Step 3 is catalyzed by transketolase, which contains thiamine pyrophosphate (TPP) as its prosthetic group (see Fig. 14–14a) and requires Mg²⁺. Transketolase catalyzes the reversible transfer of a 2-carbon ketol group (CH₂OH—CO—) from a ketose phosphate donor, fructose 6-phosphate, to an aldose phosphate acceptor, glyceraldehyde 3-phosphate (Fig. 20–11a, b), forming the pentose xylulose 5-phosphate and the tetrose erythrose 4-phosphate. In step 4, aldolase acts again,
Carbohydrate Biosynthesis in Plants and Bacteria

FIGURE 20-10 Third stage of CO₂ assimilation. This schematic diagram shows the interconversions of triose phosphates and pentose phosphates. Black dots represent the number of carbons in each compound. The starting materials are glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Reactions catalyzed by aldolase (1 and 4) and transketolase (3 and 5) produce pentose phosphates that are converted to ribulose 1,5-bisphosphate—ribose 5-phosphate by ribose 5-phosphate isomerase (7) and xylulose 5-phosphate by ribulose 5-phosphate epimerase (8). In step 9, ribulose 5-phosphate is phosphorylated, regenerating ribulose 1,5-bisphosphate. The steps with blue arrows are exergonic and make the whole process irreversible: steps 2 fructose 1,6-bisphosphatase, 5 sedoheptulose bisphosphatase, and 9 ribulose 5-phosphate kinase.

The pentose phosphates formed in the transketolase reactions—ribose 5-phosphate and xylulose 5-phosphate—are converted to **ribose 5-phosphate** (steps 7 and 8), which in the final step (9) of the cycle is phosphorylated to ribulose 1,5-bisphosphate by ribulose 5-phosphate kinase (Fig. 20-13). This is the third very exergonic reaction of the pathway, as the phosphate anhydride bond in ATP is swapped for a phosphate ester in ribulose 1,5-bisphosphate.

Combining erythrose 4-phosphate with dihydroxyacetone phosphate to form the seven-carbon **sedoheptulose 1,7-bisphosphate**. An enzyme unique to plastids, sedoheptulose 1,7-bisphosphatase, converts the bisphosphate to sedoheptulose 7-phosphate (step 5); this is the second irreversible reaction in the pathway. Transketolase now acts again, converting sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to two pentose phosphates in step 6 (Fig. 20-11c). **Figure 20-12** shows how a two-carbon fragment is temporarily carried on the transketolase cofactor TPP and condensed with the three carbons of glyceraldehyde 3-phosphate in step 8.
FIGURE 20–11 Transketolase-catalyzed reactions of the Calvin cycle. (a) General reaction catalyzed by transketolase: the transfer of a two-carbon group, carried temporarily on enzyme-bound TPP, from a ketose donor to an aldose acceptor. (b) Conversion of a hexose and a triose to a four-carbon and a five-carbon sugar (step 2 of Fig. 20–10). (c) Conversion of seven-carbon and three-carbon sugars to two pentoses (step 6 of Fig. 20–10).

FIGURE 20–12 TPP as a cofactor for transketolase. Transketolase transfers a two-carbon group from sedoheptulose 7-phosphate to glyceraldehyde 3-phosphate, producing two pentose phosphates (step 6 in Fig. 20–10). Thiamine pyrophosphate serves as a temporary carrier of the two-carbon unit and as an electron sink (see Fig. 14–14) to facilitate the reactions.
Synthesis of Each Triose Phosphate from CO₂ Requires Six NADPH and Nine ATP

The net result of three turns of the Calvin cycle is the conversion of three molecules of CO₂ and one molecule of phosphate to a molecule of triose phosphate. The stoichiometry of the overall path from CO₂ to triose phosphate, with regeneration of ribulose 1,5-bisphosphate, is shown in Figure 20–14. Three molecules of ribulose 1,5-bisphosphate (a total of 15 carbons) condense with three CO₂ (3 carbons) to form six molecules of 3-phosphoglycerate (18 carbons). These six molecules of 3-phosphoglycerate are reduced to six molecules of glyceraldehyde 3-phosphate (which is in equilibrium with dihydroxyacetone phosphate), with the expenditure of six ATP (in the synthesis of 1,3-bisphosphoglycerate) and six NADPH (in the reduction of 1,3-bisphosphoglycerate to glyceraldehyde 3-phosphate). The isozyme of glyceraldehyde 3-phosphate dehydrogenase present in chloroplasts can use NADP as its electron carrier and normally functions in the direction of 1,3-bisphosphoglycerate reduction. The cytosolic
isozyme uses NAD, as does the glycolytic enzyme of animals and other eukaryotes, and in the dark this isozyme acts in glycolysis to oxidize glyceraldehyde 3-phosphate. Both glyceraldehyde 3-phosphate dehydrogenase isozymes, like all enzymes, catalyze the reaction in both directions.

One molecule of glyceraldehyde 3-phosphate is the net product of the carbon assimilation pathway. The other five triose phosphate molecules (15 carbons) are rearranged in steps 1 to 9 of Figure 20-10 to form three molecules of ribulose 1,5-bisphosphate (15 carbons). The last step in this conversion requires one ATP per ribulose 1,5-bisphosphate, or a total of three ATP. Thus, in summary, for every molecule of triose phosphate produced by photosynthetic CO₂ assimilation, six NADPH and nine ATP are required.

NADPH and ATP are produced in the light-dependent reactions of photosynthesis in about the same ratio (2:3) as they are consumed in the Calvin cycle. Nine ATP molecules are converted to ADP and phosphate in the generation of a molecule of triose phosphate; eight of the phosphates are released as P₁ and combined with eight ADP to regenerate ATP. The ninth phosphate is incorporated into the triose phosphate itself. To convert the ninth ADP to ATP, a molecule of P₁ must be imported from the cytosol, as we shall see.

In the dark, the production of ATP and NADPH by photophosphorylation, and the incorporation of CO₂ into triose phosphate (by the so-called dark reactions), cease. The “dark reactions” of photosynthesis were so named to distinguish them from the primary light-driven reactions of electron transfer to NADP⁺ and synthesis of ATP, described in Chapter 19. They do not, in fact, occur at significant rates in the dark and are thus more appropriately called the carbon-assimilation reactions. Later in this section we describe the regulatory mechanisms that turn on carbon assimilation in the light and turn it off in the dark.

The chloroplast stroma contains all the enzymes necessary to convert the triose phosphates produced by CO₂ assimilation (glyceraldehyde 3-phosphate and dihydroxyacetone phosphate) to starch, which is temporarily stored in the chloroplast as insoluble granules. Aldolase condenses the trioses to fructose 1,6-bisphosphate; fructose 1,6-bisphosphatase produces fructose 6-phosphate; phosphohexose isomerase yields glucose 6-phosphate; and phosphoglucomutase produces glucose 1-phosphate, the starting material for starch synthesis (see Section 20.3).

All the reactions of the Calvin cycle except those catalyzed by rubisco, sedoheptulose 1,7-bisphosphatase, and ribulose 5-phosphate kinase also take place in animal tissues. Lacking these three enzymes, animals cannot carry out net conversion of CO₂ to glucose.

A Transport System Exports Triose Phosphates from the Chloroplast and Imports Phosphate

The inner chloroplast membrane is impermeable to most phosphorylated compounds, including fructose 6-phosphate, glucose 6-phosphate, and fructose 1,6-bisphosphate. It does, however, have a specific antiporter that catalyzes the one-for-one exchange of P₁ with a triose phosphate, either dihydroxyacetone phosphate or 3-phosphoglycerate (Fig. 20-15; see also Fig. 20-9). This antiporter simultaneously moves P₁ into the chloroplast, where it is used in photophosphorylation, and moves triose phosphate into the cytosol, where it can be used to synthesize sucrose, the form in which the fixed carbon is transported to distant plant tissues.

Sucrose synthesis in the cytosol and starch synthesis in the chloroplast are the major pathways by which the excess triose phosphate from photosynthesis is “harvested.” Sucrose synthesis (described below) releases four P₁ molecules from the four triose phosphates required to make sucrose. For every molecule of triose

![Figure 20-15](image_url)
Carbohydrate Biosynthesis in Plants and Bacteria

phosphate removed from the chloroplast, one P_i is transported into the chloroplast, providing the ninth P_i mentioned above, to be used in regenerating ATP. If this exchange were blocked, triose phosphate synthesis would quickly deplete the available P_i in the chloroplast, slowing ATP synthesis and suppressing assimilation of CO_2 into starch.

The P_i-triose phosphate antiport system serves one additional function. ATP and reducing power are needed in the cytosol for a variety of synthetic and energy-requiring reactions. These requirements are met to an as yet undetermined degree by mitochondria, but a second potential source of energy is the ATP and NADPH generated in the chloroplast stroma during the light reactions. However, neither ATP nor NADPH can cross the chloroplast membrane. The P_i-triose phosphate antiport system has the indirect effect of moving ATP equivalents and reducing equivalents from the chloroplast to the cytosol (Fig. 20-16). Dihydroxyacetone phosphate formed in the stroma is transported to the cytosol, where it is converted by glycolytic enzymes to 3-phosphoglycerate, generating ATP and NADH.

3-Phosphoglycerate reenters the chloroplast, completing the cycle.

Four Enzymes of the Calvin Cycle Are Indirectly Activated by Light

The reductive assimilation of CO_2 requires a lot of ATP and NADPH, and their stromal concentrations increase when chloroplasts are illuminated (Fig. 20-17). The light-induced transport of protons across the thylakoid membrane (Chapter 19) also increases the stromal pH from about 7 to about 8, and it is accompanied by a flow of Mg^{2+} from the thylakoid compartment into the stroma, raising the [Mg^{2+}] from 1 to 3 mM to 3 to 6 mM. Several stromal enzymes have evolved to take advantage of these light-induced conditions, which signal the availability of ATP and NADPH: the enzymes are more active in an alkaline environment and at high [Mg^{2+}]. For example, activation of rubisco by formation of the carbamoyllysine is faster at alkaline pH, and high stromal [Mg^{2+}] favors formation of the enzyme’s active Mg^{2+} complex. Fructose 1,6-bisphosphatase requires Mg^{2+}

FIGURE 20-16 Role of the P_i-triose phosphate antiporter in the transport of ATP and reducing equivalents. Dihydroxyacetone phosphate leaves the chloroplast and is converted to glyceraldehyde 3-phosphate in the cytosol. The cytosolic glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase reactions then produce NADH, ATP, and 3-phosphoglycerate. The latter reenters the chloroplast and is reduced to dihydroxyacetone phosphate, completing a cycle that effectively moves ATP and reducing equivalents (NAD(P)H) from chloroplast to cytosol.
ATP and NADPH produced by the light reactions are essential substrates for the reduction of CO₂. The photosynthetic reactions that produce ATP and NADPH are accompanied by movement of protons (red) from the stroma into the thylakoid, creating alkaline conditions in the stroma. Magnesium ions pass from the thylakoid into the stroma, increasing the stromal [Mg²⁺]. and is very dependent on pH (Fig. 20–18); its activity increases more than 100-fold when pH and [Mg²⁺] rise during chloroplast illumination.

Four Calvin cycle enzymes are subject to a special type of regulation by light. Ribulose 5-phosphate kinase, fructose 1,6-bisphosphatase, sedoheptulose 1,7-bisphosphatase, and glyceraldehyde 3-phosphate dehydrogenase are activated by light-driven reduction of disulfide bonds between two Cys residues critical to their catalytic activities. When these Cys residues are disulfide-bonded (oxidized), the enzymes are inactive; this is the normal situation in the dark. With illumination, electrons flow from photosystem I to ferredoxin (see Fig. 19–56), which passes electrons to a small, soluble, disulfide-containing protein called thioredoxin (Fig. 20–19), in a reaction catalyzed by ferredoxin-thioredoxin reductase. Reduced thioredoxin donates electrons for the reduction of the disulfide bonds of the light-activated enzymes, and these reductive cleavage reactions are accompanied by conformational changes that increase enzyme activities. At nightfall, the Cys residues in the four enzymes are reoxidized to their disulfide forms, the enzymes are inactivated, and ATP is not expended in CO₂ assimilation. Instead, starch synthesized and stored during the daytime is degraded to fuel glycolysis at night.

Glucose 6-phosphate dehydrogenase, the first enzyme in the oxidative pentose phosphate pathway, is also regulated by this light-driven reduction mechanism,
but in the opposite sense. During the day, when photosynthesis produces plenty of NADPH, this enzyme is not needed for NADPH production. Reduction of a critical disulfide bond by electrons from ferredoxin inactivates the enzyme.

SUMMARY 20.1 Photosynthetic Carbohydrate Synthesis

- Photosynthesis in vascular plants takes place in chloroplasts. In the CO$_2$-assimilating reactions (the Calvin cycle), ATP and NADPH are used to reduce CO$_2$ to triose phosphates. These reactions occur in three stages: the fixation reaction itself, catalyzed by rubisco; reduction of the resulting 3-phosphoglycerate to glyceraldehyde 3-phosphate; and regeneration of ribulose 1,5-bisphosphate from triose phosphates.
- Rubisco condenses CO$_2$ with ribulose 1,5-bisphosphate, forming an unstable hexose bisphosphate that splits into two molecules of 3-phosphoglycerate. Rubisco is activated by covalent modification (carbamoylation of Lys) catalyzed by rubisco activase and is inhibited by a natural transition-state analog, whose concentration rises in the dark and falls during daylight.
- Stromal isozymes of the glycolytic enzymes catalyze reduction of 3-phosphoglycerate to glyceraldehyde 3-phosphate; each molecule reduced requires one ATP and one NADPH.
- Stromal enzymes, including transketolase and aldolase, rearrange the carbon skeletons of triose phosphates, generating intermediates of three, four, five, six, and seven carbons and eventually yielding pentose phosphates. The pentose phosphates are converted to ribulose 5-phosphate, then phosphorylated to ribulose 1,5-bisphosphate to complete the Calvin cycle.
- The cost of fixing three CO$_2$ into one triose phosphate is nine ATP and six NADPH, which are provided by the light-dependent reactions of photosynthesis.
- An antiporter in the inner chloroplast membrane exchanges P$_i$ in the cytosol for 3-phosphoglycerate or dihydroxyacetone phosphate produced by CO$_2$ assimilation in the stroma. Oxidation of dihydroxyacetone phosphate in the cytosol generates ATP and NADH, thus moving ATP and reducing equivalents from the chloroplast to the cytosol.
- Four enzymes of the Calvin cycle are activated indirectly by light and are inactive in the dark, so that hexose synthesis does not compete with glycolysis—which is required to provide energy in the dark.

20.2 Photorespiration and the C$_4$ and CAM Pathways

As we have seen, photosynthetic cells produce O$_2$ (by the splitting of H$_2$O) during the light-driven reactions (Chapter 19) and use CO$_2$ during the light-independent processes (described above), so the net gaseous change during photosynthesis is the uptake of CO$_2$ and release of O$_2$:

$$\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{O}_2 + (\text{CH}_2\text{O})$$

In the dark, plants also carry out **mitochondrial respiration**, the oxidation of substrates to CO$_2$ and the conversion of O$_2$ to H$_2$O. And there is another process in plants that, like mitochondrial respiration, consumes O$_2$ and produces CO$_2$ and, like photosynthesis, is driven by light. This process, **photorespiration**, is a costly side reaction of photosynthesis, a result of the lack of specificity of the enzyme rubisco. In this section we describe this side reaction and the strategies plants use to minimize its metabolic consequences.

Photorespiration Results from Rubisco's Oxygenase Activity

Rubisco is not absolutely specific for CO$_2$ as a substrate. Molecular oxygen (O$_2$) competes with CO$_2$ at the active site, and about once in every three or four turnovers, rubisco catalyzes the condensation of O$_2$ with ribulose 1,5-bisphosphate to form 3-phosphoglycerate and 2-phosphoglycolate (Fig. 20-20), a metabolically useless product. This is the oxygenase activity referred to in the full name of the enzyme: ribulose 1,5-bisphosphate carboxylase/oxygenase. The reaction with O$_2$ results in no fixation of carbon and seems to be a net liability to the cell; salvaging the carbons from 2-phosphoglycolate (by the pathway outlined below) consumes significant amounts of cellular energy and releases some previously fixed CO$_2$.

Given that the reaction with oxygen is deleterious to the organism, why did the evolution of rubisco produce an active site unable to discriminate well between CO$_2$ and O$_2$? Perhaps much of this evolution occurred before the time, about 2.5 billion years ago, when production of O$_2$ by photosynthetic organisms started to raise the oxygen content of the atmosphere. Before that time, there was no selective pressure for rubisco to discriminate between CO$_2$ and O$_2$. The K_m for CO$_2$ is about 9 µM, and that for O$_2$ is about 350 µM. The modern atmosphere contains about 20% O$_2$ and only 0.04% CO$_2$, so an aqueous solution in equilibrium with air at room temperature contains about 250 µM O$_2$ and 11 µM CO$_2$—concentrations that allow significant O$_2$ “fixation” by rubisco and thus a significant waste of energy. The temperature dependence of the solubilities of O$_2$ and CO$_2$ is such that at higher temperatures, the ratio of O$_2$ to CO$_2$ in solution increases. In addition, the affinity of rubisco for CO$_2$...
Enediol form

Enz5rme-bound intermediate

FIGURE 20–20 Oxygenase activity of rubisco. Rubisco can incorporate O₂ rather than CO₂ into ribulose 1,5-bisphosphate. The unstable intermediate thus formed splits into 2-phosphoglycolate (recycled as described in Fig. 20–21) and 3-phosphoglycerate, which can reenter the Calvin cycle.

decreases with increasing temperature, exacerbating its tendency to catalyze the wasteful oxygenase reaction. And as CO₂ is consumed in the assimilation reactions, the ratio of O₂ to CO₂ in the air spaces of a leaf increases, further favoring the oxygenase reaction.

The Salvage of Phosphoglycolate Is Costly

The glycolate pathway converts two molecules of 2-phosphoglycolate to a molecule of serine (three carbons) and a molecule of CO₂ (Fig. 20–21). In the chloroplast, a phosphatase converts 2-phosphoglycolate to glycolate, which is exported to the peroxisome. There, glycolate is oxidized by molecular oxygen, and the resulting aldehyde (glyoxylate) undergoes transamination to glycine. The hydrogen peroxide formed as a side product of glycolate oxidation is rendered harmless by peroxidases in the peroxisome. Glycine passes from the peroxisome to the mitochondrial matrix, where it undergoes oxidative decarboxylation by the glycine decarboxylase complex, an enzyme similar in structure and

![Diagram showing glycylglycine pathway](image-url)

FIGURE 20–21 Glycolate pathway. This pathway, which salvages 2-phosphoglycolate (shaded pink) by its conversion to serine and eventually 3-phosphoglycerate, involves three cellular compartments. Glycolate formed by dephosphorylation of 2-phosphoglycolate in chloroplasts is oxidized to glyoxylate in peroxisomes and then transaminated to glycine. In mitochondria, two glycine molecules condense to form serine and the CO₂ released during photorespiration (shaded green). This reaction is catalyzed by glycine decarboxylase, an enzyme present at very high levels in the mitochondria of C₃ plants (see text). The serine is converted to hydroxypyruvate and then to glycerate in peroxisomes; glycater reenters the chloroplasts to be phosphorylated, rejoining the Calvin cycle. Oxygen (shaded blue) is consumed at two steps during photorespiration.
mechanism to two mitochondrial complexes we have already encountered: the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex (Chapter 16). The **glycine decarboxylase complex** oxidizes glycine to CO₂ and NH₃, with the concomitant reduction of NAD⁺ to NADH and transfer of the remaining carbon from glycine to the cofactor tetrahydrofolate (Fig. 20–22). The one-carbon unit carried on tetrahydrofolate is then transferred to a second glycine by serine hydroxymethyltransferase, producing serine. The net reaction catalyzed by the glycine decarboxylase complex and serine hydroxymethyltransferase is

\[
2 \text{Glycine} + \text{NAD}^+ + \text{H}_2\text{O} \rightarrow \text{serine} + \text{CO}_2 + \text{NH}_3 + \text{NADH} + \text{H}^+
\]

The serine is converted to hydroxypyruvate, to glycerate, and finally to 3-phosphoglycerate, which is used to regenerate ribulose 1,5-bisphosphate, completing the long, expensive cycle (Fig. 20–21).

In bright sunlight, the flux through the glycolate salvage pathway can be very high, producing about five times more CO₂ than is typically produced by all the oxidations of the citric acid cycle. To generate this large flux, mitochondria contain prodigious amounts of the glycine decarboxylase complex: the four proteins of the complex make up half of all the protein in the mitochondrial matrix in the leaves of pea and spinach plants! In nonphotosynthetic parts of a plant, such as potato tubers, mitochondria have very low concentrations of the glycine decarboxylase complex.

The combined activity of the rubisco oxygenase and the glycolate salvage pathway consumes O₂ and produces CO₂—hence the name **photorespiration**. This pathway is perhaps better called the **oxidative photo-**

FIGURE 20–22 The glycine decarboxylase system. Glycine decarboxylase in plant mitochondria is a complex of four types of subunits, with the stoichiometry P₄H₃T₃L₂. Protein H has a covalently attached lipoic acid residue that can undergo reversible oxidation. Step 1 is formation of a Schiff base between pyridoxal phosphate (PLP) and glycine, catalyzed by protein P (named for its bound PLP). In step 2, protein P catalyzes oxidative decarboxylation of glycine, releasing CO₂; the remaining methylamine group is attached to one of the —SH groups of reduced lipoic acid. 3 Protein T (which uses tetrahydrofolate (H₄ folate) as cofactor) now releases NH₃ from the methylamine moiety and transfers the remaining one-carbon fragment to tetrahydrofolate, producing N⁵,N¹⁰-methylenetetrahydrofolate. 4 Protein L oxidizes the two —SH groups of lipoic acid to a disulfide, passing electrons through FAD to NAD⁺ 5, thus completing the cycle. The N⁵,N¹⁰-methylenetetrahydrofolate formed in this process is used by serine hydroxymethyltransferase to convert a molecule of glycine to serine, regenerating the tetrahydrofolate that is essential for the reaction catalyzed by protein T. The L subunit of glycine decarboxylase is identical to the dihydrolipoyl dehydrogenase (E₃) of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase (see Fig. 16–6).
The synthetic carbon cycle or C_2 cycle, names that do not invite comparison with respiration in mitochondria. Unlike mitochondrial respiration, "photorespiration" does not conserve energy and may actually inhibit net biomass formation as much as 50%. This inefficiency has led to evolutionary adaptations in the carbon-assimilation processes, particularly in plants that have evolved in warm climates.

In C_4 Plants, CO_2 Fixation and Rubisco Activity Are Spatially Separated

In many plants that grow in the tropics (and in temperate-zone crop plants native to the tropics, such as maize, sugarcane, and sorghum) a mechanism has evolved to circumvent the problem of wasteful photorespiration. The step in which CO_2 is fixed into a three-carbon product, 3-phosphoglycerate, is preceded by several steps, one of which is temporary fixation of CO_2 into a four-carbon compound. Plants that use this process are referred to as C_4 plants, and the assimilation process as C_4 metabolism or the C_4 pathway. Plants that use the carbon-assimilation method we have described thus far, in which the first step is reaction of CO_2 with ribulose 1,5-bisphosphate to form 3-phosphoglycerate, are called C_3 plants.

The C_4 plants, which typically grow at high light intensity and high temperatures, have several important characteristics: high photosynthetic rates, high growth rates, low photorespiration rates, low rates of water loss, and a specialized leaf structure. Photosynthesis in the leaves of C_4 plants involves two cell types: mesophyll and bundle-sheath cells (Fig. 20-23a). There are three variants of C_4 metabolism, worked out in the 1960s by Marshall Hatch and Rodger Slack (Fig. 20-23b).

In plants of tropical origin, the first intermediate into which CO_2 is fixed is oxaloacetate, a four-carbon compound. This reaction, which occurs in the cytosol of leaf mesophyll cells, is catalyzed by phosphoenolpyruvate carboxylase, for which the substrate is HCO_3, not CO_2. The oxaloacetate thus formed is either reduced to malate at the expense of NADPH (as shown in Fig. 20-23b) or converted to aspartate by transamination:

\[\text{Oxaloacetate} + \alpha\text{-amino acid} \rightarrow \text{L-aspartate} + \alpha\text{-keto acid} \]

The malate or aspartate formed in the mesophyll cells then passes into neighboring bundle-sheath cells through plasmodesmata, protein-lined channels that connect two plant cells and provide a path for movement of...
metabolites and even small proteins between cells. In the bundle-sheath cells, malate is oxidized and decarboxylated to yield pyruvate and CO$_2$ by the action of **malic enzyme**, reducing NADP$^+$. In plants that use aspartate as the CO$_2$ carrier, aspartate arriving in bundle-sheath cells is transaminated to form oxaloacetate and reduced to malate, then the CO$_2$ is released by malic enzyme or PEP carboxykinase. As labeling experiments show, the free CO$_2$ released in the bundle-sheath cells is the same CO$_2$ molecule originally fixed into oxaloacetate in the mesophyll cells. This CO$_2$ is now fixed again, this time by rubisco, in exactly the same reaction that occurs in C$_3$ plants: incorporation of CO$_2$ into C-1 of 3-phosphoglycerate.

The pyruvate formed by decarboxylation of malate in bundle-sheath cells is transferred back to the mesophyll cells, where it is converted to PEP by an unusual enzymatic reaction catalyzed by **pyruvate phosphate dikinase** (Fig. 20–23b). This enzyme is called a dikinase because two different molecules are simultaneously phosphorylated by one molecule of ATP: pyruvate to PEP, and phosphate to pyrophosphate. The pyrophosphate is subsequently hydrolyzed to phosphate, so two high-energy phosphate groups of ATP are used in regenerating PEP. The PEP is now ready to receive another molecule of CO$_2$ in the mesophyll cell.

The PEP carboxylase of mesophyll cells has a high affinity for HCO$_3^-$ (which is favored relative to CO$_2$ in aqueous solution and can fix CO$_2$ more efficiently than can rubisco). Unlike rubisco, it does not use O$_2$ as an alternative substrate, so there is no competition between CO$_2$ and O$_2$. The PEP carboxylase reaction, then, serves to fix and concentrate CO$_2$ in the form of malate. Release of CO$_2$ from malate in the bundle-sheath cells yields a sufficiently high local concentration of CO$_2$ for rubisco to function near its maximal rate, and for suppression of the enzyme’s oxygenase activity.

Once CO$_2$ is fixed into 3-phosphoglycerate in the bundle-sheath cells, the other reactions of the Calvin cycle take place exactly as described earlier. Thus in C$_4$ plants, mesophyll cells carry out CO$_2$ assimilation by the C$_4$ pathway and bundle-sheath cells synthesize starch and sucrose by the C$_3$ pathway.

Three enzymes of the C$_4$ pathway are regulated by light, becoming more active in daylight. Malate dehydrogenase is activated by the thioredoxin-dependent reduction mechanism shown in Figure 20–19; PEP carboxylase is activated by phosphorylation of a Ser residue; and pyruvate phosphate dikinase is activated by dephosphorylation. In the latter two cases, the details of how light effects phosphorylation or dephosphorylation are not known.

The pathway of CO$_2$ assimilation has a greater energy cost in C$_4$ plants than in C$_3$ plants. For each molecule of CO$_2$ assimilated in the C$_4$ pathway, a molecule of PEP must be regenerated at the expense of two high-energy phosphate groups of ATP. Thus C$_4$ plants need five ATP molecules to assimilate one molecule of CO$_2$, whereas C$_3$ plants need only three (nine per triose phosphate). As the temperature increases (and the affinity of rubisco for CO$_2$ decreases, as noted above), a point is reached (at about 28 to $30 \degree C$) at which the gain in efficiency from the elimination of photorespiration more than compensates for this energetic cost. C$_4$ plants (crabgrass, for example) outgrow most C$_3$ plants during the summer, as any experienced gardener can attest.

In C$_4$ Plants, CO$_2$ Capture and Rubisco Action Are Temporally Separated

Succulent plants such as cactus and pineapple, which are native to very hot, very dry environments, have another variation on photosynthetic CO$_2$ fixation, which reduces loss of water vapor through the pores (stomata) by which CO$_2$ and O$_2$ must enter leaf tissue. Instead of separating the initial trapping of CO$_2$ and its fixation by rubisco across space (as do the C$_4$ plants), they separate these two events over time. At night, when the air is cooler and moister, the stomata open to allow entry of CO$_2$, which is then fixed into oxaloacetate by PEP carboxylase. The oxaloacetate is reduced to malate and stored in the vacuoles, to protect cytosolic and plastid enzymes from the low pH produced by malic acid dissociation. During the day the stomata close, preventing the water loss that would result from high daytime temperatures, and the CO$_2$ trapped overnight in malate is released as CO$_2$ by the NADP-linked malic enzyme. This CO$_2$ is now assimilated by the action of rubisco and the Calvin cycle enzymes. Because this method of CO$_2$ fixation was first discovered in crassulacean acid metabolism plants of the family Crassulaceae, it is called **crassulacean acid metabolism**. The plants are called **CAM plants**.

SUMMARY 20.2 Photorespiration and the C$_4$ and CAM Pathways

- When rubisco uses O$_2$ rather than CO$_2$ as substrate, the 2-phosphoglycolate so formed is disposed of in an oxygen-dependent pathway. The result is increased consumption of O$_2$—photorespiration or, more accurately, the oxidative photosynthetic carbon cycle or C$_3$ cycle. The 2-phosphoglycolate is converted to glyoxylate, to glycine, and then to serine in a pathway that involves enzymes in the chloroplast stroma, the peroxisome, and the mitochondrion.

- In C$_4$ plants, the carbon-assimilation pathway minimizes photorespiration: CO$_2$ is first fixed in mesophyll cells into a four-carbon compound, which passes into bundle-sheath cells and releases CO$_2$ in high concentrations. The released CO$_2$ is fixed by rubisco, and the remaining reactions of the Calvin cycle occur as in C$_3$ plants.
In CAM plants, CO₂ is fixed into malate in the dark and stored in vacuoles until daylight, when the stomata are closed (minimizing water loss) and malate serves as a source of CO₂ for rubisco.

20.3 Biosynthesis of Starch and Sucrose

During active photosynthesis in bright light, a plant leaf produces more carbohydrate (as triose phosphates) than it needs for generating energy or synthesizing precursors. The excess is converted to sucrose and transported to other parts of the plant, to be used as fuel or stored. In most plants, starch is the main storage form, but in a few plants, such as sugar beet and sugarcane, sucrose is the primary storage form. The synthesis of sucrose and starch occurs in different cellular compartments (cytosol and plastids, respectively), and these processes are coordinated by a variety of regulatory mechanisms that respond to changes in light level and photosynthetic rate.

ADP-Glucose Is the Substrate for Starch Synthesis in Plant Plastids and for Glycogen Synthesis in Bacteria

Starch, like glycogen, is a high molecular weight polymer of D-glucose in (α1→4) linkage. It is synthesized in chloroplasts for temporary storage as one of the stable end products of photosynthesis, and for long-term storage it is synthesized in the amyloplasts of the nonphotosynthetic parts of plants—seeds, roots, and tubers (underground stems).

The mechanism of glucose activation in starch synthesis is similar to that in glycogen synthesis. An activated nucleotide sugar, in this case ADP-glucose, is formed by condensation of glucose 1-phosphate with ATP in a reaction made essentially irreversible by the presence in plastids of inorganic pyrophosphatase (p. 508). **Starch synthase** then transfers glucose residues from ADP-glucose to preexisting starch molecules. Although it has generally been assumed that glucose is added to the nonreducing end of starch, as in glycogen synthesis (see Fig. 15-30), evidence now suggests that starch synthase has two equivalent active sites that alternate in inserting a glucosyl residue onto the reducing end of the growing chain. This end remains covalently attached to the enzyme, first at one active site, then at the other (Fig. 20–24). Attachment to one active site effectively activates the reducing end of the growing chain for nucleophilic displacement of the enzyme by the attacking C-4 hydroxyl of a glucosyl moiety.

FIGURE 20–24 A model for starch synthesis. According to this model, starch synthesis proceeds by a two-site insertion mechanism, with ADP-glucose as the initial glucosyl donor. The two identical active sites on starch synthase alternate in displacing the growing chain from each other, and new glucosyl units are inserted at the reducing end of the growing chain.
bound to the other active site, forming the (α1→4) linkage characteristic of starch.

The amylose of starch is unbranched, but amylopectin has numerous (α1→6)-linked branches (see Fig. 7–14). Chloroplasts contain a branching enzyme, similar to glycogen-branching enzyme (see Fig. 15–31), that introduces the (α1→6) branches of amylopectin. Taking into account the hydrolysis by inorganic pyrophosphatase of the PP_i produced during ADP-glucose synthesis, the overall reaction for starch formation from glucose 1-phosphate is

\[
\text{Starch}_n + \text{glucose 1-phosphate} + \text{ATP} \rightarrow \text{starch}_{n+1} + \text{ADP} + 2\text{Pi}
\]

\[\Delta G^\circ = -50 \text{ kJ/mol}\]

Starch synthesis is regulated at the level of ADP-glucose formation, as discussed below.

Many types of bacteria store carbohydrate in the form of glycogen (essentially highly branched starch), which they synthesize in a reaction analogous to that catalyzed by glycogen synthase in animals. Bacteria, like plant plastids, use ADP-glucose as the activated form of glucose, whereas animal cells use UDP-glucose. Again, the similarity between plastid and bacterial metabolism is consistent with the endosymbiont hypothesis for the origin of organelles (p. 33).

UDP-Glucose Is the Substrate for Sucrose Synthesis in the Cytosol of Leaf Cells

Most of the triose phosphate generated by CO₂ fixation in plants is converted to sucrose (Fig. 20–25) or starch. In the course of evolution, sucrose may have been selected as the transport form of carbon because of its unusual linkage between the anomeric C-1 of glucose and the anomeric C-2 of fructose. This bond is not hydrolyzed by amylases or other common carbohydrate-cleaving enzymes, and the unavailability of the anomeric carbons prevents sucrose from reacting nonenzymatically (as does glucose) with amino acids and proteins.

Sucrose is synthesized in the cytosol, beginning with dihydroxyacetone phosphate and glyceraldehyde 3-phosphate exported from the chloroplast. After condensation of two triose phosphates to form fructose 1,6-bisphosphate (catalyzed by aldolase), hydrolysis by fructose 1,6-bisphosphatase yields fructose 6-phosphate. **Sucrose 6-phosphate synthase** then catalyzes the reaction of fructose 6-phosphate with UDP-glucose to form sucrose 6-phosphate (Fig. 20–25). Finally, **sucrose 6-phosphate phosphatase** removes the phosphate group, making sucrose available for export to other tissues. The reaction catalyzed by sucrose 6-phosphate synthase is a low-energy process (\(\Delta G^\circ = -5.7 \text{ kJ/mol}\)), but the hydrolysis of sucrose 6-phosphate to sucrose is sufficiently exergonic (\(\Delta G^\circ = -16.5 \text{ kJ/mol}\)) to make the overall synthesis of sucrose essentially irreversible. Sucrose synthesis is regulated and closely coordinated with starch synthesis, as we shall see.

FIGURE 20–25 Sucrose synthesis. Sucrose is synthesized from UDP-glucose and fructose 6-phosphate, which are synthesized from triose phosphates in the plant cell cytosol by pathways shown in Figures 15–29 and 20–9. The sucrose 6-phosphate synthase of most plant species is allosterically regulated by glucose 6-phosphate and P_i.

One remarkable difference between the cells of plants and animals is the absence in the plant cell cytosol of the enzyme inorganic pyrophosphatase, which catalyzes the reaction

\[
\text{PP}_i + \text{H}_2\text{O} \rightarrow 2\text{Pi} \quad \Delta G^\circ = -19.2 \text{ kJ/mol}
\]

For many biosynthetic reactions that liberate PP_i, pyrophosphatase activity makes the process more favorable energetically, tending to make these reactions irreversible. In plants, this enzyme is present in plastids but absent from the cytosol. As a result, the cytosol of leaf cells contains a substantial concentration of PP_i—enough (0.3 mM) to make reactions such as that catalyzed by UDP-glucose pyrophosphorylase (see Fig. 15–29) readily reversible. Recall from Chapter 14 (p. 533) that the cytosolic isozyme of phosphofructokinase in plants uses PP_i, not ATP, as the phosphoryl donor.

Conversion of Triose Phosphates to Sucrose and Starch Is Tightly Regulated

Triose phosphates produced by the Calvin cycle in bright sunlight, as we have noted, may be stored temporarily
in the chloroplast as starch, or converted to sucrose and exported to nonphotosynthetic parts of the plant, or both. The balance between the two processes is tightly regulated, and both must be coordinated with the rate of carbon fixation. Five-sixths of the triose phosphate formed in the Calvin cycle must be recycled to ribulose 1,5-bisphosphate (Fig. 20-14); if more than one-sixth of the triose phosphate is drawn out of the cycle to make sucrose and starch, the cycle will slow or stop. However, insufficient conversion of triose phosphate to starch or sucrose would tie up phosphate, leaving a chloroplast deficient in P_i, which is also essential for operation of the Calvin cycle.

The flow of triose phosphates into sucrose is regulated by the activity of fructose 1,6-bisphosphatase (FBPase-1) and the enzyme that effectively reverses its action, PP_i-dependent phosphofructokinase (PP-PFK-1; p. 533). These enzymes are therefore critical points for determining the fate of triose phosphates produced by photosynthesis. Both enzymes are regulated by fructose 2,6-bisphosphate (F26BP), which inhibits FBPase-1 and stimulates PP-PFK-1. In vascular plants, the concentration of F26BP varies inversely with the rate of photosynthesis (Fig. 20-26). Phosphofructokinase-2, responsible for F26BP synthesis, is inhibited by dihydroxyacetone phosphate or 3-phosphoglycerate and stimulated by fructose 6-phosphate and P_i. During active photosynthesis, dihydroxyacetone phosphate is produced and P_i is consumed, resulting in inhibition of PFK-2 and lowered concentrations of F26BP. This favors greater flux of triose phosphate into fructose 6-phosphate formation and sucrose synthesis. With this regulatory system, sucrose synthesis occurs when the level of triose phosphate produced by the Calvin cycle exceeds that needed to maintain the operation of the cycle.

Sucrose synthesis is also regulated at the level of sucrose 6-phosphate synthase, which is allosterically activated by glucose 6-phosphate and inhibited by P_i. This enzyme is further regulated by phosphorylation and dephosphorylation; a protein kinase phosphorylates the enzyme on a specific Ser residue, making it less active, and a phosphatase reverses this inactivation by removing the phosphate (Fig. 20-27). Inhibition of the kinase by glucose 6-phosphate, and of the phosphatase by P_i, enhances the effects of these two compounds on sucrose synthesis. When hexose phosphates are abundant, sucrose 6-phosphate synthase is activated by glucose 6-phosphate; when P_i is elevated (as when photosynthesis is slow), sucrose synthesis is slowed. During active photosynthesis, triose phosphates are converted to fructose 6-phosphate, which is rapidly equilibrated with glucose 6-phosphate by phosphohexose isomerase. Because the equilibrium lies far toward glucose 6-phosphate, as soon as fructose 6-phosphate accumulates, the level of glucose 6-phosphate rises and sucrose synthesis is stimulated.

The key regulatory enzyme in starch synthesis is ADP-glucose pyrophosphorylase (Fig. 20-28); it is activated by 3-phosphoglycerate (which accumulates during active photosynthesis) and inhibited by P_i (which accumulates when light-driven condensation of ADP and P_i slows). When sucrose synthesis slows, 3-phosphoglycerate formed by CO_2 fixation accumulates, activating this enzyme and stimulating the synthesis of starch.

FIGURE 20-26 Fructose 2,6-bisphosphate as regulator of sucrose synthesis. The concentration of the allosteric regulator fructose 2,6-bisphosphate in plant cells is regulated by the products of photosynthetic carbon assimilation and by P_i. Dihydroxyacetone phosphate and 3-phosphoglycerate produced by CO_2 assimilation inhibit phosphofructokinase-2 (PFK-2), the enzyme that synthesizes the regulator; P_i stimulates PFK-2. The concentration of the regulator is therefore inversely proportional to the rate of photosynthesis. In the dark, the concentration of fructose 2,6-bisphosphate increases and stimulates the glycolytic enzyme PP_i-dependent phosphofructokinase-1 (PP-PFK-1), while inhibiting the gluconeogenic enzyme fructose 1,6-bisphosphatase (FBPase-1). When photosynthesis is active (in the light), the concentration of the regulator drops and the synthesis of fructose 6-phosphate and sucrose is favored.
Carbohydrate Biosynthesis in Plants and Bacteria

![Diagram of glucose 6-phosphate and ATP conversion](image)

FIGURE 20–28 Regulation of ADP-glucose phosphorylase by 3-phosphoglycerate and P_i. This enzyme, which produces the precursor for starch synthesis, is rate-limiting in starch production. The enzyme is stimulated allosterically by 3-phosphoglycerate (3-PGA) and inhibited by P_i; in effect, the ratio [3-PGA]/[P_i], which rises with increasing rates of photosynthesis, controls starch synthesis at this step.

SUMMARY 20.3 Biosynthesis of Starch and Sucrose

- Starch synthase in chloroplasts and amyloplasts catalyzes the addition of single glucose residues, donated by ADP-glucose, to the reducing end of a starch molecule by a two-step insertion mechanism. Branches in amylopectin are introduced by a second enzyme.
- Sucrose is synthesized in the cytosol in two steps from UDP-glucose and fructose 1-phosphate.
- The partitioning of triose phosphates between sucrose synthesis and starch synthesis is regulated by fructose 2,6-bisphosphate (F2,6BP), an allosteric effector of the enzymes that determine the level of fructose 6-phosphate. F2,6BP concentration varies inversely with the rate of photosynthesis, and F2,6BP inhibits the synthesis of fructose 6-phosphate, the precursor to sucrose.

20.4 Synthesis of Cell Wall Polysaccharides: Plant Cellulose and Bacterial Peptidoglycan

Cellulose is a major constituent of plant cell walls, providing strength and rigidity and preventing the swelling of the cell and rupture of the plasma membrane that might result when osmotic conditions favor water entry into the cell. Each year, worldwide, plants synthesize more than 10^{11} metric tons of cellulose, making this simple polymer one of the most abundant compounds in the biosphere. The structure of cellulose is simple: linear polymers of thousands of (1→4)-linked β-glucose units, assembled into bundles of about 36 chains, which aggregate side by side to form a microfibril (Fig. 20–29).
The biosynthesis of cellulose is less well understood than that of glycogen or starch. As a major component of the plant cell wall, cellulose must be synthesized from intracellular precursors but deposited and assembled outside the plasma membrane. The enzymatic machinery for initiation, elongation, and export of cellulose chains is more complicated than that needed to synthesize starch or glycogen (which are not exported). Bacteria face a similar set of problems when they synthesize the complex polysaccharides that make up their cell walls, and they may employ some of the same mechanisms to solve these problems.

Cellulose is Synthesized by Supramolecular Structures in the Plasma Membrane

The complex enzymatic machinery that assembles cellulose chains spans the plasma membrane, with one part positioned to bind the substrate, UDP-glucose, in the cytosol and another part extending to the outside, responsible for elongating and crystallizing cellulose molecules in the extracellular space. Freeze-fracture electron microscopy shows these terminal complexes, also called rosettes, to be composed of six large particles arranged in a regular hexagon with a diameter of about 30 nm (Fig. 20–30). Several proteins, including the catalytic subunit of cellulose synthase, make up the terminal complex. Much of the recent progress in understanding cellulose synthesis stems from genetic and molecular genetic studies of the plant Arabidopsis thaliana, which is especially amenable to genetic dissection and whose genome has been sequenced. The gene family that encodes this cellulose-synthesizing activity has been cloned and found to encode proteins with eight transmembrane segments and a central domain on the cytosolic side of the plasma membrane that includes sequences expected in a glycosyltransferase (Fig. 20–30).

In one working model of cellulose synthesis, cellulose chains are initiated by the formation of a lipid-linked intermediate unlike anything involved in starch or glycogen synthesis. As shown in step 1 of Figure 20–30, glucose is transferred from UDP-glucose to a membrane lipid, probably the plant sterol sitosterol, on the inner face of the plasma membrane. Here, intracellular cellulose synthase adds several more glucose residues to the first one, in (β1→4) linkage, forming a short oligosaccharide chain attached to the sitosterol (sitosterol dextrin). Next, the whole sitosterol dextrin flips across to the outer face of the plasma membrane, where it now associates with another form of cellulose synthase.

2. The UDP-glucose used for cellulose synthesis is generated from sucrose produced during photosynthesis, by the reaction catalyzed by sucrose synthase (named for the reverse reaction):

\[
\text{Sucrose} + \text{UDP} \rightarrow \text{UDP-glucose} + \text{fructose}
\]

Cellulose synthase spans the plasma membrane and uses cytosolic UDP-glucose as the precursor for extracellular cellulose synthesis. A membrane-bound form of sucrose synthase forms a complex with cellulose synthase, feeding UDP-glucose from sucrose directly into cell wall synthesis.

3. A second form of cellulose synthase extends the polymer to 500 to 15,000 glucose units, extruding it onto the outer surface of the cell. The action of the enzyme is

FIGURE 20–30 One proposed model for synthesis of cellulose in a vascular plant. This schematic is derived from a combination of genetic and biochemical studies of Arabidopsis thaliana and of vascular plants.
processive: one enzyme molecule adds many glucose units before releasing the growing cellulose chain. The direction of chain growth (whether addition occurs at the reducing end or at the nonreducing end) has not been established.

Each of the six globules of the rosette consists of multiple protein subunits that together synthesize six cellulose chains. The large enzyme complex that catalyzes this process actually moves along the plasma membrane, following the course of microtubules in the cortex, the cytoplasmic layer just under the membrane. Because these microtubules lie perpendicular to the axis of the plant’s growth, the cellulose microfibrils are laid down across the axis of growth. The motion of the cellulose synthase complexes is believed to be driven by energy released in the polymerization reaction, not by a molecular motor such as kinesin.

The finished cellulose is in the form of crystalline microfibrils (Fig. 20–29), each consisting of 36 separate cellulose chains lying side by side, all with the same (parallel) orientation of nonreducing and reducing ends. It seems likely that the 36 separate polymers synthesized at one rosette arrive together on the outer surface of the cell, already aligned and ready to crystallize as a microfibril of the cell wall. When the 36 polymers reach some critical length, their synthesis is terminated by an unknown mechanism; crystallization into a microfibril follows.

In the activated precursor of cellulose (UDP-glucose), the glucose is α-linked to the nucleotide, but in the product (cellulose), glucose residues are (β1→4)-linked, so there is an inversion of configuration at the anomeric carbon (C-1) as the glycosidic bond forms. Glycosyltransferases that invert configuration are generally assumed to use a single-displacement mechanism, with nucleophilic attack by the acceptor species at the anomeric carbon of the donor sugar (UDP-glucose).

Certain bacteria (Acetobacter, Agrobacteria, Rhizobia, and Sarcina) and many simple eukaryotes also carry out cellulose synthesis, apparently by a mechanism similar to that in plants. If the bacteria use a membrane lipid to initiate new chains, it cannot be a sterol—bacteria do not contain sterols.

Lipid-Linked Oligosaccharides Are Precursors for Bacterial Cell Wall Synthesis

Like plants, many bacteria have thick, rigid extracellular walls that protect them from osmotic lysis. The peptidoglycan that gives bacterial envelopes their strength and rigidity is an alternating linear copolymer of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (Mur2Ac), linked by (β1→4) glycosidic bonds and cross-linked by short peptides attached to the Mur2Ac (Fig. 20–31). During assembly of the polysaccharide backbone of this complex macromolecule, both GlcNAc and Mur2Ac are activated by attachment of a uridine nucleotide at their anomeric carbons. First, GlcNAc 1-phosphate condenses with UTP to form UDP-GlcNAc (Fig. 20–32, step ①), which reacts with phosphoenolpyruvate to form UDP-Mur2Ac (step ②); five amino acids are then added (step ③). The Mur2Ac-pentapeptide moiety is transferred from the uridine nucleotide to the membrane lipid dolichol, a long-chain isoprenoid alcohol (see Fig. 10–22f) (step ④), and a GlcNAc residue is donated by UDP-GlcNAc (step ⑤). In many bacteria, five glycines are added in peptide linkage to the amino group of the Lys residue of the pentapeptide (step ⑥). Finally, this disaccharide decapptide is added to the nonreducing end of an existing peptidoglycan molecule (step ⑦). A transpeptidation reaction cross-links adjacent polysaccharide chains (step ⑧), contributing to a huge, strong, macromolecular wall around the bacterial cell. Many of the most effective antibiotics in use today act by inhibiting reactions in the synthesis of the peptidoglycan.
FIGURE 20-32 Synthesis of bacterial peptidoglycan. In the early steps of this pathway (1 through 4), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (Mur2Ac) are activated by attachment of a uridine nucleotide (UDP) to their anomeric carbons and, in the case of Mur2Ac, of a long-chain isoprenoid alcohol (dolichol) through a phosphodiester bond. These activating groups participate in the formation of glycosidic linkages; they serve as excellent leaving groups. After steps 5 and 6, assembly of a disaccharide with a peptide side chain (10 amino acid residues), 7 this precursor is transferred to the nonreducing end of an existing peptidoglycan chain, which serves as a primer for the polymerization reaction. Finally, 8 in a transpeptidation reaction between the peptide side chains on two different peptidoglycan molecules, a Gly residue at the end of one chain displaces a terminal D-Ala in the other chain, forming a cross-link. This transpeptidation reaction is inhibited by the penicillins, which kill bacteria by weakening their cell walls (see Fig. 6-27).

Many other oligosaccharides and polysaccharides are synthesized by similar routes in which sugars are activated for subsequent reactions by attachment to nucleotides. In the glycosylation of proteins, for example (see Fig. 27-39), the precursors of the carbohydrate moieties include sugar nucleotides and lipid-linked oligosaccharides.

SUMMARY 20.4 Synthesis of Cell Wall Poly saccharides: Plant Cellulose and Bacterial Peptidoglycan

- Cellulose synthesis takes place in terminal complexes (rosettes) in the plasma membrane. Each cellulose chain begins as a sitosterol dextrin formed inside the cell. It then flips to the outside, where the oligosaccharide portion is transferred to cellulose synthase in the rosette and is then extended. Each rosette produces 36 separate cellulose chains simultaneously and in parallel. The chains crystallize into one of the microfibrils that form the cell wall.

- Synthesis of the bacterial cell wall peptidoglycan also involves lipid-linked oligosaccharides formed inside the cell and flipped to the outside for assembly.

20.5 Integration of Carbohydrate Metabolism in the Plant Cell

Carbohydrate metabolism in a typical plant cell is more complex in several ways than that in a typical animal cell. The plant cell carries out the same processes that generate energy in animal cells (glycolysis, citric acid cycle, and oxidative phosphorylation); it can generate hexoses from three- or four-carbon compounds by gluconeogenesis; it
Carbohydrate Biosynthesis in Plants and Bacteria

can oxidize hexose phosphates to pentose phosphates with the generation of NADPH (the oxidative pentose phosphate pathway); and it can produce a polymer of (α1→4)-linked glucose (starch) and degrade it to generate hexoses. But besides these carbohydrate transformations that it shares with animal cells, the photosynthetic plant cell can fix CO₂ into organic compounds (the rubisco reaction); use the products of fixation to generate trioses, hexoses, and pentoses (the Calvin cycle); and convert acetyl-CoA generated from fatty acid breakdown to four-carbon compounds (the glyoxylate cycle) and the four-carbon compounds to hexoses (gluconeogenesis). These processes, unique to the plant cell, are segregated in several compartments not found in animal cells: the glyoxylate cycle in glyoxysomes, the Calvin cycle in chloroplasts, starch synthesis in amyloplasts, and organic acid storage in vacuoles. The integration of events among these various compartments requires specific transporters in the membranes of each organelle, to move products from one organelle to another or into the cytosol.

Gluconeogenesis Converts Fats and Proteins to Glucose in Germinating Seeds

Many plants store lipids and proteins in their seeds, to be used as sources of energy and as biosynthetic precursors during germination, before photosynthetic mechanisms have developed. Active gluconeogenesis in germinating seeds provides glucose for the synthesis of sucrose, polysaccharides, and many metabolites derived from hexoses. In plant seedlings, sucrose provides much of the chemical energy needed for initial growth.

We noted earlier (Chapter 14) that animal cells can carry out gluconeogenesis from three- and four-carbon precursors, but not from the two acetyl carbons of acetyl-CoA. Because the pyruvate dehydrogenase reaction is effectively irreversible (pp. 616-617), animal cells have no way to convert acetyl-CoA to pyruvate or oxaloacetate. Unlike animals, plants and some microorganisms can convert acetyl-CoA derived from fatty acid oxidation to glucose (Fig. 20–33). Some of the enzymes essential to this conversion are sequestered in glyoxysomes, where glyoxysome-specific isozymes of β oxidation break down fatty acids to acetyl-CoA (see Fig. 16–22). The physical separation of the glyoxylate cycle and β-oxidation enzymes from the mitochondrial citric acid cycle enzymes prevents further oxidation of acetyl-CoA to CO₂. Instead, the acetyl-CoA is converted to succinate in the glyoxylate cycle (see Fig. 16–20). The succinate passes into the mitochondrial matrix, where it is converted by citric acid cycle enzymes to oxaloacetate, which moves into the cytosol. Cytosolic oxaloacetate is converted by gluconeogenesis to fructose 6-phosphate, the precursor of sucrose. Thus the integration of reaction sequences in three subcellular compartments is required for the production of fructose 6-phosphate or sucrose from stored lipids. Because only three of the four carbons in each molecule of oxaloacetate are converted to hexose in the cytosol, about 75% of the carbon in the fatty acids stored as seed lipids is converted to carbohydrate by the combined pathways of Figure 20–33. The other 25% is lost as CO₂ in the conversion of oxaloacetate to phosphoenolpyruvate. Hydrolysis of storage triacylglycerols also produces

![Diagram of gluconeogenesis and glyoxylate cycle](image-url)
glycerol 3-phosphate, which can enter the gluconeogenic pathway after its oxidation to dihydroxyacetone phosphate (Fig. 20–34).

Glucogenic amino acids (see Table 14–4) derived from the breakdown of stored seed proteins also yield precursors for gluconeogenesis, following transamination and oxidation to succinyl-CoA, pyruvate, oxaloacetate, fumarate, and α-ketoglutarate (Chapter 18)—all good starting materials for gluconeogenesis.

Pools of Common Intermediates Link Pathways in Different Organelles

Although we have described metabolic transformations in plant cells in terms of individual pathways, these pathways interconnect so completely that we should instead consider pools of metabolic intermediates shared among these pathways and connected by readily reversible reactions (Fig. 20–35). One such metabolite pool includes the hexose phosphates glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate; a second includes the 5-phosphates of the pentoses ribose, ribulose, and xylulose; a third includes the triose phosphates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Metabolite fluxes through these pools change in magnitude and direction in response to changes in the circumstances of the plant, and they vary with tissue type. Transporters in the membranes of each organelle move specific compounds in and out, and the regulation of these transporters presumably influences the degree to which the pools mix.

During daylight hours, triose phosphates produced in leaf tissue by the Calvin cycle move out of the chloroplast and into the cytosolic hexose phosphate pool, where they are converted to sucrose for transport to nonphotosynthetic tissues. In these tissues, sucrose is converted to starch for storage or is used as an energy source via
glycolysis. In growing plants, hexose phosphates are also withdrawn from the pool for the synthesis of cell walls. At night, starch is metabolized by glycolysis to provide energy, essentially as in non-photosynthetic organisms, and NADPH and ribose 5-phosphate are obtained through the oxidative pentose phosphate pathway.

SUMMARY 20.5 Integration of Carbohydrate Metabolism in the Plant Cell

- Plants can synthesize sugars from acetyl-CoA, the product of fatty acid breakdown, by the combined actions of the glyoxylate cycle and gluconeogenesis.
- The individual pathways of carbohydrate metabolism in plants overlap extensively; they share pools of common intermediates, including hexose phosphates, pentose phosphates, and triose phosphates. Transporters in the membranes of chloroplasts, mitochondria, and amyloplasts mediate the movement of sugar phosphates between organelles. The direction of metabolite flow through the pools changes from day to night.

Key Terms

Terms in bold are defined in the glossary.

Calvin cycle 774
plastids 774
chloroplast 774
amyloplast 774
carbon-fixation reaction 775
ribulose 1,5-bisphosphate 775
3-phosphoglycerate 775
pentose phosphate pathway 775
reductive pentose phosphate cycle 775
C\(_4\) plants 776
ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) 776
rubisco activase 778
aldoxase 779
transketolase 779
sedoheptulose 1,7-bisphosphate 780
fructose 5-phosphate 780
photosynthesis 786
2-phosphoglycerate 786
glycolate pathway 787
oxidative photosynthetic carbon cycle (C\(_2\) cycle) 788
C\(_4\) plants 789
phosphoenolpyruvate carboxylase 789
malic enzyme 790
pyruvate phosphate dikinase 790
CAM plants 790
nucleotide sugars 791
ADP-glucose 791
starch synthase 791
sucrose 6-phosphate synthase 792
fructose 2,6-bisphosphate 793
ADP-glucose pyrophosphorylase 793
cellulose synthase 795
peptidoglycan 796
metabolite pools 799

Further Reading

General References

Structure, regulation, mechanism, and importance of rubisco activase.

Short, intermediate-level review.

Review of the role of ADP-glucose pyrophosphorylase in the synthesis of amylose and amylepectin in starch granules.

Advanced review on rubisco and rubisco activase.

Review of the genetic approaches to defining points of regulation in vivo.

Discussion of biochemical and genetic studies of the microbial rubisco, and comparison with the enzyme from plants.

Synthesis of Cellulose and Peptidoglycan

Recent evidence for the lipid-oligosaccharide intermediate in cellulose synthesis.

Recent evidence for the lipid-oligosaccharide intermediate in cellulose synthesis.

1. Segregation of Metabolism in Organelles What are the advantages to the plant cell of having different organelles to carry out different reaction sequences that share intermediates?

2. Phases of Photosynthesis When a suspension of green algae is illuminated in the absence of CO₂ and then incubated with ¹⁴CO₂ in the dark, ¹⁴CO₂ is converted to [¹⁴C]glucose for a brief time. What is the significance of this observation with regard to the CO₂-assimilation process, and how is it related to the light reactions of photosynthesis? Why does the conversion of ¹⁴CO₂ to [¹⁴C]glucose stop after a brief time?

3. Identification of Key Intermediates in CO₂ Assimilation Calvin and his colleagues used the unicellular green alga Chlorella to study the carbon-assimilation reactions of photosynthesis. They incubated ¹⁴CO₂ with illuminated suspensions of algae and followed the time course of appearance of ¹⁴C in two compounds, X and Y, under two sets of conditions. Suggest the identities of X and Y, based on your understanding of the Calvin cycle.

 (a) Illuminated Chlorella were grown with unlabeled CO₂, then the light was turned off and ¹⁴CO₂ was added (vertical dashed line in the graph below). Under these conditions, X was the first compound to become labeled with ¹⁴C; Y was unlabeled.

 (b) Illuminated Chlorella cells were grown with ¹⁴CO₂. Illumination was continued until all the ¹⁴CO₂ had disappeared (vertical dashed line in the graph below). Under these conditions, X became labeled quickly but lost its radioactivity with time, whereas Y became more radioactive with time.

4. Regulation of the Calvin Cycle Iodoacetate reacts irreversibly with the free —SH groups of Cys residues in proteins. Predict which Calvin cycle enzyme(s) would be inhibited by iodoacetate, and explain why.

5. Thioredoxin in Regulation of Calvin Cycle Enzymes Motohashi and colleagues used thioredoxin as a hook to fish out from plant extracts the proteins that are activated by thioredoxin. To do this, they prepared a mutant thioredoxin in which one of the reactive Cys residues was replaced with a Ser. Explain why this modification was necessary for their experiments.

6. Comparison of the Reductive and Oxidative Pentose Phosphate Pathways The reductive pentose phosphate pathway generates a number of intermediates identical to those of the oxidative pentose phosphate pathway (Chapter 14). What role does each pathway play in cells where it is active?

7. Photorespiration and Mitochondrial Respiration Compare the oxidative photosynthetic carbon cycle (C₂ cycle), also called photorespiration, with the mitochondrial respiration that drives ATP synthesis. Why are both processes referred to as respiration? Where in the cell do they occur, and under what circumstances? What is the path of electron flow in each?

8. Rubisco and the Composition of the Atmosphere N. E. Tolbert has argued that the dual specificity of rubisco for CO₂ and O₂ is not simply a leftover from evolution in a low-oxygen environment. He suggests that the relative activities of the carboxylase and oxygenase activities of rubisco actually have set, and now maintain, the ratio of CO₂ to O₂ in the earth’s atmosphere. Discuss the pros and cons of this hypothesis, in molecular terms and in global terms. How does the existence of C₄ organisms bear on the hypothesis?

9. Role of Sedoheptulose 1,7-Bisphosphatase What effect on the cell and the organism might result from a defect in sedoheptulose 1,7-bisphosphatase in (a) a human hepatocyte and (b) the leaf cell of a green plant?

10. Pathway of CO₂ Assimilation in Maize If a maize (corn) plant is illuminated in the presence of ¹⁴CO₂, after about 1 second, more than 90% of all the radioactivity incorporated in the leaves is found at C-4 of malate, aspartate, and oxaloacetate. Only after 60 seconds does ¹⁴C appear at C-1 of 3-phosphoglycerate. Explain.
11. Identifying CAM Plants: Given some 14CO$_2$ and all the tools typically present in a biochemistry research lab, how would you design a simple experiment to determine whether a plant was a typical C$_3$ plant or a CAM plant?

12. Chemistry of Malic Enzyme: Variation on a Theme
Malic enzyme, found in the bundle-sheath cells of C$_4$ plants, carries out a reaction that has a counterpart in the citric acid cycle. What is the analogous reaction? Explain your choice.

13. The Cost of Storing Glucose as Starch
Write the sequence of steps and the net reaction required to calculate the cost, in ATP molecules, of converting a molecule of cytosolic glucose 6-phosphate to starch and back to glucose 6-phosphate. What fraction of the maximum number of ATP molecules available from complete catabolism of glucose 6-phosphate to CO$_2$ and H$_2$O does this cost represent?

14. Inorganic Pyrophosphatase
The enzyme inorganic pyrophosphatase contributes to making many biosynthetic reactions that generate inorganic pyrophosphate essentially irreversible in cells. By keeping the concentration of PP$_i$ very low, the enzyme "pulls" these reactions in the direction of PP$_i$ formation. The synthesis of ADP-glucose in chloroplasts is one reaction that is pulled in the forward direction by this mechanism. However, the synthesis of UDP-glucose in the plant cytosol, which produces PP$_i$, is readily reversible in vivo. How do you reconcile these two facts?

15. Regulation of Starch and Sucrose Synthesis
Sucrose synthesis occurs in the cytosol and starch synthesis in the chloroplast stroma, yet the two processes are intricately balanced. What factors shift the reactions in favor of (a) starch synthesis and (b) sucrose synthesis?

16. Regulation of Sucrose Synthesis
In the regulation of sucrose synthesis from the triose phosphates produced during photosynthesis, 3-phosphoglycerate and P$_i$ play critical roles (see Fig. 20-26). Explain why the concentrations of these two regulators reflect the rate of photosynthesis.

17. Sucrose and Dental Caries
The most prevalent infection in humans worldwide is dental caries, which stems from the colonization and destruction of tooth enamel by a variety of acidifying microorganisms. These organisms synthesize and live within a water-insoluble network of dextrans, called dental plaque, composed of (α1→6)-linked polymers of glucose with many (α1→3) branch points. Polymerization of dextran requires dietary sucrose, and the reaction is catalyzed by a bacterial enzyme, dextran-sucrose glucosyltransferase.

(a) Write the overall reaction for dextran polymerization.
(b) In addition to providing a substrate for the formation of dental plaque, how does dietary sucrose also provide oral bacteria with an abundant source of metabolic energy?

18. Differences between C$_3$ and C$_4$ Plants
The plant genus *Atriplex* includes some C$_3$ and some C$_4$ species. From the data in the following plots (species 1, black curve; species 2, red curve), identify which is a C$_3$ plant and which is a C$_4$ plant. Justify your answer in molecular terms that account for the data in all three plots.

19. C$_4$ Pathway in a Single Cell
In typical C$_4$ plants, the initial capture of CO$_2$ occurs in one cell type, and the Calvin cycle reactions occur in another (see Fig. 20-23). Voznesenskaya and colleagues have described a plant, *Bienertia cycloptera*—which grows in salty depressions of semidesert in Central Asia—that shows the biochemical properties of a C$_4$ plant but unlike typical C$_4$ plants does not segregate the reactions of CO$_2$ fixation into two cell types. PEP carboxylase and rubisco are present in the same cell. However, the cells have two types of chloroplasts, which are localized differently. One type, relatively poor in grana (thylakoids), is confined to the periphery; the more typical chloroplasts are clustered in the center of the cell, separated from the peripheral chloroplasts.

by large vacuoles. Thin cytosolic bridges pass through the vacuoles, connecting the peripheral and central cytosol. A micrograph of a B. cycloptera cell, with arrows pointing to peripheral chloroplasts, is shown below.

In this plant, where would you expect to find (a) PEP carboxylase, (b) rubisco, and (c) starch granules? Explain your answers with a model for CO₂ fixation in these C₄ cells.

Data Analysis Problem

20. Rubisco of Bacterial Endosymbionts of Hydrothermal Vent Animals. Undersea hydrothermal vents support remarkable ecosystems. At these extreme depths there is no light to support photosynthesis, yet thriving vent communities are found. Much of their primary productivity occurs through chemosynthesis carried out by bacterial symbionts that live in specialized organs (trophosomes) of certain vent animals.

Chemosynthesis in these bacteria involves a process that is virtually identical to photosynthesis. Carbon dioxide is fixed by rubisco and reduced to glucose, and the necessary ATP and NADPH are produced by electron-transfer processes similar to those of the light-dependent reactions of photosynthesis. The key difference is that in chemosynthesis, the energy driving electron transfer comes from a highly exergonic chemical reaction rather than from light. Different chemosynthetic bacteria use different reactions for this purpose. The bacteria found in hydrothermal vent animals typically use the oxidation of H₂S (abundant in the vent water) by O₂, producing elemental sulfur. These bacteria also use the conversion of H₂S to sulfur as a source of electrons for chemosynthetic CO₂ reduction.

(a) What is the overall reaction for chemosynthesis in these bacteria? You do not need to write a balanced equation; just give the starting materials and products.

(b) Ultimately, these endosymbiotic bacteria obtain their energy from sunlight. Explain how this occurs.

Robinson and colleagues (2003) explored the properties of rubisco from the bacterial endosymbiont of the giant tube worm Riftia pachyptila. Rubisco, from any source, catalyzes the reaction of either CO₂ (Fig. 20-7) or O₂ (Fig. 20-20) with ribulose 1,5-bisphosphate. In general, rubisco reacts more readily with CO₂ than O₂. The degree of selectivity (Ω) can be expressed as

\[\frac{V_{\text{carboxylation}}}{V_{\text{oxygenation}}} = \Omega \frac{[\text{CO}_2]}{[\text{O}_2]} \]

where \(V \) is the reaction velocity.

Robinson and coworkers measured the Ω value for the rubisco of the bacterial endosymbionts. They purified rubisco from tube-worm trophosomes, reacted it with mixtures of different ratios of O₂ and CO₂ in the presence of [1-³H]ribulose 1,5-bisphosphate, and measured the ratio of [³H]phosphoglycerate to [³H]phosphoglycolate.

(c) The measured ratio of [³H]phosphoglycerate to [³H]phosphoglycolate is equal to the ratio \(\frac{V_{\text{carboxylation}}}{V_{\text{oxygenation}}} \). Explain why.

(d) Why would [5-³H]ribulose 1,5-bisphosphate not be a suitable substrate for this assay?

The Ω for the endosymbiont rubisco had a value of 8.6 ± 0.9.

(e) The atmospheric (molar) concentration of O₂ is 20% and that of CO₂ is about 380 parts per million. If the endosymbiont were to carry out chemosynthesis under these atmospheric conditions, what would be the value of \(\frac{V_{\text{carboxylation}}}{V_{\text{oxygenation}}} \)?

(f) Based on your answer to (e), would you expect Ω for the rubisco of a terrestrial plant to be higher than, the same as, or lower than 8.6? Explain your reasoning.

Two stable isotopes of carbon are commonly found in the environment: the more abundant ¹²C and the rare ¹³C. All rubisco enzymes catalyze the fixation of ¹²CO₂ faster than that of ¹³CO₂. As a result, the carbon in glucose is slightly enriched in ¹²C compared with the isotopic composition of CO₂ in the environment. Several factors are involved in this “preferential” use of ¹²CO₂, but one factor is the fundamental physics of gases. The temperature of a gas is related to the kinetic energy of its molecules. Kinetic energy is given by \(\frac{1}{2}mv^2 \), where \(m \) is molecular mass and \(v \) is velocity. Thus, at the same temperature (same kinetic energy), the molecules of a lighter gas will be moving faster than those of a heavier gas.

(g) How could this contribute to rubisco’s “preference” for ¹²CO₂ over ¹³CO₂?

Some of the first convincing evidence that the tube-worm hosts were obtaining their fixed carbon from the endosymbionts was that the ¹³C/¹²C ratio in the animals was much closer to that of the bacteria than that of nonvent marine animals.

(h) Why is this more convincing evidence for a symbiotic relationship than earlier studies that simply showed the presence of rubisco in the bacteria found in trophosomes?

Reference

Lipid Biosynthesis

21.1 Biosynthesis of Fatty Acids and Eicosanoids 805
21.2 Biosynthesis of Triacylglycerols 820
21.3 Biosynthesis of Membrane Phospholipids 824
21.4 Biosynthesis of Cholesterol, Steroids, and Isoprenoids 831

Lipids play a variety of cellular roles, some only recently recognized. They are the principal form of stored energy in most organisms and major constituents of cellular membranes. Specialized lipids serve as pigments (retinal, carotene), cofactors (vitamin K), detergents (bile salts), transporters (dolichols), hormones (vitamin D derivatives, sex hormones), extracellular and intracellular messengers (eicosanoids, phosphatidylinositol derivatives), and anchors for membrane proteins (covalently attached fatty acids, prenyl groups, and phosphatidylinositol). The ability to synthesize a variety of lipids is essential to all organisms. This chapter describes the biosynthetic pathways for some of the most common cellular lipids, illustrating the strategies employed in assembling these water-insoluble products from water-soluble precursors such as acetate. Like other biosynthetic pathways, these reaction sequences are endergonic and reductive. They use ATP as a source of metabolic energy and a reduced electron carrier (usually NADPH) as a reductant.

We first describe the biosynthesis of fatty acids, the primary components of both triacylglycerols and phospholipids, then examine the assembly of fatty acids into triacylglycerols and the simpler membrane phospholipids. Finally, we consider the synthesis of cholesterol, a component of some membranes and the precursor of steroids such as the bile acids, sex hormones, and adrenocortical hormones.

21.1 Biosynthesis of Fatty Acids and Eicosanoids

After the discovery that fatty acid oxidation takes place by the oxidative removal of successive two-carbon (acetyl-CoA) units (see Fig. 17–8), biochemists thought the biosynthesis of fatty acids might proceed by a simple reversal of the same enzymatic steps. However, as they were to find out, fatty acid biosynthesis and breakdown occur by different pathways, are catalyzed by different sets of enzymes, and take place in different parts of the cell. Moreover, biosynthesis requires the participation of a three-carbon intermediate, malonyl-CoA, that is not involved in fatty acid breakdown.

Malonyl-CoA is Formed from Acetyl-CoA and Bicarbonate

The formation of malonyl-CoA from acetyl-CoA is an irreversible process, catalyzed by acetyl-CoA carboxylase. The bacterial enzyme has three separate polypeptide subunits (Fig. 21–1); in animal cells, all three activities are part of a single multifunctional polypeptide. Plant cells contain both types of acetyl-CoA carboxylase. In all cases, the enzyme contains a biotin prosthetic group covalently bound in amide linkage to the ε-amino group of a Lys residue in one
Lipid Biosynthesis

of the three polypeptides or domains of the enzyme molecule. The two-step reaction catalyzed by this enzyme is very similar to other biotin-dependent carboxylation reactions, such as those catalyzed by pyruvate carboxylase (see Fig. 16–16) and propionyl-CoA carboxylase (see Fig. 17–11). A carboxyl group, derived from bicarbonate (HCO₃⁻), is first transferred to biotin in an ATP-dependent reaction. The biotinyl group serves as a temporary carrier of CO₂, transferring it to acetyl-CoA in the second step to yield malonyl-CoA.

Fatty Acid Synthesis Proceeds in a Repeating Reaction Sequence

In all organisms, the long carbon chains of fatty acids are assembled in a repeating four-step sequence (Fig. 21–2), catalyzed by a system collectively referred to as fatty acid synthase. A saturated acyl group produced by each four-step series of reactions becomes the substrate for subsequent condensation with an activated malonyl group. With each passage through the cycle, the fatty acyl chain is extended by two carbons.

Both the electron-carrying cofactor and the activating groups in the reductive anabolic sequence differ from those in the oxidative catabolic process. Recall that in β oxidation, NAD⁺ and FAD serve as electron acceptors and the activating group is the thiol (—SH) group of coenzyme A (see Fig. 17–8). By contrast, the reducing agent in the synthetic sequence is NADPH and the activating groups are two different enzyme-bound —SH groups, as described in the following section.

There are two major variants of fatty acid synthase: fatty acid synthase I (FAS I), found in vertebrates and fungi, and fatty acid synthase II (FAS II), found in plants and bacteria. The FAS I found in vertebrates consists of a single multifunctional polypeptide chain (M, 240,000). The mammalian FAS I is the prototype. Seven active sites for different reactions lie in separate domains (Fig. 21–3a). The mammalian polypeptide functions as a homodimer (M, 480,000). The subunits appear to function independently. When all the active sites in one subunit are inactivated by mutation, fatty acid synthesis is only modestly reduced. A somewhat different FAS I is found in yeast and other fungi, and is made up of two multifunctional polypeptides that form a complex with an architecture distinct from the vertebrate systems (Fig. 21–3b). Three of the seven required active sites are found on the α subunit and four on the β subunit.
FIGURE 21-2 Addition of two carbons to a growing fatty acyl chain: a four-step sequence. Each malonyl group and acetyl (or longer acyl) group is activated by a thioester that links it to fatty acid synthase, a multienzyme system described later in the text. Condensation of an activated acyl group (an acetyl group from acetyl-CoA is the first acyl group) and two carbons derived from malonyl-CoA, with elimination of CO₂ from the malonyl group, extends the acyl chain by two carbons. The mechanism of the first step of this reaction is given to illustrate the role of decarboxylation in facilitating condensation. The β-keto product of this condensation is then reduced in three more steps nearly identical to the reactions of β oxidation, but in the reverse sequence: the β-keto group is reduced to an alcohol, elimination of H₂O creates a double bond, and the double bond is reduced to form the corresponding saturated fatty acyl group.

FIGURE 21-3 The structure of fatty acid synthase type I systems. The low-resolution structures of (a) the mammalian (porcine; derived from PDB ID 2CF2) and (b) fungal enzyme systems (derived from PDB IDs 2UV9, 2UVA, 2UVB, and 2UVC) are shown. (a) All of the active sites in the mammalian system are located in different domains within a single large polypeptide chain. The different enzymatic activities are: β-ketoacyl-ACP synthase (KS), malonyl/acetyl-CoA-ACP transferase (MAT), β-hydroxyacyl-ACP dehydratase (DH), enoyl-ACP reductase (ER), and β-ketoacyl-ACP reductase (KR). ACP is the acyl carrier protein. The linear arrangement of the domains in the polypeptide is shown in the lower panel. The seventh domain (TE) is a thioesterase that releases the palmitate product from ACP when the synthesis is completed. The ACP and TE domains are disordered in the crystal and are therefore not shown in the structure. (b) In the structure of the FAS I from the fungus Thermomyces lanuginosus, the same active sites are divided between two multifunctional polypeptide chains that function together. Six copies of each polypeptide are found in the heterododecameric complex. A wheel of six α subunits, which include ACP as well as the KS and KR active sites, is found at the center of the complex. In the wheel three subunits are found on one face, three on the other. On either side of the wheel are domes formed by trimers of the β subunits (containing the ER and DH active sites, as well as two domains with active sites analogous to MAT in the mammalian enzyme). The domains of one of each type of subunit are colored according to the active site colors of the mammalian enzyme in (a).
FIGURE 21-4 The overall process of palmitate synthesis. The fatty acyl chain grows by two-carbon units donated by activated malonate, with loss of CO₂ at each step. The initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO₂ is shaded green. After each two-carbon addition, reductions convert the growing chain to a saturated fatty acid of four, then six, then eight carbons, and so on. The final product is palmitate (16:0).

With FAS I systems, fatty acid synthesis leads to a single product, and no intermediates are released. When the chain length reaches 16 carbons, that product (palmitate, 16:0; see Table 10–1) leaves the cycle. Carbons C-16 and C-15 of the palmitate are derived from the methyl and carboxyl carbon atoms, respectively, of an acetyl-CoA used directly to prime the system at the outset (Fig. 21-4); the rest of the carbon atoms in the chain are derived from acetyl-CoA via malonyl-CoA.

FAS II, in plants and bacteria, is a dissociated system; each step in the synthesis is catalyzed by a separate and freely diffusible enzyme. Intermediates are also diffusible and may be diverted into other pathways (such as lipoic acid synthesis). Unlike FAS I, FAS II generates a variety of products, including saturated fatty acids of several lengths, as well as unsaturated, branched, and hydroxy fatty acids. An FAS II system is also found in vertebrate mitochondria. The discussion to follow will focus on the mammalian FAS I.

The Mammalian Fatty Acid Synthase Has Multiple Active Sites

The multiple domains of mammalian FAS I function as distinct but linked enzymes. The active site for each enzyme is found in a separate domain within the larger polypeptide. Throughout the process of fatty acid synthesis, the intermediates remain covalently attached as thioesters to one of two thiol groups. One point of attachment is the —SH group of a Cys residue in one of the synthase domains (β-ketoacyl-ACP synthase; KS); the other is the —SH group of acyl carrier protein, a separate domain of the same polypeptide. Hydrolysis of thioesters is highly exergonic, and the energy released helps to make two different steps (1 and 5 in Fig. 21-6) in fatty acid synthesis (condensation) thermodynamically favorable.

Acyl carrier protein (ACP) is the shuttle that holds the system together. The Escherichia coli ACP is a small protein (M, 8,860) containing the prosthetic group 4'-phosphopantetheine (Fig. 21-5; compare this with the pantothenic acid and β-mercaptoethylamine moiety of coenzyme A in Fig. 8-38). The 4'-phosphopantetheine prosthetic group of E. coli ACP is believed to serve as a flexible arm, tethering the growing fatty acyl chain to the surface of the fatty acid synthase complex while carrying the reaction intermediates from one enzyme active site to the next. The ACP of mammals has a similar function and the same prosthetic group; as we have seen, however, it is embedded as a domain in a much larger multifunctional polypeptide.

Fatty Acid Synthase Receives the Acetyl and Malonyl Groups

Before the condensation reactions that build up the fatty acid chain can begin, the two thiol groups on the enzyme complex must be charged with the correct acyl
The carbon atom of the CO$_2$ formed in this reaction is the same carbon originally introduced into malonyl-CoA from HCO$_3^-$ by the acetyl-CoA carboxylase reaction (Fig. 21–1). Thus CO$_2$ is only transiently in covalent linkage during fatty acid biosynthesis; it is removed as each two-carbon unit is added.

Why do cells go to the trouble of adding CO$_2$ to make a malonyl group from an acetyl group, only to lose the CO$_2$ during the formation of acetoacetate? Recall that in the β oxidation of fatty acids (see Fig. 17–8), cleavage of the bond between two acyl groups (cleavage of an acetyl unit from the acyl chain) is highly exergonic, so the simple condensation of two acyl groups (two acetyl-CoA molecules, for example) is highly endergonic. The use of activated malonyl groups rather than acetyl groups is what makes the condensation reactions thermodynamically favorable. The methylene carbon (C-2) of the malonyl group, sandwiched between carbonyl and carboxyl carbons, is chemically situated to act as a good nucleophile. In the condensation step (step ①), decarboxylation of the malonyl group facilitates the nucleophilic attack of the methylene carbon on the thioester linking the acetyl group to β-ketoacyl-ACP synthase, displacing the enzyme’s —SH group. Coupling the condensation to the decarboxylation of the malonyl group renders the overall process highly exergonic. A similar carboxylation-decarboxylation sequence facilitates the formation of phosphoenolpyruvate from pyruvate in gluconeogenesis (see Fig. 14–17).

By using activated malonyl groups in the synthesis of fatty acids and activated acetate in their degradation, the cell makes both processes energetically favorable, although one is effectively the reversal of the other. The extra energy required to make fatty acid synthesis favorable is provided by the ATP used to synthesize malonyl-CoA from acetyl-CoA and HCO$_3^-$ (Fig. 21–1).

Step ② Reduction of the Carbonyl Group The acetoacetyl-ACP formed in the condensation step now undergoes reduction of the carbonyl group at C-3 to form α-hydroxybutyryl-ACP. This reaction is catalyzed by α-hydroxybutyryl-ACP reductase (KR) and the electron donor is NADPH. Notice that the α-hydroxybutyryl group does not have the same stereoisomeric form as the α-hydroxyacyl intermediate in fatty acid oxidation (see Fig. 17–8).

Step ③ Dehydration The elements of water are now removed from C-2 and C-3 of α-hydroxybutyryl-ACP to yield a double bond in the product, trans-Δ^2-butenoyl-ACP. The enzyme that catalyzes this dehydration is β-hydroxyacyl-ACP dehydratase (DH).

Step ④ Reduction of the Double Bond Finally, the double bond of trans-Δ^2-butenoyl-ACP is reduced (saturated) to form butyryl-ACP by the action of enoyl-ACP reductase (ER); again, NADPH is the electron donor.
FIGURE 21–6 Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21–3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight “S” shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21–3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an —SH. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21–4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO₂ is shaded green. Steps 1 to 4 are described in the text.
The Fatty Acid Synthase Reactions Are Repeated to Form Palmitate

Production of the four-carbon, saturated fatty acyl-ACP marks completion of one pass through the fatty acid synthase complex. The butyryl group is now transferred from the phosphopantetheine —SH group of ACP to the Cys —SH group of β-ketoacyl-ACP synthase, which initially bore the acetyl group (Fig. 21–6). To start the next cycle of four reactions that lengthens the chain by two more carbons, another malonyl group is linked to the now unoccupied phosphopantetheine —SH group of ACP (Fig. 21–7). Condensation occurs as the butyryl group, acting like the acetyl group in the first cycle, is linked to two carbons of the malonyl-ACP group with concurrent loss of CO₂. The product of this condensation is a six-carbon acyl group, covalently bound to the phosphopantetheine —SH group. Its β-keto group is reduced in the next three steps of the synthase cycle to yield the saturated acyl group, exactly as in the first round of reactions—in this case forming the six-carbon product.

Seven cycles of condensation and reduction produce the 16-carbon saturated palmitoyl group, still bound to ACP. For reasons not well understood, chain elongation by the synthase complex generally stops at this point and free palmitate is released from the ACP by a hydrolytic activity (thioesterase; TE) in the multifunctional protein.

We can consider the overall reaction for the synthesis of palmitate from acetyl-CoA in two parts. First, the formation of seven malonyl-CoA molecules:

\[7 \text{Acetyl-CoA} + 7\text{CO}_2 + 7\text{ATP} \rightarrow 7 \text{malonyl-CoA} + 7\text{ADP} + 7\text{Pi} \]

then seven cycles of condensation and reduction:

\[\text{Acetyl-CoA} + 7 \text{malonyl-CoA} + 14\text{NADPH} + 14\text{H}^+ \rightarrow \text{palmitate} + 7\text{CO}_2 + 8\text{CoA} + 14\text{NADP}^+ + 6\text{H}_2\text{O} \]

Note that only six net water molecules are produced, because one is used to hydrolyze the thioester linking the palmitate product to the enzyme. The overall process (the sum of Eqns 21–1 and 21–2) is

\[8 \text{Acetyl-CoA} + 7 \text{ATP} + 14\text{NADPH} + 14\text{H}^+ \rightarrow \text{palmitate} + 8\text{CoA} + 7\text{ADP} + 7\text{Pi} + 14\text{NADP}^+ + 6\text{H}_2\text{O} \]

The biosynthesis of fatty acids such as palmitate thus requires acetyl-CoA and the input of chemical energy in two forms: the group transfer potential of ATP and the reducing power of NADPH. The ATP is required to attach CO₂ to acetyl-CoA to make malonyl-CoA; the NADPH is required to reduce the double bonds.

In nonphotosynthetic eukaryotes there is an additional cost to fatty acid synthesis, because acetyl-CoA is generated in the mitochondria and must be transported to the cytosol. As we will see, this extra step consumes two ATPs per molecule of acetyl-CoA transported, increasing the energetic cost of fatty acid synthesis to three ATPs per two-carbon unit.

Fatty Acid Synthesis Occurs in the Cytosol of Many Organisms but in the Chloroplasts of Plants

In most higher eukaryotes, the fatty acid synthase complex is found exclusively in the cytosol (Fig. 21–8), as are the biosynthetic enzymes for nucleotides, amino acids, and glucose. This location segregates synthetic processes from degradative reactions, many of which take place in the mitochondrial matrix. There is a corresponding segregation of the electron-carrying cofactors used in anabolism (generally a reductive process) and those used in catabolism (generally oxidative).
Lipid Biosynthesis

Animal cells, yeast cells

- No fatty acid oxidation
- Fatty acid oxidation
- Acetyl-CoA production
- Ketone body synthesis
- Fatty acyl elongation

Mitochondria

- Phospholipid synthesis
- Sterol synthesis (late stages)
- Fatty acid elongation
- Fatty acid desaturation

Endoplasmic reticulum

- NADPH production (pentose phosphate pathway; malic enzyme)
- [NADPH]/[NADP+] high
- Isoprenoid and sterol synthesis (early stages)
- Fatty acid synthesis

Plant cells

- Fatty acid oxidation
- Catalase, peroxidase: $\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O}$

Cytosol

- NADPH production (pentose phosphate pathway; malic enzyme)
- [NADPH]/[NADP+] high
- Fatty acid synthesis

Chloroplasts

- NADPH, ATP production
- [NADPH]/[NADP+] high
- Fatty acid synthesis

Peroxisomes

- Fatty acid oxidation
- Catalase, peroxidase: $\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O}$

FIGURE 21–8 Subcellular localization of lipid metabolism. Yeast and vertebrate cells differ from higher plant cells in the compartmentation of lipid metabolism. Fatty acid synthesis takes place in the compartment in which NADPH is available for reductive synthesis (i.e., where the [NADPH]/[NADP+] ratio is high); this is the cytosol in animals and yeast, and the chloroplast in plants. Processes in red type are covered in this chapter.

Usually, NADPH is the electron carrier for anaerobic reactions, and NAD+ serves in catabolic reactions. In hepatocytes, the [NADPH]/[NADP+] ratio is very high (about 75) in the cytosol, furnishing a strongly reducing environment for the reductive synthesis of fatty acids and other biomolecules. The cytosolic [NADH]/[NAD+] ratio is much smaller (only about 8×10^{-4}), so the NAD+-dependent oxidative catabolism of glucose can take place in the same compartment, and at the same time, as fatty acid synthesis. The [NADH]/[NAD+] ratio in the mitochondrion is much higher than in the cytosol, because of the flow of electrons to NAD+ from the oxidation of fatty acids, amino acids, pyruvate, and acetyl-CoA. This high mitochondrial [NADH]/[NAD+] ratio favors the reduction of oxygen via the respiratory chain.

In hepatocytes and adipocytes, cytosolic NADPH is largely generated by the pentose phosphate pathway (see Fig. 14–21) and by malic enzyme (Fig. 21–9a). The NADP-linked malic enzyme that operates in the carbon-assimilation pathway of C4 plants (see Fig. 20–23) is unrelated in function. The pyruvate produced in the reaction shown in Figure 21–9a reenters the mitochondrion. In hepatocytes and in the mammary gland of lactating animals, the NADPH required for fatty acid biosynthesis is supplied primarily by the pentose phosphate pathway (Fig. 21–9b).

FIGURE 21–9 Production of NADPH. Two routes to NADPH, catalyzed by (a) malic enzyme and (b) the pentose phosphate pathway.

In the photosynthetic cells of plants, fatty acid synthesis occurs in the cytosol but in the chloroplast stroma (Fig. 21–8). This makes sense, given that NADPH is produced in chloroplasts by the light reactions of photosynthesis:

$$\text{H}_2\text{O} + \text{NADP}^+ \rightarrow \frac{1}{2}\text{O}_2 + \text{NADPH} + \text{H}^+$$
Acetate Is Shuttled out of Mitochondria as Citrate

In nonphotosynthetic eukaryotes, nearly all the acetyl-CoA used in fatty acid synthesis is formed in mitochondria from pyruvate oxidation and from the catabolism of the carbon skeletons of amino acids. Acetyl-CoA arising from the oxidation of fatty acids is not a significant source of acetyl-CoA for fatty acid biosynthesis in animals, because the two pathways are reciprocally regulated, as described below.

The mitochondrial inner membrane is impermeable to acetyl-CoA, so an indirect shuttle transfers acetyl group equivalents across the inner membrane (Fig. 21–10). Intramitochondrial acetyl-CoA first reacts with oxaloacetate to form citrate, in the citric acid cycle reaction catalyzed by citrate synthase (see Fig. 16–7). Citrate then passes through the inner membrane on the citrate transporter. In the cytosol, citrate cleavage by citrate lyase regenerates acetyl-CoA and oxaloacetate in an ATP-dependent reaction. Oxaloacetate cannot return to the mitochondrial matrix directly, as there is no oxaloacetate transporter. Instead, cytosolic malate dehydrogenase reduces the oxaloacetate to malate, which can return to the mitochondrial matrix on the malate–α-ketoglutarate transporter in exchange for citrate. In the matrix, malate is reoxidized to oxaloacetate to complete the shuttle. However, most of the malate produced in the cytosol is used to generate cytosolic NADPH through the activity of malic enzyme (Fig. 21–9a). The pyruvate produced is transported to the mitochondrion by the pyruvate transporter (Fig. 21–10), and converted back into oxaloacetate by pyruvate carboxylase in the matrix. The resulting cycle results in the consumption of two ATPs (by citrate lyase and pyruvate
delivered as acetyl-CoA for fatty acid synthesis. Oxaloacetate is reduced to malate, which can return to the mitochondrial matrix and is converted to oxaloacetate. The major fate for cytosolic malate is oxidation by malic enzyme to generate cytosolic NADPH; the pyruvate produced returns to the mitochondrial matrix.

FIGURE 21–10 Shuttle for transfer of acetyl groups from mitochondria to the cytosol. The mitochondrial outer membrane is freely permeable to all these compounds. Pyruvate derived from amino acid catabolism in the mitochondrial matrix, or from glucose by glycolysis in the cytosol, is converted to acetyl-CoA in the matrix. Acetyl groups pass out of the mitochondrion as citrate; in the cytosol they are
carboxylase) for every molecule of acetyl-CoA delivered to fatty acid synthesis. After citrate cleavage to generate acetyl-CoA, conversion of the four remaining carbons to pyruvate and CO₂ via malic enzyme generates about half the NADPH required for fatty acid synthesis. The pentose phosphate pathway contributes the rest of the needed NADPH.

Fatty Acid Biosynthesis Is Tightly Regulated

When a cell or organism has more than enough metabolic fuel to meet its energy needs, the excess is generally converted to fatty acids and stored as lipids such as triacylglycerols. The reaction catalyzed by acetyl-CoA carboxylase is the rate-limiting step in the biosynthesis of fatty acids, and this enzyme is an important site of regulation. In vertebrates, palmitoyl-CoA, the principal product of fatty acid synthesis, is a feedback inhibitor of the enzyme; citrate is an allosteric activator (Fig. 21–11a), increasing \(V_{\text{max}} \). Citrate plays a central role in diverting cellular metabolism from the consumption (oxidation) of metabolic fuel to the storage of fuel as fatty acids. When the concentrations of mitochondrial acetyl-CoA and ATP increase, citrate is transported out of mitochondria; it then becomes both the precursor of cytosolic acetyl-CoA and an allosteric signal for the activation of acetyl-CoA carboxylase. At the same time, citrate inhibits the activity of phosphofructokinase-1 (see Fig. 15–14), reducing the flow of carbon through glycolysis.

Acetyl-CoA carboxylase is also regulated by covalent modification. Phosphorylation, triggered by the hormones glucagon and epinephrine, inactivates the enzyme and reduces its sensitivity to activation by citrate, thereby slowing fatty acid synthesis. In its active (dephosphorylated) form, acetyl-CoA carboxylase polymerizes into long filaments (Fig. 21–11b); phosphorylation is accompanied by dissociation into monomeric subunits and loss of activity.

The acetyl-CoA carboxylase of plants and bacteria is not regulated by citrate or by a phosphorylation-dephosphorylation cycle. The plant enzyme is activated by an increase in stromal pH and \([\text{Mg}^{2+}]\), which occurs on illumination of the plant (see Fig. 20–17). Bacteria do not use triacylglycerols as energy stores. In \(E.\) coli, the primary role of fatty acid synthesis is to provide precursors for membrane lipids; the regulation of this process is complex, involving guanine nucleotides (such as ppGpp) that coordinate cell growth with membrane formation (see Figs 8–39, 28–24).

In addition to the moment-by-moment regulation of enzymatic activity, these pathways are regulated at the level of gene expression. For example, when animals ingest an excess of certain polyunsaturated fatty acids, the expression of genes encoding a wide range of lipogenic enzymes in the liver is suppressed. The detailed mechanism by which these genes are regulated is not yet clear.

If fatty acid synthesis and \(\beta\) oxidation were to proceed simultaneously, the two processes would constitute a futile cycle, wasting energy. We noted earlier (see Fig. 17–12) that \(\beta\) oxidation is blocked by malonyl-CoA, which inhibits carnitine acyltransferase I. Thus during fatty acid synthesis, the production of the first intermediate, malonyl-CoA, shuts down \(\beta\) oxidation at the level of a transport system in the mitochondrial inner membrane. This control mechanism illustrates another advantage of segregating synthetic and degradative pathways in different cellular compartments.

Long-Chain Saturated Fatty Acids Are Synthesized from Palmitate

Palmitate, the principal product of the fatty acid synthase system in animal cells, is the precursor of other long-chain fatty acids (Fig. 21–12). It may be lengthened to form stearate (18:0) or even longer saturated fatty acids by further additions of acetyl groups, through the action of fatty acid elongation systems present in the smooth endoplasmic reticulum and in mitochondria. The more active elongation system of the ER extends the 16-carbon chain of palmitoyl-CoA by two carbons, forming stearoyl-CoA. Although different enzyme systems are involved, and coenzyme A rather than ACP is the acyl carrier in the reaction, the mechanism of elongation in the ER is otherwise identical to that in palmitate synthesis: donation of two carbons by malonyl-CoA, followed by reduction, dehydration, and reduction to the saturated 18-carbon product, stearoyl-CoA.
FIGURE 21-12 Routes of synthesis of other fatty acids. Palmitate is the precursor of stearate and longer-chain saturated fatty acids, as well as the monounsaturated acids palmitoleate and oleate. Mammals cannot convert oleate to linoleate or α-linolenate (shaded pink), which are therefore required in the diet as essential fatty acids. Conversion of linoleate to other polyunsaturated fatty acids and eicosanoids is outlined. Unsaturated fatty acids are symbolized by indicating the number of carbons and the number and position of the double bonds, as in Table 10-1.

Desaturation of Fatty Acids Requires a Mixed-Function Oxidase

Palmitate and stearate serve as precursors of the two most common monounsaturated fatty acids of animal tissues: palmitoleate, 16:1(Δ9), and oleate, 18:1(Δ9); both of these fatty acids have a single cis double bond between C-9 and C-10 (see Table 10-1). The double bond is introduced into the fatty acid chain by an oxidative reaction catalyzed by fatty acyl-CoA desaturase (Fig. 21-13), a mixed-function oxidase (Box 21-1). Two different substrates, the fatty acid and NADH or NADPH, simultaneously undergo two-electron oxidations. The path of electron flow includes a cytochrome (cytochrome b5) and a flavoprotein (cytochrome b5 reductase), both of which, like fatty acyl-CoA desaturase, are in the smooth ER. Bacteria have two cytochrome b5 reductases, one NADH-dependent and the other NADPH-dependent; which of these is the main electron donor in vivo is unclear. In plants, oleate is produced by a stearoyl-ACP desaturase in the chloroplast stroma that uses reduced ferredoxin as the electron donor.

Mammalian hepatocytes can readily introduce double bonds at the Δ9 position of fatty acids but cannot introduce additional double bonds between C-10 and the methyl-terminal end. Thus mammals cannot synthesize linoleate, 18:2(Δ9,Δ12), or α-linolenate, 18:3(Δ9,Δ12,Δ15). Plants, however, can synthesize both; the desaturases that introduce double bonds at the Δ12 and Δ15 positions are located in the ER and the chloroplast. The ER enzymes act not on free fatty acids but on a phospholipid, phosphatidylcholine, that contains at least one oleate linked to the glycerol (Fig. 21-14). Both plants and bacteria must synthesize polyunsaturated fatty acids to ensure membrane fluidity at reduced temperatures. Because they are necessary precursors for the synthesis of other products, linoleate and α-linolenate are essential fatty acids for mammals; they must be obtained from dietary plant material. Once ingested,
In this chapter we encounter several enzymes that carry out oxidation-reduction reactions in which molecular oxygen is a participant. The reaction that introduces a double bond into a fatty acyl chain (see Fig. 21-13) is one such reaction.

The nomenclature for enzymes that catalyze reactions of this general type is often confusing to students, as is the mechanism of the reactions. Oxidase is the general name for enzymes that catalyze oxidations in which molecular oxygen is the electron acceptor but oxygen atoms do not appear in the oxidized product (however, there is an exception to this "rule," as we shall see!). The enzyme that creates a double bond in fatty acyl-CoA during the oxidation of fatty acids in peroxisomes (see Fig. 12-13) is an oxidase of this type; a second example is the cytochrome oxidase of the mitochondrial electron-transfer chain (see Fig. 19-14). In the first case, the transfer of two electrons to H_2O produces hydrogen peroxide, H_2O_2; in the second, two electrons reduce O_2 to H_2O. Many, but not all, oxidases are flavoproteins.

Oxygenases catalyze oxidative reactions in which oxygen atoms are directly incorporated into the substrate molecule, forming a new hydroxyl or carboxyl group, for example. Dioxygenases catalyze reactions in which both oxygen atoms of O_2 are incorporated into the organic substrate molecule. An example of a dioxygenase is tryptophan 2,3-dioxygenase, which catalyzes the opening of the five-membered ring of tryptophan in the catabolism of this amino acid. When this reaction takes place in the presence of $^{18}\text{O}_2$, the isotopic oxygen atoms are found in the two carbonyl groups of the product (shown in red).

Monooxygenases, more abundant and more complex in their action, catalyze reactions in which only one of the two oxygen atoms of O_2 is incorporated into the organic substrate, the other being reduced to H_2O. Monooxygenases require two substrates to serve as reductants of the two oxygen atoms of O_2. The main substrate accepts one of the two oxygen atoms, and a cosubstrate furnishes hydrogen atoms to reduce the other oxygen atom to H_2O. The general reaction equation for monooxygenases is

$$\text{AH} + \text{BH}_2 + \text{O}_2 \rightarrow \text{A-OH} + \text{B} + \text{H}_2\text{O}$$

where AH is the main substrate and BH$_2$ the cosubstrate. Because most monooxygenases catalyze reactions in which the main substrate becomes hydroxylated, they are also called hydroxylases. They are also sometimes called mixed-function oxidases or mixed-function oxygenases, to indicate that they oxidize two different substrates simultaneously. (Note here the use of "oxidase"—a deviation from the general meaning of this term noted above.)

There are different classes of monooxygenases, depending on the nature of the cosubstrate. Some use reduced flavin nucleotides (FMNH$_2$ or FADH$_2$), others use NADH or NADPH, and still others use α-ketoglutarate as the cosubstrate. The enzyme that hydroxylates the phenyl ring of phenylalanine to form tyrosine is a monooxygenase for which tetrahydrobiopterin serves as cosubstrate (see Fig. 18-23). This is the enzyme that is defective in the human genetic disease phenylketonuria.

The most numerous and most complex monooxygenation reactions are those employing a type of heme protein called cytochrome P-450. This cytochrome is usually present in the smooth ER rather than the mitochondria. Like mitochondrial cytochrome oxidase, cytochrome P-450 can react with O_2 and bind carbon monoxide, but it can be differentiated from cytochrome oxidase because the carbon monoxide complex of its reduced form absorbs light strongly at 450 nm—thus the name P-450.

Cytochrome P-450 catalyzes hydroxylation reactions in which an organic substrate, RH, is hydroxylated to R-OH, incorporating one oxygen atom of O_2; the other oxygen atom is reduced to H_2O by reducing equivalents that are furnished by NADH or NADPH but are usually passed to cytochrome P-450 by an iron-sulfur protein. Figure 1 shows a simplified outline of the action of cytochrome P-450, which has intermediate steps not yet fully understood.

FIGURE 1
Cytochrome P-450 is actually a family of similar proteins; several hundred members of this protein family are known, each with a different substrate specificity. In the adrenal cortex, for example, a specific cytochrome P-450 participates in the hydroxylation of steroids to yield the adrenocortical hormones (see Fig. 21-46). Cytochrome P-450 is also important in the hydroxylation of many different drugs, such as barbiturates and other xenobiotics (substances foreign to the organism), particularly if they are hydrophobic and relatively insoluble. The environmental carcinogen benzo[a]pyrene (found in cigarette smoke) undergoes cytochrome P-450–dependent hydroxylation during detoxification. Hydroxylation of xenobiotics makes them more soluble in water and allows their excretion in the urine. Unfortunately, hydroxylation of some compounds converts them to toxic substances, subverting the detoxification system.

Reactions described in this chapter that are catalyzed by mixed-function oxidases are those involved in fatty acyl–CoA desaturation (Fig. 21–13), leukotriene synthesis (Fig. 21–16), plasmalogen synthesis (Fig. 21–30), conversion of squalene to cholesterol (Fig. 21–37), and steroid hormone synthesis (Fig. 21–46).

Linoleate may be converted to certain other polyunsaturated acids, particularly γ-linolenate, eicosatrienoate, and arachidonate (eicosatetraenoate), all of which can be made only from linoleate (Fig. 21–12). Arachidonate, 20:4(Δ⁵,₈,₁₁,₁₄), is an essential precursor of regulatory lipids, the eicosanoids. The 20-carbon fatty acids are synthesized from linoleate (and α-linolenate) by fatty acid elongation reactions analogous to those described on page 814.

Eicosanoids Are Formed from 20-Carbon Polyunsaturated Fatty Acids

Eicosanoids are a family of very potent biological signaling molecules that act as short-range messengers, affecting tissues near the cells that produce them. In response to hormonal or other stimuli, phospholipase A₂, present in most types of mammalian cells, attacks membrane phospholipids, releasing arachidonate from the middle carbon of glycerol. Enzymes of the smooth ER then convert arachidonate to prostaglandins, beginning with the formation of prostaglandin H₂ (PGH₂), the immediate precursor of many other prostaglandins and of thromboxanes (Fig. 21–15a). The two reactions that lead to PGH₂ are catalyzed by a bifunctional enzyme, cyclooxygenase (COX), also called prostaglandin H₂ synthase. In the first of two steps, the cyclooxygenase activity introduces molecular oxygen to convert arachidonate to PGG₂. The second step, catalyzed by the peroxidase activity of COX, converts PGG₂ to PGH₂.

Mammals have two isozymes of prostaglandin H₂ synthase, COX-1 and COX-2. These have different functions but closely similar amino acid sequences (60% to 65% sequence identity) and similar reaction mechanisms at both of their catalytic centers. COX-1 is responsible for the synthesis of the prostaglandins that regulate the secretion of gastric mucin, and COX-2 for the prostaglandins that mediate inflammation, pain, and fever.
FIGURE 21–15 The “cyclic” pathway from arachidonate to prostaglandins and thromboxanes. (a) After arachidonate is released from phospholipids by the action of phospholipase A₂, the cyclooxygenase and peroxidase activities of COX (also called prostaglandin H₂ synthase) catalyze the production of PGH₂, the precursor of other prostaglandins and thromboxanes. (b) Aspirin inhibits the first reaction by acetyling an essential Ser residue on the enzyme. Ibuprofen and naproxen inhibit the same step, probably by mimicking the structure of the substrate or an intermediate in the reaction. (c) COX-2–specific cyclooxygenase inhibitors used as pain relievers (see text).

Pain can be relieved by inhibiting COX-2. The first drug widely marketed for this purpose was aspirin (acetylsalicylate; Fig. 21–15b). The name aspirin (from a for acetyl and spir for Spīrasaure, the German word for the salicylates prepared from the plant Spīraea ulmariā) appeared in 1899 when the drug was introduced by the Bayer company. Aspirin irreversibly inactivates the cyclooxygenase activity of both COX isozymes, by acetyling a Ser residue and blocking each enzyme’s active site. The synthesis of prostaglandins and thromboxanes is thereby inhibited. Ibuprofen, another widely used nonsteroidal antiinflammatory drug (NSAID; Fig. 21–15b), inhibits the same pair of enzymes. However, the inhibition of COX-1 can result in undesired side effects including stomach irritation and more serious conditions. In the 1990s, following discovery of the crystal structures of COX-1 and COX-2, NSAID compounds that had a greater specificity for COX-2 were developed as advanced therapies for severe pain. Three of these drugs were approved for use worldwide: rofecoxib (Vioxx), valdecoxib (Bextra), and celecoxib (Celebrex) (Fig. 21–15c). Launched in the late 1990s, the new compounds were initially a success for the pharmaceutical firms that produced them. However, enthusiasm turned to concern as field reports and clinical studies connected the drugs with an increased risk of heart attack and stroke. The reasons for the problems are still not clear, but some researchers speculated that the COX-2 inhibitors were altering the fine balance maintained between the hormone prostacyclin, which dilates blood vessels, prevents blood clotting, and is reduced by COX-2 inhibitors, and the thromboxanes, produced on the
pathway involving COX-1, that help to form blood clots. Vioxx was withdrawn from the market in 2004, and Bextra was withdrawn soon after. As of early 2007, Celebrex is still on the market but used with increased caution.

Thromboxane synthase, present in blood platelets (thrombocytes), converts PGH₂ to thromboxane A₂, from which other thromboxanes are derived (Fig. 21–15a). Thromboxanes induce constriction of blood vessels and platelet aggregation, early steps in blood clotting. Low doses of aspirin, taken regularly, reduce the probability of heart attacks and strokes by reducing thromboxane production.

Thromboxanes, like prostaglandins, contain a ring of five or six atoms; the pathway from arachidonate to these two classes of compounds is sometimes called the "cyclic" pathway, to distinguish it from the "linear" pathway that leads from arachidonate to the leukotrienes, which are linear compounds (Fig. 21–16). Leukotriene synthesis begins with the action of several lipoxygenases that catalyze the incorporation of molecular oxygen into arachidonate. These enzymes, found in leukocytes and in heart, brain, lung, and spleen, are mixed-function oxidases that use cytochrome P-450 (Box 21–1). The various leukotrienes differ in the position of the peroxide group introduced by the lipoxygenases. This linear pathway from arachidonate, unlike the cyclic pathway, is not inhibited by aspirin or other NSAIDs.

Plants also derive important signaling molecules from fatty acids. As in animals, a key step in the initiation of signaling involves activation of a specific phospholipase. In plants, the fatty acid substrate that is released is α-linolenate. A lipoxygenase then catalyzes the first step in a pathway that converts linolenate to jasmonate, a substance known to have signaling roles in insect defense, resistance to fungal pathogens, and pollen maturation. Jasmonate (see Fig. 12–32) also affects seed germination, root growth, and fruit and seed development.

SUMMARY 21.1 Biosynthesis of Fatty Acids and Eicosanoids

- Long-chain saturated fatty acids are synthesized from acetyl-CoA by a cytosolic system of six enzymatic activities plus acyl carrier protein (ACP). There are two types of fatty acid synthase. FAS I, found in vertebrates and fungi, consists of multifunctional polypeptides. FAS II is a dissociated system found in bacteria and plants. Both contain two types of —SH groups (one furnished by the phosphopantetheine of ACP, the other by a Cys residue of β-ketoacyl-ACP synthase) that function as carriers of the fatty acyl intermediates.
- Malonyl-ACP, formed from acetyl-CoA (shuttled out of mitochondria) and CO₂, condenses with an acetyl bound to the Cys —SH to yield acetoacetyl-ACP, with release of CO₂. This is followed by reduction to the Δ₂-hydroxy derivative, dehydration to the Δ²-unsaturated acyl-ACP, and reduction to butyryl-ACP. NADPH is the electron donor for both reductions. Fatty acid synthesis is regulated at the level of malonyl-CoA formation.
- Six more molecules of malonyl-ACP react successively at the carboxyl end of the growing fatty acid chain to form palmitoyl-ACP—the end product of the fatty acid synthase reaction. Free palmitate is released by hydrolysis.
- Palmitate may be elongated to the 18-carbon stearate. Palmitate and stearate can be desaturated to yield palmitoleate and oleate, respectively, by the action of mixed-function oxidases.
- Mammals cannot make linoleate and must obtain it from plant sources; they convert exogenous linoleate to arachidonate, the parent compound of
Fatty acids (prostaglandins, thromboxanes, and leukotrienes), a family of very potent signaling molecules. The synthesis of prostaglandins and thromboxanes is inhibited by NSAIDs that act on the cyclooxygenase activity of prostaglandin H2 synthase.

21.2 Biosynthesis of Triacylglycerols

Most of the fatty acids synthesized or ingested by an organism have one of two fates: incorporation into triacylglycerols for the storage of metabolic energy or incorporation into the phospholipid components of membranes. The partitioning between these alternative fates depends on the organism's current needs. During rapid growth, synthesis of new membranes requires the production of membrane phospholipids; when an organism has a plentiful food supply but is not actively growing, it shunts most of its fatty acids into storage fats. Both pathways begin at the same point: the formation of fatty acyl esters of glycerol. In this section we examine the route to triacylglycerols and its regulation, and the production of glycerol 3-phosphate in the process of glycerooneogenesis.

Triacylglycerols and Glycerophospholipids Are Synthesized from the Same Precursors

Animals can synthesize and store large quantities of triacylglycerols, to be used later as fuel (see Box 17–1). Humans can store only a few hundred grams of glycogen in liver and muscle, barely enough to supply the body's energy needs for 12 hours. In contrast, the total amount of stored triacylglycerol in a 70-kg man of average build is about 15 kg, enough to support basal energy needs for as long as 12 weeks (see Table 23–5). Triacylglycerols have the highest energy content of all stored nutrients—more than 38 kJ/g. Whenever carbohydrate is ingested in excess of the organism's capacity to store glycogen, the excess is converted to triacylglycerols and stored in adipose tissue. Plants also manufacture triacylglycerols as an energy-rich fuel, mainly stored in fruits, nuts, and seeds.

In animal tissues, triacylglycerols and glycerophospholipids such as phosphatidylethanolamine share two precursors (fatty acyl-CoA and l-glycerol 3-phosphate) and several biosynthetic steps. The vast majority of the glycerol 3-phosphate is derived from the glycolytic intermediate dihydroxyacetone phosphate (DHAP) by the action of the cytosolic NAD-linked glycerol 3-phosphate dehydrogenase; in liver and kidney, a small amount of glycerol 3-phosphate is also formed from glycerol by the action of glycerol kinase (Fig. 21–17). The other precursors of triacylglycerols are fatty acyl-CoAs, formed from fatty acids by acyl-CoA synthetases, the same enzymes responsible for the activation of fatty acids for β oxidation (see Fig. 17–5).

![Figure 21-17 Biosynthesis of phosphatidic acid.](image-url)
Triacylglycerol Biosynthesis in Animals Is Regulated by Hormones

In humans, the amount of body fat stays relatively constant over long periods, although there may be minor short-term changes as caloric intake fluctuates. Carbohydrate, fat, or protein consumed in excess of energy needs is stored in the form of triacylglycerols that can be drawn upon for energy, enabling the body to withstand periods of fasting.

Biosynthesis and degradation of triacylglycerols are regulated such that the favored path depends on the metabolic resources and requirements of the moment. The rate of triacylglycerol biosynthesis is profoundly altered by the action of several hormones. Insulin, for example, promotes the conversion of carbohydrate to triacylglycerols (Fig. 21–19). People with severe diabetes mellitus, due to failure of insulin secretion or action, not only are unable to use glucose properly but also fail to synthesize fatty acids from carbohydrates or amino acids. If the diabetes is untreated, these individuals have increased rates of fat oxidation and ketone body formation (Chapter 17) and therefore lose weight.

An additional factor in the balance between biosynthesis and degradation of triacylglycerols is that approximately 75% of all fatty acids released by lipolysis are reesterified to form triacylglycerols rather than used for fuel. This ratio persists even under starvation conditions, when energy metabolism is shunted from the use of carbohydrate to the oxidation of fatty acids. Some of this fatty acid recycling takes place in adipose tissue, with the reesterification occurring before release into the bloodstream; some takes place via a systemic cycle in which free fatty acids are transported to liver, recycled to triacylglycerol, exported again to the blood (transport of lipids in the blood is discussed in Section

FIGURE 21–18 Phosphatidic acid in lipid biosynthesis. Phosphatidic acid is the precursor of both triacylglycerols and glycerophospholipids. The mechanisms for head-group attachment in phospholipid synthesis are described later in this section.

The first stage in the biosynthesis of triacylglycerols is the acylation of the two free hydroxyl groups of L-glycerol 3-phosphate by two molecules of fatty acyl-CoA to yield diacylglycerol 3-phosphate, more commonly called phosphatidic acid or phosphatidate (Fig. 21–17). Phosphatidic acid is present in only trace amounts in cells but is a central intermediate in lipid biosynthesis; it can be converted either to a triacylglycerol or to a glycerophospholipid. In the pathway to triacylglycerols, phosphatidic acid is hydrolyzed by phosphatidic acid phosphatase to form a 1,2-diacylglycerol (Fig. 21–18). Diacylglycerols are then converted to triacylglycerols by transesterification with a third fatty acyl-CoA.

FIGURE 21–19 Regulation of triacylglycerol synthesis by insulin. Insulin stimulates conversion of dietary carbohydrates and proteins to fat. Individuals with diabetes mellitus lack insulin; in uncontrolled disease, this results in diminished fatty acid synthesis, and the acetyl-CoA arising from catabolism of carbohydrates and proteins is shunted instead to ketone body production. People in severe ketosis smell of acetone, so the condition is sometimes mistaken for drunkenness (p. 929).
Lipid Biosynthesis

Adipose tissue

Blood

Liver

FIGURE 21-20 The triacylglycerol cycle. In mammals, triacylglycerol molecules are broken down and resynthesized in a triacylglycerol cycle during starvation. Some of the fatty acids released by lipolysis of triacylglycerol in adipose tissue pass into the bloodstream, and the remainder are used for resynthesis of triacylglycerol. Some of the fatty acids released into the blood are used for energy (in muscle, for example), and some are taken up by the liver and used in triacylglycerol synthesis. The triacylglycerol formed in the liver is transported in the blood back to adipose tissue, where the fatty acid is released by extracellular lipoprotein lipase, taken up by adipocytes, and reesterified into triacylglycerol.

21.4), and taken up again by adipose tissue after release from triacylglycerol by extracellular lipoprotein lipase (Fig. 21-20; see also Fig. 17–1). Flux through this triacylglycerol cycle between adipose tissue and liver may be quite low when other fuels are available and the release of fatty acids from adipose tissue is limited, but as noted above, the proportion of released fatty acids that are reesterified remains roughly constant at 75% under all metabolic conditions. The level of free fatty acids in the blood thus reflects both the rate of release of fatty acids and the balance between the synthesis and breakdown of triacylglycerols in adipose tissue and liver.

When the mobilization of fatty acids is required to meet energy needs, release from adipose tissue is stimulated by the hormones glucagon and epinephrine (see Figs 17–3, 17–12). Simultaneously, these hormonal signals decrease the rate of glycolysis and increase the rate of gluconeogenesis in the liver (providing glucose for the brain, as further elaborated in Chapter 23). The released fatty acid is taken up by a number of tissues, including muscle, where it is oxidized to provide energy. Much of the fatty acid taken up by liver is not oxidized but is recycled to triacylglycerol and returned to adipose tissue.

The function of the apparently futile triacylglycerol cycle (futile cycles are discussed in Chapter 15) is not well understood. However, as we learn more about how the triacylglycerol cycle is sustained via metabolism in two separate organs and is coordinately regulated, some possibilities emerge. For example, the excess capacity in the triacylglycerol cycle (the fatty acid that is eventually reconverted to triacylglycerol rather than oxidized as fuel) could represent an energy reserve in the bloodstream during fasting, one that would be more rapidly mobilized in a “fight or flight” emergency than would stored triacylglycerol.

The constant recycling of triacylglycerols in adipose tissue even during starvation raises a second question: what is the source of the glycerol 3-phosphate required for this process? As noted above, glycolysis is suppressed in these conditions by the action of glucagon and epinephrine, so little DHAP is available, and glycerol released during lipolysis cannot be converted directly to glycerol 3-phosphate in adipose tissue, because these cells lack glycerol kinase (Fig. 21–17). So, how is sufficient glycerol 3-phosphate produced? The answer lies in a pathway discovered more than three decades ago and given little attention until recently, a pathway intimately linked to the triacylglycerol cycle and, in a larger sense, to the balance between fatty acid and carbohydrate metabolism.

Adipose Tissue Generates Glycerol 3-phosphate by Glyceroneogenesis

Glyceroneogenesis is a shortened version of gluconeogenesis, from pyruvate to DHAP (see Fig. 14–16), followed by conversion of the DHAP to glycerol 3-phosphate by cytosolic NAD-linked glycerol 3-phosphate dehydrogenase (Fig. 21–21). Glycerol 3-phosphate is subsequently used in triacylglycerol synthesis. Glyceroneogenesis was discovered in the 1960s by Lea Reshef, Richard Hanson, and John Ballard, and simultaneously by Eleazar Shafrir and his coworkers, who were intrigued by the presence of two gluconeogenic enzymes, pyruvate carboxylase and phosphoenolpyruvate (PEP)
carboxykinase, in adipose tissue, where glucose is not synthesized. After a long period of inattention, interest in this pathway has been renewed by the demonstration of a link between glyceroneogenesis and late-onset (type 2) diabetes, as we shall see.

Glyceroneogenesis has multiple roles. In adipose tissue, glyceroneogenesis coupled with reesterification of free fatty acids controls the rate of fatty acid release to the blood. In brown adipose tissue, the same pathway may control the rate at which free fatty acids are delivered to mitochondria for use in thermogenesis (see Fig. 19–34). And in fasting humans, glyceroneogenesis in the liver alone supports the synthesis of enough glycerol 3-phosphate to account for up to 65% of fatty acids reesterified to triacylglycerol.

Flux through the triacylglycerol cycle between liver and adipose tissue is controlled to a large degree by the activity of PEP carboxykinase, which limits the rate of both gluconeogenesis and glyceroneogenesis. Glucocorticoid hormones such as cortisol (a biological steroid derived from cholesterol; see Fig. 21–45) and dexamethasone (a synthetic glucocorticoid) regulate the levels of PEP carboxykinase reciprocally in the liver and adipose tissue. Acting through the glucocorticoid receptor, these steroid hormones increase the expression of the gene encoding PEP carboxykinase in the liver, thus increasing gluconeogenesis and glyceroneogenesis (Fig. 21–22).

Stimulation of glyceroneogenesis leads to an increase in the synthesis of triacylglycerol molecules in the liver and their release into the blood. At the same time, glucocorticoids suppress the expression of the gene encoding PEP carboxykinase in adipose tissue. This results in a decrease in glyceroneogenesis in adipose tissue; recycling of fatty acids declines as a result, and more free fatty acids are released into the blood. Thus glyceroneogenesis is regulated reciprocally in the liver and adipose tissue, affecting lipid metabolism in opposite ways: a lower rate of glyceroneogenesis in adipose tissue leads to more fatty acid release (rather than recycling), whereas a higher rate in the liver leads to more synthesis and export of triacylglycerols. The net result is an increase in flux through the triacylglycerol cycle. When the glucocorticoids are no longer present, flux through the cycle declines as the expression of PEP carboxykinase increases in adipose tissue and decreases in the liver.
Thiazolidinediones Treat Type 2 Diabetes by Increasing Glyceroneogenesis

The recent attention to glyceroneogenesis has arisen in part from the connection between this pathway and diabetes. High levels of free fatty acids in the blood interfere with glucose utilization in muscle and promote the insulin resistance that leads to type 2 diabetes. A new class of drugs called thiazolidinediones reduce the levels of fatty acids circulating in the blood and increase sensitivity to insulin. Thiazolidinediones promote the induction in adipose tissue of PEP carboxykinase (Fig. 21-22), leading to increased synthesis of the precursors of glyceroneogenesis. The therapeutic effect of thiazolidinediones is thus due, at least in part, to the increase in glyceroneogenesis, which in turn increases the resynthesis of triacylglycerol in adipose tissue and reduces the release of free fatty acid from adipose tissue into the blood. The benefits of one such drug, rosiglitazone (Avandia), are countered in part by an increased risk of heart attack, for reasons not yet clear. Assessment of this drug is continuing.

SUMMARY 21.2 Biosynthesis of Triacylglycerols

- Triacylglycerols are formed by reaction of two molecules of fatty acyl-CoA with glycerol 3-phosphate to form phosphatidic acid; this product is dephosphorylated to a diacylglycerol, then acylated by a third molecule of fatty acyl-CoA to yield a triacylglycerol.
- The synthesis and degradation of triacylglycerol are hormonally regulated.
- Mobilization and recycling of triacylglycerol molecules results in a triacylglycerol cycle. Triacylglycerols are resynthesized from free fatty acids and glycerol 3-phosphate even during starvation. The dihydroxyacetone phosphate precursor of glycerol 3-phosphate is derived from pyruvate via glyceroneogenesis.

21.3 Biosynthesis of Membrane Phospholipids

In Chapter 10 we introduced two major classes of membrane phospholipids: glycerophospholipids and sphingolipids. Many different phospholipid species can be constructed by combining various fatty acids and polar head groups with the glycerol or sphingosine backbone (see Figs 10-9, 10-13). All the biosynthetic pathways follow a few basic patterns. In general, the assembly of phospholipids from simple precursors requires (1) synthesis of the backbone molecule (glycerol or sphingosine); (2) attachment of fatty acid(s) to the backbone through an ester or amide linkage; (3) addition of a hydrophilic head group to the backbone through a phosphodiester linkage; and, in some cases, (4) alteration or exchange of the head group to yield the final phospholipid product.

In eukaryotic cells, phospholipid synthesis occurs primarily on the surfaces of the smooth endoplasmic reticulum and the mitochondrial inner membrane. Some newly formed phospholipids remain at the site of synthesis, but most are destined for other cellular locations. The process by which water-insoluble phospholipids move from the site of synthesis to the point of their eventual function is not fully understood, but we conclude this section by discussing some mechanisms that have emerged in recent years.

Cells Have Two Strategies for Attaching Phospholipid Head Groups

The first steps of glycerophospholipid synthesis are shared with the pathway to triacylglycerols (Fig. 21-17): two fatty acyl groups are esterified to C-1 and C-2 of L-glycerol 3-phosphate to form phosphatidic acid. Commonly but not invariably, the fatty acid at C-1 is saturated and that at C-2 is unsaturated. A second route to phosphatidic acid is the phosphorylation of a diacylglycerol by a specific kinase.

The polar head group of glycerophospholipids is attached through a phosphodiester bond, in which each of two alcohol hydroxyls (one on the polar head group and one on C-3 of glycerol) forms an ester with phosphoric acid (Fig. 21-23). In the biosynthetic process, one of the hydroxyls is first activated by attachment of a nucleotide, cytidine diphosphate (CDP). Cytidine monophosphate (CMP) is then displaced in a nucleophilic attack by the other hydroxyl (Fig. 21-24). The CDP is attached either to the diacylglycerol, forming the activated phosphatidic acid CDP-diacylglycerol (strategy 1), or to the hydroxyl of the head group (strategy 2). Eukaryotic cells employ both strategies, whereas bacteria use only the first. The central importance of cytidine nucleotides in lipid biosynthesis was discovered by Eugene P. Kennedy in the early 1960s.
Figure 21-23 Head-group attachment. The phospholipid head group is attached to a diacylglycerol by a phosphodiester bond, formed when phosphoric acid condenses with two alcohols, eliminating two molecules of H₂O.

Phospholipid Synthesis in E. coli Employs CDP-Diacylglycerol

The first strategy for head-group attachment is illustrated by the synthesis of phosphatidylserine, phosphatidylethanolamine, and phosphatidylglycerol in E. coli. The diacylglycerol is activated by condensation of phosphatic acid with cytidine triphosphate (CTP) to form CDP-diacylglycerol, with the elimination of pyrophosphate (Fig. 21-25). Displacement of CMP through nucleophilic attack by the hydroxyl group of serine or by the C-1 hydroxyl of glycerol 3-phosphate yields phosphatidylserine or phosphatidylglycerol 3-phosphate, respectively. The latter is processed further by cleavage of the phosphate monoester (with release of P₁) to yield phosphatidylglycerol.

Phosphatidylserine and phosphatidylglycerol can serve as precursors of other membrane lipids in bacteria (Fig. 21-25). Decarboxylation of the serine moiety in phosphatidylserine, catalyzed by phosphatidylserine decarboxylase, yields phosphatidylethanolamine. In E. coli, condensation of two molecules of phosphatidylglycerol, with elimination of one glycerol, yields cardiolipin, in which two diacylglycerols are joined through a common head group.

Figure 21-24 Two general strategies for forming the phosphodiester bond of phospholipids. In both cases, CDP supplies the phosphate group of the phosphodiester bond.
FIGURE 21–25 Origin of the polar head groups of phospholipids in *E. coli*. Initially, a head group (either serine or glycerol 3-phosphate) is attached via a CDP-diacylglycerol intermediate (strategy 1 in Fig. 21–24). For phospholipids other than phosphatidylserine, the head group is further modified, as shown here. In the enzyme names, PG represents phosphatidylglycerol; PS, phosphatidylserine.
Eukaryotes Synthesize Anionic Phospholipids from CDP-Diacylglycerol

In eukaryotes, phosphatidylglycerol, cardiolipin, and the phosphatidylinositols (all anionic phospholipids; see Fig. 10–9) are synthesized by the same strategy used for phospholipid synthesis in bacteria. Phosphatidylglycerol is made exactly as in bacteria. Cardiolipin synthesis in eukaryotes differs slightly: phosphatidylglycerol condenses with CDP-diacylglycerol (Fig. 21–26), not another molecule of phosphatidylglycerol as in E. coli (Fig. 21–25).

Phosphatidylinositol is synthesized by condensation of CDP-diacylglycerol with inositol (Fig. 21–26). Specific phosphatidylinositol kinases then convert phosphatidylinositol to its phosphorylated derivatives. Phosphatidylinositol and its phosphorylated products in the plasma membrane play a central role in signal transduction in eukaryotes (see Figs 12–10, 12–16).

Eukaryotic Pathways to Phosphatidylserine, Phosphatidylethanolamine, and Phosphatidylcholine Are Interrelated

Yeast, like bacteria, can produce phosphatidylserine by condensation of CDP-diacylglycerol and serine, and can synthesize phosphatidylethanolamine from phosphatidylserine in the reaction catalyzed by phosphatidylserine decarboxylase (Fig. 21–27). Phosphatidylethanolamine may be converted to phosphatidylcholine (lecithin) by the addition of three methyl groups to its amino group; S-adenosylmethionine is the methyl group donor (see Fig. 18–18) for all three methylation reactions. These paths are the major sources of phosphatidylethanolamine and phosphatidylcholine in all eukaryotic cells.

In mammals, phosphatidylserine is not synthesized from CDP-diacylglycerol; instead, it is derived from phosphatidylethanolamine or phosphatidylcholine via one of two head-group exchange reactions carried out in the endoplasmic reticulum (Fig. 21–28a). Synthesis of phosphatidylethanolamine and phosphatidylcholine in mammals occurs by strategy 2 of Figure 21–24: phosphorylation and activation of the head group, followed by condensation with diacylglycerol. For example, choline is reused (“salvaged”) by being phosphorylated then converted to CDP-choline by condensation with CTP. A diacylglycerol displaces CMP from CDP-choline, producing phosphatidylcholine (Fig. 21–28b). An analogous salvage pathway converts ethanolamine...
FIGURE 21-27 The major path from phosphatidylserine to phosphatidylethanolamine and phosphatidylcholine in all eukaryotes. AdoMet is S-adenosylmethionine; adoHcy, S-adenosylhomocysteine.

FIGURE 21-28 Pathways for phosphatidylserine and phosphatidylcholine synthesis in mammals. (a) Phosphatidylserine is synthesized by Ca²⁺-dependent head-group exchange reactions promoted by phosphatidylserine synthase 1 (PSS1) or phosphatidylserine synthase 2 (PSS2). PSS1 can use either phosphatidylethanolamine or phosphatidylcholine as a substrate. The pathways used by bacteria and yeast correspond to those shown in Figure 21-27. (b) The same strategy shown here for phosphatidylcholine synthesis (strategy 2 in Fig. 21-24) is also used for salvaging ethanolamine in phosphatidylethanolamine synthesis.
obtained in the diet to phosphatidylethanolamine. In the liver, phosphatidylcholine is also produced by methylation of phosphatidylethanolamine (with S-adenosylmethionine, as described above), but in all other tissues phosphatidylcholine is produced only by condensation of diacylglycerol and CDP-choline. The pathways to phosphatidylcholine and phosphatidylethanolamine in various organisms are summarized in Figure 21-29.

Although the role of lipid composition in membrane function is not entirely understood, changes in composition can produce dramatic effects. Researchers have isolated fruit flies with mutations in the gene that encodes ethanolamine kinase (analogous to choline kinase; Fig. 21-28b). Lack of this enzyme eliminates one pathway for phosphatidylethanolamine synthesis, thereby reducing the amount of this lipid in cellular membranes. Flies with this mutation—those with the genotype easily shocked—exhibit transient paralysis following electrical stimulation or mechanical shock that would not affect wild-type flies.

Plasmalogen Synthesis Requires Formation of an Ether-Linked Fatty Alcohol

The biosynthetic pathway to ether lipids, including plasmalogens and the platelet-activating factor (see Fig. 10-10), involves the displacement of an esterified fatty acyl group by a long-chain alcohol to form the ether linkage (Fig. 21-30). Head-group attachment follows, by mechanisms essentially like those used in formation of the common ester-linked phospholipids. Finally, the characteristic double bond of plasmalogens (shaded blue in Fig. 21-30) is introduced by the action of a mixed-function oxidase similar to that responsible for desaturation of fatty acids (Fig. 21-13). The peroxisome is the primary site of plasmalogen synthesis.

Sphingolipid and Glycerophospholipid Synthesis Share Precursors and Some Mechanisms

The biosynthesis of sphingolipids takes place in four stages: (1) synthesis of the 18-carbon amine sphinganine from palmitoyl-CoA and serine; (2) attachment of a fatty acid in amide linkage to yield N-acylsphinganine; (3) desaturation of the sphinganine moiety to form N-acylsphingosine (ceramide); and (4) attachment of a head group to produce a sphingolipid such as a cerebroside or sphingomyelin (Fig. 21-31). The first few steps of this pathway occur in the endoplasmic reticulum, while the attachment of head groups in stage 4 occurs in the Golgi complex. The pathway shares several features with the pathways leading to glycerophospholipids: NADPH provides reducing power, and fatty acids enter as their activated CoA derivatives. In cerebroside formation, sugars enter as their activated nucleotide derivatives. Head-group attachment in sphingolipid synthesis has several novel aspects. Phosphatidylcholine, rather than CDP-choline, serves as the donor of phosphocholine in the synthesis of sphingomyelin.

In glycolipids—the cerebrosides and gangliosides (see Fig. 10-13)—the head-group sugar is attached directly to the C-1 hydroxyl of sphingosine in glycosidic linkage rather than through a phosphodiester bond. The sugar donor is a UDP-sugar (UDP-glucose or UDP-galactose).
Polar Lipids Are Targeted to Specific Cellular Membranes

After synthesis on the smooth ER, the polar lipids, including the glycerophospholipids, sphingolipids, and glycolipids, are inserted into specific cellular membranes in specific proportions, by mechanisms not yet understood. Membrane lipids are insoluble in water, so they cannot simply diffuse from their point of synthesis (the ER) to their point of insertion. Instead, they are transported from the ER to the Golgi complex, where additional synthesis can take place. They are then delivered in membrane vesicles that bud from the Golgi complex then move to and fuse with the target membrane (see Fig. 11–22). These pathways are not completely understood, but progress is being made. A 68 kDa protein called CERT (for ceramide transport) transports ceramide from the ER to the Golgi complex. Cytosolic proteins also bind phospholipids and sterols and transport them between cellular membranes. These mechanisms contribute to the establishment of the characteristic lipid compositions of organelle membranes (see Fig. 11–2).
SUMMARY 21.3 Biosynthesis of Membrane Phospholipids

- Diacylglycerols are the principal precursors of glycerophospholipids.
- In bacteria, phosphatidylserine is formed by the condensation of serine with CDP-diacylglycerol; decarboxylation of phosphatidylserine produces phosphatidylethanolamine. Phosphatidylglycerol is formed by condensation of CDP-diacylglycerol with glycerol 3-phosphate, followed by removal of the phosphate in monoester linkage.
- Yeast pathways for the synthesis of phosphatidylserine, phosphatidylethanolamine, and phosphatidylglycerol are similar to those in bacteria; phosphatidylcholine is formed by methylation of phosphatidylethanolamine.
- Mammalian cells have some pathways similar to those in bacteria, but somewhat different routes for synthesizing phosphatidylcholine and phosphatidylethanolamine. The head-group alcohol (choline or ethanolamine) is activated as the CDP derivative, then condensed with diacylglycerol. Phosphatidylserine is derived only from phosphatidylethanolamine.
- Synthesis of plasmalogenes involves formation of their characteristic double bond by a mixed-function oxidase. The head groups of sphingolipids are attached by unique mechanisms.
- Phospholipids travel to their intracellular destinations via transport vesicles or specific proteins.

21.4 Biosynthesis of Cholesterol, Steroids, and Isoprenoids

Cholesterol is doubtless the most publicized lipid, notorious because of the strong correlation between high levels of cholesterol in the blood and the incidence of human cardiovascular diseases. Less well advertised is cholesterol's crucial role as a component of cellular membranes and as a precursor of steroid hormones and bile acids. Cholesterol is an essential molecule in many animals, including humans, but is not required in the mammalian diet—all cells can synthesize it from simple precursors.

The structure of this 27-carbon compound suggests a complex biosynthetic pathway, but all of its carbon atoms are provided by a single precursor—acetate. The isoprene units that are the essential intermediates in...
Lipid Biosynthesis

the pathway from acetate to cholesterol are also precursors to many other natural lipids, and the mechanisms by which isoprene units are polymerized are similar in all these pathways.

\[
\begin{align*}
\text{CH}_3 & \quad \text{Acetate} \\
\text{CH}_2=C-\text{CH}=\text{CH}_2 & \quad \text{Isoprene}
\end{align*}
\]

We begin with an account of the main steps in the biosynthesis of cholesterol from acetate, then discuss the transport of cholesterol in the blood, its uptake by cells, the normal regulation of cholesterol synthesis, and its regulation in those with defects in cholesterol uptake or transport. We next consider other cellular components derived from cholesterol, such as bile acids and steroid hormones. Finally, an outline of the biosynthetic pathways to some of the many compounds derived from isoprene units, which share early steps with the pathway to cholesterol, illustrates the extraordinary versatility of isoprenoid condensations in biosynthesis.

Cholesterol Is Made from Acetyl-CoA in Four Stages

Cholesterol, like long-chain fatty acids, is made from acetyl-CoA, but the assembly plan is quite different. In early experiments, animals were fed acetate labeled with \(^{14}\text{C}\) in either the methyl carbon or the carboxyl carbon. The pattern of labeling in the cholesterol isolated from the two groups of animals (Fig. 21–32) provided the blueprint for working out the enzymatic steps in cholesterol biosynthesis.

Synthesis takes place in four stages, as shown in Figure 21–33: \(1\) condensation of three acetate units to form a six-carbon intermediate, mevalonate; \(2\) conversion of mevalonate to activated isoprene units; \(3\) polymerization of six 5-carbon isoprene units to form the 30-carbon linear squalene; and \(4\) cyclization of squalene to form the four rings of the steroid nucleus, with a further series of changes (oxidations, removal or migration of methyl groups) to produce cholesterol.

Stage 1 Synthesis of Mevalonate from Acetate

The first stage in cholesterol biosynthesis leads to the intermediate mevalonate (Fig. 21–34). Two molecules of acetyl-CoA condense to form acetoacetyl-CoA, which condenses with a third molecule of acetyl-CoA to yield the six-carbon compound \(\beta\)-hydroxy-\(\beta\)-methylglutaryl-CoA (HMG-CoA). These first two reactions are catalyzed by thiolase and HMG-CoA synthase, respectively. The cytosolic HMG-CoA synthase in this pathway is distinct from the mitochondrial isozyme that catalyzes HMG-CoA synthesis in ketone body formation (see Fig. 17–18).

The third reaction is the committed and rate-limiting step: reduction of HMG-CoA to mevalonate, for which each of two molecules of NADPH donates two electrons. HMG-CoA reductase, an integral membrane protein of the smooth ER, is the major point of regulation on the pathway to cholesterol, as we shall see.
Stage (2) Conversion of Mevalonate to Two Activated Isoprenes

In the next stage of cholesterol synthesis, three phosphate groups are transferred from three ATP molecules to mevalonate (Fig. 21–35). The phosphate attached to the C-3 hydroxyl group of mevalonate in the intermediate 3-phospho-5-pyrophosphomevalonate is a good leaving group; in the next step, both this phosphate and the nearby carboxyl group leave, producing a double bond in the five-carbon product, \(\Delta^3 \)-isopentenyl pyrophosphate. This is the first of the two activated isoprenes central to cholesterol formation. Isomerization of \(\Delta^3 \)-isopentenyl pyrophosphate yields the second activated isoprene, dimethylallyl pyrophosphate. Synthesis of isopentenyl pyrophosphate in the cytoplasm of plant cells follows the pathway described here. However, plant chloroplasts and many bacteria use a mevalonate-independent pathway. This alternative pathway does not occur in animals, so it is an attractive target for the development of new antibiotics.

Stage (3) Condensation of Six Activated Isoprene Units to Form Squalene

Isopentenyl pyrophosphate and dimethylallyl pyrophosphate now undergo a head-to-tail condensation, in which one pyrophosphate
group is displaced and a 10-carbon chain, geranyl pyrophosphate, is formed (Fig. 21–36). (The “head” is the end to which pyrophosphate is joined.) Geranyl pyrophosphate undergoes another head-to-tail condensation with isopentenyl pyrophosphate, yielding the 15-carbon intermediate farnesyl pyrophosphate. Finally, two molecules of farnesyl pyrophosphate join head to head, with the elimination of both pyrophosphate groups, to form squalene.

The common names of these intermediates derive from the sources from which they were first isolated. Geraniol, a component of rose oil, has the aroma of geraniums, and farnesol is an aromatic compound found in the flowers of the Farnese acacia tree. Many natural scents of plant origin are synthesized from isoprene units. Squalene, first isolated from the liver of sharks (genus Squalus), has 30 carbons, 24 in the main chain and 6 in the form of methyl group branches.

Stage 4 Conversion of Squalene to the Four-Ring Steroid Nucleus When the squalene molecule is represented as in Figure 21–37, the relationship of its linear structure to the cyclic structure of the sterols becomes apparent. All sterols have the four fused rings that form the steroid nucleus, and all are alcohols, with a hydroxyl group at C-3—thus the name “sterol.” The action of squalene monooxygenase adds one oxygen atom from O₂ to the end of the squalene chain, forming an epoxide. This enzyme is another mixed-function oxidase (Box 21–1); NADPH reduces the other oxygen atom of O₂ to H₂O. The double bonds of the product, squalene 2,3-epoxide, are positioned so that a remarkable concerted reaction can convert the linear squalene epoxide to a cyclic structure. In animal cells, this cyclization results in the formation of lanosterol, which contains the four rings characteristic of the steroid nucleus. Lanosterol is

![FIGURE 21–36 Formation of squalene. This 30-carbon structure arises through successive condensations of activated isoprene (five-carbon) units.](image-url)
finally converted to cholesterol in a series of about 20 reactions that include the migration of some methyl groups and the removal of others. Elucidation of this extraordinary biosynthetic pathway, one of the most complex known, was accomplished by Konrad Bloch, Feodor Lynen, John Cornforth, and George Popjak in the late 1950s.

FIGURE 21-37 Ring closure converts linear squalene to the condensed steroid nucleus. The first step in this sequence is catalyzed by a mixed-function oxidase (a monooxygenase), for which the cosubstrate is NADPH. The product is an epoxide, which in the next step is cyclized to the steroid nucleus. The final product of these reactions in animal cells is cholesterol; in other organisms, slightly different sterols are produced, as shown.
Cholesterol is the sterol characteristic of animal cells; plants, fungi, and protists make other, closely related sterols instead. They use the same synthetic pathway as far as squalene 2,3-epoxide, at which point the pathways diverge slightly, yielding other sterols, such as stigmasterol in many plants and ergosterol in fungi (Fig. 21–37).

WORKED EXAMPLE 21–1 Energetic Cost of Squalene Synthesis

What is the energetic cost of the synthesis of squalene from acetyl-CoA, in number of ATPs per molecule of squalene synthesized?

Solution: In the pathway from acetyl-CoA to squalene, ATP is consumed only in the steps that convert mevalonate to the activated isoprene precursors of squalene. Three ATP molecules are used to create each of the six activated isoprenes required to construct squalene, for a total cost of 18 ATP molecules.

Cholesterol Has Several Fates

Much of the cholesterol synthesis in vertebrates takes place in the liver. A small fraction of the cholesterol made there is incorporated into the membranes of hepatocytes, but most of it is exported in one of three forms: biliary cholesterol, bile acids, or cholesteryl esters. Bile acids and their salts are relatively hydrophilic cholesterol derivatives that are synthesized in the liver and aid in lipid digestion (see Fig. 17–1). **Cholesteryl esters** are formed in the liver through the action of acyl-CoA–cholesterol acyl transferase (ACAT). This enzyme catalyzes the transfer of a fatty acid from coenzyme A to the hydroxyl group of cholesterol (Fig. 21–38), converting the cholesterol to a more hydrophobic form. Cholesteryl esters are transported in secreted lipoprotein particles to other tissues that use cholesterol, or they are stored in the liver.

All growing animal tissues need cholesterol for membrane synthesis, and some organs (adrenal gland and gonads, for example) use cholesterol as a precursor for steroid hormone production (discussed below). Cholesterol is also a precursor of vitamin D (see Fig. 10–20).

Cholesterol and Other Lipids Are Carried on Plasma Lipoproteins

Cholesterol and cholesteryl esters, like triacylglycerols and phospholipids, are essentially insoluble in water, yet must be moved from the tissue of origin to the tissues in which they will be stored or consumed. They are carried in the blood plasma as **plasma lipoproteins**, macromolecular complexes of specific carrier proteins, apolipoproteins, with various combinations of phospholipids, cholesterol, cholesteryl esters, and triacylglycerols.

Apolipoproteins ("apo" designates the protein in its lipid-free form) combine with lipids to form several classes of lipoprotein particles, spherical complexes with hydrophobic lipids in the core and hydrophilic amino acid side chains at the surface (Fig. 21–39a). Different combinations of lipids and proteins produce particles of different densities, ranging from chylomicrons to high-density lipoproteins. These particles can be separated by ultracentrifugation (Table 21–1) and visualized by electron microscopy (Fig. 21–39b).

TABLE 21–1 Major Classes of Human Plasma Lipoproteins: Some Properties

<table>
<thead>
<tr>
<th>Lipoprotein</th>
<th>Density (g/mL)</th>
<th>Protein</th>
<th>Phospholipids</th>
<th>Free cholesterol</th>
<th>Cholesteryl esters</th>
<th>Triacylglycerols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chylomicrons</td>
<td><1.006</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>VLDL</td>
<td>0.95–1.006</td>
<td>10</td>
<td>18</td>
<td>7</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>LDL</td>
<td>1.006–1.003</td>
<td>23</td>
<td>20</td>
<td>8</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>HDL</td>
<td>1.063–1.210</td>
<td>55</td>
<td>24</td>
<td>2</td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>

FIGURE 21–39 Lipoproteins. (a) Structure of a low-density lipoprotein (LDL). Apolipoprotein B-100 (apoB-100) is one of the largest single polypeptide chains known, with 4,636 amino acid residues (M, 513,000). One particle of LDL contains a core with about 1,500 molecules of cholesteryl esters, surrounded by a shell composed of about 500 more molecules of cholesterol, 800 molecules of phospholipids, and one molecule of apoB-100. (b) Four classes of lipoproteins, visualized in the electron microscope after negative staining. Clockwise from top left: chylomicrons, 50 to 200 nm in diameter; VLDL, 28 to 70 nm; HDL, 8 to 11 nm; and LDL, 20 to 25 nm. For properties of lipoproteins, see Table 21–1.

Each class of lipoprotein has a specific function, determined by its point of synthesis, lipid composition, and apolipoprotein content. At least ten different apolipoproteins are found in the lipoproteins of human plasma (Table 21–2), distinguishable by their size, their reactions with specific antibodies, and their characteristic distribution in the lipoprotein classes. These protein components act as signals, targeting lipoproteins to specific tissues or activating enzymes that act on the lipoproteins.

TABLE 21–2 Apolipoproteins of the Human Plasma Lipoproteins

<table>
<thead>
<tr>
<th>Apolipoprotein</th>
<th>Molecular weight</th>
<th>Lipoprotein association</th>
<th>Function (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApoA-I</td>
<td>28,331</td>
<td>HDL</td>
<td>Activates LCAT; interacts with ABC transporter</td>
</tr>
<tr>
<td>ApoA-II</td>
<td>17,380</td>
<td>HDL</td>
<td>Inhibits LCAT</td>
</tr>
<tr>
<td>ApoA-IV</td>
<td>44,000</td>
<td>Chylomicrons, HDL</td>
<td>Activates LCAT; cholesterol transport/clearance</td>
</tr>
<tr>
<td>ApoB-48</td>
<td>240,000</td>
<td>Chylomicrons</td>
<td>Cholesterol transport/clearance</td>
</tr>
<tr>
<td>ApoB-100</td>
<td>513,000</td>
<td>VLDL, LDL</td>
<td>Binds to LDL receptor</td>
</tr>
<tr>
<td>ApoC-I</td>
<td>7,000</td>
<td>VLDL, HDL</td>
<td></td>
</tr>
<tr>
<td>ApoC-II</td>
<td>8,837</td>
<td>Chylomicrons, VLDL, HDL</td>
<td>Activates lipoprotein lipase</td>
</tr>
<tr>
<td>ApoC-III</td>
<td>8,751</td>
<td>Chylomicrons, VLDL, HDL</td>
<td>Inhibits lipoprotein lipase</td>
</tr>
<tr>
<td>ApoD</td>
<td>32,500</td>
<td>HDL</td>
<td></td>
</tr>
<tr>
<td>ApoE</td>
<td>34,145</td>
<td>Chylomicrons, VLDL, HDL</td>
<td>Triggers clearance of VLDL and chylomicron remnants</td>
</tr>
</tbody>
</table>

Chylomicrons, discussed in Chapter 17 in connection with the movement of dietary triacylglycerols from the intestine to other tissues, are the largest of the lipoproteins and the least dense, containing a high proportion of triacylglycerols (see Fig. 17-2). Chylomicrons are synthesized in the ER of epithelial cells that line the small intestine, then move through the lymphatic system and enter the bloodstream via the left subclavian vein. The apolipoproteins of chylomicrons include apoB-48 (unique to this class of lipoproteins), apoE, and apoC-II (Table 21-2). ApoC-II activates lipoprotein lipase in the capillaries of adipose, heart, skeletal muscle, and lactating mammary tissues, allowing the release of free fatty acids to these tissues. Chylomicrons thus carry dietary fatty acids to tissues where they will be consumed or stored as fuel (Fig. 21-40). The remnants of chylomicrons (depleted of most of their triacylglycerols but still containing cholesterol, apoE, and apoB-48) move through the bloodstream to the liver. Receptors in the liver bind to the apoE in the chylomicron remnants and mediate their uptake by endocytosis. In the liver, the remnants release their cholesterol and are degraded in lysosomes.

When the diet contains more fatty acids than are needed immediately as fuel, they are converted to triacylglycerols in the liver and packaged with specific apolipoproteins into very-low-density lipoprotein (VLDL). Excess carbohydrate in the diet can also be converted to triacylglycerols in the liver and exported as VLDLs (Fig. 21-40a). In addition to triacylglycerols, VLDLs contain some cholesterol and cholesteryl esters, as well as apoB-100, apoC-I, apoC-II, apoC-III, and apoE (Table 21-2). These lipoproteins are transported in the blood from the liver to muscle and adipose tissue, where activation of lipoprotein lipase by apoC-II causes the release of free fatty acids from the VLDL triacylglycerols.

![Diagram of Lipoproteins and lipid transport](image-url)

FIGURE 21-40 Lipoproteins and lipid transport. (a) Lipids are transported in the bloodstream as lipoproteins, which exist as several variants that have different functions, different protein and lipid compositions (see Tables 21-1, 21-2), and thus different densities. Dietary lipids are packaged into chylomicrons; much of their triacylglycerol content is released by lipoprotein lipase to adipose and muscle tissues during transport through capillaries. Chylomicron remnants (containing largely protein and cholesterol) are taken up by the liver. Endogenous lipids and cholesterol from the liver are delivered to adipose and muscle tissue by VLDL. Extraction of lipid from VLDL (along with loss of some apolipoproteins) gradually converts some of it to LDL, which delivers cholesterol to extrahepatic tissues or returns to the liver. The liver takes up LDL, VLDL remnants (called intermediate density lipoprotein, or IDL), and chylomicron remnants by receptor-mediated endocytosis. Excess cholesterol in extrahepatic tissues is transported back to the liver as HDL. In the liver, some cholesterol is converted to bile salts. (b) Blood plasma samples collected after a fast (left) and after a high-fat meal (right). Chylomicrons produced after a fatty meal give the plasma a milky appearance.
In the human population there are three common variants, or alleles, of the gene encoding apolipoprotein E. The most common, accounting for about 78% of human apoE alleles, is APOE3; alleles APOE4 and APOE2 account for 15% and 7%, respectively. The APOE4 allele is particularly common in humans with Alzheimer’s disease, and the link is highly predictive. Individuals who inherit APOE4 have an increased risk of late-onset Alzheimer’s disease. Those who are homozygous for APOE4 have a 16-fold increased risk of developing the disease; for those who do, the mean age of onset is just under 70 years. For people who inherit two copies of APOE3, by contrast, the mean age of onset of Alzheimer’s disease exceeds 90 years.

The molecular basis for the association between apoE-4 and Alzheimer’s disease is not yet known. It is also not clear how apoE-4 might affect the growth of the amyloid fibers that appear to be the primary causative agents of Alzheimer’s (see Fig. 4–31). Speculation has focused on a possible role for apoE in stabilizing the cytoskeletal structure of neurons. The apoE-2 and apoE-3 proteins bind to a number of proteins associated with neuronal microtubules, whereas apoE-4 does not. This may accelerate the death of neurons. Whatever the mechanism proves to be, these observations promise to expand our understanding of the biological functions of apolipoproteins.

Adipocytes take up these fatty acids, reconvert them to triacylglycerols, and store the products in intracellular lipid droplets; myocytes, in contrast, primarily oxidize the fatty acids to supply energy. Most VLDL remnants are removed from the circulation by hepatocytes. The uptake, like that for chylomicrons, is receptor-mediated and depends on the presence of apoE in the VLDL remnants. Box 21–2 describes a link between apoE and Alzheimer’s disease.

The loss of triacylglycerol converts some VLDL to VLDL remnants (also called intermediate density lipoprotein, IDL); further removal of triacylglycerol from VLDL produces low-density lipoprotein (LDL) (Table 21-1). Very rich in cholesterol and cholesteryl esters and containing apoB-100 as their major apolipoprotein, LDLs carry cholesterol to extrahepatic tissues that have specific plasma membrane receptors that recognize apoB-100. These receptors mediate the uptake of cholesterol and cholesteryl esters in a process described below.

The fourth major lipoprotein type, high-density lipoprotein (HDL), originates in the liver and small intestine as small, protein-rich particles that contain relatively little cholesterol and no cholesteryl esters (Fig. 21–40). HDLs contain apoA-I, apoC-I, apoC-II, and other apolipoproteins (Table 21–2), as well as the enzyme lecithin-cholesterol acyl transferase (LCAT), which catalyzes the formation of cholesteryl esters from lecithin (phosphatidylcholine) and cholesterol (Fig. 21–41). LCAT on the surface of nascent (newly forming) HDL particles converts the cholesterol and phosphatidylcholine of chylomicron and VLDL remnants to cholesteryl esters, which begin to form a core, transforming the disk-shaped nascent HDL to a mature, spherical HDL particle. This cholesterol-rich lipoprotein then returns to the liver, where the cholesterol is unloaded; some of this cholesterol is converted to bile salts.

The molecular basis for the association between apoE-4 and Alzheimer’s disease is not yet known. It is also not clear how apoE-4 might affect the growth of the amyloid fibers that appear to be the primary causative agents of Alzheimer’s (see Fig. 4–31). Speculation has focused on a possible role for apoE in stabilizing the cytoskeletal structure of neurons. The apoE-2 and apoE-3 proteins bind to a number of proteins associated with neuronal microtubules, whereas apoE-4 does not. This may accelerate the death of neurons. Whatever the mechanism proves to be, these observations promise to expand our understanding of the biological functions of apolipoproteins.

BOX 21–2 MEDICINE ApoE Alleles Predict Incidence of Alzheimer’s Disease

The fourth major lipoprotein type, high-density lipoprotein (HDL), originates in the liver and small intestine as small, protein-rich particles that contain relatively little cholesterol and no cholesteryl esters (Fig. 21–40). HDLs contain apoA-I, apoC-I, apoC-II, and other apolipoproteins (Table 21–2), as well as the enzyme lecithin-cholesterol acyl transferase (LCAT), which catalyzes the formation of cholesteryl esters from lecithin (phosphatidylcholine) and cholesterol (Fig. 21–41). LCAT on the surface of nascent (newly forming) HDL particles converts the cholesterol and phosphatidylcholine of chylomicron and VLDL remnants to cholesteryl esters, which begin to form a core, transforming the disk-shaped nascent HDL to a mature, spherical HDL particle. This cholesterol-rich lipoprotein then returns to the liver, where the cholesterol is unloaded; some of this cholesterol is converted to bile salts.
HDL may be taken up in the liver by receptor-mediated endocytosis, but at least some of the cholesterol in HDL is delivered to other tissues by a novel mechanism. HDL can bind to plasma membrane receptor proteins called SR-BI in hepatic and steroidogenic tissues such as the adrenal gland. These receptors mediate not endocytosis but a partial and selective transfer of cholesterol and other lipids in HDL into the cell. Depleted HDL then dissociates to recirculate in the bloodstream and extract more lipids from chylomicron and VLDL remnants. Depleted HDL can also pick up cholesterol stored in extrahepatic tissues and carry it to the liver, in reverse cholesterol transport pathways (Fig. 21-40). In one reverse transport path, interaction of nascent HDL with SR-BI receptors in cholesterol-rich cells triggers passive movement of cholesterol from the cell surface into HDL, which then carries it back to the liver. In a second pathway, apoA-I in depleted HDL interacts with an active transporter, the ABC1 protein, in a cholesterol-rich cell. The apoA-I (and presumably the HDL) is taken up by endocytosis, then resecreted with a load of cholesterol, which it transports to the liver.

The ABC1 protein is a member of a large family of multidrug transporters, sometimes called ABC transporters because they all have ATP-binding cassettes; they also have two transmembrane domains with six transmembrane helices (Chapter 11). These proteins actively transport a variety of ions, amino acids, vitamins, steroid hormones, and bile salts across plasma membranes. The CFTR protein that is defective in cystic fibrosis (see Box 11-3) is another member of this ABC family of multidrug transporters.

Cholesteryl Esters Enter Cells by Receptor-Mediated Endocytosis

Each LDL particle in the bloodstream contains apoB-100, which is recognized by specific surface receptor proteins, LDL receptors, on cells that need to take up cholesterol. The binding of LDL to an LDL receptor initiates endocytosis, which conveys the LDL and its receptor into the cell within an endosome (Fig. 21-42). The endosome eventually fuses with a lysosome, which contains enzymes that hydrolyze the cholesteryl esters, releasing cholesterol and fatty acid into the cytosol. The apoB-100 of LDL is also degraded to amino acids that are released to the cytosol, but the LDL receptor escapes degradation and is returned to the cell surface, to function again in LDL uptake. ApoB-100 is also present in VLDL, but its receptor-binding domain is not available for binding to the

FIGURE 21-42 Uptake of cholesterol by receptor-mediated endocytosis.
LDL receptor; conversion of VLDL to LDL exposes the receptor-binding domain of apoB-100. This pathway for the transport of cholesterol in blood and its receptor-mediated endocytosis by target tissues was elucidated by Michael Brown and Joseph Goldstein.

Cholesterol that enters cells by this path may be incorporated into membranes or reesterified by ACAT (Fig. 21–38) for storage within cytosolic lipid droplets. Accumulation of excess intracellular cholesterol is prevented by reducing the rate of cholesterol synthesis when sufficient cholesterol is available from LDL in the blood.

The LDL receptor also binds to apoE and plays a significant role in the hepatic uptake of chylomicrons and VLDL remnants. However, if LDL receptors are unavailable (as, for example, in a mouse strain that lacks the gene for the LDL receptor), VLDL remnants and chylomicrons are still taken up by the liver even though LDL is not. This indicates the presence of a back-up system for receptor-mediated endocytosis of VLDL remnants and chylomicrons. One back-up receptor is lipoprotein receptor-related protein (LRP), which binds to apoE as well as to a number of other ligands.

Cholesterol Biosynthesis Is Regulated at Several Levels

Cholesterol synthesis is a complex and energy-expensive process, so it is clearly advantageous to an organism to regulate the biosynthesis of cholesterol to complement dietary intake. In mammals, cholesterol production is regulated by intracellular cholesterol concentration and by the hormones glucagon and insulin. The rate-limiting step in the pathway to cholesterol (and a major site of regulation) is the conversion of HMG-CoA to mevalonate (Fig. 21–34), the reaction catalyzed by HMG-CoA reductase.

Regulation in response to cholesterol levels is mediated by an elegant system of transcriptional regulation of the gene encoding HMG-CoA reductase. This gene, along with more than 20 other genes encoding enzymes that mediate the uptake and synthesis of cholesterol and unsaturated fatty acids, is controlled by a small family of proteins called sterol regulatory element-binding proteins (SREBPs). When newly synthesized, these proteins are embedded in the ER. Only the soluble amino-terminal domain of an SREBP functions as a transcriptional activator, using mechanisms discussed in Chapter 28. However, this domain has no access to the nucleus and cannot participate in gene activation while it remains part of the SREBP molecule. To activate transcription of the HMG-CoA reductase gene and other genes, the transcriptionally active domain is separated from the rest of the SREBP by proteolytic cleavage.

When cholesterol levels are high, SREBPs are inactive, secured to the ER in a complex with another protein called SREBP cleavage-activating protein (SCAP) (Fig. 21–43). It is SCAP that binds cholesterol and a number of other sterols, thus acting as a sterol sensor. When sterol levels are high, the SCAP-SREBP complex probably interacts with another protein that retains the entire complex in the ER. When the level of sterols in the cell declines, a conformational change in SCAP causes release of the SCAP-SREBP complex from the ER-retention activity, and the complex migrates within vesicles to the nucleus.

![FIGURE 21–43 SREBP activation. Sterol regulatory element-binding proteins (SREBPs, shown in green) are embedded in the ER when first synthesized, in a complex with the protein SREBP cleavage-activating protein (SCAP, red). (N and C represent the amino and carboxyl termini of the proteins.) When bound to SCAP, SREBPs are inactive. When sterol levels decline, the complex migrates to the Golgi complex, and SREBP is cleaved by two different proteases in succession. The liberated amino-terminal domain of SREBP migrates to the nucleus, where it activates transcription of sterol-regulated genes.](image-url)
Golgi complex. In the Golgi complex, SREBP is cleaved twice by two different proteases, the second cleavage releasing the amino-terminal domain into the cytosol. This domain travels to the nucleus and activates transcription of its target genes. The amino-terminal domain of SREBP has a short half-life and is rapidly degraded by proteasomes (see Fig. 27–48). When sterol levels increase sufficiently, the proteolytic release of SREBP amino-terminal domains is again blocked, and proteasome degradation of the existing active domains results in a rapid shut-down of the gene targets.

Several other mechanisms also regulate cholesterol synthesis (Fig. 21–44). Hormonal control is mediated by covalent modification of HMG-CoA reductase itself. The enzyme exists in phosphorylated (inactive) and dephosphorylated (active) forms. Glucagon stimulates phosphorylation (inactivation), and insulin promotes dephosphorylation, activating the enzyme and favoring cholesterol synthesis. High intracellular concentrations of cholesterol activate ACAT, which increases esterification of cholesterol for storage. Finally, a high cellular

Coronary heart disease is the leading cause of death in developed countries. The coronary arteries that bring blood to the heart become narrowed due to the formation of fatty deposits called atherosclerotic plaques (containing cholesterol, fibrous proteins, calcium deposits, blood platelets, and cell debris). Developing the link between artery occlusion (atherosclerosis) and blood cholesterol levels was a project of the 20th century, triggering a dispute that was resolved only with the development of effective cholesterol-lowering drugs.

In 1913, N.N. Anitschkov, an experimental pathologist in St. Petersburg, Russia, published a study showing that rabbits fed a diet rich in cholesterol developed lesions very similar to the atherosclerotic plaques seen in aging humans. Anitschkov continued his work over the next few decades, publishing it in prominent western journals. Nevertheless, the work was not accepted as a model for human atherosclerosis, due to a prevailing view that the disease was a simple consequence of aging and could not be prevented. The link between serum cholesterol and atherosclerosis (the lipid hypothesis) was gradually strengthened, until some researchers in the 1960s openly suggested that therapeutic intervention might be helpful. However, controversy persisted until the results of a large study of cholesterol lowering, sponsored by the United States National Institutes of Health, was published in 1984: the Coronary primary Prevention Trial. This study conclusively showed a statistically significant decrease in heart attacks and strokes as a result of decreasing cholesterol level. The study made use of a bile acid–binding resin, cholestyramine, to control cholesterol. The results triggered a

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some

search for more effective therapeutic interventions. Some controversy persisted until the development of the statins in the late 1980s and 1990s.

Dr. Akira Endo, working at the Sankyo company in Tokyo, discovered the first statin and reported the work in 1976. Endo had been interested in cholesterol metabolism for some time, and speculated in 1971 that the fungi being screened at that time for new antibiotics might also contain an inhibitor of cholesterol synthesis. Over a period of several years, he screened more than 6,000 fungus cultures until a positive result was found. The compound that resulted was named compactin (Fig. 1). The compound eventually proved effective in reducing cholesterol levels in dogs and monkeys, and the work came to the attention of Michael Brown and Joseph Goldstein at the University of Texas-Southwestern medical school. Brown and Goldstein began to work with Endo, and confirmed his results. Some
cholesterol level diminishes transcription of the gene that encodes the LDL receptor, reducing production of the receptor and thus the uptake of cholesterol from the blood.

Unregulated cholesterol production can lead to serious human disease. When the sum of cholesterol synthesized and cholesterol obtained in the diet exceeds the amount required for the synthesis of membranes, bile salts, and steroids, pathological accumulations of cholesterol in blood vessels (atherosclerotic plaques) can develop, resulting in obstruction of blood vessels (atherosclerosis). Heart failure due to occluded coronary arteries is a leading cause of death in industrialized societies. Atherosclerosis is linked to high levels of cholesterol in the blood, and particularly to high levels of LDL-bound cholesterol; there is a negative correlation between HDL levels and arterial disease.

In familial hypercholesterolemia, a human genetic disorder, blood levels of cholesterol are extremely high and severe atherosclerosis develops in childhood. These individuals have a defective LDL receptor and lack receptor-mediated uptake of cholesterol carried by LDL. Consequently, cholesterol is not cleared from the blood; it accumulates and contributes to the formation of atherosclerotic plaques. Endogenous cholesterol synthesis continues despite the excessive cholesterol in the blood, because extracellular cholesterol cannot enter the cell to regulate intracellular synthesis (Fig. 21–44). A class of drugs called statins, some isolated from natural sources and some synthesized by the pharmaceutical industry, are used to treat patients with familial hypercholesterolemia and other conditions involving elevated serum cholesterol. The statins resemble mevalonate (Box 21–3) and are competitive inhibitors of HMG-CoA reductase.

In familial HDL deficiency, HDL levels are very low; they are almost undetectable in Tangier disease. Both genetic disorders are the result of mutations in the ABC1 protein. Cholesterol-depleted HDL cannot take up cholesterol from cells that lack ABC1 protein, and cholesterol-poor HDL is rapidly removed from the blood and destroyed. Both familial HDL deficiency and Tangier disease are very rare (worldwide, fewer than 100

rostatin treatment lowers serum cholesterol by as much as 30% in individuals with hypercholesterolemia resulting from one defective copy of the gene for the LDL receptor. When combined with an edible resin that binds bile acids and prevents their reabsorption from the intestine, the drug is even more effective.

Statins are now the most widely used drugs for lowering serum cholesterol levels. Side effects are always a concern with drugs, but statins represent a case where many of the side effects are positive. These drugs can improve blood flow, enhance the stability of atherosclerotic plaques (so they don’t rupture and obstruct blood flow), reduce platelet aggregation, and reduce vascular inflammation. Some of these effects occur before cholesterol levels drop in patients taking statins for the first time, and may be related to a secondary inhibition of isoprenoid synthesis by statins. Not all the effects of statins are positive. A few patients, usually among those taking statins in combination with other cholesterol-lowering drugs, experience muscle pain or weakness that can become severe and even debilitating. A fairly long list of other side effects has been documented in patients; most are rare. However, for the vast majority of patients, the statin-mediated decrease in the risks associated with coronary heart disease can be dramatic. As with all medications, statins should be used only in consultation with a physician.
families with Tangier disease are known), but the existence of these diseases establishes a role for ABC1 protein in the regulation of plasma HDL levels. Because low plasma HDL levels correlate with a high incidence of coronary heart disease, the ABC1 protein may prove a useful target for drugs to control HDL levels.

Steroid Hormones Are Formed by Side-Chain Cleavage and Oxidation of Cholesterol

Humans derive all their steroid hormones from cholesterol (Fig. 21-45). Two classes of steroid hormones are synthesized in the cortex of the adrenal gland: mineralocorticoids, which control the reabsorption of inorganic ions (Na+, Cl−, and HCO3−) by the kidney, and glucocorticoids, which help regulate gluconeogenesis and reduce the inflammatory response. Sex hormones are produced in male and female gonads and the placenta. They include progesterone, which regulates the female reproductive cycle, and androgens (such as testosterone) and estrogens (such as estradiol), which influence the development of secondary sexual characteristics in males and females, respectively. Steroid hormones are effective at very low concentrations and are therefore synthesized in relatively small quantities. In comparison with the bile salts, their production consumes relatively little cholesterol.

Synthesis of steroid hormones requires removal of some or all of the carbons in the “side chain” on C-17 of the D ring of cholesterol. Side-chain removal takes place in the mitochondria of steroidogenic tissues. Removal involves the hydroxylation of two adjacent carbons in the side chain (C-20 and C-22) followed by cleavage of the bond between them (Fig. 21-46). Formation of the

FIGURE 21-45 Some steroid hormones derived from cholesterol. The structures of some of these compounds are shown in Figure 10-19.

FIGURE 21-46 Side-chain cleavage in the synthesis of steroid hormones. Cytochrome P-450 acts as electron carrier in this mixed-function oxidase system that oxidizes adjacent carbons. The process also requires the electron-transferring proteins adrenodoxin and adrenodoxin reductase. This system for cleaving side chains is found in mitochondria of the adrenal cortex, where active steroid production occurs. Pregnenolone is the precursor of all other steroid hormones (see Fig. 21-45).
Various hormones also involve the introduction of oxygen atoms. All the hydroxylation and oxygenation reactions in steroid biosynthesis are catalyzed by mixed-function oxidases (Box 21-1) that use NADPH, O₂, and mitochondrial cytochrome P-450.

Intermediates in Cholesterol Biosynthesis Have Many Alternative Fates

In addition to its role as an intermediate in cholesterol biosynthesis, isopentenyl pyrophosphate is the activated precursor of a huge array of biomolecules with diverse biological roles (Fig. 21-47). They include vitamins A, E, and K; plant pigments such as carotene and the phytol chain of chlorophyll; natural rubber; many essential oils (such as the fragrant principles of lemon oil, eucalyptus, and musk); insect juvenile hormone, which controls metamorphosis; dolichols, which serve as lipid-soluble carriers in complex polysaccharide synthesis; and ubiquinone and plastoquinone, electron carriers in mitochondria and chloroplasts. Collectively, these molecules are called isoprenoids. More than 20,000 different isoprenoid molecules have been discovered in nature, and hundreds of new ones are reported each year.

Prenylation (covalent attachment of an isoprenoid; see Fig. 27-35) is a common mechanism by which proteins are anchored to the inner surface of cellular membranes in mammals (see Fig. 11-14). In some of these proteins the attached lipid is the 15-carbon farnesyl group; others have the 20-carbon geranylgeranyl group. Different enzymes attach the two types of lipids. It is possible that prenylation reactions target proteins to different membranes, depending on which lipid is attached. Protein prenylation is another important role for the isoprene derivatives of the pathway to cholesterol.

SUMMARY 21.4 Biosynthesis of Cholesterol, Steroids, and Isoprenoids

- Cholesterol is formed from acetyl-CoA in a complex series of reactions, through the intermediates β-hydroxy-β-methylglutaryl-CoA, mevalonate, and two activated isoprenes, dimethylallyl pyrophosphate and isopentenyl pyrophosphate. Condensation of isoprene units produces the noncyclic squalene, which is cyclized to yield the steroid ring system and side chain.

- Cholesterol synthesis is under hormonal control and is also inhibited by elevated concentrations of intracellular cholesterol, which acts through covalent modification and transcriptional regulation mechanisms.

- Cholesterol and cholesteryl esters are carried in the blood as plasma lipoproteins. VLDL carries cholesterol, cholesteryl esters, and triacylglycerols from the liver to other tissues, where the triacylglycerols are degraded by lipoprotein lipase, converting VLDL to LDL. The LDL, rich in cholesterol and its esters, is taken up by receptor-mediated endocytosis, in which the apolipoprotein B-100 of LDL is recognized by receptors in the plasma membrane. HDL removes cholesterol from the blood, carrying it to the liver. Dietary conditions or genetic defects in cholesterol metabolism may lead to atherosclerosis and heart disease.

- The steroid hormones (glucocorticoids, mineralocorticoids, and sex hormones) are produced from cholesterol by alteration of the side chain and introduction of oxygen atoms into the steroid ring system. In addition to cholesterol, a wide variety of isoprenoid compounds are derived from mevalonate through condensations of isopentenyl pyrophosphate and dimethylallyl pyrophosphate.

- Prenylation of certain proteins targets them for association with cellular membranes and is essential for their biological activity.

Key Terms

| Terms in bold are defined in the glossary. |
|-------------------------------|-----------------------------|
| malonyl-CoA 805 | acetyl-CoA carboxylase 805 |
| fatty acid synthase 806 | acyl carrier protein (ACP) 808 |
| fatty acyl-CoA desaturase 815 | mixed-function oxidases 815 |
| essential fatty acids 815 | mixed-function oxygenases 816 |
| prostaglandins 817 | cytochrome P-450 816 |
Further Reading

The general references in Chapters 10 and 17 are also useful.

General

A good description of the molecular basis of this disease and prospects for therapy.

A good summary of pathways for lipid biosynthesis in plants.

Excellent reviews of lipid structure, biosynthesis, and function.

Biosynthesis of Fatty Acids and Eicosanoids

This issue contains 20 articles on the structure and function of various types of cytochrome P-450.

Discussion of the nutritional requirement for unsaturated fatty acids and biochemical work on pathways from arachidonate to prostaglandins.

The large multiprotein complexes that synthesize fatty acids in fungi have interesting and very different architectures compared with those in mammals.

Biosynthesis of Membrane Phospholipids

Advanced review of the enzymology and cell biology of phospholipid synthesis and targeting.

A classic description of the role of cytidine nucleotides in phospholipid synthesis.

Description of the fascinating effects of changing the composition of membrane lipids in fruit flies.

A brief review of bacterial biosynthesis of phospholipids and lipopolysaccharides.

Biosynthesis of Cholesterol, Steroids, and Isoprenoids

The author’s Nobel address; a classic description of cholesterol synthesis in animals.

Problems

1. **Pathway of Carbon in Fatty Acid Synthesis**
 Using your knowledge of fatty acid biosynthesis, provide an explanation for the following experimental observations:

 (a) Addition of uniformly labeled [14C]acetyl-CoA to a soluble liver fraction yields palmitate uniformly labeled with 14C.

 (b) However, addition of a trace of uniformly labeled [14C]acetyl-CoA in the presence of an excess of unlabeled malonyl-CoA to a soluble liver fraction yields palmitate labeled with 14C only in C-15 and C-16.

2. **Synthesis of Fatty Acids from Glucose**
 After a person has ingested large amounts of sucrose, the glucose and fructose that exceed caloric requirements are transformed to fatty acids for triacylglycerol synthesis. This fatty acid synthesis consumes acetyl-CoA, ATP, and NADPH. How are these substances produced from glucose?

3. **Net Equation of Fatty Acid Synthesis**
 Write the net equation for the biosynthesis of palmitate in rat liver, starting from mitochondrial acetyl-CoA and cytosolic NADPH, ATP, and CO2.

4. **Pathway of Hydrogen in Fatty Acid Synthesis**
 Consider a preparation that contains all the enzymes and cofactors necessary for fatty acid biosynthesis from added acetyl-CoA and malonyl-CoA.

 (a) If [2-2H]acetyl-CoA (labeled with deuterium, the heavy isotope of hydrogen)

 ![Acetyl-CoA](https://via.placeholder.com/150)

 and an excess of unlabeled malonyl-CoA are added as substrates, how many deuterium atoms are incorporated into every molecule of palmitate? What are their locations? Explain.

 (b) If unlabeled acetyl-CoA and [2-2H]malonyl-CoA

 ![Malonyl-CoA](https://via.placeholder.com/150)

 are added as substrates, how many deuterium atoms are incorporated into every molecule of palmitate? What are their locations? Explain.

5. **Energies of β-Ketoacyl-ACP Synthase**
 In the condensation reaction catalyzed by β-ketoacyl-ACP synthase (see Fig. 21-6), a four-carbon unit is synthesized by the combination of a two-carbon unit and a three-carbon unit, with the release of CO2. What is the thermodynamic advantage of this process over one that simply combines two two-carbon units?

6. **Modulation of Acetyl-CoA Carboxylase**
 Acetyl-CoA carboxylase is the principal regulation point in the biosynthesis of fatty acids. Some of the properties of the enzyme are described below.

 (a) Addition of citrate or isocitrate raises the V_max of the enzyme as much as 10-fold.

 (b) The enzyme exists in two interconvertible forms that differ markedly in their activities:

 Protemer (inactive) ➞ filamentous polymer (active)

 Citrate and isocitrate bind preferentially to the filamentous form, and palmitoyl-CoA binds preferentially to the protomer. Explain how these properties are consistent with the regulatory role of acetyl-CoA carboxylase in the biosynthesis of fatty acids.

7. **Shuttling of Acetyl Groups across the Mitochondrial Inner Membrane**
 The acetyl group of acetyl-CoA, produced by the oxidative decarboxylation of pyruvate in the mitochondrion, is transferred to the cytosol by the acetyl group shuttle outlined in Figure 21-10.

 (a) Write the overall equation for the transfer of one acetyl group from the mitochondrion to the cytosol.

 (b) What is the cost of this process in ATPs per acetyl group?

 (c) In Chapter 17 we encountered an acyl group shuttle in the transfer of fatty acyl-CoA from the cytosol to the mitochondrion in preparation for β oxidation (see Fig. 17-6). One result of that shuttle was separation of the mitochondrial and cytosolic pools of CoA. Does the acetyl group shuttle also accomplish this? Explain.
8. Oxygen Requirement for Desaturases The biosynthesis of palmitoleate (see Fig. 21-12) a common unsaturated fatty acid with a cis double bond in the Δ9 position, uses palmitate as a precursor. Can this be carried out under strictly anaerobic conditions? Explain.

9. Energy Cost of Triacylglycerol Synthesis Use a net equation for the biosynthesis of tripalmitin from palm oleate to show how many ATPs are required per molecule of tripalmitin formed.

10. Turnover of Triacylglycerols in Adipose Tissue When 14C-glycerol is added to the balanced diet of adult rats, there is no increase in the total amount of stored triacylglycerols, but the triacylglycerols become labeled with 14C. Explain.

11. Energy Cost of Phosphatidylcholine Synthesis Write the sequence of steps and the net reaction for the biosynthesis of phosphatidylcholine by the salvage pathway from oleate, palmitate, dihydroxyacetone phosphate, and choline. Starting from these precursors, what is the cost (in number of ATPs) of the synthesis of phosphatidylcholine by the salvage pathway?

12. Salvage Pathway for Synthesis of Phosphatidylcholine A young rat maintained on a diet deficient in methionine fails to thrive unless choline is included in the diet. Explain.

13. Synthesis of Isopentenyl Pyrophosphate If 2 [14C]acetyl-CoA is added to a rat liver homogenate that is synthesizing cholesterol, where will the 14C label appear in Δ3-isopentenyl pyrophosphate, the activated form of an isoprene unit?

14. Activated Donors in Lipid Synthesis In the biosynthesis of complex lipids, components are assembled by transfer of the appropriate group from an activated donor. For example, the activated donor of acetyl groups is acetyl-CoA. For each of the following groups, give the form of the activated donor:

(a) phosphate; (b) D-glucosyl; (c) phosphoethanolamine; (d) D-galactosyl; (e) fatty acyl; (f) methyl; (g) the two-carbon group in fatty acid biosynthesis; (h) Δ3-isopentenyl.

15. Importance of Fats in the Diet When young rats are placed on a totally fat-free diet, they grow poorly, develop a scaly dermatitis, lose hair, and soon die—symptoms that can be prevented if linoleate or plant material is included in the diet. What makes linoleate an essential fatty acid? Why can plant material be substituted?

16. Regulation of Cholesterol Biosynthesis Cholesterol in humans can be obtained from the diet or synthesized de novo. An adult human on a low-cholesterol diet typically synthesizes 600 mg of cholesterol per day in the liver. If the amount of cholesterol in the diet is large, de novo synthesis of cholesterol is drastically reduced. How is this regulation brought about?

17. Lowering Serum Cholesterol Levels with Statins Patients treated with a statin drug generally exhibit a dramatic lowering of serum cholesterol. However, the amount of the enzyme HMG-CoA reductase present in cells can increase substantially. Suggest an explanation for this effect.

18. Roles of Thiol Esters in Cholesterol Biosynthesis Draw a mechanism for each of the three reactions shown in Figure 21-34, detailing the pathway for the synthesis of mevalonate from acetyl-CoA.

19. Potential Side Effects of Treatment with Statins Although clinical trials have not yet been carried out to document benefits or side effects, some physicians have suggested that patients being treated with statins also take a supplement of coenzyme Q. Suggest a rationale for this recommendation.

Data Analysis Problem

20. Engineering E. coli to Produce Large Quantities of an Isoprenoid There is a huge variety of naturally occurring isoprenoids, some of which are medically or commercially important and produced industrially. The production methods include in vitro enzymatic synthesis, which is an expensive and low-yield process. In 1999, Wang, Oh, and Liao reported their experiments to engineer the easily grown bacterium E. coli to produce large amounts of astaxanthin, a commercially important isoprenoid.

Astaxanthin is a red-orange carotenoid pigment (an antioxidant) produced by marine algae. Marine animals such as shrimp, lobster, and some fish that feed on the algae get their orange color from the ingested astaxanthin. Astaxanthin is composed of eight isoprene units; its molecular formula is C40H52O4.

(a) Circle the eight isoprene units in the astaxanthin molecule. Hint: Use the projecting methyl groups as a guide.

Astaxanthin is synthesized by the pathway shown on the facing page, starting with Δ3-isopentenyl pyrophosphate (IPP). Steps 1 and 2 are shown in Figure 21-36, and the reaction catalyzed by IPP isomerase is shown in Figure 21-35.

(b) In step 3 of the pathway, two molecules of geranylgeranyl pyrophosphate are linked to form phytoene. Is this a head-to-head or a head-to-tail joining? (See Figure 21-36 for details.)

(c) Briefly describe the chemical transformation in step 5.

(d) The synthesis of cholesterol (Fig. 21-37) includes a cyclization (ring closure) that involves a net oxidation by O2. Does the cyclization in step 6 of the astaxanthin synthetic pathway require a net oxidation of the substrate (lycopene)? Explain your reasoning.

E. coli does not make large quantities of many isoprenoids, and does not synthesize astaxanthin. It is known to synthesize small amounts of IPP, DMAPP, geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate. Wang and colleagues cloned several of the E. coli genes that encode enzymes needed for astaxanthin synthesis in plasmids that allow their overexpression. These
genes included *idi*, which encodes IPP isomerase, and *ispA*, which encodes a prenyl transferase that catalyzes steps ① and ②.

To engineer an *E. coli* capable of the complete astaxanthin pathway, Wang and colleagues cloned several genes from other bacteria into plasmids that would allow their overexpression in *E. coli*. These genes included *crtE* from *Erwinia uredovora*, which encodes an enzyme that catalyzes step ③; and *crtB*, *crtI*, *crtY*, *crtZ*, and *crtW* from *Agrobacterium aurantiacum*, which encode enzymes for steps ④, ⑤, ⑥, ⑦, and ⑧, respectively.

The investigators also cloned the gene *gps* from *Archaeoglobus fulgidus*, overexpressed this gene in *E. coli*, and extracted the gene product. When this extract was reacted with [14C]IPP and DMAPP, or geranyl pyrophosphate, or farnesyl pyrophosphate, only 14C-labeled geranylgeranyl pyrophosphate was produced in all cases.

(e) Based on these data, which step(s) in the pathway are catalyzed by the enzyme encoded by *gps*? Explain your reasoning.

Wang and coworkers then constructed several *E. coli* strains overexpressing different genes and measured the orange color of
the colonies (wild-type E. coli colonies are off-white) and the amount of astaxanthin produced. Their results are shown below.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gene(s) overexpressed</th>
<th>Orange color</th>
<th>Astaxanthin yield (µg/g dry weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>crtBIZYW</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>2</td>
<td>crtBIZYW, ispA</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>crtBIZYW, idi</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>crtBIZYW, idi, ispA</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>crtBIZYW, crtE</td>
<td>+</td>
<td>32.8</td>
</tr>
<tr>
<td>6</td>
<td>crtBIZYW, crtE, ispA</td>
<td>+</td>
<td>35.3</td>
</tr>
<tr>
<td>7</td>
<td>crtBIZYW, crtE, idi</td>
<td>++</td>
<td>234.1</td>
</tr>
<tr>
<td>8</td>
<td>crtBIZYW, crtE, idi, ispA</td>
<td>+++</td>
<td>390.3</td>
</tr>
<tr>
<td>9</td>
<td>crtBIZYW, gps</td>
<td>+</td>
<td>35.6</td>
</tr>
<tr>
<td>10</td>
<td>crtBIZYW, gps, idi</td>
<td>+++</td>
<td>1,418.8</td>
</tr>
</tbody>
</table>

Note: ND, not determined

(f) Comparing the results for strains 1 through 4 with those for strains 5 through 8, what can you conclude about the expression level of an enzyme capable of catalyzing step 3 of the astaxanthin synthetic pathway in wild-type E. coli? Explain your reasoning.

(g) Based on the data above, which enzyme is rate-limiting in this pathway, IPP isomerase or the enzyme encoded by idi? Explain your reasoning.

(h) Would you expect a strain overexpressing crtBIZYW, gps, and crtE to produce low (+), medium (++), or high (+++) levels of astaxanthin, as measured by its orange color? Explain your reasoning.

Reference
Time passes rapidly when you are having fun. The thrill of seeing people get well who might otherwise have died of disease... cannot be described in words. The Nobel Prize was only the icing on the cake.

—Gertrude Elion, quoted in an article in Science, 2002

Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

22.1 Overview of Nitrogen Metabolism 852
22.2 Biosynthesis of Amino Acids 860
22.3 Molecules Derived from Amino Acids 873
22.4 Biosynthesis and Degradation of Nucleotides 882

Nitrogen ranks behind only carbon, hydrogen, and oxygen in its contribution to the mass of living systems. Most of this nitrogen is bound up in amino acids and nucleotides. In this chapter we address all aspects of the metabolism of these nitrogen-containing compounds except amino acid catabolism, which is covered in Chapter 18.

Discussing the biosynthetic pathways for amino acids and nucleotides together is a sound approach, not only because both classes of molecules contain nitrogen (which arises from common biological sources) but because the two sets of pathways are extensively intertwined, with several key intermediates in common. Certain amino acids or parts of amino acids are incorporated into the structure of purines and pyrimidines, and in one case part of a purine ring is incorporated into an amino acid (histidine). The two sets of pathways also share much common chemistry, in particular a preponderance of reactions involving the transfer of nitrogen or one-carbon groups.

The pathways described here can be intimidating to the beginning biochemistry student. Their complexity arises not so much from the chemistry itself, which in many cases is well understood, but from the sheer number of steps and variety of intermediates. These pathways are best approached by maintaining a focus on metabolic principles we have already discussed, on key intermediates and precursors, and on common classes of reactions. Even a cursory look at the chemistry can be rewarding, for some of the most unusual chemical transformations in biological systems occur in these pathways; for instance, we find prominent examples of the rare biological use of the metals molybdenum, selenium, and vanadium. The effort also offers a practical dividend, especially for students of human or veterinary medicine. Many genetic diseases of humans and animals have been traced to an absence of one or more enzymes of amino acid and nucleotide metabolism, and many pharmaceuticals in common use to combat infectious diseases are inhibitors of enzymes in these pathways— as are a number of the most important agents in cancer chemotherapy.

Regulation is crucial in the biosynthesis of the nitrogen-containing compounds. Because each amino acid and each nucleotide is required in relatively small amounts, the metabolic flow through most of these pathways is not nearly as great as the biosynthetic flow leading to carbohydrate or fat in animal tissues. Because the different amino acids and nucleotides must be made in the correct ratios and at the right time for protein and nucleic acid synthesis, their biosynthetic pathways must be accurately regulated and coordinated with each other. And because amino acids and nucleotides are charged molecules, their levels must be regulated to maintain electrochemical balance in the cell. As discussed in earlier chapters, pathways can be controlled by changes in either the activity or the amounts of specific enzymes. The pathways we encounter in this chapter provide some of the best-understood examples of the regulation of enzyme activity. Control of the amounts of different enzymes in a cell (that is, of their synthesis and degradation) is a topic covered in Chapter 28.
22.1 Overview of Nitrogen Metabolism

The biosynthetic pathways leading to amino acids and nucleotides share a requirement for nitrogen. Because soluble, biologically useful nitrogen compounds are generally scarce in natural environments, most organisms maintain strict economy in their use of ammonia, amino acids, and nucleotides. Indeed, as we shall see, free amino acids, purines, and pyrimidines formed during metabolic turnover of proteins and nucleic acids are often salvaged and reused. We first examine the pathways by which nitrogen from the environment is introduced into biological systems.

The Nitrogen Cycle Maintains a Pool of Biologically Available Nitrogen

The most important source of nitrogen is air, which is four-fifths molecular nitrogen (N₂). However, relatively few species can convert atmospheric nitrogen into forms useful to living organisms. In the biosphere, the metabolic processes of different species function interdependently to salvage and reuse biologically available nitrogen in a vast nitrogen cycle (Fig. 22-1). The first step in the cycle is fixation (reduction) of atmospheric nitrogen by nitrogen-fixing bacteria to yield ammonia (NH₃ or NH₄⁺). Although ammonia can be used by most living organisms, soil bacteria that derive their energy by oxidizing ammonia to nitrite (NO₂⁻) and ultimately nitrate (NO₃⁻) are so abundant and active that nearly all ammonia reaching the soil is oxidized to nitrate. This process is known as nitrification. Plants and many bacteria can take up and readily reduce nitrate and nitrite through the action of nitrate and nitrite reductases. The ammonia so formed is incorporated into amino acids by plants. Animals then use plants as a source of amino acids, both nonessential and essential, to build their proteins. When organisms die, microbial degradation of their proteins returns ammonia to the soil, where nitrifying bacteria again convert it to nitrite and nitrate. A balance is maintained between fixed nitrogen and atmospheric nitrogen by bacteria that convert nitrate to N₂ under anaerobic conditions, a process called denitrification (Fig. 22-1). These soil bacteria use NO₃⁻ rather than O₂ as the ultimate electron acceptor in a series of reactions that (like oxidative phosphorylation) generates a transmembrane proton gradient, which is used to synthesize ATP.

The nitrogen cycle is short-circuited by a recently discovered group of bacteria that promote anaerobic ammonia oxidation, or anammox (Fig. 22-1), a process that converts ammonia and nitrite to N₂. As much as 50% to 70% of the NH₃-to-N₂ conversion in the biosphere may occur through this pathway, undetected until the 1980s. The obligate anaerobes that promote anammox are fascinating in their own right and are providing some useful solutions to waste-treatment problems (Box 22-1).

Now let’s examine the process of nitrogen fixation, the first step in the nitrogen cycle.

Nitrogen Is Fixed by Enzymes of the Nitrogenase Complex

Only certain bacteria and archaea can fix atmospheric nitrogen. These include the cyanobacteria of soils and fresh and salt waters, methanogenic archaea (strict anaerobes that obtain energy and carbon by converting H₂ and CO₂ to methane), other kinds of free-living soil bacteria such as Azotobacter species, and the nitrogen-fixing bacteria that live as symbionts in the root nodules of leguminous plants. The first important product of nitrogen fixation is ammonia, which can be used by all organisms either directly or after its conversion to other soluble compounds such as nitrates, nitrites, or amino acids.

The reduction of nitrogen to ammonia is an exergonic reaction:

\[
\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3 \hspace{1cm} \Delta G^{\circ} = -33.5 \text{ kJ/mol}
\]

The N≡N triple bond, however, is very stable, with a bond energy of 930 kJ/mol. Nitrogen fixation therefore has an extremely high activation energy, and atmospheric nitrogen is almost chemically inert under normal conditions. Ammonia is produced industrially by the Haber process (named for its inventor, Fritz Haber),
Air-breathers that we are, we can easily overlook the bacteria and archaea that thrive in anaerobic environments. Although rarely featured in introductory biochemistry textbooks, these organisms constitute much of the biomass of this planet, and their contributions to the balance of carbon and nitrogen in the biosphere are essential to all forms of life.

As detailed in earlier chapters, the energy used to maintain living systems relies on the generation of proton gradients across membranes. Electrons derived from a reduced substrate are made available to electron carriers in membranes and pass through a series of electron transfers to a final electron acceptor. As a byproduct of this process, protons are released on one side of the membrane, generating the transmembrane proton gradient. The proton gradient is used to synthesize ATP or to drive other energy-requiring processes. For all eukaryotes, the reduced substrate is generally a carbohydrate (glucose or pyruvate) and the electron acceptor is oxygen.

Many bacteria and archaea are much more versatile. In anaerobic environments such as marine and freshwater sediments, the variety of life strategies is extraordinary. Almost any available redox pair can be an energy source for some specialized organism or group of organisms. For example, a large number of lithotrophic bacteria (a lithotroph is a chemotroph that uses inorganic energy sources; see Fig. 1-5) have a hydrogenase that uses molecular hydrogen to reduce NADH:

\[
\text{H}_2 + \text{NAD}^+ \xrightarrow{\text{hydrogenase}} \text{NADH} + \text{H}^+
\]

The NADH is a source of electrons for a variety of membrane-bound electron acceptors, generating the proton gradient needed for ATP synthesis. Other lithotrophs oxidize sulfur compounds (H₂S, elemental sulfur, or thiosulfate) or ferrous iron. A widespread group of archaea called methanogens, all strict anaerobes, extract energy from the reduction of CO₂ to methane. And this is just a small sampling of what anaerobic organisms do for a living. Their metabolic pathways are replete with interesting reactions and highly specialized cofactors unknown in our own world of obligate aerobic metabolism. Study of these organisms can yield practical dividends. It can also provide clues about the origins of life on an early earth, in an atmosphere that lacked molecular oxygen.

The nitrogen cycle depends on a wide range of specialized bacteria. There are two groups of nitrifying bacteria: those that oxidize ammonia to nitrates and those that oxidize the resulting nitrates to nitrates (see Fig. 22-1). Nitrate is second only to O₂ as a biological electron acceptor, and a great many bacteria and archaea can catalyze the denitrification of nitrates to nitrogen, which the nitrogen-fixing bacteria then convert back into ammonia. Ammonia is a major pollutant in sewage and in farm animal waste, and is a byproduct of fertilizer manufacture and oil refining. Waste-treatment plants have generally made use of communities of nitrifying and denitrifying bacteria to convert ammonia waste to atmospheric nitrogen. The process is expensive, requiring inputs of organic carbon and oxygen.

In the 1960s and 1970s, a few articles appeared in the research literature suggesting that ammonia could be oxidized to nitrogen anaerobically, using nitrite as an electron acceptor; this process was called anammox. The reports received little notice until bacteria promoting anammox were discovered in a wastetreatment system in Delft, the Netherlands, in the mid-1980s. A team of Dutch microbiologists led by Gijs Kuenen and Mike Jetten began to study these bacteria, which were soon identified as belonging to an unusual bacterial phylum, Planctomycetes. Some surprises were to follow.

The biochemistry underlying the anammox process was slowly unraveled (Fig. 1). Hydrazine (N₂H₄), a highly reactive molecule used as a rocket fuel, was an unexpected intermediate. As a small molecule, hydrazine is both highly toxic and difficult to contain. It readily diffuses across typical phospholipid membranes. The

(continued on next page)
anammox bacteria solve this problem by sequestering hydrazine in a specialized organelle, dubbed the **anammoxosome**. The membrane of this organelle is composed of lipids known as **ladderanes** (Fig. 2), never before encountered in biology. The fused cyclobutane rings of ladderanes stack tightly to form a very dense, impenetrable, hydrophobic membrane structure, allowing sequestration of the hydrazine produced in the anammox reactions.

The anammoxosome was a surprising finding. Bacterial cells generally do not have compartments, and the lack of a membrane-enclosed nucleus is often cited as the primary distinction between eukaryotes and bacteria. One type of organelle in a bacterium was interesting enough, but planctomycetes also have a nucleus: their chromosomal DNA is contained within a membrane (Fig. 3). Discovery of this subcellular organization has prompted further research to trace the origin of the planctomycetes and the evolution of eukaryotic nuclei. Planctomycetes are an ancient bacterial line with multiple genera, three of which are known to carry out the anammox reactions. Further study of this group may ultimately bring us closer to a key goal of evolutionary biology: a description of the organism affectionately referred to as LUCA—the Last Universal Common Ancestor of all life on our planet.

For now, the anammox bacteria offer a major advance in waste treatment, reducing the cost of ammonia removal by as much as 90% (the conventional denitrification steps are eliminated completely, and the aeration costs associated with nitrification are lower) and reducing the release of polluting byproducts. Clearly, a greater familiarity with the bacterial underpinnings of the biosphere can pay big dividends as we deal with the environmental challenges of the twenty-first century.

Figure 2
(a) Ladderane lipids of the anammoxosome membrane. The mechanism for synthesis of the unstable fused cyclobutane ring structures is unknown. (b) Ladderanes can stack to form a very dense, impenetrable, hydrophobic membrane structure, allowing sequestration of the hydrazine produced in the anammox reactions.

Figure 3
Transmission electron micrograph of a cross section through Gemma obscuriglobus, showing the DNA in a nucleus (N) with enclosing nuclear envelope (NE). Bacteria of the Gemma genus (phylum Planctomycetes) do not promote the anammox reactions.

BOX 22–1 Unusual Lifestyles of the Obscure but Abundant (continued from previous page)

which requires temperatures of 400 to 500 °C and nitrogen and hydrogen at pressures of tens of thousands of kilopascals (several hundred atmospheres) to provide the necessary activation energy. Biological nitrogen fixation, however, must occur at biological temperatures and at 0.8 atm of nitrogen, and the high activation barrier is overcome by other means. This is accomplished, at least in part, by the binding and hydrolysis of ATP. The overall reaction can be written

\[\text{N}_2 + 10\text{H}^+ + 8\text{e}^- + 16\text{ATP} \rightarrow 2\text{NH}_4^+ + 16\text{ADP} + 16\text{P}_1 + \text{H}_2 \]

Biological nitrogen fixation is carried out by a highly conserved complex of proteins called the **nitrogenase complex** (Fig. 22–2), the crucial components
Nitrogen fixation by the nitrogenase complex. Electrons are transferred from pyruvate to dinitrogenase via ferredoxin (or flavodoxin) and dinitrogenase reductase. Dinitrogenase reductase reduces dinitrogenase one electron at a time, with at least six electrons required to fix one molecule of N₂. An additional two electrons are used to reduce 2 H⁺ to H₂ in a process that obligatorily accompanies nitrogen fixation in anaerobes, making a total of eight electrons required per N₂ molecule. The subunit structures and metal cofactors of the dinitrogenase reductase and dinitrogenase proteins are described in the text and in Figure 22-3.

FIGURE 22-2 Nitrogen fixation by the nitrogenase complex. The subunit structures and metal cofactors of the dinitrogenase reductase and dinitrogenase proteins are described in the text and in Figure 22-3.

![Diagram of nitrogen fixation]
Nitrogen fixation is carried out by a highly reduced form of dinitrogenase and requires eight electrons: six for the reduction of N_2 and two to produce one molecule of H_2 as an obligate part of the reaction mechanism. Dinitrogenase is reduced by the transfer of electrons from dinitrogenase reductase (Fig. 22–2). The dinitrogenase tetramer has two binding sites for the reductase. The required eight electrons are transferred from reductase to dinitrogenase one at a time: a reduced reductase molecule binds to the dinitrogenase and transfers a single electron, then the oxidized reductase dissociates from dinitrogenase, in a repeating cycle. Each turn of the cycle requires the hydrolysis of two ATP molecules by the dimeric reductase. The immediate source of electrons to reduce dinitrogenase reductase varies, with reduced ferredoxin (p. 753; see also Fig. 19–5), reduced flavodoxin, and perhaps other sources playing a role. In at least one species, the ultimate source of electrons to reduce ferredoxin is pyruvate (Fig. 22–2).

The role of ATP in this process is somewhat unusual. As you will recall, ATP can contribute not only chemical energy, through the hydrolysis of one or more of its phosphoanhydride bonds, but also binding energy (pp. 199, 297), through noncovalent interactions that lower the activation energy. In the reaction carried out by dinitrogenase reductase, both ATP binding and ATP hydrolysis bring about protein conformational changes that help overcome the high activation energy of nitrogen fixation. The binding of two ATP molecules to the reductase shifts the reduction potential (E^{red}) of this protein from -300 to -420 mV, an enhancement of its reducing power that is required to transfer electrons to dinitrogenase. The ATP molecules are then hydrolyzed just before the actual transfer of one electron to dinitrogenase.

Another important characteristic of the nitrogenase complex is its extreme lability in the presence of oxygen. The reductase is inactivated in air, with a half-life of 30 seconds; dinitrogenase has a half-life of 10 minutes in air. Free-living bacteria that fix nitrogen cope with this problem in a variety of ways. Some live only anaerobically or repress nitrogenase synthesis when oxygen is present. Some aerobic species, such as *Azotobacter vinelandii*, partially uncouple electron transfer from ATP synthesis so that oxygen is burned off as rapidly as it enters the cell (see Box 19–1). When fixing nitrogen, cultures of these bacteria actually increase in temperature as a result of their efforts to rid themselves of oxygen.

The symbiotic relationship between leguminous plants and the nitrogen-fixing bacteria in their root nodules (Fig. 22–4) takes care of both the energy requirements and the oxygen lability of the nitrogenase complex. The energy required for nitrogen fixation was probably the evolutionary driving force for this plant-bacteria association. The bacteria in root nodules have access to a large reservoir of energy in the form of abundant carbohydrate and citric acid cycle intermediates made available by the plant. This may allow the bacteria to fix hundreds of times more nitrogen than do their free-living cousins under conditions generally encountered in soils. To solve the oxygen-toxicity problem, the bacteria in root nodules are bathed in a solution of the oxygen-binding heme protein leghemoglobin, produced by the plant (although the heme may be contributed by the bacteria). Leghemoglobin binds all available oxygen so that it cannot interfere with nitrogen fixation, and efficiently delivers the oxygen to the bacterial electron-transfer system. The benefit to the plant, of course, is a ready supply of reduced nitrogen. The efficiency of the symbiosis between plants and bacteria is evident in the enrichment of soil

FIGURE 22–4 Nitrogen-fixing nodules. (a) Root nodules of bird’s-foot trefoil, a legume. The flower of this common plant is shown in the inset. (b) Artificially colorized electron micrograph of a thin section through a pea root nodule. Symbiotic nitrogen-fixing bacteria, or bacteroids (red), live inside the nodule cell, surrounded by the peribacteroid membrane (blue). Bacteroids produce the nitrogenase complex that converts atmospheric nitrogen (N_2) to ammonium (NH_4^+); without the bacteroids, the plant is unable to utilize N_2. The infected root cell provides some factors essential for nitrogen fixation, including leghemoglobin; this heme protein has a very high binding affinity for oxygen, which strongly inhibits nitrogenase. (The cell nucleus is shown in yellow/green. Not visible in this micrograph are other organelles of the infected root cell that are normally found in plant cells.)
Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine

Reduced nitrogen in the form of NH$_4^+$ is assimilated into amino acids and then into other nitrogen-containing biomolecules. Two amino acids, glutamate and glutamine, provide the critical entry point. Recall that these same two amino acids play central roles in the catabolism of ammonia and amino groups in amino acid oxidation (Chapter 18). Glutamate is the source of amino groups for most other amino acids, through transamination reactions (the reverse of the reaction shown in Fig. 18–4). The amide nitrogen of glutamine is a source of amino groups in a wide range of biosynthetic processes. In most types of cells, and in extracellular fluids in higher organisms, one or both of these amino acids are present at higher concentrations—sometimes an order of magnitude or more higher—than other amino acids. An Escherichia coli cell requires so much glutamate that this amino acid is one of the primary solutes in the cytosol. Its concentration is regulated not only in response to the cell's nitrogen requirements but also to maintain an osmotic balance between the cytosol and the external medium.

The biosynthetic pathways to glutamate and glutamine are simple, and all or some of the steps occur in most organisms. The most important pathway for the assimilation of NH$_4^+$ into glutamate requires two reactions. First, glutamine synthetase catalyzes the reaction of glutamate and NH$_4^+$ to yield glutamine. This reaction takes place in two steps, with enzyme-bound y-glutamyl phosphate as an intermediate (see Fig. 18–8):

1. Glutamate + ATP \rightarrow y-glutamyl phosphate + ADP

2. y-Glutamyl phosphate + NH$_4^+$ \rightarrow glutamine + P$_i$ + H$^+$

$\text{Sum: Glutamate + NH}_4^+ + \text{ATP} \rightarrow$ glutamine + ADP + P$_i$ + H$^+$ (22–1)

Glutamine synthetase is found in all organisms. In addition to its importance for NH$_4^+$ assimilation in bacteria, it has a central role in amino acid metabolism in mammals, converting free NH$_4^+$, which is toxic, to glutamine for transport in the blood (Chapter 18).

In bacteria and plants, glutamate is produced from glutamine in a reaction catalyzed by glutamate synthase. α-Ketoglutarate, an intermediate of the citric acid cycle, undergoes reductive amination with glutamine as nitrogen donor:

$$\text{α-Ketoglutarate + glutamine + NADPH + H}^+ \rightarrow 2 \text{glutamate + NADP}^+ \quad (22–2)$$

The net reaction of glutamine synthetase and glutamate synthase (Eqs 22–1 and 22–2) is

$$\text{α-Ketoglutarate + NH}_4^+ + \text{NADPH + ATP} \rightarrow \text{l-glutamate + NADP}^+ + \text{ADP + P}_i$$

Glutamate synthetase is not present in animals, which instead maintain high levels of glutamate by processes such as the transamination of α-ketoglutarate during amino acid catabolism.

Glutamate can also be formed in yet another, albeit minor, pathway: the reaction of α-ketoglutarate and NH$_4^+$ to form glutamate in one step. This is catalyzed by L-glutamate dehydrogenase, an enzyme present in all organisms. Reducing power is furnished by NADPH:

$$\text{α-Ketoglutarate + NH}_4^+ + \text{NADPH} \rightarrow \text{l-glutamate + NADP}^+ + \text{H}_2\text{O}$$

We encountered this reaction in the catabolism of amino acids (see Fig. 18–7). In eukaryotic cells, L-glutamate dehydrogenase is located in the mitochondrial matrix. The reaction equilibrium favors the reactants, and the K_m for NH$_4^+$ (~1 mm) is so high that the reaction probably makes only a modest contribution to NH$_4^+$ assimilation into amino acids and other metabolites. (Recall that the glutamate dehydrogenase reaction, in reverse (see Fig. 18–10), is one source of NH$_4^+$ destined for the urea cycle.) Concentrations of NH$_4^+$ high enough for the glutamate dehydrogenase reaction to make a significant contribution to glutamate levels generally occur only when NH$_3$ is added to the soil or when organisms are grown in a laboratory in the presence of high NH$_3$ concentrations. In general, soil bacteria and plants rely on the two-enzyme pathway outlined above (Eqs 22–1, 22–2).

Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism

The activity of glutamine synthetase is regulated in virtually all organisms—not surprising, given its central metabolic role as an entry point for reduced nitrogen. In enteric bacteria such as E. coli, the regulation is unusually complex. The enzyme has 12 identical subunits of
Glutamine synthetase is an enzyme with a molecular weight of 50,000 (Fig. 22-5) and is regulated both allosterically and by covalent modification. Alanine, glycine, and at least six end products of glutamine metabolism are allosteric inhibitors of the enzyme (Fig. 22-6). Each inhibitor alone produces only partial inhibition, but the effects of multiple inhibitors are more than additive, and all eight together virtually shut down the enzyme. This control mechanism provides a constant adjustment of glutamine levels to match immediate metabolic requirements.

Superimposed on the allosteric regulation is inhibition by adenylylation of (addition of AMP to) Tyr^997, located near the enzyme's active site (Fig. 22-7). This covalent modification increases sensitivity to the allosteric inhibitors, and activity decreases as more subunits are adenylylated. Both adenylylation and deadenylylation are promoted by adenylyltransferase (AT in Fig. 22-7), part of a complex enzymatic cascade that responds to levels of glutamine, α-ketoglutarate, ATP, and P_i. The activity of adenylyltransferase is modulated by binding to a regulatory protein called P_{III}, and the activity of P_{III}, in turn, is regulated by covalent modification (uridylylation), again at a Tyr residue. The adenylyltransferase complex with uridylylated P_{III} (P_{III}-UMP) stimulates deadenylylation, whereas the same complex with deuridylylated P_{III} stimulates adenylylation of glutamine synthetase. Both uridylylation and deuridylylation of P_{III} are brought about by a single enzyme, uridylyltransferase. Uridylylation is inhibited by binding of glutamine and P_i to uridylyltransferase and is stimulated by binding of α-ketoglutarate and ATP to P_{III}.

The regulation does not stop there. The uridylylated P_{III} also mediates the activation of transcription of the gene encoding glutamine synthetase, thus increasing the cellular concentration of the enzyme; the deuridylylated P_{III} brings about a decrease in transcription of the same gene. This mechanism involves an interaction of P_{III} with additional proteins involved in gene regulation, of a type described in Chapter 28. The net result of this elaborate system of controls is a decrease in glutamine synthetase activity when glutamine levels are high, and an increase in activity when glutamine levels are low and α-ketoglutarate and ATP (substrates for the synthetase reaction) are available. The multiple layers of regulation...
permit a sensitive response in which glutamine synthesis is tailored to cellular needs.

Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides

The pathways described in this chapter include a variety of interesting chemical rearrangements. Several of these recur and deserve special note before we progress to the pathways themselves. These are (1) transamination reactions and other rearrangements promoted by enzymes containing pyridoxal phosphate; (2) transfer of one-carbon groups, with either tetrahydrofolate (usually at the \(-\text{CHO}\) and \(-\text{CH}_2\text{OH}\) oxidation levels) or \(S\)-adenosylmethionine (at the \(-\text{CH}_3\) oxidation level) as cofactor; and (3) transfer of amino groups derived from the amide nitrogen of glutamine. Pyridoxal phosphate (PLP), tetrahydrofolate (\(\text{H}_4\text{folate}\)), and \(S\)-adenosylmethionine (adoMet) are described in some detail in Chapter 18 (see Figs 18–6, 18–17, and 18–18). Here we focus on amino group transfer involving the amide nitrogen of glutamine.

More than a dozen known biosynthetic reactions use glutamine as the major physiological source of amino groups, and most of these occur in the pathways outlined in this chapter. As a class, the enzymes catalyzing these reactions are called glutamine amidotransferases. All have two structural domains: one binding glutamine, the other binding the second substrate, which serves as amino group acceptor (Fig. 22–8). A conserved Cys residue in the glutamine-binding domain is believed to act as a nucleophile, cleaving the amide bond of glutamine and forming a covalent glutamyl enzyme intermediate. The \(\text{NH}_3\) produced in this reaction is not released, but instead is transferred through an “ammonia channel” to a second active site, where it reacts with the second substrate to form the aminated product. The covalent intermediate is hydrolyzed to the free enzyme and glutamate. If the second substrate must be activated, the usual method is the use of ATP to generate an acyl phosphate intermediate (\(R—\text{OX}\) in Fig. 22–8, with \(X\) as a phosphoryl group). The enzyme glutaminase acts in a similar fashion but uses \(\text{H}_2\text{O}\) as the second substrate, yielding \(\text{NH}_4^+\) and glutamate (see Fig. 18–8).
The 7-amido nitrogen of glutamine (red) is released as \(\text{NH}_3 \) in a reaction that probably involves a covalent glutamyl-enzyme intermediate. The \(\text{NH}_3 \) travels through a channel to the second active site.

MECHANISM FIGURE 22-8 Proposed mechanism for glutamine amidotransferases. Each enzyme has two domains. The glutamine-binding domain contains structural elements conserved among many of these enzymes, including a Cys residue required for activity. The \(\text{NH}_3 \)-acceptor (second-substrate) domain varies. Two types of amino acceptors are shown. \(X \) represents an activating group, typically a phosphoryl group derived from ATP, that facilitates displacement of a hydroxyl group from \(\text{R}—\text{OH} \) by \(\text{NH}_3 \).

SUMMARY 22.1 Overview of Nitrogen Metabolism

- The molecular nitrogen that makes up 80% of the earth's atmosphere is unavailable to most living organisms until it is reduced. This fixation of atmospheric \(\text{N}_2 \) takes place in certain free-living bacteria and in symbiotic bacteria in the root nodules of leguminous plants.
- The nitrogen cycle entails formation of ammonia by bacterial fixation of \(\text{N}_2 \), nitrification of ammonia to nitrate by soil organisms, conversion of nitrate to ammonia by higher plants, synthesis of amino acids from ammonia by all organisms, and conversion of nitrate to \(\text{N}_2 \) by denitrifying soil bacteria. The anammox bacteria anaerobically oxidize ammonia to nitrogen, using nitrite as an electron acceptor.
- Fixation of \(\text{N}_2 \) as \(\text{NH}_3 \) is carried out by the nitrogenase complex, in a reaction that requires ATP. The nitrogenase complex is highly labile in the presence of \(\text{O}_2 \).
- In living systems, reduced nitrogen is incorporated first into amino acids and then into a variety of other biomolecules, including nucleotides. The key entry point is the amino acid glutamate. Glutamate and glutamine are the nitrogen donors in a wide range of biosynthetic reactions. Glutamine synthetase, which catalyzes the formation of glutamine from glutamate, is a main regulatory enzyme of nitrogen metabolism.
- The amino acid and nucleotide biosynthetic pathways make repeated use of the biological cofactors pyridoxal phosphate, tetrahydrofolate, and S-adenosylmethionine. Pyridoxal phosphate is required for transamination reactions involving glutamate and for other amino acid transformations. One-carbon transfers require S-adenosylmethionine and tetrahydrofolate. Glutamine amidotransferases catalyze reactions that incorporate nitrogen derived from glutamine.

22.2 Biosynthesis of Amino Acids

All amino acids are derived from intermediates in glycolysis, the citric acid cycle, or the pentose phosphate pathway (Fig. 22–9). Nitrogen enters these pathways by way of glutamate and glutamine. Some pathways are simple, others are not. Ten of the amino acids are just one or several steps removed from the common metabolite from which they are derived. The biosynthetic pathways for others, such as the aromatic amino acids, are more complex.

Organisms vary greatly in their ability to synthesize the 20 common amino acids. Whereas most bacteria and plants can synthesize all 20, mammals can synthesize only about half of them—generally those with simple pathways. These are the nonessential amino acids, not needed in the diet (see Table 18–1). The remainder, the essential amino acids, must be obtained from food. Unless otherwise indicated, the pathways for the 20 common amino acids presented below are those operative in bacteria.

A useful way to organize these biosynthetic pathways is to group them into six families corresponding...
22.2 Biosynthesis of Amino Acids

The carbon skeleton precursors derive from three sources: glycolysis (pink), the citric acid cycle (blue), and the pentose phosphate pathway (purple). To their metabolic precursors (Table 22-1), and we use this approach to structure the detailed descriptions that follow. In addition to these six precursors, there is a notable intermediate in several pathways of amino acid and nucleotide synthesis: 5-phosphoribosyl-1-pyrophosphate (PRPP):

PRPP is synthesized from ribose 5-phosphate derived from the pentose phosphate pathway (see Fig. 14-21), in a reaction catalyzed by ribose phosphate pyrophosphokinase:

\[
\text{Ribose 5-phosphate} + \text{ATP} \rightarrow 5\text{-phosphoribosyl-1-pyrophosphate} + \text{AMP}
\]

This enzyme is allosterically regulated by many of the biomolecules for which PRPP is a precursor.

α-Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine

We have already described the biosynthesis of glutamate and glutamine. Proline is a cyclized derivative of glutamate (Fig. 22-10). In the first step of proline synthesis, ATP reacts with the γ-carboxyl group of glutamate to form an acyl phosphate, which is reduced by NADPH or NADH to glutamate γ-semialdehyde. This intermediate undergoes rapid spontaneous cyclization and is then reduced further to yield proline.

Arginine is synthesized from glutamate via ornithine and the urea cycle in animals (Chapter 18). In principle, ornithine could also be synthesized from glutamate γ-semialdehyde by transamination, but the spontaneous cyclization of the semialdehyde in the proline pathway precludes a sufficient supply of this
Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

Figure 22-10 Biosynthesis of proline and arginine from glutamate in bacteria. All five carbon atoms of proline arise from glutamate. In many organisms, glutamate dehydrogenase is unusual in that it uses either NADH or NADPH as a cofactor. The same may be true of other enzymes in these pathways. The \(\gamma \)-semialdehyde in the proline pathway undergoes a rapid, reversible cyclization to \(\Delta^1 \)-pyrroline-5-carboxylate (P5C), with the equilibrium favoring P5C formation. Cyclization is averted in the ornithine/arginine pathway by acetylation of the \(\alpha \)-amino group of glutamate in the first step and removal of the acetyl group after the transamination. Although some bacteria lack arginase and thus the complete urea cycle, they can synthesize arginine from ornithine in steps that parallel the mammalian urea cycle, with citrulline and argininosuccinate as intermediates (see Fig. 18-10).

Here, and in subsequent figures in this chapter, the reaction arrows indicate the linear path to the final products, without considering the reversibility of individual steps. For example, the step of the pathway leading to arginine that is catalyzed by \(N \)-acetylglutamate dehydrogenase is chemically similar to the glyceraldehyde 3-phosphate dehydrogenase reaction in glycolysis (see Fig. 14-7), and is readily reversible.
intermediate for ornithine synthesis. Bacteria have a de novo biosynthetic pathway for ornithine (and thus arginine) that parallels some steps of the proline pathway but includes two additional steps that avoid the problem of the spontaneous cyclization of glutamate γ-semialdehyde (Fig. 22-10). In the first step, the α-amino group of glutamate is blocked by an acetylation requiring acetyl-CoA; then, after the transamination step, the acetyl group is removed to yield ornithine.

The pathways to proline and arginine are somewhat different in mammals. Proline can be synthesized by the pathway shown in Figure 22-10, but it is also formed from arginine obtained from dietary or tissue protein. Arginase, a urea cycle enzyme, converts arginine to ornithine and urea (see Figs 18-10, 18-26). The ornithine is converted to glutamate γ-semialdehyde by the enzyme ornithine δ-aminotransferase (Fig. 22-11). The semialdehyde cyclizes to Δ^1-pyrroline-5-carboxylate, which is then converted to proline (Fig. 22-10). The pathway for arginine synthesis shown in Figure 22-10 is absent in mammals. When arginine from dietary intake or protein turnover is insufficient for protein synthesis, the ornithine 6-aminotransferase reaction operates in the direction of ornithine formation. Ornithine is then converted to citrulline and arginine in the urea cycle.

Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate

The major pathway for the formation of serine is the same in all organisms (Fig. 22-12). In the first step, the hydroxyl group of 3-phosphoglycerate is oxidized by a dehydrogenase (using NAD^+) to yield 3-phosphohydroxyypyruvate. Transamination from glutamate yields 3-phosphoserine, which is hydrolyzed to free serine by phosphoserine phosphatase.
Serine (three carbons) is the precursor of glycine (two carbons) through removal of a carbon atom by serine hydroxymethyltransferase (Fig. 22–12). Tetrahydrofolate accepts the β carbon (C-3) of serine, which forms a methylene bridge between N-5 and N-10 to yield N⁵,N¹⁰-methylenetetrahydrofolate (see Fig. 18–17). The overall reaction, which is reversible, also requires pyridoxal phosphate. In the liver of vertebrates, glycine can be made by another route: the reverse of the reaction shown in Figure 18–20c, catalyzed by glycine synthase (also called glycine cleavage enzyme):

\[
\begin{align*}
\text{CO}_2 + \text{NH}_3 + N⁵,N¹⁰\text{-methylenetetrahydrofolate} + \\
\text{NADH} + \text{H}^+ & \rightarrow \\
\text{glycine} + \text{tetrahydrofolate} + \text{NAD}^+
\end{align*}
\]

Plants and bacteria produce the reduced sulfur required for the synthesis of cysteine (and methionine, described later) from environmental sulfates; the pathway is shown on the right side of Figure 22–13. Sulfate is activated in two steps to produce 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which undergoes an eight-electron reduction to sulfide. The sulfide is then used in the formation of cysteine from serine in a two-step pathway. Mammals synthesize cysteine from two amino acids: methionine furnishes the sulfur atom, and serine furnishes the carbon skeleton. Methionine is first converted to S-adenosylmethionine (see Fig. 18–18), which can lose its methyl group to any of a number of acceptors to form S-adenosylhomocysteine (sHcy). This demethylated product is hydrolyzed to free homocysteine, which undergoes a reaction with serine, catalyzed by cystathionine β-synthase, to yield cystathionine (Fig. 22–14). Finally, cystathionine γ-lyase, a PLP-requiring enzyme, catalyzes removal of ammonia and cleavage of cystathionine to yield free cysteine.

Figure 22–13 Biosynthesis of cysteine from serine in bacteria and plants. The origin of reduced sulfur is shown in the pathway on the right.
Three Nonessential and Six Essential Amino Acids
Are Synthesized from Oxaloacetate and Pyruvate

Alanine and aspartate are synthesized from pyruvate and oxaloacetate, respectively, by transamination from glutamate. Asparagine is synthesized by amidation of aspartate, with glutamine donating the NH_3^+. These are nonessential amino acids, and their simple biosynthetic pathways occur in all organisms.

For reasons incompletely understood, the malignant lymphocytes present in childhood acute lymphoblastic leukemia (ALL) require serum asparagine for growth. The chemotherapy for ALL is administered together with an L-asparaginase derived from bacteria, with the enzyme functioning to reduce serum asparagine. The combined treatment results in a greater than 95% remission rate in cases of childhood ALL (L-asparaginase treatment alone produces remission in 40% to 60% of cases). However, the asparaginase treatment has some deleterious side effects, and about 10% of patients who achieve remission eventually suffer relapse, with tumors resistant to drug therapy. Researchers are now developing inhibitors of human asparagine synthetase to augment these therapies for childhood ALL.

Methionine, threonine, lysine, isoleucine, valine, and leucine are essential amino acids. Their biosynthetic pathways are complex and interconnected (Fig. 22-15). In some cases, the pathways in bacteria, fungi, and plants differ significantly. Figure 22-15 shows the bacterial pathways.

Aspartate gives rise to methionine, threonine, and lysine. Branch points occur at aspartate β-semialdehyde, an intermediate in all three pathways, and at homoserine, a precursor of threonine and methionine. Threonine, in turn, is one of the precursors of isoleucine. The valine and isoleucine pathways share four enzymes (Fig. 22-15, steps 18 to 21). Pyruvate gives rise to valine and isoleucine in pathways that begin with condensation of two carbons of pyruvate (in the form of hydroxyethyl thiamine pyrophosphate; see Fig. 14-14) with another molecule of pyruvate (the valine path) or with α-ketobutyrate (the isoleucine path). The α-ketobutyrate is derived from threonine in a reaction that requires pyridoxal phosphate (Fig. 22-15, step 17). An intermediate in the valine pathway, α-ketoisovalerate, is the starting point for a four-step branch pathway leading to leucine (steps 22 to 25).

Chorismate is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine

Aromatic rings are not readily available in the environment, even though the benzene ring is very stable. The branched pathway to tryptophan, phenylalanine, and tyrosine, occurring in bacteria, fungi, and plants, is the main biological route of aromatic ring formation. It proceeds through ring closure of an aliphatic precursor followed by stepwise addition of double bonds. The first
FIGURE 22–15 Biosynthesis of six essential amino acids from oxaloacetate and pyruvate in bacteria: methionine, threonine, lysine, isoleucine, valine, and leucine. Here, and in other multistep pathways, the enzymes are listed in the key. Note that 1,1-L-α,ε-diaminopimelate, the product of step 14, is symmetric. The carbons derived from pyruvate (and the amino group derived from glutamate) are not traced beyond this point, because subsequent reactions may place them at either end of the lysine molecule.
four steps produce shikimate, a seven-carbon molecule derived from erythrose 4-phosphate and phosphoenolpyruvate (Fig. 22-16). Shikimate is converted to chorismate in three steps that include the addition of three more carbons from another molecule of phosphoenolpyruvate. Chorismate is the first branch point of the pathway, with one branch leading to tryptophan, the other to phenylalanine and tyrosine.

In the **tryptophan** branch (Fig. 22-17), chorismate is converted to anthranilate in a reaction in which glutamine donates the nitrogen that will become part of the indole ring. Anthranilate then condenses with PRPP. The indole ring of tryptophan is derived from the ring carbons and amino group of anthranilate plus two carbons derived from PRPP. The final reaction in the sequence is catalyzed by **tryptophan synthase**. This enzyme has an $\alpha_2 \beta_2$ subunit structure and can be dissociated into two α subunits and a β_2 unit that catalyze different parts of the overall reaction:

Indole-3-glycerol phosphate \rightarrow tryptophan + H_2O

Indole + serine \rightarrow indole + glyceraldehyde 3-phosphate

FIGURE 22-16 Biosynthesis of chorismate, an intermediate in the synthesis of aromatic amino acids in bacteria and plants. All carbons are derived from either erythrose 4-phosphate (light purple) or phosphoenolpyruvate (pink). Note that the NAD$^+$ required as a cofactor in step 2 is released unchanged; it may be transiently reduced to NADH during the reaction, with formation of an oxidized reaction intermediate. Step 6 is competitively inhibited by glyphosate ("COO—CH$_2$—NH—CH$_2$—PO$_4^2$"), the active ingredient in the widely used herbicide Roundup. The herbicide is relatively nontoxic to mammals, which lack this biosynthetic pathway. The chemical names quinate, shikimate, and chorismate are derived from the names of plants in which these intermediates have been found to accumulate.
The second part of the reaction requires pyridoxal phosphate (Fig. 22-18). Indole formed in the first part is not released by the enzyme, but instead moves through a channel from the α-subunit active site to one of the β-subunit active sites, where it condenses with a Schiff base intermediate derived from serine and PLP. Intermediate channeling of this type may be a feature of the entire pathway from chorismate to tryptophan. Enzyme active sites catalyzing different steps (sometimes not sequential steps) of the pathway to tryptophan are found on single polypeptides in some species of fungi and bacteria, but are separate proteins in other species. In addition, the activity of some of these enzymes requires a noncovalent association with other enzymes of the pathway. These observations suggest that all the pathway enzymes are components of a large, multienzyme complex in both bacteria and eukaryotes. Such complexes are generally not preserved intact when the enzymes are isolated using traditional biochemical methods, but evidence for the existence of multienzyme complexes is accumulating for this and other metabolic pathways (p. 619).

In plants and bacteria, phenylalanine and tyrosine are synthesized from chorismate in pathways much less complex than the tryptophan pathway. The common intermediate is prephenate (Fig. 22-19). The final step in both cases is transamination with glutamate.

Animals can produce tyrosine directly from phenylalanine through hydroxylation at C-4 of the phenyl group by phenylalanine hydroxylase; this enzyme also participates in the degradation of phenylalanine (see Figs 18-23, 18-24). Tyrosine is considered a conditionally essential amino acid, or as nonessential insofar as it can be synthesized from the essential amino acid phenylalanine.

Histidine Biosynthesis Uses Precursors of Purine Biosynthesis

The pathway to histidine in all plants and bacteria differs in several respects from other amino acid biosynthetic pathways. Histidine is derived from three precursors (Fig. 22-20): PRPP contributes five carbons,
Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

An aldol cleavage produces indole and glyceraldehyde 3-phosphate; PLP is not required.

Indole traverses tunnel between α and β subunits.

Dehydration of serine forms a PLP-aminoacrylate intermediate.

Indole condenses with the aminoacrylate intermediate (2 steps).

MECHANISM FIGURE 22-18 Tryptophan synthase reaction. This enzyme catalyzes a multistep reaction with several types of chemical rearrangements. The PLP-facilitated transformations occur at the β carbon (C-3) of the amino acid, as opposed to the α-carbon reactions described in Figure 18-6. The β carbon of serine is attached to the indole ring system. Tryptophan Synthase Mechanism

FIGURE 22-19 Biosynthesis of phenylalanine and tyrosine from chorismate in bacteria and plants. Conversion of chorismate to prephenate is a rare biological example of a Claisen rearrangement.
the purine ring of ATP contributes a nitrogen and a carbon, and glutamine supplies the second ring nitrogen. The key steps are condensation of ATP and PRPP, in which N-1 of the purine ring is linked to the activated C-1 of the ribose of PRPP (step 1 in Fig. 22-20); purine ring opening that ultimately leaves N-1 and C-2 of adenine linked to the ribose (step 3); and formation of the imidazole ring, a reaction in which glutamine donates a nitrogen (step 5). The use of ATP as a metabolite rather than a high-energy cofactor is unusual—but not wasteful, because it dovetails with the purine biosynthetic pathway. The remnant of ATP that is released after the

FIGURE 22-20 Biosynthesis of histidine in bacteria and plants. Atoms derived from PRPP and ATP are shaded pink and blue, respectively. Two of the histidine nitrogens are derived from glutamine and glutamate (green). Note that the derivative of ATP remaining after step (5) (AICAR) is an intermediate in purine biosynthesis (see Fig. 22-33, step (N)), so ATP is rapidly regenerated.
transfer of N-1 and C-2 is 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an intermediate of purine biosynthesis (see Fig. 22-33) that is rapidly recycled to ATP.

Amino Acid Biosynthesis Is under Allosteric Regulation

As detailed in Chapter 15, the control of flux through a metabolic pathway often reflects the activity of multiple enzymes in that pathway. In the case of amino acid synthesis, regulation takes place in part through feedback inhibition of the first reaction by the end product of the pathway. This first reaction is often catalyzed by an allosteric enzyme that plays an important role in the overall control of flux through that pathway. As an example, Figure 22–21 shows the allosteric regulation of isoleucine synthesis from threonine (detailed in Fig. 22–15). The end product, isoleucine, is an allosteric inhibitor of the first reaction in the sequence. In bacteria, such allosteric modulation of amino acid synthesis contributes to the minute-to-minute adjustment of pathway activity to cellular needs.

Allosteric regulation of an individual enzyme can be considerably more complex. An example is the remarkable set of allosteric controls exerted on glutamine synthetase of E. coli (Fig. 22–6). Six products derived from glutamine serve as negative feedback modulators of the enzyme, and the overall effects of these and other modulators are more than additive. Such regulation is called **concerted inhibition**.

Additional mechanisms contribute to the regulation of the amino acid biosynthetic pathways. Because the 20 common amino acids must be made in the correct proportions for protein synthesis, cells have developed ways not only of controlling the rate of synthesis of individual amino acids but also of coordinating their formation. Such coordination is especially well developed in fast-growing bacterial cells. Figure 22–22 shows how E. coli cells coordinate the synthesis of lysine, methionine, threonine, and isoleucine, all made from aspartate. Several important types of inhibition patterns are evident. The step from aspartate to aspartyl-β-phosphate is catalyzed by three isozymes, each independently controlled by different modulators. This enzyme multiplicity prevents one biosynthetic end product from shutting down key steps in a pathway when other products of the same pathway are required. The steps from

FIGURE 22–21 Allosteric regulation of isoleucine biosynthesis. The first reaction in the pathway from threonine to isoleucine is inhibited by the end product, isoleucine. This was one of the first examples of allosteric feedback inhibition to be discovered. The steps from α-ketobutyrate to isoleucine correspond to steps 18 through 23 in Figure 22–15 (five steps, because 19 is a two-step reaction).

FIGURE 22–22 Interlocking regulatory mechanisms in the biosynthesis of several amino acids derived from aspartate in E. coli. Three enzymes (A, B, C) have either two or three isozyme forms, indicated by numerical subscripts. In each case, one isozyme (A₂, B₁, and C₂) has no allosteric regulation; these isozymes are regulated by changes in the amount synthesized (Chapter 28). Synthesis of isozymes A₃ and B₁ is repressed when methionine levels are high, and synthesis of isozyme C₂ is repressed when isoleucine levels are high. Enzyme A is aspartokinase; B, homoserine dehydrogenase; C, threonine dehydratase.
aspartate β-semialdehyde to homoserine and from threonine to α-ketoisovalerate (detailed in Fig. 22–15) are also catalyzed by dual, independently controlled isozymes. One isozyme for the conversion of aspartate to aspartylβ-phosphate is allosterically inhibited by two different modulators, lysine and isoleucine, whose action is more than additive—another example of concerted inhibition. The sequence from aspartate to isoleucine undergoes multiple, overlapping negative feedback inhibitions; for example, isoleucine inhibits the conversion of threonine to α-ketoisovalerate (as described above), and threonine inhibits its own formation at three points: from homoserine, from aspartate β-semialdehyde, and from aspartate (steps 4, 3, and 1 in Fig. 22–15). This overall regulatory mechanism is called sequential feedback inhibition.

Similar patterns are evident in the pathways leading to the aromatic amino acids. The first step of the early pathway to the common intermediate chorismate is catalyzed by the enzyme 2-keto-3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase (step 1 in Fig. 22–16). Most microorganisms and plants have three DAHP synthase isozymes. One is allosterically inhibited (feedback inhibition) by phenylalanine, another by tyrosine, and the third by tryptophan. This scheme helps the overall pathway to respond to cellular requirements for one or more of the aromatic amino acids. Additional regulation takes place after the pathway branches at chorismate. For example, the enzymes catalyzing the first two steps of the tryptophan branch are subject to allosteric inhibition by tryptophan.

SUMMARY 22.2 Biosynthesis of Amino Acids

- Plants and bacteria synthesize all 20 common amino acids. Mammals can synthesize about half; the others are required in the diet (essential amino acids).
- Among the nonessential amino acids, glutamate is formed by reductive amination of α-ketoisovalerate and serves as the precursor of glutamine, proline, and arginine. Alanine and aspartate (and thus asparagine) are formed from pyruvate and oxaloacetate, respectively, by transamination. The carbon chain of serine is derived from 3-phosphoglycerate. Serine is a precursor of glycine; the β-carbon atom of serine is transferred to tetrahydrofolate. In microorganisms, cysteine is produced from serine and from sulfide produced by the reduction of environmental sulfate. Mammals produce cysteine from methionine and serine by a series of reactions requiring S-adenosylmethionine and cystathionine.
- Among the essential amino acids, the aromatic amino acids (phenylalanine, tyrosine, and tryptophan) form by a pathway in which chorismate occupies a key branch point. Phosphoribosyl pyrophosphate is a precursor of tryptophan and histidine. The pathway to histidine is interconnected with the purine synthetic pathway. Tyrosine can also be formed by hydroxylation of phenylalanine (and thus is considered conditionally essential). The pathways for the other essential amino acids are complex.

- The amino acid biosynthetic pathways are subject to allosteric end-product inhibition; the regulatory enzyme is usually the first in the sequence. Regulation of the various synthetic pathways is coordinated.

22.3 Molecules Derived from Amino Acids

In addition to their role as the building blocks of proteins, amino acids are precursors of many specialized biomolecules, including hormones, coenzymes, nucleotides, alkaloids, cell wall polymers, porphyrins, antibiotics, pigments, and neurotransmitters. We describe here the pathways to a number of these amino acid derivatives.

Glycine Is a Precursor of Porphyrins

The biosynthesis of porphyrins, for which glycine is a major precursor, is our first example because of the central importance of the porphyrin nucleus in heme proteins such as hemoglobin and the cytochromes. The porphyrins are constructed from four molecules of the monopyrrole derivative **porphobilinogen**, which itself is derived from two molecules of δ-aminolevulinate. There are two major pathways to δ-aminolevulinate. In higher eukaryotes (Fig. 22–23a), glycine reacts with succinyl-CoA in the first step to yield α-aminobeta-ketoisovalerate, which is then decarboxylated to δ-aminolevulinate. In plants, algae, and most bacteria, δ-aminolevulinate is formed from glutamate (Fig. 22–23b). The glutamate is first esterified to glutamyl-1-tRNA

(see Chapter 27 on the topic of transfer RNAs); reduction by NADPH converts the glutamate to glutamate 1-semialdehyde, which is cleaved from the tRNA. An aminotransferase converts the glutamate 1-semialdehyde to δ-aminolevulinate.

In all organisms, two molecules of δ-aminolevulinate condense to form **porphobilinogen** and, through a series of complex enzymatic reactions, four molecules of porphobilinogen come together to form **porphyrin** (Fig. 22–24). The iron atom is incorporated after the protoporphyrin has been assembled, in a step catalyzed by ferrochelatase. Porphyrin biosynthesis is regulated in higher eukaryotes by the concentration of the heme product, which serves as a feedback inhibitor of early steps in the synthetic pathway. Genetic defects in the biosynthesis of porphyrins can lead to the accumulation of pathway intermediates, causing a variety of human diseases known collectively as **porphyrias** (Box 22–2).
FIGURE 22–23 Biosynthesis of δ-aminolevulinate. (a) In most animals, including mammals, δ-aminolevulinate is synthesized from glycine and succinyl-CoA. The atoms furnished by glycine are shown in red. (b) In bacteria and plants, the precursor of δ-aminolevulinate is glutamate.
Porphyrias are a group of genetic diseases that result from defects in enzymes of the biosynthetic pathway from glycine to porphyrins; specific porphyrin precursors accumulate in erythrocytes, body fluids, and the liver. The most common form is acute intermittent porphyria. Most individuals inheriting this condition are heterozygotes and are usually asymptomatic, because the single copy of the normal gene provides a sufficient level of enzyme function. However, certain nutritional or environmental factors (as yet poorly understood) can cause a buildup of δ-aminolevulinate and porphobilinogen, leading to attacks of acute abdominal pain and neurological dysfunction. King George III, British monarch during the American Revolution, suffered several episodes of apparent madness that tarnished the record of this otherwise accomplished man. The symptoms of his condition suggest that George III suffered from acute intermittent porphyria.

One of the rarer porphyrias results in an accumulation of uroporphyrinogen I, an abnormal isomer of a protoporphyrin precursor. This compound stains the urine red, causes the teeth to fluoresce strongly in ultraviolet light, and makes the skin abnormally sensitive to sunlight. Many individuals with this porphyria are anemic because insufficient heme is synthesized. This genetic condition may have given rise to the vampire myths of folk legend. The symptoms of most porphyrias are now readily controlled with dietary changes or the administration of heme or heme derivatives.

Heme Is the Source of Bile Pigments

The iron-porphyrin (heme) group of hemoglobin, released from dying erythrocytes in the spleen, is degraded to yield free Fe^{3+} and, ultimately, bilirubin. This pathway is arresting for its capacity to inject color into human biochemistry.

The first step in the two-step pathway, catalyzed by heme oxygenase, converts heme to biliverdin, a linear (open) tetrapyrrole derivative (Fig. 22-25). The other products of the reaction are free Fe^{2+} and CO. The Fe^{2+} is quickly bound by ferritin. Carbon monoxide is a poison that binds to hemoglobin (see Box 5-1), and the production of CO by heme oxygenase ensures that, even in the absence of environmental exposure, about 1% of an individual's heme is complexed with CO.

Biliverdin is converted to bilirubin in the second step, catalyzed by biliverdin reductase. You can monitor this reaction colorimetrically in a familiar in situ experiment. When you are bruised, the black and/or purple color results from hemoglobin released from damaged erythrocytes. Over time, the color changes to the green of biliverdin, and then to the yellow of bilirubin. Bilirubin is largely insoluble, and it travels in the bloodstream as a complex with serum albumin. In the liver, bilirubin is transformed to the bile pigment bilirubin diglucuronide. This product is sufficiently water-soluble to be secreted with other components of bile into the small intestine, where microbial enzymes convert it to several products, predominantly urobilinogen. Some urobilinogen is reabsorbed into the blood and transported to the kidney, where it is converted to urobilin, the compound that gives urine its yellow color (Fig. 22-25, left branch). Urobilinogen remaining in the intestine is converted (in another microbe-dependent reaction) to stercobilin (Fig. 22-25, right branch), which imparts the red-brown color to feces.

Impaired liver function or blocked bile secretion causes bilirubin to leak from the liver into the blood, resulting in a yellowing of the skin and eyeballs, a condition called jaundice. In cases of jaundice, determination of the concentration of bilirubin in the blood may be useful in the diagnosis of underlying liver disease. Newborn infants sometimes develop jaundice because they have not yet produced enough glucuronyl bilirubin transferase to process their bilirubin. A traditional treatment to reduce excess bilirubin, exposure to a fluorescent lamp, causes a photochemical conversion of bilirubin to compounds that are more soluble and easily excreted.

These pathways of heme breakdown play significant roles in protecting cells from oxidative damage and in regulating certain cellular functions. The CO produced by heme oxygenase is toxic at high concentrations, but...
at the very low concentrations generated during heme degradation it seems to have some regulatory and/or signaling functions. It acts as a vasodilator, much the same as (but less potent than) nitric oxide (discussed below). Low levels of CO also have some regulatory effects on neurotransmission. Bilirubin is the most abundant antioxidant in mammalian tissues and is responsible for most of the antioxidant activity in serum. Its protective effects seem to be especially important in the developing brain of newborn infants. The cell toxicity associated with jaundice may be due to bilirubin levels in excess of the serum albumin needed to solubilize it.

Given these varied roles of heme degradation products, the degradative pathway is subject to regulation, mainly at the first step. Humans have at least three isozymes of heme oxygenase (HO). HO-1 is highly regulated; the expression of its gene is induced by a wide range of stress conditions (shear stress, angiogenesis (uncontrolled development of blood vessels), hypoxia, hyperoxia, heat shock, exposure to ultraviolet light, hydrogen peroxide, and many other metabolic insults). HO-2 is found mainly in brain and testes, where it is continuously expressed. The third isozyme, HO-3, is not yet well characterized.

Amino Acids Are Precursors of Creatine and Glutathione

Phosphocreatine, derived from creatine, is an important energy buffer in skeletal muscle (see Fig. 13–15). Creatine is synthesized from glycine and arginine (Fig. 22–26); methionine, in the form of S-adenosylmethionine, acts as methyl group donor.

Glutathione (GSH), present in plants, animals, and some bacteria, often at high levels, can be thought of as a redox buffer. It is derived from glutamate, cysteine, and glycine (Fig. 22–27). The γ-carboxyl group of glutamate is activated by ATP to form an acyl phosphate intermediate, which is then attacked by the
FIGURE 22-26 Biosynthesis of creatine and phosphocreatine. Creatine is made from three amino acids: glycine, arginine, and methionine. This pathway shows the versatility of amino acids as precursors of other nitrogenous biomolecules.

α-amino group of cysteine. A second condensation reaction follows, with the α-carboxyl group of cysteine activated to an acyl phosphate to permit reaction with glycine. The oxidized form of glutathione (GSSG), produced in the course of its redox activities, contains two glutathione molecules linked by a disulfide bond.

Glutathione probably helps maintain the sulhydryl groups of proteins in the reduced state and the iron of heme in the ferrous (Fe²⁺) state, and it serves as a reducing agent for glutaredoxin in deoxyribonucleotide synthesis (see Fig. 22-39). Its redox function is also used to remove toxic peroxides formed in the normal course of growth and metabolism under aerobic conditions:

\[
2 \text{GSH} + \text{R-O-O-H} \rightarrow \text{GSSG} + \text{H}_2\text{O} + \text{R-OH}
\]

This reaction is catalyzed by glutathione peroxidase, a remarkable enzyme in that it contains a covalently bound selenium (Se) atom in the form of selenocysteine (see Fig. 3-8a), which is essential for its activity.

22.3 Molecules Derived from Amino Acids

α-Amino Acids Are Found Primarily in Bacteria

Although α-amino acids do not generally occur in proteins, they do serve some special functions
in the structure of bacterial cell walls and peptide antibiotics. Bacterial peptidoglycans (see Fig. 20-31) contain both D-alanine and D-glutamate. D-Amino acids arise directly from the L isomers by the action of amino acid racemases, which have pyridoxal phosphate as cofactor (see Fig. 18-6). Amino acid racemization is uniquely important to bacterial metabolism, and enzymes such as alanine racemase are prime targets for pharmaceutical agents. One such agent, L-fluoroalanine, is being tested as an antibacterial drug. Another, cycloserine, is used to treat tuberculosis. Because these inhibitors also affect some PLP-requiring human enzymes, however, they have potentially undesirable side effects.

\[
\begin{align*}
\text{L-Fluoroalanine} & \quad \text{Cycloserine}
\end{align*}
\]

Aromatic Amino Acids Are Precursors of Many Plant Substances

Phenylalanine, tyrosine, and tryptophan are converted to a variety of important compounds in plants. The rigid polymer lignin, derived from phenylalanine and tyrosine, is second only to cellulose in abundance in plant tissues. The structure of the lignin polymer is complex and not well understood. Tryptophan is also the precursor of the plant growth hormone indole-3-acetate, or auxin (Fig. 22-28a), which is important in the regulation of a wide range of biological processes in plants.

Phenylalanine and tyrosine also give rise to many commercially significant natural products, including the tannins that inhibit oxidation in wines; alkaloids such as morphine, which have potent physiological effects; and the flavoring of cinnamon oil (Fig. 22-28b), nutmeg, cloves, vanilla, cayenne pepper, and other products.

Biological Amines Are Products of Amino Acid Decarboxylation

Many important neurotransmitters are primary or secondary amines, derived from amino acids in simple pathways. In addition, some polyamines that form complexes with DNA are derived from the amino acid ornithine, a component of the urea cycle. A common denominator of many of these pathways is amino acid decarboxylation, another PLP-requiring reaction (see Fig. 18-6).

The synthesis of some neurotransmitters is illustrated in Figure 22-29. Tyrosine gives rise to a family of catecholamines that includes dopamine, norepinephrine, and epinephrine. Levels of catecholamines are correlated with, among other things, changes in blood pressure. The neurological disorder Parkinson's disease is associated with an underproduction of dopamine, and it has traditionally been treated by administering L-dopa. Overproduction of dopamine in the brain may be linked to psychological disorders such as schizophrenia.

Glutamate decarboxylation gives rise to \(\gamma\)-aminobutyrate (GABA), an inhibitory neurotransmitter. Its underproduction is associated with epileptic seizures. GABA analogs are used in the treatment of epilepsy and hypertension. Levels of GABA can also be increased by administering inhibitors of the GABA-degrading enzyme GABA aminotransferase. Another important neurotransmitter, serotonin, is derived from tryptophan in a two-step pathway.

Histidine undergoes decarboxylation to histamine, a powerful vasodilator in animal tissues. Histamine is released in large amounts as part of the allergic response, and it also stimulates acid secretion in the stomach. A growing array of pharmaceutical agents are being
designed to interfere with either the synthesis or the action of histamine. A prominent example is the histamine receptor antagonist *cimetidine* (Tagamet), a structural analog of histamine:

\[
\text{CH}_3 \text{CH}_2 \text{S} \text{CH}_2 \text{CH}_2 \text{NH} \text{C} \text{NH} \text{CH}_3
\]

It promotes the healing of duodenal ulcers by inhibiting secretion of gastric acid.

Polyamines such as *spermine* and *spermidine*, involved in DNA packaging, are derived from methionine and ornithine by the pathway shown in Figure 22-30. The first step is decarboxylation of ornithine, a precursor of arginine (Fig. 22-10). *Ornithine decarboxylase*, a PLP-requiring enzyme, is the target of several powerful inhibitors used as pharmaceutical agents (Box 22-3).
African sleeping sickness, or African trypanosomiasis, is caused by protists (single-celled eukaryotes) called trypanosomes (Fig. 1). This disease (and related trypanosome-caused diseases) is medically and economically significant in many developing nations. Until the late twentieth century, the disease was virtually incurable. Vaccines are ineffective because the parasite has a novel mechanism to evade the host immune system.

The cell coat of trypanosomes is covered with a single protein, which is the antigen to which the immune system responds. Every so often, however, by a process of genetic recombination (see Table 28-1), a few cells in the population of infecting trypanosomes switch to a new protein coat, not recognized by the immune system. This process of “changing coats” can occur hundreds of times. The result is a chronic cyclic infection: the human host develops a fever, which subsides as the immune system beats back the first infection; trypanosomes with changed coats then become the seed for a second infection, and the fever recurs. This cycle can repeat for weeks, and the weakened person eventually dies.

Some modern approaches to treating African sleeping sickness have been based on an understanding of enzymology and metabolism. In at least one such approach, this involves pharmaceutical agents designed as mechanism-based enzyme inactivators (suicide inactivators; p. 204). A vulnerable point in trypanosome metabolism is the pathway of polyamine biosynthesis. The polyamines spermine and spermidine, involved in DNA packaging, are required in large amounts in rapidly dividing cells. The first step in their synthesis is catalyzed by ornithine decarboxylase, a PLP-requiring enzyme (see Fig. 22–30). In mammalian cells, ornithine decarboxylase undergoes rapid turnover—that is, a constant round of enzyme degradation and synthesis. In some trypanosomes, however, the enzyme (for reasons not well understood) is stable, not readily replaced by newly synthesized enzyme. An inhibitor of ornithine
Ornithine decarboxylase that binds permanently to the enzyme would thus have little effect on human cells, which could rapidly replace inactivated enzyme, but would adversely affect the parasite.

The first few steps of the normal reaction catalyzed by ornithine decarboxylase are shown in Figure 2. Once CO₂ is released, the electron movement is reversed and putrescine is produced (see Fig. 22–30). Based on this mechanism, several suicide inactivators have been designed, one of which is difluoromethylornithine (DFMO). DFMO is relatively inert in solution. When it binds to ornithine decarboxylase, however, the enzyme is quickly inactivated (Fig. 3). The inhibitor acts by providing an alternative electron sink in the form of two strategically placed fluorine atoms, which are excellent leaving groups. Instead of electrons moving into the ring structure of PLP, the reaction results in displacement of a fluorine atom. The S of a Cys residue at the enzyme's active site then forms a covalent complex with the highly reactive PLP-inhibitor adduct in an essentially irreversible reaction. In this way, the inhibitor makes use of the enzyme's own reaction mechanisms to kill it.

DFMO has proved highly effective against African sleeping sickness in clinical trials and is now used to treat African sleeping sickness caused by Trypanosoma brucei gambiense. Approaches such as this show great promise for treating a wide range of diseases. The design of drugs based on enzyme mechanism and structure can complement the more traditional trial-and-error methods of developing pharmaceuticals.
Arginine Is the Precursor for Biological Synthesis of Nitric Oxide

A surprise finding in the mid-1980s was the role of nitric oxide (NO)—previously known mainly as a component of smog—as an important biological messenger. This simple gaseous substance diffuses readily through membranes, although its high reactivity limits its range of diffusion to about a 1 mm radius from the site of synthesis. In humans NO plays a role in a range of physiological processes, including neurotransmission, blood clotting, and the control of blood pressure. Its mode of action is described in Chapter 12.

Nitric oxide is synthesized from arginine in an NADPH-dependent reaction catalyzed by nitric oxide synthase (Fig. 22–31), a dimeric enzyme structurally related to NADPH cytochrome P-450 reductase (see Box 21–1). The reaction is a five-electron oxidation. Each subunit of the enzyme contains one bound molecule of each of four different cofactors: FMN, FAD, tetrahydrobiopterin, and Fe²⁺ heme. NO is an unstable molecule and cannot be stored. Its synthesis is stimulated by interaction of nitric oxide synthase with Ca²⁺-calmodulin (see Fig. 12–11).

SUMMARY 22.3 Molecules Derived from Amino Acids

- Many important biomolecules are derived from amino acids. Glycine is a precursor of porphyrins. Degradation of iron-porphyrin (heme) generates bilirubin, which is converted to bile pigments, with several physiological functions.
- Glycine and arginine give rise to creatine and phosphocreatine, an energy buffer. Glutathione, formed from three amino acids, is an important cellular reducing agent.
- Bacteria synthesize D-amino acids from L-amino acids in racemization reactions requiring pyridoxal phosphate. D-Amino acids are commonly found in certain bacterial walls and certain antibiotics.
- The aromatic amino acids give rise to many plant substances. The PLP-dependent decarboxylation of some amino acids yields important biological amines, including neurotransmitters.
- Arginine is the precursor of nitric oxide, a biological messenger.

22.4 Biosynthesis and Degradation of Nucleotides

As discussed in Chapter 8, nucleotides have a variety of important functions in all cells. They are the precursors of DNA and RNA. They are essential carriers of chemical energy—a role primarily of ATP and to some extent GTP. They are components of the cofactors NAD, FAD, S-adenosylmethionine, and coenzyme A, as well as of activated biosynthetic intermediates such as UDP-glucose and CDP-diacylglycerol. Some, such as cAMP and cGMP, are also cellular second messengers.

Two types of pathways lead to nucleotides: the de novo pathways and the salvage pathways. De novo synthesis of nucleotides begins with their metabolic precursors: amino acids, ribose 5-phosphate, CO₂, and NH₃. Salvage pathways recycle the free bases and nucleosides released from nucleic acid breakdown. Both types of pathways are important in cellular metabolism and both are discussed in this section.

The de novo pathways for purine and pyrimidine biosynthesis seem to be nearly identical in all living organisms. Notably, the free bases guanine, adenine, thymine, cytidine, and uracil are not intermediates in these pathways; that is, the bases are not synthesized and then attached to ribose, as might be expected. The purine ring structure is built up one or a few atoms at a time, attached to ribose throughout the process. The pyrimidine ring is synthesized as orotate, attached to
22.4 Biosynthesis and Degradation of Nucleotides

ribose phosphate, and then converted to the common pyrimidine nucleotides required in nucleic acid synthesis. Although the free bases are not intermediates in the de novo pathways, they are intermediates in some of the salvage pathways.

Several important precursors are shared by the de novo pathways for synthesis of pyrimidines and purines. Phosphoribosyl pyrophosphate (PRPP) is important in both, and in these pathways the structure of ribose is retained in the product nucleotide, in contrast to its fate in the tryptophan and histidine biosynthetic pathways discussed earlier. An amino acid is an important precursor in each type of pathway: glycine for purines and aspartate for pyrimidines. Glutamine again is the most important source of amino groups—in five different steps in the de novo pathways. Aspartate is also used as the source of an amino group in the purine pathways, in two steps.

Two other features deserve mention. First, there is evidence, especially in the de novo purine pathway, that the enzymes are present as large, multienzyme complexes in the cell, a recurring theme in our discussion of metabolism. Second, the cellular pools of nucleotides (other than ATP) are quite small, perhaps 1% or less of the amounts required to synthesize the cell’s DNA. Therefore, cells must continue to synthesize nucleotides during nucleic acid synthesis, and in some cases nucleotide synthesis may limit the rates of DNA replication and transcription. Because of the importance of these processes in dividing cells, agents that inhibit nucleotide synthesis have become particularly important in medicine.

We examine here the biosynthetic pathways of purine and pyrimidine nucleotides and their regulation, the formation of the deoxynucleotides, and the degradation of purines and pyrimidines to uric acid and urea. We end with a discussion of chemotherapeutic agents that affect nucleotide synthesis.

De Novo Purine Nucleotide Synthesis Begins with PRPP

The two parent purine nucleotides of nucleic acids are adenosine 5'-monophosphate (AMP; adenylate) and guanosine 5'-monophosphate (GMP; guanylate), containing the purine bases adenine and guanine. Figure 22–32 shows the origin of the carbon and nitrogen atoms of the purine ring system, as determined by John Buchanan using isotopic tracer experiments in birds. The detailed pathway of purine biosynthesis was worked out primarily by Buchanan and G. Robert Greenberg in the 1950s.

In the first committed step of the pathway, an amino group donated by glutamine is attached at C-1 of PRPP (Fig. 22–33). The resulting 5-phosphoribosylamine is highly unstable, with a half-life of 30 seconds at pH 7.5. The purine ring is subsequently built up on this structure. The pathway described here is identical in all organisms, with the exception of one step that differs in higher eukaryotes as noted below.

The second step is the addition of three atoms from glycine (Fig. 22–33, step 2). An ATP is consumed to activate the glycine carboxyl group in the form of an acyl phosphate for this condensation reaction. The added glycine amino group is then formylated by N10-formyltetrahydrofolate (step 3), and a nitrogen is contributed by glutamine (step 4), before dehydration and ring closure yield the five-membered imidazole ring of the purine nucleus, as 5-aminoimidazole ribonucleotide (AIR; step 5).

Aspartate now donates its amino group in two steps (6 and 7): formation of an amide bond, followed by elimination of the carbon skeleton of aspartate (as fumarate). (Recall that aspartate plays an analogous role in two steps of the urea cycle; see Fig. 18–10.) The final carbon is contributed by N10-formyltetrahydrofolate (step 8), and a second ring closure takes place to yield the second fused ring of the purine nucleus (step 9). The enzyme catalyzing this reaction is AIR carboxylase.

Aspartate now donates its amino group in two steps (8 and 9): formation of an amide bond, followed by elimination of the carbon skeleton of aspartate (as fumarate). (Recall that aspartate plays an analogous role in two steps of the urea cycle; see Fig. 18–10.) The final carbon is contributed by N10-formyltetrahydrofolate (step 8), and a second ring closure takes place to yield the second fused ring of the purine nucleus (step 9). The first intermediate with a complete purine ring is inosinate (IMP).
FIGURE 22–33 De novo synthesis of purine nucleotides: construction of the purine ring of inosinate (IMP). Each addition to the purine ring is shaded to match Figure 22–32. After step 2, R symbolizes the 5-phospho-D-ribosyl group on which the purine ring is built. Formation of 5-phospho-D-ribosylamine (step 1) is the first committed step in purine synthesis. Note that the product of step 9, AICAR, is the remnant of ATP released during histidine biosynthesis (see Fig. 22–20, step 5). Abbreviations are given for most intermediates to simplify the naming of the enzymes. Step 6a is the alternative path from AIR to CAIR occurring in higher eukaryotes.
As in the tryptophan and histidine biosynthetic pathways, the enzymes of IMP synthesis seem to be organized as large, multienzyme complexes in the cell. Once again, evidence comes from the existence of single polypeptides with several functions, some catalyzing nonsequential steps in the pathway. In eukaryotic cells ranging from yeast to fruit flies to chickens, steps 1, 3, and 5 in Figure 22–33 are catalyzed by a multifunctional protein. An additional multifunctional protein catalyzes steps 6 and 7. In humans, a multifunctional enzyme combines the activities of AIR carboxylase and SAICAR synthetase (steps 5 and 6). In bacteria, these activities are found on separate proteins, but the proteins may form a large noncovalent complex. The channeling of reaction intermediates from one enzyme to the next permitted by these complexes is probably especially important for unstable intermediates such as 5-phosphoribosylamine.

Conversion of inosinate to adenylate requires the insertion of an amino group derived from aspartate (Fig. 22–34); this takes place in two reactions similar to those used to introduce N-1 of the purine ring (Fig. 22–33, steps 8 and 9). A crucial difference is that GTP rather than ATP is the source of the high-energy phosphate in synthesizing adenylosuccinate. Guanylate is formed by the NAD+-requiring oxidation of inosinate at C-2, followed by addition of an amino group derived from glutamine. ATP is cleaved to AMP and PP₁ in the final step (Fig. 22–34).

Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition

Three major feedback mechanisms cooperate in regulating the overall rate of de novo purine nucleotide synthesis and the relative rates of formation of the two end products, adenylate and guanylate (Fig. 22–35).

The first mechanism is exerted on the first reaction that is unique to purine synthesis: transfer of an amino group to PRPP to form 5-phosphoribosylamine. This reaction is catalyzed by the allosteric enzyme...
glutamine-PRPP amidotransferase, which is inhibited by the end products IMP, AMP, and GMP. AMP and GMP act synergistically in this concerted inhibition. Thus, whenever either AMP or GMP accumulates to excess, the first step in its biosynthesis from PRPP is partially inhibited.

In the second control mechanism, exerted at a later stage, an excess of GMP in the cell inhibits formation of xanthate from inosinate by IMP dehydrogenase, without affecting the formation of AMP (Fig. 22–35). Conversely, an accumulation of adenylate inhibits formation of adenylosuccinate by adenylosuccinate synthetase, without affecting the biosynthesis of GMP. In the third mechanism, GTP is required in the conversion of IMP to AMP, whereas ATP is required for conversion of IMP to GMP (Fig. 22–34), a reciprocal arrangement that tends to balance the synthesis of the two ribonucleotides.

The final control mechanism is the inhibition of PRPP synthesis by the allosteric regulation of ribose phosphate pyrophosphokinase. This enzyme is inhibited by ADP and GDP, in addition to metabolites from other pathways for which PRPP is a starting point.

Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate

The common pyrimidine ribonucleotides are cytidine 5’-monophosphate (CMP; cytidylate) and uridine 5’-monophosphate (UMP; uridylate), which contain the pyrimidines cytosine and uracil. De novo pyrimidine nucleotide biosynthesis (Fig. 22–36) proceeds in a somewhat different manner from purine nucleotide synthesis; the six-membered pyrimidine ring is made first and then attached to ribose 5-phosphate. Required in this process is carbamoyl phosphate, also an intermediate in the urea cycle (see Fig. 18–10). However, as we noted in Chapter 18, in animals the carbamoyl phosphate required in urea synthesis is made in mitochondria by carbamoyl phosphate synthetase I, whereas the carbamoyl phosphate required in pyrimidine biosynthesis is made in the cytosol by a different form of the enzyme, carbamoyl phosphate synthetase II. In bacteria, a single enzyme supplies carbamoyl phosphate for the synthesis of arginine and pyrimidines. The bacterial enzyme has three separate active sites, spaced along a channel nearly 100 Å long (Fig. 22–37). Bacterial carbamoyl phosphate synthetase provides a vivid illustration of the channeling of unstable reaction intermediates between active sites.

FIGURE 22–36 De novo synthesis of pyrimidine nucleotides: biosynthesis of UTP and CTP via orotidylate. The pyrimidine is constructed from carbamoyl phosphate and aspartate. The ribose 5-phosphate is then added to the completed pyrimidine ring by orotate phosphoribosyltransferase. The first step in this pathway (not shown here; see Fig. 18–11a) is the synthesis of carbamoyl phosphate from CO₂ and NH₃, catalyzed in eukaryotes by carbamoyl phosphate synthetase II.
FIGURE 22-37 Channeling of intermediates in bacterial carbamoyl phosphate synthetase. (Derived from PDB ID 1M6V) The reaction catalyzed by this enzyme is illustrated in Figure 18–11a. The large and small subunits are shown in gray and blue, respectively; the channel between active sites (almost 100 Å long) is shown as a yellow mesh. A glutamine molecule (green) binds to the small subunit, donating its amido nitrogen as NH_2 in a glutamine amidotransferase-type reaction. The NH_2 enters the channel, which takes it to a second active site, where it combines with bicarbonate in a reaction requiring ATP (bound ADP in blue). The carbamate then reenters the channel to reach the third active site, where it is phosphorylated to carbamoyl phosphate (bound ADP in red).

Carbamoyl phosphate reacts with aspartate to yield N-carbamoylaspartate in the first committed step of pyrimidine biosynthesis (Fig. 22–36). This reaction is catalyzed by aspartate transcarbamoylase. In bacteria, this step is highly regulated, and bacterial aspartate transcarbamoylase is one of the most thoroughly studied allosteric enzymes (see below). By removal of water from N-carbamoylaspartate, a reaction catalyzed by dihydroorotase, the pyrimidine ring is closed to form 1-dihydroorotate. This compound is oxidized to the pyrimidine derivative orotate, a reaction in which NAD$^+$ is the ultimate electron acceptor. In eukaryotes, the first three enzymes in this pathway—carbamoyl phosphate synthetase II, aspartate transcarbamoylase, and dihydroorotase—are part of a single trifunctional protein. The protein, known by the acronym CAD, contains three identical polypeptide chains (each of M_r 230,000), each with active sites for all three reactions. This suggests that large, multienzyme complexes may be the rule in this pathway.

Once orotate is formed, the ribose 5-phosphate side chain, provided once again by PRPP, is attached to yield orotidylate (Fig. 22–36). Orotidylate is then decarboxylated to uridylic acid, which is phosphorylated to UTP. CTP is formed from UTP by the action of cytidylate synthetase, by way of an acyl phosphate intermediate (consuming one ATP). The nitrogen donor is normally glutamine, although the cytidylate synthetases in many species can use NH_4^+ directly.

Pyrimidine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition

Regulation of the rate of pyrimidine nucleotide synthesis in bacteria occurs in large part through aspartate transcarbamoylase (ATCase), which catalyzes the first reaction in the sequence and is inhibited by CTP, the end product of the sequence (Fig. 22–36). The bacterial ATCase molecule consists of six catalytic subunits and six regulatory subunits (see Fig. 6–32). The catalytic subunits bind the substrate molecules, and the allosteric subunits bind the allosteric inhibitor, CTP. The entire ATCase molecule, as well as its subunits, exists in two conformations, active and inactive. When CTP is not bound to the regulatory subunits, the enzyme is maximally active. As CTP accumulates and binds to the regulatory subunits, they undergo a change in conformation. This change is transmitted to the catalytic subunits, which then also shift to an inactive conformation. ATP prevents the changes induced by CTP. Figure 22–38 shows the effects of the allosteric regulators on the activity of ATCase.
Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates

Nucleotides to be used in biosynthesis are generally converted to nucleoside triphosphates. The conversion pathways are common to all cells. Phosphorylation of AMP to ADP is promoted by adenylate kinase, in the reaction

$$\text{ATP} + \text{AMP} \rightarrow 2\text{ADP}$$

The ADP so formed is phosphorylated to ATP by the glycolytic enzymes or through oxidative phosphorylation.

ATP also brings about the formation of other nucleoside diphosphates by the action of a class of enzymes called nucleoside monophosphate kinases. These enzymes, which are generally specific for a particular base but nonspecific for the sugar (ribose or deoxyribose), catalyze the reaction

$$\text{ATP} + \text{NMP} \rightarrow \text{ADP} + \text{NDP}$$

The efficient cellular systems for rephosphorylating ADP to ATP tend to pull this reaction in the direction of products.

Nucleoside diphosphates are converted to triphosphates by the action of a ubiquitous enzyme, nucleoside diphosphate kinase, which catalyzes the reaction

$$\text{NTP}_D + \text{NDP}_A \rightarrow \text{NDP}_D + \text{NTP}_A$$

This enzyme is notable in that it is not specific for the base (purines or pyrimidines) or the sugar (ribose or deoxyribose). This nonspecificity applies to both phosphate acceptor (A) and donor (D), although the donor (NTP_D) is almost invariably ATP because it is present in higher concentration than other nucleoside triphosphates under aerobic conditions.

Ribonucleotides Are the Precursors of Deoxyribonucleotides

Deoxyribonucleotides, the building blocks of DNA, are derived from the corresponding ribonucleotides by direct reduction at the 2'-carbon atom of the d-ribose to form the 2'-deoxy derivative. For example, adenosine diphosphate (ADP) is reduced to 2'-deoxyadenosine diphosphate (dADP), and GDP is reduced to dGDP. This reaction is somewhat unusual in that the reduction occurs at a nonactivated carbon; no closely analogous chemical reactions are known. The reaction is catalyzed by ribonucleotide reductase, best characterized in E. coli, in which its substrates are ribonucleoside diphosphates.

The reduction of the d-ribose portion of a ribonucleoside diphosphate to 2'-deoxy-d-ribose requires a pair of hydrogen atoms, which are ultimately donated by NADPH via an intermediate hydrogen-carrying protein, thioredoxin. This ubiquitous protein serves a similar redox function in photosynthesis (see Fig. 20–19) and other processes. Thioredoxin has pairs of -SH groups that carry hydrogen atoms from NADPH to the ribonucleoside diphosphate. Its oxidized (disulfide) form is reduced by NADPH in a reaction catalyzed by thioredoxin reductase (Fig. 22–39), and reduced thioredoxin is then used by ribonucleotide reductase to reduce the nucleoside diphosphates (NDPs) to deoxyribo-nucleoside diphosphates (dNDPs). A second source of reducing equivalents for ribonucleotide reductase is glutathione (GSH). Glutathione serves as the reductant for a protein closely related to thioredoxin, glutaredoxin, which then transfers the reducing power to ribonucleotide reductase (Fig. 22–39).

Ribonucleotide reductase is notable in that its reaction mechanism provides the best-characterized example of the involvement of free radicals in biochemical transformations, once thought to be rare in biological systems. The enzyme in E. coli and most eukaryotes is a dimer, with subunits designated R1 and R2 (Fig. 22–40). The R1 subunit contains two kinds of regulatory sites, as described below. The two active sites of the enzyme are formed at the interface between the R1 and R2 subunits. At each active site, R1 contributes two sulfhydryl groups required for activity and R2 contributes a stable tyrosyl radical. The R2 subunit also has a binuclear iron (Fe^{3+}) cofactor that helps generate and stabilize the tyrosyl radicals (Fig. 22–40). The tyrosyl radical is too far from the active site to interact directly with the site, but it
generates another radical at the active site that functions in catalysis. A likely mechanism for the ribonucleotide reductase reaction is illustrated in Figure 22-41. In *E. coli*, likely sources of the required reducing equivalents for this reaction are thioredoxin and glutaredoxin, as noted above.

FIGURE 22-40 Ribonucleotide reductase. (a) Subunit structure. The functions of the two regulatory sites are explained in Figure 22-42. Each active site contains two thiols and a group (—XH) that can be converted to an active-site radical; this group is probably the —SH of Cys^{335}, which functions as a thyl radical. (b) The R2 subunits of *E. coli* ribonucleotide reductase (PDB ID 1PFR). The Tyr residue that acts as the tyrosyl radical is shown in red; the binuclear iron center is orange. (c) The tyrosyl radical functions to generate the active-site radical (—X'), which is used in the mechanism shown in Figure 22-41.

MECHANISM FIGURE 22-41
Recorded mechanism for ribonucleotide reductase. In the enzyme of *E. coli* and most eukaryotes, the active thiol groups are on the R1 subunit; the active-site radical (—X') is on the R2 subunit and in *E. coli* is probably a thyl radical of Cys^{335} (see Fig. 22-40).
Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

Regulation at primary regulatory sites

\[
\begin{align*}
dCTP & \quad \text{ATP} \\
dTP & \quad \text{dUDP} \\
gTP & \quad \text{dGDP} \\
dATP & \quad \text{dADP}
\end{align*}
\]

Regulation at substrate-specificity sites

\[
\begin{align*}
dCTP & \quad \text{CDP} \\
dTP & \quad \text{dUDP} \\
gTP & \quad \text{dGDP} \\
dATP & \quad \text{dADP}
\end{align*}
\]

Products

Regulation of ribonucleotide reductase by deoxynucleoside triphosphates. The overall activity of the enzyme is affected by binding at the primary regulatory site (left). The substrate specificity of the enzyme is affected by the nature of the effector molecule bound at the second type of regulatory site, the substrate-specificity site (right). The diagram indicates inhibition or stimulation of enzyme activity with the four different substrates. The pathway from dUDP to dTTP is described later (see Figs 22–43, 22–44).

Three classes of ribonucleotide reductase have been reported. Their mechanisms (where known) generally conform to the scheme in Figure 22–41, but they differ in the identity of the group supplying the active-site radical and in the cofactors used to generate it. The *E. coli* enzyme (class I) requires oxygen to regenerate the tyrosyl radical if it is quenched, so this enzyme functions only in an aerobic environment. Class II enzymes, found in other microorganisms, have 5′-deoxyadenosylcobalamin (see Box 17–2) rather than a binuclear iron center. Class III enzymes have evolved to function in an anaerobic environment. *E. coli* contains a separate class III ribonucleotide reductase when grown anaerobically; this enzyme contains an iron-sulfur cluster (structurally distinct from the binuclear iron center of the class I enzyme) and requires NADPH and S-adenosylmethionine for activity. It uses nucleoside triphosphates rather than nucleoside diphosphates as substrates. The evolution of different classes of ribonucleotide reductase for production of DNA precursors in different environments reflects the importance of this reaction in nucleotide metabolism.

Regulation of *E. coli* ribonucleotide reductase is unusual in that not only its activity but its substrate specificity is regulated by the binding of effector molecules. Each R1 subunit has two types of regulatory site (Fig. 22–40). One type affects overall enzyme activity and binds either ATP, which activates the enzyme, or dATP, which inactivates it. The second type alters substrate specificity in response to the effector molecule—ATP, dATP, dTTP, or dGTP—that is bound there (Fig. 22–42). When ATP or dATP is bound, reduction of UDP and CDP is favored. When dTTP or dGTP is bound, reduction of GDP or ADP, respectively, is stimulated. The scheme is designed to provide a balanced pool of precursors for DNA synthesis. ATP is also a general activator for biosynthesis and ribonucleotide reduction. The presence of dATP in small amounts increases the reduction of pyrimidine nucleotides. An oversupply of the pyrimidine dNTPs is signaled by high levels of dTTP, which shifts the specificity to favor reduction of GDP. High levels of dGTP, in turn, shift the specificity to ADP reduction, and high levels of dATP shut the enzyme down. These effectors are thought to induce several distinct enzyme conformations with altered specificities.

Thymidylate Is Derived from dCDP and dUMP

DNA contains thymine rather than uracil, and the de novo pathway to thymine involves only deoxyribonucleotides. The immediate precursor of thymidylate (dTMP) is dUMP. In bacteria, the pathway to dUMP begins with formation of dUTP, either by deamination of dCTP or by phosphorylation of dUDP (Fig. 22–43). The dUTP is converted to dUMP by a dUTPase. The latter reaction must be efficient to keep dUTP pools low and prevent incorporation of uridylate into DNA.

Conversion of dUMP to dTMP is catalyzed by thymidylate synthase. A one-carbon unit at the hydroxymethyl (—CH₂OH) oxidation level (see Fig. 18–17) is transferred from N⁵,N¹⁰-methylene tetrahydrofolate to dUMP, then reduced to a methyl group (Fig. 22–44). The reduction occurs at the expense of oxidation of tetrahydrofolate to dihydrofolate, which is unusual in tetrahydrofolate-requiring reactions. (The mechanism of this reaction is shown in Fig. 22–50.) The dihydrofolate is reduced to tetrahydrofolate by dihydrofolate reductase—a regeneration that is essential for the many processes that
FIGURE 22-43 Biosynthesis of thymidylate (dTMP). The pathways are shown beginning with the reaction catalyzed by ribonucleotide reductase. Figure 22-44 gives details of the thymidylate synthase reaction.

require tetrahydrofolate. In plants and at least one protist, thymidylate synthase and dihydrofolate reductase reside on a single bifunctional protein.

About 10% of the human population (and up to 50% of people in impoverished communities) suffer from folic acid deficiency. When the deficiency is severe, the symptoms can include heart disease, cancer, and some types of brain dysfunction. At least some of these symptoms arise from a reduction of thymidylate synthesis, leading to an abnormal incorporation of uracil into DNA. Uracil is recognized by DNA repair pathways (described in Chapter 25) and is cleaved from the DNA. The presence of high levels of uracil in DNA leads to strand breaks that can greatly affect the function and regulation of nuclear DNA, ultimately causing the observed effects on the heart and brain, as well as increased mutagenesis that leads to cancer.

FIGURE 22-44 Conversion of dUMP to dTMP by thymidylate synthase and dihydrofolate reductase. Serine hydroxymethyltransferase is required for regeneration of the \(N^6, N^{10}\)-methylene form of tetrahydrofolate. In the synthesis of dTMP, all three hydrogens of the added methyl group are derived from \(N^7, N^{10}\)-methylene tetrahydrofolate (pink and gray).
Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively

Purine nucleotides are degraded by a pathway in which they lose their phosphate through the action of 5'-nucleotidase (Fig. 22–45). Adenylate yields adenosine, which is deaminated to inosine by adenosine deaminase, and inosine is hydrolyzed to hypoxanthine (its purine base) and D-ribose. Hypoxanthine is oxidized successively to xanthine and then uric acid by xanthine oxidase, a flavoenzyme with an atom of molybdenum and four iron-sulfur centers in its prosthetic group. Molecular oxygen is the electron acceptor in this complex reaction.

GMP catabolism also yields uric acid as end product. GMP is first hydrolyzed to guanosine, which is then cleaved to free guanine. Guanine undergoes hydrolytic removal of its amino group to yield xanthine, which is converted to uric acid by xanthine oxidase (Fig. 22–45).

Uric acid is the excreted end product of purine catabolism in primates, birds, and some other animals. A healthy adult human excretes uric acid at a rate of about 0.6 g/24 h; the excreted product arises in part from ingested purines and in part from turnover of the purine nucleotides of nucleic acids. In most mammals and many other vertebrates, uric acid is further degraded to allantoin by the action of urate oxidase. In other organisms the pathway is further extended, as shown in Figure 22–45.

The pathways for degradation of pyrimidines generally lead to NH₃ production and thus to urea synthesis. Thymine, for example, is degraded to methylmalonylsemialdehyde (Fig. 22–46), an intermediate of valine catabolism. It is further degraded through propionyl-CoA and methylmalonyl-CoA to succinyl-CoA (see Fig. 18–27).

FIGURE 22–45 Catabolism of purine nucleotides. Note that primates excrete much more nitrogen as urea via the urea cycle (Chapter 18) than as uric acid from purine degradation. Similarly, fish excrete much more nitrogen as NH₄⁺ than as urea produced by the pathway shown here.
Genetic aberrations in human purine metabolism have been found, some with serious consequences. For example, adenosine deaminase (ADA) deficiency leads to severe immunodeficiency disease in which T lymphocytes and B lymphocytes do not develop properly. Lack of ADA leads to a 100-fold increase in the cellular concentration of dATP, a strong inhibitor of ribonucleotide reductase (Fig. 22–42). High levels of dATP produce a general deficiency of other dNTPs in T lymphocytes. The basis for B-lymphocyte toxicity is less clear. Individuals with ADA deficiency lack an effective immune system and do not survive unless isolated in a sterile “bubble” environment. ADA deficiency was one of the first targets of human gene therapy trials (see Box 9–2).

Purine and Pyrimidine Bases Are Recycled by Salvage Pathways

Free purine and pyrimidine bases are constantly released in cells during the metabolic degradation of nucleotides. Free purines are in large part salvaged and reused to make nucleotides, in a pathway much simpler than the de novo synthesis of purine nucleotides described earlier. One of the primary salvage pathways consists of a single reaction catalyzed by adenosine phosphoribosyltransf erase, in which free adenine reacts with PRPP to yield the corresponding adenine nucleotide:

\[
\text{Adenine} + \text{PRPP} \longrightarrow \text{AMP} + \text{PP}_i
\]

Free guanine and hypoxanthine (the deamination product of adenine; Fig. 22–45) are salvaged in the same way by hypoxanthine-guanine phosphoribosyltransferase. A similar salvage pathway exists for pyrimidine bases in microorganisms, and possibly in mammals.

A genetic lack of hypoxanthine-guanine phosphoribosyltransferase activity, seen almost exclusively in male children, results in a bizarre set of symptoms called Lesch-Nyhan syndrome. Children with this genetic disorder, which becomes manifest by the age of 2 years, are sometimes poorly coordinated and mentally retarded. In addition, they are extremely hostile and show compulsive self-destructive tendencies: they mutilate themselves by biting off their fingers, toes, and lips.

The devastating effects of Lesch-Nyhan syndrome illustrate the importance of the salvage pathways. Hypoxanthine and guanine arise constantly from the breakdown of nucleic acids. In the absence of hypoxanthine-guanine phosphoribosyltransferase, PRPP levels rise and purines are overproduced by the de novo pathway, resulting in high levels of uric acid production and goutlike damage to tissue (see below). The brain is especially dependent on the salvage pathways, and this may account for the central nervous system damage in children with Lesch-Nyhan syndrome. This syndrome was another target of early trials in gene therapy (see Box 9–2).

Excess Uric Acid Causes Gout

Long thought, erroneously, to be due to “high living,” gout is a disease of the joints caused by an elevated concentration of uric acid in the blood and tissues. The joints become inflamed, painful, and arthritic, owing to the abnormal deposition of sodium urate crystals. The kidneys are also affected, as excess uric acid is deposited in the kidney tubules. Gout occurs predominantly in males. Its precise cause is not known, but it often involves an underexcretion of urate. A genetic deficiency of one or another enzyme of purine metabolism may also be a factor in some cases.
Hypoxanthine
(enol form)

Allopurinol

Oxypurinol

FIGURE 22–47 Allopurinol, an inhibitor of xanthine oxidase. Hypoxanthine is the normal substrate of xanthine oxidase. Only a slight alteration in the structure of hypoxanthine (shaded pink) yields the medically effective enzyme inhibitor allopurinol. At the active site, allopurinol is converted to oxypurinol, a strong competitive inhibitor that remains tightly bound to the reduced form of the enzyme.

Gout is effectively treated by a combination of nutritional and drug therapies. Foods especially rich in nucleotides and nucleic acids, such as liver or glandular products, are withheld from the diet. Major alleviation of the symptoms is provided by the drug allopurinol (Fig. 22–47), which inhibits xanthine oxidase, the enzyme that catalyzes the conversion of purines to uric acid. Allopurinol is a substrate of xanthine oxidase, which converts allopurinol to oxypurinol (alloxanthine). Oxypurinol inactivates the reduced form of the enzyme by remaining tightly bound in its active site. When xanthine oxidase is inhibited, the excreted products of purine metabolism are xanthine and hypoxanthine, which are more water-soluble than uric acid and less likely to form crystalline deposits. Allopurinol was developed by Gertrude Elion and George Hitchings, who also developed acyclovir, used in treating people with genital and oral herpes infections, and other purine analogs used in cancer chemotherapy.

Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways

The growth of cancer cells is not controlled in the same way as cell growth in most normal tissues. Cancer cells have greater requirements for nucleotides as precursors of DNA and RNA, and consequently are generally more sensitive than normal cells to inhibitors of nucleotide biosynthesis. A growing array of important chemotherapeutic agents—for cancer and other diseases—act by inhibiting one or more enzymes in these pathways. We describe here several well-studied examples that illustrate productive approaches to treatment and help us understand how these enzymes work.

The first set of agents includes compounds that inhibit glutamine amidotransferases. Recall that glutamine is a nitrogen donor in at least half a dozen separate reactions in nucleotide biosynthesis. The binding sites for glutamine and the mechanism by which NH₃ is extracted are quite similar in many of these enzymes. Most are strongly inhibited by glutamine analogs such as azaserine and acivicin (Fig. 22–48). Azaserine, characterized by John Buchanan in the 1950s, was one of the first examples of a mechanism-based enzyme inactivator (suicide inactivator; p. 204 and Box 22–3). Acivicin shows promise as a cancer chemotherapeutic agent.

Other useful targets for pharmaceutical agents are thymidylate synthase and dihydrofolate reductase, enzymes that provide the only cellular pathway for thymine synthesis (Fig. 22–49). One inhibitor that acts on thymidylate synthase, fluorouracil, is an important chemotherapeutic agent. Fluorouracil itself is not the enzyme inhibitor. In the cell, salvage pathways convert it to the deoxynucleoside monophosphate FdUMP, which binds to and inactivates the enzyme. Inhibition by FdUMP (Fig. 22–50) is a classic example of mechanism-based enzyme inactivation. Another prominent chemotherapeutic agent, methotrexate, is an inhibitor of dihydrofolate reductase. This folate analog acts as a competitive inhibitor; the enzyme binds methotrexate with about 100 times higher affinity than dihydrofolate. Aminopterin is a related compound that acts similarly.

FIGURE 22–48 Azaserine and acivicin, inhibitors of glutamine amidotransferases. These analogs of glutamine interfere in several amino acid and nucleotide biosynthetic pathways.
22.4 Biosynthesis and Degradation of Nucleotides

FIGURE 22-49 Thymidylate synthesis and folate metabolism as targets of chemotherapy. (a) During thymidylate synthesis, \(N^5, N^{10} \)-methylene tetrahydrofolate is converted to 7,8-dihydrofolate; the \(N^5, N^{10} \)-methylene tetrahydrofolate is regenerated in two steps (see Fig. 22-44). This cycle is a major target of several chemotherapeutic agents. (b) Fluorouracil and methotrexate are important chemotherapeutic agents. In cells, fluorouracil is converted to FdUMP, which inhibits thymidylate synthase. Methotrexate, a structural analog of tetrahydrofolate, inhibits dihydrofolate reductase; the shaded amino and methyl groups replace a carbonyl oxygen and a proton, respectively, in folate (see Fig. 22-44). Another important folate analog, aminopterin, is identical to methotrexate except that it lacks the shaded methyl group. Trimethoprim, a tight-binding inhibitor of bacterial dihydrofolate reductase, was developed as an antibiotic.

MECHANISM FIGURE 22-50 Conversion of dUMP to dTMP and its inhibition by FdUMP. The left side is the normal reaction mechanism of thymidylate synthase. The nucleophilic sulfhydryl group contributed by the enzyme in step 1 and the ring atoms of dUMP taking part in the reaction are shown in red; \(B \) denotes an amino acid side chain that acts as a base to abstract a proton after step 2. The hydrogens derived from the methylene group of \(N^5, N^{10} \)-methylene tetrahydrofolate are shaded in gray. The 1,3 hydride shift (step 3), moves a hydride ion (shaded pink) from C-6 of \(H_4 \) folate to the methyl group of thymidine, resulting in the oxidation of tetrahydrofolate to dihydrofolate. This hydride shift is blocked when FdUMP is the substrate (right). Steps 1 and 2 proceed normally, but result in a stable complex—consisting of FdUMP linked covalently to the enzyme and to tetrahydrofolate—that inactivates the enzyme.

Thymidylate Synthase Mechanism
The medical potential of inhibitors of nucleotide biosynthesis is not limited to cancer treatment. All fast-growing cells (including bacteria and protists) are potential targets. **Trimethoprim**, an antibiotic developed by Hitchings and Elion, binds to bacterial dihydrofolate reductase nearly 100,000 times better than to the mammalian enzyme. It is used to treat certain urinary and middle-ear bacterial infections. Parasitic protists, such as the trypanosomes that cause African sleeping sickness (African trypanosomiasis), lack pathways for de novo nucleotide biosynthesis and are particularly sensitive to agents that interfere with their scavenging of nucleotides from the surrounding environment using salvage pathways. Allopurinol (Fig. 22-47) and several similar purine analogs have shown promise for the treatment of African trypanosomiasis and related afflictions. See Box 22-3 for another approach to combating African trypanosomiasis, made possible by advances in our understanding of metabolism and enzyme mechanisms.

SUMMARY 22.4 Biosynthesis and Degradation of Nucleotides

- The purine ring system is built up step-by-step beginning with 5-phosphoribosylamine. The amino acids glutamine, glycine, and aspartate furnish all the nitrogen atoms of purines. Two ring-closure steps form the purine nucleus.
- Pyrimidines are synthesized from carbamoyl phosphate and aspartate, and ribose 5-phosphate is then attached to yield the pyrimidine ribonucleotides.
- Nucleoside monophosphates are converted to their triphosphates by enzymatic phosphorylation reactions. Ribonucleotides are converted to deoxyribonucleotides by ribonucleotide reductase, an enzyme with novel mechanistic and regulatory characteristics. The thymine nucleotides are derived from dCDP and dUMP.
- Uric acid and urea are the end products of purine and pyrimidine degradation.
- Free purines can be salvaged and rebuilt into nucleotides. Genetic deficiencies in certain salvage enzymes cause serious disorders such as Lesch-Nyhan syndrome and ADA deficiency.
- Accumulation of uric acid crystals in the joints, possibly caused by another genetic deficiency, results in gout.
- Enzymes of the nucleotide biosynthetic pathways are targets for an array of chemotherapeutic agents used to treat cancer and other diseases.

Key Terms

Terms in bold are defined in the glossary.

- **nitrogen cycle** 852
- **nitrogen fixation** 852
- **anammox** 852
- **symbionts** 852
- **nitrogenase complex** 854
- **leghemoglobin** 856
- **glutamine synthetase** 857
- **glutamate synthase** 857
- **glutamine amidotransferases** 859
- **5-phosphoribosyl-1-pyrophosphate (PRPP)** 861
- **tryptophan synthase** 868
- **porphyrin** 873
- **porphyrin** 873
- **bilirubin** 875
- **phosphocreatine** 876
- **creatine** 876
- **glutathione (GSH)** 876
- **auxin** 878
- **dopamine** 878
- **norepinephrine** 878
- **epinephrine** 878
- **γ-aminobutyrate (GABA)** 878
- **serotonin** 878
- **histamine** 878
- **cimetidine** 879
- **spermine** 879
- **spermidine** 879
- **ornithine** 879
- **decarboxylase** 879
- **de novo pathway** 882
- **salvage pathway** 882
- **inosinase (IMP)** 883
- **carbamoyl phosphate synthetase II** 886
- **aspartate transcarbamoylase** 887
- **nucleoside monophosphate kinase** 888
- **nucleoside diphosphate kinase** 888
- **ribonucleotide reductase** 888
- **thioredoxin** 888
- **thymidylate synthase** 890
- **dihydrofolate reductase** 890
- **adenosine deaminase deficiency** 893
- **Lesch-Nyhan syndrome** 893
- **allopurinol** 894
- **azaserine** 894
- **acivicin** 894
- **fluorouracil** 894
- **methotrexate** 894
- **aminopterin** 894

Further Reading

Nitrogen Fixation

A good overview of ammonia assimilation in bacterial systems and its regulation.

A good summary of the intricate symbiotic relationship between rhizobial bacteria and their hosts.

Description of a protein family that includes many amidotransferases, with channels for the movement of NH₃ from one active site to another.

Amino Acid Biosynthesis

An updated summary of reaction mechanisms, including one-carbon metabolism and pyridoxal phosphate enzymes.

Volume 1 of this two-volume set has 13 chapters devoted to detailed descriptions of amino acid and nucleotide biosynthesis in bacteria. The web-based version at www.ecosal.org is updated regularly. A valuable resource.

Compounds Derived from Amino Acids

Nucleotide Biosynthesis

This text includes a good survey of nucleotide biosynthesis.

A lively description of research on aspartate transcarbamoylase, accompanied by delightful tales of science and politics.

Genetic Diseases

This four-volume set has good chapters on disorders of amino acid, porphyrin, and heme metabolism. See also the chapters on inborn errors of purine and pyrimidine metabolism.

Problems

1. **ATP Consumption by Root Nodules in Legumes** Bacteria residing in the root nodules of the pea plant consume more than 20% of the ATP produced by the plant. Suggest why these bacteria consume so much ATP.

2. **Glutamate Dehydrogenase and Protein Synthesis** The bacterium *Methylophilus methylotrophus* can synthesize protein from methanol and ammonia. Recombinant DNA techniques have improved the yield of protein by introducing into *M. methylotrophus* the glutamate dehydrogenase gene from *E. coli*. Why does this genetic manipulation increase the protein yield?

3. **PLP Reaction Mechanisms** Pyridoxal phosphate can help catalyze transformations one or two carbons removed from the α carbon of an amino acid. The enzyme threonine synthase (see Fig. 22–15) promotes the PLP-dependent conversion of phosphohomoserine to threonine. Suggest a mechanism for this reaction.

4. **Transformation of Aspartate to Asparagine** There are two routes for transforming aspartate to asparagine at the expense of ATP. Many bacteria have an asparagine synthetase that uses ammonium ion as the nitrogen donor. Mammals have an asparagine synthetase that uses glutamine as the nitrogen donor. Given that the latter requires an extra ATP (for the synthesis of glutamine), why do mammals use this route?

5. **Equation for the Synthesis of Aspartate from Glucose** Write the net equation for the synthesis of aspartate (a nonessential amino acid) from glucose, carbon dioxide, and ammonia.

6. **Asparagine Synthetase Inhibitors in Leukemia Therapy** Mammalian asparagine synthetase is a glutamine-dependent amidotransferase. Efforts to identify an effective inhibitor of human asparagine synthetase for use in chemotherapy for patients with leukemia has focused not on the amino-terminal glutaminase domain but on the carboxyl-terminal synthetase active site. Explain why the glutaminase domain is not a promising target for a useful drug.

7. **Phenylalanine Hydroxylase Deficiency and Diet** Tyrosine is normally a nonessential amino acid, but individuals with a genetic defect in phenylalanine hydroxylase require tyrosine in their diet for normal growth. Explain.

8. **Cofactors for One-Carbon Transfer Reactions** Most one-carbon transfers are promoted by one of three cofactors: biotin, tetrahydrofolate, or S-adenosylmethionine (Chapter 18). S-Adenosylmethionine is generally used as a methyl group donor; the transfer potential of the methyl group in N⁵-methyltetrahydrofolate is insufficient for most biosynthetic reactions.
However, one example of the use of N^β-methyltetrahydrofolate in methyl group transfer is in methionine formation by the methionine synthase reaction (step 3 of Fig. 22–15); methionine is the immediate precursor of S-adenosylmethionine (see Fig. 18–18). Explain how the methyl group of S-adenosylmethionine can be derived from N^β-methyltetrahydrofolate, even though the transfer potential of the methyl group in N^β-methyltetrahydrofolate is one one-thousandth of that in S-adenosylmethionine.

9. Concerted Regulation in Amino Acid Biosynthesis

The glutamine synthetase of *E. coli* is independently modulated by various products of glutamine metabolism (see Fig. 22-6). In this concerted inhibition, the extent of enzyme inhibition is greater than the sum of the separate inhibitions caused by each product. For *E. coli* grown in a medium rich in histidine, what would be the advantage of concerted inhibition?

10. Relationship between Folic Acid Deficiency and Anemia

Folic acid deficiency, believed to be the most common vitamin deficiency, causes a type of anemia in which hemoglobin synthesis is impaired and erythrocytes do not mature properly. What is the metabolic relationship between hemoglobin synthesis and folic acid deficiency?

11. Nucleotide Biosynthesis in Amino Acid Auxotrophic Bacteria

Wild-type *E. coli* cells can synthesize all 20 common amino acids, but some mutants, called amino acid auxotrophs, are unable to synthesize a specific amino acid and require its addition to the culture medium for optimal growth. Besides their role in protein synthesis, some amino acids are also precursors for other nitrogenous cell products. Consider the three amino acid auxotrophs that are unable to synthesize glycine, glutamine, and aspartate, respectively. For each mutant, what nitrogenous products other than proteins would the cell fail to synthesize?

12. Inhibitors of Nucleotide Biosynthesis

Suggest mechanisms for the inhibition of (a) alanine racemase by 1-fluoroalanine and (b) glutamine amidotransferases by azaserine.

13. Mode of Action of Sulfa Drugs

Some bacteria require p-aminobenzoate in the culture medium for normal growth, and their growth is severely inhibited by the addition of sulfanilamide, one of the earliest sulfa drugs. Moreover, in the presence of this drug, 5-aminomidazole-4-carboxamide ribonucleotide (AICAR; see Fig. 22–33) accumulates in the culture medium. These effects are reversed by addition of excess p-aminobenzoate.

(a) What is the role of p-aminobenzoate in these bacteria? (Hint: See Fig. 18–16.)

(b) Why does AICAR accumulate in the presence of sulfanilamide?

(c) Why are the inhibition and accumulation reversed by addition of excess p-aminobenzoate?

14. Pathway of Carbon in Pyrimidine Biosynthesis

Predict the locations of 13C in orotate isolated from cells grown on a small amount of uniformly labeled $[^{14}$C]succinate. Justify your prediction.

15. Nucleotides as Poor Sources of Energy

Under starvation conditions, organisms can use proteins and amino acids as sources of energy. Deamination of amino acids produces carbon skeletons that can enter the glycolytic pathway and the citric acid cycle to produce energy in the form of ATP. Nucleotides, on the other hand, are not similarly degraded for use as energy-yielding fuels. What observations about cellular physiology support this statement? What aspect of the structure of nucleotides makes them a relatively poor source of energy?

16. Treatment of Gout

Allopurinol (see Fig. 22–47), an inhibitor of xanthine oxidase, is used to treat chronic gout. Explain the biochemical basis for this treatment. Patients treated with allopurinol sometimes develop xanthine stones in the kidneys, although the incidence of kidney damage is much lower than in untreated gout. Explain this observation in the light of the following solubilities in urine: uric acid, 0.15 g/L; xanthine, 0.05 g/L; and hypoxanthine, 1.4 g/L.

17. Inhibition of Nucleotide Synthesis by Azaserine

The diazo compound O-(2-diazoacetyl)-l-serine, known also as azaserine (see Fig. 22–48), is a powerful inhibitor of glutamine amidotransferases. If growing cells are treated with azaserine, what intermediates of nucleotide biosynthesis will accumulate? Explain.

Data Analysis Problem

18. Use of Modern Molecular Techniques to Determine the Synthetic Pathway of a Novel Amino Acid

Most of the biosynthetic pathways described in this chapter were determined before the development of recombinant DNA technology and genomics, so the techniques were quite different from those that researchers would use today. Here we explore an example of the use of modern molecular techniques to investigate the pathway of synthesis of a novel amino acid, (2S)-4-amino-2-hydroxybutyrate (AHBA). The techniques mentioned here are described in various places in the book; this problem is designed to show how they can be integrated in a comprehensive study.

AHBA is a γ-amino acid that is a component of some aminoglycoside antibiotics, including the antibiotic buffered. Antibiotics modified by the addition of an AHBA residue are often more resistant to inactivation by bacterial antibiotic-resistance enzymes. As a result, understanding how AHBA is synthesized and added to antibiotics is useful in the design of pharmaceuticals.

In an article published in 2005, Li and coworkers describe how they determined the synthetic pathway of AHBA from glutamate.
(a) Briefly describe the chemical transformations needed to convert glutamate to AHBA. At this point, don't be concerned about the order of the reactions.

Li and colleagues began by cloning the butirosin biosynthetic gene cluster from the bacterium Bacillus circulans, which makes large quantities of butirosin. They identified five genes that are essential for the pathway: btrI, btrJ, btrK, btrO, and btrV. They cloned these genes into E. coli plasmids that allow overexpression of the genes, producing proteins with "histidine tags" (see p. 314) fused to their amino termini to facilitate purification.

The predicted amino acid sequence of the BtrI protein showed strong homology to known acyl carrier proteins (see Fig. 21-5). Using mass spectrometry (see Box 3-2), Li and colleagues found a molecular mass of 11,812 for the purified BtrI protein (including the His tag). When the purified BtrI was incubated with coenzyme A and an enzyme known to attach CoA to other acyl carrier proteins, the majority molecular species had an M, of 12,153.

(b) How would you use these data to argue that BtrI can function as an acyl carrier protein with a CoA prosthetic group?

Using standard terminology, Li and coauthors called the form of the protein lacking CoA apo-BtrI and the form with CoA (linked as in Fig. 21-5) holo-BtrI. When holo-BtrI was incubated with coenzyme A and an enzyme known to attach CoA to other acyl carrier proteins, the majority molecular species had an M, of 12,153.

(c) What other structure(s) is (are) consistent with the data above?

(d) Li and coauthors argued that the structure shown here (γ-glutamyl-S-BtrI) is likely to be correct because the α-carboxyl group must be removed at some point in the synthetic process. Explain the chemical basis of this argument. (Hint: See Fig. 18-6c.)

The BtrK protein showed significant homology to PLP-dependent amino acid decarboxylases, and BtrK isolated from E. coli was found to contain tightly bound PLP. When γ-glutamyl-S-BtrI was incubated with purified BtrK, a molecular species of M, 12,240 was produced.

(e) What is the most likely structure of this species?

(f) Interestingly, when the investigators incubated glutamate and ATP with purified BtrI, BtrJ, and BtrK, they found a molecular species of M, 12,370. What is the most likely structure of this species? Hint: Remember that BtrJ can use ATP to γ-glutamyate nucleophilic groups.

Li and colleagues found that BtrO is homologous to monoxygenase enzymes (see Box 21-1) that hydroxylate alkanes, using FMN as a cofactor, and BtrV is homologous to an NAD(P)H oxidoreductase. Two other genes in the cluster, btrG and btrH, probably encode enzymes that remove the γ-glutamyl group and attach AHBA to the target antibiotic molecule.

(g) Based on these data, propose a plausible pathway for the synthesis of AHBA and its addition to the target antibiotic. Include the enzymes that catalyze each step and any other substrates or cofactors needed (ATP, NAD, etc.).

Reference

We recognize that each tissue and, more generally, each cell of the organism secretes . . . special products or ferments into the blood which thereby influence all the other cells thus integrated with each other by a mechanism other than the nervous system.

—Charles Édouard Brown-Séquard and J. d'Arsonval, article in Comptes Rendus de la Société de Biologie, 1891

Hormonal Regulation and Integration of Mammalian Metabolism

23.1 Hormones: Diverse Structures for Diverse Functions 901
23.2 Tissue-Specific Metabolism: The Division of Labor 912
23.3 Hormonal Regulation of Fuel Metabolism 922
23.4 Obesity and the Regulation of Body Mass 930
23.5 Obesity, the Metabolic Syndrome, and Type 2 Diabetes 938

In Chapters 13 through 22 we have discussed metabolism at the level of the individual cell, emphasizing central pathways common to almost all cells, bacterial, archaeal, and eukaryotic. We have seen how metabolic processes within cells are regulated at the level of individual enzyme reactions, by substrate availability, by allosteric mechanisms, and by phosphorylation or other covalent modifications of enzymes.

To appreciate fully the significance of individual metabolic pathways and their regulation, we must view these pathways in the context of the whole organism. An essential characteristic of multicellular organisms is cell differentiation and division of labor. The specialized functions of the tissues and organs of complex organisms such as humans impose characteristic fuel requirements and patterns of metabolism. Hormonal signals integrate and coordinate the metabolic activities of different tissues and optimize the allocation of fuels and precursors to each organ.

In this chapter we focus on mammals, looking at the specialized metabolism of several major organs and tissues and the integration of metabolism in the whole organism. We begin by examining the broad range of hormones and hormonal mechanisms, then turn to the tissue-specific functions regulated by these mechanisms. We discuss the distribution of nutrients to various organs—emphasizing the central role played by the liver—and the metabolic cooperation among these organs. To illustrate the integrative role of hormones, we describe the interplay of insulin, glucagon, and epinephrine in coordinating fuel metabolism in muscle, liver, and adipose tissue. The metabolic disturbances in diabetes further illustrate the importance of hormonal regulation of metabolism. We discuss the long-term hormonal regulation of body mass and, finally, the role of obesity in development of the metabolic syndrome and diabetes.

23.1 Hormones: Diverse Structures for Diverse Functions

Virtually every process in a complex organism is regulated by one or more hormones: maintenance of blood pressure, blood volume, and electrolyte balance; embryogenesis; sexual differentiation, development, and reproduction; hunger, eating behavior, digestion, and fuel allocation—to name but a few. We examine here the methods for detecting and measuring hormones and their interaction with receptors, and consider a representative selection of hormone types.

The coordination of metabolism in mammals is achieved by the neuroendocrine system. Individual cells in one tissue sense a change in the organism's circumstances and respond by secreting a chemical messenger that passes to another cell in the same or different tissue, where the messenger binds to a receptor molecule and triggers a change in this second cell. In
neuronal signaling (Fig. 23-1a), the chemical messenger (neurotransmitter; acetylcholine, for example) may travel only a fraction of a micrometer, across the synaptic cleft to the next neuron in a network. In hormonal signaling, the messengers—hormones—are carried in the bloodstream to neighboring cells or to distant organs and tissues; they may travel a meter or more before encountering their target cell (Fig. 23-1b). Except for this anatomic difference, these two chemical signaling mechanisms are remarkably similar. Epinephrine and norepinephrine, for example, serve as neurotransmitters at certain synapses of the brain and neuromuscular junctions of smooth muscle, and as hormones that regulate fuel metabolism in liver and muscle. The following discussion of cellular signaling emphasizes hormone action, drawing on discussions of fuel metabolism in earlier chapters, but most of the fundamental mechanisms described here also occur in neurotransmitter action.

The Detection and Purification of Hormones Requires a Bioassay

How is a hormone detected and isolated? First, researchers find that a physiological process in one tissue depends on a signal that originates in another tissue. Insulin, for example, was first recognized as a substance that is produced in the pancreas and affects the volume and composition of urine (Box 23-1). Once a physiological effect of the putative hormone is discovered, a quantitative bioassay for the hormone can be developed. In the case of insulin, the assay consisted of injecting extracts of pancreas (a crude source of insulin) into experimental animals deficient in insulin, then quantifying the resulting changes in glucose concentration in blood and urine. To isolate a hormone, the biochemist fractionates extracts containing the putative hormone, with the same techniques used to purify other biomolecules (solvent fractionation, chromatography, and electrophoresis), and then assays each fraction for hormone activity. Once the chemical has been purified, its composition and structure can be determined.

This protocol for hormone characterization is deceptively simple. Hormones are extremely potent and are produced in very small amounts. Obtaining sufficient hormone to allow its chemical characterization often involves biochemical isolations on a heroic scale. When Andrew Schally and Roger Guillemin independently purified and characterized thyrotropin-releasing hormone (TRH) from the hypothalamus, Schally’s group processed about 20 tons of hypothalamus from nearly two million sheep, and Guillemin’s group extracted the hypothalamus from about a million pigs! TRH proved to be a simple derivative of the tripeptide Glu–His–Pro (Fig. 23-2). Once the structure of the hormone was known, it could be chemically synthesized in large quantities for use in physiological and biochemical studies.

For their work on hypothalamic hormones, Schally and Guillemin shared the Nobel Prize in Physiology or Medicine in 1977, along with Rosalyn Yalow, who (with Solomon A. Berson) developed the extraordinarily sensitive radioimmunoassay (RIA) for peptide hormones and used it to study hormone action. RIA revolutionized
Millions of people with type 1 diabetes mellitus inject themselves daily with pure insulin to compensate for the lack of production of this critical hormone by their own pancreatic β cells. Insulin injection is not a cure for diabetes, but it allows people who otherwise would have died young to lead long and productive lives. The discovery of insulin, which began with an accidental observation, illustrates the combination of serendipity and careful experimentation that led to the discovery of many of the hormones.

In 1889, Oskar Minkowski, a young assistant at the Medical College of Strasbourg, and Josef von Mering, at the Hoppe-Seyler Institute in Strasbourg, had a friendly disagreement about whether the pancreas, known to contain lipases, was important in fat digestion in dogs. To resolve the issue, they began an experiment on the digestion of fats. They surgically removed the pancreas from a dog, but before their experiment got any farther, Minkowski noticed that the dog was now producing far more urine than normal (a common symptom of untreated diabetes). Also, the dog's urine had glucose levels far above normal (another symptom of diabetes). These findings suggested that lack of some pancreatic product caused diabetes.

Minkowski tried unsuccessfully to prepare an extract of dog pancreas that would reverse the effect of removing the pancreas—that is, would lower the urinary or blood glucose levels. We now know that insulin is a protein, and that the pancreas is very rich in proteases (trypsin and chymotrypsin), normally released directly into the small intestine to aid in digestion. These proteases doubtless degraded the insulin in the pancreatic extracts in Minkowski's experiments.

Despite considerable effort, no significant progress was made in the isolation or characterization of the "antidiabetic factor" until the summer of 1921, when Frederick G. Banting, a young scientist working in the laboratory of J. J. R. MacLeod at the University of Toronto, and a student assistant, Charles Best, took up the problem. By that time, several lines of evidence pointed to a group of specialized cells in the pancreas (the islets of Langerhans; see Fig. 23-27) as the source of the antidiabetic factor, which came to be called insulin (from Latin insula, "island").

Taking precautions to prevent proteolysis, Banting and Best (later aided by biochemist J. B. Collip) succeeded in December 1921 in preparing a purified pancreatic extract that cured the symptoms of experimental diabetes in dogs. On January 25, 1922 (just one month later!), their insulin preparation was injected into Leonard Thompson, a 14-year-old boy severely ill with diabetes mellitus. Within days, the levels of ketone bodies and glucose in Thompson's urine dropped dramatically; the extract saved his life. In 1923, Banting and MacLeod won the Nobel Prize for their isolation of insulin. Banting immediately announced that he would share his prize with Best; MacLeod shared his with Collip.

By 1923, pharmaceutical companies were supplying thousands of patients throughout the world with insulin extracted from porcine pancreas. With the development of genetic engineering techniques in the 1980s (Chapter 9), it became possible to produce unlimited quantities of human insulin by inserting the cloned human gene for insulin into a microorganism, which was then cultured on an industrial scale. Some patients with diabetes are now fitted with implanted insulin pumps, which release adjustable amounts of insulin on demand to meet changing needs at meal times and during exercise. There is a reasonable prospect that, in the future, transplantation of pancreatic tissue will provide diabetic patients with a source of insulin that responds as well as normal pancreas, releasing insulin into the bloodstream only when blood glucose rises.
Hormonal Regulation and Integration of Mammalian Metabolism

(a) Radiolabeled hormone

Pyroglutarnate pyroGlu-His-Pro-NH₂

Pyroglutamate Histidine Prolylamide

FIGURE 23-1 The structure of thyrotropin-releasing hormone (TRH).

Purified (by heroic efforts) from extracts of hypothalamus, TRH proved to be a derivative of the tripeptide Glu-His-Pro. The side-chain carboxyl group of the amino-terminal Glu forms an amide (red bond) with the residue's α-amino group, creating pyroglutamate, and the carboxyl group of the carboxyl-terminal Pro is converted to an amide (red —NH₂). Such modifications are common among the small peptide hormones. In a typical protein of M₉ ~50,000, the charges on the amino- and carboxyl-terminal groups contribute relatively little to the overall charge on the molecule, but in a tripeptide these two charges dominate the properties of the molecule. Formation of the amide derivatives removes these charges.

Roger Cuillemin

hormone research by making possible the rapid, quantitative, and specific measurement of hormones in minute amounts.

Hormone-specific antibodies are the key to the radioimmunoassay. Purified hormone, injected into rabbits, elicits antibodies that bind to the hormone with very high affinity and specificity. When a constant amount of isolated antibody is incubated with a fixed amount of the radioactively labeled hormone, a certain fraction of the radioactively labeled hormone binds to the antibody (Fig. 23-3). If, in addition to the radiolabeled hormone, unlabeled hormone is also present, the unlabeled hormone competes with and displaces some of the labeled hormone from its binding site on the antibody. This binding competition can be quantified by reference to a standard curve obtained with known amounts of unlabeled hormone. The degree to which labeled hormone is displaced from antibody is a measure of the amount of unlabeled hormone in a sample of blood or tissue extract. By using very highly radioactive hormone, researchers can make the assay sensitive to picograms of hormone in a sample. A newer variation of this technique, enzyme-linked immunosorbent assay (ELISA), is illustrated in Figure 5-26b.

FIGURE 23-3 Radioimmunoassay (RIA). (a) A low concentration of radiolabeled hormone (red) is incubated with (1) a fixed amount of antibody specific for that hormone or (2) a fixed amount of antibody and various concentrations of unlabeled hormone (blue). In the latter case, unlabeled hormone competes with labeled hormone for binding to the antibody; the amount of labeled hormone bound varies inversely with the concentration of unlabeled hormone present. (b) A radioimmunoassay for adrenocorticotropic hormone (ACTH; also called corticotropin). A standard curve of the ratio [bound]/[unbound] radio-labeled ACTH vs. [unlabeled ACTH] added (on a logarithmic scale) is constructed and used to determine the amount of unlabeled ACTH in an unknown sample. If an aliquot containing an unknown quantity of unlabeled hormone gives, say, a value of 0.4 for the ratio [bound]/[unbound] (see arrow), the aliquot must contain about 20 pg of ACTH.

Andrew V. Schally

Roger Guillemin

Rosalyn S. Yalow

Hormones Act through Specific High-Affinity Cellular Receptors

As we saw in Chapter 12, all hormones act through highly specific receptors in hormone-sensitive target cells, to which the hormones bind with high affinity (see...
Each cell type has its own combination of hormone receptors, which define the range of its hormone responsiveness. Moreover, two cell types with the same type of receptor may have different intracellular targets of hormone action and thus may respond differently to the same hormone. The specificity of hormone action results from structural complementarity between the hormone and its receptor; this interaction is extremely selective, so structurally similar hormones can have different effects. The high affinity of the interaction allows cells to respond to very low concentrations of hormone. In the design of drugs intended to intervene in hormonal regulation, we need to know the relative specificity and affinity of the drug and the natural hormone. Recall that hormone-receptor interactions can be quantified by Scatchard analysis (see Box 12–1), which, under favorable conditions, yields a quantitative measure of affinity (the dissociation constant for the complex) and the number of hormone-binding sites in a preparation of receptor.

The locus of the encounter between hormone and receptor may be extracellular, cytosolic, or nuclear, depending on the hormone type. The intracellular consequences of hormone-receptor interaction are of at least six general types: (1) a second messenger (such as cAMP or inositol trisphosphate) generated inside the cell acts as an allosteric regulator of one or more enzymes; (2) a receptor tyrosine kinase is activated by the extracellular hormone; (3) a receptor guanylyl cyclase is activated and produces the second messenger cGMP; (4) a change in membrane potential results from the opening or closing of a hormone-gated ion channel; (5) an adhesion receptor on the cell surface interacts with molecules in the extracellular matrix and conveys information to the cytoskeleton; or (6) a steroid or steroidlike molecule causes a change in the level of expression (transcription of DNA into mRNA) of one or more genes, mediated by a nuclear hormone receptor protein (see Fig. 12–2).

Water-soluble peptide and amine hormones (insulin and epinephrine, for example) act extracellularly by binding to cell surface receptors that span the plasma membrane (Fig. 23–4). When the hormone binds to its extracellular domain, the receptor undergoes a conformational change analogous to that produced in an allosteric enzyme by binding of an effector molecule. The conformational change triggers the downstream effects of the hormone.

A single hormone molecule, in forming a hormone-receptor complex, activates a catalyst that produces many molecules of second messenger, so the receptor serves not only as a signal transducer but also as a signal amplifier. The signal may be further amplified by a signaling cascade, a series of steps in which a catalyst activates a catalyst, resulting in very large amplifications of the original signal. A cascade of this type occurs in the regulation of glycogen synthesis and breakdown by epinephrine (see Fig. 12–7). Epinephrine activates (through its receptor) adenylyl cyclase, which produces many molecules of cAMP for each molecule of receptor-bound hormone. Cyclic AMP in turn activates cAMP-dependent protein kinase (protein kinase A), which activates glycogen phosphorylase b kinase, which activates glycogen phosphorylase b. The result is signal amplification: one epinephrine molecule causes the production of many thousands of molecules of glucose 1-phosphate from glycogen.

Water-insoluble hormones (steroid, retinoid, and thyroid hormones) readily pass through the plasma membrane of their target cells to reach their receptor proteins in the nucleus (Fig. 23–4). With this class of hormones, the hormone-receptor complex itself carries the message; it interacts with DNA to alter the expression of specific genes, changing the enzyme complement of the cell and thereby changing cellular metabolism (see Fig. 12–29).

Hormones that act through plasma membrane receptors generally trigger very rapid physiological or biochemical responses. Just seconds after the adrenal medulla secretes epinephrine into the bloodstream, skeletal muscle responds by accelerating the breakdown of glycogen. By contrast, the thyroid hormones and the sex (steroid) hormones promote maximal responses in their target tissues only after hours or even days. These differences in response time correspond to different modes of action. In general, the fast-acting hormones lead to a change in the activity of one or more preexisting enzymes in the cell, by allosteric mechanisms or

FIGURE 23–4 Two general mechanisms of hormone action. The peptide and amine hormones are faster acting than steroid and thyroid hormones.
covalent modification. The slower-acting hormones generally alter gene expression, resulting in the synthesis of more (upregulation) or less (downregulation) of the regulated protein(s).

Hormones Are Chemically Diverse

Mammals have several classes of hormones, distinguishable by their chemical structures and their modes of action (Table 23-1). Peptide, amine, and eicosanoid hormones act from outside the target cell via surface receptors. Steroid, vitamin D, retinoid, and thyroid hormones enter the cell and act through nuclear receptors. Nitric oxide also enters the cell, but activates a cytosolic enzyme, guanylyl cyclase (see Fig. 12-20).

Hormones can also be classified by the way they get from their point of release to their target tissue. Endocrine (from the Greek endon, “within,” and krinein, “to release”) hormones are released into the blood and carried to target cells throughout the body (insulin and glucagon are examples). Paracrine hormones are released into the extracellular space and diffuse to neighboring target cells (the eicosanoid hormones are of this type). Autocrine hormones affect the same cell that releases them, binding to receptors on the cell surface.

Mammals are hardly unique in possessing hormonal signaling systems. Insects and nematode worms have highly developed systems for hormonal regulation, with fundamental mechanisms similar to those in mammals. Plants, too, use hormonal signals to coordinate the activities of their tissues (Chapter 12). The study of hormone action is not as advanced in plants as in animals, but we do know that some mechanisms are shared.

To illustrate the structural diversity and range of action of mammalian hormones, we consider representative examples of each major class listed in Table 23-1.

Peptide Hormones Peptide hormones may have from 3 to 200 or more amino acid residues. They include the pancreatic hormones insulin, glucagon, and somatostatin; the parathyroid hormone calcitonin; and all the hormones of the hypothalamus and pituitary (described below). These hormones are synthesized on ribosomes in the form of longer precursor proteins (prohormones), then packaged into secretory vesicles and proteolytically cleaved to form the active peptides. Insulin is a small protein ($M_r 5,800$) with two polypeptide chains, A and B, joined by two disulfide bonds. It is synthesized in the pancreas as an inactive single-chain precursor, proinsulin (Fig. 23-5), with an amino-terminal “signal sequence” that directs its passage into secretory vesicles. (Signal sequences are discussed in Chapter 27; see Fig. 27-38.) Proteolytic removal of the signal sequence and formation of three disulfide bonds produces proinsulin, which is stored in secretory granules in pancreatic β cells. When blood glucose is elevated sufficiently to trigger insulin secretion, proinsulin is converted to active insulin by specific proteases, which cleave two peptide bonds to form the mature insulin molecule.

In some cases, prohormone proteins, rather than yielding a single peptide hormone, produce several active hormones. Pro-opiomelanocortin (POMC) is a spectacular example of multiple hormones encoded by a single gene. The POMC gene encodes a large polypeptide that is progressively carved up into at least nine biologically active peptides (Fig. 23-6). In many peptide hormones the terminal residues are modified, as in TRH (Fig. 23-2). The concentration of peptide hormones in secretory granules is so high that the vesicle contents are virtually crystalline; when the contents are released by exocytosis, a large amount of hormone is released suddenly. The capillaries that serve peptide-producing endocrine glands are fenestrated (and thus permeable to peptides), so the hormone molecules readily enter the bloodstream for transport to target cells elsewhere. As noted earlier, all peptide hormones act by binding to receptors in the plasma membrane. They cause the generation of a second messenger in the cytosol, which changes the activity of an intracellular enzyme, thereby altering the cell’s metabolism.

TABLE 23-1 Classes of Hormones

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Synthetic path</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide</td>
<td>Insulin, glucagon</td>
<td>Proteolytic processing of prohormone</td>
<td>Plasma membrane receptors; second messengers</td>
</tr>
<tr>
<td>Catecholamine</td>
<td>Epinephrine</td>
<td>From tyrosine</td>
<td></td>
</tr>
<tr>
<td>Eicosanoid</td>
<td>PGE$_1$</td>
<td>From arachidonate (20:4 fatty acid)</td>
<td></td>
</tr>
<tr>
<td>Steroid</td>
<td>Testosterone</td>
<td>From cholesterol</td>
<td>Nuclear receptors; transcriptional regulation</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1,25-Dihydroxycholecalciferol</td>
<td>From cholesterol</td>
<td></td>
</tr>
<tr>
<td>Retinoid</td>
<td>Retinoic acid</td>
<td>From vitamin A</td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>Triiodothyronine (T$_3$)</td>
<td>From Tyr in thyroglobulin</td>
<td>Cytosolic receptor (guanylyl cyclase) and second messenger (cGMP)</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>Nitric oxide</td>
<td>From arginine + O_2</td>
<td></td>
</tr>
</tbody>
</table>
23.1 Hormones: Diverse Structures for Diverse Functions

Preproinsulin

- Preproinsulin
- Proinsulin
- Mature insulin

FIGURE 23-5 Insulin. Mature insulin is formed from its larger precursor preproinsulin by proteolytic processing. Removal of a 23 amino acid segment (the signal sequence) at the amino terminus of preproinsulin and formation of three disulfide bonds produces proinsulin. Further proteolytic cuts remove the C peptide from proinsulin to produce mature insulin, composed of A and B chains. The amino acid sequence of bovine insulin is shown in Figure 3-24.

Pro-opiomelanocortin (POMC) gene

- DNA
- mRNA

FIGURE 23-6 Proteolytic processing of the pro-opiomelanocortin (POMC) precursor. The initial gene product of the POMC gene is a long polypeptide that undergoes cleavage by a series of specific proteases to produce ACTH, α- and γ-lipotropin, α-, β-, and γ-MSH (melanocyte-stimulating hormone, or melanocortin), CLIP (corticotropin-like intermediary peptide), β-endorphin, and Met-enkephalin. The points of cleavage are paired basic residues, Arg-Lys, Lys-Arg, or Lys-Lys.

Catecholamine Hormones The water-soluble compounds epinephrine (adrenaline) and norepinephrine (noradrenaline) are catecholamines, named for the structurally related compound catechol. They are synthesized from tyrosine.

\[
\text{Tyrosine} \rightarrow \text{L-Dopa} \rightarrow \text{Dopamine} \rightarrow \text{Norepinephrine} \rightarrow \text{Epinephrine}
\]

Catecholamines produced in the brain and in other neural tissues function as neurotransmitters, but epinephrine and norepinephrine are also hormones, synthesized and secreted by the adrenal glands. Like the peptide hormones, catecholamines are highly concentrated in secretory vesicles and released by exocytosis, and they act through surface receptors to generate intracellular second messengers. They mediate a wide variety of physiological responses to acute stress (see Table 23-6).

Eicosanoid Hormones The eicosanoid hormones (prostaglandins, thromboxanes, and leukotrienes) are
derived from the 20-carbon polyunsaturated fatty acid arachidonate.

Unlike the hormones described above, they are not synthesized in advance and stored; they are produced, when needed, from arachidonate enzymatically released from membrane phospholipids by phospholipase A2. The enzymes of the pathway leading to prostaglandins and thromboxanes (see Fig. 21-15) are very widely distributed in mammalian tissues; most cells can produce these hormone signals, and cells of many tissues can respond to them through specific plasma membrane receptors. The eicosanoid hormones are paracrine hormones, secreted into the interstitial fluid (not primarily into the blood) and acting on nearby cells.

Steroid Hormones

The steroid hormones (adrenocortical hormones and sex hormones) are synthesized from cholesterol in several endocrine tissues.

They travel to their target cells through the bloodstream, bound to carrier proteins. More than 50 corticosteroid hormones are produced in the adrenal cortex by reactions that remove the side chain from the D ring of cholesterol and introduce oxygen to form keto and hydroxyl groups. Many of these reactions involve cytochrome P-450 enzymes (see Box 21–1). The steroid hormones are of two general types. Glucocorticoids (such as cortisol) primarily affect the metabolism of carbohydrates; mineralocorticoids (such as aldosterone) regulate the concentrations of electrolytes in the blood. Androgens (testosterone) and estrogens (such as estradiol; see Fig. 10–19) are synthesized in the testes and ovaries. Their synthesis also involves cytochrome P-450 enzymes that cleave the side chain of cholesterol and introduce oxygen atoms. These hormones affect sexual development, sexual behavior, and a variety of other reproductive and nonreproductive functions.

All steroid hormones act through nuclear receptors to change the level of expression of specific genes (p. 456). They can also have more rapid effects, probably mediated by receptors in the plasma membrane.

Vitamin D Hormone Calcitriol (1,25-dihydroxycholecalciferol) is produced from vitamin D by enzyme-catalyzed hydroxylation in the liver and kidneys (see Fig. 10–20a). Vitamin D is obtained in the diet or by photolysis of 7-dehydrocholesterol in skin exposed to sunlight.

Retinoid Hormones Retinoids are potent hormones that regulate the growth, survival, and differentiation of cells via nuclear retinoid receptors. The prohormone retinol is synthesized from β-carotene, primarily in liver (see Fig. 10–21), and many tissues convert retinol to the hormone retinoic acid (RA).
All tissues are retinoid targets, as all cell types have at least one form of nuclear retinoid receptor. In adults, the most significant targets include cornea, skin, epithelia of the lungs and trachea, and the immune system. RA regulates the synthesis of proteins essential for growth or differentiation. Excessive vitamin A can cause birth defects, and pregnant women are advised not to use the retinoid creams that have been developed for treatment of severe acne.

Thyroid Hormones The thyroid hormones T₄ (thyroxine) and T₃ (triiodothyronine) are synthesized from the precursor protein thyroglobulin (Mₚ 660,000). Up to 20 Tyr residues in thyroglobulin are enzymatically iodinated in the thyroid gland, then two iodothyrosine residues condense to form the precursor to thyroxine. When needed, thyroxine is released by proteolysis. Condensation of monoiodothyrosine with diiodothyronine produces T₃, which is also an active hormone released by proteolysis.

\[
\text{Thyroglobulin} \rightarrow \text{Tyr} \\
\downarrow \\
\text{Thyroglobulin} \rightarrow \text{Tyr-1} \hspace{1cm} \text{(iodinated Tyr residues)} \\
\downarrow \hspace{1cm} \text{proteolysis} \\
\text{Thyroxine (T}₄\text{), triiodothyronine (T}₃\text{)}
\]

The thyroid hormones act through nuclear receptors to stimulate energy-yielding metabolism, especially in liver and muscle, by increasing the expression of genes encoding key catabolic enzymes.

Nitric Oxide (NO) Nitric oxide is a relatively stable free radical synthesized from molecular oxygen and the guanidinium nitrogen of arginine (see Fig. 22-31) in a reaction catalyzed by NO synthase.

\[
\text{Arginine} + \frac{1}{2}\text{NADPH} + 2\text{O}_2 \rightarrow \text{NO} + \text{citrulline} + 2\text{H}_2\text{O} + \frac{1}{2}\text{NADP}^+
\]

This enzyme is found in many tissues and cell types: neurons, macrophages, hepatocytes, myocytes of smooth muscle, endothelial cells of the blood vessels, and epithelial cells of the kidney. NO acts near its point of release, entering the target cell and activating the cytosolic enzyme guanylyl cyclase, which catalyzes the formation of the second messenger cGMP (see Fig. 12-20).

Hormone Release Is Regulated by a Hierarchy of Neuronal and Hormonal Signals

The changing levels of specific hormones regulate specific cellular processes, but what regulates the level of each hormone? The brief answer is that the central nervous system receives input from many internal and external sensors—signals about danger, hunger, dietary intake, blood composition and pressure, for example—and orchestrates the production of appropriate hormonal signals by the endocrine tissues. For a more complete answer, we must look at the hormone-producing systems of the human body and some of their functional interrelationships.

Figure 23-7 shows the anatomic location of the major endocrine glands in humans, and Figure 23-8 represents the “chain of command” in the hormonal signaling hierarchy. The hypothalamus, a small region of the brain (Fig. 23-9), is the coordination center of the endocrine system; it receives and integrates messages from the central nervous system. In response to these messages, the hypothalamus produces regulatory hormones (releasing factors) that pass directly to the nearby pituitary gland, through special blood vessels and neurons that connect the two glands (Fig. 23-9b). The pituitary gland has two functionally distinct parts. The posterior pituitary contains the axonal endings of many neurons that originate in the hypothalamus. These neurons produce the short peptide hormones oxytocin and vasopressin (Fig. 23-10), which move down the axon to the nerve endings in the pituitary, where they are stored in secretory granules to await the signal for their release.

The anterior pituitary responds to hypothalamic hormones carried in the blood, producing tropic hormones, or tropins (from the Greek tropos, “turn”). These relatively long polypeptides activate the next rank of endocrine glands (Fig. 23-8), which includes the adrenal cortex, thyroid gland, ovaries, and testes. These glands in turn secrete their specific hormones, which are carried in the bloodstream to the target tissues.
Sensory input from environment

Central nervous system

Hormonal regulation and integration of mammalian metabolism

FIGURE 23-8 The major endocrine systems and their target tissues. Signals originating in the central nervous system (top) pass via a series of relays to the ultimate target tissues (bottom). In addition to the systems shown, the thymus, pineal gland, and groups of cells in the gastrointestinal tract also secrete hormones. Dashed lines represent neuronal connections.

Neuroendocrine origins of signals

Sensory input from environment

Central nervous system

Hypothalamus

First targets

Anterior pituitary

Posterior pituitary

Second targets

Adrenal cortex

Thyroid

Ovaries/testes

Ultimate targets

Many tissues

Muscles, liver

Reproductive organs

Liver, bone

Mammary glands

Smooth muscle, mammary glands

Arterioles, kidney

Liver, muscles

Liver, muscles, heart

Corticotropin-Releasing Hormone (ACTH)

Thyrotropin (TSH)

Thyroxine (T4), triiodothyronine (T3)

Cortisol, aldosterone

Epinephrine

Vasopressin, oxytocin

Blood glucose level

Hypothalamus

Anterior pituitary

Posterior pituitary

Release of posterior pituitary hormones (vasopressin, oxytocin)

Release of anterior pituitary hormones (tropins)

Afferent nerve signals to hypothalamus

Nerve axons

Hypothalamus

Arteries

Posterior pituitary

Capillary network

Release of hypothalamic factors into arterial blood

Veins carry hormones to systemic blood

(a) Location of the hypothalamus and pituitary gland. (b) Details of the hypothalamus-pituitary system. Signals from connecting neurons stimulate the hypothalamus to secrete releasing factors into a blood vessel that carries the hormones directly to a capillary network in the anterior pituitary. In response to each hypothalamic releasing factor, the anterior pituitary releases the appropriate hormone into the general circulation. Posterior pituitary hormones are synthesized in neurons arising in the hypothalamus, transported along axons to nerve endings in the posterior pituitary, and stored there until released into the blood in response to a neuronal signal.

example, corticotropin-releasing hormone from the hypothalamus stimulates the anterior pituitary to release ACTH, which travels to the zona fasciculata of the adrenal cortex and triggers the release of cortisol. Cortisol, the ultimate hormone in this cascade, acts through its receptor in many types of target cells to alter their metabolism. In hepatocytes, one effect of cortisol is to increase the rate of gluconeogenesis.

Hormonal cascades such as those responsible for the release of cortisol and epinephrine result in large
amplifications of the initial signal and allow exquisite fine-tuning of the output of the ultimate hormone (Fig. 23-11). At each level in the cascade, a small signal elicits a larger response. For example, the initial electrical signal to the hypothalamus results in the release of a few nanograms of corticotropin-releasing hormone, which elicits the release of a few micrograms of corticotropin. Corticotropin acts on the adrenal cortex to cause the release of milligrams of cortisol, for an overall amplification of at least a millionfold.

At each level of a hormonal cascade, feedback inhibition of earlier steps in the cascade is possible; an unnecessarily elevated level of the ultimate hormone or of an intermediate hormone inhibits the release of earlier hormones in the cascade. These feedback mechanisms accomplish the same end as those that limit the output of a biosynthetic pathway (compare Fig. 23-11 with Fig. 6-33): a product is synthesized (or released) only until the necessary concentration is reached.

SUMMARY 23.1 Hormones: Diverse Structures for Diverse Functions

- Hormones are chemical messengers secreted by certain tissues into the blood or interstitial fluid, serving to regulate the activity of other cells or tissues.
- Radioimmunoassay and ELISA are two very sensitive techniques for detecting and quantifying hormones.
- Peptide, amine, and eicosanoid hormones act outside the target cell on specific receptors in the plasma membrane, altering the level of an intracellular second messenger.
Steroid, vitamin D, retinoid, and thyroid hormones enter target cells and alter gene expression by interacting with specific nuclear receptors.

Hormonal cascades, in which catalysts activate catalysts, amplify the initial stimulus by several orders of magnitude, often in a very short time (seconds).

Nerve impulses stimulate the hypothalamus to send specific hormones to the pituitary gland, thus stimulating (or inhibiting) the release of tropic hormones. The anterior pituitary hormones in turn stimulate other endocrine glands (thyroid, adrenals, pancreas) to secrete their characteristic hormones, which in turn stimulate specific target tissues.

23.2 Tissue-Specific Metabolism: The Division of Labor

Each tissue of the human body has a specialized function, reflected in its anatomy and metabolic activity (Fig. 23-12). Skeletal muscle allows directed motion; adipose tissue stores and releases energy in the form of fats, which serve as fuel throughout the body; in the brain, cells pump ions across their plasma membranes to produce electrical signals. The liver plays a central processing and distributing role in metabolism and furnishes all other organs and tissues with an appropriate mix of nutrients via the bloodstream. The functional centrality of the liver is indicated by the common reference to all other tissues and organs as “extrahepatic” or “peripheral.” We therefore begin our discussion of the division of metabolic labor by considering the transformations of carbohydrates, amino acids, and fats in the mammalian liver. This is followed by brief descriptions of the primary metabolic functions of adipose tissue, muscle, brain, and the medium that interconnects all others: the blood.

The Liver Processes and Distributes Nutrients

During digestion in mammals, the three main classes of nutrients (carbohydrates, proteins, and fats) undergo enzymatic hydrolysis into their simple constituents. This breakdown is necessary because the epithelial cells lining the intestinal lumen absorb only relatively small molecules. Many of the fatty acids and monacylglycerols released by digestion of fats in the intestine are...
reassembled within these epithelial cells into triacylglycerols (TAGs).

After being absorbed, most sugars and amino acids and some reconstituted TAGs pass from intestinal epithelial cells into blood capillaries, and travel in the bloodstream to the liver; the remaining TAGs enter adipose tissue via the lymphatic system. The portal vein is a direct route from the digestive organs to the liver, and liver therefore has first access to ingested nutrients. The liver has two main cell types. Kupffer cells are phagocytes, important in immune function. Hepatocytes, of primary interest here, transform dietary nutrients into the fuels and precursors required by other tissues, and export them via the blood. The kinds and amounts of nutrients supplied to the liver vary with several factors, including the diet and the time between meals. The demand of extrahepatic tissues for fuels and precursors varies among organs and with the level of activity and overall nutritional state of the individual.

To meet these changing circumstances, the liver has remarkable metabolic flexibility. For example, when the diet is rich in protein, hepatocytes supply themselves with high levels of enzymes for amino acid catabolism and gluconeogenesis. Within hours after a shift to a high-carbohydrate diet, the levels of these enzymes begin to drop and the hepatocytes increase their synthesis of enzymes essential to carbohydrate metabolism and fat synthesis. Liver enzymes turn over (are synthesized and degraded) at 5 to 10 times the rate of enzyme turnover in other tissues, such as muscle. Extrahepatic tissues also can adjust their metabolism to prevailing conditions, but none is as adaptable as the liver, and none is so central to the organism's overall metabolism. What follows is a survey of the possible fates of sugars, amino acids, and lipids that enter the liver from the bloodstream. To help you recall the metabolic transformations discussed here, Table 23-2 shows the major pathways and processes and indicates by figure number where each pathway is

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Figure reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid cycle: acetyl-CoA → 2CO₂</td>
<td>16-7</td>
</tr>
<tr>
<td>Oxidative phosphorylation: ATP synthesis</td>
<td>19-20</td>
</tr>
<tr>
<td>Carbohydrate catabolism</td>
<td></td>
</tr>
<tr>
<td>Glycogenolysis: glycogen → glucose 1-phosphate → blood glucose</td>
<td>15-25; 15-26</td>
</tr>
<tr>
<td>Hexose entry into glycolysis: fructose, mannose, galactose → glucose 6-phosphate</td>
<td>14-10</td>
</tr>
<tr>
<td>Glycolysis: glucose → pyruvate</td>
<td>14-2</td>
</tr>
<tr>
<td>Pyruvate dehydrogenase reaction: pyruvate → acetyl-CoA</td>
<td>16-2</td>
</tr>
<tr>
<td>Lactic acid fermentation: glucose → lactate + 2ATP</td>
<td>14-3</td>
</tr>
<tr>
<td>Pentose phosphate pathway: glucose 6-phosphate → pentose phosphates + NADPH</td>
<td>14-21</td>
</tr>
<tr>
<td>Carbohydrate anabolism</td>
<td></td>
</tr>
<tr>
<td>Gluconeogenesis: citric acid cycle intermediates → glucose</td>
<td>14-16</td>
</tr>
<tr>
<td>Glucose-alanine cycle: glucose → pyruvate → alanine → glucose</td>
<td>18-9</td>
</tr>
<tr>
<td>Glycogen synthesis: glucose 6-phosphate → glucose 1-phosphate → glycogen</td>
<td>15-30</td>
</tr>
<tr>
<td>Amino acid and nucleotide metabolism</td>
<td></td>
</tr>
<tr>
<td>Amino acid degradation: amino acids → acetyl-CoA, citric acid cycle intermediates</td>
<td>18-15</td>
</tr>
<tr>
<td>Amino acid synthesis</td>
<td>22-9</td>
</tr>
<tr>
<td>Urea cycle: NH₃ → urea</td>
<td>18-10</td>
</tr>
<tr>
<td>Glucose-alanine cycle: alanine → glucose</td>
<td>18-9</td>
</tr>
<tr>
<td>Nucleotide synthesis: amino acids → purines, pyrimidines</td>
<td>22-33; 22-36</td>
</tr>
<tr>
<td>Hormone and neurotransmitter synthesis</td>
<td>22-29</td>
</tr>
<tr>
<td>Fat catabolism</td>
<td></td>
</tr>
<tr>
<td>β Oxidation of fatty acids: fatty acid → acetyl-CoA</td>
<td>17-8</td>
</tr>
<tr>
<td>Oxidation of ketone bodies: β-hydroxybutyrate → acetyl-CoA → CO₂ via citric acid cycle</td>
<td>17-19</td>
</tr>
<tr>
<td>Fat anabolism</td>
<td></td>
</tr>
<tr>
<td>Fatty acid synthesis: acetyl-CoA → fatty acids</td>
<td>21-6</td>
</tr>
<tr>
<td>Triacylglycerol synthesis: acetyl-CoA → fatty acids → triacylglycerol</td>
<td>21-18; 21-19</td>
</tr>
<tr>
<td>Ketone body formation: acetyl-CoA → acetoacetate, β-hydroxybutyrate</td>
<td>17-18</td>
</tr>
<tr>
<td>Cholesterol and cholesteryl ester synthesis: acetyl-CoA → cholesterol → cholesteryl esters</td>
<td>21-33 to 21-37</td>
</tr>
<tr>
<td>Phospholipid synthesis: fatty acids → phospholipids</td>
<td>21-17; 21-23 to 21-28</td>
</tr>
</tbody>
</table>
presented in detail. Here, we provide summaries of the pathways, referring to the numbered pathways and reactions in Figures 23-13 to 23-15.

Sugars The glucose transporter of hepatocytes (GLUT2) is so effective that the concentration of glucose in a hepatocyte is essentially the same as that in the blood. Glucose entering hepatocytes is phosphorylated by hexokinase IV (glucokinase) to yield glucose 6-phosphate. Glucokinase has a much higher K_m for glucose (10 mM) than do the hexokinase isozymes in other cells (p. 58a) and, unlike these other isozymes, it is not inhibited by its product, glucose 6-phosphate. The presence of glucokinase allows hepatocytes to continue phosphorylating glucose when the glucose concentration rises well above levels that would overwhelm other hexokinases. The high K_m of glucokinase also ensures that the phosphorylation of glucose in hepatocytes is minimal when the glucose concentration is low, preventing the liver from consuming glucose as fuel via glycolysis. This spares glucose for other tissues. Fructose, galactose, and mannose, all absorbed from the small intestine, are also converted to glucose 6-phosphate by enzymatic pathways examined in Chapter 14. Glucose 6-phosphate is at the crossroads of carbohydrate metabolism in the liver. It may take any of several major metabolic routes (Fig. 23-13), depending on the current metabolic needs of the organism. By the action of various allosterically regulated enzymes, and through hormonal regulation of enzyme synthesis and activity, the liver directs the flow of glucose into one or more of these pathways.

1. Glucose 6-phosphate is dephosphorylated by glucose 6-phosphatase to yield free glucose (see Fig. 15-28), which is exported to replenish blood glucose. Export is the predominant pathway when glucose 6-phosphate is in limited supply, because the blood glucose concentration must be kept sufficiently high (4 mM) to provide adequate energy for the brain and other tissues.

2. Glucose 6-phosphate not immediately needed to form blood glucose is converted to liver glycogen, or has one of several other fates. Following glycolysis and the pyruvate dehydrogenase reaction, acetyl-CoA formed can be oxidized for energy production by the citric acid cycle, with ensuing electron transfer and oxidative phosphorylation yielding ATP. (Normally, however, fatty acids are the preferred fuel for energy production in hepatocytes.)

3. Acetyl-CoA can also serve as the precursor of fatty acids, which are incorporated into TAGs and phospholipids, and of cholesterol. Much of the lipid synthesized in the liver is transported to other tissues by blood lipoproteins. Alternatively, glucose 6-phosphate can enter the pentose phosphate pathway, yielding both reducing power (NADPH), needed for the biosynthesis of fatty acids and cholesterol, and D-ribose 5-phosphate, a precursor for nucleotide biosynthesis. NADPH is also an essential cofactor in the detoxification and elimination of many drugs and other xenobiotics metabolized in the liver.

Amino Acids Amino acids that enter the liver follow several important metabolic routes (Fig. 23-14).

1. They are precursors for protein synthesis, a process discussed in Chapter 27. The liver constantly renews its own proteins, which have a relatively high turnover rate (average half-life of hours to days), and is also the site of biosynthesis of most plasma proteins.

2. Alternatively, amino acids pass in the bloodstream to other organs, to be used in the synthesis of tissue proteins. Other amino acids are precursors in the biosynthesis of nucleotides, hormones, and other nitrogenous compounds in the liver and other tissues.

4. Amino acids not needed as biosynthetic precursors are transaminated or deaminated and degraded to yield pyruvate and citric acid cycle intermediates, with various fates; ammonium released is converted to the excretory product urea. Pyruvate can be converted to glucose and glycogen via gluconeogenesis, or it can be converted to acetyl-CoA, which has several possible fates: oxidation via the citric acid cycle and conversion to lipids for storage.

5. Citric acid cycle intermediates can be siphoned off into glucose synthesis by gluconeogenesis.

The liver also metabolizes amino acids that arrive intermittently from other tissues. The blood is adequately...
supplied with glucose just after the digestion and absorption of dietary carbohydrate or, between meals, by the conversion of liver glycogen to blood glucose. During the interval between meals, especially if prolonged, some muscle protein is degraded to amino acids. These amino acids donate their amino groups (by transamination) to pyruvate, the product of glycolysis, to yield alanine, which is transported to the liver and deaminated. Hepatocytes convert the resulting pyruvate to blood glucose (via gluconeogenesis), and the ammonia to urea for excretion. One benefit of this glucose-alanine cycle (see Fig. 18–9) is the smoothing out of fluctuations in blood glucose between meals. The amino acid deficit incurred in muscles is made up after the next meal by incoming dietary amino acids.

Lipids The fatty acid components of lipids entering hepatocytes also have several different fates (Fig. 23–15).

1. Some are converted to liver lipids.
2. Under most circumstances, fatty acids are the primary oxidative fuel in the liver. Free fatty acids may be activated and oxidized to yield acetyl-CoA and NADH.
3. The acetyl-CoA is further oxidized via the citric acid cycle, and oxidations in the cycle drive the synthesis of ATP by oxidative phosphorylation.
Excess acetyl-CoA, not required by the liver, is converted to acetoacetate and β-hydroxybutyrate; these ketone bodies circulate in the blood to other tissues, to be used as fuel for the citric acid cycle. Ketone bodies may be regarded as a transport form of acetyl groups. They can supply a significant fraction of the energy in some extrahepatic tissues—up to one-third in the heart, and as much as 60% to 70% in the brain during prolonged fasting. Some of the acetyl-CoA derived from fatty acids (and from glucose) is used for the biosynthesis of cholesterol, which is required for membrane synthesis. Cholesterol is also the precursor of all steroid hormones and of the bile salts, which are essential for the digestion and absorption of lipids.

The other two metabolic fates of lipids involve specialized mechanisms for the transport of insoluble lipids in blood. Fatty acids are converted to the phospholipids and TAGs of plasma lipoproteins, which carry lipids to adipose tissue for storage as TAGs. Some free fatty acids are bound to serum albumin and carried to the heart and skeletal muscles, which take up and oxidize free fatty acids as a major fuel. Serum albumin is the most abundant plasma protein; one molecule can carry up to 10 molecules of free fatty acid.

The liver thus serves as the body's distribution center, exporting nutrients in the correct proportions to other organs, smoothing out fluctuations in metabolism caused by intermittent food intake, and processing extra amino groups into urea and other products to be disposed of by the kidneys. Certain nutrients are stored in the liver, including Fe ions and vitamin A. The liver also detoxifies foreign organic compounds, such as drugs, food additives, preservatives, and other possibly harmful agents with no food value. Detoxification often involves the cytochrome P-450-dependent hydroxylation of relatively insoluble organic compounds, making them sufficiently soluble for further breakdown and excretion (see Box 21-1).

Adipose Tissues Store and Supply Fatty Acids

There are two distinct types of adipose tissue, white and brown, with quite distinct roles, and we focus first on the more abundant of the two. **White adipose tissue (WAT)** (Fig. 23-16a) is amorphous and widely distributed in the body: under the skin, around the deep blood vessels, and in the abdominal cavity. The adipocytes of WAT are large (diameter 30 to 70 μm), spherical cells, completely filled with a single large lipid (TAG) droplet that constitutes about 65% of the cell mass and squeezes the mitochondria and nucleus into a thin layer against the plasma membrane (Fig. 23-16b). In humans, WAT typically makes up about 15% of the mass of a healthy young adult. The adipocytes are metabolically very active, responding quickly to hormonal stimuli in a metabolic interplay with the liver, skeletal muscles, and heart.

Like other cell types, adipocytes have an active glycolytic metabolism, oxidize pyruvate and fatty acids via the citric acid cycle, and carry out oxidative phosphorylation. During periods of high carbohydrate intake, adipose tissue can convert glucose (via pyruvate and acetyl-CoA) to fatty acids, convert the fatty acids to TAGs, and store the TAGs as large fat globules—although, in humans, much of the fatty acid synthesis occurs in hepatocytes. Adipocytes store TAGs arriving from the liver (carried in the blood as VLDLs; see Fig. 21-40a) and from the intestinal tract (carried in chylomicrons), particularly after meals rich in fat.

When the demand for fuel rises, lipases in adipocytes hydrolyze stored TAGs to release free fatty acids, which can travel in the bloodstream to skeletal muscle and the heart. The release of fatty acids from adipocytes is greatly accelerated by epinephrine, which stimulates the cAMP-dependent phosphorylation of perilipin and thus gives the hormone-sensitive lipase access to TAGs in the lipid droplet (see Fig. 17-3). Hormone-sensitive lipase is also stimulated by phosphorylation.

FIGURE 23-16 Adipocytes of white and brown adipose tissue.

(a) Colorized scanning electron micrograph of human adipocytes in white adipose tissue (WAT). In fat tissues, capillaries and collagen fibers form a supporting network around spherical adipocytes. Almost the entire volume of each of these metabolically active cells is taken up by a fat droplet. (b) A typical adipocyte from WAT and (c) an adipocyte from brown adipose tissue (BAT). In BAT cells, mitochondria are much more prominent, the nucleus is near the center of the cell, and multiple fat droplets are present. White adipocytes are larger and contain a single huge lipid droplet, which squeezes the mitochondria and nucleus against the plasma membrane.
but this is not the main cause of increased lipolysis. insulin counterbalances this effect of epinephrine, decreasing the activity of the lipase.

The breakdown and synthesis of TAGs in adipose tissue constitute a substrate cycle; up to 70% of the fatty acids released by hormone-sensitive lipase are reesterified in adipocytes, re-forming TAGs. Recall from Chapter 15 that such substrate cycles allow fine regulation of the rate and direction of flow of intermediates through a bidirectional pathway. In adipose tissue, glycerol liberated by hormone-sensitive lipase cannot be reused in the synthesis of TAGs, because adipocytes lack glycerol kinase. Instead, the glycerol phosphate required for TAG synthesis is made from pyruvate by glyceroneogenesis, involving the cytosolic PEP carboxykinase (see Fig. 21–22).

In addition to its central function as a fuel depot, adipose tissue plays an important role as an endocrine organ, producing and releasing hormones that signal the state of energy reserves and coordinate metabolism of fats and carbohydrates throughout the body. We return to this function later in the chapter as we discuss the hormonal regulation of body mass.

Brown Adipose Tissue Is Thermogenic

In small vertebrates and hibernating animals, a significant proportion of the adipose tissue is brown adipose tissue (BAT), distinguished from WAT by its smaller (diameter 20 to 40 μm), differently shaped (polygonal, not round) adipocytes (Fig. 23–16c). Like white adipocytes, brown adipocytes store triacylglycerols, but in several smaller lipid droplets per cell rather than as a single central droplet. BAT cells have more mitochondria and a richer supply of capillaries than WAT cells, and it is the cytochromes of mitochondria and the hemoglobin in capillaries that give BAT its characteristic brown color. A unique feature of brown adipocytes is their strong expression of the gene UNC1, which encodes thermogenin, the mitochondrial uncoupling protein (see Fig. 19–34). Thermogenin activity is responsible for the principal function of BAT: thermogenesis.

In brown adipocytes, fatty acids stored in lipid droplets are released, enter mitochondria, and undergo complete conversion to CO₂ via β oxidation and the citric acid cycle. The reduced FADH₂ and NADH so generated pass their electrons through the respiratory chain to molecular oxygen. In WAT, protons pumped out of the mitochondria during electron transfer reenter the matrix through ATP synthase, with the energy of electron transfer conserved in ATP synthesis. In BAT, thermogenin provides an alternative route for protons to reenter the matrix that bypasses ATP synthase; the energy of the proton gradient is thus dissipated as heat, which can maintain the body (especially the nervous system and viscera) at its optimal temperature when the ambient temperature is relatively low.

In the human fetus, differentiation of fibroblast "preadipocytes" into BAT begins at the twentieth week of gestation, and at the time of birth BAT represents 1% of total body weight. The brown fat deposits are located where the heat generated by thermogenesis can ensure that vital tissues—blood vessels to the head, major abdominal blood vessels, and the viscera, including the pancreas, adrenal glands, and kidneys—are not chilled as the newborn enters a world of lower ambient temperature (Fig. 23–17).

At birth, WAT development begins and BAT begins to disappear. By adulthood humans have no discrete deposits of BAT, although brown adipocytes remain scattered throughout the WAT, making up about 1% of all adipocytes. Adults also have preadipocytes that can be induced to differentiate into BAT during adaptation to chronic cold exposure. Humans with pheochromocytoma (tumors of the adrenal gland) overproduce epinephrine and norepinephrine, and one effect is differentiation of preadipocytes into discrete regions of BAT, localized roughly as in newborns. In the induced adaptation to chronic cold, and in the normal differentiation of WAT and BAT, the nuclear transcription factor PPARγ (described later in the chapter) plays a central role.
Muscles Use ATP for Mechanical Work

Metabolism in the cells of skeletal muscle—myocytes—is specialized to generate ATP as the immediate source of energy for contraction. Moreover, skeletal muscle is adapted to do its mechanical work in an intermittent fashion, on demand. Sometimes skeletal muscles must work at their maximum capacity for a short time, as in a 100 m sprint; at other times more prolonged work is required, as in running a marathon or in extended physical labor.

There are two general classes of muscle tissue, which differ in physiological role and fuel utilization. **Slow-twitch muscle**, also called red muscle, provides relatively low tension but is highly resistant to fatigue. It produces ATP by the relatively slow but steady process of oxidative phosphorylation. Red muscle is very rich in mitochondria and is served by very dense networks of blood vessels, which bring the oxygen essential to ATP production. **Fast-twitch muscle**, or white muscle, has fewer mitochondria than red muscle and is less well supplied with blood vessels, but it can develop greater tension, and do so faster. White muscle is quicker to fatigue because when active, it uses ATP faster than it can replace it. There is a genetic component to the proportion of red and white muscle in any individual; with training, the endurance of fast-twitch muscle can be improved.

Skeletal muscle can use free fatty acids, ketone bodies, or glucose as fuel, depending on the degree of muscular activity (Fig. 23-18). In resting muscle, the primary fuels are free fatty acids from adipose tissue and ketone bodies from the liver. These are oxidized and degraded to yield acetyl-CoA, which enters the citric acid cycle for oxidation to CO₂. The ensuing transfer of electrons to O₂ provides the energy for ATP synthesis by oxidative phosphorylation. Moderately active muscle uses blood glucose in addition to fatty acids and ketone bodies. The glucose is phosphorylated, then degraded by glycolysis to pyruvate, which is converted to acetyl-CoA and oxidized via the citric acid cycle and oxidative phosphorylation.

In maximally active fast-twitch muscles, the demand for ATP is so great that the blood flow cannot provide O₂ and fuels fast enough to supply sufficient ATP by aerobic respiration alone. Under these conditions, stored muscle glycogen is broken down to lactate by fermentation (p. 530). Each glucose unit degraded yields three ATP, because phosphorolysis of glycogen produces glucose 6-phosphate (via glucose 1-phosphate), sparing the ATP normally consumed in the hexokinase reaction. Lactic acid fermentation thus responds more quickly than oxidative phosphorylation to an increased need for ATP, supplementing basal ATP production by aerobic oxidation of other fuels via the citric acid cycle and respiratory chain. The use of blood glucose and muscle glycogen as fuels for muscular activity is greatly enhanced by the secretion of epinephrine, which stimulates both the release of glucose from liver glycogen and the breakdown of glycogen in muscle tissue.

The relatively small amount of glycogen (about 1% of the total weight of skeletal muscle) limits the amount of glycolytic energy available during all-out exertion. Moreover, the accumulation of lactate and consequent decrease in pH in maximally active muscles reduces their efficiency. Skeletal muscle, however, contains another source of ATP, phosphocreatine (10 to 30 mM), which can rapidly regenerate ATP from ADP by the creatine kinase reaction:

During periods of active contraction and glycolysis, this reaction proceeds predominantly in the direction of ATP synthesis; during recovery from exertion, the same enzyme resynthesizes phosphocreatine from creatine and ATP. Given the relatively high levels of ATP and phosphocreatine in muscle, these compounds can be detected in intact muscle, in real time, by NMR spectroscopy (Fig. 23-19).

After a period of intense muscular activity, the individual continues breathing heavily for some time, using much of the extra O₂ for oxidative phosphorylation in the liver. The ATP produced is used for gluconeogenesis (in the liver) from lactate that has been carried in the blood from the muscles. The glucose thus formed returns to the muscles to replenish their
23.2 Tissue-Specific Metabolism: The Division of Labor

FIGURE 23–19 Phosphocreatine buffers ATP concentration during exercise. A “stack plot” of magnetic resonance spectra (of 3P) showing inorganic phosphate (P$_i$), phosphocreatine (PCr), and ATP (each of its three phosphates giving a signal). The series of plots represents the passage of time, from a period of rest to one of exercise, and then of recovery. Note that the ATP signal hardly changes during exercise, kept high by continued respiration and by the reservoir of phosphocreatine, which diminishes during exercise. During recovery, when ATP production by catabolism is greater than ATP utilization by the (now resting) muscle, the phosphocreatine reservoir is refilled.

Actively contracting skeletal muscle generates heat as a byproduct of imperfect coupling of the chemical energy of ATP with the mechanical work of contraction. This heat production can be put to good use when ambient temperature is low: skeletal muscle carries out shivering thermogenesis, rapidly repeated muscle contraction that produces heat but little motion, helping to maintain the body at its preferred temperature of 37 °C.

Heart muscle differs from skeletal muscle in that it is continuously active in a regular rhythm of contraction and relaxation, and it has a completely aerobic metabolism at all times. Mitochondria are much more abundant in heart muscle than in skeletal muscle, making up almost half the volume of the cells (Fig. 23–21). The heart uses mainly free fatty acids, but also some glucose and ketone bodies taken up from the blood, as sources of energy; these fuels are oxidized via the citric acid cycle and oxidative phosphorylation to generate ATP. Like skeletal muscle, heart muscle does not store lipids or glycogen in large amounts. It does have small amounts of reserve energy in the form of phosphocreatine, enough for a few seconds of contraction. Because the heart is normally aerobic and obtains its energy from oxidative phosphorylation, the failure of glycolysis for rapid contraction.

FIGURE 23–20 Metabolic cooperation between skeletal muscle and the liver: the Cori cycle. Extremely active muscles use glycogen as energy source, generating lactate via glycolysis. During recovery, some of this lactate is transported to the liver and converted to glucose via gluconeogenesis. This glucose is released to the blood and returned to the muscles to replenish their glycogen stores. The overall pathway (glucose → lactate → glucose) constitutes the Cori cycle.

FIGURE 23–21 Electron micrograph of heart muscle. In the profuse mitochondria of heart tissue, pyruvate (from glucose), fatty acids, and ketone bodies are oxidized to drive ATP synthesis. This steady aerobic metabolism allows the human heart to pump blood at a rate of nearly 6 L/min, or about 350 L/hr—or 200 × 106 L over 70 years.
O₂ to reach a portion of the heart muscle when the blood vessels are blocked by lipid deposits (atherosclerosis) or blood clots (coronary thrombosis) can cause that region of the heart muscle to die. This is what happens in myocardial infarction, more commonly known as a heart attack.

The Brain Uses Energy for Transmission of Electrical Impulses

The metabolism of the brain is remarkable in several respects. The neurons of the adult mammalian brain normally use only glucose as fuel (Fig. 23–22). (Astrocytes, the other major cell type in the brain, can oxidize fatty acids.) The brain has a very active respiratory metabolism (Fig. 23–23); it uses O₂ at a fairly constant rate, accounting for almost 20% of the total O₂ consumed by the body at rest. Because the brain contains very little glycogen, it is constantly dependent on incoming glucose in the blood. Should blood glucose fall significantly below a critical level for even a short time, severe and sometimes irreversible changes in brain function may result.

Although the neurons of the brain cannot directly use free fatty acids or lipids from the blood as fuels, they can, when necessary, use β-hydroxybutyrate (a ketone body), formed from fatty acids in the liver. The capacity of the brain to oxidize β-hydroxybutyrate via acetyl-CoA becomes important during prolonged fasting or starvation, after liver glycogen has been depleted, because it allows the brain to use body fat as an energy source. This spares muscle proteins—until they become the brain’s ultimate source of glucose (via gluconeogenesis in the liver) during severe starvation.

Neurons oxidize glucose by glycolysis and the citric acid cycle, and the flow of electrons from these oxidations through the respiratory chain provides almost all the ATP used by these cells. Energy is required to create and maintain an electrical potential across the neuronal plasma membrane. The membrane contains an electrogenic ATP-driven antipporter, the Na⁺K⁺ ATPase, which simultaneously pumps 2 K⁺ ions into and 3 Na⁺ ions out of the neuron (see Fig. 11–37). The resulting transmembrane potential changes transiently as an electrical signal (action potential) sweeps from one end of a neuron to the other (see Fig. 12–25). Action potentials are the chief mechanism of information transfer in the nervous system, so depletion of ATP in neurons would have disastrous effects on all activities coordinated by neuronal signaling.

Blood Carries Oxygen, Metabolites, and Hormones

Blood mediates the metabolic interactions among all tissues. It transports nutrients from the small intestine to the liver, and from the liver and adipose tissue to other organs; it also transports waste products from the extrahepatic tissues to the liver for processing and to the kidneys for excretion. Oxygen moves in the bloodstream from the lungs to the tissues, and CO₂ generated by tissue respiration returns via the bloodstream to the lungs for exhalation. Blood also carries hormonal signals from one tissue to another. In its role as signal carrier, the circulatory system resembles the nervous system; both regulate and integrate the activities of different organs.
Inorganic components (10%)
- NaCl, bicarbonate, phosphate, CaCl₂, MgCl₂, KCl, Na₂SO₄

Organic metabolites and waste products (20%)
- glucose, amino acids, lactate, pyruvate, ketone bodies, citrate, urea, uric acid

Plasma proteins (70%)
- Major plasma proteins: serum albumin, very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), high-density lipoproteins (HDL), immunoglobulins (hundreds of kinds), fibrinogen, prothrombin, many specialized transport proteins such as transferrin

FIGURE 23-24 The composition of blood. Whole blood can be separated into blood plasma and cells by centrifugation. About 10% of blood plasma is solutes, of which about 10% consists of inorganic salts, 20% small organic molecules, and 70% plasma proteins. The major dissolved components are listed. Blood contains many other substances, often in trace amounts. These include other metabolites, enzymes, hormones, vitamins, trace elements, and bile pigments. Measurements of the concentrations of components in blood plasma are important in the diagnosis and treatment of many diseases.

The average adult human has 5 to 6 L of blood. Almost half of this volume is occupied by three types of blood cells (Fig. 23-24): erythrocytes (red cells), filled with hemoglobin and specialized for carrying O₂ and CO₂; much smaller numbers of leukocytes (white cells) of several types (including lymphocytes, also found in lymphatic tissue), which are central to the immune system that defends against infections; and platelets, which help to mediate blood clotting. The liquid portion is the blood plasma, which is 90% water and 10% solutes. Dissolved or suspended in the plasma is a large variety of proteins, lipoproteins, nutrients, metabolites, waste products, inorganic ions, and hormones. More than 70% of the plasma solids are plasma proteins, primarily immunoglobulins (circulating antibodies), serum albumin, apolipoproteins involved in the transport of lipids, transferrin (for iron transport), and blood-clotting proteins such as fibrinogen and prothrombin.

The ions and low molecular weight solutes in blood plasma are not fixed components but are in constant flux between blood and various tissues. Dietary uptake of the inorganic ions that are the predominant electrolytes of blood and cytosol (Na⁺, K⁺, and Ca²⁺) is, in general, counterbalanced by their excretion in the urine. For many blood components, something near a dynamic steady state is achieved: the concentration of the component changes little, although a continuous flux occurs between the digestive tract, blood, and urine. The plasma levels of Na⁺, K⁺, and Ca²⁺ remain close to 140, 5, and 2.5 mM, respectively, with little change in response to dietary intake. Any significant departure from these values can result in serious illness or death. The kidneys play an especially important role in maintaining ion balance by selectively filtering waste products and excess ions out of the blood while preventing the loss of essential nutrients and ions.

The human erythrocyte loses its nucleus and mitochondria during differentiation. It therefore relies on glycolysis alone for its supply of ATP. The lactate produced by glycolysis returns to the liver, where gluconeogenesis converts it to glucose, to be stored as glycogen or recirculated to the peripheral tissues. The erythrocyte has constant access to glucose in the bloodstream.

The concentration of glucose in plasma is subject to tight regulation. We have noted the constant requirement of the brain for glucose and the role of the liver in maintaining blood glucose in the normal range, 60 to 90 mg/100 mL of whole blood (≈4.5 mM). (Because erythrocytes lack mitochondria, they cannot use oxygen, they do not glycolyse, and they do not have a nucleus or endoplasmic reticulum.) When blood glucose in a human drops to 40 mg/100 mL (the hypoglycemic condition), the person experiences discomfort and mental confusion (Fig. 23-25); further lowering of blood glucose may produce convulsions, coma, permanent brain damage (if prolonged), or death.

FIGURE 23-25 Physiological effects of low blood glucose in humans. Blood glucose levels of 40 mg/100 mL and below constitute severe hypoglycemia.
reductions lead to coma, convulsions, and, in extreme hypoglycemia, death. Maintaining the normal concentration of glucose in blood is therefore a very high priority of the organism, and a variety of regulatory mechanisms have evolved to achieve that end. Among the most important regulators of blood glucose are the hormones insulin, glucagon, and epinephrine, as discussed in Section 23.3.

SUMMARY 23.2 Tissue-Specific Metabolism: The Division of Labor

- In mammals there is a division of metabolic labor among specialized tissues and organs. The liver is the central distributing and processing organ for nutrients. Sugars and amino acids produced in digestion cross the intestinal epithelium and enter the blood, which carries them to the liver. Some triacylglycerols derived from ingested lipids also make their way to the liver, where the constituent fatty acids are used in a variety of processes.

- Glucose 6-phosphate is the key intermediate in carbohydrate metabolism. It may be polymerized into glycogen, dephosphorylated to blood glucose, or converted to fatty acids via acetyl-CoA. It may undergo oxidation by glycolysis, the citric acid cycle, and respiratory chain to yield ATP, or enter the pentose phosphate pathway to yield pentoses and NADPH.

- Amino acids are used to synthesize liver and plasma proteins, or their carbon skeletons are converted to glucose and glycogen by gluconeogenesis; the ammonia formed by deamination is converted to urea.

- The liver converts fatty acids to triacylglycerols, phospholipids, or cholesterol and its esters, for transport as plasma lipoproteins to adipose tissue for storage. Fatty acids can also be oxidized to yield ATP or to form ketone bodies, which are circulated to other tissues.

- White adipose tissue stores large reserves of triacylglycerols, and releases them into the blood in response to epinephrine or glucagon. Brown adipose tissue is specialized for thermogenesis, the result of fatty acid oxidation in uncoupled mitochondria.

- Skeletal muscle is specialized to produce and use ATP for mechanical work. During strenuous muscular activity, glycogen is the ultimate fuel, supplying ATP through lactic acid fermentation. During recovery, the lactate is reconverted (through gluconeogenesis) to glycogen and glucose in the liver. Phosphocreatine is an immediate source of ATP during active contraction.

- Heart muscle obtains nearly all its ATP from oxidative phosphorylation.

- The neurons of the brain use only glucose and β-hydroxybutyrate as fuels, the latter being important during fasting or starvation. The brain uses most of its ATP for the active transport of Na+ and K+ to maintain the electrical potential across the neuronal membrane.

- The blood transfers nutrients, waste products, and hormonal signals among tissues and organs.

23.3 Hormonal Regulation of Fuel Metabolism

The minute-by-minute adjustments that keep the blood glucose level near 4.5 mm involve the combined actions of insulin, glucagon, epinephrine, and cortisol on metabolic processes in many body tissues, but especially in liver, muscle, and adipose tissue. Insulin signals these tissues that blood glucose is higher than necessary; as a result, cells take up excess glucose from the blood and convert it to glycogen and triacylglycerols for storage. Glucagon signals that blood glucose is too low, and tissues respond by producing glucose through glycogen breakdown and (in the liver) gluconeogenesis and by oxidizing fats to reduce the use of glucose. Epinephrine is released into the blood to prepare the muscles, lungs, and heart for a burst of activity. Cortisol mediates the body’s response to longer-term stresses. We discuss these hormonal regulations in the context of three normal metabolic states—well-fed, fasted, and starving—and look at the metabolic consequences of diabetes mellitus, a disorder that results from derangements in the signaling pathways that control glucose metabolism.

Insulin Counters High Blood Glucose

Acting through plasma membrane receptors (see Figs 12–15, 12–16), insulin stimulates glucose uptake by muscle and adipose tissue (Table 23–3), where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channeled into glycogen.

Insulin also stimulates the storage of excess fuel as fat in adipose tissue (Fig. 23–26). In the liver, insulin activates both the oxidation of glucose 6-phosphate to pyruvate via glycolysis and the oxidation of pyruvate to acetyl-CoA. If not oxidized further for energy production, this acetyl-CoA is used for fatty acid synthesis, and the fatty acids are exported from the liver as the TAGs of plasma lipoproteins (VLDLs) to adipose tissue. Insulin stimulates the synthesis of TAGs in adipocytes, from fatty acids released from the VLDL triacylglycerols. These fatty acids are ultimately derived from the excess glucose taken up from blood by the liver. In summary, the effect of insulin is to favor the conversion of excess blood glucose to two storage forms: glycogen (in the liver and muscle) and triacylglycerols (in adipose tissue) (Table 23–3).

Besides acting directly on muscle and liver to change their metabolism of carbohydrates and fats, insulin can also act in the brain to signal these tissues indirectly, as described later.
Pancreatic \(\beta \) Cells Secrete Insulin in Response to Changes in Blood Glucose

When glucose enters the bloodstream from the intestine after a carbohydrate-rich meal, the resulting increase in blood glucose causes increased secretion of insulin (and decreased secretion of glucagon) by the pancreas. Insulin release is largely regulated by the level of glucose in the blood supplying the pancreas. The peptide hormones insulin, glucagon, and somatostatin are produced by clusters of specialized pancreatic cells, the islets of Langerhans (Fig. 23–27). Each cell type of the islets...
Hormonal Regulation and Integration of Mammalian Metabolism

FIGURE 23-27 The endocrine system of the pancreas. The pancreas contains both exocrine cells (see Fig. 18-3b), which secrete digestive enzymes in the form of zymogens, and clusters of endocrine cells, the islets of Langerhans. The islets contain α, β, and δ cells (also known as A, B, and D cells, respectively), each cell type secreting a specific peptide hormone.

produces a single hormone: α cells produce glucagon; β cells, insulin; and δ cells, somatostatin.

As shown in Figure 23-28, when blood glucose rises, GLUT2 transporters carry glucose into the β cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. With the higher rate of glucose catabolism, [ATP] increases, causing the closing of ATP-gated K⁺ channels in the plasma membrane. Reduced efflux of K⁺ depolarizes the membrane. (Recall from Section 12.6 that exit of K⁺ through an open K⁺ channel hyperpolarizes the membrane; closing the K⁺ channel therefore effectively depolarizes the membrane.) Membrane depolarization opens voltage-gated Ca²⁺ channels, and the resulting increase in cytosolic [Ca²⁺] triggers the release of insulin by exocytosis. Parasympathetic and sympathetic nervous system signals also affect (stimulate and inhibit, respectively) insulin release. A simple feedback loop limits hormone release: insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.

The activity of ATP-gated K⁺ channels is central to the regulation of insulin secretion by β cells. The channels are octamers of four identical Kir6.2 subunits and four identical SUR1 subunits, and are constructed along the same lines as the K⁺ channels of bacteria and those of other eukaryotic cells (see Figs 11-48, 11-49, and 11-50). The four Kir6.2 subunits form a cone around the K⁺ channel and function as the selectivity filter and ATP-gating mechanism (Fig. 23-29). When [ATP] rises (indicating increased blood glucose), the K⁺ channels close, depolarizing the plasma membrane and triggering insulin release as shown in Figure 23-28.

FIGURE 23-28 Glucose regulation of insulin secretion by pancreatic β cells. When the blood glucose level is high, active metabolism of glucose in the β cell raises intracellular [ATP], closing K⁺ channels in the plasma membrane and thus depolarizing the membrane. In response to the change in membrane potential, voltage-gated Ca²⁺ channels open, allowing Ca²⁺ to flow into the cell. (Ca²⁺ is also released from the endoplasmic reticulum, in response to the initial elevation of [Ca²⁺] in the cytosol.) Cytosolic [Ca²⁺] is now high enough to trigger insulin release by exocytosis. The numbered processes are discussed in the text.
Hormonal Regulation of Fuel Metabolism

The sulfonylurea drugs, oral medications used in the treatment of type 2 diabetes mellitus, bind to the SUR1 (sulfonylurea receptor) subunits of the K⁺ channels, closing the channels and stimulating insulin release. The first generation of these drugs (tolbutamide, for example) was developed in the 1950s. The second-generation drugs, including glyburide (Micronase), glipizide (Glucotrol), and gliclizide (Amaryl), are more potent and have fewer side effects. (The sulfonylurea moiety is screened pink in the following structures.)

The sulfonylureas are sometime used in combination with injected insulin, but often suffice alone for controlling type 2 diabetes.

![Glyburide](image)

![Glipizide](image)

Mutations in the ATP-gated K⁺ channels of β cells are, fortunately, rare. Mutations in Kir6.2 that result in constantly open K⁺ channels (red residues in Fig. 23-29b) lead to neonatal diabetes mellitus, with severe hyperglycemia that requires insulin therapy. Other mutations in Kir6.2 or SUR1 (blue residues in Fig. 23-29b) produce permanently closed K⁺ channels and continuous release of insulin. If untreated, individuals with these mutations develop congenital hyperinsulinemia (hyperinsulinism of infancy); excessive insulin causes severe hypoglycemia (low blood glucose) leading to irreversible brain damage. One effective treatment is surgical removal of part of the pancreas to reduce insulin production.

Glucagon Counters Low Blood Glucose

Several hours after the intake of dietary carbohydrate, blood glucose levels fall slightly because of the ongoing oxidation of glucose by the brain and other tissues. Lowered blood glucose triggers secretion of glucagon and decreases insulin release (Fig. 23-30).

Glucagon causes an increase in blood glucose concentration in several ways (Table 23-4). Like epinephrine, it stimulates the net breakdown of liver glycogen by activating glycogen phosphorylase and inactivating glycogen synthase; both effects are the result of phosphorylation of the regulated enzymes, triggered by cAMP. Glucagon inhibits glucose breakdown by glycogen synthase in the liver, and stimulates glucose synthesis by gluconeogenesis. Both effects result from lowering the concentration of fructose 2,6-bisphosphatase, an allosteric inhibitor of the gluconeogenic enzyme fructose 1,6-bisphosphatase (FBPase-1) and an activator of the glycolytic enzyme phosphofructokinase-1. Recall that [fructose 2,6-bisphosphate] is ultimately controlled by a cAMP-dependent protein phosphorylation reaction (see Fig. 15-17). Glucagon also inhibits the glycolytic enzyme pyruvate kinase (by promoting its cAMP-dependent phosphorylation), thus blocking the conversion of phosphoenolpyruvate to pyruvate and preventing oxidation of pyruvate via the citric acid cycle.
Hormonal Regulation and Integration of Mammalian Metabolism

FIGURE 23-30 The fasting state: the glucogenic liver. After some hours without a meal, the liver becomes the principal source of glucose for the brain. Liver glycogen is broken down, and the glucose-1-phosphate produced is converted to glucose-6-phosphate, then to free glucose, which is released into the bloodstream. Amino acids from the degradation of proteins in liver and muscle, and glycerol from the breakdown of TAGs in adipose tissue, are used for gluconeogenesis. The liver uses fatty acids as its principal fuel, and excess acetyl-CoA is converted to ketone bodies for export to other tissues; the brain is especially dependent on this fuel when glucose is in short supply (see Fig. 23-22).

The resulting accumulation of phosphoenolpyruvate favors gluconeogenesis. This effect is augmented by glucagon’s stimulation of the synthesis of the gluconeogenic enzyme PEP carboxykinase. By stimulating glycogen breakdown, preventing glycolysis, and promoting gluconeogenesis in hepatocytes, glucagon enables the liver to export glucose, restoring blood glucose to its normal level.

Although its primary target is the liver, glucagon (like epinephrine) also affects adipose tissue, activating TAG breakdown by causing cAMP-dependent phosphorylation of perilipin and hormone-sensitive lipase. The activated lipase liberates free fatty acids, which are exported to the liver and other tissues as fuel, sparing glucose for the brain. The net effect of glucagon is therefore to stimulate glucose synthesis and release by the liver and to mobilize fatty acids from adipose tissue, to be used instead of glucose by tissues other than the brain (Table 23-4). All these effects of glucagon are mediated by cAMP-dependent protein phosphorylation.

During Fasting and Starvation, Metabolism Shifts to Provide Fuel for the Brain

The fuel reserves of a healthy adult human are of three types: glycogen stored in the liver and, in smaller quantities, in muscles; large quantities of triacylglycerols in adipose tissues; and tissue proteins, which can be degraded when necessary to provide fuel (Table 23-5).

TABLE 23-4 Effects of Glucagon on Blood Glucose: Production and Release of Glucose by the Liver

<table>
<thead>
<tr>
<th>Metabolic effect</th>
<th>Effect on glucose metabolism</th>
<th>Target enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Glycogen breakdown (liver)</td>
<td>Glycogen → glucose</td>
<td>↑ Glycogen phosphorylase</td>
</tr>
<tr>
<td>↓ Glycogen synthesis (liver)</td>
<td>Less glucose stored as glycogen</td>
<td>↓ Glycogen synthase</td>
</tr>
<tr>
<td>↓ Glycolysis (liver)</td>
<td>Less glucose used as fuel in liver</td>
<td>↓ PFK-1</td>
</tr>
<tr>
<td>↑ Gluconeogenesis (liver)</td>
<td>Amino acids → glucose</td>
<td>↑ FBPase-2</td>
</tr>
<tr>
<td></td>
<td>Glycolysis + Oxaloacetate → glucose</td>
<td>↓ Pyruvate kinase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ PEP carboxykinase</td>
</tr>
<tr>
<td>↑ Fatty acid mobilization (adipose tissue)</td>
<td>Less glucose used as fuel by liver, muscle</td>
<td>↑ Hormone-sensitive lipase</td>
</tr>
<tr>
<td>↑ Ketogenesis</td>
<td>Provides alternative to glucose as energy source for brain</td>
<td>↓ Acetyl-CoA carboxylase</td>
</tr>
</tbody>
</table>
In the first two hours after a meal, the blood glucose level is diminished slightly, and tissues receive glucose released from liver glycogen. There is little or no synthesis of lipids. By four hours after a meal, blood glucose has fallen further, insulin secretion has slowed, and glucagon secretion has increased. These hormonal signals mobilize triacylglycerols, which now become the primary fuel for muscle and liver. Figure 23-31 shows the responses to prolonged fasting. (1) To provide glucose for the brain, the liver degrades certain proteins—those most expendable in an organism not ingesting food. Their nonessential amino acids are transaminated or deaminated (Chapter 18), and (2) the extra amino groups are converted to urea, which is exported via the bloodstream to the kidneys and excreted.

TABLE 23-5 Available Metabolic Fuels in a Normal-Weight 70 kg Man and in an Obese 140 kg Man at the Beginning of a Fast

<table>
<thead>
<tr>
<th>Type of fuel</th>
<th>Weight (kg)</th>
<th>Caloric equivalent (thousands of kcal (kJ))</th>
<th>Estimated survival (months)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal-weight, 70 kg man</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triacylglycerols (adipose tissue)</td>
<td>15</td>
<td>141 (589)</td>
<td></td>
</tr>
<tr>
<td>Proteins (mainly muscle)</td>
<td>6</td>
<td>24 (100)</td>
<td></td>
</tr>
<tr>
<td>Glycogen (muscle, liver)</td>
<td>0.225</td>
<td>0.90 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Circulating fuels (glucose, fatty acids, triacylglycerols, etc.)</td>
<td>0.023</td>
<td>0.10 (0.42)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>166 (694)</td>
<td>3</td>
</tr>
</tbody>
</table>

Obese, 140 kg man			
Triacylglycerols (adipose tissue)	80	752 (3,140)	
Proteins (mainly muscle)	8	32 (134)	
Glycogen (muscle, liver)	0.23	0.92 (3.8)	
Circulating fuels	0.025	0.11 (0.46)	
Total		785 (3,280)	14

*Survival time is calculated on the assumption of a basal energy expenditure of 1,800 kcal/day.

FIGURE 23-31 Fuel metabolism in the liver during prolonged fasting or in uncontrolled diabetes mellitus. After depletion of stored carbohydrates, proteins become an important source of glucose, produced from glucogenic amino acids by gluconeogenesis (1 to 4). Fatty acids imported from adipose tissue are converted to ketone bodies for export to the brain (5 to 8). Broken arrows represent reactions with reduced flux under these conditions. The steps are further described in the text.
Also in the liver, the carbon skeletons of glucogenic amino acids are converted to pyruvate or intermediates of the citric acid cycle. These intermediates (as well as the glycerol derived from TAGs in adipose tissue) provide the starting materials for gluconeogenesis in the liver, yielding glucose for export to the brain. Fatty acids are oxidized to acetyl-CoA, but as oxaloacetate is depleted by the use of citric acid cycle intermediates for gluconeogenesis, entry of acetyl-CoA into the cycle is inhibited and acetyl-CoA accumulates. This favors the formation of acetoacetyl-CoA and ketone bodies. After a few days of fasting, the levels of ketone bodies in the blood rise (Fig. 23-32) as they are exported from the liver to the heart, skeletal muscle, and brain, which use these fuels instead of glucose (Fig. 23-31).

Acetyl-CoA is a critical regulator of the fate of pyruvate; it allosterically inhibits pyruvate dehydrogenase and stimulates pyruvate carboxylase (see Fig. 15-20). In these ways acetyl-CoA prevents its further production from pyruvate while stimulating the conversion of pyruvate to oxaloacetate, the first step in gluconeogenesis.

Triacylglycerols stored in the adipose tissue of a normal-weight adult could provide enough fuel to maintain a basal rate of metabolism for about three months; a very obese adult has enough stored fuel to endure a fast of more than a year (Table 23-5). When fat reserves are gone, the degradation of essential proteins begins; this leads to loss of heart and liver function and, in prolonged starvation, to death. Stored fat can provide adequate energy (calories) during a fast or rigid diet, but vitamins and minerals must be provided, and sufficient dietary glucogenic amino acids are needed to replace those being used for gluconeogenesis. Rations for those on a weight-reduction diet are commonly fortified with vitamins, minerals, and amino acids or proteins.

Epinephrine Signals Impending Activity

When an animal is confronted with a stressful situation that requires increased activity—fighting or fleeing, in the extreme case—neuronal signals from the brain trigger the release of epinephrine and norepinephrine from the adrenal medulla. Both hormones dilate the respiratory passages to facilitate the uptake of O₂, increase the rate and strength of the heartbeat, and raise the blood pressure, thereby promoting the flow of O₂ and fuels to the tissues (Table 23-6).

Epinephrine acts primarily on muscle, adipose, and liver tissues. It activates glycogen phosphorylase and inactivates glycogen synthase by cAMP-dependent phosphorylation of the enzymes, thus stimulating the conversion of liver glycogen to blood glucose, the fuel for anaerobic muscular work. Epinephrine also promotes

TABLE 23-6 Physiological and Metabolic Effects of Epinephrine: Preparation for Action

<table>
<thead>
<tr>
<th>Immediate effect</th>
<th>Overall effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological</td>
<td></td>
</tr>
<tr>
<td>↑ Heart rate</td>
<td>Increase delivery of O₂ to tissues (muscle)</td>
</tr>
<tr>
<td>↑ Blood pressure</td>
<td></td>
</tr>
<tr>
<td>↑ Dilution of respiratory passages</td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
</tr>
<tr>
<td>↑ Glycogen breakdown (muscle, liver)</td>
<td>Increase production of glucose for fuel</td>
</tr>
<tr>
<td>↓ Glycogen synthesis (muscle, liver)</td>
<td></td>
</tr>
<tr>
<td>↑ Gluconeogenesis (liver)</td>
<td></td>
</tr>
<tr>
<td>↑ Glycolysis (muscle)</td>
<td></td>
</tr>
<tr>
<td>↑ Fatty acid mobilization (adipose tissue)</td>
<td>Increases availability of fatty acids as fuel</td>
</tr>
<tr>
<td>↑ Glucagon secretion</td>
<td>Reinforce metabolic effects of epinephrine</td>
</tr>
<tr>
<td>↓ Insulin secretion</td>
<td></td>
</tr>
</tbody>
</table>
the anaerobic breakdown of muscle glycogen by lactic acid fermentation, stimulating glycolytic ATP formation. The stimulation of glycogenolysis is accomplished by raising the concentration of fructose 2,6-bisphosphate, a potent allosteric activator of the key glycolytic enzyme phosphofructokinase-1 (see Figs 15–16, 15–17). Epinephrine also stimulates fat mobilization in adipose tissue, activating (by cAMP-dependent phosphorylation) hormone-sensitive lipase and moving aside the perilipin covering the lipid droplet surface (see Fig. 17–3). Finally, epinephrine stimulates glucagon secretion and inhibits insulin secretion, reinforcing its effect of mobilizing fuels and inhibiting fuel storage.

Cortisol Signals Stress, Including Low Blood Glucose

A variety of stressors (anxiety, fear, pain, hemorrhage, infection, low blood glucose, starvation) stimulate release of the corticosteroid hormone cortisol from the adrenal cortex. Cortisol acts on muscle, liver, and adipose tissue to supply the organism with fuel to withstand the stress. Cortisol is a relatively slow-acting hormone that alters metabolism by changing the kinds and amounts of certain enzymes synthesized in its target cells, rather than by regulating the activity of existing enzyme molecules.

In adipose tissue, cortisol leads to an increase in the release of fatty acids from stored TAGs. The exported fatty acids serve as fuel for other tissues, and the glycerol is used for gluconeogenesis in the liver. Cortisol stimulates the breakdown of muscle proteins and the export of amino acids to the liver, where they serve as precursors for gluconeogenesis. In the liver, cortisol promotes gluconeogenesis by stimulating synthesis of the key enzyme PEP carboxykinase (see Fig. 14–17b); glucagon has the same effect, whereas insulin has the opposite effect. Glucose produced in this way is stored in the liver as glycogen or exported immediately to tissues that need glucose for fuel. The net effect of these metabolic changes is to restore blood glucose to its normal level and to increase glycogen stores, ready to support the fight-or-flight response commonly associated with stress. The effects of cortisol therefore counterbalance those of insulin. During extended periods of stress, the continued release of cortisol loses its positive adaptive value and begins to cause damage to muscle and bone, and to impair endocrine and immune function.

Diabetes Mellitus Arises from Defects in Insulin Production or Action

Diabetes mellitus is a relatively common disease: nearly 6% of the U.S. population shows some degree of abnormality in glucose metabolism that is indicative of diabetes or a tendency toward the condition. There are two major clinical classes of diabetes mellitus: type 1 diabetes, sometimes referred to as insulin-dependent diabetes mellitus (IDDM), and type 2 diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes.

Type 1 diabetes begins early in life, and symptoms quickly become severe. This disease responds to insulin injection, because the metabolic defect stems from an autoimmune destruction of pancreatic β cells and a consequent inability to produce sufficient insulin. Type 1 diabetes requires both insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose. Characteristic symptoms of type 1 (and type 2) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia) ("diabetes mellitus" means "excessive excretion of sweet urine"). These symptoms are due to the excretion of large amounts of glucose in the urine, a condition known as glucosuria.

Type 2 diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder and often go unrecognized at first. This is really a group of diseases in which the regulatory activity of insulin is disordered: insulin is produced, but some feature of the insulin-response system is defective. Individuals with this disorder are insulin-resistant. The connection between type 2 diabetes and obesity (discussed below) is an active and exciting area of research.

Individuals with either type of diabetes are unable to take up glucose efficiently from the blood; recall that insulin triggers the movement of GLUT4 glucose transporters to the plasma membrane in muscle and adipose tissue (see Fig. 12–16). Another characteristic metabolic change in diabetes is excessive but incomplete oxidation of fatty acids in the liver. The acetyl-CoA produced by β oxidation cannot be completely oxidized by the citric acid cycle, because the high [NADH]/[NAD⁺] ratio produced by β oxidation inhibits the cycle (recall that three steps of the cycle convert NAD⁺ to NADH). Accumulation of acetyl-CoA leads to overproduction of the ketone bodies, acetocacetate and β-hydroxybutyrate, which cannot be used by extrahepatic tissues as fast as they are made in the liver. In addition to β-hydroxybutyrate and acetoacetate, the blood of individuals with diabetes also contains acetone, which results from the spontaneous decarboxylation of acetoacetate:

\[
\begin{align*}
\text{Acetoneatetate} & \quad \text{Acetone} \\
\text{CH₃–C–CH₂–COO⁻ + H₂O} & \rightarrow \quad \text{CH₃–C–CH₃ + HCO₃⁻}
\end{align*}
\]

Acetone is volatile and is exhaled, and in uncontrolled diabetes the breath has a characteristic odor sometimes mistaken for ethanol. A diabetic individual who is experiencing mental confusion due to high blood glucose is occasionally misdiagnosed as intoxicated, an error that can be fatal. The overproduction of ketone bodies, called ketosis, results in greatly increased
concentrations of ketone bodies in the blood (ketone-mia) and urine (ketonuria).

The ketone bodies are carboxylic acids, which ionize, releasing protons. In uncontrolled diabetes this acid production can overwhelm the capacity of the blood's bicarbonate buffering system and produce a lowering of blood pH called acidosis or, in combination with ketosis, ketoacidosis, a potentially life-threatening condition.

Biochemical measurements on blood and urine samples are essential in the diagnosis and treatment of diabetes. A sensitive diagnostic criterion is provided by the glucose-tolerance test. The individual fasts overnight, then drinks a test dose of 100 g of glucose dissolved in a glass of water. The blood glucose concentration is measured before the test dose and at 30 min intervals for several hours thereafter. A healthy individual assimilates the glucose readily; the blood glucose rising to no more than about 9 or 10 mm; little or no glucose appears in the urine. In diabetes, individuals assimilate the test dose of glucose poorly; their blood glucose level rises dramatically and returns to the fasting level very slowly. Because the blood glucose levels exceed the kidney threshold (about 10 mm), glucose also appears in the urine.

SUMMARY 23.3 Hormonal Regulation of Fuel Metabolism

- The concentration of glucose in blood is hormonally regulated. Fluctuations in blood glucose (normally 60 to 90 mg/100 mL, or about 4.5 mm) due to dietary intake or vigorous exercise are counterbalanced by a variety of hormonally triggered changes in metabolism in several organs.

- High blood glucose elicits the release of insulin, which speeds the uptake of glucose by tissues and favors the storage of fuels as glycogen and triacylglycerols, while inhibiting fatty acid mobilization in adipose tissue.

- Low blood glucose triggers release of glucagon, which stimulates glucose release from liver glycogen and shifts fuel metabolism in liver and muscle to fatty acid oxidation, sparing glucose for use by the brain. In prolonged fasting, triacylglycerols become the principal fuel; the liver converts the fatty acids to ketone bodies for export to other tissues, including the brain.

- Epinephrine prepares the body for increased activity by mobilizing glucose from glycogen and other precursors, releasing it into the blood.

- Cortisol, released in response to a variety of stressors (including low blood glucose), stimulates gluconeogenesis from amino acids and glycerol in the liver, thus raising blood glucose and counterbalancing the effects of insulin.

- In diabetes, insulin is either not produced or not recognized by the tissues, and the uptake of blood glucose is compromised. When blood glucose levels are high, glucose is excreted. Tissues then depend on fatty acids for fuel (producing ketone bodies) and degrade cellular proteins to provide glucogenic amino acids for glucose synthesis. Uncontrolled diabetes is characterized by high glucose levels in the blood and urine and the production and excretion of ketone bodies.

23.4 Obesity and the Regulation of Body Mass

In the U.S. population, 30% of adults are obese and another 35% are overweight, as defined in terms of body mass index (BMI), calculated as (weight in kg)/(height in m)^2. A BMI below 25 is considered normal; an individual with a BMI of 25 to 30 is overweight; a BMI greater than 30 indicates obesity. Obesity is life-threatening. It significantly increases the chances of developing type 2 diabetes as well as heart attack, stroke, and cancers of the colon, breast, prostate, and endometrium. Consequently, there is great interest in understanding how body mass and the storage of fats in adipose tissue are regulated.

To a first approximation, obesity is the result of taking in more calories in the diet than are expended by the body's energy-consuming activities. The body can deal with an excess of dietary calories in three ways: (1) convert excess fuel to fat and store it in adipose tissue, (2) burn excess fuel by extra exercise, and (3) "waste" fuel by diverting it to heat production (thermogenesis) by uncoupled mitochondria. In mammals, a complex set of hormonal and neuronal signals acts to keep fuel intake and energy expenditure in balance, so as to hold the amount of adipose tissue at a suitable level. Dealing effectively with obesity requires understanding these various checks and balances under normal conditions, and how these homeostatic mechanisms can fail.

Adipose Tissue Has Important Endocrine Functions

One early hypothesis to explain body-mass homeostasis, the "adiposity negative-feedback" model, postulated a mechanism that inhibits eating behavior and increases energy consumption whenever body weight exceeds a certain value (the set point); the inhibition is relieved when body weight drops below the set point (Fig. 23-33). This model predicts that a feedback signal originating in adipose tissue influences the brain centers that control eating behavior and activity (metabolic and motor activity). The first such factor, leptin, was discovered in 1994, and subsequent research revealed that adipose tissue is an important endocrine organ that produces peptide hormones, known as adipokines. Adipokines may act locally (autocrine and paracrine
Energy, heat

FIGURE 23-33 Set-point model for maintaining constant mass. When the mass of adipose tissue increases (dashed outline), released leptin inhibits feeding and fat synthesis and stimulates oxidation of fatty acids. When the mass of adipose tissue decreases (solid outline), a lowered leptin production favors a greater food intake and less fatty acid oxidation.

action) or systemically (endocrine action), carrying information about the adequacy of the energy reserves (TAGs) stored in adipose tissue to other tissues and to the brain. Normally, adipokines produce changes in fuel metabolism and feeding behavior that reestablish adequate fuel reserves and maintain body mass. When adipokines are over- or underproduced, the resulting dysregulation may result in life-threatening disease.

Leptin (Greek leptos, “thin”) is an adipokine (167 amino acids) that, on reaching the brain, acts on receptors in the hypothalamus to curtail appetite. Leptin was first identified as the product of a gene designated OB (obese) in laboratory mice. Mice with two defective copies of this gene (ob/ob genotype; lowercase letters signify a mutant form of the gene) show the behavior and physiology of animals in a constant state of starvation: their plasma cortisol levels are elevated; they are unable to stay warm and they grow abnormally, do not reproduce, and exhibit unrestrained appetite. As a consequence of the last effect, they become severely obese, weighing as much as three times more than normal mice (Fig. 23-34). They also have metabolic disturbances very similar to those seen in diabetes, and they are insulin-resistant. When leptin is injected into ob/ob mice, they lose weight and increase their locomotor activity and thermogenesis.

A second mouse gene, designated DB (diabetic), has also been found to have a role in appetite regulation. Mice with two defective copies (db/db) are obese and diabetic. The DB gene encodes the leptin receptor. When the receptor is defective, the signaling function of leptin is lost.

The leptin receptor is expressed primarily in regions of the brain known to regulate feeding behavior—

FIGURE 23-34 Obesity caused by defective leptin production. Both of these mice, which are the same age, have defects in the OB gene. The mouse on the right was injected daily with purified leptin and weighs 35 g. The mouse on the left got no leptin, and consequently ate more food and was less active; it weighs 67 g.

neurons of the arcuate nucleus of the hypothalamus (Fig. 23-35a). Leptin carries the message that fat reserves are sufficient, and it promotes a reduction in fuel intake and increased expenditure of energy. Leptin-receptor interaction in the hypothalamus alters the release of

FIGURE 23-35 Hypothalamic regulation of food intake and energy expenditure. (a) Anatomy of the hypothalamus and its interaction with adipose tissue. (b) Details of the interaction between the hypothalamus and an adipocyte, described later in the text.
neuronal signals to the region of the brain that affects appetite. Leptin also stimulates the sympathetic nervous system, increasing blood pressure, heart rate, and thermogenesis by uncoupling the mitochondria of white adipocytes (Fig. 23-35b). Recall that thermogenin, or UCP, forms a channel in the inner mitochondrial membrane that allows protons to reenter the mitochondrial matrix without passing through the ATP synthase complex. This permits continual oxidation of fuel (fatty acids in an adipocyte) without ATP synthesis, dissipating energy as heat and consuming dietary calories or stored fats in potentially very large amounts.

Leptin Stimulates Production of Anorexigenic Peptide Hormones

Two types of neurons in the arcuate nucleus control fuel intake and metabolism (Fig. 23-36). The orexigenic (appetite-stimulating) neurons stimulate eating by producing and releasing neuropeptide Y (NPY), which causes the next neuron in the circuit to send the signal to the brain: Eat! The blood level of NPY rises during starvation, and is elevated in both ob/ob and db/db mice. The high NPY concentration presumably underlies the obesity of these mice, who eat voraciously.

FIGURE 23-36 Hormones that control eating. In the arcuate nucleus, two sets of neurosecretory cells receive hormonal input and relay neuronal signals to the cells of muscle, adipose tissue, and liver. Leptin and insulin are released from adipose tissue and pancreas, respectively, in proportion to the mass of body fat. The two hormones act on anorexigenic neurosecretory cells to trigger release of α-MSH (melanocortin); this produces neuronal signals to eat less and metabolize more fuel. Leptin and insulin also act on orexigenic neurosecretory cells to inhibit the release of NPY, reducing the "eat" signal sent to the tissues. As described later in the text, the gastric hormone ghrelin stimulates appetite by activating the NPY-expressing cells; PYY3−36, released from the colon, inhibits these neurons and thereby decreases appetite. Each of the two types of neurosecretory cells inhibits hormone production by the other, so any stimulus that activates orexigenic cells inactivates anorexigenic cells, and vice versa. This strengthens the effect of stimulatory inputs.
The anorexigenic (appetite-suppressing) neurons in the arcuate nucleus produce α-melanocyte-stimulating hormone (α-MSH; also known as melanocortin), formed from its polypeptide precursor pro-opiomelanocortin (POMC; Fig. 23–6). Release of α-MSH causes the next neuron in the circuit to send the signal to the brain: Stop eating!

The amount of leptin released by adipose tissue depends on both the number and the size of adipocytes. When weight loss decreases the mass of lipid tissue, leptin levels in the blood decrease, the production of NPY falls, and the processes in adipose tissue shown in Figure 23–35 are reversed. Uncoupling is diminished, slowing thermogenesis and saving fuel, and fat mobilization slows in response to reduced signaling by cAMP. Consumption of more food combined with more efficient utilization of fuel results in replenishment of the fat reserve in adipose, bringing the system back into balance.

Leptin may also be essential to the normal development of hypothalamic neuronal circuits. In mice, the outgrowth of nerve fibers from the arcuate nucleus during early brain development is slower in the absence of leptin, affecting both the orexigenic and (to a lesser extent) anorexigenic outputs of the hypothalamus. It is possible that the leptin levels during development of these circuits determine the details of the hardwiring of this regulatory system.

Leptin Triggers a Signaling Cascade That Regulates Gene Expression

The leptin signal is transduced by a mechanism also used by receptors for interferon and growth factors, the JAK-STAT system (Fig. 23–37; see Fig. 12–18). The leptin receptor, which has a single transmembrane segment, dimerizes when leptin binds to the extracellular domains of two monomers. Both monomers are phosphorylated on a Tyr residue of their intracellular domain by a Janus kinase (JAK). The Tyr residues become docking sites for three proteins that are signal transducers and activators of transcription (STATs 3, 5, and 6; sometimes called fat-STATS). The docked STATs are then phosphorylated on Tyr residues by the same JAK. After phosphorylation, the STATs dimerize then move to the nucleus, where they bind to specific DNA sequences and stimulate the expression of target genes, including the gene for POMC, from which α-MSH is produced.

The increased catabolism and thermogenesis triggered by leptin are due in part to increased synthesis of the mitochondrial uncoupling protein thermogenin (product of the *UCP1* gene) in adipocytes. Leptin stimulates the synthesis of thermogenin by altering synaptic transmissions from neurons in the arcuate nucleus to adipose and other tissues. In these tissues, leptin causes increased release of norepinephrine, which acts through β3-adrenergic receptors to stimulate transcription of the *UCP1* gene. The resulting uncoupling of electron transfer from oxidative phosphorylation consumes fat and is thermogenic (Fig. 23–35).

Might human obesity be the result of insufficient leptin production, and therefore treatable by the injection of leptin? Blood levels of leptin are in fact usually much higher in obese animals (including humans) than in animals of normal body mass (except, of course, in *ob/ob* mutants, which cannot make leptin). Some downstream element in the leptin response system must be defective in obese individuals, and the elevation in leptin is the result of an (unsuccessful) attempt to overcome the leptin resistance. In those very rare humans with extreme obesity who have a defective leptin gene (*OB*), leptin injection does result in dramatic weight loss. In the vast majority of obese individuals, however, the *OB* gene is intact. In clinical trials, the injection of leptin did not have the weight-reducing effect observed in obese *ob/ob* mice. Clearly, most cases of human obesity involve one or more factors in addition to leptin.
The Leptin System May Have Evolved to Regulate the Starvation Response

The leptin system probably evolved to adjust an animal’s activity and metabolism during periods of fasting and starvation, not as a means to restrict weight gain. The reduction in leptin level triggered by nutritional deficiency reverses the thermogenic processes illustrated in Figure 23–35, allowing fuel conservation. Leptin (acting in the hypothalamus) also triggers decreased production of thyroid hormone (slowing basal metabolism), decreased production of sex hormones (preventing reproduction), and increased production of glucocorticoids (mobilizing the body’s fuel-generating resources). By minimizing energy expenditure and maximizing the use of endogenous reserves of energy, these leptin-mediated responses may allow an animal to survive periods of severe nutritional deprivation. In liver and muscle, leptin stimulates AMP-activated protein kinase (AMPK), and through its action inhibits fatty acid synthesis and activates fatty acid oxidation, favoring energy-producing processes.

Insulin Acts in the Arcuate Nucleus to Regulate Eating and Energy Conservation

Insulin secretion reflects both the size of fat reserves (adiposity) and the current energy balance (blood glucose level). Insulin acts on insulin receptors in the hypothalamus to inhibit eating (Fig. 23–36). Insulin receptors in the orexigenic neurons of the arcuate nucleus inhibit the release of NPY, and insulin receptors in the anorexigenic neurons stimulate α-MSH production, thereby decreasing fuel intake and increasing thermogenesis. By mechanisms discussed in Section 23.3, insulin also signals muscle, liver, and adipose tissues to increase the conversion of glucose to acetyl-CoA, providing the starting material for fat synthesis.

Leptin makes the cells of liver and muscle more sensitive to insulin. One hypothesis to explain this effect suggests cross-talk between the protein tyrosine kinases activated by leptin and those activated by insulin (Fig. 23–38); common second messengers in the two signaling pathways allow leptin to trigger some of the same downstream events that are triggered by insulin, through insulin receptor substrate-2 (IRS-2) and phosphoinositide 3-kinase (PI-3K) (Fig. 12–16).

Adiponectin Acts through AMPK to Increase Insulin Sensitivity

Adiponectin is a peptide hormone (224 amino acids) produced almost exclusively in adipose tissue, an adipokine that sensitizes other organs to the effects of insulin, protects against atherosclerosis, and inhibits inflammatory responses (monocyte adhesion, macrophage transformation, and the proliferation and migration of the cells of vascular smooth muscle). Adiponectin circulates in the blood and powerfully affects the metabolism of fatty acids and carbohydrates in liver and muscle. It increases the uptake of fatty acids from the blood by myocytes and the rate at which fatty acids undergo β oxidation in muscle. It also blocks fatty acid synthesis and gluconeogenesis in hepatocytes, and stimulates glucose uptake and catabolism in muscle and liver.

These effects of adiponectin are indirect and not fully understood, but AMPK clearly mediates many of them. Acting through its plasma membrane receptor, adiponectin triggers phosphorylation and activation of AMPK. Recall (see Fig. 15–6) that AMPK is activated by factors that signal the need to shift metabolism away from biosynthesis and toward energy production (Fig. 23–39). When activated, AMPK phosphorylates target proteins critical to the metabolism of lipids and carbohydrates, with profound effects on the metabolism of the whole animal (Fig. 23–40). Adiponectin receptors are also present in the brain; the hormone activates AMPK in the hypothalamus, stimulating food intake and reducing energy expenditure.

One enzyme regulated by AMPK in the liver and in white adipose tissue is acetyl-CoA carboxylase, which produces malonyl-CoA, the first intermediate committed to fatty acid synthesis. Malonyl-CoA is a powerful inhibitor of the enzyme carnitine acyltransferase I,
23.4 Obesity and the Regulation of Body Mass

FIGURE 23-39 The role of AMP-activated protein kinase (AMPK) in regulating ATP metabolism. ADP produced in synthetic reactions is converted to AMP by adenylate kinase. AMP activates AMPK, which regulates anabolic and catabolic pathways by phosphorylating key enzymes (see Fig. 23-40).

Fig. 17–12). Cholesterol synthesis is also inhibited by AMPK, which phosphorylates and inactivates HMG-CoA reductase, an enzyme in the path to cholesterol (see Fig. 21–34). Similarly, AMPK inhibits fatty acid synthase and acyl transferase, effectively blocking the synthesis of triacylglycerols.

Mice with defective adiponectin genes are less sensitive to insulin than those with normal adiponectin, and they show poor glucose tolerance: ingestion of dietary carbohydrate causes a long-lasting rise in blood glucose. These metabolic defects resemble those of humans with type 2 diabetes, who are similarly **insulin-insensitive** and clear glucose from the blood more slowly.

FIGURE 23–40 Formation of adiponectin and its actions through AMPK. Extended fasting or starvation results in decreased reserves of triacylglycerols in adipose tissue, which triggers adiponectin production and release from adipocytes. The rise in plasma adiponectin acts through its plasma membrane receptors in various cell types and organs to inhibit energy-consuming processes and stimulate energy-producing processes. Adiponectin acts through its receptors in the brain to stimulate feeding behavior and inhibit energy-consuming physical activity, and to inhibit thermogenesis in brown fat. This hormone exerts its metabolic effects by activating AMPK, which regulates (by phosphorylation) specific enzymes in key metabolic processes (see Fig. 15–6). PFK-2, phosphofructokinase-2; GLUT1 and GLUT4, glucose transporters; FAS 1, fatty acid synthase 1; ACC, acetyl-CoA carboxylase; HSL, hormone-sensitive lipase; HMG-R, HMG-CoA reductase; GPAT, acyltransferase; GS, glycogen synthase; eEF2, eukaryotic elongation factor 2 (required for protein synthesis; see Chapter 27); mTOR, mammalian target of rapamycin (a protein kinase that regulates protein synthesis on the basis of nutrient availability). Thiazolidinedione drugs activate the transcription factor PPARγ (see Figs 23–41, 23–42), which then turns on adiponectin synthesis, indirectly activating AMPK. Exercise, through conversion of ATP to ADP and AMP, also stimulates AMPK.

which starts the process of β oxidation by transporting fatty acids into the mitochondrion (see Fig. 17–6). By phosphorylating and inactivating acetyl-CoA carboxylase, AMPK inhibits fatty acid synthesis while relieving the inhibition (by malonyl-CoA) of β oxidation (see Cardiac glycolysis, glucose transport, fatty acid oxidation, fatty acid synthesis, lipolysis, cholesterol isoprenoid synthesis, triacylglycerol synthesis, glycogen synthesis, protein synthesis, PFK-2, GLUT1, GLUT4, FAS, ACC, HSL, HMG-R, GPAT, GS, eEF2, mTOR).
Hormonal Regulation and Integration of Mammalian Metabolism

only slowly. Indeed, individuals with obesity or type 2 diabetes have lower blood adiponectin levels than nondiabetic controls. Moreover, drugs used in the treatment of type 2 diabetes—the thiazolidinediones, such as rosiglitazone (Avandia) and pioglitazone (Actos) (p. 824)—increase the expression of adiponectin mRNA in adipose tissue and increase blood adiponectin levels in experimental animals; they also activate AMPK (Fig. 23-40). (In 2007 the safety of Avandia was being reassessed because of an associated increased risk of heart attack.) It seems likely that adiponectin will prove to be an important link between type 2 diabetes and its most important predisposing factor, obesity.

Diet Regulates the Expression of Genes Central to Maintaining Body Mass

Proteins in a family of ligand-activated transcription factors, the peroxisome proliferator-activated receptors (PPARs), respond to changes in dietary lipid by altering the expression of genes involved in fat and carbohydrate metabolism. These transcription factors were first recognized for their roles in peroxisome synthesis—thus their name. Their normal ligands are fatty acids or fatty acid derivatives, but they can also bind synthetic agonists and can be activated in the laboratory by genetic manipulation. PPARα, PPARδ, and PPARγ are members of this nuclear receptor superfamily. They act in the nucleus by forming heterodimers with another nuclear receptor, RXR (retinoid X receptor), binding to regulatory regions of DNA near the genes under their control and changing the rate of transcription of those genes (Fig. 23-41).

PPARγ, expressed primarily in liver and adipose tissue, is involved in turning on genes necessary to the differentiation of fibroblasts into adipocytes and genes that encode proteins required for lipid synthesis and storage in adipocytes (Fig. 23-42). PPARγ is activated by the thiazolidinedione drugs that are used to treat type 2 diabetes.

FIGURE 23-41 Mode of action of PPARs. PPARs are transcription factors that, when bound to their cognate ligand (L), form heterodimers with the nuclear receptor RXR. The dimer binds specific regions of DNA known as response elements, stimulating transcription of genes in those regions.

FIGURE 23-42 Metabolic integration by PPARs. The three PPAR isoforms regulate lipid and glucose homeostasis through their coordinated effects on gene expression in liver, muscle, and adipose tissue. PPARα and PPARδ (and its closely related isoform PPARβ) regulate lipid utilization; PPARγ regulates lipid storage and insulin sensitivity of various tissues.
PPARα is expressed in liver, kidney, heart, skeletal muscle, and brown adipose tissue. The ligands that activate this transcription factor include eicosanoids, free fatty acids, and the class of drugs called fibrates, such as fenofibrate (TriCor) and ciprofibrate (Modalim), which are used to treat coronary heart disease by raising HDL and lowering blood triacylglycerols. In hepatocytes, PPARα turns on the genes necessary for the uptake and β oxidation of fatty acids and formation of ketone bodies during fasting.

PPARδ (and its closely related isotype, PPARβ) are key regulators of fat oxidation, which act by sensing changes in dietary lipid. PPARδ acts in liver and muscle, stimulating the transcription of at least nine genes encoding proteins for β oxidation and for energy dissipation through uncoupling of mitochondria. Normal mice overfed on high-fat diets accumulate massive amounts of both brown and white fat, and fat droplets accumulate in the liver. But when the same overfeeding experiment is carried out with mice that have a genetically altered, always active PPARδ, this fat accumulation is prevented. In mice with a nonfunctioning leptin receptor (db/db), activated PPARδ prevents the development of obesity that would otherwise occur (see Fig. 23–34). By stimulating fatty acid breakdown in uncoupled mitochondria, PPARδ causes fat depletion, weight loss, and thermogenesis. Seen in this light, thermogenesis is both a means of keeping warm and a defense against obesity. Clearly, PPARδ is a potential target for drugs to treat obesity.

Short-Term Eating Behavior Is Influenced by Ghrelin and PYY3–36

Ghrelin is a peptide hormone (28 amino acids) produced in cells lining the stomach. It was originally recognized as the stimulus for the release of growth hormone (ghre is the Proto-Indo-European root of "grow"), then subsequently shown to be a powerful appetite stimulant that works on a shorter time scale (between meals) than leptin and insulin. Ghrelin receptors are located in the pituitary gland (presumably mediating growth hormone release) and in the hypothalamus (affecting appetite), as well as in heart muscle and adipose tissue. The concentration of ghrelin in the blood varies strikingly between meals, peaking just before a meal and dropping sharply just after the meal (Fig. 23–43). Injection of ghrelin into humans produces immediate sensations of intense hunger. Individuals with Prader-Willi syndrome, whose blood levels of ghrelin are exceptionally high, have an uncontrollable appetite, leading to extreme obesity that often results in death before the age of 30.

PYY3–36 is a peptide hormone (34 amino acids) secreted by endocrine cells in the lining of the small intestine and colon in response to food entering from the stomach. The level of PYY3–36 in the blood rises after a meal and remains high for some hours. It is carried in the blood to the arcuate nucleus, where it acts on orexigenic neurons, inhibiting NPY release and reducing hunger (Fig. 23–36). Humans injected with PYY3–36 feel little hunger and eat less than normal amounts for about 12 hours.

This interlocking system of neuroendocrine controls of food intake and metabolism presumably evolved to protect against starvation and to eliminate counterproductive accumulation of fat (extreme obesity). The difficulty most people face in trying to lose weight testifies to the remarkable effectiveness of these controls.

SUMMARY 23.4 Obesity and the Regulation of Body Mass

- Obesity is increasingly common in the United States and other developed countries, and predisposes people toward several life-threatening conditions.
- Adipose tissue produces leptin, a hormone that regulates feeding behavior and energy expenditure so as to maintain adequate reserves of fat. Leptin production and release increase with the number and size of adipocytes.
- Leptin acts on receptors in the arcuate nucleus of the hypothalamus, causing the release of anorexigenic peptides, including α-MSH, that act in the brain to inhibit eating. Leptin also stimulates sympathetic nervous system action on adipocytes, leading to uncoupling of mitochondrial oxidative phosphorylation, with consequent thermogenesis.

- The signal-transduction mechanism for leptin involves phosphorylation of the JAK-STAT system. On phosphorylation by JAK, STATs can bind to regulatory regions in nuclear DNA and alter the expression of genes for proteins that set the level of metabolic activity and determine feeding behavior. Insulin acts on receptors in the arcuate nucleus, with results similar to those caused by leptin.

- The hormone adiponectin stimulates fatty acid uptake and oxidation and inhibits fatty acid synthesis, as well as sensitizing muscle and liver to insulin. Its actions are mediated by AMPK, which is also activated by low [AMP] and exercise.

- Ghrelin, a hormone produced in the stomach, acts on orexigenic neurons in the arcuate nucleus to produce hunger before a meal. PYY₃₋₃₆, a peptide hormone of the intestine, acts at the same site to lessen hunger after a meal.

23.5 Obesity, the Metabolic Syndrome, and Type 2 Diabetes

In the industrialized world, where the food supply is more than adequate, there is a growing epidemic of obesity and the type 2 diabetes associated with it. Worldwide, between 150 and 170 million people have diabetes, primarily of type 2. The projected number of cases rises to 220 million in 2010, and 360 million in 2030. The pathology of diabetes includes cardiovascular disease, renal failure, blindness, amputations due to poor healing in the extremities, and neuropathy. Clearly, it is essential to understand type 2 diabetes and its relationship to obesity, and to find countermeasures that prevent or reverse the damage done by this disease.

In Type 2 Diabetes the Tissues Become Insensitive to Insulin

The hallmark of type 2 diabetes is the development of insulin resistance: a state in which more insulin is needed to bring about the biological effects produced by a lower amount of insulin in the normal, healthy state. In the early stages of the disease, pancreatic β cells secrete enough insulin to overcome the lower insulin sensitivity of muscle and liver. But the β cells eventually fail, and the lack of insulin becomes apparent in the body's inability to regulate blood glucose. The intermediate stage, preceding type 2 diabetes mellitus, is sometimes called the metabolic syndrome, or syndrome X. This is typified by obesity, especially in the abdomen; hypertension (high blood pressure); abnormal blood lipids (high TAG and LDL, low HDL); slightly high blood glucose; and a reduced ability to clear glucose in the glucose-tolerance test. Individuals with metabolic syndrome often also show changes in blood proteins, changes that are associated with abnormal clotting (high fibrinogen concentration) or inflammation (high concentrations of the C-reactive peptide, which typically increases with an inflammatory response). About 27% of the adult population in the United States has these symptoms of metabolic syndrome!

According to the “lipid burden” hypothesis to explain the onset of type 2 diabetes, the action of PPARγ on adipocytes normally keeps the cells ready to synthesize and store triacylglycerols—the adipocytes are insulin-sensitive and produce leptin, which leads to their continued intracellular deposition of TAG. However, in obese individuals the adipocytes become filled with TAG, and the adipose tissue cannot meet any increased demand for TAG storage. Adipocytes and their precursors, preadipocytes, become less sensitive to insulin. Gene expression normally associated with the development of new adipocytes (genes for the transcription factors SREBP1 and PPARγ, for example) is downregulated in the adipocytes of obese individuals, but is upregulated in other tissues, including skeletal muscle and liver, which begin to store TAGs (Fig. 23.44). Substantial quantities of triacylglycerols are now stored “ectopically”—in abnormal locations. Moreover, according to this hypothesis, excess stored fatty acids and TAGs are toxic to liver and muscle. Some individuals are less well equipped genetically to handle this burden of ectopic lipids and are more susceptible to the cellular damage that leads to the development of type 2 diabetes. Insulin resistance probably involves impairment of several of the mechanisms by which insulin exerts its metabolic effects—changes in protein levels; changes in the activities of signaling enzymes and transcription factors. For example, both adiponectin synthesis in adipocytes and adiponectin level in the blood decrease with obesity, and increase with weight loss.

Chronic inflammation of adipose tissue is a common feature of obesity. Genes associated with inflammation and macrophage activity are upregulated, and macrophage invasion of adipose tissue is frequently detected in obese individuals. Lipid-laden adipocytes also undergo lipoapoptosis—programmed cell death triggered by abnormal concentrations of lipids.

Several of the drugs that are effective in improving insulin sensitivity in type 2 diabetes are known to act on specific proteins in signaling pathways, and their actions are consistent with the lipotoxicity model. Thiazolidinediones bind to PPARγ, turning on a set of adipocyte-specific genes and promoting the differentiation of preadipocytes to small
23.5 Obesity, the Metabolic Syndrome, and Type 2 Diabetes

Obesity, the Metabolic Syndrome, and Type 2 Diabetes

Obesity increases the risk of developing type 2 diabetes. In obesity, the capacity of adipose tissue to store TAGs is exhausted. The lipid-synthesizing machinery maintained by SREBP1 decreases as the expression of this transcription factor adipocytes decreases in adipocytes and increases in liver and muscle, and the latter tissues begin to store TAGs. This ectopic storage of lipids is better tolerated in some individuals than in others; the more-tolerant individuals are genetically less susceptible to the deleterious changes resulting from ectopic lipid storage (leading to type 2 diabetes) or are genetically better equipped to manage this storage.

Type 2 Diabetes Is Managed with Diet, Exercise, and Medication

Studies show that three factors improve the health of individuals with type 2 diabetes: dietary restriction, regular exercise, and drugs that increase insulin sensitivity or insulin production. Dietary restriction (and accompanying weight loss) reduces the overall burden of handling fatty acids. The lipid composition of the diet influences, through PPARs and other transcription factors, the expression of genes that encode proteins involved in fatty acid oxidation and in energy expenditure via thermogenesis. Exercise activates AMPK, as does adiponectin; AMPK shifts metabolism toward fat oxidation and inhibits fat synthesis.

Several classes of drugs are used in the management of type 2 diabetes, some of which we have discussed earlier in the chapter (Table 23-7). Biguanides such as

<table>
<thead>
<tr>
<th>TABLE 23-7</th>
<th>Treatments for Type 2 Diabetes Mellitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention/treatment</td>
<td>Direct target</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Adipose tissue; reduces TAG content</td>
</tr>
<tr>
<td>Exercise</td>
<td>AMPK, activated by increasing [AMP]/[ATP]</td>
</tr>
<tr>
<td>Sulfonfonylureas: glipizide (Glucotrol), glyburide (several brands), glimepiride (Amaryl)</td>
<td>Pancreatic B cells; K⁺ channels blocked</td>
</tr>
<tr>
<td>Biguanides: metformin (Glucophage)</td>
<td>AMPK, activated</td>
</tr>
<tr>
<td>Thiazolidinediones: rosiglitazone (Avandia), pioglitazone (Actos)</td>
<td>PPARγ</td>
</tr>
<tr>
<td>GLP-1 modulators: exenatide (Byetta), sitagliptin (Januvia)</td>
<td>Glucagon-like peptide-1, dipeptide protease IV</td>
</tr>
</tbody>
</table>

*Voluntarily withdrawn because of side effects.

†Being reevaluated because of emerging side effects.
metformin (Glucophage) activate AMPK, mimicking the effects of adiponectin. Thiazolidinediones act through PPARs to increase the concentration of adiponectin in plasma to stimulate adipocyte differentiation, thereby increasing the capacity for TAG storage. Sulfonylureas act on the ATP-gated K+ channels in β cells to stimulate insulin release. Inhibitors of dipeptide protease IV (DPP IV) prevent the proteolytic degradation of glucagon-like peptide-1 (GLP-1), a peptide hormone produced in the gut that stimulates pancreatic insulin secretion. Inhibition of the peptidase prolongs the action of GLP-1, effectively increasing insulin secretion.

Clearly, a combination of weight loss and exercise is the preferred way to prevent development of the metabolic syndrome and type 2 diabetes. Recent findings suggest an interesting possibility for aiding weight loss and reducing the amount of TAG that must be stored. The protein PRDM16 is expressed strongly, and perhaps uniquely, in brown adipose tissue. Its exact function is unknown, but the protein has a zinc finger, typical of many proteins that interact with DNA and influence transcription (see Fig. 28-12). When overexpressed in the adipose tissue of mice, PRDM16 induces the differentiation of preadipocytes in white adipose tissue into brown adipocytes, with high levels of thermogenin and strikingly uncoupled respiration. Such cells could, in principle, consume fatty acids above the amount needed for ATP production, converting the energy of oxidation to heat. Given the widespread and increasing occurrence of type 2 diabetes, research into methods for avoiding or reversing the disease is sure to attract a great deal of interest.

SUMMARY 23.5 Obesity, the Metabolic Syndrome, and Type 2 Diabetes

- The metabolic syndrome, which includes obesity, hypertension, elevated blood lipids, and insulin resistance, is often the prelude to type 2 diabetes.
- The insulin resistance that characterizes type 2 diabetes may be a consequence of abnormal lipid storage in muscle and liver, in response to a lipid intake that cannot be accommodated by adipose tissue.
- Expression of the enzymes of lipid synthesis is under tight and complex regulation. PPARs are transcription factors that determine the rate of synthesis of many enzymes involved in lipid metabolism and adipocyte differentiation.
- Effective treatments for type 2 diabetes include exercise, appropriate diet, and drugs that increase insulin sensitivity or insulin production.

Key Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>neuroendocrine system</td>
<td>901</td>
</tr>
<tr>
<td>radioimmunoassay (RIA)</td>
<td>902</td>
</tr>
<tr>
<td>Scatchard analysis</td>
<td>905</td>
</tr>
<tr>
<td>endocrine</td>
<td>906</td>
</tr>
<tr>
<td>paracrine</td>
<td>906</td>
</tr>
<tr>
<td>autocrine</td>
<td>906</td>
</tr>
<tr>
<td>insulin</td>
<td>906</td>
</tr>
<tr>
<td>epinephrine</td>
<td>907</td>
</tr>
<tr>
<td>norepinephrine</td>
<td>907</td>
</tr>
<tr>
<td>catecholamines</td>
<td>907</td>
</tr>
<tr>
<td>eicosanoid</td>
<td>907</td>
</tr>
<tr>
<td>steroid hormones</td>
<td>908</td>
</tr>
<tr>
<td>vitamin D hormone</td>
<td>908</td>
</tr>
<tr>
<td>retinoid hormones</td>
<td>908</td>
</tr>
<tr>
<td>thyroid hormones</td>
<td>909</td>
</tr>
<tr>
<td>nitric oxide (NO)</td>
<td>909</td>
</tr>
<tr>
<td>NO synthase</td>
<td>909</td>
</tr>
<tr>
<td>hypothalamus</td>
<td>909</td>
</tr>
<tr>
<td>posterior pituitary</td>
<td>909</td>
</tr>
<tr>
<td>anterior pituitary</td>
<td>909</td>
</tr>
<tr>
<td>tropic hormones</td>
<td>909</td>
</tr>
<tr>
<td>tropins</td>
<td>909</td>
</tr>
<tr>
<td>hepatocyte</td>
<td>913</td>
</tr>
<tr>
<td>white adipose tissue</td>
<td>916</td>
</tr>
<tr>
<td>adipocyte</td>
<td>916</td>
</tr>
<tr>
<td>brown adipose tissue</td>
<td>917</td>
</tr>
<tr>
<td>thermogenin (uncoupling protein)</td>
<td>917</td>
</tr>
<tr>
<td>thermogenesis</td>
<td>917</td>
</tr>
<tr>
<td>myocyte</td>
<td>918</td>
</tr>
<tr>
<td>erythrocyte</td>
<td>921</td>
</tr>
<tr>
<td>leukocyte</td>
<td>921</td>
</tr>
<tr>
<td>lymphocyte</td>
<td>921</td>
</tr>
<tr>
<td>platelets</td>
<td>921</td>
</tr>
<tr>
<td>blood plasma</td>
<td>921</td>
</tr>
<tr>
<td>plasma proteins</td>
<td>921</td>
</tr>
<tr>
<td>ATP-gated K+ channels</td>
<td>924</td>
</tr>
<tr>
<td>glucagon</td>
<td>925</td>
</tr>
<tr>
<td>cortisol</td>
<td>929</td>
</tr>
<tr>
<td>diabetes mellitus</td>
<td>929</td>
</tr>
<tr>
<td>type 1 diabetes</td>
<td>929</td>
</tr>
<tr>
<td>type 2 diabetes</td>
<td>929</td>
</tr>
<tr>
<td>ketosis</td>
<td>929</td>
</tr>
<tr>
<td>acidosi</td>
<td>930</td>
</tr>
<tr>
<td>ketoacidosis</td>
<td>932</td>
</tr>
<tr>
<td>glucose-tolerance test</td>
<td>930</td>
</tr>
<tr>
<td>obesity</td>
<td>930</td>
</tr>
<tr>
<td>adipokines</td>
<td>930</td>
</tr>
<tr>
<td>leptin</td>
<td>931</td>
</tr>
<tr>
<td>leptin receptor</td>
<td>933</td>
</tr>
<tr>
<td>orexigenic</td>
<td>933</td>
</tr>
<tr>
<td>neuropeptide Y (NPY)</td>
<td>932</td>
</tr>
<tr>
<td>anorexigenic</td>
<td>933</td>
</tr>
<tr>
<td>α-melanocyte-stimulating hormone (α-MSH)</td>
<td>933</td>
</tr>
<tr>
<td>JAK (Janus kinase)</td>
<td>933</td>
</tr>
<tr>
<td>STAT (signal transducer and activator of</td>
<td>933</td>
</tr>
<tr>
<td>transcription)</td>
<td>933</td>
</tr>
<tr>
<td>AMP-activated protein kinase (AMPK)</td>
<td>934</td>
</tr>
<tr>
<td>adiponectin</td>
<td>934</td>
</tr>
<tr>
<td>PPAR (peroxisome proliferator-activated</td>
<td>936</td>
</tr>
<tr>
<td>receptor)</td>
<td></td>
</tr>
<tr>
<td>ghrelin</td>
<td>937</td>
</tr>
<tr>
<td>PYY₃-36</td>
<td>937</td>
</tr>
<tr>
<td>metabolic syndrome</td>
<td>938</td>
</tr>
</tbody>
</table>

Further Reading

General Background and History

History of the development of radioimmunoassays; the author's Nobel lecture.
Tissue-Specific Metabolism

Hormonal Regulation of Fuel Metabolism

Control of Body Mass

A decrease in leptin is an important signal for the switch between fed and fasted states.

Review of the structure, function, and role of uncoupling proteins.

Intermediate-level review of all aspects of leptin biology.

Detailed review of the role of leptin in body-weight regulation, the control of food intake, and the roles of white and brown adipose tissues in energy expenditure.

Short review of biochemistry of weight control, and introduction to several papers in the same issue of Science on obesity in humans.

Obesity, the Metabolic Syndrome, and Type 2 Diabetes

Introduction to a series of reviews about type 2 diabetes in this issue of the journal.

Intermediate-level review.

Clear statement of the “lipid burden” hypothesis for the origin of type 2 diabetes.

Signals from fat cells directly promote insulin resistance and trigger inflammation, which may in turn cause type 2 diabetes, cardiovascular disease, increased cancer risk, and other obesity-associated problems.

Overexpression of PRDM16 leads to development of brown adipose tissue.

Problems

1. Peptide Hormone Activity Explain how two peptide hormones as structurally similar as oxytocin and vasopressin can have such different effects (see Fig. 23–10).

2. ATP and Phosphocreatine as Sources of Energy for Muscle During muscle contraction, the concentration of phosphocreatine in skeletal muscle drops while the concentration of ATP remains fairly constant. However, in a classic experiment, Robert Davies found that if he first treated muscle with 1-fluoro-2,4-dinitrobenzene (p 94), the concentration of ATP declined rapidly while the concentration of phosphocreatine remained unchanged during a series of contractions. Suggest an explanation.

3. Metabolism of Glutamate in the Brain Brain tissue takes up glutamate from the blood, transforms it into glutamine, and releases the glutamine into the blood. What is accomplished by this metabolic conversion? How does it take place? The amount of glutamine produced in the brain can actually exceed the amount of glutamate entering from the blood. How does this extra glutamine arise? (Hint: You may want to review amino acid catabolism in Chapter 18; recall that NH₄⁺ is very toxic to the brain.)

4. Proteins as Fuel during Fasting When muscle proteins are catabolized in skeletal muscle during a fast, what are the fates of the amino acids?

5. Absence of Glycerol Kinase in Adipose Tissue Glycerol 3-phosphate is required for the biosynthesis of triacylglycerols. Adipocytes, specialized for the synthesis and degradation of triacylglycerols, cannot use glycerol directly, because they lack glycerol kinase, which catalyzes the reaction

 \[
 \text{Glycerol + ATP} \rightarrow \text{glycerol 3-phosphate + ADP}
 \]

 How does adipose tissue obtain the glycerol 3-phosphate necessary for triacylglycerol synthesis?

6. Oxygen Consumption during Exercise A sedentary adult consumes about 0.05 L of O₂ in 10 seconds. A sprinter, running a 100 m race, consumes about 1 L of O₂ in 10 seconds. After finishing the race, the sprinter continues to breathe at an elevated (but declining) rate for some minutes, consuming an extra 4 L of O₂ above the amount consumed by the sedentary individual.

 (a) Why does the need for O₂ increase dramatically during the sprint?
 (b) Why does the demand for O₂ remain high after the sprint is completed?

7. Thiamine Deficiency and Brain Function Individuals with thiamine deficiency show some characteristic neurological signs and symptoms, including loss of reflexes, anxiety, and mental confusion. Why might thiamine deficiency be manifested by changes in brain function?

8. Potency of Hormones Under normal conditions, the human adrenal medulla secretes epinephrine (C₇H₁₃NO₃) at a rate sufficient to maintain a concentration of 10⁻¹⁰ m in circulating blood. To appreciate what that concentration means, calculate the diameter of a round swimming pool, with a water depth of 2.0 m, that would be needed to dissolve 1.0 g (about 1 teaspoon) of epinephrine to a concentration equal to that in blood.

 (a) What is the importance of the relatively rapid inactivation of circulating hormones?
 (b) In view of this rapid inactivation, how is the level of circulating hormone kept constant under normal conditions?
 (c) In what ways can the organism make rapid changes in the level of a circulating hormone?

9. Regulation of Hormone Levels in the Blood The half-life of most hormones in the blood is relatively short. For example, when radioactively labeled insulin is injected into an animal, half of the labeled hormone disappears from the blood within 30 min.

 (a) What is the importance of the relatively rapid inactivation of circulating hormones?
 (b) In view of this rapid inactivation, how is the level of circulating hormone kept constant under normal conditions?
 (c) In what ways can the organism make rapid changes in the level of a circulating hormone?

10. Water-Soluble versus Lipid-Soluble Hormones On the basis of their physical properties, hormones fall into one of two categories: those that are very soluble in water but relatively insoluble in lipids (e.g., epinephrine) and those that are relatively insoluble in water but highly soluble in lipids (e.g., steroid hormones). In their role as regulators of cellular activity, most water-soluble hormones do not enter their target cells. The lipid-soluble hormones, by contrast, do enter their target cells and ultimately act in the nucleus. What is the correlation between solubility, the location of receptors, and the mode of action of these two classes of hormones?

11. Metabolic Differences between Muscle and Liver in a “Fight-or-Flight” Situation When an animal confronts a “fight-or-flight” situation, the release of epinephrine promotes glycogen breakdown in the liver, heart, and skeletal muscle. The end product of glycogen breakdown in the liver is glucose; the end product in skeletal muscle is pyruvate.

 (a) What is the reason for the different products of glycogen breakdown in the two tissues?
 (b) What is the advantage to an animal that must fight or flee of these specific glycogen breakdown routes?

12. Excessive Amounts of Insulin Secretion: Hyperinsulinism Certain malignant tumors of the pancreas cause excessive production of insulin by the β cells. Affected individuals exhibit shaking and trembling, weakness and fatigue, sweating, and hunger.

 (a) What is the effect of hyperinsulinism on the metabolism of carbohydrates, amino acids, and lipids by the liver?
 (b) What are the causes of the observed symptoms? Suggest why this condition, if prolonged, leads to brain damage.

13. Thermogenesis Caused by Thyroid Hormones Thyroid hormones are intimately involved in regulating the basal metabolic rate. Liver tissue of animals given excess thyroxine shows an increased rate of O₂ consumption and increased heat output (thermogenesis), but the ATP concentration in the tissue
is normal. Different explanations have been offered for the thermogenic effect of thyroxine. One is that excess thyroxine causes uncoupling of oxidative phosphorylation in mitochondria. How could such an effect account for the observations? Another explanation suggests that the thermogenesis is due to an increased rate of ATP utilization by the thyroxine-stimulated tissue. Is this a reasonable explanation? Why?

14. Function of Prohormones What are the possible advantages of synthesizing hormones as prohormones?

15. Sources of Glucose during Starvation The typical human adult uses about 160 g of glucose per day, 120 g of which is used by the brain. The available reserve of glucose (~20 g of circulating glucose and ~190 g of glycogen) is adequate for about one day. After the reserve has been depleted during starvation, how would the body obtain more glucose?

16. Parabiotic ob/ob Mice By careful surgery, researchers can connect the circulatory systems of two mice so that the same blood circulates through both animals. In these parabiotic mice, products released into the blood by one animal reach the other animal via the shared circulation. Both animals are free to eat independently. If a mutant ob/ob mouse (both copies of the OB gene are defective) and a normal OB/OB mouse (two good copies of the OB gene) were made parabiotic, what would happen to the weight of each mouse?

17. Calculation of Body Mass Index A portly biochemistry professor weighs 260 lb (118 kg) and is 5 feet 8 inches (173 cm) tall. What is his body mass index? How much weight would he have to lose to bring his body mass index down to 25 (normal)?

18. Insulin Secretion Predict the effects on insulin secretion by pancreatic B cells of exposure to the potassium ionophore valinomycin (p. 404). Explain your prediction.

19. Effects of a Deleted Insulin Receptor A strain of mice specifically lacking the insulin receptor of liver is found to have mild fasting hyperglycemia (blood glucose = 132 mg/dL, vs. 101 mg/dL in controls) and a more striking hyperglycemia in the fed state (glucose = 363 mg/dL, vs. 135 mg/dL in controls). The mice have higher than normal levels of glucose 6-phosphatase in the liver and elevated levels of insulin in the blood. Explain these observations.

20. Decisions on Drug Safety The drug Avandia (rosiglitazone) is effective in lowering blood glucose in patients with type 2 diabetes, but also seems to carry an increased risk of heart attack. If it were your responsibility to decide whether this drug should remain on the market (labeled with suitable warnings of its side effects) or should be withdrawn, what factors would you weigh in making your decision?

21. Type 2 Diabetes Medication The drugs acarbose (Precose) and miglitol (Glyset), used in the treatment of type 2 diabetes mellitus, inhibit α-glucosidases in the brush border of the small intestine. These enzymes degrade oligosaccharides derived from glycogen or starch to monosaccharides. Suggest a possible mechanism for the salutary effect of these drugs on individuals with diabetes. What side effects, if any, would you expect from these drugs? Why? (Hint: Review lactose intolerance, p. 545).

Data Analysis Problem

22. Cloning the Pancreatic β-Cell Sulfonylurea Receptor Glyburide, a member of the sulfonylurea family of drugs shown on p. 925, is used to treat type 2 diabetes. It binds to and closes the ATP-gated K+ channel shown in Figures 23–28 and 23–29.

(a) Given the mechanism shown in Figure 23–28, would treatment with glyburide result in increased or decreased insulin secretion by pancreatic β cells? Explain your reasoning.

(b) How does treatment with glyburide help reduce the symptoms of type 2 diabetes?

(c) Would you expect glyburide to be useful for treating type 1 diabetes? Why or why not?

Aguilar-Bryan and coauthors (1995) cloned the gene for the sulfonylurea receptor (SUR) portion of the ATP-gated K+ channel from hamsters. The research team went to great lengths to ensure that the gene they cloned was in fact the SUR-encoding gene. Here we explore how it is possible for researchers to demonstrate that they have actually cloned the gene of interest rather than another gene.

The first step was to obtain pure SUR protein. As was already known, drugs such as glyburide bind SUR with very high affinity (Kd < 10 nM), and SUR has a molecular weight of 140 to 170 kDa. Aguilar-Bryan and coworkers made use of the high-affinity glyburide binding to tag the SUR protein with a radioactive label that would serve as a marker to purify the protein from a cell extract. First, they made a radiolabeled derivative of glyburide, using radioactive iodine (125I):

![125I-labeled glyburide](image)

(d) In preliminary studies, the 125I-labeled glyburide derivative (hereafter, [125I]glyburide) was shown to have the same Kd and binding characteristics as unaltered glyburide. Why was it necessary to demonstrate this (what alternative possibilities did it rule out)?

Even though [125I]glyburide bound to SUR with high affinity, a significant amount of the labeled drug would probably dissociate from the SUR protein during purification. To prevent this, [125I]glyburide had to be covalently cross-linked to SUR. There are many methods for covalent cross-linking. Aguilar-Bryan and coworkers used UV light. When aromatic molecules are exposed to short-wave UV, they enter an excited state and readily form covalent bonds with nearby molecules. By cross-linking the radiolabeled glyburide to the SUR protein, the researchers could simply track the 125I radioactivity to follow SUR through the purification procedure.

Aguilar-Bryan and colleagues treated hamster HIT cells (which express SUR) with [125I]glyburide and UV light, purified
the ^{125}I-labeled 140 kDa protein, and sequenced its amino-terminal 25 amino acid segment; they found the sequence PLAFCGTENHSAAYRVDQGVLNNGC. The investigators then generated antibodies that bound to two short peptides in this sequence, one that bound to PLAFCGTE and the other to HSAAYRVDQGV, and showed that these antibodies bound the purified ^{125}I-labeled 140 kDa protein.

(e) Why was it necessary to include this antibody-binding step?

Next, the researchers designed PCR primers based on the sequences above, and cloned a gene from a hamster cDNA library that encoded a protein that included these sequences (see Chapter 9 on biotechnology methods). The cloned putative SUR cDNA hybridized to an mRNA of the appropriate length that was present in cells known to contain SUR. The putative SUR cDNA did not hybridize to any mRNA fraction of the mRNAs isolated from hepatocytes, which do not express SUR.

(f) Why was it necessary to include this putative SUR cDNA–mRNA hybridization step?

Finally, the cloned gene was inserted into and expressed in COS cells, which do not normally express the SUR gene. The investigators mixed these cells with ^{125}Iglyburide with or without a large excess of unlabeled glyburide, exposed the cells to UV light, and measured the radioactivity of the 140 kDa protein produced. Their results are shown in the table.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Cell type</th>
<th>Added putative SUR cDNA?</th>
<th>Added excess unlabeled glyburide?</th>
<th>^{125}I label in 140 kDa protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HIT</td>
<td>No</td>
<td>No</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>HIT</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>COS</td>
<td>No</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>COS</td>
<td>Yes</td>
<td>No</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>COS</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
</tr>
</tbody>
</table>

(g) Why was no ^{125}I-labeled 140 kDa protein found in experiment 2?

(h) How would you use the information in the table to argue that the cDNA encoded SUR?

(i) What other information would you want to collect to be more confident that you had cloned the SUR gene?

Reference

The third and final part of this book explores the biochemical mechanisms underlying the apparently contradictory requirements for both genetic continuity and the evolution of living organisms. What is the molecular nature of genetic material? How is genetic information transmitted from one generation to the next with high fidelity? How do the rare changes in genetic material that are the raw material of evolution arise? How is genetic information ultimately expressed in the amino acid sequences of the astonishing variety of protein molecules in a living cell?

Today's understanding of information pathways has arisen from the convergence of genetics, physics, and chemistry in modern biochemistry. This was epitomized by the discovery of the double-helical structure of DNA, postulated by James Watson and Francis Crick in 1953 (see Fig. 8-13). Genetic theory contributed the concept of coding by genes. Physics permitted the determination of molecular structure by x-ray diffraction analysis. Chemistry revealed the composition of DNA. The profound impact of the Watson-Crick hypothesis arose from its ability to account for a wide range of observations derived from studies in these diverse disciplines.

This revolutionized our understanding of the structure of DNA and inevitably stimulated questions about its function. The double-helical structure itself clearly suggested how DNA might be copied so that the information it contains can be transmitted from one generation to the next. Clarification of how the information in DNA is converted into functional proteins came with the discovery of messenger RNA and transfer RNA and with the deciphering of the genetic code.

These and other major advances gave rise to the central dogma of molecular biology, comprising the three major processes in the cellular utilization of genetic information. The first is replication, the copying of parental DNA to form daughter DNA molecules with identical nucleotide sequences. The second is transcription, the process by which parts of the genetic message encoded in DNA are copied precisely into RNA. The third is translation, whereby the genetic message encoded in messenger RNA is translated on the ribosomes into a polypeptide with a particular sequence of amino acids.

The central dogma of molecular biology, showing the general pathways of information flow via replication, transcription, and translation. The term "dogma" is a misnomer, and is retained for historical reasons only. Introduced by Francis Crick at a time when little evidence supported these ideas, the dogma has become a well-established principle.
Part III explores these and related processes. In Chapter 24 we examine the structure, topology, and packaging of chromosomes and genes. The processes underlying the central dogma are elaborated in Chapters 25 through 27. Finally, we turn to regulation, examining how the expression of genetic information is controlled (Chapter 28).

A major theme running through these chapters is the added complexity inherent in the biosynthesis of macromolecules that contain information. Assembling nucleic acids and proteins with particular sequences of nucleotides and amino acids represents nothing less than preserving the faithful expression of the template upon which life itself is based. We might expect the formation of phosphodiester bonds in DNA or peptide bonds in proteins to be a trivial feat for cells, given the arsenal of enzymatic and chemical tools described in Part II. However, the framework of patterns and rules established in our examination of metabolic pathways thus far must be enlarged considerably to take into account molecular information. Bonds must be formed between particular subunits in informational biopolymers, avoiding either the occurrence or the persistence of sequence errors. This has an enormous impact on the thermodynamics, chemistry, and enzymology of the biosynthetic processes. Formation of a peptide bond requires an energy input of only about 21 kJ/mol of bonds and can be catalyzed by relatively simple enzymes. But to synthesize a bond between two specific amino acids at a particular point in a polypeptide, the cell invests about 125 kJ/mol while making use of more than 200 enzymes, RNA molecules, and specialized proteins. The chemistry involved in peptide bond formation does not change because of this requirement, but additional processes are layered over the basic reaction to ensure that the peptide bond is formed between particular amino acids. Information is expensive.

The dynamic interaction between nucleic acids and proteins is another central theme of Part III. With the important exception of a few catalytic RNA molecules (discussed in Chapters 26 and 27), the processes that make up the pathways of cellular information flow are catalyzed and regulated by proteins. An understanding of these enzymes and other proteins can have practical as well as intellectual rewards, because they form the basis of recombinant DNA technology (introduced in Chapter 9).

Evolution again constitutes an overarching theme. Many of the processes outlined in Part III can be traced back billions of years, and a few can be traced to LUCA, the Last Universal Common Ancestor. The ribosome, most of the translational apparatus, and some parts of the transcriptional machinery are shared by every living organism on this planet. Genetic information is a kind of molecular clock that can help define ancestral relationships among species. Shared information pathways connect humans to every other species now living on Earth, and to all species that came before. Exploration of these pathways is allowing scientists to slowly open the curtain on the first act—the events that may have heralded the beginning of life on Earth.
their cellular or viral packages? To address this question, we shift our focus from the secondary structure of DNA, considered in Chapter 8, to the extraordinary degree of organization required for the tertiary packaging of DNA into chromosomes—the repositories of genetic information. The chapter begins with an examination of the elements that make up viral and cellular chromosomes, and then considers chromosomal size and organization. We then discuss DNA topology, describing the coiling and supercoiling of DNA molecules. Finally, we consider the protein-DNA interactions that organize chromosomes into compact structures.

24.1 Chromosomal Elements

Cellular DNA contains genes and intergenic regions, both of which may serve functions vital to the cell. The more complex genomes, such as those of eukaryotic cells, demand increased levels of chromosomal organization, and this is reflected in the chromosomes’ structural features. We begin by considering the different types of DNA sequences and structural elements within chromosomes.

Genes Are Segments of DNA That Code for Polypeptide Chains and RNAs

Our understanding of genes has evolved tremendously over the last century. Classically, a gene was defined as a portion of a chromosome that determines or affects a single character or phenotype (visible property), such as eye color. George Beadle and Edward Tatum proposed a molecular definition of a gene in 1940. After exposing spores of the fungus Neurospora crassa to x rays and other agents known to damage DNA and cause alterations in DNA sequence (mutations), they detected mutant fungal strains that lacked one or another specific enzyme, sometimes resulting in the failure of an entire metabolic pathway. Beadle and Tatum concluded that a gene is a segment of genetic material that determines, or codes
for, one enzyme: the one gene—one enzyme hypothesis. Later this concept was broadened to one gene—one polypeptide, because many genes code for a protein that is not an enzyme or for one polypeptide of a multisubunit protein.

The modern biochemical definition of a gene is even more precise. A gene is all the DNA that encodes the primary sequence of some final gene product, which can be either a polypeptide or an RNA with a structural or catalytic function. DNA also contains other segments or sequences that have a purely regulatory function. Regulatory sequences provide signals that may denote the beginning or the end of genes, or influence the transcription of genes, or function as initiation points for replication or recombination (Chapter 28). Some genes can be expressed in different ways to generate multiple gene products from a single segment of DNA. The special transcriptional and translational mechanisms that allow this are described in Chapters 26 through 28.

We can estimate directly the minimum overall size of genes that encode proteins. As described in detail in Chapter 27, each amino acid of a polypeptide chain is coded for by a sequence of three consecutive nucleotides in a single strand of DNA (Fig. 24–2), with these “codons” arranged in a sequence that corresponds to the sequence of amino acids in the polypeptide that the gene encodes. A polypeptide chain of 350 amino acid residues (an average-size chain) corresponds to 1,050 bp. Many genes in eukaryotes and a few in bacteria and archaea are interrupted by noncoding DNA segments and are therefore considerably longer than this simple calculation would suggest.

How many genes are in a single chromosome? The Escherichia coli chromosome, one of the bacterial genomes that have been completely sequenced, is a circular DNA molecule (in the sense of an endless loop rather than a perfect circle) with 4,639,675 bp. These base pairs encode about 4,300 genes for proteins and another 157 genes for structural or catalytic RNA molecules. Among eukaryotes, the approximately 3.1 billion base pairs of the human genome include almost 29,000 genes on 24 different chromosomes.

<table>
<thead>
<tr>
<th>DNA</th>
<th>mRNA</th>
<th>Polypeptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>5′</td>
<td>3′</td>
<td>5′</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>C</td>
</tr>
</tbody>
</table>

FIGURE 24–2 Colinearity of the coding nucleotide sequences of DNA and mRNA and the amino acid sequence of a polypeptide chain. The triplets of nucleotide units in DNA determine the amino acids in a protein through the intermediary mRNA. One of the DNA strands serves as a template for synthesis of mRNA, which has nucleotide triplets (codons) complementary to those of the DNA. In some bacterial and many eukaryotic genes, coding sequences are interrupted at intervals by regions of noncoding sequences (called introns).

DNA Molecules Are Much Longer Than the Cellular or Viral Packages That Contain Them

Chromosomal DNAs are often many orders of magnitude longer than the cells or viruses in which they are located (Fig. 24–1; Table 24–1). This is true of every class of organism or viral parasite.

Viruses Viruses are not free-living organisms; rather, they are infectious parasites that use the resources of a host cell to carry out many of the processes they require to propagate. Many viral particles consist of no more than a genome (usually a single RNA or DNA molecule) surrounded by a protein coat.

Almost all plant viruses and some bacterial and animal viruses have RNA genomes. These genomes tend to be particularly small. For example, the genomes of mammalian retroviruses such as HIV are about 9,000 nucleotides long, and the genome of the bacteriophage Qβ has 4,220 nucleotides. Both types of virus have single-stranded RNA genomes.
The genomes of DNA viruses vary greatly in size (Table 24–1). Many viral DNAs are circular for at least part of their life cycle. During viral replication within a host cell, specific types of viral DNA called replicative forms may appear; for example, many linear DNAs become circular and all single-stranded DNAs become double-stranded. A typical medium-sized DNA virus is bacteriophage \(\lambda\) (lambda), which infects \(E\). coli. In its replicative form inside cells, \(\lambda\) DNA is a circular double helix. This double-stranded DNA contains 48,502 bp and has a contour length of 17.5 \(\mu\)m. Bacteriophage \(\phi X174\) is a much smaller DNA virus; the DNA in the viral particle is a single-stranded circle, and the double-stranded replicative form contains 5,386 bp. Although viral genomes are small, the contour lengths of their DNAs are typically hundreds of times longer than the long dimensions of the viral particles that contain them (Table 24–1).

Bacteria A single \(E\). coli cell contains almost 100 times as much DNA as a bacteriophage \(\lambda\) particle. The chromosome of an \(E\). coli cell is a single double-stranded circular DNA molecule. Its 4,639,675 bp have a contour length of about 1.7 \(nm\), some 850 times the length of the \(E\). coli cell (Fig. 24–9). In addition to the very large, circular DNA chromosome in their nucleoid, many bacteria contain one or more small circular DNA molecules that are free in the cytosol. These extrachromosomal elements are called plasmids (Fig. 24–4; see also p. 307). Most plasmids are only a few thousand base pairs long, but some contain more than 10,000 bp. They carry genetic information and undergo replication to yield daughter plasmids, which pass into the daughter cells at cell division. Plasmids have been found in yeast and other fungi as well as in bacteria.

In many cases plasmids confer no obvious advantage on their host, and their sole function seems to be self-propagation. However, some plasmids carry genes that are useful to the host bacterium. For example, some plasmid genes make a host bacterium resistant to antibacterial agents. Plasmids carrying the gene for the enzyme \(\beta\)-lactamase confer resistance to \(\beta\)-lactam antibiotics such as penicillin, ampicillin, and amoxicillin (see Fig. 6–28). These and similar plasmids may pass from an antibiotic-resistant cell to an antibiotic-sensitive cell of the same or another bacterial species, making the recipient cell antibiotic resistant. The extensive use of antibiotics in some human populations has served as a strong selective force, encouraging the spread of antibiotic resistance–coding plasmids (as well as transposable elements, described below, that harbor similar genes) in disease-causing bacteria. Physicians are becoming increasingly reluctant to prescribe antibiotics unless a clear clinical need is confirmed. For similar reasons, the widespread use of antibiotics in animal feeds is being curbed.

Eukaryotes A yeast cell, one of the simplest eukaryotes, has 2.6 times more DNA in its genome than an \(E\). coli cell (Table 24–2). Cells of \(Drosophila\), the fruit fly used in classical genetic studies, contain more than 35 times as much DNA as \(E\). coli cells, and human cells have almost 700 times as much. The cells of many plants and amphibians contain even more. The genetic material of eukaryotic cells is apportioned into chromosomes, the diploid (2n) number depending on the species (Table 24–2). A human somatic cell, for example, has 46 chromosomes (Fig. 24–5). Each chromosome of a eukaryotic cell, such as that shown in Figure 24–5a, contains a single, very large, duplex DNA molecule. The DNA molecules in the 24 different types of human chromosomes (22 matching pairs plus the X and Y sex chromosomes) vary in length over a 25-fold range. Each type of chromosome in eukaryotes carries a characteristic set of genes.

The DNA of one human genome (22 chromosomes plus X and Y or two X chromosomes), placed end to end, would extend for about a meter. Most human cells are diploid and each cell contains a total of 2 m of DNA. An adult human body contains approximately \(10^{14}\) cells and thus a total DNA length of \(2 \times 10^{11} km\). Compare this with the circumference of the earth (\(4 \times 10^4 km\)) or the distance between the earth and the sun (\(1.5 \times 10^8 km\))—a dramatic illustration of the extraordinary degree of DNA compaction in our cells.

TABLE 24–1 The Sizes of DNA and Viral Particles for Some Bacterial Viruses (Bacteriophages)

<table>
<thead>
<tr>
<th>Virus</th>
<th>Size of viral DNA (bp)</th>
<th>Length of viral DNA (nm)</th>
<th>Long dimension of viral particle (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi X174)</td>
<td>5,386</td>
<td>1,939</td>
<td>25</td>
</tr>
<tr>
<td>T7</td>
<td>39,936</td>
<td>14,377</td>
<td>78</td>
</tr>
<tr>
<td>(\lambda) (lambda)</td>
<td>48,502</td>
<td>17,460</td>
<td>190</td>
</tr>
<tr>
<td>T4</td>
<td>168,889</td>
<td>60,800</td>
<td>210</td>
</tr>
</tbody>
</table>

Note: Data on size of DNA are for the replicative form (double-stranded). The contour length is calculated assuming that each base pair occupies a length of 3.4 \(\AA\) (see Fig. 8–13).
FIGURE 24–3 The length of the *E. coli* chromosome (1.7 mm) depicted in linear form relative to the length of a typical *E. coli* cell (2 μm).

![E. coli DNA](image)

FIGURE 24–4 DNA from a lysed *E. coli* cell. In this electron micrograph several small, circular plasmid DNAs are indicated by white arrows. The black spots and white specks are artifacts of the preparation.

<table>
<thead>
<tr>
<th>TABLE 24–2</th>
<th>DNA, Gene, and Chromosome Content in Some Genomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total DNA (bp)</td>
</tr>
<tr>
<td>Escherichia coli K12 (bacterium)</td>
<td>4,639,875</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae (yeast)</td>
<td>12,080,000</td>
</tr>
<tr>
<td>Caenorhabditis elegans (nematode)</td>
<td>90,269,800</td>
</tr>
<tr>
<td>Arabidopsis thaliana (plant)</td>
<td>119,186,200</td>
</tr>
<tr>
<td>Drosophila melanogaster (fruit fly)</td>
<td>120,987,300</td>
</tr>
<tr>
<td>Oryza sativa (rice)</td>
<td>480,000,000</td>
</tr>
<tr>
<td>Mus musculus (mouse)</td>
<td>2,634,266,500</td>
</tr>
<tr>
<td>Homo sapiens (human)</td>
<td>3,070,128,600</td>
</tr>
</tbody>
</table>

Note: This information is constantly being refined. For the most current information, consult the websites for the individual genome projects.

The diploid chromosome number is given for all eukaryotes except yeast.

\(^\dagger\)Haploid chromosome number. Wild yeast strains genetically have eight (octoploid) or more sets of these chromosomes.

\(^\ddagger\)Number for females, with two X chromosomes. Males have an X but no Y, thus 11 chromosomes in all.
Eukaryotic cells also have organelles, mitochondria (Fig. 24–6) and chloroplasts, that contain DNA. Mitochondrial DNA (mtDNA) molecules are much smaller than the nuclear chromosomes. In animal cells, mtDNA contains fewer than 20,000 bp (16,569 bp in human mtDNA) and is a circular duplex. Each mitochondrion typically has 2 to 10 copies of this mtDNA molecule, and the number can rise to hundreds in certain cells of an embryo that is undergoing cell differentiation. In a few organisms (trypanosomes, for example) each mitochondrion contains thousands of copies of mtDNA, organized into a complex and interlinked matrix known as a kinetoplast. Plant cell mtDNA ranges in size from 200,000 to 2,500,000 bp. Chloroplast DNA (cpDNA) also exists as circular duplexes and ranges in size from 120,000 to 160,000 bp. The evolutionary origin of mitochondrial and chloroplast DNAs has been the subject of much speculation. A widely accepted view is that they are vestiges of the chromosomes of ancient bacteria that gained access to the cytoplasm of host cells and became the precursors of these organelles (see Fig. 1–36). Mitochondrial DNA codes for the mitochondrial tRNAs and rRNAs and for a few mitochondrial proteins. More than 95% of mitochondrial proteins are encoded by nuclear DNA. Mitochondria and chloroplasts divide when the cell divides. Their DNA is replicated before and during division, and the daughter DNA molecules pass into the daughter organelles.

FIGURE 24–5 Eukaryotic chromosomes. (a) A pair of linked and condensed sister chromatids from a human chromosome. Eukaryotic chromosomes are in this state after replication at metaphase during mitosis. (b) A complete set of chromosomes from a leukocyte from one of the authors. There are 46 chromosomes in every normal human somatic cell.

FIGURE 24–6 A dividing mitochondrion. Some mitochondrial proteins and RNAs are encoded by one of the copies of the mitochondrial DNA (none of which are visible here). The DNA (mtDNA) is replicated each time the mitochondrion divides, before cell division.
Eukaryotic Genes and Chromosomes Are Very Complex

Many bacterial species have only one chromosome per cell and, in nearly all cases, each chromosome contains only one copy of each gene. A very few genes, such as those for rRNAs, are repeated several times. Genes and regulatory sequences account for almost all the DNA in bacteria. Moreover, almost every gene is precisely colinear with the amino acid sequence (or RNA sequence) for which it codes (Fig. 24–2).

The organization of genes in eukaryotic DNA is structurally and functionally much more complex. The study of eukaryotic chromosome structure, and more recently the sequencing of entire eukaryotic genomes, has yielded many surprises. Many, if not most, eukaryotic genes have a distinctive and puzzling structural feature: their nucleotide sequences contain one or more intervening segments of DNA that do not code for the amino acid sequence of the polypeptide product. These nontranslated inserts interrupt the otherwise colinear relationship between the nucleotide sequence of the gene and the amino acid sequence of the polypeptide it encodes. Such nontranslated DNA segments in genes are called intervening sequences or introns, and the coding segments are called exons. Few bacterial genes contain introns.

In higher eukaryotes, the typical gene has much more intron sequence than sequences devoted to exons. For example, in the gene coding for the single polypeptide chain of ovalbumin, an avian egg protein (Fig. 24–7), the introns are much longer than the exons; altogether, seven introns make up 85% of the gene’s DNA. In the gene for the β subunit of hemoglobin, a single intron contains more than half of the gene’s DNA. The gene for the muscle protein titin is the intron champion, with 78 introns. Genes for histones seem to have no introns. In most cases the function of introns is not clear. In total, only about 1.5% of human DNA is “coding” or exon DNA, carrying information for protein or RNA products. However, when the much larger introns are included in the count, as much as 30% of the human genome consists of genes.

The relative paucity of genes in the human genome leaves a lot of DNA unaccounted for. Figure 24–8 provides a summary of sequence types. Much of the nongene

![FIGURE 24-8 Types of sequences in the human genome. This pie chart divides the genome into transposons (transposable elements) genes, and miscellaneous sequences. There are four main classes of transposons (three of them shown here). Long interspersed elements (LINEs), 6 to 8 kbp long (1 kbp = 1,000 bp), typically include a few genes encoding proteins that catalyze transposition. The genome has about 850,000 LINEs. Short interspersed elements (SINEs) are about 100 to 300 bp long. Of the 1.5 million in the human genome more than 1 million are Alu elements, so called because they generally include one copy of the recognition sequence for Alu, a restriction endonuclease (see Fig. 9–2). The genome also contains 450,000 copies of retrovirus-like transposons, 1.5 to 11 kbp long. Although these are “trapped” in the genome and cannot move from one cell to another, they are evolutionarily related to the retroviruses (Chapter 26), which include HIV. A final class of transposons (making up <3% and not shown here) consists of a variety of transposon remnants that differ greatly in length.

About 30% of the genome consists of sequences included in genes for proteins, but only a small fraction of this DNA is in exons (coding sequences). Miscellaneous sequences include simple-sequence repeats (SSR) and large segmental duplications (SD), the latter being segments that appear more than once in different locations. As described in Chapter 26, almost all of the genome appears to be transcribed into RNA, with many of the RNAs not yet characterized. Also present are remnants of transposons that have been evolutionarily altered so that they are now hard to identify.
DNA is in the form of repeated sequences of several kinds. Perhaps most surprising, about half the human genome is made up of moderately repeated sequences that are derived from transposable elements—segments of DNA, ranging from a few hundred to several thousand base pairs long, that can move from one location to another in the genome. Transposable elements (transposons) are a kind of molecular parasite, efficiently making a home within the host genome. Many have genes encoding the proteins that catalyze the transposition process, described in more detail in Chapters 25 and 26. Some transposons in the human genome are active, moving at a low frequency, but most are inactive relics, evolutionarily altered by mutations. Although these elements generally do not encode proteins or RNAs that are used in human cells, they have played a major role in human evolution: movement of transposons can lead to the redistribution of other genomic sequences.

Another 3% or so of the human genome consists of highly repetitive sequences, also referred to as simple-sequence DNA or simple sequence repeats (SSR). These short sequences, generally less than 10 bp long, are sometimes repeated millions of times per cell. The simple-sequence DNA has also been called satellite DNA, so named because its unusual base composition often causes it to migrate as “satellite” bands (separated from the rest of the DNA) when fragmented cellular DNA samples are centrifuged in a cesium chloride density gradient. Studies suggest that simple-sequence DNA does not encode proteins or RNAs. Unlike the transposable elements, the highly repetitive DNA can have identifiable functional importance in human cellular metabolism, because much of it is associated with two defining features of eukaryotic chromosomes: centromeres and telomeres.

The centromere (Fig. 24-9) is a sequence of DNA that functions during cell division as an attachment point for proteins that link the chromosome to the mitotic spindle. This attachment is essential for the equal and orderly distribution of chromosome sets to daughter cells. The centromeres of Saccharomyces cerevisiae have been isolated and studied. The sequences essential to centromere function are about 130 bp long and are very rich in A=T pairs. The centromeric sequences of higher eukaryotes are much longer and, unlike those of yeast, generally contain simple-sequence DNA, which consists of thousands of tandem copies of one or a few short sequences of 5 to 10 bp, in the same orientation. The precise role of simple-sequence DNA in centromere function is not yet understood.

![Figure 24-9](image)

FIGURE 24-9 Important structural elements of a yeast chromosome.

Telomeres

Telomeres (Greek telos, “end”) are sequences at the ends of eukaryotic chromosomes that help stabilize the chromosome. Telomeres end with multiple repeated sequences of the form

\[(5') (T_x G_y)_n \quad (3') (A_x C_y)_n\]

where \(x\) and \(y\) are generally between 1 and 4 (Table 24-3). The number of telomere repeats, \(n\), is in the range of 20 to 100 for most single-celled eukaryotes and is generally more than 1,500 in mammals. The ends of a linear DNA molecule cannot be routinely replicated by the cellular replication machinery (which may be one reason why bacterial DNA molecules are circular). Repeated telomeric sequences are added to eukaryotic chromosome ends primarily by the enzyme telomerase (see Fig. 26-39).

Artificial chromosomes (Chapter 9) have been constructed as a means of better understanding the functional significance of many structural features of eukaryotic chromosomes. A reasonably stable artificial linear chromosome requires only three components: a centromere, a telomere at each end, and sequences that allow the initiation of DNA replication. Yeast artificial chromosomes (YACs; see Fig. 9-7) have been developed as a research tool in biotechnology. Similarly, human artificial chromosomes (HACs) are being developed for the treatment of genetic diseases by somatic gene therapy (see Box 9-2 on somatic gene therapy).

SUMMARY 24.1 Chromosomal Elements

- Genes are segments of a chromosome that contain the information for a functional polypeptide or RNA molecule. In addition to genes, chromosomes contain a variety of regulatory sequences involved in replication, transcription, and other processes.
- Genomic DNA and RNA molecules are generally orders of magnitude longer than the viral particles or cells that contain them.
- Many genes in eukaryotic cells (but few in bacteria and archaea) are interrupted by noncoding sequences, or introns. The coding segments separated by introns are called exons.
Less than one-third of human genomic DNA consists of genes. Much of the remainder consists of repeated sequences of various types. Nucleic acid parasites known as transposons account for about half of the human genome.

Eukaryotic chromosomes have two important special-function repetitive DNA sequences: centromeres, which are attachment points for the mitotic spindle, and telomeres, located at the ends of chromosomes.

24.2 DNA Supercoiling

Cellular DNA, as we have seen, is extremely compacted, implying a high degree of structural organization. The folding mechanism not only must pack the DNA but also must permit access to the information in the DNA. Before considering how this is accomplished in processes such as replication and transcription, we need to examine an important property of DNA structure known as supercoiling.

"Supercoiling" means the coiling of a coil. A telephone cord, for example, is typically a coiled wire. The path taken by the wire between the base of the phone and the receiver often includes one or more supercoils (Fig. 24-10). DNA is coiled in the form of a double helix, with both strands of the DNA coiling around an axis.

The further coiling of that axis upon itself (Fig. 24-11) produces DNA supercoiling. As detailed below, DNA supercoiling is generally a manifestation of structural strain. When there is no net bending of the DNA axis upon itself, the DNA is said to be in a relaxed state.

We might have predicted that DNA compaction involved some form of supercoiling. Perhaps less predictable is that replication and transcription of DNA also affect and are affected by supercoiling. Both processes require a separation of DNA strands—a process complicated by the helical interwinding of the strands (as demonstrated in Fig. 24-12).
That a DNA molecule would bend on itself and become supercoiled in tightly packaged cellular DNA would seem logical, then, and perhaps even trivial, were it not for one additional fact: many circular DNA molecules remain highly supercoiled even after they are extracted and purified, freed from protein and other cellular components. This indicates that supercoiling is an intrinsic property of DNA tertiary structure. It occurs in all cellular DNAs and is highly regulated by each cell.

Several measurable properties of supercoiling have been established, and the study of supercoiling has provided many insights into DNA structure and function. This work has drawn heavily on concepts derived from a branch of mathematics called topology, the study of the properties of an object that do not change under continuous deformations. For DNA, continuous deformations include conformational changes due to thermal motion or an interaction with proteins or other molecules; discontinuous deformations involve DNA strand breakage. For circular DNA molecules, a topological property is one that is unaffected by deformations of the DNA strands as long as no breaks are introduced. Topological properties are changed only by breakage and rejoining of the backbone of one or both DNA strands.

We now examine the fundamental properties and physical basis of supercoiling.

Most Cellular DNA Is Underwound

To understand supercoiling we must first focus on the properties of small circular DNAs such as plasmids and small viral DNAs. When these DNAs have no breaks in either strand, they are referred to as closed-circular DNAs. If the DNA of a closed-circular molecule conforms closely to the B-form structure (the Watson-Crick structure; see Fig. 8-13), with one turn of the double helix per 10.5 bp, the DNA is relaxed rather than supercoiled (Fig. 24–13). Supercoiling results when DNA is subject to some form of structural strain. Purified closed-circular DNA is rarely relaxed, regardless of its biological origin. Furthermore, DNAs derived from a given cellular source have a characteristic degree of supercoiling. DNA structure is therefore strained in a manner that is regulated by the cell to induce the supercoiling.

In almost every instance, the strain is a result of underwinding of the DNA double helix in the closed circle. In other words, the DNA has fewer helical turns than would be expected for the B-form structure. The effects of underwinding are summarized in Figure 24–14. An 84 bp segment of a circular DNA in the relaxed state would contain eight double-helical turns, or

FIGURE 24–13 Relaxed and supercoiled plasmid DNAs. The molecule in the leftmost electron micrograph is relaxed; the degree of supercoiling increases from left to right.

FIGURE 24–14 Effects of DNA underwinding. (a) A segment of DNA in a closed-circular molecule, 84 bp long, in its relaxed form with eight helical turns. (b) Removal of one turn induces structural strain. (c) The strain is generally accommodated by formation of a supercoil. (d) DNA underwinding also makes the separation of strands somewhat easier. In principle, each turn of underwinding should facilitate strand separation over about 10 bp, as shown. However, the hydrogen-bonded base pairs would generally preclude strand separation over such a short distance, and the effect becomes important only for longer DNAs and higher levels of DNA underwinding.
one for every 10.5 bp. If one of these turns were removed, there would be (84 bp)/7 = 12.0 bp per turn, rather than the 10.5 found in B-DNA (Fig. 24–14b). This is a deviation from the most stable DNA form, and the molecule is thermodynamically strained as a result. Generally, much of this strain would be accommodated by coiling the axis of the DNA on itself to form a supercoil (Fig. 24–14c; some of the strain in this 84 bp segment would simply become dispersed in the untwisted structure of the larger DNA molecule). In principle, the strain could also be accommodated by separating the two DNA strands over a distance of about 10 bp (Fig. 24–14d). In isolated closed-circular DNA, strain introduced by underwinding is generally accommodated by supercoiling rather than strand separation, because coiling the axis of the DNA usually requires less energy than breaking the hydrogen bonds that stabilize paired bases. Note, however, that the underwinding of DNA in vivo makes separation of the DNA strands easier, facilitating access to the information they contain.

Every cell actively underwinds its DNA with the aid of enzymatic processes (described below), and the resulting strained state represents a form of stored energy. Cells maintain DNA in an underwound state to facilitate its compaction by coiling. The underwinding of DNA is also important to enzymes of DNA metabolism that must bring about strand separation as part of their function.

The underwound state can be maintained only if the DNA is a closed circle or if it is bound and stabilized by proteins so that the strands are not free to rotate about each other. If there is a break in one strand of an isolated, protein-free circular DNA, free rotation at that point will cause the underwound DNA to revert spontaneously to the relaxed state. In a closed-circular DNA molecule, however, the number of helical turns cannot be changed without at least transiently breaking one of the DNA strands. The number of helical turns in a DNA molecule therefore provides a precise description of supercoiling.

DNA Underwinding Is Defined by Topological Linking Number

The field of topology provides some ideas that are useful to the discussion of DNA supercoiling, particularly the concept of linking number. Linking number is a topological property of double-stranded DNA, because it does not vary when the DNA is bent or deformed, as long as both DNA strands remain intact. Linking number (L_k) is illustrated in Figure 24–15.

Let’s begin by visualizing the separation of the two strands of a double-stranded circular DNA. If the two strands are linked as shown in Figure 24–15a, they are effectively joined by what can be described as a topological bond. Even if all hydrogen bonds and base-stacking interactions were abolished such that the strands were not in physical contact, this topological bond would still link the two strands. Visualize one of the circular strands as the boundary of a surface (such as a soap film spanning the space framed by a circular wire before you blow a soap bubble). The linking number can be defined as the number of times the second strand pierces this surface. For the molecule in Figure 24–15a, $L_k = 1$; for that in Figure 24–15b, $L_k = 6$. The linking number for a closed-circular DNA is always an integer. By convention, if the links between two DNA strands are arranged so that the strands are interwound in a right-handed helix, the linking number is defined as positive (+); for strands interwound in a left-handed helix, the linking number is negative (−). Negative linking numbers are, for all practical purposes, not encountered in DNA.

We can now extend these ideas to a closed-circular DNA with 2,100 bp (Fig. 24–16a). When the molecule is relaxed, the linking number is simply the number of base pairs divided by the number of base pairs per turn, which is close to 10.5; so in this case, $L_k = 200$. For a circular DNA molecule to have a topological property such as linking number, neither strand may contain a break. If there is a break in either strand, the strands can, in principle, be unraveled and separated completely. In this case, no topological bond exists and L_k is undefined (Fig. 24–16b).

We can now describe DNA underwinding in terms of changes in the linking number. The linking number in relaxed DNA, L_{k_0}, is used as a reference. For the molecule shown in Figure 24–16a, $L_{k_0} = 200$; if two turns are removed from this molecule, $L_k = 198$. The change can be described by the equation

$$\Delta L_k = L_k - L_{k_0}$$

$$= 198 - 200 = -2$$

It is often convenient to express the change in linking number in terms of a quantity that is independent of the length of the DNA molecule. This quantity, called the...
FIGURE 24-16 Linking number applied to closed-circular DNA molecules. A 2,100 bp circular DNA is shown in three forms: (a) relaxed, \(L_k = 200 \); (b) relaxed with a nick (break) in one strand, \(L_k \) undefined; and (c) underwound by two turns, \(L_k = 198 \). The underwound molecule generally exists as a supercoiled molecule, but underwinding also facilitates the separation of DNA strands.

Figure 24-16

SPECIFIC LINKING DIFFERENCE or superhelical density, is a measure of the number of turns removed relative to the number present in relaxed DNA:

\[
\sigma = \frac{\Delta L_k}{L_k_0}
\]

In the example in Figure 24-16c, \(\sigma = -0.01 \), which means that 1% (2 of 200) of the helical turns present in the DNA (in its B-form) have been removed. The degree of underwinding in cellular DNAs generally falls in the range of 5% to 7%; that is, \(\sigma \approx -0.05 \) to \(-0.07 \). The negative sign indicates that the change in linking number is due to underwinding of the DNA. The supercoiling induced by underwinding is therefore defined as negative supercoiling. Conversely, under some conditions DNA can be overwound, resulting in positive supercoiling. Note that the twisting path taken by the axis of the DNA helix when the DNA is underwound (negative supercoiling) is the mirror image of that taken when the DNA is overwound (positive supercoiling) (Fig. 24-17). Supercoiling is not a random process; the path of the supercoiling is largely prescribed by the torsional strain imparted to the DNA by decreasing or increasing the linking number relative to B-DNA.

Linking number can be changed by \(\pm 1 \) by breaking one DNA strand, rotating one of the ends 360° about the unbroken strand, and rejoining the broken ends. This change has no effect on the number of base pairs or the number of atoms in the circular DNA molecule. Two forms of a circular DNA that differ only in a topological property such as linking number are referred to as topoisomers.

WORKED EXAMPLE 24-1 Calculation of Superhelical Density

What is the superhelical density (\(\sigma \)) of a closed-circular DNA with a length of 4,200 bp and a linking number (\(L_k \)) of 374? What is the superhelical density of the same DNA when \(L_k = 412 \)? Are these molecules negatively or positively supercoiled?

Solution

First, calculate \(L_k_0 \) by dividing the length of the closed-circular DNA (in bp) by 10.5 bp/turn: \((4,200 \text{ bp})/(10.5 \text{ bp/turn}) = 400 \). We can now calculate \(\Delta L_k \) from Equation 24-1: \(\Delta L_k = L_k - L_k_0 = 374 - 400 = -26 \). Substituting the values for \(\Delta L_k \) and \(L_k_0 \) into Equation 24-2: \(\sigma = \frac{\Delta L_k}{L_k_0} = \frac{-26}{400} = -0.065 \). Since the superhelical density is negative, this DNA molecule is negatively supercoiled.

When the same DNA molecule has an \(L_k \) of 412, \(\Delta L_k = 412 - 400 = 12 \), and \(\sigma = 12/400 = 0.03 \). The superhelical density is positive, and the molecule is positively supercoiled.

Linking number can be broken down into two structural components, twist (\(Tw \)) and writhe (\(Wr \)) (Fig. 24-18). These are more difficult to describe than linking number, but writhe may be thought of as a measure of the coil of the helix axis, and twist as determining the local twisting or spatial relationship of neighboring base pairs. When the linking number changes, some of the resulting strain is usually compensated for by writhe (supercoiling) and some by changes in twist, giving rise to the equation

\[
L_k = Tw + Wr
\]

\(Tw \) and \(Wr \) need not be integers. Twist and writhe are geometric rather than topological properties, because they may be changed by deformation of a closed-circular DNA molecule.

In addition to causing supercoiling and making strand separation somewhat easier, the underwinding of...
DNA facilitates structural changes in the molecule. These are of less physiological importance but help illustrate the effects of underwinding. Recall that a cruciform (see Fig. 8–19) generally contains a few unpaired bases; DNA underwinding helps to maintain the required strand separation (Fig. 24–19). Underwinding of a right-handed DNA helix also facilitates the formation of short stretches of left-handed Z-DNA in regions where the base sequence is consistent with the Z form (see Chapter 8).

Topoisomerases Catalyze Changes in the Linking Number of DNA

DNA supercoiling is a precisely regulated process that influences many aspects of DNA metabolism. Every cell has enzymes with the sole function of underwinding and/or relaxing DNA. The enzymes that increase or decrease the extent of DNA underwinding are topoisomerases; the property of DNA that they change is the linking number. These enzymes play an especially important role in processes such as replication and DNA packaging. There are two classes of topoisomerases. **Type I topoisomerases** act by transiently breaking one of the two DNA strands, passing the unbroken strand through the break and rejoining the broken ends; they change Lk in increments of 1. **Type II topoisomerases** break both DNA strands and change Lk in increments of 2.

The effects of these enzymes can be demonstrated with agarose gel electrophoresis (Fig. 24–20). A population of identical plasmid DNAs with the same linking number can be treated with different topoisomerases, and the resulting topoisomers can be separated by agarose gel electrophoresis. Figure 24–20 shows the results of such an experiment. Lane 1 contains relaxed DNA, and lanes 2 and 3 illustrate the effect of treating the supercoiled DNA with a type I topoisomerase; the DNA in lane 3 was treated for a longer time than that in lane 2. As the superhelical density of the DNA is reduced to the point where it corresponds to the range in which the gel can resolve individual topoisomers, distinct bands appear. Individual bands in the region indicated by the bracket next to lane 3 each contain DNA circles with the same linking number; the linking number changes by 1 from one band to the next.
24.2 DNA Supercoiling

number migrates as a discrete band during electrophoresis. Topoisomers with Lk values differing by as little as 1 can be separated by this method, so changes in linking number induced by topoisomerases are readily detected.

E. coli has at least four individual topoisomerases (I through IV). Those of type I (topoisomerases I and III) generally relax DNA by removing negative supercoils (increasing Lk). The way in which bacterial type I topoisomerases change linking number is illustrated in Figure 24-21. A bacterial type II enzyme, called either topoisomerase II or DNA gyrase, can introduce negative supercoils (decrease Lk). It uses the energy of ATP to accomplish this. To alter DNA linking number, type II topoisomerases cleave both strands of a DNA molecule and pass another duplex through the break. The degree of supercoiling of bacterial DNA is maintained by regulation of the net activity of topoisomerases I and II.

Eukaryotic cells also have type I and type II topoisomerases. The type I enzymes are topoisomerases I and III; the single type II enzyme has two isoforms in vertebrates called IIA and IIB. Most of the type II enzymes, including a DNA gyrase in archaea, are related and define a family

MECHANISM FIGURE 24-21 Bacterial type I topoisomerases alter linking number. A proposed reaction sequence for the bacterial topoisomerase I is illustrated. The enzyme has closed and open conformations. (a) A DNA molecule binds to the closed conformation and one DNA strand is cleaved. (b) The enzyme changes to its open conformation, and the other DNA strand moves through the break in the first strand. (c) In the closed conformation, the DNA strand is religated.
The topological state of cellular DNA is intimately connected with its function. Without topoisomerases, cells cannot replicate or package their DNA, or express their genes—and they die. Inhibitors of topoisomerases have therefore become important pharmaceutical agents, targeted at infectious agents and malignant cells.

Two classes of bacterial topoisomerase inhibitors have been developed as antibiotics. The coumarins, including novobiocin and coumermycin A1, are natural products derived from Streptomyces species. They inhibit the ATP binding of the bacterial type II topoisomerases, DNA gyrase and topoisomerase IV. These antibiotics are not often used to treat infections in humans, but research continues to identify clinically effective variants.

The quinolone antibiotics, also inhibitors of bacterial DNA gyrase and topoisomerase IV, first appeared in 1962 with the introduction of nalidixic acid. This compound had limited effectiveness and is no longer used clinically in the United States, but the continued development of this class of drugs eventually led to the introduction of the fluoroquinolones, exemplified by ciprofloxacin (Cipro). The quinolones act by blocking the last step of the topoisomerase reaction, the resealing of the DNA strand breaks. Ciprofloxacin is a wide-spectrum antibiotic. It is one of the few antibiotics reliably effective in treating anthrax infections, and is considered a valuable agent in protection against possible bioterrorism. Quinolones are selective for the bacterial topoisomerases, inhibiting the eukaryotic enzymes only at concentrations several orders of magnitude greater than the therapeutic doses.

Some of the most important chemotherapeutic agents used in cancer treatment are inhibitors of human topoisomerases. Topoisomerases are generally called type IIA. Archaea also have an unusual enzymes, topoisomerase VI, which alone defines the type IIB family. The eukaryotic type II topoisomerases cannot underwind DNA (introduce negative supercoils), but they can relax both positive and negative supercoils (Fig. 24–22).

FIGURE 24–22 Proposed mechanism for the alteration of linking number by eukaryotic type IIA topoisomerases. ① The multisubunit enzyme binds one DNA molecule (blue). Gated cavities above and below the bound DNA are called the N-gate and the C-gate. ② A second segment of the same DNA molecule (red) is bound at the N-gate, and ③ is trapped. Both strands of the first DNA are now cleaved (the chemistry is similar to that in Fig. 24–20b), and ④ the second DNA segment is passed through the break. ⑤ The broken DNA is religated, and the second DNA segment is released through the C-gate. Two ATPs are bound and hydrolyzed during this cycle; it is likely that one is hydrolyzed in the step leading to the complex in step ④. Additional details of the ATP hydrolysis component of the reaction remain to be worked out.
As we will show in the next few chapters, topoisomerases play a critical role in every aspect of DNA metabolism. As a consequence, they are important drug targets for the treatment of bacterial infections and cancer (Box 24–1).

DNA Compaction Requires a Special Form of Supercoiling

Supercoiled DNA molecules are uniform in a number of respects. The supercoils are right-handed in a negatively supercoiled DNA molecule (Fig. 24–17), and they tend to be extended and narrow rather than compacted, often with multiple branches (Fig. 24–23). At the superhelical densities normally encountered in cells, the length of the supercoil axis, including branches, is about 40% of the length of the DNA. This type of supercoiling is referred to as plectonemic (from the Greek plektos, “twisted,” and nema, “thread”). This term can be applied to any structure with strands intertwined in some simple and regular way, and it is a good description of the general structure of supercoiled DNA in solution.

Plectonemic supercoiling, the form observed in isolated DNAs in the laboratory, does not produce sufficient compaction to package DNA in the cell. A second form of supercoiling, solenoidal (Fig. 24–24), can be adopted by an underwound DNA. Instead of the extended right-handed supercoils characteristic of the plectonemic form, solenoidal supercoiling involves tight left-handed turns, similar to the shape taken up by a garden hose neatly wrapped on a reel. Although their structures are dramatically different, plectonemic and solenoidal supercoiling are two forms of negative supercoiling that can be taken up by the same segment of underwound DNA. The two forms are readily interconvertible. Although the plectonemic form is more stable in solution, the solenoidal form can be stabilized by present at elevated levels in tumor cells, and agents targeted to these enzymes are much more toxic to the tumors than to most other tissue types. Inhibitors of both type I and type II topoisomerases have been developed as anticancer drugs.

Camptothecin, isolated from a Chinese ornamental tree and first tested clinically in the 1970s, is an inhibitor of eukaryotic type I topoisomerases. Clinical trials indicated limited effectiveness, despite its early promise in preclinical work on mice. However, two effective derivatives, irinotecan (Campto) and topotecan (Hycamtin)—used to treat colorectal cancer and ovarian cancer, respectively—were developed in the 1990s. Additional derivatives are likely to be approved for clinical use in the coming years. All of these drugs act by trapping the topoisomerase-DNA complex in which the DNA is cleaved, inhibiting religation.

The human type II topoisomerases are targeted by a variety of antitumor drugs, including doxorubicin (Adriamycin), etoposide (Etopophos), and ellipticine. Doxorubicin, effective against several kinds of human tumors, is an anthracycline in clinical use. Most of these drugs stabilize the covalent topoisomerase-DNA (cleaved) complex.

All of these anticancer agents generally increase the levels of DNA damage in the targeted, rapidly growing tumor cells. However, noncancerous tissues can also be affected, leading to a more general toxicity and unpleasant side effects that must be managed during therapy. As cancer therapies become more effective and survival statistics for cancer patients improve, the independent appearance of new tumors is becoming a greater problem. In the continuing search for new cancer therapies, the topoisomerases are likely to remain prominent targets for research.
protein binding and is the form found in chromatin. It provides a much greater degree of compaction (Fig. 24–24b). Solenoidal supercoiling is the mechanism by which underwinding contributes to DNA compaction.

SUMMARY 24.2 DNA Supercoiling

- Most cellular DNAs are supercoiled. Underwinding decreases the total number of helical turns in the DNA relative to the relaxed, B form. To maintain an underwound state, DNA must be either a closed circle or bound to protein. Underwinding is quantified by a topological parameter called linking number, L_k.

- Underwinding is measured in terms of specific linking difference, σ (also called superhelical density), which is $(L_k - L_{k_0})/L_{k_0}$. For cellular DNAs, σ is typically -0.05 to -0.07, which means that approximately 5% to 7% of the helical turns in the DNA have been removed. DNA underwinding facilitates strand separation by enzymes of DNA metabolism.

- DNAs that differ only in linking number are called topoisomers. Enzymes that underwind and/or relax DNA, the topoisomerases, catalyze changes in linking number. The two classes of topoisomerases, type I and type II, change L_k in increments of 1 or 2, respectively, per catalytic event.

24.3 The Structure of Chromosomes

The term “chromosome” is used to refer to a nucleic acid molecule that is the repository of genetic information in a virus, a bacterium, a eukaryotic cell, or an organelle. It also refers to the densely colored bodies seen in the nuclei of dye-stained eukaryotic cells, as visualized using a light microscope.

Chromatin Consists of DNA and Proteins

The eukaryotic cell cycle (see Fig. 12–43) produces remarkable changes in the structure of chromosomes (Fig. 24–25). In nondividing eukaryotic cells (in G0) and those in interphase (G1, S, and G2), the chromosomal material, chromatin, is amorphous and seems to be randomly dispersed in certain parts of the nucleus. In the S phase of interphase the DNA in this amorphous state replicates, each chromosome producing two sister chromosomes (called sister chromatids) that remain associated with each other after replication is complete. The chromosomes become much more condensed during prophase of mitosis, taking the form of a species-specific number of well-defined pairs of sister chromatids (Fig. 24–5).

Chromatin consists of fibers containing protein and DNA in approximately equal proportions (by mass), along with a small amount of RNA. The DNA in the chromatin is very tightly associated with proteins called...
Changes in chromosome structure during the eukaryotic cell cycle. The relative lengths of the phases shown here are for convenience only. The duration of each phase varies with cell type and growth conditions (for single-celled organisms) or metabolic state (for multi-celled organisms); mitosis is typically the shortest. Cellular DNA is uncondensed throughout interphase, as shown in the cartoons of the nucleus in the diagram. The interphase period can be divided (see Fig. 12–43) into the G1 (gap) phase; the S (synthesis) phase, when the DNA is replicated; and the G2 phase, throughout which the replicated chromosomes (chromatids) cohere to each another. Mitosis can be divided into four stages. The DNA undergoes condensation in prophase. During metaphase, the condensed chromosomes line up in pairs along the plane halfway between the spindle poles. The two chromosomes of each pair are linked to different spindle poles via microtubules that extend between the spindle and the centromere. The sister chromatids separate at anaphase, each drawn toward the spindle pole to which it is connected. The process is completed in telophase. After cell division is complete, the chromosomes decondense and the cycle begins anew.

Histones, which package and order the DNA into structural units called nucleosomes (Fig. 24–26). Also found in chromatin are many nonhistone proteins, some of which help maintain chromosome structure and others that regulate the expression of specific genes (Chapter 28). Beginning with nucleosomes, eukaryotic chromosomal DNA is packaged into a succession of higher-order structures that ultimately yield the compact chromosome seen with the light microscope. We now turn to a description of this structure in eukaryotes and compare it with the packaging of DNA in bacterial cells.

Histones Are Small, Basic Proteins

Found in the chromatin of all eukaryotic cells, histones have molecular weights between 11,000 and 21,000 and are very rich in the basic amino acids arginine and lysine (together these make up about one-fourth of the amino acid residues). All eukaryotic cells have five major classes of histones, differing in molecular weight and amino acid composition (Table 24–4). The H3 histones are nearly identical in amino acid sequence in all eukaryotes, as are the H4 histones, suggesting strict conservation of their functions. For example, only 2 of 102 amino acid residues differ between the H4 histone molecules of peas and

<table>
<thead>
<tr>
<th>Table 24–4</th>
<th>Types and Properties of Histones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histone</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>H1*</td>
<td>21,130</td>
</tr>
<tr>
<td>H2A*</td>
<td>13,960</td>
</tr>
<tr>
<td>H2B*</td>
<td>13,774</td>
</tr>
<tr>
<td>H3</td>
<td>15,273</td>
</tr>
<tr>
<td>H4</td>
<td>11,236</td>
</tr>
</tbody>
</table>

The sizes of these histones vary somewhat from species to species. The numbers given here are for bovine histones.
cows, and only 8 differ between the H4 histones of humans and yeast. Histones H1, H2A, and H2B show less sequence similarity among eukaryotic species.

Each type of histone is subject to enzymatic modification by methylation, acetylation, ADP-ribosylation, phosphorylation, glycosylation, sumoylation, or ubiquitination. Such modifications affect the net electric charge, shape, and other properties of histones, as well as the structural and functional properties of the chromatin, and they play a role in the regulation of transcription.

In addition, eukaryotes generally have several variant forms of certain histones, most notably histones H2A and H3, described in more detail below. The variant forms, along with their modifications, have specialized roles in DNA metabolism.

Nucleosomes Are the Fundamental Organizational Units of Chromatin

The eukaryotic chromosome depicted in Figure 24–5 represents the compaction of a DNA molecule about 10⁵ μm long into a cell nucleus that is typically 5 to 10 μm in diameter. This compaction involves several levels of highly organized folding. Subjection of chromosomes to treatments that partially unfold them reveals a structure in which the DNA is bound tightly to beads of protein, often regularly spaced. The beads in this "beads-on-a-string" arrangement are complexes of histones and DNA. The bead plus the connecting DNA that leads to the next bead form the nucleosome, the fundamental unit of organization on which the higher-order packing of chromatin is built (Fig. 24–27). The bead of each nucleosome contains eight histone molecules: two copies each of H2A, H2B, H3, and H4. The spacing of the nucleosome beads provides a repeating unit typically of about 200 bp, of which 146 bp are bound tightly around the eight-part histone core and the remainder serve as linker DNA between nucleosome beads. Histone H1 binds to the linker DNA. Brief treatment of chromatin with enzymes that digest DNA causes preferential degradation of the linker DNA, releasing histone particles containing 146 bp of bound DNA that have been protected from digestion. Researchers have crystallized nucleosome cores obtained in this way, and x-ray diffraction analysis reveals a particle made up of the eight histone molecules with the DNA wrapped around it in the form of a left-handed solenoidal supercoil (Fig. 24–27).

A close inspection of this structure reveals why eukaryotic DNA is underwound even though eukaryotic cells lack enzymes that underwind DNA. Recall that the solenoidal wrapping of DNA in nucleosomes is but one form of supercoiling that can be taken up by underwound (negatively supercoiled) DNA. The tight wrapping of DNA around the histone core requires the removal of about one helical turn in the DNA. When the protein core of a nucleosome binds in vitro to a relaxed, closed-circular DNA, the binding introduces a negative supercoil. Because this binding process does not break
the DNA or change the linking number, the formation of a negative solenoidal supercoil must be accompanied by a compensatory positive supercoil in the unbound region of the DNA (Fig. 24–28). As mentioned earlier, eukaryotic topoisomerases can relax positive supercoils. Relaxing the unbound positive supercoil leaves the negative supercoil fixed (through its binding to the nucleosome histone core) and results in an overall decrease in linking number. Indeed, topoisomerases have proved necessary for assembling chromatin from purified histones and closed-circular DNA in vitro.

Another factor that affects the binding of DNA to histones in nucleosome cores is the sequence of the bound DNA. Histone cores do not bind randomly to DNA; rather, they tend to position themselves at certain locations. This positioning is not fully understood but in some cases seems to depend on a local abundance of A=T base pairs in the DNA helix where it is in contact with the histones. Histone cores do not bind randomly to DNA; rather, they tend to position themselves at certain locations. This positioning is not fully understood but in some cases seems to depend on a local abundance of A=T base pairs in the DNA helix where it is in contact with the histones (Fig. 24–29), facilitating the compression of the minor groove that is needed for the tight wrapping of the DNA around the nucleosome’s histone core. A cluster of two or three A=T base pairs makes this compression more likely. Nucleosomes bind particularly well to sequences where AA or AT or TT dinucleotides are staggered at 10 bp intervals, an arrangement that can account for up to 50% of the positions of bound histones in vivo.

Other proteins are required for the positioning of some nucleosome cores on DNA. In several organisms, certain proteins bind to a specific DNA sequence and facilitate the formation of a nucleosome core nearby. Nucleosomes are deposited on the DNA during replication, or following other processes that require a transient displacement of nucleosomes. Deposition seems to occur in a stepwise manner. A tetramer of two H3 and two H4 histones binds first, followed by deposition of H2A-H2B dimers. The incorporation of nucleosomes into chromosomes after chromosomal replication is mediated by a protein complex, replication-coupling assembly factor (RCAF). RCAF includes acetylated histones H3 and H4, a three-subunit protein known as chromatin assembly factor 1 (CAF1), and a protein known as anti-silencing factor 1 (ASF1). The mechanism of nucleosome deposition is not understood in detail, although parts of the RCAF complex are known to directly interact with parts of the replication machinery. When nucleosomes must be assembled after DNA repair or other processes, RCAF is replaced by other specialized protein complexes to mediate the deposition. Histone exchange factors permit the substitution of histone variants for core histones in some contexts. Proper placement of these variant histones is important. Studies have shown that mice lacking one of these variant histones die as early embryos (Box 24–2). Precise positioning of nucleosome cores also plays a role in the expression of some eukaryotic genes (Chapter 28).
Information that is passed from one generation to the next— to daughter cells at cell division or from parent to offspring—but is not encoded in DNA sequences is referred to as **epigenetic** information. Much of it is in the form of covalent modification of histones and/or the placement of histone variants in chromosomes.

The chromatin regions where active gene expression (transcription) is occurring tend to be partially decondensed and are called **euchromatin**. In these regions, histones H3 and H2A are often replaced by the histone variants H3.3 and H2AZ, respectively (Fig. 1). The complexes that deposit nucleosomes containing histone variants on the DNA are similar to those that deposit nucleosomes with the more common histones. Nucleosomes containing histone H3.3 are deposited by a complex in which chromatin assembly factor 1 (CAF1) is replaced by the protein HIRA (the name is derived from a class of proteins called HIR, for histone repressor). Both CAF1 and HIRA can be considered histone chaperones, helping to ensure the proper assembly and placement of nucleosomes. Histone H3.3 differs in sequence from H3 by only four amino acid residues, but these residues all play key roles in histone deposition.

Like histone H3.3, H2AZ is associated with a distinct nucleosome deposition complex, and it is generally associated with chromatin regions involved in active transcription. Incorporation of H2AZ stabilizes the nucleosome octamer, but impedes some cooperative interactions between nucleosomes that are needed to compact the chromosome. This leads to a more open chromosome structure that facilitates the expression of genes in the region where H2AZ is located. The gene encoding H2AZ is essential in mammals. In fruit flies, loss of H2AZ prevents development beyond the larval stages.

Another H2A variant is H2AX, which is associated with DNA repair and genetic recombination. In mice, the absence of H2AX results in genome instability and male infertility. Modest amounts of H2AX seem to be scattered throughout the genome. When a double-strand break occurs, nearby molecules of H2AX become phosphorylated at Ser139 in the carboxyl-terminal region. If this phosphorylation is blocked experimentally, formation of the protein complexes necessary for DNA repair is inhibited.

The H3 histone variant known as CENPA is associated with the repeated DNA sequences in centromeres. The chromatin in the centromere region contains the histone chaperones CAF1 and HIRA, and both proteins could be involved in the deposition of nucleosomes containing CENPA. Elimination of the gene for CENPA is lethal in mice.

The function and positioning of the histone variants can be studied by an application of technologies used in genomics. One useful technology is chromatin immunoprecipitation, or chromatin IP (ChIP). Nucleosomes containing a particular histone variant are precipitated by an antibody that binds specifically to this variant.

![Figure 1](image_url) Several variants of histones H3, H2A, and H2B are known. Shown here are the core histones and a few of the known variants. Sites of Lys/Arg residue methylation and Ser phosphorylation are indicated. HFD denotes the histone-fold domain, a structural domain common to all core histones.

Nucleosomes Are Packed into Successively Higher-Order Structures

Wrapping of DNA around a nucleosome core compacts the DNA length about sevenfold. The overall compaction in a chromosome, however, is greater than 10,000-fold—ample evidence for even higher orders of structural organization. In chromosomes isolated by very gentle methods, nucleosome cores seem to be organized into a structure called the **30 nm fiber** (Fig. 24–30). This packing requires one molecule of histone H1 per nucleosome core. Organization into 30 nm fibers does not extend over the entire chromosome but is punctuated by regions bound by sequence-specific (nonhistone) DNA-binding proteins. The 30 nm structure also seems to depend on the transcriptional activity of the particular region of DNA. Regions in which genes are being transcribed are apparently in a less-ordered state that contains little, if any, histone H1.
These nucleosomes can be studied in isolation from their DNA, but more commonly the DNA associated with them is included in the study to determine where the nucleosomes of interest bind. The DNA can be labeled and used to probe a microarray (see Fig. 9–22), yielding a map of genomic sequences to which those particular nucleosomes bind. Because microarrays are often referred to as chips, this technique is called a ChIP-chip experiment (Fig. 2).

The histone variants, along with the many covalent modifications that histones undergo, help define and isolate the functions of chromatin. They mark the chromatin, facilitating or suppressing specific functions such as chromosome segregation, transcription, and DNA repair. The histone modifications do not disappear at cell division or during meiosis, and thus they become part of the information transmitted from one generation to the next in all eukaryotic organisms.

FIGURE 24–30 The 30 nm fiber, a higher-order organization of nucleosomes. (a) Schematic illustration of the probable structure of the fiber, showing nucleosome packing. (b) Electron micrograph.
FIGURE 24–31 A partially unraveled human chromosome, revealing numerous loops of DNA attached to a scaffoldlike structure.

The 30 nm fiber—a second level of chromatin organization—provides an approximately 100-fold compaction of the DNA. The higher levels of folding are not yet understood, but certain regions of DNA seem to associate with a nuclear scaffold (Fig. 24–31). The scaffold-associated regions are separated by loops of DNA with perhaps 20 to 100 kbp. The DNA in a loop may contain a set of related genes. In Drosophila, for example, complete sets of histone-coding genes seem to cluster together in loops that are bounded by scaffold attachment sites (Fig. 24–32). The scaffold itself may contain several proteins, notably large amounts of histone H1 (located in the interior of the fiber) and topoisomerase II. The presence of topoisomerase II further emphasizes the relationship between DNA underwinding and chromatin structure. Topoisomerase II is so important to the maintenance of chromatin structure that inhibitors of this enzyme can kill rapidly dividing cells. Several drugs used in cancer chemotherapy are topoisomerase II inhibitors that allow the enzyme to promote strand breakage but not the resealing of the breaks.

Evidence exists for additional layers of organization in eukaryotic chromosomes, each dramatically enhancing the degree of compaction. One model for achieving this compaction is illustrated in Figure 24–33.

FIGURE 24–32 Loops of chromosomal DNA attached to a nuclear scaffold. The DNA in the loops is packaged as 30 nm fibers, so the loops are the next level of organization. Loops often contain groups of genes with related functions. Complete sets of histone-coding genes, as shown in this schematic illustration, seem to be clustered in loops of this kind. Unlike most genes, histone genes occur in multiple copies in many eukaryotic genomes.

FIGURE 24–33 Compaction of DNA in a eukaryotic chromosome. This model shows the levels of organization that could provide the observed degree of DNA compaction in the chromosomes of eukaryotes. The levels take the form of coils upon coils. In cells, the higher-order structures (above the 30 nm fibers) are unlikely to be as uniform as depicted here.
Higher-order chromatin structure probably varies from chromosome to chromosome, from one region to the next in a single chromosome, and from moment to moment in the life of a cell. No single model can adequately describe these structures. Nevertheless, the principle is clear: DNA compaction in eukaryotic chromosomes is likely to involve coils upon coils upon coils... Three-Dimensional Packaging of Nuclear Chromosomes

Condensed Chromosome Structures Are Maintained by SMC Proteins

A third major class of chromatin proteins, in addition to the histones and topoisomerases, is the SMC proteins (structural maintenance of chromosomes). The primary structure of SMC proteins consists of five distinct domains (Fig. 24–34a). The amino- and carboxyl-terminal globular domains, N and C, each of which contains part of an ATP-hydrolytic site, are connected by two regions of α-helical coiled-coil motifs (see Fig. 4–10) that are joined by a hinge domain. The proteins are generally dimeric, forming a V-shaped complex that is thought to be tied together through the protein’s hinge domains (Fig. 24–34b, c). One N and one C domain come together to form a complete ATP-hydrolytic site at each free end of the V.

Proteins in the SMC family are found in all types of organisms, from bacteria to humans. Eukaryotes have two major types, cohesins and condensins, both of which are bound by regulatory and accessory proteins (Fig. 24–34d). The cohesins play a substantial role in linking together sister chromatids immediately after replication and keeping them together as the chromosomes condense to metaphase. This linkage is essential if chromosomes are to segregate properly at cell division. The cohesins, along with a third protein, kleisin, are thought to form a ring around the replicated chromosomes that ties them together until separation is required at cell division. The ring may expand and contract in response to ATP hydrolysis (Fig. 24–34e). The condensins are essential to the condensation of chromosomes as cells enter mitosis. In the laboratory, condensins bind to DNA in a manner that creates positive supercoils; that is, condensin binding causes the DNA to become overwound, in contrast to the underwinding induced by the binding of nucleosomes. It is not yet clear how this helps to compact the chromatin. However, wrapping of the DNA about condensin may contribute to DNA condensation. The cohesins and condensins are essential in orchestrating the many changes in chromosome structure during the eukaryotic cell cycle (Fig. 24–35).

Figure 24–34 Structure of SMC proteins. (a) The five domains of the SMC primary structure, N and C denote the amino-terminal and carboxyl-terminal domains. (b) Each polypeptide is folded so that the two coiled-coil domains wrap around each other and the N and C domains come together to form a complete ATP-binding site. Two polypeptides are linked at the hinge region to form the dimeric V-shaped SMC molecule. (c) Electron micrograph of SMC proteins from Bacillus subtilis. (d) Cohesins are made up of pairs of Smc1 and Smc3 proteins, and condensins consist of Smc2-Smc4 pairs. These eukaryotic SMC proteins are bound by kleisin and some additional regulatory proteins (not shown). (e) ATP hydrolysis may serve to open and close the ATPase domain ends of the SMC protein dimer, which remain linked by kleisin (and other proteins not shown).
Bacterial DNA Is Also Highly Organized

We now turn briefly to the structure of bacterial chromosomes. Bacterial DNA is compacted in a structure called the nucleoid, which can occupy a significant fraction of the cell volume (Fig. 24-36). The DNA seems to be attached at one or more points to the inner surface of the plasma membrane. Much less is known about the structure of the nucleoid than of eukaryotic chromatin, but a complex organization is slowly being revealed. In E. coli, a scaffoldlike structure seems to organize the circular chromosome into a series of about 500 looped domains, each encompassing 10,000 bp on average (Fig. 24-37), as described above for chromatin. The domains are topologically constrained; for example, if the DNA is cleaved in one domain, only the DNA within that domain will be relaxed. The domains do not have fixed end points. Instead, the boundaries are most likely in constant motion along the DNA, coordinated with DNA replication. Bacterial DNA does not seem to have any structure comparable to the local organization provided by nucleosomes in eukaryotes. Histonelike proteins are abundant in E. coli—the best-characterized example is a two-subunit protein called HU (Mr = 19,000)—but these proteins bind and dissociate within minutes, and no regular, stable DNA-histone structure has been found. The dynamic structural changes in the bacterial chromosome may reflect a requirement for more ready access to its genetic information. The bacterial cell division cycle can be as short as 15 min, whereas a typical eukaryotic cell may not divide for hours or even months. In addition, a much greater fraction of bacterial DNA is used to encode RNA and/or protein products. Higher rates of cellular metabolism in bacteria mean that a much higher proportion of the DNA is being transcribed or replicated at a given time than in most eukaryotic cells.
With this overview of the complexity of DNA structure, we are now ready to turn, in the next chapter, to a discussion of DNA metabolism.

SUMMARY 24.3 The Structure of Chromosomes

- The fundamental unit of organization in the chromatin of eukaryotic cells is the nucleosome, which consists of histones and a 200 bp segment of DNA. A core protein particle containing eight histones (two copies each of histones H2A, H2B, H3, and H4) is encircled by a segment of DNA (about 146 bp) in the form of a left-handed solenoidal supercoil.

- Nucleosomes are organized into 30 nm fibers, and the fibers are extensively folded to provide the 10,000-fold compaction required to fit a typical eukaryotic chromosome into a cell nucleus. The higher-order folding involves attachment to a nuclear scaffold that contains histone H1, topoisomerase II, and SMC proteins. The SMC proteins, principally cohesins and condensins, play important roles in keeping the chromosomes organized during each stage of the cell cycle.

- Bacterial chromosomes are extensively compacted into the nucleoid, but the chromosome seems to be much more dynamic and irregular in structure than eukaryotic chromatin, reflecting the shorter cell cycle and very active metabolism of a bacterial cell.

Key Terms

Terms in bold are defined in the glossary.

- chromosome 947
- phenotype 947
- mutation 947
- gene 948
- regulatory sequence 948
- plasmid 949
- intron 952
- exon 952
- simple-sequence DNA 953
- satellite DNA 953
- centromere 953
- telomere 953
- supercoil 954
- relaxed DNA 954
- topology 955
- underwinding 955
- linking number 956
- specific linking difference (σ) 957
- superhelical density 957
- topoisomers 957
- twist 957
- writhe 957
- topoisomerases 958
- plectonemic 961
- solenoidal 961
- chromatin 962
- histones 963
- nucleosome 963
- epigenetic 966
- euchromatin 966
- 30 nm fiber 966
- SMC proteins 969
- cohesins 969
- condensins 969
- nucleoid 970

Further Reading

General

- New secrets of this common laboratory organism are revealed.

A good place to start for further information on the structure and function of DNA.

Another excellent general reference.

Genes and Chromosomes

- A thorough description of one of the transposon classes that makes up a large part of the human genome.

- Report of the first complete sequence of a eukaryotic genome, the yeast *Saccharomyces cerevisiae*.

- Details of the diversity of centromere structures from different organisms, as currently understood.

Supercoiling and Topoisomerases

- A study that defines several fundamental features of supercoiled DNA.

- An excellent summary of the topoisomerase classes.

- A nice description of the physics of bent DNA.

A short and interesting historical note.

Chromatin and Nucleosomes

A classic paper that introduced the subunit model for chromatin.

A description of the imaginative methods being employed to study nucleosome modification patterns, nucleosome positioning, and other aspects of chromosome structure on a genomic scale.

A good, short summary of chromosome structure and the roles of SMC proteins.

Problems

1. **Packaging of DNA in a Virus** Bacteriophage T2 has a DNA of molecular weight \(120 \times 10^6\) contained in a head about 210 nm long. Calculate the length of the DNA (assume the molecular weight of a nucleotide pair is 650) and compare it with the length of the T2 head.

2. **The DNA of Phage M13** The base composition of phage M13 DNA is A, 23%; T, 36%; G, 21%; C, 20%. What does this tell you about the DNA of phage M13?

3. **The Mycoplasma Genome** The complete genome of the simplest bacterium known, *Mycoplasma genitalium*, is a circular DNA molecule with 580,070 bp. Calculate the molecular weight and contour length (when relaxed) of this molecule. What is \(L_k\), for the *Mycoplasma* chromosome? If \(\sigma = -0.06\), what is \(L_k\)?

4. **Size of Eukaryotic Genes** An enzyme isolated from rat liver has 192 amino acid residues and is coded for by a gene with 1,440 bp. Explain the relationship between the number of amino acid residues in the enzyme and the number of nucleotide pairs in its gene.

5. **Linking Number** A closed-circular DNA molecule in its relaxed form has an \(L_k\) of 500. Approximately how many base pairs are in this DNA? How is the linking number altered (increases, decreases, doesn't change, becomes undefined) when (a) a protein complex binds to form a nucleosome, (b) one DNA strand is broken, (c) DNA gyrase and ATP are added to the DNA solution, or (d) the double helix is denatured by heat?

6. **DNA Topology** In the presence of a eukaryotic condensin and a type II topoisomerase, the \(L_k\) of a relaxed closed-circular DNA molecule does not change. However, the DNA becomes highly knotted.

Formation of the knots requires breakage of the DNA, passage of a segment of DNA through the break, and religation by the topoisomerase. Given that every reaction of the topoisomerase would be expected to result in a change in linking number, how can \(L_k\) remain the same?

7. **Superhelical Density** Bacteriophage \(\lambda\) infects *E. coli* by integrating its DNA into the bacterial chromosome. The success of this recombination depends on the topology of the *E. coli* DNA. When the superhelical density (\(\sigma\)) of the *E. coli* DNA is greater than \(-0.045\), the probability of integration is <20%; when \(\sigma\) is less than \(-0.06\), the probability is >70%. Plasmid DNA isolated from an *E. coli* culture is found to have a length of 13,800 bp and an \(L_k\) of 1,222. Calculate \(\sigma\) for this DNA and predict the likelihood that bacteriophage \(\lambda\) will be able to infect this culture.

8. **Altering Linking Number** (a) What is the \(L_k\) of a 5,000 bp circular duplex DNA molecule with a nick in one strand? (b) What is the \(L_k\) of the molecule in (a) when the nick is sealed (relaxed)? (c) How would the \(L_k\) of the molecule in (b) be affected by the action of a single molecule of *E. coli* topoisomerase I? (d) What is the \(L_k\) of the molecule in (b) after eight enzymatic turnovers by a single molecule of DNA gyrase in the presence of ATP? (e) What is the \(L_k\) of the molecule in (d) after four enzymatic turnovers by a single molecule of bacterial type I topoisomerase? (f) What is the \(L_k\) of the molecule in (d) after binding of one nucleosome?

9. **Chromatin** Early evidence that helped researchers define nucleosome structure is illustrated by the agarose gel below, in which the thick bands represent DNA. It was generated by briefly treating chromatin with an enzyme that degrades DNA, then removing all protein and subjecting the purified DNA to electrophoresis. Numbers at the side of the gel denote the position to which a linear DNA of the indicated size would mi-
10. DNA Structure Explain how the underwinding of a B-DNA helix might facilitate or stabilize the formation of Z-DNA.

11. Maintaining DNA Structure (a) Describe two structural features required for a DNA molecule to maintain a negatively supercoiled state. (b) List three structural changes that become more favorable when a DNA molecule is negatively supercoiled. (c) What enzyme, with the aid of ATP, can generate negative superhelicity in DNA? (d) Describe the physical mechanism by which this enzyme acts.

12. Yeast Artificial Chromosomes (YACs) YACs are used to clone large pieces of DNA in yeast cells. What three types of DNA sequence are required to ensure proper replication and propagation of a YAC in a yeast cell?

13. Nucleoid Structure in Bacteria In bacteria, the transcription of a subset of genes is affected by DNA topology, with expression increasing or (more often) decreasing when the DNA is relaxed. When a bacterial chromosome is cleaved at a specific site by a restriction enzyme (one that cuts at a long, and thus rare, sequence), only nearby genes (within 10,000 bp) exhibit either an increase or decrease in expression. The transcription of genes elsewhere in the chromosome is unaffected. Explain. (Hint: See Fig. 24–37.)

14. DNA Topoisomers When DNA is subjected to electrophoresis in an agarose gel, shorter molecules migrate faster than longer ones. Closed-circular DNAs of the same size but different linking number also can be separated on an agarose gel: topoisomers that are more supercoiled, and thus more condensed, migrate faster through the gel—from top to bottom in the gels shown at right. A dye, chloroquine, was added to these gels. Chloroquine intercalates between base pairs and stabilizes a more underwound DNA structure. When the dye binds to a relaxed, closed-circular DNA, the DNA is underwound where the dye binds, and unbound regions take on positive supercoils to compensate. In the experiment shown here, topoisomerase were used to make preparations of the same DNA circle with different superhelical densities \((\sigma) \). Completely relaxed DNA migrated to the position labeled N (for nicked), and highly supercoiled DNA (above the limit where individual topoisomers can be distinguished) to the position labeled X.

(a) In gel A, why does the \(\sigma = 0 \) lane (i.e., DNA prepared so that \(\sigma = 0 \), on average) have multiple bands?
(b) In gel B, is the DNA from the \(\sigma = 0 \) preparation positively or negatively supercoiled in the presence of the intercalating dye?
(c) In both gels, the \(\sigma = -0.115 \) lane has two bands, one a highly supercoiled DNA and one relaxed. Propose a reason for the presence of relaxed DNA in these lanes (and others).
(d) The native DNA (leftmost lane in each gel) is the same DNA circle isolated from bacterial cells and untreated. What is the approximate superhelical density of this native DNA?

Data Analysis Problem

15. Defining the Functional Elements of Yeast Chromosomes Figure 24–9 shows the major structural elements of a chromosome of baker's yeast \((Saccharomyces cerevisiae) \). Heiter, Mann, Snyder, and Davis (1985) determined the properties of some of these elements. They based their study on
the finding that in yeast cells, plasmids (which have genes and an origin of replication) act differently from chromosomes (which have these elements plus centromeres and telomeres) during mitosis. The plasmids are not manipulated by the mitotic apparatus and segregate randomly between daughter cells. Without a selectable marker to force the host cells to retain them (see Fig. 9-4), these plasmids are rapidly lost. In contrast, chromosomes, even without a selectable marker, are manipulated by the mitotic apparatus and are lost at a very low rate (about 10^{-5} per cell division).

Heiter and colleagues set out to determine the important components of yeast chromosomes by constructing plasmids with various parts of chromosomes and observing whether these “synthetic chromosomes” segregated properly during mitosis. To measure the rates of different types of failed chromosome segregation, the researchers needed a rapid assay to determine the number of copies of synthetic chromosomes present in different cells. This assay took advantage of the fact that wild-type yeast colonies are white whereas certain adenine-requiring (ade{sup}2\sup) mutants yield red colonies on nutrient media. Specifically, ade{sup}2\sup - cells lack functional AIR carboxylase (the enzyme of step 6 in Figure 22-33) and accumulate AIR (5-aminooimidazole ribonucleotide) in their cytoplasm. This excess AIR is converted to a conspicuous red pigment. The other part of the assay involved the gene SUP11, which encodes an ochre suppressor (a type of nonsense suppressor; see Box 27-4) that suppresses the phenotype of some ade{sup}2\sup - mutants.

Heiter and coworkers started with a diploid strain of yeast homozygous for ade{sup}2\sup; these cells are red. When the mutant cells contain one copy of SUP11, the metabolic defect is partly suppressed and the cells are pink. When the cells contain two or more copies of SUP11, the defect is completely suppressed and the cells are white.

The researchers inserted one copy of SUP11 into synthetic chromosomes containing various elements thought to be important in chromosome function, and then observed how well these chromosomes were passed from one generation to the next. These pink cells were plated on nonselective media, and the behavior of the synthetic chromosomes was observed. Specifically, Heiter and coworkers looked for colonies in which the synthetic chromosomes segregated improperly at the first division after plating, giving rise to a colony that is half one genotype and half the other. Because yeast cells are nonmotile, this will be a sectored colony, with one half one color and the other half another color.

(a) One way for the mitotic process to fail is nondisjunction: the chromosome replicates but the sister chromatids fail to separate, so both copies of the chromosome end up in the same daughter cell. Explain how nondisjunction of the synthetic chromosome would give rise to a colony that is half red and half white.

(b) Another way for the mitotic process to fail is chromosome loss: the chromosome does not enter the daughter nucleus or is not replicated. Explain how loss of the synthetic chromosome would give rise to a colony that is half red and half white.

By counting the frequency of the different colony types, Heiter and colleagues could estimate the frequency of these aberrant mitotic events with different types of synthetic chromosome. First, they explored the requirement for centromeric sequences by constructing synthetic chromosomes with different-sized DNA fragments containing a known centromere. Their results are shown below.

<table>
<thead>
<tr>
<th>Synthetic chromosome</th>
<th>Size of centromere-containing fragment (kbp)</th>
<th>Chromosome loss (%)</th>
<th>Nondisjunction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>—</td>
<td>>50</td>
</tr>
<tr>
<td>2</td>
<td>0.63</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>1.7</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>6.0</td>
<td>1.6</td>
<td>0.35</td>
</tr>
</tbody>
</table>

(c) Based on these data, what can you conclude about the size of the centromere required for normal mitotic segregation? Explain your reasoning.

(d) Interestingly, all the synthetic chromosomes created in these experiments were circular and lacked telomeres. Explain how they could be replicated more-or-less properly.

Heiter and colleagues next constructed a series of linear synthetic chromosomes that included the functional centromeric sequence and telomeres, and measured the total mitotic error rate (% loss + % nondisjunction) as a function of size:

<table>
<thead>
<tr>
<th>Synthetic chromosome</th>
<th>Size (kbp)</th>
<th>Total error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15</td>
<td>11.0</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>95</td>
<td>0.44</td>
</tr>
<tr>
<td>9</td>
<td>137</td>
<td>0.14</td>
</tr>
</tbody>
</table>

(e) Based on these data, what can you conclude about the chromosome size required for normal mitotic segregation? Explain your reasoning.

(f) Normal yeast chromosomes are linear, range from 250 kb to 2,000 kb in length, and have a mitotic error rate of about 10^{-5} per cell division. Extrapolating the results from (e), do the centromeric and telomeric sequences used in these experiments explain the mitotic stability of normal yeast chromosomes, or must other elements be involved? Explain your reasoning. (Hint: A plot of log (error rate) vs. length will be helpful.)

Reference

DNA Metabolism

25.1 DNA Replication 977
25.2 DNA Repair 993
25.3 DNA Recombination 1003

As the repository of genetic information, DNA occupies a unique and central place among biological macromolecules. The nucleotide sequences of DNA encode the primary structures of all cellular RNAs and proteins and, through enzymes, indirectly affect the synthesis of all other cellular constituents. This passage of information from DNA to RNA and protein guides the size, shape, and functioning of every living thing.

DNA is a marvelous device for the stable storage of genetic information. The phrase "stable storage," however, conveys a static and misleading picture. It fails to capture the complexity of processes by which genetic information is preserved in an uncorrupted state and then transmitted from one generation of cells to the next. DNA metabolism comprises both the process that gives rise to faithful copies of DNA molecules (replication) and the processes that affect the inherent structure of the information (repair and recombination). Together, these activities are the focus of this chapter.

The metabolism of DNA is shaped by the requirement for an exquisite degree of accuracy. The chemistry of joining one nucleotide to the next in DNA replication is elegant and simple, almost deceptively so. As we shall see, complexity arises in the form of enzymatic devices to ensure that the genetic information is transmitted intact. Uncorrected errors that arise during DNA synthesis can have dire consequences, not only because they can permanently affect or eliminate the function of a gene but also because the change is inheritable.

The enzymes that synthesize DNA may copy DNA molecules that contain millions of bases. They do so with extraordinary fidelity and speed, even though the DNA substrate is highly compacted and bound with other proteins. Formation of phosphodiester bonds to link nucleotides in the backbone of a growing DNA strand is therefore only one part of an elaborate process that requires myriad proteins and enzymes.

Maintaining the integrity of genetic information lies at the heart of DNA repair. As detailed in Chapter 8, DNA is susceptible to many types of damaging reactions. Such reactions are infrequent but significant nevertheless, because of the very low biological tolerance for changes in DNA sequence. DNA is the only macromolecule for which repair systems exist; the number, diversity, and complexity of DNA repair mechanisms reflect the wide range of insults that can harm DNA.

Cells can rearrange their genetic information by processes collectively called recombination—seemingly undermining the principle that the stability and integrity of genetic information are paramount. However, most DNA rearrangements in fact play constructive roles in maintaining genomic integrity, contributing in special ways to DNA replication, DNA repair, and chromosome segregation.

Special emphasis is given in this chapter to the enzymes of DNA metabolism. They merit careful study not only because of their intrinsic biological importance and interest but also for their increasing importance in medicine and for their everyday use as reagents in a wide range of modern biochemical technologies. Many of the seminal discoveries in DNA metabolism have been made with Escherichia coli, so its well-understood enzymes are generally used to illustrate the ground rules. A quick look at some relevant genes on the E. coli genetic map (Fig. 25-1) provides just a hint of the complexity of the enzymatic systems involved in DNA metabolism.

Before taking a closer look at replication, we must make a short digression into the use of abbreviations in naming bacterial genes and proteins—you will encounter many of these in this and later chapters. Similar conventions exist for naming eukaryotic genes, although the exact form of the abbreviations may vary with the species and no single convention applies to all eukaryotic systems.
DNA Metabolism

Mismatch repair protein
 Single-stranded DNA–binding protein
 DNA repair
 Helicase
 RNA polymerase subunits
 DNA polymerase I
 Helicase 3'→5' repair
 (Replication origin)
 Replication initiation
 Recombination and recombination repair
 DNA gyrase subunit
 Primosome assembly
 Methylation
 RNA polymerase subunits
 Primase
dnaG
 Meswamp repair proteins
 Recombination and recombination repair
 Recombination and recombination repair
 Uracyl glycosylase
 Recombination repair
 DNA gyrase subunit
 Ung
 Recombination repair
 DNA ligase
 recC recB recD
 recA recO
 recA rec0
25.1 DNA Replication

Long before the structure of DNA was known, scientists wondered at the ability of organisms to create faithful copies of themselves and, later, at the ability of cells to produce many identical copies of large, complex macromolecules. Speculation about these problems centered around the concept of a template, a structure that would allow molecules to be lined up in a specific order and joined to create a macromolecule with a unique sequence and function. The 1940s brought the revelation that DNA was the genetic molecule, but not until James Watson and Francis Crick deduced its structure did the way in which DNA could act as a template for the replication and transmission of genetic information become clear: one strand is the complement of the other. The strict base-pairing rules mean that each strand provides the template for a new strand with a predictable and complementary sequence (see Figs 8-14, 8-15).

Nucleotides: Building Blocks of Nucleic Acids

The fundamental properties of the DNA replication process and the mechanisms used by the enzymes that catalyze it have proved to be essentially identical in all species. This mechanistic unity is a major theme as we proceed from general properties of the replication process, to E. coli replication enzymes, and, finally, to replication in eukaryotes.

DNA Replication Follows a Set of Fundamental Rules

Early research on bacterial DNA replication and its enzymes helped to establish several basic properties that have proven applicable to DNA synthesis in every organism.

DNA Replication Is Semiconservative

Each DNA strand serves as a template for the synthesis of a new strand, producing two new DNA molecules, each with one new strand and one old strand. This is semiconservative replication.

Watson and Crick proposed the hypothesis of semiconservative replication soon after publication of their 1953 paper on the structure of DNA, and the hypothesis was proved by ingeniously designed experiments carried out by Matthew Meselson and Franklin Stahl in 1957. Meselson and Stahl grew E. coli cells for many generations in a medium containing only heavy nitrogen, 15N, so that all the nitrogen in their DNA was 15N, as shown by a single band (blue) when centrifuged in a CsCl density gradient. (b) Once the cells had been transferred to a medium containing only light nitrogen, 14N, cellular DNA isolated after one generation equilibrated at a higher position in the density gradient (purple band). (c) A second cycle of replication yielded a hybrid DNA band (purple) and another band (red), containing only 14N DNA, confirming semiconservative replication.

Watson and Crick proposed the hypothesis of semiconservative replication soon after publication of their 1953 paper on the structure of DNA, and the hypothesis was proved by ingeniously designed experiments carried out by Matthew Meselson and Franklin Stahl in 1957. Meselson and Stahl grew E. coli cells for many generations in a medium containing only heavy nitrogen, 15N, so that all the nitrogen in their DNA was 15N, as shown by a single band (blue) when centrifuged in a CsCl density gradient. This result argued against conservative replication, an alternative hypothesis in which one progeny DNA molecule would consist of two newly synthesized DNA strands and the other would contain the two parent strands; this would not yield hybrid DNA molecules in the Meselson-Stahl experiment. The semiconservative replication hypothesis was further supported in the next step of the experiment (Fig. 25-2c). Cells were again allowed to double in number in the 14N medium. The isolated DNA product of this second cycle of replication exhibited two bands in the density gradient, one with a density equal to that of light DNA and the other with the density of the hybrid DNA observed after the first cell doubling.
Replication Begins at an Origin and Usually Proceeds Bidirectionally Following the confirmation of a semiconservative mechanism of replication, a host of questions arose. Are the parent DNA strands completely unwound before each is replicated? Does replication begin at random places or at a unique point? After initiation at any point in the DNA, does replication proceed in one direction or both?

An early indication that replication is a highly coordinated process in which the parent strands are simultaneously unwound and replicated was provided by John Cairns, using autoradiography. He made *E. coli* DNA radioactive by growing cells in a medium containing thymidine labeled with tritium (\(^3\)H). When the DNA was carefully isolated, spread, and overlaid with a photographic emulsion for several weeks, the radioactive thymidine residues generated “tracks” of silver grains in the emulsion, producing an image of the DNA molecule. These tracks revealed that the intact chromosome of *E. coli* is a single huge circle, 1.7 mm long. Radioactive DNA isolated from cells during replication showed an extra loop (Fig. 25-3a). Cairns concluded that the loop resulted from the formation of two radioactive daughter strands, each complementary to a parent strand. One or both ends of the loop are dynamic points, termed replication forks, where parent DNA is being unwound and the separated strands quickly replicated. Cairns’s results demonstrated that both DNA strands are replicated simultaneously, and a variation on his experiment (Fig. 25-3b) indicated that replication of bacterial chromosomes is bidirectional: both ends of the loop have active replication forks.

The determination of whether the replication loops originate at a unique point in the DNA required landmarks along the DNA molecule. These were provided by a technique called denaturation mapping, developed by Ross Inman and colleagues. Using the 48,502 bp chromosome of bacteriophage λ, Inman showed that DNA could be selectively denatured at sequences unusually rich in A:T base pairs, generating a reproducible pattern of single-strand bubbles (see Fig. 8-28). Isolated DNA containing replication loops can be partially denatured in the same way. This allows the position and progress of the replication forks to be measured and mapped, using the denatured regions as points of reference. The technique revealed that in this system the replication loops always initiate at a unique point, which was termed an origin. It also confirmed the earlier observation that replication is usually bidirectional. For circular DNA molecules, the two replication forks meet at a point on the side of the circle opposite to the origin. Specific origins of replication have since been identified and characterized in bacteria and lower eukaryotes.

DNA Synthesis Proceeds in a 5'→3' Direction and Is Semidiscontinuous A new strand of DNA is always synthesized in the 5'→3' direction, with the free 3' OH as the point at which the DNA is elongated (the 5' and 3' ends of a DNA strand are defined in Fig. 8–7). Because the two DNA strands are antiparallel, the strand serving as the template is read from its 3' end toward its 5' end.

If synthesis always proceeds in the 5'→3' direction, how can both strands be synthesized simultaneously? If both strands were synthesized continuously while the replication fork moved, one strand would have to undergo 3'→5' synthesis. This problem was resolved by
Figure 25-4 Defining DNA strands at the replication fork. A new DNA strand (red) is always synthesized in the 5'→3' direction. The template is read in the opposite direction, 3'→5'. The leading strand is continuously synthesized in the direction taken by the replication fork. The other strand, the lagging strand, is synthesized discontinuously in short pieces (Okazaki fragments) in a direction opposite to that in which the replication fork moves. The Okazaki fragments are spliced together by DNA ligase. In bacteria, Okazaki fragments are ~1,000 to 2,000 nucleotides long. In eukaryotic cells, they are 150 to 200 nucleotides long.

Reiji Okazaki and colleagues in the 1960s. Okazaki found that one of the new DNA strands is synthesized in short pieces, now called Okazaki fragments. This work ultimately led to the conclusion that one strand is synthesized continuously and the other discontinuously (Fig. 25-4). The continuous strand, or leading strand, is the one in which 5'→3' synthesis proceeds in the same direction as replication fork movement. The discontinuous strand, or lagging strand, is the one in which 5'→3' synthesis proceeds in the direction opposite to the direction of fork movement. Okazaki fragments range in length from a few hundred to a few thousand nucleotides, depending on the cell type. As we shall see later, leading and lagging strand syntheses are tightly coordinated.

DNA Is Degraded by Nucleases

To explain the enzymology of DNA replication, we first introduce the enzymes that degrade DNA rather than synthesize it. These enzymes are known as nucleases, or DNases if they are specific for DNA rather than RNA. Every cell contains several different nucleases, belonging to two broad classes: exonucleases and endonucleases. Exonucleases degrade nucleic acids from one end of the molecule. Many operate in only the 5'→3' or the 3'→5' direction, removing nucleotides only from the 5' or the 3' end, respectively, of one strand of a double-stranded nucleic acid or of a single-stranded DNA. Endonucleases can begin to degrade at specific internal sites in a nucleic acid strand or molecule, reducing it to smaller and smaller fragments. A few exonucleases and endonucleases degrade only single-stranded DNA. There are a few important classes of endonucleases that cleave only at specific nucleotide sequences (such as the restriction endonucleases that are so important in biotechnology; see Chapter 9, Fig. 9-2). You will encounter many types of nucleases in this and subsequent chapters.

DNA Is Synthesized by DNA Polymerases

The search for an enzyme that could synthesize DNA began in 1955. Work by Arthur Kornberg and colleagues led to the purification and characterization of a DNA polymerase from E. coli, a single-polypeptide enzyme now called DNA polymerase I (M, 103,000; encoded by the polA gene). Much later, investigators found that E. coli contains at least four other distinct DNA polymerases, described below.

Detailed studies of DNA polymerase I revealed features of the DNA synthetic process that are now known to be common to all DNA polymerases. The fundamental reaction is a phosphoryl group transfer. The nucleophile is the 3'-hydroxyl group of the nucleotide at the 3' end of the growing strand. Nucleophilic attack occurs at the α phosphorus of the incoming deoxynucleoside 5'-triphosphate (Fig. 25-5). Inorganic pyrophosphate is released in the reaction. The general reaction is

\[
(dNMP)_n + dNTP \rightarrow (dNMP)_{n+1} + PP_i
\]

(25-1)

where dNMP and dNTP are deoxynucleoside 5'-monophosphate and 5'-triphosphate, respectively. The reaction seems to proceed with only a minimal change in free energy, given that one phosphodiester bond is formed at the expense of a somewhat less stable phosphate anhydride. However, noncovalent base-stacking and base-pairing interactions provide additional stabilization to the lengthened DNA product relative to the free nucleotide. Also, the formation of products is facilitated in the cell by the 19 kJ/mol generated in the subsequent hydrolysis of the pyrophosphate product by the enzyme pyrophosphatase (p. 508).

Early work on DNA polymerase I led to the definition of two central requirements for DNA polymerization. First, all DNA polymerases require a template. The polymerization reaction is guided by a template DNA strand according to the base-pairing rules predicted by Watson and Crick: where a guanine is present in the template, a cytosine deoxynucleotide is added to the new strand, and so on. This was a particularly important discovery, not only because it provided a chemical basis for accurate semiconservative DNA replication but also because it represented the first example of the use of a template to guide a biosynthetic reaction.
Second, the polymerases require a primer. A primer is a strand segment (complementary to the template) with a free 3'-hydroxyl group to which a nucleotide can be added; the free 3' end of the primer is called the primer terminus. In other words, part of the new strand must already be in place: all DNA polymerases can only add nucleotides to a preexisting strand. Many primers are oligonucleotides of RNA rather than DNA, and specialized enzymes synthesize primers when and where they are required.

After adding a nucleotide to a growing DNA strand, a DNA polymerase either dissociates or moves along the template and adds another nucleotide. Dissociation and reassociation of the polymerase can limit the overall polymerization rate—the process is generally faster when a polymerase adds more nucleotides without dissociating from the template. The average number of nucleotides added before a polymerase dissociates defines its processivity. DNA polymerases vary greatly in processivity; some add just a few nucleotides before dissociating, others add many thousands.

Replication Is Very Accurate

Replication proceeds with an extraordinary degree of fidelity. In E. coli, a mistake is made only once for every 10^6 to 10^{10} nucleotides added. For the E. coli chromosome of ~4.6×10^6 bp, this means that an error occurs only once per 1,000 to 10,000 replications. During polymerization, discrimination between correct and incorrect nucleotides relies not just on the hydrogen bonds that specify the correct pairing between complementary bases but also on the common geometry of the standard A=T and G=C base pairs (Fig. 25-6). The active site of DNA polymerase I accommodates only base pairs with this geometry. An incorrect nucleotide may be able to hydrogen-bond with a base in the template, but it generally will not fit into the active site. Incorrect bases can be rejected before the phosphodiester bond is formed.

The accuracy of the polymerization reaction itself, however, is insufficient to account for the high degree of fidelity in replication. Careful measurements in vitro have shown that DNA polymerases insert one incorrect nucleotide for every 10^4 to 10^5 correct ones. These mistakes sometimes occur because a base is briefly in an unusual tautomeric form (see Fig. 8-9), allowing it to hydrogen-bond with an incorrect partner. In vivo, the error rate is reduced by additional enzymatic mechanisms.

One mechanism intrinsic to virtually all DNA polymerases is a separate 3'→5' exonuclease activity that double-checks each nucleotide after it is added. This
FIGURE 25-6 Contribution of base-pair geometry to the fidelity of DNA replication. (a) The standard A=T and G=C base pairs have very similar geometries, and an active site sized to fit one (blue shading) will generally accommodate the other. (b) The geometry of incorrectly paired bases can exclude them from the active site, as occurs on DNA polymerase.

nuclease activity permits the enzyme to remove a newly added nucleotide and is highly specific for mismatched base pairs (Fig. 25-7). If the polymerase has added the wrong nucleotide, translocation of the enzyme to the position where the next nucleotide is to be added is inhibited. This kinetic pause provides the opportunity for a correction. The 3'→5' exonuclease activity removes the mispaired nucleotide, and the polymerase begins again. This activity, known as proofreading, is not simply the reverse of the polymerization reaction (Eqn 25-1), because pyrophosphate is not involved. The polymerizing and proofreading activities of a DNA polymerase can be measured separately. Proofreading improves the inherent accuracy of the polymerization

FIGURE 25-7 An example of error correction by the 3'→5' exonuclease activity of DNA polymerase I. Structural analysis has located the exonuclease activity ahead of the polymerase activity as the enzyme is oriented in its movement along the DNA. A mismatched base (here, a C-A mismatch) impedes translocation of DNA polymerase I to the next site. Sliding backward, the enzyme corrects the mistake with its 3'→5' exonuclease activity, then resumes its polymerase activity in the 5'→3' direction.
reaction 10^2- to 10^3-fold. In the monomeric DNA polymerase I, the polymerizing and proofreading activities have separate active sites within the same polypeptide.

When base selection and proofreading are combined, DNA polymerase leaves behind one net error for every 10^6 to 10^8 bases added. Yet the measured accuracy of replication in E. coli is higher still. The additional accuracy is provided by a separate enzyme system that repairs the mismatched base pairs remaining after replication. We describe this mismatch repair, along with other DNA repair processes, in Section 25.2.

E. coli Has at Least Five DNA Polymerases

More than 90% of the DNA polymerase activity observed in E. coli extracts can be accounted for by DNA polymerase I. Soon after the isolation of this enzyme in 1955, however, evidence began to accumulate that it is not suited for replication of the large E. coli chromosome. First, the rate at which it adds nucleotides (600 nucleotides/min) is too slow (by a factor of 100 or more) to account for the rates at which the replication fork moves in the bacterial cell. Second, DNA polymerase I has a relatively low processivity. Third, genetic studies have demonstrated that many genes, and therefore many proteins, are involved in replication: DNA polymerase I clearly does not act alone. Fourth, and most important, in 1969 John Cairns isolated a bacterial strain with an altered gene for DNA polymerase I that produced an inactive enzyme. Although this strain was abnormally sensitive to agents that damaged DNA, it was nevertheless viable!

A search for other DNA polymerases led to the discovery of E. coli DNA polymerase II and DNA polymerase III in the early 1970s. DNA polymerase II is an enzyme involved in one type of DNA repair (Section 25.3). DNA polymerase III is the principal replication enzyme in E. coli. The properties of these three DNA polymerases are compared in Table 25–1. DNA polymerases IV and V, identified in 1999, are involved in an unusual form of DNA repair (Section 25.2).

DNA polymerase I, then, is not the primary enzyme of replication; instead it performs a host of clean-up functions during replication, recombination, and repair. The polymerase’s special functions are enhanced by its 5'-3' exonuclease activity. This activity, distinct from the 3'-5' proofreading exonuclease (Fig. 25-7), is located in a structural domain that can be separated from the enzyme by mild protease treatment. When the 5'-3' exonuclease domain is removed, the remaining fragment (M_r 68,000), the large fragment or Klenow fragment (Fig. 25–8), retains the polymerization and proofreading activities. The 5'→3' exonuclease activity of intact DNA polymerase I can replace a segment of DNA (or RNA) paired to the

![FIGURE 25–8 Large (Klenow) fragment of DNA polymerase I. This polymerase is widely distributed in bacteria. The Klenow fragment, produced by proteolytic treatment of the polymerase, retains the polymerization and proofreading activities of the enzyme. The Klenow fragment shown here is from the thermophilic bacterium *Bacillus stearothermophilus* (PDB ID 3BDP). The active site for addition of nucleotides is deep in the crevice at the far end of the bound DNA (blue; the dark blue strand is the template).](image)

TABLE 25–1 Comparison of Three DNA Polymerases of E. coli

<table>
<thead>
<tr>
<th>DNA polymerase</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural gene*</td>
<td>polA</td>
<td>polB</td>
<td>polC (dnaE)</td>
</tr>
<tr>
<td>Subunits (number of different types)</td>
<td>1</td>
<td>7</td>
<td>≥10</td>
</tr>
<tr>
<td>M_r</td>
<td>103,000</td>
<td>88,000</td>
<td>791,500</td>
</tr>
<tr>
<td>3'→5' Exonuclease (proofreading)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5'→3' Exonuclease</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Polymerization rate (nucleotides/s)</td>
<td>16–20</td>
<td>40</td>
<td>250–1,000</td>
</tr>
<tr>
<td>Processivity (nucleotides added before polymerase dissociates)</td>
<td>3–200</td>
<td>1,500</td>
<td>≥500,000</td>
</tr>
</tbody>
</table>

*For enzymes with more than one subunit, the gene listed here encodes the subunit with polymerization activity. Note that dnaE is an earlier designation for the gene now referred to as polC.

Polymerization subunit only. DNA polymerase II shares several subunits with DNA polymerase III, including the β, γ, δ, δ', χ, and ψ subunits (see Table 25–2).
Nick translation. In this process, an RNA or DNA strand paired to a DNA template is simultaneously degraded by the \(5'\rightarrow3'\) exonuclease activity of DNA polymerase I and replaced by the polymerase activity of the same enzyme. These activities have a role in DNA repair and in the removal of RNA primers during replication (both described later). The strand of nucleic acid to be removed (either DNA or RNA) is shown in green, the replacement strand in red. DNA synthesis begins at a nick (a broken phosphodiester bond, leaving a free 3' hydroxyl and a free 5' phosphate). Polymerase I extends the nontemplate DNA strand and moves the nick along the DNA—a process called nick translation. A nick remains where DNA polymerase I dissociates, and is later sealed by another enzyme.

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Number of subunits per holoenzyme</th>
<th>(M_r) of subunit</th>
<th>Gene</th>
<th>Function of subunit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>2</td>
<td>129,900</td>
<td>(polC) ((dnaE))</td>
<td>Polymerization activity</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>2</td>
<td>27,500</td>
<td>(dnaQ) ((mutD))</td>
<td>3'\rightarrow5' Proofreading exonuclease</td>
</tr>
<tr>
<td>(\theta)</td>
<td>2</td>
<td>8,600</td>
<td>(holE)</td>
<td>Stabilization of (\epsilon) subunit</td>
</tr>
<tr>
<td>(\tau)</td>
<td>2</td>
<td>71,100</td>
<td>(dnaX)</td>
<td>Stable template binding; core enzyme dimerization</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1</td>
<td>47,500</td>
<td>(dnaX^*)</td>
<td>Clamp loader</td>
</tr>
<tr>
<td>(\delta)</td>
<td>1</td>
<td>38,700</td>
<td>(holA)</td>
<td>Clamp opener</td>
</tr>
<tr>
<td>(\delta^*)</td>
<td>1</td>
<td>36,900</td>
<td>(holB)</td>
<td>Clamp loader</td>
</tr>
<tr>
<td>(\chi)</td>
<td>1</td>
<td>16,600</td>
<td>(holC)</td>
<td>Interaction with SSB</td>
</tr>
<tr>
<td>(\psi)</td>
<td>1</td>
<td>15,200</td>
<td>(holD)</td>
<td>Interaction with (\gamma) and (\chi)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>4</td>
<td>40,600</td>
<td>(dnaN)</td>
<td>DNA clamp required for optimal processivity</td>
</tr>
</tbody>
</table>

*The \(\gamma\) subunit is encoded by a portion of the gene for the \(\tau\) subunit, such that the amino-terminal 66% of the \(\tau\) subunit has the same amino acid sequence as the \(\gamma\) subunit. The \(\gamma\) subunit is generated by a translational frameshifting mechanism (see p. -) that leads to premature translational termination.
along the DNA as replication proceeds. The β sliding clamp prevents the dissociation of DNA polymerase III from DNA, dramatically increasing processivity—to greater than 500,000 (Table 25–1).

DNA Replication Requires Many Enzymes and Protein Factors

Replication in *E. coli* requires not just a single DNA polymerase but 20 or more different enzymes and proteins, each performing a specific task. The entire complex has been termed the **DNA replicase system** or **replisome**. The enzymatic complexity of replication reflects the constraints imposed by the structure of DNA and by the requirements for accuracy. The main classes of replication enzymes are considered here in terms of the problems they overcome.

Access to the DNA strands that are to act as templates requires separation of the two parent strands. This is generally accomplished by **helicases**, enzymes that move along the DNA and separate the strands, using chemical energy from ATP. Strand separation creates topological stress in the helical DNA structure (see Fig. 24–12), which is relieved by the action of **topoisomerases**. The separated strands are stabilized by **DNA-binding proteins**. As noted earlier, before DNA polymerases can begin synthesizing DNA, primers must be present on the template—generally short segments of RNA synthesized by enzymes known as **primases**. Ultimately, the RNA primers are removed and replaced by DNA; in *E. coli*, this is one of the many functions of DNA polymerase I. After an RNA primer is removed and the gap is filled in with DNA, a nick remains in the DNA backbone in the form of a broken phosphodiester bond. These nicks are sealed by **DNA ligases**. All these processes require coordination and regulation, an interplay best characterized in the *E. coli* system.
Replication of the *E. coli* Chromosome Proceeds in Stages

The synthesis of a DNA molecule can be divided into three stages: initiation, elongation, and termination, distinguished both by the reactions taking place and by the enzymes required. As you will find here and in the next two chapters, synthesis of the major information-containing biological polymers—DNAs, RNAs, and proteins—can be understood in terms of these three stages, with the stages of each pathway having unique characteristics. The events described below reflect information derived primarily from in vitro experiments using purified *E. coli* proteins, although the principles are highly conserved in all replication systems.

Initiation The *E. coli* replication origin, oriC, consists of 245 bp and contains DNA sequence elements that are highly conserved among bacterial replication origins. The general arrangement of the conserved sequences is illustrated in Figure 25-11. Two types of sequences are of special interest: five repeats of a 9 bp sequence (R sites) that serve as binding sites for the key initiator protein DnaA, and a region rich in A:T base pairs called the DNA unwinding element (DUE). There are three additional DnaA-binding sites (I sites), and binding sites for the proteins IHF (integration host factor) and FIS (factor for inversion stimulation). These two proteins were discovered as required components of certain recombination reactions described later in this chapter, and their names reflect those roles. Another DNA-binding protein, HU (a histonelike bacterial protein originally dubbed factor U), also participates but does not have a specific binding site.

At least 10 different enzymes or proteins (summarized in Table 25-3) participate in the initiation phase of replication. They open the DNA helix at the origin and establish a prepriming complex for subsequent reactions. The crucial component in the initiation process is the DnaA protein, a member of the AAA+ ATPase protein family (ATPases associated with diverse cellular activities). Many AAA+ ATPases, including DnaA, form oligomers and hydrolyze ATP relatively slowly. This ATP hydrolysis acts as a switch mediating interconversion of the protein between two states. In the case of DnaA, the ATP-bound form is active and the ADP-bound form is inactive.

Eight DnaA protein molecules, all in the ATP-bound state, assemble to form a helical complex encompassing the R and I sites in oriC (Fig. 25-12). DnaA has a higher affinity for the R sites than I sites, and binds R sites equally well in its ATP- or ADP-bound form. The...
I sites, which bind only the ATP-bound DnaA, allow discrimination between the active and inactive forms of DnaA. The tight right-handed wrapping of the DNA around this complex introduces an effective positive supercoil (see Chapter 24). The associated strain in the nearby DNA leads to denaturation in the A=T-rich DUE region. The complex formed at the replication origin also includes several DNA-binding proteins—HU, IHF, and FIS—that facilitate DNA bending.

The DnaC protein, another AAA+ ATPase, then loads the DnaB protein onto the separated DNA strands in the denatured region. A hexamer of DnaC, each subunit bound to ATP, forms a tight complex with the hexameric, ring-shaped DnaB helicase. This DnaC-DnaB interaction opens the DnaB ring, the process being aided by a further interaction between DnaB and DnaA. Two of the ring-shaped DnaB hexamers are loaded in the DUE, one onto each DNA strand. The ATP bound to DnaC is hydrolyzed, releasing the DnaC and leaving the DnaB bound to the DNA.

Loading of the DnaB helicase is the key step in replication initiation. As a replicative helicase, DnaB migrates along the single-stranded DNA in the 5'-→3' direction, unwinding the DNA as it travels. The DnaB helicases loaded onto the two DNA strands thus travel in opposite directions, creating two potential replication forks. All other proteins at the replication fork are linked directly or indirectly to DnaB. The DNA polymerase III holoenzyme is linked through the \(\beta \) subunits; additional DnaB interactions are described below. As replication begins and the DNA strands are separated at the fork, many molecules of single-stranded DNA-binding protein (SSB) bind to and stabilize the separated strands, and DNA gyrase (DNA topoisomerase II) relieves the topological stress induced ahead of the fork by the unwinding reaction.

Initiation is the only phase of DNA replication that is known to be regulated, and it is regulated such that replication occurs only once in each cell cycle. The mechanism of regulation is not yet entirely understood, but genetic and biochemical studies have provided insights into several separate regulatory mechanisms.

Once DNA polymerase III has been loaded onto the DNA, along with the \(\beta \) subunits (signaling completion of the initiation phase), the protein Hda binds to the \(\beta \) subunits and interacts with DnaA to stimulate hydrolysis of its bound ATP. Hda is yet another AAA+ ATPase closely related to DnaA (its name is derived from homologous to DnaA). This ATP hydrolysis leads to disassembly of the DnaA complex at the origin. Slow release of ADP by DnaA and rebinding of ATP cycles the protein between its inactive (with bound ADP) and active (with bound ATP) forms on a time scale of 20 to 40 minutes.

The timing of replication initiation is affected by DNA methylation and interactions with the bacterial plasma membrane. The oriC DNA is methylated by the Dam methylase (Table 25–3), which methylates the \(N^6 \) position of adenine within the palindromic sequence (5')GATC. (Dam is not a biochemical expletive; it stands for DNA adenine methylation.) The oriC region of *E. coli* is highly enriched in GATC sequences—it has 11 of them in its 245 bp, whereas the average frequency of GATC in the *E. coli* chromosome as a whole is 1 in 256 bp.

Immediately after replication, the DNA is hemimethylated: the parent strands have methylated oriC sequences but the newly synthesized strands do not. The hemimethylated oriC sequences are now sequestered by interaction with the plasma membrane (the mechanism is unknown) and by the binding of the protein.

TABLE 25–3 Proteins Required to Initiate Replication at the *E. coli* Origin

<table>
<thead>
<tr>
<th>Protein</th>
<th>(M_r)</th>
<th>Number of subunits</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DnaA protein</td>
<td>52,000</td>
<td>1</td>
<td>Recognizes ori sequence; opens duplex at specific sites in origin</td>
</tr>
<tr>
<td>DnaB protein (helicase)</td>
<td>300,000</td>
<td>6*</td>
<td>Unwinds DNA</td>
</tr>
<tr>
<td>DnaC protein</td>
<td>174,000</td>
<td>6*</td>
<td>Required for DnaB binding at origin</td>
</tr>
<tr>
<td>HU</td>
<td>19,000</td>
<td>2</td>
<td>Histonelike protein; DNA-binding protein; stimulates initiation</td>
</tr>
<tr>
<td>FIS</td>
<td>22,500</td>
<td>2*</td>
<td>DNA-binding protein; stimulates initiation</td>
</tr>
<tr>
<td>IHF</td>
<td>22,000</td>
<td>2</td>
<td>DNA-binding protein; stimulates initiation</td>
</tr>
<tr>
<td>Primase (DnaG protein)</td>
<td>60,000</td>
<td>1</td>
<td>Synthesizes RNA primers</td>
</tr>
<tr>
<td>Single-stranded DNA-binding protein (SSB)</td>
<td>75,600</td>
<td>4*</td>
<td>Binds single-stranded DNA</td>
</tr>
<tr>
<td>DNA gyrase (DNA topoisomerase II)</td>
<td>400,000</td>
<td>4</td>
<td>Relieves torsional strain generated by DNA unwinding</td>
</tr>
<tr>
<td>Dam methylase</td>
<td>32,000</td>
<td>1</td>
<td>Methylates (5')GATC sequences at oriC</td>
</tr>
</tbody>
</table>

Subunits in these cases are identical.
SeqA. After a time, oriC is released from the plasma membrane, SeqA dissociates, and the DNA must be fully methylated by Dam methylase before it can again bind DnaA and initiate a new round of replication.

Elongation The elongation phase of replication includes two distinct but related operations: leading strand synthesis and lagging strand synthesis. Several enzymes at the replication fork are important to the synthesis of both strands. Parent DNA is first unwound by DNA helicases, and the resulting topological stress is relieved by topoisomerases. Each separated strand is then stabilized by SSB. From this point, synthesis of leading and lagging strands is sharply different.

Leading strand synthesis, the more straightforward of the two, begins with the synthesis by primase (DnaG protein) of a short (10 to 60 nucleotide) RNA primer at the replication origin. DnaG interacts with DnaB helicase to carry out this reaction, and the primer is synthesized in the direction opposite to that in which the DnaB helicase is moving. In effect, the DnaB helicase moves along the strand that becomes the lagging strand in DNA synthesis; however, the first primer laid down in the first DnaG-DnaB interaction serves to prime leading strand DNA synthesis in the opposite direction. Deoxribonucleotides are added to this primer by a DNA polymerase III complex linked to the DnaB helicase tethered to the opposite DNA strand. Leading strand synthesis then proceeds continuously, keeping pace with the unwinding of DNA at the replication fork.

Lagging strand synthesis, as we have noted, is accomplished in short Okazaki fragments (Fig. 25-13a). First, an RNA primer is synthesized by primase and, as in leading strand synthesis, DNA polymerase III binds to the RNA primer and adds deoxyribonucleotides (Fig. 25-13b). On this level, the synthesis of each Okazaki fragment seems straightforward, but the reality is quite complex. The complexity lies in the coordination of leading and lagging strand synthesis. Both strands are produced by a single asymmetric DNA polymerase III dimer; this is accomplished by looping the DNA of the lagging strand as shown in Figure 25-14, bringing together the two points of polymerization.

The synthesis of Okazaki fragments on the lagging strand entails some elegant enzymatic choreography. DnaB helicase and DnaG primase constitute a functional unit within the replication complex, the primosome. DNA polymerase III uses one set of its core subunits (the core polymerase) to synthesize the leading strand continuously, while the other set of core subunits cycles from one Okazaki fragment to the next on the looped lagging strand. DnaB helicase, bound in front of DNA polymerase III, unwinds the DNA at the replication fork (Fig. 25-14a) as it travels along the lagging strand template.

FIGURE 25-13 Synthesis of Okazaki fragments.
(a) At intervals, primase synthesizes an RNA primer for a new Okazaki fragment. Note that if we consider the two template strands as lying side by side, lagging strand synthesis formally proceeds in the opposite direction from fork movement. (b) Each primer is extended by DNA polymerase III. (c) DNA synthesis continues until the fragment extends as far as the primer of the previously added Okazaki fragment. A new primer is synthesized near the replication fork to begin the process again.
in the 5′→3′ direction. DnaG primase occasionally associates with DnaB helicase and synthesizes a short RNA primer (Fig. 25–14b). A new β sliding clamp is then positioned at the primer by the clamp-loading complex of DNA polymerase III (Fig. 25–14c). When synthesis of an Okazaki fragment has been completed, replication halts, and the core subunits of DNA polymerase III dissociate from their β sliding clamp (and from the completed Okazaki fragment) and associate with the new clamp (Fig. 25–14d, e). This initiates synthesis of a new Okazaki fragment. As noted earlier, the entire complex responsible for coordinated DNA synthesis at a replication fork is known as the replisome. The proteins acting at the replication fork are summarized in Table 25–4.

The clamp-loading complex of DNA polymerase III, consisting of parts of the two τ subunits along with the γ, δ, and δ′ subunits, is also an AAA+ ATPase. This complex binds to ATP and to the new β sliding clamp. The binding imparts strain on the dimeric clamp, opening up the ring at one subunit interface (Fig. 25–15). The newly primed lagging strand is slipped into the ring through the resulting break. The clamp loader then hydrolyzes ATP, releasing the β sliding clamp and allowing it to close around the DNA.
The replisome promotes rapid DNA synthesis, adding ~1,000 nucleotides/s to each strand (leading and lagging). Once an Okazaki fragment has been completed, its RNA primer is removed and replaced with DNA by DNA polymerase I, and the remaining nick is sealed by DNA ligase (Fig. 25-16).

DNA ligase catalyzes the formation of a phosphodiester bond between a 3' hydroxyl at the end of one DNA strand and a 5' phosphate at the end of another strand. The phosphate must be activated by adenylylation. DNA ligases isolated from viruses and eukaryotes use ATP for this purpose. DNA ligases from bacteria are unusual in that many use NAD⁺—a cofactor that normally functions in hydride transfer reactions (see Fig. 13-24)—as the source of the AMP activating group (Fig. 25-17). DNA ligase is another enzyme of DNA metabolism that has become an important reagent in recombinant DNA experiments (see Fig. 9-1).

Termination Eventually, the two replication forks of the circular *E. coli* chromosome meet at a terminus region containing multiple copies of a 20 bp sequence called Ter (Fig. 25-18). The Ter sequences are arranged on the chromosome to create a trap that a replication fork can enter but cannot leave. The Ter sequences function as binding sites for the protein Tus (terminus utilization substance). The Tus-Ter complex can arrest a replication fork from only one direction. Only one Tus-Ter complex functions per replication cycle—the complex first encountered by either replication fork. Given that opposing replication forks generally halt when they collide, Ter sequences would not seem to be essential, but they may prevent overreplication by one fork in the event that the other is delayed or halted by an encounter with DNA damage or some other obstacle.

So, when either replication fork encounters a functional Tus-Ter complex, it halts; the other fork halts...
DNA Metabolism

FIGURE 25-17 Mechanism of the DNA ligase reaction. In each of the three steps, one phosphodiester bond is formed at the expense of another. Steps 1 and 2 lead to activation of the 5' phosphate in the nick. An AMP group is transferred first to a Lys residue on the enzyme and then to the 5' phosphate in the nick. In step 3, the 3'-hydroxyl group attacks this phosphate and displaces AMP, producing a phosphodiester bond to seal the nick. In the *E. coli* DNA ligase reaction, AMP is derived from NAD⁺. The DNA ligases isolated from some viral and eukaryotic sources use ATP rather than NAD⁺, and they release pyrophosphate rather than nicotinamide mononucleotide (NMN) in step 3.

FIGURE 25-18 Termination of chromosome replication in *E. coli*. The Ter sequences (TerA through TerF) are positioned on the chromosome in two clusters with opposite orientations.

FIGURE 25-19 Role of topoisomerases in replication termination. Replication of the DNA separating opposing replication forks leaves the completed chromosomes joined as catenanes, or topologically interlinked circles. The circles are not covalently linked, but because they are interwound and each is covalently closed, they cannot be separated—except by the action of topoisomerases. In *E. coli*, a type II topoisomerase known as DNA topoisomerase IV plays the primary role in the separation of catenated chromosomes, transiently breaking both DNA strands of one chromosome and allowing the other chromosome to pass through the break.
when it meets the first (arrested) fork. The final few hundred base pairs of DNA between these large protein complexes are then replicated (by an as yet unknown mechanism), completing two topologically interlinked (catenated) circular chromosomes (Fig. 25–19). DNA circles linked in this way are known as catenanes. Separation of the catenated circles in *E. coli* requires topoisomerase IV (a type II topoisomerase). The separated chromosomes then segregate into daughter cells at cell division. The terminal phase of replication of other circular chromosomes, including many of the DNA viruses that infect eukaryotic cells, is similar.

Replication in Eukaryotic Cells Is Both Similar and More Complex

The DNA molecules in eukaryotic cells are considerably larger than those in bacteria and are organized into complex nucleoprotein structures (chromatin; p. 962). The essential features of DNA replication are the same in eukaryotes and bacteria, and many of the protein complexes are functionally and structurally conserved. However, eukaryotic replication is regulated and coordinated with the cell cycle, introducing some additional complexities.

Origins of replication have a well-characterized structure in some lower eukaryotes, but they are much less defined in higher eukaryotes. In vertebrates, a variety of A=T-rich sequences may be used for replication initiation, and the sites may vary from one cell division to the next. Yeast (*Saccharomyces cerevisiae*) has defined replication origins called autonomously replicating sequences (ARS), or *replicators*. Yeast replicators span ~150 bp and contain several essential, conserved sequences. About 400 replicators are distributed among the 16 chromosomes of the haploid yeast genome.

Regulation ensures that all cellular DNA is replicated once per cell cycle. Much of this regulation involves proteins called cyclins and the cyclin-dependent kinases (CDKs) with which they form complexes (p. 469). The cyclins are rapidly destroyed by ubiquitin-dependent proteolysis at the end of the M phase (mitosis), and the absence of cyclins allows the establishment of *pre-replicative complexes* (pre-RCs) on replication initiation sites. In rapidly growing cells, the pre-RC forms at the end of M phase. In slow-growing cells, it does not form until the end of G1. Formation of the pre-RC renders the cell competent for replication, an event sometimes called *licensing*.

As in bacteria, the key event in the initiation of replication in all eukaryotes is the loading of the replicative helicase, a heterohexameric complex of minichromosome maintenance (MCM) proteins (MCM2 to MCM7). The ring-shaped MCM2–7 helicase, functioning much like the bacterial DnaB helicase, is loaded onto the DNA by another six-protein complex called ORC (origin recognition complex) (Fig. 25–20). ORC has five AAA+ ATPase domains among its subunits and is functionally analogous to the bacterial DnaA. Two other proteins, CDC6 (cell division cycle) and CDT1 (CDC10-dependent transcript 1), are also required to load the MCM2–7 complex, and the yeast CDC6 is another AAA+ ATPase.

Commitment to replication requires the synthesis and activity of S-phase cyclin-CDK complexes (such as the cyclin E–CDK2 complex; see Fig. 12–45) and CDC7–DBF4. Both types of complexes help to activate replication by binding to and phosphorylating several proteins in the pre-RC. Other cyclins and CDKs function to inhibit the formation of more pre-RC complexes once replication has been initiated. For example, CDK2 binds to cyclin A as cyclin E levels decline during S phase, inhibiting CDK2 and preventing the licensing of additional pre-RC complexes.
The rate of movement of the replication fork in eukaryotes (~50 nucleotides/s) is only one-twentieth that observed in *E. coli*. At this rate, replication of an average human chromosome proceeding from a single origin would take more than 500 hours. Replication of human chromosomes in fact proceeds bidirectionally from many origins, spaced 30 to 300 kbp apart. Eukaryotic chromosomes are almost much larger than bacterial chromosomes, so multiple origins are probably a universal feature of eukaryotic cells.

Like bacteria, eukaryotes have several types of DNA polymerases. Some have been linked to particular functions, such as the replication of mitochondrial DNA. The replication of nuclear chromosomes involves DNA polymerase α, in association with DNA polymerase δ. **DNA polymerase α** is typically a multisubunit enzyme with similar structure and properties in all eukaryotic cells. One subunit has a primase activity, and the largest subunit (*M* ~ 180,000) contains the polymerization activity. However, this polymerase has no proofreading 3′→5′ exonuclease activity, making it unsuitable for high-fidelity DNA replication. DNA polymerase α is believed to function only in the synthesis of short primers (either RNA or DNA) for Okazaki fragments on the lagging strand. These primers are then extended by the multisubunit **DNA polymerase δ**. This enzyme is associated with and stimulated by proliferating cell nuclear antigen (PCNA; *M* ~ 29,000), a protein found in large amounts in the nuclei of proliferating cells. The three-dimensional structure of PCNA is remarkably similar to that of the β subunit of *E. coli* DNA polymerase III (Fig. 25–10b), although primary sequence homology is not evident. PCNA has a function analogous to that of the β subunit, forming a circular clamp that greatly enhances the processivity of the polymerase. DNA polymerase δ has a 3′→5′ proofreading exonuclease activity and seems to carry out both leading and lagging strand synthesis in a complex comparable to the dimeric bacterial DNA polymerase III.

Yet another polymerase, **DNA polymerase ε**, replaces DNA polymerase δ in some situations, such as in DNA repair. DNA polymerase ε may also function at the replication fork, perhaps playing a role analogous to that of the bacterial DNA polymerase I, removing the primers of Okazaki fragments on the lagging strand.

Two other protein complexes also function in eukaryotic DNA replication. RPA (replication protein A) is a eukaryotic single-stranded DNA–binding protein, equivalent in function to the *E. coli* SSB protein. RFC (replication factor C) is a clamp loader for PCNA and facilitates the assembly of active replication complexes. The subunits of the RFC complex have significant sequence similarity to the subunits of the bacterial clamp-loading (y) complex.

The termination of replication on linear eukaryotic chromosomes involves the synthesis of special structures called **telomeres** at the ends of each chromosome, as discussed in the next chapter.

Viral DNA Polymerases Provide Targets for Antiviral Therapy

Many DNA viruses encode their own DNA polymerases, and some of these have become targets for pharmaceuticals. For example, the DNA polymerase of the herpes simplex virus is inhibited by acyclovir, a compound developed by Gertrude Elion (p. 894). Acyclovir consists of guanine attached to an incomplete ribose ring.

It is phosphorylated by a virally encoded thymidine kinase; acyclovir binds to this viral enzyme with an affinity 200-fold greater than its binding to the cellular thymidine kinase. This ensures that phosphorylation occurs mainly in virus-infected cells. Cellular kinases convert the resulting acyclo-GMP to acyclo-GTP, which is both an inhibitor and a substrate of DNA polymerases; acyclo-GTP competitively inhibits the herpes DNA polymerase more strongly than cellular DNA polymerases. Because it lacks a 3′ hydroxyl, acyclo-GTP also acts as a chain terminator when incorporated into DNA. Thus viral replication is inhibited at several steps.

SUMMARY 25.1 DNA Replication

- Replication of DNA occurs with very high fidelity and at a designated time in the cell cycle. Replication is semiconservative, each strand acting as template for a new daughter strand. It is carried out in three identifiable phases: initiation, elongation, and termination. The process starts at a single origin in bacteria and usually proceeds bidirectionally.

- DNA is synthesized in the 5′→3′ direction by DNA polymerases. At the replication fork, the leading strand is synthesized continuously in the same direction as replication fork movement; the lagging strand is synthesized discontinuously as Okazaki fragments, which are subsequently ligated.

- The fidelity of DNA replication is maintained by (1) base selection by the polymerase, (2) a 3′→5′ proofreading exonuclease activity that is part of most DNA polymerases, and (3) specific repair systems for mismatches left behind after replication.

- Most cells have several DNA polymerases. In *E. coli*, DNA polymerase III is the primary replication enzyme. DNA polymerase I is responsible for special functions during replication, recombination, and repair.

- The separate initiation, elongation, and termination phases of DNA replication involve an array of enzymes and protein factors, many belonging to the AAA+ ATPase family.
The replication proteins in bacteria are organized into replication factories, in which template DNA is spooled through two replisomes tethered to the bacterial plasma membrane.

25.2 DNA Repair

Most cells have only one or two sets of genomic DNA. Damaged proteins and RNA molecules can be quickly replaced by using information encoded in the DNA, but DNA molecules themselves are irreplaceable. Maintaining the integrity of the information in DNA is a cellular imperative, supported by an elaborate set of DNA repair systems. DNA can become damaged by a variety of processes, some spontaneous, others catalyzed by environmental agents (Chapter 8). Replication itself can very occasionally damage the information content in DNA when errors introduce mismatched base pairs (such as G paired with T).

The chemistry of DNA damage is diverse and complex. The cellular response to this damage includes a wide range of enzymatic systems that catalyze some of the most interesting chemical transformations in DNA metabolism. We first examine the effects of alterations in DNA sequence and then consider specific repair systems.

Mutations Are Linked to Cancer

The best way to illustrate the importance of DNA repair is to consider the effects of unrepaired DNA damage (a lesion). The most serious outcome is a change in the base sequence of the DNA, which, if replicated and transmitted to future generations of cells, becomes permanent. A permanent change in the nucleotide sequence of DNA is called a mutation. Mutations can involve the replacement of one base pair with another (substitution mutation) or the addition or deletion of one or more base pairs (insertion or deletion mutations). If the mutation affects nonessential DNA or if it has a negligible effect on the function of a gene, it is known as a silent mutation. Rarely, a mutation confers some biological advantage. Most nonsilent mutations, however, are neutral or deleterious.

In mammals there is a strong correlation between the accumulation of mutations and cancer. A simple test developed by Bruce Ames measures the potential of a given chemical compound to promote certain easily detected mutations in a specialized bacterial strain (Fig. 25-21). Few of the chemicals that we encounter in daily life score as mutagens in this test. However, of the compounds known to be carcinogenic from extensive animal trials, more than 90% are also found to be mutagenic in the Ames test. Because of this strong correlation between mutagenesis and carcinogenesis, the Ames test for bacterial mutagens is widely used as a rapid and inexpensive screen for potential human carcinogens.

The genome of a typical mammalian cell accumulates many thousands of lesions during a 24-hour period. However, as a result of DNA repair, fewer than 1 in 1,000 become a mutation. DNA is a relatively stable molecule, but in the absence of repair systems, the cumulative effect of many infrequent but damaging reactions would make life impossible.

All Cells Have Multiple DNA Repair Systems

The number and diversity of repair systems reflect both the importance of DNA repair to cell survival and the diverse sources of DNA damage (Table 25-5). Some common types of lesions, such as pyrimidine dimers (see Fig. 8-31), can be repaired by several distinct systems. Many DNA repair processes also seem to be extraordinarily inefficient energetically—an exception to the pattern observed in the vast majority of metabolic pathways, where every ATP is generally accounted for and used optimally. When the integrity of the genetic information is at stake, the amount of chemical energy invested in a repair process seems almost irrelevant.

DNA repair is possible largely because the DNA molecule consists of two complementary strands. DNA damage in one strand can be removed and accurately replaced by using the undamaged complementary strand.

![Figure 25-21](image-url)
as a template. We consider here the principal types of repair systems, beginning with those that repair the rare nucleotide mismatches that are left behind by replication.

Mismatch Repair Correction of the rare mismatches left after replication in *E. coli* improves the overall fidelity of replication by an additional factor of 10^2 to 10^3. The mismatches are nearly always corrected to reflect the information in the old (template) strand, so the repair system must somehow discriminate between the template and the newly synthesized strand. The cell accomplishes this by tagging the template DNA with methyl groups to distinguish it from newly synthesized strands. The mismatch repair system of *E. coli* includes at least 12 protein components (Table 25-5) that function either in strand discrimination or in the repair process itself.

The strand discrimination mechanism has not been worked out for most bacteria or eukaryotes, but is well understood for *E. coli* and some closely related bacterial species. In these bacteria, strand discrimination is based on the action of Dam methylase, which, as you will recall, methylates DNA at the N6 position of all adenines within (5')GATC sequences. This sequence is a palindrome (see Fig. B-18), present in opposite orientations on the two strands.

![Figure 25-22](image-url)

Figure 25-22 Methylolation and mismatch repair. Methylation of DNA strands can serve to distinguish parent (template) strands from newly synthesized strands in *E. coli* DNA, a function that is critical to mismatch repair (see Fig. 25-23). The methylation occurs at the N6 of adenines in (5')GATC sequences. This sequence is a palindrome (see Fig. 8-18), present in opposite orientations on the two strands.
GATC sequences in the newly synthesized strand permits the new strand to be distinguished from the template strand. Replication mismatches in the vicinity of a hemimethylated GATC sequence are then repaired according to the information in the methylated parent (template) strand. Tests in vitro show that if both strands are methylated at a GATC sequence, few mismatches are repaired; if neither strand is methylated, repair occurs but does not favor either strand. The cell’s methyl-directed mismatch repair system efficiently repairs mismatches up to 1,000 bp from a hemimethylated GATC sequence.

How is the mismatch correction process directed by relatively distant GATC sequences? A mechanism is illustrated in Figure 25-23. MutL protein forms a complex with MutS protein, and the complex binds to all mismatched base pairs (except C-C). MutH protein binds to MutL and to GATC sequences encountered by the MutL-MutS complex, DNA on both sides of the mismatch is threaded through the MutL-MutS complex, creating a DNA loop; simultaneous movement of both legs of the loop through the complex is equivalent to the complex moving in both directions at once along the DNA. MutH has a site-specific endonuclease activity that is inactive until the complex encounters a hemimethylated GATC sequence. At this site, MutH catalyzes cleavage of the unmethylated strand on the 5’ side of the G in GATC, which marks the strand for repair. Further steps in the pathway depend on where the mismatch is located relative to this cleavage site (Fig. 25-24).

When the mismatch is on the 5’ side of the cleavage site (Fig. 25-24, right side), the unmethylated strand is unwound and degraded in the 3’→5’ direction from the cleavage site through the mismatch, and this segment is replaced with new DNA. This process requires the combined action of DNA helicase II, SSB, exonuclease I or exonuclease X (both of which degrade strands of DNA in the 3’→5’ direction), DNA polymerase III, and DNA ligase. The pathway for repair of mismatches on the 3’ side of the cleavage site is similar (Fig. 25-24, left), except that the exonuclease is either exonuclease VII (which degrades single-stranded DNA in the 5’→3’ or 3’→5’ direction) or RecJ nuclease (which degrades single-stranded DNA in the 5’→3’ direction).

Mismatch repair is a particularly expensive process for E. coli in terms of energy expended. The mismatch may be 1,000 bp or more from the GATC sequence. The degradation and replacement of a strand segment of this length require an enormous investment in activated deoxynucleotide precursors to repair a single mismatched base. This again underscores the importance to the cell of genomic integrity.

All eukaryotic cells have several proteins structurally and functionally analogous to the bacterial MutS and MutL (but not MutH) proteins. Alterations in human genes encoding proteins of this type produce some of the most common inherited cancer-susceptibility
FIGURE 25–24 Completing methyl-directed mismatch repair. The combined action of DNA helicase II, SSB, and one of four different exonucleases removes a segment of the new strand between the MutH cleavage site and a point just beyond the mismatch. The exonuclease that is used depends on the location of the cleavage site relative to the mismatch, as shown by the alternative pathways here. The resulting gap is filled in (dashed line) by DNA polymerase III, and the nick is sealed by DNA ligase (not shown).

syndromes (see Box 25–1, p. 1003), further demonstrating the value to the organism of DNA repair systems. The main MutS homologs in most eukaryotes, from yeast to humans, are MSH2 (MutS homolog 2), MSH3, and MSH6. Heterodimers of MSH2 and MSH6 generally bind to single base-pair mismatches, and bind less well to slightly longer mispaired loops. In many organisms the longer mismatches (2 to 6 bp) may be bound instead by a heterodimer of MSH2 and MSH3, or are bound by both types of heterodimers in tandem. Homologs of MutL, predominantly a heterodimer of MLH1 (MutL homolog 1) and PMS1 (post-meiotic segregation), bind to and stabilize the MSH complexes. Many details of the subsequent events in eukaryotic mismatch repair remain to be worked out. In particular, we do not know the mechanism by which newly synthesized DNA strands are identified, although research has revealed that this strand identification does not involve GATC sequences.

Base-Excision Repair Every cell has a class of enzymes called DNA glycosylases that recognize particularly common DNA lesions (such as the products of cytosine and adenine deamination; see Fig. 8–30a) and remove the affected base by cleaving the N-glycosyl bond. This cleavage creates an apurinic or apyrimidinic site in the DNA, commonly referred to as an AP site or abasic site. Each DNA glycosylase is generally specific for one type of lesion.

Uracil DNA glycosylases, for example, found in most cells, specifically remove from DNA the uracil that results from spontaneous deamination of cytosine. Mutant cells that lack this enzyme have a high rate of G:C to A:T mutations. This glycosylase does not remove uracil residues from RNA or thymine residues from DNA. The capacity to distinguish thymine from uracil, the product of cytosine deamination—necessary for the selective repair of the latter—may be one reason why DNA evolved to contain thymine instead of uracil (p. 289).

Most bacteria have just one type of uracil DNA glycosylase, whereas humans have at least four types, with different specificities—an indicator of the importance of uracil removal from DNA. The most abundant human uracil glycosylase, UNG, is associated with the human replisome, where it eliminates the occasional U residue inserted in place of a T during replication. The deamination of C residues is 100-fold faster in single-stranded DNA than in double-stranded DNA, and humans have the enzyme hSMUG1, which removes any U residues that occur in single-stranded DNA during replication or transcription. Two other human DNA glycosylases, TDG and
MBD4, remove either U or T residues paired with G, generated by deamination of cytosine or 5-methylcytosine, respectively.

Other DNA glycosylases recognize and remove a variety of damaged bases, including formamidopyrimidine and 8-hydroxyguanine (both arising from purine oxidation), hypoxanthine (arising from adenine deamination), and alkylated bases such as 3-methyladenine and 7-methylguanine. Glycosylases that recognize other lesions, including pyrimidine dimers, have also been identified in some classes of organisms. Remember that AP sites also arise from the slow, spontaneous hydrolysis of the N-glycosyl bonds in DNA (see Fig. 8-30b).

Once an AP site has been formed by a DNA glycosylase, another type of enzyme must repair it. The repair is not made by simply inserting a new base and re-forming the N-glycosyl bond. Instead, the deoxyribose 5'-phosphate left behind is removed and replaced with a new nucleotide. This process begins with one of the AP endonucleases, enzymes that cut the DNA strand containing the AP site. The position of the incision relative to the AP site (5' or 3' to the site) varies with the type of AP endonuclease. A segment of DNA including the AP site is then removed, DNA polymerase I replaces the DNA, and DNA ligase seals the remaining nick (Fig. 25–25). In eukaryotes, nucleotide replacement is carried out by specialized polymerases, as described below.

Nucleotide-Excision Repair DNA lesions that cause large distortions in the helical structure of DNA generally are repaired by the nucleotide-excision system, a repair pathway critical to the survival of all free-living organisms. In nucleotide-excision repair (Fig. 25–26), a multisubunit enzyme (excinuclease) hydrolyzes two phosphodiester bonds, one on either side of the distortion caused by the lesion. In *E. coli* and other bacteria, the enzyme system hydrolyzes the fifth phosphodiester bond on the 3' side and the eighth phosphodiester bond on the 5' side to generate a fragment of 12 to 13 nucleotides (depending on whether the lesion involves one or two bases). In humans and other eukaryotes, the enzyme system hydrolyzes the sixth phosphodiester bond on the 3' side and the twenty-second phosphodiester bond on the 5' side to generate a fragment of 27 to 29 nucleotides (depending on whether the lesion involves one or two bases). In *E. coli*, the key enzymatic complex is the ABC excinuclease, which has three subunits, UvrA (M, 104,000), UvrB (M, 78,000), and UvrC (M, 68,000). The term “excinuclease” is used to describe the unique capacity of this enzyme complex to catalyze two specific endonucleolytic cleavages, distinguishing this activity from that of standard endonucleases. A complex of the UvrA and UvrB proteins (A2B) scans the DNA and binds to the site of a lesion. The UvrA dimer then dissociates, leaving a tight UvrB-DNA complex. UvrC protein then binds to UvrB, and UvrB makes an incision at the fifth

![Figure 25-25 DNA repair by the base-excision repair pathway.](image-url)
The general pathway of nucleotide-excision repair is similar in all organisms. 1. An excinuclease binds to DNA at the site of a bulky lesion and cleaves the damaged DNA strand on either side of the phosphodiester bond on the 3' side of the lesion. This is followed by a UvrC-mediated incision at the eighth phosphodiester bond on the 5' side. The resulting 12 to 13 nucleotide fragment is removed by UvrD helicase. The short gap thus created is filled in by DNA polymerase I and DNA ligase. This pathway (Fig. 25-26, left) is a primary repair route for many types of lesions, including cyclobutane pyrimidine dimers, 6-4 photoproducts (see Fig. 8-31), and several other types of base adducts including benzo[a]pyrene-guanine, which is formed in DNA by exposure to cigarette smoke. The nuclease activity of the ABC excinuclease is novel in the sense that two cuts are made in the DNA.

The mechanism of eukaryotic excinuclease is quite similar to that of the bacterial enzyme, although 16 polypeptides with no similarity to the E. coli excinuclease subunits are required for the dual incision. As described in Chapter 26, some of the nucleotide-excision repair and base-excision repair in eukaryotes is closely tied to transcription. Genetic deficiencies in nucleotide-excision repair in humans give rise to a variety of serious diseases (see Box 25-1).

Direct Repair Several types of damage are repaired without removing a base or nucleotide. The best-characterized example is direct photoreactivation of cyclobutane pyrimidine dimers, a reaction promoted by **DNA photolyases**. Pyrimidine dimers result from a UV-induced reaction, and photolyases use energy derived from absorbed light to reverse the damage (Fig. 25-27). Photolyases generally contain two cofactors that serve as light-absorbing agents, or chromophores. One of the chromophores is always FADH−. In E. coli and yeast, the other chromophore is a folate. The reaction mechanism entails the generation of free radicals. DNA photolyases are not present in the cells of placental mammals (which include humans).

Additional examples can be seen in the repair of nucleotides with alkylation damage. The modified nucleotide O6-methylguanine forms in the presence of alkylating agents and is a common and highly mutagenic
MECHANISM FIGURE 25–27 Repair of pyrimidine dimers with photolyase. Energy derived from absorbed light is used to reverse the photoreaction that caused the lesion. The two chromophores in *E. coli* photolyase (M, 54,000), N\(^5\),N\(^{10}\)-methenyltetrahydrofolylpolyglutamate (MTHFpolyGlu) and FADH\(^{\bullet}\), perform complementary functions.

lesion (p. 292). It tends to pair with thymine rather than cytosine during replication, and therefore causes G\(\equiv\)C to A\(\equiv\)T mutations (Fig. 25–28). Direct repair of \(O^6\)-methylguanine is carried out by \(O^6\)-methylguanine-DNA methyltransferase, a protein that catalyzes transfer of the methyl group of \(O^6\)-methylguanine to one of its own Cys residues. This methyltransferase is not strictly an enzyme, because a single methyl transfer event permanently methylates the protein, making it inactive in this pathway. The consumption of an entire protein molecule to correct a single damaged base is another vivid illustration of the priority given to maintaining the integrity of cellular DNA.
A very different but equally direct mechanism is used to repair 1-methyladenine and 3-methylcytosine. The amino groups of A and C residues are sometimes methylated when the DNA is single-stranded, and the methylation directly affects proper base pairing. In *E. coli*, oxidative demethylation of these alkylated nucleotides is mediated by the AlkB protein, a member of the α-ketoglutarate-Fe²⁺-dependent dioxygenase superfamily (Fig. 25-29). (See Box 4-3 for a description of another member of this enzyme family.)

FIGURE 25-29 Direct repair of alkylated bases by AlkB. The AlkB protein is an α-ketoglutarate-Fe²⁺-dependent dioxygenase. It catalyzes the oxidative demethylation of 1-methyladenine and 3-methylcytosine residues.
The Interaction of Replication Forks with DNA Damage Can Lead to Error-Prone Translesion DNA Synthesis

The repair pathways considered to this point generally work only for lesions in double-stranded DNA, the undamaged strand providing the correct genetic information to restore the damaged strand to its original state. However, in certain types of lesions, such as double-strand breaks, double-strand cross-links, or lesions in a single-stranded DNA, the complementary strand is itself damaged or is absent. Double-strand breaks and lesions in single-stranded DNA most often arise when a replication fork encounters an unrepaired DNA lesion (Fig. 25–30). Such lesions and DNA cross-links can also result from ionizing radiation and oxidative reactions.

At a stalled bacterial replication fork, there are two avenues for repair. In the absence of a second strand, the information required for accurate repair must come from a separate, homologous chromosome. The repair system thus involves homologous genetic recombination. This recombinational DNA repair is considered in detail in Section 25.3. Under some conditions, a second repair pathway, error-prone translesion DNA synthesis (often abbreviated TLS), becomes available. When this pathway is active, DNA repair becomes significantly less accurate and a high mutation rate can result. In bacteria, error-prone translesion DNA synthesis is part of a cellular stress response to extensive DNA damage known, appropriately enough, as the SOS response. Some SOS proteins, such as the UvrA and UvrB proteins already described (Table 25–6), are normally present in the cell but are induced to higher levels as part of the SOS response. Additional SOS proteins participate in the pathway for error-prone repair; these include the UmuC and UmuD proteins (“Umu” from unmutable; lack of the umu gene function eliminates error-prone repair). The UmuD protein is cleaved in an SOS-regulated process to a shorter form called UmuD′, which forms a complex with UmuC to create a specialized DNA polymerase, DNA polymerase V, that can replicate past many of the DNA lesions that would normally block replication. Proper base pairing is often impossible at the site of such a lesion, so this translesion replication is error-prone.

Given the emphasis on the importance of genomic integrity throughout this chapter, the existence of a system that increases the rate of mutation may seem incongruous. However, we can think of this system as a desperation strategy. The umuC and umuD genes are fully induced only late in the SOS response, and they are not activated for translesion synthesis initiated by UmuD cleavage unless the levels of DNA damage are particularly high and all replication forks are blocked. The mutations resulting from DNA polymerase V-mediated replication kill some cells and create deleterious mutations in others, but this is the biological price a species pays to overcome an otherwise insurmountable barrier to replication, as it permits at least a few mutant daughter cells to survive.

In addition to DNA polymerase V, translesion replication requires the RecA protein. RecA filaments bound to single-stranded DNA at one chromosomal location can activate DNA polymerase V complexes bound at distant sites on the chromosome. This has been described as acting “in trans,” a phenomenon aided by looping of the chromosome that brings distant sites adjacent to each other. Yet another DNA polymerase, DNA polymerase IV, is also induced during the SOS response. Replication by DNA polymerase IV, a product of the dinB gene, is also highly error-prone. The bacterial DNA polymerases IV and V are part of a family of TLS polymerases found in all organisms. These enzymes lack a proofreading exonuclease activity, and the fidelity of base selection during replication can be reduced by a factor of 102, lowering overall replication fidelity to one error in ~1,000 nucleotides.

Mammals have many low-fidelity DNA polymerases of the TLS polymerase family. However, the presence of

FIGURE 25–30 DNA damage and its effect on DNA replication. If the replication fork encounters an unrepaired lesion or strand break, replication generally halts and the fork may collapse. A lesion is left behind in an unreplicated, single-stranded segment of the DNA (left); a strand break becomes a double-strand break (right). In each case the damage to one strand cannot be repaired by mechanisms described earlier in this chapter, because the complementary strand required to direct accurate repair is damaged or absent. There are two possible avenues for repair: recombinational DNA repair (described in Fig. 25–39) or, when lesions are unusually numerous, error-prone repair. The latter mechanism involves a novel DNA polymerase (DNA polymerase V, encoded by the umuC and umuD genes) that can replicate, albeit inaccurately, over many types of lesions. The repair mechanism is “error-prone” because mutations often result.
TABLE 25-6 Genes Induced as Part of the SOS Response in E. coli

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Protein encoded and/or role in DNA repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes of known function</td>
<td></td>
</tr>
<tr>
<td>polB (dinA)</td>
<td>Encodes polymerization subunit of DNA polymerase II, required for replication restart in recombinational DNA repair</td>
</tr>
<tr>
<td>uurA</td>
<td>Encode ABC excinuclease subunits UvrA and UvrB</td>
</tr>
<tr>
<td>uurB</td>
<td>Encode DNA polymerase V</td>
</tr>
<tr>
<td>umuC</td>
<td>Encodes protein that inhibits cell division, possibly to allow time for DNA repair</td>
</tr>
<tr>
<td>umuD</td>
<td>Encodes RecA protein, required for error-prone repair and recombinational repair</td>
</tr>
<tr>
<td>suIA</td>
<td>Encodes DNA polymerase IV</td>
</tr>
<tr>
<td>recA</td>
<td>Encodes single-stranded DNA-binding protein (SSB)</td>
</tr>
<tr>
<td>dinB</td>
<td>Encodes subunit of integration host factor (IHF), involved in site-specific recombination, replication, transposition, regulation of gene expression</td>
</tr>
<tr>
<td>ssa</td>
<td></td>
</tr>
<tr>
<td>himA</td>
<td></td>
</tr>
<tr>
<td>Genes involved in DNA metabolism, but role in DNA repair unknown</td>
<td></td>
</tr>
<tr>
<td>uurD</td>
<td>Encodes DNA helicase II (DNA-unwinding protein)</td>
</tr>
<tr>
<td>recN</td>
<td>Required for recombinational repair</td>
</tr>
<tr>
<td>Genes of unknown function</td>
<td></td>
</tr>
<tr>
<td>dinD</td>
<td></td>
</tr>
<tr>
<td>dinP</td>
<td></td>
</tr>
</tbody>
</table>

Note: Some of these genes and their functions are further discussed in Chapter 28.

these enzymes does not necessarily translate into an unacceptable mutational burden, because most of these enzymes also have specialized functions in DNA repair. DNA polymerase η (eta), for example, found in all eukaryotes, promotes translesion synthesis primarily across cyclobutane T-T dimers. Few mutations result in this case, because the enzyme preferentially inserts two A residues across from the linked T residues. Several other low-fidelity polymerases, including DNA polymerases β, ι (iota), and λ, have specialized roles in eukaryotic base-excision repair. Each of these enzymes has a 5′-deoxyribose phosphate lyase activity in addition to its polymerase activity. After base removal by a glycosylase and backbone cleavage by an AP endonuclease, these polymerases remove the abasic site (a 5′-deoxyribose phosphate) and fill in the very short gap. The frequency of mutation due to DNA polymerase η activity is minimized by the very short lengths (often one nucleotide) of DNA synthesized.

What emerges from research into cellular DNA repair systems is a picture of a DNA metabolism that maintains genomic integrity with multiple and often redundant systems. In the human genome, more than 130 genes encode proteins dedicated to the repair of DNA. In many cases, the loss of function of one of these proteins results in genomic instability and an increased occurrence of oncogenesis (Box 25–1). These repair systems are often integrated with the DNA replication systems and are complemented by recombination systems, which we turn to next.

SUMMARY 25.2 DNA Repair

- Cells have many systems for DNA repair. Mismatch repair in E. coli is directed by transient nonmethylation of (5′)GATC sequences on the newly synthesized strand.
- Base-excision repair systems recognize and repair damage caused by environmental agents (such as radiation and alkylating agents) and spontaneous reactions of nucleotides. Some repair systems recognize and excise only damaged or incorrect bases, leaving an AP (abasic) site in the DNA. This is repaired by excision and replacement of the DNA segment containing the AP site.
- Nucleotide-excision repair systems recognize and remove a variety of bulky lesions and pyrimidine dimers. They excise a segment of the DNA strand including the lesion, leaving a gap that is filled in by DNA polymerase and ligase activities.
- Some DNA damage is repaired by direct reversal of the reaction causing the damage: pyrimidine dimers are directly converted to monomeric pyrimidines by a photolyase, and the methyl group of O6-methylguanine is removed by a methyltransferase.
- In bacteria, error-prone translesion DNA synthesis, involving TLS DNA polymerases, occurs in response to very heavy DNA damage. In eukaryotes, similar polymerases have specialized roles in DNA repair that minimize the introduction of mutations.
Human cancers develop when genes that regulate normal cell division (oncogenes and tumor suppressor genes; Chapter 12) fail to function, are activated at the wrong time, or are altered. As a consequence, cells may grow out of control and form a tumor. The genes controlling cell division can be damaged by spontaneous mutations or overridden by the invasion of a tumor virus (Chapter 26). Not surprisingly, alterations in DNA repair genes that result in an increased rate of mutation can greatly increase an individual’s susceptibility to cancer. Defects in the genes encoding the proteins involved in nucleotide-excision repair, mismatch repair, recombinational repair, and error-prone translesion DNA synthesis have all been linked to human cancers. Clearly, DNA repair can be a matter of life and death.

Nucleotide-excision repair requires a larger number of proteins in humans than in bacteria, although the overall pathways are very similar. Genetic defects that inactivate nucleotide-excision repair have been associated with several genetic diseases, the best-studied of which is xeroderma pigmentosum (XP). Because nucleotide-excision repair is the sole repair pathway for pyrimidine dimers in humans, people with XP are extremely sensitive to light and readily develop sunlight-induced skin cancers. Most people with XP also have neurological abnormalities, presumably because of their inability to repair certain lesions caused by the high rate of oxidative metabolism in neurons. Defects in the genes encoding any of at least seven different protein components of the nucleotide-excision repair system can result in XP, giving rise to seven different genetic groups denoted XPA to XPG. Several of these proteins (notably those defective in XPB, XPD, and XPG) also play roles in transcription-coupled base-excision repair of oxidative lesions, described in Chapter 26.

Most microorganisms have redundant pathways for the repair of cyclobutane pyrimidine dimers—making use of DNA photolyases and sometimes base-excision repair as alternatives to nucleotide-excision repair—but humans and other placental mammals do not. This lack of a back-up for nucleotide-excision repair for removing pyrimidine dimers has led to speculation that early mammalian evolution involved small, furry, nocturnal animals with little need to repair UV damage. However, mammals do have a pathway for the translesion bypass of cyclobutane pyrimidine dimers, which involves DNA polymerase η. This enzyme preferentially inserts two A residues opposite a T-T pyrimidine dimer, minimizing mutations. People with a genetic condition in which DNA polymerase η function is missing exhibit an XP-like illness known as XP-variant or XP-V. Clinical manifestations of XP-V are similar to those of the classic XP diseases, although mutation levels are higher in XP-V when cells are exposed to UV light. Apparently, the nucleotide-excision repair system works in concert with DNA polymerase η in normal human cells, repairing and/or bypassing pyrimidine dimers as needed to keep cell growth and DNA replication going. Exposure to UV light introduces a heavy load of pyrimidine dimers, and some must be bypassed by translesion synthesis to keep replication on track. When one system is missing, it is partly compensated for by the other. A loss of DNA polymerase η activity leads to stalled replication forks and bypass of UV lesions by different, more mutagenic, translesion synthesis (TLS) polymerases. As when other DNA repair systems are absent, the resulting increase in mutations often leads to cancer.

One of the most common inherited cancer-susceptibility syndromes is hereditary nonpolyposis colon cancer (HNPCC). This syndrome has been traced to defects in mismatch repair. Human and other eukaryotic cells have several proteins analogous to the bacterial MutL and MutS proteins (see Fig. 25-23). Defects in at least five different mismatch repair genes can give rise to HNPCC. The most prevalent are defects in the hMLH1 (human MutL homolog 1) and hMSH2 (human MutS homolog 2) genes. In individuals with HNPCC, cancer generally develops at an early age, with colon cancers being most common.

Most human breast cancer occurs in women with no known predisposition. However, about 10% of cases are associated with inherited defects in two genes, BRCA1 and BRCA2. Human BRCA1 and BRCA2 are large proteins (1,834 and 3,418 amino acid residues, respectively) that interact with a wide range of other proteins involved in transcription, chromosome maintenance, DNA repair, and control of the cell cycle. BRCA2 has been implicated in the recombinational DNA repair of double-strand breaks. However, the precise molecular function of BRCA1 and BRCA2 in these various cellular processes is not yet clear. Women with defects in either the BRCA1 or BRCA2 gene have a greater than 80% chance of developing breast cancer.

25.3 DNA Recombination

The rearrangement of genetic information within and among DNA molecules encompasses a variety of processes, collectively placed under the heading of genetic recombination. The practical applications of DNA rearrangements in altering the genomes of increasing numbers of organisms are now being explored (Chapter 9).

Genetic recombination events fall into at least three general classes. Homologous genetic recombination (also called general recombination) involves genetic exchanges between any two DNA molecules (or segments of the same molecule) that share an extended
region of nearly identical sequence. The actual sequence of bases is irrelevant, as long as it is similar in the two DNAs. In site-specific recombination the exchanges occur only at a particular DNA sequence. DNA transposition is distinct from both other classes in that it usually involves a short segment of DNA with the remarkable capacity to move from one location in a chromosome to another. These “jumping genes” were first observed in maize in the 1940s by Barbara McClintock. There is in addition a wide range of unusual genetic rearrangements for which no mechanism or purpose has yet been proposed. Here we focus on the three general classes.

The functions of genetic recombination systems are as varied as their mechanisms. They include roles in specialized DNA repair systems, specialized activities in DNA replication, regulation of expression of certain genes, facilitation of proper chromosome segregation during eukaryotic cell division, maintenance of genetic diversity, and implementation of programmed genetic rearrangements during embryonic development. In most cases, genetic recombination is closely integrated with other processes in DNA metabolism, and this becomes a theme of our discussion.

Homologous Genetic Recombination Has Several Functions

In bacteria, homologous genetic recombination is primarily a DNA repair process and in this context (as noted in Section 25.2) is referred to as recombinational DNA repair. It is usually directed at the reconstruction of replication forks stalled at the site of DNA damage. Homologous genetic recombination can also occur during conjugation (mating), when chromosomal DNA is transferred from one bacterial cell (donor) to another (recipient). Recombination during conjugation, although rare in wild bacterial populations, contributes to genetic diversity.

In eukaryotes, homologous genetic recombination can have several roles in replication and cell division, including the repair of stalled replication forks. Recombination occurs with the highest frequency during meiosis, the process by which diploid germ-line cells with two sets of chromosomes divide to produce haploid gametes (sperm cells or ova) in animals (haploid spores in plants)—each gamete having only one member of each chromosome pair (Fig. 25–31). Meiosis begins...
with replication of the DNA in the germ-line cell so that each DNA molecule is present in four copies. The cell then goes through two rounds of cell division without an intervening round of DNA replication. This reduces the DNA content to the haploid level in each gamete.

After the DNA is replicated during prophase of the first meiotic division, the resulting sister chromatids remain associated at their centromeres. At this stage, each set of four homologous chromosomes (tetrad) exists as two pairs of chromatids. Genetic information is now exchanged between the closely associated homologous chromatids by homologous genetic recombination, a process involving the breakage and rejoining of DNA (Fig. 25–32). This exchange, also referred to as crossing over, can be observed with the light microscope. Crossing over links the two pairs of sister chromatids together at points called chiasmata (singular, chiasma).

Crossing over effectively links together all four homologous chromatids, a linkage that is essential to the proper segregation of chromosomes in the subsequent meiotic cell divisions. Crossing over is not an entirely random process, and “hot spots” have been identified on many eukaryotic chromosomes. However, the assumption that crossing over can occur with equal probability at almost any point along the length of two homologous chromosomes remains a reasonable approximation in many cases, and it is this assumption that permits the genetic mapping of genes. The frequency of homologous recombination in any region separating two points on a chromosome is roughly proportional to the distance between the points, and this allows determination of the relative positions of and distances between different genes.

Homologous recombination thus serves at least three identifiable functions: (1) it contributes to the repair of several types of DNA damage; (2) it provides, in eukaryotic cells, a transient physical link between chromatids that promotes the orderly segregation of chromosomes at the first meiotic cell division; and (3) it enhances genetic diversity in a population.

Recombination during Meiosis Is Initiated with Double-Strand Breaks

A likely pathway for homologous recombination during meiosis is outlined in Figure 25–33a. The model has four key features. First, homologous chromosomes are aligned. Second, a double-strand break in a DNA molecule is enlarged by an exonuclease, leaving a single-strand extension with a free 3'-hydroxyl group at the broken end (step 1). Third, the exposed 3' ends invade the intact duplex DNA of the homolog, and this is followed by branch migration (Fig. 25–34) and/or by replication to create a pair of crossover structures, called Holliday intermediates (Fig. 25–33a, steps 2 to 4). Fourth, cleavage of the two crossovers creates either of two pairs of complete recombinant products (step 5).

![Figure 25–32](https://example.com/fig25_32.png)

Figure 25–32 Crossing over. (a) Crossing over often produces an exchange of genetic material. (b) The homologous chromosomes of a grasshopper are shown during prophase I of meiosis. Many points of joining (chiasmata) are evident between the two homologous pairs of chromatids. These chiasmata are the physical manifestation of prior homologous recombination (crossing-over) events.
A double-strand break in one of two homologs is converted to a double-strand gap by the action of exonucleases. Strands with 3' ends are degraded less than those with 5' ends, producing 3' single-strand extensions.

An exposed 3' end pairs with its complement in the intact homolog. The other strand of the duplex is displaced.

The invading 3' end is extended by DNA polymerase plus branch migration, eventually generating a DNA molecule with two crossovers called Holliday intermediates.

Further DNA replication replaces the DNA missing from the site of the original double-strand break.

Cleavage of the Holliday intermediates by specialized nucleases generates either of the two recombination products. In product set 2, the DNA on either side of the region undergoing repair is recombined.

(a) Product set 1

(b) Product set 2

In this double-strand break repair model for recombination, the 3' ends are used to initiate the genetic exchange. Once paired with the complementary strand on the intact homolog, a region of hybrid DNA is created that contains complementary strands from two different parent DNAs (the product of step 2 in Fig. 25–33a). Each of the 3' ends can then act as a primer for DNA replication. The structures thus formed, Holliday intermediates (Fig. 25–33b), are a feature of homologous genetic recombination pathways in all organisms.

Homologous recombination can vary in many details from one species to another, but most of the steps outlined above are generally present in some form. There are two ways to cleave, or "resolve," the Holliday intermediate so that the two products carry genes in the same linear order as in the substrates—the original, unrecombined chromosomes (step 5 of Fig. 25–33a). If cleaved one way, the DNA flanking the region containing the hybrid DNA is not recombined; if cleaved the other way, the flanking DNA is recombined. Both outcomes are observed in vivo in eukaryotes and bacteria.

The homologous recombination illustrated in Figure 25–33 is a very elaborate process with subtle molecular consequences for the generation of genetic diversity. To understand how this process contributes to diversity, we should keep in mind that the two homologous chromosomes that undergo recombination

FIGURE 25–34 Branch migration. When a template strand pairs with two different complementary strands, a branch is formed at the point where the three complementary strands meet. The branch "migrates" when base pairing to one of the two complementary strands is broken and replaced with base pairing to the other complementary strand. In the absence of an enzyme to direct it, this process can move the branch spontaneously in either direction. Spontaneous branch migration is blocked wherever one of the otherwise complementary strands has a sequence nonidentical to the other strand.
are not necessarily identical. The linear array of genes may be the same, but the base sequences in some of the genes may differ slightly (in different alleles). In a human, for example, one chromosome may contain the allele for hemoglobin A (normal hemoglobin) while the other contains the allele for hemoglobin S (the sickle-cell mutation). The difference may consist of no more than one base pair among millions. Homologous recombination does not change the linear array of genes, but it can determine which alleles become linked on a single chromosome, and are thereby passed to the next generation together.

Recombination Requires a Host of Enzymes and Other Proteins

Enzymes that promote various steps of homologous recombination have been isolated from both bacteria and eukaryotes. In E. coli, the recB, recC, and recD genes encode the heterotrimeric RecBCD enzyme, which has both helicase and nuclease activities. The RecA protein promotes all the central steps in the homologous recombination process: the pairing of two DNAs, formation of Holliday intermediates, and branch migration (as described below). The RuvA and RuvB proteins (repair of UV damage) form a complex that binds to Holliday intermediates, displaces RecA protein, and promotes branch migration at higher rates than does RecA. Nucleases that specifically cleave Holliday intermediates, often called resolvases, have been isolated from bacteria and yeast. The RuvC protein is one of at least two such nucleases in E. coli.

The RecBCD enzyme binds to linear DNA at a free (broken) end and moves inward along the double helix, unwinding and degrading the DNA in a reaction coupled to ATP hydrolysis (Fig. 25-35). The RecB and RecD subunits are helicase motors, with RecB moving 3'→5' along one strand and RecD moving 5'→3' along the other strand. The activity of the enzyme is altered when it interacts with a sequence referred to as chi, (5')GCTGGTGG, which binds tightly to a site on the RecC subunit. From that point, degradation of the strand with a 3' terminus is greatly reduced, but degradation of the 5'-terminal strand is increased. This process creates a single-stranded DNA with a 3' end, which is used during subsequent steps in recombination (Fig. 25-33). The 1,009 chi sequences scattered throughout the E. coli genome enhance the frequency of recombination about 5- to 10-fold within 1,000 bp of the chi site. The enhancement declines as the distance from the site increases. Sequences that enhance recombination frequency have also been identified in several other organisms.

RecA is unusual among the proteins of DNA metabolism in that its active form is an ordered, helical filament of up to several thousand subunits that assemble cooperatively on DNA (Fig. 25-36). This filament normally forms on single-stranded DNA, such as that produced by the RecBCD enzyme. The filament will also form on a duplex DNA with a single-strand gap; in this case, the first RecA monomers bind to the single-stranded DNA in the gap, after which the assembled filament rapidly envelops the neighboring duplex. Several other proteins, including RecX, DinI, RecF, RecO, and RecR, regulate the assembly and disassembly of RecA filaments.

A useful model to illustrate the recombination activities of the RecA filament is the in vitro DNA strand exchange reaction (Fig. 25-37). A single strand of DNA is first bound by RecA to establish the nucleoprotein filament. The RecA filament then takes up a homologous duplex DNA and aligns it with the bound single strand. ATP binding (but not hydrolysis) is required for the formation of an active RecA filament.
that can align two DNA molecules. Strands are then exchanged between the two DNAs to create hybrid DNA. The exchange occurs at a rate of 6 bp/s and progresses in the 5′→3′ direction relative to the single-stranded DNA within the RecA filament. This reaction can involve either three or four strands (Fig. 25–37); in the latter case, a Holliday intermediate forms during the process.

FIGURE 25–36 RecA protein. (a) Nucleoprotein filament of RecA protein on single-stranded DNA, as seen with the electron microscope. The striations indicate the right-handed helical structure of the filament. (b) Surface contour model of a 24-subunit RecA filament. The filament has 6 subunits per turn. One subunit is colored red to provide perspective (derived from PDB ID 2REB). (c) After a rate-limiting nucleation step, RecA filaments are extended in the 5′→3′ direction on single-stranded DNA. Disassembly proceeds also in the 5′→3′ direction, from the end opposite to that where extension occurs. (d) Filament assembly is assisted by the RecF, RecO, and RecR proteins (RecFOR). The RecX protein inhibits RecA filament extension. The DinI protein stabilizes RecA filaments, preventing disassembly.

FIGURE 25–37 RecA-promoted DNA strand exchange in vitro. Strand exchange involves the separation of one strand of a duplex DNA from its complement and transfer of the strand to an alternative complementary strand to form a new duplex (heteroduplex) DNA. The transfer forms a branched intermediate. Formation of the final product depends on branch migration, which is facilitated by RecA. The reaction can involve three strands (left) or a reciprocal exchange between two homologous duplexes—four strands in all (right). When four strands are involved, a Holliday intermediate results, RecA promotes the branch-migration phases of these reactions, using energy derived from ATP hydrolysis.
As the duplex DNA is incorporated within the RecA filament and aligned with the bound single-stranded DNA over regions of hundreds of base pairs, one strand of the duplex switches pairing partners (Fig. 25-38, step ②). Because DNA is a helical structure, continued strand exchange requires an ordered rotation of the two aligned DNAs. This brings about a spooling action (steps ③ and ④) that shifts the branch point along the helix. ATP hydrolysis is coupled to the late stages of DNA strand exchange, in which the hybrid DNA created in the initial pairing reaction is extended. The coupling mechanism is not yet understood.

Once a Holliday intermediate has formed, a host of enzymes—topoisomerases, the RuvAB branch migration protein, a resolvase, other nucleases, DNA polymerase I or III, and DNA ligase—are required to complete recombination. The RuvC protein (Mₚ, 20,000) of *E. coli* cleaves Holliday intermediates to generate full-length, unbranched chromosome products.

All Aspects of DNA Metabolism Come Together to Repair Stalled Replication Forks

Like all cells, bacteria sustain high levels of DNA damage even under normal growth conditions. Most DNA lesions are repaired rapidly by base-excision repair, nucleotide-excision repair, and the other pathways described earlier. Nevertheless, almost every bacterial replication fork encounters an unrepaired DNA lesion or break at some point in its journey from the replication origin to the terminus (Fig. 25-30). For many types of lesions, DNA polymerase III cannot proceed and the encounter tends to leave the lesion in a single-strand gap. An encounter with a DNA strand break creates a double-strand break. Both situations require recombinational DNA repair (Fig. 25-39). Under normal growth conditions, stalled replication forks are reactivated by an elaborate repair pathway encompassing recombinational DNA repair, the restart of replication, and the repair of any lesions left behind. All aspects of DNA metabolism come together in this process.

After a replication fork has been halted, it can be restored by at least two major paths, both of which require the RecA protein. The repair pathway for lesion-containing DNA gaps also requires the RecF, RecO, and RecR proteins. Repair of double-strand breaks requires the RecBCD enzyme (Fig. 25-39). Additional recombination steps are followed by **origin-independent restart of replication**, in which the replication fork reassembles with the aid of a complex of seven proteins (PriA, B, and C, and DnaB, C, G, and T). This complex, originally discovered as a component required for the replication of φX174 DNA in vitro, is now termed the **replication restart primate**. Restart of the replication fork also requires DNA polymerase II, in a role not yet defined; this polymerase II activity gives way to DNA polymerase III for the extensive replication generally required to complete the chromosome. In at least some cases, replication restart can occur downstream of a blocking DNA lesion before the lesion is repaired.

The repair of stalled replication forks entails coordinated transitions between replication and recombination. The recombination steps function to fill the DNA gap or rejoin the broken DNA branch to recreate the
FIGURE 25-39 Models for recombinational DNA repair of stalled replication forks. The replication fork collapses on encountering a DNA lesion (left) or strand break (right). Recombination enzymes promote the DNA strand transfers needed to repair the branched DNA structure at the replication fork. A lesion in a single-strand gap is repaired in a reaction requiring the RecF, RecO, and RecR proteins. Double-strand breaks are repaired in a pathway requiring the RecBCD enzyme. Both pathways require RecA. Recombination intermediates are processed by additional enzymes (e.g., RuvA, RuvB, and RuvC, which process Holliday intermediates). Lesions in double-stranded DNA are repaired by nucleotide-excision repair or other pathways. The replication fork re-forms with the aid of enzymes catalyzing origin-independent replication restart, and chromosomal replication is completed. The overall process requires an elaborate coordination of all aspects of bacterial DNA metabolism.

branched DNA structure at the replication fork. Lesions left behind in what is now duplex DNA are repaired by pathways such as base-excision or nucleotide-excision repair. Thus a wide range of enzymes encompassing every aspect of DNA metabolism ultimately take part in the repair of a stalled replication fork. This type of repair process is a primary function of the homologous recombination system of every cell, and defects in recombinational DNA repair play an important role in human disease (Box 25–1).

Site-Specific Recombination Results in Precise DNA Rearrangements

Homologous genetic recombination, the type we have discussed so far, can involve any two homologous sequences. The second general type of recombination, site-specific recombination, is a very different type of process: recombination is limited to specific sequences. Recombination reactions of this type occur in virtually every cell, filling specialized roles that vary greatly from one species to another. Examples include regulation of the expression of certain genes and promotion of programmed DNA rearrangements in embryonic development or in the replication cycles of some viral and plasmid DNAs. Each site-specific recombination system consists of an enzyme called a recombinase and a short (20 to 200 bp), unique DNA sequence where the recombinase acts (the recombination site). One or more auxiliary proteins may regulate the timing or outcome of the reaction.
There are two general classes of site-specific recombination systems, which rely on either Tyr or Ser residues in the active site. In vitro studies of many site-specific recombination systems in the tyrosine class have elucidated some general principles, including the fundamental reaction pathway (Fig. 25-40a).

Several of these enzymes have been crystallized, revealing structural details of the reaction. A separate recombinase recognizes and binds to each of two recombination sites on two different DNA molecules or within the same DNA. One DNA strand in each site is cleaved at a specific point within the sequence. The nucleophile is the -OH group of an active-site Tyr residue, and the product is a covalent phosphotyrosine link between protein and DNA. The cleaved strands join to new partners, producing a Holliday intermediate. Steps (3) and (4) complete the reaction by a process similar to the first two steps. The original sequence of the recombination site is regenerated after recombining the DNA flanking the site. These steps occur within a complex of multiple recombinase subunits that sometimes include other proteins not shown here.

Another group of recombinases, called the resolvase/invertase family, use a Ser residue as nucleophile at the active site. These systems that employ an active-site Ser residue, both strands of each recombination site are cut concurrently and rejoined to new partners without the Holliday intermediate. In both types of system, the exchange is always reciprocal and precise, regenerating the recombination sites when the reaction is complete. We can view a recombinase as a site-specific endonuclease and ligase in one package.

The sequences of the recombination sites recognized by site-specific recombinases are partially asymmetric (nonpalindromic), and the two recombining sites align in the same orientation during the recombinase reaction. The outcome depends on the location and orientation of recombination sites (steps (3) and (4)). In the systems that employ an active-site Ser residue, both strands of each recombination site are cut concurrently and rejoined to new partners without the Holliday intermediate. In both types of system, the exchange is always reciprocal and precise, regenerating the recombination sites when the reaction is complete. We can view a recombinase as a site-specific endonuclease and ligase in one package.

The sequences of the recombination sites recognized by site-specific recombinases are partially asymmetric (nonpalindromic), and the two recombining sites align in the same orientation during the recombinase reaction. The outcome depends on the location and orientation of recombination sites (steps (3) and (4)). In the systems that employ an active-site Ser residue, both strands of each recombination site are cut concurrently and rejoined to new partners without the Holliday intermediate. In both types of system, the exchange is always reciprocal and precise, regenerating the recombination sites when the reaction is complete. We can view a recombinase as a site-specific endonuclease and ligase in one package.

The sequences of the recombination sites recognized by site-specific recombinases are partially asymmetric (nonpalindromic), and the two recombining sites align in the same orientation during the recombinase reaction. The outcome depends on the location and orientation of recombination sites (steps (3) and (4)). In the systems that employ an active-site Ser residue, both strands of each recombination site are cut concurrently and rejoined to new partners without the Holliday intermediate. In both types of system, the exchange is always reciprocal and precise, regenerating the recombination sites when the reaction is complete. We can view a recombinase as a site-specific endonuclease and ligase in one package.
The outcome of site-specific recombination depends on the location and orientation of the recombination sites (red and green) in a double-stranded DNA molecule. Orientation here (shown by arrowheads) refers to the order of nucleotides in the recombination site, not the 5'→3' direction.

If the two sites are on the same DNA molecule, the reaction either inverts or deletes the intervening DNA, determined by whether the recombination sites have the opposite or the same orientation, respectively. If the sites are on different DNAs, the recombination is intermolecular; if one or both DNAs are circular, the result is an insertion. Some recombinase systems are highly specific for one of these reaction types and act only on sites with particular orientations.

The first site-specific recombination system studied in vitro was that encoded by bacteriophage λ. When λ phage DNA enters an E. coli cell, a complex series of regulatory events commits the DNA to one of two fates. The λ DNA replicates and produces more bacteriophages (destroying the host cell), or it integrates into the host chromosome and (as prophage) replicates passively along with the chromosome for many cell generations. Integration is accomplished by a phage-encoded, tyrosine-class recombinase (λ integrase) that acts at recombination sites on the phage and bacterial DNAs—at attachment sites attP and attB, respectively (Fig. 25-42). The role of site-specific recombination in regulating gene expression is considered in Chapter 28.

Complete Chromosome Replication Can Require Site-Specific Recombination

Recombinational DNA repair of a circular bacterial chromosome, while essential, sometimes generates deleterious byproducts. The resolution of a Holliday junction can lead to the creation of new sites for recombination, potentially disrupting the normal genome.

FIGURE 25-41 Effects of site-specific recombination. The outcome of site-specific recombination depends on the location and orientation of the recombination sites (red and green) in a double-stranded DNA molecule. Orientation here (shown by arrowheads) refers to the order of nucleotides in the recombination site, not the 5'→3' direction.

FIGURE 25-42 Integration and excision of bacteriophage λ DNA at the chromosomal target site. The attachment site on the λ phage DNA (attP) shares only 15 bp of complete homology with the bacterial site (attB) in the region of the crossover. The reaction generates two new attachment sites (attR and attL) flanking the integrated phage DNA.

The recombinase is the λ integrase (or INT protein). Integration and excision use different attachment sites and different auxiliary proteins. Excision uses the proteins XIS, encoded by the bacteriophage, and FIS, encoded by the bacterium. Both reactions require the protein IHF (integration host factor), encoded by the bacterium.
25.3 DNA Recombination

DNA Recombination "jump," from one place on a chromosome (the donor site) to another on the same or a different chromosome (the target site). DNA sequence homology is not usually required for this movement, called **transposition**; the new location is determined more or less randomly. Insertion of a transposon in an essential gene could kill the cell, so transposition is tightly regulated and usually very infrequent. Transposons are perhaps the simplest of molecular parasites, adapted to replicate passively within the chromosomes of host cells. In some cases they carry genes that are useful to the host cell, and thus exist in a kind of symbiosis with the host.

Bacteria have two classes of transposons. **Insertion sequences** (simple transposons) contain only the sequences required for transposition and the genes for the proteins (transposases) that promote the process. **Complex transposons** contain one or more genes in addition to those needed for transposition. These extra genes might, for example, confer resistance to antibiotics and thus enhance the survival chances of the host cell. The spread of antibiotic-resistance elements among disease-causing bacterial populations that is rendering some antibiotics ineffectual (p. 949) is mediated in part by transposition.

Bacterial transposons vary in structure, but most have short repeated sequences at each end that serve as binding sites for the transposase. When transposition occurs, a short sequence at the target site (5 to 10 bp) is duplicated to form an additional short repeated sequence that flanks each end of the inserted transposon (Fig. 25-44). These duplicated segments result from the cutting mechanism used to insert a transposon into the DNA at a new location.

Intermediate at a replication fork by a nuclease such as RuvC, followed by completion of replication, can give rise to one of two products: the usual two monomeric chromosomes or a contiguous dimeric chromosome (Fig. 25-43). In the latter case, the covalently linked chromosomes cannot be segregated to daughter cells at cell division and the dividing cells become "stuck." A specialized site-specific recombination system in E. coli, the XerCD system, converts the dimer to monomers, allowing chromosome segregation and cell division to proceed.

Transposable Genetic Elements Move from One Location to Another

We now consider the third general type of recombination system: recombination that allows the movement of transposable elements, or **transposons**. These segments of DNA, found in virtually all cells, move, or "jump," from one place on a chromosome (the donor site) to another on the same or a different chromosome (the target site). DNA sequence homology is not usually required for this movement, called **transposition**; the new location is determined more or less randomly. Insertion of a transposon in an essential gene could kill the cell, so transposition is tightly regulated and usually very infrequent. Transposons are perhaps the simplest of molecular parasites, adapted to replicate passively within the chromosomes of host cells. In some cases they carry genes that are useful to the host cell, and thus exist in a kind of symbiosis with the host.

Bacteria have two classes of transposons. Insertion sequences (simple transposons) contain only the sequences required for transposition and the genes for the proteins (transposases) that promote the process. **Complex transposons** contain one or more genes in addition to those needed for transposition. These extra genes might, for example, confer resistance to antibiotics and thus enhance the survival chances of the host cell. The spread of antibiotic-resistance elements among disease-causing bacterial populations that is rendering some antibiotics ineffectual (p. 949) is mediated in part by transposition.

Bacterial transposons vary in structure, but most have short repeated sequences at each end that serve as binding sites for the transposase. When transposition occurs, a short sequence at the target site (5 to 10 bp) is duplicated to form an additional short repeated sequence that flanks each end of the inserted transposon (Fig. 25-44). These duplicated segments result from the cutting mechanism used to insert a transposon into the DNA at a new location.

Intermediate at a replication fork by a nuclease such as RuvC, followed by completion of replication, can give rise to one of two products: the usual two monomeric chromosomes or a contiguous dimeric chromosome (Fig. 25-43). In the latter case, the covalently linked chromosomes cannot be segregated to daughter cells at cell division and the dividing cells become "stuck." A specialized site-specific recombination system in E. coli, the XerCD system, converts the dimer to monomers, allowing chromosome segregation and cell division to proceed. The reaction is a site-specific deletion reaction (Fig. 25-41b). This is another example of the close coordination between DNA recombination processes and other aspects of DNA metabolism.

Transposable Genetic Elements Move from One Location to Another

We now consider the third general type of recombination system: recombination that allows the movement of transposable elements, or **transposons**. These segments of DNA, found in virtually all cells, move, or
There are two general pathways for transposition in bacteria. In direct (or simple) transposition (Fig. 25–45, left), cuts on each side of the transposon excise it, and the transposon moves to a new location. This leaves a double-strand break in the donor DNA that must be repaired. At the target site, a staggered cut is made (as in Fig. 25–44), the transposon is inserted into the break, and DNA replication fills in the gaps to duplicate the target site sequence. In replicative transposition (Fig. 25–46, right), the entire transposon is replicated, leaving a copy behind at the donor location. A cointegrate is an intermediate in this process, consisting of the donor region covalently linked to DNA at the target site. Two complete copies of the transposon are present in the cointegrate, both having the same relative orientation in the DNA. In some well-characterized transposons, the cointegrate intermediate is converted to products by site-specific recombination, in which specialized recombinases promote the required deletion reaction.

Eukaryotes also have transposons, structurally similar to bacterial transposons, and some use similar transposition mechanisms. In other cases, however, the mechanism of transposition seems to involve an RNA intermediate. Evolution of these transposons is intertwined with the evolution of certain classes of RNA viruses. Both are described in the next chapter.

Immunoglobulin Genes Assemble by Recombination

Some DNA rearrangements are a programmed part of development in eukaryotic organisms. An important example is the generation of complete immunoglobulin genes from separate gene segments in vertebrate genomes. A human (like other mammals) is capable of producing millions of different immunoglobulins (antibodies) with distinct binding specificities, even though the human genome contains only ~29,000 genes. Recombination allows an organism to produce an extraordinary diversity of antibodies from a limited DNA-coding capacity. Studies of the recombination mechanism reveal a close relationship to DNA transposition and suggest that this system for generating antibody diversity may have evolved from an ancient cellular invasion of transposons.

We can use the human genes that encode proteins of the immunoglobulin G (IgG) class to illustrate how antibody diversity is generated. Immunoglobulins consist
of two heavy and two light polypeptide chains (see Fig. 5-21). Each chain has two regions, a variable region, with a sequence that differs greatly from one immunoglobulin to another, and a region that is virtually constant within a class of immunoglobulins. There are also two distinct families of light chains, kappa and lambda, which differ somewhat in the sequences of their constant regions. For all three types of polypeptide chain (heavy chain, and kappa and lambda light chains), diversity in the variable regions is generated by a similar mechanism. The genes for these polypeptides are divided into segments, and the genome contains clusters with multiple versions of each segment. The joining of one version of each gene segment creates a complete gene.

Figure 25-46 depicts the organization of the DNA encoding the kappa light chains of human IgG and shows how a mature kappa light chain is generated. In undifferentiated cells, the coding information for this polypeptide chain is separated into three segments. The V (variable) segment encodes the first 95 amino acid residues of the variable region, the J (joining) segment encodes the remaining 12 residues of the variable region, and the C segment encodes the constant region.

The genome contains \(\sim 300 \) different V segments, 4 different J segments, and 1 C segment.

As a stem cell in the bone marrow differentiates to form a mature B lymphocyte, one V segment and one J segment are brought together by a specialized recombination system (Fig. 25-46). During this programmed DNA deletion, the intervening DNA is discarded. There are about \(300 \times 4 = 1,200 \) possible V-J combinations. The recombination process is not as precise as the site-specific recombination described earlier, so additional variation occurs in the sequence at the V-J junction. This increases the overall variation by a factor of at least 2.5, so the cells can generate about \(2.5 \times 1,200 = 3,000 \) different V-J combinations. The final joining of the V-J combination to the C region is accomplished by an RNA-splicing reaction after transcription, a process described in Chapter 26.

The recombination mechanism for joining the V and J segments is illustrated in Figure 25-47. Just beyond each V segment and just before each J segment lie recombination signal sequences (RSS). These are bound by proteins called RAG1 and RAG2 (products of the recombination activating gene). The RAG proteins catalyze the

FIGURE 25-46 Recombination of the V and J gene segments of the human IgG kappa light chain. This process is designed to generate antibody diversity. At the top is shown the arrangement of IgG-coding sequences in a stem cell of the bone marrow. Recombination deletes the DNA between a particular V segment and a J segment. After transcription, the transcript is processed by RNA splicing, as described in Chapter 26; translation produces the light-chain polypeptide. The light chain can combine with any of 5,000 possible heavy chains to produce an antibody molecule.
formation of a double-strand break between the signal sequences and the V (or J) segments to be joined. The V and J segments are then covalently linked to new partners. This type of recombination is found in virtually all cells, and its many functions include DNA integration and regulation of gene expression.

In virtually all cells, transposons use recombination to move within or between chromosomes. In vertebrates, a programmed recombination reaction related to transposition joins immunoglobulin gene segments to form immunoglobulin genes during B-lymphocyte differentiation.

Key Terms

Terms in bold are defined in the glossary.

- **template** 977
- **semiconservative replication** 977
- **replication fork** 978
- **origin** 978
- **Okazaki fragments** 979
- **leading strand** 979
- **lagging strand** 979
- **nucleases** 979
- **exonuclease** 979
- **endonuclease** 979
- **DNA polymerase I** 979
- **primer** 980
- **primer terminus** 980
- **processivity** 980
- **proofreading** 981
- **DNA polymerase III** 982
- **replisome** 984
- **helicases** 984
- **topoisomerases** 984
- **primases** 984
- **DNA ligases** 984
- **DNA unwinding element (DUE)** 985
- **AAA+ ATPases** 985
- **primosome** 987
- **catenanes** 991
- **pre-replicative complex (pre-RC)** 991
- **licensing** 991

SUMMARY 25.3 DNA Recombination

- DNA sequences are rearranged in recombination reactions, usually in processes tightly coordinated with DNA replication or repair.
- Homologous genetic recombination can take place between any two DNA molecules that share sequence homology. In meiosis (in eukaryotes), this type of recombination helps to ensure accurate chromosomal segregation and create genetic diversity. In both bacteria and eukaryotes it serves in the repair of stalled replication forks. A Holliday intermediate forms during homologous recombination.
- Site-specific recombination occurs only at specific target sequences, and this process can also involve a Holliday intermediate. Recombinases cleave the DNA at specific points and ligate the strands to new partners. This type of recombination is found in virtually all cells, and its many functions include DNA integration and regulation of gene expression.

FIGURE 25-47 Mechanism of immunoglobulin gene rearrangement.

The RAG1 and RAG2 proteins bind to the recombination signal sequences (RSS) and cleave one DNA strand between the RSS and the V (or J) segments to be joined. The liberated 3' hydroxyl then acts as a nucleophile, attacking a phosphodiester bond in the other strand to create a double-strand break. The resulting hairpin bends on the V and J segments are cleaved, and the ends are covalently linked by a complex of proteins specialized for end-joining repair of double-strand breaks. The steps in the generation of the double-strand break catalyzed by RAG1 and RAG2 are chemically related to steps in transposition reactions.
minichromosome maintenance (MCM) proteins 991
ORC (origin recognition complex) 991
DNA polymerase α 992
DNA polymerase δ 992
DNA polymerase ε 992
mutation 993
base-excision repair 996
DNA glycosylases 996
site-specific recombination 1003
homologous genetic recombination 1003
DNA transposition 1004
recombinational DNA repair 1004
melosis 1004
branch migration 1005
double-strand break repair model 1006
Holliday intermediate 1006
transposons 1013
transposition 1013
insertion sequence 1013
cointegrate 1014
SOS response 1001
DNA repair

Further Reading

General
A thorough treatment of DNA metabolism and a good place to start exploring this field.
Excellent primary source for all aspects of DNA metabolism.

DNA Replication
This review describes the similar strategies and enzymes of DNA replication in different classes of organisms.
Mechanisms for the restart of replication forks before the repair of DNA damage.
Good summary of the properties and roles of the more than one dozen known eukaryotic DNA polymerases.
The report revealing the structure of the Tus-Ter complex.
Excellent summary of the molecular basis of replication fidelity by a DNA polymerase—base-pair geometry as well as hydrogen bonding.
An excellent summary of what goes on at a replication fork.
Good summary of the initiation of eukaryotic DNA replication.

DNA Repair
Review of a class of DNA polymerases that continues to grow.
What an early look at the human genome revealed about DNA repair.

DNA Recombination
A review of how recombination was shown to be a replication-fork repair process.
A detailed look at one well-studied bacterial transposon.

Problems

1. **Conclusions from the Meselson-Stahl Experiment**
 The Meselson-Stahl experiment (see Fig. 25–2) proved that DNA undergoes semiconservative replication in *E. coli*. In the “dispersive” model of DNA replication, the parent DNA strands are cleaved into pieces of random size, then joined with pieces of newly replicated DNA to yield daughter duplexes. Explain how the results of Meselson and Stahl’s experiment ruled out such a model.

2. **Heavy Isotope Analysis of DNA Replication** A culture of *E. coli* growing in a medium containing 15NH$_4$Cl is switched to a medium containing 14NH$_4$Cl for three generations (an eightfold increase in population). What is the molar ratio of hybrid DNA (15N-14N) to light DNA (14N-14N) at this point?

3. **Replication of the *E. coli* Chromosome** The *E. coli* chromosome contains 4,639,221 bp.
 (a) How many turns of the double helix must be unwound during replication of the *E. coli* chromosome?
 (b) From the data in this chapter, how long would it take to replicate the *E. coli* chromosome at 37 °C if two replication forks proceeded from the origin? Assume replication occurs at a rate of 1,000 bp/s. Under some conditions *E. coli* cells can divide every 20 min. How might this be possible?
 (c) In the replication of the *E. coli* chromosome, about how many Okazaki fragments would be formed? What factors guarantee that the numerous Okazaki fragments are assembled in the correct order in the new DNA?

4. **Base Composition of DNAs Made from Single-Stranded Templates** Predict the base composition of the total DNA synthesized by DNA polymerase on templates provided by an equimolar mixture of the two complementary strands of bacteriophage *phiX174* DNA (a circular DNA molecule). The base composition of one strand is A, 24.7%; G, 24.1%; C, 18.5%; and T, 32.7%. What assumption is necessary to answer this problem?

5. **DNA Replication** Kornberg and his colleagues incubated soluble extracts of *E. coli* with a mixture of dATP, dTTP, dGTP, and dCTP, all labeled with 32P in the α-phosphate group. After a time, the incubation mixture was treated with trichloroacetic acid, which precipitates the DNA but not the nucleotide precursors. The precipitate was collected, and the extent of precursor incorporation into DNA was determined from the amount of radioactivity present in the precipitate.
 (a) If any one of the four nucleotide precursors were omitted from the incubation mixture, would radioactivity be found in the precipitate? Explain.
 (b) Would 32P be incorporated into the DNA if only dTTP were labeled? Explain.
 (c) Would radioactivity be found in the precipitate if 32P labeled the β or γ phosphate rather than the α phosphate of the deoxyribonucleotides? Explain.

6. **The Chemistry of DNA Replication** All DNA polymerases synthesize new DNA strands in the 5’→3’ direction. In some respects, replication of the antiparallel strands of duplex DNA would be simpler if there were also a second type of polymerase, one that synthesized DNA in the 3’→5’ direction. The two types of polymerase could, in principle, coordinate DNA synthesis without the complicated mechanics required for lagging strand replication. However, no such 3’→5’-synthesizing enzyme has been found. Suggest two possible mechanisms for 3’→5’ DNA synthesis. Pyrophosphate should be one product of both proposed reactions. Could one or both mechanisms be supported in a cell? Why or why not? (Hint: You may suggest the use of DNA precursors not actually present in extant cells.)

7. **Leading and Lagging Strands** Prepare a table that lists the names and compares the functions of the precursors, enzymes, and other proteins needed to make the leading strand versus the lagging strand during DNA replication in *E. coli*.

8. **Function of DNA Ligase** Some *E. coli* mutants contain defective DNA ligase. When these mutants are exposed to 3H-labeled thymine and the DNA produced is sedimented on an alkaline sucrose density gradient, two radioactive bands appear. One corresponds to a high molecular weight fraction, the other to a low molecular weight fraction. Explain.

9. **Fidelity of Replication of DNA** What factors promote the fidelity of replication during synthesis of the leading strand of DNA? Would you expect the lagging strand to be made with the same fidelity? Give reasons for your answers.

10. **Importance of DNA Topoisomerases in DNA Replication** DNA unwinding, such as that occurring in replication, affects the superhelical density of DNA. In the absence of topoisomerases, the DNA would become overwound ahead of a replication fork as the DNA is unwound behind it. A bacterial replication fork will stall when the superhelical density (σ) of the DNA ahead of the fork reaches +0.14 (see Chapter 24). Bidirectional replication is initiated at the origin of a 6,000 bp plasmid in vitro, in the absence of topoisomerases. The plasmid initially has a σ of −0.06. How many base pairs will be unwound and replicated by each replication fork before the forks stall? Assume that each fork travels at the same rate and that each includes all components necessary for elongation except topoisomerase.

11. **The Ames Test** In a nutrient medium that lacks histidine, a thin layer of agar containing 10 *Salmonella typhimurium* histidine auxotrophs (mutant cells that require histidine to survive) produces \sim13 colonies over a two-day
incubation period at 37 °C (see Fig. 25–21). How do these colonies arise in the absence of histidine? The experiment is repeated in the presence of 0.4 μg of 2-aminoanthracene. The number of colonies produced over two days exceeds 10,000. What does this indicate about 2-aminoanthracene? What can you surmise about its carcinogenicity?

12. DNA Repair Mechanisms Vertebrate and plant cells often methylate cytosine in DNA to form 5-methylcytosine (see Fig. 8–5a). In these same cells, a specialized repair system recognizes G-T mismatches and repairs them to G:C base pairs. How might this repair system be advantageous to the cell? (Explain in terms of the presence of 5-methylcytosine in the DNA.)

13. DNA Repair in People with Xeroderma Pigmentosum The condition known as xeroderma pigmentosum (XP) arises from mutations in at least seven different human genes (see Box 25–1). The deficiencies are generally in genes encoding enzymes involved in some part of the pathway for human nucleotide-excision repair. The various types of XP are denoted A through G (XPA, XPB, etc.), with a few additional variants lumped under the label XP-V.

Cultures of fibroblasts from healthy individuals and from patients with XPG are irradiated with ultraviolet light. The DNA is isolated and denatured, and the resulting single-stranded DNA is characterized by analytical ultracentrifugation.

(a) Samples from the normal fibroblasts show a significant reduction in the average molecular weight of the single-stranded DNA after irradiation, but samples from the XPG fibroblasts show no such reduction. Why might this be?

(b) If you assume that a nucleotide-excision repair system is operative in fibroblasts, which step might be defective in the cells from the patients with XPG? Explain.

14. Holliday Intermediates How does the formation of Holliday intermediates in homologous genetic recombination differ from their formation in site-specific recombination?

15. A Connection between Replication and Site-Specific Recombination Most wild strains of Saccharomyces cerevisiae have multiple copies of the circular plasmid 2μ (named for its contour length of about 2 μm), which has ~6,300 bp of DNA. For its replication the plasmid uses the host replication system, under the same strict control as the host cell chromosomes, replicating only once per cell cycle. Replication of the plasmid is bidirectional, with both replication forks initiating at a single, well-defined origin. However, one replication cycle of a 2μ plasmid can result in more than two copies of the plasmid, allowing amplification of the plasmid copy number (number of plasmid copies per cell) whenever plasmid segregation at cell division leaves one daughter cell with fewer than the normal complement of plasmid copies. Amplification requires a site-specific recombination system encoded by the plasmid, which serves to invert one part of the plasmid relative to the other. Explain how a site-specific inversion event could result in amplification of the plasmid copy number. (Hint: Consider the situation when replication forks have duplicated one recombination site but not the other.)

Data Analysis Problem

16. Mutagenesis in Escherichia coli Many mutagenic compounds act by alkylating the bases in DNA. The alkylating agent R7000 (7-methoxy-2-nitronaphtho[2,1-b]furan) is an extremely potent mutagen.

In vivo, R7000 is activated by the enzyme nitroreductase, and this more reactive form covalently attaches to DNA—primarily, but not exclusively, to G≡C base pairs.

In a 1996 study, Quillardet, Touati, and Hofnung explored the mechanisms by which R7000 causes mutations in E. coli. They compared the genotoxic activity of R7000 in two strains of E. coli: the wild-type (uvr+) and mutants lacking uvrA activity (uvr−; see Table 25–6). They first measured rates of mutagenesis, Rifampicin is an inhibitor of RNA polymerase (see Chapter 26). In its presence, cells will not grow unless certain mutations occur in the gene encoding RNA polymerase; the appearance of rifampicin-resistant colonies thus provides a useful measure of mutagenesis rates.

The effects of different concentrations of R7000 were determined, with the results shown in the graph below.

(a) Why are some mutants produced even when no R7000 is present?

Quillardet and colleagues also measured the survival rate of bacteria treated with different concentrations of R7000.
(b) Explain how treatment with R7000 is lethal to cells.

(c) Explain the differences in the mutagenesis curves and in the survival curves for the two types of bacteria, uvr* and uvr-, as shown in the graphs.

The researchers then went on to measure the amount of R7000 covalently attached to the DNA in uvr* and uvr- E. coli. They incubated bacteria with $[^3]HJR7000$ for 10 or 70 minutes, extracted the DNA, and measured its 3H content in counts per minute (cpm) per µg of DNA.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>^{3}H in DNA (cpm/µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>76</td>
</tr>
<tr>
<td>70</td>
<td>69</td>
</tr>
</tbody>
</table>

(d) Explain why the amount of 3H drops over time in the uvr* strain and rises over time in the uvr- strain.

Quillardet and colleagues then examined the particular DNA sequence changes caused by R7000 in the uvr* and uvr- bacteria. For this, they used six different strains of E. coli, each with a different point mutation in the lacZ gene, which encodes β-galactosidase (this enzyme catalyzes the same reaction as lactase; see Fig. 14–10). Cells with any of these mutations have a nonfunctional β-galactosidase and are unable to metabolize lactose (i.e., a Lac phenotype). Each type of point mutation required a specific reverse mutation to restore lacZ gene function and Lac+ phenotype. By plating cells on a medium containing lactose as the sole carbon source, it was possible to select for these reverse-mutated, Lac+ cells. And by counting the number of Lac+ cells following mutagenesis of a particular strain the researchers could measure the frequency of each type of mutation.

First, they looked at the mutation spectrum in uvr- cells. The following table shows the results for the six strains, CC101 through CC106 (with the point mutation required to produce Lac+ cells indicated in parentheses).

<table>
<thead>
<tr>
<th>Number of Lac+ cells (average ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC101</td>
</tr>
<tr>
<td>(A=T)</td>
</tr>
<tr>
<td>R7000 (µg/mL)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.075</td>
</tr>
<tr>
<td>0.15</td>
</tr>
</tbody>
</table>

(e) Which types of mutation show significant increases above the background rate due to treatment with R7000? Provide a plausible explanation for why some have higher frequencies than others.

(f) Can all of the mutations you listed in (e) be explained as resulting from covalent attachment of R7000 to a G:C base pair? Explain your reasoning.

(g) Figure 25–28b shows how methylation of guanine residues can lead to a G=C to A=T mutation. Using a similar pathway, show how a G-R7000 adduct could lead to the G=C to A=T or T=A mutations shown above. Which base pairs with the G-R7000 adduct?

The results for the uvr- bacteria are shown in the table below.

<table>
<thead>
<tr>
<th>Number of Lac+ cells (average ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC101</td>
</tr>
<tr>
<td>(A=T)</td>
</tr>
<tr>
<td>R7000 (µg/mL)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

(h) Do these results show that all mutation types are repaired with equal fidelity? Provide a plausible explanation for your answer.

Reference

The RNA of the cell is partly in the nucleus, partly in particles in the cytoplasm and partly as the "soluble" RNA of the cell sap; many workers have shown that all these three fractions turn over differently. It is very important to realize in any discussion of the role of RNA in the cell that it is very inhomogeneous metabolically, and probably of more than one type.

—Francis H. C. Crick, article in Symposia of the Society for Experimental Biology, 1958

RNA Metabolism

26.1 DNA-Dependent Synthesis of RNA 1022
26.2 RNA Processing 1033
26.3 RNA-Dependent Synthesis of RNA and DNA 1050

Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. Strands of RNA and DNA may seem quite similar at first glance, differing only in that RNA has a hydroxyl group at the 2' position of the aldopentose, and uracil instead of thymine. However, unlike DNA, most RNAs carry out their functions as single strands, strands that fold back on themselves and have the potential for much greater structural diversity than DNA (Chapter 8). RNA is thus suited to a variety of cellular functions.

RNA is the only macromolecule known to have a role both in the storage and transmission of information and in catalysis, which has led to much speculation about its possible role as an essential chemical intermediate in the development of life on this planet. The discovery of catalytic RNAs, or ribozymes, has changed the very definition of an enzyme, extending it beyond the domain of proteins. Proteins nevertheless remain essential to RNA and its functions. In the modern cell, all nucleic acids, including RNAs, are complexed with proteins. Some of these complexes are quite elaborate, and RNA can assume both structural and catalytic roles within complicated biochemical machines.

All RNA molecules except the RNA genomes of certain viruses are derived from information permanently stored in DNA. During transcription, an enzyme system converts the genetic information in a segment of double-stranded DNA into an RNA strand with a base sequence complementary to one of the DNA strands. Three major kinds of RNA are produced. Messenger RNAs (mRNAs) encode the amino acid sequence of one or more polypeptides specified by a gene or set of genes. Transfer RNAs (tRNAs) read the information encoded in the mRNA and transfer the appropriate amino acid to a growing polypeptide chain during protein synthesis. Ribosomal RNAs (rRNAs) are constituents of ribosomes, the intricate cellular machines that synthesize proteins. Many additional specialized RNAs have regulatory or catalytic functions or are precursors to the three main classes of RNA. These special-function RNAs are no longer thought of as minor species in the catalog of cellular RNAs. In vertebrates, RNAs that do not fit into one of the classical categories (mRNA, tRNA, rRNA) seem to vastly outnumber those that do.

During replication the entire chromosome is usually copied, but transcription is more selective. Only particular genes or groups of genes are transcribed at any one time, and some portions of the DNA genome are never transcribed. The cell restricts the expression of genetic information to the formation of gene products needed at any particular moment. Specific regulatory sequences mark the beginning and end of the DNA segments to be transcribed and designate which strand in duplex DNA is to be used as the template. The transcript itself may interact with other RNA molecules as part of the overall regulatory program. The regulation of transcription is described in detail in Chapter 28.

The sum of all the RNA molecules produced in a cell under a given set of conditions is called the cellular transcriptome. Given the relatively small fraction of the human genome devoted to protein-encoding genes, we might have expected that only a small part of the human genome is transcribed. This is not the case. Modern
microarray analysis of transcription patterns has revealed that much of the genome of humans and other mammals is transcribed into RNA. The products are predominantly not mRNAs, tRNAs, or rRNAs, but rather special-function RNAs, a host of which are being discovered. Many of these seem to be involved in regulation of gene expression; however, the rapid pace of discovery has forced the realization that we do not yet know what many of these RNAs do.

In this chapter we examine the synthesis of RNA on a DNA template and the postsynthetic processing and turnover of RNA molecules. In doing so we encounter many of the specialized functions of RNA, including catalytic functions. Interestingly, the substrates for RNA enzymes are often other RNA molecules. We also describe systems in which RNA is the template and DNA the product, rather than vice versa. The information pathways thus come full circle, and reveal that template-dependent nucleic acid synthesis has standard rules regardless of the nature of template or product (RNA or DNA). This examination of the biological interconversion of DNA and RNA as information carriers leads to a discussion of the evolutionary origin of biological information.

26.1 DNA-Dependent Synthesis of RNA

Our discussion of RNA synthesis begins with a comparison between transcription and DNA replication (Chapter 25). Transcription resembles replication in its fundamental chemical mechanism, its polarity (direction of synthesis), and its use of a template. And like replication, transcription has initiation, elongation, and termination phases—though in the literature on transcription, initiation is further divided into discrete phases of DNA binding and initiation of RNA synthesis. Transcription differs from replication in that it does not require a primer and, generally, involves only limited segments of a DNA molecule. Additionally, within transcribed segments only one DNA strand serves as a template for a particular RNA molecule.

RNA Is Synthesized by RNA Polymerases

The discovery of DNA polymerase and its dependence on a DNA template spurred a search for an enzyme that synthesizes RNA complementary to a DNA strand. By 1960, four research groups had independently detected an enzyme in cellular extracts that could form an RNA polymer from ribonucleoside 5'-triphosphates. Subsequent work on the purified Escherichia coli RNA polymerase helped to define the fundamental properties of transcription (Fig. 26-1). DNA-dependent RNA polymerase requires, in addition to a DNA template, all four ribonucleoside 5'-triphosphates (ATP, GTP, UTP, and CTP) as precursors of the nucleotide units of RNA, as well as Mg$^{2+}$. The protein also binds one Zn$^{2+}$. The chemistry and mechanism of RNA synthesis closely resemble those used by DNA polymerases (see Fig. 25-5). RNA polymerase elongates an RNA strand by adding ribonucleotide units to the 3'-hydroxyl end, building RNA in the 5'→3' direction. The 3'-hydroxyl group acts as a nucleophile, attacking the alpha phosphate of the incoming ribonucleoside triphosphate (Fig. 26-1b) and releasing pyrophosphate. The overall reaction is

\[
\text{(NMP)}_n + \text{NTP} \rightarrow \text{(NMP)}_{n+1} + \text{PP}_i \\
\text{RNA} \to \text{Lengthened RNA}
\]

RNA polymerase requires DNA for activity and is most active when bound to a double-stranded DNA. As noted above, only one of the two DNA strands serves as a template. The template DNA strand is copied in the 3'→5' direction (antiparallel to the new RNA strand), just as in DNA replication. Each nucleotide in the newly formed RNA is selected by Watson-Crick base-pairing interactions; U residues are inserted in the RNA to pair with A residues in the DNA template, G residues are inserted to pair with C residues, and so on. Base-pair geometry (see Fig. 25-6) may also play a role in base selection.

Unlike DNA polymerase, RNA polymerase does not require a primer to initiate synthesis. Initiation occurs when RNA polymerase binds at specific DNA sequences called promoters (described below). The 5'-triphosphate group of the first residue in a nascent (newly formed) RNA molecule is not cleaved to release PP$_i$, but instead remains intact throughout the transcription process. During the elongation phase of transcription, the growing end of the new RNA strand base-pairs temporarily with the DNA template to form a short hybrid RNA-DNA double helix, estimated to be 8 bp long (Fig. 26-1a). The RNA in this hybrid duplex “peels off” shortly after its formation, and the DNA duplex reforms.

To enable RNA polymerase to synthesize an RNA strand complementary to one of the DNA strands, the DNA duplex must unwind over a short distance, forming a transcription “bubble.” During transcription, the E. coli RNA polymerase generally keeps about 17 bp unwound. The 8 bp RNA-DNA hybrid occurs in this unwound region. Elongation of a transcript by E. coli RNA polymerase proceeds at a rate of 50 to 90 nucleotides/second. Because DNA is a helix, movement of a transcription bubble requires considerable strand rotation of the nucleic acid molecules. DNA strand rotation is restricted in most DNAs by DNA-binding proteins and other structural barriers. As a result, a moving RNA polymerase generates waves of positive supercoils ahead of the transcription bubble and negative supercoils behind (Fig. 26-1c). This has been observed both in vitro and in vivo (in bacteria). In the cell, the topological problems caused by transcription are relieved through the action of topoisomerases (Chapter 24).
26.1 DNA-Dependent Synthesis of RNA

MECHANISM FIGURE 26-1 Transcription by RNA polymerase in E. coli.

For synthesis of an RNA strand complementary to one of two DNA strands in a double helix, the DNA is transiently unwound. (a) About 17 bp are unwound at any given time. RNA polymerase and the transcription bubble move from left to right along the DNA as shown, facilitating RNA synthesis. The DNA is unwound ahead and rewound behind as RNA is transcribed. Red arrows show the direction in which the DNA must rotate to permit this process. As the DNA is rewound, the RNA-DNA hybrid is displaced and the RNA strand extruded. The RNA polymerase is in close contact with the DNA ahead of the transcription bubble, as well as with the separated DNA strands and the RNA within and immediately behind the bubble. A channel in the protein funnels new nucleoside triphosphates (NTPs) to the polymerase active site. The polymerase footprint encompasses about 35 bp of DNA during elongation.

(b) Catalytic mechanism of RNA synthesis by RNA polymerase. Note that this is essentially the same mechanism used by DNA polymerases (see Fig. 25-5b). The reaction involves two Mg$^{2+}$ ions, coordinated to the phosphate groups of the incoming NTP and to three Asp residues (Asp460, Asp462, and Asp464 in the β' subunit of the E. coli RNA polymerase), which are highly conserved in the RNA polymerases of all species. One Mg$^{2+}$ ion facilitates attack by the 3'-hydroxyl group of the NTP; the other Mg$^{2+}$ ion facilitates displacement of the pyrophosphate; and both metal ions stabilize the pentacovalent transition state.

(c) Changes in the supercoiling of DNA brought about by transcription. Movement of an RNA polymerase along DNA tends to create positive supercoils (overwound DNA) ahead of the transcription bubble and negative supercoils (underwound DNA) behind it. In a cell, topoisomerases rapidly eliminate the positive supercoils and regulate the level of negative supercoiling (Chapter 24).
The two complementary strands of DNA are defined by their function in transcription. The RNA transcript is synthesized on the template strand and is identical in sequence (with U in place of T) to the non-template strand, or coding strand.

FIGURE 26-2 Template and non-template (coding) DNA strands.

The two complementary strands of DNA are defined by their function in transcription. The RNA transcript is synthesized on the template strand and is identical in sequence (with U in place of T) to the non-template strand, or coding strand.

FIGURE 26-3 Organization of coding information in the adenovirus genome.

The genetic information of the adenovirus genome (a conveniently simple example) is encoded by a double-stranded DNA molecule of 36,000 bp, both strands of which encode proteins. The information for most proteins is encoded by (that is, identical to) the top strand—by convention, the strand oriented 5' to 3' from left to right. The bottom strand acts as template for these transcripts. However, a few proteins are encoded by the bottom strand, which is transcribed in the opposite direction (and uses the top strand as template). Synthesis of mRNAs in adenovirus is actually much more complex than shown here. Many of the mRNAs shown for the upper strand are initially synthesized as a single, long transcript (25,000 nucleotides), which is then extensively processed to produce the separate mRNAs. Adenovirus causes upper respiratory tract infections in some vertebrates.

KEY CONVENTION:

The two complementary DNA strands have different roles in transcription. The strand that serves as template for RNA synthesis is called the template strand. The DNA strand complementary to the template, the non-template strand, or coding strand, is identical in base sequence to the RNA transcribed from the gene, with U in the RNA in place of T in the DNA (Fig. 26-2). The coding strand for a particular gene may be located in either strand of a given chromosome (as shown in Fig. 26-3 for a virus). By convention, the regulatory sequences that control transcription (described later in this chapter) are designated by the sequences in the coding strand.

The DNA-dependent RNA polymerase of *E. coli* is a large, complex enzyme with five core subunits (αββ'ω; M, 390,000) and a sixth subunit, one of a group designated σ, with variants designated by size (molecular weight). The σ subunit binds transiently to the core and directs the enzyme to specific binding sites on the DNA (described below). These six subunits constitute the RNA polymerase holoenzyme (Fig. 26-4). The RNA polymerase holoenzyme of *E. coli* thus exists in several forms, depending on the type of σ subunit. The most common subunit is σ70 (M, 70,000), and the upcoming discussion focuses on the corresponding RNA polymerase holoenzyme.

RNA polymerases lack a separate proofreading 3'→5' exonuclease active site (such as that of many DNA polymerases), and the error rate for transcription is higher than that for chromosomal DNA replication—approximately one error for every 10^4 to 10^5 ribonucleotides incorporated into RNA. Because many copies of an RNA are generally produced from a single gene and all RNAs are eventually degraded and replaced, a mistake in an RNA molecule is of less consequence to the cell than a mistake in the permanent information stored in DNA. Many RNA polymerases, including bacterial RNA polymerase and the eukaryotic RNA polymerase II (discussed below), do pause when a mispaired base is added during transcription, and they can remove mismatched nucleotides from the 3' end of a transcript by direct reversal of the polymerase reaction. But we do not yet know whether this activity is a true proofreading function and to what extent it may contribute to the fidelity of transcription.

FIGURE 26-4 Structure of the RNA polymerase holoenzyme of the bacterium Thermus aquaticus.

(Derived from PDB ID 1WV7) The overall structure of this enzyme is very similar to that of the *E. coli* RNA polymerase; no DNA or RNA is shown here. The β subunit is in gray, the β' subunit is white; the two α subunits are different shades of red; the ω subunit is yellow; the σ subunit is orange. The image on the left is oriented as in Figure 26-6. When the structure is rotated 180° about the y axis (right) the small ω subunit is visible.
RNA Synthesis Begins at Promoters

Initiation of RNA synthesis at random points in a DNA molecule would be an extraordinarily wasteful process. Instead, an RNA polymerase binds to specific sequences in the DNA called **promoters**, which direct the transcription of adjacent segments of DNA (genes). The sequences where RNA polymerases bind can be quite variable, and much research has focused on identifying the particular sequences that are critical to promoter function.

In *E. coli*, RNA polymerase binding occurs within a region stretching from about 70 bp before the transcription start site to about 30 bp beyond it. By convention, the DNA base pairs that correspond to the beginning of an RNA molecule are given positive numbers, and those preceding the RNA start site are given negative numbers. The promoter region thus extends between positions −70 and +30. Analyses and comparisons of the most common class of bacterial promoters (those recognized by an RNA polymerase holoenzyme containing σ70) have revealed similarities in two short sequences centered about positions −10 and −35 (Fig. 26–5). These sequences are important interaction sites for the σ70 subunit. Although the sequences are not identical for all bacterial promoters in this class, certain nucleotides that are particularly common at each position form a **consensus sequence** (recall the *E. coli* oriC consensus sequence; see Fig. 25–11). The consensus sequence at the −10 region is (5')TATAAT(3'); the consensus sequence at the −35 region is (5')TTGACA(3'). A third AT-rich recognition element, called the UP (upstream promoter) element, occurs between positions −40 and −60 in the promoters of certain highly expressed genes. The UP element is bound by the α subunit of RNA polymerase. The efficiency with which an RNA polymerase containing σ70 binds to a promoter and initiates transcription is determined in large measure by these sequences, the spacing between them, and their distance from the transcription start site.

Many independent lines of evidence attest to the functional importance of the sequences in the −35 and −10 regions. Mutations that affect the function of a given promoter often involve a base pair in these regions. Variations in the consensus sequence also affect the efficiency of RNA polymerase binding and transcription initiation. A change in only one base pair can decrease the rate of binding by several orders of magnitude. The promoter sequence thus establishes a basal level of expression that can vary greatly from one *E. coli* gene to the next. A method that provides information about the interaction between RNA polymerase and promoters is illustrated in Box 26–1.

The pathway of transcription initiation and the fate of the σ subunit are becoming much better defined (Fig. 26–6a). The pathway consists of two major parts, binding and initiation, each with multiple steps. First, the polymerase, directed by its bound σ factor, binds to the promoter. A closed complex (in which the bound DNA is intact) and an open complex (in which the bound DNA is intact and partially unwound near the −10 sequence) form in succession. Second, transcription is initiated within the complex, leading to a conformational change that converts the complex to the elongation form.

![Consensus sequence](image_url)

FIGURE 26–5 Typical *E. coli* promoters recognized by an RNA polymerase holoenzyme containing σ70. Sequences of the non-template strand are shown, read in the 5'→3' direction, as is the convention for representations of this kind. The sequences vary from one promoter to the next, but comparisons of many promoters reveal similarities, particularly in the −10 and −35 regions. The sequence element UP, not present in all *E. coli* promoters, is shown in the P1 promoter for the highly expressed rRNA gene *rrnB*. UP elements, generally occurring in the region between −40 and −60, strongly stimulate transcription at the promoters that contain them. The UP element in the *rrnB* P1 promoter encompasses the region between −38 and −59. The consensus sequence for *E. coli* promoters recognized by σ70 is shown second from the top. Spacer regions contain slightly variable numbers of nucleotides (N). Only the first nucleotide coding the RNA transcript (at position +1) is shown.
Footprinting, a technique derived from principles used in DNA sequencing, identifies the DNA sequences bound by a particular protein. Researchers isolate a DNA fragment thought to contain sequences recognized by a DNA-binding protein and radiolabel one end of one strand (Fig. 1). They then use chemical or enzymatic reagents to introduce random breaks in the DNA fragment (averaging about one per molecule). Separation of the labeled cleavage products (broken fragments of various lengths) by high-resolution electrophoresis produces a ladder of radioactive bands. In a separate tube, the cleavage procedure is repeated on copies of the same DNA fragment in the presence of the DNA-binding protein. The researchers then subject the two sets of cleavage products to electrophoresis and compare them side by side. A gap ("footprint") in the series of radioactive bands derived from the DNA-protein sample, attributable to protection of the DNA by the bound protein, identifies the sequences that the protein binds.

The precise location of the protein-binding site can be determined by directly sequencing (see Fig. 8–34) copies of the same DNA fragment and including the sequencing lanes (not shown here) on the same gel with the footprint. Figure 2 shows footprinting results for the binding of RNA polymerase to a DNA fragment containing a promoter. The polymerase covers 60 to 80 bp; protection by the bound enzyme includes the \(-10\) and \(-35\) regions.

FIGURE 1 Footprint analysis of the RNA polymerase-binding site on a DNA fragment. Separate experiments are carried out in the presence (+) and absence (−) of the polymerase.

FIGURE 2 Footprinting results of RNA polymerase binding to the lac promoter (see Fig. 26–5). In this experiment, the 5' end of the nontemplate strand was radioactively labeled. Lane C is a control in which the labeled DNA fragments were cleaved with a chemical reagent that produces a more uniform banding pattern.
followed by movement of the transcription complex away from the promoter (promoter clearance). Any of these steps can be affected by the specific makeup of the promoter sequences. The σ subunit dissociates stochastically (at random) as the polymerase enters the elongation phase of transcription. A model for RNA polymerase engaged in elongation is shown in Figure 26–6b. The protein NusA (Mr 54,430) binds to the elongating

FIGURE 26–6 Transcription initiation and elongation by E. coli RNA polymerase. (a) Initiation of transcription requires several steps generally divided into two phases, binding and initiation. In the binding phase, the initial interaction of the RNA polymerase with the promoter leads to formation of a closed complex, in which the promoter DNA is stably bound but not unwound. A 12 to 15 bp region of DNA—from within the −10 region to position +2 or +3—is then unwound to form an open complex. Additional intermediates (not shown) have been detected in the pathways leading to the closed and open complexes, along with several changes in protein conformation. The initiation phase encompasses transcription initiation and promoter clearance. Once elongation commences, the σ subunit is released and the polymerase leaves the promoter and becomes committed to elongation of the RNA.

(b) The RNA core polymerase of E. coli in the elongation phase. Subunit coloring matches Figure 26–4: the β and β′ subunits are light gray and white; the σ subunits, shades of red. The ω subunit is not visible in this view. The σ subunit is absent, having dissociated after the initiation steps. The top panel shows the entire complex, with DNA and RNA. The active site for transcription is in a cleft between the β and β′ subunits. In the middle panel, the β subunit has been removed, exposing the active site and the DNA-RNA hybrid region. The active site is marked in part by a Mg²⁺ ion (red). In the bottom panel, all the protein has been removed to reveal the circuitous path taken by the DNA and RNA through the complex.
RNA polymerase, competitively with the σ subunit. Once transcription is complete, NusA dissociates from the enzyme, the RNA polymerase dissociates from the DNA, and a σ factor (σ^{70} or another) can now bind to the enzyme to initiate transcription, in a cycle sometimes called the σ cycle (Fig. 26–7).

E. coli has other classes of promoters, bound by RNA polymerase holoenzymes with different σ subunits (Table 26–1). An example is the promoters of the heat shock genes. The products of this set of genes are made at higher levels when the cell has received an insult, such as a sudden increase in temperature. RNA polymerase binds to the promoters of these genes only when σ^{70} is replaced with the σ^{32} ($M, 32,000$) subunit, which is specific for the heat shock promoters (see Fig. 28–3). By using different σ subunits the cell can coordinate the expression of sets of genes, permitting major changes in cell physiology. Which sets of genes are expressed is determined by the availability of the various σ subunits, which is determined by several factors: regulated rates of synthesis and degradation, postsynthetic modifications that switch individual σ subunits between active and inactive forms, and a specialized class of anti-σ proteins, each type binding to and sequestering a particular σ subunit (rendering it unavailable for transcription initiation).

Transcription Is Regulated at Several Levels

Requirements for any gene product vary with cellular conditions or developmental stage, and transcription of each gene is carefully regulated to form gene products only in the proportions needed. Regulation can occur at any step in transcription, including elongation and termination. However, much of the regulation is directed at the polymerase binding and transcription initiation steps outlined in Figure 26–6a. Differences in promoter sequences are just one of several levels of control.

The binding of proteins to sequences both near to and distant from the promoter can also affect levels of gene expression. Protein binding can activate transcription by facilitating either RNA polymerase binding or

![FIGURE 26–7 The σ cycle](image)

RNA polymerase, guided by a bound σ subunit, binds to DNA at a promoter sequence. Once RNA synthesis is initiated, the σ subunit dissociates stochastically and is replaced by NusA. When RNA polymerase reaches a terminator sequence, RNA synthesis halts, NusA dissociates from the polymerase, and the RNA polymerase dissociates from the DNA. The free polymerase can, in principle, bind any σ subunit. The type bound determines the promoter to which the RNA polymerase will bind in the next round of synthesis.
TABLE 26-1

The Seven \(\sigma \) Subunits of Escherichia coli

<table>
<thead>
<tr>
<th>(\sigma) subunit</th>
<th>(K_d) (nm)</th>
<th>Molecules/cell*</th>
<th>Holoenzyme ratio (%)*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma^{70})</td>
<td>0.26</td>
<td>700</td>
<td>78</td>
<td>Housekeeping</td>
</tr>
<tr>
<td>(\sigma^{54})</td>
<td>0.30</td>
<td>110</td>
<td>8</td>
<td>Modulation of cellular nitrogen levels</td>
</tr>
<tr>
<td>(\sigma^{38})</td>
<td>4.26</td>
<td><1</td>
<td>0</td>
<td>Stationary phase genes</td>
</tr>
<tr>
<td>(\sigma^{32})</td>
<td>1.24</td>
<td><10</td>
<td>0</td>
<td>Heat shock genes</td>
</tr>
<tr>
<td>(\sigma^{28})</td>
<td>0.74</td>
<td>370</td>
<td>14</td>
<td>Flagella and chemotaxis genes</td>
</tr>
<tr>
<td>(\sigma^{24})</td>
<td>2.43</td>
<td><10</td>
<td>0</td>
<td>Extracytoplasmic functions; some heat shock functions</td>
</tr>
<tr>
<td>(\sigma^{18})</td>
<td>1.73</td>
<td><1</td>
<td>0</td>
<td>Extracytoplasmic functions, including ferric citrate transport</td>
</tr>
</tbody>
</table>

Note: \(\sigma \) factors are widely distributed in bacteria; the number varies from a single \(\sigma \) factor in Mycoplasma genitalium to 63 distinct \(\sigma \) factors in Streptomyces coelicolor.

*Approximate number of each \(\sigma \) subunit per cell and the fraction of RNA polymerase holoenzyme complexed with each \(\sigma \) subunit during exponential growth. The numbers change as growth conditions change. The fraction of RNA polymerase complexed with each \(\sigma \) subunit reflects both the amount of the particular subunit and its affinity for the enzyme.

steps further along in the initiation process, or it can repress transcription by blocking the activity of the polymerase. In *E. coli*, one protein that activates transcription is the cAMP receptor protein (CRP), which increases the transcription of genes coding for enzymes that metabolize sugars other than glucose when cells are grown in the absence of glucose. Repressors are proteins that block the synthesis of RNA at specific genes. In the case of the Lac repressor (Chapter 28), transcription of the genes for the enzymes of lactose metabolism is blocked when lactose is unavailable.

Transcription is the first step in the complicated and energy-intensive pathway of protein synthesis, so much of the regulation of protein levels in both bacterial and eukaryotic cells is directed at transcription, particularly its early stages. In Chapter 28 we describe many mechanisms by which this regulation is accomplished.

Specific Sequences Signal Termination of RNA Synthesis

RNA synthesis is processive (that is, the RNA polymerase has high processivity; p. 980)—necessarily so, because if an RNA polymerase released an RNA transcript prematurely, it could not resume synthesis of the same RNA but instead would have to start again. However, an encounter with certain DNA sequences results in a pause in RNA synthesis, and at some of these sequences transcription is terminated. The process of termination is not yet well understood in eukaryotes, so our focus is again on bacteria. *E. coli* has at least two classes of termination signals: one class relies on a protein factor called \(\rho \) (rho) and the other is \(\rho \)-independent.

Most \(\rho \)-independent terminators have two distinguishing features. The first is a region that produces an RNA transcript with self-complementary sequences, permitting the formation of a hairpin structure (see Fig. 8–19a) centered 15 to 20 nucleotides before the projected end of the RNA strand. The second feature is a highly conserved string of three A residues in the template strand that are transcribed into U residues near the 3' end of the hairpin. When a polymerase arrives at a termination site with this structure, it pauses (Fig. 26-8). Formation of the hairpin structure in the RNA disrupts several A=U base pairs in the RNA-DNA hybrid segment and may disrupt important interactions between RNA and the RNA polymerase, facilitating dissociation of the transcript.

![FIGURE 26-8 Model for \(\rho \)-independent termination of transcription in *E. coli*. RNA polymerase pauses at a variety of DNA sequences, some of which are terminators. One of two outcomes is then possible: the polymerase bypasses the site and continues on its way, or the complex undergoes a conformational change (isomerization). In the latter case, intramolecular pairing of complementary sequences in the newly formed RNA transcript may form a hairpin that disrupts the RNA-DNA hybrid and/or the interactions between RNA and polymerase, resulting in isomerization. An A=U hybrid region at the 3' end of the new transcript is relatively unstable, and the RNA dissociates completely, leading to termination and dissociation of the RNA molecule. This is the usual outcome at terminators. At other pause sites, the complex may escape after the isomerization step to continue RNA synthesis.](image-url)
The ρ-dependent terminators lack the sequence of repeated A residues in the template strand but usually include a CA-rich sequence called a rut (rho utilization) element. The ρ protein associates with the RNA at specific binding sites and migrates in the 5′→3′ direction until it reaches the transcription complex that is paused at a termination site. Here it contributes to release of the RNA transcript. The ρ protein has an ATP-dependent RNA-DNA helicase activity that promotes translocation of the protein along the RNA, and ATP is hydrolyzed by ρ protein during the termination process. The detailed mechanism by which the protein promotes the release of the RNA transcript is not known.

Eukaryotic Cells Have Three Kinds of Nuclear RNA Polymerases

The transcriptional machinery in the nucleus of a eukaryotic cell is much more complex than that in bacteria. Eukaryotes have three RNA polymerases, designated I, II, and III, which are distinct complexes but have certain subunits in common. Each polymerase has a specific function and is recruited to a specific promoter sequence. RNA polymerase I (Pol I) is responsible for the synthesis of only one type of RNA, a transcript called pre-rRNA, which contains the precursor for the 18S, 5.8S, and 28S rRNAs (see Fig. 26–25). Pol I promoters vary greatly in sequence from one species to another. The principal function of RNA polymerase II (Pol II) is synthesis of mRNAs and some specialized RNAs. This enzyme can recognize thousands of promoters that vary greatly in sequence. Many Pol II promoters have a few sequence features in common, including a TATA box (eukaryotic consensus sequence TATAAA) near base pair -30 and an Inr sequence (initiator) near the RNA start site at +1 (Fig. 26–9).

RNA polymerase III (Pol III) makes tRNAs, the 5S rRNA, and some other small specialized RNAs. The promoters recognized by Pol III are well characterized. Interestingly, some of the sequences required for the regulated initiation of transcription by Pol III are located within the gene itself, whereas others are in more conventional locations upstream of the RNA start site (Chapter 28).

RNA Polymerase II Requires Many Other Protein Factors for Its Activity

RNA polymerase II is central to eukaryotic gene expression and has been studied extensively. Although this polymerase is strikingly more complex than its bacterial counterpart, the complexity masks a remarkable conservation of structure, function, and mechanism. Pol II isolated from yeast is a huge enzyme with 12 subunits. The largest subunit (RBP1) exhibits a high degree of homology to the β′ subunit of bacterial RNA polymerase. Another subunit (RBP2) is structurally similar to the bacterial β subunit, and two others (RBP3 and RBP11) show some structural homology to the two bacterial α subunits. Pol II must function with genomes that are more complex and with DNA molecules more elaborately packaged than in bacteria. The need for protein-protein contacts with the numerous other protein factors required to navigate this labyrinth accounts in large measure for the added complexity of the eukaryotic polymerase.

The largest subunit of Pol II also has an unusual feature, a long carboxyl-terminal tail consisting of many repeats of a consensus heptad amino acid sequence -YSPTSPS-. There are 27 repeats in the yeast enzyme (18 exactly matching the consensus) and 52 (21 exact) in the mouse and human enzymes. This carboxyl-terminal domain (CTD) is separated from the main body of the enzyme by an unstructured linker sequence. The CTD has many important roles in Pol II function, as outlined below.

RNA polymerase II requires an array of other proteins, called transcription factors, in order to form the active transcription complex. The general transcription factors required at every Pol II promoter (factors usually designated TFII with an additional identifier) are highly conserved in all eukaryotes (Table 26–2). The process of transcription by Pol II can be described in terms of several phases—assembly, initiation, elongation, termination—each associated with characteristic factors.
proteins (Fig. 26–10). The step-by-step pathway described below leads to active transcription in vitro. In the cell, many of the proteins may be present in larger, preassembled complexes, simplifying the pathways for assembly on promoters. As you read about this process, consult Figure 26–10 and Table 26–2 to help keep track of the many participants.

Assembly of RNA Polymerase and Transcription Factors at a Promoter The formation of a closed complex begins when the TATA-binding protein (TBP) binds to the TATA box (Fig. 26–10b). TBP is bound in turn by the transcription factor TFIIA, which also binds to DNA on either side of TBP. TFIIA binding, although not always essential, can stabilize the TFIIA-TBP complex on the DNA and can be important at nonconsensus promoters where TFIIA binding is relatively weak. The TFIIA-TBP complex is next bound by another complex consisting of TFIIF and Pol II. TFIIF helps target Pol II to its promoters, both by interacting with TFIIA and by reducing the binding of the polymerase to nonspecific sites on the DNA. Finally, TFIIIE and TFIIH bind to create the

![Diagram](https://example.com/diagram.png)
RNA Metabolism

Table 26-2: Proteins Required for Initiation of Transcription at the RNA Polymerase II (Pol II) Promoters of Eukaryotes

<table>
<thead>
<tr>
<th>Transcription protein</th>
<th>Number of subunits</th>
<th>Subunit(s) M_r</th>
<th>Function(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol II</td>
<td>12</td>
<td>10,000–220,000</td>
<td>Catalyzes RNA synthesis</td>
</tr>
<tr>
<td>TBP (TATA-binding protein)</td>
<td>1</td>
<td>38,000</td>
<td>Specifically recognizes the TATA box</td>
</tr>
<tr>
<td>TFIIA</td>
<td>3</td>
<td>12,000, 10,000, 35,000</td>
<td>Stabilizes binding of TFIIH and TBP to the promoter</td>
</tr>
<tr>
<td>TFIIIB</td>
<td>1</td>
<td>35,000</td>
<td>Binds to TBP; recruits Pol II–TFIIIF complex</td>
</tr>
<tr>
<td>TFIIIE</td>
<td>2</td>
<td>34,000, 57,000</td>
<td>Recruits TFIIH; has ATPase and helicase activities</td>
</tr>
<tr>
<td>TFIIIF</td>
<td>2</td>
<td>30,000, 74,000</td>
<td>Binds tightly to Pol II; binds to TFIIA and prevents binding of Pol II to nonspecific DNA sequences</td>
</tr>
<tr>
<td>TFIIH</td>
<td>12</td>
<td>35,000–89,000</td>
<td>Unwinds DNA at promoter (helicase activity); phosphorylates Pol II (within the CTD); recruits nucleotide-excision repair proteins</td>
</tr>
<tr>
<td>Elongation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELL</td>
<td>1</td>
<td>80,000</td>
<td></td>
</tr>
<tr>
<td>pTEFb</td>
<td>2</td>
<td>43,000, 124,000</td>
<td>Phosphorylates Pol II (within the CTD)</td>
</tr>
<tr>
<td>SII (TFIIS)</td>
<td>1</td>
<td>38,000</td>
<td></td>
</tr>
<tr>
<td>Elongin (SIII)</td>
<td>3</td>
<td>15,000, 18,000, 110,000</td>
<td></td>
</tr>
</tbody>
</table>

*The function of all elongation factors is to suppress the pausing or arrest of transcription by the Pol II–TFIIIF complex.

Name derived from eleven-nineteen lysine-rich leukemia. The gene for ELL is the site of chromosomal recombination events frequently associated with acute myeloid leukemia.

Closed complex. TFIIH has DNA helicase activity that promotes the unwinding of DNA near the RNA start site (a process requiring the hydrolysis of ATP), thereby creating an open complex. Counting all the subunits of the various essential factors (excluding TFIIA), this minimal active assembly has more than 30 polypeptides. Structural studies by Roger Kornberg and his collaborators has provided a more detailed look at the core structure of RNA polymerase II during elongation (Fig. 26-10c).

RNA Strand Initiation and Promoter Clearance

TFIIH has an additional function during the initiation phase. A kinase activity in one of its subunits phosphorylates Pol II at many places in the CTD (Fig. 26-10a). Several other protein kinases, including CDK9 (cyclin-dependent kinase 9), which is part of the complex pTEFb (positive transcription elongation factor b), also phosphorylate the CTD, primarily on the Ser residues of the CTD repeat sequence. This causes a conformational change in the overall complex, initiating transcription. Phosphorylation of the CTD is also important during the subsequent elongation phase, with the phosphorylation state of the CTD changing as transcription proceeds. The changes affect the interactions between the transcription complex and other proteins and enzymes, such that different sets of proteins are bound at initiation than at later stages. Some of these proteins are involved in processing the transcript (as described below).

During synthesis of the initial 60 to 70 nucleotides of RNA, first TFIIIE and then TFIIH is released, and Pol II enters the elongation phase of transcription.

Elongation, Termination, and Release

TFIIF remains associated with Pol II throughout elongation. During this stage, the activity of the polymerase is greatly enhanced by proteins called elongation factors (Table 26-2). The elongation factors, some bound to the phosphorylated CTD, suppress pausing during transcription and also coordinate interactions between protein complexes involved in the posttranscriptional processing of mRNAs. Once the RNA transcript is completed, transcription is terminated. Pol II is dephosphorylated and recycled, ready to initiate another transcript (Fig. 26-10a).

Regulation of RNA Polymerase II Activity

Regulation of transcription at Pol II promoters is quite elaborate. It involves the interaction of a wide variety of other proteins with the preinitiation complex. Some of these regulatory proteins interact with transcription factors, others with Pol II itself. The regulation of transcription is described in more detail in Chapter 28.

Diverse Functions of TFIIH

In eukaryotes, the repair of damaged DNA (see Table 25-5) is more efficient within genes that are actively being transcribed than for other damaged DNA, and the template strand is repaired somewhat more efficiently than the nontemplate strand. These remarkable observations are explained by the alternative roles of the TFIIH subunits. Not only does TFIIH participate in formation of the closed complex during assembly of a transcription complex (as described above), but some of its subunits are also...
When Pol II transcription halts at the site of a DNA lesion, TFIIH can interact with the lesion and recruit the entire nucleotide-excision repair complex. Genetic loss of certain TFIIH subunits can produce human diseases. Some examples are xeroderma pigmentosum (see Box 25-1) and Cockayne's syndrome, which is characterized by arrested growth, photosensitivity, and neurological disorders.

DNA-Dependent RNA Polymerase Undergoes Selective Inhibition

The elongation of RNA strands by RNA polymerase in both bacteria and eukaryotes is inhibited by the antibiotic actinomycin D (Fig. 26–11). The planar portion of this molecule inserts (intercalates) into the double-helical DNA between successive G=C base pairs, deforming the DNA. This prevents movement of the polymerase along the template. Because actinomycin D inhibits RNA elongation in intact cells as well as in cell extracts, it is used to identify cell processes that depend on RNA synthesis. Acridine inhibits RNA synthesis in a similar fashion (Fig. 26–11).

Rifampicin inhibits bacterial RNA synthesis by binding to the β subunit of bacterial RNA polymerases, preventing the promoter clearance step of transcription (Fig. 26–6). It is sometimes used as an antibiotic.

The mushroom Amanita phalloides has evolved a very effective defense mechanism against predators. It produces α-amanitin, which disrupts mRNA formation in animal cells by blocking Pol II and, at higher concentrations, Pol III. Neither Pol I nor bacterial RNA polymerase is sensitive to α-amanitin—nor is the RNA polymerase II of A. phalloides itself.

26.2 RNA Processing

Many of the RNA molecules in bacteria and virtually all RNA molecules in eukaryotes are processed to some degree after synthesis. Some of the most interesting molecular events in RNA metabolism occur during this postsynthetic processing. Intriguingly, several of the enzymes that catalyze these reactions consist of RNA rather than protein. The discovery of these catalytic

SUMMARY 26.1 DNA-Dependent Synthesis of RNA

- Transcription is catalyzed by DNA-dependent RNA polymerases, which use ribonucleoside 5′-triphosphates to synthesize RNA complementary to the template strand of duplex DNA. Transcription occurs in several phases: binding of RNA polymerase to a DNA site called a promoter, initiation of transcript synthesis, elongation, and termination.

- Bacterial RNA polymerase requires a special subunit to recognize the promoter. As the first committed step in transcription, binding of RNA polymerase to the promoter and initiation of transcription are closely regulated. Transcription stops at sequences called terminators.

- Eukaryotic cells have three types of RNA polymerases. Binding of RNA polymerase II to its promoters requires an array of proteins called transcription factors. Elongation factors participate in the elongation phase of transcription. The largest subunit of Pol II has a long carboxyl-terminal domain, which is phosphorylated during the initiation and elongation phases.

![Actinomycin D and acridine](image-url)
RNAs, or ribozymes, has brought a revolution in thinking about RNA function and about the origin of life.

A newly synthesized RNA molecule is called a primary transcript. Perhaps the most extensive processing of primary transcripts occurs in eukaryotic mRNAs and in tRNAs of both bacteria and eukaryotes. Special-function RNAs are also processed.

The primary transcript for a eukaryotic mRNA typically contains sequences encompassing one gene, although the sequences encoding the polypeptide may not be contiguous. Noncoding tracts that break up the coding region of the transcript are called introns, and the coding segments are called exons (see the discussion of introns and exons in DNA in Chapter 24). In a process called splicing, the introns are removed from the primary transcript and the exons are joined to form a continuous sequence that specifies a functional polypeptide. Eukaryotic mRNAs are also modified at each end. A modified residue called a 5′ cap is added at the 5′ end. The 3′ end is cleaved, and 80 to 250 A residues are added to create a poly(A) “tail.” The sometimes elaborate protein complexes that carry out each of these three mRNA-processing reactions do not operate independently. They seem to be organized in association with each other and with the phosphorylated CTD of Pol II; each complex affects the function of the others. Proteins involved in mRNA transport to the cytoplasm are also associated with the mRNA in the nucleus, and the processing of the transcript is coupled to its transport. In effect, a eukaryotic mRNA, as it is synthesized, is ensconced in an elaborate complex involving dozens of proteins. The composition of the complex changes as the primary transcript is processed, transported to the cytoplasm, and delivered to the ribosome for translation. The associated proteins modulate all aspects of the function and fate of the mRNA. These processes are outlined in Figure 26-12 and described in more detail below.

The primary transcripts of bacterial and eukaryotic tRNAs are processed by the removal of sequences from each end (cleavage) and in a few cases by the removal of introns (splicing). Many bases and sugars in tRNAs are also modified; mature tRNAs are replete with unusual bases not found in other nucleic acids (see Fig. 26-23). Many of the special-function RNAs also undergo elaborate processing, often involving the removal of segments from one or both ends.

The ultimate fate of any RNA is its complete and regulated degradation. The rate of turnover of RNAs plays a critical role in determining their steady-state levels and the rate at which cells can shut down expression of a gene whose product is no longer needed. During the development of multicellular organisms, for example, certain proteins must be expressed at one stage only, and the mRNA encoding such a protein must be made and destroyed at the appropriate times.

Eukaryotic mRNAs Are Capped at the 5′ End

Most eukaryotic mRNAs have a 5′ cap, a residue of 7-methylguanosine linked to the 5′-terminal residue of the mRNA through an unusual 5′,5′-triphosphate linkage (Fig. 26-13). The 5′ cap helps protect mRNA from ribonucleases. It also binds to a specific cap-binding complex of proteins and participates in binding of the mRNA to the ribosome to initiate translation (Chapter 27).

The 5′ cap is formed by condensation of a molecule of GTP with the triphosphate at the 5′ end of the transcript. The guanine is subsequently methylated at N-7, and additional methyl groups are often added at the 2′ hydroxyls of the first and second nucleotides adjacent to the cap (Fig. 26-13a). The methyl groups are derived from S-adenosylmethionine. All these reactions occur very early in transcription, after the first 20 to 30 nucleotides of the transcript have been added. All three of the capping enzymes, and through

FIGURE 26-12 Formation of the primary transcript and its processing during maturation of mRNA in a eukaryotic cell. The 5′ cap (red) is added before synthesis of the primary transcript is complete. A noncoding sequence (intron) following the last exon is shown in orange. Splicing can occur either before or after the cleavage and polyadenylation steps. All the processes shown here take place in the nucleus.
them the 5' end of the transcript itself, are associated with the RNA polymerase II CTD until the cap is synthesized. The capped 5' end is then released from the capping enzymes and bound by the cap-binding complex (Fig. 26-13c).

Both Introns and Exons Are Transcribed from DNA into RNA

In bacteria, a polypeptide chain is generally encoded by a DNA sequence that is colinear with the amino acid sequence, continuing along the DNA template without interruption until the information needed to specify the polypeptide is complete. However, the notion that all genes are continuous was disproved in 1977 when Phillip Sharp and Richard Roberts independently discovered that many genes for polypeptides in eukaryotes are interrupted by noncoding sequences (introns).

The vast majority of genes in vertebrates contain introns; among the few exceptions are those that encode histones. The occurrence of introns in other eukaryotes varies. Many genes in the yeast *Saccharomyces cerevisiae* lack introns, although in some other yeast species introns are more common. Introns are also found in a few bacterial and archaeal genes. Introns in DNA are transcribed along with the rest of the gene by RNA polymerases. The introns in the primary RNA transcript are then spliced, and the exons are joined to form a mature, functional RNA. In eukaryotic mRNAs, most exons are less than 1,000 nucleotides long, with many in the 100 to 200 nucleotide size range, encoding stretches of 30 to 60 amino acids within a longer polypeptide. Introns vary in size from 50 to 20,000 nucleotides. Genes of higher eukaryotes, including humans, typically have much more DNA devoted to introns than to exons. Many genes have introns; some genes have dozens of them.
RNA Catalyzes the Splicing of Introns

There are four classes of introns. The first two, the group I and group II introns, differ in the details of their splicing mechanisms but share one surprising characteristic: they are self-splicing—no protein enzymes are involved. Group I introns are found in some nuclear, mitochondrial, and chloroplast genes that code for rRNAs, mRNAs, and tRNAs. Group II introns are generally found in the primary transcripts of mitochondrial or chloroplast mRNAs in fungi, algae, and plants. Group I and group II introns are also found among the rare examples of introns in bacteria. Neither class requires a high-energy cofactor (such as ATP) for splicing. The splicing mechanisms in both groups involve two transesterification reaction steps (Fig. 26-14), in which a ribose 2'- or 3'-hydroxyl group makes a nucleophilic attack on a phosphorus and a new phosphodiester bond is formed at the expense of the old, maintaining the balance of energy. These reactions are very similar to the DNA breaking and rejoining reactions promoted by topoisomerases (see Fig. 24-21) and site-specific recombinases (see Fig. 25-40).

The group I splicing reaction requires a guanine nucleoside or nucleotide cofactor, but the cofactor is not used as a source of energy; instead, the 3'-hydroxyl group of guanosine is used as a nucleophile in the first step of the splicing pathway. The guanosine 3'-hydroxyl group forms a normal 3',5'-phosphodiester bond with the 5' end of the intron (Fig. 26-15). The 3' hydroxyl of the exon that is displaced in this step then acts as a
nucleophile in a similar reaction at the 3' end of the intron. The result is precise excision of the intron and ligation of the exons.

In group II introns the reaction pattern is similar except for the nucleophile in the first step, which in this case is the 2'-hydroxyl group of an A residue within the intron (Fig. 26-16). A branched lariat structure is formed as an intermediate.

Self-splicing of introns was first revealed in 1982 in studies of the splicing mechanism of the group I rRNA intron from the ciliated protozoan Tetrahymena thermophila, conducted by Thomas Cech and colleagues. These workers transcribed isolated Tetrahymena DNA (including the intron) in vitro using purified bacterial RNA polymerase. The resulting RNA spliced itself accurately without any protein enzymes from Tetrahymena. The discovery that RNAs could have catalytic functions was a milestone in our understanding of biological systems.

Most introns are not self-splicing, and these types are not designated with a group number. The third and largest class of introns includes those found in nuclear mRNA primary transcripts. These are called spliceosomal introns, because their removal occurs within and is catalyzed by a large protein complex called a spliceosome. Within the spliceosome, the introns undergo splicing by the same lariat-forming mechanism as the group II introns. The spliceosome is made up of specialized RNA-protein complexes, small nuclear ribonucleoproteins (snRNPs, often pronounced “snurps”). Each snRNP contains one of a class of eukaryotic RNAs, 100 to 200 nucleotides long, known as small nuclear RNAs (snRNAs). Five snRNAs (U1, U2, U4, U5, and U6) involved in splicing reactions are generally found in abundance in eukaryotic nuclei. The RNAs and proteins in snRNPs are highly conserved in eukaryotes from yeasts to humans.

Spliceosomal introns generally have the dinucleotide sequence GU at the 5' end and AG at the 3' end, and these sequences mark the sites where splicing occurs. The U1 snRNA contains a sequence complementary to sequences near the 5' splice site of nuclear mRNA introns (Fig. 26-17a), and the U1 snRNP binds...
FIGURE 26–17 Splicing mechanism in mRNA primary transcripts. (a) RNA pairing interactions in the formation of spliceosome complexes. The U1 snRNA has a sequence near its 5’ end that is complementary to the splice site at the 5’ end of the intron. Base pairing of U1 to this region of the primary transcript helps define the 5’ splice site during spliceosome assembly (ψ is pseudouridine; see Fig. 26–23). U2 is paired to the intron at a position encompassing the A residue (shaded pink) that becomes the nucleophile during the splicing reaction. Base pairing of U2 snRNA causes a bulge that displaces and helps to activate the adenylate, whose 2’ OH will form the lariat structure through a 2’,5’-phosphodiester bond.

(b) Assembly of spliceosomes. The U1 and U2 snRNPs bind, then the remaining snRNPs (the U4-U6 complex and U5) bind to form an inactive spliceosome. Internal rearrangements convert this species to an active spliceosome in which U1 and U4 have been expelled and U6 is paired with both the 5’ splice site and U2. This is followed by the catalytic steps, which parallel those of the splicing of group II introns (see Fig. 26–16).

(c) Coordination of splicing and transcription provides an attractive mechanism for bringing the two splice sites together. See the text for details.
to this region in the primary transcript. Addition of the U2, U4, U5, and U6 snRNPs leads to formation of the spliceosome (Fig. 26-17b). The snRNPs together contribute five RNAs and about 50 proteins to the core spliceosome, a supramolecular assembly nearly as complex as the ribosome (described in Chapter 27). Perhaps 50 additional proteins are associated with the spliceosome at different stages in the splicing process, with some of these proteins having multiple functions: in splicing, mRNA transport to the cytoplasm, translation, and eventual mRNA degradation. ATP is required for assembly of the spliceosome, but the RNA cleavage-ligation reactions do not seem to require ATP. Some mRNA introns are spliced by a less common type of spliceosome, in which the U1 and U2 snRNPs are replaced by the U11 and U12 snRNPs. Whereas U1- and U2-containing spliceosomes remove introns with (5')GU and AG(3') terminal sequences, as shown in Figure 26-17, the U11- and U12-containing spliceosomes remove a rare class of introns that have (5')AU and AC(3') terminal sequences to mark the intronic splice sites. The spliceosomes used in nuclear RNA splicing may have evolved from more ancient group II introns, with the snRNPs replacing the catalytic domains of their self-splicing ancestors.

Some components of the splicing apparatus seem to be tethered to the CTD of RNA polymerase II, suggesting an interesting model for the splicing reaction (Fig. 26-17c). As the first splice junction is synthesized, it is bound by a tethered spliceosome. The second splice junction is then captured by this complex as it passes, facilitating the juxtaposition of the intron ends and the subsequent splicing process. After splicing, the intron remains in the nucleus and is eventually degraded.

The fourth class of introns, found in certain tRNAs, is distinguished from the group I and II introns in that the splicing reaction requires ATP and an endonuclease. The splicing endonuclease cleaves the phosphodiester bonds at both ends of the intron, and the two exons are joined by a mechanism similar to the DNA ligase reaction (see Fig. 25-17).

Although spliceosomal introns seem to be limited to eukaryotes, the other intron classes are not. Genes with group I and II introns have now been found in both bacteria and bacterial viruses. Bacteriophage T4, for example, has several protein-encoding genes with group I introns. Introns may be more common in archaea than in bacteria.

Eukaryotic mRNAs Have a Distinctive 3' End Structure

At their 3' end, most eukaryotic mRNAs have a string of 80 to 250 A residues, making up the poly(A) tail. This tail serves as a binding site for one or more specific proteins. The poly(A) tail and its associated proteins probably help protect mRNA from enzymatic destruction. Many bacterial mRNAs also acquire poly(A) tails, but these tails stimulate decay of mRNA rather than protecting it from degradation.

The poly(A) tail is added in a multistep process. The transcript is extended beyond the site where the poly(A) tail is to be added, then is cleaved at the poly(A) addition site by an endonuclease component of a large enzyme complex, again associated with the CTD of RNA polymerase II (Fig. 26-18). The mRNA site where cleavage occurs is marked by two sequence elements: the highly conserved sequence (5')AAUAAA(3'), 10 to 30 nucleotides on the 5' side (upstream) of the cleavage site, and a less well-defined sequence rich in G and U residues, 20 to 40 nucleotides downstream of the

![Figure 26-18](image-url)
The ovalbumin gene, shown here, has introns A to G and exons 1 to 7 and L (L encodes a signal peptide sequence that targets the protein for export from the cell; see Fig. 27-38). About three-quarters of the RNA is removed during processing. Pol II extends the primary transcript well beyond the cleavage and polyadenylation site ("extra RNA") before terminating transcription. Termination signals for Pol II have not yet been defined.

Some eukaryotic mRNA transcripts produce only one mature mRNA and one corresponding polypeptide, but others can be processed in more than one way to produce different mRNAs and thus different polypeptides. The primary transcript contains molecular signals for all the alternative processing pathways, and the pathway favored in a given cell is determined by processing factors, RNA-binding proteins that promote one particular path.

Complex transcripts can have either more than one site for cleavage and polyadenylation or alternative splicing patterns, or both. If there are two or more sites for cleavage and polyadenylation, use of the one closest to the 5' end will remove more of the primary transcript sequence (Fig. 26-20a). This mechanism, called poly(A) site choice, generates diversity in the variable domains of immunoglobulin heavy chains (see Fig. 25-46). Alternative splicing patterns (Fig. 26-20b) produce, from a common primary transcript, three different forms of the myosin heavy chain at different stages of fruit fly development. Both mechanisms come into play when a single RNA transcript is processed differently to produce two different hormones: the calcium-regulating hormone calcitonin in rat thyroid and calcitonin-gene-related peptide (CGRP) in rat brain (Fig. 26-21). There are many additional patterns of alternative splicing (Fig. 26-22). Many, perhaps most, of the genes in mammalian genomes are subject to alternative splicing, substantially increasing the number of proteins encoded by the genes. The same processes play a much smaller role in lower eukaryotes, with only a few genes subject to alternative splicing in yeast.
FIGURE 26–20 Two mechanisms for the alternative processing of complex transcripts in eukaryotes. (a) Alternative cleavage and polyadenylation patterns. Two poly(A) sites, A₁ and A₂, are shown. (b) Alternative splicing patterns. Two different 3’ splice sites are shown. In both mechanisms, different mature mRNAs are produced from the same primary transcript.

FIGURE 26–21 Alternative processing of the calcitonin gene transcript in rats. The primary transcript has two poly(A) sites; one predominates in the brain, the other in the thyroid. In the brain, splicing eliminates the calcitonin exon (exon 4); in the thyroid, this exon is retained. The resulting peptides are processed further to yield the final hormone products: calcitonin-gene-related peptide (CGRP) in the brain and calcitonin in the thyroid.
Ribosomal RNAs and tRNAs Also Undergo Processing

Posttranscriptional processing is not limited to mRNA. Ribosomal RNAs of bacterial, archaeal, and eukaryotic cells are made from longer precursors called preribosomal RNAs, or pre-rRNAs. Transfer RNAs are similarly derived from longer precursors. These RNAs may also contain a variety of modified nucleosides; some examples are shown in Figure 26-23.

Ribosomal RNAs

In bacteria, 16S, 23S, and 5S rRNAs (and some tRNAs, although most tRNAs are encoded elsewhere) arise from a single 30S RNA precursor of about 6,500 nucleotides. RNA at both ends of the 30S precursor and segments between the rRNAs are removed during processing (Fig. 26-24). The 16S and 23S rRNAs contain modified nucleosides. In E. coli, the 11 modifications in the 16S rRNA include a pseudouridine and 10 nucleosides methylated on the base or the 2'-hydroxyl group, or both. The 23S rRNA has 10 pseudouridines, 1 dihydrouridine, and 12 methylated nucleosides. In bacteria, each modification is generally catalyzed by a distinct enzyme. Methylation reactions use S-adenosylmethionine as cofactor. No cofactor is required for pseudouridine formation.

The genome of E. coli encodes seven pre-rRNA molecules. All of these genes have essentially identical rRNA-coding regions, but they differ in the segments between these regions. The segment between the 16S and 23S rRNA genes generally encodes one or two tRNAs, with different tRNAs produced from different pre-rRNA transcripts. Coding sequences for tRNAs are also found on the 3' side of the 5S rRNA in some precursor transcripts.

![FIGURE 26-23 Some modified bases of rRNAs and tRNAs, produced in posttranscriptional reactions. The standard symbols are shown in parentheses. Note the unusual ribose attachment point in pseudouridine. This is just a small sampling of the 96 modified nucleosides known to occur in different RNA species, with 81 different types known in tRNAs and 30 observed to date in rRNAs. A complete listing of these modified bases can be found in the RNA modification database (http://library.med.utah.edu/RNAmods/).](image-url)
The situation in eukaryotes is more complicated. A 45S pre-rRNA transcript is synthesized by RNA polymerase I and processed in the nucleolus to form the 18S, 28S, and 5.8S rRNAs characteristic of eukaryotic ribosomes (Fig. 26–25). As in bacteria, the processing includes cleavage reactions mediated by endo- or exoribonucleases and nucleoside modification reactions. Some pre-rRNAs also include introns that must be spliced. The entire process is initiated in the nucleolus, in large complexes that assemble on the rRNA precursor as it is synthesized by Pol I. There is a tight coupling between rRNA transcription, rRNA maturation, and ribosome assembly in the nucleolus. Each complex includes the ribonucleases that cleave the rRNA precursor, the enzymes that modify particular bases, large numbers of small nucleolar RNAs, or snoRNAs, that guide nucleoside modification and some cleavage reactions, and ribosomal proteins. In yeast, the entire process involves the pre-rRNA, more than 170 nonribosomal proteins, snoRNAs for each nucleoside modification (about 70 in all, since some snoRNAs guide:}

FIGURE 26–24 Processing of pre-rRNA transcripts in bacteria. (1) Before cleavage, the 3OS RNA precursor is methylated at specific bases (red tick marks), and some uridine residues are converted to pseudouridine (blue tick marks) or dihydrouridine (black tick mark) residues. The methylation reactions are of multiple types, some occurring on bases and some on 2'-hydroxyl groups. (2) Cleavage liberates precursors of rRNAs and tRNA(s). Cleavage at the points labeled 1, 2, and 3 is carried out by the enzymes RNase III, RNase P, and RNase E, respectively. As discussed later in the text, RNase P is a ribozyme. (3) The final 16S, 23S, and 5S rRNA products result from the action of a variety of specific nucleases. The seven copies of the gene for pre-rRNA in the E. coli chromosome differ in the number, location, and identity of tRNAs included in the primary transcript. Some copies of the gene have additional tRNA gene segments between the 16S and 23S rRNA segments and at the far 3' end of the primary transcript.
two types of modification), and the 78 ribosomal proteins. Humans have an even greater number of modified nucleosides, about 200, and a greater number of associated snoRNAs. The composition of the complexes may change as the ribosomes are assembled, and many of the intermediate complexes may rival the ribosome itself, and the snRNPs, in complexity. The 5S rRNA of most eukaryotes is made as a completely separate transcript by a different polymerase (Pol III).

The most common nucleoside modifications in eukaryotic rRNAs are, again, conversion of uridine to pseudouridine and adoMet-dependent nucleoside methylation (often at 2'-hydroxyl groups). These reactions rely on snoRNA-protein complexes, or snoRNPs, each consisting of a snoRNA and four or five proteins, which include the enzyme that carries out the modification. There are two classes of snoRNPs, both defined by key conserved sequence elements referred to as lettered boxes. The box IVACA snoRNPs are involved in pseudouridylylation, and box C/D snoRNPs function in 2'-O-methylations. Unlike the situation in bacteria, the same enzyme may participate in modifications at many sites, guided by the snoRNAs.

The snoRNAs are 60 to 300 nucleotides long. Many are encoded within the introns of other genes and cotranscribed with those genes. Each snoRNA includes a 10 to 21 nucleotide sequence that is perfectly complementary to some site on an rRNA. The conserved sequence elements in the remainder of the snoRNA fold into structures that are bound by the snoRNP proteins (Fig. 26–26).

Transfer RNAs Most cells have 40 to 50 distinct tRNAs, and eukaryotic cells have multiple copies of many of the tRNA genes. Transfer RNAs are derived from longer RNA precursors by enzymatic removal of nucleotides from the 5' and 3' ends (Fig. 26–27). In eukaryotes, introns are present in a few tRNA transcripts and must be excised. Where two or more different tRNAs are contained in a single primary transcript, they are separated by enzymatic cleavage. The endonuclease RNase P, found in all organisms, removes RNA at the 5' end of tRNAs. This enzyme contains both protein and RNA. The RNA component is essential for activity, and in bacterial cells it can carry out its processing function with precision even without the protein component. RNase P is therefore another example of a catalytic RNA, as described in more detail below. The 3' end of tRNAs is processed by one or more nucleases, including the exonuclease RNase D.

Transfer RNA precursors may undergo further posttranscriptional processing. The 3'-terminal trinucleotide CCA(3') to which an amino acid is attached during protein synthesis (Chapter 27) is absent from some bacterial and all eukaryotic tRNA precursors and is added during processing (Fig. 26–27). This addition is carried out by tRNA nucleotidyltransferase, an unusual enzyme that binds the three ribonucleoside triphosphate precursors in separate active sites and catalyzes formation of the phosphodiester bonds to produce the CCA(3') sequence. The creation of this defined sequence of nucleotides is therefore not dependent on a

FIGURE 26–26 The function of snoRNAs in guiding rRNA modification. (a) RNA pairing with box C/D snoRNAs to guide methylation reactions. The methylation sites in the target rRNA (dark green) are in the regions paired with the C/D snoRNA. The highly conserved C and D (and C' and D') box sequences are binding sites for proteins that make up the larger snoRNP. (b) RNA pairing with box H/ACA snoRNAs to guide pseudouridylylations. The pseudouridine conversion sites in the target rRNA (green segments) are again in the regions paired with the snoRNA, and the conserved H/ACA box sequences are protein-binding sites.
DNA or RNA template—the template is the binding site of the enzyme.

The final type of tRNA processing is the modification of some bases by methylation, deamination, or reduction (Fig. 26–23). In the case of pseudouridine, the base (uracil) is removed and reattached to the sugar through C-5. Some of these modified bases occur at characteristic positions in all tRNAs (Fig. 26–27).

Special-Function RNAs Undergo Several Types of Processing

The number of known classes of special-function RNAs is expanding rapidly, as is the variety of functions known to be associated with them. Many of these RNAs undergo processing.

The snRNAs and snoRNAs not only facilitate RNA processing reactions but are themselves synthesized as larger precursors, and then processed. Many snoRNAs are encoded within the introns of other genes. As the introns are spliced from the premRNA, the snRNP proteins bind to the snoRNA sequences and ribonucleases remove the extra RNA at the 5' and 3' ends. The snRNAs destined for spliceosomes are synthesized as pre-snRNAs by RNA polymerase II, and ribonucleases remove the extra RNA at each end. Particular nucleosides in snRNAs are also subject to 11 types of modification, with 2'-O-methylation and conversion of uridine to pseudouridine predominating.

Micro RNAs (miRNAs) are a special class of RNAs involved in gene regulation. They are noncoding RNAs, about 22 nucleotides long, complementary in sequence to particular regions of mRNAs. They regulate mRNA function by cleaving the mRNA or suppressing its translation. The miRNAs are found in multicellular eukaryotes ranging from worms and fruit flies to plants and mammals. Up to 1% of the human genome may encode miRNAs, and miRNAs may target up to one-third of human mRNAs. Their function in gene regulation is described in Chapter 28.

The miRNAs are synthesized from much larger precursors, in several steps (Fig. 26–28). The primary transcripts for miRNAs (pri-miRNAs) vary greatly in size; some are encoded in the introns of other genes and are coexpressed with these host genes. Their roles in gene regulation also are detailed in Chapter 28.

RNA Enzymes Are the Catalysts of Some Events in RNA Metabolism

The study of posttranscriptional processing of RNA molecules led to one of the most exciting discoveries in modern biochemistry—the existence of RNA enzymes. The best-characterized ribozymes are the self-splicing group I introns, RNase P, and the hammerhead ribozyme (discussed below). Most of the activities of these ribozymes are based on two fundamental reactions: transesterification (Fig. 26–14) and phosphodiester bond hydrolysis (cleavage). The substrate for ribozymes is often an RNA molecule, and it may even be part of the ribozyme itself. When its substrate is RNA, the RNA catalyst can make use of base-pairing interactions to align the substrate for the reaction.
Ribozymes vary greatly in size. A self-splicing group I intron may have more than 400 nucleotides. The hammerhead ribozyme consists of two RNA strands with only 41 nucleotides in all (Fig. 26–29). As with protein enzymes, the three-dimensional structure of ribozymes is important for function. Ribozymes are inactivated by heating above their melting temperature or by addition of denaturing agents or complementary oligonucleotides, which disrupt normal base-pairing patterns. Ribozymes can also be inactivated if essential nu-

FIGURE 26–28 Synthesis and processing of miRNAs. The primary transcript of miRNAs is larger RNA of variable length, a pri-miRNA. Much of its processing is mediated by two endoribonucleases in the RNase III family, Drosha and Dicer. First, in the nucleus, the pri-miRNA is reduced to a 70 to 80 nucleotide precursor miRNA (pre-miRNA) by a protein complex including Drosha and another protein, DGR8. The pre-miRNA is then exported to the cytoplasm, where it is acted on by Dicer to produce the nearly mature miRNA paired with a short RNA complement. The complement is removed by an RNA helicase, and the mature miRNA is incorporated into protein complexes, such as the RNA-induced silencing complex (RISC), which then bind a target mRNA. If the complementarity between miRNA and its target is nearly perfect, the target mRNA is cleaved. If the complementarity is only partial, the complex blocks translation of the target mRNA.

FIGURE 26–29 Hammerhead ribozyme. Certain viruslike elements, or virusoids, have small RNA genomes and usually require another virus to assist in their replication and/or packaging. Some virusoid RNAs include small segments that promote site-specific RNA cleavage reactions associated with replication. These segments are called hammerhead ribozymes, because their secondary structures are shaped like the head of a hammer. Hammerhead ribozymes have been defined and studied separately from the much larger viral RNAs. (a) The minimal sequences required for catalysis by the ribozyme. The boxed nucleotides are highly conserved and are required for catalytic function. The arrow indicates the site of self-cleavage. (b) Three-dimensional structure (PDB ID 1MME; see Fig. 8–25b for a space-filling view). The strands are colored as in (a). The hammerhead ribozyme is a metalloenzyme; Mg$^{2+}$ ions are required for activity. The phosphodiester bond at the site of self-cleavage is indicated by an arrow.
cleotides are changed. The secondary structure of a self-splicing group I intron from the 26S rRNA precursor of *Tetrahymena* is shown in detail in Figure 26-30.

Enzymatic Properties of Group I Introns Self-splicing group I introns share several properties with enzymes besides accelerating the reaction rate, including their kinetic behavior and their specificity. Binding of the guanosine cofactor (Fig. 26-14) to the *Tetrahymena* group I rRNA intron (Fig. 26-30) is saturable ($K_m = 30 \mu M$) and can be competitively inhibited by 3’-deoxyguanosine. The intron is very precise in its excision reaction, largely due to a segment called the **internal guide sequence** that can base-pair with exon sequences near the 5’ splice site (Fig. 26-30). This pairing promotes the alignment of specific bonds to be cleaved and rejoined.

Because the intron itself is chemically altered during the splicing reaction—its ends are cleaved—it may seem to lack one key enzymatic property: the ability to catalyze multiple reactions. Closer inspection has shown that after excision, the 414-nucleotide intron from *Tetrahymena* rRNA can, in vitro, act as a true enzyme (but in vivo it is quickly degraded). A series of intramolecular cyclization and cleavage reactions in the excised intron leads to the loss of 19 nucleotides from its 5’ end. The remaining 395 nucleotide, linear RNA—referred to as L-19 IVS—promotes nucleotidyl transfer reactions in which some oligonucleotides are lengthened at the expense of others (Fig. 26-31). The best substrates are oligonucleotides, such as a synthetic (C)9 oligomer, that can base-pair with the same guanylate-rich internal guide sequence that held the 5’ exon in place for self-splicing.

The enzymatic activity of the L-19 IVS ribozyme results from a cycle of transesterification reactions mechanistically similar to self-splicing. Each ribozyme molecule can process about 100 substrate molecules per hour and is not altered in the reaction; therefore the intron acts as a catalyst. It follows Michaelis-Menten kinetics, is specific for RNA oligonucleotide substrates, and can be competitively inhibited. The k_{cat}/K_m (specificity constant) is $10^3 \text{ M}^{-1} \text{ s}^{-1}$, lower than that of many

Figure 26-30 Secondary structure of the self-splicing rRNA intron of *Tetrahymena*. Intron sequences are shaded yellow, exon sequences green. Each thick yellow line represents a bond between neighboring nucleotides in a continuous sequence (a device necessitated by showing this complex molecule in two dimensions; similarly, an oversize blue line between a C and G residue indicates normal base pairing; all nucleotides are shown. The catalytic core of the self-splicing activity is shaded. Some base-paired regions are labeled (P1, P3, P2.1, P5a, and so forth) according to an established convention for this RNA molecule. The P1 region, which contains the internal guide sequence (boxed), is the location of the 5’ splice site (red arrow). Part of the internal guide sequence pairs with the end of the 3’ exon, bringing the 5’ and 3’ splice sites (red and blue arrows) into close proximity. The three-dimensional structure of a large segment of this intron is illustrated in Figure 8-25c.
The expression of genes is regulated at many levels. A crucial factor governing a gene's expression is the cellular concentration of its associated mRNA. The concentration of any molecule depends on two factors: its rate of synthesis and its rate of degradation. When synthesis and degradation of an mRNA are balanced, the cellular mRNAs are degraded at different rates.
concentration of the mRNA remains in a steady state. A change in either rate will lead to net accumulation or depletion of the mRNA. Degradative pathways ensure that mRNAs do not build up in the cell and direct the synthesis of unnecessary proteins.

The rates of degradation vary greatly for mRNAs from different eukaryotic genes. For a gene product that is needed only briefly, the half-life of its mRNA may be only minutes or even seconds. Gene products needed constantly by the cell may have mRNAs that are stable over many cell generations. The average half-life of the mRNAs of a vertebrate cell is about 3 hours, with the pool of each type of mRNA turning over about 10 times per cell generation. The half-life of bacterial mRNAs is much shorter—only about 1.5 min—perhaps because of regulatory requirements.

Messenger RNA is degraded by ribonucleases present in all cells. In E. coli, the process begins with one or several cuts by an endoribonuclease, followed by 3'→5' degradation by exoribonucleases. In lower eukaryotes, the major pathway involves first shortening the poly(A) tail, then decapping the 5' end and degrading the mRNA in the 5'→3' direction. A 3'→5' degradative pathway also exists and may be the major path in higher eukaryotes. All eukaryotes have a complex of up to 10 conserved 3'→5' exoribonucleases, called the exosome, which is involved in the processing of the 3' end of rRNAs, tRNAs, and some special-function RNAs (including snRNAs and snoRNAs), as well as the degradation of mRNAs.

A hairpin structure in bacterial mRNAs with a ρ-independent terminator (Fig. 26–8) confers stability against degradation. Similar hairpin structures can make some parts of a primary transcript more stable, leading to nonuniform degradation of transcripts. In eukaryotic cells, both the 3' poly(A) tail and the 5' cap are important to the stability of many mRNAs. The life cycle of an mRNA contains the usual 3',5'-phosphodiester linkages, which can be hydrolyzed by ribonuclease. The reaction is readily reversible and can be pushed in the direction of breakdown of the polynucleotide by increasing the phosphate concentration. The probable function of this enzyme in the cell is the degradation of mRNAs to nucleoside diphosphates.

Because the polynucleotide phosphorylase reaction does not use a template, the polymer it forms does not have a specific base sequence. The reaction proceeds equally well with any or all of the four nucleoside diphosphates, and the base composition of the resulting polymer reflects nothing more than the relative concentrations of the 5'-diphosphate substrates in the medium.

Polynucleotide phosphorylase can be used in the laboratory to prepare RNA polymers with many different base sequences and frequencies. Synthetic RNA polymers of this sort were critical for deducing the genetic code for the amino acids (Chapter 27).

SUMMARY 26.2 RNA Processing

- Eukaryotic mRNAs are modified by addition of a 7-methylguanosine residue at the 5' end and by cleavage and polyadenylation at the 3' end to form a long poly(A) tail.
- Many primary mRNA transcripts contain introns (noncoding regions), which are removed by splicing. Excision of the group I introns found in some rRNAs requires a guanosine cofactor. Some group I and group II introns are capable of self-splicing; no protein enzymes are required. Nuclear mRNA precursors have a third (the largest) class of introns, which are spliced with the aid of RNA-protein complexes called snRNPs, assembled into spliceosomes. A fourth class of introns, found in some tRNAs, consists of the only introns known to be spliced by protein enzymes.
- The function of many eukaryotic mRNAs is regulated by complementary microRNAs (miRNAs). The miRNAs are themselves derived from larger precursors through a series of processing reactions.
Ribosomal RNAs and transfer RNAs are derived from longer precursor RNAs, trimmed by nucleases. Some bases are modified enzymatically during the maturation process. Some nucleoside modifications are guided by snoRNAs, within protein complexes called snoRNPs.

The self-splicing introns and the RNA component of RNase P (which cleaves the 5’ end of tRNA precursors) are two examples of ribozymes. These biological catalysts have the properties of true enzymes. They generally promote hydrolytic cleavage and transesterification, using RNA as substrate. Combinations of these reactions can be promoted by the excised group I intron of Tetrahymena rRNA, resulting in a type of RNA polymerization reaction.

Polynucleotide phosphorylase reversibly forms RNA-like polymers from ribonucleoside 5’-diphosphates, adding or removing ribonucleotides at the 3’-hydroxyl end of the polymer. The enzyme degrades RNA in vivo.

26.3 RNA-Dependent Synthesis of RNA and DNA

In our discussion of DNA and RNA synthesis up to this point, the role of the template strand has been reserved for DNA. However, some enzymes use an RNA template for nucleic acid synthesis. With the very important exception of viruses with an RNA genome, these enzymes play only a modest role in information pathways. RNA viruses are the source of most RNA-dependent polymerases characterized so far.

The existence of RNA replication requires an elaboration of the central dogma (Fig. 26–32; contrast this with the diagram on p. 945). The enzymes involved in RNA replication have profound implications for investigations into the nature of self-replicating molecules that may have existed in prebiotic times.

Reverse Transcriptase Produces DNA from Viral RNA

Certain RNA viruses that infect animal cells carry within the viral particle an RNA-dependent DNA polymerase called reverse transcriptase. On infection, the single-stranded RNA viral genome (~10,000 nucleotides) and the enzyme enter the host cell. The reverse transcriptase first catalyzes the synthesis of a DNA strand complementary to the viral RNA (Fig. 26–33), then degrades the RNA strand of the viral RNA-DNA hybrid and replaces it with DNA. The resulting duplex DNA often becomes incorporated into the genome of the eukaryotic host cell. These integrated (and dormant) viral genes can be activated and transcribed, and the gene products—viral proteins and the viral RNA genome itself—packaged as new viruses. The RNA viruses that contain reverse transcriptases are known as retroviruses (retro is the Latin prefix for “backward”).

The existence of reverse transcriptases in RNA viruses was predicted by Howard Temin in 1962, and the enzymes were ultimately detected by Temin and, independently, by David Baltimore in 1970. Their discovery aroused much attention as dogma-shaking proof that genetic information can flow “backward” from RNA to DNA.

FIGURE 26–32 Extension of the central dogma to include RNA-dependent synthesis of RNA and DNA.

FIGURE 26–33 Retroviral infection of a mammalian cell and integration of the retrovirus into the host chromosome. Viral particles entering the host cell carry viral reverse transcriptase and a cellular tRNA (picked up from a former host cell) already base-paired to the viral RNA. The tRNA facilitates immediate conversion of viral RNA to double-stranded DNA by the action of reverse transcriptase, as described in the text. Once converted to double-stranded DNA, the DNA enters the nucleus and is integrated into the host genome. The integration is catalyzed by a virally encoded integrase. Integration of viral DNA into host DNA is mechanistically similar to the insertion of transposons in bacterial chromosomes (see Fig. 25–45). For example, a few base pairs of host DNA become duplicated at the site of integration, forming short repeats of 4 to 6 bp at each end of the inserted retroviral DNA (not shown).
Retroviruses typically have three genes: gag (derived from the historical designation group associated antigen), pol, and env (Fig. 26-34). The transcript that contains gag and pol is translated into a long “polyprotein,” a single large polypeptide that is cleaved into six proteins with distinct functions. The proteins derived from the gag gene make up the interior core of the viral particle. The pol gene encodes the protease that cleaves the long polypeptide, an integrase that inserts the viral DNA into the host chromosomes, and reverse transcriptase. Many reverse transcriptases have two subunits, α and β. The pol gene specifies the β subunit (M., 90,000), and the α subunit (M., 65,000) is simply a proteolytic fragment of the β subunit. The env gene encodes the proteins of the viral envelope. At each end of the linear RNA genome are long terminal repeat (LTR) sequences of a few hundred nucleotides. Transcribed into the duplex DNA, these sequences facilitate integration of the viral chromosome into the host RNA and contain promoters for viral gene expression.

Reverse transcriptases catalyze three different reactions: (1) RNA-dependent DNA synthesis, (2) RNA degradation, and (3) DNA-dependent DNA synthesis. Like many DNA and RNA polymerases, reverse transcriptases contain Zn$^{2+}$. Each transcriptase is most active with the RNA of its own virus, but each can be used experimentally to make DNA complementary to a variety of RNAs. The DNA and RNA synthesis and RNA degradation activities use separate active sites on the protein. For DNA synthesis to begin, the reverse transcriptase requires a primer, a cellular tRNA obtained during an earlier infection and carried in the viral particle. This tRNA is base-paired at its 3’ end with a complementary sequence in the viral RNA. The new DNA strand is synthesized in the 5’→3’ direction, as in all RNA and DNA polymerase reactions. Reverse transcriptases, like RNA polymerases, do not have 3’→5’ proofreading exonucleases. They generally have error rates of about 1 per 20,000 nucleotides added. An error rate this high is extremely unusual in DNA replication and seems to be a feature of most enzymes that replicate the genomes of RNA viruses. A consequence is a higher mutation rate and faster rate of viral evolution, which is a factor in the frequent appearance of new strains of disease-causing retroviruses.

Reverse transcriptases have become important reagents in the study of DNA-RNA relationships and in DNA cloning techniques. They make possible the synthesis of DNA complementary to an mRNA template, and synthetic DNA prepared in this manner, called complementary DNA (cDNA), can be used to clone cellular genes (see Fig. 9-14).

Some Retroviruses Cause Cancer and AIDS

Retroviruses have featured prominently in recent advances in the molecular understanding of cancer. Most retroviruses do not kill their host cells but remain integrated in the cellular DNA, replicating when the cell divides. Some retroviruses, classified as RNA tumor viruses, contain an oncogene that can cause the cell to grow abnormally. The first retrovirus of this type to be
studied was the Rous sarcoma virus (also called avian sarcoma virus; Fig. 26–35), named for F. Peyton Rous, who studied chicken tumors now known to be caused by this virus. Since the initial discovery of oncogenes by Harold Varmus and Michael Bishop, many dozens of such genes have been found in retroviruses.

The human immunodeficiency virus (HIV), which causes acquired immune deficiency syndrome (AIDS), is a retrovirus. Identified in 1983, HIV has an RNA genome with standard retroviral genes along with several other unusual genes (Fig. 26–36). Unlike many other retroviruses, HIV kills many of the cells it infects (principally T lymphocytes) rather than causing tumor formation. This gradually leads to suppression of the immune system in the host organism. The reverse transcriptase of HIV is even more error prone than other known reverse transcriptases—10 times more so—resulting in high mutation rates in this virus. One or more errors are generally made every time the viral genome is replicated, so any two viral RNA molecules are likely to differ.

Many modern vaccines for viral infections consist of one or more coat proteins of the virus, produced by methods described in Chapter 9. These proteins are not infectious on their own but stimulate the immune system to recognize and respond to subsequent viral invasions (Chapter 5). Because of the high error rate of the HIV reverse transcriptase, the env gene in this virus (along with the rest of the genome) undergoes very rapid mutation, complicating the development of an effective vaccine. However, repeated cycles of cell invasion and replication are needed to propagate an HIV infection, so inhibition of viral enzymes offers the most effective therapy currently available. The HIV protease is targeted by a class of drugs called protease inhibitors (see Box 6–3). Reverse transcriptase is the target of some additional drugs widely used to treat HIV-infected individuals (Box 26–2).

Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin

Some well-characterized eukaryotic DNA transposons from sources as diverse as yeast and fruit flies have a structure very similar to that of retroviruses; these are sometimes called retrotansposons (Fig. 26–37). Retrotansposons encode an enzyme homologous to the retroviral reverse transcriptase, and their coding regions are flanked by LTR sequences. They transpose from one position to another in the cellular genome by means of an RNA intermediate, using reverse transcriptase to make a DNA copy of the RNA, followed by integration of the DNA at a new site. Most transposons in eukaryotes use this mechanism for transposition, distinguishing them from bacterial transposons, which move as DNA directly from one chromosomal location to another (see Fig. 25–45).
Research into the chemistry of template-dependent nucleic acid biosynthesis, combined with modern techniques of molecular biology, has elucidated the life cycle and structure of the human immunodeficiency virus, the retrovirus that causes AIDS. A few years after the isolation of HIV, this research resulted in the development of drugs capable of prolonging the lives of people infected by HIV.

The first drug to be approved for clinical use was AZT, a structural analog of deoxycytidine. AZT was first synthesized in 1964 by Jerome P. Horwitz. It failed as an anticancer drug (the purpose for which it was made), but in 1985 it was found to be a useful treatment for AIDS. AZT is taken up by T lymphocytes, immune system cells that are particularly vulnerable to HIV infection, and converted to AZT triphosphate. (AZT triphosphate taken directly would be ineffective, because it cannot cross the plasma membrane.) HIV’s reverse transcriptase has a higher affinity for AZT triphosphate than for dTTP, and binding of AZT triphosphate to this enzyme competitively inhibits dTTP binding. When AZT is added to the 3’ end of the growing DNA strand, lack of a 3’ hydroxyl means that the DNA strand is terminated prematurely and viral DNA synthesis grinds to a halt.

AZT triphosphate is not as toxic to the T lymphocytes themselves, because cellular DNA polymerases have a lower affinity for this compound than for dTTP. At concentrations of 1 to 5 μM, AZT affects HIV reverse transcription but not most cellular DNA replication. Unfortunately, AZT seems to be toxic to the bone marrow cells that are the progenitors of erythrocytes, and many individuals taking AZT develop anemia. AZT can increase the survival time of people with advanced AIDS by about a year, and it delays the onset of AIDS in those who are still in the early stages of HIV infection. Some other AIDS drugs, such as dideoxyinosine (DDI), have a similar mechanism of action. Newer drugs target and inactivate the HIV protease. Because of the high error rate of HIV reverse transcriptase and the resulting rapid evolution of HIV, the most effective treatments of HIV infection use a combination of drugs directed at both the protease and the reverse transcriptase.

Retrotransposons lack an env gene and so cannot form viral particles. They can be thought of as defective viruses, trapped in cells. Comparisons between retroviruses and eukaryotic transposons suggest that reverse transcriptase is an ancient enzyme that predates the evolution of multicellular organisms.

Interestingly, many group I and group II introns are also mobile genetic elements. In addition to their self-splicing activities, they encode DNA endonucleases that promote their movement. During genetic exchanges between cells of the same species, or when DNA is introduced into a cell by parasites or by other means, these endonucleases promote insertion of the intron into an identical site in another DNA copy of a homologous gene that does not contain the intron, in a process termed homing (Fig. 26–38). Whereas group I intron homing is DNA-based, group II intron homing occurs through an RNA intermediate. The endonucleases of the group II introns have associated reverse transcriptase activity. The proteins can form complexes with the intron RNAs themselves, after the introns are spliced from the primary transcripts. Because the homing process involves insertion of the RNA intron into DNA and reverse transcription of the intron, the movement of these introns has been called retrohoming. Over time, every copy of a particular gene in a population may acquire the intron. Much more rarely, the intron may insert itself into a new location in an unrelated gene. If this event does not kill the host cell, it can lead to the evolution and distribution of an intron in a new location. The structures and mechanisms used by mobile introns support the idea that at least some introns originated as molecular parasites whose evolutionary past can be traced to retroviruses and transposons.

Telomerase is a Specialized Reverse Transcriptase

Telomeres, the structures at the ends of linear eukaryotic chromosomes (see Fig. 24–9), generally consist of many tandem copies of a short oligonucleotide sequence. This sequence usually has the form T_{x}G_{y} in one strand and C_{x}A_{y} in the complementary strand, where x and y are typically in the range of 1 to 4 (p. 953). Telomeres vary in length from a few dozen base pairs in some
ciliated protozoans to tens of thousands of base pairs in mammals. The TG strand is longer than its complement, leaving a region of single-stranded DNA of up to a few hundred nucleotides at the 3' end.

The ends of a linear chromosome are not readily replicated by cellular DNA polymerases. DNA replication requires a template and primer, and beyond the end of a linear DNA molecule no template is available for the pairing of an RNA primer. Without a special mechanism for replicating the ends, chromosomes would be shortened somewhat in each cell generation. The enzyme telomerase solves this problem by adding telomeres to chromosome ends.

Although the existence of this enzyme may not be surprising, the mechanism by which it acts is remarkable and unprecedented. Telomerase, like some other enzymes described in this chapter, contains both RNA and protein components. The RNA component is about 150 nucleotides long and contains about 1.5 copies of the appropriate C₉A₄ telomere repeat. This region of the RNA acts as a template for synthesis of the T_rG_r strand of the telomere. Telomerase thereby acts as a cellular reverse transcriptase that provides the active site for RNA-dependent DNA synthesis. Unlike retroviral reverse transcriptases, telomerase copies only a small segment of RNA that it carries within itself. Telomere synthesis requires the 3' end of a chromosome as primer and proceeds in the usual 5' → 3' direction. Having synthesized one copy of the repeat, the enzyme repositions to resume extension of the telomere (Fig. 26-39a).

After extension of the T_rG_r strand by telomerase, the complementary C₉A₄ strand is synthesized by cellular DNA polymerases, starting with an RNA primer (see Fig. 25-13). The single-stranded region is protected by

FIGURE 26-38 Introns that move: homing and retrohoming. Certain introns include a gene (shown in red) for enzymes that promote homing (certain group I introns) or retrohoming (certain group II introns).

(a) The gene in the spliced intron is bound by a ribosome and translated. Group I homing introns specify a site-specific endonuclease, called a homing endonuclease. Group II retrohoming introns specify a protein with both endonuclease and reverse transcriptase activities.

(b) Homing. Allele <i>a</i> of a gene <i>X</i> containing a group I homing intron is present in a cell containing allele <i>b</i> of the same gene, which lacks the intron. The homing endonuclease produced by <i>a</i> cleaves <i>b</i> at the position corresponding to the intron in <i>a</i>, and double-strand break repair (recombination with allele <i>a</i>; see Fig. 25-33) then creates a new copy of the intron in <i>b</i>.

(c) Retrohoming. Allele <i>a</i> of gene <i>Y</i> contains a retrohoming group II intron; allele <i>b</i> lacks the intron. The spliced intron inserts itself into the coding strand of <i>b</i> in a reaction that is the reverse of the splicing that excised the intron from the primary transcript (see Fig. 26-16), except that here the insertion is into DNA rather than RNA. The noncoding DNA strand of <i>b</i> is then cleaved by the intron-encoded endonuclease/reverse transcriptase. This same enzyme uses the inserted RNA as a template to synthesize a complementary DNA strand. The RNA is then degraded by cellular ribonucleases and replaced with DNA.
specific binding proteins in many lower eukaryotes, especially those species with telomeres of less than a few hundred base pairs. In higher eukaryotes (including mammals) with telomeres many thousands of base pairs long, the single-stranded end is sequestered in a specialized structure called a **T loop** (Fig. 26-39b). The single-stranded end is folded back and paired with its complement in the double-stranded portion of the telomere. The formation of a T loop involves invasion of the 3' end of the telomere's single strand into the duplex DNA, perhaps by a mechanism similar to the initiation of homologous genetic recombination (see Fig. 25-33). In mammals, the looped DNA is bound by two proteins, TRF1 and TRF2, with the latter protein involved in formation of the T loop. T loops protect the 3' ends of chromosomes, making them inaccessible to nucleases and the enzymes that repair double-strand breaks.

In protozoans (such as *Tetrahymena*), loss of telomerase activity results in a gradual shortening of telomeres with each cell division, ultimately leading to the death of the cell line. A similar link between telomere length and cell senescence (cessation of cell division) has been observed in humans. In germ-line cells, which contain telomerase activity, telomere lengths are maintained; in somatic cells, which lack telomerase, they are not. There is a linear, inverse relationship between the length of telomeres in cultured fibroblasts and the age of the individual from whom the fibroblasts were taken: telomeres in human somatic cells gradually shorten as an individual ages. If the telomerase reverse transcriptase is introduced into human somatic cells in vitro, telomerase activity is restored and the cellular life span increases markedly.

FIGURE 26-39 The TG strand and T loop of telomeres. The internal template RNA of telomerase binds to and base-pairs with the TG primer (T,C,G) of DNA. ① Telomerase adds more T and G residues to the TG primer, then ② repositions the internal template RNA to allow ③ the addition of more T and G residues. The complementary strand is synthesized by cellular DNA polymerases (not shown). (b) Proposed structure of T loops in telomeres. The single-stranded tail synthesized by telomerase is folded back and paired with its complement in the duplex portion of the telomere. The telomere is bound by several telomere-binding proteins, including TRF1 and TRF2 (telomere repeat binding factors). (c) Electron micrograph of a T loop at the end of a chromosome isolated from a mouse hepatocyte. The bar at the bottom of the micrograph represents a length of 5,000 bp.
Is the gradual shortening of telomeres a key to the aging process? Is our natural life span determined by the length of the telomeres we are born with? Further research in this area should yield some fascinating insights.

Some Viral RNAs Are Replicated by RNA-Dependent RNA Polymerase

Some *E. coli* bacteriophages, including f2, MS2, R17, and QB, as well as some eukaryotic viruses (including influenza and Sindbis viruses, the latter associated with a form of encephalitis) have RNA genomes. The single-stranded RNA chromosomes of these viruses, which also function as mRNAs for the synthesis of viral proteins, are replicated in the host cell by an **RNA-dependent RNA polymerase (RNA replicase)**. All RNA viruses—with the exception of retroviruses—must encode a protein with RNA-dependent RNA polymerase activity because the host cells do not possess this enzyme.

The RNA replicase of most RNA bacteriophages has a molecular weight of ~210,000 and consists of four subunits. One subunit (M, 65,000) is the product of the replicase gene encoded by the viral RNA and has the active site for replication. The other three subunits are host proteins normally involved in host-cell protein synthesis: the *E. coli* elongation factors Tu (M, 45,000) and Ts (M, 34,000) (which ferry amino acyl-tRNAs to the ribosomes) and the protein S1 (an integral part of the 30S ribosomal subunit). These three host proteins may help the RNA replicase locate and bind to the 3' ends of the viral RNAs.

The RNA replicase isolated from QB-infected *E. coli* cells catalyzes the formation of an RNA complementary to the viral RNA, in a reaction equivalent to that catalyzed by DNA-dependent RNA polymerases. New RNA strand synthesis proceeds in the 5'→3' direction by a chemical mechanism identical to that used in all other nucleic acid synthetic reactions that require a template. RNA replicase requires RNA as its template and will not function with DNA. It lacks a separate proofreading endonuclease activity and has an error rate similar to that of RNA polymerase. Unlike the DNA and RNA polymerases, RNA replicases are specific for the RNA of their own virus; the RNAs of the host cell are generally not replicated. This explains how RNA viruses are preferentially replicated in the host cell, which contains many other types of RNA.

RNA Synthesis Offers Important Clues to Biochemical Evolution

The extraordinary complexity and order that distinguish living from inanimate systems are key manifestations of fundamental life processes. Maintaining the living state requires that selected chemical transformations occur very rapidly—especially those that use environmental energy sources and synthesize elaborate or specialized cellular macromolecules. Life depends on powerful and selective catalysts—enzymes—and on informational systems capable of both securely storing the blueprint for these enzymes and accurately reproducing the blue-print for generation after generation. Chromosomes encode the blueprint not for the cell but for the enzymes that construct and maintain the cell. The parallel demands for information and catalysis present a classic conundrum: what came first, the information needed to specify structure or the enzymes needed to maintain and transmit the information?

The unveiling of the structural and functional complexity of RNA led Carl Woese, Francis Crick, and Leslie Orgel to propose in the 1960s that this macromolecule might serve as both information carrier and catalyst. The discovery of catalytic RNAs took this proposal from conjecture to hypothesis and has led to widespread speculation that an "RNA world" might have been important in the transition from prebiotic chemistry to life (see Fig. 1–34). The parent of all life on this planet, in the sense that it could reproduce itself across the generations from the origin of life to the present, might have been a self-replicating RNA or a polymer with equivalent chemical characteristics.

How might a self-replicating polymer come to be? How might it maintain itself in an environment where the precursors for polymer synthesis are scarce? How could evolution progress from such a polymer to the modern DNA-protein world? These difficult questions can be addressed by careful experimentation, providing clues about how life on Earth began and evolved.

The probable origin of purine and pyrimidine bases is suggested by experiments designed to test hypotheses about prebiotic chemistry (pp. 30–31). Beginning with simple molecules thought to be present in the early atmosphere (CH₄, NH₃, H₂O, H₂), electrical discharges such as lightning generate, first, more reactive molecules such as HCN and aldehydes, then an array of amino acids and organic acids (see Fig. 1–33). When molecules such as HCN become abundant, purine and pyrimidine bases are synthesized in detectable amounts. Remarkably, a concentrated solution of ammonium cyanide, refluxed...
for a few days, generates adenine in yields of up to 0.5% (Fig. 26-40). Adenine may well have been the first and most abundant nucleotide constituent to appear on Earth. Intriguingly, most enzyme cofactors contain adenosine as part of their structure, although it plays no direct role in the cofactor function (see Fig. 8-38). This may suggest an evolutionary relationship, based on the simple synthesis of adenine from cyanide.

The RNA world hypothesis requires a nucleotide polymer to reproduce itself. Can a ribozyme bring about its own synthesis in a template-directed manner? The self-splicing rRNA intron of Tetrahymena (Fig. 26-30) catalyzes the reversible attack of a guanosine residue on the 5’ splice junction (Fig. 26-41). If the 5’ splice site and the internal guide sequence are removed from the intron, the rest of the intron can bind RNA strands paired with short oligonucleotides. Part of the remaining intact intron effectively acts as a template for the alignment and ligation of the short oligonucleotides. The reaction is in essence a reversal of the attack of

FIGURE 26-40 Possible prebiotic synthesis of adenine from ammonium cyanide. Adenine is derived from five molecules of cyanide, denoted by shading.

FIGURE 26-41 RNA-dependent synthesis of an RNA polymer from oligonucleotide precursors. (a) The first step in the removal of the self-splicing group I intron of the rRNA precursor of Tetrahymena is reversible attack of a guanosine residue on the 5’ splice site. Only P1, the region of the ribozyme that includes the internal guide sequence (boxed) and the 5’ splice site, is shown in detail; the rest of the ribozyme is represented as a green blob. The complete secondary structure of the ribozyme is shown in Figure 26-30. (b) If P1 is removed (shown as the darker green “hole”), the ribozyme retains both its three-dimensional shape and its catalytic capacity. A new RNA molecule added in vitro can bind to the ribozyme in the same manner as the internal guide sequence of P1 in (a). This provides a template for further RNA polymerization reactions when oligonucleotides complementary to the added RNA base-pair with it. The ribozyme can link these oligonucleotides in a process equivalent to the reversal of the reaction in (a). Although only one such reaction is shown in (b), repeated binding and catalysis can result in the RNA-dependent synthesis of long RNA polymers.
SELEX (systematic evolution of ligands by exponential enrichment) is used to generate **aptamers**, oligonucleotides selected to tightly bind a specific molecular target. The process is generally automated to allow rapid identification of one or more aptamers with the desired binding specificity.

Figure 1 illustrates how SELEX is used to select an RNA species that binds tightly to ATP. In step 1, a random mixture of RNA polymers is subjected to "unnatural selection" by passing it through a resin to which ATP is attached. The practical limit for the complexity of an RNA mixture in SELEX is about 10^{15} different sequences, which allows for the complete randomization of 25 nucleotides ($4^{25} = 10^{15}$). For longer RNAs, the RNA pool used to initiate the search does not include all possible sequences. 2 RNA polymers that pass through the column are discarded; those that bind to ATP are washed from the column with salt solution and collected. 4 The collected RNA polymers are amplified by reverse transcriptase to make many DNA complements to the selected RNAs; then an RNA polymerase makes many RNA complements of the resulting DNA molecules. 5 This new pool of RNA is subjected to the same selection procedure, and the cycle is repeated a dozen or more times. At the end, only a few aptamers—in this case, RNA sequences with considerable affinity for ATP—remain.

![Figure 1](image)

The search for RNAs with new catalytic functions has been aided by the development of a method that rapidly searches pools of random polymers of RNA and extracts those with particular activities: **SELEX** is nottt less than accelerated evolution in a test tube (Box 26-3). It has been used to generate RNA molecules that bind to amino acids, organic dyes, nucleotides, cyanocobalamin, and other molecules. Researchers have isolated ribozymes that catalyze ester and amide bond formation, S$_{N}$2 reactions, metallation of (addition of metal ions to) porphyrins, and carbon–carbon bond formation. The evolution of enzymatic cofactors with nucleotide "handles" that facilitate their binding to ribozymes might have further expanded the repertoire of chemical processes available to primitive metabolic systems.

As we shall see in the next chapter, some natural RNA molecules catalyze the formation of peptide bonds, offering an idea of how the RNA world might have been transformed by the greater catalytic potential of proteins. The synthesis of proteins would have been a major event in the evolution of the RNA world, but would also have hastened its demise. The information-carrying role of RNA may have passed to DNA because DNA is chemically more stable. RNA replicase and reverse transcriptase may be modern versions of enzymes that once played important roles in making the transition to the modern DNA-based system.

Molecular parasites may also have originated in an RNA world. With the appearance of the first inefficient self-replicators, transposition could have been a potentially important alternative to replication as a strategy for successful reproduction and survival. Early parasitic RNAs would simply hop into a self-replicating molecule via catalyzed transsterification, then...
Critical sequence features of an RNA aptamer that binds ATP are shown in Figure 2; molecules with this general structure bind ATP (and other adenosine nucleotides) with $K_d < 50 \mu M$. Figure 3 presents the three-dimensional structure of a 36 nucleotide RNA aptamer (shown as a complex with AMP) generated by SELEX. This RNA has the backbone structure shown in Figure 2.

In addition to its use in exploring the potential functionality of RNA, SELEX has an important practical side in identifying short RNAs with pharmaceutical uses. Finding an aptamer that binds specifically to every potential therapeutic target may be impossible, but the capacity of SELEX to rapidly select and amplify a specific oligonucleotide sequence from a highly complex pool of sequences makes this a promising approach for the generation of new therapies. For example, one could select an RNA that binds tightly to a receptor protein prominent in the plasma membrane of cells in a particular cancerous tumor. Blocking the activity of the receptor, or targeting a toxin to the tumor cells by attaching it to the aptamer, would kill the cells. SELEX also has been used to select DNA aptamers that detect anthrax spores. Many other promising applications are under development.

In addition to its use in exploring the potential functionality of RNA, SELEX has an important practical side in identifying short RNAs with pharmaceutical uses. Finding an aptamer that binds specifically to every potential therapeutic target may be impossible, but the capacity of SELEX to rapidly select and amplify a specific oligonucleotide sequence from a highly complex pool of sequences makes this a promising approach for the generation of new therapies. For example, one could select an RNA that binds tightly to a receptor protein prominent in the plasma membrane of cells in a particular cancerous tumor. Blocking the activity of the receptor, or targeting a toxin to the tumor cells by attaching it to the aptamer, would kill the cells. SELEX also has been used to select DNA aptamers that detect anthrax spores. Many other promising applications are under development.

Although the RNA world remains a hypothesis, with many gaps yet to be explained, experimental evidence supports a growing list of its key elements. Further experimentation should increase our understanding. Important clues to the puzzle will be found in the workings of fundamental chemistry, in living cells, and perhaps on other planets. Meanwhile, the extant RNA universe continues to expand (Box 26-4).

SUMMARY 26.3 RNA-Dependent Synthesis of RNA and DNA

- RNA-dependent DNA polymerases, also called reverse transcriptases, were first discovered in retroviruses, which must convert their RNA genomes into double-stranded DNA as part of their life cycle. These enzymes transcribe the viral RNA into DNA, a process that can be used experimentally to form complementary DNA.
- Many eukaryotic transposons are related to retroviruses, and their mechanism of transposition includes an RNA intermediate.
- Telomerase, the enzyme that synthesizes the telomere ends of linear chromosomes, is a specialized reverse transcriptase that contains an internal RNA template.
- RNA-dependent RNA polymerases, such as the replicases of RNA bacteriophages, are template-specific for the viral RNA.
- The existence of catalytic RNAs and pathways for the interconversion of RNA and DNA has led to speculation that an important stage in evolution was the appearance of an RNA (or an equivalent polymer) that could catalyze its own replication. The biochemical potential of RNAs can be explored by SELEX, a method for rapidly selecting RNA sequences with particular binding or catalytic properties.
Current estimates for the number of genes in the human genome, and in many other genomes, are mentioned in multiple places throughout this text. The estimates presume that scientists know a gene when they see it, based on our current understanding of DNA, RNA, and proteins. Is the presumption correct?

As noted in Chapter 9, less than 2% of the human genome seems to encode proteins. Even when introns are factored in, one might expect only a tiny fraction of the genome to be transcribed into RNA, mostly mRNA to encode those proteins. The remainder of the genome has sometimes been referred to as junk DNA. The “junk” moniker simply reflects our ignorance, which is slowly giving way to the realization that most of the genome is fully functional.

In an effort to better map the boundaries of the human transcriptome, researchers have invented new tools to determine with higher accuracy which genomic sequences are transcribed into RNA. The answers are surprising. Much more of our genome is transcribed into RNA than anyone supposed. Much of this RNA seems not to encode proteins. Much of it lacks some of the structures (for example, the 3' poly(A) tail) that characterize mRNA. So what is this RNA doing?

Most of the methods for looking into this matter fall into two broad categories: cDNA cloning and microarrays. The creation of a cDNA library to study the genes transcribed in a particular eukaryotic genome is described in Chapter 9 (see Fig. 9-14). However, the classical methods for generating cDNA often lead to the cloning of only part of the sequence of a given transcript. Because reverse transcriptase may stall at regions of secondary structure in mRNA, or may simply dissociate, often 20% or less of the clones in a cDNA library are full-length DNAs. This makes it difficult to use the library to map transcription start sites (TSSs) and to study the part of a gene that encodes the amino-terminal sequence of a protein. One of the many approaches developed to overcome this problem is illustrated in Figure 1. Such refinements in technology have resulted in the creation of cDNA libraries in which more than 95% of the clones are full-length, providing an enriched source of information about cellular RNAs. However, cDNAs are generally created from RNA transcripts that have poly(A) tails. The use of microarrays, coupled to methods of cDNA preparation that do not rely on poly(A) tails (Fig. 2), has revealed that much of the RNA in eukaryotic cells lacks the common end structures.

A complete picture has not yet emerged, but some conclusions are already clear. If one excludes the repetitive sequences (transposons, for example) that can

FIGURE 1 A strategy for cloning full-length cDNAs. A pool of mRNAs is isolated from a tissue sample. In some cases, mRNAs bound by a particular protein may be targeted by immunoprecipitating the protein and isolating the associated mRNAs. Biotin is covalently attached to the 5' ends of the mRNAs, making use of unique features of the 5’ cap. A poly(dT) primer is used to prime reverse transcription of the mRNAs. RNase I degrades RNA that is not part of a DNA-RNA hybrid and thus destroys the incomplete cDNA-RNA pairs. The full-length cDNA-RNA hybrids are collected with streptavidin beads (which bind biotin), converted to duplex DNA, and cloned.
make up half of a mammalian genome, at least 40%—and perhaps the vast majority—of the remaining genomic DNA is transcribed into RNA. There seem to be more RNAs lacking poly(A) tails than RNAs with them. Much of this RNA is not transported to the cytoplasm, but remains exclusively in the nucleus. Many segments of the genome are transcribed on both strands; one transcript is the complement of the other, a relationship referred to as antisense. Many of the antisense RNAs may be involved in regulation of the RNAs with which they pair. Many RNAs are produced in only one or a few tissues, and new transcripts are discovered every time a new tissue source is analyzed. Thus, the complete transcriptome has not yet been defined for any organism. Most important, many of the novel RNAs are transcribed from genomic segments, such as those illustrated in Figure 9–20, that share synteny in more than one organism. This evolutionary conservation strongly suggests that these RNAs have an important function.

Some of the novel RNAs are snoRNAs, snRNAs, or miRNAs, types of RNA recognized only in the past two decades. New TSS sequences are being discovered. New classes of RNA molecules are being defined. New patterns of alternative splicing are being elucidated. And all of these findings are challenging our definitions of a gene. In the mouse and human genomes, even the familiar protein-encoding mRNA transcripts may be much more numerous than initially thought, and the number of known protein-encoding genes may soon increase. However, the function of most of the newly discovered transcripts is unknown, and they are simply called TUFs (transcripts of unknown function). This new RNA universe is a frontier that promises further insights into the workings of eukaryotic cells and perhaps a new glimpse of our origins in the RNA world of the distant past.

FIGURE 2 Defining the transcriptome with microarrays. (a) Tiled microarrays are synthesized, representing the nonrepetitive parts of the genome. In a tilled array, the successive oligonucleotides in the individual spots overlap in sequence, so that each nucleotide (such as the T shown in blue) is represented multiple times. (b) A tissue sample is fractionated to separate nuclear and cytoplasmic samples, and RNA is isolated from each. The RNA containing poly(A) tails is separated from RNA lacking the tails (by passing the RNA over a column with bound poly(dT)). RNA with a poly(A) tail is converted to cDNA using methods described in Figure 1. RNA lacking a poly(A) tail is converted to cDNA by using primers with randomized sequences. The resulting DNA fragments do not correspond in length precisely to the RNAs from which they are derived, but the overall DNA pool includes most of the sequences present in the original RNAs. The cDNA samples are then labeled and used to probe the microarrays. The signals from the microarrays define the sequences that were transcribed into RNA.
Key Terms

Terms in bold are defined in the glossary.

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>transcription</td>
<td>1021</td>
</tr>
<tr>
<td>messenger RNA (mRNA)</td>
<td>1021</td>
</tr>
<tr>
<td>transfer RNA (tRNA)</td>
<td>1021</td>
</tr>
<tr>
<td>ribosomal RNA (rRNA)</td>
<td>1021</td>
</tr>
<tr>
<td>transcriptome</td>
<td>1021</td>
</tr>
<tr>
<td>DNA-dependent RNA polymerase</td>
<td>1022</td>
</tr>
<tr>
<td>promoter</td>
<td>1025</td>
</tr>
<tr>
<td>consensus sequence</td>
<td>1025</td>
</tr>
<tr>
<td>footprinting</td>
<td>1026</td>
</tr>
<tr>
<td>cAMP receptor protein (CRP)</td>
<td>1029</td>
</tr>
<tr>
<td>repressor</td>
<td>1029</td>
</tr>
<tr>
<td>transcription factors</td>
<td>1030</td>
</tr>
<tr>
<td>ribozymes</td>
<td>1034</td>
</tr>
<tr>
<td>primary transcript</td>
<td>1034</td>
</tr>
<tr>
<td>RNA splicing</td>
<td>1034</td>
</tr>
<tr>
<td>5’ cap</td>
<td>1034</td>
</tr>
<tr>
<td>spliceosome</td>
<td>1037</td>
</tr>
<tr>
<td>snRNA</td>
<td>1037</td>
</tr>
<tr>
<td>poly(A) tail</td>
<td>1039</td>
</tr>
<tr>
<td>snoRNA</td>
<td>1043</td>
</tr>
<tr>
<td>miRNA</td>
<td>1045</td>
</tr>
<tr>
<td>reverse transcriptase</td>
<td>1050</td>
</tr>
<tr>
<td>retrovirus</td>
<td>1050</td>
</tr>
<tr>
<td>complementary DNA (cDNA)</td>
<td>1051</td>
</tr>
<tr>
<td>homing</td>
<td>1059</td>
</tr>
<tr>
<td>telomerase</td>
<td>1054</td>
</tr>
<tr>
<td>RNA-dependent RNA polymerase (RNA replicase)</td>
<td>1056</td>
</tr>
<tr>
<td>aptamer</td>
<td>1058</td>
</tr>
</tbody>
</table>

Further Reading

General

A classic article that introduced many important ideas.

DNA-Directed RNA Synthesis

Discussion of the original proposal for reverse transcription in retroviruses.

Ribozymes and Evolution

A good summary of the work showing that mammalian transcripomes are much more extensive than previously thought.

Problems

1. RNA Polymerase (a) How long would it take for the E. coli RNA polymerase to synthesize the primary transcript for the E. coli genes encoding the enzymes for lactose metabolism (the 5,300 bp lac operon, considered in Chapter 28)? (b) How far along the DNA would the transcription “bubble” formed by RNA polymerase move in 10 seconds?

2. Error Correction by RNA Polymerases DNA polymerases are capable of editing and error correction, whereas the capacity for error correction in RNA polymerases seems to be quite limited. Given that a single base error in either replication or transcription can lead to an error in protein synthesis, suggest a possible biological explanation for this difference.

3. RNA Posttranscriptional Processing Predict the likely effects of a mutation in the sequence (5')AAUAAA in an eukaryotic mRNA transcript.

4. Coding versus Template Strands The RNA genome of phage Q8 is the nontemplate strand, or coding strand, and when introduced into the cell it functions as an mRNA. Suppose the RNA replicase of phage Q8 synthesized primarily template-strand RNA and uniquely incorporated this, rather than nontemplate strands, into the viral particles. What would be the fate of the template strands when they entered a new cell? What enzyme would have to be included in the viral particles for successful invasion of a host cell?

5. The Chemistry of Nucleic Acid Biosynthesis Describe three properties common to the reactions catalyzed by DNA polymerase, RNA polymerase, reverse transcriptase, and RNA replicase. How is the enzyme polyribonucleotide phosphorylase similar to and different from these four enzymes?

6. RNA Splicing What is the minimum number of transsplicing reactions needed to splice an intron from an mRNA transcript? Explain.

7. RNA Processing If the splicing of mRNA in a vertebrate cell is blocked, the RNA modification reactions are also blocked. Suggest a reason for this.

8. RNA Genomes The RNA viruses have relatively small genomes. For example, the single-stranded RNAs of retroviruses have about 10,000 nucleotides and the Q8 RNA is only 4,220 nucleotides long. Given the properties of reverse transcriptase and RNA replicase described in this chapter, can you suggest a reason for the small size of these viral genomes?

9. Screening RNAs by SELEX The practical limit for the number of different RNA sequences that can be screened in a SELEX experiment is 10^15. (a) Suppose you are working with oligonucleotides 32 nucleotides long. How many sequences exist in a randomized pool containing every sequence possible? (b) What percentage of these can be screened in a SELEX experiment? (c) Suppose you wish to select an RNA molecule that catalyzes the hydrolysis of a particular ester. From what you know about catalysis, propose a SELEX strategy that might allow you to select the appropriate catalyst.

10. Slow Death The death cap mushroom, Amanita phalloides, contains several dangerous substances, including the lethal α-amanitin. This toxin blocks RNA elongation in consumers of the mushroom by binding to eukaryotic RNA polymerase II with very high affinity; it is deadly in concentrations as low as 10^-8 M. The initial reaction to ingestion of the mushroom is gastrointestinal distress (caused by some of the other toxins). These symptoms disappear, but about 48 hours later, the mushroom-eater dies, usually from liver dysfunction. Speculate on why it takes this long for α-amanitin to kill.

11. Detection of Rifampicin-Resistant Strains of Tuberculosis Rifampicin is an important antibiotic used to treat tuberculosis and other mycobacterial diseases. Some strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, are resistant to rifampicin. These strains become resistant through mutations that alter the rpoB gene, which encodes the β subunit of the RNA polymerase. Rifampicin cannot bind to the mutant RNA polymerase and so is unable to block the initiation of transcription. DNA sequences from a large number of rifampicin-resistant M. tuberculosis strains have been found to have mutations in a specific 69 bp region of rpoB. One well-characterized rifampicin-resistant strain has a single base pair alteration in rpoB that results in a His residue being replaced by an Asp residue in the β subunit.

(a) Based on your knowledge of protein chemistry, suggest a technique that would allow detection of the rifampicin-resistant strain containing this particular mutant protein.

(b) Based on your knowledge of nucleic acid chemistry, suggest a technique to identify the mutant form of rpoB.

Biochemistry on the Internet

12. The Ribonuclease Gene Human pancreatic ribonuclease has 128 amino acid residues.

(a) What is the minimum number of nucleotide pairs required to code for this protein?

(b) The mRNA expressed in human pancreatic cells was copied with reverse transcriptase to create a “library” of human DNA. The sequence of the mRNA coding for human pancreatic ribonuclease was determined by sequencing the complementary DNA (cDNA) from this library that included an open reading frame for the protein. Use the Entrez database system (www.ncbi.nlm.nih.gov/Entrez) to find the published sequence of this mRNA (search the CoreNucleotide database for accession number D26129). What is the length of this mRNA?

(c) How can you account for the discrepancy between the size you calculated in (a) and the actual length of the mRNA?
Data Analysis Problem

13. A Case of RNA Editing

The AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor is an important component of the human nervous system. It is present in several forms, in different neurons, and of some of this variety results from posttranscriptional modification. This problem explores research on the mechanism of this RNA editing.

An initial report by Sommer and coauthors (1991) looked at the sequence encoding a key Arg residue in the AMPA receptor. The sequence of the cDNA (see Fig. 9–14) for the AMPA receptor showed a CGG (Arg; see Fig. 27–7) codon for this amino acid. Surprisingly, the genomic DNA showed a CAG (Gln) codon at this position.

(a) Explain how this result is consistent with posttranscriptional modification of the AMPA receptor mRNA.

Rueter and colleagues (1995) explored this mechanism in detail. They first developed an assay to differentiate between edited and unedited transcripts, based on the Sanger method of DNA sequencing (see Fig. 8–33). They modified the technique to determine whether the base in question was an A (as in CAG) or not. They designed two DNA primers based on the genomic DNA sequence of this region of the AMPA gene. These primers, and the genomic DNA sequence of the non-template strand for the relevant region of the AMPA receptor gene, are shown below; the A residue that is edited is in red.

To detect whether this A was present or had been edited to another base, Rueter and coworkers used the following procedure:

1. Prepared cDNA complementary to the mRNA, using primer 1, reverse transcriptase, dATP, dGTP, dCTP, and dTTP.
2. Removed the mRNA.
3. Annealed 32P-labeled primer 2 to the cDNA, and reacted this with DNA polymerase, dGTP, dCTP, dTTP, and ddATP (dideoxy ATP; see Fig. 8–33).
4. Denatured the resulting duplexes and separated them with polyacrylamide gel electrophoresis (PAGE; p. 88).
5. Detected the 32P-labeled DNA species with autoradiography.

They found that edited mRNA produced a 22 nucleotide [32P]DNA, whereas unedited mRNA produced a 19 nucleotide [32P]DNA.

(b) Using the sequences below, explain how the edited and unedited mRNAs resulted in these different products.

Using the same procedure, to measure the fraction of transcripts edited under different conditions, the researchers found that extracts of cultured epithelial cells (a common cell line called HeLa) could edit the mRNA at a high level. To determine the nature of the editing machinery, they pretreated an active HeLa cell extract as described in the table and measured its ability to edit AMPA mRNA. Proteinase K degrades only proteins; micrococcal nuclease, only DNA.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pretreatment</th>
<th>% mRNA edited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Proteinase K</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Heat to 65 °C</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Heat to 85 °C</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Micrococcal nuclease</td>
<td>17</td>
</tr>
</tbody>
</table>

(c) Use these data to argue that the editing machinery consists of protein. What is a key weakness in this argument?

To determine the exact nature of the edited base, Rueter and colleagues used the following procedure:

2. Edited the labeled mRNA by incubating with HeLa extract.
3. Hydrolyzed the edited mRNA to single nucleotide monophosphates with nuclease P1.
4. Separated the nucleotide monophosphates with thin-layer chromatography (TLC; see Fig. 10–24).
5. Identified the resulting 32P-labeled nucleotide monophosphates with autoradiography.

In unedited mRNA, they found only [32P]AMP; in edited mRNA, they found mostly [32P]IMP with some [32P]AMP (inosine monophosphate; see Fig. 22–34).

(d) Why was it necessary to use [α-32P]ATP rather than [β-32P]ATP or [γ-32P]ATP in this experiment?

(e) Why was it necessary to use [α-32P]GTP, [α-32P]CTP, or [α-32P]UTP?

(f) How does this result exclude the possibility that the entire A nucleotide (sugar, base, and phosphate) was removed and replaced by an I nucleotide during the editing process?

The researchers next edited mRNA that was labeled with [2,8-3H]ATP, and repeated the above procedure. The only 3H-labeled mononucleotides produced were AMP and IMP.

(g) How does this result exclude removal of the A base (leaving the sugar-phosphate backbone intact) followed by replacement with an I base as a mechanism of editing? What, then, is the most likely mechanism of editing in this case?

(h) How does changing an A to an I residue in the mRNA explain the Gln to Arg change in protein sequence in the two forms of AMPA receptor protein? (Hint: See Fig. 27–8).

References

Obviously, Harry Noller's finding doesn't speak to how life started, and it doesn't explain what came before RNA. But as part of the continually growing body of circumstantial evidence that there was a life form before us on this planet, from which we emerged—boy, it's very strong!

—Gerald Joyce, quoted in commentary in Science, 1992

Protein Metabolism

27.1 The Genetic Code 1065
27.2 Protein Synthesis 1075
27.3 Protein Targeting and Degradation 1100

Proteins are the end products of most information pathways. A typical cell requires thousands of different proteins at any given moment. These must be synthesized in response to the cell's current needs, transported (targeted) to their appropriate cellular locations, and degraded when no longer needed.

An understanding of protein synthesis, the most complex biosynthetic process, has been one of the greatest challenges in biochemistry. Eukaryotic protein synthesis involves more than 70 different ribosomal proteins; 20 or more enzymes to activate the amino acid precursors; a dozen or more auxiliary enzymes and other protein factors for the initiation, elongation, and termination of polypeptides; perhaps 100 additional enzymes for the final processing of different proteins; and 40 or more kinds of transfer and ribosomal RNAs. Overall, almost 300 different macromolecules cooperate to synthesize polypeptides. Many of these macromolecules are organized into the complex three-dimensional structure of the ribosome.

To appreciate the central importance of protein synthesis, consider the cellular resources devoted to this process. Protein synthesis can account for up to 90% of the chemical energy used by a cell for all biosynthetic reactions. Every bacterial, archaeal, and eukaryotic cell contains from several to thousands of copies of many different proteins and RNAs. The 15,000 ribosomes, 100,000 molecules of protein synthesis–related protein factors and enzymes, and 200,000 tRNA molecules in a typical bacterial cell can account for more than 35% of the cell's dry weight.

Despite the great complexity of protein synthesis, proteins are made at exceedingly high rates. A polypeptide of 100 residues is synthesized in an *Escherichia coli* cell (at 37 °C) in about 5 seconds. Synthesis of the thousands of different proteins in a cell is tightly regulated, so that just enough copies are made to match the current metabolic circumstances. To maintain the appropriate mix and concentration of proteins, the targeting and degradative processes must keep pace with synthesis. Research is gradually uncovering the finely coordinated cellular choreography that guides each protein to its proper cellular location and selectively degrades it when it is no longer required.

The study of protein synthesis offers another important reward: a look at a world of RNA catalysts that may have existed before the dawn of life “as we know it.” Researchers have elucidated the structure of bacterial ribosomes, revealing the workings of cellular protein synthesis in beautiful molecular detail. And what did they find? Proteins are synthesized by a gigantic RNA enzyme!

27.1 The Genetic Code

Three major advances set the stage for our present knowledge of protein biosynthesis. First, in the early 1950s, Paul Zamecnik and his colleagues designed a set of experiments to investigate where in the cell proteins are synthesized. They injected radioactive amino acids into rats and, at different time intervals after the injection, removed the liver, homogenized it, fractionated the homogenate by centrifugation, and examined the subcellular fractions for the presence of radioactive protein. When hours or days were allowed to elapse after injection of the labeled amino acids, all the subcellular fractions contained labeled proteins. However, when only minutes had elapsed, labeled...
protein appeared only in a fraction containing small ribonucleoprotein particles. These particles, visible in animal tissues by electron microscopy, were therefore identified as the site of protein synthesis from amino acids, and later were named ribosomes (Fig. 27-1).

The second key advance was made by Mahlon Hoagland and Zamecnik, when they found that amino acids were "activated" when incubated with ATP and the cytosolic fraction of liver cells. The amino acids became attached to a heat-stable soluble RNA of the type that had been discovered and characterized by Robert Holley and later called transfer RNA (tRNA), to form **aminoacyl-tRNAs**. The enzymes that catalyze this process are the **aminoacyl-tRNA synthetases**.

The third advance resulted from Francis Crick's reasoning on how the genetic information encoded in the 4-letter language of nucleic acids could be translated into the 20-letter language of proteins. A small nucleic acid (perhaps RNA) could serve the role of an adaptor, one part of the adaptor molecule binding a specific amino acid and another part recognizing the nucleotide sequence encoding that amino acid in mRNA (Fig. 27-2). This idea was soon verified. The tRNA adaptor "translates" the nucleotide sequence of an mRNA into the amino acid sequence of a polypeptide. The overall process of mRNA-guided protein synthesis is often referred to simply as **translation**.

These three developments soon led to recognition of the major stages of protein synthesis and ultimately to the elucidation of the genetic code that specifies each amino acid.

FIGURE 27-1 Ribosomes and endoplasmic reticulum. Electron micrograph and schematic drawing of a portion of a pancreatic cell, showing ribosomes attached to the outer (cytosolic) face of the endoplasmic reticulum (ER). The ribosomes are the numerous small dots bordering the parallel layers of membranes.

FIGURE 27-2 Crick's adaptor hypothesis. Today we know that the amino acid is covalently bound at the 3’ end of a tRNA molecule and that a specific nucleotide triplet elsewhere in the tRNA interacts with a particular triplet codon in mRNA through hydrogen bonding of complementary bases.

FIGURE 27-3 Overlapping versus nonoverlapping genetic codes. In a nonoverlapping code, codons (numbered consecutively) do not share nucleotides. In an overlapping code, some nucleotides in the mRNA are shared by different codons. In a triplet code with maximum overlap, many nucleotides, such as the third nucleotide from the left (A), are shared by three codons. Note that in an overlapping code, the triplet sequence of the first codon limits the possible sequences for the second codon. A nonoverlapping code provides much more flexibility in the triplet sequence of neighboring codons and therefore in the possible amino acid sequences designated by the code. The genetic code used in all living systems is now known to be nonoverlapping.
Insertion and deletion mutations affect some amino acids but can eventually restore the correct amino acid sequence. Adding or subtracting three nucleotides (not shown) leaves the remaining triplets intact, providing evidence that a codon has three, rather than four or five, nucleotides. The triplet codons shaded in gray are those transcribed from the original gene; codons shaded in blue are new codons resulting from the insertion or deletion mutations.

In a triplet, nonoverlapping code, all mRNAs have three potential reading frames, shaded here in different colors. The triplets, and hence the amino acids specified, are different in each reading frame.

Marshall Nirenberg

The synthetic polynucleotides used in such experiments were prepared with polynucleotide phosphorylase (p. 1049), which catalyzes the formation of RNA polymers starting from ADP, UDP, CDP, and GDP. This enzyme, discovered by Severo Ochoa, requires no template and makes polymers with a base composition that directly reflects the relative concentrations of the nucleoside 5'-diphosphate precursors in the medium. If polynucleotide phosphorylase is presented with UDP only, it makes only poly(U). If it is presented with a mixture of five parts ADP and one part CDP, it makes a polymer in which about five-sixths of the residues are adenylate and one-sixth are cytidylate. This random polymer is likely to have many triplets of the sequence AAA, smaller numbers of ACC, ACA, and CAA triplets, relatively few ACC, CCA, and CAC triplets, and very few CCC triplets (Table 27–1). Using a variety of artificial mRNAs made by polynucleotide phosphorylase from different starting mixtures of ADP, GDP, UDP, and CDP, the Nirenberg and Ochoa groups soon identified the base compositions of the triplets coding for almost all the amino acids. Although these experiments revealed the base composition of the coding triplets, they usually could not reveal the sequence of the bases.
TABLE 27-1

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Observed frequency of incorporation (Lys = 100)</th>
<th>Tentative assignment for nucleotide composition of corresponding codon*</th>
<th>Expected frequency of incorporation based on assignment (Lys = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagine</td>
<td>24</td>
<td>A(_2)C</td>
<td>20</td>
</tr>
<tr>
<td>Glutamine</td>
<td>24</td>
<td>A(_2)C</td>
<td>20</td>
</tr>
<tr>
<td>Histidine</td>
<td>6</td>
<td>A(_2)C</td>
<td>4</td>
</tr>
<tr>
<td>Lysine</td>
<td>100</td>
<td>AAA</td>
<td>100</td>
</tr>
<tr>
<td>Proline</td>
<td>7</td>
<td>A(_2)C, CCC</td>
<td>4.8</td>
</tr>
<tr>
<td>Threonine</td>
<td>26</td>
<td>A(_2)C, AC(_2)</td>
<td>24</td>
</tr>
</tbody>
</table>

*Note: Presented here is a summary of data from one of the early experiments designed to elucidate the genetic code. A synthetic RNA containing only A and C residues in a 5:1 ratio directed polypeptide synthesis, and both the identity and the quantity of incorporated amino acids were determined. Based on the relative abundance of A and C residues in the synthetic RNA, and assigning the codon AAA (the most likely codon) a frequency of 100, there should be three different codons of composition A\(_2\)C, each at a relative frequency of 20; three of composition AC\(_2\), each at a relative frequency of 4.0; and CCC at a relative frequency of 0.8. The CCC assignment was based on information derived from prior studies with poly(C). Where two tentative codon assignments are made, both are proposed to code for the same amino acid.

KEY CONVENTION:

Much of the following discussion deals with tRNAs. The amino acid specified by a tRNA is indicated by a superscript, such as tRNA\(_{Ala}\), and the aminoacylated tRNA by a hyphenated name: alanyl-tRNA\(_{Ala}\) or Ala-tRNA\(_{Ala}\).

In 1964 Nirenberg and Philip Leder achieved another experimental breakthrough. Isolated E. coli ribosomes would bind a specific aminoacyl-tRNA in the presence of the corresponding synthetic polynucleotide messenger. For example, ribosomes incubated with poly(U) and phenylalanyl-tRNA\(_{Phe}\) (Phe-tRNA\(_{Phe}\)) bind both RNAs, but if the ribosomes are incubated with poly(U) and some other aminoacyl-tRNA, the aminoacyl-tRNA is not bound, because it does not recognize the UUU triplets in poly(U) (Table 27–2). Even trinucleotides could promote specific binding of appropriate tRNAs, so these experiments could be carried out with chemically synthesized small oligonucleotides. With this technique researchers determined which aminoacyl-tRNA bound to 54 of the 64 possible triplet codons. For some codons, either no aminoacyl-tRNA or more than one would bind. Another method was needed to complete and confirm the entire genetic code.

At about this time, a complementary approach was provided by H. Gobind Khorana, who developed chemical methods to synthesize polynucleotides with defined, repeating sequences of two to four bases. The polypeptides produced by these mRNAs had one or a few amino acids in repeating patterns. These patterns, when combined with information from the random polymers used by Nirenberg and colleagues, permitted unambiguous codon assignments. The copolymer (AC)\(_n\), for example, has alternating ACA and CAC codons: ACACACACACACACA. The polypeptide synthesized on this messenger contained equal amounts of threonine and histidine. Given that a histidine codon has one A and two Cs (Table 27–1), CAC must code for histidine and ACA for threonine.

Consolidation of the results from many experiments permitted the assignment of 61 of the 64 possible codons. The other three were identified as termination codons, in part because they disrupted amino acid coding patterns when they occurred in a synthetic RNA polymer (Fig. 27–6). Meanings for all the triplet codons (tabulated in Fig. 27–7) were established by 1966 and have been verified in many different ways.
The cracking of the genetic code is regarded as one of the most important scientific discoveries of the twentieth century.

Codons are the key to the translation of genetic information, directing the synthesis of specific proteins. The reading frame is set when translation of an mRNA molecule begins, and it is maintained as the synthetic machinery reads sequentially from one triplet to the next. If the initial reading frame is off by one or two bases, or if translation somehow skips a nucleotide in the mRNA, all the subsequent codons will be out of register; the result is usually a "missense" protein with a garbled amino acid sequence.

Several codons serve special functions (Fig. 27–7). The initiation codon AUG is the most common signal for the beginning of a polypeptide in all cells, in addition to coding for Met residues in internal positions of polypeptides. The termination codons (UAA, UAG, and UGA), also called stop codons or nonsense codons, normally signal the end of polypeptide synthesis and do not code for any known amino acids. Some deviations from these rules are discussed in Box 27–1.

As described in Section 27.2, initiation of protein synthesis in the cell is an elaborate process that relies on initiation codons and other signals in the mRNA. In retrospect, the experiments of Nirenberg, Khorana, and others to identify codon function should not have worked in the absence of initiation codons. Serendipitously, experimental conditions caused the normal initiation requirements for protein synthesis to be relaxed. Diligence combined with chance to produce a breakthrough—a common occurrence in the history of biochemistry.

In a random sequence of nucleotides, 1 in every 20 codons in each reading frame is, on average, a termination codon. In general, a reading frame without a termination codon among 50 or more codons is referred to as an open reading frame (ORF). Long open reading frames usually correspond to genes that encode proteins. In the analysis of sequence databases, sophisticated programs are used to search for open reading frames in order to find genes among the often huge background of nongenic DNA. An uninterrupted gene coding for a typical protein with a molecular weight of 60,000 would require an open reading frame with 500 or more codons.

A striking feature of the genetic code is that an amino acid may be specified by more than one codon, so the code is described as degenerate. This does not suggest that the code is flawed: although an amino acid may have two or more codons, each codon specifies only one amino acid. The degeneracy of the code is not uniform. Whereas methionine and tryptophan have single codons, for example, three amino acids (Arg, Leu, Ser) have six codons, five amino acids have four, isoleucine has three, and nine amino acids have two (Table 27–3).

The genetic code is nearly universal. With the intriguing exception of a few minor variations in mitochondria, some bacteria, and some single-celled eukaryotes (Box 27–1), amino acid codons are identical in all species examined so far. Human beings, E. coli, tobacco plants, amphibians, and viruses share the same genetic code. Thus it would appear that all life forms have a common evolutionary ancestor, whose genetic code has been preserved throughout biological evolution. Even the variations reinforce this theme.

![Figure 27-6](image-url) Effect of a termination codon in a repeating tetranucleotide. Termination codons (pink) are encountered every fourth codon in three different reading frames (shown in different colors). Dipeptides or tripeptides are synthesized, depending on where the ribosome initially binds.

![Figure 27-7](image-url) "Dictionary" of amino acid code words in mRNAs. The codons are written in the 5'→3' direction. The third base of each codon (in bold type) plays a lesser role in specifying an amino acid than the first two. The three termination codons are shaded in pink, the initiation codon AUG in green. All the amino acids except methionine and tryptophan have more than one codon. In most cases, codons that specify the same amino acid differ only at the third base.
In biochemistry, as in other disciplines, exceptions to general rules can be problematic for instructors and frustrating for students. At the same time, though, they teach us that life is complex and inspire us to search for more surprises. Understanding the exceptions can even reinforce the original rule in surprising ways.

One would expect little room for variation in the genetic code. Even a single amino acid substitution can have profoundly deleterious effects on the structure of a protein. Nevertheless, variations in the code do occur in some organisms, and they are both interesting and instructive. The types of variation and their rarity provide powerful evidence for a common evolutionary origin of all living things.

To alter the code, changes must occur in the gene(s) encoding one or more tRNAs, with the obvious target for alteration being the anticodon. Such a change would lead to the systematic insertion of an amino acid at a codon that, according to the normal code (see Fig. 27-7), does not specify that amino acid. The genetic code, in effect, is defined by two elements: (1) the anticodons on tRNAs (which determine where an amino acid is placed in a growing polypeptide) and (2) the specificity of the enzymes—the aminoacyl-tRNA synthetases—that charge the tRNAs, which determines the identity of the amino acid attached to a given tRNA.

Most sudden changes in the code would have catastrophic effects on cellular proteins, so code alterations are more likely to persist where relatively few proteins would be affected—such as in small genomes encoding only a few proteins. The biological consequences of a code change could also be limited by restricting changes to the three termination codons, which do not generally occur within genes (see Box 27-4 for exceptions to this rule). This pattern is in fact observed.

Of the very few variations in the genetic code that we know of, most occur in mitochondrial DNA (mtDNA), which encodes only 10 to 20 proteins. Mitochondria have their own tRNAs, so their code variations do not affect the much larger cellular genome. The most common changes in mitochondria (and the only code changes that have been observed in cellular genomes) involve termination codons. These changes affect termination in the products of only a subset of genes, and sometimes the effects are minor because the genes have multiple (redundant) termination codons.

Vertebrate mtDNAs have genes that encode 13 proteins, 2 rRNAs, and 22 tRNAs (see Fig. 19-38). The small number of codon reassignments, along with an unusual set of wobble rules (p. 1.072), makes the 22 tRNAs sufficient to decode the protein genes, as opposed to the 32 tRNAs required for the normal code. In mitochondria, these changes can be viewed as a kind of genomic streamlining, as a smaller genome confers a replication advantage on the organelle. Four codon families (in which the amino acid is determined entirely by the first two nucleotides) are decoded by a single tRNA with a U residue in the first (or wobble) position in the anticodon. Either the U pairs somehow with any of the four possible bases in the third position of the codon or a “two out of three” mechanism is used—that is, no base pairing is needed at the third position. Other tRNAs recognize codons with either A or G in the third position, and yet others recognize U or C, so that virtually all the tRNAs recognize either two or four codons.

In the normal code, only two amino acids are specified by single codons: methionine and tryptophan (see Table 27-3). If all mitochondrial tRNAs recognize two codons, we would expect additional Met and Trp codons in mitochondria. And we find that the single most common code variation is the normal termination codon UGA specifying tryptophan. The tRNAMet recognizes and inserts a Trp residue at either UGA or the normal Trp codon, UGG. The second most common variation is conversion of AUA from

<table>
<thead>
<tr>
<th>TABLE 27-3</th>
<th>Degeneracy of the Genetic Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid</td>
<td>Number of codons</td>
</tr>
<tr>
<td>Met</td>
<td>1</td>
</tr>
<tr>
<td>Trp</td>
<td>1</td>
</tr>
<tr>
<td>Asn</td>
<td>2</td>
</tr>
<tr>
<td>Asp</td>
<td>2</td>
</tr>
<tr>
<td>Cys</td>
<td>2</td>
</tr>
<tr>
<td>Gln</td>
<td>2</td>
</tr>
<tr>
<td>Glu</td>
<td>2</td>
</tr>
<tr>
<td>His</td>
<td>2</td>
</tr>
<tr>
<td>Lys</td>
<td>2</td>
</tr>
<tr>
<td>Phe</td>
<td>2</td>
</tr>
</tbody>
</table>

Wobble Allows Some tRNAs to Recognize More than One Codon

When several different codons specify one amino acid, the difference between them usually lies at the third base position (at the 3' end). For example, alanine is coded by the triplets GCU, GCC, GCA, and GCG. The codons for most amino acids can be symbolized by XY\textsubscript{3} or XY\textsubscript{1}Y\textsubscript{2}. The first two letters of each codon are the primary determinants of specificity, a feature that has some interesting consequences.

Transfer RNAs base-pair with mRNA codons at a three-base sequence on the tRNA called the **anticodon**. The first base of the codon in mRNA (read in the 5'→3' direction) pairs with the third base of the anticodon (Fig. 27-8a). If the anticodon triplet of a tRNA recognized only one codon triplet through Watson-Crick base
27.1 The Genetic Code

Codons

<table>
<thead>
<tr>
<th>Codons*</th>
<th>UGA</th>
<th>AUA</th>
<th>AGA</th>
<th>AGG</th>
<th>CUN</th>
<th>CGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal code assignment</td>
<td>Stop</td>
<td>Ile</td>
<td>Arg</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebrates</td>
<td>Trp</td>
<td>Met</td>
<td>Stop</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Drosophila</td>
<td>Trp</td>
<td>Met</td>
<td>Ser</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Yeasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Trp</td>
<td>Met</td>
<td></td>
<td>+</td>
<td>Thr</td>
<td>+</td>
</tr>
<tr>
<td>Torulopsis glabrata</td>
<td>Trp</td>
<td>Met</td>
<td></td>
<td>+</td>
<td>Thr</td>
<td>?</td>
</tr>
<tr>
<td>Schizosaccharomyces pombe</td>
<td>Trp</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Filamentous fungi</td>
<td>Trp</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trypanosomes</td>
<td>Trp</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Higher plants</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>Chlamydomonas reinhardtii</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
</tr>
</tbody>
</table>

*N indicates any nucleotide; +, codon has the same meaning as in the normal code; ?, codon not observed in this mitochondrial genome.

Turning to the much rarer changes in the codes for cellular (as distinct from mitochondrial) genomes, we find that the only known variation in a bacterium is again the use of UGA to encode Trp residues, occurring in the simplest free-living cell, *Mycoplasma capricolum*. Among eukaryotes, the only known extramitochondrial coding changes occur in a few species of ciliated protists, in which both termination codons UAA and UAG can specify glutamine. There are also rare but interesting cases where stop codons have been adapted to encode amino acids that are not among the standard 20, as detailed in Box 27-3.

Changes in the code need not be absolute; a codon might not always encode the same amino acid. For example, in many bacteria—including *E. coli*—GUG (Val) is sometimes used as an initiation codon that specifies Met. This occurs only for those genes in which the GUG is properly located relative to particular mRNA sequences that affect the initiation of translation (as discussed in Section 27.2).

These variations tell us that the code is not quite as universal as once believed, but that its flexibility is severely constrained. The variations are obviously derivatives of the normal code, and no example of a completely different code has been found. The limited scope of code variants strengthens the principle that all life on this planet evolved on the basis of a single (slightly flexible) genetic code.

An Ile codon to a Met codon; the normal Met codon is AUG, and a single tRNA recognizes both codons. The known coding variations in mitochondria are summarized in Table 1.

Pairing at all three positions, cells would have a different tRNA for each amino acid codon. This is not the case, however, because the anticodons in some tRNAs include the nucleotide inosinate (designated I), which contains the uncommon base hypoxanthine (see Fig. 8-5b).

Changes in the code need not be absolute; a codon might not always encode the same amino acid. For example, in many bacteria—including *E. coli*—GUG (Val) is sometimes used as an initiation codon that specifies Met. This occurs only for those genes in which the GUG is properly located relative to particular mRNA sequences that affect the initiation of translation (as discussed in Section 27.2).

These variations tell us that the code is not quite as universal as once believed, but that its flexibility is severely constrained. The variations are obviously derivatives of the normal code, and no example of a completely different code has been found. The limited scope of code variants strengthens the principle that all life on this planet evolved on the basis of a single (slightly flexible) genetic code.

Pairing at all three positions, cells would have a different tRNA for each amino acid codon. This is not the case, however, because the anticodons in some tRNAs include the nucleotide inosinate (designated I), which contains the uncommon base hypoxanthine (see Fig. 8-5b).

Changes in the code need not be absolute; a codon might not always encode the same amino acid. For example, in many bacteria—including *E. coli*—GUG (Val) is sometimes used as an initiation codon that specifies Met. This occurs only for those genes in which the GUG is properly located relative to particular mRNA sequences that affect the initiation of translation (as discussed in Section 27.2).

These variations tell us that the code is not quite as universal as once believed, but that its flexibility is severely constrained. The variations are obviously derivatives of the normal code, and no example of a completely different code has been found. The limited scope of code variants strengthens the principle that all life on this planet evolved on the basis of a single (slightly flexible) genetic code.

Pairing at all three positions, cells would have a different tRNA for each amino acid codon. This is not the case, however, because the anticodons in some tRNAs include the nucleotide inosinate (designated I), which contains the uncommon base hypoxanthine (see Fig. 8-5b).

Changes in the code need not be absolute; a codon might not always encode the same amino acid. For example, in many bacteria—including *E. coli*—GUG (Val) is sometimes used as an initiation codon that specifies Met. This occurs only for those genes in which the GUG is properly located relative to particular mRNA sequences that affect the initiation of translation (as discussed in Section 27.2).

These variations tell us that the code is not quite as universal as once believed, but that its flexibility is severely constrained. The variations are obviously derivatives of the normal code, and no example of a completely different code has been found. The limited scope of code variants strengthens the principle that all life on this planet evolved on the basis of a single (slightly flexible) genetic code.

Pairing at all three positions, cells would have a different tRNA for each amino acid codon. This is not the case, however, because the anticodons in some tRNAs include the nucleotide inosinate (designated I), which contains the uncommon base hypoxanthine (see Fig. 8-5b).
Inosinate can form hydrogen bonds with three different nucleotides (U, C, and A; Fig. 27–8b), although these pairings are much weaker than the hydrogen bonds of Watson-Crick base pairs (G = C and A = U). In yeast, one tRNA has the anticodon (5')ICG, which recognizes three arginine codons: (5')CGA, (5')CGU, and (5')CGC. The first two bases are identical (CG) and form strong Watson-Crick base pairs with the corresponding bases of the anticodon, but the third base (A, U, or C) forms rather weak hydrogen bonds with the I residue at the first position of the anticodon.

Examination of these and other codon-anticodon pairings led Crick to conclude that the third base of most codons pairs rather loosely with the corresponding base of its anticodon; to use his picturesque word, the third base of such codons (and the first base of their corresponding anticodons) "wobbles." Crick proposed a set of four relationships called the wobble hypothesis:

1. The first two bases of an mRNA codon always form strong Watson-Crick base pairs with the corresponding bases of the tRNA anticodon and confer most of the coding specificity.

2. The first base of the anticodon (reading in the 5'→3' direction; this pairs with the third base of the codon) determines the number of codons recognized by the tRNA. When the first base of the anticodon is C or A, base pairing is specific and only one codon is recognized by that tRNA. When the first base is U or G, binding is less specific and two different codons may be read. When inosine (I) is the first (wobble) nucleotide of an anticodon, three different codons can be recognized—the maximum number for any tRNA. These relationships are summarized in Table 27–4.

3. When an amino acid is specified by several different codons, the codons that differ in either of the first two bases require different tRNAs.

4. A minimum of 32 tRNAs are required to translate all 61 codons (31 to encode the amino acids and 1 for initiation).

The wobble (or third) base of the codon contributes to specificity, but, because it pairs only loosely with its corresponding base in the anticodon, it permits rapid dissociation of the tRNA from its codon during protein synthesis. If all three bases of a codon engaged in strong Watson-Crick pairing with the third bases of the anticodon, tRNAs would dissociate too slowly and this would severely limit the rate of protein synthesis. Codon-anticodon interactions balance the requirements for accuracy and speed.

The genetic code tells us how protein sequence information is stored in nucleic acids and provides some clues about how that information is translated into protein. We now turn to the molecular mechanisms of the translation process.

Table 27–4

<table>
<thead>
<tr>
<th>How the Wobble Base of the Anticodon Determines the Number of Codons a tRNA Can Recognize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. One codon recognized:</td>
</tr>
<tr>
<td>Anticodon (3') X - Y - C (5')</td>
</tr>
<tr>
<td>Codon (5') X' - Y' - G (3')</td>
</tr>
<tr>
<td>2. Two codons recognized:</td>
</tr>
<tr>
<td>Anticodon (3') X - Y - U (5')</td>
</tr>
<tr>
<td>Codon (5') X' - Y' - G (3')</td>
</tr>
<tr>
<td>3. Three codons recognized:</td>
</tr>
<tr>
<td>Anticodon (3') X - Y - I (5')</td>
</tr>
<tr>
<td>Codon (5') X' - Y' - A (3')</td>
</tr>
</tbody>
</table>

Note: X and Y denote bases complementary to and capable of strong Watson-Crick base pairing with X' and Y', respectively. Wobble bases—in the 3' position of codons and 5' position of anticodons—are shaded in pink.

Translational Frameshifting and RNA Editing Affect How the Code Is Read

Once the reading frame has been set during protein synthesis, codons are translated without overlap or punctuation until the ribosomal complex encounters a termination codon. The other two possible reading frames usually contain no useful genetic information, but a few genes are structured so that ribosomes "hiccup" at a certain point in the translation of their mRNAs, changing the reading frame from that point on. This appears to be a mechanism either to allow two or more related but distinct proteins to be produced from a single transcript or to regulate the synthesis of a protein.

One of the best-documented examples of translational frameshifting occurs during translation of the mRNA for the overlapping gag and pol genes of the Rous sarcoma virus (see Fig. 26–35). The reading frame for pol is offset to the left by one base pair (−1 reading frame) relative to the reading frame for gag (Fig. 27–9).

The product of the pol gene (reverse transcriptase) is translated as a larger polyprotein, on the same mRNA that is used for the gag protein alone (see Fig. 26–34). The polyprotein, or gag-pol protein, is then trimmed to the mature reverse transcriptase by proteolytic digestion. Production of the polyprotein requires a translational frameshift in the overlap region to allow the ribosome to bypass the UAG termination codon at the end of the gag gene (shaded pink in Fig. 27–9).

Frameshifts occur during about 5% of translations of this mRNA, and the gag-pol polyprotein (and ultimately reverse transcriptase) is synthesized at about one-twentieth the frequency of the gag protein, a level that suffices for efficient reproduction of the virus. In
27.1 The Genetic Code

The initial transcripts of the genes that encode cytochrome oxidase subunit II in some protist mitochondria provide an example of editing by insertion. These transcripts do not correspond precisely to the sequence needed at the carboxyl terminus of the protein product. A posttranscriptional editing process inserts four U residues that shift the translational reading frame of the transcript. Figure 27-10 shows the added U residues in the small part of the transcript that is affected by editing. Note that the base pairing between the initial transcript and the guide RNA involves a number of G=U base pairs (blue dots), which are common in RNA molecules.

RNA editing by alteration of nucleotides most commonly involves the enzymatic deamination of adenosine or cytidine residues, forming inosine or uridine, respectively (Fig. 27-11), although other base changes have been described. Inosine is interpreted as a G residue catalyzed by ADAR enzymes. (b) Cytidine to uridine conversions are catalyzed by the APOBEC family of enzymes.
The genomes of all vertebrates are replete with SINEs, but there are many different types of SINES present in most of these organisms. The Alu elements predominate only in the primates. Careful screening of genes and transcripts indicates that A to I editing is 30 to 40 times more prevalent in humans than in mice, largely due to the presence of many Alu elements. Large-scale A to I editing and an increased level of alternative splicing (see Fig. 26–22) are two features that set primate genomes apart from those of other mammals. It is not yet clear whether these reactions are incidental, or whether they played key roles in the evolution of primates and, ultimately, humans.

SUMMARY 27.1 The Genetic Code

- The particular amino acid sequence of a protein is constructed through the translation of information encoded in mRNA. This process is carried out by ribosomes.
- Amino acids are specified by mRNA codons consisting of nucleotide triplets. Translation requires adaptor molecules, the tRNAs, that recognize codons and insert amino acids into their appropriate sequential positions in the polypeptide.
- The base sequences of the codons were deduced from experiments using synthetic mRNAs of known composition and sequence.
- The codon AUG signals initiation of translation. The triplets UAA, UAG, and UGA are signals for termination.
- The genetic code is degenerate: it has multiple codons for almost every amino acid.
- The standard genetic code is universal in all species, with some minor deviations in mitochondria and a few single-celled organisms.
- The third position in each codon is much less specific than the first and second and is said to wobble.
- Translational frameshifting and RNA editing affect how the genetic code is read during translation.
27.2 Protein Synthesis

As we have seen for DNA and RNA (Chapters 25 and 26), the synthesis of polymeric biomolecules can be considered in terms of initiation, elongation, and termination stages. These fundamental processes are typically bracketed by two additional stages: activation of precursors before synthesis and postsynthetic processing of the completed polymer. Protein synthesis follows the same pattern. The activation of amino acids before their incorporation into polypeptides and the posttranslational processing of the completed polypeptide play particularly important roles in ensuring both the fidelity of synthesis and the proper function of the protein product. The cellular components involved in the five stages of protein synthesis in *E. coli* and other bacteria are listed in Table 27-5; the requirements in eukaryotic cells are quite similar, although the components are in some cases more numerous. An initial overview of the stages of protein synthesis provides a useful outline for the discussion that follows.

Stage 1: Activation of Amino Acids

For the synthesis of a polypeptide with a defined sequence, two fundamental chemical requirements must be met: (1) the carboxyl group of each amino acid must be activated to facilitate formation of a peptide bond, and (2) a link must be established between each new amino acid and the information in the mRNA that encodes it. Both these requirements are met by attaching the amino acid to a tRNA in the first stage of protein synthesis. Attaching the right amino acid to the right tRNA is critical. This reaction takes place in the cytosol, not on the ribosome. Each of the 20 amino acids is covalently attached to a specific tRNA at the expense of ATP energy, using Mg²⁺-dependent activating enzymes known as aminoacyl-tRNA synthetases. When attached to their amino acid (aminoacylated) the tRNAs are said to be “charged.”
RNA and Protein Components of the *E. coli* Ribosome

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Number of different proteins</th>
<th>Total number of proteins</th>
<th>Protein designations</th>
<th>Number and type of rRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>30S</td>
<td>21</td>
<td>21</td>
<td>S1–S21</td>
<td>1 (16S rRNA)</td>
</tr>
<tr>
<td>50S</td>
<td>33</td>
<td>36</td>
<td>L1–L36*</td>
<td>2 (5S and 23S rRNAs)</td>
</tr>
</tbody>
</table>

The L1 to L36 protein designations do not correspond to 36 different proteins. The protein originally designated L7 is in fact a modified form of L12, and L8 is a complex of three other proteins. Also, L26 proved to be the same protein as S20 (and not part of the 50S subunit). This gives 33 different proteins in the large subunit. There are four copies of the L7/L12 protein, with the three extra copies bringing the total protein count to 36.

Stage 2: Initiation
The mRNA bearing the code for the polypeptide to be synthesized binds to the smaller of two ribosomal subunits and to the initiating aminoacyl-tRNA. The large ribosomal subunit then binds to form an initiation complex. The initiating aminoacyl-tRNA basepairs with the mRNA codon AUG that signals the beginning of the polypeptide. This process, which requires GTP, is promoted by cytosolic proteins called initiation factors.

Stage 3: Elongation
The nascent polypeptide is lengthened by covalent attachment of successive amino acid units, each carried to the ribosome and correctly positioned by its tRNA, which base-pairs to its corresponding codon in the mRNA. Elongation requires cytosolic proteins known as elongation factors. The binding of each incoming aminoacyl-tRNA and the movement of the ribosome along the mRNA are facilitated by the hydrolysis of GTP as each residue is added to the growing polypeptide.

Stage 4: Termination and Ribosome Recycling
Completion of the polypeptide chain is signaled by a termination codon in the mRNA. The new polypeptide is released from the ribosome, aided by proteins called release factors, and the ribosome is recycled for another round of synthesis.

Stage 5: Folding and Posttranslational Processing
In order to achieve its biologically active form, the new polypeptide must fold into its proper three-dimensional conformation. Before or after folding, the new polypeptide may undergo enzymatic processing, including removal of one or more amino acids (usually from the amino terminus); addition of acetyl, phosphoryl, methyl, carboxyl, or other groups to certain amino acid residues; proteolytic cleavage; and/or attachment of oligosaccharides or prosthetic groups.

Before looking at these five stages in detail, we must examine two key components in protein biosynthesis: the ribosome and tRNAs.
FIGURE 27–13 The bacterial ribosome. Our understanding of ribosome structure has been greatly enhanced by multiple high-resolution images of the bacterial ribosome and its subunits, contributed by several research groups. A sampling is presented here. (a) The 50S and 30S bacterial subunits, split apart to visualize the surfaces that interact in the active ribosome. The structure on the left is the 50S subunit (derived from PDB ID 2OWB, 1VSA, and 1GIX), with tRNAs (displayed as green backbone structures) bound to sites E, P, and A, described later in the text; the tRNA anticodons are in red. Proteins appear as blue wormlike structures representing the peptide backbone; the rRNA as a gray rendering of the surface features. The structure on the right is the 30S subunit (derived from PDB ID 2OWB). Protein backbones are brown wormlike structures and the rRNA is a lighter tan surface rendering. The part of the mRNA that interacts with the tRNA anticodons is shown in red. The rest of the mRNA (not shown) winds through grooves or channels on the 30S subunit surface. (b) The assembled active bacterial ribosome, viewed down into the groove separating the subunits (derived from PDB ID 2OWB, 1VSA, and 1GIX). All components are colored as in (a). (c) A pair of ribosome images in the same orientation as in (b), but with all components shown as surface renderings to emphasize the mass of the entire structure. In the structure on the right, the tRNAs have been omitted to give a better sense of the cleft where protein synthesis occurs. (d) The 50S bacterial ribosome subunit (PDB ID 1QZY). The subunit is again viewed from the side that attaches to the 30S subunit, but tilted down slightly compared with its orientation in (a). The active site for peptide bond formation (the peptidyl transferase activity), deep within a surface groove and far away from any protein, is marked by a bound inhibitor, puromycin (red).

Peptide bond formation. The high-resolution structure thus confirms what many had suspected for more than a decade: the ribosome is a ribozyme. In addition to the insight they provide into the mechanism of protein synthesis (as elaborated below), the detailed structures of the ribosome and its subunits have stimulated a new look at the evolution of life (Box 27–2).

The bacterial ribosome is complex, with a combined molecular weight of ~2.7 million. The two irregularly shaped ribosomal subunits fit together to form a cleft.
Extant ribozymes generally promote one of two types of reactions: hydrolytic cleavage of phosphodiester bonds or phosphoryl transfers (Chapter 26). In both cases, the substrates of the reactions are also RNA molecules. The ribosomal RNAs provide an important expansion of the catalytic range of known ribozymes. Coupled to the laboratory exploration of potential RNA catalytic function (see Box 26-8), the idea of an RNA world as a precursor to current life forms becomes increasingly attractive.

A viable RNA world would require an RNA capable of self-replication, a primitive metabolism to generate the needed ribonucleotide precursors, and a cell boundary to aid in concentrating the precursors and sequestering them from the environment. The requirements for catalysis of reactions involving a growing range of metabolites and macromolecules could have led to larger and more complex RNA catalysts. The many negatively charged phosphoryl groups in the RNA backbone limit the stability of very large RNA molecules. In an RNA world, divalent cations or other positively charged groups could be incorporated into the structures to augment stability.

Certain peptides could stabilize large RNA molecules. For example, many ribosomal proteins in modern eukaryotic cells have long extensions, lacking secondary structure, that snake into the rRNAs and help stabilize them (Fig. 1). Ribozyme-catalyzed synthesis of peptides could thus initially have evolved as part of a general solution to the structural maintenance of large RNA molecules. The synthesis of peptides may have helped stabilize large ribozymes, but this advance also marked the beginning of the end for the RNA world. Once peptide synthesis was possible, the greater catalytic potential of proteins would have set in motion an irreversible transition to a protein-dominated metabolic system.

Most enzymatic processes, then, were eventually surrendered to the proteins—but not all. In every organism, the critical task of synthesizing the proteins remains, even now, a ribozyme-catalyzed process. There appears to be only one good arrangement (or just a very few) of nucleotide residues in a ribozyme active site that can catalyze peptide synthesis. The rRNA residues that seem to be involved in the peptidyl transferase activity of ribosomes are highly conserved in the large-subunit rRNAs of all species. Using in vitro evolution (SELEX; see Box 26-3), investigators have isolated artificial ribozymes that promote peptide synthesis. Intriguingly, most of them include the ribonucleotide octet (5')AUAACAGG(3'), a highly conserved sequence found at the peptidyl transferase active site in the ribosomes of all cells. There may be just one optimal solution to the overall chemical problem of ribozyme-catalyzed synthesis of proteins of defined sequence. Evolution found this solution once, and no life form has notably improved on it.

Through which the mRNA passes as the ribosome moves along it during translation (Fig. 27-13b). The 57 proteins in bacterial ribosomes vary enormously in size and structure. Molecular weights range from about 6,000 to 75,000. Most of the proteins have globular domains arranged on the ribosome surface. Some also have snakelike extensions that protrude into the rRNA core of the ribosome, stabilizing its structure. The functions of some of these proteins have not yet been elucidated in detail, although a structural role seems evident for many of them.

The sequences of the rRNAs of many organisms are now known. Each of the three single-stranded rRNAs of E. coli has a specific three-dimensional conformation featuring extensive intrachain base pairing. The predicted secondary structure of the rRNAs (Fig. 27-14) has largely been confirmed in the high-resolution models, but fails to convey the extensive

FIGURE 1 The 50S subunit of a bacterial ribosome (PDB ID 1NKW). The protein backbones are shown as blue wormlike structures; the rRNA components are transparent. The unstructured extensions of many of the ribosomal proteins snake into the rRNA structures, helping to stabilize them.
network of tertiary interactions apparent in the complete structure.

The ribosomes of eukaryotic cells (other than mitochondrial and chloroplast ribosomes) are larger and more complex than bacterial ribosomes (Fig. 27-15), with a diameter of about 23 nm and a sedimentation coefficient of about 80S. They also have two subunits, which vary in size among species but on average are 60S and 40S. Altogether, eukaryotic ribosomes contain more than 80 different proteins. The ribosomes of mitochondria and chloroplasts are somewhat smaller and simpler than bacterial ribosomes. Nevertheless, ribosomal structure and function are strikingly similar in all organisms and organelles.

Transfer RNAs Have Characteristic Structural Features

To understand how tRNAs can serve as adaptors in translating the language of nucleic acids into the language of proteins, we must first examine their structure in more detail. Transfer RNAs are relatively small and consist of a single strand of RNA folded into a precise three-dimensional structure (see Fig. 8-25a).

The tRNAs in bacteria and in the cytosol of eukaryotes have between 73 and 93 nucleotide residues, corresponding to molecular weights of 24,000 to 31,000. Mitochondria and chloroplasts contain distinctive, somewhat smaller tRNAs. Cells have at least one kind of tRNA for each amino acid; at least 32 tRNAs are required to recognize all the amino acid codons (some recognize more than one codon), but some cells use more than 32.

Yeast alanine tRNA (tRNA_{Ala}), the first nucleic acid to be completely sequenced (Fig. 27-16), contains 76 nucleotide residues, 10 of which have modified bases. Comparisons of tRNAs from various species have revealed many common structural features...
FIGURE 27-16 Nucleotide sequence of yeast tRNA\textsuperscript{\textgreek{t}}. This structure was deduced in 1965 by Robert W. Holley and his colleagues; it is shown in the cloverleaf conformation in which intrastand base pairing is maximal. The following symbols are used for the modified nucleotides (shaded pink): \(\psi \), pseudouridine; I, inosine; T, ribothymidine; D, 5,6-dihydrouridine; m\(^1\)I, 1-methylnosine; m\(^1\)G, 1-methylguanosine; m\(^2\)G, N\(^2\)-dimethylguanosine (see Fig. 26-23). Blue lines between parallel sections indicate Watson-Crick base pairs. In RNAs, guanosine is often base-paired with uridine, although the G=U pair is not as stable as the Watson-Crick G=C pair (Chapter 8). The anticodon can recognize three codons for alanine (CCA, CCU, and CCC). Other features of tRNA structure are shown in Figures 27-17 and 27-18.

(Fig. 27-17). Eight or more of the nucleotide residues have modified bases and sugars, many of which are methylated derivatives of the principal bases. Most tRNAs have a guanylate (pG) residue at the 5' end, and all have the trinucleotide sequence CCA(3') at the 3' end. When drawn in two dimensions, the hydrogen-bonding pattern of all tRNAs forms a cloverleaf structure with four arms; the longer tRNAs have a short fifth arm, or extra arm (Fig. 27-17). In three dimensions, a tRNA has the form of a twisted L (Fig. 27-18).
Two of the arms of a tRNA are critical for its adapter function. The **amino acid arm** can carry a specific amino acid esterified by its carboxyl group to the 2'- or 3'-hydroxyl group of the A residue at the 3' end of the tRNA. The **anticodon arm** contains the anticodon. The other major arms are the **D arm**, which contains the unusual nucleotide dihydrouridine (D), and the **TψC arm**, which contains ribothymidine (ψ), not usually present in RNAs, and pseudouridine (ψ), which has an unusual carbon-carbon bond between the base and ribose (see Fig. 26-23). The D and TψC arms contribute important interactions for the overall folding of tRNA molecules, and the TψC arm interacts with the large-subunit rRNA.

Having looked at the structures of ribosomes and tRNAs, we now consider in detail the five stages of protein synthesis.

Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs

During the first stage of protein synthesis, taking place in the cytosol, aminoacyl-tRNA synthetases esterify the 20 amino acids to their corresponding tRNAs. Each enzyme is specific for one amino acid and one or more corresponding tRNAs. Most organisms have one aminoacyl-tRNA synthetase for each amino acid. For amino acids with two or more corresponding tRNAs, the same enzyme usually aminoacylates all of them.

The structures of all the aminoacyl-tRNA synthetases of *E. coli* have been determined. Researchers have divided them into two classes (Table 27-7) based on substantial differences in primary and tertiary structure and in reaction mechanism (Fig. 27-19); these two classes are the same in all organisms. There is no evidence for a common ancestor, and the biological, chemical, or evolutionary reasons for two enzyme classes for essentially identical processes remain obscure.

The reaction catalyzed by an aminoacyl-tRNA synthetase is

\[
\text{Amino acid} + \text{tRNA} + \text{ATP} \rightarrow \text{aminoacyl-tRNA} + \text{AMP} + \text{PP}_i
\]

Proofreading by Aminoacyl-tRNA Synthetases

The aminoacylation of tRNA accomplishes two ends: (1) it activates an amino acid for peptide bond formation and (2) it ensures appropriate placement of the amino acid in a growing polypeptide. The identity of the amino acid attached to a tRNA is not checked on the ribosome, so attachment of the correct amino acid to the tRNA is essential to the fidelity of protein synthesis.

As you will recall from Chapter 6, enzyme specificity is limited by the binding energy available from enzyme-substrate interactions. Discrimination between two similar amino acid substrates has been studied in detail in the case of Ile-tRNA synthetase, which distinguishes between valine and isoleucine, amino acids that differ by only a single methylene group (—CH2—):

Ile-tRNA synthetase favors activation of isoleucine (to form Ile-AMP) over valine by a factor of 200—as we would expect, given the amount by which a methylene group in Ile could enhance substrate binding. Yet valine is erroneously incorporated into proteins in positions normally occupied by an Ile residue at a frequency of only about 1 in 3,000. How is this greater than 10-fold increase in accuracy brought about? Ile-tRNA synthetase, like some other aminoacyl-tRNA synthetases, has a proofreading function.

<table>
<thead>
<tr>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td>Cys</td>
<td>Asn</td>
</tr>
<tr>
<td>Gln</td>
<td>Asp</td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
</tr>
<tr>
<td>Ile</td>
<td>His</td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>Met</td>
<td>Phe</td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Valine</td>
</tr>
<tr>
<td>Valine</td>
<td>Isoleucine</td>
</tr>
</tbody>
</table>

Note: Here, Arg represents arginyl-tRNA synthetase, and so forth. The classification applies to all organisms for which tRNA synthetases have been analyzed and is based on protein structural distinctions and on the mechanistic distinction outlined in Figure 27-19.
MECHANISM FIGURE 27–19 Aminoacylation of tRNA by aminoacyl-tRNA synthetases. Step 1 is formation of an aminoacyl adenylate, which remains bound to the active site. In the second step the aminoacyl group is transferred to the tRNA. The mechanism of this step is somewhat different for the two classes of aminoacyl-tRNA synthetases (see Table 27–7). For class I enzymes, the aminoacyl group is transferred initially to the 2'-hydroxyl group of the 3'-terminal A residue, then to the 3'-hydroxyl group by a transesterification reaction. For class II enzymes, the aminoacyl group is transferred directly to the 3'-hydroxyl group of the terminal adenylate.
FIGURE 27-20 General structure of aminoacyl-tRNAs. The aminoacyl group is esterified to the 3’ position of the terminal A residue. The ester linkage that both activates the amino acid and joins it to the tRNA is shaded pink.

Recall a general principle from the discussion of proofreading by DNA polymerases (p. 982): if available binding interactions do not provide sufficient discrimination between two substrates, the necessary specificity can be achieved by substrate-specific binding in two successive steps. The effect of forcing the system through two successive filters is multiplicative. In the case of Ile-tRNA synthetase, the first filter is the initial binding of the amino acid to the enzyme and its activation to aminoacyl-AMP. The second is the binding of any incorrect aminoacyl-AMP products to a separate active site on the enzyme; a substrate that binds in this second active site is hydrolyzed. The R group of valine is slightly smaller than that of isoleucine, so Val-AMP fits the hydrolytic (proofreading) site of the Ile-tRNA synthetase but Ile-AMP does not. Thus Val-AMP is hydrolyzed to valine and AMP in the proofreading active site, and tRNA bound to the synthetase does not become aminoacylated to the wrong amino acid.

In addition to proofreading after formation of the aminoacyl-AMP intermediate, most aminoacyl-tRNA synthetases can also hydrolyze the ester linkage between amino acids and tRNAs in the aminoacyl-tRNAs. This hydrolysis is greatly accelerated for incorrectly charged tRNAs, providing yet a third filter to enhance the fidelity of the overall process. The few aminoacyl-tRNA synthetases that activate amino acids with no close structural relatives (Cys-tRNA synthetase, for example) demonstrate little or no proofreading activity; in these cases, the active site for aminoacylation can sufficiently discriminate between the proper substrate and any incorrect amino acid.

The overall error rate of protein synthesis (≈1 mistake per 10^4 amino acids incorporated) is not nearly as low as that of DNA replication. Because flaws in a protein are eliminated when the protein is degraded and are not passed on to future generations, they have less biological significance. The degree of fidelity in protein synthesis is sufficient to ensure that most proteins contain no mistakes and that the large amount of energy required to synthesize a protein is rarely wasted. One defective protein molecule is usually unimportant when many correct copies of the same protein are present.

Interaction between an Aminoacyl-tRNA Synthetase and a tRNA: A “Second Genetic Code”

An individual aminoacyl-tRNA synthetase must be specific not only for a single amino acid but for certain tRNAs as well. Discriminating among dozens of tRNAs is just as important for the overall fidelity of protein biosynthesis as is distinguishing among amino acids. The interaction between aminoacyl-tRNA synthetases and tRNAs has been referred to as the “second genetic code,” reflecting its critical role in maintaining the accuracy of protein synthesis. The “coding” rules appear to be more complex than those in the “first” code.

Figure 27-21 summarizes what we know about the nucleotides involved in recognition by some aminoacyl-tRNA synthetases. Some nucleotides are conserved in...
all tRNAs and therefore cannot be used for discrimination. By observing changes in nucleotides that alter substrate specificity, researchers have identified nucleotide positions that are involved in discrimination by the aminoacyl-tRNA synthetases. These nucleotide positions seem to be concentrated in the amino acid arm and the anticodon arm, including the nucleotides of the anticodon itself, but are also located in other parts of the tRNA molecule. Determination of the crystal structures of aminoacyl-tRNA synthetases complexed with their cognate tRNAs and ATP has added a great deal to our understanding of these interactions (Fig. 27-22). The interaction of aminoacyl-tRNA synthetases and their cognate tRNAs is critical to accurate reading of the genetic code. Any expansion of the code to include new amino acids would necessarily require a new aminoacyl-tRNA synthetase:tRNA pair. A limited expansion of the genetic code has been observed in nature; a more extensive expansion has been accomplished in the laboratory (Box 27-3).

Ten or more specific nucleotides may be involved in recognition of a tRNA by its specific aminoacyl-tRNA synthetase. But in a few cases the recognition mechanism is quite simple. Across a range of organisms from bacteria to humans, the primary determinant of tRNA recognition by the Ala-tRNA synthetase is a single G=U base pair in the amino acid arm of tRNAAla (Fig. 27-23a). A short synthetic RNA with as few as 7 bp arranged in a simple hairpin minihelix is efficiently aminoacylated by the Ala-tRNA synthetase, as long as the RNA contains the critical G=U (Fig. 27-23b). This relatively simple alanine system may be an evolutionary relic of a period when RNA oligonucleotides, ancestors to tRNA, were aminoacylated in a primitive system for protein synthesis.

The interaction of aminoacyl-tRNA synthetases and their cognate tRNAs is critical to accurate reading of the genetic code. Any expansion of the code to include new amino acids would necessarily require a new aminoacyl-tRNA synthetase:tRNA pair. A limited expansion of the genetic code has been observed in nature; a more extensive expansion has been accomplished in the laboratory (Box 27-3).

FIGURE 27-22 Aminoacyl-tRNA synthetases. Both synthetases are complexed with their cognate tRNAs (green stick structures). Bound ATP (red) pinpoints the active site near the end of the aminoacyl arm. (a) Gln-tRNA synthetase from E. coli, a typical monomeric class I synthetase (PDB ID 1QRT). (b) Asp-tRNA synthetase from yeast, a typical dimeric class II synthetase (PDB ID 1ASZ).

FIGURE 27-23 Structural elements of tRNAAla that are required for recognition by Ala-tRNA synthetase. (a) The tRNAAla structural elements recognized by the Ala-tRNA synthetase are unusually simple. A single G=U base pair (pink) is the only element needed for specific binding and aminoacylation. (b) A short synthetic RNA minihelix, with the critical G=U base pair but lacking most of the remaining tRNA structure. This is aminoacylated specifically with alanine almost as efficiently as the complete tRNAAla.
Box 27-3 Natural and Unnatural Expansion of the Genetic Code

As we have seen, the 20 amino acids commonly found in proteins offer only limited chemical functionality. Living systems generally overcome these limitations by using enzymatic cofactors or by modifying particular amino acids after they have been incorporated into proteins. In principle, expansion of the genetic code to introduce new amino acids into proteins offers another route to new functionality, but it is a very difficult route to exploit. Such a change might just as easily result in the inactivation of thousands of cellular proteins.

Expanding the genetic code to include a new amino acid requires several cellular changes. A new aminoacyl-tRNA synthetase must generally be present, along with a cognate tRNA. Both of these components must be highly specific, interacting only with each other and the new amino acid. Significant concentrations of the new amino acid must be present in the cell, which may entail the evolution of new metabolic pathways. As outlined in Box 27-1, the anticodon on the tRNA would most likely pair with a codon that normally specifies termination. Making all of this work in a living cell seems unlikely, but it has happened both in nature and in the laboratory.

There are actually 22 rather than 20 amino acids specified by the known genetic code. The two extra ones are selenocysteine and pyrrolysine, each found in only a few very proteins but both offering a glimpse into the intricacies of code evolution.

![Selenocysteine](image1)

![Pyrrolysine](image2)

A few proteins in all cells (such as formate dehydrogenase in bacteria and glutathione peroxidase in mammals) require selenocysteine for their activity. In E. coli selenocysteine is introduced into the enzyme formate dehydrogenase during translation, in response to an in-frame UGA codon. A special type of Ser-tRNA, present at lower levels than other Ser-tRNAs, recognizes UGA and no other codons. This tRNA is charged with serine by the normal serine aminoacyl-tRNA synthetase, and the serine is enzymatically converted to selenocysteine by a separate enzyme before its use at the ribosome. The charged tRNA does not recognize just any UGA codon; some contextual signal in the mRNA, still to be identified, ensures that this tRNA recognizes only the few UGA codons, within certain genes, that specify selenocysteine. In effect, UGA doubles as a codon for both termination and (very occasionally) selenocysteine. This particular code expansion has a dedicated tRNA as described above, but it lacks a dedicated cognate aminoacyl-tRNA synthetase. The process works for selenocysteine, but one might consider it an intermediate step in the evolution of a complete new codon definition.

Pyrrolysine is found in a group of anaerobic archaean called methanogens (see Box 22-1). These organisms produce methane as a required part of their metabolism, and the Methanosarcinaceae group can use methylamines as substrates for methanogenesis. Producing methane from monomethylamine requires the enzyme monomethylamine methyltransferase. The gene encoding this enzyme has an in-frame UAG termination codon. The structure of the methyltransferase was elucidated in 2002, revealing the presence of the novel amino acid pyrrolysine at the position specified by the UAG codon. Subsequent experiments demonstrated that—unlike selenocysteine—pyrrolysine was attached directly to a dedicated tRNA by a cognate pyrrolysyl-tRNA synthetase. These cells produce pyrrolysine via a metabolic pathway that remains to be elucidated. The overall system has all the hallmarks of an established codon assignment, although it only works for UAG codons in this particular gene. As in the case of selenocysteine, there are probably contextual signals that direct this tRNA to the correct UAG codon.

Can scientists match this evolutionary feat? Modification of proteins with various functional groups can provide important insights into the activity and/or structure of the proteins. However, protein modification is often quite laborious. For example, an investigator who wishes to attach a new group to a particular Cys residue will have to somehow block the other Cys residues that may be present on the same protein. If one could instead adapt the genetic code to enable a cell to insert a modified amino acid at a particular location in a protein, the process could be rendered much more convenient. Peter Schultz and coworkers have done just that.

To develop a new codon assignment, one again needs a new aminoacyl-tRNA synthetase and a novel cognate tRNA, both adapted to work only with a particular new amino acid. Efforts to create such an “unnatural” code expansion initially focused on E. coli. The codon UAG was chosen as the best target for encoding a new amino acid. UAG is the least used of the three termination codons, and strains with tRNAs selected to recognize UAG (see Box 27-4) do not exhibit growth defects. To create the new tRNA and (continued on next page)
FIGURE 1 Selecting M/tRNATyr variants that function only with the tyrosyl tRNA synthetase MtTyrRS. The sequence of the gene encoding MtRNATyr, on a plasmid, is randomized at 11 positions that do not interact with MtTyrRS (red dots). The mutagenized plasmids are introduced into E. coli cells to create a library of millions of MtRNATyr variants, represented by the six cells shown here. The toxic barnase gene, engineered to include the sequence TAG so that its transcript includes UAG codons, is provided on a separate plasmid, providing a negative selection. If this gene is expressed, the cells die. It can only be expressed if the MtRNATyr variant expressed by that particular cell is aminoacylated by endogenous (E. coli) aminoacyl-tRNA synthetases, inserting an amino acid instead of stopping translation. Another gene, encoding β-lactamase, and also engineered with TAG sequences to produce UAG stop codons, is provided on yet another plasmid that also expresses the gene encoding MtTyrRS. This serves as a means of positive selection for the remaining MtRNATyr variants. Those variants that are aminoacylated by MtTyrRS allow expression of the β-lactamase gene, which allows cells to grow on ampicillin. Multiple rounds of negative and positive selection yield the best MtRNATyr variants that are aminoacylated uniquely by MtTyrRS and used efficiently in translation.
27.2 Protein Synthesis

tRNA synthetase, the genes for a tyrosyl-tRNA and its cognate tyrosyl-tRNA synthetase were taken from the archaean *Methanococcus jannaschii* (MjT\textsubscript{yr}RNATyr and MjTyr\textsubscript{RS}). MjTyr\textsubscript{RS} does not bind to the anticodon loop of MjT\textsubscript{yr}RNATyr, allowing the anticodon loop to be modified to CUA (complementary to UAG) without affecting the interaction. Because the archaean and bacterial systems are orthologous, the modified archaean components could be transferred to *E. coli* cells without disrupting the intrinsic translation system of the cells.

First, the gene encoding MjT\textsubscript{yr}RNATyr had to be modified to generate an ideal product tRNA—one that was not recognized by any aminoacyl-tRNA synthetases endogenous to *E. coli*, but was aminoacylated by MjTyr\textsubscript{RS}. Finding such a variant could be accomplished via a series of negative and positive selection cycles designed to efficiently sift through variants of the tRNA gene (Fig. 1). Parts of the MjT\textsubscript{yr}RNATyr sequence were randomized, allowing creation of a library of cells that each expressed a different version of the tRNA. A gene encoding barnase (a ribonuclease toxic to *E. coli*) was engineered so that its mRNA transcript contained several UAG codons, and this gene was also introduced into the cells on a plasmid. If the MjT\textsubscript{yr}RNATyr variant expressed in a particular cell in the library was aminoacylated by an endogenous tRNA synthetase it would express the barnase gene and that cell would die (a negative selection). Surviving cells would contain tRNA variants that were not aminoacylated by endogenous tRNA synthetases, but could potentially be aminoacylated by MjTyr\textsubscript{RS}. A positive selection (Fig. 1) was then set up by engineering the β-lactamase gene (which confers resistance to the antibiotic ampicillin) so that its transcript contained several UAG codons and introducing this gene into the cells along with the gene encoding MjTyr\textsubscript{RS}. Those MjT\textsubscript{yr}RNATyr variants that could be aminoacylated by MjTyr\textsubscript{RS} allowed growth on ampicillin only when MjTyr\textsubscript{RS} was also expressed in the cell. Several rounds of this negative and positive selection scheme identified a new MjT\textsubscript{yr}RNATyr variant that was not affected by endogenous enzymes, was aminoacylated by MjTyr\textsubscript{RS}, and functioned well in translation.

Second, the MjTyr\textsubscript{RS} had to be modified to recognize the new amino acid. The gene encoding MjTyr\textsubscript{RS} was now mutagenized to create a large library of variants. Variants that would aminoacylate the new MjT\textsubscript{yr}RNATyr variant with endogenous amino acids were eliminated using the barnase gene selection. A second positive selection (similar to the ampicillin selection above) was carried out so that cells would survive only if the MjT\textsubscript{yr}RNATyr variant was aminoacylated only in the presence of the unnatural amino acid. Several rounds of negative and positive selection generated a cognate tRNA synthetase-tRNA pair that recognized only the unnatural amino acid. These components were then renamed to reflect the unnatural amino acid used in the selection.

Using this approach, many *E. coli* strains have been constructed, each capable of incorporating one particular unnatural amino acid into a protein in response to a UAG codon. The same approach has been used to artificially expand the genetic code of yeast and even mammalian cells. Over 30 different amino acids (Fig. 2) can be introduced site-specifically and efficiently into cloned proteins in this way. The result is an increasingly useful and flexible toolkit with which to advance the study of protein structure and function.

FIGURE 2 A sampling of unnatural amino acids that have been added to the genetic code. These unnatural amino acids add uniquely reactive chemical groups such as (a) a ketone, (b) an azide, (c) a photocrosslinker (a functional group designed to form a covalent bond with a nearby group when activated by light), (d) a highly fluorescent amino acid, (e) an amino acid with a heavy atom (Br) for use in crystallography, and (f) a long-chain cysteine analog that can form extended disulfide bonds.
Stage 2: A Specific Amino Acid Initiates Protein Synthesis

Protein synthesis begins at the amino-terminal end and proceeds by the stepwise addition of amino acids to the carboxyl-terminal end of the growing polypeptide, as determined by Howard Dintzis in 1961 (Fig. 27–24). The AUG initiation codon thus specifies an amino-terminal methionine residue. Although methionine has only one codon, (5')AUG, all organisms have two tRNAs for methionine. One is used exclusively when (5')AUG is the initiation codon for protein synthesis. The other is used to code for a Met residue in an internal position in a polypeptide.

The distinction between an initiating (5')AUG and an internal one is straightforward. In bacteria, the two types of tRNA specific for methionine are designated tRNA^Met and tRNA^{Met}. The amino acid incorporated in response to the (5')AUG initiation codon is N-formylmethionine (fMet). It arrives at the ribosome as N-formylmethionyl-tRNA^{Met} (fMet-tRNA^{Met}), which is formed in two successive reactions. First, methionine is attached to tRNA^{Met} by the Met-tRNA synthetase (which in E. coli aminoacylates both tRNA^{Met} and tRNA^{Met}):

\[
\text{Methionine} + \text{tRNA}^{\text{Met}} + \text{ATP} \rightarrow \text{fMet-tRNA}^{\text{Met}} + \text{AMP} + \text{PPi}
\]

Next, a transformylase transfers a formyl group from N10-formyltetrahydrofolate to the amino group of the Met residue:

\[
\text{N}^{10}\text{-Formyltetrahydrofolate} + \text{fMet-tRNA}^{\text{Met}} \rightarrow \text{tetrahydrofolate} + \text{fMet-tRNA}^{\text{Met}}
\]

The transformylase is more selective than the Met-tRNA synthetase; it is specific for Met residues attached to tRNA^{Met}, presumably recognizing some unique structural feature of that tRNA. By contrast, Met-tRNA^{Met} inserts methionine in interior positions in polypeptides.

Polypeptides synthesized by mitochondrial and chloroplast ribosomes, however, begin with N-formylmethionine. This strongly supports the view that mitochondria and chloroplasts originated from bacterial ancestors that were symbiotically incorporated into precursor eukaryotic cells at an early stage of evolution (see Fig. 1–36).

How can the single (5')AUG codon determine whether a starting N-formylmethionine (or methionine, in eukaryotes) or an interior Met residue is ultimately inserted? The details of the initiation process provide the answer.

The Three Steps of Initiation

The initiation of polypeptide synthesis in bacteria requires (1) the 30S ribosomal subunit, (2) the mRNA coding for the polypeptide to be made, (3) the initiating fMet-tRNA^{Met}, (4) a set of three proteins called initiation factors (IF-1, IF-2, and IF-3), (5) GTP, (6) the 50S ribosomal subunit, and (7) Mg^{2+}. Formation of the initiation complex takes place in three steps (Fig. 27–25).

In step 1 the 30S ribosomal subunit binds two initiation factors, IF-1 and IF-3. Factor IF-3 prevents the 30S and 50S subunits from combining prematurely. The mRNA then binds to the 30S subunit. The initiating (5')AUG is guided to its correct position by the Shine-Dalgarno sequence (named for Australian researchers John Shine and Lynn Dalgarno, who identified it) in the

![Direction of chain growth](image-url)
27.2 Protein Synthesis

nRNA. This consensus sequence is an initiation signal of four to nine purine residues, 8 to 13 bp to the 5' side of the initiation codon (Fig. 27–26a). The sequence base-pairs with a complementary pyrimidine-rich sequence near the 3' end of the 16S rRNA of the 30S ribosomal subunit (Fig. 27–26b). This mRNA–rRNA interaction positions the initiating (5')AUG sequence of the mRNA in the precise position on the 30S subunit where it is required for initiation of translation. The particular (5')AUG where fMet-tRNA\(^{\text{Met}}\) is to be bound is distinguished from other methionine codons by its proximity to the Shine-Dalgarno sequence in the mRNA.

Bacterial ribosomes have three sites that bind tRNAs, the **aminoacyl (A) site**, the **peptidyl (P) site**, and the **exit (E) site**. The A and P sites bind to aminoacyl-tRNAs, whereas the E site binds only to uncharged tRNAs that have completed their task on the ribosome. Both the 30S and the 50S subunits contribute to the characteristics of the A and P sites, whereas the E site is largely confined to the 50S subunit. The initiating (5')AUG is positioned at the P site, the only site to which fMet-tRNA\(^{\text{Met}}\) can bind (Fig. 27–25). The fMet-tRNA\(^{\text{Met}}\) is the only aminoacyl-tRNA that binds first to the P site; during the subsequent elongation stage, all other incoming aminoacyl-tRNAs (including the Met-tRNA\(^{\text{Met}}\) that binds to interior AUG codons) bind first to the A site and only subsequently to the P and E sites. The E site is the site from which the “uncharged” tRNAs leave during elongation. Factor IF-1 binds at the A site and prevents tRNA binding at this site during initiation.

In step 2 of the initiation process (Fig. 27–25), the complex consisting of the 30S ribosomal subunit, IF-3, and mRNA is joined by both GTP-bound IF-2 and the initiating fMet-tRNA\(^{\text{Met}}\). The anticodon of this tRNA now pairs correctly with the mRNA's initiation codon.

In step 3 this large complex combines with the 50S ribosomal subunit; simultaneously, the GTP bound to IF-2 is hydrolyzed to GDP and P\(_i\), which are released from the complex. All three initiation factors depart from the ribosome at this point.

Completion of the steps in Figure 27–25 produces a functional 70S ribosome called the **initiation complex**, containing the mRNA and the initiating fMet-tRNA\(^{\text{Met}}\). The correct binding of the fMet-tRNA\(^{\text{Met}}\) to the P site in the complete 70S initiation complex is assured by at least three points of recognition and attachment: the codon-anticodon interaction involving the initiation AUG fixed in the P site; interaction between the Shine-Dalgarno sequence in the mRNA and the 16S rRNA; and binding interactions between the ribosomal P site and the fMet-tRNA\(^{\text{Met}}\). The initiation complex is now ready for elongation.

Initiation in Eukaryotic Cells Translation is generally similar in eukaryotic and bacterial cells; most of the significant differences are in the mechanism of initiation. Eukaryotic mRNAs are bound to the ribosome as a
FIGURE 27–26 Messenger RNA sequences that serve as signals for initiation of protein synthesis in bacteria. (a) Alignment of the initiating AUG (shaded in green) at its correct location on the 30S ribosomal subunit depends in part on upstream Shine-Dalgarno sequences (pink). Portions of the mRNA transcripts of five bacterial genes are shown. Note the unusual example of the E. coli LacI protein, which initiates with a CUC (Val) codon (see Box 27–1). (b) The Shine-Dalgarno sequence of the mRNA pairs with a sequence near the 3' end of the 16S rRNA.

complex with a number of specific binding proteins. Several of these tie together the 5' and 3' ends of the message. At the 3' end, the mRNA is bound by the poly(A) binding protein (PAB). Eukaryotic cells have at least nine initiation factors. A complex called eIF4F, which includes the proteins eIF4E, eIF4G, and eIF4A, binds to the 5' cap (see Fig. 26–13) through eIF4E. The protein eIF4G binds to both eIF4E and PAB, effectively tying them together (Fig. 27–27). The protein eIF4A has an RNA helicase activity. It is the eIF4F complex that associates with another factor, eIF3, and with the 40S ribosomal subunit. The efficiency of translation is affected by many properties of the mRNA and proteins in this complex, including the length of the 3' poly(A) tract (in most cases, longer is better). The end-to-end arrangement of the eukaryotic mRNA facilitates translational regulation of gene expression, considered in Chapter 28.

The initiating (5')AUG is detected within the mRNA not by its proximity to a Shine-Dalgarno-like sequence but by a scanning process: a scan of the mRNA from the 5' end until the first AUG is encountered, signaling the beginning of the reading frame. The eIF4F complex is probably involved in this process, perhaps using the RNA helicase activity of eIF4A to eliminate secondary structure in the 5' untranslated portion of the mRNA. Scanning is also facilitated by another protein, eIF4B.
The roles of the various bacterial and eukaryotic initiation factors in the overall process are summarized in Table 27-8. The mechanism by which these proteins act is an important area of investigation.

Stage 3: Peptide Bonds Are Formed in the Elongation Stage

The third stage of protein synthesis is **elongation**. Again, our initial focus is on bacterial cells. Elongation requires (1) the initiation complex described above, (2) aminoacyl-tRNAs, (3) a set of three soluble cytosolic proteins called elongation factors (EF-Tu, EF-Ts, and EF-G in bacteria), and (4) GTP. Cells use three steps to add each amino acid residue, and the steps are repeated as many times as there are residues to be added.

Elongation Step 1: Binding of an Incoming Aminoacyl-tRNA In the first step of the elongation cycle (Fig. 27-28), the appropriate incoming aminoacyl-tRNA binds to a complex of GTP-bound EF-Tu. The resulting aminoacyl-tRNA-EF-Tu-GTP complex binds to the A site of the 70S initiation complex. The GTP is hydrolyzed and an EF-Tu-GDP complex is released from the 70S ribosome. The EF-Tu-GTP complex is regenerated in a process involving EF'-Ts and GTP.

Elongation Step 2: Peptide Bond Formation A peptide bond is now formed between the two amino acids bound by their tRNAs to the A and P sites on the ribosome. This occurs by the transfer of the initiating N-formylmethionyl group from its tRNA to the amino group of the second amino acid, now in the A site (Fig. 27-29). The α-amino group of the amino acid in the A site acts as a nucleophile, displacing the tRNA in the P site to form the peptide bond. This reaction produces a dipeptidyl-tRNA in the A site, and the now "uncharged" (deacylated) tRNA remains bound to the P site. The tRNAs then shift to a hybrid binding state, with elements of each spanning two different sites on the ribosome, as shown in Figure 27-29.

The enzymatic activity that catalyzes peptide bond formation has historically been referred to as peptidyl transferase and was widely assumed to be intrinsic to one or more of the proteins in the large ribosomal subunit. We now know that this reaction is catalyzed by the 23S rRNA (Fig. 27-13d), adding to the known catalytic repertoire of ribozymes. This discovery has interesting implications for the evolution of life (see Box 27-2).

Elongation Step 3: Translocation In the final step of the elongation cycle, translocation, the ribosome moves one codon toward the 3' end of the mRNA (Fig. 27-30a). This movement shifts the anticodon of the dipeptidyl-tRNA, which is still attached to the second codon of the mRNA, from the A site to the P site, and shifts the deacylated tRNA from the P site to the E site, from where the tRNA is released into the cytosol. The third codon of the mRNA now lies in the A site and the second codon in the P site. Movement of the ribosome along the mRNA requires EF-G (also known as translocase) and the energy provided by hydrolysis of another molecule of GTP. A change in the three-dimensional conformation of
the entire ribosome results in its movement along the mRNA. Because the structure of EF-G mimics the structure of the EF-Tu–tRNA complex (Fig. 27–30b), EF-G can bind the A site and presumably displace the peptidyl-tRNA.

After translocation, the ribosome, with its attached dipeptidyl-tRNA and mRNA, is ready for the next elongation cycle and attachment of a third amino acid residue. This process occurs in the same way as addition of the second residue (as shown in Figs 27–28, 27–29, and 27–30). For each amino acid residue correctly added to the growing polypeptide, two GTPs are hydrolyzed to GDP and P_i as the ribosome moves from codon to codon along the mRNA toward the 3' end.
The polypeptide remains attached to the tRNA of the most recent amino acid to be inserted. This association maintains the functional connection between the information in the mRNA and its decoded polypeptide output. At the same time, the ester linkage between this tRNA and the carboxyl terminus of the growing polypeptide activates the terminal carboxyl group for nucleophilic attack by the incoming amino acid to form a new peptide bond (Fig. 27–29). As the existing ester linkage between the polypeptide and tRNA is broken during peptide bond formation, the linkage between the polypeptide and the information in the mRNA persists, because each newly added amino acid is still attached to its tRNA.

The elongation cycle in eukaryotes is quite similar to that in bacteria. Three eukaryotic elongation factors (eEF1α, eEF1βγ, and eEF2) have functions analogous to those of the bacterial elongation factors (EF-Tu, EF-Ts, and EF-G, respectively). Eukaryotic ribosomes do not have an E site; uncharged tRNAs are expelled directly from the P site.

Proofreading on the Ribosome The GTPase activity of EF-Tu during the first step of elongation in bacterial cells (Fig. 27–28) makes an important contribution to the rate and fidelity of the overall biosynthetic process. Both the EF-Tu–GTP and EF-Tu–GDP complexes exist for a few milliseconds before they dissociate. These two intervals provide opportunities for the codon-anticodon interactions to be proofread. Incorrect aminoacyl-tRNAs normally dissociate from the A site during one of these periods. If the GTP analog guanosine 5’-O-(3-thiotriphosphate) (GTPγS) is used in place of GTP, hydrolysis is slowed, improving the fidelity (by increasing the proofreading intervals) but reducing the rate of protein synthesis.
BOX 27-4 Induced Variation in the Genetic Code: Nonsense Suppression

When a mutation produces a termination codon in the interior of a gene, translation is prematurely halted and the incomplete polypeptide is usually inactive. These are called nonsense mutations. The gene can be restored to normal function if a second mutation either (1) converts the misplaced termination codon to a codon specifying an amino acid or (2) suppresses the effects of the termination codon. Such restorative mutations are called nonsense suppressors; they generally involve mutations in tRNA genes to produce altered (suppressor) tRNAs that can recognize the termination codon and insert an amino acid at that position. Most known suppressor tRNAs have single base substitutions in their anticodons.

Suppressor tRNAs constitute an experimentally induced variation in the genetic code to allow the reading of what are usually termination codons, much like the naturally occurring code variations described in Box 27-1. Nonsense suppression does not completely disrupt normal information transfer in a cell, because the cell usually has several copies of each tRNA gene; some of these duplicate genes are weakly expressed and account for only a minor part of the cellular pool of a particular tRNA. Suppressor mutations usually involve a “minor” tRNA, leaving the major tRNA to read its codon normally.

For example, E. coli has three identical genes for tRNA^{Trp}, each producing a tRNA with the anticodon (5’)GUA. One of these genes is expressed at relatively high levels and thus its product represents the major tRNA^{Trp} species; the other two genes are transcribed in only small amounts. A change in the anticodon of the tRNA product of one of these duplicate tRNA^{Trp} genes, from (5’)GUA to (5’)CUA, produces a minor tRNA^{Trp} species that will insert tyrosine at UAG stop codons. This insertion of tyrosine at UAG is carried out inefficiently, but it can produce enough full-length protein from a gene with a nonsense mutation to allow the cell to survive. The major tRNA^{Trp} continues to translate the genetic code normally for the majority of proteins.

The mutation that leads to creation of a suppressor tRNA does not always occur in the anticodon. The suppression of UGA nonsense codons generally involves the tRNA^{Trp} that normally recognizes UGG. The alteration that allows it to read UGA (and insert Trp residues at these positions) is a G to A change at position 24 (in an arm of the tRNA somewhat removed from the anticodon); this tRNA can now recognize both UGG and UGA. A similar change is found in tRNAs involved in the most common naturally occurring variation in the genetic code (UGA = Trp; see Box 27-1).

Suppression should lead to many abnormally long proteins, but this does not always occur. We understand only a few details of the molecular events in translation termination and nonsense suppression.

The process of protein synthesis (including the characteristics of codon-anticodon pairing already described) has clearly been optimized through evolution to balance the requirements for speed and fidelity. Improved fidelity might diminish speed, whereas increases in speed would probably compromise fidelity. And, recall that the proofreading mechanism on the ribosome establishes only that the proper codon-anticodon pairing has taken place, not that the correct amino acid is attached to the tRNA. If a tRNA is successfully aminoacylated with the wrong amino acid (as can be done experimentally), this incorrect amino acid is efficiently incorporated into a protein in response to whatever codon is normally recognized by the tRNA.

Stage 4: Termination of Polypeptide Synthesis Requires a Special Signal

Elongation continues until the ribosome adds the last amino acid coded by the mRNA. Termination, the fourth stage of polypeptide synthesis, is signaled by the presence of one of three termination codons in the mRNA (UAA, UAG, UGA), immediately following the final coded amino acid. Mutations in a tRNA anticodon that allow an amino acid to be inserted at a termination codon are generally deleterious to the cell (Box 27-4).

In bacteria, once a termination codon occupies the ribosomal A site, three termination factors, or release factors—the proteins RF-1, RF-2, and RF-3—contribute to (1) hydrolysis of the terminal peptidyl-tRNA bond; (2) release of the free polypeptide and the last tRNA, now uncharged, from the P site; and (3) dissociation of the 70S ribosome into its 30S and 50S subunits, ready to start a new cycle of polypeptide synthesis (Fig. 27-31). RF-1 recognizes the termination codons UAG and UAA, and RF-2 recognizes UGA and UAA. Either RF-1 or RF-2 (depending on which codon is present) binds at a termination codon and induces peptidyl transferase to transfer the growing polypeptide to a water molecule rather than to another amino acid. The release factors have domains thought to mimic the structure of tRNA, as shown for the elongation factor EF-G in Figure 27-30b. The specific function of RF-3 has not been firmly established, although it is thought to release the ribosomal subunit. In eukaryotes, a single release factor, eRF, recognizes all three termination codons.
Ribosome recycling leads to dissociation of the translation components. The release factors dissociate from the posttermination complex (with an uncharged tRNA in the P site), and are replaced by EF-G and a protein called ribosome recycling factor (RRF; Mr 20,300). Hydrolysis of GTP by EF-G leads to dissociation of the 50S subunit from the 30S tRNA–mRNA complex. EF-G and RRF are replaced by IF-3, which promotes the dissociation of the tRNA. The mRNA is then released. The complex of IF-3 and the 30S subunit is then ready to initiate another round of protein synthesis (Fig. 27–25).

FIGURE 27–31 Termination of protein synthesis in bacteria. Termination occurs in response to a termination codon in the A site. First, a release factor, RF (RF-1 or RF-2, depending on which termination codon is present), binds to the A site. This leads to hydrolysis of the ester linkage between the nascent polypeptide and the tRNA in the P site and release of the completed polypeptide. Finally, the mRNA, deacylated tRNA, and release factor leave the ribosome, which dissociates into its 30S and 50S subunits, aided by ribosome recycling factor (RRF), IF-3, and energy provided by EF-G-mediated GTP hydrolysis. The 30S subunit complex with IF-3 is ready to begin another cycle of translation (see Fig. 27–25).

Energy Cost of Fidelity in Protein Synthesis Synthesis of a protein true to the information specified in its mRNA requires energy. Formation of each aminoacyl-tRNA uses two high-energy phosphate groups. An additional ATP is consumed each time an incorrectly activated amino acid is hydrolyzed by the deacylation activity of an aminoacyl-tRNA synthetase, as part of its proofreading activity. A GTP is cleaved to GDP and P1 during the first elongation step, and another during the translocation step. Thus, on average, the energy derived from the hydrolysis of more than four NTPs to NDPs is required for the formation of each peptide bond of a polypeptide.

This represents an exceedingly large thermodynamic “push” in the direction of synthesis: at least \(4 \times 30.5 \, \text{kJ/mol} = 122 \, \text{kJ/mol} \) of phosphodiester bond energy to generate a peptide bond, which has a standard free energy of hydrolysis of only about \(-21 \, \text{kJ/mol}\). The net free-energy change during peptide bond synthesis is thus \(-101 \, \text{kJ/mol}\). Proteins are information-containing polymers. The biochemical goal is not simply the formation of a peptide bond but the formation of a peptide bond between two specified amino acids. Each of the high-energy phosphate compounds expended in this process plays a critical role in maintaining proper alignment between each new codon in the mRNA and its associated amino acid at the growing end of the polypeptide. This energy permits very high fidelity in the biological translation of the genetic message of mRNA into the amino acid sequence of proteins.

Rapid Translation of a Single Message by Polysomes Large clusters of 10 to 100 ribosomes that are very active in protein synthesis can be isolated from both eukaryotic and bacterial cells. Electron micrographs show a fiber between adjacent ribosomes in the cluster, which is called a polysome (Fig. 27–32). The connecting strand is a single molecule of mRNA that is being translated simultaneously by many closely spaced ribosomes, allowing the highly efficient use of the mRNA.

In bacteria, transcription and translation are tightly coupled. Messenger RNAs are synthesized and translated in the same 5′→3′ direction. Ribosomes begin
tions called posttranslational modifications.

Amino-Terminal and Carboxyl-Terminal Modifications The first residue inserted in all polypeptides is N-formylmethionine (in bacteria) or methionine (in eukaryotes). However, the formyl group, the amino-terminal Met residue, and often additional amino-terminal (and, in some cases, carboxyl-terminal) residues may be removed enzymatically in formation of the final functional protein. In as many as 50% of eukaryotic proteins, the amino group of the amino-terminal residue is N-acetylated after translation. Carboxyl-terminal residues are also sometimes modified.

Loss of Signal Sequences As we shall see in Section 27.3, the 15 to 30 residues at the amino-terminal end
of some proteins play a role in directing the protein to its ultimate destination in the cell. Such signal sequences are eventually removed by specific peptidases.

Modification of Individual Amino Acids The hydroxyl groups of certain Ser, Thr, and Tyr residues of some proteins are enzymatically phosphorylated by ATP (Fig. 27–34a); the phosphate groups add negative charges to these polypeptides. The functional significance of this modification varies from one protein to the next. For example, the milk protein casein has many phosphoserine groups that bind Ca$^{2+}$. Calcium, phosphate, and amino acids are all valuable to suckling young, so casein efficiently provides three essential nutrients. And as we have seen in numerous instances, phosphorylation-dephosphorylation cycles regulate the activity of many enzymes and regulatory proteins.

Extra carboxyl groups may be added to Glu residues of some proteins. For example, the blood-clotting protein prothrombin contains a number of γ-carboxyglutamate residues (Fig. 27–34b) in its amino-terminal region, introduced by an enzyme that requires vitamin K. These carboxyl groups bind Ca$^{2+}$, which is required to initiate the clotting mechanism.

Monomethyl- and dimethyllysine residues (Fig. 27–34c) occur in some muscle proteins and in cytochrome c. The calmodulin of most species contains one trimethyllysine residue at a specific position. In other proteins, the carboxyl groups of some Glu residues undergo methylation, removing their negative charge.

Attachment of Carbohydrate Side Chains The carbohydrate side chains of glycoproteins are attached covalently during or after synthesis of the polypeptide. In some glycoproteins, the carbohydrate side chain is attached enzymatically to Asn residues (N-linked oligosaccharides), in others to Ser or Thr residues (O-linked oligosaccharides) (see Fig. 7–29). Many proteins that function extracellularly, as well as the lubricating proteoglycans that coat mucous membranes, contain oligosaccharide side chains (see Fig. 7–27).

Addition of Isoprenyl Groups A number of eukaryotic proteins are modified by the addition of groups derived from isoprene (isoprenyl groups). A thioether bond is formed between the isoprenyl group and a Cys residue of the protein (see Fig. 11–14). The isoprenyl groups are derived from pyrophosphorylated intermediates of the cholesterol biosynthetic pathway (see Fig. 21–35), such as farnesyl pyrophosphate (Fig. 27–35).
Proteins modified in this way include the Ras proteins, products of the \(ras \) oncogenes and proto-oncogenes, and G proteins (both discussed in Chapter 12), and lamin, proteins found in the nuclear matrix. The isoprenyl group helps to anchor the protein in a membrane. The transforming (carcinogenic) activity of the \(ras \) oncogene is lost when isoprenylation of the Ras protein is blocked, a finding that has stimulated interest in identifying inhibitors of this posttranslational modification pathway for use in cancer chemotherapy.

Addition of Prosthetic Groups Many proteins require for their activity covalently bound prosthetic groups. Two examples are the biotin molecule of acetyl-CoA carboxylase and the heme group of hemoglobin or cytochrome c.

Proteolytic Processing Many proteins are initially synthesized as large, inactive precursor polypeptides that are proteolytically trimmed to form their smaller, active forms. Examples include proinsulin, some viral proteins, and proteases such as chymotrypsinogen and trypsinogen (see Fig. 6-38).

Formation of Disulfide Cross-Links After folding into their native conformations, some proteins form intrachain or interchain disulfide bridges between Cys residues. In eukaryotes, disulfide bonds are common in proteins to be exported from cells. The cross-links formed in this way help to protect the native conformation of the protein molecule from denaturation in the extracellular environment, which can differ greatly from intracellular conditions and is generally oxidizing.

Protein Synthesis Is Inhibited by Many Antibiotics and Toxins

Protein synthesis is a central function in cellular physiology and is the primary target of many naturally occurring antibiotics and toxins. Except as noted, these antibiotics inhibit protein synthesis in bacteria. The differences between bacterial and eukaryotic protein synthesis, though in some cases subtle, are sufficient that most of the compounds discussed below are relatively harmless to eukaryotic cells. Natural selection has favored the evolution of compounds that exploit minor differences in order to affect bacterial systems selectively, such that these biochemical weapons are synthesized by some microorganisms and are extremely toxic to others. Because nearly every step in protein synthesis can be specifically inhibited by one antibiotic or another, antibiotics have become valuable tools in the study of protein biosynthesis.

Puromycin, made by the mold *Streptomyces alboniger*, is one of the best-understood inhibitory antibiotics. Its structure is very similar to the 3' end of an aminoacyl-tRNA, enabling it to bind to the ribosomal A site and participate in peptide bond formation, producing peptidyl-puromycin (Fig. 27-36). However, because puromycin resembles only the 3' end of the tRNA, it does not engage in translocation and dissociates from the ribosome shortly after it is linked to the carboxyl terminus of the peptide. This prematurely terminates polypeptide synthesis.

Tetracyclines inhibit protein synthesis in bacteria by blocking the A site on the ribosome, preventing the binding of aminoacyl-tRNAs. **Chloramphenicol** inhibits protein synthesis by bacterial (and mitochondrial and chloroplast) ribosomes by blocking peptidyl transfer; it does not affect cytosolic protein synthesis in eukaryotes. Conversely, **cycloheximide** blocks the peptidyl transferase of 80S eukaryotic ribosomes but not that of 70S bacterial (and mitochondrial and chloroplast) ribosomes. **Streptomycin**, a basic trisaccharide, causes misreading of the genetic code (in bacteria) at relatively low concentrations and inhibits initiation at higher concentrations.

Several other inhibitors of protein synthesis are notable because of their toxicity to humans and other mammals. **Diphtheria toxin** \((M_r 58,330) \) catalyzes the ADP-ribosylation of a diphthamide (a modified
histidine) residue of eukaryotic elongation factor eEF2, thereby inactivating it. **Ricin** (*M. 29,895*), an extremely toxic protein of the castor bean, inactivates the 60S subunit of eukaryotic ribosomes by depurinating a specific adenosine in 23S rRNA.

SUMMARY 27.2 Protein Synthesis

- **Protein synthesis** occurs on the ribosomes, which consist of protein and rRNA. Bacteria have 70S ribosomes, with a large (50S) and a small (30S) subunit. Eukaryotic ribosomes are significantly larger (80S) and contain more proteins.

- Transfer RNAs have 73 to 93 nucleotide residues, some of which have modified bases. Each tRNA has an amino acid arm with the terminal sequence CCA(3') to which an amino acid is esterified, an anticodon arm, a Tyr'C arm, and a D arm; some tRNAs have a fifth arm. The anticodon is responsible for the specificity of interaction between the aminoacyl-tRNA and the complementary mRNA codon.

- The growth of polypeptides on ribosomes begins with the amino-terminal amino acid and proceeds by successive additions of new residues to the carboxyl-terminal end.

- **Protein synthesis** occurs in five stages.

1. Amino acids are activated by specific aminoacyl-tRNA synthetases in the cytosol. These enzymes catalyze the formation of aminoacyl-tRNAs, with simultaneous cleavage of ATP to AMP and PP1. The fidelity of protein synthesis depends on the accuracy of this reaction, and some of these enzymes carry out proofreading steps at separate active sites.

2. In bacteria, the initiating aminoacyl-tRNA in all proteins is *N*-formylmethionyl-tRNA^{Met}. Initiation of protein synthesis involves formation of a complex between the 30S ribosomal subunit, mRNA, GTP, fMet-tRNA^{Met}, three initiation factors, and the 50S subunit; GTP is hydrolyzed to GDP and Pi.

3. In the elongation steps, GTP and elongation factors are required for binding the incoming aminoacyl-tRNA to the A site on the ribosome. In the first peptidyl transfer reaction, the fMet residue is transferred to the amino group of the incoming aminoacyl-tRNA. Movement of the ribosome along the mRNA then translocates the dipeptidyl-tRNA from the A site to the P site, a process requiring hydrolysis of GTP. Decacylated tRNAs dissociate from the ribosomal E site.

4. After many such elongation cycles, synthesis of the polypeptide is terminated with the aid of release factors. At least four high-energy phosphate equivalents (from ATP and GTP) are required to generate each peptide bond, an energy investment required to guarantee fidelity of translation.
5. Polypeptides fold into their active, three-dimensional forms. Many proteins are further processed by posttranslational modification reactions.

- Many well-studied antibiotics and toxins inhibit some aspect of protein synthesis.

27.3 Protein Targeting and Degradation

The eukaryotic cell is made up of many structures, compartments, and organelles, each with specific functions that require distinct sets of proteins and enzymes. These proteins (with the exception of those produced in mitochondria and plastids) are synthesized on ribosomes in the cytosol, so how are they directed to their final cellular destinations?

We are now beginning to understand this complex and fascinating process. Proteins destined for secretion, integration in the plasma membrane, or inclusion in lysosomes generally share the first few steps of a pathway that begins in the endoplasmic reticulum. Proteins destined for mitochondria, chloroplasts, or the nucleus use three separate mechanisms. And proteins destined for the cytosol simply remain where they are synthesized.

The most important element in many of these targeting pathways is a short sequence of amino acids called a signal sequence, whose function was first postulated by Günter Blobel and colleagues in 1970. The signal sequence directs a protein to its appropriate location in the cell and, for many proteins, is removed during transport or after the protein has reached its final destination. In proteins slated for transport into mitochondria, chloroplasts, or the ER, the signal sequence is at the amino terminus of a newly synthesized polypeptide. In many cases, the targeting capacity of particular signal sequences has been confirmed by fusing the signal sequence from one protein to a second protein and showing that the signal directs the second protein to the location where the first protein is normally found. The selective degradation of proteins no longer needed by the cell also relies largely on a set of molecular signals embedded in each protein's structure.

In this concluding section we examine protein targeting and degradation, emphasizing the underlying signals and molecular regulation that are so crucial to cellular metabolism. Except where noted, the focus is now on eukaryotic cells.

Posttranslational Modification of Many Eukaryotic Proteins Begins in the Endoplasmic Reticulum

Perhaps the best-characterized targeting system begins in the ER. Most lysosomal, membrane, or secreted proteins have an amino-terminal signal sequence (Fig. 27-37) that marks them for translocation into the lumen of the ER; hundreds of such signal sequences have been determined. The carboxyl terminus of the signal sequence is defined by a cleavage site, where protease action removes the sequence after the protein is imported into the ER. Signal sequences vary in length from 13 to 36 amino acid residues, but all have the following features: (1) about 10 to 15 hydrophobic amino acid residues; (2) one or more positively charged residues, usually near the amino terminus, preceding the hydrophobic sequence; and (3) a short sequence at the carboxyl terminus (near the cleavage site) that is relatively polar, typically having amino acid residues with short side chains (especially Ala) at the positions closest to the cleavage site.

As originally demonstrated by George Palade, proteins with these signal sequences are synthesized on ribosomes attached to the ER. The signal sequence itself helps to direct the ribosome to the ER, as illustrated by steps 1 through 8 in Figure 27-38. The targeting

\[
\text{FIGURE 27–37 Amino-terminal signal sequences of some eukaryotic proteins that direct their translocation into the ER. The hydrophobic core (yellow) is preceded by one or more basic residues (blue). Note}
\]
FIGURE 27–38 Directing eukaryotic proteins with the appropriate signals to the endoplasmic reticulum. This process involves the SRP cycle and translocation and cleavage of the nascent polypeptide. The steps are described in the text. SRP is a rod-shaped complex containing a 300 nucleotide RNA (7SL-RNA) and six different proteins (combined M, 325,000). One protein subunit of SRP binds directly to the signal sequence, inhibiting elongation by sterically blocking the entry of aminoacyl-tRNAs and inhibiting peptidyl transferase. Another protein subunit binds and hydrolyzes GTP. The SRP receptor is a heterodimer of α (M, 69,000) and β (M, 30,000) subunits, both of which bind and hydrolyze multiple GTP molecules during this process.

Pathway begins with initiation of protein synthesis on free ribosomes. 2 The signal sequence appears early in the synthetic process, because it is at the amino terminus, which as we have seen is synthesized first. 3 As it emerges from the ribosome, the signal sequence—and the ribosome itself—are bound by the large signal recognition particle (SRP); SRP then binds GTP and halts elongation of the polypeptide when it is about 70 amino acids long and the signal sequence has completely emerged from the ribosome. 4 The GTP-bound SRP now directs the ribosome (still bound to the mRNA) and the incomplete polypeptide to GTP-bound SRP receptors in the cytosolic face of the ER; the nascent polypeptide is delivered to a peptide translocation complex in the ER, which may interact directly with the ribosome. 5 SRP dissociates from the ribosome, accompanied by hydrolysis of GTP in both SRP and the SRP receptor. 6 Elongation of the polypeptide now resumes, with the ATP-driven translocation complex feeding the growing polypeptide into the ER lumen until the complete protein has been synthesized. 7 The signal sequence is removed by a signal peptidase within the ER lumen; 8 the ribosome dissociates and is recycled.

Glycosylation Plays a Key Role in Protein Targeting

In the ER lumen, newly synthesized proteins are further modified in several ways. Following the removal of signal sequences, polypeptides are folded, disulfide bonds formed, and many proteins glycosylated to form glycoproteins. In many glycoproteins the linkage to their oligosaccharides is through Asn residues. These N-linked oligosaccharides are diverse (Chapter 7), but the pathways by which they form have a common first step. A 14 residue core oligosaccharide is built up in a stepwise fashion, then transferred from a dolichol phosphate donor molecule to certain Asn residues in the protein (Fig. 27–39). The transferase is on the luminal face of the ER and thus cannot catalyze glycosylation of cytosolic proteins. After transfer,
FIGURE 27–39 Synthesis of the core oligosaccharide of glycoproteins.
The core oligosaccharide is built up by the successive addition of monosaccharide units. The first steps occur on the cytosolic face of the ER. Translocation moves the incomplete oligosaccharide across the membrane (mechanism not shown), and completion of the core oligosaccharide occurs within the lumen of the ER. The precursors that contribute additional mannose and glucose residues to the growing oligosaccharide in the lumen are dolichol phosphate derivatives. In the first step in the construction of the N-linked oligosaccharide moiety of a glycoprotein, the core oligosaccharide is transferred from dolichol phosphate to an Asn residue of the protein within the ER lumen. The core oligosaccharide is then further modified in the ER and the Golgi complex in pathways that differ for different proteins. The five sugar residues shown surrounded by a beige screen (after step 7) are retained in the final structure of all N-linked oligosaccharides. The released dolichol pyrophosphate is again translocated so that the pyrophosphate is on the cytosolic face of the ER, then a phosphate is hydrolytically removed to regenerate dolichol phosphate.

Suitably modified proteins can now be moved to a variety of intracellular destinations. Proteins travel from the ER to the Golgi complex in transport vesicles (Fig. 27–40). In the Golgi complex, oligosaccharides are O-linked to some proteins, and N-linked oligosaccharides are further modified. By mechanisms not yet fully understood, the Golgi complex also sorts proteins and sends them to their final destinations. The processes

the core oligosaccharide is trimmed and elaborated in different ways on different proteins, but all N-linked oligosaccharides retain a pentasaccharide core derived from the original 14 residue oligosaccharide. Several antibiotics act by interfering with one or more steps in this process and have aided in elucidating the steps of protein glycosylation. The best-characterized is tunicamycin, which mimics the structure of UDP-N-acetylglucosamine and blocks the first step of the process (Fig. 27–39, step 1). A few proteins are O-glycosylated in the ER, but most O-glycosylation occurs in the Golgi complex or in the cytosol (for proteins that do not enter the ER).
that segregate proteins targeted for secretion from those targeted for the plasma membrane or lysosomes must distinguish among these proteins on the basis of structural features other than signal sequences, which were removed in the ER lumen.

This sorting process is best understood in the case of hydrolases destined for transport to lysosomes. On arrival of a hydrolase (a glycoprotein) in the Golgi complex, an as yet undetermined feature (sometimes called a signal patch) of the three-dimensional structure of the hydrolase is recognized by a phosphotransferase, which phosphorylates certain mannose residues in the oligosaccharide (Fig. 27-41). The presence of one or more mannose 6-phosphate residues in its N-linked oligosaccharide is the structural signal that targets the protein to lysosomes. A receptor protein in the membrane of the Golgi complex recognizes the mannose 6-phosphate signal and binds the hydrolase so marked. Vesicles containing these receptor-hydrolase complexes

FIGURE 27-40 Pathway taken by proteins destined for lysosomes, the plasma membrane, or secretion. Proteins are moved from the ER to the cis side of the Golgi complex in transport vesicles. Sorting occurs primarily in the trans side of the Golgi complex.

FIGURE 27-41 Phosphorylation of mannose residues on lysosome-targeted enzymes. N-Acetylglucosamine phosphotransferase recognizes some as yet unidentified structural feature of hydrolases destined for lysosomes.
bud from the trans side of the Golgi complex and make their way to sorting vesicles. Here, the receptor-hydrolase complex dissociates in a process facilitated by the lower pH in the vesicle and by phosphatase-catalyzed removal of phosphate groups from the mannose 6-phosphate residues. The receptor is then recycled to the Golgi complex, and vesicles containing the hydrolases bud from the sorting vesicles and move to the lysosomes. In cells treated with tunicamycin (Fig. 27–39, step 1), hydrolases that should be targeted for lysosomes are instead secreted, confirming that the N-linked oligosaccharide plays a key role in targeting these enzymes to lysosomes.

The pathways that target proteins to mitochondria and chloroplasts also rely on amino-terminal signal sequences. Although mitochondria and chloroplasts contain DNA, most of their proteins are encoded by nuclear DNA and must be targeted to the appropriate organelle. Unlike other targeting pathways, however, the mitochondrial and chloroplast pathways begin only after a precursor protein has been completely synthesized and released from the ribosome. Precursor proteins destined for mitochondria or chloroplasts are bound by cytosolic chaperone proteins and delivered to receptors on the exterior surface of the target organelle. Specialized translocation mechanisms then transport the protein to its final destination in the organelle, after which the signal sequence is removed.

Signal Sequences for Nuclear Transport Are Not Cleaved

Molecular communication between the nucleus and the cytosol requires the movement of macromolecules through nuclear pores. RNA molecules synthesized in the nucleus are exported to the cytosol. Ribosomal proteins synthesized on cytosolic ribosomes are imported into the nucleus and assembled into 60S and 40S ribosomal subunits in the nucleolus; completed subunits are then exported back to the cytosol. A variety of nuclear proteins (RNA and DNA polymerases, histones, topoisomerases, proteins that regulate gene expression, and so forth) are synthesized in the cytosol and imported into the nucleus. This traffic is modulated by a complex system of molecular signals and transport proteins that is gradually being elucidated.

In most multicellular eukaryotes, the nuclear envelope breaks down at each cell division, and once division is completed and the nuclear envelope reestablished, the dispersed nuclear proteins must be reimported. To allow this repeated nuclear importation, the signal sequence that targets a protein to the nucleus—the nuclear localization sequence, NLS—is not removed after the protein arrives at its destination. An NLS, unlike other signal sequences, may be located almost anywhere along the primary sequence of the protein. NLSs can vary considerably, but many consist of four to eight amino acid residues and include several consecutive basic (Arg or Lys) residues.

Nuclear importation is mediated by a number of proteins that cycle between the cytosol and the nucleus (Fig. 27–42), including importin α and β and a small GTPase known as Ran (Ras-related nuclear protein). A heterodimer of importin α and β functions as a soluble receptor for proteins targeted to the nucleus, with the α subunit binding NLS-bearing proteins in the cytosol. The complex of the NLS-bearing protein and the importin docks at a nuclear pore and is translocated through the pore by an energy-dependent mechanism. In the nucleus, the importin β is bound by Ran GTPase, releasing importin α from the imported protein. Importin α is bound by Ran and by CAS (cellular apoptosis susceptibility protein) and separated from the NLS-bearing protein. Importin α and β, in their complexes with Ran and CAS, are then exported from the nucleus. Ran hydrolyzes GTP in the cytosol to release the importins, which are then free to begin another importation cycle. Ran itself is also cycled back into the nucleus by the binding of Ran-GDP to nuclear transport factor 2 (NTF2). Inside the nucleus, the GDP bound to Ran is replaced with GTP through the action of Ran guanosine nucleotide exchange factor (RanGEF; see Box 12–2).

Bacteria Also Use Signal Sequences for Protein Targeting

Bacteria can target proteins to their inner or outer membranes, to the periplasmic space between these membranes, or to the extracellular medium. They use signal sequences at the amino terminus of the proteins (Fig. 27–43), much like those on eukaryotic proteins targeted to the ER, mitochondria, and chloroplasts. Most proteins exported from *E. coli* make use of the pathway shown in Figure 27–44. Following translation, a protein to be exported may fold only slowly, the amino-terminal signal sequence impeding the folding. The soluble chaperone protein SecB binds to the protein’s signal sequence or other features of its incompletely folded structure. The bound protein is then delivered to SecA, a protein associated with the inner surface of the plasma membrane. SecA acts as both a receptor and a translocating ATPase. Released from SecB and bound to SecA, the protein is delivered to a translocation complex in the membrane, made up of SecY, E, and G, and is translocated stepwise through the membrane at the SecYEG complex in lengths of about 20 amino acid residues. Each step is facilitated by the hydrolysis of ATP, catalyzed by SecA.

An exported protein is thus pushed through the membrane by a SecA protein located on the cytoplasmic surface, rather than being pulled through the membrane by a protein on the periplasmic surface. This difference may simply reflect the need for the translocating ATPase to be where the ATP is. The transmembrane electrochemical potential can also provide energy for translocation of the protein, by an as yet unknown mechanism.

Although most exported bacterial proteins use this pathway, some follow an alternative pathway that uses
FIGURE 27-42 Targeting of nuclear proteins. (a) A protein with an appropriate nuclear localization signal (NLS) is bound by a complex of importin α and β. The resulting complex binds to a nuclear pore, and translocates. Inside the nucleus, dissociation of importin β is promoted by the binding of Ran-GTP. Importin α binds to Ran-GTP and CAS (cellular apoptosis susceptibility protein), releasing the nuclear protein. Importin α and β and CAS are transported out of the nucleus and recycled. They are released in the cytosol when Ran hydrolyzes its bound GTP. Ran-GDP is bound by NTF2, and transported back into the nucleus. RanGEF promotes the exchange of GDP for GTP in the nucleus, and Ran-GTP is ready to process another NLS-bearing protein-importin complex. (b) Scanning electron micrograph of the surface of the nuclear envelope, showing numerous nuclear pores.

Inner membrane proteins

- Phage fd, major coat protein: Met Lys Lys Ser Leu Val Leu Lys Ala Ser Val Ala Val Ala Thr Leu Val Pro Met Leu Ser Phe Ala Ala Glu
- Phage fd, minor coat protein: Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser His Ser Ala Glu

Periplasmic proteins

- Alkaline phosphatase: Met Lys Gln Ser Thr Ile Ala Leu Ala Leu Leu Pro Leu Leu Phe Thr Pro Val Thr Lys Ala Arg Thr
- Leucine-specific binding protein: Met Lys Ala Asn Ala Lys Thr Ile Ile Ala Gly Met Ile Ala Leu Ala Ile Ser His Thr Ala Met Ala Asp Asp
- β-Lactamase of pBR322: Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro

Outer membrane proteins

- Lipoprotein: Met Lys Ala Thr Lys Leu Val Leu Gly Ala Val Ile Leu Gly Ser Thr Leu Ala Ala Val Gly Val Met Ser Ala Gln Ala Met Ala Val Asp
- LamB: Met Lys Leu Arg Lys Leu Pro Leu Ala Val Ala Val Ala Ala Gly Val Met Ser Ala Gln Ala Met Ala Val Asp
- OmpA: Met Met Ile Thr Met Lys Thr Ala Ile Ala Ile Ala Lae Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Ala Pro

FIGURE 27-43 Signal sequences that target proteins to different locations in bacteria. Basic amino acids (blue) near the amino terminus and hydrophobic core amino acids (yellow) are highlighted. The cleavage sites marking the ends of the signal sequences are indicated by red arrows. Note that the inner bacterial cell membrane (see Fig. 1–6) is where phage fd coat proteins and DNA are assembled into phage particles. OmpA is an outer membrane protein; LamB is a cell surface receptor protein for λ phage.
protein export in bacteria. A newly translated polypeptide binds to the cytosolic chaperone protein SecB, which delivers it to SecA, a protein associated with the translocation complex (SecYEG) in the bacterial cell membrane. SecB is released, and SecA inserts itself into the membrane, forcing about 20 amino acid residues of the protein to be exported through the translocation complex. Hydrolysis of an ATP by SecA provides the energy for a conformational change that causes SecA to withdraw from the membrane, releasing the polypeptide. SecA binds another ATP, and the next stretch of 20 amino acid residues is pushed across the membrane through the translocation complex. Steps 4 and 5 are repeated until the entire protein has passed through and is released to the periplasm. The electrochemical potential across the membrane (denoted by + and -) also provides some of the driving force required for protein translocation.

signal recognition and receptor proteins homologous to components of the eukaryotic SRP and SRP receptor (Fig. 27–38).

Cells Import Proteins by Receptor-Mediated Endocytosis

Some proteins are imported into eukaryotic cells from the surrounding medium; examples include low-density lipoprotein (LDL), the iron-carrying protein transferrin, peptide hormones, and circulating proteins destined for degradation. There are several importation pathways (Fig. 27–45). In one path, proteins bind to receptors in invaginations of the membrane called coated pits, which concentrate endocytic receptors in preference to other cell-surface proteins. The pits are coated on their cytosolic side with a lattice of the protein clathrin, which forms closed polyhedral structures (Fig. 27–46). The clathrin lattice grows as more receptors are occupied by target proteins. Eventually, a complete membrane-bounded endocytic vesicle is pinched off the plasma membrane with the aid of the large GTPase dynamin, and enters the cytoplasm. The clathrin is quickly removed by uncoating enzymes, and the vesicle fuses with an endosome. ATPase activity in the endosomal membranes reduces the pH therein, facilitating dissociation of receptors from their target proteins. In a related pathway, caveolin causes invagination of patches of membrane containing lipid rafts associated with certain types of receptors (see Fig. 11–21). These endocytic vesicles then fuse with caveolin-containing internal structures, caveosomes, where the internalized molecules are sorted and redirected to other parts of the cell and the caveolins are prepared for recycling to the membrane surface. There are also clathrin- and caveolin-independent pathways; some make use of dynamin and others do not.

The imported proteins and receptors then go their separate ways, their fates varying with the cell and protein type. Transferrin and its receptor are eventually recycled. Some hormones, growth factors, and immune complexes, after eliciting the appropriate cellular response, are degraded along with their receptors. LDL is

The imported proteins and receptors then go their separate ways, their fates varying with the cell and protein type. Transferrin and its receptor are eventually recycled. Some hormones, growth factors, and immune complexes, after eliciting the appropriate cellular response, are degraded along with their receptors. LDL is
Protein Targeting and Degradation

FIGURE 27-46 Clathrin. (a) Three light (L) chains (M, 35,000) and three heavy (H) chains (M, 180,000) of the (H)L clathrin unit, organized as a three-legged structure called a triskelion. (b) Triskelions tend to assemble into polyhedral lattices. (c) Electron micrograph of a coated pit on the cytosolic face of the plasma membrane of a fibroblast.

Degradation after the associated cholesterol has been delivered to its destination, but the LDL receptor is recycled (see Fig. 21-42).

Receptor-mediated endocytosis is exploited by some toxins and viruses to gain entry to cells. Influenza virus, diphtheria toxin, and cholera toxin all enter cells in this way.

Protein Degradation Is Mediated by Specialized Systems in All Cells

Protein degradation prevents the buildup of abnormal or unwanted proteins and permits the recycling of amino acids. The half-lives of eukaryotic proteins vary from 30 seconds to many days. Most proteins turn over rapidly relative to the lifetime of a cell, although a few (such as hemoglobin) can last for the life of the cell (about 110 days for an erythrocyte). Rapidly degraded proteins include those that are defective because of incorrectly inserted amino acids or because of damage accumulated during normal functioning. And enzymes that act at key regulatory points in metabolic pathways often turn over rapidly.

Defective proteins and those with characteristically short half-lives are generally degraded in both bacterial and eukaryotic cells by selective ATP-dependent cytosolic systems. A second system in vertebrates, operating in lysosomes, recycles the amino acids of membrane proteins, extracellular proteins, and proteins with characteristically long half-lives.

In E. coli, many proteins are degraded by an ATP-dependent protease called Lon (the name refers to the “long form” of proteins, observed only when this protease is absent). The protease is activated in the presence of defective proteins or those slated for rapid turnover; two ATP molecules are hydrolyzed for every peptide bond cleaved. The precise role of this ATP hydrolysis is not yet clear. Once a protein has been reduced to small inactive peptides, other ATP-independent proteases complete the degradation process.

The ATP-dependent pathway in eukaryotic cells is quite different, involving the protein ubiquitin, which, as its name suggests, occurs throughout the eukaryotic kingdoms. One of the most highly conserved proteins known, ubiquitin (76 amino acid residues) is essentially identical in organisms as different as yeasts and humans. Ubiquitin is covalently linked to proteins slated for destruction via an ATP-dependent pathway involving three separate enzymes (E1, E2, and E3 in Fig. 27-47).
Figure 27–47 Three-step pathway by which ubiquitin is attached to a protein. Two different enzyme-ubiquitin intermediates are involved. The free carboxyl group of ubiquitin’s carboxyl-terminal Gly residue is ultimately linked through an amide (isopeptide) bond to an ε-amino group of a Lys residue of the target protein. Additional cycles produce polyubiquitin, a covalent polymer of ubiquitin subunits that targets the attached protein for destruction in eukaryotes.

Ubiquitinated proteins are degraded by a large complex known as the 26S proteasome ($M_r \approx 2.5 \times 10^6$) (Fig. 27–48). The eukaryotic proteasome consists of two copies each of at least 32 different subunits, most of which are highly conserved from yeasts to humans. The proteasome contains two main types of subcomplexes, a barrel-like core particle and regulatory particles on either end of the barrel. The 20S core particle consists of four rings; the outer rings are formed from seven α subunits, and the inner rings from seven β subunits. Three of the seven subunits in each β ring have protease activities, each with different substrate specificities. The stacked rings of the core particle form the barrel-like structure within which target proteins are degraded. The 19S regulatory particle on each end of the core particle contains approximately 18 subunits, including some that recognize and bind to ubiquitinated proteins. Six of the subunits are AAA+ ATPases (see Chapter 25) that probably function in unfolding the ubiquitinated proteins and translocating the unfolded polypeptide into the core particle for degradation. The 19S particle also deubiquitinates the proteins as they are degraded in the proteasome. Most cells have additional regulatory complexes that can replace the 19S particle. These alternative regulators do not hydrolyze ATP and do not bind to ubiquitin, but they are important for the degradation of particular cellular proteins. The 26S proteasome can be effectively “accessorized,” with regulatory complexes changing with changing cellular conditions.

Figure 27–48 Three-dimensional structure of the eukaryotic proteasome. The 26S proteasome is highly conserved in all eukaryotes. The two subassemblies are the 20S core particle and the 19S regulatory particle. (a) (PDB ID 11RU) The core particle consists of four rings arranged to form a barrel-like structure. Each of the inner rings has seven different β subunits (light blue), three of which have protease activities (dark blue). The outer rings each have seven different α subunits (gray). (b) A regulatory particle forms a cap on each end of the core particle. The core particle is colored as in (a). The base and lid segments of each regulatory particle are presented in different shades of pink. The regulatory particle unfolds ubiquitinated proteins (blue) and translocates them into the core particle, as shown.
TABLE 27–9 Relationship between Protein Half-Life and Amino-Terminal Amino Acid Residue

<table>
<thead>
<tr>
<th>Amino-terminal residue</th>
<th>Half-life*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizing</td>
<td></td>
</tr>
<tr>
<td>Met, Gly, Ala, Ser, Thr, Val</td>
<td>>20 h</td>
</tr>
<tr>
<td>Destabilizing</td>
<td></td>
</tr>
<tr>
<td>Ile, Gln</td>
<td>~30 min</td>
</tr>
<tr>
<td>Tyr, Glu</td>
<td>~10 min</td>
</tr>
<tr>
<td>Pro</td>
<td>~7 min</td>
</tr>
<tr>
<td>Leu, Phe, Asp, Lys</td>
<td>~3 min</td>
</tr>
<tr>
<td>Arg</td>
<td>~2 min</td>
</tr>
</tbody>
</table>

*Half-lives were measured in yeast for the β-galactosidase protein modified so that in each experiment it had a different amino-terminal residue. Half-lives may vary for different proteins and in different organisms, but this general pattern appears to hold for all organisms.

Although we do not yet understand all the signals that trigger ubiquitination, one simple signal has been found. For many proteins, the identity of the first residue that remains after removal of the amino-terminal Met residue, and any other posttranslational proteolytic processing of the amino-terminal end, has a profound influence on half-life (Table 27–9). These amino-terminal signals have been conserved over billions of years of evolution, and are the same in bacterial protein degradation systems and in the human ubiquitination pathway. More complex signals, such as the destruction box discussed in Chapter 12 (see Fig. 12–46), are also being identified.

Ubiquitin-dependent proteolysis is as important for the regulation of cellular processes as for the elimination of defective proteins. Many proteins required at only one stage of the eukaryotic cell cycle are rapidly degraded by the ubiquitin-dependent pathway after completing their function. Ubiquitin-dependent destruction of cyclin is critical to cell-cycle regulation (see Fig. 12–46). The E2 and E3 components of the ubiquitination pathway (Fig. 27–47) are in fact two large families of proteins. Different E2 and E3 enzymes exhibit different specificities for target proteins and thus regulate different cellular processes. Some E2 and E3 enzymes are highly localized in certain cellular compartments, reflecting a specialized function.

Not surprisingly, defects in the ubiquitination pathway have been implicated in a wide range of disease states. An inability to degrade certain proteins that activate cell division (the products of oncogenes) can lead to tumor formation, whereas a too-rapid degradation of proteins that act as tumor suppressors can have the same effect. The ineffective or overly rapid degradation of cellular proteins also appears to play a role in a range of other conditions: renal diseases, asthma, neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases (associated with the formation of characteristic proteinaceous structures in neurons), cystic fibrosis (caused in some cases by a too-rapid degradation of a chloride ion channel, with resultant loss of function; see Box 11–3), Liddle’s syndrome (in which a sodium channel in the kidney is not degraded, leading to excessive Na⁺ absorption and early-onset hypertension)—and many other disorders. Drugs designed to inhibit proteasome function are being developed as potential treatments for some of these conditions. In a changing metabolic environment, protein degradation is as important to a cell’s survival as is protein synthesis, and much remains to be learned about these interesting pathways.

SUMMARY 27.3 Protein Targeting and Degradation

- After synthesis, many proteins are directed to particular locations in the cell. One targeting mechanism involves a peptide signal sequence, generally found at the amino terminus of a newly synthesized protein.

- In eukaryotic cells, one class of signal sequences is recognized by the signal recognition particle (SRP), which binds the signal sequence as soon as it appears on the ribosome and transfers the entire ribosome and incomplete polypeptide to the ER. Polypeptides with these signal sequences are moved into the ER lumen as they are synthesized; once in the lumen they may be modified and moved to the Golgi complex, then sorted and sent to lysosomes, the plasma membrane, or transport vesicles.

- Proteins targeted to mitochondria and chloroplasts in eukaryotic cells, and those destined for export in bacteria, also make use of an amino-terminal signal sequence.

- Proteins targeted to the nucleus have an internal signal sequence that, unlike other signal sequences, is not cleaved once the protein is successfully targeted.

- Some eukaryotic cells import proteins by receptor-mediated endocytosis.

- All cells eventually degrade proteins, using specialized proteolytic systems. Defective proteins and those slated for rapid turnover are generally degraded by an ATP-dependent system. In eukaryotic cells, the proteins are first tagged by linkage to ubiquitin, a highly conserved protein. Ubiquitin-dependent proteolysis is carried out by proteasomes, also highly conserved, and is critical to the regulation of many cellular processes.
Key Terms

Terms in bold are defined in the glossary.

- **aminoacyl-tRNA** 1066
- **aminoacyl-tRNA synthetases** 1066
- **translation** 1066
- **codon** 1066
- **reading frame** 1067
- **initiation codon** 1069
- **termination codons** 1069
- **open reading frame (ORF)** 1069
- **anticodon** 1070
- **wobble** 1072
- **translational frameshifting** 1072
- **RNA editing** 1073
- **initiation** 1088
- **Shine-Dalgarno sequence** 1088
- **aminoacyl (A) site** 1089
- **peptidyl (P) site** 1089
- **exit (E) site** 1089
- **initiation complex** 1089
- **elongation** 1091
- **elongation factors** 1091
- **peptidyl transferase** 1091
- **translocation** 1091
- **nonsense suppressor** 1094
- **termination** 1094
- **release factors** 1094
- **polysome** 1095
- **posttranslational modification** 1096
- **puromycin** 1098
- **tetracyclines** 1098
- **chloramphenicol** 1098
- **cycloheximide** 1098
- **streptomycin** 1098
- **diphtheria toxin** 1098
- **ribin** 1099
- **signal sequence** 1100
- **signal recognition particle (SRP)** 1101
- **peptide translocation complex** 1101
- **tunicamycin** 1102
- **nuclear localization sequence (NLS)** 1104
- **coated pits** 1106
- **clathrin** 1106
- **dynamin** 1106
- **ubiquitin** 1107
- **proteasome** 1108

Further Reading

Genetic Code

An insightful overview of the genetic code at a time when the code words had just been worked out.

Protein Targeting and Secretion

Problems

1. Messenger RNA Translation

Predict the amino acid sequences of peptides formed by ribosomes in response to the following mRNA sequences, assuming that the reading frame begins with the first three bases in each sequence.

(a) GGUCAGUUCUCCUGAUU
(b) UUGGAUGGCGCAUAUUUGCU
(c) CAUGAUGCUGUGCUAC
(d) AUGGACGAA

2. How Many Different mRNA Sequences Can Specify One Amino Acid Sequence?

Write all the possible mRNA sequences that can code for the simple tripeptide segment Leu–Met–Tyr. Your answer will give you some idea about the number of possible mRNAs that can code for one polypeptide.

3. Can the Base Sequence of an mRNA Be Predicted from the Amino Acid Sequence of Its Polypeptide Product?

A given sequence of bases in an mRNA will code for one and only one sequence of amino acids in a polypeptide, if the reading frame is specified. From a given sequence of amino acid residues in a protein such as cytochrome c, can we predict the base sequence of the unique mRNA that coded it? Give reasons for your answer.

4. Coding of a Polypeptide by Duplex DNA

The template strand of a segment of double-helical DNA contains the sequence

(5')CTAACACCCCTGACTTCGCGCGGTCG(3')

(a) What is the base sequence of the mRNA that can be transcribed from this strand?

(b) What amino acid sequence could be coded by the mRNA in (a), starting from the 5’ end?

(c) If the complementary (nontemplate) strand of this DNA were transcribed and translated, would the resulting amino acid sequence be the same as in (b)? Explain the biological significance of your answer.

5. Methionine Has Only One Codon

Methionine is one of two amino acids with only one codon. How does the single codon for methionine specify both the initiating residue and interior Met residues of polypeptides synthesized by E. coli?

6. Synthetic mRNAs

The genetic code was elucidated with polyribonucleotides synthesized either enzymatically or chemically in the laboratory. Given what we now know about the genetic code, how would you make a polyribonucleotide that could serve as an mRNA coding predominantly for many Phe residues and a small number of Leu and Ser residues? What other amino acid(s) would be coded for by this polyribonucleotide, but in smaller amounts?

7. Energy Cost of Protein Biosynthesis

Determine the minimum energy cost, in terms of ATP equivalents expended, required for the biosynthesis of the β-globin chain of hemoglobin (146 residues), starting from a pool including all necessary amino acids, ATP, and GTP. Compare your answer with the direct energy cost of the biosynthesis of a linear glycogen chain of 146 glucose residues in (α1→4) linkage, starting from a pool including glucose, UTP, and ATP (Chapter 15). From your data, what is the extra energy cost of making a protein, in which all the residues are ordered in a specific sequence, compared to the cost of making a polysaccharide containing the same number of residues but lacking the informational content of the protein?

In addition to the direct energy cost for the synthesis of a protein, there are indirect energy costs—those required for the cell to make the necessary enzymes for protein synthesis. Compare the magnitude of the indirect costs to a eukaryotic cell of the biosynthesis of linear (α1→4) glycogen chains and the biosynthesis of polypeptides, in terms of the enzymatic machinery involved.

8. Predicting Anticodons from Codons

Most amino acids have more than one codon and attach to more than one tRNA, each with a different anticodon. Write all possible anticodons for the four codons of glycine: (5')GGU, GGC, GGA, and GGG.

(a) From your answer, which of the positions in the anticodons are primary determinants of their codon specificity in the case of glycine?

(b) Which of these anticodon-codon pairings has/have a wobbly base pair?

(c) In which of the anticodon-codon pairings do all three positions exhibit strong Watson-Crick hydrogen bonding?

9. Effect of Single-Base Changes on Amino Acid Sequence

Much important confirmatory evidence on the genetic code has come from assessing changes in the amino acid sequence of mutant proteins after a single base has been changed in the gene that encodes the protein. Which of the
following amino acid replacements would be consistent with the genetic code if the replacements were caused by a single base change? Which cannot be the result of a single-base mutation? Why?

10. Basis of the Sickle-Cell Mutation Sickle-cell hemoglobin has a Val residue at position 6 of the β-globin chain, instead of the Glu residue found in normal hemoglobin A. Can you predict what change took place in the DNA codon for glutamate to account for replacement of the Glu residue by Val?

11. Proofreading by Aminoacyl-tRNA Synthetases The isoleucyl-tRNA synthetase has a proofreading function that ensures the fidelity of the aminoacylation reaction, but the histidyl-tRNA synthetase lacks such a proofreading function. Explain.

12. Importance of the "Second Genetic Code" Some aminoacyl-tRNA synthetases do not recognize and bind the anticodon of their cognate tRNAs but instead use other structural features of the tRNAs to impart binding specificity. The tRNAs for alanine apparently fall into this category.

13. Maintaining the Fidelity of Protein Synthesis The chemical mechanisms used to avoid errors in protein synthesis are different from those used during DNA replication. DNA polymerases use a 3′→5′ exonuclease proofreading activity to remove mispaired nucleotides incorrectly inserted into a growing DNA strand. There is no analogous proofreading function on ribosomes and, in fact, the identity of an amino acid attached to an incoming tRNA and added to the growing polypeptide is never checked. A proofreading step that hydrolyzed the previously formed peptide bond after an incorrect amino acid had been inserted into a growing polypeptide (analogous to the proofreading step of DNA polymerases) would be impractical. Why? (Hint: Consider how the link between the growing polypeptide and the mRNA is maintained during elongation; see Figs 27–29 and 27–30.)

14. Predicting the Cellular Location of a Protein The gene for a eukaryotic polypeptide 300 amino acid residues long is altered so that a signal sequence recognized by SRP occurs at the polypeptide’s amino terminus and a nuclear localization signal (NLS) occurs internally, beginning at residue 150. Where is the protein likely to be found in the cell?

15. Requirements for Protein Translocation across a Membrane The secreted bacterial protein OmpA has a precursor, ProOmpA, which has the amino-terminal sequence required for secretion. If purified ProOmpA is denatured with 8 M urea and the urea is then removed (such as by running the protein solution rapidly through a gel filtration column) the protein can be translocated across isolated bacterial inner membranes in vitro. However, translocation becomes impossible if ProOmpA is first allowed to incubate for a few hours in the absence of urea. Furthermore, the capacity for translocation is maintained for an extended period if ProOmpA is first incubated in the presence of another bacterial protein called trigger factor. Describe the probable function of this factor.

16. Protein-Coding Capacity of a Viral DNA The 5,386 bp genome of bacteriophage φX174 includes genes for 10 proteins, designated A to K, with sizes given in the table below. How much DNA would be required to encode these 10 proteins? How can you reconcile the size of the φX174 genome with its protein-coding capacity?

<table>
<thead>
<tr>
<th>Protein</th>
<th>Number of amino acid residues</th>
<th>Protein</th>
<th>Number of amino acid residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>455</td>
<td>F</td>
<td>427</td>
</tr>
<tr>
<td>B</td>
<td>120</td>
<td>G</td>
<td>175</td>
</tr>
<tr>
<td>C</td>
<td>80</td>
<td>H</td>
<td>328</td>
</tr>
<tr>
<td>D</td>
<td>152</td>
<td>J</td>
<td>38</td>
</tr>
<tr>
<td>E</td>
<td>91</td>
<td>K</td>
<td>56</td>
</tr>
</tbody>
</table>

Data Analysis Problem

17. Designing Proteins by Using Randomly Generated Genes Studies of the amino acid sequence and corresponding three-dimensional structure of wild-type or mutant proteins have led to significant insights into the principles that govern protein folding. An important test of this understanding would be to design a protein based on these principles and see whether it folds as expected.

Kamtekar and colleagues (1993) used aspects of the genetic code to generate random protein sequences with defined patterns of hydrophilic and hydrophobic residues. Their clever approach combined knowledge about protein structure, amino acid properties, and the genetic code to explore the factors that influence protein structure.

They set out to generate a set of proteins with the simple four-helix bundle structure shown at the top of page 1113 (right), with α helices (shown as cylinders) connected by segments of random coil (pink). Each α helix is amphipathic—the R groups on one side of the helix are exclusively hydrophobic (yellow) and those on the other side are exclusively hydrophilic (blue). A protein consisting of four of these helices separated by short segments of random coil would be expected to fold so that the hydrophilic sides of the helices face the solvent.
What forces or interactions hold the four α helices together in this bundled structure?

Figure 4-4a shows a segment of α helix consisting of 10 amino acid residues. With the gray central rod as a divider, four of the R groups (purple spheres) extend from the left side of the helix and six extend from the right.

(b) Number the R groups in Figure 4-4a, from top (amino terminus; 1) to bottom (carboxyl terminus; 10). Which R groups extend from the left side and which from the right?

(c) Suppose you wanted to design this 10 amino acid segment to be an amphipathic helix, with the left side hydrophilic and the right side hydrophobic. Give a sequence of 10 amino acids that could potentially fold into such a structure. There are many possible correct answers here.

(d) Give one possible double-stranded DNA sequence that could encode the amino acid sequence you chose for (c). (It is an internal portion of a protein, so you do not need to include start or stop codons.)

Rather than designing proteins with specific sequences, Kamtekar and coworkers designed proteins with partially random sequences, with hydrophilic and hydrophobic amino acid residues placed in a controlled pattern. They did this by taking advantage of some interesting features of the genetic code to construct a library of synthetic DNA molecules with partially random sequences arranged in a particular pattern.

To design a DNA sequence that would encode random hydrophobic amino acid sequences, the researchers began with the degenerate codon NTN, where N can be A, G, C, or T. They filled each N position by including an equimolar mixture of A, G, C, and T in the DNA synthesis reaction to generate a mixture of DNA molecules with different nucleotides at that position (see Fig. 8-35). Similarly, to encode random polar amino acid sequences, they began with the degenerate codon NAN and used an equimolar mixture of A, G, and C (but in this case, no T) to fill the N positions.

(e) Which amino acids can be encoded by the NTN triplet? Are all amino acids in this set hydrophobic? Does the set include all the hydrophobic amino acids?

(f) Which amino acids can be encoded by the NAN triplet? Are all of these polar? Does the set include all the polar amino acids?

(g) In creating the NAN codons, why was it necessary to leave T out of the reaction mixture?

Kamtekar and coworkers cloned this library of random DNA sequences into plasmids, selected 48 that produced the correct patterning of hydrophilic and hydrophobic amino acids, and expressed these in E. coli. The next challenge was to determine whether the proteins folded as expected. It would be very time-consuming to express each protein, crystallize it, and determine its complete three-dimensional structure. Instead, the investigators used the E. coli protein-processing machinery to screen out sequences that led to highly defective proteins. In this initial screening, they kept only those clones that resulted in a band of protein with the expected molecular weight on SDS polyacrylamide gel electrophoresis (see Fig. 3-18).

(h) Why would a grossly misfolded protein fail to produce a band of the expected molecular weight on electrophoresis?

Several proteins passed this initial test, and further exploration showed that they had the expected four-helix structure.

(i) Why didn’t all of the random-sequence proteins that passed the initial screening test produce four-helix structures?

Reference

The fundamental problem of chemical physiology and of embryology is to understand why tissue cells do not all express, all the time, all the potentialities inherent in their genome.

—François Jacob and Jacques Monod, article in Journal of Molecular Biology, 1961

4. Protein synthesis (translation)
5. Posttranslational modification of proteins
6. Protein targeting and transport
7. Protein degradation

These processes are summarized in Figure 28–1. We have examined several of these mechanisms in previous chapters. Posttranscriptional modification of mRNA, by processes such as alternative splicing patterns (see Fig. 26–22) or RNA editing (see Figs 27–10, 27–12), can affect which proteins are produced from an mRNA transcript and in what amounts. A variety of nucleotide sequences in an mRNA can affect the rate of its degradation (p. 1048). Many factors affect the rate at which an mRNA is translated into a protein, as well as the posttranslational modification, targeting, and eventual degradation of that protein (Chapter 27).

Of the regulatory processes illustrated in Figure 28–1, those operating at the level of transcription initiation are the best documented and these are a major focus of this chapter; other mechanisms are also considered. Researchers continue to discover complex and sometimes surprising regulatory mechanisms, leading to an increasing appreciation of the importance of posttranscriptional and translational regulation, especially in eukaryotes. For many genes, the regulatory processes are elaborate and redundant and can involve a considerable investment of chemical energy.

Control of transcription initiation permits the synchronized regulation of multiple genes encoding products with interdependent activities. For example, when their DNA is heavily damaged, bacterial cells require a coordinated increase in the levels of the many DNA repair enzymes. And perhaps the most sophisticated form of coordination occurs in the complex regulatory circuits that guide the development of multicellular eukaryotes, which can involve many types of regulatory mechanisms.
Regulation of Gene Expression

We begin by examining the interactions between proteins and DNA that are the key to transcriptional regulation. We next discuss the specific proteins that influence the expression of specific genes, first in bacterial and then in eukaryotic cells. Information about post-transcriptional and translational regulation is included in the discussion, where relevant, to provide a more complete overview of the rich complexity of regulatory mechanisms.

28.1 Principles of Gene Regulation

Genes for products that are required at all times, such as those for the enzymes of central metabolic pathways, are expressed at a more or less constant level in virtually every cell of a species or organism. Such genes are often referred to as housekeeping genes. Unvarying expression of a gene is called constitutive gene expression.

For other gene products, cellular levels rise and fall in response to molecular signals; this is regulated gene expression. Gene products that increase in concentration under particular molecular circumstances are referred to as inducible; the process of increasing their expression is induction. The expression of many of the genes encoding DNA repair enzymes, for example, is induced by a system of regulatory proteins that responds to high levels of DNA damage. Conversely, gene products that decrease in concentration in response to a molecular signal are referred to as repressible, and the process is called repression. For example, in bacteria, ample supplies of tryptophan lead to repression of the genes for the enzymes that catalyze tryptophan biosynthesis.

Transcription is mediated and regulated by protein-DNA interactions, especially those involving the protein components of RNA polymerase (Chapter 26). We first consider how the activity of RNA polymerase is regulated, and proceed to a general description of the proteins participating in this regulation. We then examine the molecular basis for the recognition of specific DNA sequences by DNA-binding proteins.

RNA Polymerase Binds to DNA at Promoters

RNA polymerases bind to DNA and initiate transcription at promoters (see Fig. 26–5), sites generally found near points at which RNA synthesis begins on the DNA template. The regulation of transcription initiation often entails changes in how RNA polymerase interacts with a promoter.

The nucleotide sequences of promoters vary considerably, affecting the binding affinity of RNA polymerases and thus the frequency of transcription initiation. Some Escherichia coli genes are transcribed once per second, others less than once per cell generation. Much of this variation is due to differences in promoter sequence. In the absence of regulatory proteins, differences in promoter sequence may affect the frequency of transcription initiation by a factor of 1,000 or more. Most E. coli promoters have a sequence close to a consensus (Fig. 28–2). Mutations that result in a shift away from the consensus sequence usually decrease promoter function; conversely, mutations toward consensus usually enhance promoter function.

Although housekeeping genes are expressed constitutively, the cellular concentrations of the proteins they encode vary widely. For these genes, the RNA polymerase–promoter interaction strongly influences the rate of transcription initiation; differences in promoter sequence allow the cell to synthesize the appropriate level of each housekeeping gene product.

The basal rate of transcription initiation at the promoters of nonhousekeeping genes is also determined by the promoter sequence, but expression of these genes is further modulated by regulatory proteins.
Many of these proteins work by enhancing or interfering with the interaction between RNA polymerase and the promoter.

The sequences of eukaryotic promoters are more variable than their bacterial counterparts (see Fig. 26–9). The three eukaryotic RNA polymerases usually require an array of general transcription factors in order to bind to a promoter. Yet, as with bacterial gene expression, the basal level of transcription is determined by the effect of promoter sequences on the function of RNA polymerase and its associated transcription factors.

Transcription Initiation Is Regulated by Proteins That Bind to or near Promoters

At least three types of proteins regulate transcription initiation by RNA polymerase: specificity factors alter the specificity of RNA polymerase for a given promoter or set of promoters; repressors impede access of RNA polymerase to the promoter; and activators enhance the RNA polymerase–promoter interaction.

We introduced bacterial specificity factors in Chapter 26 (see Fig. 26–5), although we did not refer to them by that name. The σ subunit of the E. coli RNA polymerase holoenzyme is a specificity factor that mediates promoter recognition and binding. Most E. coli promoters are recognized by a single σ subunit (M, 70,000), σ70. Under some conditions, some of the σ70 subunits are replaced by one of six other specificity factors. One notable case arises when the bacteria are subjected to heat stress, leading to the replacement of σ70 by σ32 (M, 32,000). When bound to σ32, RNA polymerase is directed to a specialized set of promoters with a different consensus sequence (Fig. 28–3). These promoters control the expression of a set of genes that encode proteins, including some protein chaperones (p. 143), that are part of a stress-induced system called the heat shock response. Thus, through changes in the binding affinity of the polymerase that direct it to different promoters, a set of genes involved in related processes is coordinately regulated. In eukaryotic cells, some of the general transcription factors, in particular the TATA-binding protein (TBP; see Fig. 26–9), may be considered specificity factors.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.

Repressors bind to specific sites on the DNA. In bacterial cells, such binding sites, called operators, are generally near a promoter. RNA polymerase binding, or its movement along the DNA after binding, is blocked when the repressor is present. Regulation by means of a repressor protein that blocks transcription is referred to as negative regulation. Repressor binding to DNA is regulated by a molecular signal (or effector), usually a small molecule or a protein, that binds to the repressor and causes a conformational change. The interaction between repressor and signal molecule either increases or decreases transcription. In some cases, the conformational change results in dissociation of a DNA-bound repressor from the operator (Fig. 28–4a). Transcription initiation can then proceed unhindered. In other cases, interaction between an inactive repressor and the signal molecule causes the repressor to bind to the operator (Fig. 28–4b). In eukaryotic cells, the binding site for a repressor may be some distance from the promoter; binding has the same effect as in bacterial cells: inhibiting the assembly or activity of a transcription complex at the promoter.
Activators provide a molecular counterpoint to repressors; they bind to DNA and enhance the activity of RNA polymerase at a promoter; this is positive regulation. Activator-binding sites are often adjacent to promoters that are bound weakly or not at all by RNA polymerase alone, such that little transcription occurs in the absence of the activator. Some eukaryotic activators bind to DNA sites, called enhancers, that are quite distant from the promoter, affecting the rate of transcription at a promoter that may be located thousands of base pairs away. Some activators are usually bound to DNA, enhancing transcription until dissociation of the activator is triggered by the binding of a signal molecule (Fig. 28–4c). In other cases the activator binds to DNA only after interaction with a signal molecule (Fig. 28–4d). Signal molecules can therefore increase or decrease transcription, depending on how they affect the activator. Positive regulation is particularly common in eukaryotes, as we shall see.

Many Bacterial Genes Are Clustered and Regulated in Operons

Bacteria have a simple general mechanism for coordinating the regulation of genes encoding products that participate in a set of related processes: these genes are clustered on the chromosome and are transcribed together. Many bacterial mRNAs are polycistronic—multiple genes on a single transcript—and the single promoter that initiates transcription of the cluster is the site of regulation for expression of all the genes in the cluster. The gene cluster and promoter, plus additional sequences that function together in regulation, are called an operon (Fig. 28–5). Operons that include...
two to six genes transcribed as a unit are common; some operons contain 20 or more genes.

Many of the principles of bacterial gene expression were first defined by studies of lactose metabolism in *E. coli*, which can use lactose as its sole carbon source. In 1960, François Jacob and Jacques Monod published a short paper in the *Proceedings of the French Academy of Sciences* that described how two adjacent genes involved in lactose metabolism were coordinately regulated by a genetic element located at one end of the gene cluster. The genes were those for β-galactosidase, which cleaves lactose to galactose and glucose, and galactoside permease (lactose permease, p. 402), which transports lactose into the cell (Fig. 28-6). The terms “operon” and “operator” were first introduced in this paper. With the operon model, gene regulation could, for the first time, be considered in molecular terms.

The lac Operon Is Subject to Negative Regulation

The lactose (*lac*) operon (Fig. 28–7a) includes the genes for β-galactosidase (Z), galactoside permease (Y), and thiogalactoside transacetylase (A). The last of these enzymes seems to modify toxic galactosides to facilitate their removal from the cell. Each of the three genes is preceded by a ribosome binding site (not shown in Fig. 28–7) that independently directs the translation of that gene (Chapter 27). Regulation of the lac operon by the *lac* repressor protein (Lac) follows the pattern outlined in Figure 28–4a.

The study of *lac* operon mutants has revealed some details of the workings of the operon's regulatory system. In the absence of lactose, the *lac* operon genes are repressed. Mutations in the operator or in another gene, the *I* gene, result in constitutive synthesis of the gene products. When the *I* gene is defective, repression can be restored by introducing a functional *I* gene into the cell on another DNA molecule, demonstrating that the *I* gene encodes a diffusible molecule that causes gene repression. This molecule proved to be a protein, now called the Lac repressor, a tetramer of identical monomers. The operator to which it binds most tightly (O1) abuts the transcription start site (Fig. 28–7a). The *I* gene is transcribed from its own promoter (P1) independent of the *lac* operon genes. The *lac* operon has

FIGURE 28–5 Representative bacterial operon. Genes A, B, and C are transcribed on one polycistronic mRNA. Typical regulatory sequences include binding sites for proteins that either activate or repress transcription from the promoter.

FIGURE 28–6 Lactose metabolism in *E. coli*. Uptake and metabolism of lactose require the activities of galactoside (lactose) permease and β-galactosidase. Conversion of lactose to allolactose by transglycosylation is a minor reaction also catalyzed by β-galactosidase.
The lac operon. (a) The lac operon in the repressed state. The I gene encodes the Lac repressor. The Z, Y, and A genes encode β-galactosidase, galactoside permease, and thiogalactoside transacetylase, respectively. P is the promoter for the lac genes, and P_I is the promoter for the I gene. O_1 is the main operator for the lac operon; O_2 and O_3 are secondary operator sites of lesser affinity for the Lac repressor. (b) The Lac repressor binds to the main operator and O_2 or O_3, apparently forming a loop in the DNA that might wrap around the repressor as shown. (c) Lac repressor bound to DNA (derived from PDB ID 1LBG). This shows the protein (gray) bound to short, discontinuous segments of DNA (blue). (d) Conformational change in the Lac repressor caused by binding of the artificial inducer isopropylthiogalactoside, IPTG (derived from PDB ID 1LBH and 1LBG). The structure of the tetrameric repressor is shown without IPTG bound (transparent image) and with IPTG bound (overlaid solid image; IPTG not shown). The DNA bound when IPTG is absent (transparent structure) is not shown.

Despite this elaborate binding complex, repression is not absolute. Binding of the Lac repressor reduces the rate of transcription initiation by a factor of 10^3. If the O_2 and O_3 sites are eliminated by deletion or mutation, the binding of repressor to O_1 alone reduces transcription by a factor of about 10^2. Even in the repressed state, each cell has a few molecules of β-galactosidase and galactoside permease, presumably synthesized on the rare occasions when the repressor transiently dissociates from the operators. This basal level of transcription is essential to operon regulation.

When cells are provided with lactose, the lac operon is induced. An inducer (signal) molecule binds to a specific site on the Lac repressor, causing a conformational change (Fig. 28–7d) that results in dissociation of the repressor from the operator. The inducer in the lac operon system is not lactose itself but allolactose, an isomer of lactose (Fig. 28–6). After entry into the E. coli cell (via the few existing molecules of permease), lactose is converted to allolactose by one of the few existing β-galactosidase molecules. Release of the operator by Lac repressor, triggered as the repressor binds to allolactose, allows expression of the Lac operon genes and leads to a 10^3-fold increase in the concentration of β-galactosidase.

Several β-galactosides structurally related to allolactose are inducers of the lac operon but are not substrates...
28 Principles of Gene Regulation

For β-galactosidase; others are substrates but not inducers. One particularly effective and nonmetabolizable inducer of the lac operon that is often used experimentally is isopropylthiogalactoside (IPTG):

\[
\text{CH}_3\text{OH} \quad \text{S-C-H} \\
\text{HOH}
\]

Isopropyl-β-D-thiogalactoside (IPTG)

An inducer that cannot be metabolized allows researchers to explore the physiological function of lactose as a carbon source for growth, separate from its function in the regulation of gene expression.

In addition to the multitude of operons now known in bacteria, a few polycistronic operons have been found in the cells of lower eukaryotes. In the cells of higher eukaryotes, however, almost all protein-encoding genes are transcribed separately.

The mechanisms by which operons are regulated can vary significantly from the simple model presented in Figure 28-7. Even the lac operon is more complex than indicated here, with an activator also contributing to the overall scheme, as we shall see in Section 28.2. Before any further discussion of the layers of regulation of gene expression, however, we examine the critical molecular interactions between DNA-binding proteins (such as repressors and activators) and the DNA sequences to which they bind.

Regulatory Proteins Have Discrete DNA-Binding Domains

Regulatory proteins generally bind to specific DNA sequences. Their affinity for these target sequences is roughly 10^4 to 10^6 times higher than their affinity for any other DNA sequence. Most regulatory proteins have discrete DNA-binding domains containing substructures that interact closely and specifically with the DNA. These binding domains usually include one or more of a relatively small group of recognizable and characteristic structural motifs.

![Diagram of DNA binding domains](image)

Figure 28-9 Two examples of specific amino acid residue-base pair interactions that have been observed in DNA-protein binding.

To bind specifically to DNA sequences, regulatory proteins must recognize surface features on the DNA. Most of the chemical groups that differ among the four bases and thus permit discrimination between base pairs are hydrogen-bond donor and acceptor groups exposed in the major groove of DNA (Fig. 28-8), and most of the protein-DNA contacts that impart specificity are hydrogen bonds. A notable exception is the nonpolar surface near C-5 of pyrimidines, where thymine is readily distinguished from cytosine by its protruding methyl group. Protein-DNA contacts are also possible in the minor groove of the DNA, but the hydrogen-bonding patterns here generally do not allow ready discrimination between base pairs.

Within regulatory proteins, the amino acid side chains most often hydrogen-bonding to bases in the DNA are those of Asn, Gln, Glu, Lys, and Arg residues. Is there a simple recognition code in which a particular amino acid always pairs with a particular base? The two hydrogen bonds that can form between Gln or Asn and the N7 and N-7 positions of adenine cannot form with any other base. And an Arg residue can form two hydrogen bonds with N-7 and O6 of guanine (Fig. 28-9). Examination of the structure of many DNA-binding proteins...
The precise manner in which proteins with zinc fingers bind to DNA differs from one protein to the next. Some zinc fingers contain the amino acid residues that are important in sequence discrimination, whereas others seem to bind DNA nonspecifically (the amino acids
FIGURE 28-11 Helix-turn-helix. (a) DNA-binding domain of the Lac repressor (PDB ID 1LCC). The helix-turn-helix motif is shown in red and orange; the DNA recognition helix is red. (b) Entire Lac repressor (derived from PDB ID 1LBC). The DNA-binding domains are gray, and the α helices involved in tetramerization are red. The remainder of the protein (shades of green) has the binding sites for allolactose. The allolactose-binding domains are linked to the DNA-binding domains through linker helices (yellow). (c) Surface rendering of the DNA-binding domain of the Lac repressor (gray) bound to DNA (blue). (d) The same DNA-binding domain as in (c), but separated from the DNA, with the binding interaction surfaces shown. Some groups on the protein and DNA that interact through hydrogen-bonding are shown in red; some groups that interact through hydrophobic interactions are in orange. This model shows only a few of the groups involved in sequence recognition. The complementary nature of the two surfaces is evident.

required for specificity are located elsewhere in the protein). Zinc fingers can also function as RNA-binding motifs—for example, in certain proteins that bind eukaryotic mRNAs and act as translational repressors. We discuss this role later (Section 28.3).

Homeodomain Another type of DNA-binding domain has been identified in some proteins that function as

FIGURE 28-12 Zinc fingers. Three zinc fingers (gray) of the regulatory protein Zif268, complexed with DNA (blue and white) (PDB ID 1A1L). Each Zn$^{2+}$ (maroon) coordinates with two His and two Cys residues (not shown).
Regulation of Gene Expression

transcriptional regulators, especially during eukaryotic development. This domain of 60 amino acids—called the **homeodomain**, because it was discovered in homeotic genes (genes that regulate the development of body patterns)—is highly conserved and has now been identified in proteins from a wide variety of organisms, including humans (Fig. 28-13). The DNA-binding segment of the domain is related to the helix-turn-helix motif. The DNA sequence that encodes this domain is known as the **homeobox**.

Regulatory Proteins Also Have Protein-Protein Interaction Domains

Regulatory proteins contain domains not only for DNA binding but also for protein-protein interactions—with RNA polymerase, other regulatory proteins, or other subunits of the same regulatory protein. Examples include many eukaryotic transcription factors that function as gene activators, which often bind as dimers to the DNA, through DNA-binding domains that contain zinc fingers. Some structural domains are devoted to the interactions required for dimer formation, which is generally a prerequisite for DNA binding. Like DNA-binding motifs, the structural motifs that mediate protein-protein interactions tend to fall within one of a few common categories. Two important examples are the **leucine zipper** and the **basic helix-loop-helix**. Structural motifs such as these are the basis for classifying some regulatory proteins into structural families.

![FIGURE 28-13 Homeodomain](image1)

FIGURE 28-13 Homeodomain. Shown here is a homeodomain bound to DNA; one of the α helices (red), stacked on two others, can be seen protruding into the major groove (PDB ID 1BBl). This is only a small part of the much larger protein Ultrabithorax (Ubx), active in the regulation of development in fruit flies (see Section 28.3).

Leucine Zipper This motif is an amphipathic α helix with a series of hydrophobic amino acid residues concentrated on one side (Fig. 28-14), with the hydrophobic surface forming the area of contact between

![FIGURE 28-14 Leucine zippers](image2)

FIGURE 28-14 Leucine zippers. (a) Comparison of amino acid sequences of several leucine zipper proteins. Note the Leu (L) residues at every seventh position in the zipper region, and the number of Lys (K) and Arg (R) residues in the DNA-binding region. (b) Leucine zipper from the yeast activator protein GCN4 (PDB ID 1YS). Only the “zippered” α helices (gray and light blue), derived from different subunits of the dimeric protein, are shown. The two helices wrap around each other in a gently coiled coil. The interacting Leu residues are shown in red.
the two polypeptides of a dimer. A striking feature of these α helices is the occurrence of Leu residues at every seventh position, forming a straight line along the hydrophobic surface. Although researchers initially thought the Leu residues interdigitated (hence the name “zipper”), we now know that they line up side by side as the interacting α helices coil around each other (forming a coiled coil; Fig. 28–14b). Regulatory proteins with leucine zippers often have a separate DNA-binding domain with a high concentration of basic (Lys or Arg) residues that can interact with the negatively charged phosphates of the DNA backbone. Leucine zippers have been found in many eukaryotic and a few bacterial proteins.

Basic Helix-Loop-Helix Another common structural motif occurs in some eukaryotic regulatory proteins implicated in the control of gene expression during the development of multicellular organisms. These proteins share a conserved region of about 50 amino acid residues important in both DNA binding and protein dimerization. This region can form two short amphipathic α helices linked by a loop of variable length, the helix-loop-helix (distinct from the helix-turn-helix motif associated with DNA binding). The helix-loop-helix motifs of two polypeptides interact to form dimers (Fig. 28–15). In these proteins, DNA binding is mediated by an adjacent short amino acid sequence rich in basic residues, similar to the separate DNA-binding region in proteins containing leucine zippers.

Subunit Mixing in Eukaryotic Regulatory Proteins Several families of eukaryotic transcription factors have been defined based on close structural similarities. Within each family, dimers can sometimes form between two identical proteins (a homodimer) or between two different members of the family (a heterodimer). A hypothetical family of four different leucine-zipper proteins could thus form up to 10 different dimeric species. In many cases, the different combinations seem to have distinct regulatory and functional properties.

In addition to structural domains devoted to DNA binding and dimerization (or oligomerization), many regulatory proteins must interact with RNA polymerase, with unrelated regulatory proteins, or with both. At least three types of additional domains for protein-protein interaction have been characterized (primarily in eukaryotes): glutamine-rich, proline-rich, and acidic domains, the names reflecting the amino acid residues that are especially abundant.

Protein-DNA binding interactions are the basis of the intricate regulatory circuits fundamental to gene function. We now turn to a closer examination of these gene regulatory schemes, first in bacterial, then in eukaryotic systems.

SUMMARY 28.1 Principles of Gene Regulation

- The expression of genes is regulated by processes that affect the rates at which gene products are synthesized and degraded. Much of this regulation occurs at the level of transcription initiation, mediated by regulatory proteins that either repress transcription (negative regulation) or activate transcription (positive regulation) at specific promoters.

- In bacteria, genes that encode products with interdependent functions are often clustered in an operon, a single transcriptional unit. Transcription of the genes is generally blocked by binding of a specific repressor protein at a DNA site called an operator. Dissociation of the repressor from the operator is mediated by a specific small molecule, an inducer. These principles were first elucidated in studies of the lactose (lac) operon. The Lac repressor dissociates from the lac operator when the repressor binds to its inducer, allolactose.

- Regulatory proteins are DNA-binding proteins that recognize specific DNA sequences; most have distinct DNA-binding domains. Within these domains, common structural motifs that bind DNA are the helix-turn-helix, zinc finger, and homeodomain.

- Regulatory proteins also contain domains for protein-protein interactions, including the leucine zipper and helix-loop-helix, which are involved in dimerization, and other motifs involved in activation of transcription.

FIGURE 28–15 Helix-loop-helix. The human transcription factor Max, bound to its DNA target site (PDB ID 1HLO). The protein is dimeric; one subunit is colored. The DNA-binding segment (pink) merges with the first helix of the helix-loop-helix (red). The second helix merges with the carboxyl-terminal end of the subunit (purple). Interaction of the carboxyl-terminal helices of the two subunits describes a coiled coil very similar to that of a leucine zipper (see Fig. 28–14b), but with only one pair of interacting Leu residues (red side chains near the top) in this particular example. The overall structure is sometimes called a helix-loop-helix/leucine zipper motif.
28.2 Regulation of Gene Expression in Bacteria

As in many other areas of biochemical investigation, the study of the regulation of gene expression advanced earlier and faster in bacteria than in other experimental organisms. The examples of bacterial gene regulation presented here are chosen from among scores of well-studied systems, partly for their historical significance, but primarily because they provide a good overview of the range of regulatory mechanisms in bacteria. Many of the principles of bacterial gene regulation are also relevant to understanding gene expression in eukaryotic cells.

We begin by examining the lactose and tryptophan operons; each system has regulatory proteins, but the overall mechanisms of regulation are very different. This is followed by a short discussion of the SOS response in E. coli, illustrating how genes scattered throughout the genome can be coordinately regulated. We then describe two bacterial systems of quite different types, illustrating the diversity of gene regulatory mechanisms: regulation of ribosomal protein synthesis at the level of translation, with many of the regulatory proteins binding to RNA (rather than DNA), and regulation of the process of "phase variation" in Salmonella, which results from genetic recombination. Finally, we examine some additional examples of posttranscriptional regulation in which the RNA modulates its own function.

The lac Operon Undergoes Positive Regulation

The operator-repressor-inducer interactions described earlier for the lac operon (Fig. 28–7) provide an intuitively satisfying model for an on/off switch in the regulation of gene expression. In truth, operon regulation is rarely so simple. A bacterium’s environment is too complex for its genes to be controlled by one signal. Other factors besides lactose affect the expression of the lac genes, such as the availability of glucose. Glucose, metabolized directly by glycolysis, is the preferred energy source in E. coli. Other sugars can serve as the main or sole nutrient, but extra steps are required to prepare them for entry into glycolysis, necessitating the synthesis of additional enzymes. Clearly, expressing the genes for proteins that metabolize sugars such as lactose or arabinose is wasteful when glucose is abundant.

What happens to the expression of the lac operon when both glucose and lactose are present? A regulatory mechanism known as catabolite repression restricts expression of the lac genes, such as the availability of glucose. Glucose, metabolized directly by glycolysis, is the preferred energy source in E. coli. Other sugars can serve as the main or sole nutrient, but extra steps are required to prepare them for entry into glycolysis, necessitating the synthesis of additional enzymes. Clearly, expressing the genes for proteins that metabolize sugars such as lactose or arabinose is wasteful when glucose is abundant.

What happens to the expression of the lac operon when both glucose and lactose are present? A regulatory mechanism known as catabolite repression restricts expression of the lac genes, such as the availability of glucose. Glucose, metabolized directly by glycolysis, is the preferred energy source in E. coli. Other sugars can serve as the main or sole nutrient, but extra steps are required to prepare them for entry into glycolysis, necessitating the synthesis of additional enzymes. Clearly, expressing the genes for proteins that metabolize sugars such as lactose or arabinose is wasteful when glucose is abundant.

The effect of glucose on CRP is mediated by the cAMP interaction (Fig. 28–18). CRP binds to DNA most avidly when cAMP concentrations are high. In the presence of glucose, the synthesis of cAMP is inhibited and efflux of cAMP from the cell is stimulated. As [cAMP] declines, CRP binding to DNA declines, thereby decreasing the expression of the lac operon. Strong induction of the lac operon therefore requires both lactose (to inactivate the lac repressor) and a lowered concentration of glucose (to trigger an increase in [cAMP] and increased binding of cAMP to CRP).

CRP and cAMP are involved in the coordinated regulation of many operons, primarily those that encode enzymes for the metabolism of secondary sugars such as lactose and arabinose. A network of operons with a
common regulator is called a **regulon**. This arrangement, which allows for coordinated shifts in cellular functions that can require the action of hundreds of genes, is a major theme in the regulated expression of dispersed networks of genes in eukaryotes. Other bacterial regulons include the heat-shock gene system that responds to changes in temperature (p. 1028) and the genes induced in *E. coli*, as part of the SOS response to DNA damage, described later.

Many Genes for Amino Acid Biosynthetic Enzymes Are Regulated by Transcription Attenuation

The 20 common amino acids are required in large amounts for protein synthesis, and *E. coli* can synthesize all of them. The genes for the enzymes needed to synthesize a given amino acid are generally clustered in an operon and are expressed whenever existing supplies of that amino acid are inadequate for cellular requirements. When the amino acid is abundant, the biosynthetic enzymes are not needed and the operon is repressed.

The *E. coli* tryptophan (*trp*) operon (Fig. 28–19) includes five genes for the enzymes required to convert chorismate to tryptophan. Note that two of the enzymes catalyze more than one step in the pathway. The mRNA from the *trp* operon has a half-life of only about 3 min, allowing the cell to respond rapidly to changing needs for this amino acid. The Trp repressor is a homodimer, each subunit containing 107 amino acid residues.
When tryptophan is abundant it binds to the Trp repressor, causing a conformational change that permits the repressor to bind to the trp operator and inhibit expression of the trp operon. The trp operator site overlaps the promoter, so binding of the repressor blocks binding of RNA polymerase.

Once again, this simple on/off circuit mediated by a repressor is not the entire regulatory story. Different cellular concentrations of tryptophan can vary the rate of synthesis of the biosynthetic enzymes over a 700-fold range. Once repression is lifted and transcription begins, the rate of transcription is fine-tuned by a second regulatory process, called transcription attenuation, in which transcription is initiated normally but is abruptly halted before the operon genes are transcribed. The frequency with which transcription is attenuated is regulated by the availability of tryptophan and relies on the very close coupling of transcription and translation in bacteria.

The trp operon attenuation mechanism uses signals encoded in four sequences within a 162 nucleotide leader region at the 5' end of the mRNA, preceding the initiation codon of the first gene (Fig. 28-21a). Within the leader lies a region known as the attenuator, made up of sequences 3 and 4. These sequences base-pair to form a G=C-rich stem-and-loop structure closely followed by a series of U residues. The attenuator structure acts as
FIGURE 28–21 Transcriptional attenuation in the trp operon. Transcription is initiated at the beginning of the 162 nucleotide mRNA leader encoded by a DNA region called trpL (see Fig. 2B–19). A regulatory mechanism determines whether transcription is attenuated at the end of the leader or continues into the structural genes. (a) The trp mRNA leader (trpL). The attenuation mechanism in the trp operon involves sequences 1 to 4 (highlighted). (b) Sequence 1 encodes a small peptide, the leader peptide, containing two Trp residues (W); it is translated immediately after transcription begins. Sequences 2 and 3 are complementary, as are sequences 3 and 4. The attenuator structure forms by the pairing of sequences 3 and 4 (top). Its structure and function are similar to those of a transcription terminator (see Fig. 26–8). Pairing of sequences 2 and 3 (bottom) prevents the attenuator structure from forming. Note that the leader peptide has no other cellular function. Translation of its open reading frame has a purely regulatory role that determines which complementary sequences (2 and 3 or 3 and 4) are paired. (c) Base-pairing schemes for the complementary regions of the trp mRNA leader.
a transcription terminator (Fig. 28–21b). Sequence 2 is an alternative complement for sequence 3 (Fig. 28–21c). If sequences 2 and 3 base-pair, the attenuator structure cannot form and transcription continues into the trp biosynthetic genes; the loop formed by the pairing of sequences 2 and 3 does not obstruct transcription.

Regulatory sequence 1 is crucial for a tryptophan-sensitive mechanism that determines whether sequence 3 pairs with sequence 2 (allowing transcription to continue) or with sequence 4 (attenuating transcription). Formation of the attenuator stem-and-loop structure depends on events that occur during translation of regulatory sequence 1, which encodes a leader peptide (so-called because it is encoded by the leader region of the mRNA) of 14 amino acids, two of which are Trp residues. The leader peptide has no other known cellular function; its synthesis is simply an operon regulatory device. This peptide is translated immediately after it is transcribed, by a ribosome that follows closely behind RNA polymerase as transcription proceeds.

When tryptophan concentrations are high, concentrations of charged tryptophan tRNA (Trp-tRNA^{Trp}) are also high. This allows translation to proceed rapidly past the two Trp codons of sequence 1 and into sequence 2, before sequence 3 is synthesized by RNA polymerase. In this situation, sequence 2 is covered by the ribosome and unavailable for pairing to sequence 3 when sequence 3 is synthesized; the attenuator structure (sequences 3 and 4) forms and transcription halts (Fig. 28–21b, top). When tryptophan concentrations are low, however, the ribosome stalls at the two Trp codons in sequence 1, because charged tRNA^{Trp} is less available. Sequence 2 remains free while sequence 3 is synthesized, allowing these two sequences to base-pair and permitting transcription to proceed (Fig. 28–21b, bottom). In this way, the proportion of transcripts that are attenuated declines as tryptophan concentration declines.

Many other amino acid biosynthetic operons use a similar attenuation strategy to fine-tune biosynthetic enzymes to meet the prevailing cellular requirements. The 15 amino acid leader peptide produced by the phe operon contains seven Phe residues. The leu operon leader peptide has four contiguous Leu residues. The leader peptide for the his operon contains seven contiguous His residues. In fact, in the his operon and a number of others, attenuation is sufficiently sensitive to be the only regulatory mechanism.

Induction of the SOS Response Requires Destruction of Repressor Proteins

Extensive DNA damage in the bacterial chromosome triggers the induction of many distantly located genes. This response, called the SOS response (p. 1001), provides another good example of coordinated gene regulation. Many of the induced genes are involved in DNA repair (see Table 25–6). The key regulatory proteins are the RecA protein and the LexA repressor.

The LexA repressor (M_r 22,700) inhibits transcription of all the SOS genes (Fig. 28–22), and induction of the SOS response requires removal of LexA. This is not a simple dissociation from DNA in response to binding of a small molecule, as in the regulation of the lac operon...
described above. Instead, the LexA repressor is inactivated when it catalyzes its own cleavage at a specific Ala–Gly peptide bond, producing two roughly equal protein fragments. At physiological pH, this autocleavage reaction requires the RecA protein. RecA is not a protease in the classical sense, but its interaction with LexA facilitates the repressor's self-cleavage reaction. This function of RecA is sometimes called a coprotease activity.

The RecA protein provides the functional link between the biological signal (DNA damage) and induction of the SOS genes. Heavy DNA damage leads to numerous single-strand gaps in the DNA, and only RecA that is bound to single-stranded DNA can facilitate cleavage of the LexA repressor (Fig. 28-22, bottom). Binding of RecA at the gaps eventually activates its coprotease activity, leading to cleavage of the LexA repressor and SOS induction.

During induction of the SOS response in a severely damaged cell, RecA also cleaves and thus inactivates the repressors that otherwise allow propagation of certain viruses in a dormant lysogenic state within the bacterial host. This provides a remarkable illustration of evolutionary adaptation. These repressors, like LexA, also undergo self-cleavage at a specific Ala–Gly peptide bond, so induction of the SOS response permits replication of the virus and lysis of the cell, releasing new viral particles. Thus the bacteriophage can make a hasty exit from a compromised bacterial host cell.

Synthesis of Ribosomal Proteins Is Coordinated with rRNA Synthesis

In bacteria, an increased cellular demand for protein synthesis is met by increasing the number of ribosomes rather than altering the activity of individual ribosomes. In general, the number of ribosomes increases as the cellular growth rate increases. At high growth rates, ribosomes make up approximately 45% of the cell's dry weight. The proportion of cellular resources devoted to making ribosomes is so large, and the function of ribosomes so important, that cells must coordinate the synthesis of the ribosomal components: the ribosomal proteins (r-proteins) and RNAs (rRNAs). This regulation is distinct from the mechanisms described so far, because it occurs largely at the level of translation.

The 52 genes that encode the r-proteins occur in at least 20 operons, each with 1 to 11 genes. Some of these operons also contain the genes for the subunits of DNA primase (see Fig. 25-13), RNA polymerase (see Fig. 26-4), and protein synthesis elongation factors (see Fig. 27-28)—revealing the close coupling of replication, transcription, and protein synthesis during cell growth.

The r-protein operons are regulated primarily through a translational feedback mechanism. One r-protein encoded by each operon also functions as a translational repressor, which binds to the mRNA transcribed from that operon and blocks translation of all the genes the messenger encodes (Fig. 28-23). In general, the r-protein that plays the role of repressor also binds directly to an rRNA. Each translational repressor r-protein binds with higher affinity to the appropriate rRNA than to its mRNA, so the mRNA is bound and translation repressed only when the level of the r-protein exceeds that of the rRNA. This ensures that translation of the mRNAs encoding r-proteins is repressed only when synthesis of these r-proteins exceeds that needed to make functional ribosomes. In this way, the rate of r-protein synthesis is kept in balance with rRNA availability.

FIGURE 28-23 Translational feedback in some ribosomal protein operons. The r-proteins that act as translational repressors are shaded pink. Each translational repressor blocks the translation of all genes in that operon by binding to the indicated site on the rRNA. Genes that encode subunits of RNA polymerase are shaded yellow; genes that encode elongation factors are blue. The r-proteins of the large (50S) ribosomal subunit are designated L1 to L34; those of the small (30S) subunit, S1 to S21.
The mRNA binding site for the translational repressor is near the translational start site of one of the genes in the operon, usually the first gene (Fig. 28-23). In other operons this would affect only that one gene, because in bacterial polycistronic mRNAs most genes have independent translation signals. In the r-protein operons, however, the translation of one gene depends on the translation of all the others. The mechanism of this translational coupling is not yet understood in detail. However, in some cases the translation of multiple genes seems to be blocked by folding of the mRNA into an elaborate three-dimensional structure that is stabilized both by internal base-pairing (as in Fig. 8-23) and by binding of the translational repressor protein. When the translational repressor is absent, ribosome binding and translation of one or more of the genes disrupts the folded structure of the mRNA and allows all the genes to be translated.

Because the synthesis of r-proteins is coordinated with the available rRNA, the regulation of ribosome production reflects the regulation of rRNA synthesis. In E. coli, rRNA synthesis from the seven rRNA operons responds to cellular growth rate and to changes in the availability of crucial nutrients, particularly amino acids. The regulation coordinated with amino acid concentrations is known as the stringent response (Fig. 28-24). When amino acid concentrations are low, rRNA synthesis is halted. Amino acid starvation leads to the binding of uncharged tRNAs to the ribosomal A site; this triggers a sequence of events that begins with the binding of an enzyme called stringent factor (RelA protein) to the ribosome. When bound to the ribosome, stringent factor catalyzes formation of the unusual nucleotide guanosine tetraphosphate (ppGpp; see Fig. 8-39); it adds pyrophosphate to the 3' position of GTP, in the reaction

\[
\text{GTP} + \text{ATP} \rightarrow \text{pppGpp} + \text{AMP}
\]

then a phosphohydrolase cleaves off one phosphate to form ppGpp. The abrupt rise in ppGpp level in response to amino acid starvation results in a great reduction in rRNA synthesis, mediated at least in part by the binding of ppGpp to RNA polymerase.

The nucleotide ppGpp, along with cAMP, belongs to a class of modified nucleotides that act as cellular second messengers (p. 298). In E. coli, these two nucleotides serve as starvation signals; they cause large changes in cellular metabolism by increasing or decreasing the transcription of hundreds of genes. In eukaryotic cells, similar nucleotide second messengers also have multiple regulatory functions. The coordination of cellular metabolism with cell growth is highly complex, and further regulatory mechanisms undoubtedly remain to be discovered.

The Function of Some mRNAs Is Regulated by Small RNAs in Cis or in Trans

As described throughout this chapter, proteins play an important and well-documented role in regulating gene expression. But RNA also has a crucial role—one that is becoming better recognized as more examples of regulatory RNAs are discovered. Once an mRNA is synthesized, its functions can be controlled by RNA-binding proteins, as seen for the r-protein operons just described, or by an RNA. A separate RNA molecule may bind to the mRNA “in trans” and affect its activity. Alternatively, a portion of the mRNA itself may regulate its own function. When part of a molecule affects the function of another part of the same molecule, it is said to act “in cis.”

A well-characterized example of RNA regulation in trans is seen in the regulation of the mRNA of the gene rpoS (RNA polymerase sigma factor), which encodes \(\sigma^5 \), one of the seven E. coli sigma factors (see Table 26-1). The cell uses this specificity factor in certain stress situations, such as when it enters the stationary phase (a state of no growth, necessitated by lack of nutrients) and \(\sigma^5 \) is needed to transcribe large numbers of stress response genes. The \(\sigma^5 \) mRNA is present at low levels under most conditions but is not translated, because a large hairpin structure upstream of the coding region inhibits ribosome binding (Fig. 28-25). Under certain stress conditions, one or both of two small special-function RNAs, DsrA (downstream region A) and RprA (RpoS regulator RNA A), are induced. Both can pair with one strand of the hair-
28.2 Regulation of Gene Expression in Bacteria

Regulation of gene expression in bacteria involves numerous examples of RNA-mediated regulation, including riboswitches. As described in Box 26-3, aptamers are RNA molecules generated in vitro that are capable of specific binding to a particular ligand. As one might expect, such ligand-binding RNA domains are also present in nature—in riboswitches—in a significant number of bacterial mRNAs (and even in some eukaryotic mRNAs). These natural aptamers are structured domains found in untranslated regions at the 5' ends of certain bacterial mRNAs. Binding of an mRNA's riboswitch to its appropriate ligand results in a conformational change in the mRNA, and transcription is inhibited by stabilization of a premature transcription termination structure, or translation is inhibited (in cis) by occlusion of the ribosome-binding site (Fig. 28-26).

In most cases, the riboswitch acts in a kind of feedback loop. Most genes regulated in this way are involved in the synthesis or transport of the ligand that is bound by the riboswitch; thus, when the ligand is present in high

FIGURE 28-25 Regulation of bacterial mRNA function in trans by sRNAs. Several sRNAs (small RNAs)—DsrA, RprA, and OxyS—are involved in regulation of the rpoS gene. All require the protein Hfq, an RNA chaperone that facilitates RNA-RNA pairing. Hfq has a toroid structure, with a pore in the center. (a) DsrA promotes translation by pairing with one strand of a stem-loop structure that otherwise blocks the ribosome-binding site. RprA acts in a similar way. (b) OxyS blocks translation by pairing with the ribosome-binding site.

Poly(U) terminator

FIGURE 28-26 Regulation of bacterial mRNA function in cis by riboswitches. The known modes of action are illustrated by several different riboswitches based on a widespread natural aptamer that binds thiamine pyrophosphate. TPP binding to the aptamer leads to a conformational change that produces the varied results illustrated in parts (a), (b), and (c) in the different systems in which the aptamer is utilized.
concentrations, the riboswitch inhibits expression of the genes needed to replenish this ligand.

Each riboswitch binds only one ligand. Distinct riboswitches have been detected that respond to more than a dozen different ligands, including thiamine pyrophosphate (TPP, vitamin B_{12}), cobalamin (vitamin B_{12}), flavin mononucleotide, lysine, S-adenosylmethionine (adoMet), purines, N-acetylglucosamine 6-phosphate, and glycine. It is likely that many more remain to be discovered. The riboswitch that responds to TPP seems to be the most widespread; it is found in many bacteria, fungi, and some plants. The bacterial TPP riboswitch inhibits translation in some species and induces premature transcription termination in others (Fig. 28-26). The eukaryotic TPP riboswitch is found in the introns of certain genes and modulates the alternative splicing of those genes (see Fig. 26-22). It is not yet clear how common riboswitches are. However, estimates suggest that more than 4% of the genes of Bacillus subtilis are regulated by riboswitches.

As riboswitches become better understood, researchers are finding medical applications. For example, most of the riboswitches described to date, including the one that responds to adoMet, have been found only in bacteria. A drug that bound to and activated the adoMet riboswitch would shut down the genes encoding the enzymes that synthesize and transport adoMet, effectively starving the bacterial cells of this essential cofactor. Drugs of this type are being sought for use as a new class of antibiotics.

The pace of discovery of functional RNAs shows no signs of abatement and continues to enrich the hypothesis that RNA played a special role in the evolution of life (Chapter 26). The sRNAs and riboswitches, like ribozymes and ribosomes, may be vestiges of an RNA world obscured by time but persisting as a rich array of biological devices still functioning in the extant biosphere. The laboratory selection of aptamers and ribozymes with novel ligand-binding and enzymatic functions (see Box 26-3) tells us that the RNA-based activities necessary for a viable RNA world are possible. Discovery of many of the same RNA functions in living organisms tells us that key components for RNA-based metabolism do exist. For example, the natural aptamers of riboswitches may be derived from RNAs that, billions of years ago, bound to cofactors needed to promote the enzymatic processes required for metabolism in the RNA world.

Some Genes Are Regulated by Genetic Recombination

We turn now to another mode of bacterial gene regulation, at the level of DNA rearrangement—recombination. Salmonella typhimurium, which inhabits the mammalian intestine, moves by rotating the flagella on its cell surface (Fig. 28-27). The many copies of the protein flagellin (M, 53,000) that make up the flagella are prominent targets of mammalian immune systems. But Salmonella cells have a mechanism that evades the immune response: they switch between two distinct flagellin proteins (FljB and FljC) roughly once every 1,000 generations, using a process called phase variation.

The switch is accomplished by periodic inversion of a segment of DNA containing the promoter for a flagellin gene. The inversion is a site-specific recombination reaction (see Fig. 25-41) mediated by the Hin recombinase at specific 14 bp sequences (hix sequences) at either end of the DNA segment. When the DNA segment is in one orientation, the gene for FljB flagellin and the gene encoding a repressor (FljA) are expressed (Fig. 28-28a); the repressor shuts down expression of the gene for FljC flagellin. When the DNA segment is inverted (Fig. 28-28b), the FljA and FljB genes are no longer transcribed, and the FljC gene is induced as the repressor becomes depleted. The Hin recombinase, encoded by the hin gene in the DNA segment that undergoes inversion, is expressed when the DNA segment is in either orientation, so the cell can always switch from one state to the other.

This type of regulatory mechanism has the advantage of being absolute: gene expression is impossible when the gene is physically separated from its promoter (note the position of the fljB promoter in Fig. 28-28b). An absolute on/off switch may be important in this system (even though it affects only one of the two flagellin genes), because a flagellum with just one copy of the wrong flagellin might be vulnerable to host antibodies against that protein. The Salmonella system is by no means unique. Similar regulatory systems occur in some other bacteria and in some bacteriophages, and recombination systems with similar functions have been found in eukaryotes (Table 28-1). Gene regulation by DNA rearrangements that move genes and/or promoters is particularly common in pathogens that benefit by changing their host range or by changing their surface proteins, thereby staying ahead of host immune systems.
In bacteria, gene expression can be regulated through various mechanisms. One such mechanism is phase variation, which occurs in Salmonella and is controlled by the hin gene. The hin gene encodes the recombinase that catalyzes inversion of the DNA segment containing the fliB promoter and the hin gene. The recombination sites (inverted repeats) are called hix (yellow). (a) In one orientation, fliB is expressed along with a repressor protein (product of the fliA gene) that represses transcription of the fliC gene. (b) In the opposite orientation only the fliC gene is expressed; the fliA and fliB genes cannot be transcribed. The interconversion between these two states, known as phase variation, also requires two other nonspecific DNA-binding proteins (not shown), HU and FIS.

TABLE 28-1 Examples of Gene Regulation by Recombination

<table>
<thead>
<tr>
<th>System</th>
<th>Recombinase/recombination site</th>
<th>Type of recombination</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase variation (Salmonella)</td>
<td>Hin/hix</td>
<td>Site-specific</td>
<td>Alternative expression of two flagellin genes allows evasion of host immune response.</td>
</tr>
<tr>
<td>Host range (bacteriophage μ)</td>
<td>Gin/gix</td>
<td>Site-specific</td>
<td>Alternative expression of two sets of tail fiber genes affects host range.</td>
</tr>
<tr>
<td>Mating-type switch (yeast)</td>
<td>HO endonuclease, RAD52 protein, other proteins/MAT</td>
<td>Nonreciprocal gene conversion*</td>
<td>Alternative expression of two mating types of yeast, a and α, creates cells of different mating types that can mate and undergo meiosis.</td>
</tr>
<tr>
<td>Antigenic variation (trypanosomes)*</td>
<td>Varies</td>
<td>Nonreciprocal gene conversion*</td>
<td>Successive expression of different genes encoding the variable surface glycoproteins (VSGs) allows evasion of host immune response.</td>
</tr>
</tbody>
</table>

*In nonreciprocal gene conversion (a class of recombination events not discussed in Chapter 25), genetic information is moved from one part of the genome (where it is silent) to another (where it is expressed). The reaction is similar to replicative transposition (see Fig. 25-45).

*Trypanosomes cause African sleeping sickness and other diseases (see Box 22-3). The outer surface of a trypanosome is made up of multiple copies of a single VSG, the major surface antigen. A cell can change surface antigens to more than 100 different forms, precluding an effective defense by the host immune system.
SUMMARY 28.2 Regulation of Gene Expression in Bacteria

- In addition to repression by the Lac repressor, the E. coli lac operon undergoes positive regulation by the cAMP receptor protein (CRP). When [glucose] is low, [cAMP] is high and CRP-cAMP binds to a specific site on the DNA, stimulating transcription of the lac operon and production of lactose-metabolizing enzymes. The presence of glucose depresses [cAMP], decreasing expression of lac and other genes involved in metabolism of secondary sugars. A group of coordinately regulated operons is referred to as a regulon.

- Operons that produce the enzymes of amino acid synthesis have a regulatory circuit called attenuation, which uses a transcription termination site (the attenuator) in the mRNA. Formation of the attenuator is modulated by a mechanism that couples transcription and translation while responding to small changes in amino acid concentration.

- In the SOS system, multiple unlinked genes repressed by a single repressor are induced simultaneously when DNA damage triggers RecA protein–facilitated autocatalytic proteolysis of the repressor.

- In the synthesis of ribosomal proteins, one protein in each r-protein operon acts as a translational repressor. The mRNA is bound by the repressor, and translation is blocked only when the r-protein is present in excess of available rRNA.

- Posttranscriptional regulation of some mRNAs is mediated by sRNAs that act in trans or by riboswitches, part of the mRNA structure itself, that act in cis.

- Some genes are regulated by genetic recombination processes that move promoters relative to the genes being regulated. Regulation can also take place at the level of translation.

28.3 Regulation of Gene Expression in Eukaryotes

Initiation of transcription is a crucial regulation point for gene expression in all organisms. Although eukaryotes and bacteria use some of the same regulatory mechanisms, the regulation of transcription in the two systems is fundamentally different.

We can define a transcriptional ground state as the inherent activity of promoters and transcriptional machinery in vivo in the absence of regulatory sequences. In bacteria, RNA polymerase generally has access to every promoter and can bind and initiate transcription at some level of efficiency in the absence of activators or repressors; the transcriptional ground state is therefore nonrestrictive. In eukaryotes, however, strong promoters are generally inactive in vivo in the absence of regulatory proteins; that is, the transcriptional ground state is restrictive. This fundamental difference gives rise to at least four important features that distinguish the regulation of gene expression in eukaryotes from that in bacteria.

First, access to eukaryotic promoters is restricted by the structure of chromatin, and activation of transcription is associated with many changes in chromatin structure in the transcribed region. Second, although eukaryotic cells have both positive and negative regulatory mechanisms, positive mechanisms predominate in all systems characterized so far. Thus, given that the transcriptional ground state is restrictive, virtually every eukaryotic gene requires activation in order to be transcribed. Third, eukaryotic cells have larger, more complex multimeric regulatory proteins than do bacteria. Finally, transcription in the eukaryotic nucleus is separated from translation in the cytoplasm in both space and time.

The complexity of regulatory circuits in eukaryotic cells is extraordinary, as the following discussion shows. We conclude the section with an illustrated description of one of the most elaborate circuits: the regulatory cascade that controls development in fruit flies.

Transcriptionally Active Chromatin Is Structurally Distinct from Inactive Chromatin

The effects of chromosome structure on gene regulation in eukaryotes have no clear parallel in bacteria. In the eukaryotic cell cycle, interphase chromosomes appear, at first viewing, to be dispersed and amorphous (see Figs 12-43, 24-25). Nevertheless, several forms of chromatin can be found along these chromosomes. About 10% of the chromatin in a typical eukaryotic cell is in a more condensed form than the rest of the chromatin. This form, heterochromatin, is transcriptionally inactive. Heterochromatin is generally associated with particular chromosome structures—the centromeres, for example. The remaining, less condensed chromatin is called euchromatin.

Transcription of a eukaryotic gene is strongly repressed when its DNA is condensed within heterochromatin. Some, but not all, of the euchromatin is transcriptionally active. Transcriptionally active chromosomal regions are characterized not only by a more open chromatin structure but also by the presence of nucleosomes with particular compositions and modifications. Transcriptionally active chromatin tends to be deficient in histone H1, which binds to the linker DNA between nucleosomes particles, and enriched in the histone variants H3.3 and H2AZ (see Box 24–2).

Histones within transcriptionally active chromatin and heterochromatin differ in their patterns of covalent modification. The core histones of nucleosome particles (H2A, H2B, H3, H4; see Fig. 24–27) are modified by...
methylation of Lys or Arg residues, phosphorylation of Ser or Thr residues, acetylation (see below), ubiquitination (see Fig. 27–47), or sumoylation. Each of the core histones has two distinct structural domains. A central domain is involved in histone-histone interaction and the wrapping of DNA around the nucleosome. A second, lysine-rich amino-terminal domain is generally positioned near the exterior of the assembled nucleosome particle; the covalent modifications occur at specific residues concentrated in this amino-terminal domain. The patterns of modification have led some researchers to propose the existence of a histone code, in which modification patterns are recognized by enzymes that alter the structure of chromatin. Modifications associated with transcriptional activation—primarily methylation and acetylation—would be recognized by enzymes that make the chromatin more accessible to the transcription machinery. Indeed, some of the modifications are essential for interactions with proteins that play key roles in transcription.

5-Methylation of cytosine residues of CpG sequences is common in eukaryotic DNA (p. 292), but DNA in transcriptionally active chromatin tends to be undermethylated. Furthermore, CpG sites in particular genes are more often undermethylated in the cells of tissues where the genes are expressed than in those where the genes are not expressed. The overall pattern suggests that active chromatin is prepared for transcription by the removal of potential structural barriers.

Chromatin Is Remodeled by Acetylation and Nucleosomal Displacement/Repositioning

The transcription-associated structural changes in chromatin are generated by a process called chromatin remodeling. The remodeling involves enzymes that promote the changes described above. Some enzymes covalently modify the histones of the nucleosome. Others use the chemical energy of ATP to reposition nucleosomes on the DNA (Table 28–2). Still others alter the histone composition of the nucleosomes.

The acetylation and methylation of histones figure prominently in the processes that activate chromatin for transcription. As noted above, the amino-terminal domains of the core histones are generally rich in Lys and Arg residues. During transcription, histone H3 is methylated (by specific histone methylases) at Lys4 in nucleosomes near the 5' end of the coding region and at Lys36 throughout the coding region. These methylations facilitate the binding of histone acetyltransferases (HATs),

<table>
<thead>
<tr>
<th>TABLE 28–2 Some Enzyme Complexes Catalyzing Chromatin Structural Changes Associated with Transcription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme complex</td>
</tr>
<tr>
<td>Histone modification</td>
</tr>
<tr>
<td>GCN5-ADA2-ADA3</td>
</tr>
<tr>
<td>SAGA/PCAF</td>
</tr>
<tr>
<td>NuA4</td>
</tr>
<tr>
<td>Histone movement/replacement enzymes that require ATP</td>
</tr>
<tr>
<td>SWI/SNF</td>
</tr>
<tr>
<td>ISWI family</td>
</tr>
<tr>
<td>SWR1 family</td>
</tr>
<tr>
<td>Histone chaperones that do not require ATP</td>
</tr>
<tr>
<td>HIRA</td>
</tr>
</tbody>
</table>

*The abbreviations for eukaryotic genes and proteins are often more confusing or obscure than those used for bacteria. The complex of GCN5 (general control nonderepressible) and ADA (alteration/deficiency activation) proteins was discovered during investigation of the regulation of nitrogen metabolism genes in yeast. These proteins can be part of the larger SAGA complex (SAGA/PACF, GCN5, acetyltransferase). The equivalent of SAGA in humans is PCAF (p300/CBP-associated factor). NuA4 is nucleosome acetyltransferase of H4; Esa1 is essential SAGA2-related acetyltransferase. SWI (switching) was discovered as a protein required for expression of certain genes involved in mating-type switching in yeast, and SNF (sucrose nonfermenting) as a factor for expression of the yeast gene for sucrose. Subsequent studies revealed multiple SWI and SNF proteins that acted in a complex. The SWI/SNF complex has a role in the expression of a wide range of genes and has been found in many eukaryotes, including humans. ISWI is initiation SWI; NURF, nuclear remodeling factor; SWR1, Swi2/Snf2-related ATPase; and HIRA, histone regulator A.
enzymes that acetylate particular Lys residues. Cytosolic (type B) HATs acetylate newly synthesized histones before the histones are imported into the nucleus. The subsequent assembly of the histones into chromatin after replication is facilitated by histone chaperones: CAF1 for H3 and H4, and NAP1 for H2A and H2B (see Box 24–2).

Where chromatin is being activated for transcription, the nucleosomal histones are further acetylated by nuclear (type A) HATs. The acetylation of multiple Lys residues in the amino-terminal domains of histones H3 and H4 can reduce the affinity of the entire nucleosome for DNA. Acetylation of particular Lys residues is critical for the interaction of nucleosomes with other proteins. When transcription of a gene is no longer required, the extent of acetylation of nucleosomes in that vicinity is reduced by the activity of histone deacetylases (HDACs), as part of a general gene-silencing process that restores the chromatin to a transcriptionally inactive state. In addition to the removal of certain acetyl groups, new covalent modification of histones marks chromatin as transcriptionally inactive. For example, Lys9 of histone H3 is often methylated in heterochromatin.

There are five known families of enzyme complexes that actively move or displace nucleosomes, hydrolyzing ATP in the process, three of which are particularly important in transcriptional activation (Table 28–2; see the table footnote for an explanation of the abbreviated names of the enzyme complexes described here). **SWI/SNF**, found in all eukaryotic cells, contains at least six core polypeptides that together remodel chromatin so that nucleosomes become more irregularly spaced, and stimulate the binding of transcription factors. The complex includes a component called a bromodomain near the carboxyl terminus of the active ATPase subunit, which interacts with acetylated histone tails. SWI/SNF is not required for the transcription of every gene. **NURF**, a member of the ISWI family, remodels chromatin in ways that complement and overlap the activity of SWI/SNF. These two enzyme complexes are crucial in preparing a region of chromatin for active transcription. Some members of a third family, **SWR1**, are involved in deposition of the H2AZ histone variant in transcriptionally active chromatin.

In the other families of chromatin remodelers, some are required to reorder nucleosomes within chromatin when genes are being silenced. The net effect of chromatin remodeling is to make a segment of the chromosome more accessible and to "label" (chemically modify) it so as to facilitate the binding and activity of transcription factors that regulate expression of the gene or genes in that region.

Many Eukaryotic Promoters Are Positively Regulated

As already noted, eukaryotic RNA polymerases have little or no intrinsic affinity for their promoters; initiation of transcription is almost always dependent on the action of multiple activator proteins. One important reason for the apparent predominance of positive regulation seems obvious: the storage of DNA within chromatin effectively renders most promoters inaccessible, so genes are silent in the absence of other regulation. The structure of chromatin affects access to some promoters more than others, but repressors that bind to DNA so as to preclude access of RNA polymerase (negative regulation) would often be simply redundant. Other factors must be at play in the use of positive regulation, and speculation generally centers around two: the large size of eukaryotic genomes and the greater efficiency of positive regulation.

First, nonspecific DNA binding of regulatory proteins becomes a more important problem in the much larger genomes of higher eukaryotes. And the chance that a single specific binding sequence will occur randomly at an inappropriate site also increases with genome size. Specificity for transcriptional activation can be improved if each of several positive-regulatory proteins must bind specific DNA sequences and then form a complex in order to become active. The average number of regulatory sites for a gene in a multicellular organism is probably at least five. The requirement for binding of several positive-regulatory proteins to specific DNA sequences vastly reduces the probability of the random occurrence of a functional juxtaposition of all the necessary binding sites. In principle, a similar strategy could be used by multiple negative-regulatory elements, but this brings us to the second reason for the use of positive regulation: it is simply more efficient. If the ~29,000 genes in the human genome were negatively regulated, each cell would have to synthesize, at all times, this same number of different repressors (or many times this number if multiple regulatory elements were used at each promoter) in concentrations sufficient to permit specific binding to each "unwanted" gene. In positive regulation, most of the genes are usually inactive (that is, RNA polymerases do not bind to the promoters) and the cell synthesizes only the activator proteins needed to promote transcription of the subset of genes required in the cell at that time. These arguments notwithstanding, there are examples of negative regulation in eukaryotes, from yeasts to humans, as we shall see.

DNA-Binding Activators and Coactivators Facilitate Assembly of the General Transcription Factors

To continue our exploration of the regulation of gene expression in eukaryotes, we return to the interactions between promoters and RNA polymerase II (Pol II), the enzyme responsible for the synthesis of eukaryotic mRNAs. Although many (but not all) Pol II promoters include the TATA box and Inr (initiator) sequences, with their standard spacing (see Fig. 26–9), they vary greatly in both the number and the location of additional sequences required for the regulation of transcription.
These additional regulatory sequences are usually called **enhancers** in higher eukaryotes and **upstream activator sequences (UASs)** in yeast. A typical enhancer may be found hundreds or even thousands of base pairs upstream from the transcription start site, or may even be downstream, within the gene itself. When bound by the appropriate regulatory proteins, an enhancer increases transcription at nearby promoters regardless of its orientation in the DNA. The UASs of yeast function in a similar way, although generally they must be positioned upstream and within a few hundred base pairs of the transcription start site. An average Pol II promoter may be affected by a half-dozen regulatory sequences of this type, and even more-complex promoters are quite common (see Fig. 15–23, for example).

Successful binding of active RNA polymerase II holoenzyme at one of its promoters usually requires the action of other proteins (Fig. 28–29), of four types: (1) **transcription activators**, which bind to enhancers or UASs and facilitate transcription; (2) **chromatin modification and remodeling proteins**, described above; (3) **coactivators**; and (4) **basal transcription factors** (see Fig. 26–10, Table 26–2), required at every Pol II promoter. The coactivators act indirectly—not by binding to the DNA—and are required for essential communication between the activators and the complex composed of Pol II and the basal (or general) transcription factors. Furthermore, a variety of repressor proteins can interfere with communication between the RNA polymerase and the activators, resulting in repression of transcription (Fig. 28–29b). Here we focus on the protein complexes shown in Figure 28–29 and on how they interact to activate transcription.

Transcription Activators The requirements for activators vary greatly from one promoter to another. A few activators are known to facilitate transcription at hundreds of promoters, whereas others are specific for a few promoters. Many activators are sensitive to the binding of signal molecules, providing the capacity to activate or deactivate transcription in response to a changing cellular environment. Some enhancers bound by activators are quite distant from the promoter's TATA box. How do the activators function at a distance? The answer in most cases seems to be that, as indicated earlier, the intervening DNA is looped so that the various protein complexes can interact directly. The looping is promoted by certain nonhistone proteins that are abundant in chromatin and bind nonspecifically to DNA. These **high mobility group (HMG)** proteins (Fig. 28–29; "high mobility" refers to their electrophoretic mobility in polyacrylamide gels) play an important structural role in chromatin remodeling and transcriptional activation.

Coactivator Protein Complexes Most transcription requires the presence of additional protein complexes. Some major regulatory protein complexes that interact with Pol II have been defined both genetically and biochemically. These coactivator complexes act as intermediaries between the transcription activators and the Pol II complex.

The principal eukaryotic coactivator consists of 20 to 30 or more polypeptides in a protein complex called **mediator** (Fig. 28–29); many of the 20 core polypeptides are highly conserved from fungi to humans. An additional complex of four subunits can interact with mediator and inhibit transcription initiation. Mediator binds tightly to the carboxyl-terminal domain (CTD) of
the largest subunit of Pol II. The mediator complex is required for both basal and regulated transcription at promoters used by Pol II, and it also stimulates phosphorylation of the CTD by TFIIH (a basal transcription factor). Transcription activators interact with one or more components of the mediator complex, with the precise interaction sites differing from one activator to another. Coactivator complexes function at or near the promoter's TATA box.

Additional coactivators, functioning with one or a few genes, have also been described. Some of these operate in conjunction with mediator, and some may act in systems that do not employ mediator.

TATA-Binding Protein The first component to bind in the assembly of a preinitiation complex (PIC) at the TATA box of a typical Pol II promoter is the TATA-binding protein (TBP). The complete complex includes the basal transcription factors TFIIA, TFIIE, TFII F, TFIIH; Pol II; and perhaps TFIIA. This minimal PIC, however, is often insufficient for the initiation of transcription and generally does not form at all if the promoter is obscured within chromatin. Positive regulation, leading to transcription, is imposed by the activators and coactivators.

Choreography of Transcriptional Activation We can now begin to piece together the sequence of transcriptional activation events at a typical Pol II promoter (Fig. 28–30). The exact order of binding of some components may vary, but the model in Figure 28–30 illustrates the principles of activation as well as one common path. Many transcription activators have significant affinity for their binding sites even when the sites are within condensed chromatin. The binding of activators is often the event that triggers subsequent activation of the promoter. Binding of one activator may enable the binding of others, gradually displacing some nucleosomes.

Crucial remodeling of the chromatin then takes place in stages, facilitated by interactions between activators and HATs or enzyme complexes such as SWI/SNF (or both). In this way, a bound activator can draw in other components necessary for further chromatin remodeling to permit transcription of specific genes. The bound activators interact with the large mediator complex. Mediator, in turn, provides an assembly surface for the binding of TBP and TFIIID, then TFII B, and then other components of the PIC including RNA polymerase II. Mediator stabilizes the binding of Pol II and its associated transcription factors and greatly facilitates formation of the PIC. Complexity in these regulatory circuits is the rule rather than the exception, with multiple DNA-bound activators promoting transcription.

The script can change from one promoter to another, but most promoters seem to require a precisely ordered assembly of components to initiate transcription. The assembly process is not always fast. At some genes it may take minutes; at certain genes of higher eukaryotes the process can take days.

Reversible Transcriptional Activation Although rarer, some eukaryotic regulatory proteins that bind to Pol II promoters can act as repressors, inhibiting the formation of active PICs (Fig. 28–29b). Some activators can adopt different conformations, enabling them to serve as transcription activators or as repressors. For example, some steroid hormone receptors (described later) function in the nucleus as transcription activators, stimulating the transcription of certain genes when a particular steroid hormone signal is present. When the hormone is absent, the receptor proteins revert to a repressor conformation.
preventing the formation of PICs. In some cases this repression involves interaction with histone deacetylases and other proteins that help restore the surrounding chromatin to its transcriptionally inactive state. Mediator, when it includes the inhibitory subunits, may also block transcription initiation. This may be a regulatory mechanism to ensure ordered assembly of the PIC (by delaying transcriptional activation until all required factors are present), or it may be a mechanism that helps deactivate promoters when transcription is no longer required.

The Genes of Galactose Metabolism in Yeast Are Subject to Both Positive and Negative Regulation

Some of the general principles described above can be illustrated by one well-studied eukaryotic regulatory circuit (Fig. 28–31). The enzymes required for the importation and metabolism of galactose in yeast are encoded by genes scattered over several chromosomes (Table 28–3). Each of the GAL genes is transcribed separately, and yeast cells have no operons like those in bacteria. However, all the GAL genes have similar promoters and are regulated coordinately by a common set of proteins. The promoters for the GAL genes consist of the TATA box and Inr sequences, as well as an upstream activator sequence (UASG) recognized by the transcription activator Gal4 protein (Gal4p). Regulation of gene expression by galactose entails an interplay between Gal4p and two other proteins, Gal80p and Gal3p (Fig. 28–31). Gal80p forms a complex with Gal4p, preventing Gal4p from functioning as an activator of the GAL promoters. When galactose is present, it binds Gal3p, which then interacts with Gal80p, allowing Gal4p to function as an activator at the various GAL promoters.

![FIGURE 28–31 Regulation of transcription of GAL genes in yeast.](image)

Galactose imported into the yeast cell is converted to galactose 6-phosphate by a pathway involving six enzymes, whose genes are scattered over three chromosomes (see Table 28–3). Transcription of these genes is regulated by the combined actions of the proteins Gal4p, Gal80p, and Gal3p, with Gal4p playing the central role of transcription activator. The Gal4p-Gal80p complex is inactive. Binding of galactose to Gal3p and interaction of Gal3p with Gal80p produces a conformational change in Gal80p. The Gal3p-Gal80p complex is then exported from the nucleus, allowing Gal4p to recruit mediator and SAGA and function in transcriptional activation.

<p>| TABLE 28–3 Genes of Galactose Metabolism in Yeast |
|--------------------------------|--------------------------------|-----------------------------|---------------------|</p>
<table>
<thead>
<tr>
<th>Protein function</th>
<th>Chromosomal location</th>
<th>Protein size (number of residues)</th>
<th>Relative protein expression in different carbon sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulated genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAL1</td>
<td>Galactokinase</td>
<td>II</td>
<td>528</td>
</tr>
<tr>
<td>GAL2</td>
<td>Galactose permease</td>
<td>XII</td>
<td>574</td>
</tr>
<tr>
<td>PGM2</td>
<td>Phosphoglucomutase</td>
<td>XIII</td>
<td>569</td>
</tr>
<tr>
<td>GAL7</td>
<td>Galactose 1-phosphate uridylyltransferase</td>
<td>II</td>
<td>365</td>
</tr>
<tr>
<td>GAL10</td>
<td>UDP-glucose 4-epimerase</td>
<td>II</td>
<td>699</td>
</tr>
<tr>
<td>MEL1</td>
<td>α-Galactosidase</td>
<td>II</td>
<td>453</td>
</tr>
<tr>
<td>Regulatory genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAL3</td>
<td>Inducer</td>
<td>IV</td>
<td>520</td>
</tr>
<tr>
<td>GAL4</td>
<td>Transcriptional activator</td>
<td>XVI</td>
<td>881</td>
</tr>
<tr>
<td>GAL80</td>
<td>Transcriptional inhibitor</td>
<td>XIII</td>
<td>435</td>
</tr>
</tbody>
</table>

Regulation of Gene Expression

additional domains for transcriptional activation or for interaction with other regulatory proteins. Interaction of two regulatory proteins is often mediated by domains containing leucine zippers (Fig. 28–14) or helix-loop-helix motifs (Fig. 28–15). We consider here three distinct types of structural domains used in activation by transcription activators (Fig. 28–33a): Gal4p, Sp1, and CTF1.

Gal4p contains a zinc finger-like structure in its DNA-binding domain, near the amino terminus; this domain has six Cys residues that coordinate two Zn$^{2+}$. The protein functions as a homodimer (with dimerization mediated by interactions between two coiled coils) and binds to UAS$_G$, a palindromic DNA sequence about 17 bp long. Gal4p has a separate activation domain with many acidic amino acid residues. Experiments that substitute a variety of different peptide sequences for the acidic activation domain of Gal4p suggest

Other protein complexes also have a role in activating transcription of the GAL genes. These include the SAGA complex for histone acetylation, the SWI/SNF complex for nucleosome remodeling, and the mediator complex. The Gal4 protein, when not bound to Gal80p, is responsible for the recruitment of these additional factors needed for transcriptional activation. Figure 28–32 provides an idea of the complexity of protein interactions in the overall process of transcriptional activation in eukaryotic cells.

Glucose is the preferred carbon source for yeast, as it is for bacteria. When glucose is present, most of the GAL genes are repressed—whether galactose is present or not. The GAL regulatory system described above is effectively overridden by a complex catabolite repression system that includes several proteins (not depicted in Fig. 28–32).

Transcription Activators Have a Modular Structure

Transcription activators typically have a distinct structural domain for specific DNA binding and one or more

![Figure 28–32 Protein complexes involved in transcriptional activation of a group of related eukaryotic genes.](image)

(a) Typical activators such as CTF1, Gal4p, and Sp1 have a DNA-binding domain and an activation domain. The nature of the activation domain is indicated by symbols: —, acidic; Q Q Q, glutamine-rich; P P P, proline-rich. These proteins generally activate transcription by interacting with coactivator complexes such as mediator. Note that the binding sites illustrated here are not generally found together near a single gene. (b) A chimeric protein containing the DNA-binding domain of Sp1 and the activation domain of CTF1 activates transcription if a GC box is present.
that the acidic nature of this domain is critical to its function, although its precise amino acid sequence can vary considerably.

Sp1 \((M_r, 80,000)\) is a transcription activator for a large number of genes in higher eukaryotes. Its DNA binding site, the GC box (consensus sequence GGGCGG), is usually quite near the TATA box. The DNA-binding domain of the Sp1 protein is near its carboxyl terminus and contains three zinc fingers. Two other domains in Sp1 function in activation and are notable in that 25% of their amino acid residues are Gln. A wide variety of other activator proteins also have these glutamine-rich domains.

CTF1 (CCAAT-binding transcription factor 1) belongs to a family of transcription activators that bind a sequence called the CCAAT site (its consensus sequence is TGGN\(_6\)GCCAA, where N is any nucleotide). The DNA-binding domain of CTF1 contains many basic amino acid residues, and the binding region is probably arranged as an α helix. This protein has neither a helix-turn-helix nor a zinc finger motif; its DNA-binding mechanism is not yet clear. CTF1 has a proline-rich activation domain, with Pro accounting for more than 20% of the amino acid residues.

The discrete activation and DNA-binding domains of regulatory proteins often act completely independently, as has been demonstrated in “domain-swapping” experiments. Genetic engineering techniques (Chapter 9) can join the proline-rich activation domain of CTF1 to the DNA-binding domain of Sp1 to create a protein that, like intact Sp1, binds to GC boxes on the DNA and activates transcription at a nearby promoter (as in Fig. 28-33b). The DNA-binding domain of Gal4p has similarly been replaced experimentally with the DNA-binding domain of the E. coli LexA repressor (of the SOS response; Fig. 28-22). This chimeric protein neither binds at UAS\(_6\) nor activates the yeast GAL genes (as would intact Gal4p) unless the UAS\(_6\) sequence in the DNA is replaced by the LexA recognition site.

Eukaryotic Gene Expression Can Be Regulated by Intercellular and Intracellular Signals

The effects of steroid hormones (and of thyroid and retinoid hormones, which have the same mode of action) provide additional well-studied examples of the modulation of eukaryotic regulatory proteins by direct interaction with molecular signals (see Fig. 12-29). Unlike other types of hormones, steroid hormones do not have to bind to plasma membrane receptors. Instead, they can interact with intracellular receptors that are themselves transcription activators. Steroid hormones too hydrophobic to dissolve readily in the blood (estrogen, progesterone, and cortisol, for example) travel on specific carrier proteins from their point of release to their target tissues. In the target tissue, the hormone passes through the plasma membrane by simple diffusion and binds to its specific receptor protein in the nucleus. The hormone-receptor complex acts by binding to highly specific DNA sequences called hormone response elements (HREs), thereby altering gene expression. Hormone binding triggers changes in the conformation of the receptor proteins so that they become capable of interacting with additional transcription factors. The bound hormone-receptor complex can either enhance or suppress the expression of adjacent genes.

The DNA sequences (HREs) to which hormone-receptor complexes bind are similar in length and arrangement, but differ in sequence, for the various steroid hormones. Each receptor has a consensus HRE sequence (Table 28-4) to which the hormone-receptor complex binds well, with each consensus consisting of two six-nucleotide sequences, either contiguous or separated by three nucleotides, in tandem or in a palindromic arrangement. The hormone receptors have a highly conserved DNA-binding domain with two zinc fingers (Fig. 28-34). The hormone-receptor complex binds to the DNA as a dimer, with the zinc finger domains of each monomer recognizing one of the six-nucleotide sequences. The ability of a given hormone to act through the hormone-receptor complex to alter the expression of a specific gene depends on the exact sequence of the HRE, its position relative to the gene, and the number of HREs associated with the gene.

Unlike the DNA-binding domain, the ligand-binding region of the receptor protein—always at the carboxyl terminus—is quite specific to the particular receptor. In the ligand-binding region, the glucocorticoid receptor is only 30% similar to the estrogen receptor and 17% similar to the thyroid hormone receptor. The size of the ligand-binding region varies dramatically; in the vitamin D receptor it has only 25 amino acid residues, whereas in the mineralocorticoid receptor it has 603 residues. Mutations that change one amino acid in these regions can result in loss of responsiveness to a specific hormone. Some humans unable to respond to cortisol, testosterone, vitamin D, or thyroxine have mutations of this type.

Some hormone receptors, including the human progesterone receptor, activate transcription with the

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Consensus sequence bound*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androgen</td>
<td>G(G/T)ACAN(_2)TGTTCT</td>
</tr>
<tr>
<td>Glucocorticoid</td>
<td>GGTACAN(_2)TGTTCT</td>
</tr>
<tr>
<td>Retinoic acid (some)</td>
<td>AGGTCA(_2)AGGTCA</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>AGGTCA(_2)AGGTCA</td>
</tr>
<tr>
<td>Thyroid hormone</td>
<td>AGGTCA(_2)AGGTCA</td>
</tr>
<tr>
<td>RX(^1)</td>
<td>AGGTCA(_2)AGGTCA AGTCAG</td>
</tr>
</tbody>
</table>

\(*N\) represents any nucleotide.

\(^1\) Forms a dimer with the retinoic acid receptor or vitamin D receptor.
Regulation of Gene Expression

![Diagram of steroid hormone receptors](image)

FIGURE 28–34 Typical steroid hormone receptors. These receptor proteins have a binding site for the hormone, a DNA-binding domain, and a region that activates transcription of the regulated gene. The highly conserved DNA-binding domain has two zinc fingers. The sequence shown here is that for the estrogen receptor, but the residues in bold type are common to all steroid hormone receptors.

Aid of an unusual coactivator—**steroid receptor RNA activator (SRA)**, a ~700 nucleotide RNA. SRA acts as part of a ribonucleoprotein complex, but it is the RNA component that is required for transcription coactivation. The detailed set of interactions between SRA and other components of the regulatory systems for these genes remains to be worked out.

Regulation Can Result from Phosphorylation of Nuclear Transcription Factors

We noted in Chapter 12 that the effects of insulin on gene expression are mediated by a series of steps leading ultimately to the activation of a protein kinase in the nucleus that phosphorylates specific DNA-binding proteins and thereby alters their ability to act as transcription factors (see Fig. 12–15). This general mechanism mediates the effects of many nonsteroid hormones. For example, the β-adrenergic pathway that leads to elevated levels of cytosolic cAMP, which acts as a second messenger in eukaryotes as well as in bacteria (see Figs 12–4, 28–18), also affects the transcription of a set of genes, each of which is located near a specific DNA sequence called a **cAMP response element (CRE)**. The catalytic subunit of protein kinase A, released when cAMP levels rise (see Fig. 12–6), enters the nucleus and phosphorylates a nuclear protein, the **CRE-binding protein (CREB)**. When phosphorylated, CREB binds to CREs near certain genes and acts as a transcription factor, turning on the expression of these genes.

Many Eukaryotic mRNAs Are Subject to Translational Repression

Regulation at the level of translation assumes a much more prominent role in eukaryotes than in bacteria and is observed in a range of cellular situations. In contrast to the tight coupling of transcription and translation in bacteria, the transcripts generated in a eukaryotic nucleus must be processed and transported to the cytoplasm before translation. This can impose a significant delay on the appearance of a protein. When a rapid increase in protein production is needed, a translationally repressed mRNA already in the cytoplasm can be activated for translation without delay. Translational regulation may play an especially important role in regulating certain very long eukaryotic genes (a few are measured in the millions of base pairs), for which transcription and mRNA processing can require many hours. Some genes are regulated at both the transcriptional and translational stages, with the latter playing a role in the fine-tuning of cellular protein levels. In some anucleate cells, such as reticulocytes (immature erythrocytes), transcriptional control is entirely unavailable and translational control of stored mRNAs becomes essential. As described below, translational controls can also have spatial significance during development, when the regulated translation of prepositioned mRNAs creates a local gradient of the protein product.

Eukaryotes have at least four main mechanisms of translational regulation.

1. Translational initiation factors are subject to phosphorylation by protein kinases. The phosphorylated forms are often less active and cause a general depression of translation in the cell.

2. Some proteins bind directly to mRNA and act as translational repressors, many of them binding at specific sites in the 3′ untranslated region (3′UTR). So positioned, these proteins interact with other translation initiation factors bound to the mRNA or with the 40S ribosomal subunit to prevent translation initiation (Fig. 28–35; compare this with Fig. 27–27).
3. Binding proteins, present in eukaryotes from yeast to mammals, disrupt the interaction between eIF4E and eIF4G (see Fig. 27–27). The mammalian versions are known as 4E-BPs (eIF4E binding proteins). When cell growth is slow, these proteins limit translation by binding to the site on eIF4E that normally interacts with eIF4G. When cell growth resumes or increases in response to growth factors or other stimuli, the binding proteins are inactivated by protein kinase-dependent phosphorylation.

4. RNA-mediated regulation of gene expression, considered later, often occurs at the level of translational repression.

The variety of translational regulation mechanisms provides flexibility, allowing focused repression of a few mRNAs or global regulation of all cellular translation.

Translational regulation has been particularly well studied in reticulocytes. One such mechanism in these cells involves eIF2, the initiation factor that binds to the initiator tRNA and conveys it to the ribosome; when Met-tRNA has bound to the P site, the factor eIF2B binds to eIF2, recycling it with the aid of GTP binding and hydrolysis. The maturation of reticulocytes includes destruction of the cell nucleus, leaving behind a plasma membrane packed with hemoglobin. Messenger RNAs deposited in the cytoplasm before the loss of the nucleus allow for the replacement of hemoglobin. When reticulocytes become deficient in iron or heme, the translation of globin mRNAs is repressed. A protein kinase called HCR (hemin-controlled repressor) is activated, catalyzing the phosphorylation of eIF2. When phosphorylated, eIF2 forms a stable complex with eIF2B that sequesters the eIF2, making it unavailable for participation in translation. In this way, the reticulocyte coordinates the synthesis of globin with the availability of heme.

Many additional examples of translational regulation have been found in studies of the development of multicellular organisms, as discussed in more detail below.

Posttranscriptional Gene Silencing Is Mediated by RNA Interference

In higher eukaryotes, including nematodes, fruit flies, plants, and mammals, a class of small RNAs called **micro-RNAs** (miRNAs) mediates the silencing of many genes. The RNAs function by interacting with mRNAs, often in the 3'UTR, resulting in either mRNA degradation or translation inhibition. In either case, the miRNA, and thus the gene that produces it, is silenced. This form of gene regulation controls developmental timing in at least some organisms. It is also used as a mechanism to protect against invading RNA viruses (particularly important in plants, which lack an immune system) and to control the activity of transposons. In addition, small RNA molecules may play a critical (but still undefined) role in the formation of heterochromatin.

Many miRNAs are present only transiently during development, and these are sometimes referred to as **small temporal RNAs** (stRNAs). Thousands of different miRNAs have been identified in higher eukaryotes, and they may affect the regulation of a third of mammalian genes. They are transcribed as precursor RNAs about 70 nucleotides long, with internally complementary sequences that form hairpinlike structures (see Fig. 28–28). The precursors are cleaved by endonucleases such as Drosha and Dicer to form short duplexes about 20 to 25 nucleotides long. One strand of the processed miRNA is transferred to the target mRNA (or to a viral or transposon RNA), leading to inhibition of translation or degradation of the RNA (Fig. 28–36). Some miRNAs bind to and affect a single mRNA and thus affect expression of only one gene. Others interact with multiple mRNAs and thus form the mechanistic core of regulons that coordinate the expression of multiple genes.

This gene regulation mechanism has an interesting and very useful practical side. If an investigator introduces into an organism a duplex RNA molecule corresponding in sequence to virtually any mRNA, Dicer cleaves the duplex into short segments, called **small interfering RNAs** (siRNAs). These bind to the mRNA and silence it (Fig. 28–36b). The process is known as **RNA interference** (RNAi). In plants, virtually any gene can be effectively shut down in this way. Nematodes readily ingest entire, functional RNAs, and simply introducing the duplex RNA into the worm's diet produces very effective suppression of the target gene. The technique has rapidly become an important tool in the ongoing efforts to study gene function, because it can disrupt gene function without creating a
precursors that fold to create duplex regions. The stRNAs then bind to mRNAs, leading to degradation of mRNA or inhibition of translation. (b) Double-stranded RNAs can be constructed and introduced into a cell. Dicer processes the duplex RNAs into small interfering RNAs (siRNAs), which interact with the target mRNA. Again, either the mRNA is degraded or translation is inhibited.

FIGURE 28–36 Gene silencing by RNA interference. (a) Small temporal RNAs (stRNAs) are generated by Dicer-mediated cleavage of longer precursors that fold to create duplex regions. The stRNAs then bind to mRNAs, leading to degradation of mRNA or inhibition of translation. (b) Double-stranded RNAs can be constructed and introduced into a cell. Dicer processes the duplex RNAs into small interfering RNAs (siRNAs), which interact with the target mRNA. Again, either the mRNA is degraded or translation is inhibited.

RNA-Mediated Regulation of Gene Expression Takes Many Forms in Eukaryotes

The special-function RNAs in eukaryotes include miRNAs, described above; snRNAs, involved in RNA splicing (see Fig. 26–17); and snoRNAs, involved in rRNA modification (see Fig. 26–26). All RNAs that do not encode proteins, including rRNAs and tRNAs, come under the general designation of ncRNAs (noncoding RNAs). Mammalian genomes seem to encode more ncRNAs than coding mRNAs (see Box 26–4). Not surprisingly, additional functional classes of ncRNAs are still being discovered.

Many of the newly found examples interact with proteins rather than with RNAs, and affect the function of the bound proteins. The SRA that functions as a coactivator of steroid hormone-responsive genes is one example: it affects the activation of transcription. The heat shock response in human cells provides another example. Heat shock factor 1 (HSF-1) is an activator protein that, in nonstressed cells, exists as a monomer bound by the chaperone Hsp90. Under stress conditions, HSF-1 is released from Hsp90 and trimerizes. The HSF-1 trimer binds to DNA and activates transcription of genes whose products are required to deal with the stress. An ncRNA called HSR1 (heat shock RNA 1; ~600 nucleotides) stimulates the HSF-1 trimerization and DNA binding. HSR1 does not act alone; it functions in a complex with the translation elongation factor eEF1A.

Additional RNAs affect transcription in a variety of ways. Besides its role in splicing (see Fig. 26–17), the snRNA U1 directly binds to the transcription factor TFIIH. Its function in this context is not yet clear, but it may regulate TFIIH or affect the coupling between transcription and splicing, or both. A 331 nucleotide ncRNA called 7SK, abundant in mammals, binds to the Pol II transcription elongation factor p-TEFb (see Table 26–2) and represses transcript elongation. Another ncRNA, B2 (~178 nucleotides), binds directly to Pol II during heat shock and represses transcription. The B2-bound Pol II assembles into stable PICs, but transcription is blocked. The B2 RNA thus halts the transcription of many genes during heat shock, and the mechanism that allows HSF-1-responsive genes to be expressed in the presence of B2 remains to be worked out.

The recognized roles of ncRNAs in gene expression and in many other cellular processes are rapidly expanding. At the same time, the study of the biochemistry of gene regulation is becoming much less protein-centric.

Development Is Controlled by Cascades of Regulatory Proteins

For sheer complexity and intricacy of coordination, the patterns of gene regulation that bring about development of a zygote into a multicellular animal or plant have no peer. Development requires transitions in morphology and protein composition that depend on tightly coordinated changes in expression of the genome. More genes are expressed during early development than in any other part of the life cycle. For example, in the sea urchin, an oocyte has about 18,500 different mRNAs, compared with about 6,000 different mRNAs in the cells of a typical differentiated tissue. The mRNAs in the oocyte give rise to a cascade of events that regulate the expression of many genes across both space and time.

Several organisms have emerged as important model systems for the study of development, because they are easy to maintain in a laboratory and have relatively short generation times. These include nematodes, fruit flies, zebra fish, mice, and the plant *Arabidopsis*. This discussion focuses on the development of fruit flies. Our understanding of the molecular events during development of *Drosophila melanogaster* is particularly well advanced and can be used to illustrate patterns and principles of general significance.
The life cycle of the fruit fly includes complete metamorphosis during its progression from an embryo to an adult (Fig. 28–37). Among the most important characteristics of the embryo are its polarity (the anterior and posterior parts of the animal are readily distinguished, as are its dorsal and ventral parts) and its metamamerism (the embryo body is made up of serially repeating segments, each with characteristic features). During development, these segments become organized into a head, thorax, and abdomen. Each segment of the adult thorax has a different set of appendages. Development of this complex pattern is under genetic control, and a variety of pattern-regulating genes have been discovered that dramatically affect the organization of the body.

The *Drosophila* egg, along with 15 nurse cells, is surrounded by a layer of follicle cells (Fig. 28–38). As the egg cell forms (before fertilization), mRNAs and proteins originating in the nurse and follicle cells are deposited in the egg cell, where some play a critical role in development. Once a fertilized egg is laid, its nuclei divide, and the nuclear descendants continue to divide in synchrony every 6 to 10 min. Plasma membranes are not formed around the nuclei, which are distributed within the egg cytoplasm (forming a syncytium). Between the eighth and eleventh rounds of nuclear division, the nuclei migrate to the outer layer of the egg, forming a monolayer of nuclei surrounding the common yolk-rich cytoplasm; this is the syncytial blastoderm. After a few additional divisions, membrane invaginations surround the nuclei to create a layer of cells that form the cellular blastoderm. At this stage, the mitotic cycles in the various cells lose their synchrony. The developmental fate of the cells is determined by the mRNAs and proteins originally deposited in the egg by the nurse and follicle cells.

Proteins that, through changes in local concentration or activity, cause the surrounding tissue to take up a particular shape or structure are sometimes referred to as morphogens; they are the products of pattern-regulating genes. As defined by Christiane Nüsslein-Volhard, Edward B. Lewis, and Eric F. Wieschaus, three major classes of pattern-regulating genes—maternal, segmentation, and homeotic genes—function in successive stages of development to specify the basic features of the *Drosophila* embryo body. Maternal genes are expressed in the unfertilized egg, and the resulting maternal mRNAs remain dormant until fertilization. These provide most of the proteins needed in very early development, until the cellular blastoderm is formed. Some of the proteins encoded by maternal mRNAs direct the spatial organization of the developing embryo at early stages, establishing its polarity. Segmentation genes, transcribed after fertilization, direct the formation of the proper number of body segments. At least three subclasses of segmentation genes act at successive stages: gap genes divide the developing embryo into several broad regions, and pair-rule genes together with segment polarity genes define 14 stripes that become the 14 segments of a normal embryo.
Regulation of Gene Expression

Figure 28-38 Early development in Drosophila. During development of the egg, maternal mRNAs (including the bicoid and nanos gene transcripts, discussed in the text) and proteins are deposited in the developing oocyte (unfertilized egg cell) by nurse cells and follicle cells. After fertilization, the two nuclei of the fertilized egg divide in synchrony within the common cytoplasm (syncytium), then migrate to the periphery. Membrane invaginations surround the nuclei to create a monolayer of cells at the periphery; this is the cellular blastoderm stage. During the early nuclear divisions, several nuclei at the far posterior become pole cells, which later become the germ-line cells.

Homeotic genes are expressed still later; they specify which organs and appendages will develop in particular body segments.

The many regulatory genes in these three classes direct the development of an adult fly, with a head, thorax, and abdomen, with the proper number of segments, and with the correct appendages on each segment. Although embryogenesis takes a day to complete, all these genes are activated during the first four hours. Some mRNAs and proteins are present for only a few minutes at specific points during this period. Some of the genes code for transcription factors that affect the expression of other genes in a kind of developmental cascade. Regulation at the level of translation also occurs, and many of the regulatory genes encode translational repressors, most of which bind to the 3'UTR of the mRNA (Fig. 28-35). Because many mRNAs are deposited in the egg long before their translation is required, translational repression provides an especially important avenue for regulation in developmental pathways.

Maternal Genes Some maternal genes are expressed within the nurse and follicle cells, and some in the egg itself. In the unfertilized Drosophila egg, the maternal gene products establish two axes—anterior-posterior and dorsal-ventral—and thus define which regions of the radially symmetric egg will develop into the head and abdomen and the top and bottom of the adult fly. A key event in very early development is establishment of mRNA and protein gradients along the body axes. Some maternal mRNAs have protein products that diffuse through the cytoplasm to create an asymmetric distribution in the egg. Different cells in the cellular blastoderm therefore inherit different amounts of these proteins, setting the cells on different developmental paths. The products of the maternal mRNAs include transcription activators or repressors as well as translational repressors, all regulating the expression of other pattern-regulating genes. The resulting specific patterns and sequences of gene expression therefore differ between cell lineages, ultimately orchestrating the development of each adult structure.

The anterior-posterior axis in Drosophila is defined at least in part by the products of the bicoid and nanos genes. The bicoid gene product is a major anterior morphogen, and the nanos gene product is a major
posterior morphogen. The mRNA from the bicoi d gene is synthesized by nurse cells and deposited in the unfertilized egg near its anterior pole. Nüsslein-Volhard found that this mRNA is translated soon after fertilization, and the Bicoid protein diffuses through the cell to create, by the seventh nuclear division, a concentration gradient radiating out from the anterior pole (Fig. 28–39a). The Bicoid protein is a transcription factor that activates the expression of several segmentation genes; the protein contains a homeodomain (p. 1124). Bicoid is also a translational repressor that inactivates certain mRNAs. The amounts of Bicoid protein in various parts of the embryo affect the subsequent expression of other genes in a threshold-dependent manner. Genes are transcriptionally activated or translationally repressed only where the Bicoid protein concentration exceeds the threshold. Changes in the shape of the Bicoid concentra-

![Image](image-url)

Figure 28–39 Distribution of a maternal gene product in a Drosophila egg. (a) Micrograph of an immunologically stained egg, showing distribution of the bicoi d (bcd) gene product. The graph measures stain intensity. This distribution is essential for normal development of the anterior structures. (b) If the bcd gene is not expressed by the mother (bcd/bcd mutant) and thus no bicoi d mRNA is deposited in the egg, the resulting embryo has two posteriors (and soon dies).
Caudal is a transcription activator with a homeodomain; Pumilio is a translational repressor. Hunchback protein plays an important role in development of the anterior end and is also a transcriptional regulator of a variety of genes, in some cases a positive regulator, in other cases negative. Bicoid suppresses translation of caudal at the anterior end and also acts as a transcription activator of hunchback in the cellular blastoderm. Because hunchback is expressed both from maternal mRNAs and from genes in the developing egg, it is considered both a maternal and a segmentation gene. The result of the activities of Bicoid is an increased concentration of Hunchback at the anterior end of the egg. The Nanos and Pumilio proteins act as translational repressors of hunchback, suppressing synthesis of its protein near the posterior end of the egg. Pumilio does not function in the absence of the Nanos protein, and the gradient of Nanos expression confines the activity of both proteins to the posterior region. Translational repression of the hunchback gene leads to degradation of hunchback mRNA near the posterior end. However, lack of Bicoid in the posterior leads to expression of caudal. In this way, the Hunchback and Caudal proteins become asymmetrically distributed in the egg.

Segmentation Genes Gap genes, pair-rule genes, and segment polarity genes, three subclasses of segmentation genes in Drosophila, are activated at successive stages of embryonic development. Expression of the gap genes is generally regulated by the products of one or more maternal genes. At least some of the gap genes encode transcription factors that affect the expression of other segmentation or (later) homeotic genes.

One well-characterized segmentation gene is *fushi tarazu* (*ftz*), of the pair-rule subclass. When *ftz* is deleted, the embryo develops 7 segments instead of the normal 14, each segment twice the normal width. The Fushi-tarazu protein (*Ftz*) is a transcription activator with a homeodomain. The mRNAs and proteins derived from the normal *ftz* gene accumulate in a striking pattern of seven stripes that encircle the posterior two-thirds of the embryo (Fig. 28-41). The stripes demarcate the positions of segments that develop later; these segments are eliminated if *ftz* function is lost. The Ftz protein and a few similar regulatory proteins directly or indirectly regulate the expression of vast numbers of genes in the continuing developmental cascade.

Homeotic Genes A set of 8 to 11 homeotic genes directs the formation of particular structures at specific locations in the body plan. These genes are now more commonly referred to as *Hox genes*, the term derived from "homeobox," the conserved gene sequence that encodes the homeodomain and is present in all of these genes. Despite the name, these are not the only development-related proteins to include a homeodomain (for example, the *bicoid* gene product described above has a homeodomain), and "Hox" is more a functional than a structural classification. The Hox genes are organized in genomic clusters. *Drosophila* has one such cluster and mammals have four (Fig. 28-42). The genes in these clusters are remarkably similar from nematodes to humans. In *Drosophila*, each of the Hox genes is expressed in a particular segment of the embryo and controls the development of the corresponding part of the mature fly. The terminology used to describe Hox genes can be confusing. They have historical names in the fruit fly (for example, *ultrabithorax*), whereas in mammals they are designated by two competing systems based on lettered (A, B, C, D) or numbered (1, 2, 3, 4) clusters.

Loss of Hox genes in fruit flies by mutation or deletion causes the appearance of a normal appendage or body structure at an inappropriate body position. An important example is the *ultrabithorax* (*ubx*) gene. When
Ubx function is lost, the first abdominal segment develops incorrectly, having the structure of the third thoracic segment. Other known homeotic mutations cause the formation of an extra set of wings, or two legs at the position in the head where the antennae are normally found (Fig. 28–43). The Hox genes often span long regions of DNA. The *ubx* gene, for example, is 77,000 bp long. More than 73,000 bp of this gene are in introns, one of which is more than 50,000 bp long. Transcription of the *ubx* gene takes nearly an hour. The delay this imposes on *ubx* gene expression is believed to be a timing mechanism involved in the temporal regulation of subsequent steps in development. Many Hox genes are further regulated by miRNAs encoded by intergenic regions of the Hox gene clusters. All of the Hox gene products are themselves transcription factors that regulate the expression of an array of downstream genes. Identification of these downstream targets is ongoing.

Many of the principles of development outlined above apply to other eukaryotes, from nematodes to humans. Some of the regulatory proteins are conserved. For example, the products of the homeobox-containing genes *HOX A7* in mouse and *antennapedia* in fruit fly differ in only one amino acid residue. Of course, although the molecular regulatory mechanisms may be similar, many of the ultimate developmental events are not conserved (humans do not have wings or antennae). The different outcomes are brought about by differences in the downstream target genes controlled by the Hox genes. The discovery of structural determinants with identifiable molecular functions is the first step in understanding the molecular events underlying development. As more genes and their protein products are discovered, the biochemical side of this vast puzzle will be elucidated in increasingly rich detail.

FIGURE 28–42 The Hox gene clusters and their effects on development. (a) Each Hox gene in the fruit fly is responsible for the development of structures in a defined part of the body and is expressed in defined regions of the embryo, as shown here with color coding. (b) Drosophila has one Hox gene cluster, the human genome has four. Many of these genes are highly conserved in multicellular animals. Evolutionary relationships, as indicated by sequence alignments, between genes in the Drosophila Hox gene cluster and those in the mammalian Hox gene clusters are shown by dashed lines. Similar relationships among the four sets of mammalian Hox genes are indicated by vertical alignment.
Our discussion of developmental regulation brings us full circle, back to a biochemical beginning—both figuratively and literally. Evolution appropriately provides the first and last words of text in this book. If evolution is to generate the kind of changes in an organism that we associate with a different species, it is the developmental program that must be affected. Developmental and evolutionary processes are closely allied, each informing the other (Box 28–1). The continuing study of biochemistry has everything to do with enriching the future of humanity and understanding our origins.

BOX 28–1 Of Fins, Wings, Beaks, and Things

South America has several species of seed-eating finches, commonly called grassquits. About 3 million years ago, a small group of grassquits, of a single species, took flight from the continent’s Pacific coast. Perhaps driven by a storm, they lost sight of land and traveled nearly 1,000 km. Small birds such as these might easily have perished on such a journey, but the smallest of chances brought this group to a newly formed volcanic island in an archipelago later to be known as the Galapagos. It was a virgin landscape with untapped plant and insect food sources, and the newly arrived finches survived. Over the years, new islands formed and were colonized by new plants and insects—and by the finches. The birds exploited the new resources on the islands, and groups of birds gradually specialized and diverged into new species. By the time Charles Darwin stepped onto the islands in 1835, there were many different finch species to be found on the various islands of the archipelago, feeding on seeds, fruits, insects, pollen, or even blood.

The diversity of living creatures was a source of wonder for humans long before scientists sought to understand its origins. The extraordinary insight handed down to us by Darwin, inspired in part by his encounter with the Galapagos finches, provided a broad explanation for the existence of organisms with a vast array of appearances and characteristics. It also gave rise to many questions about the mechanisms underlying evolution. Answers to those questions have started to appear, first through the study of genomes and nucleic acid metabolism in the last half of the twentieth century, and more recently through an emerging field nicknamed evo-devo—a blend of evolutionary and developmental biology.

In its modern synthesis, the theory of evolution has two main elements: mutations in a population generate genetic diversity; natural selection then acts on this diversity to favor individuals with more useful genomic tools, and to disfavor others. Mutations occur at significant rates in every individual’s genome, in every cell (Chapters 8 and 25). Advantageous mutations in single-celled organisms or in the germ line of multicellular organisms can be inherited, and they are more likely to be inherited (that is, are passed on to greater numbers of offspring) if they confer an advantage. It is a straightforward scheme. But many have wondered whether it is enough to explain, say, the many different beak shapes in the Galapagos finches, or the diversity of size and shape among mammals. Until recent decades, there were several widely held assumptions about the evolutionary process: that many mutations and new genes...
would be needed to bring about a new physical structure; that more-complex organisms would have larger genomes, and that very different species would have few genes in common. All of these assumptions were wrong.

Modern genomics has revealed that the human genome contains fewer genes than expected—not many more than the fruit fly genome, and fewer than some amphibian genomes. The genomes of every mammal, from mouse to human, are surprisingly similar in the number, types, and chromosomal arrangement of genes. Meanwhile, evo-devo is telling us how complex and very different creatures can evolve within these genomic realities.

The kinds of mutant organisms shown in Figure 28-43 were studied by the English biologist William Bateson in the late nineteenth century. Bateson used his observations to challenge the Darwinian notion that evolutionary change would have to be gradual. Recent studies of the genes that control organismal development have put an exclamation point on Bateson's ideas. Subtle changes in regulatory patterns during development, reflecting just one or a few mutations, can result in startling physical changes and fuel surprisingly rapid evolution.

The Galapagos finches provide a wonderful example of the link between evolution and development. There are at least 14 (some specialists list 15) species of Galapagos finches, distinguished in large measure by their beak structure. The ground finches, for example, have broad, heavy beaks adapted to crushing large, hard seeds. The cactus finches have longer, slender beaks ideal for probing cactus fruits and flowers (Fig. 1). Clifford Tabin and colleagues carefully surveyed a set of genes expressed during avian craniofacial development. They identified a single gene, Bmp4, whose expression level correlated with formation of the more robust beaks of the ground finches. More robust beaks were also formed in chicken embryos when high levels of Bmp4 were artificially expressed in the appropriate tissues, confirming the importance of Bmp4. In a similar study, the formation of long, slender beaks was linked to the expression of calmodulin (see Fig. 12-11) in particular tissues at appropriate developmental stages. Thus, major changes in the shape and function of the beak can be brought about by subtle changes in the expression of just two genes involved in developmental regulation. Very few mutations are required, and the needed mutations affect regulation. New genes are not required.

The system of regulatory genes that guides development is remarkably conserved among all vertebrates. Elevated expression of Bmp4 in the right tissue at the right time leads to more robust jaw parts in zebrafish. The same gene plays a key role in tooth development in mammals. The development of eyes is triggered by the expression of a single gene, Pax6, in fruit flies and in mammals. The mouse Pax6 gene will trigger the development of fruit fly eyes in the fruit fly, and the fruit fly Pax6 gene will trigger the development of mouse eyes in the mouse. In each organism, these genes are part of the much larger regulatory cascade that ultimately creates the correct structures in the correct locations in each organism. The cascade is ancient; for example, the Hox genes (described in the text) have been part of the developmental program of multicellular eukaryotes for more than 500 million years. Subtle changes in the cascade can have large effects on development, and thus on the ultimate appearance of the organism. These same subtle changes can fuel remarkably rapid evolution. For example, the 400 to 500 described species of cichlids (spiny-finned fish) in Lake Malawi and Lake Victoria on the African continent are all derived from one or a few populations that colonized each lake in the past 100,000 to 200,000 years. The Galapagos finches simply followed a path of evolution and change that living creatures have been traveling for billions of years.
In eukaryotes, positive regulation is more common than negative regulation, and transcription is accompanied by large changes in chromatin structure.

Promoters for Pol II typically have a TATA box and Inr sequence, as well as multiple binding sites for transcription activators. The latter sites, sometimes located hundreds or thousands of base pairs away from the TATA box, are called upstream activator sequences in yeast and enhancers in higher eukaryotes.

Large complexes of proteins are generally required to regulate transcriptional activity. The effects of transcription activators on Pol II are mediated by coactivator protein complexes such as mediator. The modular structures of the activators have distinct activation and DNA-binding domains. Other protein complexes, including histone acetyltransferases and ATP-dependent complexes such as SWI/SNF and NURF, reversibly remodel and modify chromatin structure.

Hormones affect the regulation of gene expression in one of two ways. Steroid hormones interact directly with intracellular receptors that are DNA-binding regulatory proteins; binding of the hormone has either positive or negative effects on the transcription of genes targeted by the hormone. Nonsteroid hormones bind to cell-surface receptors, triggering a signaling pathway that can lead to phosphorylation of a regulatory protein, affecting its activity.

RNA-mediated regulation plays an important role in eukaryotic gene expression, with the range of known mechanisms expanding.

Development of a multicellular organism presents the most complex regulatory challenge. The fate of cells in the early embryo is determined by establishment of anterior-posterior and dorsal-ventral gradients of proteins that act as transcription activators or translational repressors, regulating the genes required for the development of structures appropriate to a particular part of the organism. Sets of regulatory genes operate in temporal and spatial succession, transforming given areas of an egg cell into predictable structures in the adult organism.

Key Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>housekeeping genes</td>
<td>1116</td>
</tr>
<tr>
<td>induction</td>
<td>1116</td>
</tr>
<tr>
<td>repression</td>
<td>1116</td>
</tr>
<tr>
<td>specificity factor</td>
<td>1117</td>
</tr>
<tr>
<td>repressor</td>
<td>1117</td>
</tr>
<tr>
<td>activator</td>
<td>1117</td>
</tr>
<tr>
<td>operator</td>
<td>1117</td>
</tr>
<tr>
<td>negative regulation</td>
<td>1117</td>
</tr>
<tr>
<td>positive regulation</td>
<td>1118</td>
</tr>
<tr>
<td>operon</td>
<td>1118</td>
</tr>
<tr>
<td>helix-turn-helix</td>
<td>1122</td>
</tr>
<tr>
<td>zinc finger</td>
<td>1122</td>
</tr>
<tr>
<td>homeodomain</td>
<td>1124</td>
</tr>
<tr>
<td>homeobox</td>
<td>1124</td>
</tr>
<tr>
<td>leucine zipper</td>
<td>1124</td>
</tr>
<tr>
<td>basic helix-loop-helix</td>
<td>1124</td>
</tr>
<tr>
<td>catabolite repression</td>
<td>1126</td>
</tr>
<tr>
<td>cAMP receptor protein (CRP)</td>
<td>1126</td>
</tr>
<tr>
<td>regulon</td>
<td>1127</td>
</tr>
<tr>
<td>transcription attenuation</td>
<td>1128</td>
</tr>
<tr>
<td>translational repressor</td>
<td>1131</td>
</tr>
<tr>
<td>stringent response</td>
<td>1132</td>
</tr>
<tr>
<td>riboswitch</td>
<td>1133</td>
</tr>
<tr>
<td>phase variation</td>
<td>1134</td>
</tr>
<tr>
<td>chromatin remodeling</td>
<td>1137</td>
</tr>
<tr>
<td>histone acetyltransferases</td>
<td>1137</td>
</tr>
<tr>
<td>(HATs)</td>
<td>1137</td>
</tr>
<tr>
<td>SWI/SNF</td>
<td>1138</td>
</tr>
<tr>
<td>enhancers</td>
<td>1139</td>
</tr>
<tr>
<td>upstream activator sequences (UASs)</td>
<td>1139</td>
</tr>
<tr>
<td>transcription activators</td>
<td>1139</td>
</tr>
<tr>
<td>coactivators</td>
<td>1139</td>
</tr>
<tr>
<td>basal transcription factors</td>
<td>1139</td>
</tr>
<tr>
<td>high mobility group</td>
<td>1139</td>
</tr>
<tr>
<td>mediator</td>
<td>1139</td>
</tr>
<tr>
<td>preinitiation complex</td>
<td>1140</td>
</tr>
<tr>
<td>TATA-binding protein (TBP)</td>
<td>1140</td>
</tr>
<tr>
<td>hormone response elements (HREs)</td>
<td>1143</td>
</tr>
<tr>
<td>micro-RNAs</td>
<td>1145</td>
</tr>
<tr>
<td>RNA interference (RNAi)</td>
<td>1145</td>
</tr>
<tr>
<td>polarity</td>
<td>1147</td>
</tr>
<tr>
<td>metamerism</td>
<td>1147</td>
</tr>
<tr>
<td>morphogens</td>
<td>1147</td>
</tr>
<tr>
<td>maternal genes</td>
<td>1147</td>
</tr>
<tr>
<td>maternal mRNAs</td>
<td>1147</td>
</tr>
<tr>
<td>segmentation genes</td>
<td>1147</td>
</tr>
<tr>
<td>gap genes</td>
<td>1147</td>
</tr>
<tr>
<td>pair-rule genes</td>
<td>1147</td>
</tr>
<tr>
<td>segment polarity genes</td>
<td>1147</td>
</tr>
<tr>
<td>homeotic genes</td>
<td>1148</td>
</tr>
<tr>
<td>Hox genes</td>
<td>1150</td>
</tr>
</tbody>
</table>

Further Reading

General

A fascinating look at how developmental biology informs evolutionary biology.

An excellent detailed account of the investigation of this important system.

A description of modern approaches, including genomics, applied to the analysis of gene-regulatory networks.

An excellent source for a more detailed biophysical description of protein-DNA interactions and how they lead to gene regulation.

Regulation of Gene Expression in Bacteria

The operon model and the concept of messenger RNA, first proposed in the *Proceedings of the French Academy of Sciences* in 1960, are presented in this historic paper.

Covers both bacteria and eukaryotes.

Regulation of Gene Expression in Eukaryotes

Describes some of the implications of the newly recognized levels of transcription of most mammalian genomic DNA.

Problems

1. **Effect of mRNA and Protein Stability on Regulation**

E. coli cells are growing in a medium with glucose as the sole carbon source. Tryptophan is suddenly added. The cells continue to grow, and divide every 30 min. Describe (qualitatively) how the amount of tryptophan synthesis activity in the cells changes with time under the following conditions:

(a) The *trp* mRNA is stable (degraded slowly over many hours).

(b) The *trp* mRNA is degraded rapidly, but tryptophan synthesis is stable.

(c) The *trp* mRNA and tryptophan synthesis are both degraded rapidly.

2. **Negative Regulation**

Describe the probable effects on gene expression in the *lac* operon of a mutation in (a) the *lac* operator that deletes most of O1; (b) the *lacI* gene that
inactivates the repressor; and (c) the promoter that alters the region around position -10.

3. Specific DNA Binding by Regulatory Proteins A typical bacterial repressor protein discriminates between its specific DNA binding site (operator) and nonspecific DNA by a factor of 10⁴ to 10⁶. About 10 molecules of repressor per cell are sufficient to ensure a high level of repression. Assume that a very similar repressor existed in a human cell, with a similar specificity for its binding site. How many copies of the repressor would be required to elicit a level of repression similar to that in the bacterial cell? (Hint: The E. coli genome contains about 4.6 million bp; the human haploid genome has about 3.2 billion bp.)

4. Repressor Concentration in E. coli The dissociation constant for a particular repressor-operator complex is very low, about 10⁻¹⁰ M. An E. coli cell (volume 2 × 10⁻¹² mL) contains 10 copies of the repressor. Calculate the cellular concentration of the repressor protein. How does this value compare with the dissociation constant of the repressor-operator complex? What is the significance of this answer?

5. Catabolite Repression E. coli cells are growing in a medium containing lactose but no glucose. Indicate whether each of the following changes or conditions would increase, decrease, or not change the expression of the lac operon. It may be helpful to draw a model depicting what is happening in each situation.
 (a) Addition of a high concentration of glucose
 (b) A mutation that prevents dissociation of the Lac repressor from the operator
 (c) A mutation that completely inactivates β-galactosidase
 (d) A mutation that completely inactivates galactoside permease
 (e) A mutation that prevents binding of CRP to its binding site near the lac promoter

6. Transcription Attenuation How would transcription of the E. coli trp operon be affected by the following manipulations of the leader region of the trp mRNA?
 (a) Increasing the distance (number of bases) between the leader peptide gene and sequence 2
 (b) Increasing the distance between sequences 2 and 3
 (c) Removing sequence 4
 (d) Changing the two Trp codons in the leader peptide gene to His codons
 (e) Eliminating the ribosome-binding site for the gene that encodes the leader peptide
 (f) Changing several nucleotides in sequence 3 so that it can base-pair with sequence 4 but not with sequence 2

7. Repressors and Repression How would the SOS response in E. coli be affected by a mutation in the lexA gene that prevented autocatalytic cleavage of the LexA protein?

8. Regulation by Recombination In the phase variation system of Salmonella, what would happen to the cell if the Hin recombinase became more active and promoted recombination (DNA inversion) several times in each cell generation?

9. Initiation of Transcription in Eukaryotes A new RNA polymerase activity is discovered in crude extracts of cells derived from an exotic fungus. The RNA polymerase initiates transcription only from a single, highly specialized promoter. As the polymerase is purified its activity declines, and the purified enzyme is completely inactive unless crude extract is added to the reaction mixture. Suggest an explanation for these observations.

10. Functional Domains in Regulatory Proteins A biochemist replaces the DNA-binding domain of the yeast Gal4 protein with the DNA-binding domain from the Lac repressor, and finds that the engineered protein no longer regulates transcription of the GAL genes in yeast. Draw a diagram of the different functional domains you would expect to find in the Gal4 protein and in the engineered protein. Why does the engineered protein no longer regulate transcription of the GAL genes? What might be done to the DNA-binding site recognized by this chimeric protein to make it functional in activating transcription of GAL genes?

11. Nucleosome Modification during Transcriptional Activation To prepare genomic regions for transcription, certain histones in the resident nucleosomes are acetylated and methylated at specific locations. Once transcription is no longer needed, these modifications need to be reversed. In mammals, the methylation of Arg residues in histones is reversed by peptidylarginine deiminases (PADs). The reaction promoted by these enzymes does not yield unmethylated arginine. Instead, it produces citrulline residues in the histone. What is the other product of the reaction? Suggest a mechanism for this reaction.

12. Inheritance Mechanisms in Development A Droso-

phila egg that is bcd “/bcd” may develop normally, but the adult fruit fly will not be able to produce viable offspring. Explain.

Biochemistry on the Internet

13. TATA-Binding Protein and the TATA Box To examine the roles of hydrogen bonds and hydrophobic interactions between transcription factors and DNA, go to FirstGlance in Jmol at http://firstglance.jmol.org and enter the PDB ID 1TGH. This file models the interactions between a human TATA-binding protein and a segment of double-stranded DNA. Once the structure loads, click the “Spin” button to stop the molecule from rotating. When the molecule has reloaded, click the “Contacts” link. With the radio button for “Chains” selected, click on any part of the protein (Chain A, displays in blue) to select it as the target. Click “Show Atoms Contacting Target” and, in the list of contacts to display, check only “Show putatively hydrogen-bonded non-water” to display hydrogen bonds between the protein and the TATA box DNA. Then click on the rightmost option for viewing images (Maximum detail: Target & Contacts Balls and Sticks, Colored by Element). With this view you should be able to use the zoom
and rotate controls and mouse clicks to answer the following questions.

(a) Which of the base pairs in the DNA form hydrogen bonds with the protein? Which of these contribute to the specific recognition of the TATA box by this protein? (Hydrogen-bond length between hydrogen donor and hydrogen acceptor ranges from 2.5 to 3.3 Å.)

(b) Which amino acid residues in the protein interact with these base pairs?

(c) What is the sequence of the DNA in this model and which portions of the sequence are recognized by the TATA-binding protein?

(d) Examine the hydrophobic interactions in this complex. Are they rare or numerous? To answer this question, click on “Return to contacts” and check the option to “Show hydrophobic (apolar van der Waals) interactions.”

Data Analysis Problem

14. Engineering a Genetic Toggle Switch in Escherichia coli Gene regulation is often described as an “on or off” phenomenon—a gene is either fully expressed or not expressed at all. In fact, repression and activation of a gene involve ligand-binding reactions, so genes can show intermediate levels of expression when intermediate levels of regulatory molecules are present. For example, for the E. coli lac operon, consider the binding equilibrium of the Lac repressor, operator DNA, and inducer (see Fig. 28–7). Although this is a complex, cooperative process, it can be approximately modeled by the following reaction (R is repressor; IPTG is the inducer isopropyl-β-D-thiogalactoside):

\[R + \text{IPTG} \rightarrow_{K_a}^{K_d} R \cdot \text{IPTG} \]

Free repressor, R, binds to the operator and prevents transcription of the lac operon; the R • IPTG complex does not bind to the operator and thus transcription of the lac operon can proceed.

(a) Using Equation 5–8, we can calculate the relative expression level of the proteins of the lac operon as a function of [IPTG]. Use this calculation to determine over what range of [IPTG] the expression level would vary from 10% to 90%.

(b) Describe qualitatively the level of lac operon proteins present in an E. coli cell before, during, and after induction with IPTG. You need not give the amounts at exact times—just indicate the general trends.

Gardner, Cantor, and Collins (2000) set out to make a “genetic toggle switch”—a gene-regulatory system with two key characteristics of a light switch. (A) It has only two states: it is either fully on or fully off; it is not a dimmer switch. In biochemical terms, the target gene or gene system (operon) is either fully expressed or not expressed at all; it cannot be expressed at an intermediate level. (B) Both states are stable: although you must use a finger to flip the light switch from one state to the other, once you have flipped it and removed your finger, the switch stays in that state. In biochemical terms, exposure to an inducer or some other signal changes the expression state of the gene or operon, and it remains in that state once the signal is removed.

(c) Explain how the lac operon lacks both characteristics A and B.

To make their “toggle switch,” Gardner and coworkers constructed a plasmid from the following components:

\(\text{OP}_{\text{lac}} \) The operator-promoter region of the E. coli lac operon

\(\text{OP}_{\lambda} \) The operator-promoter region of λ phage

\(\text{lacI} \) The gene encoding the lac repressor protein, LacI. In the absence of IPTG, this protein strongly represses \(\text{OP}_{\text{lac}} \); in the presence of IPTG, it allows full expression from \(\text{OP}_{\text{lac}} \).

\(\text{rep}^{\lambda} \) The gene encoding a temperature-sensitive mutant λ repressor protein, rep\(^{\lambda} \). At 37 °C this protein strongly represses \(\text{OP}_{\lambda} \); at 42 °C it allows full expression from \(\text{OP}_{\lambda} \).

\(\text{GFP} \) The gene for green fluorescent protein (GFP), a highly fluorescent reporter protein (see Fig. 9–15).

\(\text{T} \) Transcription terminator

The investigators arranged these components (see figure below) so that the two promoters were reciprocally repressed: \(\text{OP}_{\text{lac}} \) controlled expression of \(\text{rep}^{\lambda} \), and \(\text{OP}_{\lambda} \) controlled expression of \(\text{lacI} \). The state of this system was reported by the expression level of \(\text{GFP} \), which was also under the control of \(\text{OP}_{\text{lac}} \).

(d) The constructed system has two states: GFP-on (high level of expression) and GFP-off (low level of expression). For each state, describe which proteins are present and which promoters are being expressed.

(e) Treatment with IPTG would be expected to toggle the system from one state to the other. From which state to which? Explain your reasoning.

(f) Treatment with heat (42 °C) would be expected to toggle the system from one state to the other. From which state to which? Explain your reasoning.

(g) Why would this plasmid be expected to have characteristics A and B as described above?

To confirm that their construct did indeed exhibit these characteristics, Gardner and colleagues first showed that, once switched, the GFP expression level (high or low) was stable for long periods of time (characteristic B). Next, they
measured GFP level at different concentrations of the inducer IPTG, with the following results.

They noticed that the average GFP expression level was intermediate at concentration X of IPTG. However, when they measured the GFP expression level in individual cells at [IPTG] = X, they found either a high level or a low level of GFP—no cells showed an intermediate level.

(h) Explain how this finding demonstrates that the system has characteristic A. What is happening to cause the bimodal distribution of expression levels at [IPTG] = X?

Reference
ABC transporter: A member of a large family of membrane transporters with sequences that make up ATP-binding cassettes. These transporters move a large variety of substrates, including inorganic ions, lipids, and nonpolar drugs, outward across the plasma membrane, using ATP as the energy source.

absolute configuration: The configuration of four different substituent groups around an asymmetric carbon atom, in relation to d- and l-glyceraldehyde.

absorption: Transport of the products of digestion from the intestinal tract into the blood.

acceptor control: Regulation of the rate of respiration by the availability of ADP as phosphate group acceptor.

activation energy (ΔG°): The amount of energy (in joules) required to convert all the molecules in 1 mol of a reacting substance from the ground state to the transition state.

activator: (1) A DNA-binding protein that positively regulates the expression of one or more genes; that is, transcription rates increase when an activator is bound to the DNA. (2) A positive modulator of an allosteric enzyme.

active site: The region of an enzyme surface that binds the substrate molecule and catalytically transforms it; also known as the catalytic site.

active transport: Energy-requiring transport of a solute across a membrane in the direction of increasing concentration.

activity: The true thermodynamic activity or potential of a substance, as distinct from its molar concentration.

activity coefficient: The factor by which the numerical value of the concentration of a solute must be multiplied to give the true thermodynamic activity of that solute.

acyl phosphate: Any molecule with the general chemical form R—C—O—OPO₃⁻.

adenosine 3',5'-cyclic monophosphate: See cyclic AMP.

adenosine diphosphate: See ADP.

adenosine triphosphate: See ATP.

S-adenosylmethionine (adoMet): An enzymatic cofactor involved in methyl group transfers.

adipocyte: An animal cell specialized for the storage of triacylglycerols.

adipose tissue: Connective tissue specialized for the storage of large amounts of triacylglycerols. See also brown adipose tissue; white adipose tissue.

ADP (adenosine diphosphate): A ribonucleoside 5'-diphosphate serving as phosphate group acceptor in the cell energy cycle.

aerobe: An organism that lives in air and uses oxygen as the terminal electron acceptor in respiration.

aerobic: Requiring or occurring in the presence of oxygen.

agonist: A compound, typically a hormone or neurotransmitter, that elicits a physiological response when it binds to its specific receptor.

alcohol fermentation: See ethanol fermentation.

aldose: A simple sugar in which the carbonyl carbon atom is at one end of the carbon chain.

alkalosis: A metabolic condition in which the capacity of the body to buffer OH⁻ is diminished; usually accompanied by an increase in blood pH.

allosteric enzyme: A regulatory enzyme with catalytic activity modulated by the noncovalent binding of a specific metabolite at a site other than the active site.

allosteric protein: A protein (generally with multiple subunits) with multiple ligand-binding sites, such that ligand binding at one site affects ligand binding at another.

allosteric site: The specific site on the surface of an allosteric enzyme molecule to which the modulator or effector molecule is bound.

α helix: A helical conformation of a polypeptide chain, usually right-handed, with maximal intrachain hydrogen bonding; one of the most common secondary structures in proteins.

α oxidation: An alternative path for the oxidation of β-methyl fatty acids in peroxisomes.

Ame's test: A simple bacterial test for carcinogenicity, based on the assumption that carcinogens are mutagens.

amino acid activation: ATP-dependent enzymatic esterification of the carboxyl group of an amino acid to the 3'-hydroxyl group of its corresponding tRNA.

amino acids: α-Amino-substituted carboxylic acids, the building blocks of proteins.

aminoacyl-tRNA: An aminoacyl ester of a tRNA.

aminoacyl-tRNA synthetases: Enzymes that catalyze synthesis of an aminoacyl-tRNA at the expense of ATP energy.

amino-terminal residue: The only α-amino acid residue in a polypeptide chain with a free α-amino group; defines the amino terminus of the polypeptide.

aminotransferases: Enzymes that catalyze the transfer of amino groups from α-amino to α-keto acids; also called transaminases.

ammonotelic: Excreting excess nitrogen in the form of ammonia.

amphibolic pathway: A metabolic pathway used in both catabolism and anabolism.

amphipathic: Containing both polar and nonpolar domains.

amphitropic proteins: Proteins that associate reversibly with the membrane and thus can be found in the cytosol, in the membrane, or in both places.

ampholyte: A substance that can act as either a base or an acid.

amphoteric: Capable of donating and accepting protons, thus able to serve as an acid or a base.

anaerobe: An organism that lives without oxygen. Obligate anaerobes die when exposed to oxygen.

anaerobic: Occurring in the absence of air or oxygen.

analyte: A molecule to be analyzed by mass spectrometry.

anammonox: Anaerobic oxidation of ammonia to N₂, using nitrite as electron acceptor; carried out by specialized chemolithotrophic bacteria.

anaplerotic reaction: An enzyme-catalyzed reaction that can replenish the supply of intermediates in the citric acid cycle.

angstrom (Å): A unit of length (10⁻¹⁰ cm) used to indicate molecular dimensions.

anhydride: The product of the condensation of two carboxyl or phosphate groups in which the elements of water are eliminated to form a compound with the general structure R—X—O—Y—R, where R is either carbon or phosphorus.

anion-exchange resin: A polymeric resin with fixed cationic groups, used in the chromatographic separation of anions.
anomeric carbon: The carbon atom in a sugar at the new stereocenter formed when a sugar cyclizes to form a hemiacetal. This is the carbonyl carbon of aldehydes and ketones.

anomers: Two stereoisomers of a given sugar that differ only in the configuration about the anomeric carbon atom.

antagonist: A compound that interferes with the physiological action of another substance (the agonist), usually at a hormone or neurotransmitter receptor.

antibiotic: One of many different organic compounds that are formed and secreted by various species of microorganisms and plants, are toxic to other species, and presumably have a defensive function.

antibody: A defense protein synthesized by the immune system of vertebrates. See also immunoglobulin.

anticodon: A specific sequence of three nucleotides in a tRNA, complementary to a codon for an amino acid in an mRNA.

antigen: A molecule capable of eliciting the synthesis of a specific antibody in vertebrates.

antiparallel: Describes two linear polymers that are opposite in polarity or orientation.

antitoxin: Cotransport of two solutes across a membrane in opposite directions.

apoenzyme: The protein portion of an enzyme, exclusive of any organic or inorganic cofactors or prosthetic groups that might be required for catalytic activity.

apolipoprotein: The protein component of a lipoprotein.

apoprotein: The protein portion of a protein, exclusive of any organic or inorganic cofactors or prosthetic groups that might be required for activity.

apoptosis: (app'-a-toe'-sis) Programmed cell death in which a cell brings about its own death and lysis, in response to a signal from outside or programmed in its genes, by systematically degrading its own macromolecules.

aptamer: Oligonucleotide that binds specifically to one molecular target, usually selected by an iterative cycle of affinity-based enrichment (SELEX).

Archaea: One of the five kingdoms of living organisms; includes many species that thrive in extreme environments of high ionic strength, high temperature, or low pH.

arrestins: A family of proteins that bind to the phosphorylated carboxyl-terminal region of G protein-coupled receptors, preventing their interactions with G proteins and thereby terminating the signal through those receptors.

asymmetric carbon atom: A carbon atom that is covalently bonded to four different groups and thus may exist in two different tetrahedral configurations.

ATP (adenosine triphosphate): A ribonucleoside 5’-triphosphate functioning as a phosphate group donor in the cellular energy cycle, carries chemical energy between metabolic pathways by serving as a shared intermediate coupling endergonic and exergonic reactions.

ATPase: An enzyme that hydrolyzes ATP to yield ADP and phosphate, usually coupled to a process requiring energy.

ATP synthase: An enzyme complex that forms ATP from ADP and phosphate during oxidative phosphorylation in the inner mitochondrial membrane or the bacterial plasma membrane, and during photophosphorylation in chloroplasts.

attenuator: An RNA sequence involved in regulating the expression of certain genes; functions as a transcription terminator.

autophosphorylation: Strictly, the phosphorylation of an amino acid residue in a protein that is catalyzed by the same protein molecule; often extended to include phosphorylation of one subunit of a homodimer by the other subunit.

autotroph: An organism that can synthesize its own complex molecules from very simple carbon and nitrogen sources, such as carbon dioxide and ammonia.

auxin: A plant growth hormone.

auxotrophic mutant (auxotroph): A mutant organism defective in the synthesis of a particular biomolecule, which must therefore be supplied for the organism’s growth.

Avogadro’s number (N): The number of molecules in a gram molecular weight (a mole) of any compound (6.02 x 10²³).

back-mutation: A mutation that causes a mutant gene to regain its wild-type base sequence.

Bacteria: One of the five kingdoms of living organisms; bacteria have a plasma membrane but no internal organelles or nucleus.

bacteriophage: A virus capable of replicating in a bacterial cell; also called phage.

basal metabolic rate: An animal’s rate of oxygen consumption when at complete rest, long after a meal.

base pair: Two nucleotides in nucleic acid chains that are paired by hydrogen bonding of their bases; for example, A with T or U, and G with C.

B cell: See B lymphocyte.

Biochemistry: The study of the chemical processes that occur in living organisms.

B lymphocyte (B cell): One of a class of blood cells (lymphocytes), responsible for the production of circulating antibodies.

biomolecule: An organic compound normally present as an essential component of living organisms.

biotin: A vitamin; an enzymatic cofactor involved in carboxylation reactions.

biochemistry: The study of the chemical processes that occur in living organisms.

bioinformatics: The computerized analysis of biological data, using methods derived from statistics, linguistics, mathematics, chemistry, biochemistry, and physics. The data are often nucleic acid or protein sequence or structural data, but can also involve experimental data from many sources, patient statistics, and materials in the scientific literature. Bioinformatics research focuses on methods for data storage, retrieval, and analysis.

bioassay: A method for measuring the amount of a biologically active substance (such as a hormone) in a sample by quantifying the biological response to aliquots of that sample.

biocytin: The conjugate amino acid residue arising from covalent attachment of biotin, through an amide linkage, to a Lys residue.

biotin: A vitamin; an enzymatic cofactor involved in carboxylation reactions.

Biocompound: Any chemical compound that is involved in the metabolism of biological systems, including enzymes, cofactors, and prosthetic groups.

Biosphere: All the living matter on or in the earth, the seas, and the atmosphere.

biotin: A vitamin; an enzymatic cofactor involved in carboxylation reactions.

bond energy: The energy required to break a bond.

branch migration: Movement of the branch point in a branched DNA formed from two DNA molecules with identical sequences. See also Holliday intermediate.

brown adipose tissue (BAT): Thermogenic adipose tissue rich in mitochondria that contain the uncoupling protein thermogenin, which uncouples electron transfer through the respiratory chain from ATP synthesis. Compare white adipose tissue.

buffer: A system capable of resisting changes in pH, consisting of a conjugate acid-base pair in which the ratio of proton acceptor to proton donor is near unity.

calorie: The amount of heat required to raise the temperature of 1.0 g of water from 14.5 to 15.5°C. One calorie (cal) equals 4.18 joules (J).

Calvin cycle: The cyclic pathway in plants that fixes carbon dioxide and produces triose phosphates.

cAMP: See cyclic AMP.

cAMP receptor protein (CRP): In bacteria, a specific regulatory protein that controls initiation of transcription of the genes that produce the enzymes required for the cell to
use some other nutrient when glucose is lacking; also called catabolite gene activator protein (CAP).

CAP: See cAMP receptor protein.

capsid: The protein coat of a virus or virus particle.

carbaminion: A negatively charged carbon atom.

carbocation: A positively charged carbon atom; also called a carbonyl ion.

carbon-assimilation reactions: Reaction sequences in which atmospheric CO₂ is converted into organic compounds.

carbon-fixation reaction: The reaction, catalyzed by rubisco during photosynthesis or by other carboxylases, in which atmospheric CO₂ is initially incorporated (fixed) into an organic compound.

carboxyl-terminal residue: The only amino acid residue in a polypeptide chain with a free α-carboxyl group; defines the carboxyl terminus of the polypeptide.

carnitine shuttle: Mechanism for moving fatty acids from the cytosol to the mitochondrial matrix as fatty esters of carnitine.

carotenoids: Lipid-soluble photosynthetic pigments made up of isoprene units.

cascade: See enzyme cascade.

catabolism: The phase of intermediary metabolism concerned with the energy-yielding degradation of nutrient molecules.

catalytic site: See active site.

catecholamines: Hormones, such as epinephrine, that are amino derivatives of catechol.

catenane: Two or more circular polymeric molecules interlinked by one or more noncovalent topological links, resembling the links of a chain.

cation-exchange resin: An insoluble polymer with fixed negative charges, used in the chromatographic separation of cationic substances.

cDNA: See complementary DNA.

cDNA library: DNA library consisting entirely of cloned cDNAs from a particular organism or cell type.

cellular differentiation: The process in which a precursor cell becomes specialized to carry out a particular function, by acquiring a new complement of proteins and RNA.

central dogma: The organizing principle of molecular biology: genetic information flows from DNA to RNA to protein.

centrone: A specialized site in a chromosome, serving as the attachment point for the mitotic or meiotic spindle.

cerebroside: Sphingolipid containing one sugar residue as a head group.

channeling: The direct transfer of a reaction product (common intermediate) from the active site of an enzyme to the active site of the enzyme catalyzing the next step in a pathway.

chemiosmotic coupling: Coupling of ATP synthesis to electron transfer via a transmembrane difference in charge and pH.

chemiosmotic theory: The theory that energy derived from electron transfer reactions is temporarily stored as a transmembrane difference in charge and pH, which subsequently drives the formation of ATP in oxidative phosphorylation and photophosphorylation.

chemotaxis: A cell's sensing of and movement toward or away from a specific chemical agent.

chemotroph: An organism that obtains energy by metabolizing organic compounds derived from other organisms.

chiral center: An atom with substituents arranged so that the molecule is not superposable on its mirror image.

chiral compound: A compound that contains an asymmetric center (chiral atom or chiral center) and thus can occur in two nonsuperposable mirror-image forms (enantiomers).

chloroplasts: Chlorophyll-containing photosynthetic organelles in some eukaryotic cells.

chondroitin sulfate: One of a family of sulfated glycosaminoglycans, a major component of the extracellular matrix.

chromatin: A filamentous complex of DNA, histones, and other proteins, constituting the eukaryotic chromosome.

chromatography: A process in which complex mixtures of molecules are separated by many repeated partitionings between a flowing (mobile) phase and a stationary phase.

chromosome: A single large DNA molecule and its associated proteins, containing many genes; stores and transmits genetic information.

cholinergic properties: Properties of a solution that depend on the number of solute particles per unit volume, for example, freezing-point depression.

common intermediate: A chemical compound common to two chemical reactions, as a product of one and a reactant in the other.

competitive inhibition: A type of enzyme inhibition reversed by increasing the substrate concentration; a competitive inhibitor generally competes with the normal substrate or ligand for a protein's binding site.

complementary: Having a molecular surface with chemical groups arranged to interact specifically with chemical groups on another molecule.

complementary DNA (cDNA): A DNA complementary to a specific mRNA, used in DNA cloning, usually made by reverse transcriptase.

configuration: The spatial arrangement of an organic molecule that is conferred by the presence of either (1) double bonds, about which there is no freedom of rotation, or (2) chiral centers, around which substituent groups are arranged in a specific sequence. Configurational isomers cannot be interconverted without breaking one or more covalent bonds.

conformation: A spatial arrangement of substituent groups that are free to assume different positions in space, without breaking any bonds, because of the freedom of bond rotation.

conjugate acid-base pair: A proton donor and its corresponding deprotonated species; for example, acetic acid (donor) and acetate (acceptor).

conjugated protein: A protein containing one or more prosthetic groups.

conjugate redox pair: An electron donor and its corresponding electron acceptor form; for example, Cu⁺ (donor) and Cu²⁺ (acceptor), or NADH (donor) and NAD⁺ (acceptor).

consensus sequence: A DNA or amino acid sequence consisting of the residues that most commonly occur at each position in a set of similar sequences.
conservative substitution: Replacement of an amino acid residue in a polypeptide by another residue with similar properties; for example, substitution of Glu by Asp.

constitutive enzymes: Enzymes required at all times by a cell and present at a constant level; for example, many enzymes of the central metabolic pathways. Sometimes called housekeeping enzymes.

testig: A series of overlapping clones or a continuous sequence defining an uninterrupted section of a chromosome.

contour length: The length of a helical polymeric molecule as measured along its helical axis.

cooperativity: The characteristic of an enzyme or other protein in which binding of the first molecule of a ligand changes the affinity for the second molecule. In positive cooperativity, the affinity for the second ligand molecule increases; in negative cooperativity, it decreases.

corticosteroids: Steroid hormones formed by the adrenal cortex.

cotransport: The simultaneous transport, by a single transporter, of two solutes across a membrane. See also antiport, symport.

coupled reactions: Two chemical reactions that have a common intermediate and thus a means of energy transfer from one to the other.

cova lent bond: A chemical bond that involves sharing of electron pairs.

cristae: Infoldings of the inner mitochondrial membrane.

CRP: See cAMP receptor protein.

cruciform: Secondary structure in double-stranded RNA or DNA in which the double helix is denatured at palindromic repeat sequences in each strand, and each separated strand is paired internally to form opposing hairpin structures. See also hairpin.

cyclic AMP (cAMP): A second messenger; its formation in a cell by adenyl cyclase is stimulated by certain hormones or other molecular signals.

cyclic electron flow: In chloroplasts, the light-induced flow of electrons originating from and returning to photosystem I.

cyclic photophosphorylation: ATP synthesis driven by cyclic electron flow through photosystem I.

cyclin: One of a family of proteins that activate cyclin-dependent protein kinases and thereby regulate the cell cycle.

cytochrome P-450: A family of heme-containing enzymes, with a characteristic absorption band at 450 nm, that participate in biological hydroxylations with O2.

cytochrome: Heme proteins serving as electron carriers in respiration, photosynthesis, and other oxidation-reduction reactions.

cytokine: One of a family of small secreted proteins (such as interleukins or interferons) that activate cell division or differentiation by binding to plasma membrane receptors in target cells.

cytokinesis: The final separation of daughter cells following mitosis.

cytoplasm: The portion of a cell's contents outside the nucleus but within the plasma membrane; includes organelles such as mitochondria.

cytoskeleton: The filamentous network that provides structure and organization to the cytoplasm; includes actin filaments, microtubules, and intermediate filaments.

cytosol: The continuous aqueous phase of the cytoplasm, with its dissolved solutes; excludes the organelles such as mitochondria.

d
dalton: Unit of atomic or molecular weight; 1 dalton (Da) is the weight of a hydrogen atom (1.66 x 10^-24 g).

dark reactions: See carbon-assimilation reactions.

degenerate code: A code in which a single amino acid is specified by more than one codon.

dehydrogenases: Enzymes that catalyze the removal of hydrogen atoms from substrates.

deletion mutation: A mutation resulting from the deletion of one or more nucleotides from a gene or chromosome.

denaturation: Partial or complete unfolding of the specific native conformation of a polypeptide chain, protein, or nucleic acid such that the function of the molecule is lost.

denatured protein: A protein that has lost enough of its native conformation by exposure to a destabilizing agent such as heat or detergent so that its function is lost.

deoxyribonucleic acid: See DNA.

deoxyribonucleotides: Nucleotides containing 2-deoxy-d-ribose as the pentose component.

desaturases: Enzymes that catalyze the introduction of double bonds into the hydrocarbon portion of fatty acids.

desensitization: Universal process by which sensory mechanisms cease to respond after prolonged exposure to the specific stimulus they detect.

desolvation: In aqueous solution, the release of bound water surrounding a solute.

dextrorotatory isomer: A stereoisomer that rotates the plane of plane-polarized light clockwise.

diabetes mellitus: A group of metabolic diseases with symptoms that result from a deficiency in insulin production or utilization; characterized by a failure in glucose transport from the blood into cells at normal glucose concentrations.

dialysis: Removal of small molecules from a solution of a macromolecule by their diffusion through a semipermeable membrane into a suitably buffered solution.

differential centrifugation: Separation of cell organelles or other particles of different size by their different rates of sedimentation in a centrifugal field.

differentiation: Specialization of cell structure and function during growth and development.

diffusion: The net movement of molecules in the direction of lower concentration.

digestion: Enzymatic hydrolysis of major nutrients in the gastrointestinal system to yield their simpler components.

diploid: Having two sets of genetic information; describes a cell with two chromosomes of each type. Compare haploid.

dipole: A molecule with both positive and negative charges.

diprotic acid: An acid with two dissociable protons.

disaccharide: A carbohydrate consisting of two covalently joined monosaccharide units.

dissociation constant: An equilibrium constant (Kd) for the dissociation of a complex of two or more biomolecules into its components; for example, dissociation of a substrate from an enzyme.

disulfide bond: A covalent bond involving the oxidative linkage of two Cys residues, from the same or different polypeptide chains, forming a cystine residue.

DNA (deoxyribonucleic acid): A polynucleotide with a specific sequence of deoxyribonucleotide units covalently joined through 3',5'-phosphodiester bonds; serves as the carrier of genetic information.

DNA chimera: DNA containing genetic information derived from two different species.

DNA chip: Informal term for a DNA microarray, referring to the small size of typical microarrays.

DNA cloning: See cloning.

DNA library: A collection of cloned DNA fragments.

DNA ligase: An enzyme that creates a phosphodiester bond between the 3' end of one DNA segment and the 5' end of another.

DNA looping: The interaction of proteins bound at distant sites on a DNA molecule so that the intervening DNA forms a loop.

DNA microarray: A collection of DNA sequences immobilized on a solid surface, with individual sequences laid out in patterned arrays that can be probed by hybridization.

DNA polymerase: An enzyme that catalyzes template-dependent synthesis of DNA from its deoxyribonucleoside 5'-triphosphate precursors.

DNA replicase system: The entire complex of enzymes and specialized proteins required in biological DNA replication.
DNA supercoiling: The coiling of DNA upon itself, generally as a result of bending, underwinding, or overwinding of the DNA helix.

DNA transposition: See transposition.

domain: A distinct structural unit of a polypeptide; domains may have separate functions and may fold as independent, compact units.

double helix: The natural coiled conformation of two complementary, antiparallel DNA chains.

double-reciprocal plot: A plot of 1/Vmax versus 1/[S], which allows a more accurate determination of Vmax and Km than a plot of V0 versus [S]; also called the Lineweaver-Burk plot.

E*: See standard reduction potential.

E. coli (Escherichia coli): A common bacterium found in the small intestine of vertebrates; the most well-studied organism.

electrochemical gradient: The sum of the gradients of concentration and of electric charge of an ion across a membrane; the driving force for oxidative phosphorylation and photophosphorylation.

electrochemical potential: The energy required to maintain a separation of charge and of concentration across a membrane.

electrogenic: Contributing to an electrical potential across a membrane.

electron acceptor: A substance that receives electrons in an oxidation-reduction reaction.

electron carrier: A protein, such as a flavoprotein or a cytochrome, that can reversibly gain and lose electrons; functions in the transfer of electrons from organic nutrients to oxygen or some other terminal acceptor.

electron donor: A substance that donates electrons in an oxidation-reduction reaction.

electron transfer: Movement of electrons from electron donor to electron acceptor; especially, from substrates to oxygen via the carriers of the respiratory (electron-transfer) chain.

electrophile: An electron-deficient group with a strong tendency to accept electrons from an electron-rich group (nucleophile).

electrophoresis: Movement of charged solutes in response to an electrical field; often used to separate mixtures of ions, proteins, or nucleic acids.

electron translocation: Introduction of macromolecules into cells after rendering the cells transiently permeable by the application of a high-voltage pulse.

elongation factors: (1) Proteins that function in the elongation phase of eukaryotic transcription. (2) Specific proteins required in the elongation of polypeptide chains by ribosomes.

eulate: The effluent from a chromatographic column.

epantiomers: Stereoisomers that are nonsuperposable mirror images of each other.

endothermic reaction: A chemical reaction that takes up heat (that is, for which ΔH is positive).

endothelial reaction: A chemical reaction that takes up heat (that is, for which ΔH is positive).

end-product inhibition: See feedback inhibition.

energy charge: The fractional degree to which the ATP/ADP/AMP system is filled with high-energy phosphate groups.

energy coupling: The transfer of energy from one process to another.

enhancers: DNA sequences that facilitate the expression of a given gene; may be located a few hundred, or even thousand, base pairs away from the gene.

enthalpy (H): The heat content of a system.

enthalpy change (ΔH): For a reaction, approximately equal to the difference between the energy used to break bonds and the energy gained by the formation of new ones.

entropy (S): The extent of randomness or disorder in a system.

enzyme: A biomolecule, either protein or RNA, that catalyzes a specific chemical reaction. It does not affect the equilibrium of the catalyzed reaction; it enhances the rate of the reaction by providing a reaction path with a lower activation energy.

enzyme cascade: A series of reactions, often involved in regulatory events, in which one enzyme activates another (often by phosphorylation), which activates a third, and so on. The effect of a catalyst activating a catalyst is a large amplification of the signal that initiated the cascade.

epigenetic: Describes any inherited characteristic of a living organism that is acquired by means that do not involve the nucleotide sequence of the parental chromosomes; for example, covalent modifications of histones.

epimerases: Enzymes that catalyze the reversible interconversion of two epimers.

epimers: Two stereoisomers differing in configuration at one asymmetric center in a compound having two or more asymmetric centers.

epithelial cell: Any cell that forms part of the outer covering of an organism or organ.

epitope: An antigenic determinant; the particular chemical group or groups in a macromolecule (antigen) to which a given antibody binds.

epitope tag: A protein sequence or domain bound by some well-characterized antibody.

equilibrium: The state of a system in which no further net change is occurring; the free energy is at a minimum.

equilibrium constant (Keq): A constant, characteristic for each chemical reaction, that relates the specific concentrations of all reactants and products at equilibrium at a given temperature and pressure.

erythrocyte: A cell containing large amounts of hemoglobin and specialized for oxygen transport; a red blood cell.

Escherichia coli: See E. coli.

essential amino acids: Amino acids that cannot be synthesized by humans (and other vertebrates) and must be obtained from the diet.

essential fatty acids: The group of polyunsaturated fatty acids produced by plants, but not by humans; required in the human diet.

EST: See expressed sequence tag.

ethanol fermentation: The anaerobic conversion of glucose to ethanol via glycolysis; also called alcohol fermentation.

euchromatin: The regions of interphase chromosomes that stain diffusely, as opposed to the more condensed, heavily staining, heterochromatin. These are often regions in which genes are being actively expressed.

eukaryote: A unicellular or multicellular organism with cells having a membrane-bounded nucleus, multiple chromosomes, and internal organelles.

exciton: An energy-rich state of an atom or molecule; produced by the absorption of light energy.

exergonic reaction: A chemical reaction that proceeds with the release of free energy (that is, for which ΔG is negative).

exocytosis: The fusion of an intracellular vesicle with the plasma membrane, releasing the vesicle contents to the extracellular space.

exon: The segment of a eukaryotic gene that encodes a portion of the final product of the gene; a segment of RNA that remains after posttranscriptional processing and is transcribed into a protein or incorporated into the structure of an RNA. See also intron.

exonuclease: An enzyme that hydrolyzes only those phosphodiester bonds that are in the terminal positions of a nucleic acid.

exothermic reaction: A chemical reaction that releases heat (that is, for which ΔH is negative).

expressed sequence tag (EST): A specific type of sequence-tagged site in DNA representing a gene that is expressed.

expression vector: See vector.

extracellular matrix: An interwoven combination of glycosaminoglycans, proteoglycans, and proteins, just outside the plasma.
membrane, that provides cell anchorage, positional recognition, and traction during cell migration.

extrathepatic: Describes all tissues outside the liver; implies the centrality of the liver in metabolism.

facilitated diffusion: Diffusion of a polar substance across a biological membrane through a protein transporter; also called passive diffusion or passive transport.

facultative cells: Cells that can live in the presence or absence of oxygen.

FAD (flavin adenine dinucleotide): The coenzyme of some oxidation-reduction enzymes; contains riboflavin.

fatty acid: A long-chain aliphatic carboxylic acid found in natural fats and oils; also a component of membrane phospholipids and glycolipids.

feedback inhibition: Inhibition of an allosteric enzyme at the beginning of a metabolic sequence by the end product of the sequence; also known as end-product inhibition.

fermentation: Energy-yielding anaerobic breakdown of a nutrient molecule, such as glucose, without net oxidation; yields lactate, ethanol, or some other simple product.

ferredoxin: An iron-sulfur protein (2Fe-2S) of chloroplasts that carries electrons from iron-sulfur centers associated with photosystem I to NADP⁺ during photophosphorylation.

fibroblast: A cell of the connective tissue that secretes connective tissue proteins such as collagen.

fibrous proteins: Insoluble proteins that serve a protective or structural role; contain polypeptide chains that generally share a common secondary structure.

fingerprinting: See peptide mapping.

first law of thermodynamics: The law stating that, in all processes, the total energy of the universe remains constant.

Fischer projection formulas: See projection formulas.

5’ end: The end of a nucleic acid that lacks a nucleotide bound at the 5’ position of the terminal residue.

flagellum: A cell appendage used in propulsion. Bacterial flagella have a much simpler structure than eukaryotic flagella, which are similar to cilia.

flavin adenine dinucleotide: See FAD.

flavin-linked dehydrogenases: Dehydrogenases requiring one of the riboflavin coenzymes, FMN or FAD.

flavin mononucleotide: See FMN.

flavin nucleotides: Nucleotide coenzymes (FMN and FAD) containing riboflavin.

flavoprotein: An enzyme containing a flavin nucleotide as a tightly bound prosthetic group.

floppases: Membrane proteins in the ABC transporter family that catalyze movement of phospholipids from the extracellular leaflet to the cytosolic leaflet of a membrane bilayer.

fluoroscein: A technique for identifying the amino acid sequence bound by a DNA- or RNA-binding protein.

fraction: A portion of a biological sample that has been subjected to a procedure designed to separate macromolecules based on a property such as solubility, net charge, molecular weight, or function.

fractionation: The process of separating the proteins or other components of a complex molecular mixture into fractions based on differences in properties such as solubility, net charge, molecular weight, or function.

frame shift: A mutation caused by insertion or deletion of one or more paired nucleotides, changing the reading frame of codons during protein synthesis; the polypeptide product has a garbled amino acid sequence beginning at the mutated codon.

FRAP (fluorescence recovery after photobleaching): A technique used to quantify the diffusion of membrane components (lipids or proteins) in the plane of the bilayer.

free energy (G): The component of the total energy of a system that can do work at constant temperature and pressure.

free energy of activation (ΔG°): See activation energy.

free-energy change (ΔG): The amount of free energy released (negative ΔG) or absorbed (positive ΔG) in a reaction at constant temperature and pressure.

free radical: See radical.

functional group: The specific atom or group responsible for a molecule's characteristics, or phenotype.

genetic code: The set of triplet code words in DNA (or mRNA) coding for the amino acids of proteins.

genetic information: The hereditary information contained in a sequence of nucleotide bases in chromosomal DNA or RNA.

genetic map: A diagram showing the relative sequence and position of specific genes along a chromosome.

genome: All the genetic information encoded in a cell or virus.

genomic library: A DNA library containing DNA segments that represent all (or most) of the sequences in an organism's genome.

genomics: A science devoted broadly to the understanding of cellular and organism genomes.

genotype: The genetic constitution of an organism, as distinct from its physical characteristics, or phenotype.

geometric isomers: Isomers related by rotation about a double bond; also called cis and trans isomers.

germ-line cell: A type of animal cell that is multiply by mitosis or produce by meiosis cells that develop into gametes (egg or sperm cells).

GFP: See green fluorescent protein.

globular proteins: Soluble proteins with a globular (somewhat rounded) shape.

glucogenic amino acids: Amino acids with carbon chains that can be metabolically converted into glucose or glycogen via gluconeogenesis.

glucconeogenesis: The biosynthesis of a carbohydrate from simple, noncarbohydrate precursors such as oxaloacetate or pyruvate.

GLUT: Designation for a family of membrane proteins that transport glucose.

glycan: Another term for polysaccharide; a polymer of monosaccharide units joined by glycosidic bonds.

glycerol: An amphipathic lipid with a glycerol backbone; fatty acids are ester-linked to C-1 and C-2 of glycerol, and a polar alcohol is attached through a phosphodiester linkage to C-3.

gangliosides: Sphingolipids containing complex oligosaccharides as head groups; especially common in nervous tissue.

gel filtration: See size-exclusion chromatography.

gene: A chromosomal segment that codes for a single functional polypeptide chain or RNA molecule.

gene expression: Transcription, and in the case of proteins, translation, to yield the product of a gene; a gene is expressed when its biological product is present and active.

general acid-base catalysis: Catalysis involving proton transfer(s) to or from a molecule other than water.

gene splicing: The enzymatic attachment of one gene, or part of a gene, to another.

genetic code: The set of triplet code words in DNA (or mRNA) coding for the amino acids of proteins.

genetic information: The hereditary information contained in a sequence of nucleotide bases in chromosomal DNA or RNA.

genetic map: A diagram showing the relative sequence and position of specific genes along a chromosome.

genotype: The genetic constitution of an organism, as distinct from its physical characteristics, or phenotype.

geometric isomers: Isomers related by rotation about a double bond; also called cis and trans isomers.

germ-line cell: A type of animal cell that is multiply by mitosis or produce by meiosis cells that develop into gametes (egg or sperm cells).

GFP: See green fluorescent protein.

globular proteins: Soluble proteins with a globular (somewhat rounded) shape.

glucogenic amino acids: Amino acids with carbon chains that can be metabolically converted into glucose or glycogen via gluconeogenesis.

glucogenogenesis: The biosynthesis of a carbohydrate from simple, noncarbohydrate precursors such as oxaloacetate or pyruvate.

GLUT: Designation for a family of membrane proteins that transport glucose.

glycan: Another term for polysaccharide; a polymer of monosaccharide units joined by glycosidic bonds.

glycerol: An amphipathic lipid with a glycerol backbone; fatty acids are ester-linked to C-1 and C-2 of glycerol, and a polar alcohol is attached through a phosphodiester linkage to C-3.
glycoconjugate: A compound containing a carbohydrate component bound covalently to a protein or lipid, forming a glycoprotein or glycolipid.
glycogen: The process of converting glucose to glycogen.
glycogenin: The protein that both primes the synthesis of new glycogen chains and catalyzes the polymerization of the first few sugar residues of each chain before glycogen synthase continues the extension.
glycogenolysis: The enzymatic breakdown of stored (not dietary) glycogen.
glycolipid: A lipid containing a carbohydrate group.
glycologen: The cataol pathway by which a molecule of glucose is broken down into two molecules of pyruvate.
glycomics: The systematic characterization of all the carbohydrate components of a cell or tissue, including those bound covalently to a protein or lipid.
glycoprotein: A protein containing a carbohydrate group.
glicosaminoglycan: A heteropolysaccharide of two alternating units: one is either N-acetylglucosamine or N-acetylgalactosamine; the other is a uronic acid (usually glucuronic acid). Formerly called a mucopolysaccharide.
glycosic bonds: Bonds between a sugar and another molecule (typically an alcohol, purine, pyrimidine, or sugar) through an intervening oxygen.
glyoxylate cycle: A variant of the citric acid cycle, for the net conversion of acetate into succinate and, eventually, new carbohydrate; present in bacteria and some plant cells.
glycosome: A specialized peroxisome containing the enzymes of the glyoxylate cycle; found in cells of germinating seeds.
 Golgi complex: A complex membranous organelle of eukaryotic cells; functions in the posttranslational modification of proteins and their secretion from the cell or incorporation into the plasma membrane or organelar membranes.
G protein–coupled receptors (GPCRs): A large family of membrane receptor proteins with seven transmembrane helical segments, often associated with G proteins to transduce an extracellular signal into a change in cellular metabolism; also called serpentine receptors or heptahelical receptors.
g proteins: A family of heterotrimeric GTP-binding proteins that act in intracellular signaling pathways. Commonly, ligand binding to a G protein–coupled receptor induces the exchange of GTP for bound GDP, enabling the G protein to activate a downstream enzyme in a signaling pathway. G proteins have intrinsic GTPase activity, and therefore self-inactivate.
gram molecular weight: For a compound, the weight in grams that is numerically equal to its molecular weight; the weight of one mole.
grana: Stacks of thylakoids, flattened membranous sacs or disks, in chloroplasts.
green fluorescent protein (GFP): A small protein from a marine organism that produces a bright fluorescence in the green region of the visible spectrum. Fusion proteins with GFP are commonly used to determine the subcellular location of the fused protein by fluorescence microscopy.
ground state: The normal, stable form of an atom or molecule; as distinct from the excited state.
group transfer potential: A measure of the ability of a compound to donate an activated group (such as a phosphate or acyl group); generally expressed as the standard free energy of hydrolysis.
growth factors: Proteins or other molecules that act from outside a cell to stimulate cell growth and division.
guanosine nucleotide–binding protein: One of a family of regulatory proteins that bind either GDP or GTP, are active in the GTP-bound form, and have intrinsic GTPase activity that turns them off.

h

hairpin: Secondary structure in single-stranded RNA or DNA, in which complementary parts of a palindromic repeat fold back and are paired to form an antiparallel duplex helix that is closed at one end.
half-life: The time required for the disappearance or decay of one-half of a given component in a system.
haploid: Having a single set of genetic information; describes a cell with one chromosome of each type. Compare diploid.
hapten: A small molecule that, when linked to another molecule (typically an alcohol, purine, pyrimidine, or sugar) through an intervening oxygen, functions as a prosthetic group.
Henderson-Hasselbalch equation: An equation relating the pH, the pH of a solution of an acid (HA) and the ratio of the concentrations of proton-acceptor (A⁻) and proton-donor (HA) species in a solution:
\[\text{pH} = \text{pK}_a + \log \left[\frac{[A^-]}{[HA]} \right] \]
heparan sulfate: A sulfated polymer of alternating N-acetylglucosamine and a uronic acid, either glucuronic or iduronic acid; typically found in the extracellular matrix.
hepatocyte: The major cell type of liver tissue.
heteroduplex DNA: Duplex DNA containing complementary strands derived from two different DNA molecules with similar sequences, often as a product of genetic recombination.
heteropoly saccharide: A polysaccharide containing more than one type of sugar.
heterotroph: An organism that requires complex nutrient molecules, such as glucose, as a source of energy and carbon.
heterotropic enzyme: An allosteric enzyme requiring a modulator other than its substrate.
hexose: A simple sugar with a backbone containing six carbon atoms.
hexose monophosphate pathway: See pentose phosphate pathway.
high-energy compound: A compound that on hydrolysis undergoes a large decrease in free energy under standard conditions.
high-performance liquid chromatography (HPLC): Chromatographic procedure, often conducted at relatively high pressures, using automated equipment that permits refined and highly reproducible profiles.
Hill coefficient: A measure of cooperative interaction between protein subunits.
Hill reaction: The evolution of oxygen and photoreduction of an artificial electron acceptor by a chloroplast preparation in the absence of carbon dioxide.
histones: The family of basic proteins that associate tightly with DNA in the chromosomes of all eukaryotic cells.
holoenzyme: A catalytically active enzyme, including all necessary subunits, prosthetic groups, and cofactors.
homeobox: A conserved DNA sequence of 180 base pairs that encodes a protein domain found in many proteins that play a regulatory role in development.
holoenzyme: A catalytically active enzyme, including all necessary subunits, prosthetic groups, and cofactors.
homeodomain: The protein domain encoded by the homeobox; a regulatory unit that determines the segmentation of a body plan.
homoeostasis: The maintenance of a dynamic steady state by regulatory mechanisms that compensate for changes in external circumstances.
homoeotic genes: Genes that regulate development of the pattern of segments in the Drosophila body plan; similar genes are found in most vertebrates.
homologous genetic recombination: Recombination between two DNA molecules of similar sequence, occurring in all cells; occurs during meiosis and mitosis in eukaryotes.
homologous proteins: Proteins having similar sequences and functions in different species; for example, the hemoglobins.
homopolysaccharide: A polysaccharide made up of one type of monosaccharide unit.
homotropic: Describes an allosteric modulator that is identical to the normal ligand.
homotropic enzyme: An allosteric enzyme that uses its substrate as a modulator.
hormone: A chemical substance synthesized in small amounts by an endocrine tissue and carried in the blood to another tissue, where it acts as a messenger to regulate the function of the target tissue or organ.
hormone receptor: A protein in, or on the surface of, target cells that binds a specific hormone and initiates the cellular response.
hormone response element (HRE): A short (12 to 20 bp) DNA sequence that binds receptors for steroid, retinoid, thyroid, and vitamin D hormones, altering the expression of the contiguous genes. Each hormone has a consensus sequence preferred by the cognate receptor.
HPLC: See high-performance liquid chromatography.
HRE: See hormone response element.
hyaluronan: A high molecular weight, acidic polysaccharide typically composed of the alternating disaccharide GlcUA(β1→3)GlcNAc; a major component of the extracellular matrix, forming larger complexes (proteoglycans) with proteins and other acidic polysaccharides. Also called hyaluronic acid.
hydrogen bond: A weak electrostatic attraction between one electronegative atom (such as oxygen or nitrogen) and a hydrogen atom covalently linked to a second electronegative atom.
hydrolases: Enzymes (proteases, lipases, phosphatases, nucleases, for example) that catalyze hydrolysis reactions.
hydrollysis: Cleavage of a bond, such as an anhydride or peptide bond, by the addition of the elements of water, yielding two or more products.
hydronium ion: The hydrated hydrogen ion (H3O+).
hydroxyly index: A scale that expresses the relative hydrophobic and hydrophilic tendencies of a chemical group.
hydrophilic: Polar or charged; describes molecules or groups that associate with (dissolve easily in) water.
hydrophobic: Nonpolar; describes molecules or groups that are insoluble in water.
hydrophobic interactions: The association of nonpolar groups or compounds with each other in aqueous systems, driven by the tendency of the surrounding water molecules to seek their most stable (disordered) state.
hypochromic effect: The large increase in light absorption at 260 nm occurring as a double-helical DNA unwinds (melts).
hypoxia: The metabolic condition in which the supply of oxygen is severely limited.
immune response: The capacity of a vertebrate to generate antibodies to an antigen, a macromolecule foreign to the organism.
immunoglobulin: An antibody protein generated against, and capable of binding specifically to, an antigen.
induced fit: A change in the conformation of an enzyme in response to substrate binding that renders the enzyme catalytically active; also used to denote changes in the conformation of any macromolecule in response to ligand binding such that the binding site of the macromolecule better conforms to the shape of the ligand.
inducer: A signal molecule that, when bound to a regulatory protein, produces an increase in the expression of a given gene.
induction: An increase in the expression of a gene in response to a change in the activity of a regulatory protein.
informational macromolecules: Biomolecules containing information in the form of specific sequences of different monomers; for example, many proteins, lipids, polysaccharides, and nucleic acids.
inhibitory G protein (Gi): A trimeric GTP-binding protein that, when activated by an associated plasma membrane receptor, acts to inhibit a neighboring membrane enzyme such as adenylyl cyclase. Its effects oppose those of Go.
initiation codon: AUG (sometimes GUG or, even more rarely, UUG in bacteria and archaea); codons for the first amino acid in a polypeptide sequence: N-formylmethionine in bacteria; methionine in archaean and eukaryotes.
initiation complex: A complex of a ribosome with an mRNA and the initiating Met-tRNAile or Met-tRNAile, ready for the elongation steps.
inorganic pyrophosphatase: An enzyme that hydrolyzes a molecule of inorganic pyrophosphate to yield two molecules of (orthophosphate; also known as pyrophosphate.
insertion mutation: A mutation caused by insertion of one or more extra bases, or a mutagen, between successive bases in DNA.
insertion sequence: Specific base sequences at either end of a transposable segment of DNA.
in situ: "In position"; that is, in its natural position or location.
intrinsic protein: Proteins firmly bound to a membrane by hydrophobic interactions; as distinct from peripheral proteins.
intrin: A sequence of nucleotides in a gene that is transcribed but excised before the gene is translated; also called intervening sequence. See also exon.
in vitro: "In glass"; that is, in the test tube.
in vivo: "In life"; that is, in the living cell or organism.
ion channel: An integral protein that provides for the regulated transport of a specific ion, or ions, across a membrane.
ion-exchange resin: A polymeric resin that contains fixed charged groups, used in chromatographic columns to separate ionic compounds.
immunizing radiation: A type of radiation, such as x rays, that causes loss of electrons from some organic molecules, thus making them more reactive.
iminophore: A compound that binds one or more metal ions and is capable of diffusing across a membrane, carrying the bound ion.
ion product of water (Kw): The product of the concentrations of H+ and OH- in pure water: Kw = [H+] [OH-] = 1 x 10^-14 at 25°C.
inorganic sulfur center: A prosthetic group of certain redox proteins involved in electron transfers; FeS2- or FeS3- is bound to inorganic sulfur and to Cys groups in the protein.
inorganic sulfur protein: One of a large family of electron-transfer proteins in which the electron carrier is one or more iron ions associated with two or more sulfur atoms of Cys residues or of inorganic sulfide.
isolectric focusing: An electrophoretic method for separating macromolecules on the basis of isoelectric pH.
isolectric point (isoelectric point): The pH at which a solute has no net electric charge and thus does not move in an electric field.
isoenzymes: See isozymes.
isosomases: Enzymes that catalyze the transformation of compounds into their positional isomers.
isomers: Any two molecules with the same molecular formula but a different arrangement of molecular groups.
isoprene: The hydrocarbon 2-methyl-1,3-butadiene, a recurring structural unit of terpenoids.
isoprenoid: Any of a large number of natural products synthesized by enzymatic polymerization of two or more isoprene units; also called terpenoid.
isothermal: Occurring at constant temperature.
isotopes: Stable or radioactive forms of an element that differ in atomic weight but are
otherwise chemically identical to the naturally abundant form of the element; used as tracers.
isozyymes: Multiple forms of an enzyme that catalyze the same reaction but differ in amino acid sequence, substrate affinity, V_{max}, and/or regulatory properties; also called isoenzymes.

keratin: Insoluble protective or structural proteins consisting of parallel polypeptide chains in α-helical or β conformations.

ketogenic amino acids: Amino acids with carbon skeletons that can serve as precursors of the ketone bodies.

ketone bodies: Acetoacetate, β-hydroxybutyrate, and acetoacetate; water-soluble fuels generally exported by the liver but overproduced during fasting or in untreated diabetes mellitus.

ketosis: A condition in which the concentration of ketone bodies in the blood, tissues, and urine is abnormally high.

kinase: Enzymes that catalyze the phosphorylation of certain molecules by ATP.

kinetics: The study of reaction rates.

Krebs cycle: See citric acid cycle.

lagging strand: The DNA strand that, during replication, must be synthesized in the direction opposite to that in which the replication fork moves.

law of mass action: The law stating that the rate of any given chemical reaction is proportional to the product of the activities (or concentrations) of the reactants.

leader: A short sequence near the amino terminus of a protein or the 5' end of an RNA that has a specialized targeting or regulatory function.

leading strand: The DNA strand that, during replication, is synthesized in the same direction in which the replication fork moves.

leaky mutant: A mutant gene that gives rise to a product with a detectable level of biological activity.

leaving group: The departing or displaced molecular group in a unimolecular elimination or bimolecular substitution reaction.

lectin: A protein that binds a carbohydrate, commonly an oligosaccharide, with very high affinity and specificity, mediating cell-cell interactions.

lethal mutation: A mutation that inactivates a biological function essential to the life of the cell or organism.

leucine zipper: A protein structural motif involved in protein-protein interactions in many eukaryotic regulatory proteins; consists of two interacting α-helices in which Leu residues in every seventh position are a prominent feature of the interacting surfaces.

leukocyte: White blood cell, involved in the immune response in mammals.

leukotrienes: A family of molecules derived from arachidonate; muscle contractants that constrict air passages in the lungs and are involved in asthma.

levorotatory isomer: A stereoisomer that rotates the plane of plane-polarized light counterclockwise.

ligand: A small molecule that binds specifically to a larger one; for example, a hormone is the ligand for its specific protein receptor.

ligases: Enzymes that catalyze condensation reactions in which two atoms are joined using the energy of ATP or another energy-rich compound.

light-dependent reactions: The reactions of photosynthesis that require light and cannot occur in the dark; also known as light reactions.

Lineweaver-Burk equation: An algebraic transform of the Michaelis-Menten equation, allowing determination of V_{max} and K_m by extrapolation of $[S]$ to infinity:

$$\frac{1}{V_0} = \frac{K_m}{V_{max}[S]} + \frac{1}{V_{max}}$$

linking number: The number of times one closed circular DNA strand is wound about another; the number of topological links holding the circles together.

lipoate (lipoic acid): A vitamin for some microorganisms; an intermediate carrier of low-energy phosphate compounds.

lipid: A small water-insoluble biomolecule generally containing fatty acids, steroids, or isoprenoid compounds.

lipidome: The full complement of lipids in a cell or tissue under a particular set of conditions.

lipoate (lipoic acid): A vitamin for some microorganisms; an intermediate carrier of low-energy phosphate compounds.

lipoate (lipoic acid): A vitamin for some microorganisms; an intermediate carrier of low-energy phosphate compounds.

liposome: A small, spherical vesicle composed of a phospholipid bilayer forming spontaneously when phospholipids are suspended in an aqueous buffer.

London forces: Weak, temporary, attractive forces between molecules that induce dipoles in each other.

low-energy phosphate compound: A phosphorylated compound with a relatively small standard free energy of hydrolysis.

lyase: Enzymes that catalyze the removal of a group from a molecule to form a double bond, or the addition of a group to a double bond.

lymphocytes: A subclass of leukocytes involved in the immune response. See also B lymphocytes; T lymphocytes.

lysis: Destruction of a plasma membrane or (in bacteria) cell wall, releasing the cellular contents and killing the cell.

lyosomes: A membrane-bound organelle of eukaryotic cells; it contains many hydrolytic enzymes and serves as a degrading and recycling center for unneeded components.

macromolecule: A molecule having a molecular weight in the range of a few thousand to many millions.

mass-action ratio (Q): For the reaction $aA + bB \rightarrow cC + dD$, the ratio $[C]^{c}[D]^{d}/[A]^{a}[B]^{b}$.

matrix: The aqueous contents of a cell or organelle (the mitochondrion, for example) with dissolved solutes.

meliosis: A type of cell division in which triploid cells give rise to haploid cells destined to become gametes.

membrane potential (V_m): The difference in electrical potential across a biological membrane, commonly measured by the insertion of a microelectrode. Typical membrane potentials vary from ~25 mV (by convention, the negative sign indicates that the inside is negative relative to the outside) to greater than ~100 mV across some plant vacuolar membranes.

membrane transport: Movement of a polar solute across a membrane via a specific membrane protein (a transporter).

messenger RNA (mRNA): A class of RNA molecules, each of which is complementary to one strand of DNA; carries the genetic message from the chromosome to the ribosomes.

metabolic control: The mechanisms by which the flux through a metabolic pathway is changed to reflect a cell's altered circumstances.

metabolic regulation: The mechanisms by which a cell resists changes in the concentration of individual metabolites that would otherwise occur when metabolic control mechanisms alter the flux through a pathway.

metabolism: The entire set of enzyme-catalyzed transformations of organic molecules in living cells; the sum of anabolism and catabolism.

metabolite: A chemical intermediate in the enzyme-catalyzed reactions of metabolism.

metabolome: The complete set of small-molecule metabolites (metabolic intermediates, signals, secondary metabolites) present in a given cell or tissue under specific conditions.

metabolon: A supramolecular assembly of sequential metabolic enzymes.

metalloprotein: A protein with a metal ion as its prosthetic group.

metamerism: Division of the body into its prosthetic segments, as in insects, for example.

micelle: An aggregate of amphipathic molecules in water, with the nonpolar portions in the interior and the polar portions at the exterior surface, exposed to water.

Michaelis constant (K_m): The substrate concentration at which an enzyme-catalyzed...
reaction proceeds at one-half its maximum velocity.

Michaelis-Menten equation: The equation describing the hyperbolic dependence of the initial reaction velocity, \(V_0 \), on substrate concentration, \([S]\), in many enzyme-catalyzed reactions:

\[
V_0 = \frac{V_{\text{max}}[S]}{K_m + [S]}
\]

Michaelis-Menten kinetics: A kinetic pattern in which the initial rate of an enzyme-catalyzed reaction exhibits a hyperbolic dependence on substrate concentration.

microbodies: Cytoplasmic, membrane-bound vesicles containing peroxidase-forming and peroxidase-degrading enzymes; include lysosomes, peroxisomes, and glyoxysomes.

microfilaments: Thin filaments composed of actin, found in the cytoplasm of eukaryotic cells; serve in structure and movement.

micro-RNA: See miRNA.

microsomes: Membranous vesicles formed by fragmentation of the endoplasmic reticulum of eukaryotic cells; recovered by differential centrifugation.

microtubules: Thin tubules assembled from two types of globular tubulin subunits; present in cilia, flagella, centrosomes, and other contractile or motile structures.

miRNA (micro-RNA): A class of small RNA molecules (20 to 25 nucleotides after processing is complete) involved in gene silencing by inhibiting translation and/or promoting the degradation of particular mRNAs.

mismatch: A base pair in a nucleic acid that cannot form normal Watson-Crick pairs.

mismatch repair: An enzymatic system for repairing base mismatches in DNA.

mitochondrion: Membrane-bounded organelles of eukaryotic cells; contains the enzyme systems required for the citric acid cycle, fatty acid oxidation, electron transfer, and oxidative phosphorylation.

mitosis: In eukaryotic cells, the multistep process that results in the replication of chromosomes and cell division.

mixed-function oxidases: Enzymes (a monoxygenase, for example) that catalyze reactions in which two reductants—one of which is generally NADPH, the other the substrate—are oxidized. One oxygen atom is incorporated into the product, the other is reduced to \(\text{H}_2\text{O} \). These enzymes often use cytochrome P-450 to carry electrons from NADPH to \(\text{O}_2 \).

mixed inhibition: The reversible inhibition pattern resulting when an inhibitor molecule can bind to either the free enzyme or the enzyme-substrate complex (not necessarily with the same affinity).

modulator: A metabolite that, when bound to the allosteric site of an enzyme, alters its kinetic characteristics.

molar solution: One mole of solute dissolved in water to give a total volume of 1,000 mL.

mole: One gram molecular weight of a compound. See also Avogadro’s number.

monoclonal antibodies: Antibodies produced by a cloned hybridoma cell, which therefore are identical and directed against the same epitope of the antigen.

monolayer: A single layer of oriented lipid molecules.

monoprotic acid: An acid with only one dissociable proton.

monosaccharide: A carbohydrate consisting of a single sugar unit.

moonlighting enzymes: Enzymes that play two distinct roles, at least one of which is catalytic; the other may be catalytic, regulatory, or structural.

motif: Any distinct folding pattern for elements of secondary structure, observed in one or more proteins. A motif can be simple or complex, and can represent all or just a small part of a polypeptide chain. Also called a fold or supersecondary structure.

mRNA: See messenger RNA.

mucopolysaccharide: See glycosaminoglycan.

multi-enzyme system: A group of related enzymes participating in a given metabolic pathway.

mutarotation: The change in specific rotation of a pyranose or furanose sugar or glycoside accompanying the equilibration of its \(\alpha- \) and \(\beta- \) anomer forms.

mutases: Enzymes that catalyze the transposition of functional groups.

mutation: An inheritable change in the nucleotide sequence of a chromosome.

myocyte: A muscle cell.

myofibril: A unit of thick and thin filaments of muscle fibers.

myosin: A contractile protein; the major component of the thick filaments of muscle and other actin-myosin systems.

nADP: See ATP.

nADP (nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate): Nicotinamide-containing coenzymes functioning as carriers of hydrogen atoms and electrons in some oxidation-reduction reactions.

native conformation: The biologically active conformation of a macromolecule.

ncRNA (noncoding RNA): Any RNA that does not encode instructions for a protein product.

NMR: See nuclear magnetic resonance spectroscopy.

noncoding RNA: See ncRNA.

noncyclic electron flow: The light-induced flow of electrons from water to NADP\(^+ \) in oxygen-evolving photosynthesis; it involves both photosystems I and II.

nonessential amino acids: Amino acids that can be made by humans and other vertebrates from simpler precursors and are thus not required in the diet.

nonsensecodon: A codon that does not specify an amino acid, but signals the termination of a polypeptide chain.

nonsense mutation: A mutation that results in the premature termination of a polypeptide chain.

nonsense suppressor: A mutation, usually in the gene for a tRNA, that causes an amino acid to be inserted into a polypeptide in response to a termination codon.

nuclear magnetic resonance (NMR) spectroscopy: A technique that utilizes certain quantum mechanical properties of atomic nuclei to study the structure and dynamics of the molecules of which they are a part.

nucleases: Enzymes that hydrolyze the inter-nucleotide (phosphodiester) linkages of nucleic acids.

nucleic acids: Biologically occurring polynucleotides in which the nucleotide residues are linked in a specific sequence by phosphodiester bonds; DNA and RNA.

nucleolus: In bacteria, the nuclear zone that contains the chromosome but has no surrounding membrane.

nucleoids: In eukaryotic cells, a densely staining structure in the nucleus; involved in rRNA synthesis and ribosome formation.
nucleophile: An electron-rich group with a strong tendency to donate electrons to an electron-deficient nucleus (electrophile); the entering reactant in a bimolecular substitution reaction.

nucleoplasm: The portion of a eukaryotic cell's contents enclosed by the nuclear membrane; also called the nuclear matrix.

nucleoside: A compound consisting of a purine or pyrimidine base covalently linked to a pentose.

nucleoside diphosphate kinase: An enzyme that catalyzes the transfer of the terminal phosphate of a nucleoside 5'-triphosphate to a nucleoside 5'-diphosphate.

nucleoside diphosphate sugar: A coenzyme-like carrier of a sugar molecule, functioning in the enzymatic synthesis of polysaccharides and sugar derivatives.

nucleoside monophosphate kinase: An enzyme that catalyzes the transfer of the terminal phosphate of ATP to a nucleoside 5'-monophosphate.

nucleosome: In eukaryotes, structural units for packaging chromatin; consists of a DNA strand wound around a histone core.

nucleotide: A nucleoside phosphorylated at one of its pentose hydroxyl groups.

nucleus: In eukaryotes, a membrane-bounded organelle that contains chromosomes.

nucleosome: In eukaryotes, structural units for packaging chromatin; consists of a DNA strand wound around a histone core.

nucleoside monophosphate kinase: An enzyme that catalyzes the transfer of the terminal phosphate of ATP to a nucleoside 5'-monophosphate.

pentose: A simple sugar with a backbone containing five carbon atoms.

oligomer: A short polymer, usually of amino acids, sugars, or nucleotides; the definition of “short” is somewhat arbitrary, but usually fewer than 50 subunits.

oligomeric protein: A multisubunit protein having two or more identical polypeptide chains.

oligonucleotide: A short polymer of nucleotides (usually fewer than 50).

peptide bond: A substituted amide linkage between the α-amino group of one amino acid and the α-carboxyl group of another, with the elimination of the elements of water.

peptide mapping: The characteristic two-dimensional pattern (on paper or gel) formed by the separation of a mixture of peptides resulting from partial hydrolysis of a protein, also known as peptide fingerprinting.

phage: See bacteriophage.

peripheral proteins: Proteins loosely or reversibly bound to a membrane by hydrogen bonds or electrostatic forces; generally water soluble once released from the membrane.

permeases: See transporters.

peroxisome: Membrane-bounded organelle of eukaryotic cells; contains peroxide-forming and peroxide-destroying enzymes.

peroxisome proliferator-activated receptor: See PPAR.

phage: See bacteriophage.

phenotype: The observable characteristics of an organism.

phosphatases: Enzymes that hydrolyze a phosphate ester or anhydride, releasing inorganic phosphate, P.

phosphodiester linkage: A chemical grouping that contains two alcohols esterified to one molecule of phosphoric acid, which thus serves as a bridge between them.

phosphogluconate pathway: See pentose phosphate pathway.

phospholipid: A lipid containing one or more phosphate groups.

pathogenic: Disease-causing.

PCR: See polymerase chain reaction.

PDB (Protein Data Bank): An international database (www.rcsb.org/pdb) that archives the data describing the three-dimensional structure of nearly all macromolecules for which structures have been published.

pentose: A simple sugar with a backbone containing five carbon atoms.

pentose phosphate pathway: A pathway present in most organisms that serves to interconvert hexoses and pentoses and is a source of reducing equivalents (NADPH) and pentoses for biosynthetic processes; it begins with glucose 6-phosphate and includes 6-phosphogluconate as an intermediate. Also called the phosphogluconate pathway and the hexose monophosphate pathway.

peptidases: Enzymes that hydrolyze peptide bonds.

peptide: Two or more amino acids covalently joined by peptide bonds.

peptide bond: A substituted amide linkage between the α-amino group of one amino acid and the α-carboxyl group of another, with the elimination of the elements of water.

peptide mapping: The characteristic two-dimensional pattern (on paper or gel) formed by the separation of a mixture of peptides resulting from partial hydrolysis of a protein, also known as peptide fingerprinting.

phage: See bacteriophage.

peripheral proteins: Proteins loosely or reversibly bound to a membrane by hydrogen bonds or electrostatic forces; generally water soluble once released from the membrane.

permeases: See transporters.

peroxisome: Membrane-bounded organelle of eukaryotic cells; contains peroxide-forming and peroxide-destroying enzymes.

peroxisome proliferator-activated receptor: See PPAR.

phage: See bacteriophage.

phenotype: The observable characteristics of an organism.

phosphatases: Enzymes that hydrolyze a phosphate ester or anhydride, releasing inorganic phosphate, P.

phosphodiester linkage: A chemical grouping that contains two alcohols esterified to one molecule of phosphoric acid, which thus serves as a bridge between them.

phosphogluconate pathway: See pentose phosphate pathway.

phospholipid: A lipid containing one or more phosphate groups.
phosphorolysis: Cleavage of a compound with phosphate as the attacking group, analogous to hydrolysis.

phosphorylases: Enzymes that catalyze phosphorolysis.

phosphorylation: Formation of a phosphate derivative of a biomolecule, usually by enzymatic transfer of a phosphoryl group from ATP.

phosphorylation potential (ΔGp): The actual free-energy change of ATP hydrolysis under the nonstandard conditions prevailing in a cell.

photochemical reaction center: The part of a photosynthetic complex where the energy of an absorbed photon causes charge separation, initiating electron transfer.

photon: The ultimate unit (a quantum) of light energy.

photophosphorylation: The enzymatic formation of ATP from ADP coupled to the light-dependent transfer of electrons in photosynthetic cells.

photoinduction: The light-induced reduction of an electron acceptor in photosynthetic cells.

photoreduction: The light-induced reduction of an electron acceptor in photosynthetic cells.

photorefractory: In plants, the lack of one or more enzymes required to form sugars or nucleotides, for example, to which an enzyme adds additional monomeric subunits.

polypeptide: A long chain of amino acids linked by peptide bonds; the molecular weight is generally less than 10,000.

polyribosome: See polysome.

polysaccharide: A linear or branched polymer of monosaccharide units linked by glycosidic bonds.

polysome: A complex of an mRNA molecule and two or more ribosomes; also called polyribozyme.

polysaturated fatty acid: See PUFA.

P/O ratio: The number of moles of ATP formed in oxidative phosphorylation per O₂ reduced (thus, per pair of electrons passed to O₂). Experimental values used in this text are 2.5 for passage of electrons from NADH to O₂ and 1.5 for passage of electrons from FADH to O₂. Some textbooks use the integral values of 3.0 and 2.0.

porphyrins: Inherited condition resulting from the lack of one or more enzymes required to synthesize porphyrins.

porphyrin: Complex nitrogenous compound, containing four substituted pyrroles covalently joined into a ring, often complexed with a central metal atom.

positive cooperativity: A property of some multisubunit enzymes or proteins in which binding of a ligand or substrate to one subunit facilitates binding to another subunit.
biopolymer by remonng incorrect monomeric
proofreading: The correction of errors in
transcrplion. polymerase may brnd, leading to initiation of promoter: A DNA sequence at which RNA transcription may occur, leading to initiation of promoter.

prostaglandins: A class of lipid-soluble, hormonelike regulatory molecules derived from arachidonate and other polyunsaturated fatty acids.

prosthetic group: A metal ion or an organic compound (other than an amino acid) that is covalently bound to a protein and is essential to its activity.

proteasome: Supramolecular assembly of enzymatic complexes that function in the degradation of damaged or unneeded cellular proteins.

protein: A macromolecule composed of one or more polypeptide chains, each with a characteristic sequence of amino acids linked by peptide bonds.

Protein Data Bank: See PDB.

protein kinases: Enzymes that transfer the terminal phosphoryl group of ATP or another nucleotide triphosphate to a Ser, Thr, Tyr, Asp, or His side chain in a target protein, thereby regulating the activity or other properties of that protein.

protein targeting: The process by which newly synthesized proteins are sorted and transported to their proper locations in the cell.

proteoglycan: A hybrid macromolecule consisting of a heteropolysaccharide joined to a polypeptide; the polysaccharide is the major component.

proteome: The full complement of proteins expressed in a given cell, or the complete complement of proteins that can be expressed by a given genome.

proteomes: Broadly, the study of the protein complement of a cell or organism.

protomer: A general term describing any repeated unit of one or more stably associated protein subunits in a larger protein structure. If a protomer has multiple subunits, the subunits may be identical or different.

proton acceptor: An anionic compound capable of accepting a proton from a proton donor; that is, a base.

proton donor: The donor of a proton in an acid-base reaction; that is, an acid.

proton motive force: The electrochemical potential inherent in a transmembrane gradient of H^+ concentration; used in oxidative phosphorylation and photophosphorylation to drive ATP synthesis.

proto-oncogene: A cellular gene, usually encoding a regulatory protein, that can be converted into an oncogene by mutation.

protoplasm: A general term referring to the entire contents of a living cell.

PUFA (polyunsaturated fatty acid): A fatty acid with more than one double bond, generally nonconjugated.

purine: A nitrogenous heterocyclic base found in nucleotides and nucleic acids; containing fused pyrimidine and imidazole rings.

pyrromycin: An antibiotic that inhibits polypeptide synthesis by being incorporated into a growing polypeptide chain, causing its premature termination.

pyranose: A simple sugar containing the six-membered pyran ring.

pyridine nucleotide: A nucleotide coenzyme containing the pyridine derivative nicotinamide; NAD or NADP.

pyridoxal phosphate: A coenzyme containing the vitamin pyridoxine (vitamin B$_6$); functions in reactions involving amino group transfer.

pyrimidine: A nitrogenous heterocyclic base found in nucleotides and nucleic acids.

pyrimidine dimer: A covalently joined dimer of two adjacent pyrimidine residues in DNA, induced by absorption of UV light; most commonly derived from two adjacent thymines (a thymine dimer).

pyrophosphatase: See inorganic pyrophosphatase.

quantum: The ultimate unit of energy.

quaternary structure: The threedimensional structure of a multisubunit protein, particularly the manner in which the subunits fit together.

racemic mixture (racemate): An equimolar mixture of the D and L stereoisomers of an optically active compound.

radical: An atom or group of atoms possessing an unpaired electron; also called a free radical.

radioactive isotope: An isotopic form of an element with an unstable nucleus that stabilizes itself by emitting ionizing radiation.

radioimmunoassay (RIA): A sensitive, quantitative method for detecting trace amounts of a biomolecule, based on its capacity to displace a radioactive form of the molecule from combination with its specific antibody.

rate constant: The proportionality constant that relates the velocity of a chemical reaction to the concentration(s) of the reactant(s).

rate-limiting step: (1) Generally, the step in an enzymatic reaction with the greatest activation energy or the transition state of highest free energy. (2) The slowest step in a metabolic pathway.

reaction intermediate: Any chemical species in a reaction pathway that has a finite chemical lifetime.

reactive oxygen species (ROS): Highly reactive products of the partial reduction of O_2, including hydrogen peroxide (H_2O_2), superoxide (O_2^-), and hydroxyl free radical 'OH, produced as minor byproducts during oxidative phosphorylation.

reading frame: A contiguous, nonoverlapping set of three-nucleotide codons in DNA or RNA.

receptor Tyr kinase (RTK): A large family of plasma membrane proteins with ligandbinding sites on the extracellular domain, a single transmembrane helix, and a cytoplasmic domain with protein Tyr kinase activity controlled by the extracellular ligand.

recombinant DNA: DNA formed by the joining of genes into new combinations.

recombination: Any enzymatic process by which the linear arrangement of nucleic acid sequences in a chromosome is altered by cleavage and rejoining.

recombinational DNA repair: Recombinational processes directed at the repair of DNA strand breaks or cross-links, especially at inactivated replication forks.

redox pair: An electron donor and its corresponding oxidized form; for example, NADH and NAD$^+$. redox reaction: See oxidation-reduction reaction.

reducing agent (reductant): The electron donor in an oxidationreduction reaction.

reducing end: The end of a polysaccharide having a terminal sugar with a free anomic carbon; the terminal residue can act as a reducing sugar.

reducing equivalent: A general term for an electron or an electron equivalent in the form of a hydrogen atom or a hydride ion.

reducing sugar: A sugar in which the carbonyl (anomeric) carbon is not involved in a glycosidic bond and can therefore undergo oxidation.

reduction: The gain of electrons by a compound or ion.

regulatory enzyme: An enzyme with a regulatory function, through its capacity to undergo a change in catalytic activity by allosteric mechanisms or by covalent modification.

regulatory gene: A gene that gives rise to a product involved in the regulation of the expression of another gene; for example, a gene encoding a repressor protein.

regulatory sequence: A DNA sequence involved in regulating the expression of a gene; for example, a promoter or operator.

regulon: A group of genes or operons that are coordinately regulated even though some, or all, may be spatially distant in the chromosome or genome.

relaxed DNA: Any DNA that exists in its most stable and unstrained structure, typically the B form under most cellular conditions.

release factors: Protein factors of the cytosol required for the release of a completed polypeptide chain from a ribosome; also known as termination factors.
releasing factors: Hypothalamic hormones that stimulate release of other hormones by the pituitary gland.

renaturation: Refolding of an unfolded (denatured) globular protein so as to restore its native structure and function.

replication: Synthesis of daughter nucleic acid molecules identical to the parental nucleic acid.

replication fork: The Y-shaped structure generally found at the point where DNA is being synthesized.

replicative form: Any of the full-length structural forms of a viral chromosome that serve as distinct replication intermediates.

replisome: The multiprotein complex that promotes DNA synthesis at the replication fork.

repressible enzyme: In bacteria, an enzyme whose synthesis is inhibited when its reaction product is readily available to the cell.

repression: A decrease in the expression of a gene in response to a change in the activity of a regulatory protein.

repressor: The protein that binds to the regulatory sequence or operator for a gene, blocking its transcription.

residue: A single unit in a polymer, for example, an amino acid in a polypeptide chain. The term reflects the fact that sugars, nucleotides, and amino acids lose a few atoms (generally the elements of water) when incorporated in their respective polymers.

respiration: Any metabolic process that leads to the uptake of oxygen and the release of CO₂.

respiration-linked phosphorylation: ATP formation from ADP and Pᵢ, driven by electron flow through a series of membrane-bound carriers, with a proton gradient as the direct source of energy driving rotational catalysis by ATP synthase.

respiratory chain: The electron-transfer chain; a sequence of electron-carrying proteins that transfers electrons from substrates to molecular oxygen in aerobic cells.

response element: A region of DNA, near (upstream from) a gene, that is bound by specific proteins that influence the rate of transcription of the gene.

restriction endonucleases: Site-specific endonucleases that cleave both strands of DNA at points in or near the specific site recognized by the enzyme; important tools in genetic engineering.

restriction fragment: A segment of double-stranded DNA produced by the action of a restriction endonuclease on a larger DNA.

restriction fragment length polymorphisms (RFLPs): Variations, among individuals in a population, in the length of certain restriction fragments in which certain genomic sequences occur. These variations result from rare sequence changes that create or destroy restriction sites in the genome.

retrovirus: An RNA virus containing a reverse transcriptase.

reverse transcriptase: An RNA-directed DNA polymerase in retroviruses; capable of making DNA complementary to an RNA.

reversible inhibition: Inhibition by a molecule that binds reversibly to the enzyme, such that the enzyme activity returns when the inhibitor is no longer present.

RFLPs: See restriction fragment length polymorphisms.

R group: (1) Formally, an abbreviation denoting any alkyl group. (2) Occasionally, used in a more general sense to denote virtually any organic substituent (the R groups of amino acids, for example).

ribonuclease: A nuclease that catalyzes the hydrolysis of certain internucleotide linkages of RNA.

ribonucleic acid: See RNA.

ribonucleotide: A nucleotide containing a ribose as its pentose component.

ribosomal RNA (rRNA): A class of RNA molecules serving as components of ribosomes.

ribosome: A supramolecular complex of rRNAs and proteins, approximately 18 to 22 nm in diameter, of the protein synthesis.

riboswitch: A structured segment of an mRNA that binds to a specific ligand and affects the translation or processing of the mRNA.

ribozymes: Ribonucleic acid molecules with catalytic activities; RNA enzymes.

Rieske iron-sulfur protein: A type of iron-sulfur protein in which two of the ligands to the central iron ion are His side chains. These proteins act in many electron-transfer sequences, including oxidative phosphorylation and photo-phosphorylation.

RNA (ribonucleic acid): A polyribonucleotide of a specific sequence linked by successive 3',5'-phosphodiester bonds.

RNA editing: Posttranscriptional modification of an mRNA that alters the meaning of one or more codons during translation.

RNA polymerase: An enzyme that catalyzes the formation of RNA from ribonucleoside 5'-triphosphates, using a strand of DNA or RNA as a template.

RNA splicing: Removal of introns and joining of exons in a primary transcript.

ROS: See reactive oxygen species.

rRNA: See ribosomal RNA.

RTK: See receptor Tyr kinase.

satellite DNA: Highly repeated, nontranslated segments of DNA in eukaryotic chromosomes; most often associated with the centromeric region. Its function is unknown. Also called simple-sequence DNA.

saturated fatty acid: A fatty acid containing a fully saturated alkyl chain.

scaffold proteins: Noncatalytic proteins that nucleate formation of multienzyme complexes by providing two or more specific binding sites for those proteins.

scramblases: Membrane proteins that catalyze the movement of phospholipids across the membrane bilayer, leading to uniform distribution of a lipid between the two membrane leaflets.

secondary metabolism: Pathways that lead to specialized products not found in every living cell.

secondary structure: The local spatial arrangement of the main-chain atoms in a segment of a polypeptide chain; also applied to nucleotide structure.

second law of thermodynamics: The law stating that, in any chemical or physical process, the entropy of the universe tends to increase.

second messenger: An effector molecule synthesized in a cell in response to an external signal (first messenger) such as a hormone.

sedimentation coefficient: A physical constant specifying the rate of sedimentation of a particle in a centrifugal field under specified conditions.

selectins: A large family of membrane proteins, lectins that bind oligosaccharides on other cells tightly and specifically and serve to carry signals across the plasma membrane.

SELEX: A method for rapid experimental identification of nucleic acid sequences (usually RNA) that have particular catalytic or ligand-binding properties.

sequence polymorphisms: Any alterations in genomic sequence (base-pair changes, insertions, deletions, rearrangements) that help distinguish subsets of individuals in a population or distinguish one species from another.

sequence-tagged site (STS): Any known sequence that has been mapped in a chromosome and/or clones derived from it.

serpentine receptors: See G protein-coupled receptors.

Shine-Dalgarno sequence: A sequence in an mRNA that is required for binding bacterial ribosomes.

short tandem repeat (STR): A short (typically 3 to 6 bp) DNA sequence, repeated many times in tandem at a particular location in a chromosome.

SH2 domain: A protein domain that binds tightly to a phosphotyrosine residue in certain proteins such as the receptor Tyr kinases, initiating the formation of a multiprotein complex that acts in a signaling pathway.

shuttle vector: A recombinant DNA vector that can be replicated in two or more different host species. See also vector.
sialoadhesin: A lectin on the outside surface of a cell that binds carbohydrate ligands with terminal sialic acids; one of the family of siglecs.
sickle-cell anemia: A human disease characterized by defective hemoglobin molecules in individuals homozygous for a mutant allele coding for the \(\beta \) chain of hemoglobin.
sickle-cell trait: A human condition recognized by the sickling of erythrocytes when exposed to low oxygen tension; occurs in individuals heterozygous for the allele responsible for sickle-cell anemia.
siglec: One of a family of cell surface lectins, the sialic acid binding \(Ig \)-like lectins, with multiple immunoglobulin-like domains; it binds surface structures containing sialic acid.
signal sequence: An amino acid sequence, often at the amino terminus, that signals the cellular fate or destination of a newly synthesized protein.
signal transduction: The process by which an extracellular signal (chemical, mechanical, or electrical) is amplified and converted to a cellular response.
silent mutation: A mutation in a gene that causes no detectable change in the biological characteristics of the gene product.
simple diffusion: The movement of solute molecules across a membrane to a region of lower concentration, unassisted by a protein transporter.
simple protein: A protein yielding only amino acids on hydrolysis.
single nucleotide polymorphism (SNP): A genomic base-pair change that helps distinguish one species from another or one subset of individuals in a population.
site-directed mutagenesis: A set of methods used to create specific alterations in the sequence of a gene.
site-specific recombination: A type of genetic recombination that occurs only at specific sequences.
size-exclusion chromatography: A procedure for the separation of molecules by size, based on the capacity of porous polymers to exclude solutes above a certain size; also called gel filtration.
small nuclear RNA (snRNA): A class of short RNAs, typically 100 to 200 nucleotides long, found in the nucleus and involved in the splicing of eukaryotic mRNAs.
small nuclear RNA (snoRNA): A class of short RNAs, generally 60 to 300 nucleotides long, that guide the modification of RNAs in the nucleus.
somatic cells: All body cells except the germ-line cells.
SOS response: In bacteria, a coordinated induction of a variety of genes in response to high levels of DNA damage.
Southern blot: A DNA hybridization procedure in which one or more specific DNA fragments are detected in a larger population by hybridization to a complementary, labeled nucleic acid probe.
specific acid-base catalysis: Acid or base catalysis involving the constituents of water (hydroxide or hydronium ions).
specific activity: The number of micromoles (\(\mu \)mol) of a substrate transformed by an enzyme preparation per minute per milligram of protein at 25 °C; a measure of enzyme purity.
specific heat: The amount of energy (in joules or calories) needed to raise the temperature of 1 g of a pure substance by 1 °C.
specific rotation: The rotation, in degrees, of the plane of plane-polarized light (\(\alpha \)-line of sodium) by an optically active compound at 25 °C, with a specified concentration and light path.
specificity: The ability of an enzyme or receptor to discriminate among competing substrates or ligands.
sphingolipid: An amphipathic lipid with a sphingosine backbone to which are attached a long-chain fatty acid and a polar alcohol.
spleosome: A complex of RNAs and proteins involved in the splicing of mRNAs in eukaryotic cells.
sponging: See gene splicing; RNA splicing.
standard free-energy change (\(\Delta G^0 \)): The free-energy change for a reaction occurring under a set of standard conditions: temperature, 298 K; pressure, 1 atm or 101.3 kPa; and all solutes at 1 M concentration. \(\Delta G^0 \) denotes the standard free-energy change at pH 7.0 in 55.5 M water.
standard reduction potential (\(E^\circ \)): The electromotive force exhibited at an electrode by 1 M concentrations of a reducing agent and its oxidized form at 25 °C and pH 7.0; a measure of the relative tendency of the reducing agent to lose electrons.
steady state: A nonequilibrium state of a system through which matter is flowing and in which all components remain at a constant concentration.
stem cells: The common, self-renewing cells in bone marrow that give rise to differentiated blood cells such as erythrocytes and lymphocytes.
striated musculature: A system of muscle fibers that can contract and relax in a coordinated manner or as single units.
structural gene: A gene coding for a protein or RNA molecule; as distinct from a regulatory gene.
substrate: The specific compound acted upon by an enzyme.
substrate channeling: Movement of the chemical intermediates in a series of enzyme-catalyzed reactions from the active site of one enzyme to that of the next enzyme in the pathway, without leaving the surface of a protein complex that includes both enzymes.
substrate-level phosphorylation: Phosphorylation of ADP or some other nucleoside diphosphate coupled to the dehydrogenation of an organic substrate; independent of the electron-transfer chain.
suicide inactivator: A relatively inert molecule that is transformed by an enzyme, at its active site, into a reactive substance that irreversibly inactivates the enzyme.
supercili: The twisting of a helical (coiled) molecule on itself; a coiled coil.
superoiled DNA: DNA that twists upon itself because it is under- or overwound (and thereby strained) relative to B-form DNA.
superhelical density: In a helical molecule such as DNA, the number of supercoils (superhelical turns) relative to the number of cells (turns) in the relaxed molecule.
supersecondary structure: See motif.
suppressor mutation: A mutation that totally or partially restores a function lost by a primary mutation; located at a site different from the site of the primary mutation.
Svedberg (S): A unit of measure of the rate at which a particle sediments in a centrifugal field.
symbionts: Two or more organisms that are mutually interdependent; usually living in physical association.
sympot: Cotransport of solutes across a membrane in the same direction.
synteny: Conserved gene order along the chromosomes of different species.
synthases: Enzymes that catalyze condensation reactions in which no nucleoside triphosphate is required as an energy source.
synthetases: Enzymes that catalyze condensation reactions using ATP or another nucleoside triphosphate as an energy source.
system: An isolated collection of matter; all other matter in the universe apart from the system is called the surroundings.
systems biology: The study of complex biochemical systems, integrating the functions of several to all of the macromolecules in a cell (RNA, DNA, proteins).
t

telomere: Specialized nucleic acid structure found at the ends of linear eukaryotic chromosomes.
template: A macromolecular mold or pattern for the synthesis of an informational macromolecule.
template strand: A strand of nucleic acid used by a polymerase as a template to synthesize a complementary strand.
terminal transferase: An enzyme that catalyzes the addition of nucleotide residues of a single kind to the 3' end of DNA chains.
termination codons: UAA, UAG, and UGA; in protein synthesis, these codons signal the termination of a polypeptide chain. Also known as stop codons.
termination factors: See release factors.
termination sequence: A DNA sequence, at the end of a transcriptional unit, that signals the end of transcription.
terpenes: Organic hydrocarbons or hydrocarbon derivatives constructed from recurring isoprene units. They produce some of the scents and tastes of plant products.
tertiary structure: The three-dimensional conformation of a polymer in its native folded state.
tetraphyrophorine: The reduced coenzyme form of vitamin B12; involved in aldehyde transfer reactions.
tetrahydrofolic acid (THF): The active coenzyme form of vitamin B12; involved in aldehyde transfer reactions.
thrombocyte: See platelet.
thromboxanes: A class of molecules derived from arachidonate and involved in platelet aggregation during blood clotting.
thylakoid: Closed cisterna, or disk, formed by the pigment-bearing internal membranes of chloroplasts.
thymine dimer: See pyrimidine dimer.
tissue culture: Method by which cells derived from multicellular organisms are grown in liquid media.
titration curve: A plot of pH versus the equivalents of base added during titration of an acid.
t-Lymphocyte (T cell): One of a class of blood cells (lymphocytes) of thymic origin, involved in cell-mediated immune reactions.
tocopherols: Forms of vitamin E.
toPOsEmers: Enzymes that introduce positive or negative supercoils in closed, circular duplex DNA.
toPOsEmers: Different forms of a covalently closed, circular DNA molecule that differ only in their linking number.
topology: The study of the properties of an object that do not change under continuous deformations such as twisting or bending.
toxins: Proteins produced by some organisms and toxic to certain other species.
TPP: See thiamine pyrophosphate.
trace element: A chemical element required by an organism in only trace amounts.
transaminases: See aminotransferases.
transamination: Enzymatic transfer of an amino group from an α-amino acid to an α-keto acid.
transcription: The enzymatic process whereby the genetic information contained in one strand of DNA is used to specify a complementary sequence of bases in an mRNA chain.
transcriptional control: The regulation of a protein's synthesis by regulation of the formation of its mRNA.
transcriptional factor: In eukaryotes, a protein that affects the regulation and transcription initiation of a gene by binding to a regulatory sequence near or within the gene and interacting with RNA polymerase and/or other transcription factors.
transcriptome: The entire complement of RNA transcripts present in a given cell or tissue under specific conditions.
transduction: (1) Generally, the conversion of energy or information from one form to another. (2) The transfer of genetic information from one cell to another by means of a viral vector.
transfer RNA (tRNA): A class of RNA molecules (M, 25,000 to 30,000), each of which combines covalently with a specific amino acid as the first step in protein synthesis.
transformation: Introduction of an exogenous DNA into a cell, causing the cell to acquire a new phenotype.
transgenic: Describes an organism that has genes from another organism incorporated in its genome as a result of recombinant DNA procedures.
transition state: An activated form of a molecule in which the molecule has undergone a partial chemical reaction; the highest point on the reaction coordinate.
translational frameshifting: A programmed change in the reading frame during translation of an mRNA on a ribosome, occurring by any of several mechanisms.
translational repressor: A repressor that binds to an mRNA, blocking translation.
translocase: (1) An enzyme that catalyzes membrane transport. (2) An enzyme that causes a movement such as the movement of a ribosome along an mRNA.
transpiration: Passage of water from the roots of a plant to the atmosphere via the vascular system and the stomata of the leaves.
transporters: Proteins that span a membrane and transport specific nutrients, metabolites, ions, or proteins across the membrane; sometimes called permeases.
transposition: The movement of a gene or set of genes from one site in the genome to another.
transposon (transposable element): A segment of DNA that can move from one position in the genome to another.
triacylglycerol: An ester of glycerol with three molecules of fatty acid; also called a triglyceride or neutral fat.
tricarboxylic acid cycle: See citric acid cycle.
triose: A simple sugar with a backbone containing three carbon atoms.
tRNA: See transfer RNA.
trophic hormone (tropin): A peptide hormone that stimulates a specific target gland to secrete its hormone; for example, thyrotropin produced by the pituitary stimulates secretion of thyroxine by the thyroid.
tumor suppressor gene: One of a class of genes that encode proteins that normally suppress the division of cells. When defective, the normal gene becomes a tumor suppressor gene, and when both copies are defective, the cell is allowed to continue dividing without limitation; it becomes a tumor cell.
turnover number: The number of times an enzyme molecule transforms a substrate molecule per unit time, under conditions giving maximal activity at substrate concentrations that are saturating.
two-component signaling systems: Signal-transducing systems found in bacteria and plants, composed of a receptor His kinase that phosphorylates an internal His residue when occupied by its ligand. It then catalyzes phospho-hydro transfer to a second component, the response regulator, which, when phosphorylated, alters the output of the signaling system.
ubiquitin: A small, highly conserved protein that targets an intracellular protein for degradation by proteasomes. Several ubiquitin molecules are covalently attached in tandem to a Lys residue in the target protein by a specific ubiquitinating enzyme.
uilcraft (UV) radiation: Electromagnetic radiation in the region of 200 to 400 nm.
uncompetitive inhibition: The reversible inhibition pattern resulting when an inhibitor molecule can bind to the enzyme-substrate complex but not to the free enzyme.

uncoupling agent: A substance that uncouples phosphorylation of ADP from electron transfer, for example, 2,4-dinitrophenol.

uniport: A transport system that carries only one solute, as distinct from cotransport.

unsaturated fatty acid: A fatty acid containing one or more double bonds.

urea cycle: A cyclic metabolic pathway in vertebrate liver, synthesizing urea from amino groups and carbon dioxide.

ureotelic: Excreting excess nitrogen in the form of urea.

uricotelic: Excreting excess nitrogen in the form of urate (urate acid).

V

V_{max}: The maximum velocity of an enzymatic reaction when the binding site is saturated with substrate.

van der Waals interaction: Weak intermolecular forces between molecules as a result of each inducing polarization in the other.

vector: A DNA molecule known to replicate autonomously in a host cell, to which a segment of DNA may be spliced to allow its replication; for example, a plasmid or an artificial chromosome.

vectorial: Describes an enzymatic reaction or transport process in which the protein has a specific orientation in a biological membrane such that the substrate is moved from one side of the membrane to the other as it is converted into product.

vectorial metabolism: Metabolic transformations in which the location (not the chemical composition) of a substrate changes relative to the plasma membrane or a membrane between two cellular compartments. Transporters catalyze vectorial reactions, as do the proton pumps of oxidative phosphorylation and photophosphorylation.

viral vector: A viral DNA altered so that it can act as a vector for recombinant DNA.

virion: A virus particle.

virus: A self-replicating, infectious, nucleic acid-protein complex that requires an intact host cell for its replication; its genome is either DNA or RNA.

vitamin: An organic substance required in small quantities in the diet of some species; generally functions as a component of a coenzyme.

white adipose tissue (WAT): Nonthermogenic adipose tissue rich in triacylglycerols stored and mobilized in response to hormonal signals. Transfer of electrons in the mitochondrial respiratory chain is tightly coupled to ATP synthesis. Compare brown adipose tissue.

wild type: The normal (unmutated) genotype or phenotype.

wobble: The relatively loose base pairing between the base at the 3' end of a codon and the complementary base at the 5' end of the anticodon.

x-ray crystallography: The analysis of x-ray diffraction patterns of a crystalline compound, used to determine the molecule's three-dimensional structure.

Z

zinc finger: A specialized protein motif involved in DNA recognition by some DNA-binding proteins; characterized by a single atom of zinc coordinated to four Lys residues or to two His and two Lys residues.

zwitterion: A dipolar ion with spatially separated positive and negative charges.

zymogen: An inactive precursor of an enzyme; for example, pepsinogen, the precursor of pepsin.
Appendix A

Common Abbreviations in the Biochemical Research Literature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>ångström</td>
</tr>
<tr>
<td>A</td>
<td>adenine, adenosine, or adenylic acid</td>
</tr>
<tr>
<td>A</td>
<td>absorbance</td>
</tr>
<tr>
<td>Ab</td>
<td>antibody</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ACAT</td>
<td>acyl-CoA cholesterol acyl transferase</td>
</tr>
<tr>
<td>ACC</td>
<td>acetyl-CoA carboxylase</td>
</tr>
<tr>
<td>ACh</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>ACP</td>
<td>acyl carrier protein</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>acyl-CoA</td>
<td>acyl derivatives of coenzyme A (also, acyl-S-CoA)</td>
</tr>
<tr>
<td>ADH</td>
<td>alcohol dehydrogenase</td>
</tr>
<tr>
<td>adoHcy</td>
<td>S-adenosylhomocysteine</td>
</tr>
<tr>
<td>adoMet</td>
<td>S-adenosylmethionine (also, SAM)</td>
</tr>
<tr>
<td>AFM</td>
<td>atomic force microscopy</td>
</tr>
<tr>
<td>Ag</td>
<td>antigen</td>
</tr>
<tr>
<td>AGE</td>
<td>advanced glycation end product</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>AKAP</td>
<td>A kinase anchoring protein</td>
</tr>
<tr>
<td>Ala</td>
<td>alanine</td>
</tr>
<tr>
<td>[α]D25°C</td>
<td>specific rotation</td>
</tr>
<tr>
<td>AMP, ADP, ATP</td>
<td>adenosine 5'-monophosphate, di-, triphosphate</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>ANF</td>
<td>atrial natriuretic factor</td>
</tr>
<tr>
<td>AQF</td>
<td>aquaporin</td>
</tr>
<tr>
<td>Arg</td>
<td>arginine</td>
</tr>
<tr>
<td>ARS</td>
<td>autonomously replicating sequence</td>
</tr>
<tr>
<td>Asn</td>
<td>asparagnine</td>
</tr>
<tr>
<td>Asp</td>
<td>aspartate</td>
</tr>
<tr>
<td>ACase</td>
<td>aspartate transcarbamoylase</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphatase</td>
</tr>
<tr>
<td>B12</td>
<td>coenzyme B12, cobalamin</td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
</tr>
<tr>
<td>BAT</td>
<td>brown adipose tissue</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>1,3-BPG</td>
<td>1,3-bisphosphoglycerate</td>
</tr>
<tr>
<td>C</td>
<td>cytosine, cytidine, or cytidylate</td>
</tr>
<tr>
<td>CAM</td>
<td>crassulacean acid metabolism</td>
</tr>
<tr>
<td>CaM</td>
<td>calmodulin</td>
</tr>
<tr>
<td>cAMP</td>
<td>3',5'-cyclic AMP</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent protein kinase</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CFTR</td>
<td>cystic fibrosis transmembrane conductance regulator</td>
</tr>
<tr>
<td>cGMP</td>
<td>3',5'-cyclic GMP</td>
</tr>
<tr>
<td>Chl</td>
<td>chlorophyll</td>
</tr>
<tr>
<td>ChREBP</td>
<td>carbohydrate response element binding protein</td>
</tr>
<tr>
<td>CKII</td>
<td>casein kinase II</td>
</tr>
<tr>
<td>CL</td>
<td>cardiolipin</td>
</tr>
<tr>
<td>CMP, CDP, CTP</td>
<td>cytidine 5'-mono-, di-, triphosphate</td>
</tr>
<tr>
<td>CoA</td>
<td>coenzyme A (also, CoASH)</td>
</tr>
<tr>
<td>COHb</td>
<td>carbon monoxide hemoglobin</td>
</tr>
<tr>
<td>CoQ</td>
<td>coenzyme Q (ubiquinone; also, UQ)</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase; cytochrome oxidase</td>
</tr>
<tr>
<td>CREB</td>
<td>cyclic AMP response element binding protein</td>
</tr>
<tr>
<td>CRP</td>
<td>cAMP receptor protein</td>
</tr>
<tr>
<td>Cys</td>
<td>cysteine</td>
</tr>
<tr>
<td>Cyt</td>
<td>cytochrome</td>
</tr>
<tr>
<td>D</td>
<td>dihydrouridine</td>
</tr>
<tr>
<td>D</td>
<td>diffusion coefficient</td>
</tr>
<tr>
<td>d</td>
<td>density</td>
</tr>
<tr>
<td>dADP, dGDP, etc.</td>
<td>deoxyadenosine 5'-diphosphate, deoxyguanosine 5'-diphosphate, etc.</td>
</tr>
<tr>
<td>dAMP, dGMP, etc.</td>
<td>deoxyadenosine 5'-monophosphate, deoxyguanosine 5'-monophosphate, etc.</td>
</tr>
<tr>
<td>dATP, dGTP, etc.</td>
<td>deoxyadenosine 5'-triphosphate, deoxyguanosine 5'-triphosphate, etc.</td>
</tr>
<tr>
<td>DEAE</td>
<td>diethylaminoethyl</td>
</tr>
<tr>
<td>DFP</td>
<td>diisopropylfluorophosphate (also, DIFP)</td>
</tr>
<tr>
<td>DHAP</td>
<td>dihydroacetone phosphatase</td>
</tr>
<tr>
<td>DHF</td>
<td>dihydrofolate (also, H2 folate)</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethyl sulfate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>DNP</td>
<td>2,4-dinitrophenol</td>
</tr>
<tr>
<td>Dol</td>
<td>dolichol</td>
</tr>
<tr>
<td>dopa</td>
<td>dihydroxyphenylalanine</td>
</tr>
<tr>
<td>E</td>
<td>electrical potential</td>
</tr>
<tr>
<td>E.C.</td>
<td>Enzyme Commission (followed by numbers indicating the formal classification of an enzyme)</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>EF</td>
<td>elongation factor</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EM</td>
<td>electron microscopy</td>
</tr>
<tr>
<td>emf</td>
<td>electromotive force</td>
</tr>
<tr>
<td>EPO</td>
<td>erythropoietin</td>
</tr>
<tr>
<td>e</td>
<td>molar absorption coefficient</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>η</td>
<td>viscosity</td>
</tr>
<tr>
<td>ζ</td>
<td>faraday</td>
</tr>
<tr>
<td>f</td>
<td>frictional coefficient</td>
</tr>
</tbody>
</table>
FA
FA, FADH2
FAD, FADH2
FAS
FBPase-1
FBPase-2
Fd
FDNB (DNFB)
FFA
FH
fMet
FMN, FMNH2
FOXO1
FP
F1P
F6P
FRAP
FRET
Fru
\(\Delta G \)
\(\Delta G^0 \)
\(\Delta G^\ddagger \)
\(\Delta G_B \)
\(\Delta G_p \)
G
GABA
Gal
GalN
GalNAc
GAP
GDH
GEF
GFP
GH
GHB
GLC
Glc
GlcA
GlcN
GlcNAc
GlcUA
Gln
Glu
GLUT
Gly
GMP, GDP, GTP
GPCR
GPI
G1P
G6P
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTR</td>
<td>long terminal repeat</td>
</tr>
<tr>
<td>Lys</td>
<td>lysine</td>
</tr>
<tr>
<td>Mr</td>
<td>relative molecular mass</td>
</tr>
<tr>
<td>Man</td>
<td>d-mannose</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitosis-associated protein kinase</td>
</tr>
<tr>
<td>Mb, Mboz</td>
<td>myoglobin, oxymyoglobin</td>
</tr>
<tr>
<td>MCAD</td>
<td>medium-chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>MCM</td>
<td>minichromosome maintenance</td>
</tr>
<tr>
<td>mDNA</td>
<td>mitochondrial DNA</td>
</tr>
<tr>
<td>Met</td>
<td>methionine</td>
</tr>
<tr>
<td>MFP</td>
<td>multifunctional protein (in fatty acid oxidation)</td>
</tr>
<tr>
<td>mRNA</td>
<td>micro RNA</td>
</tr>
<tr>
<td>MODY</td>
<td>maturity onset diabetes of the young</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectroscopy</td>
</tr>
<tr>
<td>MSH</td>
<td>melanocyte-stimulating hormone</td>
</tr>
<tr>
<td>m</td>
<td>electrophoretic mobility</td>
</tr>
<tr>
<td>Mur</td>
<td>muramic acid</td>
</tr>
<tr>
<td>Mur2Ac</td>
<td>N-acetylmuramic acid (also, NAM)</td>
</tr>
<tr>
<td>NAD*, NADH</td>
<td>nicotinamide adenine dinucleotide, and its reduced form</td>
</tr>
<tr>
<td>NADP*, NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate, and its reduced form</td>
</tr>
<tr>
<td>NAG</td>
<td>N-acetylglucosamine (also, GlcNAc)</td>
</tr>
<tr>
<td>NAM</td>
<td>N-acetylmuramic acid (also, MurNAc)</td>
</tr>
<tr>
<td>ncRNA</td>
<td>noncoding RNA</td>
</tr>
<tr>
<td>Neu5Ac</td>
<td>N-acetylneuraminic acid (sialic acid)</td>
</tr>
<tr>
<td>NMN*, NMNH</td>
<td>nicotinamide mononucleotide, and its reduced form</td>
</tr>
<tr>
<td>NMP, NDP, NTP</td>
<td>nucleoside mono-, di-, and triphosphate</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>OAA</td>
<td>oxaloacetate</td>
</tr>
<tr>
<td>ORC</td>
<td>origin recognition complex</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>P1</td>
<td>inorganic orthophosphate (inorganic phosphate)</td>
</tr>
<tr>
<td>PAB or PABA</td>
<td>p-amino benzoate</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PC</td>
<td>plastocyanin; phosphatidylcholine</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PDE</td>
<td>cyclic nucleotide phosphodiesterase</td>
</tr>
<tr>
<td>PDH</td>
<td>pyruvate dehydrogenase</td>
</tr>
<tr>
<td>PE</td>
<td>phosphatidylethanolamine</td>
</tr>
<tr>
<td>PEP</td>
<td>phosphoenolpyruvate</td>
</tr>
<tr>
<td>PECK</td>
<td>phosphoenolpyruvate carboxykinase</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PFK</td>
<td>phosphofructokinase</td>
</tr>
<tr>
<td>PG</td>
<td>prostaglandin</td>
</tr>
<tr>
<td>2PGA</td>
<td>2-phosphoglycerate</td>
</tr>
<tr>
<td>3PGA</td>
<td>3-phosphoglycerate</td>
</tr>
<tr>
<td>pH</td>
<td>log (1/[H⁺])</td>
</tr>
<tr>
<td>Phe</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>Pi</td>
<td>phosphatidylinositol</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>PIP₂</td>
<td>phosphatidylinositol 4,5-bisphosphate</td>
</tr>
<tr>
<td>PK</td>
<td>protein kinase; pyruvate kinase</td>
</tr>
<tr>
<td>pK</td>
<td>log (1/K)</td>
</tr>
<tr>
<td>PKA</td>
<td>cAMP-dependent protein kinase (protein kinase A)</td>
</tr>
<tr>
<td>PKB</td>
<td>protein kinase B (also, Aβ)</td>
</tr>
<tr>
<td>PKC</td>
<td>Ca²⁺/calmodulin-dependent protein kinase (protein kinase C)</td>
</tr>
<tr>
<td>PKG</td>
<td>cGMP-dependent protein kinase (protein kinase G)</td>
</tr>
<tr>
<td>PKU</td>
<td>phenyleketonuria</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PLP</td>
<td>partial pressure of oxygen</td>
</tr>
<tr>
<td>Po2</td>
<td>polymerase (DNA or RNA)</td>
</tr>
<tr>
<td>PP1</td>
<td>inorganic pyrophosphate</td>
</tr>
<tr>
<td>PPAR</td>
<td>phosphoprotein phosphatase 1</td>
</tr>
<tr>
<td>PQ</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>Pq</td>
<td>plastoquinone</td>
</tr>
<tr>
<td>Pq</td>
<td>retinoblastoma protein</td>
</tr>
<tr>
<td>Pro</td>
<td>proline</td>
</tr>
<tr>
<td>PRPP</td>
<td>5-phosphoribosyl-1-pyrophosphate</td>
</tr>
<tr>
<td>PS</td>
<td>phosphatidyserine; photosystem</td>
</tr>
<tr>
<td>ΔΨ</td>
<td>transmembrane electrical potential</td>
</tr>
<tr>
<td>PTB</td>
<td>phosphotyrosine binding</td>
</tr>
<tr>
<td>PUPA</td>
<td>polyunsaturated fatty acid</td>
</tr>
<tr>
<td>q</td>
<td>mass action ratio</td>
</tr>
<tr>
<td>q</td>
<td>ubiquinone, reduced ubiquinone</td>
</tr>
<tr>
<td>Q</td>
<td>retinoblastoma gene (a tumor suppressor gene)</td>
</tr>
<tr>
<td>Rb</td>
<td>photoreaction center</td>
</tr>
<tr>
<td>RC</td>
<td>rough endoplasmic reticulum</td>
</tr>
<tr>
<td>RER</td>
<td>release factor; replicative form</td>
</tr>
<tr>
<td>RF</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RGS</td>
<td>regulator of G protein signaling</td>
</tr>
<tr>
<td>RNA</td>
<td>radiolmunoassay</td>
</tr>
<tr>
<td>Rb</td>
<td>d-ribose</td>
</tr>
<tr>
<td>RLK</td>
<td>receptor-like kinase</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RNAS</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species; rod outer segment</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
</tr>
<tr>
<td>RSV</td>
<td>Rous sarcoma virus</td>
</tr>
<tr>
<td>RTK</td>
<td>receptor tyrosine kinase (receptor Tyr kinase)</td>
</tr>
<tr>
<td>ΔS</td>
<td>entropy change</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosylmethionine (also, adoMet)</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SELEX</td>
<td>systematic evolution of ligands by exponential enrichment</td>
</tr>
<tr>
<td>SER</td>
<td>smooth endoplasmic reticulum</td>
</tr>
<tr>
<td>Ser</td>
<td>serine</td>
</tr>
<tr>
<td>SERCA</td>
<td>sarcoplasmic and endoplasmic reticulum calcium ATPase</td>
</tr>
<tr>
<td>SMC</td>
<td>structural maintenance of chromosomes</td>
</tr>
<tr>
<td>SNARE</td>
<td>synaptosome-associated protein receptor</td>
</tr>
<tr>
<td>snoRNA</td>
<td>small nuclear RNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>snRNA</td>
<td>small nuclear RNA</td>
</tr>
<tr>
<td>snRNP</td>
<td>small nuclear ribonucleoprotein</td>
</tr>
<tr>
<td>SREBP</td>
<td>sterol response element binding protein</td>
</tr>
<tr>
<td>sRNA</td>
<td>small RNA</td>
</tr>
<tr>
<td>SRP</td>
<td>signal recognition particle</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>STP</td>
<td>standard temperature and pressure</td>
</tr>
<tr>
<td>STR</td>
<td>short tandem repeat</td>
</tr>
<tr>
<td>stRNA</td>
<td>small temporal RNA</td>
</tr>
<tr>
<td>STS</td>
<td>sequence-tagged site</td>
</tr>
<tr>
<td>SUR</td>
<td>sulfonamide receptor</td>
</tr>
<tr>
<td>T</td>
<td>thymine, thymidine, or thymidylate</td>
</tr>
<tr>
<td>T2DM</td>
<td>type 2 diabetes mellitus</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA-binding protein</td>
</tr>
<tr>
<td>TCA</td>
<td>tricarboxylic acid</td>
</tr>
<tr>
<td>TPP</td>
<td>trifunctional protein</td>
</tr>
<tr>
<td>THP</td>
<td>tetrahydrofolate (also, H4 folate)</td>
</tr>
<tr>
<td>Thr</td>
<td>threonine</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMP, TDP, TTP</td>
<td>thymidine 5'-mono-, di-, triphosphate</td>
</tr>
<tr>
<td>TMV</td>
<td>tobacco mosaic virus</td>
</tr>
<tr>
<td>TPI</td>
<td>triose phosphate isomerase</td>
</tr>
<tr>
<td>TPP</td>
<td>thiamine pyrophosphate</td>
</tr>
<tr>
<td>tRNA</td>
<td>transfer RNA</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan</td>
</tr>
<tr>
<td>TX</td>
<td>thromboxane</td>
</tr>
<tr>
<td>Tyr</td>
<td>tyrosine</td>
</tr>
<tr>
<td>U</td>
<td>uracil, uridine, or uridylic</td>
</tr>
<tr>
<td>UAS</td>
<td>upstream activator sequence</td>
</tr>
<tr>
<td>UCP</td>
<td>uncoupling protein</td>
</tr>
<tr>
<td>UDP-Gal</td>
<td>uridine diphosphate galactose (also, UDP-galactose)</td>
</tr>
<tr>
<td>UDP-Glc</td>
<td>uridine diphosphate glucose (also, UDP-glucose)</td>
</tr>
<tr>
<td>UMP, UDP, UTP</td>
<td>uridine 5'-mono-, di-, triphosphate</td>
</tr>
<tr>
<td>UQ</td>
<td>ubiquinone (coenzyme Q; also, CoQ)</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V<sub>m</sub></td>
<td>transmembrane electrical potential (membrane potential)</td>
</tr>
<tr>
<td>V<sub>max</sub></td>
<td>maximum velocity</td>
</tr>
<tr>
<td>V<sub>0</sub></td>
<td>initial velocity</td>
</tr>
<tr>
<td>Val</td>
<td>valine</td>
</tr>
<tr>
<td>VDR</td>
<td>vitamin D receptor</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VLDL</td>
<td>very low-density lipoprotein</td>
</tr>
<tr>
<td>WAT</td>
<td>white adipose tissue</td>
</tr>
<tr>
<td>YAC</td>
<td>yeast artificial chromosome</td>
</tr>
<tr>
<td>Z</td>
<td>net charge</td>
</tr>
</tbody>
</table>
Appendix B
Abbreviated Solutions to Problems

Fuller solutions to all chapter problems are published in the Absolute Ultimate Study Guide to Accompany Principles of Biochemistry. For all numerical problems, answers are expressed with the correct number of significant figures.

Chapter 1
1. (a) Diameter of magnified cell = 500 mm (b) 2.7 x 10^{12} actin molecules (c) 38,000 mitochondria (d) 3.9 x 10^{10} glucose molecules (e) 50 glucose molecules per hexokinase molecule
2. (a) 1 x 10^{-12} g : 1 pg (b) 10% (c) 5%
3. (a) 1.6 mm; 800 times longer than the cell; DNA must be tightly coiled. (b) 4,000 proteins
4. (a) Metabolic rate is limited by diffusion, which is limited by surface area. (b) 12 μm^{-1} for the bacterium; 0.04 μm^{-1} for the amoeba; surface-to-volume ratio 300 times higher in the bacterium.
5. 2 x 10^{6} s (about 23 days)
6. The vitamin molecules from the two sources are identical; the body cannot distinguish the source; only associated impurities might vary with the source.

7.
(a)
\[
\begin{align*}
\text{Amino} & \quad \text{Hydroxyl} \\
\text{H} & \quad \text{H} \\
\text{N} & \quad \text{C} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{H} \\
\text{C} & \quad \text{OH}
\end{align*}
\]
(b)
\[
\begin{align*}
\text{Hydroxyls} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{OH}
\end{align*}
\]
(c)
\[
\begin{align*}
\text{Phosphoryl} \\
\text{H} & \quad \text{O} \\
\text{P} & \quad \text{O} \\
\text{O} & \quad \text{H}
\end{align*}
\]
(d)
\[
\begin{align*}
\text{Carboxyl} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{O} \\
\text{COO} & \quad \text{H}
\end{align*}
\]
(e)
\[
\begin{align*}
\text{Carboxyl} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{O} \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{NH} & \quad \text{C} \\
\text{H} & \quad \text{C} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]
(f)
\[
\begin{align*}
\text{Aldehyde} \\
\text{H} & \quad \text{C} \\
\text{C} & \quad \text{H} \\
\text{O} & \quad \text{H} \\
\text{H} & \quad \text{C} \\
\text{H} & \quad \text{C} \\
\text{OH} & \quad \text{OH} \\
\text{CH}_2 & \quad \text{OH}
\end{align*}
\]
8.
\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{CH}_2 \\
\text{C} & \quad \text{CH}_3 \\
\text{N} & \quad \text{C} \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]
9. (a) Only the amino acids have amino groups; separation could be based on the charge or binding affinity of these groups.
(b) Glucose is a smaller molecule than a nucleotide; separation could be based on size. The nitrogenous base and/or the phosphate group also endows nucleotides with characteristics (solubility, charge) that could be used for separation from glucose.
10. It is improbable that silicon could serve as the central organizing element for life, especially in an O_2-containing atmosphere such as that of Earth. Long chains of silicon atoms are not readily synthesized; the polymeric macromolecules necessary for more complex functions would not readily form. Oxygen disrupts bonds between silicon atoms, and silicon-oxygen bonds are extremely stable and difficult to break, preventing the breaking and making of bonds that is essential to life processes.
11. Only one enantiomer of the drug was physiologically active. DeXedrine consisted of the single enantiomer; Benzedrine consisted of a racemic mixture.
12. (a) 3 Phosphoric acid groups; α-D-ribose; guanine (b) Choline; phosphoric acid; glycerol; oleic acid; palmitic acid (c) Tyrosine; 2 glycines; phenylalanine; methionine
13. (a) CH_3O; C_3H_8O_3
(c) X contains a chiral center; eliminates all but 6 and 8. (d) X contains an acidic functional group; eliminates 8; structure 6 is consistent with all data. (e) Structure 6; we cannot distinguish between the two possible enantiomers.

14. (a) A more negative ΔG° corresponds to a larger K_{eq} for the binding reaction, so the equilibrium is shifted more toward products and tighter binding—and thus greater sweetness and higher MRS. (b) Animal-based sweetness assays are time-consuming. A computer program to predict sweetness, even if not always completely accurate, would allow chemists to design effective sweeteners much faster. Candidate molecules could then be tested in the conventional assay. (c) The range 0.25 to 0.4 nm corresponds to about 1.5 to 2.5 single-bond lengths. The figure below can be used to construct an approximate ruler; any atoms in the pink rectangle are between 0.25 and 0.4 nm from the origin of the ruler.

There are many possible AH-B groups in the molecules; a few are shown here.

(d) First, each molecule has multiple AH-B groups, so it is difficult to know which is the important one. Second, because the AH-B motif is very simple, many nonsweet molecules will have this group. (e) Sucrose and deoxysucrose. Deoxysucrose lacks one of the AH-B groups present in sucrose and has a slightly lower MRS than sucrose—as is expected if the AH-B groups are important for sweetness. (f) There are many such examples; here are a few: (1) o-Tryptophan and 6-chloro-o-tryptophan have the same AH-B group but very different MRS values. (2) Aspartame and neotame have the same AH-B groups but very different MRS values. (3) Neotame has two AH-B groups and altimate has three, yet neotame is more than five times sweeter than altimate. (4) Bromine is less electronegative than oxygen and thus is expected to weaken an AH-B group, yet tetrabromosucrose is much sweeter than sucrose. (g) Given enough "tweaking" of parameters, any model can be made to fit a defined dataset. Because the objective was to create a model to predict ΔG°, adding a constant amount to ΔG° multiplies the MRS by a constant amount. Based on the values given with the structures, a change in ΔG° of 1.3 kcal/mol corresponds to a 10-fold change in MRS.

Chapter 2

1. Ethanol is polar; ethane is not. The ethanol —OH group can hydrogen-bond with water.

2. (a) 4.76 (b) 9.19 (c) 4.0 (d) 4.82

3. (a) 1.51×10^{-4} M (b) 3.02×10^{-7} M (c) 7.76×10^{-12} M

4. 1.1

5. (a) $\text{HCl} \rightleftharpoons \text{H}^+ + \text{Cl}^-$ (b) 3.3 (c) $\text{NaOH} \rightleftharpoons \text{Na}^+ + \text{OH}^-$ (d) 9.8

6. 1.1

7. 1.7×10^{-9} mol of acetylcholine

8. 0.1 M HCl

9. 3.3 mL

10. (a) $\text{RCOO}^- (b) \text{RNH}_2 (c) \text{H}_2\text{PO}_4^- (d) \text{HCO}_3^-$

11. (a) 5.06 (b) 4.28 (c) 5.46 (d) 4.76 (e) 3.76

12. (a) 0.1 M HCl (b) 0.1 M NaOH (c) 0.1 M NaOH

13. (d) Bicarbonate, a weak base, titrates $-\text{OH}$ to $-\text{O}^-$, making the compound more polar and more water-soluble.

14. Stomach; the neutral form of aspirin present at the lower pH is less polar and passes through the membrane more easily.

15. 9

16. 7.4

17. (a) pH 8.6 to 10.6 (b) 4/6 (c) 10 mL (d) pH = $pK_a - 2$

18. 1.4

19. NaH$_2$PO$_4$ · H$_2$O, 5.8 g/L; Na$_2$HPO$_4$, 8.2 g/L

20. $[\text{HA}] [\text{H}^+] = 0.10$

21. Mix 150 mL of 0.10 M sodium acetate and 850 mL of 0.10 M acetic acid.

22. Acetic acid; its pK_a is closest to the desired pH.

23. (a) 4.6 (b) 0.1 pH unit (c) 4 pH units

24. 4.3

25. 0.13 M acetate and 0.07 M acetic acid

26. 1.7

27. 7
28. (a)

\[
\begin{align*}
\text{Fully protonated} &: & \text{COOH} & \quad \text{H}_2\text{N}^+\text{-C-H} & \quad \text{COO}^- \\
\text{Fully deprotonated} &: & \text{H}_2\text{N}\text{-C-H} & \quad \text{COO}^- & \quad \text{H}^+
\end{align*}
\]

(b) fully protonated (c) zwitterion (d) zwitterion (e) fully deprotonated

29. (a) Blood pH is controlled by the carbon dioxide–bicarbonate buffer system, \(\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^-\). During hyperventilation, \([\text{CO}_2]\) increases in the lungs and arterial blood, driving the equilibrium to the right, raising \([\text{H}^+]\) and lowering pH. (b) During hyperventilation, \([\text{CO}_2]\) decreases in the lungs and arterial blood, reducing \([\text{H}^+]\) and increasing pH above the normal 7.4 value.

(c) Lactate is a moderately strong acid, completely dissociating under physiological conditions and thus lowering the pH of blood and muscle tissue. Hyperventilation removes \([\text{H}^-]\), raising the pH of blood and tissues in anticipation of the acid buildup.

30. 7.4

31. Dissolving more \(\text{CO}_2\) in the blood increases \([\text{H}^-]\) in blood and extracellular fluids, lowering pH: \(\text{CO}_2(d) + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^-\)

32. (a) Use the substance in its surfactant form to emulsify the spilled oil. The oil and water will separate and the oil can be collected for further use. (b) The equilibrium lies strongly to the right. The strength of a surfactant depends on the hydrophilicity of its head groups: the more hydrophilic, the more powerful the surfactant. The amionic form of \(\alpha\)-surf is much more hydrophilic than the amide form, so it is a more powerful surfactant. (d) Point A: amidine; the \(\text{CO}_2\) has had plenty of time to react with the amidine to produce the amionic form. Point B: amidine; Ar has removed \(\text{CO}_2\) from the solution, leaving the amidine form. (e) The conductivity rises as uncharged amidine reacts with \(\text{CO}_2\) to produce the charged amidine form. (f) The conductivity falls as Ar removes \(\text{CO}_2\), shifting the equilibrium to the uncharged amidine form. (g) Treat \(\alpha\)-surf with \(\text{CO}_2\) to produce the surfactant amidinium form and use this to emulsify the spill. Treat the emulsion with Ar to remove the \(\text{CO}_2\) and produce the nonsurfactant amidine form. The oil will separate from the water and can be recovered.

Chapter 3

1. (a) I, deterrnine the absolute configuration at the \(\alpha\) carbon and compare it with \(\beta\)- and \(\gamma\)-glyceraldehyde.

2. (a) I (b) II (c) IV (d) II (e) IV (f) II and IV (g) III (h) III (i) V

3. (a) \(pK_a\) of the \(\alpha\)-carboxyl group and \(p< pK_b\) of the \(\alpha\)-amino group, so both groups are charged (ionized).

(b) 1 in 2.19 \times 10^5. The \(pI\) of alanine is 6.01. From Table 3-1 and the Henderson-Hasselbalch equation, 1/4,680 carboxyl groups and 1/4,680 amino groups are uncharged. The fraction of alanine molecules with both groups uncharged is the product of these fractions.

4. (a)–(c)

5. (a) Asp (b) Met (c) Gla (d) Gly (e) Ser

6. (a) 2 (b) 4 (c)

7. (a) Structure at pH 7:

\[
\begin{align*}
\text{pK}_a &= 7.39 \\
\text{pK}_b &= 8.03
\end{align*}
\]

(b) Electrostatic interaction between the carboxylate anion and the protonated amino group of the alanine zwitterion favors the ionization of the carboxyl group. This favorable electrostatic interaction decreases as the length of the poly(Ala) increases, resulting in an increase in \(pK_a\). (c) Ionization of the protonated amino group destroys the favorable electrostatic interaction noted in (b). With increasing distance between the charged groups, removal of the proton from the amino group in poly(Ala) becomes easier and thus \(pK_a\) is lower. The intramolecular effects of the amide (peptide bond) linkages keep \(pK_a\) values lower than they would be for an alkyl-substituted amine.

8. 75,000

9. (a) 32,000. The elements of water are lost when a peptide bond forms, so the molecular weight of Trp residue is not the same as the molecular weight of free tryptophan. (b) 2

10. The protein has 4 subunits, with molecular masses of 160, 90, 90, and 60 kDa. The two 90 kDa subunits (possibly identical) are linked by one or more disulfide bonds.

11. (a) at \(pI\) 3, +2; at pH 7, 0; at pH 11, -1 (b) \(pI = 7.8\)

12. \(pI = 1\); carboxylate groups; Asp and Glu

13. Lys, His, Arg; negatively charged phosphate groups in DNA interact with positively charged side groups in histones.

14. (a) (Glu)\textsubscript{20} (b) (Lys-Ala)\textsubscript{10} (c) (Asn-Ser-His)\textsubscript{5} (d) (Asn-Ser-His)\textsubscript{5}

15. (a) Specific activity after step 1 is 200 units/mg; step 2, 600 units/mg; step 3, 250 units/mg; step 4, 4,000 units/mg; step 5, 15,000 units/mg; step 6, 15,000 units/mg (b) Step 2 (c) Step 3 (d) Yes. Specific activity did not increase in step 6; SDS polyacrylamide gel electrophoresis.
16. (a) [NaCl] = 0.6 mm (b) [NaCl] = 0.65 mm.
17. C elutes first, B second, A last.
18. Tyr-Gly-Gly-Phe-Leu

\[\text{Orn} \quad \text{Leu} \]
\[\text{Val} \quad \text{Phe} \]
\[\text{Val} \quad \text{Orn} \]
\[\text{Pro} \quad \text{Leu} \]
\[\text{Pro} \quad \text{Val} \]

The arrows correspond to the orientation of the peptide bonds, CO \rightarrow NH.

20. 88%, 97%. The percentage (\(x\)) of correct amino acid residues released in cycle \(x\) is \(x_0/2x\). All residues released in the first cycle are correct, even though the efficiency of cleavage is not perfect.

21. (a) Y (1), F (7), and R (9) (b) Positions 4 and 9; K (Lys) is more common at 4, R (Arg) is invariant at 9 (c) Positions 5 and 10; E (Glu) is more common at both positions
(d) Position 2; S (Ser)

22. (a) The protein to be isolated (citrate synthase, CS) is a relatively small fraction of the total cellular protein. Cold temperatures reduce protein degradation; sucrose provides an isotonic environment that preserves the integrity of organelles during homogenization. (b) This step separates organelles on the basis of relative size. (c) The first addition of ammonium sulfate removes some unwanted proteins from the homogenate. Additional ammonium sulfate precipitates CS. (d) To resuspend (solubilize) CS, ammonium sulfate must be removed under conditions of pH and ionic strength that support the native conformation. (e) CS molecules are larger than the pore size of the chromatographic gel. Protein is detectable at 280 nm because of absorption at this wavelength by Tyr and Trp residues. (f) CS has a positive charge and thus binds to the negatively charged cation-exchange column. After the neutral and negatively charged proteins pass through, CS is displaced from the column using the washing solution of higher pH, which alters the charge on CS. (g) Different proteins can have the same pl. The SDS gel confirmed that only a single protein was purified. SDS is difficult to remove completely from a protein, and its presence distorts the acid-base properties of the protein, including pl.

23. (a) Any linear polypeptide chain has only two kinds of free amino groups: a single \(\alpha\)-amino group at the amino terminus, and an \(\varepsilon\)-amino group on each Lys residue present. These amino groups react with FDNB to form a DNP-amino acid derivative. Insulin gave two different \(\alpha\)-amino-DNP derivatives, suggesting that it has two amino termini and thus two polypeptide chains—one with an amino-terminal Gly and the other with an amino-terminal Phe. Because the DNP-biuret product is \(e\)-DNP-biuret, the Lys is not at an amino terminus. (b) Yes, The A chain has amino-terminal Gly; the B chain has amino-terminal Phe; and (nonterminal) residue 29 in the B chain is Lys. (c) Phe-Val-Asp-Glu-. Peptide B1 shows that the amino-terminal residue is Phe, Peptide B2 also includes Val, but since no DNP-Val is formed, Val is not at the amino terminus; it must be on the carboxyl side of Phe, Thus the sequence of B2 is DNP-Phe-Val. Similarly, the sequence of BS must be DNP-Phe-Val-Asp, and the sequence of the A chain must begin Phe-Val-Asp-Glu-. (d) No. The known amino-terminal sequence of the A chain is Phe-Val-Asn-Glu-. The Asn and Glu appear in Sanger's analysis as Asp and Glu because the vigorous hydrolysis in step 7 hydrolyzed the amide bonds in Asn and Glu (as well as the peptide bonds), forming Asp and Glu. Sanger et al. could not distinguish Asp from Asn or Glu from Gln at this stage in their analysis. (e) The sequence exactly matches that in Fig. 3-24, Each peptide in the table gives specific information about which Asx residues are Asn or Asp and which Glx residues are Glu or Gln.

Chapter 4

1. (a) Shorter bonds have a higher bond order (are multiple rather than single) and are stronger. The peptide C–N bond is stronger than a single bond and is midway between a single and a double bond in character. (b) Rotation about the peptide bond is difficult at physiological temperatures because of its partial double-bond character.

2. (a) The principal structural units in the wool fiber polypeptide (\(\alpha\)-keratin) are successive turns of the \(\alpha\) helix, at \(b\) 4 A intervals; the \(\alpha\) helix shortens (b) Processed wool shrinks when polypeptide chains—on successive turns of the \(\alpha\) helix—are converted from an extended \(\beta\) conformation to the native \(\alpha\)-helical conformation in the presence of moist heat. The structure of silk—\(\beta\) sheets, with their small, closely packed amino acid side chains—is more stable than that of wool.

3. \(~\)42 peptide bonds per second

4. At pH > 6, the carboxyl groups of poly(Glu) are deprotonated; repulsion among negatively charged carboxylate groups leads to
5. (a) Disulfide bonds are covalent bonds, which are much stronger than the noncovalent interactions that stabilize most proteins. They cross-link protein chains, increasing their stiffness, mechanical strength, and hardness. (b) Cysteine residues (disulfide bonds) prevent the complete unfolding of the protein.

6. (a) Bends are most likely at residues 7 and 19; Pro residues in the cis configuration accommodate turns well. (b) The Cys residues at positions 13 and 24 can form disulfide bonds.

7. 30 amino acid residues; 0.87

8. Myoglobin is all three. The folded structure, the “globin fold,” is a motif found in all globins. The polypeptide folds into a single domain, which for this protein represents the entire three-dimensional structure. The bacterial enzyme is a collagenase; it destroys the connective-tissue barrier of the host, allowing the bacterium to invade the tissues. Bacteria do not contain collagen.

10. (a) The number of moles of DNP-valine formed per mole of protein equals the number of amino termini and thus the number of polypeptide chains. (b) 4 (c) Different chains would probably run as discrete bands on an SDS polyacrylamide gel.

11. (a); it has more amino acid residues that favor α-helical structure (see Table 4-1).

12. (a) Aromatic residues seem to play an important role in stabilizing amyloid fibrils. Thus, molecules with aromatic substituents may inhibit amyloid formation by interfering with the stacking or association of the aromatic side chains. (b) Amyloid is formed in the pancreas in association with type 2 diabetes, as it is in the brain in Alzheimer’s disease. Although the amyloid fibrils in the two diseases involve different proteins, the fundamental structure of the amyloid is similar and similarly stabilized in both, and thus they are potential targets for similar drugs designed to disrupt this structure.

13. (a) NFkB transcription factor, also called RelA transforming factor. (b) No. You will obtain similar results, but with additional related proteins listed. (c) The protein has two subunits. There are multiple variants of the subunits, with the best-characterized being 50, 52, or 65 kDa. These pair with each other to form a variety of homodimers and heterodimers. The structures of a number of different variants can be found in the PDB. (d) The NFkB transcription factor is a dimeric protein that binds specific DNA sequences, enhancing transcription of nearby genes. One such gene is the immunoglobulin κ light chain, from which the transcription factor gets its name.

14. (a) Aba is a suitable replacement because Aba and Cys have approximately the same sized side chain and are similarly hydrophobic. However, Aba cannot form disulfide bonds so it will not be a suitable replacement if these are required. (b) There are many important differences between the synthesized protein and HIV protease produced by a human cell, any of which could result in an inactive synthetic enzyme: (1) Although Aba and Cys have similar size and hydrophobicity, Aba may not be similar enough for the protein to fold properly. (2) HIV protease may require disulfide bonds for proper functioning. (3) Many proteins synthesized by ribosomes fold as they are produced; the protein in this study folded only after the chain was complete. (4) Proteins synthesized by ribosomes may interact with the ribosomes as they fold; this is not possible for the protein in the study. (5) Cytosol is a more complex solution than the buffer used in the study; some proteins may require specific, unknown proteins for proper folding. (6) Proteins synthesized in cells often require chaperones for proper folding; these are not present in the study buffer. (7) In cells, HIV protease is synthesized as part of a larger chain that is then proteolytically processed; the protein in the study was synthesized as a single molecule. (c) Because the enzyme is functional with Aba substituted for Cys, disulfide bonds do not play an important role in the structure of HIV protease.

(d) Model 1: it would fold like the L-protease. Argument for: the covalent structure is the same (except for chirality), so it should fold like the L-protease. Argument against: chirality is not a trivial detail; three-dimensional shape is a key feature of biological molecules. The synthetic enzyme will not fold like the L-protease. Model 2: it would fold to the mirror image of the L-protease. For: because the individual components are mirror images of those in the biological protein, it will fold in the mirror-image shape. Against: the interactions involved in protein folding are very complex, so the synthetic protein will most likely fold in another form. Model 3: it would fold to something else. For: the interactions involved in protein folding are very complex, so the synthetic protein will most likely fold in another form. Against: because the individual components are mirror images of those in the biological protein, it will fold in the mirror-image shape. (e) Model 1. The enzyme is active, but with the enantiomeric form of the biological substrate, and it is inhibited by the enantiomeric form of the biological inhibitor. This is consistent with the D-protease being the mirror image of the L-protease.

(f) Evans blue is achiral; it binds to both forms of the enzyme.

(g) No. Because proteases contain only L-amino acids and recognize only L-peptides, chymotrypsin would not digest the D-protease.

(h) Not necessarily. Depending on the individual enzyme, any of the problems listed in (b) could result in an inactive enzyme.
9. (a) 1×10^{-8} M (b) 5×10^{-9} M (c) 8×10^{-8} M (d) 2×10^{-7} M. Note that a rearrangement of Eqn 5-8 gives $[L] = \theta K_c/(1 - \theta)$.

10. The epitope is likely to be a structure that is buried when G-actin polymerizes to F-actin.

11. Many pathogens, including HIV, have evolved mechanisms by which they can repeatedly alter the surface proteins to which immune system components initially bind. Thus the host organism regularly faces new antigens and requires time to mount an immune response to each one. As the immune system responds to one variant, new variants are created.

12. Binding of ATP to myosin triggers dissociation of myosin from the actin thin filament. In the absence of ATP, actin and myosin bind tightly to each other.

13.

14. (a) Chain L is the light chain and chain H is the heavy chain of the Fab fragment of this antibody molecule. Chain Y is lysozyme. (b) β structures are predominant in the variable and constant regions of the fragment. (c) Fab heavy-chain fragment, 218 amino acid residues; light-chain fragment, 214; lysozyme, 129. Less than 15% of the lysozyme molecule is in contact with the Fab fragment. (d) In the H chain, residues that seem to be in contact with lysozyme include Gly21, Tyr22, Arg23, Asp100, and Tyr191. In the L chain the residues that seem to be in contact with lysozyme include Tyr32, Tyr40, Tyr56, and Trp167. In lysozyme, residues Asn19, Gly22, Tyr25, Ser29, Lys110, Gly113, Thr191, Asp193, Gly121, and Arg125 seem to be situated at the antigen-antibody interface. Not all these residues are adjacent in the primary structure. Folding of the polypeptide chain into higher levels of structure brings the nonsequential residues together to form the antigen-binding site.

15. (a) The protein with a K_d of 5 μM will have the highest affinity for ligand L. When K_d is 10 μM, doubling [L] from 0.2 to 0.4 μM (values well below the K_d) will nearly double θ (the actual increase factor is 1.96). This is a property of the hyperbolic curve; at low ligand concentrations, θ is an almost linear function of [L]. On the other hand, doubling [L] from 40 to 80 μM (well above the K_d, where the binding curve is approaching its asymptotic limit) will increase θ by a factor of only 1.1. The increase factors are identical for the curves generated from Eqs 5-11. (b) θ = 0.998. (c) A variety of answers will be obtained depending on the values entered for the different parameters.

16. (a)

The drawing is not to scale; any given cell would have many more myosin molecules on its surface. (b) ATP is needed to provide the chemical energy to drive the motion (see Chapter 13). (c) An antibody that bound to the myosin tail, the actin-binding site, would block actin binding and prevent movement. An antibody that bound to actin would also prevent actin-myosin interaction and thus movement. (d) There are two possible explanations: (1) Trypsin cleaves only at Lys and Arg residues (see Table 3-7) so would not cleave at many sites in the protein. (2) Not all Arg or Lys residues are equally accessible to trypsin; the most-exposed sites would be cleaved first. (e) The S1 model. The hinge model predicts that head-antibody-HMM complexes (with the hinge) would move, but head-antibody-SHMM complexes (no hinge) would not. The S1 model predicts that because both complexes include S1, both would move. The finding that the heads move with SHMM (no hinge) is consistent only with the S1 model. (f) With fewer myosin molecules bound, the beads could temporarily fall off the actin as a myosin let go of it. The beads would then move more slowly, as time is required for a second myosin to bind. At higher myosin density, as one myosin lets go another quickly binds, leading to faster motion. (g) Above a certain density, what limits the rate of movement is the intrinsic speed with which myosin molecules move the beads. The myosin molecules are moving at a maximum rate and adding more will not increase speed. (h) Because the force is produced in the S1 head, damaging the S1 head would probably inactivate the resulting molecule, and SHMM would be incapable of producing movement. (i) The S1 head must be held together by noncovalent interactions that are strong enough to retain the active shape of the molecule.

Chapter 6

1. The activity of the enzyme that converts sugar to starch is destroyed by heat denaturation.

2. 2.4×10^{-6} M

3. 9.5 $\times 10^6$ years

4. The enzyme-substrate complex is more stable than the enzyme alone.

5. (a) 190 Å (b) Three-dimensional folding of the enzyme brings the amino acid residues into proximity.

6. The reaction rate can be measured by following the decrease in absorption by NADH (at 340 nm) as the reaction proceeds. Determine the K_m value; using substrate concentrations well above the K_m, measure initial rate (rate of NADH disappearance with time, measured spectrophotometrically) at several known enzyme concentrations, and make a plot of initial rate versus concentration of enzyme. The plot should be linear, with a slope that provides a measure of LDH concentration.

7. (b), (c), (g)

8. (a) 1.7×10^{-3} M (b) 0.33, 0.67, 0.91 (c) The upper curve corresponds to enzyme B (K_B > K_m for this enzyme); the lower curve, enzyme A.

9. (a) 400 s$^{-1}$ (b) 10 μM (c) $\alpha = 2, \alpha' = 3$ (d) Mixed inhibitor

10. (a) 24 nm (b) 4 μM (V_o is exactly half V_{max}, so $[A] = K_m$) (c) 40 μM (V_o is exactly half V_{max}, so $[A] = 10$ times K_m in the presence of inhibitor) (d) No. k_{cat}/K_m = 0.03 (4/4×10^{-6} M$^{-1}$ s$^{-1}$) = 8.25 $\times 10^4$ M$^{-1}$ s$^{-1}$, well below the diffusion-controlled limit.

11. V_{max} = 140 μmol/min; K_m = 1×10^{-6} M

12. (a) V_{max} = 51.5 nmol/min; K_m = 0.59 nm (b) Competitive inhibition

13. K_m = 2.2 nm; V_{max} = 0.50 μmol/min

14. Curve A

15. V_{act} = 2 $\times 10^7$ min$^{-1}$

16. The basic assumptions of the Michaelis-Menten equation still hold. The reaction is at steady state, and the rate is determined by $V_0 = k_2 [ES]$. The equations needed to solve for [ES] are

$$[ES] = [E] + [ES] + [EI] \and [ES] = \frac{[E][I]}{K_1}$$

[E] can be obtained by rearranging Eqn 6-19. The rest follows the pattern of the Michaelis-Menten equation derivation in the text.
17. Minimum $M_r = 29,000$

18. Activity of the prostate enzyme equals total phosphatase activity in a blood sample minus phosphatase activity in the presence of enough tartrate to completely inhibit the prostate enzyme.

19. The inhibition is mixed. Because K_i seems not to change appreciably, this could be the special case of mixed inhibition called noncompetitive.

20. The [S] at which $V_{max}/2a'$ is obtained when all terms except V_{max} on the right side of Eqn 6-30—that is, $[S]/(aK_m + a'[S]) = \frac{1}{2} a'$—begin with $[S]/(aK_m + a'[S]) = \frac{1}{2} a'$ and solve for [S].

21. The optimum activity occurs when Glu105 is protonated and Asp62 is unprotonated.

22. (a) Increase factor $= 1.96$; $V_o = 50 \mu M s^{-1}$; increase factor $= 1.048$

(b) When $a = 2.0$, the curve is shifted to the right as the K_m is increased by a factor of 2. When $a' = 3.0$, the asymptote of the curve (the V_{max}) declines by a factor of 3. When $a = 2.0$ and $a' = 3.0$, the curve briefly rises above the curve where both a and $a' = 1.0$, due to a decline in K_m. However, the asymptote is lower, because V_{max} declines by a factor of 3. (c) When $a = 2.0$, the x intercept moves to the right. When $a = 2.0$ and $a' = 3.0$, the x intercept moves to the left.

23. (a) In the wild-type enzyme, the substrate is held in place by a hydrogen bond and an ion-dipole interaction between the charged side chain of Arg102 and the polar carbonyl of pyruvate. During catalysis, the charged Arg102 side chain also stabilizes the polarized carbonyl transition state. In the mutant, the binding is reduced to just a hydrogen bond, substrate binding is weaker, and ionic stabilization of the transition state is lost, reducing catalytic activity. (b) Because Lys and Arg are roughly the same size and have a similar positive charge, they probably have very similar properties. Furthermore, because pyruvate binds to Arg102 by (presumably) an ionic interaction, an Arg to Lys mutation would probably have little effect on substrate binding. (c) The "forked" arrangement aligns two positively charged groups of Arg residues with the negatively charged oxygens of pyruvate and facilitates two combined hydrogen-bond and ion-dipole interactions, When Lys is present, only one such hydrogen-bond and ion-dipole interaction is possible, thus reducing the strength of the interaction. The positioning of the substrate is less precise. (d) the102 interacts hydrophobically with the ring of NADH. This type of interaction is not possible with the hydrophilic side chain of Gln. (e) The structure is shown below.

(f) The mutant enzyme rejects pyruvate because pyruvate's hydrophobic methyl group will not interact with the highly hydrophilic guanidinium group of Arg102. The mutant binds oxaloacetate because of the strong ionic interaction between the Arg102 side chain and the carbonyl of oxaloacetate. (g) The protein must be flexible enough to accommodate the added bulk of the side chain and the larger substrate.

Chapter 7

1. With reduction of the carbonyl oxygen to a hydroxyl group, the chemistry at C-1 and C-3 is the same; the glycerol molecule is not chiral.

2. Epimers differ by the configuration about only one carbon. (a) d-altrose (C-2), D-glucose (C-3), d-gulose (C-4). (b) D-idose (C-2), D-galactose (C-3), D-1-lose (C-4) (c) D-arabinose (C-2), D-xylose (C-3)

3. Osazone formation destroys the configuration around C-2 of aldoses, so aldoses differing only at the C-2 configuration give the same derivative, with the same melting point.

4. (a)

(b) A fresh solution of α-D-glucose, or of β-D-glucose, undergoes mutarotation to an equilibrium mixture of the α and β forms. (c) $36\% \alpha$ form; $64\% \beta$ form

5. To convert α-d-glucose to β-d-glucose, the bond between C-1 and the hydroxyl on C-5 (as in Fig. 7-6). To convert D-glucose to D-mannose, either the $-OH$ or the $-OH$ on C-2. Conversion between chair conformations does not require bond breakage; this is the critical distinction between configuration and conformation.

6. No, glucose and galactose differ at C-4.

7. (a) Both are polymers of D-glucose, but they differ in the glycosidic linkage: ($\beta 1\rightarrow 4$) for cellulose, ($\alpha 1\rightarrow 4$) for glycogen. (b) Both are hexoses, but glucose is an aldohexose, fructose a ketohexose. (c) Both are disaccharides, but maltose has two ($\alpha 1\rightarrow 4$)-linked D-glucose units; sucrose has ($\alpha 1\rightarrow 2\beta$)-linked D-glucose and D-fructose.

8.

9. A hemiacetal is formed when an aldose or ketose condenses with an alcohol; a glycoside is formed when a hemiacetal condenses with an alcohol (see Fig. 7-6, p. 238).

10. Fructose cyclizes to either the pyranose or the furanose structure. Increasing the temperature shifts the equilibrium in the direction of the furanose, the less sweet form.

11. Maltose; sucrose has no reducing (oxidizable) group, as the anemic carbons of both monosaccharides are involved in the glycosidic bond.
12. The rate of mutarotation is sufficiently high that, as the enzyme consumes \(\beta \)-d-glucose, more \(\alpha \)-d-glucose is converted to the \(\beta \) form and, eventually, all the glucose is oxidized. Glucose oxidase is specific for glucose and does not detect other reducing sugars (such as galactose) that react with Fehling's reagent.

13. (a) Measure the change in optical rotation with time. (b) The rotation of the mixture is negative (inverted) relative to that of the sucrose solution. (c) \(-2.0^\circ\)

14. Prepare a slurry of sucrose and water for the core; add a small amount of sucrose (invertase); immediately coat with chocolate.

15. Sucrose has no free anomeric carbon to undergo mutarotation.

16. Yes; yes

17. \(N\)-Acetyl-\(\beta\)-d-glucosamine is a reducing sugar; its C-1 can be oxidized (see Fig. 7–10, p. 241). \(\beta\)-Glucosamine is not a reducing sugar; its C-1 is already at the oxidation state of a carboxylic acid. GlcN(\(\alpha\)1\(\rightarrow\)\(\alpha\))Glc is not a reducing sugar; the anomeric carbons of both monosaccharides are involved in the glycosidic bond.

18. Humans lack cellulase in the gut and cannot break down cellulose.

19. Native cellulose consists of glucose units linked by (\(\beta\)1\(\rightarrow\)4) glycosidic bonds, which force the polymer chain into an extended conformation. Parallel series of these extended chains form intermolecular hydrogen bonds, aggregating into long, tough, insoluble fibers. Glycogen consists of glucose units linked by (\(\alpha\)1\(\rightarrow\)4) glycosidic bonds, which cause bends in the chain and prevent formation of long fibers. In addition, glycogen is highly branched and, because many of its hydroxyl groups are exposed to water, is highly hydrated and disperses in water.

Cellulose is a structural material in plants, consistent with its side-by-side aggregation into insoluble fibers. Glycogen is a storage fuel in animals. Highly hydrated glycogen granules with their many nonreducing ends are rapidly hydrolyzed by glycogen phosphorylase to release glucose 1-phosphate.

20. Cellulose is several times longer; it assumes an extended conformation, whereas amylose has a helical structure.

21. 6,000 residues/s

22. 11 s

23. The ball-and-stick model of the disaccharide in Fig. 7–19 shows no steric interactions, but a space-filling model, showing atoms with their real relative sizes, would show several strong steric hindrances in the \(-170^\circ\), \(-180^\circ\) conformer that are not present in the \(30^\circ\), \(-40^\circ\) conformer.

24. The negative charges on chondroitin sulfate repel each other and force the molecule into an extended conformation. The polar molecule attracts many water molecules, increasing the molecular volume. In the dehydrated solid, each negative charge is counterbalanced by a positive ion, and the molecule condenses.

25. Positively charged amino acid residues would bind the highly negatively charged groups on heparin. In fact, Lys residues of antithrombin III interact with heparin.

26. 8 possible sequences, 144 possible linkages, and 64 stereochiral possibilities, for a total of 73,728 permutations!

27. Oligosaccharide chains:

28. Oligosaccharides; their subunits can be combined in more ways than the amino acid subunits of oligopeptides. Each hydroxyl group can participate in glycosidic bonds, and the configuration of each glycosidic bond can be either \(\alpha\) or \(\beta\). The polymer can be linear or branched.

29. (a) Branch-point residues yield 2,3-di-O-methylglucose; the unbranched residues yield 2,3,6-tri-O-methylglucosyl. (b) 3.75%

30. Chains of (1\(\rightarrow\)6)-linked \(\alpha\)-glucose residues with occasional (1\(\rightarrow\)3)-linked branches, with about one branch every 20 residues

31. (a) The tests involve trying to dissolve only part of the sample in a variety of solvents, then analyzing both dissolved and undissolved materials to see whether their compositions differ. (b) For a pure substance, all molecules are the same and any dissolved fraction will have the same composition as any undissolved fraction. An impure substance is a mixture of more than one compound. When treated with a particular solvent, more of one component may dissolve, leaving more of the other component(s) behind. As a result, the dissolved and undissolved fractions have different compositions. (c) A quantitative assay allows researchers to be sure that none of the activity has been lost through degradation. When determining the structure of a molecule, it is important that the sample under analysis consist only of intact (undegraded) molecules.

The sample is contaminated with degraded material, this will give confusing and perhaps uninterpretable structural results. A qualitative assay would detect the presence of activity, even if it had become significantly degraded. (d) Results 1 and 2. Result 1 is consistent with the known structure, because type B antigen has three molecules of galactose; types A and O each have only two. Result 2 is also consistent, because type A has two amino sugars (\(N\)-acetylgalactosamine and \(N\)-acytlyglucosamine); types B and O have only one (\(N\)-acytlyglucosamine). Result 3 is not consistent with the known structure; for type A, the glucosamine:galactosamine ratio is 1:1; for type B, it is 1:0. (e) The samples were probably impure and/or partly degraded. The first two results were correct possibly because the method was only roughly quantitative and thus not as sensitive to inaccuracies in measurement. The third result is more quantitative and thus more likely to differ from predicted values, because of impure or degraded samples. (f) An exoglycosidase. If it were an endoglycosidase, one of the products of its action on O-antigen would include galactose, \(N\)-acytlygalactosamine, or \(N\)-acytlygalactosamine, and at least one of those sugars would be able to inhibit the degradation. Given that the enzyme is not inhibited by any of these sugars, it must be an exoglycosidase, removing only the terminal sugar from the chain. The terminal sugar of O-antigen is fucose, so fucose is the only sugar that could inhibit the degradation of O-antigen. (g) The exoglycosidase removes \(N\)-acetylglactosamine from A antigen and galactose from B antigen. Because fucose is not a product of either reaction, it will not prevent removal of these sugars, and the resulting substances will no longer be active as A or B antigen. However, the products should be active as O antigen, because degradation stops at fucose. (h) All the results are consistent with Fig. 10–15. (1) \(l\)-Fucose and \(l\)-galactose, which would protect against degradation, are not present in any of the antigens. (2) The terminal sugar of A antigen is \(N\)-acetyl-\(l\)-galactosamine, and this sugar alone protects this antigen from degradation. (3) The terminal sugar of B antigen is galactose, which is the only sugar capable of protecting this antigen.
Chapter 8

1. N-3 and N-7
2. (5')GGCCATTTTGGAGAATATTGC(3'); it contains a palindrome. The individual strands can form hairpin structures; the two strands can form a cruciform.
3. 9.4×10^{-4} g
4. (a) 40° (b) 0°
5. The RNA helix is in the A conformation; the DNA helix is generally in the B conformation.
6. In eukaryotic DNA, about 5% of C residues are methylated. 5-Methylcytosine can spontaneously deaminate to form thymine; the resulting G-T pair is one of the most common mismatches in eukaryotic cells.
7. Without the base, the ribose ring can be opened to generate the noncyclic aldehyde form. This, and the loss of base-stacking interactions, could contribute significant flexibility to the DNA backbone.
8. Base stacking in nucleic acids tends to reduce the absorption of UV light. Denaturation involves loss of base stacking, and UV absorption increases.
9. 0.35 mg/ml
10.

\[
\text{HOCH}_2\text{O} \quad \text{OH} \\
\text{H} \quad \text{H} \quad \text{H} \quad \text{H} \\
\text{O} \quad \text{Phosphate} \\
\text{Deoxyribose} \\
\text{Guanine}
\]

Solubilities: phosphate $>$ deoxyribose $>$ guanine. The highly polar phosphate groups and sugar moieties are on the outside of the double helix, exposed to water; the hydrophobic bases are in the interior of the helix.

11. If dCTP is omitted, when the first G residue is encountered in the template, ddCTP will be added, and polymerization will halt. Only one band will be seen in the sequencing gel.

12. endopinases reduces the activity of mutation-causing enzymes and slows the rate of nonenzymatic depurination reactions, which are hydrolysis reactions. (b) UV light induces formation of cyclobutane pyrimidine dimers. Because B. subtilis is a soil organism, spores can be lofted to the top of the soil or into the air, where they may be subject to prolonged UV exposure.

13. DMT is a blocking group that prevents reaction of the incoming base with itself.

14. (a) Right-handed. The base at one 5' end is adenine; at the other 5' end, cytosine. (b) Left-handed. (c) You cannot see the structures in stereo, see additional tips in the expanded solutions manual, or use a search engine to find tips online.

15. (a) It would not be easy! The data for different samples from the same organism show significant variation, and the recovery is never 100%. The numbers for C and T show much more consistency than those for A and G, so for C and T it is much easier to make the case that samples from the same organism have the same composition. But even with the consistent values for A and G, (1) the range of values for different tissues does overlap substantially; (2) the difference between different preparations of the same tissue is about the same as the difference between samples from different tissues; and (3) in samples for which recovery is high, the numbers are more consistent. (b) This technique would not be sensitive enough to detect a difference between normal and cancerous cells. Cancer is caused by mutations, but these changes in DNA—a few base pairs out of several billion—would be too small to detect with these techniques.

16. (c) The ratios of A/G and T/C vary widely among different species. For example, in the bacterium Serratia marcescens, both ratios are 0.4, meaning that the DNA contains mostly G and C. In Haemophilus influenzae, by contrast, the ratios are 1.74 and 1.54, meaning that the DNA is mostly A and T. (d) Conclusion 4 has three requirements: A = T. The table shows an A:T ratio very close to 1 in all cases. Certainly, the variation in this ratio is substantially less than the variation in the A:G and T:C ratios. G = C: Again, the G:C ratio is very close to 1, and the other ratios vary widely. (A + G) / (T + C): This is the purine/pyrimidine ratio, which also is very close to 1. (e) The different core fractions represent different regions of the wheat germ DNA. If the DNA were a monotonous repeating sequence, the base composition of all regions would be the same. Because different core regions have different sequences, the DNA sequence must be more complex.

Chapter 9

1. (a) (5')---G(3') and (5')AATTC----(3')
 (3')---CTTAA(5')
 (3')---G(3')

(b) (5')---G(3') and (5')AATTC---(3')
 (3')---CTTAA(5')
 (3')---T(3')

(c) (5')---G(3') and (5')TAAAG---(3')
 (3')---G(3')

(d) (5')---G(3') and (5')TAAAG---(3')
 (3')---C(5')

(e) (5')---G(3') and (5')TAAAG---(3')
 (3')---G(3')

(f) (5')---G(3') and (5')CTG---(3')
 (3')---T(3')

(g) (5')---G(3') and (5')CTG---(3')
 (3')---G(3')

(h) Method 1: cut the DNA with EcoRI as in (a). At this point, one could treat the DNA as in (b) or (d), then ligate a synthetic DNA fragment with the BarnHI recognition sequence between the two resulting blunt ends. Method 2 (more efficient): synthesize a DNA fragment with the structure

\[
(5')AATTGATCC(3')
(3')CTTAGGTTAA(5')
\]

This would ligate efficiently to the sticky ends generated by EcoRI cleavage, would introduce a BarnHI site, but would not
regenerate the EcoRI site. (1) The four fragments (with \(N = \) any nucleotide), in order of discussion in the problem, are

\[
(5')AATTCCNNNCTGCA(3')
\]
\[
(3')GGNNNNG(5')
\]
\[
(5')AATTCCNNNCTGCA(3')
\]
\[
(3')GGNNNNG(5')
\]
\[
(5')AATTCCNNNCTGCA(3')
\]
\[
(3')GGNNNNG(5')
\]

2. A phage DNA can be packaged into infectious phage particles only if it is between 40,000 and 53,000 bp in length. Since bacteriophage vectors generally include about 30,000 bp (in two pieces), they will not be packaged into phage particles unless they contain a sufficient length of inserted DNA (10,000 to 23,000 bp).

3. (a) Plasmids in which the original pBR322 was regenerated without insertion of a foreign DNA fragment, these would retain resistance to ampicillin. Also, two or more molecules of pBR322 might be ligated together with or without insertion of foreign DNA. (b) The clones in lanes 1 and 2 each have one DNA fragment inserted in different orientations. The clone in lane 3 has two DNA fragments, ligated such that the EcoRI proximal ends are joined.

4. Focus on the amino acids with the fewest codons: Met and Trp. The best possibility is the span of DNA from the first Trp residue to the first two nucleotides of the codon for Ile. The sequence of the probe would be:

\[
(5')UUGUA(U/C)UUG(U/C)UUGUA(U/C)UUGAU
\]

The synthesis would be designed to incorporate either U or C where indicated, producing a mixture of eight 20-nucleotide probes that differ only at one or more of these positions.

5. Your test would require DNA primers, a heat-stable DNA polymerase, deoxynucleoside triphosphates, and a PCR machine (thermal cycler). The primers would be designed to amplify a DNA segment encompassing the CAG repeat. The DNA strand shown is the coding strand, oriented 5'→3' left to right. The primer targeted to DNA to the left of the repeat would be identical to any 25-nucleotide sequence shown in the region to the left of the CAG repeat. The primer on the right side must be complementary and antiparallel to a 25-nucleotide sequence to the right of the CAG repeat. Using the primers, DNA including the CAG repeat would be amplified by PCR, and its size would be determined by comparison to size markers after electrophoresis. The length of the DNA would reflect the length of the CAG repeat. The DNA strand encompassing the CAG repeat. The DNA strand

6. Design PCR primers complementary to DNA in the deleted segment, but which would direct DNA synthesis away from each other. No PCR product will be generated unless the ends of the deleted segment are joined to create a circle.

7. The plant expressing green fluorescent protein glows without requiring any other compound.

8. None of the children can be excluded. All have one band that could be derived from the father.

9.

<table>
<thead>
<tr>
<th>5'</th>
<th>4'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

10. Simply for convenience; the 200,000 bp Ti plasmid, even when the T DNA is removed, is too large to isolate in quantity and manipulate in vitro. It is also too large to reintroduce into a cell by standard transformation techniques. The vir genes will facilitate the transfer of any DNA between the T DNA repeats. If they are on a separate plasmid. The second plasmid in the two-plasmid system, because it requires only the T DNA repeats and a few sequences necessary for plasmid selection and propagation, is relatively small, easily isolated, and easily manipulated (foreign DNA easily added and/or altered).

11. (5')AATTCCNNNCTGCA(3')

12. Cover spot 4, add solution containing activated T, irradiate, wash.

13. The vectors must be introduced into a cell infected with a helper virus that can provide the necessary replication and packaging functions but cannot itself be packaged. Once recombinant DNA is integrated into the chromosome of the target cell with these vectors, the lack of recombination and packaging functions makes the integration very stable by preventing the deletion or replication of the integrated DNA.

14. (a) DNA solutions are highly viscous because the very long molecules are tangled in solution. Shorter molecules tend to tangle less and form a less viscous solution, so decreased viscosity corresponds to shortening of the polymers—as caused by nuclease activity. (b) An endonuclease. An exonuclease removes single nucleotides from the 5' or 3' end and would produce TCA-soluble 32P-labeled nucleotides. An endonuclease cuts DNA into oligonucleotide fragments and produces little or no TCA-soluble 32P-labeled material. (c) The 5' end. If the phosphate were left on the 3' end, the kinase would
incorporate significant 32P as it added phosphate to the 5' end, treatment with the phosphatase would have no effect on this. In this case, samples A and B would incorporate significant amounts of 32P. When the phosphate is left on the 5' end, the kinase does not incorporate any 32P; it cannot add a phosphate if one is already present. Treatment with the phosphatase removes 5' phosphate, and the kinase then incorporates significant amounts of 32P. Sample A will have little or no 32P, and B will show substantial 32P incorporation—as was observed.

(d) Random breaks would produce a distribution of fragments of random size. The production of specific fragments indicates that the enzyme is site-specific. (e) Cleavage at the site of recognition. This produces a specific sequence at the 5' end of the fragments. If cleavage occurred near but not within the recognition site, the sequence at the 5' end of the fragments would be random. (f) The results are consistent with two recognition sequences, as shown below, cleaved where shown by the arrows:

\[
\begin{align*}
(5') & \quad \text{GTT AAC} \quad (3') \\
(3') & \quad \text{CAA TTG} \quad (5')
\end{align*}
\]

which gives the (5')pApApC and (3')TpTp fragments; and

\[
\begin{align*}
(5') & \quad \text{GTC GAC} \quad (3') \\
(3') & \quad \text{CAG CTG} \quad (5')
\end{align*}
\]

which gives the (5')pGpApC and (3')CpTp fragments

Chapter 10

1. The term "lipid" does not specify a particular chemical structure. Compounds are categorized as lipids based on their greater solubility in organic solvents than in water.

2. (a) The number of cis double bonds. Each cis double bond causes a bend in the hydrocarbon chain, lowering the melting temperature. (b) Six different triacylglycerols can be constructed, in order of increasing melting points:

\[
\text{OOO} < \text{OOP} < \text{OPP} = \text{POO} < \text{PPP}
\]

where O = oleic and P = palmitic acid. The greater the content of saturated fatty acid, the higher is the melting point. (c) Branched-chain fatty acids increase the fluidity of membranes because they decrease the extent of membrane lipid packing.

3. Lecithin, an amphipathic compound, is an emulsifying agent, facilitating the solubilization of butter.

4.

\[
\text{Squalene}
\]

5. Spearmint is (R)-carvone; caraway is (S)-carvone.

6. (R)-2-Aminopropanoic acid

\[
\begin{align*}
\text{COOH} & \quad \text{COOH} \\
\text{H} \quad \text{H} & \quad \text{H} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{NH}_3 & \quad \text{\text{NH}_3}
\end{align*}
\]

(S)-2-Aminopropanoic acid

\[
\begin{align*}
\text{COOH} & \quad \text{COOH} \\
\text{H} \quad \text{H} & \quad \text{H} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{\text{NH}_3} & \quad \text{\text{NH}_3}
\end{align*}
\]

(R)-2-Hydroxypropanoic acid

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{H}_2\text{C} \quad \text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{C} \quad \text{C} & \quad \text{C}
\end{align*}
\]

(S)-2-Hydroxypropanoic acid

7. **Hydrophobic units:**
 - (a) 2 fatty acids; (b), (c), and (d) 1 fatty acid and the hydrocarbon chain of sphingosine; (e) steroid nucleus and acyl side chain. **Hydrophilic units:**
 - (a) phospho-ethanolamine; (b) phosphocholine; (c) α-galactose; (d) several sugar molecules; (e) alcohol group (OH)

8. **O**

9. It reduces double bonds, which increases the melting point of lipids containing the fatty acids.

10. The triacylglycerols of animal fats (grease) are hydrolyzed by NaOH (saponified) to form soaps, which are much more soluble in water than are triacylglycerols.

11. It could only be a sphingolipid (sphingomyelin).

12. **CH\textsubscript{2}O**

13. Long, saturated acyl chains, nearly solid at air temperature, form a hydrophobic layer in which a polar compound such as H\textsubscript{2}O cannot dissolve or diffuse.

14. (a) The free -OH group on C-2 and the phosphocholine head group on C-3 are hydrophilic; the fatty acid on C-1 of lysolecithin is hydrophobic. (b) Certain steroids such as prednisone inhibit the action of phospholipase A\textsubscript{2}, inhibiting the release of arachidonic acid from C-2. Arachidonic acid is converted to a variety of eicosanoids, some of which cause inflammation and pain. (c) Phospholipase A\textsubscript{2} releases arachidonic acid, a precursor of other eicosanoids with vital protective functions in the body; it also breaks down dietary glycerophospholipids.

15. The part of the membrane lipid that determines blood type is the oligosaccharide in the head group of the membrane sphingolipids (see Fig. 10–15, p. 355). This same oligosaccharide is attached to certain membrane glycoproteins, which also serve as points of recognition by the antibodies that distinguish blood groups.

16. **Diacylglycerol** is hydrophobic and remains in the membrane. Inositol 1,4,5-trisphosphate is highly polar, very soluble in water, and more readily diffusible in the cytosol. Both are second messengers.

17. Water-soluble vitamins are more rapidly excreted in the urine and are not stored effectively. Fat-soluble vitamins have very low solubility in water and are stored in body lipids.

18. (a) Glycerol and the sodium salts of palmitic and stearic acids. (b) D-Glycerol 3-phosphocholine and the sodium salts of palmitic and oleic acids.
20. First eluted to last eluted: cholesteryl palmitate and triacylglycerol; cholesterol and α-tetradecanoic acid, phosphatidylyceroline and phosphatidylethanolamine, sphingomyelin, phosphatidylserine and palmitate.
21. (a) Subject acid hydrolysates of each compound to chromatography (GLC or silica gel TLC) and compare the result with known standards. Sphingomyelin hydrolysate: sphingosine, fatty acids, phosphocholine, choline, and phosphate; cerebroside hydrolysate: sphingosine, fatty acids, sugars, but no phosphate. (b) Strong alkaline hydrolysis of sphingomyelin yields sphingosine, phosphatidylcholine, and glycerol. Detect hydrolysates on thin-layer chromatograms by comparing with standards or by their differential reaction with FDNB (only sphingosine reacts to form a colored product). Treatment with phospholipase A₁ or A₂ releases free fatty acids from phosphatidylcholine, but not from sphingomyelin.

Chapter 11

1. From the known amount of lipid used, its molecular weight, and the area occupied by a monolayer (determined as shown), the area per molecule can be calculated.
2. The data support a bilayer of lipid in the dog erythrocytes: a single cell, with surface area 98 μm², has a lipid monolayer area of 200 μm². In the case of sheep and human erythrocytes, the data suggest a monolayer, not a bilayer. In fact, significant experimental errors occurred in these early experiments; recent, more accurate measurements support a bilayer in all cases.
3. 60 SDS molecules per micelle.
4. (a) Lipids that form bilayers are amphipathic molecules: they contain a hydrophilic and a hydrophobic region. To minimize the hydrophobic area exposed to the water surface, these lipids form two-dimensional sheets with the hydrophilic regions exposed to water and the hydrophobic regions buried in the interior of the sheet. Furthermore, to avoid exposing the hydrophobic edges of the sheet to water, lipid bilayers close upon themselves. (b) These sheets form the closed membrane surfaces that envelop cells and compartments within cells (organelles).
5. 2 nm. Two palmitates placed end to end span about 4 nm, approximately the thickness of a typical bilayer.
6. Decrease. Movement of individual lipids in bilayers occurs much faster at 37 °C, when the lipids are in the "fluid" phase, than at 10°C, when they are in the "solid" phase.
7. 35 kJ/mol, neglecting the effects of transmembrane electrical potential; 0.60 mol.
8. 13 kJ/mol.
9. Most of the O₂ consumed by a tissue is for oxidative phosphorylation, the source of most of the ATP. Therefore, about two-thirds of the ATP synthesized by the kidney is used for pumping K⁺ and Na⁺.
10. No. The symporter may carry more than one equivalent of Na⁺ for each mole of glucose transported.
11. Salt extraction indicates a peripheral location, and inaccessibility to protease in intact cells indicates an internal location. X seems to be a peripheral protein on the cytoplasmic face of the membrane.
12. The hydrophobic interactions among membrane lipids are noncovalent and reversible, allowing membranes to spontaneously resolubilize.
13. The temperature of body tissues at the extremities is lower than that of tissues closer to the center of the body. If lipid is to remain fluid at this lower temperature, it must contain a higher proportion of unsaturated fatty acids; unsaturated fatty acids lower the melting point of lipid mixtures.
14. The energetic cost of moving the highly polar, sometimes charged, head group through the hydrophobic interior of the bilayer is prohibitive.
15. At pH 7, tryptophan bears a positive and a negative charge, but indole is uncharged. The movement of the less polar indole through the hydrophobic core of the bilayer is energetically more favorable.
16. 3 × 10⁻² M
17. Treat a suspension of cells with unlabeled NEM in the presence of excess lactose, remove the lactose, then add radiolabeled NEM. Use SDS-PAGE to determine the Mᵣ of the radiolabeled band (the transporter).
18. Construct a hydropathy plot; hydrophobic regions of 20 or more residues suggest transmembrane segments. Determine whether the protein in intact erythrocytes reacts with a membrane-impermeant reagent specific for primary amines; if so, the transporter is of type I.
19. The leucine transporter is specific for the L isomer, but the binding site can accommodate either L-leucine or L-valine. Reduction of Vₘₐₓ in the absence of Na⁺ indicates that leucine (or valine) is transported by symport with Na⁺.
20. Vₘₐₓ reduced; Kᵣ unaffected.
21. ~1%; estimated by calculating the surface area of the cell and of 10,000 transporter molecules (using the dimensions of hemoglobin (p. 159) as a model globular protein).
22.
The amino acids with the greatest hydropathy index (V, I, F, and C) are clustered on one side of the helix. This amphipathic helix is likely to dip into the lipid bilayer along its hydrophobic surface, while exposing the other surface to the aqueous phase. Alternatively, a group of helices may cluster with their polar surfaces in contact with one another and their hydrophobic surfaces facing the lipid bilayer.

23. -22. To estimate the fraction of membrane surface covered by phospholipids, you would need to know (or estimate) the average cross-sectional area of a phospholipid molecule in a bilayer (e.g., from an experiment such as that diagrammed in problem 1 in this chapter) and the average cross-sectional area of a 50 kDa protein.

24. (a) The rise-per-residue for an α helix (Chapter 4) is about 1.5 Å = 0.15 nm. To span a 4 nm bilayer, an α helix must contain about 27 residues, thus for seven spans, about 190 residues are required. A protein of Mr 64,000 has about 580 residues. (b) A hydropathy plot is used to locate transmembrane regions. (c) Because about half of this portion of the epinephrine receptor consists of charged residues, it probably represents an intracellular loop that connects two adjacent membrane-spanning regions of the protein. (d) Because this helix is composed mostly of hydrophobic residues, this portion of the receptor is probably one of the membrane-spanning regions of the protein.

25. (a) Model A: supported. The two dark lines are either the protein layers or the phospholipid heads, and the clear space is either the bilayer or the hydrophobic core, respectively. Model B: not supported. This model requires a more-or-less uniformly stained band surrounding the cell. Model C: supported, with one reservation. The two dark lines are the phospholipid heads; the clear zone is the tails. This assumes that the membrane proteins are not visible, because they do not stain with osmium or do not happen to be in the sections viewed. (b) Model A: supported. A “naked” bilayer (4.5 nm) + two layers of protein (2 nm) sums to 6.5 nm, which is within the observed range of thickness. Model B: neither. This model makes no predictions about membrane thickness. Model C: unclear. The result is hard to reconcile with this model, which predicts a membrane as thick as, or slightly thicker than (due to the projecting ends of embedded proteins), a “naked” bilayer. The model is supported only if the smallest values for membrane thickness are correct or if a substantial amount of protein projects from the bilayer. (c) Model A: unclear. The result is hard to reconcile with this model, if the proteins are bound to the membrane by ionic interactions, the model predicts that the proteins contain a high proportion of charged amino acids, in contrast to what was observed. Also, because the protein layer must be very thin (see (b)), there would not be much room for a hydrophobic protein core, so hydrophobic residues would be exposed to the solvent. Model B: supported. The proteins have a mixture of hydrophobic residues (interacting with lipids) and charged residues (interacting with water). Model C: supported. The proteins have a mixture of hydrophobic residues (anchoring in the membrane) and charged residues (interacting with water). (d) Model A: unclear. The result is hard to reconcile with this model, which predicts a ratio of exactly 2.0; this would be hard to achieve under physiologically relevant pressures. Model B: neither. This model makes no predictions about amount of lipid in the membrane. Model C: supported. Some membrane surface area is taken up with proteins, so the ratio would be less than 2.0, as was observed under more physiologically relevant conditions. (e) Model A: unclear. The model predicts proteins in extended conformations rather than globular, so supported only if one assumes that proteins layered on the surfaces include helical segments. Model B: supported. The model predicts mostly globular proteins (containing some helical segments). Model C: supported. The model predicts mostly globular proteins. (f) Model A: unclear. The phosphorylation head groups are protected by the protein layer, but only if the proteins completely cover the surface will the phospholipids be completely protected from phospholipase. Model B: supported. Most head groups are accessible to phospholipase. Model C: supported. All head groups are accessible to phospholipase. (g) Model A: not supported. Proteins are entirely accessible to trypsin digestion and virtually all will undergo multiple cleavage, with no protected hydrophobic segments. Model B: not supported. Virtually all proteins are in the bilayer and inaccessible to trypsin. Model C: supported. Segments of protein that penetrate or span the bilayer are protected from trypsin; those exposed at the surfaces will be cleaved. The trypsin-resistant portions have a high proportion of hydrophobic residues.

Chapter 12

1. X is cAMP; its production is stimulated by epinephrine.
 (a) Centrifugation sediments adenylyl cyclase (which catalyzes cAMP formation) in the particulate fraction. (b) Added cAMP stimulates glycogen phosphorylase. (c) cAMP is heat stable; it can be prepared by treating ATP with barium hydroxide.

2. Unlike cAMP, dibutyryl cAMP passes readily through the plasma membrane.

3. (a) It increases [cAMP]. (b) cAMP regulates Na+ permeability. (c) Replace lost body fluids and electrolytes.

4. (a) The mutation makes R unable to bind and inhibit C, so C is constantly active. (b) The mutation prevents cAMP binding to R, leaving C inhibited by bound R.

5. Albuterol raises [cAMP], leading to relaxation and dilation of the bronchi and bronchioles. Because β-adrenergic receptors control many other processes, this drug would have undesirable side effects. To minimize them, find an agonist specific for the subtype of β-adrenergic receptors found in the bronchial smooth muscle.

6. Hormone degradation; hydrolysis of GTP bound to a G protein; degradation, metabolism, or sequestration of second messenger; receptor desensitization; removal of receptor from the cell surface.

7. Fuse CFP to β-arrestin and YFP to the cytoplasmic domain of the β-adrenergic receptor, or vice versa. In either case, illuminate at 430 nm and observe at both 476 and 527 nm. If the interaction occurs, emitted light intensity will decrease at 476 nm and increase at 527 nm on addition of epinephrine to cells expressing the fusion proteins. If the interaction does not occur, the wavelength of emitted light will remain at 476 nm. Some reasons why this might fail: the fusion proteins (1) are inactive or otherwise unable to interact, (2) are not translocated to their normal subcellular location, or (3) are not stable to proteolytic breakdown.

8. Vasopressin acts by elevating cytosolic [Ca2+]i to 10^-6 M, activating protein kinase C. EGTA injection blocks vasopressin action, but should not affect the response to glucagon, which uses cAMP, not Ca2^++, as second messenger.

9. Amplification results as one molecule of a catalyst activates many molecules of another catalyst, in an amplification cascade involving, in order, insulin receptor, IRS-1, Raf, MEK, ERK; ERK activates a transcription factor, which stimulates mRNA production.

10. A mutation in ras that inactivates the Ras GTPase activity creates a protein that, once activated by the binding of GTP, continues to give, through Raf, the insulin-response signal.

11. Shared properties of Ras and G, both bind either GDP or GTP, both are activated by GTP; both, when active, activate a downstream enzyme; both have intrinsic GTPase activity that shuts them off after a short period of activation. Differences between Ras and G, Ras is a small, monomeric protein; G, is heterotrimeric. Functional difference between G and G, G, activates adenylyl cyclase, G inhibits it.

12. Kinase (factor in parentheses): PKA (cAMP); PKG (cGMP); PKC (Ca2^++, DAG); Ca2^++/Calmodulin kinase (Ca2^++, CaM); cyclin-dependent kinase (cyclin); protein Tyr kinase (ligand for the receptor, such as insulin); MAPK (Raf); Raf (Ras); glycogen phosphorylase kinase (PKA).
13. G is remains in its activated form when the nonhydrolyzable analog is bound. The analog therefore prolongs the effect of epinephrine on the injected cell.

14. (a) Use the α-bungarotoxin-bound beads for affinity purification (see Fig. 3-17c, p. 87) of AChR. Extract proteins from the electric organs and pass the mixture through the chromatography column; the AChR binds selectively to the beads. Elute the AChR with a solute that weakens its interaction with α-bungarotoxin. (b) Use binding of [125I]α-bungarotoxin as a quantitative assay for AChR during purification by various techniques. At each step, assay AChR by measuring [125I]α-bungarotoxin binding to the proteins in the sample. Optimize purification for the highest specific activity of AChR (counts/min of bound [125I]α-bungarotoxin per mg of protein) in the final material.

15. (a) No; if were set by permeability to (primarily) K+, the Nernst equation would predict a of about –90 mV, not the observed –95 mV, so some other conductance must contribute to . (b) Chloride ion is probably the determinant of , the predicted is –94 mV.

16. (a) of the oocyte membrane changes from –60 mV to –10 mV—that is, the membrane is depolarized. (b) The effect of KCl depends on influx of Ca2+ from the extracellular medium.

17. Hyperpolarization results in the closing of voltage-dependent Ca2+ channels in the presynaptic region of the rod cell. The resulting increase in [Ca2+]in diminishes release of an inhibitory neurotransmitter that suppresses activity in the next neuron of the visual circuit. When this inhibition is removed in response to a light stimulus, the circuit becomes active and visual centers in the brain are excited.

18. (a) This would prevent influx of Na+ and Ca2+ into the cells in response to light; the cone cells would fail to signal the brain that light had been received. Because rod cells are unaffected, the individuals would be able to see but would not have color vision. (b) This would prevent efflux of K+, which would lead to depolarization of the β-cell membrane and constitutive release of insulin into the blood. (c) ATP is responsible for closing this channel, so the channels will remain open, preventing depolarization of the β-cell membrane and release of insulin.

19. Individuals with Oguchi’s disease might have a defect in rhodopsin kinase or in arrestin.

20. Rod cells would no longer show any change in membrane potential in response to light. This experiment has been done. Illumination did activate PDE, but the enzyme could not significantly reduce the 8-Br-cGMP level, which remained well above that needed to keep the gated ion channels open. Thus, light had no impact on membrane potential.

21. (a) On exposure to heat, TRPV1 channels open, causing an influx of Na+ and Ca2+ into the sensory neuron. This depolarizes the neuron, triggering an action potential. When the action potential reaches the axon terminus, neurotransmitter is released, signaling the nervous system that heat has been sensed. (b) Capsaicin mimics the effects of heat by opening TRPV1 at low temperature, leading to the false sensation of heat. The extremely low EC50 indicates that even very small amounts of capsaicin will have dramatic sensory effects. (c) At low levels, menthol should open the TRPM8 channel, leading to a sensation of cool; at higher levels, both TRPM8 and TRPV3 will open, leading to a mixed sensation of cool and heat, such as you may have experienced with very strong peppermints.

22. (a) These mutations might lead to permanent activation of the PGE2 receptor, leading to unregulated cell division and tumor formation. (b) The viral gene might encode a constitutively active form of the receptor, causing a constant signal for cell division and thus tumor formation. (c) E1A protein might bind to pRb and prevent E2F from binding, so E2F is constantly active and cells divide uncontrollably. (d) Lung cells do not normally respond to PGE2 because they do not express the PGE2 receptor; mutations resulting in a constitutively active PGE2 receptor do not affect lung cells.

23. A normal tumor suppressor gene encodes a protein that restrains cell division. A mutant form of the protein fails to suppress cell division, but if either of the two alleles encodes normal protein, normal function will continue. A normal oncogene encodes a regulator protein that triggers cell division, but only when an appropriate signal (growth factor) is present. The mutant version of the oncogene constantly sends the signal to divide, whether or not growth factors are present.

24. In a child who develops multiple tumors in both eyes, every retinal cell had a defective copy of the Rb gene at birth. Early in the child’s life, several cells independently undergo a second mutation that damages the one good Rb allele, producing a tumor. A child who develops a single tumor had, at birth, two good copies of the Rb gene in every cell; mutation in both Rb alleles in one cell (extremely rare) causes a single tumor.

25. Two cells expressing the same surface receptor may have different complements of target proteins for protein phosphorylation.

26. (a) The cell-based model, which predicts different receptors present on different cells. (b) This experiment addresses the issue of the independence of different taste sensations. Even though the receptors for sweet and/or umami are missing, the animals’ other taste sensations are normal; thus, pleasant and unpleasant taste sensations are independent. (c) Yes. Loss of either T1R1 or T1R3 subunits abolishes umami taste sensation. (d) Both models. With either model, removing one receptor would abolish that taste sensation. (e) Yes. Loss of either the T1R2 or T1R3 subunits almost completely abolishes the sweet taste sensation; complete elimination of sweet taste requires deletion of both subunits. (f) At very high sucrose concentrations, T1R2 and, to a lesser extent, T1R3 receptors, as homodimers, can detect sweet taste. (g) The results are consistent with either model of taste encoding, but do strengthen the researchers’ conclusions. Ligand binding can be completely separated from taste sensation. If the ligand for the receptor in “sweet-tasting cells” binds a molecule, mice prefer that molecule as a sweet compound.

Chapter 13

1. Consider the developing chick as the system; the nutrients, egg shell, and outside world are the surroundings. Transformation of the single cell into a chick drastically reduces the entropy of the system. Initially, the parts of the egg outside the embryo (the surroundings) contain complex fuel molecules (a low-entropy condition). During incubation, some of these complex molecules are converted to large numbers of CO2 and H2O molecules (high entropy). This increase in the entropy of the surroundings is larger than the decrease in entropy of the chick (the system).

2. (a) –4.8 kJ/mol (b) 7.56 kJ/mol (c) –13.7 kJ/mol

3. (a) 262 (b) 608 (c) 0.30

4. Keq = 21; ΔG° = –7.6 kJ/mol

5. –31 kJ/mol

6. (a) –1.68 kJ/mol (b) –4.4 kJ/mol (c) At a given temperature, the value of ΔG° for any reaction is fixed and is defined for standard conditions (here, both fructose 6-phosphate and glucose 6-phosphate at 1 M). In contrast, ΔG is a variable that can be calculated for any set of reactant and product concentrations.

7. ΔG° = 0; Keq = 1

8. Less. The overall equation for ATP hydrolysis can be approximated as

\[\text{ATP}^4^- + H_2O \rightarrow \text{ADP}^3^- + \text{HPO}_4^{2-} + H^+ \]
The mechanism is the same as that of the alcohol dehydrogenase mechanism, Fig 14-5, p 534); the second step is an aldol condensation (see Fig 13-4, p 497).

11. (a) 3.85 x 10^{-3} M^{-1}; [glucose 6-phosphate] = 8.9 x 10^{-3} M, no. (b) 14 M, because the maximum solubility of glucose is less than 1 M, this is not a reasonable step. (c) 837 (\Delta G^\circ = -16.7 kJ/mol); [glucose] = 1.2 x 10^{-7} M, yes. (d) No. This would require such high [P_i] that the phosphate salts of divalent cations would precipitate. (e) By directly transferring the phosphoryl group from ATP to glucose, the phosphoryl group transfer potential ("tendency" or "pressure") of ATP is utilized without generating high concentrations of intermediates. The essential part of this transfer is, of course, the enzymatic catalysis.

12. (a) -12.5 kJ/mol (b) -14.6 kJ/mol
13. (a) 3 x 10^{-3} (b) 68.7 (c) 7.4 x 10^{4}
14. -13 kJ/mol
15. 46.7 kJ/mol
16. Isomerization moves the carbonyl group from C-1 to C-2, setting up a carbon-carbon bond cleavage between C-3 and C-4. Without isomerization, bond cleavage would occur between C-2 and C-3, generating one two-carbon and one four-carbon compound.

17. The mechanism is the same as that of the alcohol dehydrogenase reaction (Fig. 14-13, p 547).

18. The first step is the reverse of an aldol condensation (see the aldolase mechanism, Fig. 14-4, p. 534); the second step is an aldol condensation (see Fig. 13-3, p 497).

19. (a) 46 kJ/mol (b) 46 kJ; 68% (c) ATP is synthesized as it is needed, then broken down to ADP and P_i; its concentration is maintained in a steady state.

20. The ATP system is in a dynamic steady state; [ATP] remains constant because the rate of ATP consumption equals its rate of synthesis. ATP consumption involves release of the terminal (\gamma) phosphoryl group; synthesis of ATP from ADP involves replacement of this phosphoryl group. Hence the terminal phosphate undergoes rapid turnover. In contrast, the central (\beta) phosphate undergoes only relatively slow turnover.

21. (a) 1.7 kJ/mol (b) Inorganic pyrophosphatase catalyzes the hydrolysis of pyrophosphate and drives the net reaction toward the synthesis of acetyl-CoA.

22. 36 kJ/mol

\[\Delta G \] for ATP hydrolysis is lower when \([\text{ATP}] / [\text{ADP}] \) is low (< 1) than when \([\text{ATP}] / [\text{ADP}] \) is high. The energy available to the cell from a given \([\text{ATP}] / [\text{ADP}] \) is lower when the \([\text{ATP}] / [\text{ADP}] \) ratio falls and greater when it rises.

23. (a) NAD^+ / NADH (b) Pyruvate lactate (c) Lactate formation
 (d) -26.1 kJ/mol (e) 3.65 x 10^{-4}
24. (a) 1.14 V (b) ~220 kJ/mol (c) ~4
25. (a) -0.35 V (b) -0.320 V (c) -0.29 V
26. In order of increasing tendency: (a), (d), (b), (c)
27. (e) and (d)

28. (a) The lowest-energy, highest-entropy state occurs when the dye concentration is the same in both cells. If a "fish trap" gap junction allows unidirectional transport, more of the dye would end up in the oligodendrocyte and less in the astrocyte. This would be a higher-energy, lower-entropy state than the starting state, violating the second law of thermodynamics. Robinson et al.'s model requires an impossible spontaneous decrease in entropy. In terms of energy, the model entails a spontaneous change from a lower-energy to a higher-energy state without an energy input—again, thermodynamically impossible. (b) Molecules, unlike fish, do not exhibit directed behavior; they move randomly by Brownian motion. Diffusion results in net movement of molecules from a region of lower concentration to a region of lower concentration simply because it is more likely that a molecule on the high-concentration side will enter the connecting channel. Look at this as a pathway with a rate-limiting step: the narrow end of the channel. The narrower end limits the rate at which molecules pass through because random motion of the molecules is less likely to move them through the smaller cross section. The wide end of the channel does not act like a funnel for molecules, although it may for fish, because molecules are not "crowded" by the sides of the narrowing funnel as fish would be. The narrower end limits the rate of movement equally in both directions. When the concentrations on both sides are equal, the rates of movement in both directions are equal and there will be no change in concentration. (c) Fish exhibit nonrandom behavior, adjusting their actions in response to the environment, Fish that enter the large opening of the channel tend to move forward because fish have behavior that tends to make them prefer forward movement, and they experience "crowding" as they move through the narrowing channel. It is easy for fish to enter the large opening, but they don't move out of the trap as readily because they are less likely to enter the small opening. (d) There are many possible explanations, some of which were proposed by the letter-writers who criticized the article. Here are two.
 (1) The dye could bind to a molecule in the oligodendrocyte. Binding effectively removes the dye from the bulk solvent, so it doesn't "count" as a solute for thermodynamic considerations yet remains visible in the fluorescence microscope.
 (2) The dye could be sequestered in a subcellular organelle of the oligodendrocyte, either actively pumped at the expense of ATP or drawn in by its attraction to other molecules in that organelle.
5. \(-8.6 \text{ kJ/mol}\)

6. (a) \(^{14}\text{C} \text{CH}_3\text{CH}_2\text{OH}\) (b) \(^{3-14}\text{C}\text{glucose or } [4-14]\text{C}\text{glucose}

7. Fermentation releases energy, some conserved in the form of ATP but much of it dissipated as heat. Unless the fermenter contents are cooled, the temperature would become high enough to kill the microorganisms.

8. Soybeans and wheat contain starch, a polymer of glucose. The microorganisms break down starch to glucose, glucose to pyruvate via glycolysis, and — because the process is carried out in the absence of \(O_2\) (i.e., it is a fermentation) — pyruvate to lactic acid and ethanol. If \(O_2\) were present, pyruvate would be oxidized to acetyl-CoA, then to \(CO_2\) and \(H_2O\). Some of the acetyl-CoA, however, would also be hydrolyzed to acetic acid (vinaigre) in the presence of oxygen.

9. C-1. This experiment demonstrates the reversibility of the aldolase reaction. The C-1 of glyceraldehyde 3-phosphate is equivalent to C-4 of fructose 1,6-bisphosphate (see Fig. 14-6). The starting glyceraldehyde 3-phosphate must have been labeled at C-1. The C-3 of dihydroyxacetone phosphate becomes labeled through the triose phosphate isomerase reaction, thus giving rise to fructose 1,6-bisphosphate labeled at C-3.

10. No. There would be no anaerobic production of ATP; aerobic ATP production would be diminished only slightly.

11. No. Lactate dehydrogenase is required to recycle \(NAD^+\) from the NADH formed during the oxidation of glyceraldehyde 3-phosphate.

12. The transformation of glucose to lactate occurs when myocytes are low in oxygen, and it provides a means of generating ATP under \(O_2\)-deficient conditions. Because lactate can be oxidized to pyruvate, glucose is not wasted; pyruvate is oxidized by aerobic reactions when \(O_2\) becomes plentiful. This metabolic flexibility gives the organism a greater capacity to adapt to its environment.

13. It rapidly removes the 1,3-bisphosphoglycerate in a favorable subsequent step, catalyzed by phosphoglycerate kinase.

14. (a) 3-Phosphoglycerate is the product. (b) In the presence of arsenate there is no net ATP synthesis under anaerobic conditions.

15. (a) Ethanol fermentation requires 2 \(\text{mol} \text{ of } \text{P}_1\) per mole of glucose. (b) Ethanol is the reduced product formed during reoxidation of \(\text{NADH} \to \text{NAD}^+\), and \(\text{CO}_2\) is the byproduct of the conversion of pyruvate to ethanol. Yes; pyruvate must be converted to ethanol, to produce a continuous supply of \(\text{NAD}^+\) for the oxidation of glyceraldehyde 3-phosphate. Fructose 1,6-bisphosphate accumulates; it is formed as an intermediate in glycolysis. (c) Arsenate replaces \(\text{P}_1\) in the glyceraldehyde 3-phosphate dehydrogenase reaction to yield an acyl arsenate, which spontaneously hydrolyzes. This prevents formation of ATP, but 3-phosphoglycerate continues through the pathway.

16. Dietary niacin is used to synthesize \(\text{NAD}^+\). Oxidations carried out by \(\text{NAD}^+\) are part of cyclic processes, with \(\text{NAD}^+\) as electron carrier (reducing agent); one molecule of \(\text{NAD}^+\) can oxidize many thousands of molecules of glucose, and thus the dietary requirement for the precursor vitamin (niacin) is relatively small.

17. Dihydroyxacetone phosphate + \(\text{NADH} + H^+ \to \text{Glycerol 3-phosphate} + \text{NAD}^+ \) (catalyzed by a dehydrogenase)

18. Galactokinase deficiency: galactose (less toxic); UDP-glucose: galactose-1-phosphate uridyl transferase deficiency: galactose-1-phosphate (more toxic).

19. The proteins are degraded to amino acids and used for gluconeogenesis.

20. (a) In the pyruvate carboxylase reaction, \(^{14}\text{C} \text{CO}_2\) is added to pyruvate, but PEP carboxykinase removes the same \(\text{CO}_2\) in the next step. Thus, \(^{14}\text{C}\) is not (initially) incorporated into glucose.

21. 4 ATP equivalents per glucose molecule

22. Gluconeogenesis would be highly endergonic, and it would be impossible to separately regulate gluconeogenesis and glycolysis.

23. The cell "spends" 1 ATP and 1 GTP in converting pyruvate to PEP.

24. (a), (b), (d) are glucogenic; (c) (e) are not.

25. Consumption of alcohol forces competition for \(\text{NAD}^+\) between ethanol metabolism and gluconeogenesis. The problem is compounded by strenuous exercise and lack of food, because at these times the level of blood glucose is already low.

26. (a) The rapid increase in glycolysis; the rise in pyruvate and \(\text{NADH}\) results in a rise in lactate. (b) Lactate is transformed to glucose via pyruvate; this is a slower process, because formation of pyruvate is limited by \(\text{NAD}^+\) availability, the LDH equilibrium is in favor of lactate, and conversion of pyruvate to glucose is energy-requiring. (c) The equilibrium for the LDH reaction is in favor of lactate formation.

27. Lactate is transformed to glucose in the liver by gluconeogenesis (see Figs 14-15, 14-16). A defect in FBPase-1 would prevent entry of lactate into the gluconeogenic pathway in hepatocytes, causing lactate to accumulate in the blood.

28. Succinate is transformed to oxaloacetate, which passes into the cytosol and is converted to PEP by PEP carboxykinase. Two moles of PEP are then required to produce a mole of glucose by the route outlined in Figure 14-16.

29. If the catabolic and anabolic pathways of glucose metabolism are operating simultaneously, futile cycling of ATP occurs, with extra \(O_2\) consumption.

30. At the very least, accumulation of ribose 5-phosphate would tend to force this reaction in the reverse direction by mass action (see
31. (a) Ethanol tolerance is likely to involve many more genes, and thus the engineering would be a much more involved project. (b) L-Arabino isomerase (the araA enzyme) converts an aldose to a ketose by moving the carbonyl of a nonphosphorylated sugar from C-1 to C-2. No analogous enzyme is discussed in this chapter; all the enzymes described here act on phosphorylated sugars. An enzyme that carries out a similar transformation with phosphorylated sugars is phosphohexose isomerase. L-Ribulokinase (araB) phosphorlylates a sugar at C-5 by transferring the γ-phosphate from ATP. Many such reactions are described in this chapter, including the hexokinase reaction. L-Ribulose 5-phosphate epimerase (araE) switches the —H and —OH groups on a chiral carbon of a sugar. No analogous reaction is described in the chapter, but it is described in Chapter 20 (see Fig. 20-1, p. 774). (c) The three ara enzymes would convert arabinose to xylulose 5-phosphate by the following pathway: Arabinos -> arabino isomerase, L-ribulose 5-phosphate epimerase, xylose 5-phosphate. (d) The arabinose is converted to xylulose 5-phosphate as in (c), which enters the pathway in Fig. 14-22; the glucose 6-phosphate product is then fermented to ethanol and CO₂. (e) 6 molecules of arabinose + 6 molecules of ATP are converted to 6 molecules of xylulose 5-phosphate, which feed into the pathway in Fig. 14-22 to yield 5 molecules of glucose 6-phosphate, each of which is fermented to yield 3 ATP (they enter as glucose 6-phosphate, not glucose)—15 ATP in all. Overall, you would expect a yield of 15 ATP - 6 ATP = 9 ATP from the 6 arabinose molecules. The other products are 10 molecules of ethanol and 10 molecules of CO₂. (f) Given the lower ATP yield, for an amount of growth (i.e., of available ATP) equivalent to growth without the added genes the engineered Z. mobilis must ferment more arabinose, and thus it produces more ethanol. (g) One way to allow the use of xylose would be to add the genes for two enzymes: an analog of the araA enzyme that converts xylose to ribose by switching the —H and —OH on C-3, and an analog of the araE enzyme that phosphorylates ribose at C-5. The resulting ribose 5-phosphate would feed into the existing pathway.

Chapter 15

1. (a) 0.0293 (b) 308 (c) No. Q is much lower than K_{eq}^*, indicating that the PFK-1 reaction is far from equilibrium in cells; this reaction is slower than the subsequent reactions in glycolysis. Flux through the glycolytic pathway is largely determined by the activity of PFK-1.

2. (a) 1.4×10^{-6} M (b) The physiological concentration (0.023 mM) is 16,000 times the equilibrium concentration; this reaction does not reach equilibrium in the cell. Many reactions in the cell are not at equilibrium.

3. In the absence of Q, the ATP needs are met by anaerobic glucose metabolism (fermentation to lactate). Because aerobic oxidation of glucose produces far more ATP than does fermentation, less glucose is needed to produce the same amount of ATP.

4. There are two binding sites for ATP: a catalytic site and a regulatory site. Binding of ATP to a regulatory site inhibits PFK-1, by reducing V_{max} or increasing K_{eq} for ATP at the catalytic site. (b) Glycolytic flux is reduced when ATP is plentiful. (c) The graph indicates that increased [ADP] suppresses the inhibition by ATP. Because the adenine nucleotide pool is fairly constant, consumption of ATP leads to an increase in [ADP]. The data show that the activity of PFK-1 may be regulated by the [ATP]/[ADP] ratio.

5. The phosphate group of glucose 6-phosphate is completely ionized at pH 7, giving the molecule an overall negative charge. Because membranes are generally impermeable to electrically charged molecules, glucose 6-phosphate cannot pass from the bloodstream into cells and hence cannot enter the glycolytic pathway and generate ATP. (This is why glucose, once phosphorylated, cannot escape from the cell.)

6. (a) In muscle: glycolysis breakdown supplies energy (ATP) via glycolysis. Glycogen phosphorylase catalyzes the conversion of stored glycogen to glucose 1-phosphate, which is converted to glucose 6-phosphate, an intermediate in glycolysis. During strenuous activity, skeletal muscle requires large quantities of glucose 6-phosphate. In the liver: glycogen breakdown maintains a steady level of blood glucose between meals (glucose 6-phosphate is converted to free glucose). (b) In actively working muscle, ATP flux requirements are very high and glucose 1-phosphate must be produced rapidly, requiring a high V_{max}.

7. (a) [P]/[glucose 1-phosphate] = 3.3/1 (b) and (c) The value of this ratio in the cell (>100:1) indicates that [glucose 1-phosphate] is far below the equilibrium value. The rate at which glucose 1-phosphate is removed (through entry into glycolysis) is greater than its rate of production (by the glycogen phosphorylase reaction), so metabolite flow is from glycogen to glucose 1-phosphate. The glycogen phosphorylase reaction is probably the regulatory step in glycogen breakdown.

8. (a) Increases (b) Decreases (c) Increases

9. Resting: [ATP] high; [AMP] low; [acetyl-CoA] and [citrate] intermediate. Running: [ATP] intermediate; [AMP] high; [acetyl-CoA] and [citrate] low. Glucose flux through glycolysis increases during the anaerobic sprint because (1) the ATP inhibition of glycogen phosphorylase and PFK-1 is partially relieved, (2) AMP stimulates both enzymes, and (3) lower citrate and acetyl-CoA levels relieve their inhibitory effects on PFK-1 and pyruvate kinase, respectively.

10. The migrating bird relies on the highly efficient aerobic oxidation of fats, rather than the anaerobic metabolism of glucose used by a sprinting rabbit. The bird reserves its muscle glycogen for short bursts of energy during emergencies.

11. Case A: (f), (3); Case B: (c), (3); Case C: (h), (4); Case D: (d), (6)

12. (a) Adipose: fatty acid synthesis slower. (2) Muscle: glycolysis, fatty acid synthesis, and glycogen synthesis slower. (3) Liver: glycolysis faster; gluconeogenesis, glycogen synthesis, and fatty acid synthesis slower; pentose phosphate pathway unchanged. (b) Adipose and (3) liver: fatty acid synthesis slower because lack of insulin results in inactive acetyl-CoA carboxylase, the first enzyme of fatty acid synthesis. Glycogen synthesis inhibited by cAMP-dependent phosphorylation (thus activation) of glycogen synthase. (2) Muscle: glycolysis slower because GLUT4 is inactive, so glucose uptake is inhibited. (3) Liver: glycolysis slower because the bifunctional PFK-2/FBPase-2 is converted to the form with active FBPase-2, decreasing [fructose 2,6-bisphosphate], which allosterically stimulates phosphofructokinase and inhibits FBPase-1; this also accounts for the stimulation of gluconeogenesis.

13. (a) Elevated (b) Elevated (c) Elevated

14. (a) PFK cannot be activated in response to glucacon or epinephrine, and glycogen phosphorylase is not activated. (b) PP1 remains active, allowing it to dephosphorylate glycogen synthase (activating it) and glycogen phosphorylase (inhibiting it). (c) Phosphorylase remains phosphorylated (active), increasing the breakdown of glycogen. (d) Gluconeogenesis cannot be stimulated when blood glucose is low, leading to dangerously low blood glucose during periods of fasting.

15. The drop in blood glucose triggers release of glucagon by the pancreas. In the liver, glucagon activates glycogen phosphorylase by stimulating its cAMP-dependent phosphorylation and stimulates gluconeogenesis by lowering [fructose 2,6-bisphosphate], thus stimulating FBPase-1.
16. (a) Reduced capacity to mobilize glycogen; lowered blood glucose between meals (b) Reduced capacity to lower blood glucose after a carbohydrate meal; elevated blood glucose
(c) Reduced fructose 2,6-bisphosphate (F26BP) in liver, stimulating glycolysis and inhibiting gluconeogenesis (d) Reduced F26BP, stimulating gluconeogenesis and inhibiting glycolysis (e) Increased uptake of fatty acids and glucose; increased oxidation of both (f) Increased conversion of pyruvate to acetyl-CoA; increased fatty acid synthesis.

17. (a) Given that each particle contains about 55,000 glucose residues, the equivalent free glucose concentration would be 55,000 x 0.01μM = 550 mM, or 0.55 M. This would present a serious osmotic challenge for the cell (Body fluids have a substantially lower osmolality.) (b) The lower the number of branches, the lower the number of free ends available for glycogen phosphorolysis activity, and the slower the rate of glucose release. With no branches, there would be just one site for phosphorolysis to act. (c) The outer tier of the particle would be too crowded with glucose residues for the enzyme to gain access to cleave bonds and release glucose. (d) The number of chains doubles in each succeeding tier; tier 1 has one chain (2⁰), tier 2 has two (2¹), tier 3 has four (2²), and so on. Thus, for t tiers, the number of chains in the outermost tier, Cₜ, is 2tg. (e) The total number of chains is 2⁰ + 2¹ + 2² + ... + 2tg-1 = 2t - 1. Each chain contains gc glucose molecules, so the total number of glucose molecules, Cₜgc, is gc(2t - 1). (f) Glycogen phosphorylase can release all but four of the glucose residues in a chain of length gc. Therefore, from each chain in the outer tier it can release (gc - 4) glucose molecules. Given that there are 2t-1 chains in the outer tier, the number of glucose molecules the enzyme can release, gₜgc, is (gc - 4)(2t - 1).

The optimum value of gc, (i.e., at maximum f) is 13. In nature, gc varies from 12 to 14, which corresponds to f values very close to the optimum. If you choose another value for t, the numbers will differ but the optimal gc will still be 13.

Chapter 16

1. (a)

1. Citrate synthase:
Acetyl-CoA + oxaloacetate + H₂O → citrate + CoA

2. Aconitase:
Citrate → isocitrate

2. Isocitrate dehydrogenase:
Isocitrate + NAD⁺ → α-ketoglutarate + CO₂ + NADH

3. α-Ketoglutarate dehydrogenase:
α-Ketoglutarate + NAD⁺ + CoA → succinyl-CoA + CO₂ + NADH

4. Succinyl-CoA synthetase:
Succinyl-CoA + Pₐ + GDP → succinate + CoA + GTP

5. Succinate dehydrogenase:
Succinate + FAD → fumarate + FADH₂

6. Fumarase:
Fumarate + H₂O → malate

7. Malate dehydrogenase:
Malate + NAD⁺ → oxaloacetate + NADH + H⁺

8. Oxygen consumption is a measure of the activity of the first two stages of cellular respiration: glycolysis and the citric acid cycle. The addition of oxaloacetate or malate stimulates the citric acid cycle and thus stimulates respiration. The added oxaloacetate or malate serves a catalytic role, because it is regenerated in the latter part of the citric acid cycle.

10. (a) 5.6 x 10⁻⁶ M (b) 1.1 x 10⁻⁶ M (c) 28 molecules

11. ADP (or GDP), Pₐ, CoA-SH, TPF, NAD⁺; not lipoic acid, which is covalently attached to the isolated enzymes that use it

12. The flavin nucleotides, FAD, FMN, would not be synthesized. Because FAD is required in the citric acid cycle, flavin deficiency would strongly inhibit the cycle.
13. Oxaloacetate might be withdrawn for aspartate synthesis or for gluconeogenesis. Oxaloacetate is replenished by the anaplerotic reactions catalyzed by PEP carboxykinase, PEP carboxylase, malic enzyme, or pyruvate carboxylase (see Fig. 16-15, p. 632).

14. The terminal phosphoryl group in GTP can be transferred to ADP in a reaction catalyzed by nucleoside diphosphate kinase, with an equilibrium constant of 1.0. GTP + ADP → GDP + ATP

15. (a) "OOC-CHr-CH2-COO" (succinate) (b) Malonate is a competitive inhibitor of succinate dehydrogenase. (c) A block in the citric acid cycle stops NADH formation, which stops electron transfer, which stops respiration. (d) A large excess of succinate (substrate) overcomes the competitive inhibition.

16. (a) Add uniformly labeled $[14C]$glucose and check for the release of $^{14}CO_2$. (b) Equally distributed in C-2 and C-3 of oxaloacetate; an infinite number

17. Oxaloacetate equilibrates with succinate, in which C-1 and C-4 are equivalent. Oxaloacetate derived from succinate is labeled at C-1 and C-4, and the PEP derived from it has label at C-1, which gives rise to C-3 and C-4 of glucose.

18. (a) C-1 (b) C-3 (c) C-3 (d) C-2 (methyl group) (e) C-4 (f) C-4 (g) Equally distributed in C-2 and C-3

19. Thiamine is required for the synthesis of TPP, a prosthetic group of the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes. A thiamine deficiency reduces the activity of these enzymes and causes the observed accumulation of precursors.

20. No. For every two carbons that enter as acetate, two离开 the cycle as CO2; thus there is net synthesis of oxaloacetate. Net synthesis of oxaloacetate occurs by the carboxylation of pyruvate, an anaplerotic reaction.

21. Yes, the citric acid cycle would be inhibited. Oxaloacetate is present at relatively low concentrations in mitochondria, and removing it for gluconeogenesis would tend to shift the equilibrium for the citrate synthase reaction toward oxaloacetate.

22. (a) Inhibition of aconitase (b) Fluorocitrate: competes with citrate; by a large excess of citrate (c) Citrate and fluorocitrate are inhibitors of PFK-1. (d) All catabolic processes necessary for ATP production are shut down.

23. Glycolysis:

 Glucose + 2P$_i$ + 2ADP + 2NAD$^+$ →

 2 pyruvate + 2ATP + 2NADH + 2H$^+$ + 2H$_2$O

Pyruvate carboxylase reaction:

 2 Pyruvate + 2CO$_2$ + 2ATP + 2H$_2$O →

 2 oxaloacetate + 2ADP + 2P$_i$ + 4H$^+$

Malate dehydrogenase reaction:

 2 Oxaloacetate + 2NADH + 2H$^+$ → 2 l-malate + 2NAD$^+$

This recycles nicotinamide coenzymes under anaerobic conditions. The overall reaction is:

 Glucose + 2CO$_2$ → 2 l-malate + 4H$^+$

 This produces four H$^+$ per glucose, increasing the acidity and thus the tartness of the wine.

24. Net reaction: 2 Pyruvate + ATP + 2NAD$^+$ + H$_2$O →

 α-ketoglutarate + CO$_2$ + ADP + P$_i$ + 2NADH + 3H$^+$

25. The cycle participates in catabolic and anabolic processes. For example, it generates ATP by substrate oxidation, but also provides precursors for amino acid synthesis (see Fig. 16-15, p. 632).

26. (a) Decreases (b) Increases (c) Decreases

27. (a) Citrate is produced through the action of citrate synthase on oxaloacetate and acetyl-CoA. Citrate synthase can be used for net synthesis of citrate when (1) there is a continuous influx of new oxaloacetate and acetyl-CoA and (2) isocitrate synthesis is restricted, as in a medium low in Fe$^{3+}$. Aconitase requires Fe$^{3+}$, so an Fe$^{3+}$-restricted medium restricts the synthesis of aconitate.

(b) Succinate + H$_2$O → glucose + fructose

Glucose + 2P$_i$ + 2ADP + 2NAD$^+$ →

 2 pyruvate + 2ATP + 2NADH + 2H$^+$ + 2H$_2$O

Fructose + 2P$_i$ + 2ADP + 2NAD$^+$ →

 2 pyruvate + 2ATP + 2NADH + 2H$^+$ + 2H$_2$O

2 Pyruvate + 2NAD$^+$ + 2CO$_2$ →

 2 acetyl-CoA + 2NADH + 2H$^+$ + 2CO$_2$

2 Pyruvate + 2CO$_2$ + 2ATP + 2H$_2$O →

 2 oxaloacetate + 2ADP + 2P$_i$ + 4H$^+$

2 Acetyl-CoA + 2 oxaloacetate + 2H$_2$O → 2 citrate + 2CO$_2$

 The overall reaction is:

 Succinate + H$_2$O + 2P$_i$ + 2ADP + 6NAD$^+$ →

 2 citrate + 2ATP + 6NADH + 10H$^+$

(c) The overall reaction consumes NAD+. Because the cellular pool of this oxidized coenzyme is limited, it must be recycled by the electron-transfer chain with consumption of O$_2$. Consequently, the overall conversion of succrose to citric acid is an aerobic process and requires molecular oxygen.

28. Succinyl-CoA is an intermediate of the citric acid cycle; its accumulation signals reduced flux through the cycle, calling for reduced entry of acetyl-CoA into the cycle. Citrate synthase, by regulating the primary oxidative pathway of the cell, regulates the supply of NADH and thus the flow of electrons from NADH to O$_2$.

29. Fatty acid catabolism increases [acetyl-CoA], which stimulates pyruvate carboxylase. The resulting increase in [oxaloacetate] stimulates acetyl-CoA consumption by the citric acid cycle, and [citrate] rises, inhibiting glycolysis at the level of PFK-1. In addition, increased [acetyl-CoA] inhibits the pyruvate dehydrogenase complex, slowing the utilization of pyruvate from glycolysis.

30. Oxygen is needed to recycle NAD$^+$ from the NADH produced by the oxidative reactions of the citric acid cycle. Reoxidation of NADH occurs during mitochondrial oxidative phosphorylation.

31. Increased [NADH]/[NAD$^+$] inhibits the citric acid cycle by mass action at the three NAD$^+$-reducing steps; high [NADH] shifts equilibrium toward NAD$^+$.

32. Toward citrate; ΔG for the citrate synthase reaction under these conditions is about ~ −8 kJ/mol.

33. Steps ④ and ⑤ are essential in the reoxidation of the enzyme’s reduced lipidanide cofactor.

34. The citric acid cycle is so central to metabolism that a serious defect in any cycle enzyme would probably be lethal to the embryo.

35. The first enzyme in each path is under reciprocal allosteric regulation. Inhibition of one path shunts isocitrate into the other path.

36. (a) The only reaction in muscle tissue that consumes significant amounts of oxygen is cellular respiration, so O$_2$ consumption is a good proxy for respiration. (b) Freshly prepared muscle tissue contains some residual glucose; O$_2$ consumption is due to oxidation of this glucose. (c) Yes. Because the amount of O$_2$ consumed increased when citrate or l-phosphoglycerol was added, both can serve as substrate for cellular respiration in this system. (d) Experiment I: citrate is causing much more O$_2$ consumption than would be expected from its complete oxidation. Each molecule of citrate seems to be acting as though it were more than one molecule. The only possible explanation is that each molecule of citrate functions more than once in the reaction—which is how a catalyst operates. Experiment II: the key is to calculate the excess O$_2$ consumed by each sample compared with the control (sample 1).
Abbreviated Solutions to Problems

<table>
<thead>
<tr>
<th>Sample</th>
<th>Substrate(s) added</th>
<th>μL O₂ absorbed</th>
<th>Excess μL O₂ consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No extra</td>
<td>342</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.3 mL 0.2 m 1-phosphoglycerol</td>
<td>757</td>
<td>415</td>
</tr>
<tr>
<td>3</td>
<td>0.15 mL 0.02 m citrate</td>
<td>431</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>0.3 mL 0.2 m 1-phosphoglycerol + 0.15 mL 0.02 m citrate</td>
<td>1,385</td>
<td>1,043</td>
</tr>
</tbody>
</table>

If both citrate and 1-phosphoglycerol were simply substrates for the reaction, you would expect the excess O₂ consumption by sample 4 to be the sum of the individual excess consumptions by samples 2 and 3 (415 μL + 89 μL = 504 μL). However, the excess consumption when both substrates are present is roughly twice this amount (1,049 μL). Thus citrate increases the ability of the tissue to metabolize 1-phosphoglycerol. This behavior is typical of a catalyst. Both experiments (1 and II) are required to make this case convincing. Based on experiment I only, citrate is somehow accelerating the reaction, but it is not clear whether it acts by helping substrate metabolism or by some other mechanism. Based on experiment II only, it is not clear which molecule is the catalyst, citrate or 1-phosphoglycerol. Together, the experiments show that citrate is acting as a catalyst for the oxidation of 1-phosphoglycerol. Given that the pathway can consume citrate (see sample 3), if citrate is to act as a catalyst it must be regenerated. If the sequence of reactions is not to regenerate citrate, it must be a circular rather than a linear pathway. When the pathway is blocked at α-ketoglutarate dehydrogenase, citrate is converted to α-ketoglutarate but the pathway goes no further. Oxygen is consumed by reoxidation of the NADH produced by isocitrate dehydrogenase.

This differs from Fig. 16-7 in that it does not include cis-aconitate and isocitrate (between citrate and α-ketoglutarate), or succinyl-CoA, or acetyl-CoA. Establishing a quantitative conversion was essential to rule out a branched or other, more complex pathway.

Chapter 17

1. The fatty acid portion; the carbons in fatty acids are more reduced than those in glycerol.
2. (a) 4.0 x 10⁶ kJ (9.6 x 10⁶ kcal) (b) 48 days (c) 0.48 lb/day
3. The first step in fatty acid oxidation is analogous to the conversion of succinate to fumarate; the second step, to the conversion of fumarate to malate; the third step, to the conversion of malate to oxaloacetate.
4. 7 cycles; the last releases 2 acetyl-CoA.
5. (a) R—COO⁻ + ATP = acyl-AMP + PP₃
 Acyl-AMP + CoA = acyl-CoA + AMP
 (b) Irreversible hydrolysis of PP₃ to P₂P by cellular inorganic pyrophosphatase
6. cis-Δ⁴-dodecanoyl-CoA; it is converted to cis-Δ²-dodecanoyl-CoA, then β-hydroxydodecanoyl-CoA.
7. 4 acetyl-CoA and 1 propionyl-CoA
8. Yes, some of the tritium is removed from palmitate during the dehydrogenation reactions of β oxidation. The removed tritium appears as tritiated water.
9. Fatty acyl groups condensed with CoA in the cytosol are first transferred to carnitine, releasing CoA, then transported into the mitochondrion, where they are then condensed with CoA. The cytosolic and mitochondrial pools of CoA are thus kept separate, and no radioactive CoA from the cytosolic pool enters the mitochondrion.
10. (a) In the pigeon, β oxidation predominates; in the pheasant, anaerobic glycolysis of glycogen predominates. (b) Pigeon muscle would consume more O₂ (c) Fat contains more energy per gram than glycogen does. In addition, the anaerobic breakdown of glycogen is limited by the tissue's tolerance to lactate buildup. Thus the pigeon, operating on the oxidative catabolism of fats, is the long-distance flyer. (d) These enzymes are the regulatory enzymes of their respective pathways and thus limit ATP production rates.
11. Malonyl-CoA would no longer inhibit fatty acid entry into the mitochondrion and β oxidation, so there might be a futile cycle of simultaneous fatty acid synthesis in the cytosol and fatty acid breakdown in mitochondria.
12. (a) The carnitine-mediated entry of fatty acids into mitochondria is the rate-limiting step in fatty acid oxidation. Carnitine deficiency slows fatty acid oxidation; added carnitine increases the rate. (b) All increase the metabolic need for fatty acid oxidation. (c) Carnitine deficiency might result from a deficiency of lysine, its precursor, or from a defect in one of the enzymes in the biosynthesis of carnitine.
13. Oxidation of fats releases metabolic water; 1.4 L of water per kg of tripalmitoylglycerol (ignores the small contribution of glycerol to the mass)
14. The bacteria can be used to completely oxidize hydrocarbons to CO₂ and H₂O. However, contact between hydrocarbons and bacterial enzymes may be difficult to achieve. Bacterial nutrients such as nitrogen and phosphorus may be limiting and inhibit growth.
15. (a) Mₖ 136; phenylacetic acid (b) Even
16. Because the mitochondrial pool of CoA is small, CoA must be recycled from acetyl-CoA via the formation of ketone bodies. This allows the operation of the β-oxidation pathway, necessary for energy production.
17. (a) Glucose yields pyruvate via glycolysis, and pyruvate is the main source of oxaloacetate. Without glucose in the diet, [oxaloacetate] drops and the citric acid cycle slows. (b) Odd-numbered; propionate conversion to succinyl-CoA provides intermediates for the citric acid cycle and four-carbon precursors for gluconeogenesis.
18. For the odd-chain heptanoic acid, β oxidation produces propionyl-CoA, which can be converted in several steps to oxaloacetate, a starting material for gluconeogenesis. The even-chain fatty acid cannot support gluconeogenesis, because it is entirely oxidized to acetyl-CoA.
19. β Oxidation of α-fluorooleate forms fluorooctyl-CoA, which enters the citric acid cycle and produces fluorocitrate, a powerful inhibitor of aconitase. Inhibition of aconitase shuts down the citric acid cycle. Without reducing equivalents from the citric acid cycle, oxidative phosphorylation (ATP synthesis) is fatally slowed.
20. Ser to Ala: blocks β oxidation in mitochondria. Ser to Asp: blocks oxidative phosphorylation (ATP synthesis) is fatally slowed.
21. Response to glucagon or epinephrine would be prolonged, giving a greater mobilization of fatty acids in adipocytes.
22. Enz-FAD, having a more positive standard reduction potential, is a better electron acceptor than NAD⁺, and the reaction is driven in the direction of fatty acyl-CoA oxidation. This more favorable equilibrium is obtained at the cost of 1 ATP; only 1.5 ATP are produced per FADH₂ oxidized in the respiratory chain (vs. 2.5 per NADH).
23. 9 turns; arachidic acid, a 20-carbon saturated fatty acid, yields 10 molecules of acetyl-CoA, the last two formed in the ninth turn.
24. See Fig. 17-11. [3-14C]Succinyl-CoA is formed, which gives rise to oxaloacetate labeled at C-2 and C-3.

25. Phytanic acid → pristanic acid → propionyl-CoA → succinyl-CoA → succinate → fumarate → malate. All malate carbons would be labeled, but C-1 and C-4 would have only half as much label as C-2 and C-3.

26. ATP hydrolysis in the energy-requiring reactions of a cell takes up water in the reaction ATP + H₂O → ADP + Pᵢ. Thus, in the steady state, there is no net production of H₂O.

27. Methylmalonyl-CoA mutase requires the cobalt-containing cofactor from vitamin B₁₂.

28. Mass lost per day is about 0.66 kg, or about 140 kg in 7 months. Ketosis could be avoided by degradation of non-essential body proteins to supply amino acid skeletons for gluconeogenesis.

29. (a) Fatty acids are converted to their CoA derivatives by enzymes in the cytoplasm; the acetyl-CoAs are then imported into mitochondria for oxidation. Given that the researchers were using isolated mitochondria, they had to use CoA derivatives. (b) Stearoyl-CoA was rapidly converted to 3-O-acetyl-CoA in the B-oxidation pathway. All intermediates reacted rapidly and none were detectable at significant levels. (c) Two rounds. Each round removes two carbon atoms, thus two rounds convert an 18-carbon to a 14-carbon fatty acid and 2 acetyl-CoA. (d) The Kᵢ for the trans isomer is higher than for the cis, so a higher concentration of trans isomer is required for the same rate of breakdown. Roughly speaking, the trans isomer binds less well than the cis, probably because differences in shape, even though not at the target site for the enzyme, affect substrate binding to the enzyme. (e) The substrate for LCAD/VLCAD builds up differently, depending on the particular substrate; this is expected for the rate-limiting step in a pathway. (f) The kinetic parameters show that the trans isomer is a poorer substrate than the cis for LCAD, but there is little difference for VLCAD. Because it is a poorer substrate, the trans isomer accumulates to higher levels than the cis. (g) One possible pathway is shown below (indicating “inside” and “outside” mitochondria).

\[\text{Elaidoyl-CoA (outside)} \xrightarrow{\text{enzymes as shown}} \text{elaidoyl-carnitine (outside)} \xrightarrow{\text{transport}} \text{elaidoyl-carnitine (inside)} \xrightarrow{\text{enzymes as shown}} \text{elaidoyl-CoA (inside)} \]

\[\text{5-trans-tetradecenoyl-CoA (inside)} \xrightarrow{\text{enzymes as shown}} \text{5-trans-tetradecanoic acid (inside)} \xrightarrow{\text{diffusion}} \text{5-trans-tetradecanoic acid (outside)} \]

(h) It is correct insofar as trans fats are broken down less efficiently than cis fats, and thus trans fats may “leak” out of mitochondria. It is incorrect to say that trans fats are not broken down by cells; they are broken down, but at a slower rate than cis fats.

Chapter 18

1.

(a) \(\text{OOC-CH}_2-\text{C-COO}^- \) Oxaloacetate

(b) \(\text{OOC-CH}_2-\text{CH}_2-\text{C-COO}^- \) α-Ketoglutarate

(c) \(\text{C}_3\text{H}_4\text{O}^- \) Pyruvate

(d) \(\text{O} \)

2. This is a coupled-reaction assay. The product of the slow transamination (pyruvate) is rapidly consumed in the subsequent “indicator reaction” catalyzed by lactate dehydrogenase, which consumes NADH. Thus, the rate of disappearance of NADH is a measure of the rate of the aminotransferase reaction. The indicator reaction is monitored by observing the decrease in absorption of NADH at 340 nm with a spectrophotometer.

3. Alanine and glutamine play special roles in the transport of amino groups from muscle and from other nonhepatic tissues, respectively, to the liver.

4. No. The nitrogen in alanine can be transferred to oxaloacetate via transamination, to form aspartate.

5. 15 mol of ATP per mole of lactate; 13 mol of ATP per mole of alanine, when nitrogen removal is included.

6. (a) Fasting resulted in low blood glucose; subsequent administration of the experimental diet led to rapid catabolism of glucogenic amino acids. (b) Oxidative deamination caused the rise in NH₃ levels; the absence of arginine (an intermediate in the urea cycle) prevented conversion of NH₃ to urea; arginine is not synthesized in sufficient quantities in the cat to meet the needs imposed by the stress of the experiment. This suggests that arginine is an essential amino acid in the cat’s diet. (c) Ornithine is converted to arginine by the urea cycle.

7. \(\text{H}_2\text{O} + \text{glutamate} + \text{NAD}^+ \rightarrow \alpha\text{-ketoglutarate} + \text{NH}_4^+ + \text{NADH} + \text{H}^+ \)

8. (b) When considering the nutritional benefits of protein, one must keep in mind the total amount of amino acids needed for protein synthesis and the distribution of amino acids in the diet. Gelatin contains a nutritionally unbalanced distribution of amino acids. As large amounts of gelatin are ingested...
and the excess amino acids are catabolized, the capacity of the urea cycle may be exceeded, leading to ammonia toxicity. This is further complicated by the dehydration that may result from excretion of large quantities of urea. A combination of these two factors could produce coma and death.

10. Lysine and leucine

11. (a) Phenylalanine hydroxylase; a low-phenylalanine diet
 (b) The normal route of phenylalanine metabolism via hydroxylation to tyrosine is blocked, and phenylalanine accumulates.
 (c) Phenylalanine is transformed to phenylpyruvate by transamination, and then to phenylacetate by reduction. The transamination reaction has an equilibrium constant of 1.0, and phenylpyruvate is formed in significant amounts when phenylalanine accumulates.
 (d) Because of the deficiency in production of tyrosine, which is a precursor of melanin, the pigment normally present in hair.

12. Catabolism of the carbon skeletons of valine, methionine, and isoleucine is impaired because a functional methylmalonyl-CoA mutase (a coenzyme B12 enzyme) is absent. The physiological effects of loss of this enzyme are described in Table 18-2 and Box 18-2.

13. The vegan diet lacks vitamin B12, leading to the increase in homocysteine and methylmalonate (reflecting the deficiencies in methionine synthase and methylmalonic acid mutase, respectively) in individuals on the diet for several years. Dairy products provide some vitamin B12 in the lactovegetarian diet.

14. The genetic forms of pernicious anemia generally arise as a result of defects in the pathway that mediates absorption of dietary vitamin B12 (see Box 17-2, p. 658). Because dietary supplements are not absorbed in the intestine, these conditions are treated by injecting supplementary B12 directly into the bloodstream.

15. The mechanism is identical to that for serine dehydrase (see Fig. 18-20a, p. 693) except that the extra methyl group of threonine is retained, yielding α-ketobutyrate instead of pyruvate.

16. (a) 15NH$_2$-CO-15NH$_2$
 (b) 14COO\cdotCH$_2$-CH$_2$-14COO$^{-}$
 (c) R-NH-C-15NH$_2$
 (d) R-NH-C-15NH$_2$
 (e) No label
 (f) 15NH$_2$-COO$^{-}$

17. (a) Isoleucine \rightarrow II \rightarrow IV \rightarrow I \rightarrow V \rightarrow III \rightarrow acetyl-CoA + propionyl-CoA (b) Step 1: transamination, no analogous reactions, PLP; 2: oxidative decarboxylation, analogous to the pyruvate dehydrogenase reaction, NAD$^+$, TPPI, lipoate, FAD; 3: oxidation, analogous to the succinate dehydrogenase reaction, FAD; 4: hydration, analogous to the fumarase reaction, no cofactor; 5: oxidation, analogous to the malate dehydrogenase reaction, NAD$^+$; 6: thiolysis (reverse aldol condensation), analogous to the thiolase reaction, CoA.

18. A likely mechanism is:

19. (a) Transamination; no analogies; PLP. (b) Oxidative decarboxylation; analogous to oxidative decarboxylation of pyruvate to acetyl-CoA prior to entry into the citric acid cycle, and of α-ketoglutarate to succinyl-CoA in the citric acid cycle; NAD$^+$, FAD, lipoate, and TPP. (c) Dehydrogenation (oxidation); analogous to dehydrogenation of succinate to fumarate in the citric acid cycle, and of fatty acyl-CoA to enoyl-CoA in β oxidation; FAD. (d) Carboxylation; no analogous reactions in the citric acid cycle or β oxidation; ATP and biotin. (e) Hydration; analogous to hydration of fumarate to malate in the citric acid cycle, and of enoyl-CoA to 3-hydroxyacyl-CoA in β oxidation; no cofactors. (f) Reverse aldol reaction; analogous to reverse of citrate synthase reaction in the citric acid cycle; no cofactors.

20. (a) Leucine; value; isoleucine (b) Cysteine (derived from cysteine). If cysteine were decarboxylated as shown in Fig. 18-6, it would yield H$_2$N\cdotCH$_2$-CH$_2$-SH, which could be oxidized to taurine. (c) The January 1957 blood shows significantly elevated levels of isoleucine, leucine, methionine, and valine; the January 1957 urine, significantly elevated isoleucine, leucine, taurine, and valine. (d) All patients had high levels of isoleucine, leucine, and
valine in both blood and urine, suggesting a defect in the breakdown of these amino acids. Given that the urine also contained high levels of the keto forms of these three amino acids, the block in the pathway must occur after deamination but before dehydrogenation (as shown in Fig. 18-28). (e) The model does not explain the high levels of methionine in blood and taurine in urine. The high taurine levels may be due to the death of brain cells during the end stage of the disease. However, the reason for high levels of methionine in blood are unclear; the pathway of methionine degradation is not linked with the degradation of branched-chain amino acids. Increased methionine could be a secondary effect of buildup of the other amino acids. It is important to keep in mind that the January 1957 samples were from an individual who was dying, so comparing blood and urine results with those of a healthy individual may not be appropriate.

1. Reaction (1): (a), (d) NADH; (b), (e) E-FMN; (c) NAD+/NADH and E-FMN/FMNH$_2$

2. The side chain makes ubiquinone soluble in lipids and allows it to diffuse in the semi-fluid membrane.

3. From the difference in standard reduction potential ($\Delta E''$) for each pair of half-reactions, one can calculate $\Delta G''$. The oxidation of succinate by FAD is favored by the negative standard free-energy change ($\Delta G'' = -3.7$ kJ/mol). Oxidation by NAD$^+$ would require a large, positive, standard free-energy change ($\Delta G'' = 68$ kJ/mol).

4. (a) All carriers reduced; CN$^-$ blocks the reduction of O$_2$ catalyzed by cytochrome oxidase. (b) All carriers reduced; in the absence of O$_2$, the reduced carriers are not reoxidized. (c) All carriers oxidized. (d) Early carriers more reduced; later carriers more oxidized.

5. (a) Inhibition of NADH dehydrogenase by rotenone decreases the rate of electron flow through the respiratory chain, which in turn decreases the rate of ATP production. If this reduced rate is unable to meet the organism's ATP requirements, the organism dies. (b) Antimycin A strongly inhibits the oxidation of Q in the respiratory chain, reducing the rate of electron transfer and leading to the consequences described in (a). (c) Because antimycin A blocks all electron flow to oxygen, it is a more potent poison than rotenone, which blocks electron flow from NADH but not from FADH$_2$.

6. (a) The rate of electron transfer necessary to meet the ATP demand increases, and thus the P/O ratio decreases. (b) High concentrations of uncoupler produce P/O ratios near zero. The P/O ratio decreases, and more fuel must be oxidized to generate the same amount of ATP. The extra heat released by this oxidation raises the body temperature. (c) Increased activity of the respiratory chain in the presence of an uncoupler requires the degradation of additional fuel. By oxidizing more fuel (including fat reserves) to produce the same amount of ATP, the body loses weight. When the P/O ratio approaches zero, the lack of ATP results in death.

7. Valinomycin acts as an uncoupler. It combines with K$^+$ to form a complex that passes through the inner mitochondrial membrane, dissipating the membrane potential. ATP synthesis decreases, which causes the rate of electron transfer to increase. This results in an increase in the H$^+$ gradient, O$_2$ consumption, and amount of heat released.

8. (a) The formation of ATP is inhibited. (b) The formation of ATP is tightly coupled to electron transfer; 2,4-dinitrophenol is an uncoupler of oxidative phosphorylation. (c) Oligomycin

9. Cytosolic malate dehydrogenase plays a key role in the transport of reducing equivalents across the inner mitochondrial membrane via the malate-aspartate shuttle.

10. (a) Glycolysis becomes anaerobic. (b) Oxygen consumption ceases. (c) Lactate formation increases. (d) ATP synthesis decreases to 2 ATP/glucose.

11. The steady-state concentration of P$_i$ in the cell is much higher than that of ADP. The P$_i$ released by ATP hydrolysis changes total [P$_i$] very little.

12. The response to (a) increased [ADP] is faster because the response to (b) reduced [O$_2$] requires protein synthesis.

13. (a) NADH is reoxidized via electron transfer instead of lactic acid fermentation. (b) Oxidative phosphorylation is more efficient. (c) The high mass-action ratio of the ATP system inhibits phosphofructokinase-1.

14. Fermentation to ethanol could be accomplished in the presence of O$_2$, which is an advantage because strict anaerobic conditions are difficult to maintain. The Pasteur effect is not observed, since the citric acid cycle and electron-transfer chain are inactive.

15. More-efficient electron transfer between complexes.

16. (a) External medium: 4.0 \times 10$^{-8}$ M; matrix: 2.0 \times 10$^{-8}$ M

17. (a) 0.91 μmol s$^{-1}$ g$^{-1}$; (b) 5.5 s; to provide a constant level of ATP, regulation of ATP production must be tight and rapid.

18. 53 μmol s$^{-1}$. (a) With a steady state [ATP] of 7.0 μmol/g, this is equivalent to 10 turnovers of the ATP pool per second; the reservoir would last about 0.13 s.

19. Reactive oxygen species react with macromolecules, including DNA. If a mitochondrial defect leads to increased production of ROS, the nuclear genes that encode proto-oncogenes (pp 473, 474) can be damaged, producing oncogenes and leading to unregulated cell division and cancer.

20. Different extents of heteroplasmy for the defective gene produce different degrees of defective mitochondrial function.

21. The inner mitochondrial membrane is impermeable to NADH, but the reducing equivalents of NADH are transferred (shuttled) through the membrane indirectly: they are transferred to oxaloacetate in the cytosol, the resulting malate is transported into the matrix, and mitochondrial NAD$^+$ is reduced to NADH.

22. The citric acid cycle is stalled for lack of an acceptor of electrons from NADH. Pyruvate produced by glycolysis cannot enter the cycle as acetyl-CoA; accumulated pyruvate is transaminated to alanine and exported to the liver.

23. Pyruvate dehydrogenase is located in mitochondria; glyceraldehyde 3-phosphate dehydrogenase in the cytosol. The NAD pools are separated by the inner mitochondrial membrane.

24. Complete lack of glucokinase (two defective alleles) makes it impossible to carry out glycolysis at a sufficient rate to raise [ATP] to the threshold required for insulin secretion.

25. Defects in Complex II result in increased production of ROS, damage to DNA, and mutations that lead to unregulated cell division (cancer). It is not clear why the cancer tends to occur in the midgut.

26. For the maximum photosynthetic rate, PSI (which absorbs light of 700 nm) and PSII (which absorbs light of 680 nm) must be operating simultaneously.

27. The extra weight comes from the water consumed in the overall reaction.
28. Purple sulfur bacteria use H₂S as the hydrogen donor in photosynthesis. No O₂ is evolved, because the single photosystem lacks the manganese-containing water-splitting complex.

29. 0.44

30. (a) Stems (b) Slow; some electron flow continues by the cyclic pathway.

31. During illumination, a proton gradient is established. When ADP and Pᵢ are added, ATP synthesis is driven by the gradient, which becomes exhausted in the absence of light.

32. DCMU blocks electron transfer between PSII and the first site of ATP production.

33. In the presence of venturicidin, proton movement through the CF₄CF₃ complex is blocked, and electron flow (oxygen evolution) continues only until the free energy cost of pumping protons against the rising proton gradient equals the free energy available in a photon. DNP, by dissipating the proton gradient, restores electron flow and oxygen evolution.

34. (a) 56 kJ/mol (b) 0.29 V

35. From the difference in reduction potentials, one can calculate that DG⁺ = 15 kJ/mol for the redox reaction. Figure 18-46 shows that the energy of photons in any region of the visible spectrum is more than sufficient to drive this endergonic reaction.

36. 1.35 x 10⁻¹⁸; the reaction is highly unfavorable! In chloroplasts, the input of light energy overcomes this barrier.

37. -920 kJ/mol

38. No. The electrons from H₂O flow to the artificial electron acceptor Fe⁴⁺, not to NADP⁺.

39. About once every 0.1 s; 1 in 10⁸ is excited.

40. Light of 700 nm excites PSI but not PSII; electrons flow from P₇₀₀ to NADP⁺, but no electrons flow from P₆₈₀ to replace them. When light of 680 nm excites PSII, electrons tend to flow to PSI, but the electron carriers between the two photosystems quickly become completely reduced.

41. No. The excited electron from P₇₀₀ returns to refill the electron "hole" created by illumination. PSI is not needed to supply electrons, and no O₂ is evolved from H₂O, NADP⁺ is not formed, because the excited electron returns to P₇₀₀.

42. (a) (1) The presence of Mg²⁺ supports the hypothesis that chlorophyll is directly involved in catalysis of the photosynthesis reaction: ADP + Pᵢ → ATP. (2) Many enzymes (or other proteins) that contain Mg²⁺ are not phosphorylating enzymes, so the presence of Mg²⁺ in chlorophyll does not prove its role in phosphorylation reactions. (3) The presence of Mg²⁺ is essential to chlorophyll's photochemical properties: light absorption and electron transfer. (b) (1) Enzymes catalyze reversible reactions, so an isolated enzyme that can, under certain laboratory conditions, catalyze removal of a phosphoryl group could probably, under different conditions (such as in cells), catalyze addition of a phosphoryl group. So it is plausible that chlorophyll could be involved in the phosphorylation of ADP. (2) There are two possible explanations: the chlorophyll protein is a phosphatase only and does not catalyze ADP phosphorylation under cellular conditions, or the crude preparation contains a contaminating phosphatase activity that is unconnected to the photosynthetic reactions. (3) It is likely that the preparation was contaminated with a nonphotosynthetic phosphatase activity. (c) (1) This light inhibition is what one would expect if the chlorophyll protein catalyzed the reaction ADP + Pᵢ + light → ATP. Without light, the reverse reaction, a dephosphorylation, would be favored. In the presence of light, energy is provided and the equilibrium would shift to the right, reducing the phosphatase activity. (2) This inhibition must be an artifact of the isolation or assay methods. (3) It is unlikely that the crude preparation methods in use at the time preserved intact chloroplast membranes, so the inhibition must be an artifact. (d) (1) In the presence of light, ATP is synthesized and other phosphorylated intermediates are consumed. (2) In the presence of light, glucose is produced and is metabolized by cellular respiration to produce ATP, with changes in the levels of phosphorylated intermediates. (3) In the presence of light, ATP is produced and other phosphorylated intermediates are consumed. (4) Light energy is used to produce ATP (as in the Emerson model) and is used to produce reducing power (as in the Rabinowitch model). (f) The approximate stoichiometry for photosynthesis (Chapter 19) is that 8 photons yield 2 NADPH and 4 ATP. Two NADPH and 3 ATP are required to reduce 1 CO₂ (Chapter 20). Thus, at a minimum, 8 photons are required per CO₂ molecule reduced. This is in agreement with Rabinowitch's value. (g) Because the energy of light is used to produce both ATP and NADPH, each photon absorbed contributes more than just 1 ATP for photosynthesis. The process of energy extraction from light is more efficient than Rabinowitch supposed, and plenty of energy is available for this process—even with red light.

Chapter 20

1. Within subcellular organelles, concentrations of specific enzymes and metabolites are elevated; separate pools of cofactors and intermediates are maintained; regulatory mechanisms affect only one set of enzymes and pools.

2. This observation suggests that ATP and NADPH are generated in the light and are essential for CO₂ fixation; conversion stops as the supply of ATP and NADPH becomes exhausted. Furthermore, some enzymes are switched off in the dark.

3. X is 3-phosphoglycerate; Y is ribulose 1,5-bisphosphate.

4. Ribulose 5-phosphate kinase, fructose 1,6-bisphosphatase, and sedoheptulose 1,7-bisphosphatase, and glyceraldehyde 3-phosphate dehydrogenase; all are activated by reduction of a critical disulfide bond to a pair of sulfhydryls; iodoacetate reacts irreversibly with free sulfhydryls.

5. To carry out the disulfide exchange reaction that activates the Calvin cycle enzymes, thiolredoxin needs both of its sulfhydryl groups.

6. Reductive pentose phosphate pathway regenerates ribulose 1,5-bisphosphate from triose phosphates produced during photosynthesis. Oxidative pentose phosphate pathway provides NADPH for reductive biosynthesis and pentose phosphates for nucleotide synthesis.

7. Both types of "respiration" occur in plants, consume O₂, and produce CO₂. (Mitochondrial respiration also occurs in animals.) Mitochondrial respiration occurs continuously; electrons derived from various fuels are passed through a chain of carriers in the inner mitochondrial membrane to O₂. Photosynthesis occurs in chloroplasts, peroxisomes, and mitochondria. Photosynthesis occurs during the daytime, when photosynthetic carbon fixation is occurring; mitochondrial respiration occurs primarily at night, or during cloudy days. The path of electron flow in photosynthesis is shown in Fig. 19–21; that for mitochondrial respiration, in Fig. 19–16.

8. This hypothesis assumes directed evolution, or evolution with a purpose—ideas not generally accepted by evolutionary biologists. Other processes, such as burning fossil fuels and global deforestation, affect the global atmospheric composition. C₃ plants, by fixing CO₂ under conditions when Rubisco prefers O₂ as substrate, also contribute to setting atmospheric CO₂/O₂ ratios.

9. (a) Without production of NADPH by the pentose phosphate pathway, cells would be unable to synthesize lipids and other reduced products. (b) Without generation of ribulose 1,5-bisphosphate, the Calvin cycle is effectively blocked.

10. In maize, CO₂ is fixed by the C₄ pathway elucidated by Hatch and Slack, in which PEP is carboxylated rapidly to oxaloacetate (some of which undergoes transamination to aspartate) and reduced to malate. Only after subsequent decarboxylation does the CO₂ enter the Calvin cycle.
11. Measure the rate of fixation of 14C carbon dioxide in the light (daytime) and the dark. Greater fixation in the dark identifies the CAM plant. One could also determine the titratable acidity; acids stored in the vacuole during the night can be quantified in this way.

12. Isocitrate dehydrogenase reaction.

13. Storage consumes 1 mol of ATP per mole of glucose 6-phosphate; this represents 3.3% of the total ATP available from glucose 6-phosphate metabolism (i.e., the efficiency of storage is 96.7%).

14. [PPi] is high in the cytosol because the cytosol lacks inorganic pyrophosphatase.

15. (a) Low [P1] in the cytosol and high [triose phosphate] in the chloroplast (b) High [triose phosphate] in the cytosol.

16. 3-Phosphoglycerate is the primary product of photosynthesis; [P1] rises when light-driven synthesis of ATP from ADP and P1 slows.

17. (a) Sucrose + (glucose)_n → (glucose)_n+1 + fructose
(b) Fructose generated in the synthesis of dextran is readily imported and metabolized by the bacteria.

18. Species 1 is C4; species 2, C3.

19. (a) In peripheral chloroplasts (b) and (c) in central sphere.

20. (a) By analogy to the oxygenic photosynthesis carried out by plants (H2O + CO2 → glucose + O2), the reaction would be H2S + O2 → glucose + H2O + S. This is the sum of the reduction of CO2 by H2S (H2S + CO2 → glucose + S) and the energy input (H2S + O2 → S + H2O). (b) The H2S and CO2 are produced chemically in deep-sea sediments, but the O2, like the vast majority of O2 on Earth, is produced by photosynthesis, which is driven by light energy. (c) In Robinson et al.'s assay, 3H labels the C-1 of ribulose 1,5-bisphosphate, so reaction with CO2 yields one molecule of [3H]-3-phosphoglycerate and one molecule of unlabeled 3-phosphoglycerate; reaction with O2 produces one molecule of [3H2]-2-phosphoglycolate and one molecule of unlabeled 3-phosphoglycerate. Thus the ratio of [3H]-3-phosphoglycerate to [3H2]-2-phosphoglycolate equals the ratio of carboxylation to oxygenation. (d) If the 3H labeled C-5, both oxygenation and carboxylation would yield [3H2]-2-phosphoglycolate and it would be impossible to distinguish which reaction had produced the labeled product; the reaction could not be used to measure Ω.

21. Chapter 21

1. (a) The 16 carbons of palmitate are derived from 8 acetyl groups of 8 acetyl-CoA molecules. The 14C-labeled acetyl-CoA gives rise to malonyl-CoA labeled at C-1 and C-2. (b) The metabolic pool of malonyl-CoA, the source of all palmitate carbons except C-16 and C-15, does not become labeled with small amounts of 14C-labeled acetyl-CoA. Hence, only [15,16,14C] palmitate is formed.

2. Both glucose and fructose are degraded by pyruvate in glycolysis. Pyruvate is converted to acetyl-CoA by the pyruvate dehydrogenase complex. Some of this acetyl-CoA enters the citric acid cycle, which produces reducing equivalents (NADH and NADPH). Mitochondrial electron transfer to O2 yields ATP.

3. 8 Acetyl-CoA + 15ATP + 14NADPH + 9H2O → palmitate + 8CoA + 15ADP + 15Pi + 14NADP+ + 2H+

4. (a) 3 deuteriums per palmitate; all located on C-16; all other two-carbon units are derived from unlabeled malonyl-CoA.
(b) 7 deuteriums per palmitate; located on all even-numbered carbons except C-16.

5. By using the three-carbon unit malonyl-CoA, the activated form of acetyl-CoA (recall that malonyl-CoA synthesis requires ATP), metabolism is driven in the direction of fatty acid synthesis by the exergonic release of CO2.

6. The rate-limiting step in fatty acid synthesis is carboxylation of acetyl-CoA, catalyzed by acetyl-CoA carboxylase. High [citrate] and [isocitrate] indicate that conditions are favorable for fatty acid synthesis: an active citric acid cycle is providing a plentiful supply of ATP, reduced pyridine nucleotides, and acetyl-CoA. Citrate stimulates (increases the V_max of) acetyl-CoA carboxylase. Because citrate binds more tightly to the filamentous form of the enzyme (the active form), high [citrate] drives the promoter ↔ filament equilibrium in the direction of the active form (b). In contrast, palmitoyl-CoA (the end product of fatty acid synthesis) drives the equilibrium in the direction of the inactive (promoter) form. Hence, when the end product of fatty acid synthesis accumulates, the biosynthetic path slows.

7. (a) Acetyl-CoA (acyl) + ATP + CoA (acyt) → acetyl-CoA (acyt) + ADP + P1 + CoA (acyt) (b) 1 ATP per acetyl group (c) Yes

8. The double bond in palmitoleate is introduced by an oxidation catalyzed by fatty acyl-CoA desaturase, a mixed-function oxidase that requires O2 as a cosubstrate.

9. 3 Palmitate + glycerol + 7ATP + 4H2O → tripalmitin + 7ADP + 7Pi + 7H+

10. In adult rats, stored triacylglycerols are maintained at a steady-state level through a balance of the rates of degradation and biosynthesis. Hence, the triacylglycerols of adipose (fat) tissue are constantly turned over, which explains the incorporation of 14C label from dietary glucose.

11. Net reaction:
Dihydroxyacetone phosphate + NADH + palmitate + oleate + 3ATP + CTP + choline + 4H2O → phosphatidylcholine + NAD+ + 2AMP + ADP + H+ + CMP + 5P, 7 ATP per molecule of phosphatidylcholine

12. Methionine deficiency reduces the level of adoMet, which is required for the de novo synthesis of phosphatidylcholine. The salvage pathway does not employ adoMet, but uses available choline. Thus phosphatidylcholine can be synthesized even when the diet is deficient in methionine, as long as choline is available.

13. 14C label appears in three places in the activated isoprene:

\[^{14}\text{CH}_2 \rightarrow ^{14}\text{CH}_2 - \text{CH}_2 - ^{14}\text{CH}_3 \]
14. (a) ATP (b) UDP-glucose (c) CDP-ethanolamine (d) UDP-galactose (e) Fatty acyl-CoA (f) S-Adenosylmethionine (g) Malonyl-CoA (h) Δ5-isopentenyl pyrophosphate

15. Linoleate is required in the synthesis of prostaglandins. Animals are unable to transform oleate to linoleate, so linoleate is an essential fatty acid. Plants can transform oleate to linoleate, and they provide animals with the required linoleate (see Fig. 21-12).

16. The rate-determining step in the biosynthesis of cholesterol is the synthesis of mevalonate, catalyzed by hydroxymethylglutaryl-CoA reductase. This enzyme is allosterically regulated by mevalonate and cholesterol derivatives. High intracellular [cholesterol] also reduces transcription of the gene encoding HMG-CoA reductase.

17. When cholesterol levels decline because of treatment with a statin, cells attempt to compensate by increasing expression of the gene encoding HMG-CoA reductase. The statins are good competitive inhibitors of HMG-CoA reductase activity nonetheless and reduce overall production of cholesterol.

18. Note: There are several plausible alternatives that a student might propose in the absence of a detailed knowledge of the literature on this enzyme. Thiolase reaction: begins with nucleophilic attack of an active-site Cys residue on the first acetyl-CoA substrate, displacing —S-CoA and forming a covalent thioester link between Cys and the acyl group. A base on the enzyme then extracts a proton from the methyl group of the second acetyl-CoA, leaving a carbocation that attacks the carboxyl carbon of the thioester formed in the first step. The anhydride of the Cys residue is displaced, creating the product acetoacetyl-CoA.

19. Statins inhibit HMG-CoA reductase, an enzyme in the pathway to the synthesis of activated isoprenoids, which are precursors of cholesterol and a wide range of isoprenoids, including coenzyme Q (ubiquinone). Hence, statins might reduce the levels of coenzyme Q available for mitochondrial respiration. Ubiquinone is obtained in the diet as well as by direct biosynthesis, but it is not yet clear how much is required and how well dietary sources can substitute for reduced synthesis. Reductions in the levels of particular isoprenoids may account for some side effects of statins.

20. (a)

(b) Head-to-head. There are two ways to look at this. First, the "tail" of geranylglyceranyl pyrophosphate has a branched dimethyl structure, as do both ends of phytoene. Second, no free —OH is formed by the release of PP, indicating that the two —O—P—P “heads” are linked to form phytoene. (c) Four rounds of dehydrogenation convert four single bonds to double bonds. (d) No. A count of single and double bonds in the reaction below shows that one double bond is replaced by two single bonds—so, there is no net oxidation or reduction.

(e) Steps 1 through 3. The enzyme can convert IPP and DMAP to geranylglyceranyl pyrophosphate, but catalyzes no further reactions in the pathway as confirmed by results with the other substrates. (f) Strains 1 through 4 lack crtE and have much lower astaxanthin production than strains 5 through 8, all of which overexpress crtE. Thus, overexpression of crtE leads to a substantial increase in astaxanthin production. Wild-type E. coli has some step 5 activity, but this conversion of farnesyl pyrophosphate to geranylglyceranyl pyrophosphate is strongly rate-limiting. (g) IPP isomerase. Comparing strains 5 and 6 shows that adding pmmA, which catalyzes steps 1 and 2, has little effect on astaxanthin production, so these steps are not rate-limiting. However, comparing strains 5 and 7 shows that adding idi substantially increases astaxanthin production, so IPP isomerase must be the rate-limiting step when crtE is overexpressed.

(h) A low (+) level, comparable to that of strains 5, 6, and 9. Without overexpression of idi, production of astaxanthin is limited by low IPP isomerase activity and the resulting limited supply of IPP.

Chapter 22

1. In their symbiotic relationship with the plant, bacteria supply ammonium ion by reducing atmospheric nitrogen, which requires large quantities of ATP.

2. The transfer of nitrogen from NH3 to carbon skeletons can be catalyzed by (1) glutamine synthetase and (2) glutamate dehydrogenase. The latter enzyme produces glutamate, the amino group donor in all transamination reactions, necessary to the formation of amino acids for protein synthesis.

3. A link between enzyme-bound PLP and the phosphohomoserine substrate is first formed, with rearrangement to generate the ketimine at the α carbon of the substrate. This activates the β carbon for proton abstraction, leading to displacement of the phosphate and formation of a double bond between the β and γ carbons. A rearrangement (beginning with proton abstraction at the pyridoxal carbon adjacent to the substrate amino nitrogen) moves the double bond between the α and β carbons, and converts the ketimine to the aldimine form of PLP. Attack of water at the β carbon is then facilitated by the linked pyridoxal, followed by hydrolysis of the imine link between PLP and the product, to generate threonine.

4. In the mammalian route, toxic ammonium ions are transformed to glutamine, reducing toxic effects on the brain.

5. Glucose + 2CO2 + 2NH3 → 2 aspartate + 2H+ + 2H2O

6. The amino-terminal glutamimine domain is quite similar in all glutamine amidotransfers. A drug that targeted this active site would probably inhibit many enzymes and thus be prone to producing many more side effects than a more specific
inhibitor targeting the unique carboxyl-terminal synthetase active site.

7. If phenylalanine hydroxylase is defective, the biosynthetic route to tyrosine is blocked and tyrosine must be obtained from the diet.

8. In adoMet synthesis, triphosphate is released from ATP. Hydrolysis of the triphosphate renders the reaction thermodynamically more favorable.

9. If the inhibition of glutamine synthase were not concerted, saturating concentrations of histidine would shut down the enzyme and cut off production of glutamine, which the bacterium needs to synthesize other products.

10. Folic acid is a precursor of tetrahydrofolate (Fig. 18–16), required in the biosynthesis of glycine (Fig. 22–12), a precursor of porphyrins. A folic acid deficiency therefore impairs hemoglobin synthesis.

11. For glycine auxotrophs: adenine and guanine; for glutamine auxotrophs: adenine, guanine, and cysteine; for aspartate auxotrophs: adenine, guanine, cysteine, and uridine.

12. (a) See Figure 18–6, step 2, for the reaction mechanism of amino acid racemization. The F atom of fluoroalanine is an excellent leaving group. Fluoroalanine causes irreversible (covalent) inhibition of alanine racemase. One plausible mechanism is (Nuc denotes any nucleophilic amino acid side chain in the enzyme active site):

(b) Azaserine (see Fig. 22–48) is an analog of glutamine. The diazoacetyl group is highly reactive and forms covalent bonds with nucleophiles at the active site of a glutamine amidotransferase.

13. (a) As shown in Figure 18–16, p-aminobenzoate is a component of N⁵,N¹⁰-methylene-tetrahydrofolate, the cofactor involved in the transfer of one-carbon units. (b) In the presence of sulfanilamide, a structural analog of p-aminobenzoate, bacteria are unable to synthesize tetrahydrofolate, a cofactor necessary for converting AICAR to FAICAR; thus AICAR accumulates. (c) The competitive inhibition by sulfanilamide of the enzyme involved in tetrahydrofolate biosynthesis is overcome by the addition of excess substrate (p-aminobenzoate).

14. The ¹⁴C-labeled orotate arises from the following pathway (the first three steps are part of the citric acid cycle):
15. Organisms do not store nucleotides to be used as fuel, and they do not completely degrade them, but rather hydrolyze them to release the bases, which can be recovered in salvage pathways. The low C:N ratio of nucleotides makes them poor sources of energy.

16. Treatment with allopurinol has two consequences. (1) It inhibits conversion of hypoxanthine to uric acid, causing accumulation of hypoxanthine, which is more soluble and more readily excreted; this alleviates the clinical problems associated with AMP degradation. (2) It inhibits conversion of guanine to uric acid, causing accumulation of xanthine, which is less soluble than uric acid; this is the source of xanthine stones. Because the amount of GMP degradation is low relative to AMP degradation, the kidney damage caused by xanthine stones is less than that caused by untreated gout.

17. 5-Phosphoribosyl-1-pyrophosphate; this is the first NH₃ acceptor in the purine biosynthetic pathway.

18. (a) The α-carboxyl group is removed and an —OH is added to the γ carbon. (b) BtrI has sequence homology with acyl carrier proteins. The molecular weight of BtrI increases when incubated under conditions in which CoA could be added to the protein. Adding CoA to a Ser residue would replace an —OH (formula weight (FW) 17) with a 4'-phosphopantetheine group (see Fig. 21-5, p. 809). This group has the formula C₁₁H₁₇N₂O₇PS (FW 356). Thus, 11,182 − 17 + 356 = 12,151, which is very close to the observed M₉ of 12,153. (c) The thioester could form with the α-carboxyl group. (d) In the most common reaction for removing the α-carboxyl group of an amino acid (see Fig. 18-6c, p. 679), the carboxyl group must be free. Furthermore, it is difficult to imagine a decarboxylation reaction starting with a carboxyl group in its thioester form. (e) The most likely structure is the decarboxylated form:

(f) 12,240 - 12,281 = 41, close to the M₉ of CO₂ (44). Given that BtrK is probably a decarboxylase, its most likely structure is the decarboxylated form:

19. They are recognized by two different receptors, typically found in different cell types, and are coupled to different downstream effects.

20. Steady-state levels of ATP are maintained by phosphoryl group transfer to ADP from phosphocreatine. 1-Fluoro-2,4-dinitrobenzene inhibits creatine kinase.

21. Ammonia is very toxic to nervous tissue, especially the brain. Excess NH₃ is removed by transformation of glutamate to glutamine, which travels to the liver and is subsequently transformed to urea. The additional glutamine arises from the transformation of glucose to α-ketoglutarate, transamination of α-ketoglutarate to glutamate, and conversion of glutamate to glutamine.

22. Glucogenic amino acids are used to make glucose for the brain; others are oxidized in mitochondria via the citric acid cycle.

23. From glucose, by the following route: Glucose → dihydroxyacetone phosphate (in glycolysis); dihydroxyacetone phosphate + NADH + H⁺ → glycerol 3-phosphate + NAD⁺ (glycerol 3-phosphate dehydrogenase reaction)

24. (a) Increased muscular activity increases the demand for ATP, which is met by increased O₂ consumption. (b) After the sprint, lactate produced by anaerobic glycolysis is converted to glucose and glycogen, which requires ATP and therefore O₂.

25. Glucose is the primary fuel for the brain; others are oxidized in mitochondria via the citric acid cycle.

26. (a) Inactivation provides a rapid means to change hormone concentrations. (b) Insulin level is maintained by equal rates of synthesis and degradation. (c) Changes in the rate of release from storage, rate of transport, and rate of conversion from prohormone to active hormone.

27. Water-soluble hormones bind to receptors on the outer surface of the cell, triggering the formation of a second messenger (e.g., cAMP) inside the cell. Lipid-soluble hormones can pass through the plasma membrane to act on target molecules or receptors directly.

28. (a) Heart and skeletal muscle lack glucose 6-phosphatase. Any glucose 6-phosphate produced enters the glycolytic pathway, and under O₂-deficient conditions is converted to lactate via pyruvate. (b) In a "fight or flight" situation, the concentration of glycolytic precursors must be high in preparation for muscular activity. Phosphorylated intermediates cannot escape from the cell, because the membrane is not permeable to charged species, and glucose 6-phosphate is not exported on the glucose
transmitter. The liver, by contrast, must release the glucose necessary to maintain blood glucose level. Glucose is formed from glucose 6-phosphate and enters the bloodstream.

12. (a) Excessive uptake and use of blood glucose by the liver, leading to hypoglycemia; shutdown of amino acid and fatty acid catabolism (b) Little circulating fuel is available for ATP requirements. Brain damage results because glucose is the main source of fuel for the brain.

13. Thyroxine acts as an uncoupler of oxidative phosphorylation. Uncouplers lower the P/O ratio, and the tissue must increase respiration to meet the normal ATP demands. Thermogenesis could also be due to the increased rate of ATP utilization by the thyroid-stimulated tissue, as increased ATP demands are met by increased oxidative phosphorylation and thus respiration.

14. Because prohormones are inactive, they can be stored in quantities in secretory granules. Rapid activation is achieved by enzymatic cleavage in response to an appropriate signal.

15. In animals, glucose can be synthesized from many precursors (see Fig. 14–15). In humans, the principal precursors are glycerol from triacylglycerols and gluconic acid from lactate.

16. The ob/ob mouse, which is initially obese, will lose weight. The OBOB mouse will retain its normal body weight.

17. BMI = 39.3. For BMI of 25, weight must be 75 kg; must lose 45 kg = 95 lbs.

18. Reduced insulin secretion. Valinomycin has the same effect as opening the K+ channel, allowing K+ exit and consequent hyperpolarization.

19. The liver does not receive the insulin message and therefore continues to have high levels of glucose 6-phosphatase and gluconeogenesis, increasing blood glucose both during a fast and after a glucose-containing meal. The elevated blood glucose triggers insulin release from pancreatic β cells, hence the high level of insulin in the blood.

20. Some things to consider: What is the frequency of heart attack attributable to the drug? How does this frequency compare with the number of individuals spared the long-term consequences of type 2 diabetes? Are other, equally effective treatment options, with fewer adverse effects, available?

21. Without intestinal glucosidase activity, absorption of glucose from dietary glycogen and starch is reduced, blunting the usual rise in blood glucose after the meal. The undigested oligosaccharides are fermented by bacteria in the large intestine, and the gases released cause intestinal discomfort.

22. (a) Closing the ATP-gated K+ channel would depolarize the membrane, leading to increased insulin release. (b) Type 2 diabetes results from decreased sensitivity to insulin, not a deficit of insulin production; increasing circulating insulin levels will reduce the symptoms associated with this disease. (c) Individuals with type 1 diabetes have deficient pancreatic β cells, so glyburide will have no beneficial effect. (d) Iodine, like chlorine (the atom it replaces in the labeled glyburide), is a halogen, but it is a larger atom and has slightly different chemical properties. It is possible that the iodinated glyburide would not bind to SUR. If it bound to another molecule instead, the experiment would result in cloning of the gene for this other, incorrect protein.

(e) Although a protein has been "purified," the "purified" preparation might be a mixture of several proteins that co-purify under those experimental conditions. In this case, the amino acid sequence could be that of a protein that co-purifies with SUR. Using antibody binding to show that the peptide sequences are present in SUR excludes this possibility. (f) Although the cloned gene does encode the 25 amino acid sequence found in SUR, it could be a gene that, coincidentally, encodes the same sequence in another protein. In this case, this other gene would most likely be expressed in different cells than the SUR gene. The mRNA hybridization results are consistent with the putative SUR cDNA actually encoding SUR. (g) The excess unlabeled glyburide competes with labeled glyburide for the binding site on SUR. As a result, there is significantly less binding of labeled glyburide, so little or no radioactivity is detected in the 140 kDa protein. (h) In the absence of excess unlabeled glyburide, labeled 140 kDa protein is found only in the presence of the putative SUR cDNA. Excess unlabeled glyburide competes with the labeled glyburide, and no 140 kDa labeled protein is detected.

Chapter 24

1. 6.1 x 104 nm; 290 times longer than the T2 phage head

2. The number of A residues does not equal the number of T residues, nor does the number of G equal the number of C, so the DNA is not a base-paired double helix; the M13 DNA is single-stranded.

3. $M_r = 3.8 \times 10^6$; length = 200 μm; $L_k = 55,200$; $L_k = 51,900$

4. The exons contain 3 bp/amino acid × 192 amino acids = 576 bp. The remaining 864 bp are in introns, possibly in a leader or signal sequence, and/or in other noncoding DNA.

5. 5,000 bp. (a) Doesn't change; L_k cannot change without breaking and re-forming the covalent backbone of the DNA. (b) Becomes undefined; a circular DNA with a break in one strand has, by definition, no L_k. (c) Decreases; in the presence of ATP, gyrase underwinds DNA. (d) Doesn't change; this assumes that neither of the DNA strands is broken in the heating process.

6. For L_k to remain unchanged, the topoisomerase must introduce the same number of positive and negative supercoils.

7. $\sigma = -0.967; >70\%$ probability

8. (a) Undefined; the strands of a nicked DNA could be separated and thus have no L_k. (b) 476 (c) 476; the DNA is already relaxed, so the topoisomerase does not cause a net change. (d) 490; gyrase plus ATP reduces the L_k in increments of 2. (e) 464; eukaryotic type I topoisomerases increase the L_k of underwound or negatively supercoiled DNA in increments of 1. (f) 460; nucleosome binding does not break any DNA strands and thus cannot change L_k

9. A fundamental structural unit in chromatin repeats about every 200 bp; the DNA is accessible to the nuclease only at 200 bp intervals. The brief treatment was insufficient to cleave the DNA at every accessible point, so a ladder of DNA bands is created in which the DNA fragments are multiples of 200 bp. The thickness of the DNA bands suggests that the distance between cleavage sites varies somewhat. For instance, not all the fragments in the lowest band are exactly 200 bp long.

10. A right-handed helix has a positive L_k; a left-handed helix (such as Z-DNA) has a negative L_k. Decreasing the L_k of a closed circular B-DNA by underwinding it facilitates formation of regions of Z-DNA within certain sequences. (See Chapter 8, p. 281, for a description of sequences that permit the formation of Z-DNA.)

11. (a) Both strands must be covalently closed, and the molecule must be either circular or constrained at both ends. (b) Formation of cruciforms, left-handed Z-DNA, plectonemic or solenoidal supercoils, and unwinding of the DNA are favored. (c) E. coli
DNA topoisomerase II or DNA gyrase. (d) It binds the DNA at a point where it crosses on itself, cleaves both strands of one of the crossing segments, passes the other segment through the break, then reseals the break. The result is a change in Lk of -2.

12. Centromere, telomeres, and an autonomous replicating sequence or replication origin.

13. The bacterial nucleoid is organized into domains approximately 10,000 bp long. Cleavage by a restriction enzyme relaxes the DNA within a domain, but not outside the domain. Any gene in the cleaved domain for which expression is affected by DNA topology will be affected by the cleavage; genes outside the domain will not.

14. (a) When DNA ends are sealed to create a relaxed, closed circle, some DNA species are completely relaxed but others are trapped in slightly under- or overwound states. This gives rise to a distribution of topoisomers centered on the most relaxed species.

(b) Positively supercoiled. (c) The DNA that is relaxed despite the addition of dye is DNA with one or both strands broken. DNA isolation procedures inevitably introduce small numbers of strand breaks in some of the closed-circular molecules. (d) Approximately -0.05. This is determined by simply comparing native DNA with samples of known σ. In both gels, the native DNA migrates most closely with the sample of $\sigma = -0.049$.

15. (a) In nondisjunction, one daughter cell and all of its descendants get two copies of the synthetic chromosome and are white; the other daughter cell and all of its descendants get no copies of the synthetic chromosome and are red. This gives rise to a half-white, half-red colony. (b) In chromosome loss, one daughter cell and all of its descendants get one copy of the synthetic chromosome and are pink; the other daughter cell and all of its descendants get no copies of the synthetic chromosome and are red. This gives rise to a half-pink, half-red colony. (c) The minimum functional centromere must be smaller than 0.63 kbp, since all fragments of this size or larger confer relative mitotic stability.

(d) Telomeres are required to fully replicate only linear DNA; a circular molecule can replicate without them. (e) The larger the chromosome, the more faithfully it is segregated. The data show neither a minimum size below which the synthetic chromosome is completely unstable, nor a maximum size above which stability no longer changes.

(f) As shown in the graph, even if the synthetic chromosomes were as long as the normal yeast chromosomes, they would not be as stable. This suggests other, as yet undiscovered, elements are required for stability.

Chapter 25

1. In random, dispersive replication, in the second generation, all the DNAs would have the same density and would appear as a single band, not the two bands observed in the Meselson-Stahl experiment.

2. In this extension of the Meselson-Stahl experiment, after three generations the molar ratio of ^{15}N-^{14}N DNA to ^{14}N-^{14}N DNA is $26:0.33$.

3. (a) 4.42×10^5 turns; (b) 40 min. In cells dividing every 20 min, a replicative cycle is initiated every 20 min, each cycle beginning before the prior one is complete. (c) 2,000 to 5,000 Okazaki fragments. The fragments are 1,000 to 2,000 nucleotides long and are firmly bound to the template strand by base pairing. Each fragment is quickly joined to the lagging strand, thus preserving the correct order of the fragments.

4. A 28.7%: G 21.3%: C 21.3%: T 24.7%. The DNA strand made from the template strand: A 32.7%: G 18.5%: C 24.1%: T 24.7%; the DNA strand made from the complementary template strand: A 24.7%: G 24.1%: C 18.5%: T 32.7%. It is assumed that the two template strands are replicated completely.

5. (a) No. Incorporation of ^{32}P into DNA results from the synthesis of new DNA, which requires the presence of all four nucleotide precursors. (b) Yes. Although all four nucleotide precursors must be present for DNA synthesis, only one of them has to be radioactive in order for radioactivity to appear in the new DNA.

(c) No. Radioactivity is incorporated only if the ^{32}P label is in the α phosphate; DNA polymerase cleaves off pyrophosphate—i.e., the β and γ phosphate groups.

6. Mechanism 1: 3'-OH of an incoming dNTP attacks the α phosphate of the triphosphate at the 5' end of the growing DNA strand, displacing pyrophosphate. This mechanism uses normal dNTPs, and the growing end of the DNA always has a triphosphate on the 5' end.

Mechanism 2: This uses a new type of precursor, nucleotide 3' triphosphates. The growing end of the DNA strand has a 5' -OH, which attacks the α phosphate of an incoming deoxynucleotide 3'-triphosphate, displacing pyrophosphate. Note that this mechanism would require the evolution of new metabolic pathways to supply the needed deoxynucleotide 3'-triphosphates.
7. **Leading strand**: Precursors: dATP, dGTP, dCTP, dTTP (also needs a template DNA strand and DNA primer); enzymes and other proteins: DNA gyrase, helicase, single-stranded DNA-binding protein, DNA polymerase III, topoisomerases, and pyrophosphatase. **Lagging strand**: Precursors: ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, dTTP (also needs an RNA primer); enzymes and other proteins: DNA gyrase, helicase, single-stranded DNA-binding protein, primase, DNA polymerase III, DNA ligase, topoisomerases, and pyrophosphatase. NAD+ is also required as a cofactor for DNA ligase.

8. Mutants with defective DNA ligase produce a DNA duplex in which one of the strands remains in pieces (as Okazaki fragments). When this duplex is denatured, sedimentation results in one fraction containing the intact single strand (the high molecular weight band) and one fraction containing the unspliced fragments (the low molecular weight band).

9. Watson-Crick base pairing between template and leading strand; proofreading and removal of wrongly inserted nucleotides by the 3'-5' exonuclease activity of DNA polymerase III. Yes—perhaps. Because the factors ensuring fidelity of replication are operative in both the leading and the lagging strands, the lagging strand would probably be made with the same fidelity. However, the greater number of distinct chemical operations involved in making the lagging strand might provide a greater opportunity for errors to arise.

10. ~1,200 bp (600 in each direction)

11. A small fraction (13 of 10^6 cells) of the histidine-requiring mutants spontaneously undergo back-mutation and regain their capacity to synthesize histidine. 2-Aminooanthracene increases the rate of back-mutations about 1800-fold and is therefore mutagenic. Since most carcinogens are mutagenic, increased chance of lethal effects. (d) In the uv*-strain, the excision-repair system removes DNA bases with attached ['H]R7000, decreasing the 3H in these cells over time. In the uwr* strain, the DNA is not repaired and ['H]R7000 continues to react with the DNA. (e) All mutations listed in the table except A=T to G=C show significant increases over background. Each type of mutation results from a different type of interaction between R7000 and DNA. Because different types of interactions are not equally likely (due to differences in reactivity, steric constraints, etc.), the resulting mutations occur.

12. Spontaneous deamination of 5-methylcytosine (see p. 289) produces thymine, and thus a G-T mismatched pair. These are among the most common mismatches in the DNA of eukaryotes. The specialized repair system restores the G=C pair.

13. (a) Ultraviolet irradiation produces pyrimidine dimers; in normal fibroblasts these are excised by cleavage of the damaged strand by a special excinuclease. Thus the denatured single-stranded DNA contains the many fragments caused by the cleavage, and the average molecular weight is lowered. These fragments of single-stranded DNA are absent from the XPG samples, as indicated by the unchanged average molecular weight. (b) The absence of fragments in the single-stranded DNA from the XPG cells after irradiation suggests the special excinuclease is defective or missing.

14. During homologous genetic recombination, a Holliday intermediate may be formed almost anywhere within the two paired, homologous chromosomes; the branch point of the intermediate can move extensively by branch migration. In site-specific recombination, the Holliday intermediate is formed between two specific sites, and branch migration is generally restricted by heterogeneous sequences on either side of the recombination sites.

15. Once replication has proceeded from the origin to a point where one recombination site has been replicated but the other has not, site-specific recombination not only inverts the DNA between the recombination sites but also changes the direction of one replication fork relative to the other. The forks will chase each other around the DNA circle, generating many tandem copies of the plasmid. The multimeric circle can be resolved to monomers by additional site-specific recombination events.

16. (a) Even in the absence of an added mutagen, background mutations occur due to radiation, cellular chemical reactions, and so forth. (b) If the DNA is sufficiently damaged, a substantial fraction of genome products are nonfunctional and the cell is nonviable. (c) Cells with reduced DNA repair capability are more sensitive to mutagens. Because they less readily repair lesions caused by R7000, uvr- bacteria have an increased mutation rate and increased chance of lethal effects. (d) In the uwr* strain, the excision-repair system removes DNA bases with attached [1H]R7000, decreasing the H in these cells over time. In the uwr* strain, the DNA is not repaired and H level increases as [1H]R7000 continues to react with the DNA. (e) All mutations listed in the table except A=T to G=C show significant increases over background. Each type of mutation results from a different type of interaction between R7000 and DNA. Because different types of interactions are not equally likely (due to differences in reactivity, steric constraints, etc.), the resulting mutations occur.
Chapter 26

1. (a) 60 to 100 s; (b) 500 to 900 nucleotides

2. A single base error in DNA replication, if not corrected, would cause one of the two daughter cells, and all its progeny, to have a mutated chromosome. A single base error in RNA transcription over rapidly, most copies of the protein would not be defective. Some defective copies of one protein, but because mRNAs turn into fewer mutations.

3. Normal posttranscriptional processing at the 3' end (cleavage and polyadenylation) was inhibited or blocked.

4. Because the template-strand DNA does not encode the enzymes needed to initiate viral infection, it would probably be inert or simply degraded by cellular ribonucleases. Replication of the template-strand RNA and propagation of the virus could occur at different frequencies.

5. (1) Use of a template strand of nucleic acid; (2) synthesis in the 5' to 3' direction; (3) use of nucleoside triphosphate substrates, with formation of a phosphodiester bond and displacement of PPi. Polynucleotide phosphorylase forms phosphodiester bonds, but differs in all other listed properties.

6. Generally two: one to cleave the phosphodiester bond at one intron-exon junction; the other to link the resulting free exon end to the exon at the other end of the intron. If the nucleophile in the first step were water, this step would be a hydrolytic event and only one transesterification step would be required to complete the splicing process.

7. Many snRNAs, required for rRNA modification reactions, are encoded in introns. If splicing does not occur, snRNAs are not produced.

8. These enzymes lack a 3'-5' proofreading exonuclease and have a high error rate; the likelihood of a replication error that would inactivate the virus is much less in a small genome than in a large one.

9. (a) \(4^{20} = 1.8 \times 10^{19}\) (b) 0.006% (c) For the "unnatural selection" step, use a chromatographic resin with a bound molecule that is a transition-state analog of the ester hydrolysis reaction (e.g., an appropriate phosphonate compound; see Box 6-3).

10. Though RNA synthesis is quickly halted by α-amanitin toxin, it takes several days for the critical mRNAs and the proteins in the liver to degrade, causing liver dysfunction and death.

11. (a) After lysis of the cells and partial purification of the contents, the protein extract could be subjected to isoelectric focusing. The α subunit could be detected by an antibody-based assay. The difference in amino acid residues between the normal α subunit and the mutated form (i.e., the different charged on the amino acids) would alter the electrophoretic mobility of the mutant protein in an isoelectric focusing gel, relative to the protein from a nonresistant strain. (b) Direct DNA sequencing (by the Sanger method).

12. (a) 384 nucleotide pairs (b) 1,620 nucleotide pairs (c) Most of the nucleotides are untranslated regions at the 3' and 5' ends of the mRNA. Also, most mRNAs code for a signal sequence (Chapter 27) in their protein products, which is eventually cleaved off to produce the mature and functional protein.

13. (a) cDNA is produced by reverse transcription of mRNA; thus, the mRNA sequence is probably CGG. Because the genomic DNA transcribed to make the mRNA has the sequence CAG, the primary transcript most likely has CAG, which is posttranscriptionally modified to CGG. (b) The unedited mRNA sequence is the same as that of the DNA (except for U replacing T). Unedited mRNA has the sequence (indicates site of editing)

\[
\text{(5')}...\text{GUCUCUGGUUUUCUCCUUGGGCUCCUUAUGCAAGCAAGGAUAUUCGCAGAAG...}(3')
\]

In step 1, primer 1 anneals as shown:

\[
\text{(5')}...\text{GUCUCUGGUUUUCUCCUUGGGCUCCUUAUGCAAGCAAGGAUAUUCGCAGAAG...}(3')
\]

\[
\text{Primer 1: (3')-CGTTCCCTACGCTATAAACCGGTTC-(5')}
\]

\[
\text{cDNA (underlined) is synthesized from right to left:}
\]

\[
\text{(5')}...\text{GUCUCUGGUUUUCUCCUUGGGCUCCUUAUGCAAGCAAGGAUAUUCGCAGAAG...}(3')
\]

\[
\text{3'...CAGAGACAAAGAGAAACCCACGGAAATACGGTCGCCCTCAAGCTATAAAACCGGTTC-(5')}
\]

Then step 2 yields just the cDNA:

\[
\text{(5')}...\text{CAGAGACAAAGAGAAACCCACGGAAATACGGTCGCCCTCAAGCTATAAAACCGGTTC-(5')}
\]

In step 3, primer 2 anneals to the cDNA:

\[
\text{Primer 2: (5')-CCTTGGGATCCTTAT-3'}
\]

\[
\text{(3')}...\text{CAGAGACAAAGAGAAACCCACGGAAATACGGTCGCCCTCAAGCTATAAAACCGGTTC-(5')}
\]
DNA polymerase adds nucleotides to the 3' end of this primer. Moving from left to right, it inserts T, G, C, and A. However, because the A from ddATP lacks the 3' -OH needed to attach the next nucleotide, the chain is not elongated past this point. This A is shown in italic; the new DNA is underlined:

Primer 2: (5')-CCTTGGGGTGCCCTTTATGCA

(3')...CAGAGCCAAAAGGAACCACGGAAATACGGCGTTCCCTAAGCTTATAAAAGCGGTTT(5')

This yields a 19 nucleotide fragment for the unedited transcript. In the edited transcript, the *A is changed to G; in the cDNA this corresponds to C. At the start of step 3:

Primer 2: (5')-CCTTGGGGTGCCCTTTATGCA

(3')...CAGAGCCAAAAGGAACCACGGAAATACGGCGTTCCCTAAGCTTATAAAAGCGGTTT(5')

In this case, DNA polymerase can elongate past the edited base and will stop at the next T in the cDNA. The deoxy A is *italic; the new DNA is underlined:

Primer 2: (5')-CCTTGGGGTGCCCTTTATGCA

(3')...CAGAGCCAAAAGGAACCACGGAAATACGGCGTTCCCTAAGCTTATAAAAGCGGTTT(5')

This gives the 22 nucleotide product. (c) Treatments (proteases, heat) known to disrupt protein function inhibit the editing activity, whereas treatments (nucleases) that do not affect proteins have little or no effect on editing. A key weakness of this argument is that the protein-disrupting treatments do not completely abolish editing. There could be some background editing or degradation of the mRNA even without the enzyme, or some of the enzyme might survive the treatments, (d) Only the 3' phosphate of NTPs is incorporated into polynucleotides. If the researchers had used the other types of [32P]NTPs, none of the products would have been labeled, (e) Because only an A is being edited, only the fate of any A in the sequence is of interest. (f) Given that only ATP was labeled, if the entire nucleotide were removed all radioactivity would have been removed from the mRNA, so only unmodified [32P]AMP would be present on the chromatography plate, (g) If the base were removed and replaced, one would expect to see only [32P]AMP. The presence of [32P]AMP indicates that the A to I change occurs without removal of H at positions 2 and 8. The most likely mechanism is chemical modification of A to I by hydrolytic deamination (see Fig. 22-34, p. 885). (h) CAG is changed toUGA; in the cDNA this corresponds to C. At the start of step 3:

Primer 2: (5')-CCTTGGGGTGCCCTTTATGCA

(3')...CAGAGCCAAAAGGAACCACGGAAATACGGCGTTCCCTAAGCTTATAAAAGCGGTTT(5')

Much less likely are two-base changes, from GAA to GTG, GTT, or GTC; and from GAG to GTA, GTT, or GTC.

7. A minimum of 583 ATP equivalents (based on 4 per amino acid residue added, except that there are only 145 translocation steps). Correction of each error requires 2 ATP equivalents. For glycerone synthesis, 292 ATP equivalents. The extra energy cost for β-globin synthesis reflects the cost of the information content of the protein. At least 20 activating enzymes, 70 ribosomal proteins, 4 rRNAs, 32 or more tRNAs, an mRNA, and 10 or more auxiliary enzymes must be made by the eukaryotic cell in order to synthesize a protein from amino acids. The synthesis of an (α1→4) chain of glycogen from glucose requires only 4 or 5 enzymes (Chapter 15).

8. | Glycine codons | Anticodons |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(5')GGU</td>
<td>(5')ACC, GCC, ICC</td>
</tr>
<tr>
<td>(5')GGC</td>
<td>(5')GCC, ICC</td>
</tr>
<tr>
<td>(5')GGA</td>
<td>(5')UCG, ICC</td>
</tr>
<tr>
<td>(5')GGG</td>
<td>(5')CCC, UCC</td>
</tr>
</tbody>
</table>

(a) The 3' and middle position (b) Pairings with anticodons (5')GCC, ICC, and UCC (c) Pairings with anticodons (5')ACC and CCC

9. (a), (c), (e), and (g) only; (b), (d), and (f) cannot be the result of single-base mutations: (b) and (f) would require substitutions of two bases, and (d) would require substitutions of all three bases.

10. The two DNA codons for Glu are GAA and GAG, and the four DNA codons for Val are GTT, GTC, GTA, and GTG. A single base change in GAA to form GTA or in GAG to form GGT could account for the Glu → Val replacement in sickle-cell hemoglobin. Much less likely are two-base changes, from GAA to GTG, GTC, or GCT; and from GAG to GTA, GCT, or GTC.

11. Isoleucine is similar in structure to several other amino acids, particularly valine. Distinguishing between valine and isoleucine

Chapter 27

1. (a) Gly-Gln-Ser-Leu-Leu-Ile (b) Leu-Asp-Ala-Pro
2. His-Asp-Ala-Cys-Tyr (d) Met-Asp-Glu in eukaryotes; fMet-Asp-Glu in bacteria
2. UUAUUGUAU, UUGAUGUAU, CUAAUGUAU, CUCAUGUAU, CUAAGUAU, CUGAUGUAU, UUAAGUAU, UUGAUGUAU, UUGAUGUAU, CUGAUGUAU, CUAAGUAU, CUGAUGUAU
3. No. Because nearly all the amino acids have more than one codon (e.g., Leu has six), any given polypeptide can be coded for by a number of different base sequences. However, some amino acids are encoded by only one codon and those with multiple codons often share the same nucleotide at two of the three positions, so certain parts of the mRNA sequence encoding a protein of known amino acid sequence can be predicted with high certainty.
4. (a) (5')GCAGCGGGCGGCAAGUCAGGGUGUGUUAAG(3')
 (b) Arg-Arg-Arg-Glu-Val-Arg-Gly-Val-Lys
 (c) No. The complementary antiparallel strands in double-helical DNA do not have the same base sequence in the 5'-3' direction. RNA is transcribed from only one specific strand of duplex DNA. The RNA polymerase must therefore recognize and bind to the correct strand.
5. There are two tRNAs for methionine: tRNA^Met, which is the initiating tRNA, and tRNA^Met, which can insert a Met residue in inte-
in the aminoclylation process requires the second filter of a proofreading function. Histidine has a structure unlike that of any other amino acid, and this structure provides opportunities for binding specificity adequate to ensure accurate aminoclylation of the cognate tRNA.

12. (a) The Ala-tRNA synthetase recognizes the G3-U70 base pair in the amino acid arm of tRNA. (b) The mutant tRNA⁴ Ala would insert Ala residues at codons encoding Pro. (c) A mutation that might have similar effects is an alteration in tRNA⁴ Thr that allowed it to be recognized and aminoclylated by Ala-tRNA synthetase. (d) Most of the proteins in the cell would be inactivated, so these would be lethal mutations and hence never observed. This represents a powerful selective pressure for maintaining the genetic code.

13. The amino acid most recently added to a growing polypeptide chain is the only covalently attached to mRNA and thus is the only link between the polypeptide and the mRNA encoding it. A proofreading activity would sever this link, halting synthesis of the polypeptide and releasing it from the mRNA.

14. The protein would be directed into the ER, and from there the targeting would depend on additional signals. SRP binds the amino-terminal signal early in protein synthesis and directs the nascent polypeptide and ribosome to receptors in the ER. Because the protein is translated into the lumen of the ER as it is synthesized, the NLS is never accessible to the proteins involved in nuclear targeting.

15. Trigger factor is a molecular chaperone that stabilizes an unstructured nascent polypeptide. As the nascent polypeptide emerges from the ribosome, trigger factor begins to unfold it and direct it to the ER. Trigger factor is released from the nascent polypeptide once it reaches the ER. The function of trigger factor is to prevent formation of aggregates of nascent polypeptides.

16. DNA with a minimum of 5,784 bp; some of the coding sequences must be nested or overlapping.

17. (a) The helices associate through hydrophobic and van der Waals interactions. (b) R groups 3, 6, 7, and 10 extend to the left; 1, 2, 4, 5, 8, and 9 extend to the right. (c) One possible sequence is

\[N-\text{Phe} - \text{Ile} - \text{Glu} - \text{Val} - \text{Met} - \text{Asn} - \text{Ser} - \text{Ala} - \text{Phe} - \text{Gln} - C \]

(d) One possible DNA sequence for the amino acid sequence in (c) is

\[\text{Nontemplate strand} \]
\[(\text{\textasciitilde})-\text{TATATGAGTTAAGTAACTGCATATCCAG-(3')} \]
\[\text{Template strand} \]
\[(5')-\text{AACCTTATTGCATATGCATATCCAG-(3')} \]

(e) Phe, Leu, Ile, Met, and Val. All are hydrophobic, but the set does not include all the hydrophobic amino acids; Trp, Pro, Ala, and Gly are missing. (f) Tyr, His, Gin, Asn, Lys, Asp, and Glu. All of these are hydrophilic, although Tyr is less hydrophilic than the others. The set does not include all the hydrophilic amino acids; Ser, Thr, and Arg are missing.

(g) Omitting T from the mixture excludes codons starting or ending with T—thus excluding Tyr, which is not very hydrophilic, and, more importantly, excluding the two possible stop codons (TAA and TAG). No other amino acids in the NAN set are excluded by omitting T. (h) Misfolded proteins are often degraded in the cell. Therefore, if a synthetic gene has produced a protein that forms a band on the SDS gel, it is likely that this protein is folded properly. (i) Protein folding depends on more than hydrophobic and van der Waals interactions. There are many reasons why a synthesized random-sequence protein might not fold into the four-helix structure. For example, hydrogen bonds between hydrophilic side chains could disrupt the structure. Also, not all sequences have an equal propensity to form an α helix.

Chapter 28

1. (a) Tryptophan synthase levels remain high in spite of the presence of tryptophan. (b) Levels again remain high. (c) Levels rapidly decrease, preventing wasteful synthesis of tryptophan.

2. (a) Constitutive, low-level expression of the operon; most mutations in the operator would make the repressor less likely to bind. (b) Either constitutive expression, as in (a), or constant repression, if the mutation destroyed the ability of the repressor to bind to lactose-related compounds and hence the response to inducers. (c) Either increased or decreased expression of the operon (under conditions in which it is induced), depending on whether the mutation made the promoter more or less similar, respectively, to the consensus E. coli promoter.

3. 7,000 copies

4. \(4 \times 10^{-8} \) M, about 10² times greater than the dissociation constant. With 10 copies of active repressor in the cell, the operator site is always bound by the repressor molecule.

5. (a)-(c) Each condition decreases expression of lac operon genes.

6. (a) Less attenuation of transcription. The ribosome completing the translation of sequence 1 would no longer overlap and block sequence 2; sequence 2 would always be available to pair with sequence 3, preventing formation of the attenuator structure. (b) More attenuation of transcription. Sequence 2 would pair less efficiently with sequence 3; the attenuator structure would be formed more often, even when sequence 2 was not blocked by a ribosome. (c) No attenuation of transcription. The only regulation would be that afforded by the Trp repressor. (d) Attenuation loses its sensitivity to Trp tRNA. It might become sensitive to His tRNA. (e) Attenuation would rarely, if ever, occur. Sequences 2 and 3 always block formation of the attenuator. (f) Constant attenuation of transcription. Attenuator always forms, regardless of the availability of tryptophan.

7. Induction of the SOS response could not occur; making the cells more sensitive to high levels of DNA damage.

8. Each Salmonella cell would have flagella made up of both types of flagellar protein, and the cell would be vulnerable to antibodies generated in response to either protein.

9. A dissociable factor necessary for activity (e.g., a specificity factor similar to the α subunit of the E. coli enzyme) may have been lost during purification of the polymerase.

10.

Gal4 protein

| Gal4 DNA-binding domain | Gal4 activator domain |

Engineered protein

| Lac repressor DNA-binding domain | Gal4 activator domain |

The engineered protein cannot bind to the Gal4 binding site in the GAL gene (UAR₉), because it lacks the Gal4 DNA-binding domain. Modify the Gal4p DNA binding site to give it the nucleotide sequence to which the Lac repressor normally binds (using methods described in Chapter 9).

11. Methylamine. The reaction proceeds with attack of water on the guanidinium carbon of the modified arginine.

12. The bcd mRNA needed for development is contributed to the egg by the mother. The egg develops normally even if its genotype is bcd /bcd, as long as the mother has one normal bcd gene and the bcd – allele is recessive. However, the adult bcd–/bcd– female will be sterile because she has no normal bcd mRNA to contribute to her own eggs.

13. (a) Hydrogen bonds form between the protein and DNA backbone at A106, A110, A118, T119, and A122, and between the
protein and DNA bases at A106, T107, A118, and T119. The latter four nucleotides contribute directly to DNA sequence recognition. (b) DNA backbone: A106-Arg206, A110-Ser212, A118-Arg219, T119-Arg221, A122-Ser223. DNA bases: A106-Asn253, T107-Asn253, A118-Asn263, T119-Asn263. Asn, Gln, Glu, Lys, and Arg are commonly found hydrogen-bonded to bases in DNA. The majority of residues in the TATA-binding protein that are involved in hydrogen bonds are Arg and Asn.

(c) TATATATA (residues 103 to 110)

ATATATAT (residues 122 to 115)

The TATA-binding protein recognizes A106, T107/T119, A118.

(d) The hydrophobic interactions are numerous. Many binding interactions of this type involve the burying of large amounts of hydrophobic surface.

14. (a) For 10% expression (90% repression), 10% of the repressor has bound inducer and 90% is free and available to bind the operator. The calculation uses Eqn 5-8 (p. 156), with \(\theta = 0.1 \) and \(K_d = 10^{-4} \text{ M} \).

\[
\theta = \frac{[\text{IPTG}]}{[\text{IPTG}] + K_d} = \frac{[\text{IPTG}]}{[\text{IPTG}] + 10^{-4} \text{ M}}
\]

\(0.1 = \frac{[\text{IPTG}]}{[\text{IPTG}] + 10^{-4} \text{ M}} \) so \(0.9[\text{IPTG}] = 10^{-4} \text{ M} \) or \([\text{IPTG}] = 1.1 \times 10^{-5} \text{ M} \).

For 90% expression, 90% of the repressor has bound inducer, so \(\theta = 0.9 \). Entering the values for \(\theta \) and \(K_d \) in Eqn 5-8 gives \([\text{IPTG}] = 9 \times 10^{-4} \text{ M} \). Thus, gene expression varies 10-fold over a roughly 10-fold \([\text{IPTG}] \) range. (b) You would expect the protein levels to be low before induction, rise during induction, and then decay as synthesis stops and the proteins are degraded. (c) As shown in (a), the lac operon has more levels of expression than just on or off; thus it does not have characteristic A. As shown in (b), expression of the lac operon subsides once the inducer is removed; thus it lacks characteristic B. (d) GFP-off: rep\(^{18}\) and GFP are expressed at high levels; rep\(^{18}\) represses OP\(^{18}\), so no LacI protein is produced. GFP-off: LacI is expressed at a high level; LacI represses OP\(^{18}\), so rep\(^{18}\) and GFP are not produced. (e) IPTG treatment switches the system from GFP-off to GFP-on. IPTG has an effect only when LacI is present, so affects only the GFP-off state. Adding IPTG relaxes the repression of OP\(^{18}\), allowing high-level expression of rep\(^{18}\), which turns off expression of LacI, and high-level expression of GFP. (f) Heat treatment switches the system from GFP-on to GFP-off. Heat has an effect only when rep\(^{18}\) is present, so affects only the GFP-off state. Heat inactivates rep\(^{18}\) and relaxes the repression of OP\(^{18}\), allowing high-level expression of LacI. LacI then acts at OP\(^{18}\) to repress synthesis of rep\(^{18}\) and GFP. (g) Characteristic A: the system is not stable in the intermediate state. At some point, one repressor will act more strongly than the other due to chance fluctuations in expression; this shuts off expression of the other repressor and locks the system in one state. Characteristic B: once one repressor is expressed, it prevents the synthesis of the other; thus the system remains in one state even after the switching stimulus has been removed. (h) At no time does any cell express an intermediate level of GFP—this is a confirmation of characteristic A. At the intermediate concentration (\(X \)) of inducer, some cells have switched to GFP-on while others have not yet made the switch and remain in the GFP-off state; none are in between. The bimodal distribution of expression levels at \([\text{IPTG}] = X \) is caused by the mixed population of GFP-on and GFP-off cells.
carbon dioxide assimilation, 774, 774f, 775-780
in photosynthesis. See Calvin cycle
solubility of in water, 47, 47f
carbon dioxide assimilation, 774, 774f, 775-780
in photosynthesis. See Calvin cycle
solubility of in water, 47, 47f
carbon fixation, 664, 774f, 775-780, 778
See also Carbon cycle
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
in C4 plants, 789-790, 789f
solubility of in water, 47, 47f
in photosynthesis. See Calvin cycle
partial pressure of, 62
oxidation of pyruvate to, 616-617, 616f
hemoglobin binding of, 155, 158,
Index

cytokines, 443
in cell cycle regulation, 471f, 472
cytokinins, 331f
cytosol, 3, 3f
filaments in, 9–10, 9f
cytosine, 9s, 272, 272f, 273f. See also pyrimidine bases
deamination of, 259, 259f
dehydroascorbate, 127f
degeneracy, of genetic code, 1069
deamination
De Duve, Christian, 599
dDI, 1053b
dCMP (deoxyadenosine 5'-monophosphate), 273s
days, 11b
daltons, 11b
dArm, of IRNA, 1080f, 1081
cltoskeleton, 9–10, 9f
cytosine, 9s, 272, 272t, 273f
See also cltoplasm, 3, 3f
cytokines, 443
cytokinins, 331f
cDNA
sucrose synthesis in, 772, 827f
cellulose synthesis in, 795–796
filaments in, 9–10, 9f
cytoskeleton, 9–10, 9f
cytosol, 3, 3f
cllose synthesis in, 795–796
cltoxic T cells (T cells), 170, 170t
dS (entropy change), 22, 22f
denaturation mapping, 952

denaturation of, 287–288, 288f, 290f
denaturation mapping of, 952

desolvation, in enzymatic reactions, 192, 192f
desensitization, receptor, 420, 420f, 421f,
430–431, 430f
desmin, 177
desmosine, 77, 78s
desolvation, in enzymatic reactions, 192, 192f
deamination
deamination
De Duve, Christian, 599
dDI, 1053b
dCMP (deoxyadenosine 5'-monophosphate), 273s
days, 11b
daltons, 11b
dArm, of IRNA, 1080f, 1081
cltoskeleton, 9–10, 9f
cytoskeleton, 9–10, 9f
cytosol, 3, 3f
cllose synthesis in, 795–796
cltoxic T cells (T cells), 170, 170t
dS (entropy change), 22, 22f
denaturation mapping, 952

denaturation of, 287–288, 288f, 290f
denaturation mapping of, 952

desolvation, in enzymatic reactions, 192, 192f
desensitization, receptor, 420, 420f, 421f,
430–431, 430f
desmin, 177
desmosine, 77, 78s
desolvation, in enzymatic reactions, 192, 192f
deamination
deamination
I n d e x l - 15

fat(s), body SeealsoAdiposetissue
body Seenlso adiposetissue;body mass
heat generatedby, in oxidativephosphorylation
regulation,736,736f
metabolicpathwaysof, 913t
rancid,348
fat cells Seeadipoc5.tes
Fr-ATPase,
725
structure of, 733, 733f
fatty acid(s), 343-349 Seeolso lipid(s);
triacylglycerol(TAG)
activationand transport of, 650-652,65if
as amphipathiccompounds,4849, 48f
analysisof, 364f,365
p oxidationof, 809, 820
body storesof, 927t
cleavageof, 355,355f
desaturation
of, 815-817,815f,817f
doublebonds of, 344,344t
inE. co\i.cells,382t
essential,8l5-817
f r e e , 3 4 56, 4 9
in glycerophospholipids,
350 352
as hydrocarbonderivatives,343
as Lipidanchors,379-380,380f
meltingpoint of, 344t,345,348f
mobilizationof, 821 822, 822f, 823,
916-917
glucagonin, 926
nomenclatr.refor, 343 344, 343f, 344t
omega-3,345
omega-6,345
packurgof, 345,345f
physicalpropefties of, 344t, 345
poll'unsaturated,345
reesteriication of, 821-822
saturationof, 348,348f
in signaling,819
solubility of, 3441,345
structure of, 343-344,344I
slnthesisof,805 317
trans, 347-348,348f, 348t
in triacylglycerols,345f,346-348, 346f, 348f
Seealso triacylglycerol(s)
fatty acid metaboLism
in adiposetissue,821-822, 822f, 823,9091,
9r6-917,927f,928f
in brain, 920
cortisol in, 929
ln diabetesmellitus,542f
epinephrinen, 92U929, 9281
rn fastmg/staruati
on, 927f , 928f
in liver,914 915,915f
in muscle,918-919,918f
pathwaysof, 9l3t
fatty acid oxidation, 647,652-665
a,664-665
in peroxisomes,664-665,665f

p
ir bears,655
enzyrnesof, 663-664,664f
in peroxisomes,662 663, 662f
plantsand,662 663,663f
stepsof, 653-655,653f
yieldingacetyl-CoAand ATP, 65+655,6561
complete,657,658b-659b
enzlmes ot, 649-652,650t-652t,650t 652t
of monomsaturatedfat, 656-657,656f
odd-number,
657,660f
o, in endoplasmicreticulum, 664,664t
of pollunsaturatedfats, 656-657,657f
regulationof, 660
stagesof, 653f
of unsaturatedfats, 656 657, 656f, 657f
fatty acid slmthase,806-81 1
proteinsof,808 809
associated
in plants,812
va"riantsof, 806-808,807f
fatty acid slrlthesis,916-917
in, 809, 810f,811f
acetoacetyl-AOP
acetyl-CoAcarboxylasein, 805-808, 806f, 814,
8r4f,822t

in, 805-808,806f,811, 822t,922
acetyl-CoA
acetyl-CoA-ACPtransacetylasein, 810f, 81lf
acyl carrier protein in, 808,809f, 810f
adiposetissuein, 916-917
in bacteda,806-81i, 815
B-hydroxyacyl-ACPdehydratasern, 809'
810f,81lf
reductasein, 809, 810f,811f
B-ketoacyl-ACP
p-ketoacyl-ACPsynthasein, 809, 810f, 811f
butyryl-AcPin, 809, 810f,811f
carbonylgroup reduction in, 809,810f,
811,811f
in, 809,810f
condensation
i n c l t o s o l , 8 1 18, i 2 f
dehydrationin, 809, 810f
in diabetesmellitus,82I-822
reductionin, 809,810f
double-bond
in endoplasmic
reticulum,812f,814,815
reductasein, 809, 810f,81lf
enoyl-ACP
fatty acidsynthasein,806-811
fatty acyl chain elongationin, 806-808,814,
822f,823f
in hepatocltes,815
insulin in, 922
transacetylasein, 809
malonyVacetyl-CoA-ACP
malonyVacetyl-CoA-ACP
transferasein, 811f
malonyl-CoA
in, 814
malonyl-CoA-ACPtransferasein, 810f
paLmitate
in, 808,811,811f,814,814f
palrnitateslnthesis in, 808,808f,811
in plants,812,8t2f
regulationof, 814,814f,821 822
stepsin, 806-808,809,810f,822f
in, 809, 810f,811f
trans-A2-butenoyl-ACP
in veftebrates,814f
in yeast,814f
fatty acyl-CoA,650
conversion
of fatty acidsinto, 650-651,651f
in tflacylglycerolsynthesis,820 821,820f
geneticdefectsin,
fatty acyl-CoAdehydrogenase,
661,662
fatty acyl-CoAdesaturase,815
fatty-acyl-CoAsynthetase,reactionmechanismof,
650-651
Fc regionof imunoglobin, l7l, I71f,172, I72t
feedbackhhibition, 26
allosteric,22I-222, 22lf
in purine nucleotidebiosynthesis,885f,886-887
in plrimidine nucleotidebioslnthesis,887,887f
sequential,873
FeNing'sreaction,241b
fermentation,528, 547, 517 551
ur beer brewing,549
ethanol (alcohol),528, 530f, 547-549, 547f
foodsresultingfrom, 550-551
industrial-scale,549f, 551
Iactic acid, 530
plruvate in, 546-547
thiaminepyrophosphatein, 549-550,
550f,551t
feredoxin, 7 51, 7 53, 856
ferredoxin:NADP*oxidoreductase,754
ferredoxin-thioredoxinreductase,785' 785f
ferritin,624b
ferrousion, oxidationof, 512 513
Fe-Sreactioncenter,75l Seea\so
iron-sulfure%r?"?es
binding in, 167
fetus,hemoglobin-oxygen
flbrin,361
flbrinogen,227,361
flbroblastgrowth factor, 251f,254,254f
fibroin,128,128f
fibronectin,proteoglycansand, 254,255f
flbrousproteins, L23-I28
coiled coilsin, 123-124,I24f
collagenas, 124 128,l21f
fibroinas, 128,128f
in hair, 123 124,124t,).25,I25f
o-keratinas, 123-124
polpeptide chain arrangementin, 123
structure of, 124-\28, 124f
functionalcorrelatesof, 123t

l
l

ll7 -722, I t8f, 120f-122f,123t
secondary,
tertiary,123-131,124f,125f,I28t
fight-or-flightresponse,epinephrinein,
928-929,928t
9, 9f
filaments,cS.toskeletal,
firefly bioluminescencecycle,509b
first law of thermodynamics,20
Fischer,Emil, 74, 189
Fischerprojectionformulas,236, 236f
5' cap,1034-1035,1066f
5' end,275,275f
5'--+3' exonucleaseactivity, in DNA pol)'rnerases,
983-984,983f
flxation,in nitrogen cycle,852
flagella,6f
flagellarmotion, 175
flavin adeninedinucleotide(FAD), 297s,520s
flavin mononucleotide(FMN), 520f
flavin nucleotides, 519-520, 709
bound to flavoproteins,519-520,520f, 520f
flavopiridol,476b
flavoproteins,84, 85t, 519-520, 7Og
electron-transferrirg,654
flavin nucleotidesbound to, 519-520,
520f,520r
flrckeringclusters,44, 48f
flip-flop diffusion,of membranelipids,
381-382,382f
flippases,382, 382f, 400
floppases,382f, 383
fluid mosaicmodeI,373, 374f
fluorescence,746
fluorescentresonarceenergytransfer (FRET),
436H36b
L-fluoroalanine,878
fluorouracil,89fs,894
flux (J), 671, 578, 579b-580b
enzyrnescontributingto, 578
glycoMic,578f
prediction
increased,metaboliccontrol a.nalysis
of, 579b-580b
metabolite,
changein eroymeactivilyon.
578-580,578f, 580f
responsecoefflcienteffect on, 579b-580b
flux control coefflcient(C),578,679b' 580b
fMet-tRNA,in protein synthesis,1088
posttranslationalmodificationof, 1096
FMN (flavin mononucleotide),520f
Fo component,of ATP synthase,725
rotation of, 729,730f
FoFl complex,of Escherichia coli, 739
folate,deflciencyof, 691-692,891
folatemetabolism,as chemotherapytarget, 895f
folds, 131-138, 136f-137f Seeolso protein folding
food
fermentation'aelding,550-551
trans fatty acidsin,347-348,348t
footprinting, 1026b
Forbes'disease,599t
forensicmedicire, DNA flngerprinl,mgin.
319-32r
forkheadbox other (FOXOl), 592'5921
formaldehyde,5l3s
fomic acid, 5l3s
N-formylmethionyl-tRNAtr"t,in protein
synthesis,1088
posttranslationalmodificationof, 1096
FOXO1(forkheadbox other), 592,592f
fractionation
cellular,8-9, 8f, 52
protein,86-90,86f
frameshifting,1072
Franklin,Rosalind,278, 278f
FRAPtechnique,383, 383f
free energy(G), 23,490
absolutetemperatureand, 23
cell sourcesof, 491
enthalpyand, 22
entropy and, 22
Gibbs,490
of hydrolysis,501-503,504f, 505-506,505f,
505t,506f


hydrogen, hemoglobin transport of, 166
hybrid duplexes, 289
hyaluronidase, 250
hyaluronate, 250 s, 255 f
hydrogen sulfide, solubility of in water, 46
hydrolysis, 65 f
hydrophilic compounds, 46, 46 t
hydropathy index, 378
hydronium ions, ??
hydrolysis reaction, 65
B-hydroxy-B-methylglutaryl-CoA
p-hydroxybutyrate, 666
hydroxylases, 816
h-ydroxymalinic acid, 250
hyperglycemia, insulin secretion in, 922, 923 f
hyperinsulinism-hyperammonemia syndrome, 680
hyperlipidemia, 843-844, 843 b
in heart disease, 843-845 b
trans fatty acids and, 347-348, 348 f, 348 t
hypertonic solutions, 52, 53 f
hypochromic effect, 287
hypoglycemia, 921-922, 921 f
hypothalamic-pituitary axis, 909-910, 911 f
hypothalamus, 909, 909, 910 f
in body mass regulation, 931-932, 932 f
hypotonic solutions, 52, 53 f
hypoxanthine, from adenine deamination, 290 f
hypoxanthine-guanine phosphoribosyltransferase, 893
hypoxya, 167, 530, 733-734
adaptive responses in, 733-734
reactive oxygen species and, 733-734
hypoxia-inducible transcription factor (HIF), 734, 734 f
in cancerous tissue, 540
I b bands, 176, 177 f
ibuprofen, 818, 818 s
ice, hydrogen bonds in, 44-45, 45 f
in body mass regulation, 931-932, 932 f
in cancerous tissue, 540
in eukaryotes, 1089-1091, 1091 t
hypoxia-inducible factor, 1051, 1144
in plants, 357
in (initiator) sequences, 1138-1139, 1139 f, 1141 f
insulin, 906, 906 f
intrinsic enzyme, 21
influenza virus, lectins of, 258 t, 259 f
inorganic pyrophosphate (PPi), in plants vs animals, 792
inosinate (IMP), 883
in anticodon, 1071-1072, 1071 f
biosynthesis of AMP and GMP from, 885 f
puriﬁcation of, 885 s
inosine, 274 s, 1073 b-1074 b
inositol, in lipid synthesis, 827 f, 827 f
inositol 1,4,5-trisphosphate (IP3), 357-358, 432-433, 433 f
in plants, 357
ineuronal defects, 1053, 1054 f
in eukaryotes, 1089-1091, 1091 t
in protein synthesis, 1088-1091, 1091 f
in cancerous tissue, 540
in eukaryotes, 1089-1091, 1091 t
insertion, 1013
insulin, 906, 906 f
alpha amino acid sequence of, 93-94
in carbohydrate and fat metabolism, 606-608
in glucose regulation, 439, 441, 441 f, 1144
in inorganic pyrophosphate (PPi), in plants vs animals, 792
inosinate (IMP), 883
in anticodon, 1071-1072, 1071 f
biosynthesis of AMP and GMP from, 885 f
puriﬁcation of, 885 s
inosine, 274 s, 1073 b-1074 b
inositol, in lipid synthesis, 827 f, 827 f
inositol 1,4,5-trisphosphate (IP3), 357-358, 432-433, 433 f
in plants, 357
in (initiator) sequences, 1138-1139, 1139 f, 1141 f
insertion mutations, 995
insertion sequences, 1013
inosin, 906, 906 f
amino acid sequence of, 93-94
in carbohydrate and fat metabolism, 606-608
in glucose regulation, 439, 441, 441 f, 1144
in inorganic pyrophosphate (PPi), in plants vs animals, 792
inosinate (IMP), 883
in anticodon, 1071-1072, 1071 f
biosynthesis of AMP and GMP from, 885 f
puriﬁcation of, 885 s
inosine, 274 s, 1073 b-1074 b
inositol, in lipid synthesis, 827 f, 827 f
inositol 1,4,5-trisphosphate (IP3), 357-358, 432-433, 433 f
in plants, 357
membrane permeability for, 52
membrane transport of, 385b, 404–406, 405f, 406f
metabolic, 65
molecular structure of, 43–44, 44f
nonpolar gas solubility in, 47, 47f
ordered, 48f, 49f
in photosynthesis, 65
polarity of, 49
in proteins, 50–51, 51f
proton hopping in, 51, 54f, 55
as reactant, 65
solvent layer of, 114
as solvent, 46–48, 47f. See also aqueous solutions
weak acids/bases in, 57–63
water split by oxygen-evolving complex,
756–758, 758f
water-splitting complex, 758
Watson, James D., 93, 277f, 278–279, 317, 945, 977
waxes
in beeswax, 349, 349f
in carnauba wax, 349
in lanolin, 349
in apricot oil, 347, 348, 349
weak acids, 57–59. See also acid(s)
as buffers, 59–63, 61f
dissociation constant (Ka) of, 57f-60f, 58–59
relative strength (pKa) of, 58–59
titration curve for, 58–59, 58f, 59f
Henderson-Hasselbalch equation for, 60–61
weak bases, 57. See also base(s)
as buffers, 59–63
dissociation constants of, 57f–59f
weak interactions, 10 in aqueous solutions, 43–54
binding energy of, 50
cumulative effect of, 50
in DNA, 277, 277f, 278, 279f, 280f
effects of on structure and function, 50–51
in enzyme-substrate complexes, 49f, 50,
189–191, 190f
hydrogen bonds as, 43–46, 44f–47, 50–51, 51f, 51f. See also hydrogen bonds
hydrophobic, 49, 50f
in amphipathic compounds, 48–49, 48f
in globular proteins, 130, 130f
protein stability and, 114–115
ionic, 10, 50, 50f
in solutions, 46–47
in macromolecules, 50–51, 51f
of membrane proteins, 370, 477f
of nucleotide/nucleic acid bases, 277
in polysaccharides, 247–248
protein stability and, 114–115
in RNA, 277, 277f, 284
in solutions, 49–51
stability of, 50
system energy and, 50
tertiary protein structure and, 130, 130f
van der Waals interactions as, 49–50, 49t, 50t
weight, regulation of, 821–823, 930–937
adiponectin in, 934–936, 935f
ghrelin in, 932f, 937f, 937f
hypothalamus in, 931–932, 936f
insulin in, 934, 935f
leptin in, 930–931, 931f–934f
peroxisome proliferator-activated receptors in,
936–937
PYF3 in, 932f, 937f
thermogenin in, 930
Wernicke-Korsakoff syndrome, ex vacuo of,
transketolase defect and, 563
whales, fat stores in, 347, 347f
white adipose tissue (WAT), 916, 9.6f
white blood cells, 921, 921f
white muscle, 918
whole cell biotechnology, 98–100
whole genome shotgun sequencing, 322
whooping cough, 427b
wild-type mutation, 30
Wilkins, Maurice, 278, 278f
Withers, Stephen, 216
wobble hypothesis, 1072
Woese, Carl, 103, 1056, 1056f
Woody, D. Wayne, 519
writhe, in DNA, 957, 958f
Wurtz, Charles-Adolphe, 185
Wyman, celfries, 165

X
xanthine, from adenine deaminatation, 290f
xanthine oxidase, 892
allopurinol inhibition of, 894, 894f
xenobiotics, 736–737

XerCD system, 1013
xeroderma pigmentosum, 1003b
X-linked adrenoleukodystrophy (XALD), 662
X-ray diffraction studies of DNA, 278, 280f
of protein structure, 129, 130, 132b–133b,
132f–133f
xylose, 213, 213f, 237f
xylulose, 237f
xylulose 5-phosphate, 560s
in Calvin cycle, 770, 780, 786f, 781f
in regulation of carbohydrate and fat, 588

Y
Yalow, Rosalyn, 902, 904f
yeast
centromeres in, 963, 963f
chromosomes in, 947
DNA of, 949, 955f
gene of, 947, 949, 965f, 965f
sequencing of, 322f, 323, 323f
membrane components in, 372, 372f
plasmid vectors from, 310, 310f
telomeres in, 963, 963f
yeast alanine DNA, 1079–1080, 1080f
yeast artificial chromosomes (YACs), 310,
310f, 963
yeast cell, fermentation by, 549
yeast replicators, 961
yeast two-hybrid analysis in, 339, 339f
yellow fluorescent protein (YFP), 434b–436b

Z
Z disk, 176, 177f, 178f
Z scheme, 783
Zarnecrill, Paul, 1065, 1065f, 1065, 1076
zamamir, 258–260, 260s
Z-DNA, 291, 291f
Zellweger syndrome, 662
zinc finger, 1122–1123, 1123f
Zocor, 842–843, 842b–843b
Zuckermandl, Emil, 103
zwitterion, 78–79, 79f
zymogen, 236, 237f, 67