THE

PHOTOGRAPHIC NEWS:

A WEEKLY RECORD

OF THE

PROGRESS OF PHOTOGRAPHY.

VOLUME XIX.

EDITED BY G. WHARTON SIMPSON, M.A., F.S.A.

Nulla recordanti lex est ingratia.—MAESTAS.

LONDON:
PRINTED AND PUBLISHED BY PIPER AND CARTER,
15 & 16, GOUGH SQUARE, FLEET STREET, E.C.

P. 1875.
THE Nineteenth Volume of the Photographic News, to which these after words will stand as Preface, is the record of the observation and experiment, the discussion of theory, and statement of practice, of a year of unusual activity in many departments of our young but rapidly progressive art. The Preface to a volume serves many varied purposes: sometimes it is necessary to affirm the very right of existence claimed by the book; often it affords opportunity of preparatory explanations; and occasionally it assumes the tone of apology for sins of omission or commission which the book may contain. Our Preface has none of these purposes. The pages which have been issued from week to week have, we hope, established their own raison d'etre, and furnished, in their progress, explanation or apology, if any were needed. We write a Preface, partly because it has become customary, and partly because it affords the Editor an opportunity of speaking to his readers in a somewhat less impersonal fashion than is common in the ordinary forms of journalism.

The completed Volume of the year eighteen hundred and seventy-five is in the hands of our readers, and it needs no comment from us. As regards the future we have no new programme to offer. Our work in the past will be our work in the future. We have aimed to record, with completeness, and, where possible, to initiate or stimulate, progress in every department of photography, and the branches of art and science associated with it. We have endeavoured to aid the research of experimentalists and investigators, and to chronicle the results of their labours; to give wide currency to the teachings of the experience of the ablest practical men; to clear away the difficulties of the student; to announce discoveries and collate facts bearing upon photography in cognate sciences; to enforce and aid art culture amongst photographers; to consider and discuss the social, industrial, and commercial phases of the art; to aid in the advancement, in short, of photography in its every phase as science, art, and commerce, and to consider the interests of those devoted to its practice, amateur or professional—these have been our general aims in the
past; these will constitute our purpose for the future. In saying that we believe we have been successful in the achievement of the ends in view in the past, we do not speak with undue boastfulness, because in doing so we only recognize the efficient services of the numerous adjutors who have aided our work: not simply the services of the gentlemen associated with us on the staff of the Photographic News, but the extensive and valued body of contributors and correspondents to whose experiment, observation, and suggestion photography owes so much. To these we gladly avail ourselves of the opportunity of offering thanks for the past; to these we confidently appeal for continued aid in the future.

Of our personal work we need say little, beyond offering the assurance that it shall not in the future fall short of the past. Much of our duty is that of gathering, winnowing, selecting, and garnering; occasionally it is devoted to investigation and experiment; frequently to examination, testing, and proving alleged improvements; often to advice, suggestion, and instruction. We bring to our work upwards of a quarter of a century's practical and experimental familiarity with photography, and a score of years' experience in photographic literature, as well as the keen interest in it which renders the duty a pleasure. With the abounding evidence of the approval of our continuously increasing circle of readers in the past, we can but promise, as the past has been, the future shall be; and, with this promise, we conclude, wishing to all our friends—contributors, correspondents, and readers—a happy and prosperous new year.

January, 1876.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

THE COLD WEATHER AND PHOTOGRAPHY — RODWELL'S INVESTIGATIONS OF IODIDE OF SILVER.—MINOR APPLICATIONS OF PHOTOGRAPHY.

The Cold Weather and Photography.—Say what you will about the cold weather, it is, after all, not nearly so bad as the dull, foggy days of November, that try the photographer's negative films, his printing, and his temper. When you have a good covering of snow on the ground, it need not be so bright overhead to make the printing go on more readily, for if the illumination is not very penetrating, the light is bright and diffused, and any description of cliché may be safely put out for printing. One important matter may always be borne in mind in cold weather, a matter first made known, we believe, by Mr. England, and subsequently confirmed by Lieut. Chermside during his photographic experiences in the Arctic regions. It is this: that one need not be under any apprehension even if the wet collodion film should freeze while in the dark slide, and ice crystals be formed on the surface of the negative image. During Mr. England's operations in America and Canada, the film of his wet plate, he has told us, would often freeze in the low temperature, for a long time would sometimes elapse between the plate's withdrawal from the bath and its development. At first he was much exercised in mind, lest no picture should be developed from the glazed collodion surface he brought out of the dark slide, but by his enemy, and directed it, the result was precisely as if nothing had happened. The result was in every way satisfactory, and there was no doubt, indeed, in the image to show that anything extraordinary had happened to the plate. Lieut. Chermside tells us the same tale. Frequently his wet plates froze during exposure, but this did not in any way militate against the result. The only difficulty we should experience about such plates would be as to the use of a warm developer. Thawing the ice crystals too rapidly would, no doubt, be injurious to the image, and the best plan, probably, would be to use a cold developer first and a warm one afterwards. The advantages of a warm developer in cold weather must be patent to all who have used it, and instantaneous pictures may be produced almost as readily in winter as in summer by this means. The collodion negatives shall not have developed in a third of the time as when the liquid is poured on almost freezing, and one need scarcely say that to the operator himself the employment of the developer in this condition is all the more pleasant. Should photographers have an objection, however, to their plates freezing in the rigorous weather we are now experiencing, there is a very simple plan for preventing such a state of things. Glycine, which is sometimes employed in the art of preserving the film during extremely hot weather, may be used effectually for the purpose in winter, for glycine, be it known, is a liquid which will only freeze at a very low temperature. Indeed, pure glycine would absolutely refuse to do so in a temperature such as we experience in this country, and it has the effect, when added to water or to aqueous solutions, of imparting to the same a retarding effect as regards their proneness to become solid in cold weather. We need say little on the subject of keeping solutions in working order during the wintry months, for photographers know very well that it is only by maintaining their baths and solutions at a moderate temperature, by artificial warmth, that they can do their work satisfactorily. Otherwise the baths work slowly, and the plates betray a general lack of sensitiveness and absence of vigour. However, as we said at the outset, bright, cold weather is in any case far preferable to the photographer than warm, foggy days; and he is generally by no means adverse to a sharp frost and a fine fall of snow, if his negatives are well packed, for not only can he get on with his printing, but there are some nice pictures to be taken on the lawn and in the shrubbery when the delicate twigs of the silver, birch sparkle with frosty rime, and the fir trees appear like petrified fountains overflowing with frozen foam.

Rodwell's Investigations of Iodide of Silver.—We observe that Mr. G. F. Rodwell has been reading a paper, at the Royal Society, on the subject of iodide of silver. He has nothing to say about this compound, so interesting to photographers, in regard to its sensitiveness to light, but, nevertheless, he brings forward circumstances which deserve, at any rate, a passing notice. He believes that iodide of silver exists in three allotropic forms. At a temperature of 116° C. and above it is a plastic, tenacious, amorphous substance, possessing a reddish colour and transparent to light. Below this temperature, and in the condition, therefore, in which photographers employ it, it is brittle, opaque, greenish grey, and crystalline. It may assume yet a third state, and that is when it is fused and poured into cold water; in this condition it is amorphous, and, of a greenish yellow, and it is in this form that Rodwell tells us, possesses its maximum density at or about 116° C., at the moment before it passes from the amorphous to the crystalline condition. The contraction and expansion of iodide of silver, when passing from one state to another at different temperatures, is said to be very marked indeed. It would have been interesting to know how the sensitiveness for light of the body is influenced by the changes of condition to which we have referred.

Minor Applications of Photography.—Among the many novelties which are prevalent just now in the shape of cards and pictures whereon to exchange the good wishes of the season, it is remarkable that there are none of a photographic character. Snowy landscapes and red-breasted robins are to be seen everywhere, but little winter sketches taken in the camera, which would be most apt and welcome if tastily mounted and finished, are nowhere to be purchased. This appears to us a most singular oversight on the part of photographic publishers, for there cannot be a doubt that the public would pay well for novelties of this kind, well executed, and the productions would be a pleasing change to the floridly coloured pictures which are now only to be bought. Many a photographer possesses half a dozen negatives of suitable subjects, but the size of the negatives, and the large sales which are effected in articles of this kind would assuredly make the matter a profitable one. Unfortunately this is only one of many instances where photographers are lacking in enterprise. There are many directions of a fancy nature, where photography could obtain a footing, if only photographers would make the attempt. For ball programmes, dinner cards, wedding certificate, for fancy mats, d'oyles, fire-screens, lamp shades, and a hundred and one other knickknacks, photography would come in most aptly, if only applied with taste and skill, and a design successfully carried out would surely command a price, if on the score of novelty alone. Why, we have often wondered, has no one among our clever advertisers ever thought of sensitising post-cards, incrusting upon them some photographic design or picture? The Post Office would be bound to accept them, as it would printing of any other description. What a field there is here for an enterprising advertiser, for, after all, the cost of such an enterprise would not be very much, when we bear in mind the costly advertisements that are sent through the post nowadays. It is the custom throughout France to send one's address card to friends on New-Year's Day, and the fashion has been adopted with some extent of late years. Should it become general what would be more a propos than to have the portrait of the sender neatly mounted in one corner? Christmas an
THE PRACTICAL PRINTER IN AMERICA.

CHAPTER XV.

VIGNETTE CAMEO AND MEDALLION VIGNETTE CAMEO PRINTING.

To print these beautiful styles a negative should be made expressly for them, having an ordinary size figure, somewhat smaller than the "Berlin head."

To print in cameo, the same idea holds good as in printing medallions, &c.; i.e., to show sufficient of the body to balance the head, but very little more. A ring is described below, and called a "cameo ring," should be stuck to the negative that is to be vignetted by the extreme corners, as if you were to print it in the ordinary medallion style, and after placing the sensitive paper on it the negative is then ready to be vignetted.

In choosing the vignette-block or in making the cameo box, with a view to the fact that a much smaller one is needed than if it were to be printed in the ordinary medallion, and consequently pick out such a one as will show enough of the body to balance the head and no more, although we might, if we were not printing this style, choose a block that would blend the print out to the very edges.

The reason why this should be heedful is because the finished vignette print, when pressed by the cameo press, ought not to have any of the halo show beyond the pressed-out surface, if you wish a very fine effect, as is the case, and the ring being placed on the negative prevents the halo from printing out further than where the ring is placed, and since this ring is made from the cameo press itself, it will, of course, when carefully pressed by it, give us the effect we wished for, viz., all of the printed paper is pressed forward while the white border retires. It is almost needless to state that the halo should blend out quite softly, both in the dressings and elsewhere, so that there will not: be a harsh appearance in the print, on account of its being stopped abruptly; hence the need of a small but deep printing-board and a piece or two of tissue-paper (according to its quality) for blending it.

In making the medallion vignette cameo, proceed as above, with the exception in the above case that whereas the print is finished as regards the printing when it is removed from the board, in this case there is to be an outside or border printed in, which may be of a variety of shades, as circumstances may permit. In making the cameo ring, place the die of the cameo press on a glass with the paper that you are to make cut-out of placed under it, and then with a sharp knife cut a quick and clean cut all around the inside of the guide.

In using the cameo ring, proceed as if you were printing his ordinary medallion, and in shading the outside, bear in mind to use the right mask for the cut-out used in printing the prints. (See Medallion and Arch-top Printing.) If the background is very light, the border should either be lighter or darker, but never of the same shade.

When the prints made are medallion cameo, and are not printed in the vignette, then the background is darker than what it would be if vignetted, and consequently the border cannot be printed lighter than the background; but when it is very often the case in printing the prints in vignette, the background is very light, then the border is generally printed until it bronzes, so as to give it a decided contrast: this produces an effect quite pleasing.

ON THE PRACTICE AND PRINCIPLES OF THE GREAT PORTRAIT PAINTERS.

BY A. R. ALDRIDGE.*

If I had proposed only some seven or eight years since to read to a body of photographers a paper on the practice and principles of the great portrait painters, it might have been asked, and with little show of reason, "What have we to do with the practice of artists, whether great or small?" When photography first started into existence but little more than thirty years ago, it was a something between chemistry and conjuring; and even now among the vulgar, who are ignorant of the means by which its effects are produced, it has still much of its ancient character. The great improvement in the character of photography, and especially of English photography, is generally ascribed to the exhibition of the works of Adam-Salomon, in the year 1877 As many of you have never had an opportunity of seeing these, our friend, Mr. Simpson, to whom we are indebted for their original exhibition, has kindly promised to show some of them to-night.

As photography progressed, one discovery following upon another not only proved the practicability of the new art, but pointed to a not very distant future when it might proudly take its place by the side of the sister arts of painting and sculpture; or, as some of its votaries thought, displace them altogether. This rivalry with painting, and especially with portrait painting, naturally conferred an upward feeling upon artists of the portrait art, many of whom, and especially the weaker or younger members, like Othello, found their "occupation gone," hence the origin of that apparent opposition between what are called the fine arts and this their younger sister—greatly, as I believe, to the detriment of both. Upon the whole, it is surprising that photography and painting, working side by side for so many years, have yet exercised so little influence upon each other. The artist still goes on making the studies for his pictures in thole laborious way, apparently ignorant or careless of the assistance photography might afford him, while the photographs of the present time, although still much in advance of those exhibited some few years since, yet appear (with some splendid exceptions) still wanting in those art qualities that raise the work of our hands from a dull copy of the commonplace in nature to what is in the best sense of the word we understand by a "picture."

If it may be allowed the expression, too many of our photographers appear to be wanting in brains. The author has been content to allow the lens to think for him. That huge Cyclopian eye sees things in many respects differently from the way in which they are presented to our double vision; much more does it differ from the eye of an artist. In the
first place, our friend is colour-blind; it cannot distinguish yellow from black, or blue from white. Then it is utterly wanting in discrimination; it dwells upon the buttons on your coat, the pattern of your trousers, or the wrinkles in your boots, and depicts them all with the same mechanical exactness with which it shows the lines of thought in the face of the sage or the smile on the lips of beauty.

"If you want to find out the faults of your picture," said Benjamin West, "set a student to copy it; he is sure to find and exaggerate them." It is the same with the lens. With what remorseless severity it seeks out and displays those freckles almost invisible to the naked eye! How it turns the rosy cheeks of youth and health to blackness and blueness, stealing at the same time all force or expression from the eyes that are inclined to blue or grey! Truly a blind leader for the blind! What has been said with respect to fire may be applied to the photographic lens—"it is a good servant, but a very bad master." It requires to be studied, to be humoured, and often to be corrected. And here it is that the artist-photographer has the advantage over his less enlightened brothers. Knowing well what can be done by the lens, he uses it to the best effect, but when the lens may afford him, but strives by the disposition of his background, by casting the light upon one part or sinking another in shade, by skillfully disposing his draperies and accessories so as to form graceful lines, to reduce what was before a chaos to order and harmony. It is in the hope of affording some slight assistance in this direction that the following observations have been written.

And here I should like to bestow a few words of thanks on those masters of the photographic art who have so liberally contributed the results of their skill and experience to their less fortunate or more juvenile brethren. I think that we owe them a deep debt of gratitude, and I, for one, tender them my most hearty thanks. As it is chiefly the purpose of the present paper to establish a few of those art principles that may be most useful in our practice, I shall say no more upon the historical part of the question than may be necessary to a right understanding of their practice.

Portrait painting, as we understand it, was but little practised by the ancients. The Greeks, who excelled as artists all other nations, whether of ancient or modern times, when they wished to transmit their counterfeit presentiment to posterity, generally preferred the more enduring marble or bronze of the sculptor for the purpose. We are told, however, that Alexander the Great sat to Apelles, the great artist of antiquity, for a full-length portrait. As the Emperor had something to do, but with his eyes, the painter turned his eye to the wall. I suppose that it is scarcely necessary for me to commend this piece of ancient practice to your attention. Alexander certainly approved, for he presented the painter with a sum equal to about 200,000 of our money. It is also of Apelles, if I remember, that another story is told. Having exhibited a picture, exception was taken by a shoemaker to the way in which the sandal was bid; the painter altered it. This so elated the critic that he began to find fault with the anatomy of the foot. "Let the cobble stick to his last!" exclaimed the indignant artist—a saying that has since passed into a proverb. It is recorded of another Greek artist that, having printed a picture in which some accessories (dead game, I believe) were greatly praised, he immediately retouched one thing, unwilling that they should distract the attention from the principal object. This was true art. It may be safely said that, whether in a painting or photograph, if any secondary object draw away the attention from the principal, it had better be left out altogether. The Romans never excelled, either as painters or sculptors. All their great works were either carried off from Greece, or executed for them by Greek artists. (To be continued.)

DRY PROCESSES.

BY M. A. DAVANNE.*

It is easy enough to work with the wet collodion processes in the studio, where one has room for placing baths and utensils conveniently to hand, but it is different when you have to photograph in the open air. Although a number of tents and portable laboratories have been from time to time devised, these form bulky and heavy baggage to drag about with you, and consequently photographers have of late turned their attention to the preparation of dry plates, producing sensitive films at home which may be carried a distance.

The different methods of preparing dry plates are very numerous, but we will only take notice of those which are most practised, and which give the best results. They are, in our opinion, the colloidio-albumen, or Tapanot process; the tannin process; the waxed paper process; almost obsolete at the present day. In all these processes, the point of departure is the same, viz., to obtain a film of iodide or bromide of silver in a permeable and insoluble medium; but what varies is the nature of the medium, or the preparation which is dried, the excess of nitrate of silver concentrates, and reacts upon the insoluble salts of silver, forming crystals of iodide or nitrate of silver, completely spoiling, therefore, the prepared surface. Moreover, the nitrate of silver reacts upon the organic matter of the sensitive film, and, altering it, renders the development of a good result impossible. It is necessary to employ it as a first condition, to wash the prepared plate to remove the excess of nitrate of silver, and the consequence is an immediate diminution of sensitiveness. For this reason, the dry processes are slightly less sensitive than the wet collodion process, although considerable progress has recently been made in this matter.

As a second condition, it is necessary to maintain the permeability of the film, and for this reason one cannot employ the ordinary collodion film simply washed, or, on drying, it loses its spongy texture, and becomes transformed into pellicle impermeable to liquids; for this reason it gives a superficial image only, without any vigour, because none of the reagents can penetrate the thickness of the sensitive film. A very old collodion, containing a trace of a pulp obtained from the cotton plant, gives a more open film, more permeable to reagents, and permitting of being employed dry, after simple washing; but as a result even in this case is always inferior to those obtained by the processes we are about to describe.

The general principle in preparing dry plates is to leave in the pores of the collodion a soluble and permeable substance, which may, on development, be replaced or saturated by liquid reagents. The number of substances that may be used for the purpose appears unlimited: gum-like, gelatinous, albuminous, saccharine, and dulciferous bodies may be used with more or less success, as long as they have no secondary action upon the sensitive film; thus beer, milk, wines charged with tannin, syrup, sugar, glucose, tea, coffee, tannin, gallic and pyrogallous acids, albumen, gelatine, caseine, deliquescent salts, &c., have all been tried; and from numberless essays it would seem that the best results have been obtained with albuminous substances, of which the white of egg is the type, and with bodies containing astrangent principle analogous to tannin, like tannin itself, the gallic and pyrogallous acids, tea, coffee, &c.

The Tapanot, or Colloidio-albumen Process.—The preparation of colloidio-albumen plates is rather a lengthy and difficult process, but its difficulties are compensated for by the constancy of the results, and the clarity and vigour of the results obtained.

After the glass plates have been cleaned with the greatest
care, a preliminary coating of very dilute albumen, previously filtered, is applied to the surface. The albumen is poured on like collodion, but if it will not flow regularly, a few cubic centimetres of ammonia are added, rendering it alkaline. It is necessary in this operation, as in all those that follow, to prevent contamination from dust with the greatest care. After the albumen is applied, the plate is put to dry upon a glass drain, and then put away into a grooved box until wanted.

Any good collodion may be applied; but if it is to escape work to be undertaken, then it is well to add a larger proportion of bromide (say 0.25 or 0.50 of bromide of platinum) for every 100 cubic centimetres of iodised collodion. The colloidised plate is sensitized in a seven per cent. nitric acid solution, which should be freely acidulated by eight or ten drops of nitric acid for every hundred cubic centimetres of the bath.

After immersion for three or four minutes, the plate is washed in distilled water in three successive baths, and then covered with iodised albumen prepared in the manner following:

White of egg 100 cub. cents.
Glacial acetic acid 1 cub. cent.
Water 10 cub. cents.

Stir the mixture gently until it is well mixed, let it remain for a few hours, then decant the clear portion, and pour it through a filter, or a bit of sponge, or a tuft of cotton wool, so as properly to wash it. In this way a very limpid albumen is rapidly obtained.

Take of the above albumen 100 cub. cents.
Iodide of ammonium 1 gramme
Bromide of ammonium 0.50
White sugar 2 grammes

If the rooms in which you are working are a little damp, then it is necessary to place the glass with double the amount of a mixture of dextrine diluted with a little water

This solution of iodised albumen is filtered through paper several times, if necessary, to obtain a liquid perfectly limpid. Upon the sensitized plate, well washed and drained, there is poured, upon the upper portion of it, a band of this prepared albumen. This is extended over the whole surface by gently inclining the plate, and, after the liquid has dried, to move two or three times over the colloidation film, it is drained off. The plate is allowed to dry in a vertical position, sheltered from dust. The albumen solution may, at a pinch, be used a second time; but it is well not to resort to such an economical proceeding.

When in contact with the soluble iodide contained in albumen, the plate loses all sensitiveness; it may be exposed to light without inconvenience, and all the operations above described may, therefore, be conducted in a well-lighted chamber. The dry plate, when finished, should present an opaline and brilliant appearance.

If put into a grooved box well sheltered from the light, the prepared plates may be kept for an indefinite period. Before they are put away, a cloth, or moistened paper, should be passed over the backs, to remove any impurities which may have dried on the reverse side of the plates.

The sensitizing of the plates is conducted in orange or yellow light, by immersing the plates rapidly and at one motion in a bath of aceto-nitrate of silver. It is made up as follows:

Distilled water 100 cub. cents.
Crystallized nitrate of silver 7 grammes
Glacial acetic acid 7 cub. cents.

The plate is allowed to remain in this bath, without being disturbed, for thirty seconds, and is then withdrawn by the dipper, and washed with much care successively in three baths of distilled water; the plates are finally rinsed under a fine stream of water, and allowed to dry. Thus prepared the plates may be employed within forty-eight hours. If it is desired that they should preserve their sensitiveness for an indefinite period (two or three months, or even more), it is necessary, after rinsing, to flood the plate twice successively with a half per cent solution of gallic acid, or even a saturated solution, and allow the film to dry. It is necessary to be careful, in dealing with this last named substance, that the fingers, if soiled with gallic acid, do not touch other plates during the sensitizing or washing operations. For this reason it is well to have two operators engaged on the work.

The exposure of these plates is, as we have previously explained, very variable, according to the instruments used, the nature of the objects, and the illumination at the time. In ordinary landscape views the exposure generally from one to six minutes; in dry processes, however, a very great latitude in the duration of pose may be given, the errors of exposure being compensated for by a greater or less length development, and by adding more or less silver to the developing solution. If the plates have not been treated with the gallic preservative, the development should follow within a few hours of the exposure. Generally, the development commences of itself, and the image is in part visible before one begins to apply the solution. The developing solution is prepared of:

Water 1000 cub. cents.
Gallic acid 8 grammes.
Pyrogallic acid 3
Glacial acetic acid 15

If the weather is cold, enough of the developer for a plate is warmed to a temperature of 30° or 40° Cent., although this precaution is unnecessary in mild weather. For every hundred cubic centimetres of the liquid there is added two cub. cents. of a three per cent. solution of silver; this mixture is excited, and the solution put into a bath in which the plate is contained. The development is conducted gradually, and it is necessary to agitate continually to prevent the formation of black spots, which are produced whenever the developer is allowed to remain undisturbed upon the plate. The best plate is to put the necessary quantity of liquid into a clean glass dish, which is slightly tilted, and, having placed the plate at each corner of the plate, to put this face downwards into the solution. The development then goes on very regularly, and the face of the plate is prevented from touching the bottom of the dish because of the points of sealing-wax.

The coming of the image should be carefully watched. If it appears too hard, from under-exposure, the proportion of nitrate of silver is diminished, and the dose of developer augmented. If, on the other hand, the image appears too uniform, then the extra quantity of nitrate of silver is added to make the contrast more marked. As soon as the image appears sufficiently developed (which happens after a lapse of time varying from ten minutes to several hours), it is washed under a current of water, and fixed in a twenty per cent. solution of hypoosmophite of soda.

As the fixing takes place upon a film which is but slightly impermeable, the operation is longer than in the case of wet collodion plates. By looking at the plate by transmitted light the fixation of the film is easily watched. Finally, the plate is, of course, well washed. As the film is hard, and not easily injured, it is possible to print, without risk, a copy, first of all, before varnishing, so that some idea may be gained of the vigour of the image, and, if necessary, the cliches may be intensified further, adding a little more acetic acid to the developer in the first place.
Recent Patents.

PHOTO-ENGRAVING AND BLOCK PRINTING.

By J. H. Banks.

The following specification describes a method of producing photo-intaglio plates, such as are used in copper plate printing, and photo-relievo plates, such as are used in typographic surface printing:

The object of my invention is mainly to produce from a drawing upon paper or letterpress, copper plate, or lithographic print or drawing, a raised surface block applicable for typographic surface printing, or a plate similar to an engraved copper or steel plate applicable for printing by the ordinary copper plate or lithographic press; the raised surface plates can be produced either flat, or they may be cylindrical, for the purpose of printing upon cloth or paper, as requires, metal dies to be used as seals, or for stamping paper, or paper like material, as shown below, or to be used as embossing plates for bookbinders for stamping or embossing book covers or leather, or other substances in high relief, or for other purposes connected with the printing, bookbinding, or packing, or embossing trades where printing or embossing is used.

To produce the above results, either from a drawing, letter-press print, photograph, or any work of art on paper or painting, I first obtain a photographic negative in the ordinary way upon gelatine film or paper, and then coat the camera upon glass (No. 1), except that I lastly develop it with a solution of bichloride of mercury, wash this off with cold water, and then put iodide of potassium, wash this off with cold water, and then put hydrosulphuret of ammonia, say, to two ounces, one gallon, for the purpose of making the whole plates in the print or drawing as opaque and black as possible on the glass, so that the sun or artificial light used in printing the design upon the prepared glass No. 2 (which I hereafter describe) shall not act upon the white spaces of the picture. I then make a glass No. 3, by laying it perfectly flat, and, according to the quality of the lines or work on the design, so make the thickness or thinness of the film of gelatine or chondrine, which I prepare as follows:—take two ounces of gelatine, chondrine, say, one ounce of Zimmer's or Frey's size, mix it with about twice the weight of the buffalo, or from parchments cuttings, and cut it into small shreds, and then pour upon it one pint and a half of cold water, and let it stand until it is dissolved, say about ten hours, and then gently make it hot, not to boil or burn, and after laying the glass of flat on the film of six inches by ten inches, three ounces, and then leave it to dry; after it is dry I then make up in a bath a solution composed of one ounce of bichromate of potash, or other bichromate or peroxide of chromium, to one quart of cold water, and heat it to a freedom of steam, and then place the glass containing the dried gelatine film upon it into the bath, baking the mixture covers it entirely, and when it has remained in three or four minutes I then take the glass out of the water and put it on its ends to drain and dry, taking care that no driblet of water enters the room, only gas or dark yellow light when this prepared glass No. 2 is perfectly dry and the film hard I then take an ordinary pressure frame with a plate glass front, and on the plate glass I lay the photographic negative glass No. 1, then the silvered side upwards, and upon this side I place a piece of black velvet upon the back of glass No. 2, press the whole tightly together, and expose the glass to the sun's rays or to magnesium, electro-magnetic, or other white light for about five, ten, twenty, and then get printed impression—this is the design upon the negative glass being transparent, and the white parts being black. The sun or other light can only go through the transparent parts, and so converts the printed portion of the gelatine into an almost insoluble compound, leaving the white parts perfectly soluble, take it into the darkened room, and having prepared a bath containing one ounce of bichromate or peroxide of chromium, mixed with chloride of sodium one ounce, and by brushing the gelatine with a brush all the white portions wash away, and the design is left on the glass standing up untouched. I then immerse it in this bath for two minutes, and having prepared and afterwards take from it a plaster cast, from which a second plaster cast can be taken, and printing surfaces be prepared from it as herein after described.

The mode, however, which I prefer, is, instead of using hot water, to use cold water, one quart mixed with ten grains of iodine or sixteen grains of iodide of potassium from a quarter to half an hour, then take it out and put it into a bath of cold water mixed with twenty drops of ammonia for a quarter of an hour, then take it out and place it in a bath of two quarts of cold water mixed with one ounce of acetic acid for about five or ten minutes, to harden the edges of the design that have not been raised up. By this means I obtain a gelatine surface mounted on having the white portions of the drawing raised up to a very great height—quite as high as any wood engraving is cut in depth, and the drawing is level and sunk; the gelatine surface has also been strengthened and toughened, so that a cast can afterwards readily be taken from it, whereas heretofore the cast from gelatine plates have been very imperfect. I then mix some plaster of Paris or cement, and take a cast which gives the design raised up and the white portions indented, similar to wood engraving. Should any of the white portions not be sufficiently deep, I then proceed to deepen them. I then roll over the raised portions of the plaster cast a mixture of printing ink and copal, or some one of the varnishes now in use commercially, and when dry I dip the plaster mould into a bath of very weak soap one part, and cold water five hundred parts, and brush it with a soft brush, and while it is under water I harden the plaster with weak alum and pyrogallic acid and water until the air bubbles cease to rise from it. Another way I have to cut away with a gouge all the whites that are not sufficiently deep enough; but if I require to take a casting in plaster of Paris, I then do not use alum but use the plaster mould by immersing it in a bath of hot size, a little treacle, and peroxide of chromium, until the air bubbles cease to rise from it, and then expose it to light; and while wet I lay a frame upon it, pour in the plaster of Paris, and just before it sets I put it under some wood, and the loose water being pressed out gives a much sharper casting.

If an electotype is required instead of a stereotype casting, I then take the plaster cast that has been taken from the gelatine film, and soak it in cold water, until bubbles cease to rise from it; then with the face of the plaster cast I then print upon it by using mercury. By washing the mould with spirits of wine, and, when nearly dry, allowing the fumes of mercury to settle on the face, I get a metallic covering which readily receives a surface of copper without being brushed, whereby the fine lines are kept intact.

I then take a glass plate similar to a copper plate engraving, I take a negative with the lights and shades reversed, and by adopting the same portion of the process of glass 1 and 2 which relates to the printed representation on glass No. 2, and raising the surface with acetic acid only, I then take a plaster mould, and by the use of the electotype and electrotypes I produce an ordinary engraved copper plate with the drawing indented, exactly similar to an engraved plate which can be printed by the ordinary copper plate press. For some work I modify the mode by not taking a negative, but by placing the print in contact with a print on glass No. 2, and proceeding as already described, a plate is produced which can be printed from in the ordinary manner.

Having thus described the nature of my invention, and the manner of performing the same, I claim, as my invention, in the production of printing surfaces and of engraved metal surfaces applicable for other purposes,—1. The combined process substantially as herein described for the production of raised surfaces applicable for typo printing and other uses. The combined process substantially as herein described for the production of engraved plates applicable for copper plate printing and other uses. The use of a bath of bichromate of potash or other bichromate or peroxide of chromium with hydrom of lime added to it for sensitizing the gelatine plate. I also claim a modification of the process of setting, when taking plaster casts from gelatine plates or cast plates from them, as herein described. 7. Imparting a thin film of mercury to the surface of the gelatine plate, or wax impressions, by the means herein described to prepare them for electrotyping.
PHOTOGRAPHY IN 1874.

A brief glance at the photographic history of the year should be instructive as well as interesting. It is important to ascertain what actual progress has been made, what practical gains are available to the photographer, and to what extent they have been adopted in general practice. Photography has undoubtedly been active during the year, and some progress has been made; but no specific or important discovery distinguishes the annals of the year just past. The advancement of an art is, however, frequently as dependant upon improvement in a multitude of minor matters, as upon actual discovery, and in many cases, more important detail photography has been undoubtedly progressive.

The wet colliodion process remains practically unchanged, and without the prospect of important change. The preparation of colliodion having in this country gradually left more and more in the hands of commercial makers, there is little temptation to experiment with varied samples, and the various commercial kinds possessing almost all desired qualities, amongst them, change is scarcely desired or desirable. The negative bath inevitably exercises the photographer continually; but whilst various modes of treating its ingredients are proposed from time to time, no radical change in its constitution has been adopted. There has been a growing tendency to work the silver solution in a neutral condition, and a proposal by Mr. F. Elmer to use it in a slightly alkaline condition, employing a colored sample of colliodion, is well worthy of attention, as promising immunity from many troubles. The developing solutions employed remain as usual, a diminishing tendency to much intensification being general.

Portrait photography has not undergone much change. The production of pictures with a large proportion of shadow, or half shadow, especially on the face, which has been difficult, has become more general. The use of gelatin and colliodion to produce what is termed an enamel surface, with or without the "cameo" treatment, has also prevailed during the year. Large portrait has also been more prevalent, an especial impetus in that direction having been given to portraiture by the prise munificently offered by Mr. Crawshay. The production of enlargements has also received considerable attention, and among the most extensively employed is the use of enlarged negatives obtained by the aid of fine textureless positives on albumen or carbon tissue having largely superseded enlargement on paper, with or without development. Mr. Crompton's method of producing an enlarged transparency, admitting of modification by means of the pencil, as an aid to the production of a perfect enlarged negative, is also successfully practised. A method of enlargement which has received much favour in Paris has been patented by M. Lambert. It consists in producing an enlarged negative from a carbon transparency. The negative so produced is thin and delicate, like a glass positive, all the intensity being derived from a subsequent process of retouching, which is effected by working on transparent paper, covering thin negatives on both sides. To skilled hands the process is easy and rapid, and the results very successful.

Dry plate photography has received much attention during the year, and has made some progress, especially in modes of development. The strong alkaline developer introduced by Colonel Stuart Wortley has been extensively adopted, and is found very valuable when other processes besides the usual bromide process, to which it was originally applied. Emulsion processes have received much attention and some improvement. A method of preparing the colloidio-bromide of silver without excess of the haloid salt, or of nitrate of silver, by precipitating the solid portions of the emulsion, washing, and re-dissolving in ether and alcohol, promises much success. Rapid plates, emulsion and otherwise, have been introduced with much success in commerce. Gelatine promises to acquire an important position in dry plate work, considerable progress having been made in preparing emulsions. Mr. Kennett has introduced a dry sensitive gelatine pellicle into commerce, which simply requires solution in water to render it fit for use. Some discussion has arisen on the patent acquired for this preparation, the chief point of importance to the photographer being found in the fact that the pellicle itself promises to be successful, negatives of great excellence and an unusual degree of rapidity being attainable by its use.

The use of diffused light as a means of reducing camera exposures has received considerable attention during the year. The use of such a device is well worthy of attention, as the result of extended experience. The use of coloured light, which has been held by some careful investigators to possess an occult value, has been generally abandoned. The most general and successful method of applying light consists in exposing the sensitive plate, whilst in the camera, to diffused white light, modified and softened by placing a piece of opaline glass (or some other material) in front of the lens for a few seconds prior to exposing the sitter. A general agreement amongst those who have tried it in portraiture prevails as to the fact that it gives harmonious pictures with short exposures.

The discovery announced by Dr. Vogel at the close of last year as to the property acquired by films of bromide of silver, when treated with certain colours, of becoming sensitive to the usually non-acetic solar rays, has been the subject of some experiment and much discussion during the year. The result has been that the discovery—at first much questioned—has been, on further experiment in various hands, confirmed and accepted. Its practical applications, it is probable, may be found valuable.

Printing processes have received considerable attention during the year, but the modification of ammonium sulphate of silver has been effected. Modes of eliminating the remaining traces of hypo sulphite from the print after washing have been much discussed, but nothing distinctly novel has been introduced. The use of acetate of lead has received considerable discussion, the general tendency of opinion amongst those who have tested the question being in favour of its use. The use of a strong solution of ammonium sulphate of silver has been proposed in America, and highly approved by experienced men. Its operation appears to be analogous to that of sulphuric acid, proposed in our pages by Charles Martel many years ago; but its use is probably attended with less danger, although it is doubtful whether the print will escape the risks attendant on the decomposition of the hypo sulphite in the manner proposed. The
THE PHOTOGRAPHIC NEWS.

precise and careful application of known modes of fixing and washing appears as yet to furnish the surest safeguards against change in the print.

Carbon printing has improved, but has not, probably, extended much in general application. Methods of photo-mechanical printing have acquired more precision in the hands of those who have devoted attention to their development, photo-collodion processes having attained a high degree of perfection. A more extended and general commercial application of press photography is also manifest.

One of the important features of the year is the general introduction of the powder process of reproducing negatives. The principle, which is many years old in its application to the production of enamels and carbon prints, was first employed as a means of reproducing a negative, direct from a negative, without any intermediate stage, a few years ago; but did not acquire general attention. Early in the past year, in a paper read before the Vienna Photographic Society, Herr Oberritter stated that he had successfully used it for reproducing thousands of negatives of large size. The subject rapidly excited attention, and has been successfully applied. Various modifications of the process are described, and it is used as a means of modifying ordinary negatives either in intensity, or by introducing new pictorial features, as proposed by Mr. Werge. The new powers it places in the hands of the photographer will probably prove very valuable.

An important feature in the photographic history of the year is the power the art has placed in the hands of astro-nomers in recording important phenomena. Its application in the Transit of Venus has had a degree of success which has transcended the hopes entertained. Perfect success has attended the photographic operations of various observing expeditions in different parts of the world, and the results are sufficiently valuable to suggest the possibility that photography may supersede other modes of observing similar phenomena. It is worthy of remark, that from the most successful photographic results, are those of Captain Abney, who relied on the use of dry plates and strong alkaline development.

Photographic societies have been active during the year, and some new societies have been established which promise to be successful. A serious schism arose in the Photographic Society of London at the close of last year, which at one time threatened the destruction of the Society. The controversy continued for about six months, accompanied with much bitter discussion, subsided; some slight modification in the laws of the Society, and a considerably weakened cohesion amongst its members, being the chief issue of the strife. The ostensible origin of the disension was a desire for a revision of the laws of the Society, and as the existing authorities expressed a perfect willingness to aid in such revision, it is inexplicable, on looking back, how such a disruption could have arisen. All the officers having resigned, they were, with one or two exceptions, re-elected to office by a plebiscitum, a modified code of laws was passed, and, with a view to render the Society more comprehensive in its aims, the name was changed from the Photographic Society of London to the Photographic Society of Great Britain. If the general spirit of unanimity and co-operation at present apparent continue to prevail, it is possible that the Society may recover its former stability and usefulness. The South London Society continues especially prosperous and active, and is acquiring a metropolitan rather than a suburban character, in the important technical exhibition it holds towards the close of the year, to which a large number of photographers from all parts flock for information.

The exhibition of the Photographic Society, held some what under difficulties, was successful, although, perhaps, scarcely in the progressive ratio of former years. A fine collection of excellent photographs from all parts was shown for information.

printed in carbon, exhibited by the Autotype Company. A finer display of large pictures of a permanent character was never exhibited. Not less in interest, and more varied in character, was the noble array of large direct pictures and enlargements competing for the prizes offered by Mr. Crawshay. A fine display of landscapes, also, competing for similar prizes, was not so transcendentally excellent as the temptation might have elicited.

The balance at the close of the year suggests the conclusion that photographers might, with advantage, endeavour to break new ground, or carry research more ardently into some channels which have already been indicated by former pioneers. The salts of silver still form the basis of general photographic operations. The use of bichromate of potash has, of late years, been steadily extending in connection with permanent and mechanical processes; but here the practical applications of the art stop. The salts of iron, uranium, and various substances which have given promise of photographic value in years gone by, receive but little attention. We have seen some admirable prints in various colours, of the permanency of which there was little reasonable doubt, produced during the year by Dr. Diamond, by various modifications of the Verneuil process, and by the use of potassium played important parts. Dr. Schimna has developed images on iodide of mercury during the year. M. Saint Floureth, M. Ducos du Hauron, and M. Vidal, have given attention during the year to polychromic photography by different methods; but the number of investigators in untrodden fields is too few, and the concord and co-operation is insufficiently general, to secure rapidly the valuable results which might arise from more systematic and more united research.

VENDING SECRET PROCESSES.

There are few subjects upon which the Editor of a photographic journal is more frequently requested to give an opinion than on the value of various secret processes offered to members of the fraternity "for a consideration." As a rule, it must be obvious that he cannot with propriety give any opinion whatever. The business of a photographic journal is to give publicity to everything he can learn in connection with the art, and he generally avoids receiving information to which he cannot, in virtue of pledges of secrecy or considerations of good faith, give the publicity of his pages. Hence journalism and secrecy are antagonistic. It must, however, be admitted that the modus operandi of the vendor very often goes something to the effect of the fee he charges; not always because he sells a secret, or something which has never before been published, but because, out of many methods of effecting a given end, he has, after careful proving, selected and verified the best, saving to the busy professional photographer the task and time of searching and verifying for himself. Valuable forms are often passed over unnoticed by readers of journals, until some startling evidence of their value is thrust upon their attention. The powder process for reproducing negatives and for modifying negatives had been published some years, but few photographers had given it attention, and fewer still had tried it, until Herr Oberritter announced last year that he had successfully reproduced some thousands of negatives by it, and verified his statement by the exhibition of results at the Vienna Exhibition. A skilful process-vendor might, no doubt, twelve months ago have honestly obtained many fees for teaching the process, which is one of real value. Without entering further into the question of secret processes and the policy of purchasing them, we commend to the attention of our readers a brief communication on another page, by Mr. Young, of Llandudno, whose excellent work in the last exhibition will remember. Mr. Young's subject is analogous to that made in our pages some months ago. He urges upon photographers interested in the progress of
THE PHOTOGRAPHIC NEWS.
[January 1, 1875.]

THE EFFECTS OF LIGHT AND HEAT ON IODIDE OF SILVER.

An interesting paper on the effects of heat on iodide of silver, and incidentally of the effects of light, was recently read before the Royal Society, by Mr. G. F. Rodwell, F.C.S., F.R.A.S., some abstracts from which will prove very interesting to photographers. The paper commences by a quotation from Professor Clerk Maxwell, to the effect that iodide of silver is the only solid body which is an exception to the general rule that heat expands bodies, and further cites a remark by M. Fisean, stating that this body offers an example of the complete inversion of an ordinary law, as its volume very decidedly diminishes when subject to heat, and expands when made cold. Water and fusible metal (bismuth) are of course well known to expand under the influence of cold, but in both these cases a change of state is simultaneously effected, whilst no such change occurred in the case of iodide of silver. In proceeding to his work for testing this point, Mr. Rodwell obtained examples of iodide of silver by different methods:—(1) By precipitation. Pure iodide of potassium was added to nitrate of silver, both in dilute solution. The precipitated iodide was thoroughly washed in the dark, slowly dried, fused in a porcelain crucible, and cast into cylindrical masses, either in a warm porcelain or brass mould. (2) By dissolving pure silver in strong hydriodic acid, and evaporating the resulting solution of pure silver leaf for several hours to the vapour of iodide produced by spontaneous evaporation.

Before examining the effects of heat upon the iodide, Mr. Rodwell thinks it may be well to say a word or two concerning the action of light upon it, as a considerable amount of misconception appears to exist in regard to this fact; and in verification of his statement, he cites the opinion of various authorities. Omelin says "it turns brown on exposure to light, but less quickly than the chloride;" Miller says "it is but slowly acted upon by light;" Fisean describes it as "noirissant lentement à la lumière;" while Vogel ("Jahresbericht," 1863) affirms that it is precipitated with excess of iodide of potassium it is scarcely affected by light, whereas if precipitated with excess of nitrate of silver it changes color, but undergoes no chemical change. In the general idea, the author adds, "that it is nearly as sensitive to light as the chloride, has no doubt arisen from the fact that iodides and chlorides are known to have many points of resemblance, and that the iodide is largely used in photography; moreover, we remember that a thin film of iodide of silver was the sensitive medium in the original Daguerreotype. But we must bear in mind that the change produced by light is not apparent until the so-called "developer" is applied, the silver being reduced to the metallic state, and forming an opaque metallic film on the parts of the surface which have been exposed to light."

The following were the experiments made by Mr. Rodwell to determine the degree of sensitiveness of the iodide to light:—

a. By means of a large lens the rays of the electric lamp were brought to a focus within a glass cell containing a solution of iodide of potassium; a solution of nitrate of silver was then introduced by a pipette at the apex of the cone of rays. The precipitated iodide possessed its usual pale yellow colour.

b. Freshly precipitated iodide in suspension, with a slight excess of nitrate of potassium, remained in the full glare of a July sun without undergoing any perceptible change; neither did it subsequently darken.

c. Freshly precipitated iodide in suspension, with a slight excess of nitrate of silver, underwent no immediate change on exposure to a July sun. At the end of an hour it became slightly grey, and subsequently darkened.

d. Organic matter in the form of starch paste did not induce any change when mixed with freshly precipitated iodide in suspension with a slight excess of iodide of potassium. Albumenised paper with iodide precipitated upon it did not undergo any immediate change.

e. Some dried and powdered iodide was found to have acquired a slight greyish metallic tinge after an hour's exposure to the sun. A freshly broken surface of fused iodide became very slightly darker after exposure to the sun. A very pale microscopical crystal of iodide, removed from the interior of a crystalline mass, became slightly brown after several hours' exposure to diffused light.

f. Crystals of iodide of silver produced by direct solution of silver in hydriodic acid were not affected by light; neither were crystals of hydro-sulphate iodide (AgI2), nor crystals of argento-potassic iodide (AgI).

g. A sheet of silver leaf was exposed to the vapour of iodide (produced by spontaneous evaporation) for five minutes; it possessed a faintly yellow tinge, which on exposure to the sun instantly became pale green, but on further exposure returned to its original pale yellow. A second sheet was exposed for ten minutes to the vapour of iodide; it acquired a golden-yellow tinge. A third sheet exposed to diffused light acquired a purplish-red colour, and on exposure to the sun became greenish purple. On continued exposure this colour disappeared, and the plate returned to almost the original yellow colour.

h. A sheet of silver leaf was exposed to the vapour of iodine for half an hour, at the end of which it possessed a decided golden yellow colour; on exposure to the sun it instantly acquired a dark purple colour, edged with green in those parts least exposed to the direct vapour of the iodine. On continued exposure the purple became paler, but the sheet did not return to its original yellow colour.

i. A developing solution composed of ferrous sulphate, alcohol, acetic acid, and water, when applied to the exposed sheets of g and h, which had been purple, but on continued exposure nearly regained their original colours, produced a reddish-brown colour.

j. A sheet of silver leaf was exposed to the vapour of iodine for many hours; it was found to be converted into a slightly coherent film of lemon-yellow iodide. Light had no effect upon it, even after long exposure to a July sun; neither was any colour produced on the addition of a developing solution.

The pure iodide of silver would thus appear to be scarcely affected by light, except when silver is present, either in the form of nitrate, or, as in the case of the silver films, as metallic silver.

We shall return to the effects of heat on the iodide in our next.

FRENCH CORRESPONDENCE.

Despite the incontestable advantages of glass clichés, it is well known that for some time past, substitutes have been proposed to obviate many of the inconveniences that this heavy and fragile substance possesses. Several photographers have made use of other vehicles for the collodion, and M. Silvy is one of those who have gone back to the use of waxed paper. One of my correspondents, M. Quiquet, has recently communicated an idea on the subject, which merits at least to be seriously considered.
He takes a pellicle of collodion similar to that employed in carbon printing. This is moistened in a bath of alcohol, and then washed with distilled or rain water. The pellicle is then carefully pressed in a blotting pad, after which it is floated upon a brome-iodized albumen bath. The latter may be rendered more adhesive by the addition of some suitable substance.

After demeciation, the albumenized sheet is floated for a few seconds upon a bath of acetate-nitrate of silver, and afterwards again washed with rain water, as in the case of waxed paper. After removing the excess of liquid by pressing between blotting paper, the sheet, while still moist, is attached by the margins to a sheet of cardboard, as is the case with the dry papers of M. Marion. In this way the sheet is stretched out in a most perfect manner, and it is then exposed in the usual way in the camera. The image is developed either by means of gallic or pyrogallic acid, or even with the aid of an alkaline developer.

In this way we secure a cliché which has, besides the quality of transparency, the triple advantage of not occupying any space, of being extremely light and not fragile, and which, moreover, may be printed from the true or reversed side without trouble. The important point is to determine whether the film of collodion and albumen is sufficient to resist the different operations which the film has to undergo.

It is probable that these pellicles may be preserved for a long time after they have been sensitized, by covering them with a tannin preservative, or with the gallo-albumen compound in the same manner as dry plates are prepared.

The Academy of Sciences received at its last meeting a communication respecting which I must say a few words. It was upon the subject of the action of hydrogen upon nitrate of silver in solution. This action has already been the subject of study on the part of MM. Merget, Rousset, Pellet, and others. Both M. Rousset and M. Pellet have obtained some conflicting results, for while the first declares that hydrogen reduces silver in solution, the second states that the gas has no action whatever. M. Pellet attributes the reduction observed by M. Rousset to a trace of arsenic in the hydrogen employed, or to an excess of oxide of silver in the nitrate.

M. Békétoff, the author of the article to which I refer, has employed in his experiments the quantitative method; and so as to be able to measure with accuracy the amount of silver reduced, and hydrogen absorbed, he allows the experiments to continue for a long time, the action of the hydrogen being excessively slow in the experiments employed. The action of hydrogen was obtained by means of zinc which contained no arsenic; moreover, the gas was purified by passing through a tube containing pumice stone impregnated with a solution of nitrate of silver, prepared with re-crystallized salt from an acid liquor, and slightly dried. The solution of silver salt and the hydrogen were contained in sealed tubes enveloped in several sheets of paper which were clamped in a horizontal position in darkness. The results obtained and the exact figures are contained in a table joined to M. Békétoff’s communication, and prove that the reaction is a simple metallic displacement, and that for every molecule of silver salt reduced, there is an absorption of an equivalent quantity of hydrogen, and formation of free acid, which is proved, moreover, by the fact that after the experiments all the liquids are found to be alkaline.

The author concludes from these results that pure hydrogen reduces silver in the same manner as other metals in a neutral or slightly acid solution.

Just as the year is closing, it is well, perhaps, to cast a glance behind at the number of works that have been produced during the last twelve months. The period has been very prolific in France, and if we have not to record any absolutely original discovery, we have at any rate had the pleasure of making known numerous improvements in various phases of photographic art.

Thanks to the ingenious modifications in manipulation and retouching by M. Lambert, photographic enlargements have become more easy of production, and have attained also a degree of perfection which till now was denied them. The process, under the name of Lambert-type, is now carried on on such a large scale that it is within the reach of the humblest provincial photographer. Without the least aid from an artist, it is possible to produce prints enlarged, superior to those obtained by other methods at a great expense.

Next to Lambert-type comes the “Reflectoscope” of M. Van Tenac, which allows one to produce a copy direct from a carte-de-visite without having to go through a series of operations, as in the case of the old method. Moreover, sunlight is not necessary for the purpose, and a simple enlarging lamp is all that is required, so that in the evening, or in dull weather, the work may be continued without loss of time. This is an invention of great importance, the value of which will become more apparent every day.

The production of photographs in colour has also made marked progress during the present year. In the first place, the labours of Mr. Leon Vidal, whose polychromic images are well known, must be referred to as being very successful, as exemplified by the specimens recently presented to the French Photographic Society. Printing in colours has become such a practical matter under his hands that in a short time we may expect to find the method practised as a branch of industry. The experiments of M. Ducos du Hauron, confirmed in a most conclusive manner by the experiments of M. Geymet, lead us to hope also for the solution of the problem in a more scientific, and probably simpler, manner.

Photography in pigments has received this year more disciples than it ever possessed since the origin of the process. Already many photographic establishments have adopted this method of printing exclusively for their ordinary work, and if one is to believe the new works of M. Lambert, it may be safely asserted that carbon printing has definitely taken its place in the studio.

Photo-mechanical printing has also made some progress during the present year, and I may cite, among other instances to prove this, the journal called Paris-Theatre, which, instead of containing engravings of a more or less successful character, publishes every week portraits of theatrical celebrities printed by the Woodbury Process.

As to heliographic engraving, although the Rousselin process has remained since its publication in the hands of the inventor, and is solely worked by the well-known photomechanical printers, Goupil and Co., the process is none the less an accomplished fact in photography, and will doubtless before long be placed at the disposal of the world at large.

ERNST LACAN,

ABSOLUTE ALCOHOL.

BY JOHN A. SPENCER.

The preparation of absolute alcohol being attended with some difficulty, and the loss of product usually very considerable, a ready means of preparing it in moderate quantity may not be unwelcome.

The mode prescribed in the Pharmacopoeia to prepare absolute alcohol is to separate as much water as may be absorbed by a small quantity of subcarbonate of potash, to pour off the supernatant fluid from the oily solution formed on standing for a couple of days, on to about half its weight of quicklime, and then, after another rest of twenty-four hours or so, to distil it gently by means of a water bath. This yields a very good product, but it is expensive, as the difficulty of removing the latter portion of the spirit from the magnes of lime is very considerable.

The method I have adopted, and found successful, is the following:—Take about two pounds of subcarbonate of potash, and heat it to redness, or nearly so, in an open iron pan over a close fire, stirring it to prevent agglo-
meration of the particles. Then, having half a gallon of rectified spirit, 60° overproof, placed in a small still of copper or tin, put the potash salt by spoonfuls at a time, while still hot, though not incandescent, into the spirit, and immediately attach the head of the still, placing a cork in the extremity of the pipe and luting the junction. After allowing it to remain for a day or two, with occasional shaking, this with the aid of water will still spirit cease to pass over, when about three-fourths of the bulk of the original spirit will be obtained, having a sp. gr. of about 0.804, which, though not absolutely absolute, will contain close upon ninety-five per cent. by weight of absolute alcohol, strong enough for any purpose required for photography. It is well to reserve the first few ounces that pass over, as this is less strong than after the distillation has proceeded regularly. An advantage of this mode of preparation is that the residue in the still is not wasted, but may be put into an open pan and boiled down over an open fire till it has become dry, when it may be preserved in a well stoppered bottle for use on another occasion.

COMBINED EFFORT IN TESTING NEW PROCESSES.

BY J. M. YOUNG.

That oft-quoted "strange conservatism," which locks advances at everything new, and to which the fraternity must plead guilty, has unquestionably been the means of putting many a guinea into the pocket of the man with the "secret process." Were we working photographers to assign but a few days in each year to the testing of theories or the working out of practical suggestions, new or strange, the occupation of the secret vendor would be gone. But he it is that tests these theories, that works out their practice; and it is only when he brings us his results and shows us that there is really "something in it," that we are brought to look carefully and to say, "Good; I shall go in for that. How much, eh? Penalty. I don't like that idea." But like it or not, the document is generally signed, and the risk of no end of law business incurred, and the guinea paid. Brown, you see, on the other side of the street, will be sure to have it, if you don't; but what have you got for your money? Something, in nine cases out of ten, that you knew all about before; and you feel ever afterwards that you have a grievance. You declare war with every man with a secret process.

Why is this thus? Let each man answer for himself. Not long ago, I saw, in Paris, the slides and coloured negatives which have the credit of producing photographs in colours. There may be something in that. If fifty good men and true were to try, and then report results, something more might be made of it; and this is certainly one game that is worth the candle.

THE SIMPLE COPYING PROCESS.

BY OBSERVER.

A CORRESPONDENT of the English Mechanic states: "Blue leaf prints are obtained by floating paper on a strong solution of ferricyanide of potassium, commercially called the red prussiate of potash. They are fixed by simple washing." Here there is evidently some mistake, as, in order to obtain anything like satisfactory results, it will be found necessary to mix with the red prussiate about the same quantity of citrate of iron. With this solution impressions of the form and outline of any leaf, copies of writings, plans, and drawings in outline may be obtained—a clear, clean white on a blue ground—the printing to take place in direct sunlight.

To make the case plain for any one inclined to try the same, dissolve about two grains of the iron, and the same quantity of the red prussiate, in two ounces of water. Paste a piece of brown paper round the bottle, and keep the same out of the light. In using this mixture, the best papers for the purpose are Whatman's thin drawing for large subjects, and any good thick note for small ones. Papers of the thin order, or such as are deficient in sizing, do not yield good impressions. To coat the paper, use a large round camel hair brush. Place the paper on a piece of card or stout millboard, holding it firmly to the same by the thumb of the left hand; with the right hand dip the brush into the mixture, and, commencing at the top, lay on the mixture from left to right evenly and lightly, avoiding all streaks or dribblings at the edges of the paper, and in some place free from dust and out of the direct light to dry. Then place them between folds of blotting-paper to keep them flat, and use them without much delay.

To Prepare Subjects for COPYING.—This may be done on thin writing paper (afterwards oiled or waxed to make it transparent), ordinary tracing or clarified vellum tracing paper, or engineer's tracing cloth; horn paper or French vegetable may also be used. Care must be taken that the ink ticket-writers use for making the design, &c., is sufficiently opaque to stop out the light. To ensure this, when the subject intended for copying and printing is finished on one side of the transparent paper or medium, and quite dry, go carefully over it again on the other side, using ink or a good HB pencil. This will be found a necessary proceeding in order to obtain satisfactory results.

With respect to the printing, it must take place in direct sunlight. A photographic printing-frame may be used, or one of the transparent slabs sold at the stations: the only thing required is to remove the piece of ground glass, and insert in its place a piece of thick plain. A very little practice will enable a person to calculate the time of exposure from the tone of the paper. When the same has become a dull dirty grey, with the subject scarcely perceptible, it is then time to remove it from the frame and immerse it in clean water, allowing it to remain for ten minutes or a quarter of an hour. During this time a sort of gradual change will take place, the dirty grey coming out a pure bright blue, with the subject in clear, clean white lines. After washing for a few minutes in any convenient place to dry, when it may be placed under a weight to press it flat, and considered fixed and finished.

If the process be not of any trade value to photographers in general, there are a large number of students, authors, antiquarians, artists, engineers, geologists, surveyors, and others who may find the same of considerable use and service; and many will already have seen their descriptions may execute various effective presentable subjects in moonlight and snow pieces, together with illustrated cards and designs on note paper, which, if not of any direct commercial value, will be found of interest to many from the simple and inexpensive way in which they can be produced and multiplied.

Some examples of inscribed stones, wayside crosses, ancient doorways, monuments, and a curious copy (the same size as the original) on lead, "The Absolution of Godfried," Bishop of Chichester, are sent to show the capability of the process from an antiquarian point.

PHOTO-ELECTRIC ENGRAVING.

BY JOSEPH LEOPOLD.*

Director of the National Engraving and Photo-Electric Engraving Institute at Liezen.

I do not propose to speak of much that is new on the present occasion, but, as the title of my paper indicates, I am going to discuss a subject already twenty years old, but which, despite its age, and the fate of the inventors and his process, has not yet become strong and matured, but is still in its infancy.

When Paul Pretsch, in 1854, had brought his invention in the Vienna State Printing Office so far that he had confidence enough to bring it before a larger public, he chose

* Photographische Correspondenz.
London as the place where he would bring out his invention and—make his fortune. In a few weeks after his arrival in that city, he found himself supported by several early acquaintances, who interested themselves in his invention, and formed a company to work out the process with an artistic, as also commercial, finish. The choice, which of Pretsch brought him and his invention speedily forward, and by hard work and industry he was enabled, in a very short time, to supply many successful results by his process, which not only in England, but on all sides, were the attraction and admiration of experienced men.

The members of the company, however, without knowledge of the affair, or of its artistic and commercial value, were, like all others, seized with the speculations of the time. The energy of Pretsch was still too new and impractical to satisfy would-be shareholders, the ideas and hopes of the inventor were not realised. The process of Paul Pretsch thereupon lost its importance in England; it was neglected, and soon quite forgotten. Pretsch exerted himself still, and produced some good results; but his good fortune had forsaken him, and, despite his energy and skilful invention, his results were powerless to ensure him success in a foreign land.

It is not my object to depict the misery which the brave and intelligent man suffered, and with which he wrestled for many years previous to his death in order to secure his daily bread. My purpose is rather to revive the interest which the invention of our countryman awakened, so that, after eighteen years of silence and oblivion, we may carefully study the nature of the process, and, as it is the true worth. Some months ago, as a friend of the deceased, I already found myself morally compelled to grasp the pen in striving to prevent the matter from becoming altogether a thing of the past.

Paul Pretsch has, so far as I know, attracted and left behind no other disciple than Duncan Dallas. This gentleman has published only incomplete details of his method of working, and, therefore, for myself I went to work on the subject, and undertake manifold experiments, to make myself acquainted with the operations. In these I employed the well-known principles laid down by Pretsch, by means of which, aided by the experience I already possessed of similar processes, I was enabled in a short time to secure successful results as the fruits of my pains.

The advice and assistance of many friends in the matter I have to acknowledge most heartily, especially those of Dr. Emil Hornig.

The process which I shall endeavour to explain, so far as my experiments teach me, and of which I am happy to lay before the Vienna Photographic Society some fruits, is closely allied to the art of engraving. It would receive useful application in every establishment where illustrated publications are produced, and where, at the present time, a large amount of money is expended in costly drawings and engravings by hand.

The process is as follows:—Paul Pretsch employed (as I do myself) in producing a block for copper-plate printing, an original photographic positive on glass. The production of such a positive and transparent cliché from a negative requires a little special knowledge and experience. Everybody, however, who is conversant with the preparation of photographic clichés, would soon become as well in the matter. The operator must take especial care that the picture is uniformly developed and intensified in its shadows and half-shadows. To secure the brilliant qualities of a good cliché to the picture, the deepest shadows must have sufficient transparency, so that the picture, without too long an exposure, can be vigorously transferred to the photographic film in every part. As support for the photographic process, good white glass should be carefully chosen, which must, moreover, be very flat. The basis for the photographic substance is another glass plate, which must possess the same qualities. It is easy to understand that the choice of the plate often controls the later success of the work.

The invention of the process employed, as we know, for the composition of his photogenic film, glue, bichromate of potassium, nitrate of silver, and iodide of potassium. The proportions of the different substances I have set fast after many experiments. I take

I.	16 grammes of glue (best)	...	3 fluid oz. water...	
II.	2 "	bichromate of potassium	...	1 "
III.	1 "	nitrate of silver	...	1 "
IV.	4 "	iodide of potassium	...	1 "
V.	8 drops of vinegar, which are added after the other substances have been dissolved and mixed together.			

The glue is allowed to swell for some hours beforehand in the allotted quantity of water. As I carefully calculated the proportion of the crystallised substances in proportion to the glue, I lay particular stress upon the calculation of the amount of water for the same, and no tedious failures should take place.

The glue is dissolved in a water bath, as are II., III., and IV., to which a portion of the warm solution of glue is added. Then III. and II. are mixed together, being thoroughly stirred the while, giving rise to a dark reddish colour. On the addition of IV., iodide of silver is formed, and for this reason the dark becomes lighter. To this mixture I added 8 drops of glacial acetic acid, and then I filtered the whole through a double fold of linen.

This filtered solution is poured upon glass plates, which are dried in an oven in a perfectly horizontal position, the liquid being applied warm upon the warmed plates, a glass rod being used to facilitate the spreading of the mixture. The addition of glacial acetic acid aids in the uniform spreading of the film, and the grain formed is thereby rendered of a finer character. The temperature of the oven should never be very high. A steady heat of 32° Reaumur suffices to dry the plates in a period of from three and a half or four hours.

(To be continued.)

Correspondence.

SHORTENING THE EXPOSURE.

Dear Sir,—Allow me to recommend all those who are interested in this matter to try the simple expedient proposed some time back in the News. It is to remove the stop when the exposure is half over. Thus, suppose it is found that with a certain lens a medium sized stop is required in order to secure the requisite definition, and that the exposure necessary would be one minute. Instead of exposing full time, at the end of a quarter of a minute remove the stop, continue the exposure at full aperture for another fifteen seconds, and cap the lens. This is just half time. Try a plate both ways, and judge the result.

At first sight it seems likely that the removal of the stop would produce some defect in the image: one carefully-made trial will show how groundless is such a fear. The diaphragm must fit the slit easily, of course, and a little drill will make its removal an easy enough affair. In taking large-sized heads and portraits on 18 by 16 plates I have been convinced of the great practical value of this suggestion.

Edward Viles.

Penrhyll Hall.

Talk in the Studio.

WAYMOUTH'S VIGNETTING MASKS.—Mr. Waymouth has just issued a little pamphlet giving some good hints as to the best mode of employing his useful masks, and citing a large number of favourable opinions as to their efficiency.

PHOTO-BLOCK PRINTING.—The very excellent process of superimposing at an ordinary printing press, with blocks produced by photography, and known as Dallastyle, is, we understand, about to be offered to photographers to purchase by subscription; the precise details will no doubt be duly
announced. Mr. Dallas is, we understand, engaged in producing a reduced fac-simile of the original folio edition of Shakspeare, and copies of it will be sent from there in the British Museum. The Dallas edition will, we believe, be in royal octavo, and issued in parts.

RESTORING FADED NEGATIVES.—Mr. Colquhoun, of Alexandria, sends the following:—Having noticed several times correspondents recommending a yellow negative as giving good results, I fear these have been got up as with me—that is, with iodide of mercury (bichloride of mercury and iodide of potash)—they will fade away through time; at least, I have lost two in this way, and in looking over I can see one or two more on the way. The varnish has been removed by alcohol from carbonated ether, and re-introduced with the iron developer and a few drops of silver from the negative bath, and the yellow appearance is changed into something like stone, having more the appearance of a collection negative without treatment. Enclosed is a print before (No. 1), and another after (No. 2); the latter, neither deep printed, perhaps, but it shows that the thing can be done.

CYANIDE POISONING.—A deplorable case of poisoning recently occurred in the family of a photographer in Loches, Scotland. The photographer, Mr. Kenneth, had recently removed from Dundee, and some of the chemicals contained in his box had been placed in a gatherers' wagon. The driver of the wagon, Mrs. Kenneth was emptying the pail of its contents to put them in a safe place, and a child of three years was playing beside her at the time. The mother turned back for a minute, and the child just took off the pail a vial containing cyanide of potassium. The child, being of a nervous constitution, drew the cork, and swallowed its contents. The father, who was in bed at the time, saw the child almost in the act, but too late to save it. He immediately ran with the child to Dr. Alexander, who gave it an emetic, but it was of no use, the child having died in the course of twenty minutes from the time it took the poison. The Procurator-Fiscal is making the usual examination. Great sympathy is expressed for Kenneth and his wife under this sore trial.

ACTING ACTION THROUGH WATER.—The Atheneum says:—"It has been determined by M. Forœl that the chemical action of the sun's rays in summer causes, in the Lake of Geneva, at the depth of between forty and fifty metres. The depth to which the chemical rays penetrate in water has never before been determined. M. Forœl has communicated his researches in a memoir to the Société Vaudoise des Sciences Naturelles.

PHOTOGRAPHY.—The Art Journal says:—"Mr. James Hughes, Jr., and a very young and very able collection of photographers, have sent us several photographs of dogs. They are admirably executed, partly, perhaps, because of the purity of the atmosphere, but owing much to the skill and judgment of the artist, who has studied the "sitters" carefully, and with valuable results. They supply material for any painter, and so numerous and varied as to include almost every class and order of the animal that is emphatically the friend of man. Mr. Hughes does not give us merely their portraits: sometimes he represents them as exhibiting the tricks and winning ways that endeared their companionship. An album full of these pictures will be a rare acquisition to the drawing-room and boudoir of the lover who loves the dog, but not to others; the lover of field and aquatic sports may see the likeness of his favourite, and the lady a copy of her lady's favourite. A more agreeable collection of photographs "from the life" has never been submitted to us."

TRANSIT OF VENUS.—The following telegram has been received at the Royal Observatory, Greenwich, from Professor Petros, via Wellington, New Zealand:—"Transit observation great success first contact. Photographs, two hundred thirty-seven." Lord Lindsay has also been successful.

US CORRESPONDENTS.

E. MATTHEWS.—There is no work published in this country devoted to retouching. There was a small book of a few pages devoted to the subject published some years ago in America, but the book is not now to be had in the Photographic News. You will find many books devoted to the subject in our last half-dozen volumes, and forthcoming and recent Year-Books.

NIGRO.—It is impossible to say what is the precise cause of fuming. It is a fact that the air may be, as you suppose, the fault of the nitrate of silver but it may be the fault of the collection, or of the developer, or of something else. If you have strong reason to believe it is the fault of the developer, by adding a little more nitric acid, one may get a sample of collection. Should you find the addition of more nitric acid insufficient, try boiling again; but neutralise this with care, use a little arsenate of soda, or a little caustic potash, instead of arsenious. We do not approve of this, because it is not a negative result, but for this reason: when nitric acid is added to remove alkali, nitrate of ammonia is formed, and, as the salt will hold on to its alkali, in solution, when you add nitric acid, the reaction is little suspected. Cold weather and bad light are, of course, inimical to successful photography. You should keep the dark-room and solutions up to a temperature of at least 60°, or from that to 80°, i.e., in order to secure good work, allow full exposure.

F. R. B.—We have an indefinite recollection of having seen such a lens many years ago; but do not remember by whom it was made except that it was a French maker.

G. D. F.—You not state by what process you wish to work on optical glass, whether by developed camera printing or the use of collodion-chloride in the printing frame. By using collodion-chloride you will obtain the best results in several of our Year-Books. If you wish to produce an entire or diminished image, you must print in the camera in the same manner as you would in the dry process, but use a very strong neutral solution of chloride of g 11. The formula given in our pages a few years ago for working the bromium process answers well.

B. O.—Clippings from prints are generally worth saving for the sake of the negatives; many really printed clippings are, however, worth saving; white margins and the tramlines of vignettes should contain no silver at all.

Tyr.—You are fortunate in having had no experience with what is termed the "old hypo solution," as with such a solution produced by its aid remain permanent, its results were full of uncertainties. It was often a serious compound, consisting of hypo-sulphite of soda which has been used over and over again, and has left silver and chloride of silver and silver carbonate attached to its fixing as well as its toning powers, but careful workers generally save the print a few minutes in a fresh hypo solution after it left the mixture in question. We do not think that experiments in the same direction will repay your effort.

A. B. C.—You may not without permission copy the engravings in Punch, the Illustrated News, and similar works, either for the magic lantern, or any other purpose. The owners of these publications have a copyright in the engravings in question. You will find that gold toning is very useful for copies of prints for the lantern.

R. E.—The prints in question were not ressealed, but were mounted on the glass, which gave the singularly delicate and transparent effect to which you refer. You will find details of the method in our forthcoming Year-Book.

S. J. ROCHAMBEAU.—Pyrogallic acid in the ordinary sense of the word, and does not, like acids, form salts. Certain combinations with pyrogallic acid in some bases have been produced, and termed pyrogallics, but not many. We have experimented extensively in that direction, and did, we believe, form a pyrogallate of soda, but we do not remember the formula he employed. Pyrogallic acid easily undergoes decomposition in the presence of alkalies. We should recommend you to apply to some practical chemists, such as Hopkins and Williams, to supply you with what you require.

PHOTO. MECHANIC.—There are various modes of blocking the brass-work of lenses; but the full wire is the best and four drachmas of bichloride of platinum and one grain of nitrate of silver, and dissolve in six ounces of water. Make the brass-work with silver, and apply a little black varnish on the back. When dark enough, wash the surface dry, and polish with black-lead.

DICK.—The chief objection to a studio with south light arises from the fact that it involves constant change of blinds and curtains, and constant uncertainties, as direct sunlight enters the studio during a great part of the day, whilst a north light is of much more uniform character. If you make up your mind to the inconvenient labour and expense of solving, you may by care and skill get some very fine effects indeed.

G. E. R.—The best mode of increasing the body of your collodion is to use a little more nitric acid in the developer, but apply a little pyrogallic acid, which you may obtain of most stock dealers.

DRET PLATE.—Almost any dry plate process may be used in producing transparencies, but the Ceisse process is one of the simplest and most successful, but apply a little pyrogallic acid, which will be sufficient exposure. Develop with pyrogallic and silver.

Several Correspondents in our next.
The Photographic News, January 8, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PHOTOGRAPHY AND THE POLICE.—A NEW MECHANICAL PROCESS—IMPROVEMENTS IN COLLOID PRINTING.

Photography and the Police.—We cannot help thinking that far too little use is made of photography by the Home Office—or, more correctly speaking, perhaps, the police—in matters that come under their notice and supervision. Only the other day the correspondent of the Daily News, in commenting upon the diurnal occurrent at Shipton, lamented that the victims of the catastrophe had not been photographed immediately after the affair, as during the time that elapsed in some cases before identification of the bodies their faces had altered materially. The countenances, we are told, were in the first place placid, calm, and even pleasant to look at, but after a while the features changed very much for the worse, and not only were the poor remains very horrible to gaze upon, but they had also lost a good deal of their character by means of which the identification would be made. The operation of photographing would, therefore, have saved much pain and anxiety to those coming to inspect the bodies, for these need never have been shown at all, unless the portrait of the deceased gave something of the deceased being the person sought for. It would have been very awkward indeed to have a large set of prints and distributed them to the police stations of the country towns about England, where friends might see them; or the pictures might be sent on application to relatives at a distance for identification, so that these might not be compelled to undertake a long journey that might turn out fruitless. There are many other directions in which the police might make useful applications of this art, beyond the mere taking of portraits of prisoners which is already the only use made of photography by our guardians of the peace. Photographs of articles lost, missing, or found, if posted in frequented thoroughfares, would materially assist in their being restored to their rightful owners. It would not, surely, be too much to ask that a camera might find a place among the many other requisites of large police stations.

A New Mechanical Process.—A new process, called the Auwäldrudk, is announced in the German papers, of which M. Aubel, of Cologne, is the inventor. No details are given of what it is, but some information is afforded to us of what it is not. It has nothing, we are told, in common with Woodburytype, Albertype, or photo-lithography; it does not necessitate the use of the galvanic process, nor that of calotype. It is said to be gelatine, gum, asphalt, etc., neither is any transfer method made use of. The original negative is said to be transformed direct into a printing block, as hard as steel, from which any kind of engraving or lithograph may be produced. The rapidity with which reproductions may be secured by its means is proved by the fact that a picture was copied and many hundred fac-similes distributed in a couple of days. The process is adapted to fast work, and will print matter which can only be read by means of a magnifier. From what we hear we should think the process is only calculated to produce pictures in black and white, or copies of matter in type, and the results are no doubt similar to those of the photo-electric method of Duncan Dallas, whose charming little reproductions of the Pall Mall Gazette and Fun will be well known to many of our readers. Whether the results are better or worse than these is anyone's own affair.

Improvements in Colloid Printing.—It is very certain that a great stride has recently been made in photo-colla type printing, or Lithodruck, Albertype, or by whatever name it is called. Till within the last few months ordinary photographic portraits have not been satisfactorily produced from a gelatine block, and the Woodburytype has been the only trustworthy process by means of which any portrait negative of small dimensions has been made to yield prints at all comparable with silver photographs. Now and then, it is true, we have seen Lithodruck or Albertype cartes-de-visite which approached very nearly to silver prints in delicacy and gradation, but these were from negatives specially chosen for their peculiar adaptability to the process, and of ladies in light dress and without costume, and the costume and felt wide awake. There were no heavy shadows or dark draperies, for as soon as a bit of black velvet or a startling contrast was attempted by the collodion process, a defective place inevitably appeared. In reproducing the finer portions of a picture, in depicting lawnwork and the more delicate portions of a dress, the process was eminently suited, but the heavier costume and background, such as might be secured by a combination of practice and good fortune, but are really due to honest straightforward work. If it should really turn out to be the case that photographs in printer's ink of a perfectly permanent character can be produced equal in appearance to the less stable silver impressions, then we have here to record a mighty step in photographic art in a month or a day. But it will not do for the collotype prints to be nearly equal to ordinary photographs in appearance; they must be quite as favourable to the eye, otherwise the public will not have them, despite their great degree of permanence. The introduction of such work would work something of a revolution in the photographer's work, for it is scarcely to be anticipated that he will be able to print his own negatives. Let the collodion printing be simple as possible, and the prints will only be obtainable by very skilful and practised manipulation, and it will be quite one man's work to do this and nothing else. A photographer will have to confine himself to taking and retouching negatives, and send them out to be printed by those who make collodion printing their special study, for only in very large studios would it pay to employ skilful artisans constantly at the work. That portraits in this way will no doubt be an expensive matter where a small number of copies only are required, but when it is a question of even two or three dozen, there will be a saving in having recourse to mechanical printing.

ON THE PRACTICE AND PRINCIPLES OF THE GREAT PORTRAIT PAINTERS.

BY A. R. ALDREDD.*

We pass, then, to more modern times—to that gradual revival of the arts which took place in Europe during the middle ages. During the fourteenth and fifteenth centuries painting, both in Italy and Germany, was especially in the former, gradually emerged from the cloud of Gothic darkness that had long obscured the taste, design, and genius of art. In the sixteenth century painting in Italy attained a height of glory and perfection unknown in any previous age or other clime, and which has been the envy and admiration of all succeeding times. We are now on firmer ground. The artists have long since returned to their kindred clay, but their genius still survives in their works. Early in the sixteenth century painters lived together, or about the same time, those great masters whose names have become "familiar as household words" wherever taste and genius are appreciated. To quote the names of Leonardo da Vinci, Raphael, Michael Angelo, Corregio, and Titian is, at once to conjure up in the mind of the artist or connoisseur the remembrance of those great representative men who, while giving to the art some grace or beauty unknown before, each in his turn impressed upon it the
peculiar stamp of his own genius. They were all great inventors, and not one of them on his own peculiar ground has ever been equalled. Da Vinci, the earliest of these artists, in addition to his reputation as a painter, was also noted for his skill in sculpture, engineering, and mathematics. He has left many works on arts of works; and his "Treatise on Painting," which has been translated into many languages, it still one of those books most read by artists. The picture he is now most noted for is the celebrated "Lord's Supper," where the Saviour is seated at the table in the midst of his disciples. There is a small picture of Christ disputing with the doctors in our National Gallery.

Da Vinci, Raphael, and Michael Angelo all excelled in form. Da Vinci gave to the human figure a roundness and grace unknown before. He also greatly improved the chiaroscuro, or light and dark. His pictures are finished with extreme care, and the shadows have a particularly lucid effect. Raphael has often been called the "prince of painters," as he is allowed to unite more of the higher qualities of the art than any other. His drawing is from nature, mastered, and his draperies flowing and graceful. He is allowed to excel all others in expression and in the beauty of his female figures. It fortunately happens that we have in this country, and accessible to all, some of his noblest works. I refer to the famous cartoons now at South Kensington. Raphael did not paint many portraits, but there is one by him in the National Gallery of one of his pupils. He was the sculptor of David and Moses, and the architector of St. Peter's, at Rome. Michael Angelo did not paint in oil, and never painted portraits; he must, therefore, be dismissed without further comment. Correggio, the next on our list, was particularly noted for grace; the softness and depth of his chiaroscuro, the art of using light and shade, and the breadth of his imagination, are not to be found in any other artist. He was also the architect of St. Peter's, at Rome.

Michael Angelo excelled in the sublime and terrible. If Raphael be the Shakespeare, then Michael Angelo may be styled the Milton, or, still better, the Dante of painting. He had the extraordinary fortune to attain to be the first place in three kinds of arts. As a painter, he produced the "Last Judgment," which is generally allowed to be the sublimest picture of modern times. As a sculptor, he is famous for his figures of "David" and "Moses," both of which may be seen in the Museum at South Kensington. He was also the architect of St. Peter's, at Rome.

There are three of his pictures in our National Gallery, all of the finest quality—the "Ecce Homo," the "Venus and Cupid," and the charming little "Holy Family," a perfect gem.

The last of those I have mentioned is Titian, the great head of the Venetian school, and acknowledged to be the greatest oil painter of his day. While his subjects are of the most brilliant and brilliant colours through his historical works, till they seem all aglow, should yet, in his portraits, and especially in his male heads, generally exclude all strong colour. The accessories—always simple in Titian—although of the noblest character, are subdued; it is the head that fixes your attention. The figure, the costume, and the accessories are there, but they are not for them; they are there only for the sacrifice of the attention from the countenance of Titian. This is the more noticeable as the costume of the time was in those days of great elegance and dignified. So anxious, however, was Titian that nothing should divert the attention from the head, that he frequently covered the hands with a dark glove, in order not to have a second light in the picture. If you wish to see the only one, the names of Giorgione, Paul Veronese, Sebastian del Piombo, Tintoretto, Fordinone, Bassano, and others at once recall to the artist the heads full of glorious life—all faces of the most dignified type, and features of female loveliness, which, though wanting the refined and delicate beauty that Raphael or Correggio would have given them, yet smile from the canvas with all the glowing freshness of life and nature. The Venetian school, besides leading the way through the paths of art, displayed an acknowledged power and variety not reached by any other school of modern times.

The school of Spain has produced several artists of eminence, the principal of whom are Murillo (the Spanish Raphael) and Valesquez. Both these artists, in addition to their skill in the use of colour, are noted for their extreme freedom of handling, for power, freshness, and a general look of nature—not possessing the thoughtful dignity of Titian's heads or the refined elegance of those of Van Dyke, but startling by their vigour and truthfulness. There is only one portrait by this master in our National Gallery, that of Philip III, but his characteristic excellences are well displayed in that.

The Flemish and Dutch schools are principally eminent for works to which we commonly apply the name of "genre" pictures—generally subjects of a rustic nature or taken from everyday life. The painters of these schools are generally noted for excellence of colour, skill in chiaroscuro, and a love of picturesque and local effects. They reduced the principles of the Italian schools to a regular system, and it is to their works that the artist generally goes to learn the principles and mechanical practice of his art. The heads of this school are Rubens (the "prince of painters," as he is sometimes called by his numerous admirers in opposition to the more refined and classical style of Raphael) and his pupil Van Dyke. They are both noted for their grand manner, and their qualities of the art, were both great colourists, and painted pictures of the largest size, whether sacred, historical, landscape, or portrait. In the last, especially, they both excelled. The portraits of Rubens are painted with great force and freshness of colour. There is at Windsor Castle a room named after him the "Rubens Room," and filled with his works. There is also in the National Gallery a fine portrait of a woman in a straw hat, called the "Chapeau de Paille," from the collection of the late Sir Robert Peel.

What I have said respecting the portraits of Rubens applies generally to the similar works of his pupil, Sir Anthony Van Dyke. The latter, however, though generally having somewhat less force, are more graceful in their quality and character, and are Among these remarks of this artist:—"Happily the works of Van Dyke are not scarce in this country, and in them you will see admirable examples of what has been urged respecting the beautiful arrangement of light and colours united to all the graces of intelligence, mastery execution, and his style is much more correct and beautiful than that of Rubens."

The painting is full of life and nature, and the painter to whom I can do little more than add, although his works are of the very highest class—I mean Rembrandt. To give any sufficient idea of his works would require a paper in itself. The common idea among photographers respecting this great master is that he always turned his sitter's back to the window, and represented them with black faces having a streak of white running down the nose. Truly a comical idea of the painter! I suppose I must have seen 200 or 300 portraits by his hand,
but never happened to come across one of those straky Rembrandts. He was noted for the great force and brilliancy of his lights, which were generally obtained by concentrating the light (very often he has only one) upon one part, and surrounding it by masses of dark shadow, often bordering upon blackness, but never black. After these foreign masters, if such they be—for I hold with Voltaire, that "ceux qui aiment les arts sont tous con-citoyens" (those who love the arts are all fellow-citizens) in these days—never, we may very well devote a few lines to the portrait painters of our own school.

The greatest of these, undoubtedly, Sir Joshua Reynolds and Gainsborough, the latter of whom was equally noted for his skill and originality as a landscape painter. Sir Joshua Reynolds has been surpassed in his male heads, but his women arc, to my thinking, unqualified. There is about them a feeling of grace and beauty, united to a power and easy mastery in the execution that places them at the very head of their kind. I can only mention a few of the finest. Amongst these may be enumerated the picture of the three "Misses Waldegrave," the famous and charming "Nelly O'Brien," who is seated in a rich landscape with the shade of a tall hat thrown over the upper part of her body; the celebrated portrait of the "Devouche" holding up her child, his picture of "Mrs. Siddons" enthroned in the clouds as the tragic muse, and the picture of another great actor, "Garrick between Tragedy, Tragedy and Comedy." The pencil of Reynolds seems to have been all it touched. However vulgar or commonplace his sister might be, they always appear upon his canvas as ladies and gentlemen, and equally celebrated painters and boys of "Devouche" holding up his child, his picture of "Mrs. Siddons" enthroned in the clouds as the tragic muse, and the picture of another great actor, "Garrick between Tragedy, Tragedy and Comedy." The pencil of Reynolds seems to have been all it touched. However vulgar or commonplace his sister might be, they always appear upon his canvas as ladies and gentlemen, and equally celebrated painters and boys of

Gainsborough is noted for the great force and freshness of his portraits, and the masterly ease of their execution. He studied Rembrandt and Vanderwyle with great success. There are three very fine examples of Gainsborough's portraits in the National Gallery,—"Dr. Schomberg," "Mrs. Siddons," and a masterly rendering of an ordinary head, called "The Irish Clerk." The limits of a paper like this will only allow me to mention the names of the remaining artists of the English school who have best succeeded in portraiture. They are Romney, Sir T. Lawrence, Jackson, and Raeburn, called the Scotch Valasques.

I will now endeavour to extract from the works of the great painters I have named some principles that may be of service to us as photographers. The first and most important principle that I wish to state is this: the whole of sacrifice. The parts must be sacrificed to the effect of the whole. If a number of objects strike the eye at the same time, and are possessed of equal force, they naturally compete with each other, and thus weaken the effect of the subject. The principle is thus expressed in Dufresney's "Art of Painting":

"...not all will succeed, but some will be the first to strike the eye..."

This is confirmed by a note of Sir J. Reynolds. As the head is the most important part of the portrait, so it should first attract the attention. In the best works of the best men the principal light always falls upon the face and, where necessary, all other parts are subdued so as to concentrate the attention upon it. Painters who work with much less light than is found convenient in photography always light the head from above, and it is held most conclusive to effect that the light should be small. Rembrandt—who is supposed to have derived his first ideas of the striking power of a ray of light in the midst of a mass of shade from the effects he had observed in the interior of his father's mill—has often carried this brilliant contrast to the extreme, so as to show scarcely anything but the head. Northmore, also, in describing the studio of Sir J. Reynolds, tells us that it was lighted by a single window eighteen inches square, the lowest part of which was about ten feet from the ground. Sir J. Reynolds, again, when speaking of the early painters who obtained relief for their heads by bringing the light part of the background against the dark part of the head, and vice versa, recommends the contrary practice of Titian, who often relieved the darks of his heads by a still darker ground, thus giving an appearance of great breadth. This plan is in advance of our present photographic practice.

One most important feature of the face is certainly the eye. All the masters I have mentioned succeeded in giving great expression to the eyes—the "windows of the soul"—while, unfortunately, in every large photographic head this has been the weak point. I do not remember one in which this important feature has been perfectly satisfactory. It is also of great importance in lighting the head to place it so that the eye shall be in shade, or at least in half-tint. The next important feature is the mouth. Generally the corners are turned slightly up, which gives a pleased and pleasant expression; if the corners of the mouth are drawn down the face is sure to wear a look of pain.

Thus much for the head, to which, as I have previously observed, it has been a rule among painters that the figure should be subordinated. How far this principle of sacrificing a part to the effect of the whole is to be carried must depend upon the taste of the artist, whether he be painter or photographer. Titian and Rembrandt in some of their works carried the idea so far that little besides the head is visible; while, on the other hand, Gainsborough, whose portraits have more the look of ordinary daylight, allows greater prominence to the figure. The principles I have laid down have been not much followed by photographers; still there are brilliant exceptions. I have observed, Adam-Salomon was one of the first to apply the recognized principles of art to photography..."
PHOTO-ELECTRIC ENGRAVING.—(concluded).

BY JOSEPH LEIPOLD.

The exposure of the dry sensitive film under the transparent positive must not take place immediately after the plate's withdrawal from the oven. The film, which is of a very sensitive nature, is put away for some hours in a dark place, so as to come in contact with the oxygen of the atmosphere, bringing about an oxidation of the coating of glue, which must be regarded as the basis for the formation of the grain subsequently developed in the image. The film must not, however, be left too long, else it loses its great sensitiveness, and yields bad and dull pictures. It is difficult for the drying to take place in an oven, but in a warm apartment during (say) four-and-twenty hours, for in this case there is plenty of time for the oxidation to take place. But the latter mode of proceeding is not to be recommended, as the plates are thereby easily injured.

About the time of exposure under the positive nothing can be said of the nature of the cliché and the intensity of the light for the time being has obviously much to do with the matter. A vigorous positive with strong shadows necessitates a lengthened exposure, but this must only take place in the shade—in a window, for instance, looking away from the sun. The direct sunlight makes the picture hard, the half tones are lost, and the result is worthless. The printing is a difficult matter, which can only be accomplished by compound casting, but still there are rules which should guide everybody. The printing is done in an ordinary frame; the sensitive film is placed upon the positive in such a way that the former lies upon the collodion side of the latter. After a little while, the print will appear gradually, the deepest shadows, however, not showing any details, and this is a sign that the printing has not yet gone far enough. Of the light different when the same judgment may be formed by opening one half of the frame, by which means the picture can be more easily and correctly inspected. Before the details in the shadows appear, it will not do to stay the printing. I expose my plates according to the character of the positive, and the daylight, three to five hours, covering up the more transparent portions of the cliché after an hour or two with a pigment, made with lampblack and water, thus allowing the action of the light to print through the more opaque portions of the positive. In this way the half tones of the picture are secured in very good condition. The work is not difficult, neither need one be very anxious about it, for after a little practice one may easily prepare even a plate of large dimensions in this manner in a few minutes.

If the exposure has been a satisfactory one, then the development of the picture is easy. The liquid employed by myself consists of fifteen parts water and one part alcohol, the latter having the property of dissolving the film scarcely so quickly as water alone. The plate is laid in a bath of this mixture, and after a few seconds quickly withdrawn and placed upon filter paper. On examining the picture it will be found that by this operation only the deepest shadows and more vigorous outlines are to be grained. It is, however, to be recommended that the complete development of the picture should not take place at once, so that the glue coating does not absorb too much moisture, and the grain resulting be not perfect. The damp image is allowed to dry spontaneously for a little while, and the development and drying is conducted alternately, in a gradual manner, until the details are laid bare. The finished image is then dried in the air for a few hours, and then put into a water bath to remove any chromate of potash which may still remain in it.

To change a relief of this kind with all its delicacy, by means of the electrolytting process, into a metal engraving plate, it is necessary in the first place to take an accurate mould of the same with some suitable substance. Everyone who has had experience of the process knows how difficult such a task is to perform well, and in this case one has to do with such a fragile and delicate relief, of which a most perfect reproduction is necessary. Paul Pretsch designates this operation as the most difficult of all, and by its imperfect performance was his labour often rendered fruitless. He used to employ some oily or resinous body mixed with gutta-percha, which was rendered fluid by heat, and in this condition poured over the relief. Six years ago I experimented for a long time with a similar compound, but never succeeded in securing a good mould, and more recent experiments have proved to me that gutta-percha brings with it more trouble than advantage. I therefore tried to avoid its employment altogether, and used a mixture of the following composition:

1. Spermacetum 425 grammes
2. Stearic acid 200 "
3. White wax 170 "
4. Araphte 70 "
5. Graphite 70 "

I first of all melt the asphaltum, and then add 1, 2, and 3, when the solution has been rendered sufficiently fluid by stirring and exposing to a temperature of 70° Reaumur, the proportion of graphite is finally put in.

The advantages of this composition are many. (1) Its fluid character on warming slightly, and therefore its facile setting upon a delicate relief. (2) The mixture hardens when once cold very perfectly, and is solid enough to repel subsequently the action of the graphite and brush. (3) The mixture is quite independent of itself from the impression. I have tried the composition for the purpose, in all sizes, and have always obtained brilliant and perfectly good clichés.

After the picture has been completely developed by the water bath, it is dried by means of good bibulous paper. If the grain is too vigorous the image appears too high. The gelatine picture swells by reason of the moisture, and this is the reason of the coarse grain. It is necessary, therefore, to diminish the moisture as much as possible, so as to impart to the relief the necessary beautiful granulation and other qualities for printing purposes. This is done by passing a fine brush in all directions over the image, principally in the deepest shadows, so that the relief is in some sort dried and stretched; at the same time the grain becomes finer and more delicate. In this way the image is made ready for moulding; a framework of metal is placed around it, and from one corner the pouring on of the composition, warmed to melting point, begins. The separation of the mould from the relief is easily brought about by allowing the composition to set and cool to some extent, and then lifting and turning over the glass plate, when it will be found that the mould has begun to leave the image of its own accord. It is only necessary, therefore, to lift the glass plate somewhat in order to complete the separation. The facility and ease with which the moulding is conducted, as also the smooth and perfect character of the mould itself, will certainly give satisfaction to the attentive manipulator.

When the mould does not feel warm any longer it can be rendered fit for electrotyping by brushing on a layer of graphite; the image will then adhere to the copper being passed over its surface. The image becomes more brilliant still after this operation, and the electrotyping is proceeded with in the ordinary manner.

This is as far as my work has at present gone, and I may say that it affords me great pleasure to publish the results of my numerous experiments, which have been to me a labour of love, in which I have not stinted the Vienna Photographic Society. It is my warmest wish that the interest felt in my native city of the important invention of a fellow-townsmen may remain lively and prosperous for some time to come.
THE PRACTICAL PRINTER IN AMERICA.

XVII.

PRINTING INTENSE NEGATIVES.

These negatives generally print “chalky” in the lights, and “inky-black” in the shadows. In a negative that is too intense there is scarcely any detail whatever either in the high-lights or in the shadows. Such a negative then will yield what may be termed bold and vigorous-looking prints, and will in many cases suit the customers, especially some ladies who like to see their faces very white. To a well-educated person nothing is more repulsive, in the way of prints, than black and white pictures, without any of the fine detail either in the lights or shades, which are now so universally admired. The contrast between the lights and shades in such a negative is too great, and consequently it should be toned down or softened.

It is well known among most printers that the slower a negative prints the more contrast there will be in the resulting print, and vice versa. Such a negative, then, should be printed as quickly as possible. A too sensitive paper will make the contrast all the greater, and our object in this case, then, is to have a paper silvered in such a manner as to obtain a print less harsh than would be obtained in the ordinary way of working. Paper, then, should be chosen especially for such negatives, and kept separately from that used for the rest, for when a paper which produces fine prints from intense negatives would produce miserable ones from weak negatives. The paper should be silvered only a very few seconds on a weak bath (say from fifteen to twenty seconds on a 35-grain bath for the Berlin brand of paper, for the Hovey brand fifteen seconds on a 25-grain bath, and for other brands say this is the rule). A paper used for fine prints on a 30-grain bath, and for the opaque prints may be used to good advantage. After toning, if the paper is damp, dry it, and then after cutting it up to a suitable size for printing, place it in a box which is labelled “Paper for Intense Negatives,” and always use this box for this brand of paper, and then there will be no danger of mixing it with the differently sized silvered paper which is used for printing other kinds of negatives.

We always use the pink paper for intense negatives, for the colour of this paper is of great benefit to the print, as after it is mounted there will be a delicate pink or flesh colour to the high-lights, which will look very much like the original in the negative and tend towards giving the appearance of detail in these parts. The paper is most chalky, such as the hands, &c. After having filled a negative-box, containing one of these intense negatives, with a piece of the paper which was prepared for it, we will place it out in the sunlight to print. The more direct the rays of the sun fall on this negative the quicker will it print, because the light will be correspondingly brighter. This is the reason why, when we place a negative out to print in the sunlight, it prints quicker than when placed in the shade, and when placed face up to the direct rays of the sun it will print much quicker than when the rays strike it obliquely, as, for instance, when the printing-frame is laid down flat on the printing-shelf. Consequently I recommend, for very intense negatives, to place the negatives face up to the direct rays of the sun.

One of the easiest ways to tell when the board is face to the sunlight is to drive a tack perpendicularly in the printing-frame, and in placing the board out to print place it so that the tack will not cast any shadow except where the sun shines direct upon it, and then a place as large as the head of the tack alone will be shaded on the board. The way I generally do is to place the board so that the shadow of the board is cast by the same line continuing from the sides of the board—in, i.e., a straight line from the sides of the board will run in exactly the same direction as the shadow cast. An easier way, perhaps, to do this is to place your finger close to the board, so that the shadow will come on your finger at exactly the place where it commences to extend out beyond the sides of the board. Do this on all the sides, being careful that in getting the shadow right on one side that you do not lose it on the opposite one. When you have obtained the correct shadow, you can with certainty say that, for the time being at least, the negative-board is correctly placed face to the rays of the sun. Keep the board in the sunlight, and move it until I commence to see the light flickering along all of the sides, then I know that the board is all right without the use of my finger. You will soon get used to it, and after the first few times it will not be necessary to place your finger there, and it will only take two or three seconds to place it exactly right with one hand, while with the other you can be taking up another board to place out to print. The advantage of the above plan can readily be seen by those who print those styles of prints known as “Mezzotints.”

One disadvantage in placing the intense negatives face to the sun, without either ground-glass or tissue-paper over them, is the liability of there being some bubbles, scratches, &c., in the glass, which would print on the paper, and these would be the cause of great trouble in finishing them out. In this case, then, the use of tissue-paper will often prove of great advantage. Many times have I been annoyed in the same manner in printing such negatives, and then would be obliged to place a ground-glass over the negatives, if the defects were very small, and a couple if they were quite large, to avoid their being printed. Sometimes even a tissue-paper must be used to fully answer the purpose; hence the consequence of using tissue-paper. In printing negatives which are to be cut into plates and furnished with borders, the shadows are a trifle darker than you wish them to be when done, and then take the print off and examine it. “Print for the shadows, and let the lights take care of themselves,” is a very good motto, and worthy of notice in printing intense negatives. On examining the print, if the lights of the face are very white, so as not to contain much detail, then they should be softened.

There are various ways of doing this, and one of the best in many respects is that of making an aperture full as large as the place to be shaded, in a suitable size piece of yellow envelope-paper, and holding the print in the left hand and the envelope-paper in the right, hold them both out in diffused light, and tone down the blanky whites of the print. Care should be exercised in performing this. The removal of too much of the print will nearly spoil it, and then the print will not be in the position for being cut. The paper should always be on motion while out in the sunlight, so that there will not be any sharp line on the print. The place to be softened should be darkened a very little, two or three seconds’ exposure to the sunlight, and half a dozen or so more in the diffused rays, being all that is generally required. Never attempt to shade a print in this manner unless the hole in the paper is full as large as the place to be shaded, for with a smaller hole you will most probably spoil it, by shading it irregularly. The shaded place should also be a trifle darker than what it should be when done. Practice will soon render you perfect in this little printing dodge, as well as in other at first difficult parts of printing. I have seen many prints very much improved by this method, and then again I have seen many others ruined.

A print printed in the manner described above from a very intense negative will have the following advantages:—1. It will be a bold and vigorous-looking print. 2. It will present fine contrasts without harshness, and will contain softness throughout. 3. There will be detail, both in the shadows and in the lights. As a whole the prints will be much improved, will result in much improvement being obtained from the negative, providing it had been printed without regard to its improvement.
ELECTION OF OFFICERS IN THE PHOTOGRAPHIC SOCIETY

As the first step towards the election of officers in the Photographic Society must be taken within the next few days, it may be useful to those of our readers interested in the Society if we briefly state the working of the new laws in relation to election, which come into operation this year for the first time.

Under the new laws the election of the officers will be effected by the ballot of the whole of the members of the Society, whereof two-thirds of the entire vote of those by birth or adoption might attend the annual meeting. The nomination of officers is also left entirely in the hands of members, no house list of new officers being recommended by the existing council as heretofore. Every member of the Society is at liberty to nominate gentlemen to fill all the vacant offices, the sole condition to give legitimacy to such nomination consisting in putting them forth in writing. Of such nominations all such nominations must be in the hands of the Secretary not less than twenty-one days before the annual meeting. From the lists so received the Secretary will prepare ballot papers, which will be forwarded to every member of the Society, each of whom, having duly received his vote, must send in his ballot paper to the Secretary in time for the annual meeting. The ballot papers will contain a complete list of the names, with the names of their nominators, and the member will erase, before returning it to the Secretary, the names of all but those for whom he desires to vote, leaving of course the full number of officers to be elected. To give this voting the real quality of the ballot, which is, of course, secrecy, the marked paper is to be returned to the Secretary without any name; but in order to identify it as coming really from a member of the Society entitled to vote, it must be returned in a special envelope provided by the Society for the purpose, which will be forwarded to each member of the Society together with his voting paper. These envelopes will all be placed, unopened, in the hands of scrutineers to be appointed by the Society, by whose advice the results will be made known at the annual meeting.

So far as we can see, the course is simple enough, and not open to any kind of cavil on the score of narrowness. Every member is eligible for office; every member can nominate; every member can vote; as the vote is secret, no kind of undue influence or cliquism can easily come into operation. Possibly the objection may be raised to the effect that the machinery is somewhat complicated and extensive for the simple purpose of selecting officers to carry on the business of a scientific society with eight meetings in the year, but as it is possible this elaborate machinery may effect the purpose, and in preserving the Society from petty jealousies and divisions, it is probably desirable to adopt it. Another objection which we have heard raised is to the effect that in the absence of a house list, the Society might find that through the forgetfulness or indiffidence of the members generally, no nominations whatever had been made, and hence no officers could be elected. This objection is, however, based upon a misconception or oversight. As all the retiring officers except the vice-president are eligible for re-election, those would always stand as practically nominated, should the members generally fail to re-nominate them or to nominate others. There is, however, little risk, we hope, of such supine indiffidence as an entire absence of nominations would indicate.

The election of this year will differ, not only from all the past, but from future elections. At the present election of officers on the reconstitution of the Society, all the gentlemen accepting office did so with the understanding that the position was temporary, and that at the next annual meeting a general election, under the operation of new laws, of all officers, would take place. At that election, the first in which every member of the Society had an opportunity of taking part, there were no special nominations, every member being on the vote of the whole house. In future, nominations must be made, and such nominations must, as we have said, reach the Secretary twenty-one days before the annual meeting in February; that is, they must reach him, addressed to the rooms of the Society, 9, Conduit Street, Regent Street, before Tuesday, the nineteenth of the present month. The offices for which nominations are required are president, vice-presidents, a subscriptions officer, and eighteen members of council. In future years six new members of council only will be required, as well as a president and one vice-president, two-thirds of the council, and of the vice-presidents remaining in office, while a third-retiree in rotation, to give place to new blood if such an infusion be required.

The new laws, which have passed somewhat in haste at a special meeting at the close of the session, may be legibly revised at the coming annual meeting. Whilst it was manifestly desirable that the revised code, upon which the council had laboured hard, should be submitted to the members before the recess, it was scarcely possible that it should not possess some minor points admitting further revision or improvement. It was enough that a broad principle of fairness was embodied in the new code, and whether it had proved necessary in practice or not, was desirable to meet the wishes of some members. Any modifications still necessary or desirable are possible at the annual meeting; but it will be necessary for any one concerned in securing such modifications to give due notice of motion at the meeting on Tuesday, in relation to any alterations he may intend to propose at the annual meeting in February.

PHOTOGRAPHIC QUALITIES OF VANADIUM SALTS.

We recently remarked that a large unworked field still remained open for the researches of experimentalists, amongst substances known to be in some degree sensitive to the action of light, but which have not yet been brought within the range of practical photography. Another class of salts has recently been added to the series contained in that extensive field, and is indebted to Movers, Johnson and Mathey for details of some exceedingly interesting experiments undertaken by Mr. James Gibbons, for the purpose of testing the photogenic qualities of certain vanadium compounds.

Vanadium is a somewhat scarce metal, found in certain iron ores, and also in combination with lead. It seems to have many characteristics in common with chromium, and as it is not improbable that its photographic qualities would be found on further investigation to be similar. Vanadic acid, like chromic acid, is of an orange-red colour, and most of its salts are red or yellow. Gelatine, when exposed to light in combination with some of the vanadium salts, becomes insoluble when treated with a solution of nitrate of silver. Paper treated with a vanadium salt darkens under the
action of light, and when treated with silver, gives a vigorous image like some uranium salts. A silver compound of vanadium gives an image which may be developed with salts of iron.

The record of Mr. Gibbons's experiments stands as follows:—

"Potassium divanadate, in combination with organic matter, is first rendered green, and ultimately blue, by exposure to varying degrees of light; then, after being exposed to light, it is shown that the solution does not acquire the same property to which it was submitted. The salt does not undergo any change when exposed to diffused daylight. Paper which does not contain any size of an animal origin, when treated with a solution of potassium divanadate, is thickened on exposure to light, the depth of tint depending on the length of exposure and on the strength of the solution used. The tint, however, never becomes darker than a slate colour. If the paper thus prepared is immersed, after exposure to light, in a solution of silver nitrate, the colour in the exposed part instantly changes to a deep brown or to a black colour, varying according to the amount of silver nitrate. A tint of the decomposed vanadate, which is of such an amount as to be with difficulty distinguished from the whiteness of the paper, will, by immersion in the silver nitrate, be toned so as to exhibit a very perceptible tint. It is evident that paper prepared in this way might be employed for the purposes of photographic prints. The exposed parts are converted by treatment in the silver bath, into yellow silver vanadate. This substance may be dissolved out either by ammonia or by sodium hyposulphite. This act of fixing converts the dark brown or black part into those of a red colour. This may be prevented, to some extent, by using a bath of ammonio-silver nitrate, with an excess of ammonia instead of the amount of silver nitrate before mentioned. The developed parts, after being toned with gold chloride. The length of exposure required to produce a deep black is about one hour to a strong sunlight: this, by using a solution of the sodium orthovanadate containing about one per cent. of the salt. Some ligneous substance only must be present with the sodium orthovanadate for the production of the above-mentioned slaty tint; for if an albuminous body be present, a faint brown tint is produced after exposure to light, and the silver nitrate is not afterwards reduced to any very great extent. The slaty colour of the reduced salt appears to be due to the formation of vanadium trioxide. If the exposed paper be kept for some weeks its colour changes to that of a yellowish-brown, free vanadio acid appearing to be produced. The liquid decomposed with sodium orthovanadate, exposed to light, and afterwards dipped into a solution of silver nitrate, becomes insoluble in hot water. Silver orthovanadate is capable of forming a photographic image, which is nearly latent, and which may be developed by the ordinary ferrous developer used in photography. To produce this image, two or three minutes' exposure to sunlight is required. To develop it, it is essential that little or no silver nitrate be present; otherwise, the exposed and unexposed parts are reduced indiscriminately. The washed silver vanadate can be mixed with a solution of gelatine containing a little albumen, spread upon paper and allowed to dry; it can then be exposed to light, and afterwards developed."

* Communicated by Prof. Roe, to the Literary and Philosophical Society.

FRENCH CORRESPONDENCE.

SPOTS IN PHOTOGRAPHIC PRINTS—BAD CARDBOARD—LEIPOLD'S PHOTO-ENGRAVING PROCESS—MARC ANTOINE GAUDIN—GRANTS TO SCIENTIFIC MEN.

The subject of stains or spots upon prints arising sometimes even during the operation of printing, despite the exercise of greatest care, is still occupying the attention of our photographers, who are naturally very anxious to discover the true cause of this fatality, so vexing both to themselves and the public. For this reason, it is well to call again to consideration all the experiments and opinions known on the matter, and I propose to bring before your readers a communication which I have just received from M. Bandoux, of Jersey.

This gentleman attributes this peculiar kind of smallpox in photographs entirely to the composition of the cards upon which the prints are mounted, and particularly to those cards which have been manufactured since the war. The proof of this is to be found in the following circumstances:—

M. Bandoux always draws his supplies of albumenized paper from the best Paris houses, and invariably chooses that of the finest quality. He has not changed for some time past his method of sensitizing, toning, fixing, and washing, his manipulations, to be brief, being thus conducted. The positive is put in the bath at the beginning of the year and maintained at fifteen per cent. strength, the dark room where the operation is conducted being warmed in winter. The toning bath is that recommended by M. Davanne, and the fixing with hyposulphite of soda is the process ordinarily adopted. Finally, the washing is organized in such a way as to completely remove from the prints the hyposulphite that has been absorbed by the prints.

To do this, M. Bandoux employs a round dish with a double bottom, 1:25 metre in diameter and thirty centi-metres deep. The two bottoms are separated by a space of six to eight centimetres, fitted with a big tap, which permits the water to run away at will, with more or less rapidity. The upper partition is pierced with holes like a sieve, and it is upon this that the prints remain. On two sides of the dish are placed two tubs, but at a higher elevation than these. These are always full of water, and to each is fixed a tap in a slanting position, so that the water is poured in in the same direction against the walls of the bath, and turns the prints continually, forcing them towards the middle of the bath, whence they are again dissociated by a third jet of water in the centre coming from a cistern. The water to replenish the tubs and the cistern is provided by pipes coming from a neighbouring rivulet.

The prints are allowed to remain in this bath for at least six hours, and often all night long, and as the water is running out continually through the tap between the two partitions, no trace of hyposulphite can possibly remain after such a thorough rinsing.

For mounting, M. Bandoux prefers to use a paste made with distilled water and French starch made in Paris. English starch generally contains a blue pigment, and appears to be of an inferior character. The starch is made fresh every day, so that there may be no fermentation.

M. Bandoux draws his supply of cards from the best house in Paris, and he has pictures mounted eight years ago upon which no spots or defects of any kind have or defects of any kind have manifested themselves. Not one of those which have been mounted in albums upon coarse paper have undergone the slightest alteration. During the war at Paris, not being able to procure any further supply of card from Paris, he purchased, at Jersey, some common card such as is to be found in all shops. Photographs mounted upon this material have kept very well, but some of the cards bore spots. The spots were then told in Paris at a correspondent in Paris a supply of 20,000 cards, for which he was kept waiting some time, by reason of the number
of orders in hand. After a time, however, the supply was made, and the cardboard was used in the ordinary way. Six months elapsed, and then complaints began to be made on all sides about defective prints, which were full of spots and stains. At first it was believed that the assistant who had charge of the fixing was at fault, but soon it was apparent that the failures took place so regularly that this reason could not be the true one. Then the hypoosulphite of soda was suspected, and a supply of the purest material was sent for from London. Despite all these precautions, however, the prints continued to appear with the vexatious spots upon them, and even a change in the albumenized paper made no better. In short, the portraits mounted on the 20,000 prints were all of them more or less injured after a little while.

Certain facts were tolerably certain. The portraits mounted upon the cards coming from Paris before the war did not show signs of any defect. Those mounted upon thick paper in the albums were likewise free from any of the spots. Those photographs mounted on the cardboard purchased in Jersey were in a bad state; and other pictures mounted on larger boards kept in a good state of preservation. Finally, what was very conclusive was the fact that the drawers filled with unmounted prints did not any of them contain spoiled prints, although many of the pictures had been produced eight years ago.

Mr. Belloc asks whether some preventive measures could not be taken to preserve the print from the cardboard, by coating the latter with some sort of preservative, and he thinks that india-rubber might be a suitable material for the purpose.

My correspondent adds that for some time past he has used the "cole ramie," which may be employed by a thick coating of it in the proportion of one hundred grammes of cement to eight grammes of glue, and that when the mounted prints dried by heat do not become detached.

M. Joseph Leipold, Director of the Photo-engraving Establishment at the National Printing Establishment at Lisbon, has sent me a collection of specimens by the process, of which the PHOTOGRAPHIC NEWS published a description in its last number. These specimens, which are of the most varied character, containing both reproductions of paintings and views, reproductions of monuments, and works of art, are most remarkable in many ways. They possess great detail, much delicacy, an extraordinary relief, and considerable vigour. They may compare favourably with the fine plates produced some time ago by M. Charles Negre, and at the present day by M. Rousselon. We cannot but congratulate M. Leipold on the success of his undertaking, and thank him, moreover, for publishing to the world the method by means of which they have been obtained.

In the letter which accompanies the interesting collection M. Leipold very modestly attributes the best part of his success to the valuable assistance he derived from our mutual friend M. Carlos Relvas, the skilful amateur photographer of Hollegus, whose works are well known in England and France by all those who visit photographic exhibitions.

It is, in fact, with the assistance of M. Relvas's very perfect cliché that M. Leipold has been able to prepare all the plates that are produced in the National Printing Office of Lisbon, and everyone knows that in mechanical processes of this kind the nature of the cliché is a matter of great importance. It is gratifying that the co-operation of these two gentlemen has been productive of such valuable results.

I am sure all the readers of the PHOTOGRAPHIC NEWS will learn with pleasure that a presentation has just been made to our old friend Marc Antoine Gaudin, whose works, especially in the early days of photography, contributed so much advancement. M. le Baron Trémont bequeathed to the Academy of Sciences a further sum of eleven hundred francs to aid any savant who needed assistance in work that might accrue to the use and glory of the French nation; this sum has just been awarded to the persevering experimenter to whom we have alluded.

In regard to this matter, I may mention that I have before me the Comptes Rendus of the Academy of Sciences for the month of December containing the various grants of money distributed on that occasion. It is a quarto volume of not less than 200 pages, and the works which are therein mentioned belong to every branch of science. There are few reports in which the art of photography does not figure. In all kinds of researches the new art has become an auxiliary, and in some alabim indispensable. Physiology, anatomy, botany, zoology, geology, mineralogy, microscopy, natural history, medicine, use of the camera, and every day the application becomes more widespread—the process is so prompt, so exact, and so infallible. In reading the reports one is more and more convinced of the important rôle that photography plays in scientific discoveries, and in this respect, at least, it must be conceded that photography fulfills a most valuable function.

Ernest Lacan

THE TRANSIT OF VENUS.
The Eve of the Transit.

An interesting letter from the Special Correspondent of the Daily News and Telegraph to the Editor of the American Journal gives some very interesting details of the preparations on the day before the Transit. He says, dating Dec. 8th:

To-day a general polish, oiling, and dusting has been given to the instruments. Everyone has been surrounded with small screws, bolts, sperm oil, cog-wheels, brushes, and dusters, from the small hours of the morning. Such a furusting up I much doubt if half the instruments have ever had before. Then, too, the observers have been committing miraculous seats which should give them the greatest ease at the critical time. Chairs have been placed, seats to make platforms, barrels, spars, planks, and so on, have been "requisitioned," and the whole encampment has the general aspect of being supplied with very Irish furniture. There has been a council respecting the signals to be given to the photographers as to when they should expose their plates for recording contact, and finally it has been arranged that Colonel Campbell and Dr. Avraes should both give signals, and that Captain Abbey should be left to decide at the time as to which he should note. The signals themselves are not novel. The colonial, as his profession demands, has chosen the ready means of firing a broach-load, whilst the learned doctor has been more particular in his mode of expression, standing in a row of five, signifying to those in the third to go when the sun is at a certain degree of elevation, by absence of sunlight, or the loss of the stars for an evening. Thus, I see out of my boat that they all, one by one, are constantly making preparations that are too useful for words.

If constant watching has any effect on the clerk of the weather, he certainly will be bound to give them a favourable time of it in the morning.

Since I last wrote we have all been hard at work practising on the model transit, both by night and day. The lady astronomer has been most zealous, and her observations, I fancy, will certainly not be wanting to any. The personal differences in observations, even each observer has been duly noted, as it has been found that some observer see the phase of apparent contact of the limb of Venus with that of the sun somewhat earlier than others. The time of true contact will be deduced as follows:—Dr. Avraes, the exact optical contact of which has been seen and is daily determined by a small microscope placed in proper position. The sun and planet of course are represented by the model, the former being represented by a circular opening behind which is flashed either sunlight or also lamplight, whilst the latter is simply a black disc moving in front of it, by either clockwork or a slow-motion screw. Each observer takes a turn at the model, his telescope being some 200 yards distant from it, and by signal stops the movement when he fancies contact has taken place. A scale attached is then read, and the number of seconds noted by which he is distant from the estimation. It standing by the daily daytime and adjusting the mirror. A sun which makes a blackened bulb thermometer rise to 160 degrees is apt to feel too warm; and when one has to face the "crowd" the average has been to allow for a couple of degrees less in the thermometer, and this being such a minor degree, becomes rather checked. To-day we have made our arrangements for placing a cordon of sentries all round our camp. No one will be admitted or allowed inside. Even our farmyard companions have been cooped up till further orders, last
their quacking or quacking should disturb us while listening to the tick of our chronometers. We rather expected a Cook’s tourist party to have been here by now; probably it had been generally known in the evening that there would be an eclipse of Venus in the attraction of seeing philosophers at work might have proved an inducement for getting to Thves thus early, and have been trying to us. The only Europeans besides ourselves here now, however, are the Trews; hence was not the inside of the Diet Vero will not be invaded by any Ferrangia pilgrims, and that we shall be left undisturbed. The programmes for to-morrow is, a five o’clock break; and the evening’s optical comparison of chronometers with the adjustment of instruments, and arrangement of details. At a quarter to seven the sun will appear, and he will be watched and photographed till a quarter to nine, when the transit of Venus will be finished.

Dating on the 9th ultimo, after briefly referring to the successful results, he proceeds to details of the actual operation. He says:

This morning, long before daybreak, we all bundled out of our boats, took chronometer comparisons, and a juxted instruments. It was rather cold, and pop-jackets and mufflers were quite necessary to keep oneself warm. As it got near sunrise every telescope was pointed towards the spot where the sun was expected, and at last he made his appearance in a delightfully bright sky. Almost immediately A. H. Campbell shouted out, "Here it is," and then there was a general31

THE PHOTOGRAPHIC NEWS.

January 8, 1875.

ON FINISHING AND IMPROVING LARGE NEGATIVES.

By George Crompton.

I presume that as Mr. S. Fry has tried and made known his success with the so-called Lambert-type process, others will be induced to try it, and as a few practical directions are always of use in preventing blunders, I purpose in this paper giving my experience for over twelve months, and practical hints as to working.

The Lambert-type process, because I cannot give up my claim to having published, nearly twelve months before the date of the patent, a method of finishing enlarged negatives by working upon tracing paper upon both sides of the negative. It matters nothing that the main object of my paper was to give practical working directions of a process of making enlarged negatives, which I considered, and still consider, the easiest, and simplest in working; what I say is (and anyone can see if my claim is just by turning to the back numbers of the News, in which my paper was published) that at the conclusion of the paper was a paragraph devoted to various methods I had adopted for retouching or improving the resulting negative, and among them I mentioned that I had found the use of tracing paper on both sides of the negative to be very easy and artistic method of obtaining effects which I could get by no other means, and exhibited a large-size negative which had been done by that method; and there are more than one member of the South London Photographic Society who can prove that some time before the reading of my paper they saw in my studio, in Shepherd’s Bush, enlarged negatives, which had been traced upon with pencil and other materials—notably one of the late Emperor Napoleon III., done for the Stereoscopic Company. However, it call Lambert-type or any other name, it is free to all, and it places in the hands of a photographer of taste a wonderfully efficient method of altering and improving large negatives of all kinds, for life-sized direct negatives can be improved, and made more artistic (where they require it) in its use, just as well as enlarged ones; but it is, of course, of most value for improving enlargements.

First, as to materials required. The first and most important is the tracing paper, and here I differ from Monsieur Lambert in preferring a sample that is not transparent, for reasons which will appear in the details of working. It can be obtained at any artists’ colourman; I get mine from Howey’s, Rathbone Place. The most important point is to get it of a very soft and smooth quality, (as the rough paper is not fit for this use), just as clean, and free from opaque spots; and you must be careful not to fold it, or it will crack, and the crack will become more opaque than the other parts, and so cause a light streak on the print. I use pencils of four kinds (H, HB, B, and BB), also powdered lead or plumbago (the best I have used was supplied by Mr. J. Werge, with his process of making pictorial background), cotton-wool, and plenty of clean soft carded cotton, or cotton wool.

Having obtained your negative and varnished it in the usual way (and I neglect no dodge or expedient to make the negative as perfect as possible, for in my experience I find this method of retouching, as every other, will succeed best upon good work, and this or any other dodge, will make a print half done for you), you then take off the tracing paper is cut to the size, and dampened by pressing evenly over it a sponge which has been dipped into water, and then squeezed nearly dry in the hand. A brush with the ordinary office gum is run round the edge of the negative for about a quarter of an inch on both back and front (care having been taken to clean the back of the negative of all stains and dirt), and the paper is then brought into contact with each surface. Be careful that the gum does not spread too much. When dry, the paper will be strained quite tight, and present a very agreeable surface for working upon.

We will suppose that the negative to be manipulated is a twenty by sixteen enlargement of a lady in black silk dress; the background is decorative in the small negative, and in the enlargement it is very uninteresting. The negative has been well exposed, and developed with a strong developer. It is placed upon the retouching desk with the, negative side to be worked upon first; with the H pencil go carefully over the face, working out spots, freckles, and other inequalities, but doing no more than is absolutely necessary to mend the negative. Taking now the HB, with both, decided touches, set out on all high lights wants want to be done. The pencil is then placed upon the white ruff round the neck, the nose down the front of the dress, all jewellery, the light upon the eyes, &c. Now turning the negative over, I take the B pencil, and put on the high lights upon the face boldly and strongly; the two lights upon the forehead, on the brow, and over the eyes are rubbed in without care for the edges, but with, great care that they
are in the right place, down the nose, and upon the chin, and if necessary upon the cheek bone (in these sometimes the B pencil is not dark enough, and the BB will have to be used). Having satisfied myself that the masses of lead are in their right places, and that they are much more opaque than they are required, I take a small top of cotton wool, roll it into the cuttle-fish powder, and lightly rub over the lead, rubbing harder upon the edges, graduating them into the paper with more powder. We will suppose that the shaded side of the face, and the shadows under the eyes and chin, are too heavy; with the same piece of wool I mix some of the cuttle-fish powder and plumbago together upon a piece of dampened and well white paper, over those parts. You may ask why this is not done with the pencil; but you will find, as I have by experience, that the cuttle-fish powder being mixed with the plumbago makes it take to the paper in a fine even layer, without texture. Any part of the drapery that may want shading may be done in the same way. Now, to get rid of the background, in a cardboard tray, mix the plumbago and cuttle-fish powder, mixing them well together; rubbing my forefinger into this, I rub it on the tracing paper on the back of the negative, carefully rubbing into the lines of the figure; if this is in some parts too intricate for the finger, I supplement it with the BB pencil. Sometimes the outline requires that the front surface should be worked upon with the pencil, but I find this subjects it to a large extent to the plumbago or cuttle-fish. Upon the rubbing the plumbago over the edges of the figure on the reverse side to the hard cutting outline, which is the result of working upon the surface which comes into contact with the sensitized paper. You will have noticed that all this work has been upon the lights of the negative. Now comes the manipulation of the shadows. With the prepared gum solid by a gum diamond on the reverse side of the paper, the revolving turntable with deep shades which will make the tracing paper more transparent in those parts, and so cause the light to pass through and give greater depth in the print; this gumming must be done with a large brush, and with particular care, sharp decided shadows can be made (which are just like decided touches upon the print with a full brush of colour) by gumming the very deepest shade upon the proposed mix; but you must have some knowledge of drawing to do this with effect. The negative is now ready for printing, which is done in the usual way, with the exception that I take the precaution to cut a rough brown paper mask to protect the background. When printed, the print is of course upon white background.

I must leave the printing-in of the background, and the experiments adopted for getting effects of light and shade into, and upon, another paper.

ALBUMEN FERSUS GELATINE, AND FIXING WITH SULPHOCYANIDE OF AMMONIUM.

By G. BUXTON.

It is generally thought that the undissolved albumenate of silver is one cause of a print upon albumenised paper turning yellow. I am not about to deny this, but to relate the following experiment.

I printed, fixed, and washed a print upon ordinary albumenised paper, sensitised in the ordinary manner, one upon my own sensitised albumenised paper, and one upon paper coated with insoluble gelatine. I then suspended the three prints in a current of warm air. I then removed one print, and cooled the atmosphere, and kept it beneath a lamp for the bottom water half an inch in depth; the prints did not touch the water by two or three inches. The jar was then placed in a strong light that tell upon the three prints equally. After several months I removed them from the jar, and all three have become slightly yellow from the long-continued action of the damp air. I expected the gelatine print would have kept whiter than the others, but it was quite as yellow as the one on ordinary albumenised paper, whilst the print on my own paper was whiter than either. This experiment seems to suggest that albumenate of silver may have received more blame than justly belongs to it.

It is also said that as albumenate of silver is not dissolved from the prints by sulphocyanide of ammonium, that salt is not a fixing agent. The following is the result of an experiment I made two years since. I fixed two ordinary albumenised prints, one with hypo soda, and the other with sulphocyanide of ammonium, and well rinsed them for about half an hour. I then hung them both in a strong light, an exposed to the air in a large glass room for nearly a year, and whilst the one fixed with hypo soda had become slightly yellow, that fixed with sulphocyanide of ammonium remained perfectly white, which seems to suggest either that albumenate of silver has been much calomelated, or that sulphocyanide of ammonium dissolves it out of the print.

ENAMELLING CARTES.

BY A RIVERSDALE LADY.

Clear plate glass with dry whitening, or whitening with an emulsion; varnish the plate with spirit varnish (I find the French Sochees varnish the best). The plate should now be perfectly transparent, without any streaks. Immerse the print in warm gelatine, about the strength of

| Gelatine | 1 ounce |
| Water | 8 ounces |

Put the print in contact with the varnished plate. Squeeze out the air-bells and superfusious gelatine with a glass rod. Lay aside in a dry place for about 10 minutes, then rinse back of the print with warm gelatine paste. Put the dry mount in contact with the print, and quickly put all in a strong printing-frame, and put as much pressure as the plate glass will bear. Lot it remain in the frame for two hours; then take it out and leave in a dry place. When dry, the carte will leave the glass of their own accord; no heat must be used.

Another Mode.—After the plate has been varnished as above, cover the varnish with a coat of warm gelatine. Immerse the mounted cartes in cold water for a few minutes; roll them in a coarse towel, and, while damp and pliable, put in contact with the gelatinised plate. I sometimes wet the plate with water to draw out air-bells, but I think the most brilliant results are got when no water is used. If the cartes are intended for use, and it is wished to press the print can be mounted on strong drawing-paper, and remounted after being raised. I have tried all the different modes of enamelling that I have seen in the journals, but found them very troublesome and uncertain. And on seeing how easily a varnished negative left the glass when put in warm water led me to try how a varnished plate would do for enamelling. And I think if some of our star photographers would give it a fair trial, they would find it more certain, less troublesome, and the result more brilliant.

PHOTOGRAPHY AND THE MAGIC LANTERN.

By J. H. BIXIG.

Photography affords a ready means of producing slides for dissolving views or for use in the single lantern, possessing an amount of detail and a truthfulness which cannot be approached by the most skilful artist, the only drawback to them being the want of colour. By a combination of handwork and photography, however, many excellent coloured designs may be executed, possessing very great delicacy and finish.

I have tried every process for the production of lantern slides which I have heard of, including painting in varnish colours and in water colours, transferring by diaphan and vitremanie and photography, both alone and with hand-drawing. Of these, water colours may be discarded altogether as being devoid of brilliancy, and diaphanie as superseded by the more facile and satisfactory process of
vitremanie. Some excellent designs are sold for this last by a London firm, but the price—five shillings for a sheet of twelve subjects—is rather high, and the instructions issued for the manipulations are anything but clearly and fully explained. In one paper supplied with the designs directions are given for wetting the glass before applying the subfeeder, while in another description of the process no mention is made of wetting the glass. Some of the mechanical slides, too, appear to be printed the wrong way—for instance, in the "Court of Beasts," where the animals are intended to pass before the lion, the latter is printed with the face turned one way and the beasts the opposite; but as the fixed glass having the lion on it and the other glass having the beasts must be placed face in the lantern, whereby the relative directions are reversed, the beasts when moving forward will come, as it were, from behind the lion, whereas they should advance facing him.

In producing slides by hand in varnish colours the chief difficulty appears to be drawing on the small disc of glass outlines which will bear magnifying to the required degree, without becoming glaringly coarse and abrasive; photography, however, affords a ready means of getting over the difficulty, and I have found the following methods of applying it produce excellent results. A design of any subject required is drawn accurately and neatly on a smooth white piece of paper, in pencil or India ink, within a circle of nine inches or more in diameter, and all the details of the subject which are to be represented by black, whether in full depth or any gradation, are drawn in; this is then copied as a reduced negative of the size suited to the lantern employed, in the camera and transparencies obtained by the wet or dry plate process or by using carbon tissue. The designs are then varnished with negative varnish, and coloured brilliantly with proper wash colours.

It will be obvious that the execution of the drawings on paper, and on so large a scale, is a very easy matter compared with working on a slippery glass surface and of only one-third the size. Having made a chromo-plate frame, in which the glasses are movable, and one pair may be readily substituted for another, I have used the method described for producing the various patterns.

The transparencies are printed by the carbon process generally, on pieces of thin glass three and a half inches square cut out exactly to the size required, fitting accurately in the revolving brass work. This requires some care, as it is not only necessary that the disc should be neither too large nor too small in diameter, but the centre of the design and the centre of the disc should actually coincide.

Another way, which I have found very convenient for producing the chromo-plate glasses, is to draw the original design on paper in India ink on a large scale, and as a negative, all parts to be coloured or transparent being perfectly black. It is only necessary then to take copies in the camera of a size suited to the lantern in which they are to be used, and to cut and colour them as before described.

As an illustration of the application of the method I have endeavoured to describe, I will give the details of a dissolving effect produced by it, which I think is somewhat novel. A swan is drawn in outline with India ink on paper, within a circle of nine inches diameter, and shaded to represent the ordinary bird familiar in the northern hemisphere, together with the water on which it swins and the surrounding scenery, the paper being left white in all parts which are to be coloured or transparent. From this two positive transparencies of the exact size required for the lantern are obtained. In No. 1 the sky, water, and scenery, as well as the beak and legs (where visible) of the bird, are appropriately coloured, and the plumage and reflection in the water painted black. In No. 2 the sky and scenery are stopped out with black, also the water, except the reflection of the bird. No. 1 is shown on the screen first, the swan then appearing as a native of Australia, where black swans abound and a white one would indeed be a rare avis. The light from the second lantern, in which No. 2 is placed, is gradually uncovered, and the swan slowly changes his plumage from black to white, the scenery, sky, &c., undergoing no change.

Correspondence.

REMOVING STOP DURING EXPOSURE.

Dear Sir,—I see by Mr. Wile's letter in this week's News that he has found the great advantage of removing the diaphragm during exposure. The operation is rendered more simple and certain by drilling a hole through the projection on the stop, and tying a piece of thread therein, the use of which is obvious. I have succeeded in moving the rotating stops of a landscape lens during the exposure of dry plates, and the resulting negatives were perfectly sharp, the exposure being lessened from ten minutes to four.

Bodelin, Jan. 4th, 1875.

J. B. BRAMS.

FS.—Here is an idea for the improvement of "collodio-chloride" which may prove the most useful process. The presence of those very delicate nitrates in the emulsion has always been a stumbling-block, and they can be removed in the same way that they are removed from Mr. Bolton's emulsion.

J. B.

[The presence of delicate nitrates is at times undoubtedly troublesome when the collodion-chloride is employed for printing on opal glass, and possibly might be got rid of in the way suggested.—Ed.]

TESTING NEW PROCESSES.

Dear Sir,—May I ask space for a few words in reference to Mr. Young's proposal in your last number, and your editorial remarks on the same subject?

The proposal that every new process should be thoroughly tested and reported upon by competent judges is one which must meet with the approval, not only of advanced photographers, who are, notwithstanding their "strange conservatism," willing and anxious to adopt any real improvement, but also of every honest inventor or discoverer of a new process. I hope Mr. Young is himself successful, and which he believes would be valuable to others.

I do not quite agree with Mr. Young that it would be necessary for fifty different photographers to try (and report upon) a proposed improvement, in order that it may be adopted with confidence by others. Surely the verdict of five "good men and true" should be enough to enable others to discriminate between the true and the false.

If a committee officially connected with the Photographic Society could be formed to test and report upon any new process or alleged improvement, it would, I think, go far to do away with "that strange conservatism which looks askance at everything new," and would be the means of introducing many real improvements, while we should cease to hear the bitter complaints of those who have been victimised by the unprincipled "process-mongers." At the same time, the certainty of being fairly dealt with by an honourable body of men would be a great encouragement to those who have time and means at command to devote both to the task of solving some of the difficult problems met with in the daily practice of photography.

But we must not always expect to reap the advantage of every improvement, but give it up in return. Depend upon it, the time has gone by for obtaining, without fee or reward, valuable technical instruction and information, which are the result of patient study and costly experiment.

Let the sale of a new process or improvement which has stood the test be recognised as a legitimate and honourable bargain, and the "man with the secret process"
THE PHOTOGRAPHIC NEWS. | JANUARY 8, 1875.

will no longer be regarded as an enemy against whom we must declare war.

Nor do I see any necessity that the inventor or discoverer of a secret process be regarded as an enemy by the photographically press. Should the time arrive when he desires or improvements cease to be made, no record of progress would be required. I would suggest that if an inventor cannot afford, or does not feel disposed, to give away his discovery, that he should name a certain time during which he desires his process should remain a trade secret, after which let it be freely published and discussed in the journals of photography.

Apologising for occupying so much of your space,—I am, dear sir, yours very truly,

B. J. Edwards.

Talk in the Studio.

THE PHOTOGRAPHIC SOCIETY.—At the meeting of the Society to be held on Tuesday evening next, a paper on a very important and interesting subject will be read by Mr. G. Hooper. The paper will be devoted to a review of the origin, aim, and achievements of the Photographic Society, with suggestions for its further expansion. Mr. Spiller will exhibit a new light, possessing considerate fullness of value, which promises to be a great use in photography. We regret to learn that Mr. Woodbury's illness will again delay his paper on experiments with coloured media.

THE LONDON PHOTOGRAPHIC SOCIETY.—The first meeting of this Society for the new session, just commencing, will take place at the Rooms of the Society of Arts, Adelphi, on Thursday, January 14th, when, after the routine business, a "popular evening" to (which ladies and friends will be admitted) will be given, consisting of an exhibition, by members and others, of lantern slides, by the amateur light, on a large scale. Tickets (free) can be obtained from any of the members, or from the Hon. Sec., Mr. Edwin Cocking, 57, Queen's Road, Peckham.

PHOTOGRAPHERS' BENEVOLENT ASSOCIATION.—A distribution of prizes, something in the manner of an Art Union, is shortly to take place in connection with the Photographic Benevolent Society. We understand that upwards of 600 prizes will be distributed, chiefly consisting of choices photographs. An announcement in our business columns gives details of the entertainment which will be provided at the annual meeting.

SECRET PROCESSES.—Mr. B. J. Edwards has invited a committee of photographers to test and report upon his secret method of treating the nitrate bath so as to maintain a permanent white, and the committee, while nominating the method, prove satisfactorily the absolute confidence which he himself possesses in the excellence of his method, and in the fact that his secret is worth its price.

A "DREAMY PICTURE."—A recent lecturer remarked that "some of these people didn't know their own imperfections, as the fat old lady who said to the photographer,—I want to be brought out light, airy, and otherlike!"—and who was assured by the photographer that she would make a most 'dreamy picture.'

To Correspondents.

J. Nelson.—It is somewhat difficult to give you full information in relation to the building of a studio, within the necessary limits of an answer in this volume. Assuming that you have full command of position, we should recommend something like the following:—Building a studio with the east and west, so that the principal light shall come from the north; let it be 20 feet long, 12 feet wide, 6 feet high at the eaves, and 12 feet high at the ridge. Opaque at each end. On the north side and roof let 6 feet be opaque at each end, the rest glass to within 2 feet of the floor; south roof opaque; south side may have 8 or 10 feet of glass coming, as on the other side, to within 2 feet of the floor, but the ground, but the background at the west end will probably most commonly be useful. The Belgium sheet glass will answer well,—say. 21-ounces glass. It is cheap, but we cannot tell you the precise price.

B. B. Patterson.—We cannot with any certainty tell you of whom you may obtain views of Liamar and Weston. Formerly Messrs. Marsh and Co. of Southwark would supply you. We believe that Messrs. Catherall and Pritchard, of Chester, have published many Welsh views.

D. London.—There are not sets in London, but we do not know much of them personally. So far as we believe, there is a Catholic chapel in Warwick Street, Regent Street, but we do not know the name of the officiating priest. It is probable that you will obtain views from the Catholic Directory, which any bookseller will obtain for you.

K. (Madras).—The yellow discolouration of your prints is due to the use of dyes for washing the unixed prints which have been accompanies with hypo. These dyes have probably been used before for washing prints after fixation, and slight traces of hypo clinging to them, sufficient to cause this yellow discolouration of unixed prints brought into contact with them. The same cause would prevent any appearance of milkiness when the prints were placed in the dishes. Dish used for holding hypo, and for washing prints whilst any trace of hypo is present, should never be used for any other purpose.

T. S. M. O.—Registration is of no service whatever in relation to any picture in which you do not legally possess the picture, and you do not possess any copyright in portraits taken in the ordinary way of business. You cannot prevent a customer getting his portrait, which you may have taken to his order, copied at any place he may choose. To secure a copyright in a portrait you either have to register it at your own expense at the order of a customer, or you must have secured an agreement in writing with your customer, reserving the copyright to you, and such agreement must be registered at Stationers' Hall.

J. (C.)—We cannot say that the statement has any little obscure; but it seems probable that the iodide solution should be washed off after flowing.

R. B.—It is a matter in which we fear that we cannot give efficient advice. If a tradesman be dishonest or negligent, and after receiving cash neglect to forward goods, he is being brought himself within the operation of the law, we should think; but what form of legal procedure is necessary we cannot say. It possibly may be a civil action to recover the money, or it may be a criminal action for obtaining money under false pretences. A tradesman can decide that after considering all the details of the case. Possibly further pressure and some patience may meet the case.

G. E. D.—The case of fading in carbon prints to which you refer were not examples of fading at all. It simply happened that amongst the earliest examples of Swan's process were some in which the image was attached to the paper by some imperfect cementing material, and portions of the image exfoliated. It is possible, however, tae pigment print may fade if fugitive colours are employed in preparing the paper; but if carbon actually—or, indeed, any permanent pigment—be employed, this risk of fading is less.

R. L.—Glaue has been found best for mounting enameled prints, and the colder it is used the less likely is it to interfere with the glossy quality of the enamel. If the prints are perfectly fixed, the colour will not fade, and if the word is painted after enameiling, as it must preserve them, to some extent, from atmospheric influences.

We cannot without propriety recommend one manufacturer of commercial dry plates as superior to others. We have given reports at various times of the results we have witnessed, but we cannot undertake to give any comparative estimate of the relative qualities of the plates of different manufacturers.

P. J.—So far as experience has gone, it is much in favour of the plan of removing the stop during exposure. The exposure with this stop is of course very much reduced. For instance, if you are using a lens of two and a-half inches diameter, and with a stop of half-inch aperture, a 50-second exposure is required; with full aperture, 2 seconds would be sufficient. If, then, you give the same plate 21 seconds, and I second full aperture, it should be just as fully exposed, with the incidental advantage of a somewhat softened definition, the result of some spherical aberration. It is doubly possible to devise some mechanical contrivance by which the stop may be removed without the risk of vibration. A correspondent, suggests pulling it out with a piece of string. If the lens is mounted in a slanting one, or if you are inclined to one side instead of being quite vertical, it would be more easily removed.

A Painter.—We do not know of any means which will make a person losing both to which the carbonate of soda has been added keep well. An alkaline solution of chloride of gold very soon precipitates, especially when kept in the light.

T. W. W. —Received; many thanks. The matter shall have our early attention.

Received: "Photographic Mosaiacs," 1875; and "Wilson's Lantern Journeys." Several Correspondents in our next.
The Photographic News, January 15, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Return of the Transit of Venus Observers.

Now that we have heard of the success, or otherwise, of most of our Transit of Venus expeditions, and are in daily expectations of hearing the results of the calculations based upon the observations made—whether, that is, we are still about ninety millions of miles from the sun, or whether the distance has been greatly exaggerated, or, else, but barely, very much under-estimated—we repeat, now that the observers have done their work, and handed it over to the calculators to be completed, it is time, we think, to consider how the services rendered by the enterprising scientific men who went out on our behalf are to be acknowledged. There is scarcely any one of those who have gone abroad who has devoted less than three months of his time to the work, being about two hundred days. Probably those who went into Egypt were best off, but these have been away from their home during the most unpleasant season for several months, and have suffered many privations in the cause of science which were far from insignificant. But others were worse off still. Even Lord Lindsay's lot, who went out in his own country, in comparatively comfortable circumstances, is scarcely one to be envied, for sailing about in a tiny vessel among the Indian seas would hardly suit everyone's taste. Then there are those who went to New Zealand; and, less enviable still, the exploring party established on Kerguelen's Land—the Island of Desolation, as it is aptly called—uninhabitable, in the natural world of ships and homes, by the home, by the rocky and dreary icebergs to meet the eye, and with a coast so stormy and inhospitable, that it is a matter of the greatest difficulty to effect a landing at all. Father Perry, one of the professors at Stonyhurst College, and well known as a careful astronomer and skilled mathematician, is in command of the little party of explorers that have cast their lot on this barren island, which is somewhat indefinitely described by sailors as being about two hundred miles to the south and west of the Cape of Good Hope. Being at such a southern point, observations from this station will be of singular importance, and it is to be hoped that the foggy and moist weather, which prevails here for most of the year, will not have prevented the taking of photographic and other records. Of course we shall get them from the ones in the studio, and the longer, about month or two before we obtain any, for a ship must be sent out specially from Cape Town to fetch the little party home, and the stormy and treacherous nature of the ocean near the Antarctic is proverbial. We can never adequately recompense men who thus volunteer on so hazardous a duty; but let us hope that Government and the Royal Society will come forward to do their best, and acknowledge as well as they can the important services rendered. We know it is the rule of the Royal Society to elect but fifteen new fellows every year, and if this number cannot be increased for once, we hope that this year, at any rate, we may see among the new fellows a large number of those who aided most in the recent observations of the Transit of Venus, and thus contributed towards the solution of one of the most important astronomical problems of modern times.

NOTE ON THE CAUSE OF METALLIC SPOTS IN ALUMINIZED PAPER.

BY M. A. DAVANNE.*

Many explanations have already been given of the cause of spots which appear on positive prints, more especially in delicate half-tones and in vignette pictures. To-day I have to call attention to a cause which I have been enabled to follow out for some months, and which is in accordance with the explanations given by Girard and myself some time ago, namely, that the spots are due to metallic particles.

Having to produce a large number of positive prints, I provided myself with a reel of paper which furnished me every day specimens of all kinds and classes of spots, so that ample opportunity was permitted of a thorough observation, which, I believe, has gone no further than myself. These spots I found sometimes isolated, although very numerous in the delicate half-tones and in the skies of my prints—sometimes grouped by chance, like a constellation; sometimes, too, they occupied the same relative position, in one or several straight lines. It was this regular state of things that especially attracted my attention, as it could not have happened by chance; for if the spots are metallic, as I have shown in groups might be attributed to metallic particles themselves spread in the bath, such could not be the case with a series of spots affecting the regular form of a straight line, or curve; and it was necessary, therefore, to look about for some extraneous cause.

In the prints most covered with white spots the albuminized surface of the paper does not present any change whatever. Rarely indeed is this the case. Usually they are in part or wholly black, whence the stain proceeds, from the white halo which produces what we term iron spots; but if you examine the paper by transmitted light with the aid of a magnifier, you will find, as a general rule, the centre of a darker colour, and, turning the print round, you will see a black speck at the back of the sheet. This black metallic spot, or an almost invisible one, is removed by the addition of reduced silver by another metallic particle much finer still, which is attached to the back of the sheet before it is sensitized. The foreign metal reacts upon the salts of silver, either at the period of sensitizing or later on, according to the mode of preparation, and the reaction is shown by a white halo. The quantity of matter is so minute that it is generally visible only in the palest half-tones. How these metallic particles become encrusted on the back of the paper? is now the question to be solved. We can only reply to it by an hypothesis, which, however, is such a logical one, that it will readily obtain belief.

We observe, in the first instance, that these spots generally exist before the prints are mounted upon card-board, which at once relieves the latter from all blame in the matter. They cannot result from manipulations in the studio, for the sheets are left in the workshop for a month and then sent by ship, and all the sheets do not appear injured in the same fashion; and I have tried the papers of two different manufacturers under the same conditions, one of them always giving me spots, and the other none at all; the reason of their appearance has, therefore, nothing to do with the photographer. If we go further back, and pass to the workshop of the albuminizer, we find it impossible to accuse this worthy man either, for the side of the paper that is albuminized is rarely marked with a metallic point; this is always on the back. Moreover, the two papers which we have experimented with were albuminized at the same place, and one only of them proved to be of a spotty character; the other, coming from another manufacturer, was quite free from these imperfections. We cannot, therefore, pronounce otherwise than that the cause of the spots is to be found in the manufacture of the paper itself.

If we push our examination further, we find that these same papers, full of spots on the back, present but very rarely these faults on the face, and much more rarely, apparently, than the best papers of any other foreign manufactory, a circumstance that proves that the paper pulp is prepared with extraordinary care, and that the paper is at least well pressed. The cause of the spots can scarcely exist, therefore, in the pulp itself. It probably arises during the period between the moment that the pulp is made into sheets and the time it is
delivered over to be albumenized. The spots, no doubt, are due to the use of the endless metallic plates that receive the pulp, or to the cylinders that dry the sheets, or those that polish them.

We believe that the last words of this research must be added by the manufacturer, who might be able to give an account of the vexing defects, either by instituting experiments, by examining the most prominent of the paper, which would lead, perhaps, to a recognition of the metal that gives rise to the spots. If it is brass, it comes from the endless metallic plates; if iron, from the cylinders; and if zinc, from the pressing of the material. Or there may be contact, in a manner that I cannot explain, between the back of the paper and metallic particles detached by the frames on which the sheets are placed.

[M. Davanne exhibited to the members of the French Photographic Society some examples of the spots, very much enlarged by means of M. Vau Tenne's reflectoscope, which permits of throwing upon a screen enlargements from opaque objects, such as a carte or cabinet photograph. This invention, which is certainly a very practical affair, has already been described by our Paris Correspondent.—Ed. F. N.]

EXTRACTS FROM A LETTER TO A YOUNG PHOTOGRAPHER.

BY ALEXANDER S. MACKAY.*

MY DEAR FRIEND,—According to promise, I now send you a few notes upon photographic art. You are aware that practically I have no knowledge of photography whatever, but as you have some confidence in my experience in my own business, I shall give you at random whatever occurs to me as having a bearing upon those subjects to which I am at all inclined. I shall therefore say a few words regarding schools of thought. Sir Joshua Reynolds, in his first discourse, truly remarks, "Every seminary of learning may be said to be surrounded with an atmosphere of floating knowledge, where every mind may imbibe somewhat congenial to its own original conceptions."

Let us see then, where this atmosphere may be most freely and advantageously inhaled. To those outside of the pale of art, picture galleries are fast becoming sources of art education; indeed, it is chiefly by such means that a knowledge commensurate with the growing desire for intellectual improvement can adequately be obtained. From the statistical accounts published from time to time, we see how largely those institutions are visited by the public. With, however, what complete catalogue does he know the extent to which many a person may learn, in a short time, of the art of his own and other countries. It is a gentlemanly thing to be able to say something of the painters of other days, both foreign and native, as well as of the celebrities of our own time. In the most of our large cities such places of resort are to be found, and, were they generally open in the evenings, would, no doubt, be largely attended by the more respectable of the working classes. The directors of those places should see to this.

To aspiring photographers there cannot possibly be better schools for acquiring the knowledge of those principles which to a certain extent govern their own art, and as such they should be highly commended.

To the followers of your art in Glasgow, such a school exists in the Corporation Galleries there, which contain many fine works, both in portraiture and landscape. To those of you whose inclinations lie towards landscape art, I should say that the study of such works of acknowledged reputation should evoke something of a spirit of inspiration. What I have often noticed as a defect in photographic landscapes is, their want of unity. They seem to be only sections of scenes. This, I believe, in most cases cannot be avoided, especially in subjects embracing a great extent of country. I have known landscape painters move from point to point—say a distance of thirty yards—to secure some object for the purpose of strengthening their pictures; it might be a mass of rock, or a stout old tree; this, in connection with the manouvering of lights and shadows, is often the means adopted for preserving the unity of their works. To make the trees, the rocks, and horizons blend, make the scene one within themselves. They give abstracts of truth, rather than total truth. This the camera cannot do; but it might at least be placed in relation to objects that would be valuable as foregrounds; and to have the power of balancing a scene with an artistic eye must be an important object, and our best landscapes might be often referred to with a view to obtaining that end. From the most famous galleries, you must allow me to allude to one by Sir Joshua Reynolds, which every photographer should examine as often as possible; it is that of Miss Linley, the mother of R. B. Sheridan. This is the "ceau ideal" of portraiture—perfect repose, superb breadth of light and shadow finely balanced, the background a darkness visible, out which looms the lovely head, composed of the most charming and passionate hues of rosette and purple. Such a picture, to a student of a little capacity, would suggest a photograph that would scarcely be surpassed.

Let me now say, happy should be the photographers who reside in Edinburgh, and who have the privilege of breathing the atmosphere of our National Gallery. We have here a collection of portraits by all the more distinguished masters, such as seldom can be seen, from Sir Anthony Van Dyck down to Sir David Wilkie, over a period of two hundred years. All the approved maxims of art in relation to portraiture are here expressed, from the broadest generalization of effect to that of the most infinitesimal and painstaking detail.

I had occasion, in a former communication, to refer to several of these productions, which, let me say, cannot be looked at too intently. Let me call your attention to two or three I formerly omitted. I would have you to look at the portrait of the late Thomas Duncan, R.S.A., painted by himself, which is perhaps the finest of all this painter's portraits (and he painted many very fine ones), as an embodiment of artistic power. This work has few equals, and it is remarkable for the absence of all meritless colouring; the round, well-developed head floats in an atmosphere of sober brown and grey; in its tone, indeed, it is not unlike a deep, rich, brilliant photograph, and may be looked at again and again with invigorating effect. Let me mention here that simplicity of arrangement and quietness of colour are unfailing sources of grandeur in this branch of art. Let us look at the whole length of Sir John Watson Gordon, by John Graham Gilbert. Here the full ensemble is complete. It is firmly the late President stands! How calm and dignified the expression of the head, which is admirably like the man! How powerful, yet subdued, the colouring! And all characterised by the most powerful finish. It has been remarked by eminent artists that there are few finer portraits, if any, in Europe. I shall only now allude to the dramatic half-length of the late Lord Murray, by Sir J. W. Gordon, which I also wish you to see. If space permit, I could point out many other noble works; but my object in this letter is to send you there to see for yourself, as to a school, where, by a little diligent attention, you cannot fail to be vastly benefited.

In the annual exhibitions of the Glasgow Institute of the Fine Arts, and the Royal Scottish Academy, are to be seen the best works of the present generation of artists, and you would act wisely in paying them occasional visits for the purpose of elevating your taste. In addition to the sources of education above referred to, I may state that there is a growing desire on the part of populous communities to have annual exhibitions of their own, consisting of paintings, sculpture, architecture, articles of

* Read before the Edinburgh Photographic Society.
vertu, and, in some cases, articles of manufacture. To those exhibitions our best artists are invited to contribute. Country noblemen and gentlemen are always willing to take an active part in such movements, and often send a few of their choicest pictures to give tone and character to the display. Let me instance the exhibition recently opened in the Smith Institute in Stirling, which was highly interesting, as being one of what is intended as a series of annual exhibitions. Here, and in the direct by Scotch and English artists, there were many erected by such gentlemen as Sir W. S. Maxwell, Bart., of Keir; Mr. Wilson, of Banknock; Col. Wilson, of Banknockburn, and many others, who have valuable collections, all of a deeply interesting and instructive nature. The enterprising town of Kirkcaldy, too, has already had two considerable exhibitions of highly respectable ability. Inverness and Aberdeen have likewise been bringing together the chefs-d'œuvre of their respective counties, I understand, with very great success. Now, in each of these exhibitions there must have been a good few pictures by the first masters, especially in portraiture. There are very few of our old baronial residences that do not contain many very fine family portraits. Renfrewshire towns, in Aberdeenshire as well as many by Jameson, Reynolds, and even a Vandyke may occasionally be found. Now, what I would wish to impress upon a photographer is the fact that the contemplation and study of such works, if he be at all a susceptible being, would tend to form a basis of good taste. Here are the works of men who have devoted many laborious years to their art, who have travelled through many lands for the purpose of becoming familiar with the masterpieces of other times, and who have not only caught their spirit, but in some instances have snatched a grace beyond them. It is good to have such pictures floating, as it were, in the mind's eye, that, in posing sitters, some regard may be had to pictorial effect. In none of these works will you find anything approaching to whiteness in the hair and hands: these are generally transmutable, of moderate depth, with the heads rising softly out of them. It is a fallacy to suppose that relief can be obtained by striking contrasts: delicate gradations, melting into the deeper shadows, will alone give it. By all means, then, avoid blackness and whiteness, or that feeling of solar action, which too many photographers have, and which are utter abominations to all who are not either perversely blind or obstinately stupid.

(To be continued.)

THE PROGRESSIVE RESULTS OF THE LAST SESSION.

BY JOHN NICOL, Ph.D.*

The photographic annals of 1874 are not difficult to write. The year has not been marked by great advance in any department: no wonderful improvement has been made, either in apparatus or manipulation; and hardly even has there been set up a claim for the introduction of a new process. Although, however, nothing very striking has occurred, there has undoubtedly been a continuous, steady progress. "Upwards and onwards!" has been the motto with which the whole body of workers have had before them, and the result is, a more general diffusion of the knowledge of both theory and practice of the art, and more general production of high-class work. In fact, there is nothing in which the progress is so visible as in the improvement which has taken place in the pictures produced by even the best photographers—a progress of the right kind, as, after all, the whole body of the ultimate object, and the object to which all our operations tend. This desirable object is being brought about mainly, I believe, in consequence of the fact that photographers are year by year putting less dependence on tools and material, and trusting more to the mind that uses them.

Although, however, there have been no particularly striking discoveries or improvements made, experimenters have not been altogether idle, and there are a few items of sufficient interest to profitably occupy our attention for a few minutes. Photography is largely indebted to photographic societies for its present position, and therefore I think the London Photographic Society may fairly be allowed first to claim our attention. During the early part of the year it passed its original charter. Here, an attendance nearly as possible stamped out of existence, not by enemies, but by those on both sides who loved it well. There was no doubt fault on both sides, as there generally is in all serious disputes, and it is a matter of congratulation that the breach has been healed, and that all seem now willing to work harmoniously for the general good. The Society has done good work in the past, and I hold it will have a prosperous and profitable future. I cannot help thinking, however, that a mistake has been made in seeking, by altering the title, to extend its influence beyond its fairly legitimate sphere. The merely calling it "The British Photographic Society" will not help much to make it what the name implies, while it may retard for a time the action of experimenters who are anxious to see the formation of a really national association—something of a federation—that will promote education or influence, without connection with any existing society, but supported by the members of all. I trust the members of the parent, to which all her true children have a filial love, will reconsider this matter, and have no doubt that they will come to see that, in the great city in which they dwell, they have a wide enough field for their operations, and that they will be ready to give their surplus energy in aid of the formation of a really national photographic association.

Colloidion-bromide seems to have passed from the domain of discussion, and taken its place amongst the recognized reliable processes. It has, however, during the year, mainly through the experiments of Mr. Bolton, been vastly improved. Some time ago it was found that by an emulsion free from any soluble salt could be made, and which simply required to be poured on the plate, and dried, to be ready for the camera. Subsequently Captain Fox suggested the addition of oleate of silver, and the process, thus improved, is, in my opinion, the most valuable addition to our knowledge that has been made during the session.

Dr. Draper, I think in 1872, showed us that we were mistaken in supposing that sodium was confined to the violet or blue ray, and during the past year Dr. Vogel has tried to show the conditions under which any of the rays might be made to act on a sensitive film. He found that when the film was stained with (say) a green, that the ray complementary to that, the red of the spectrum, impressed itself; and so in like manner with the other colours. This, like most new things, met with considerable opposition from various quarters, and both Dr. Monckhoven and Mr. Spiller wrote strongly against it, mainly on the always insufficient ground that they could not reproduce the effect. One at least of these clever experimenters has changed his opinion, and I think we have sufficient evidence to warrant the belief that there is something in it. If so, I have no doubt that the discovery is likely to lead to a method of combining colour with our films in such a way as to revolutionise our ideas of reproducing coloured objects.

Printing has, as usual, received considerable attention. Carbon continues to make steady progress, and prints by various methods are being daily produced, quite equal to anything that can be produced by silver printing. Considerable discussion has taken place as to the best means of removing the hypo from the paper, but the end of the matter is, in my opinion, that plenty of washing is the only safe and certain remedy for fading; the mischief causing the bluing of Mr. Dunmore, in the British Journal of Dec. 25th, to the contrary, notwithstanding.

Early in the year there was published a process by M
Willis, Jan., for the production of prints in reduced platinum, a process which would, I believe, give perfectly permanent results. The process is based on the fact that salts of platinum are reduced by oxalate of iron, and is as simple as ordinary silver printing. Why it has not attracted more attention I cannot understand, and am certain it only needs a trial to show its value.

In calling attention to a method of reproducing negatives by means of the dusting-on process, Herr Obernerter has earned the gratitude of all photographers, and its application, in the productions of backgrounds, or for composition printing, suggested by Mr. Werge, is likely to be extremely useful. Photographers are, however, a conservative race, and it may be some time before the process comes into general use; but I have no doubt that by-and-by no good or valuable negatives will ever be risked in the printing frame, but only used to make what may be fairly called an "Obernerter duplicate."

Gelatine has not taken the place that it was expected to do. Several operators succeeded in getting with it both fine and rapid results, but the emulsions were uncertain, and subject to rapid variation. To obviate this, Mr. Kennett hit on the idea of drying it into a pellicle, which needed only to be dipped in water and spread over the plate. He is foolish enough to carry the idea to the Patent Office, hoping, doubtless, to make a good thing thereby. I need hardly say that I am not sorry to hear that he has been so far disappointed, as if everybody who devises some trifling improvement in manipulation or material were to tie up his little dodge with patent tape, real progress would soon cease. The pellicle has not been taken, but is a good thing for all that, and I heartily recommend those interested in the matter to try it, assuring them that they are quite at liberty to make the pellicle for themselves, Mr. Kennett's patent notwithstanding.

This paper would hardly be complete without some notice of the work actually done as a result of processes and material. Time, however, will only permit of one single item; the Chinese "China," a bold effort successfully carried out in the production of the largest and best single work that has as yet been attempted. Most of the members of the Edinburgh Photographic Society have had an opportunity of seeing specimens of Mr. Thomson's work at the popular meeting, for which he was kind enough to give the pictures, and I am sure they rejoiced as fully as I did when they heard that the Queen had expressed her admiration of his work by giving him a gold medal.

Little that is new in tools has been introduced. The symmetrical lenses of Ross and Co. have met with much favour. They are, no doubt, very good, but I think their popularity is more a result of their small size, and the fact that they all fit into one flange. This is, undoubtedly, a move in the right direction, and will, ceteris paribus, give them a preference.

The only other thing of mark is Weston's Rotary Burnisher, and it really is astonishing how almost universal the use of this has become. Notwithstanding its absurdly high price, I have hardly visited a studio, in connection with which it was not to be found; and most of you know that down in the matter part of the year I have gone over a good deal of ground, and in every case the instrument was giving entire satisfaction. I have seen quite as good a surface produced in the ordinary rolling press with hot plates; but the simplicity of the burnisher, and the ease with which it can be wrought, has enabled it to almost supersede all other presses, at least for small work.

The year must bring this résumé to a close. From what has been said, it will be evident, that although no great thing has been accomplished, the year has not been barren of good results. A quiet, steady progress has been maintained, and there is abundant evidence that our much loved art is not on the wane; nay, that it is only step by step approaching that maturity which shall be of great things, and that all who either directly or indirectly lend a helping hand in carrying on the good work, have much to congratulate themselves on the present position and future prospects of photography.

NITRATE OF ALUMINA IN THE PRINTING BATH.

Mr. F. M. Spencer, writing in "Anthony's Bulletin," speaks in very high terms of the advantages of nitrate of alumina in the printing bath; but as the alumina nitrate is not in use in commerce, we think it necessary to give his experience and formula in its manufacture. He says:

"Dissolve pure white marble, or white chalk, in nitric acid to saturation; remove the excess of marble or chalk, whichever is used, and to the nitrate of lime thus formed add carefully of a saturated solution of alum until sulphate of lime be no longer precipitated; filter or carefully decant the supernatant fluid, and evaporate it to dryness, and you have, according to Mr. Anthony, a double nitrate of alumina and potass. It is a highly deliquescent salt of needle-like crystals, and requires a high temperature to produce crystallization in any reasonable length of time, being the most troublesome part of the operation. It must also be kept tightly corked in glass, to keep it from deliquescence by absorption of water from the atmosphere.

To make up a printing bath, proceed as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled, or ice-water</td>
<td>12 ounces</td>
</tr>
<tr>
<td>Silver nitrate</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Alumina</td>
<td>1-8 to 1-4</td>
</tr>
</tbody>
</table>

"If the salts are pure, there should be no precipitate or milkiness when they are entirely dissolved. The solution will be an acid reaction. You must add sulphuric acid, hydrochloric acid, soda, potass, or ammonia, but in the following manner:

Dissolve a stick of caustic potass (in water) about three inches in length, and add carefully of any plain silver solution until a brown oxide of silver is no longer precipitated; proceed to wash this precipitate in many changes of water, lastly distilled or ice-water, until it passes off quite clear. Add of this oxide of silver to the silver bath in excess, and agitate occasionally for an hour or so; now add of liquor ammonia, a drop at a time, until a small amount of permanent precipitate of alumina is formed. This precipitate, together with the excess or oxide of silver, must be kept in the bottle with the silver bath when not in use. By exposing the latter to the light at all times when not in use, the bath is always ready for business. I would remark that the proportion of nitrate of alumina should be less for a heavy or double albumenized paper, as an excess causes the print to crack; but do not perpetrate the first blunder by using double albumenized papers. Float from one and a-half to two and a-half minutes, dry quickly, and fume as usual. Print but a shade darker than you desire the finished print, as little is lost in finishing, but must be printed before toning, as usual. Prepare a toning bath as follows:—Water, as much as required for toning once; stock gold solution, enough to tone well. Neutralize with an alum solution made by redissolving a precipitate of alum in sal soda by an excess of the soda, which should be always on hand, a pint being enough for several months. The bath should be mixed in a bottle, adding piece of litmus to the water, then the gold, and agitate; next add of the soda-alum solution until the blue colour is entirely restored after agitation, and your toning bath is ready for immediate use. Be very careful not to over-tone, and after toning return the bath to a bottle kept for that purpose only; for you have a perpetual toning bath, that only needs to be recharged, that with gold as above, is needed for use from time to time. Take care to collect the precipitate that deposits between times in a separate bottle, to be redissolved in aqua regia when the quantity of the precipitate becomes large enough to pay."
January 15, 1875.]

THE PHOTOGRAPHIC NEWS.

I make my stock gold by dissolving a five-dollar gold coin, or its equivalent in English or French coin if I can get it, in C. P. nitric acid one part, and C. P. muriatic acid three parts; six drachms of nitric and eighteen of the muriatic being sufficient for the above quantity, and using a gentle heat to hurry the solution. A residue of chloride of silver (alloy) will remain as a precipitate, which does no harm; evaporate to dryness, being careful to lower the heat at the last; redissolve the dry mass in a little water and again evaporate, and redissolve in thirty-two ounces of water; add, drop by drop, of a saturated solution of bicarbonate of soda until the blue-green precipitate of copper (alloy) is all thrown down; filter out the precipitates, and to the solution add—

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common salt</td>
<td>1 ounce</td>
</tr>
<tr>
<td>C. P. muriatic acid</td>
<td>½ drachm</td>
</tr>
</tbody>
</table>

The benefits of this printing formula I claim to be, in part, at least, as follows:—1st. A silver bath that does not easily become discoloured. 2nd. The preservation of the surface of the albumen paper, so that deep or much over-printing is avoided. 3rd. The albumen surface does not become soft or partly soluble in toning, involving little or no loss of detail. 4th. That the prints tone very easily with the minimum of gold. 5th. That the tones are deep and rich. 6th. The harmony of the several parts of the finished print, the economy of using a few prints. *I would remark, before closing, that the fixing and washing is performed as usual, and that should the printing bath become permanently discoloured, boil it, but do not attempt to precipitate the organic matter by salts or alkalies. Remember that all forms of soda, potash, or ammonia, except nitrates, precipitate the albumin in the bath, and it will not filter out. The above formula is the result of years of experiment applied to daily practice; and for many of the ideas I am under many obligations to Mr. Anthony. It has cost me both money and hard study; but I have got my pay back in knowledge, and I am saving the cost in practice. To the profits my fellow-photographers are most welcome, if they can succeed with it.*

ENAMELLED CAMEO PHOTOGRAPHS.*

The cameo portrait is a vignett bust stamped up from a dark ground by means of a press, and possessing a glossy surface. The most difficult part of the business is the preparation of this brilliant surface; but it is by reason of this brilliancy that the pictures are so much sought after.

The most practical way of producing the finish desired is by means of the gelatining process I will describe. Another plan is to create the requisite amount of polish with a solution of shellac, but this method is seldom employed. By running the prints through a hot press the same glossy appearance may be imparted to them, and a rolling press recently devised by M. Muth fulfils the object in a simple manner. As, however, the price of the machine is rather high (about 150 marks or shillings), the usual plan of employing gelatine to render the portraits glossy will still remain popular.

The manipulations are very simple. Upon the negative is placed a suitable mask of black paper, with an oval opening of suitable size, and upon the reverse side of the negative is placed, in the usual manner, a vignetting glass, which must be much smaller than the opening of the mask. When a print has been secured, it is covered over with an oval of paper and the white margin of the print, which before was covered with the mask, is allowed to become deeply tinted.

The picture is then gelatined and further put into a press to be stamped up; but before this last operation is performed, the back is moistened with a little cold water and allowed to remain for about five minutes; unless this precautionary measure is taken the card easily becomes torn or twisted.

The glazing is managed as follows:—One part gelatine is dissolved in thirteen parts of boiling water, and this solution is then passed through a piece of clean flannel. A mixture is then compounded of:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>3 parts</td>
</tr>
<tr>
<td>Water</td>
<td>4 parts</td>
</tr>
<tr>
<td>Gelatine solution (above)</td>
<td>1 part</td>
</tr>
</tbody>
</table>

This is filtered in the same way through clean flannel, and both liquids are put away in well-corked bottles. To proceed to work, some well-cleaned and thoroughly even and perfect glass plates are selected, and these are coated with a thin layer of the glazing solution. The plate is then hung dry in a spot sheltered from the dust. When perfectly dry, the ordinary gelatine solution is warmed in a water oven, and a sufficient quantity to steep the photographs is put into a warmed porcelain dish. At the same time the bottle containing the "alcohol-gelatine" is put into hot water, to render it fluid and to clarify it. In very hot weather, be it known, the gelatine solution remains fluid, but then assumes a milky turbid character. When it has been clarified, the collodion plate is covered with the mixture, the superfluous liquid being allowed to run back into the bottle, and the plate is then put on one side for two or three minutes. Then the plate is coated again, but this time with the ordinary gelatine, and then the surface is thoroughly drained by laying it on the plate drying bench.

During this time the print itself is dipped into the gelatine solution contained in the porcelain dish, care being taken in the operation to prevent the formation of air-bubbles. After the plate has been coated a second time with gelatine, the print is taken out of its bath, laid down carefully by the bottom margin, and then gently lowered, so that the whole surface comes into contact. In this way the gelatine is forced upwards as the print is lowered, and then may be easily removed with the thumb-nail. When, however, bubbles are formed in the middle or at the sides of the picture, their removal does not involve the least difficulty. When all the bubbles have been destroyed the picture is pressed slightly with the fingers and placed to dry.

The mounting of the pictures is done in this way. After the picture has been dried somewhat on the collodion plate—that is to say, after a period of three-quarters of an hour, or double that time—it is coated lightly with good fresh paste, and upon it is laid a card, which is also faced with the same material. The cards should be soaked in water for half-an-hour before being used, and pressed in the folds of a towel just prior to the starch being applied. The paste is laid upon the print and finished off with the hand, and afterwards a glass plate is put upon it to press it down and keep it in contact, a stone or weight of some kind giving more pressure. In this position the card remains for some twelve to eighteen hours in order to dry spontaneously. When perfectly dry the blade of a penknife is pushed underneath the picture, and it is lifted from the glass.

The photograph should leave the glass plate very readily; if this is not the case, either the gelatine solution was too thin, or the mount and picture are not sufficiently dry.

THE Imitation of Lace on Silk by Photography.—The *Scientific American* says:—"A new and beautiful application of photography has lately appeared in England, by the aid of which any lace design can be transferred to silk, so that the latter material appears to be covered with the delicate and costly fabric. The lace to be copied is secured in a frame in contact with sensitive albumenized paper, and exposed to the light until a very deep impression is obtained. This is then fixed, and the paper, washed and dried, forms a perfect negative. Another piece of paper is then sensitized with bichromate of potash and gelatine and exposed under the former. Inking with India ink, the negative is then placed in water and lightly rubbed with a sponge. This throws out every detail of the inked spaces, the rest remaining white or free from ink. The impression is lastly transferred to a lithographic stone, and thence printed upon the silk by the usual process.

* Houët's Repertorium der Praktischen Photographie.
The Photographic News.

CONTENTS.

Photography In and Out of the Studio

Notes on the Occurrence of Metallic Spots in Albumenized Paper.

By M. A. Davy.

25

Extracts from a Letter to a Young Photographer. By Alex. S. Mackay.

26

The Progressive Results of the Past Season. By J. Nicol, Ph.D.

27

Nitrate of Alumina in the Printing Bath.

28

Black and white Photographs.

29

New Aims for the Photographic Society.

30

A New Photographic Light.

31

Mackintosh's New Dye-clipper.

32

How to Unravel Negatives. By Fritz Haugst.

33

Correspondence—Finding Substances of Ammonium Salts.

34

Hypo-Secre. Producing Enlargements—Removing Stip during Exposure.

35

36

Talk in the Studio.

37

To Correspondents.

38

NEW AIMS FOR THE PHOTOGRAPHIC SOCIETY.

The paper on the origin, aims, and achievements of the Photographic Society, with suggestions for its further development, read before the Society on Tuesday evening, by Mr. R. D. Nickson, addressed itself to all photographers, whether hitherto connected with, or concerned about the doings of, the Society, or not. The chief purport of the paper is to make a bold claim for a higher position—to demand for photography Government recognition and aid, not simply as a favour, but as a legitimate guardon for the services the art has already rendered to mankind.

Tracing the history of the Society from its origin in January, 1853, with Sir Charles Eastlake, the President of the Royal Academy, as the President also of the new Society, devoted to the youngest born of the arts, down to the present day, he finally suggested certain steps for its further development. These are, first, that a Royal charter shall be obtained for the Society, that it may "thus possess the power of granting diplomas for merit;" second, that the claim of the art to Government aid in the form of a grant and preference should be preferred; and, third, that a system of appointing committees for the purpose of making special investigations be adopted.

There can be little doubt that each of the ends proposed, so far as it is tangible and possible, is desirable. The latter part of the address has been specially interesting, at any time when it may choose, without extraneous aid. The two former propositions, we are compelled with regret to admit, are, besides being somewhat vague, at present ill-timed. The Society has scarcely yet thoroughly recovered from a state of disarray which, to say the least, did not increase its prestige in the scientific world, and any application for grants of money from public funds might possibly be met with a suggestion as to the wisdom of the Society acquiring perfect harmony within itself before asking for the control of public money.

In glancing back at the history of the past, it does seem a little surprising that no effort was made to give the Society status by obtaining a Royal Charter. It began modestly enough, and for many years retained its success. In its early years, there was a feeling on the part of many, and for many years retained its success. Her Majesty the Queen and her Royal Consort were its patrons; Sir Charles Eastlake, Sir William Newton, and the Chief Baron of England were in succession its first three President; many of the nobility were amongst its members, and men highly distinguished in science and art were on its council. Its funds were large, and all its prospects auspicious. Photography became more essentially a branch of commerce, it became more fashionable, and the merely dilettante members of the Society fell away. Gradually, also, the Society became.

impeccuous, and got finally into monetary difficulties. A variety of causes tended to bring about this result. The first serious fiscal error consisted in taking permanent premises in Coventry Street, at a cost the Society was not able to maintain. This error was not likely to be repeated; but there were a number of other sources of loss, the memory of which should not be ignored, as they are still possible sources of danger. A society with small subscription, like that of the Photographic Society, may very easily get into debt. One source of loss to the Society which aided in bringing about its difficulties was the" Petition" upon which exhibit had been previously amended to nearly a hundred pounds. There is some danger even now in the same direction. The first two or three of the exhibitions revived a few years ago did not tax the funds of the Society at all, or very insignificantly; whilst the last exhibition has, we believe, cost the Society more than any of the new series of exhibitions. The losses of the Society were a heavy item of cost, and were abandoned on that score. Mr. Hooper, we notice, practically suggests their reumption. At present, and for many years, the Society has not held any soirees, the informal re-union of members and their friends at the opening of the exhibition being specially arranged to avoid the character of the soirees proper, which would necessarily involve a larger room, extended arrangements, and increased cost. But the Society has appointed scientific committees for investigating special subjects, and a considerable cost was incurred to the Society by their labours. In the committee proposed by Mr. Hooper, especial care must be taken to avoid a repetition of the same error. There were some other sources of loss to which we need not further advert now.

To return to the charter. It is not under the energy and spirit of Mr. Glaisher and the council who assisted him, the Society worked through its difficulties, discharged its debts, and acquired a state of honourable solvency again. But one source of regret accompanies the recollection of the effort then made, and it is one, we think, which must be felt by every member of the Society: it is, that circumstances should have arisen to compel Mr. Glaisher to retire from the presidency just at the period when the effort, for which he had so strenuously laboured, the absolute freedom from debt of the Society, had been accomplished, and the position of the President promised to become one of comparative comfort and honour. Should it please the members by their votes to recall him this year to office, there is no doubt that his friends and admirers would welcome him probably none would do so with more complacency. For an estimable and amiable gentleman who has during the provisional government of the last six months filled his office.

To return for a moment to the propositions of Mr. Hooper's paper: the first objection to the plan of obtaining a charter is that of cost. The precise amount necessary we cannot with certainty state, but we believe it would involve an expenditure of a few hundred pounds, which the Society does not possess; and it becomes a serious question, if it had funds in hand, whether they would be well expended in such a manner. The chief aim seems to be to enable the Society to grant honours, or, as Mr. Hooper phrases it, "diplomas." There appears to be some vagueness in Mr. Hooper's ideas on this part of the subject. The possession of a charter of incorporation would involve such powers as those to which he refers. It would involve no such thing as to grant diplomas. Diplomas are granted by various colleges to those who have gone through a prescribed course of study, and passed a prescribed examination; but the various chartered learned societies—such as the Royal Society, the Society of Antiquaries, the Chemical Society—possess no such powers, and exercise no such functions. The idea of the kind of diploma which has hitherto been custom has obtained of indicating a given proclivity and a certain culture by the use of the honorary letters indi-
cating such fellowship. To render such a plan admissible would render necessary some change in the constitution of the Photographic Society. At present any reputable gentleman interested in photography, but without possessing any knowledge of it, is eligible as a member of the Society; but in societies where admission involves a fellowship, some guarantee of qualification and fitness is generally imperative, and the honour would be valueless without it. The suggestion of a charter, the granting of any of the a certificate of merit, or "diploma," could at any time only follow a course of study and due examination, and the possession of a charter is not necessary to enable the Society to adopt such a course if it see prudent.

In regard to grants of money, there can be no doubt that the Government is indebted in various ways to photography for increased efficiency and decreased cost in various departments; but it might be asked, what special claim the Photographic Society had to represent photography in asking for money? Grants of money to learned societies for general purposes are not commonly made by the English Government. Assuming that the plan of appointing committees to undertake some especial branch of research for the prosecution of which money might be most appropriately employed, is not improperly looked for, and might possibly be received through a regularly organized channel. Mr. Hooper quotes a passage in which allusion is made to the yearly grant made by the Government to the Royal Society. There is some slight misapprehension about this. There is a yearly grant of one thousand pounds made by the Government to aid in the administration of the Royal Society, not for its own purposes, but for the furtherance of science in various ways. The amount is apportioned by the Royal Society to such purposes as may best promote scientific progress, and possibly if a committee of the Photographic Society could make good its claims, it might receive some share of such a fund. Money grants in any other form from Government sources are generally scarce. It is very doubtful if the usual premises for the meetings of the Society will be seen much more regularly than at present. Many of the learned societies have already free quarters at Burlington House, and the Photographic Society has, we think, a good claim. The late Chief Baron, whilst president, expressed a hope at one time that he would shortly succeed in securing such a boon, but his death intervened, and his successor has not also hoped for success in a similar effort. Unfortunately, personal influence is necessary, as well as a just claim, in such matters, and at present, so far as we know, the Society lacks such influence in its representatives.

With the aim and spirit of Mr. Hooper's paper it is impossible not to sympathize warmly, and we cordially concur in many of his remarks. The only question which arises is, whether he does not aim at too much, and at a wrong time, to secure a success.

A NEW PHOTOGRAPHIC LIGHT.

An artificial light, new in its proposed application, which it is probable may be found useful for photographic pur-

poses, was exhibited at the meeting of the Photographic Society on Tuesday evening last. Mr. Spiller's object had been to devise a light as rich in actinic rays as possible, involving less trouble, cost, and risk than attended the various artificial lights which had hitherto been proposed and applied in photography. The electric light and the oxyhydrogen are cumbersome and costly; incandescent mag-
nesium is costly, and the dense fumes emitted are inconvenient; the recently proposed lamp to be supplied with nitric oxide and phosphide of carbon is attended with risk; and some others have each specific inconveniences. The light proposed by Mr. Spiller is derived from nitrate of potash and sulphur. When nitrate of potash is submitted in a capsule or flask to the heat of a spirit flame, somewhat beyond the point of fusion, and a succession of small pieces of sulphur introduced into the fused nitre, it bursts into a brilliant white flame of dazzling intensity, resembling or exceeding that of phosphorus in oxygen. One part of sulphur to three, or a little more, of dry salt-
petre is consumed in the process. Only half the normal amount of sulphurous acid evolved in the combus-
tion is given off in fumes, the remainder being held in the residue, and there are no solid particles given off in the fumes. The mere cost of the material is comparatively small, that of the sulphur and nitrate of potash necessary for maintaining a very intense light for ten minutes being about one halfpenny; but the wear and tear of apparatus in producing a flame of intense heat remain to be esti-

mated. The mode of maintaining a constant light, and the best means of making it practically available in photo-

graphy, must also remain matter for further experiment.

MONCHKOVEN'S NEW DEVELOPER.

Dr. Schnaux, of Jena, has analysed the new iron de-

veloper of Dr. Van Monchkoven, which, that gentleman states, is composed of water, glacial acetic acid, and pro-

tosulphate of iron, heated for some time to 100° Cent. Dr. Schnaux makes the following report:-

The dark brown color of the liquid at once proved the presence of acetate of iron. The decomposition of a solution of this salt takes place, however, at a tempera-

ture of 50° Cent., with the separation of hydrated oxide of iron and development of acetic acid fumes. The fluid filtered from the developer appears, when all oxide salts have been decomposed, no more of a light green color, signifying a freshly prepared solution of iron from iron oxide. It behaves differently to the latter, and, after being separated again, another development of acetic acid takes place, together with a separation of oxide of iron, the latter being of a much darker kind than formerly. All this points not only to the presence of acetate of oxide of iron, but also to that of ferrous acetate. That the latter could not have been produced by the lengthened action of the glacial acetic acid upon the sulphate of iron is clear to any chemist, for the far stronger sulphuric acid will not allow itself to be separated from the ferrous oxide, the presence of a base being necessary to such a result. In a much shorter and more successful manner could the double decomposition bring about the formation of acetate of ferrous oxide, namely, either by the addition of acetate of ferrous molybdate, in which case the iron would have separated with the base as an insoluble salt, and been removed by filtration. Formulas for preparation of acetate of iron are given in many editions of the Year-Book of Photography.

An examination of the crystals separated from the sulphate of iron proved that no sugary sulphate nor iron ammoman compound was present. On the other hand, on heating the dry residue which remained after evaporation of a sample of the developer with caustic potash, strong evolution of ammonia took place. The presence of a compound containing nitrogen—not in the form of am-

monia—was therefore proved. In seeking for this material, a large series of experiments were instituted (which I will not here describe) for the purpose of separating as well as possible all the iron from the solu-

tion without introducing at the same time foreign bodies in injurious quantities.

Of the nitrogenous bodies which might be used in a developer may be cited morphine, albumen, and gelatine. Albumen, if present, would have been separated during the process of boiling, and for this reason there was no necessity for looking for it. Moreover, albumen added to the solution only separated sulphate of iron. No trace of morphine could be detected in the alcoholic residue. On the other hand, the aqueous solution, after oxidation and precipitation of all the iron, gave a strong reaction on
the addition of tannic acid. This produced a strong, tough, and yellowish-white precipitate, which, nevertheless, was separated in the perfectly neutral solution, so that, on the addition of a solution of tannin, it was necessary to put in either a trace of ammonia or of some mineral acid, such as hydrochloric or nitric acid. This tannin precipitate, when filtered and washed, proved, when heated with potash, to contain undoubtedly a quantity of nitrogen. It may be concluded, therefore, that glue or gelatine is contained in the developer in question. At any rate, a body is present that contains nitrogen.

HOW TO UNVARNISH NEGATIVES.

BY FRITZ HAUKER.†

It sometimes happens that a negative, after it has been finished and varnished, appears too thin or thick for printing purposes. To improve such a cliché, it is best to remove the film of varnish, in the first place, and then to treat it again with a solution of one kind or another, to bring about any change in the character of the silver image that may appear desirable. The most certain and simple method of proceeding, I believe to be the following:

The negative in question is in the first instance moistened with alcohol, by pouring this over the varnished surface two or three times, so that the latter becomes thoroughly softened, and then the negative is immersed in a sufficiently large bath filled with a solution of ammonia. The cliché is dipped into the liquid and lifted in and out with a hook until all signs of greasiness have disappeared from the surface. When this happens the negative is taken out of the bath altogether, and washed carefully with water.

It is then quite free from varnish, and the film may be strengthened or weakened according to circumstances.

If the film is to be intensified, then this may be done either by means of iodine, pyrogallie acid, or bichloride of mercury, as may be deemed best. To weaken the film, a cyanide of potassium solution, and one of bichloride of mercury, may be made use of. You proceed by pouring over a plate, in the first place, a weak solution of mercury (say in the proportion of one part of the mercury salt to twenty parts of water), and this is allowed to act upon the image until it has assumed a slaty grey colour. Then the plate is carefully rinsed with water several times, and a strong cyanide of potassium solution poured over it. If the cliché is not sufficiently weakened by one operation, it may be repeated a second or third time in exactly the same manner, without any fear being entertained for the image.

FIXING SULPHOCYANIDE OF AMMONIUM. V. HYPO.

Sir,—In confirmation of Mr. Durand's experience, in your current number, I may state that I have in my possession some prints toned and fixed with sulphocyanide of ammonium which, hung upon a damp wall, and constantly exposed to light, are unchanged after twelve years of existence; whereas other prints, fixed with hypo at the same period as the above, have been (of course incurably) afflicted with the jaundice within a year after their removal from the washing trough.

I ought, however, to add, that after (for an amateur) a considerable experience of sulphocyanide of ammonium, I cannot claim inventive success from its use, and I have even known that a batch of prints toned and fixed in the way quite equally—that some appear indestructible after years' wear of a year, while others in a short time have fallen into "the sere and yellow leaf," young in years, but old in affliction—"I am, sir, your obedient servant.

CORNHILL, 8th January.

H. J. C. ANDREWS.

SECRET PROCESSES.

Sir,—As the question of secret processes is now before your readers, I would like to make a few remarks on the subject.

I would suggest to the profession and to amateurs, before entertaining any secret process that may be advertised, to refer back to the journals, and see what has been said by correspondants on the subject that has been advertised as a new and secret process, and give what has been said a fair trial before buying a secret process; and if, after a fair trial, they fail, I would then recommend them to apply to the process-maker, and if, after paying the fee, they find out that it has been published before, let them be contented.

I have heard more than one person complain that a process sold as new for making enlargements turned out to be almost as old as the original collodio-albumen process itself, and they felt annoyed that they had paid for what had been published years before. This was no fault of the vendor. They should have looked into matters, and given what had been published a fair trial before they had parted with their money. The vendor in question seems to have been the first to apply the slightly modified collodio-albumen process to the purpose of making transparencies for enlarged negatives, and, having been the first to exhibit pictures done by that method. Although the modified collodio-albumen process had been used for the purpose of making transparencies for other purposes years before, it does not seem to have been applied for the purpose of enlargements until brought out by that gentleman referred to for that purpose as a secret process.

As the treatment of the nitrate bath is known to attract the attention of all photographers, I would like to invite all those who feel disposed (and I believe there are many of that class) to give their experience on the best method of preventing stains and pinholes in the negative, without boiling or sunning, as to avoid these appear to be a point that Mr. Edwards, in his recent announcement, seems so desirous of avoiding. In that I agree with him, and I believe that boiling in alcohol is invariably beneficial, as it is never certain in its working after.

I am one of those lucky fellows who have not been troubled with stains or pinholes in their negatives for many years.

Mr. Bingham told me—"I think as far back as 1857—how to avoid stains and pinholes, and I havenever been troubled with them since. Therefore nothing now in the method it has been published over and over again. No boiling or sunning is required. I am almost ashamed to state the method again, as I have said, it has been so often published. However, as I have invited others to give their experience in avoiding stains and pinholes in the negatives, I will give mine. We will suppose a bath has been made..."
Those using this method will never require to buy a secret process. It will be seen that I am not speaking from a few weeks' experience, but from eighteen to twenty years, and the method has never failed. -I am, sir, yours respectfully,

George Willis.

Dear Sir,—I do not often trouble you with a letter, but I wish now to endorse Mr. Edwards's suggestion in your last issue, that a small committee to report upon new processes would be a great acquisition to practical photographers, and to the busy photographer especially. It has long been a favourite idea of mine, and it has often occurred to me, how much the value of your paper would be, if you could see your way clear to give us an impartial opinion of some of the secret processes in the market, as well as the result in your own hands, of many of the recent claimants for favour of dry plate and other formulae. What a world of useless individual experimenting would be saved by one efficient person doing the work once and for all!

Of course, you would have to look the fact in the face, but if your opinion were adverse, your publisher might scarcely reckon upon a full page advertisement afterwards; but for my own part, I should be glad to double my subscription to assist in averting the fearful consequences of such a calamity.

I have no objection whatever to pay for the advantage of additional knowledge, if that knowledge be actually of interest; but the point about secret processes we want to know—how much reality, and how much humbug for the money; and it is this that should be subjected to the perfectly fair and candid criticism of two, three, or four gentlemen whose names would place them above suspicion, and who would not be afraid to speak out; and amongst them I would suggest that the editors of the two journals should find a place. Funds for the purpose of experiment, &c., I think would soon be forthcoming, and I hail Mr. Edwards's suggestion as an eminently practical one, and one that, carried out, would enhance the value of the journals indefinitely. I remain, dear sir, yours truly,

B. W. Parsons.

[We give insertion to Mr. Preston's very candid expression of opinion, and fully agree with him as to the advantages and comfort to purchasers to have some authoritative assurance in regard to purchasers. But a little reflection may make us see that the responsibility involved is one that no individual ought to be expected to undertake, and which no individual could possibly satisfactorily discharge. We have said repeatedly that, in every case of which we have certain knowledge, secret processes offered for sale are processes which have, in the main, been already published, and the advantage obtained by purchase consists simply in being saved from that endless experimenting which our correspondent deprecates. The process-seller has probably undertaken that, and sells the best, or it may be a combination of two or three of them; and purchasers generally buy on seeing results. The secret process which, when purchased, may prove a boon to one photographer who reads little, and give him the highest satisfaction, will disappoint another, who complains: "Oh, I have seen that in the journals!" He has probably seen it, but has not tried it; or he has tried it without sufficient care and patience, and feels not only mortified that he has paid money for it, but that some one else has achieved the success which he might have had. The purchase of secret processes is very similar to the purchase of lottery tickets, and those only who are prepared for blanks as well as prizes should invest therein. We doubt very much whether we could find time to investigate such matters and take the responsibility of endorsing them; but it is certainly not the business of the Editor of a journal. His duty is to give the fullest information he can obtain, but certainly not to accept the responsibility of pronouncing ex cathedra upon such matters. The loss of advertisements to which our correspondent refers on the one hand, would be a small matter to the amount of obstruation the Editor might expect if he endorsed as worthy a process with which some purchaser was unable to succeed.—Ed.]

PRODUCING ENLARGEMENTS.

Sir,—Notwithstanding the great strides made during the last few years by parties who have made photographic enlargement their study, I think it will be admitted that there is still wanting the most important process by which small photographers who have scarcely any demand for large finished pictures might supply their sitters with pictures of a size suitable for framing. I fully admit that for those who can obtain orders for such work, it is a good (perhaps the best) plan to send it to be done to some house where they can rely upon having it well executed at a moderate price; but there are many who, like myself, only at very rare intervals receive orders for such work, but who might add considerably to their income had they the means of making themselves a good plain enlargement from a carte-de-viete negative that is much liked to (say) whole plates, or ten by eight, or, in some cases, even to cabinet size. I myself could not afford to send such work away to be done, as the probability is that if it was done it should not prove (without the giving of an order), it would not then prove a remunerative proceeding; while if it could be done by the photographer himself, he would, in the event of his picture not being purchased, only lose his own time and materials.

As to the means by which this object can be attained, I am, as a reader of the News, quite aware that some sort of system has to be produced, by means of the wet collodion process, an acceptable plain enlargement. I have tried it with great care, and must say that I have not succeeded in doing so. Others are advocates of the albumen process; and here, again, I have not succeeded to my expectations, although I think I brought to the work some degree of patience and perseverance. I do not stand alone here, for I know those who paid a good price for the process when introduced, but who have thrown it on one side on account of its difficulties. I think its warmest advocates will admit that it is quite an undertaking to prepare a batch of plates, and that they do not leave their ordinary work with any great avidity to commence the task.

With the carbon process I have no experience, and should be glad if you or any one of your readers would give me any advice. I am always ready to give his experiences for the benefit of others, would be good enough to give information as to the production of carbon transparencies, as I see by the News that he is working the Lamberttype process. I am, sir,

A Provincial Photgrapher.

REMOVING STOP DURING EXPOSURE.

Dear Sir,—May I ask space for a few words as regarding removing the stop during the exposure which I read in the News a short time ago, and have found it a great boon. I took a view the other day, which was rather dull here, with a rapid rectilinear lens, and gave it eight seconds, taking out the stop No. 3 at four seconds; developed, and found it exposed quite enough. I tried the view without taking out the stop, and gave sixteen seconds with the same lens, and found it under-exposed. I have also found it a great boon in taking portraits. Apologising for trespassing on your valuable space,—I am, dear sir, yours truly,

Graffen Underwood, Kettering.

C. R. C. Vernon.

Proceedings of Societies.

Photographic Society of Great Britain.

The usual monthly meeting of this Society was held in the Architectural Gallery, Conduit Street, on the evening of Tuesday, the
The Chairman briefly called attention to the steps necessary for the election of officers. All the officers would on this occasion retire, and would all be eligible for re-election; and their names would therefore, in accordance with the rule, be printed on the ballot papers. Every member was at liberty to nominate other candidates, but their nominations must be sent in to the Secretary before that day week. Auditors and scrutineers having been duly appointed,

Mr. Spiller asked Dr. Mann to occupy the chair for a few minutes, as he wished to exhibit to the members a new light reflecting power. Mr. Spiller proceeded to demonstrate and produce a light of remarkable purity and intensity. He also exhibited some fine transparencies printed in four seconds, the plate being held at a distance of one foot from the light.

A vote of thanks having been passed, and an intimation made by Dr. Mann that a slight modification of the rule relating to the certificates of members would be proposed at the annual meeting in the next session, Mr. Frew assumed the chair.

Mr. Hooper read a paper on the "Origin, Aim, and Achievements of the Photographic Society, with Suggestions for its Further Development," which will appear in our next (see Leader).

The Chairman said the paper was full of suggestion. Many of the ordinary members considered that it had been written at different times before—the question of a charter, for instance—but as it would involve a serious cost—how much he was uncertain—

Mr. Davenport: About £400.

The Chairman added, they were not rich enough to attempt it, and any resolution on the subject would be, he feared, premature. Then as to a grant of house accommodation: attempts had before been made to secure rooms in Burlington House, but, unfortunately, all the space had already been appropriated. Then as to the question of Chiswick: in a profession like medicine, where health and life were entrusted to a professional man, it was necessary that the public should have such a guarantee of fitness as the diploma of a college and properly constituted body of authorities could give; but it was not customary in other professions, and he scarcely saw its applicability to photography. However, the questions were open for further consideration and discussion.

Mr. Davenport corrected some errors of date in the paper. Referring to the history of the Society, he said that circumstances had changed much during the years which had passed. At the time the Society originated, photography was not recognized as a science; now it was rather an industry. The Society at first was at no charge; its quarters were at the Society of Arts; it had an honorary secretary and a remunerative journal. It was not until the Society grew proud, and insisted on separating itself from the Society of Arts, that its responsibilities and difficulties began. Then began also the struggle between commerce and science, commercial men striving to ignore the scientific claims. Science had, however, done more for photography than ever photography had done for science.

The Secretary (Mr. Friswell) pointed out some errors in relation to photography and astronomy. The first solar eclipse in which photography took part was in 1860, when an expedition under Mr. Warren de la Rue photographed the eclipse. In relation to which Mr. Hooper read a paper by Mr. Lockyer and Col. Tennant, there was some confusion in the paper. The expedition to observe that eclipse under Mr. Lockyer, in which he himself had the honour to take part, had no photographer attached, but Lord Lindsay had undertaken some photography, Col. Tennant, being in India, had also made some photographic observations.

Mr. Bird said that he was afraid that photography, as photography, was out of court for Government claims. It was a compound art science. Mathematicians and chemists alike had combined to make it, and they received their own recognition. Whether a charter would be of sufficient value to justify the trouble and expense was, he thought, doubtful. If there were any chance of obtaining any kind of Government recognition, it would of course be desirable; but he should like to know if there were any chance before assuming the position claimed in the paper.

The Chairman said that in the British Association photography, as photography, had no definite standing, because some subjects connected with it came naturally into Section A, with physical science, and others into Section B, with chemical science.

Mr. Walter Neil Hartley agreed with the Chairman, and said doubtless if, in any specific investigation in which the Photographic Society were engaged, it could present a fair claim for aid, a grant would be made by the Royal Society.

The Secretary said that the Chemical Society had a charter of incorporation, but it had no power of granting diplomas, nor had any other similar society.

Mr. Stillman said that, practically, all the science in photography was in chemistry.

Mr. Frew, referring to the British Association, said that many papers had been read by Mr. Claudev and others, but always in one of the sections fitted for the special subject. He believed also that grants had been made by the Association to aid some of the members of the Photographic Society.

Mr. Bart did not think a charter would materially aid the Photographic Society.

Mr. Hooper said he thought the time for discussing his paper had scarcely arrived. When its propositions had been more fully contributed to, he should be glad as he could.

The proceedings then terminated.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The third ordinary meeting of the season was held in 5, St Andrew Square, on Wednesday evening, the 6th, the President Dr. Thompson, in the chair.

The minutes of the previous meeting were read and passed, and the following candidates were balloted for and unanimously elected as ordinary members:—Messrs. W. Home, James Steele, W. Haldane, W. H. Davies, Jun., Charles Robb, Richard Brown, John Weir, and A. Cormack.

Dr. John Nicol read a paper on "The Progressive Results of the Past Season" (see page 26).

Mr. W. Nelson said that Dr. Nicol was much too modest in his introductory observations: the paper was really an admirable resume of the work of the year. He was not at all sorry that there was nothing new to record. It would be much better for the Society if members worked all the year round and brought something good, rather than something new. He was sorry that there were many great guns who never fired a shot, just because they thought what they knew was too old. They should remember that the greatest temple was built of single bricks, and every man should contribute as many bricks as he could.

Mr. Turnbull thought the introduction of Ross's symmetrical lens the greatest hit of the year; he should very much like, however, that a similar lens of much longer focus were introduced, as it would be of the greatest possible use, and hoped the firm would look into the matter. The rotary burner did no duty in its work, it was very well, but not better than any ordinary press with hot plate. Photographers had in their possession the means of glazing their pictures before the burner was introduced, if they had only taken the trouble to do it.

Mr. Barlow was much pleased with Dr. Nicol's paper, and should look forward to getting it printed in the journals, where it could be read at leisure. He quite agreed with Mr. Turnbull respecting the burner; it was a capital tool; but he had seen as well, if not better, work done by the ordinary press and hot plate. He had repeatedly tried the burning-on process in reproducing negatives, and found it exceedingly simple; he considered it one of the greatest discoveries of the day. Not only could an exact copy of a negative be made, but a faulty negative could be vastly improved in the reproducing process as well.

Mr. Alexander Mackay then read a paper entitled "Extracts from a Letter to a Young Photographer" (see page 26).
Mr. Asher could not agree with Mr. Mackay in his estimate of the Rembrandt effects, if it applied to such as those which he (Mr. Asher) had laid on the table for the inspection of the members. They were principally of American production, and were sent for by the Society editor of the Photographic News, in a letter an extract from which he read, as "fair examples of the legitimate use of shadows and half-shadows." He would like much if Mr. Mackay or Mr. Boss would point out any defects that they might see in the specimens, and say how they might be remedied. He also took exception to the epithets "trash" and "vulgar" that had, according to the report in the journal, been applied to the effects in question at a previous meeting of the Society; and Mr. Boss explained that he used the word rubbish, not vulgar (laughter). Mr. Baeremon said that Mr. Asher had mistaken his meaning. In his paper, read at the meeting referred to, he used the word "vulgar" in connection with the name, and not with the result itself. He could not say much in favour of some of the pictures on the table, however. The fact was that the effects were produced by a false reflected light—probably by the hand-screens introduced, by Mr. Kent—and the result was the production of lights thoroughly untrue to nature. He could not agree with what had been said against retouching. Photographs were once used, and a little retouching was often absolutely necessary to make their work as near truth as possible. Mr. Nelson thought the pictures exhibited by Mr. Asher were very pretty, but nothing more. They were undoubtedly retouched, or so lighted that all texture was destroyed. Mr. Asher retouching in this day and age was the dislike that some members had was more to the same than to the results, which, in his opinion, were very beautiful. They might not be like Rembrandt's work, but the name was selected as a matter of convenience, and any other one would have done as well. He should be very glad indeed if every member of the Society could produce work equal to that on the table.

Mr. Boss could not understand what Mr. Bashford meant by saying that retouching was necessary because of imperfect tools. Did ever anybody hear of retouching a Daguerrotype? Yet not a hint of retouching was the perfection of photography. Mr. Bashford was extremely glad that its re-introduction had recently been recommended in influential quarters, and hoped that the recommendation would be largely acted on. The result, he said, those pictures on the table very fine specimens of what photography could do. Each old master had managed his light as he thought best, and it did not do justice to the amount and effect. And the same might be said of photographers. The one thing needful was the cultivation of the very possible methaesthetic education, and when that was accomplished there would be no need of the kind of work that would be turned out, no matter by what name it might be called.

Votes of thanks were given to Dr. Nicol and Mr. Mackay, and the meeting adjourned.

Photographers' Benevolent Association.

The first Annual General Meeting, followed by a Vocal and Instrumental Concert and Exhibition of Lantern Slides, was held on Monday last, at the Co-operative Institute, 55, Castle Street, Oxford Street, Rev. F. F. Stratton in the chair. A large assemblage of photographers and friends were present. A large collection of fine photographs—the prizes in the Art Union Distribution shortly to be held—was exhibited, including a portfolio of autotype prints, upwards of thirty in number, comprising the first prize; two 36 by 24 framed autotype enlargements; two on the Thames; three 18 by 24 enlargements, by Mr. E. J. Edwards; forty superb landscapes, by Mr. W. Bedford; a splendid collection of statuary, by Mr. England; a copy of "Rebecca at the Well," by Mr. Blanchard, of which subject twelve copies have been given to the Association by Mr. Blanchard; the large photograph entitled "The Spring," by A. Ford Smith; and contributions from a score of other gentlemen.

After some suitable remarks from the Chairman, the Secretary read the report of the Board of Management as follows:

Mr. Chairman, Ladies and Gentlemen,—

In presenting this the first report of our labours on your behalf, we trust that a short account of the establishment of the Photographers Benevolent Association will be of interest to the members and photographers.

It is now nearly eleven years since Mr. A. H. Wall read before the South London Photographic Society a paper upon a Provident Fund for photographers, in which he urged upon the profession the desirability of, and the benefits accruing from such fund; and, to show the serious nature of the matter, he quoted the opinion that such an Association should be formed; but after a correspondence in our usual place (viz., the journals) the subject dropped. Since that time it has cropped up again at various meetings, and the subject was forced upon the attention of the profession by a record of details connected with the sufferings of brethren in distress. Each time, after correspondence containing suggestions as to what other people ought to do in the matter, the subject dropped. In 1885, during the usual discussion, a well-known gentleman (Mr. Matthew Whiting) made some excellent remarks, and offered the sum of £50 if started within six months. Other sums of money were promised from various parts of the country, but still there was nothing done. As usual, the correspondence bristled with suggestions as to what others must do, but every one was too busy to take the initiative, and again the matter dropped.

In the spring of 1878 the matter was again broached, and, entirely upon his own responsibility (and without any plan cut and dried), the present secretary called a meeting at his house in Brixton, which was attended by about thirty assistants. Money was subscribed for preliminary expenses, and a Provisional Committee formed, to consider the form the Association should take, and to call a large meeting at some place in London. An aggregate meeting was held at the Arundel Hall, which was largely attended. The Provisional Committee submitted two schemes for consideration, one based upon the Forest of Dean, and the other the form now adopted. After an animated discussion, the constitution we have the honour to represent was adopted. The Provisional Committee was enlarged, and power given to add to their number. Since that meeting, the Board of Management has been formed, and working harmoniously together, to establish the Photographers' Benevolent Association upon a secure basis.

The earlier meetings of the Board of Management were held at the residences of the various members; then Mr. Gansly (late deputy-chairman) gave the use of his sitting room at 174, Fleet Street, and the meetings were made to meet there regularly, at the rent of 6s. per night.

Hypocritics may be disposed to sneer at the expenditure in comparison to the receipts; but let it be borne in mind that the expenses would not have been larger if the income had reached its present annuities. The Board of Management, therefore, put it to itself great credit that the Association has been established for a sum of money that will bear comparison with the cost of establishing any such association.

To photographers and assistants the credit of the income belongs, and as the Association is now established, we have to be the pride of the profession to see that the income is always large. The pride of the Board of Management will be to keep down the expenses as regards the working; and there will be desire to meet all applications for relief in time of distress.

The Board of Management may by one application for relief, which, after due investigation, was awarded £5. Amongst other benefits accruing from membership, that of the Employment Register will, it is expected, ultimately be a very useful feature.

In conclusion, the Board of Management appeal to photographers to help them in their labours—employers, by sending donations, and using their influence in inducing their employes to join; assistants (male and female), are urged to join the Association, and help to make the Photographers' Benevolent Association thoroughly representative of the importance of the profession.

Signed on behalf of the Board of Management,

W. T. Wilkinson.

Balance Sheet.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donations</td>
<td>£49 10 8</td>
</tr>
<tr>
<td>Printing, stationery, &c.</td>
<td>£23 1 5</td>
</tr>
<tr>
<td>Members' subscriptions</td>
<td>£14 19 0</td>
</tr>
<tr>
<td>Relief to applicant</td>
<td>£5 0 0</td>
</tr>
<tr>
<td>Cash in hand</td>
<td>£3 14 8 3</td>
</tr>
<tr>
<td>In London and country</td>
<td>£28 13 6</td>
</tr>
<tr>
<td>Bank</td>
<td></td>
</tr>
</tbody>
</table>

£64 9 8
THE PHOTOGRAPHIC NEWS. (January 15, 1875.)

W. W.-As the squeeze only comes into contact with the back of the print in enamelling, we do not think there is serious danger of using vulcanized inebriated rubber for the purpose; but, as a matter of fact, the rubber is not necessary. It might be with a piece of pure india-rubber; or a piece of gutta-percha might answer. It would not be difficult to make a squeeze of pure india-rubber. This sheet india-rubber can be obtained, and cemented together, and give perfectly equal results in the making of india-rubber coats that are made by dissolving india-rubber in chloroform or in bichloride of carbon.

2. Nitrate of ammonia is more difficult than nitrate of silver and its presence in a printing bath would prevent the paper acquiring a homy dryness. The proper strength of a nitrate bath must depend on the salting of the paper. Most of the commercial samples of albumenized paper in the market are made with a view to enabling silver bath to be added. The addition to the nitrate bath would be necessary, which we have never made. Most stationers will be able to supply, or procure for you, Whatman's dry gum paper. For the dirty or weakly coated, Soho Square, will supply it. If you look carefully you will see that one and a half grain of the quantity of bromide of ammonium is to be dissolved in a drachm of alcohol and added in the ounce of ordnance of bromide of gold. This will completely dissolve the quantity in less alcohol, but if you dissolve it in less you may do so.

H. VORLST.-Until you have been accustomed to the practice, it is not convenient to use an eye-piece for focusing. In our own case we much prefer to focus by the unaided eye, and we find no difficulty in getting perfect sharpness. There is nothing made to secure the right focus of the eye-piece except screwing it out or in to suit your eye.

II. S.-You do not state what kind of direct copies you refer to. As a rule, the triple is a capital copying lens. A portrait lens well stopped also answers well.

R. G. M.-We cannot with propriety express an opinion on the subject.

2. The Osmometer eudichloride paper has, in our hands, great brilliancy.

C. M. F.-Cautiously allowing the plate to remain in the bath long enough to increase the sensitiveness of the plate, the risk of fog will be reduced. The presence of iodide and bromide, not converted into salts of silver, will tend to keep the shadow clear, but will also multiform the photographic image. This is a subject, which, in relation to wet plates especially, has received too little attention.

J. C. W.-Formic acid does not work as a restorer; it is still weaker than nitric acid. It will not increase the sensitiveness of the plate, and is subject to the risk of fog. The presence of iodide and bromide, not converted into salts of silver, will tend to keep the shadow clear, but will also multiform the photographic image. This is a subject which, in relation to wet plates especially, has received too little attention.

D. L.-There are two or three ways of obtaining comparatively soft prints from hard negatives. One plan consists in slightly runing the paper before placing it under the negative. This, whilst it does not of course give a perfect gradation, by removing the hardness of the contrast gives a certain faintness which is often needed. Another plan consists in removing the fixed silver from the paper, as soon as it is sensitized, by the use of clean blotting-paper. This will materially reduce the contrast in the print, and allow detail to be brought out in the dimmer lights, without burying all the detail in the shadows.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

ENGINEERING PROBLEMS SOLVED BY THE AID OF PHOTOGRAPHY—PHOTOGRAPHY IN PERIODICAL LITERATURE—
THE KING OF SIAM'S INVITATION—PRINTING ON FABRICS.

ENGINEERING PROBLEMS SOLVED BY PHOTOGRAPHY.—There is one useful application of photography to which little attention has been called, notwithstanding the important employment that has been made of the art in this specific direction. It is the aid it gives to engineers and constructors to which it can assist the intelligent and assiduous, who would not have known how well and thoroughly by any other means. Two instances have recently come under our notice which will demonstrate how greatly the camera may assist in the carrying out of great works of an engineering character. In India, recently, at one of the cities in the interior, it became necessary to transport a solid block of metal, weighing something like a hundred tons, from one part of the town to another, and the question how best to do it very naturally arose. One could scarcely construct a carriage for it, neither would it have been an easy matter to place such an enormous mass upon a vehicle of any description. Advice was sought for in England; and as the movement of enormous masses by our engineers at home is not of uncommon occurrence, the authorities in this country, at the first opportunity they had, conducted a series of photographs to be taken, showing the removal of a large mass of iron from the foundry. One picture showed the manner in which first one side, and then the other, of the enormous casting was raised, and a platform placed beneath; a second photograph demonstrated how two bars of iron, turned up at each end, had been put beneath to form a sort of fulcrum, and another further demonstrated how rollers were afterwards thrust under this sledge, and the big structure thus moved slowly and surely along. The advantage of such a series of photographs as this, with the men all at their stations, furnished with crowbars, jacks, and other necessaries, must be obvious to all; and those knowing something of practical engineering could not fail, like a layman experienced in part of the town, seeing how the most minute and trivial variations, in peculiar difficulty, and the rigging up of crabs and capstans, arrangement of the rope and tackle, necessitate some considerable experience on the part of the engineer. This being so, it has been decided, in the case of an iron pier which is now being constructed in London, to take a set of large photographs as the work progresses, showing the whole manner of working from first to last, so that in future, by a kind, a fortunate manager provided with copies of the pictures may not meet with any difficulty in undertaking the work, nor lose time in trying one system or the other, before settling upon a trustworthy plan. It is in fulfilling functions of this kind that photography will be invaluable to the engineer, and in the course of any future undertakings of importance we may rest assured that every step of the structure towards completion will be accurately delineated.

Were we in possession, for instance, of photographs showing the Menai Bridge in course of construction, or other similar great works, such would be not only exceedingly useful for the instruction of youthful engineers and pupils, but they would be, moreover, most valuable aids in the completion of other works of a similar nature.

PHOTOGRAPHY IN PERIODICAL LITERATURE.—A little while ago we called attention to the use made in America, and more recently by the New York Daily Graphic, of photography in reproducing MSS. and sketches, and dwelt upon the fact that although much has been done in this country to work out photo-mechanical processes, very little advantage had been taken of these in Great Britain by our periodicals. A great change has now taken place during the brief interval that has transpired, and, instead of having but one journal—the Figaro programme—which photography aids in illustrating, we have three weekly papers now appearing regularly with photo-relief prints, and one in which a kind of photo-lithography is largely employed—a comic journal called Funny Folks. In the latter case a very perfect process appears to be used, judging by the results we have seen, for the foreign cuts and lithographs reproduced might very well be considered with those formed by a photo-zinc-lithographic method, for we are told that after the image is taken it is first put upon zinc and afterwards on stone. Now that collotype printing is also steadily progressing, we may hope to see further ventures made by publishers, for as yet there is one great branch of the art untouched—the vulgarization of photographic views and landscapes. Some pictures we have seen of Rhine scenery produced by the last named process were so excellent as to lead us to the belief that in a very short space of time we shall have illustrated journals containing little else than landscapes produced from first to last by the photographer. But for these great applications of the art to industrial purposes, disciples of the camera need not despair, for, let pictures be drawn as you will on the screen of the camera, if you work at it, you will get your photographic after and well paid for. Neither the landscape photographer nor the portraitist need be under any apprehension of their work being cheapened by the multiplication of views and portraits that is becoming every day more extensive, for, however much the mechanical departments of the art may be simplified, chemical and artistic knowledge on the part of a photographer must always command a position.

THE KING OF SIAM'S INVITATION.—We are very glad to hear of the invitation sent to our scientific men by his Majesty the King of Siam to witness the approaching eclipse of the sun in his dominions. The invitation has been made so politely, and with such liberality, that if it has been extended to other European nations besides ourselves, there is a probability of the hospitality of his Majesty being severely taxed. Both the Royal and Astronomical Societies have been asked to send deputations to witness the phenomenon, and these two bodies have resolved to send some half-dozen gentlemen at least. The wording of the King's letter is especially gracious, for not only will it give him pleasure to erect one or more observatories in any portion of his dominions for the temporary use of his guests, but he further states that the whole staff that comes over will be treated as private friends of his own. It proves something for the Siamese nation that they have such a respect for the votaries of science.

PRINTING ON FABRICS.—In the 1873 exhibition of the Photographic Society, it will be remembered by many of our readers, there was a charming imitation of black lace upon a white parasol. A very fine and expensive bit of real lace had been photographed, and as the result was merely a black and white image, no difficulty was experienced in converting it into a mechanical printing block. In this case a gelatine film was employed, and either the Lichtdruck or Albertype process, so that the image was
preserved in all its delicacy, and every fibre of the lace shown with extreme sharpness. So perfect was the result, indeed, that, unless one touched the parasol, it was impossible to believe that the lace was not actually a tangible reality. The same process is now being further employed for printing upon handkerchiefs and shirts; and we were fortunate in seeing the other day some more examples of what can be done in this delicate fancy printing process. Some of the designs upon the three butterflies most charmingly impressed, the images having evidently been taken direct from the insects themselves. Other fabrics had sketches, evidently reproductions from woodcuts and engravings, obtained and printed by a photo-mechanical process, all of them being of a most delicate nature, such as could hardly be secured from blocks on lithographic stones. Photographic portraits of various kinds were also to be seen impressed upon fabrics in the same way; but these, perhaps, can scarcely be called novelties, neither was the result so successful as in the case of the other objects we have mentioned. The prints were undoubtedly all produced by fatty ink, and would, no doubt, be very permanently printed upon the fabric. This method is much simpler and more satisfactory than printing in the ordinary way by means of silver salts, for very great care has to be exercised in the latter case, and failures are far from unfrequent, the dressing in the fabric being most difficult to remove and apt to discolor the silver print. Moreover, there are the troublesome operations of salting and albumenizing, and flattening the stuff, which is by no means an easy proceeding any more than the elimination of the print in the pressure-frame. This photo-mechanical printing upon fabrics is certainly an art to be cultivated.

THE ORIGIN, AIM, AND ACHIEVEMENTS OF THE PHOTOGRAPHIC SOCIETY, WITH SUGGESTIONS AS TO ITS FUTURE DEVELOPMENT.

BY GEORGE HOOPER.*

The Photographic Society was founded on the 30th of January, 1853, the first meeting being held at the rooms of the Society of Arts, John Street, Adelphi. Its first President was Sir Charles Eastlake, P.R.A., and it had Earl Somers, Sir W. J. Newton, and Prof. C. Wheatstone as Vice-Presidents. The President of the Council were Dr. Hugh Diamond, P. le Neve Foster, M.A., Robert Hunt, F.R.S., Dr. John Perce, George Shaw, and Captain Scott, R.N. Alfred Roslyn acted as Treasurer, and Roger Fenton as Hon. Secretary.

In this paper I shall review some of its special achievements, both in encouraging art and scientific research; and after taking this retrospective glance, make suggestions of a practical nature as to the best means to be adopted to increase its usefulness, and thereby raise the status of the art generally, and necessarily those who practice the same, in the eyes of the public.

The art of photography will doubtless be handed down to all ages as one of the most important inventions of the nineteenth century.

It not only has been the means of creating a new industry, but has itself become more or less connected with every other known industry, so that whether it be religion, law, politics, manufacture, or education, it plays its part. It has, like the telegraph, brought all the world together, so that we can familiarize ourselves with the features of every race of mankind and study their habits and customs.

In fact, to summarize its immense capabilities, we may say that things animate and inanimate have been represented with a truthfulness otherwise unattainable, and even things so minute as to be invisible to the natural eye can be easily photographed and enlarged to prodigious dimensions.

Science generally has benefited by photography; a love for real art has been generated, as well as a deep regard for that which is both truthful and beautiful. This can be proved by referring to many of the topics that have been so ably brought forward and discussed at the meetings of the Photographic Society. Daguerre, Fox Talbot, and Archer are three of the names that will always be inseparably connected with this fascinating art.

The Photographic Society, which began its career under the most flattering and encouraging circumstances. It had Royal patronage; many of the nobility figured in its rank; funds were lavishly expended, and within four years it had over one thousand pounds in funded property.

It is generally considered every thing to start well; but we have also heard it said by wise men, "That early success, unless accompanied by experience, often leads to a rapid decline," and this was somewhat the case with this Society. It began too well, considering all experience had to be gained; and this experience almost cost the Society its life. However, thanks to the determined energy of some of its most constant and earnest friends, and this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

The Photographic Society has arrived at its majority, and is this very month entering upon its twenty-second year; nevertheless, it cannot be said to be full-grown. Far from it; for there is yet an immense field of usefulness ahead, and the Photographic Society of Great Britain will take it. This is this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

The Photographic Society has arrived at its majority, and is this very month entering upon its twenty-second year; nevertheless, it cannot be said to be full-grown. Far from it; for there is yet an immense field of usefulness ahead, and the Photographic Society of Great Britain will take it. This is this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

The Photographic Society has arrived at its majority, and is this very month entering upon its twenty-second year; nevertheless, it cannot be said to be full-grown. Far from it; for there is yet an immense field of usefulness ahead, and the Photographic Society of Great Britain will take it. This is this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

The Photographic Society has arrived at its majority, and is this very month entering upon its twenty-second year; nevertheless, it cannot be said to be full-grown. Far from it; for there is yet an immense field of usefulness ahead, and the Photographic Society of Great Britain will take it. This is this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

The Photographic Society has arrived at its majority, and is this very month entering upon its twenty-second year; nevertheless, it cannot be said to be full-grown. Far from it; for there is yet an immense field of usefulness ahead, and the Photographic Society of Great Britain will take it. This is this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

The Photographic Society has arrived at its majority, and is this very month entering upon its twenty-second year; nevertheless, it cannot be said to be full-grown. Far from it; for there is yet an immense field of usefulness ahead, and the Photographic Society of Great Britain will take it. This is this sudden and rapid decline, has for years been on a firm basis, and may now be said to have a good constitution.

A brief review of the past proves how productive the young art was when this Society commenced in 1853.

Four papers were read at the very first meeting, one being "Photography in an Artistic View, and as a Branch of the Art," by Sir William J. Newton; another on the "Wax Paper Process," by J. Percy, M.D.; another entitled "Photography as an Aid to Engineers," by Sir C. Vignoles, C.E.; and the last, a paper "On the Mode it is Advisable the Society should Conduct its Labours," by Roger Fenton, Hon. Sec. At the second meeting "The Lenticular Process" was the principal discussion; at the third and fourth meetings, technical matters amongst the Society's members were discussed. Sir Charles Eastlake, the President, was able to announce that Her Majesty the Queen and H.R.H. Prince Consort had consented to become the Patrons of the Society.

Next came papers by Mr. Claudet on the "Daguerreotype Process;" by Dr. Diamond on the "Calotype Process;" and Roger Fenton on the "Nitrate Bath," also by Mr. Wenham and George Shadbolt on "The Production of Large Prints from Small Negatives." It was at this period that John Spiller (our President) first published a formula for preparing a "Protonitrate of Iron Developer."

The Society's first exhibition of photographs was opened on the 3rd of January, 1854,* with a soirée at the Suffolk Street Gallery, the Queen and the Prince Consort taking a private view at eleven A.M. of that day. This exhibition remained open two months. We would mention here that the Journal of the Society was at this time very popular, having as its contributors many gentlemen of scientific eminence; it was sold at threepence per number to non-subscribers, and had (we believe) a circulation of between three and four thousand copies.

January, 1855, the Exhibition was held in the Gallery in Pall Mall East. The following month, Sir Charles Eastlake retired from the Presidency, and the late Lord Chief Baron (Sir Frederick Pollock) was elected to the position. In the same year a committee of seven gentle-

* The first exhibition of the Photographic Society was held in the rooms of the Society of Arts at the latter end of 1853.—Ed.
men was formed to investigate "The causes of fading of positive prints." The Society voted £25 towards defraying the expenses, and the Prince Consort gave £50 for this same object. Mr. J. E. Mayall read a paper on the "Dry Colloidion Process," and in September the Tauenepot process was introduced, January the 3rd, 1856, the Society appointed a paid Secretary and Editor at a salary of £300 per annum; prior to this an Editor received £100 per annum; an assistant editor, £200, the sale of the journal realizing the Society about £100 per annum.

In February, 1857, the Society had £1,650 in hand; but the expense of changing its premises decreased this amount to the extent of £700 by December. Within two years of this time the entire funds were eaten up, and an expenditure in excess of income to the extent of £636 16s. 7d. had been made.

In May, 1857, an event worth chronicling occurred, as a proof of the good feeling that existed in the profession at this period. It was on the occasion of the death of Scott Archer, whose wife and family were left unprovided for, when the Society, led by Mr. Mayall, started a subscription which ultimately realized £247, and Sir Wm. J. Newton, addressing an earnest appeal to the late Earl Derby for a pension for the three orphans, obtained for them an annuity of £50. At the Exhibition of 1859, carbon prints were shown as a novelty, and alkaline gold toning referred to. In the same year a Colloidion Committee was appointed, and issued a report.

During the session of 1860-61, the Society lost its patron, the Prince Consort; but no other event of importance occurred. From the Report of the Society for this year, I extract the following sentence:

"To the Royal Society there is yearly appointed a Government grant of money to be expended in furthering scientific investigation for the benefit of the country. The Council of the Photographic Society, pointing only to the practical results heretofore attained under unfavourable circumstances, would venture to suggest that assistance should be granted by Government towards improvements in the processes of photography. It would serve to determine many difficulties, and tend to increase advantages now derived from the various employments of art in the different departments of the Government. A yearly grant, if the money were to be substituted for or in addition to the present supply, and reserved for the purpose of procuring a supply of the materials which are used in the art, would be of great assistance towards the advancement of the art, and assuredly more than repay the expenditure."

In 1864 the carbon process of Mr. Swan was first introduced. The introduction of this process, that has since grown to such dimensions, was the occasion of a very large attendance and an animated discussion.

It is remarkable that in the address at the annual meeting of the Society for 1865, the Lord Chief Baron said, "He entertained the same zeal for the progress of photography, whether as an art or a science, as he had ever done. Although he was not so young now, nor so able, perhaps, actively to illustrate that zeal, still he was capable of rendering them some service, and he hoped to save them some expense in a place for meeting." Then came these significant words, which I am particularly anxious to draw attention to: "It was notorious that other societies with no higher claims to the assistance of Government, were provided with rooms at Burlington House. Almost every society with any claim whatever had rooms there. He purposed going there himself next day to ascertain how far, in point of fact, accommodation could be secured for this Society; and if he found a suitable room to be had, he would make application to the members of Government with whom the matter rested, and obtain sanction for this Society to be accommodated." In the same year Mr. Simpson introduced the useful and beautiful collodio-chloride process, and Mr. Woodbury the photo-relief printing process.

It was at the Exhibition of 1867 that the twelve photographs lent by the great French artist, photographer, and sculptor (M. Adam-Salomon) brought about what might be truly called a revolution in English portraiture.

The session 1865-69 was an important one. Sir Frederick Pollock retired on account of his age, being then in his 86th year, and James Glaisyer, F.R.S., became President of the Society. At the annual meeting in February 1868 he made a spirited address to the members, urging them to use every effort to put the Society in a good position financially, and had the gratification of seeing this effected within a short period. I quote a sentence from the address of the President on this occasion, as it shows the important part played by photography in its immediate connection with science:— "Who could feel the value of photography more than himself? But for photography he or his assistants would frequently be workers and watchers all night long. The records of the registration of their instruments required taking once in every two hours; and little rest was obtained under such circumstances. They had to record the variations in movements so delicate that the finest spider's web was sufficient to arrest the motion." It could only be registered by an imponderable, and that imponderable, was "Light," and the process "Photography." He could speak with much feeling and appreciation of what photography had done for science and for the future of science. They knew too that photography had a great future, and he hoped that each member would resolve to take his share in it.

At the next meeting of the Society another very interesting demonstration of the photo-relief printing process was given by Mr. Woodbury. I shall pass over the review of the last four years, considering its history as fresh in the memory of us all, and put it to you to say that the Society has steadily progressed, its annual exhibitions have become increasingly popular, and its financial position good.

Having, then, taken this retrospect of the work of the Photographic Society, and traced its history, and necessarily, to a great extent, the history of the progress of the art to the present time, let us now consider the best means that can be adopted for the future of the art, and the way we love, and the part to be taken therein by "The Photographic Society of Great Britain." To rest upon our laurels, or, with Earl Russell, "Rest and be thankful," cannot be the motto of a Society that represents so productive an art as ours; and until many things that now appear almost impossible not only become possible but practicable, we cannot afford to entertain such thoughts; and this is that has tempted his to make certain suggestions the practicability of which, I trust, will be thoroughly discussed at this or some future meeting, and action taken thereon. For the sake of being explicit I shall divide my subject into three heads:—

1. The necessity of obtaining as soon as possible a Royal Charter, and thus possess the power of granting diplomas for merit.
2. Our claim upon the Government for a money grant, and suitable premises wherein to hold our meetings, exhibitions, and have permanent offices.
3. The necessity of forming committees for scientific investigation that shall annually report their results to the Society.

First, then, let us discuss "The necessity of obtaining as soon as possible a Royal Charter, and thus possess the power of granting diplomas for merit."

An attempt was made to obtain a Royal Charter some years since, but it proved unsuccessful from causes easy of explanation; this, however, is not likely to be the case.

* This allusion is made in error. Mons. Adam-Salomon did not send or exhibit his works; the examples of his work exhibited were some in the possession of Mr. Wharton, who lent them to this Exhibition.
THE FADING OF SILVER PRINTS.

We publish on another page an interesting letter on a question of vital importance to photographers, written by a gentleman whose skill and experience in the art give unusual weight to his observations. Captain Ross's name is associated with some of the finest pictures which have graced the walls of the photographic exhibitions, and his experience over a period of twenty years, given in the course of that experience he has produced prints which have faded, and prints which remained permanent for upwards of twenty years; a result probably common to the labours of all old photographers. But the point of especial interest consists in the fact that he has carefully noted the causes in operation in both cases. His experience teaches no new doctrine; its value consists in the weight it gives to lessons before taught, but unfortunately too often forgotten or overlooked, namely, the vital importance which attaches to modes of washing prints to remove all traces of the fixed salt, which, if unrecovered, are fatal to the stability of the print. The common mistake is to suppose that long soaking constitutes thorough washing. With every supposed appliance for thorough washing, Captain Ross has found what so many have found, that some prints faded; but he has also found that this fading was due to the failure of the appliances to effect the desired end, owing to prints sticking together in a mass, and so preventing each one from being subjected to the action of a constant change of water. We have often insisted on the importance of rapid washing in many changes of water. Where this is done, and the prints can be washed a few at a time, there is little risk, if the fixing process itself has been properly performed, of the prints fading. Where the prints in hand are few there is not much difficulty in draining each carefully and thoroughly between the rapid changes; but in establishments where the number of prints daily produced is large, this is more difficult. In such cases, washing for thorough soaking to the foot of the running water is desirable. We have urged before, and we repeat the advice, because of its importance, that two or three times during the process of washing the prints should be placed in an even heap and subjected to heavy pressure, to remove as nearly as possibly every drop of moisture. The prints should then be separated and singly placed again in clean water. Such a process two or three times repeated for thorough soaking by Alex Alexander will more effectually wash a batch of prints in an hour or two than many hours soaking in water without attention to their separation, so that the whole surface of every print may be subjected to the action of fresh water untainted by the traces of hypo-sulphite. We strongly commend the various suggestions of Captain Ross to the attention of our readers.

OBITUARY.—O. G. REJLANDER.

A great man has passed from amongst us. We have to announce with profound regret the death of the father of art photography, Mr. O. G. Rejlander, in the sixty-second year of his age. A lingering illness of many months standing terminated on Monday morning last, when he calmly fell asleep.

Of the early life of Mr. Rejlander, we have but brief resources to derive from occasional remarks in conversation. By birth a Swede, he lost his father, who was an officer in the Swedish army, early in life, and began his struggles very young. With an earnest passion for art, he early devoted himself to painting, and maintained himself whilst studying in Italy, by copying the great masters. Subsequently he came to England to devote himself to his profession as a painter, and whilst so engaged he came under the glamour of the new and marvellous art of sun-painting. He felt its rare and subtle power with an artist's instinct, and the inherent limitations of that power, and the further limitations imposed by imperfect appliances, only stimulated him to varied ingenious effort to supply the shortcomings these limitations involved.

The well of Mr. Rejlander would not only be full of interest and instruction; but it would necessarily furnish most important contribution to the history of the art development of photography. Amongst the first, the ablest, and most persistent of exponents of the pictorial capacity of the new art, a quarter of a century of his life has been devoted to a practical demonstration of its claims. Chance or choice fixed his residence for many years in a district perhaps unsuspected for facility or suggestion in connection with art photography. In the town of Wolverhampton all his early works were produced. The "Two Ways of Life," the first photograph of ambitious aim in pictorial composition, although by no means the first photograph with pictorial aims produced by Mr. Rejlander, as well as others was produced here from the poor cells of a cotton factory, a genuine specimen of a "black country" town. The especial object of this picture was to illustrate art capacity in photography for the Exhibition of Art Treasures at Manchester. Many photographers will remember the varied criticism which this picture evolved from both artists and photographers, criticism which as Mr. Rejlander once confessed to us, consisted more than half to his own disappointment than of real appreciation. The history of its production and the result are full of interest, and although twenty years have elapsed, and the art of combination printing has progressed greatly, the work remains a marvel of photographic skill and art excellence. In his early photographic labours, especially, the difficulties attendant upon photographic pictorial effects seemed to possess an absolute charm. The delineation of a subject like the "Head of John the Baptist on a Charger" would seem at first sight to be quite beyond the legitimate range of photography; and in later days Mr. Rejlander himself confessed that it was so; but in the enthusiasm of his first love, he believed the art of his adoption might effect anything. The picture in question was an undoubted success. A nobly modelled head, the heavy locks of hair, damp with the dews of death, resting on a charger, the ghastly effect of excision covered with a napkin. For two years, Mr. Rejlander once told us, he saw that head on a body walking about the streets at Wolverhampton; he never saw it without a yearning to place it in a dish as we saw it in the photograph, and he never rested until he made the acquaintance with its owner and obtained his permission to take it off. Higher and more wholesome in aim and character have been the many thousand of simpler pictures and studies which have teemed from his camera. The especial quality of his work, the most trivial as well as the most ambitious, was the presence at all times of a thought, an intention, a definite idea, in every picture. He believed in the capacity of photography. "If I cannot see," he said, very early
EXTRACTS FROM A LETTER TO A YOUNG PHOTOGRAPHER.

By Alexander S. Mackay.*

There is another matter concerning the management of portraiture that I shall take the liberty of referring to: I mean not reflected lights, which are generally so many degrees below the principal or daylight of the picture, but all-sided lights, which not only destroy all roundness, but invariably produce the most grotesque squints. In small cartes this was past muster with those who are not painters, but enlargements to the size of the above and you will at once find what a miserable result you have. If at all possible, let your light always flow from one direction; I press this upon you as of much importance.

Let me say here that a most reprehensible practice in your art is that of touching negatives—I mean beyond the removal of mere specks. A portrait can only be acceptable if it represents the character of the sitter in the faithful rendering of his facial development; and to fritter this away, with the avowed purpose of softening or beautifying the head, is the most absurd of all absurdities. I don’t think the public are at all enamored for touched cartes; it seems to me an itching some have to make their work pretty; yes, alas! merely pretty; they don’t consider the sacrifice they make. If photographs were taken under a well-disposed light, with the character of the back-ground, there would be no necessity found for touching; There is no reason why negatives should be very complete, and when they are not so, it must arise from the absence of a preconceived mental arrangement of the subject. Thus “Evil is wrought by want of thought, just as well as want of heart.”

I sincerely hope that henceforth we shall have as little touching as possible; we should have none of it, especially in the portraits of distinguished men: the great men whose memories the people cherish and revere, they wish to see them as they appeared in the flesh. Amongst the celebrated divines, for example, we have in their portraits Drs. Chalmers, Blackham, andCandlish, all wonderfully characterful heads; another great name has just occurred to me, that of Hugh Miller; and I would ask, who would have dared to polish down his rugged front? To tamper with such heads would be giving the lie to our successors—it would be depriving posterity of its hereditary rights.

I desire now to direct your attention to what are called “Rembrandt portraits;” this, I am afraid, is rather a comical misnomer, in as far as they bear any resemblance to the portraits of Rembrandt; I should like to know the point of contact, or the principles on which they have been thus christened. The luminous transparency of that great master’s works has been, and will continue to be, the admiration of every succeeding age; in many of his pictures there are not above ten or fifteen per cent. of positive light, but the remainder is by no means blackness, but a glowing darkness, in which the details are almost as well made out as in the more prominent parts. I had sent me recently, for enlargement, heads of a lady and gentleman in this particular manner; the heads were totally in shadow, excepting that down the off or narrow side of each there was a clear, sharp outline of light, which, in the gentleman, also struck the outline of a well-pronounced aquiline nose; both heads reminded me forcibly of the moon nine-tenths in eclipse, and had they been enlarged their appearance would have made both day and night hideous. Of course they were declined, and ordinary cartes substitute with marked advantage.

In the above remarks, I think you cannot fail to see my drift. I have been very frank in pointing out to you the means by which you may purify your art, and I have given my opinion on the several matters alluded to, and, on consideration, you will just take it for what it is worth. I am very anxious that you should leave no stone unturned by which you may acquire a thorough knowledge of your business; you should lose no opportunity of becoming familiar with works of established reputation, either in early or more recent editions. What is the use of having art depositories if art is not numerous, and, after all, little else but a numb show to the uninitiated; the sight of several good pictures will appeal more eloquently to your feelings, than many volumes merely theoretical, could possibly do.

With regard to objects of photographic study, I may say a few words. With the exception of works purely historical, or those compositions that appeal more immediately to the imagination, there is little to be gained from our province. I am, however, on the point of stating the fact has already been amply proven. Although in the mass of subject matter at your command, there will always be a difference in degrees of excellence. Scotland is peculiarly rich in magnificent scenery. Amongst those monuments of creation, the everlasting hills, you may feast to your heart’s content; in fact, the whole of the “land of mountain and flood” you may figure as a grand novel which a modern enthusiast -one more finely calls “frozen music,” there is superabundance of material. Our old castles are a never failing source of interest, and those of our own country would form rather an imposing album. Let us not forget our old baronial trees, our druidical oaks especially, with their fine anuity of branchification. What useful auxiliaries to the landscape painter were our ancient beech trees! I do not mean for servile copying or adaptation of any kind, but simply for their very suggestive-ness. I have in my possession an excellent photograph of an old ash, uprooted by the severe storm of two months ago, on the estate of Robert Dundas Esq., Arniaston; this tree had obtained a somewhat patriarchal age, being no less than four centuries old. In its prime it forms a very agreeable feature, however; it stands out against immense beach, the height of which forms the principal point in the composition. This is a work by our treasurer, Mr. Pringle.

It seems to me there can be nothing more worthy of attention than magnificent ruins; the excavated remains of cities thickly peopled in times long past, they strangely kindle our emotions, probably from the fact that we associate those objects with this human feeling. To contemplate them without irrepressible awe is simply impossible. “Our fathers, where are they?” must rise to every human lip. I think also of the simple photographic tone is the best medium by which such objects can be expressed, as if being starved even of a glow of colour, adds more intensely to the feeling of the utter desolation. The feeling I would most express has been frequently shown in the Queen Street Hall, and at the very last meeting we had a most brilliant display, by the oxyhydrogen light, of “Egypt and the Nile,” in t.e exhibitions of her ruined temples we had many glimpses.

“Through the dark postern of time long slumbered.”

I would now only remark to you, that you are absolutely and uncompromisingly to pursue your taste, and anything that bears not that sovereign stamp in all the human intelligences, will inevitably perish; truth, that small but significant word, is all powerful. The vast systems revolving all around us in the heavens are regulated in obedience to its spirit, as it is one of the principal attributes pertaining to the Deity, for he is Truth as well as Love.—Yours, &c.,

Alexander S. Mackay.
in their studios, than would be the case if the pictures were hanging on the walls of an exhibition. The maximum time allows 1 to each member is four days; and as each portfolio contains about a hundred prints, the time allowed is none too much.

The institution of wonder albums in England would, we think, be of benefit to many of our brethren in the country.

Critical Notices.

REPERTORIUM DER PRAKTISCHEN PHOTOGRAPHIC. Von FRITZ HAUGK.—(Weimar, 1875. B. F. VOIGT.)

We are glad to receive so practical a hand-book as the one sent us by M. Haugk. It contains a godly mass of information, and, what is better still, the facts are well tabulated and easy to find. M. Haugk tells us his work is suitable for the beginner, the amateur, and the professional photographer; and although the latter, if they have attentively read the photographic journals of late, will find little of novelty in the work, it will be, at any rate, a convenience to have the improvements of the last few years bound up together in a volume, to be referred to at any moment.

Many manipulative instructions have been left out as being considered unnecessary and we agree with the author in saying that those who desire initiative into the art of photography should seek instruction in the first place under a master, who will teach them in a few hours what they could never learn from a book in the matter of handling plates, dipping, working the camera, and other practical manipulations, which must be seen to be thoroughly understood.

In describing the printing processes, M. Haugk goes very fully into the matter of silver printing, and gives many important hints about mounting, pressing, and finishing, which professional photographers will thank him for. He also touches upon the collodio-chloride process, and the necessary directions for printing by means of that method; but, singularly enough, there is no mention of printing in pigments, which is now practiced successfully in many studios; nor of the Lichtenbruck or Albertype processes, which just now bid fair to be taken up extensively by portrait photographers. The beautiful specimens of portraiture that have recently been produced in Germany and England by mechanical printing makes us particularly interested in the branch of the art at the present moment, and we should have been thankful for particulars of the most improved Lichtdruck process as now practised.

As a laboratory companion for all ordinary purposes M. Haugk's volume, however, appears to us admirably suited, and we shall have pleasure in placing before our readers a few interesting extracts from it. The author has not forgotten to make mention of the failures that arise in practising photography, nor the cause of their origin; indeed, so much is said about them that beginners who are not very ardent in their desire to learn, might feel tempted to turn back at the outset when confronted by such a legion of obstacles. We do not think much can be learned from books in the way of correcting defects; these can only be combated successfully by experience. Indeed, a good photographer, like a good general, is only to be tested by misfortune.

One of the most useful portions of Haugk's treatise is the collection of tables at the end, in which the equivalent of millimetre and centimetre and grammes, and other French decimal measurements and weights, are given. It has now become a European custom to adopt the gramme and metre; and scientific men in this country, who publish their experiences in English journals alone, almost invariably turn their numbers into the French equivalents, as being far more accurate and reliable. Photographers must, therefore, of necessity, make themselves acquainted with these measurements; and, when once learnt, they will be found more intelligible than our ounce, or fluid ounce, the value of which is always doubtful. We are glad to see one scale being gradually adopted in England, Germany, and France, and as weights and graduated glasses, marked with fractions of the grammes, and centimetre, are now to be purchased everywhere, the sooner we adopt altogether the metrical system for scientific work the better.

TINY TRAVELS. By J. AINSBY-STERRY. (London: Tinsley Brothers.)

We must confess that we feel some degree of compunction in introducing photographic readers to Mr. Ainsby-Sterry's Tiny Travels. These travels are so full of delicious laziness, such insouciant abandon, such disregard of every consideration in life, except bright, easy, unfettered enjoyment, and present such a contrast to the majority of the travels undertaken by photographers, who are generally terribly in earnest in taking their pleasures, that we really feel there is some danger of demoralizing our readers, in bringing them en rapport with such a book, and such an author. The tiniest equipment of the photographic rambler, the merest pocket camera, walking stick tripod, and sandwich-case-like box of dry plates, cannot be assumed by any one unaccustomed to the meaning but the tiniest impediments may be utterly unimportant, but the amount of pre-occupation they involve! The anxiety to secure that delightfully sylvan nook, when the wind will keep the foliage in a constant tremor; the still greater anxiety as to how the plates will develop when some especially charming bit has been obtained under the best conditions; the inevitable presence of purpose in every phase of the holiday each and all most delightful to the enthusiast, but all sternly forbidding the photographer to enjoy the dear delights of laziness so charmingly and subtly suggested in these Tiny Travels. Mr. Sterry in his travels never goes sternly to any purpose; he declines to have a purpose. He does not travel as the crown flies; but as the butterfly flutters. But he is the most delightful of traveling companions, always gay, always gay, never a novel. He enjoins all that he sees with quaint fancies and odd reflected lights which invest it with new interest. His humour ripples and sparkles like a streamlet in sunlight; and, in spite of himself, and almost unconsciously to the reader, he conveys much odd pleasant information. We have not attempted to describe the book, we might as well try to analyze a perfume, but we simply conclude with commend- ing it as a most pleasant companion for many a spare half-hour, affording in its reading a sense at once of refreshment and rest. And—if we must be practical—let us add that it contains a delightful chapter on Faded Photographs!

If "Tiny Travels" are replete with graceful fancies, Mr. Wilson's "Lantern Journeys" constitute a perfect encyclopedia of facts in relation to travel. The idea is an admirable one. Several hundreds of the scenes of interest and beauty which the camera has produced for the lantern and stereoscope, on the Continent and in the East, in America and England, are here briefly and graphically described, just such vivid and salient facts being given as are most likely to fix the individuality of the scenes on the mind. To every lover of the stereoscope, and to all in the habit of interesting young folks by lantern displays, this will form a welcome volume.

Mr. W. H. Franks, in an article, full of interesting matter, giving an admirable epitome of the practice of the best men connected with photography in the United States. We commend it as full of interest to English photographers.

THE TRANSIT OF VENUS.

A recent article in the Daily News, understood to be by a distinguished astronomer, has some interesting remarks in referring to the photographic success of Lord Lindsay's expedition to the Mauritius, and the special advantages of the photography of pictures by Lord Lindsay. These pictures are rude, but are necessarily so; the image which requires no subsequent enlargement. The writer says:

First of all, Lord Lindsay's party has secured more than two hundred photographs (one hundred and ten of them excellent) showing Venus at various points of her path across the face of the sun; and these photographs have not been taken by means of photo-heliographs, like those with which our De la Rue and the American, Rutherford, have obtained their beautiful sun-pictures. All the other details have usually employed the instrument, but astronomically unreliable, instrument. (We deliberately say unreliable here, not untrustworthy, which would express rather more than we desire to imply.) Yet it has been successfully demonstrated (according to Dr. Jeany's estimate of the probable error resulting from the use of photo-heliographic sun-pictures) that the measurement of the sun's disc would probably be greater than that which existed before the late transit. The method used by Lord Lindsay and the American astronomers is, on the contrary, almost perfect, theoretically.

Let the difference, which does not seem to be commonly understood (for many erroneous statements have been made on the subject), be here briefly indicated. Suppose we have a picture of the sun, with Venus upon its face, taken by the photo-heliograph, and another picture of about the same size, taken by the method of the solar image formed at the focus of the object-glass; and in the absence of any sufficiently exact means of determining the amount of this enlargement, we must trust to the picture itself to indicate its own scale. There, in the picture, is the sun with the disc of Venus upon it, and the distance of Venus from the centre of the sun bears a measurable ratio to the sun's diameter in the picture. It might seem, then, that we know all that we want to know. But does the sun's diameter in the picture correspond to the reality? Many of the collodion photographers have doubts, and if we are at all sure that this has not happened, may not the apparent size of the sun have been enlarged slightly by what is called photographic irradiation? Unfortunately we have every reason for doubt upon this point. In fact, the admission is generally made by Sir G. Airy, that a Daguerreotype is infinitely more perfect in this respect than a photograph taken by the method which he has, nevertheless, often employed, and he has been no harsher in his criticism of that method than is unreliable, and that the results obtained by it are untrustworthy. Now take the photograph by the other method. In this a perfect piano mirror, carefully tested, is so moved by machinery as always to send the sun's rays in the same horizontal direction towards an object-glass having a focal length of forty feet. (The mirror acts thus as a heliostat—hence the name we have given to the method.) This length is sufficient to give a focal image of the sun requiring no enlargement (in fact, the image is about four and a quarter inches in diameter), and the astronomer is not concerned to know whether the actual photographic image is correct. It is only necessary to estimate and correct out the last steps of the process by which the image is produced. He knows the exact focal length of his object-glass, and the size of the image is hence calculable at once, being precisely the size of a circle which, viewed from that distance of nearly forty feet, would appear as large as the sun. But, indeed, as will presently appear, he is independent even of this determination.

Again, the negative disc representing in the negative the black disc of Venus may have its outline blurred by irradiation; but whether much blurred or little blurred, it is equally blurred all round, and the position of the centre can therefore be exactly determined. Similarly the position of the object-glass itself in the field of the film; but he knows exactly how large it is without measuring from its outline, for he knows the exact focal length of his object-glass, and the size of the image is therefore calculable at once, being precisely the size of a circle which, viewed from that distance of nearly forty feet, would appear as large as the sun. But, indeed, as will presently appear, he is independent even of this determination. Again, the negative disc representing in the negative the black disc of Venus may have its outline blurred by irradiation; but whether much blurred or little blurred, it is equally blurred all round, and the position of the centre can therefore be exactly determined.

In the heliostat method he knows that an inch in his picture represents an inch seen at a distance of forty feet, or what is the same, the exactly determined focal length of his object-glass. In either case, therefore, the method is better than direct comparison with the image of the sun; and in the other they have to be compared with the image of the sun. The method of the heliostat is better than the former, and the astronomer should have been able to make some tests of the apparatus which he must have known were at least equal to that of Hobart Town, and nearly equal to that of the American station in New Zealand. Accordingly, we now have three excellent sets of southern hemisphere pictures obtained by the reliable method. The result confirms the axiom that these are equal to or better than those of Hobart Town, and nearly equal to those of the American station in New Zealand.

Correspondence.

THE FADING OF SILVER PRINTS.

Sir,—I am glad to find by the letters in the photographic papers that the attention of many leading photographers is again addressed to the all-important question of the fading of silver prints. I think all old photographers should give us the benefit of their experience by taking the steps they have taken to secure the permanence of their pictures, and the results. If they will take care of these prints, I am sure we shall gain much useful information.

Not wishing to preach what I am not prepared to practice, I shall tell what I have done; but before I do so, I may mention that I have been an amateur photographer as far back as I can remember. The only objection I have is that there is nothing like the print. But every year, for the last thirty years, have not only made my prints from 1854 or 1844, and have tried most of the processes that have since been brought out—Talbottypa, Calotype, wax paper, wet collodion, and dry plates. I have devoted much time and attention to this most fascinating pursuit, and it is no great exaggeration to say, that for the last thirty years very few days have passed without finding me occupied with some branch of photography. The result of my labours last me to take a much changing view of the permanence of silver prints than most photographers do. I believe that the fading of their prints is almost entirely due to some traces of hyposulphite of soda having been left in them.

It was, I think, in 1856 or 1857 that the Photographic Society of Scotland, of which I had the honour of being a member, but that they had taken to secure the permanence of their pictures, and the results. If they will take care of these prints, I am sure we shall gain much useful information.

Here, then, we have prints that have stood the test of twenty years, although I lately read a very delightful letter in your paper by one of our greatest London photographers, in which he said that few, if any, prints would be found that had lasted fifteen years. Mr. Tunny, a well known and most successful Edinburgh photographer, taught me the collodion process. He impressed on me the necessity of using the correct size of hypo, and how to prevent by various arrangements to do so ever since. In Edinburgh I had no convenience for washing prints; but I managed to do so by giving them from fifteen to twenty changes of hot water, and then a few washings in cold water. I placed them in a flat dish, not more than two or three at a time, and did not leave them in the hot water more than from one to two minutes, and I was always careful to drain off the last drop of water in the dishes. It is true, but may be leaving prints to soak for a length of time in the same water; it is the constant change of the water, and not length of washing, that removes the hypo.

I reside for the greater part of the year in the Highlands of Scotland, and for the last sixteen or seventeen years have adopted a very simple arrangement by which, without any trouble, I can thoroughly wash my prints. A had an
oblong box of block tin made, about two feet long and sixteen inches broad. At each end, and for the whole breadth of the box, there is perforated zinc. There are two trays, so that I can have three lots of prints at a time. I place the box in a stream, and allow the water to flow through it for four or five hours. Supposing the stream to run at the slow rate of a mile an hour, the print must have between eight and ten thousand changes of water in five hours.

Notwithstanding this thorough washing, I have had faded prints during the winter owing to having put too many in a tray; the stream rushing through the zinc netting crushed them in a mass against the end of the box, and in that way the prints inside the mass were not properly washed.

Photographers resident in towns cannot adopt this plan of working, but most of them can command a tap of water, and with a tub of block tin, a hole at the low side, a syphon, and a gutta-percha pipe communicating with the tap, they can wash their prints very well, provided they do not put too many in the washing tub at the same time.

I have mounted my prints in former years with flour paste, and latterly with starch, always having it fresh made. I see this mode of mounting pictures is pronounced to be certain destruction, but it has not proved so in my case.

I conclude this letter by saying that during the last twenty years I have printed many thousands of prints, and I have never had a failure, but these failures were due in a large part to my own carelessness in washing the hypo; when that operation has been thoroughly carried out, my prints have stood the test of many years.

Your obedient servant,

Horatio Ross.

1, Southwest Terrace, Southsea, 13th January.

METALLIC SPOTS IN PRINTING.

Dear Sir,—I see in your last week's issue an article on the subject of metallic spots in albumenised paper.

Your contributor seems unable to account for their presence, but, to my mind, the wonder is that there are so few. I am not acquainted with the details of the manufacture of photo. paper, but have been connected with that of ordinary book paper in this country for a number of years, and have very little doubt a similar process is carried out with a few extra precautions. M. Davanne says the particles can hardly be in the pulp, because the rags are so carefully overhanded, but he seems to forget that they are ground into pulp with steel knives. These not only collect scale and rust on their surfaces (which may, and will drop off), but the knives, especially the steel ones, magnetize the steel, and may throw off small particles of metal. The fact that the spots are found on the even side of the sheet, confirms me in the opinion, that they exist in the pulp, and are not communicated to the paper in any of the after processes. Anyone acquainted with paper-making knows that if there are any metallic spots, they will be on the under side of the sheet. This will be plain to anyone when they consider that the pulp is run on to the wire in a very fluid condition, the heavy particles, such as bits of metal, naturally sink to the bottom, and are therefore found on the under-side of the finished paper.

The only remedy I can think of, is to use the best steel for the knives. The common qualities being much more liable to chip, and to see that they are kept free from rust. If you think the above throws any light on the subject, it is quite at your service. —Yours truly,

A Paper Maker.

THE NITRATE OF SILVER BATH, AND HOW TO USE IT.

Sir,—The question of the use of the nitrate of silver bath, its evils, and its remedies, is again come to the front. A few words on the subject from one who has eighteen years experience with its use, under all circumstances and conditions, may not be out of place. Particularly as photographers are invited to purchase secret processes, that are alleged to cure all the evils incident to its capricious nature.

To assert that there is nothing in the "secret processes," would, in my opinion, be saying too much; our gentleman at least who offers it for sale, is a careful experimentalist, and has in another secret process produced work worthy of imitation. But how much there is new in the master is another question. If photographers would only exercise care and judgment in the management of the bath, there would be no need of purchasing ideas from other people. It is laid down as a matter of fact, that the larger the quantity of bath in use the less likely it is to do the work of order; this experience has borne out to be strictly correct for obvious reasons, which I will refer to directly. In my usual practice I do not use what is termed a large quantity of solution—from a quart to three pints is about the outside—but I can safely assert that I have never had to discard a bath from over-work, it has been from sheer accident whenever such a thing has taken place. My usual practice is, to make a bath of rain water, first putting a few grains of silver to precipitate any impurities. Then, with ordinary nitrate of silver, make a bath of thirty-five grains to the ounce. Sun again for a day or more, and filter, then coat a large plate, allow it to remain over-night, test for acidity. If not sufficiently acid, take pure nitric acid diluted and let a slight reaction be visible in the litmus, and your bath is in working order, and will continue to do so for almost a month or three days when you will have it in the finest condition. Now the grand secret is to keep it in this condition. This in my practice has been done, by simply replenishing with new plain forty-grain bath, and by simply keeping a cover of cloth over it to keep out dust, but that will allow the evaporation of ether and alcohol, the accumulation of which is the cause of some of the evils that are said to be heir to. It is too much in practice of photographers, during the busy time, to forget how quickly they impoverish the bath, abstracting the silver to a far greater extent than the liquid, and are only reminded of it, when poor and thin negatives that will not intensify make their appearance.

At this stage, replenishing the bath will make it, as a rule, all right. But things should not be driven to this extremity at all. After two or three days work the bath should be made up to its proper strength, and things will go on smoothly and pleasantly as before. In my practice, if these things are attended to, there will not be much to complain of pinholes occasioned by nitrates in the bath, or crystallization from the same cause through excess of ether and alcohol. It must not be over-looked, that the larger the quantity of bath the more rapid will be the evaporation of the alcohol, and must be compensated in the bath. But most commercial samples average about the same. Keep the bath up to an even temperature, winter and summer, and to an even strength, allowing facilities for the evaporation of ether and alcohol, and there will be no need to buy secret processes. There is nothing new in what I have said, but it may be worth something— I remain, sir, yours, &c. Thomas T. Bidford.

SECRET PROCESSES.

Sir,—I can only endorse similar sentiments to some of your correspondents. It is seldom I write now for either Journal or News. "Process selling" at the present day seems to have got a "rage" or "fashion." I can well remember the time when such would be ignored. True, many old "dodges" have taken new names: old processes sold as new, and rendered freely. The last one I purchased I was told was something quite new—"never before" published or used. When I got the secret, lo! I found it in print as soon as I got home.

For my own part, may I ask what are photographic societies for? I know full well I shall get, perhaps, a "warning." Pray readers excuse my bluntness. I am pure from the country, and cannot bosom of high flown language, but use my pen in my own fashion; and you must take the words that come from me in good part. Our
societies should be for advancement and improvement, and really to test processes the same as our scientific associations. Very true, we have clever men—men who devote much time experimenting, and expend money in going through the various formulas, &c., and I also maintain that these gentlemen should be repaid; but the question arises how, and by what means?

Professional men should by all means belong to some photographic society and contribute their share to such institutions, so that it would give the president and committee a chance; and in large towns where there is no society let them join the nearest, and give a helping hand to raise a fund for testing and proving vended processes. I saw a picture only the other day—a good one, true—and the background was put in powder colours, and shadows glazed; it put me in mind of days gone by glass pictures, when many times I wondered how these effects were produced, and by an amateur coach painter. This we called rubbing-in, and have used common carbon from the fire grate.

Many of my own county readers will remember, when Baume was in Leeds, powder colours were used by this gentleman’s artists (some Germans), and another establishment which paid quite a subscription for simple effects, were by far the best. We have now a similar method patented, and I have seen Mr. Stortz produce the same effect cleverly, only in colours blended so well, creating harmony in the whole picture. Mr. Stortz’s was the first I ever saw on paper. I don’t grumble, mind. Far from it. But I do think that our societies should enter into these things; and let the members assist in helping them.

For myself, I have the Winsstanley process of pre-lighting, I have my own opal glass, and the Flapper; and those who don’t know what that is send me their address, and I will tell them, and charge them nothing. In this county we have had very bad weather. True, many work with full aperture, with Ross 3, and No. 2B Dalmeyster. I don’t. My weakness is for sharpness and softness combined. I have given the withdrawing the diaphragm a fair trial, and cannot boast of much quickness. My average in summer is twenty-five to thirty seconds; spring, sometimes twenty seconds; but I have now gained some ten to fifteen seconds by withdrawing the diaphragms. Yours, &c.,

AN OLD HAND.

The Studio, Whitworth, Jan. 18th, 1875.

SECRET PROCESSES AND COMMITTEES OF INVESTIGATION.

Sir,—The very excellent suggestion contained in the pertinent observations made by Mr. Young in your issue of the 1st instant, runs some risk of being lost sight of by a misconception of their meaning. Mr. Young’s suggestion was, if I understood him rightly, that fifty good men and true should undertake the examination of new methods which were duly published, and so avoid the necessity of buying secret processes. Mr. Edwards seems to understand that the proposal was, that a committee of fifty photographers should be formed to test secret processes, a thing manifestly impossible. This, Mr. Edwards sees clearly enough, and he suggests that a committee of five trustworthy men would be sufficient to test and report upon the value of a secret process offered for sale. This is probably true enough; but it does not seem very likely that such trustworthy committees will be readily found to undertake such a duty. For whose profit should they undertake such a responsibility? If it be true, as it is frequently alleged, that “secret processes” are generally processes which have at some time been published, and that the work of the “process monger” consists chiefly in working them out to a successful issue, fifty good men and true could do the same with involving any money.

Mr. Edwards rightly says, “we must not always expect to reap the advantage of every improvement and give nothing in return,” but it is a fact that almost every discovery, every great improvement in the art, has been given freely to the public, and the injunction “freely you have received, freely give” is peculiarly applicable to photographers. Having freely received, photographers should be willing to give some time to testing new things, and to give freely the results of their investigations. This is what they should give in return; and if they would adopt the suggestion of Mr. Young, they would have little need for purchasing secret processes. The suggestion in Mr. Hooper’s paper that committees of investigation should be appointed by photographic societies, is a most important one, and well worthy of being carried out.

The note to Mr. R. W. Preston’s letter in your last, seems to cover the entire ground in relation to secret processes. Those who are anxious to obtain the results of the investigations of others, without investigating themselves, ought to be willing to pay for them, and to take the risks of buying a “pig in a poke.”—Yours, &c.,

SBNX.

THE SIMPLEST AND BEST MODE OF ENLARGEMENT.

Sir,—Your correspondent, “A Provincial Photographer,” in last week’s issue, asks me to give a simple and effective plan for enlarging from card negatives to about ten inches, which can be done at a nominal expense and produce a good result. I have much pleasure in communicating the method, in daily use in my establishment, by which such pictures are produced, that it would never occur to anyone to suppose they were enlargements. Of course, I mean, the enlarged plates will not exceed ten inches in size. When you exceed that a different procedure is required.

Procure from Spencer, Sawyer, Bird, and Co. a four-shilling packet of special transparency carbon tissue, and, following the perfectly simple instructions given in their book, or in several places in the News and recent Your Books, print transparencies from the negatives; this four-shilling packet will print about one hundred and fifty, so the expense is not great. No one who once employs carbon transparencies ever goes back to collodion. From this, taking care not to reverse the enlargement, make, by the usual well-known means, an enlarged negative. A hole in the side of the dark room or a cupboard to hold the transparency answers every purpose. Do not varnish the enlarged negative, but cover it with albumen diluted. When this is dry, lay over it back and front the paper vegetal, which may be procured at Messrs. Marion’s, price four shillings and eight pence per quire. On this work, in Mr. Lamberti’s method, as described in your number for October 23, 1874.

Nothing can be more simple or less expensive than this process and nothing more satisfactory than the result. The object in using carbon for the transparencies is because by so doing the lighting and delicacy of the original negative are carried forward to the enlargement, but we all know too well with a collodion positive how opposite is the result occasionally.

If my correspondent will, I am sure, believe me when I say the above method is not theory but practice, and is in successful use every day in my business.—Very respectfully yours,

S. FAY.

Proceedings of Societies.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The last meeting of this Society, held on Thursday last week, was of a semi-public character, there being also a large attendance of ladies. The Rev. F. F. Syntham, M.A., President, occupied the chair, and after the transaction of some routine business, Messrs. Reynolds, J. Hare, Grainger, Cashesdale, and Aslany were admitted members.

Mr. Fay exhibited a print from a negative that had been submitted to the members at a previous meeting of the Society, and some carbon transparencies.

Mr. Spillers exhibited the nitre-sulphur light, and demonstrated
the purity of the flame by means of a card containing specimens of silk of various colours. The fused nitre balls he considered to be a convenient form in which to use the nitrate of potash.

A large collection of transparencies lent by Messrs. Hunter, Young, and others was then exhibited by Messrs. Oakley by means of their magic lantern, and Mr. Gore gave a description of some views in India that formed a portion of the series thus exhibited. The exhibition was very successful throughout, and afforded much gratification to those present.

Talk in the Studio.

ACTIC LIGHT.—The Athenæum says:—"When the vapour of bisulphide of carbon is mixed with nitric oxide gas, the mixture, on ignition, burns with an intensely luminous flame of high actinic power, but of only momentary duration. Mr. Dohachanl and Mermel have, however, recently succeeded in producing such a lamp in which the mixture may be conveniently burnt, and thus applied to photographic purposes. The nitric oxide is generated by the action of iron on a mixture of nitric and sulphuric acids, and after mixture with vapour of bisulphide of carbon, the mixed gases are burnt in a kind of Bunsen's burner, the products of combustion being rapidly carried off by a chimney. For the purposes of the photographer this new flame is said to be superior to that of the magnesium lamp, whilst it is estimated to have twice the chemical power of the oxyhydrogen flame, and three times that of the other light.

IMMENSE PHOTOGRAPHS.—There is now on exhibition in Paris, says the Revue Industrielle, the two largest photographs which have been made since the introduction of the art. One of these photographs represents the principal facade of the new Opera, the other one the facade of the store, by Rude—of the Arc de Triomphe de l’Etoile. Each of these prints measures forty feet three inches in length and three feet four inches in height. They were obtained in one single piece, by long-known processes, and with the aid of a large and specially constructed camera. Except for the size, the effects of the exposure are identical which, perhaps, are not reproduced with absolute fidelity, especially the portion representing the dome of the grand Opera, which appears, on the photographs, to crown the facade including the balustrade, parapet, &c., the lines of the pictures are of remarkable excellence; the mouldings, the busts, the medallions, the inscriptions, and even the minutest details, being reproduced with rare perfection. The attempt is being made to secure pictures even larger than this.

From a Programme of the French Photographic Society. The Polytechnic Institute gives a process by Mr. Willis, as follows:—The paper is floated on a solution of one part potassium-platinic chloride in forty-eight parts of water, dried, saturated with plumbo nitrate solution, 1 to 12, dried a second time, and then washed with solutions of oxalic acid, 1 to 10, and then washed with a solution of nitric acid, a little oxalate has been added to render the iron salt soluble. When dry, the paper is exposed under a negative, and the weak brown picture produced floated on a hot solution of potassium oxalate, which develops it to a deep black. It is then washed in a dilute solution of oxalic acid, next in hot water, and lastly in water. Argentite may be substituted for the lead salt, or platinic bromide with ferric tartrate for the potassium-platinic chloride.

THE PHOTOGRAPHIC NEWS. [January 22, 1875.

W. G.—You will obtain seed lace of any drydressers, or of many chemists or silvers and colourmen. We cannot tell you the price.

BLESTRA.—We do not personally approve of the method of isolating a body by leaving it in a plate or glass, as the action of the dip may proceed from several causes. You will do wisely to make your bath always in the manner which experience teaches you gives immunity from such stromaus. The use of any kind of powder to abrade the leaf, and so obtain a tooth for a lead pencil, involves very great risk, and should be applied only with the greatest skill and care. We never find a trouble in obtaining a tooth for a pencil, or in the direction of abrading powder. Gentle rubbing with the end of the finger, without any powder, will secure a surface on which the pencil will bite. The application of a little turpentine upon the varnish will materially give such a tooth, and will give such a surface. The application of the spirit varnish to the plate without much heat, especially if the varnish has been made very thin by the addition of linseed oil, will give such a surface.

F. W. REYNOLDS.—Many things will, of course, affect the quality of the final tone of a picture; but in your case it is not the paper or the toning bath, but the negative. The print you enclosed possesses, in our estimation, a very good tone; if it had been toned further, it might have acquired its blacker which, however, have become somewhat flat and weak. To permit toning to an intense brilliancy black, the prints must be produced from a very vigorous negative, with strong contrast. If positive prints with strong contrast are to be obtained, the negative must be thin and soft, the best and richest tone it will yield will always be of a somewhat warm tint. If the toning be carried further, it will, in such case, grey, not black. In the case of a negative which is very thin by the addition of turpentine oil, it will give such a surface.

J. NEILSON.—The image appearing on applying the developer, and then at once disappearing, is still, in some cases, a case of fog. Such fog may proceed from many causes. It may be that the solution of the bath, in which case a drop or two of nitric acid will cure it. It may be that the bath is contaminated with some foreign matter, in which case neutralising and warming, or boiling will be the remedy. It may be that the light reaches the back of the room or camera, in which case the remedy is obvious. It may be that the use of very new collodion, or other causes, which must be sought for one another until the right one is found.

X. Y. Z.—The addition of cyanide to a dissolved negative bath is a favourite remedy with many operators, and is often found beneficial. The effect of the addition is the formation of a precipitate of cyanate of silver, which carries down with it impurities present in the solution. It may be used further to acquire a blacker which, however, have become somewhat flat and weak. To permit toning to an intense brilliancy black, the prints must be produced from a very vigorous negative, with strong contrast. If positive prints with strong contrast are to be obtained, the negative must be thin and soft, the best and richest tone it will yield will always be of a somewhat warm tint. If the toning be carried further, it will, in such case, grey, not black. In the case of a negative which is very thin by the addition of turpentine oil, it will give such a surface.

HOPFELD.—Your diagrams are scarcely sufficiently complete to enable us to form a very perfect idea of your plan; but so far as it appears to us to be founded on the principles of your solution, and to promote facilities for obtaining a variety of effects. Blinds and curtains depend much on circumstances. As a rule, we prefer curtains of white or blue calico sliding on wires.

C. MACKEEN.—We have a personal knowledge of what is the most salubrious size of photographic landscapes. We can only suggest the results of observation. Mr. Bedford chiefly produces landscapes of 12 by 10 and stereoscopic size; Mr. England produces whole-plates and stereoscopic size; Mr. Wills, of 8 Parmain, produces stereoscopic and about 7 by 5. These are three of the most distinguished landscape photographers, and we presume that they produce the works which experience has taught them suit the public taste. The subscription to the Photographic News and postage is 15s. per annum.

S. S. YOUNG.—Received. We shall have pleasure in forwarding your membership to the meeting in February. We are obliged by your expression of your good opinion. The Year-Book has been forwarded.

C. A. B.—The iodiser you have used is a very good one, and will do well, if the colloidion, go by satisfactory results. The colour does not depend upon any other cause; the chief advantage of this free iodine is, that it generally aids in securing clean shadows. You may easily produce it by adding a little starch to the colloidion of iodine.

W. T. BICK.—The border is very neat and good of its kind; but we confess to a dislike for ornamental borders to cards.

Several Correspondents in our next.
The Photographic News, January 29, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Thebes Transit of Venus Expedition.—We are glad to announce the return, during the past week, of Captain Abney and his party from his journey to the country abounding in ruins of the ancient empire of Egypt, to the south of the great sacred city of Thebes. The journey, though rough and laborious, was successful in every way, and the returns to the country will be of great value to the scientific world. The results of the expedition will be published in a future number of the Photographic News.

Photography in Courts of Law.—There was a very good illustration in the recent libel case of Rubery v. Grant and Simpson, of the power of photography in affording convincing proof in matters relating to documents. The witnesses were shown photographs of the document in question, and it was proved that the photograph was identical with the original document.

Photographic Transparencies.—There is no more favourable way of looking at a photograph than as a transparency. Take the finest paper print you will, and after admiring all its beauties by reflected light, hold it up against a strong light and see how more plastic and delicate still it appears. Glass transparencies, such as one sees exhibited against windows or upon tables with reflectors underneath, always gain unbounded approbation; and it is really surprising how much detail a hard under-exposed negative has when a print is taken off upon glass and held between you and the light. If we could only find a way of taking a print of a way of showing a little quietness and wood after his labours, will, we hope, speedily restore to his usual strength and vigour.

Process Mongers.—Complaints come to us from abroad about process-mongers who visit provincial towns especially, with secret methods of one kind or another for sale. It is singular that this line of business should be a lucrative one, but such it evidently is, otherwise we should not hear so many warnings and complaints. In Germany, we are told, the travellers give out generally that they come from abroad; and, having got possession of the best importance for sale, and, as a rule, they scarcely ever go away without doing some business. There are, no doubt, some of the craft who deal in bona fide matters, or, at any rate, themselves believe in the value of the method they have to sell; but, as a rule, the secret imparted is one which is to be found in journals, altered a little, perhaps, but not materially. All process, however, like mystery, and the success which attends process-mongers is, no doubt, due in a great measure to their dealing in secrets, the intrinsic value of these being a matter of secondary condition. We do not remember any instance of a photographer having made a good speculation by the purchase of secret information in this way, and for this reason we advise our readers to think twice before they effect a purchase of this kind. Fortunately we are not much troubled in this country by travellers of this sort, who are to be heard of much more frequently in France and Germany.

IMPROVING LARGE NEGATIVES.

By George C灼gton.*

* The print being taken from the printing-frame, is placed against a plate of glass the same size (viz., 20 by 16), and a piece of tracing paper about one-third of an inch larger

Continued from page 3
all round is placed upon it. Now, with the BB pencil, mark out the outlines of the figure, keeping inside the lines. Having done this, the print can be put away till the mask is ready. Next damp the tracing-paper in the manner before described, and place it upon the glass plate, and turn over the edges and fix with strong gum. When the dry film is cut out, or when you want to use it, you can be done upon the tracing paper in the way of light and shade, and even pictorial backgrounds can be put in with the stump and powdered lead, &c.; but with the picture I have been describing I want to put in a dark background relieved by light and shade, with, perhaps, some indication of paneling, and I proceed as follows:—

With a large flat of cotton-wool well rubbed into the mixture of India rubber and bread, a sheet is worked in with the BB pencil, and when the deeper shadow is wanted, then the paper is made more transparent. The mask being now ready, it is placed in a large printing-frame with the tracing paper next the plate glass, the print being adjusted against the glass side of the mask so that the figure is protected, and it is placed out to print. It must be carefully watched, and if some parts want more intensity, a rough lump of cotton-wool is held in the hand and worked about the light from those parts, while the other parts print deeper. If the paneling or any other work upon the background should not be sharp enough, any amount of sharpness can be obtained by varnishing the glass side of the mask with Hughes's mat varnish, working upon it with the pencil for lights and gumming for the shadows. By the use of the both sides of the glass any design can be drawn; but I prefer the indefinite suggestion of detail which is obtained by working only on the tracing paper. It is more in keeping, and makes the background retire from the figure.

If the picture is to be vignetted, there is much less trouble, the figure having been blocked out on the negative, as described in the last paper, is placed in a printing-frame, and a piece of white or a half tinge is laid on the plate. A piece of card is roughly cut to form a vignette, with overlapping piece of tracing paper at the bottom to soften off the drapery. The print from this will be a vignette upon a white ground. This is placed in the large printing-frame, face to the plate glass, and exposed to the light, the face, hands, and any white drapery alone being protected of cotton-wool, and any light and shade put in or modified with a piece of wool kept moving over those parts which need it.

I have lately had an order which has tested this method to the utmost: a 20 by 16 enlargement of a boy in a sailor costume who was standing inside a room with the usual photographic accessories—chair, curtain, &c. The background was faulty and spotty, and in the enlargement the streaks were much too distinct. My customer expressed a wish that the background should be done away with, and something in keeping with the costume introduced, and this was effected as follows:—

The negative having been treated as before described for blocking out all but the figure, I printed just the figure and carefully cut it out with a pair of scissors upon a piece of thin plain photograph paper, and, temporarily attaching the figure of the boy to it as a guide, I put the stern of a boat in place of the chair, and an indication of sea and sky behind him. This was done in a very few minutes with the plumbago and BB pencil. Having taken off the boy, I made the paper transparent by brushing over the back a mixture of alcohol and castor oil, as described in the News some time back. This being placed in contact with a silvered piece of plain paper, was printed, and the result was a paper negative, which, after being toned and fixed in the usual manner, was made transparent in its turn, and the cut-out mask of the boy being adjusted in its place, was ready for printing-in in the usual way. Of course, I found I could improve this paper negative with the powder and india rubber; I used it and I believe it could be done upon the other side of the glass and working upon that. These are little things that experience alone can teach. If I can get to London before the holidays of the societies commence, I hope to be able to exhibit some of the pictures I have produced by this method.

THE ORIGIN, AIM, AND ACHIEVEMENTS OF THE PHOTOGRAPHIC SOCIETY, WITH SUGGESTIONS AS TO ITS FUTURE DEVELOPMENT.

BY GEORGE HOOVER.*

I now come to my second heading, viz.:—"Our claim upon the Government for a money grant and suitable premises wherein to hold our meetings, exhibitions, and have permanent offices." In order to prove the important position held by photography in the various departments of Government, I shall enumerate some of its establishments, its applications, and the benefits derived therefrom.

1. The Ordnance Survey office at Southampton, under Sir Henry James, where zincography has for so many years been successfully practised, causing an immense saving to the country.

2. The Indian branch of the above, under Captain Wadehouse, R.A.

3. Greenwich Observatory, where the declination of the magnet is daily registered, and observations are made by our late President, James Glaisher, F.R.S.

4. Woolwich Arsenal, where all alterations in military drill and equipment, heavy ordnance, and designs of all kinds are photographed, resulting in a great saving of time and expense, such work having been so successfully executed by our President, John Spiller, F.C.S.; and now by our late Secretary, H. Baden Pritchard, F.C.S.

5. The Chatham School of Military Engineering, the photographic department being under our active and eminent Member of Council, Captain Abney, R.E., F.C.S.

6. Again at Shoeburyness, where torpedo experiments are photographed instantaneously, and the effects of heavy shot upon iron plates most truthfully and efficiently depicted.

7. The photographic work at the South Kensington and British Museums.

8. The photographs of the pictures of the National Portrait Gallery [copies of which were sold by the Government at a price that seriously affected the profession, decidedly an error of judgment and tending to depreciate the art].

9. Photographers were considered essential to the complete equipment of our armies during the two late

* Concluded from page 60.
wars in Abyssinia and on the Gold Coast. As respects other benefits derived from photography we may mention the part played by micro-photography and the pigeon-post during the recent Franco-Prussian war. What thousands of families were made happy, both in London and Paris, through photography was far eclipsed, not by the usefulness of the art was in photographing eclipses many years ago, for which an expedition was fitted out under the command of Colonel Tennant, R.E., and Norman Locker.

Photography has done much for science; has furthered art and many industries; has saved the Government and the country tens of thousands of pounds, and (we believe) a serious rupture with a European nation, if the secrets of the Foreign Office were seaward to ascertain the fact.

Surely an art that has done so much for science, as well as for industries, deserves to be recognized by the Government and receive some encouragement in order to further develop such useful investigations.

It is this that inclines me to suggest a call upon the Government not only for an annual grant for scientific industries, but also for promptness in the same manner as our annual Exhibitions, and permanent offices where a studio and all appliances necessary to a good establishment should be found, and instruction given to all desirous and willing to avail themselves of the same.

I now come to my third and last heading, viz.:-The necessity of forming committees for scientific investigation. Why not then, as we report the results of the work of our experimental committee appointed for the purpose, as would be done by the French Academy of Sciences?

I would venture to suggest four subjects that might immediately be placed in the hands of committees, to be reported upon to this Society by the end of the Session or the opening of the next:-
1. Whether a substitute cannot be found for albumen that will secure permanency to silver prints.
2. "How much nitric acid should be used in the negative bath to obtain the best results and secure regularity in working."
3. "Whether a dry-plate process cannot be perfected that shall be as rapid in its results as the present wet process."
4. "Whether, by employing a more sensitive agent than iodide or bromide of silver instantaneous photography may not be achieved."

It is a notorious fact that many minds are at this moment employed working out certain problems: why not make some arrangement whereby these may be brought together? and then we shall assuredly realize rapid and valuable results. There are many here that will bear me out in this assertion, and we have a continual proof of the same; for when anything new and valuable is published some one says, "I was at work at the same thing, and have been for years."

Let us, then, do our best to start these committees at once, and, if possible, have a committee in London and a committee in Liverpool or Edinburgh, work together in the same direction for the same object, and communicate results.

Another suggestion I would make is, "increased sociability." How can this be brought about? Some think by open-air meetings; but I believe John Bull is particularly fond of sitting down. Charitable institutions raise thousands of pounds by dinners; why not try this plan with scientific institutions? It is true we have a chat over a cup of tea or coffee and a biscuit after every meeting; but what is this to an annual dinner with the Prince of Wales or Duke of Edinburgh in the chair? I fully believe in an annual dinner; let it be modeled after the style adopted by the Royal Academy and other societies.

Again, I think it a great pity that evening dress at our annual soirée was ever given up. Let these gatherings be opened with all the éclat possible: it helps to raise the status of the art in the eyes of the educated public.

One suggestion as regards our ordinary monthly meetings. Nothing, we believe, is more interesting to members, or more likely to draw out discussion, than the statement of anything that is new by a practical demonstration of the process. Every possible convenience is given for this to be done; and expense should not be spared. I would just throw out the hint here that if every member brought a lady to our monthly meetings I think it would tend to increase the interest. It is well known that many ladies are greatly interested in the art, and it might be the means of inducing some to join the Society.

Lastly, one word in favour of an annual congress of photographers, and the formation of a "British Photographic Congress." I have both spoken and written in favour of such a scheme as most desirable; and although the Photographic Society of Great Britain has, I believe, more than once proposed it, I do not believe any practical steps will willingly use all its influence to further such a scheme, especially seeing that the photographic department of the British Association for the Advancement of Science is such a failure"—and not unexpectedly so, seeing that photography, as stiil a young art, is only very partially understood by scientific men. They feel and know its importance, they see its results, but cannot enter into its failings practically, or lead to the good land of permanency.

It is one of those pursuits that require constant study as well as a lively interest in order to enter into its requirements and appreciate its usefulness and applications.

In conclusion, I again repeat the resolution it is my intention to move at the next Annual Meeting of the Society, and trust that it may lead to the adoption of some of the suggestions I have thought it right and proper to make. The resolution is as follows:

"That it is the wish of this meeting that the Council shall immediately take into consideration whether it would not be for the interests of the Society to procure a Charter of Incorporation? and also that a special meeting of the Society be called as soon as possible to hear the report of the Council thereon, and pass any resolution that may be necessary in order to give the Council power to act."

DEFECTS IN ALBUMENIZED PAPER; THEIR CAUSE AND PREVENTION.

BY DR. J. SCHNAUSS.†

So long as albumenized paper is employed by photographers in the production of their prints, so long, doubtless, shall we have to listen to complaints regarding it. Practised operators have learnt how to circumvent many of the difficulties that arise, and know how to help themselves on most emergencies. They know that it is not the albumen that is generally at fault, nor the

* Since further examination of the subject, Dr. Van Monckhoven no longer disputes Dr. Vogel's discovery.—Ro.

† Extracted from Schnauss's report on albumenized paper.
THE PHOTOGRAPHIC NEWS. [January 29, 1875.

albumenizer, but that, in most instances, the paper itself is the cause of the defects which arise, as also its storage, and the photo-chemical process to which it is subjected. It would be as difficult to find a universal remedy against failures in albumenized papers as to discover the elixir of life, or a medium that would cure all diseases that flesh is heir to. What my colleagues and myself have learnt, however, after years of experience, and by a thorough investigation of the subject, I shall be happy to write down here for the benefit of my readers.

Speckled Prints.—The tyro in photography generally makes the acquaintance of these phenomena first of all when the prints are lying in the toning bath, observing upon some of them tiny red spots which, as the operation proceeds, become more and more marked; while the print becomes darker in tone, the colour of the spots withstand the action of the toning bath, and are, therefore, after a time, more apparent. They seem to disappear somewhat in the hyposulphite bath, because the tone of the pictures is cleared up a little by the action of the soda.

An experienced printer will detect these spots as soon as he takes the prints out of the pressure frame; a close inspection of such a speckled paper, whether before or after sensitization, is often sufficient to detect the imperfection, before the material is laid upon the negative, for they then appear as matt and brilliant spots upon the surface of the paper. The defects are due either to the imperfect separation from the albumen of fibrous matter, or to the unequal absorption of the albuminous liquid by the paper. According to M. Sterfeldt, the latter defect is caused from the fact that the only two manufacturers of paper of this kind do not keep a sufficient store of the material, and the albumenizers are thus compelled to employ fresh paper, the sized surface of which is not dry enough. Unequal absorption of the albumen, therefore, takes place, and thus the defects to which we have alluded, are caused.

It would be better for this reason never to employ fresh paper, but always that which has been stored up for some time. But even in this case we are not altogether free from our old enemy, for, truth to tell, the same is not always due to the imperfect desiccation of the sizing, and was known long before the question of a dearth of paper in the market arose.

If it is not actually in the power of the photographer to prevent this defect altogether, he can do a great deal to remedy and render it almost unnoticeable. The precautions to be adopted are as follows:

1. Employing a fresh and not too weak silver bath.
2. Careful washing of the prints in clean water before toning.
3. Using a weak gold bath in abundance.
4. The fresher and stronger the gold solution, and the more quickly it tones, the more pronounced will the specks appear upon the prints appear. For this reason baths prepared with carbonate of soda, which are employed at once, are very prone to produce the defects, while old gold solutions made up with acetate of soda, do not produce speckled prints so readily. Especially to be recommended for the purpose is the arseniate of soda toning bath, which is made, up according to C. Durand, of:—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arseniate of soda</td>
<td>20 grains</td>
</tr>
<tr>
<td>Chloride of Gold</td>
<td>1 grain</td>
</tr>
<tr>
<td>Boiling water</td>
<td>6 to 8 ounces</td>
</tr>
</tbody>
</table>

As soon as the mixture has cooled, it may be used for toning. Every time it is employed there must be added to the cold bath one grain of gold and one to two grains of arseniate of soda, after which it is again serviceable within a few minutes.

2. _Blisters on the Albumen Surface._—This is a very well-known defect in silver printing. My own experience, and that of others, proves that it is due entirely to drying the albumen film to too great a degree, the degree of hygroscopic moisture, which the raw paper possessed at the moment of its being albumenized, never being taken into sufficient consideration. These blisters may be prevented very well by taking sufficient precautionary measures, as for instance:

1. Keep the albumenized paper in a damp locality.
2. Mist-ening the back of the albumenized paper with a damp sponge, which must be, like the water, scrupulously clean.

The paper in the latter case is allowed to become slightly again before being sensitized. It must neither be wet nor dried by artificial means before it is floated upon the silver solution, and the latter should be strong and fresh enough to cause the albumenized paper to be treated upon a somewhat riper where alkaline toning and fixing baths are made use of.

3. _The Repulsion of the Silver Bath_ by the albumen film is also obviated by the precautions specified above. It is in the case of a horny and well-dried albumen surface that the repulsion of the silver liquid is most apparent, and it is in weather this disagreeable phenomenon is enough to drive one to distraction, almost. As a matter of course, the defect is apt to appear more frequently in doubly albumenized papers than in those which have received but one coating of the material only. For this reason photographers have recently selected the latter description of paper for portraits, which has, moreover, the advantage of being less costly, a matter of some significance just now; and as the price of albumenized paper is high at the present moment, it is by no means the bounds of possibility that another and better photographic paper may come into commerce shortly, for, among others, experiments made with shellac solution and borax, or phosphate of soda, have not been without some success.

4. _Red Streaks in the Toned Pictures_, which are at once seen due to a deposit of albumen, either by draining or dropping, are very rarely formed in good papers, for they only arise when the albumenizer is not skilled in his work; and, as a rule, sheets that have been spoilt in this way are generally sorted out by the seller. Red spots on the albumen arise from soiling it with your fingers, and must not, of course, be put down to the fault of the paper.

5. _Marked Colouration of the Silver Bath_ is caused by certain albumenized papers. If the silver bath is of an alkaline character, or becomes so after long use, this appearance will not be seen in an abnormal condition except when the surface of the paper is constituted of something besides pure albumen—say of a compound of various fatty matters—or contains such substances as gum, gelatine, &c. The best plan to decolorise such a bath is to shake it up with a little knolín, or to add to it some permanganate of potash until the liquid assumes a rose tint, when it is allowed to stand for some time, being afterwards filtered.

For filtering silver or gold solutions, as also strong acids and alkalies, the so-called glass-wool (fine glass fiber) is to be preferred to paper. A silver bath of normal strength (1:8 or 10) will become discoloured much more readily than a weaker one.

6. _The Discolouration of Sensitized Paper_ is due, in some measure, to circumstances which have already been cited. If you take care not to exhaust the bath, or to allow it to become alkaline, and to shelter the prepared paper not only from light but also from air, the paper may be preserved for some time without becoming brown. A well-stored paper generally keeps well.

7. _Immediate Toning of the Prints_, and a tendency of the pictures to turn grey, is due, in the main, to employing a weak silver bath.

ABOUT THE WET PROCESS

BY PROFESSOR M. VOGEL.

When we look back at the last ten years or so, and study the progress that has been made in photography, we find that
a great many novelties of various kinds have been made known during the period. Thus we have pigment printing, lithoedruck, photo-lithography, and some improvements in lenses to record; but so far as the negative and positive processes are concerned, everything seems to have remained in statu quo. We work now pretty well in the same way as we did ten years ago, and the only progress in this branch consists more in the discovery how to avoid defects, make the work better, and how to get rid of the negative. We work, therefore, pretty well as before, but we do not grope about in the dark so much as formerly, because we understand the operations better with which we have to do. The reproach that was once made against photography, that success was due to chance, does not hold good any longer. We can now, so far as concerns the process itself, guarantee the results as much as a sportsman can predict the effect of a shot.

The operations connected with the positive and negative processes are particularly simple; it is the knowledge how to recognise defects and avoid them that is so difficult to acquire. It is against breakers such as these that the amateur is usually shipwrecked; for as amateurs practice the art merely for amusement, they often leave off as soon as this comes to an end, which is always on the appearance of faults and failures.

The professional photographer is, however, bound to meet all difficulties, and must needs give battle for days and weeks, if necessary, to overcome the difficulties in his path. Only recently a singular instance came to my knowledge. In the studio of M. Schaarhuchter, of Berlin, there suddenly came a time when the developer ceased to perform its office. The negative fogged in a most determined manner when one proceeded to intensity, and became a positive rather than a negative in this. Those who had experienced in the art may remark that such a circumstance as this is not new, but is known to arise when there is not enough acid in the developer, and the addition of this substance would speedily put things straight. But in this case acid was found to be useless, for the same results were obtained over and over again, and there was no alternative but to fix the negatives first, and intensify them afterwards. It was only some weeks afterwards that the true cause of failure came to light. A little hyposulphite of soda had, in some unaccountable manner, fallen into the stock of sulphate of iron from which the developer was prepared, and the operator on whom the duty of making up the solutions devolved, had not remarked the circumstance. But a very little hyposulphite is necessary in the developer to give character to the negative.

Still greater difficulties were met with in another studio here, where reproductions are made, on the occasion of receiving a large supply of Belgian glass. This was offered at a low price, and as many as ten thousand plates were ordered to be supplied. The glass was found to be so impure that, despite treatment with acids, scrubbing, &c., it was impossible to secure a clean surface, and it was impossible to make a print, the glass blurring the image. Thereupon it was then to attempt to clean them any more. The albumening of a glass plate is, however, an operation which, if undertaken in a damp atmosphere, most assuredly bring disagreeable results, and, as luck would have it, the studio in question was very liable to become damp. A continual war had, therefore, to be waged with the bad material, and the operators, you may be sure, were pleased enough when at last they could stand the end to this.

I may here remark that recently the employment of India-rubber and gutta-percha have both been recommended in lieu of albumen. Many local operators, as also myself, have tried a covering of rubber with the best success, so I can recommend its use to everyone, and even to those who employ good glass for their work. It is necessary for the photographer to produce his own rubber solution; but this is not difficult to do, and I doubt it will soon be possible to obtain the same in commerce.

If you want to make the solution yourself, dissolve one part of India-rubber in a hundred parts of chloroform. The pure, soft, so-called natural rubber must be chosen, and this is cut into very small pieces. The material takes a long time to dissolve, and the turbid portion is uppermost. The clear liquid should be secured by means of a pipette, and this is then diluted with ten times its volume of a light pure benzole, such as is employed for glove cleaning. After this care is necessary to pour off the clear supernatant fluid; the clear liquid is secured, which will last a long time and work well. An absolutely clear solution is indispensable for working well.

Gutta-percha solution is more easily made. One gramme of gutta-percha is dissolved in ten grammes of chloroform. The solution is rapidly produced, and then the brown fluid is diluted with one thousand cubic centimetres of benzole and filtered. After a short time the filtrate becomes turbid again and milky. It must then be filtered again. Careful filtration is, indeed, the principal thing to be attended to.

The plates to be covered with this material must be acidified, washed, and thoroughly dried. They are then dusted, and coated with benzole solution, as if it were collodion. The superficial liquid is caught in a separate vessel, and filtered again before use. The plates dry very rapidly, and are capable of employment in a couple of hours; nevertheless it is better for them to remain in a position sheltered from the dust for a dozen hours. They keep good a week.

Sometimes the plates do appear a little grainy, but that does not matter. Before pouring on the collodion the plate is dusted as in the ordinary way.

A photographer of my acquaintance tells me that he has remarked defects in his bath which he believes to be due to benzole. This, however, is highly improbable, for when a plate is stood for a dozen hours there should not be a trace of benzole left, if this is in a pure state. It is, of course, pure benzole that should be employed, and not naphtha. The latter may dissolve rubber more easily, but with the aid of chloroform there is no difficulty in using pure benzole. It is more probable that defects in the bath arise from impure collodion. There are many kinds of collodion in commerce which, besides pyroxiline, contain foreign bodies, of which even the manufacturer himself knows nothing. There is found, for instance, in the preparation of gun-cotton by the action of sulphuric acid a little xyloïdin, nitro-glucose, gum, &c., and these bodies are not to be removed on washing, but remain in the cotton, and being soluble in ether and alcohol come with the collodion into the bath. Every plate that is dipped into the bath increases the quantity of these bodies in it, and so long as they accumulate in the bath to such a degree that they become injurious, and are the cause of streaks and fog upon the plates.

Gunnast made the proposition some time ago to purify the pyroxiline from the by-products by precipitating collodion with water, and thus separating the noxious bodies; and precipitated pyroxiline of this kind did actually come into operation. Unfortunately it was rather dear, but it was bad to work with. Recently the purification of the cotton from its by-products has been effected in a cheaper manner, and the purified materials come into commerce under the name of collodion. I have now employed this material for a couple of years, and I must say that since I have tried it many defects that I used to perceive in my bath have disappeared.

In short, of course, it is necessary to secure pure ether and alcohol for dissolving the pyroxiline. This is a matter often overlooked. It is not unfrequently the case that photographers procure their alcohol and ether from the first best druggist or apothecary, and the purchase may contain, irrespective of water, a trace of fusel oil, which makes sad havoc in the silver bath; furthermore, other times, this contains spirit impurities, which are not less injurious. When impure solvents are employed in the manufacture of collodions, the purest form of collodion is obviously of little use.
THE DISCOVERER OF THE COLLODION PROCESS.

It is somewhat late in the day to renew the enquiry, "Who discovered the collodion process?" The question has been so fully and so publicly discussed years ago that nothing new remains to be said. The question was reopened, in the columns of a contemporary a few weeks ago by Mr. Sutton, who claims the discovery for the late Mr. Bingham, of Paris, whose acquaintance he made a few months before his death, and by whom he promised to give the public the claims in question. If a new claim and a new revelation of evidence were to be made, no one could blame the friendly zeal of Mr. Sutton, even though it involved the mainling of another long-established reputation. But the curious part of the case is, that Mr. Sutton seems to be quite unaware that Mr. Bingham's claims have been published and examined before during his lifetime, and that, unless we are mistaken, he was satisfied with the position in relation to the origin of the collodion process which was awarded to him. We had the pleasure of knowing Mr. Bingham for many years. He generally favoured us with a visit when he was in London, and we invariably visited his studio when we were in Paris. We have had many conversations with him on the origin of the collodion process, and our early experiments in connection therewith. The extent of the claims now made for him by Mr. Sutton, to the effect that he discovered every step of the process from first to last, certainly transcends those we have ever heard from his own lips. Whether Mr. Sutton misunderstood him, or whether his claims became magnified in his own view, we cannot state. Possibly the latter was not improbable, as the lingering disease which terminated his life produced much debility and prostration of both mind and body for many months prior to his death.

That Mr. Bingham was one of the earliest experimentalists with collodion there is not much room for doubt. He was in the natural position to be the first such experimentalist. An assistant in the laboratory of Faraday, where he came into contact with Schönböck, whose experiments with gunpowder were first brought out in this country, he was one of the first who, in this country, saw or made collodion. Being at the same time an ardent photographic experimentalist, and having tried various viscous media for photographic salts, it was very natural that he should early try the new substance which Schönböck's discovery gave to the world. That he did so, but with indifferent success, we have heard from his own lips; but that he discovered every step of the process as Archer published it we never heard him state. The priority of his suggestion, and the circumstances which attended it, we published, on the basis of evidence with which he furnished us, we published some years ago, and the extent of our claim on his behalf, we had subsequent reason to believe, met with his approval.

The priority to Archer's publication of Le Gray's claim for suggestion is also beyond question, and equally beyond question its vagueness and unpractical character. That he himself had no faith in it is manifested by the fact that as late as 1853, when the collodion process was becoming popular in this country, Le Gray published his conviction that the future of photography rested on the paper process as giving finer negatives than glass. The early experiments of Bingham and Le Gray, both of them photographers of the highest ability, were, so far as they are on record, crude, imperfect, and immature. It was the collodion process, published in a tolerably definite form, of Archer which rapidly gained popularity, and which with comparatively little change, is the collodion process of to-day. To what extent Archer might have been indebted to Mr. Bingham we cannot tell; we never heard Mr. Bingham claim more than the earliest use of collodion. From enquiry amongst intimate contemporaries, we cannot learn that Archer and Bingham ever worked together at all. That Archer was greatly indebted to some of their suggestions for the collodion process, and that working the process into shape there is to doubt. Mr. Diamond was one of the most successful of these, and produced presentable pictures by means of the process with which he, in conjunction with Archer, experimented. But none of these things detract from the fact that Archer worked his process into shape; Archer gave it to the public, and with his name it will always be legitimately associated.

ALUM FOR ELIMINATING HYPOSULPHITE.

The plan of using alum for eliminating hyposulphite from prints after fixing, proposed by Mr. Clemons, continues to attract attention in the States. Whilst many speak in the highest terms of its value after test experiments, others complain that it spoils the tone of the prints. It will, doubtless, have a bleaching or reducing action upon the print; but if it be found in practice to have a valuable effect as regards permanency, it would not be difficult to print and tone deep enough to prepare for the reducing effect in the image. It must be borne in mind that as yet but little testing time has elapsed, and that theoretical reasons render the issue doubtful. Mr. C. W. Hearn, writing in the Photographic Times, after protesting against the habits of photographers of only half testing new processes, is not adhering to early experiments in connection therewith. Mr. Clemons recommends for his directions in using the alum bath the following:—"In the first place, he advises the use of a saturated solution of the alum, and to let the prints remain in two minutes at a time, and then rinse the alum off, and place them in again for three separate times, and then rinse and wash for a minute or so, and mount." Now you may ask, "What is all this fuss about, and what is that, me, you know, going to say anything yourself concerning it?" Now this "fuss" is for the purpose of drawing other photographic printers out, and to give the fraternity at large the result of their experiments in this affair, and as to myself, I will simply give the result of a single experiment, which was simply an experiment of permanency of print, more than it was for the beauty of tone.

About the 1st of August, by request of Mr. Clemons, I gave the alum a trial, as follows:—After I had fixed a batch of prints, I took therefrom a couple of cartes de visite, rinsed the superfluous solution from them, and then without any more ado, I placed them in a bath of alum for the space of ten minutes, and then rinsed the alum water off from them, and set them away to dry over night. In the morning I took them from the washing tank two other prints, which had been washing all night, and marked on the back of the respective prints the precise manner in which each one was treated, and then tackled the four cartes side by side in a part of the printing-room where
the sunlight falls many hours during the day, and yet, now these prints, after having remained there fully five months, show no indication whatever of the least signs of fading, the album prints standing the test equally as well as the prints which were washed all night.

Now while my experience does not date further back than the 1st of August, yet I have received letters in which I have been informed that some persons have used it constantly for over a year, and in my next I hope to be able to give other notices of the permanence of the prints which have been subjected to the album bath. Many photographers cry against the album destroying the tone of the prints, my experience seconding the same, but Mr. Clemens informs me, in a recent letter regarding it, that he had no difficulty in obtaining fine tones. But knowing nothing further in that line at present, I will not write further about that; but if Mr. Clemens will enlighten the fraternity in that particular, I think that I will speak for them all in saying that he will thereby remove the loudest cry against it. In the meantime, I believe we all, I myself at least, would like to hear from other photographers who have used this album with or without success, and I am sorry to this present there is no brilience in the appearance of the finished prints treated with the album bath, for the purpose of eliminating the hypo, and which have undergone but little, if any, washing worthy of mention after fixing.

FRENCH CORRESPONDENCE.

MM. BISSON ET FRERES, THE WELL-KNOWN PHOTOGRAPHERS.
—IMPROVEMENTS IN DRY PLATES AND APPARATUS FOR TRAVELLERS.—THE EARLY DAYS OF CARBON PHOTOGRAPHY.—RECENT IMPROVEMENTS.

Some days ago I received a visit from M. Bisson jun., whom I had not seen for some considerable time. There is scarcely a reader of the Photographic News, I feel assured, who has not heard the name of this skilful photographer, who, since the birth of our art, has always been in the van, so far as regards improvements and progress. Bisson, who for a long time has been associated with his elder brother, acquired a European reputation, in the first instance, by the grandeur of the works he produced, when masters in the art were but few. When the colloidion process was first of all practised, MM. Bisson Freres produced pictures a metre long, which were as astonishing to their brethren as they were to the public. After having travelled through Switzerland, and secured views of all kinds, which were not only admired by the traveller, but also much appreciated by scientific men, they had the hardihood to scale the most inaccessible peaks with dark tent and camera, and perform feats which seemed altogether insurmountable. Three times was the ascent of Mont Blanc made, and panoramas produced such as are to be perceived only at that height, together with other clichés of interest taken en route between earth and sky.

Later they made, no longer on their own account, but upon that of M. Levy, the well-known stereoscopicist, twice successively a voyage to the East, and brought back some charming views of that fairy land that goes under the names of Constantinople, Greece, Egypt, and the Holy Land.

In their early part of their career, in order to render the art more easily applicable in long journeys, &c., MM. Bisson completely modified their methods of operating. A deep study of the albumen process was made, which lends itself better to long voyages, and they made themselves master of all the difficulties that presented themselves. Experience showed them the inconvenience of being encumbered with much baggage, and proved that the travelling photographer should have the most simple apparatus and most simple process to work with.

Having resolved the problem for themselves, M.M. Bisson frères have now the idea of giving the key thereof to their colleagues, both professional and amateur, offering them plates already prepared, and a travelling apparatus constructed upon the most simple and approved methods. In the visit just paid me, M. Bisson, jun., explained all this, and exhibited some specimen plates which he has prepared, and a model of the apparatus he has invented. The plates shown me were of the most delicate nature, such as only a well-versed practitioner could have secured, and the results are truly marvellous. M. Bisson assured me, too, that they may be employed with great certainty, and without fear of those irregularities in manipulation which often cause so much disappointment to those who employ dry plates purchased in commerce.

As regards the apparatus, I may state frankly that I have never seen anything so simple or perfect in construction. In its ensemble it much resembles the scéenographic, which I described a short time ago in these columns; but it is seen at once that only a master in the art could have designed so perfect an apparatus as this is. Thus, by way of example, I may say that the frames in which are placed the sensitive plates are veritable masterpieces of adjustment; and, notwithstanding their lightness, two plates find place in very one of them, fixed back to back. They are mounted by a twist of blanched linen, so as to secure two plates it is only necessary to reverse the slide.

There is not a portion of the apparatus which does not work with mathematical accuracy, and yet, despite the fineness of workmanship, the price does not exceed that of the Dubroni playing which is sold about France to the students and schoolboys.

In short, of course, I will give further details about the plates and apparatus on a future occasion, confining myself to this brief description until M. Bisson has definitely concluded the arrangements he is making respecting them with the principle photographic dealers in Paris.

In 1862 Poitevin put a finishing touch to his process of printing in permanent pigments which he announced that his method was now in practical condition, and he was prepared to grant licenses to such professional photographers who might desire to practice the art. There was only one applicant in Paris for permission to work the process, and this was M. Pierre Petit. As soon as he had acquired the right of working the process from Poitevin, Pierre Petit caused to be painted on the walls of his establishment in letters two metres high an announcement which he believed would attract crowds of customers. It was to the following effect:—Imperishable carbon photographs. At the same time he showed the lessons given him by the inventor. But Poitevin, to whom photographers owe so many ingenious discoveries, and who knew so many of the theoretical secrets of the art, was himself a very mediocre operator, and could not practice what he preached. Moreover, his method required those improvements and simplifications which only continued practice in the art day after day could bring about, and consequently Pierre Petit was compelled very soon to lay aside his enthusiasm. Again the public did not yet understand what photography in carbon was, and did not therefore bestir themselves to demand those imperishable photographs of which specimens were shown them, specimens which scarcely gave a favourable idea on the subject. Things, therefore, continued on in the same way, and Pierre Petit, like his neighbours, continued to give his customers portraits, more or less permanent, printed by the aid of silver salts.

Since that time a dozen years have passed away, and, despite the great and persevering efforts that have been made, carbon photographs have remained out in the cold, having failed to make way into our studios. But there is now, we are glad to say, signs of the process reviving, for it is making its appearance in the studios. Among these may be mentioned Pierret at Braun, Franck de Villecholle, Liébert, Walary, Truchelet, &c., all of which have made arrangements for this new
method of printing. In a short time, doubtless, the public, which has now scarcely made up its mind upon the subject, will have nothing more to do with any prints excepting those produced in permanent pigments. For it must be admitted that the portraits which have been seen in the photographic studios which we have been referred to are far superior to pictures which are produced in the ordinary way by silver printing. Therefore, it may be the sad commentary of our generation that we are now on the eve of that revolution which has been anticipated for many years past, and for one am not sorry it is coming to pass.

ERNEST LACAN.

COMETS AND SPOTS.

BY W. J. STILLMAN.

I have been making some studies on comets and spots, in emulsions especially, and find that the worst cases, and a large proportion of all, come from impurities on the plate, either held there by a substratum, or falling on the plate in coating, particles of dust of chemical nature, or impregnated with chemical substances. In wet collodion, it is easy to eliminate the effects of the solvent held in suspension in the developer, which will sometimes adhere to comets, with other causes of the same defect, because the flow of the developer follows pretty much the same law as that of the collodion, and it is customary to connect the curves of comets or the direction of their flight, with the flow of collodion or developer. If the developer contain particles of any chemical reagent capable of reducing silver from the nitrate, the comets are due to the connection of so-dry a solution of emulsions that the developer is often cast on by aqueous solutions, the surface of the film and carried by the developer with it. These last are generally very small with short tails. With a carefully filtered bath, and an old developer (several days at least) carefully deposited, there will be no danger of comets from either of these causes, and they are rarely those to which the trouble is due. In dry-plated development, especially, we have nothing to do with developer or bath comets, and yet comets are more common and graver nuisances in dry plates, particularly emulsions, than in wet collodion.

A careful examination of many negatives by different dry plate processes convinces me that the principal or most disastrous cause of comets, opaque specks, &c., is the albumenizing process, where the film is dissolved in the substratum. If these particles are readily soluble in alcohol and other solution takes place at once, and the dissolved chemical follows in a line in the direction of the flow, the action being strongest towards the nucleus of the comet. If there is free silver in the emulsion or the developer, of course there is a line of reduced silver in the negative, if not, and the chemical particle have a reducing power, as, for instance, a particle of carbonate of soda, there is a more energetic reduction as soon as the developer is poured on, with the same result. Sometimes the comets will head in opposite directions, which shows that there were numerous particles both fixed on the plate and lying on it, in the former case the line of dissolved chemical following the flow and leaving the nucleus behind it, and in the latter the nucleus moving on with the wave of collodion, and leaving its track imprinted with its substratum.

In using the Liverpool washed emulsion, I have found one lot of plates marked by comets and transparent or opaque spots, and another lot, prepared from the same bottle, perfectly free. When coating these in my room at an hotel, I found them usually very free from specks, so long as I used no substratum; while plates coated in a room used for photographic purposes, or which had been previously coated with albumen in such a room, were liable to all these defects. In these plates, though there is no question of free silver, there is also no chance of washing out the chemical once entangled in the film; and therefore, while comets are very rare, transparent and opaque spots are very common when the substratum is applied in a room where there are chemicals, especially alkalis—soda, potash, or salzes from the grate—floating in the air. Plates coated with the Liverpool Co.'s emulsion with no substratum, but simply a border of india-rubber, were the most free from specks of all kinds of dry plates I have ever used; while others which had had a coating of albumen applied in a Zombies were the same, but a slight hill and a light ridge, this was now on the eve of that revolution which has been anticipated for many years past, and I for one am not sorry it is coming to pass.

I was lately called in to advise on the remedy for an occurrence of specks and comets in the Liverpool Co.'s plates, and, after examining emulsion, water, preservative, &c., &c., without finding any fault, I discovered a specked emulsion in the albumenizing room which caused the specks. For coating spoiled plates to remove the old film, and in which the soda had dried in efflorescent crystals over the edge of the dish, the plates in it, &c., in such a way that the least touch would set about small particles of soda which might readily attach themselves to the wet albumenized plate. Soda, and every form of chemical substance not in bottles, was at once banished from the room.

When the spots are transparent the dust attached to the substratum would of course be of such chemical nature as to produce insensitiveness; and this spreads as the plate is kept, so that plates which showed no spots when first prepared would show large disks of insensitiveness with a centre of foreign substance. When plates are thoroughly washed this is washed out, but in lightly washed plates, and especially in the washed emulsions which receive no washing in the film, these spots are exceedingly troublesome unless proper care be taken to avoid dust.

There is a form of spots recognizable enough, and known by all wet collodion workers as the result of too much of some slightly soluble salt in the iodo-bromised collodion, which may be pitting, when one thinks that the collodion has been thoroughly deposed before using, and that all particles of salt have settled to the bottom. The reason is, that as the solvents hold in solution all the salt they were capable of holding, the moment they begin to evaporate the salt gathers together in minute crystals in the film, and when the plate is dipped in the bath they re-dissolve, impregnating the film for a small distance round with a greater amount of salt than the average film contains, and produce spots of insensitiveness, and transparency in fixation.

Correspondence.

THE "VEXED" QUESTION.

Sir,—The championship of a dying assertion, undertaken by Mr. Sutton in the British Journal of January 1st, although bearing testimony to his humanity is not the less extraordinary on account of the total absence of dates, or, indeed, of any single fact connected with the case, except that of extolling the genius of one man by depreciating that of another—certainly a most illogical method of proof. Mr. Sutton bears hard upcn Archer and seems to indicate he was ignorant, inscientific, and in fact accuses him of every fault a photographer ought not to possess. Wanting a personal knowledge of Archer (which might give rise to partialities) a just decision of his abilities might be grounded upon his published contributions to photography. In the May number of the Chemist, 1850, Archer pointed out the energetic qualities of pyrogallic acid. This, in
itself no mean contribution, and paves the way for that celebrated article detailing the whole of the collodion process, with but few alterations such as practised to the present day.

As I shall have more to say respecting this claim, I merely at present give the date of publication, the March number of the *Chemist*, 1851.

Le Gray published a "Manual of the Collodion Photographic Process," in which was given a more elaborate explanation of the manipulatory details than could be contained in the *Chemist* of 1851, and the directions in the Manual are at once concise and practical, and the book in its simplicity, would hold its own against any treatise of the present day.

The following is a paragraph selected from the Manual, page 22:—"The advantages gained by using a stronger bath of nitrate of silver do not, in my experience, counterbalance the increased expense, I shall therefore give the old proportions thirty grains nitrate of silver to one ounce of water—as being the most economical, and giving the least trouble." After a lapse of twenty-two years from its publication, can the present generation of photographers say much the same? This is but one of the practical hints treading in the "manual" hand, nor can we pass over the writings of Archer, or his means of information most cruelly misdirected, to apply to the labours of Archer expressions, (even were he living) at once harsh and unjust, but being dead, becoming doubly so.

On comparing the dated publications of Bingham, the communication of Mr. Sutton respecting his (Bingham's) "dynamic" observations of 1843, and the collodion, receives a remarkable degree of corroboration. In all, eleven editions of "Bingham's Photographic Manipulations" have been published, the last in the year 1854. On carefully comparing several preceding editions, the practice of the publisher evidently was to issue an edition every year as follows:—seventh, 1850; eighth, 1851; ninth, 1852; &c. If this sequence was always followed, it would carry Bingham's "Manipulations" up to 1843. This is, however, begging too much of the question. The only edition I can speak of, is the seventh, 1850, January, in which Bingham, enumerating his experiments, mentions amongst them collodion. The communication is meagre in the extreme; meagre though it be, it is sufficient to indicate that the mention of collodion for photographic use is incontrovertibly due to Bingham. It is impossible to account for the fact that, as far as known, Bingham never published any protest against the claims of Archer, though during the issue of the last two editions of the "Photographic Manipulations" the collodion process was rapidly rising into commercial value. In Archer's preface (page 7) to his "Manual" of '52, he observes that G. Le Gray was the first who "alluded to collodion, and then only "incidentally as a substance that might possibly be made available;" further on remarking "that their experiments [Le Gray's] I suppose one of them produced no result."

To give an idea of what Archer terms "incidentally" and "no result," the following Appendix is copied verbatim from a "Treatise on Paper and Glass, by G. Le Gray," published by Villate, Ironmonger Lane, translated by Cousins, date 1850—one year previous to Archer's publication in the *Chemist*.

Appendix.

I have just discovered a process upon glass by hydroxyoic ether, the florides of potassium and soda dissolved in alcohol 40° mixed with ether, and afterwards saturated with collodion. I afterwards remove the surplus of silver in the camera in five minutes in a shade. I develop the image in a very weak solution of sulphate of iron, and fix with hypo-sulphite of soda. I hope by this process to arrive at great rapidity. Ammonia and bromide of potassium give great varieties of promptitude. As soon as my experiments are complete, I will publish the result in an Appendix. This application upon glass is very easy. The same success is obtained with albumen and dextrine give also excellent results, and very quick.

I have also experimented with a mucilage produced by a fascia—a kind of seaweed—which promises future success. I hope by some of these means to succeed in taking portraits in three or four seconds.

For the credit of the memory of Archer, it is to be sincerely hoped that he never saw the above appendix, as otherwise it might raise in the mind a painful suspicion of ungenerous repudiation.

It is in the appendix is not solicited upon the vague assertions of an unknown name, Le Gray's was an established fact in photography, stamped in after years by productions of bold practical originality. Here are given collodion, ether, alcohol, sensitizing salts, developer, and fixing, and the specified times of exposure would credit modern practice.

By what possible arguments, can the advocates of Archer's claim, ignore the above overwhelming proof of Le Gray's priority?

The above date (1850), but represents the translated edition, but so fully convincing is this translated appendix, that any further investigation respecting the date of the original matter was considered useless, though I strenuously oppose Archer's advocated priority, no doubt that when collodion his name will be invariably connected with. This contribution to the *Chemist* is a "Manual" and the above gave such an impulse to photography, that it is felt to the present day. Following is a tabulated view of my idea of the invention:

Date, 1850, seventh edition of Bingham's manipulations, mentions, amongst the experiments, the use of collodion.

Date, 1850, Appendix in Le Gray's work, mentioning the "Manipulation" of Archer, April.

Date, 1851, Archer's communication respecting the energetic power of pyrogallic. Date, 1851, Archer's communication to the *Chemist* on the collodion process. Date, 1852, issue of the Manual by Archer.

Sedulously in the above, all family affairs have been avoided, trying, if possible, to draw from the dotal balance some approximate solution of a "veiled" question.—Yours truly,

H. Burtman

IN THE MATTER OF SECRET PROCESSES.

In the photographic mind, there is somehow an aversion to the sale of secret processes. Yet why should it be so? If a man can do something you cannot, and is willing to impart his skill, the knowledge to you, do you suppose to some recompense, no matter if the method be new or old.

The schoolmaster teaches nothing new, and it would be quite illogical to dispute payment with him because the information he imparts has been previously published, as to quarrel with a process dealer because he points out and proves advantages you hitherto have been ignorant of.

Now as "Sennex" quotes "Freely ye have received, freely give." Photographers generally are willing to take and continue to freely receive. But what about the giving? What did Scott Archer receive? An amount less than that since asked for an enamelling process. What did Goddard receive? What did Blair? Blair who did as much for carbon printing as any other known man, and gave his experience freely; why the fraternity gave his survivor a sum he believe under ten pounds. Be it as it may, a couple of thousand pounds will cover all the brotherhood has ever given, out of their wealth, to those poor experimentalists upon whose brain-work their fortunes have been built.

With examples like this before you, photographers have the assurance to point to those whose names are struck off our mustard-roll, and barfacedly say to modern experimentalists, "Freely give," ought they not rather to hide their heads in shame.

Let him, who next quotes this saying, say what he has received and given, and I do not doubt upon whose side the balance will rest,

W. E. B.

Halifax, January 25th.

[Our correspondent "Sennex" must answer for himself, if he think proper, the argument of "W. E. B." but we may]
A PERSONAL EXPLANATION.

Sir,—I venture to ask a small amount of space in your paper in consequence of the very great number of letters I have received since the issue of the ALMANAC, and which are all on the subject of the last three or four years' work in collodion-bromide. Many ask that I should at once publish all the results of my experience, and many go back to the old discussions that took place in 1871.

It will be remembered that in June of that year I read a paper on Collodion-Bromide before the Photographic Society. I proposed a very great difference in the manner of making an emulsion from what any previous writer had done, and I showed on what point previous workers had been in error.

No sooner had my paper appeared than I was instantly attacked, and I was told I was all wrong. Knowing I was right, and feeling the importance of the modification I had proposed, I resolved to submit plates prepared in the manner I proposed to the crucial test of public opinion.

How far I succeeded in proving my case may be judged from the fact that all who really understand emulsion work (Ganon Beechey, Mr. Stillman, Mr. Mawdsley, Dr. Dawson, Mr. H. Cooper and others) agree with me, and I now find it would be a bold man who would propose to make an emulsion with ten grains of silver only to the ounce, or who would attempt to uphold the doctrine laid down by Mr. Carey Lea, previous to the reading of my paper in 1871, that any excess over ten grains was "not only useless but injurious to the emulsion."

Having, then, as I believe, clearly proved my case, I drop collateral photographic as far as having any necessary interest in it goes, and can answer all the letters by saying that at any time you have any point that my experience may assist to elucidate, I shall be most happy to contribute my mite.

I cannot conclude without thanking the numerous professional and amateur photographers who have helped me with sympathy and advice. I believe that in the ranks of the profession, as well as among amateurs, I have made not a few friends, and if one or two patents one or two persons whose trade instincts I have offended have constituted themselves my enemies, and dislike my having written and published all I know, pro bono publico, they are, happily, in a very small and powerless minority. Yours, &c.,

H. STUART WORTLEY.

DALLASTHY.

Dear Sir,—I have not had time till now to thank you for your favourable notice of the bijou reproductions of the PALL MALL GAZETTE and FUN ALMANAC. But you have made a mistake in the name you have given the process. The little things were not done by my photo-electric process, which, as you know well, produces an intaglio plate for copper-plate printing—a process I have, much against the grain, long ceased to work. They are done by Dallasthy, which is a quicker and cheaper process, intended, as you are also well aware from specimens you have seen from time to time, to produce, as blocks for surface printing and other purposes, enlarged, reduced, or same sized copies of woodcuts, type, or MS. matter, line work in pen-and-ink or pencil, chalk grain and steel or copper-plate prints, and lithographs in line. This is the process I am making arrangements to divulge to subscribers on easy terms, which will be shortly published.

"While I am on my legs"—or, to be literal, calamares—"I find myself compelled to decline an honour thrust upon me, not without covert sarcasm. An article on the so-called Prettach process, by Herr Leipold, has been translated in your journal. In that article Herr Leipold describes me as the only disciple of Prettach, and writes as if Dallasthy and Prettach's process were identical. I am neither Prettach's "consequence," nor is Dallasthy Prettach's process by name. It is physically impossible to apply Dallasthy to the Prettach process.

[Mr. Dallas proceeds to refer, at considerable length, to...]

J. MACAR WRIGHT.
other articles by Herr Leipold and Herr Scammoni in a Continental journal, in which he revives the old discussion as to the respective claims of himself and Herr Preischl. Mr. Dallas uses strong language, charging Herr Preischl with "robbing him of the fruits of his brains"; but as the matter has been discussed before, and has scarcely now even sufficient personal interest for recapitulation, we do not feel justified in filling several columns with its revival. We give the conclusion of his letter, in which he gives his estimate of the value of the process recently described.

And after all, what is the so-called Preischl process now worth? Herr Leipold has, I admit, given the most lucid description of it which has yet appeared—more lucid than the inventor’s patent. Yet, as I have said, what is it now worth? It is too expensive, too roundabout a method of photographic engraving. It is a mass of uncertainties and complexities, even on Herr Leipold’s own showing. It is not possible to produce by it uniform results, and it requires expensive skilled labour (Herr Leipold says nothing of what the engraver must do) to make its productions presentable works of art of even moderate calibre.—I am, dear sir, yours truly,

DORCY C. DALLAS.

925, Gray’s Inn Road, London, January 30.

NITRATE OF BARYTA.

Sir,—I do not know whether Mr. Henderson, or any other of your readers who uses nitrate of baryta in the negative bath, has ever observed any peculiarity in the behaviour of that salt, when added to a solution of nitrate of silver.

I have lately been preparing some baths for the coming summer—baths mostly old, which had been neutralised, boiled, or sunned, and filtered, and stored away in a south window during the late autumn and winter. They had been neutralised and boiled, retained their apparent purity, no deposit on the bottle, yet when powdered nitrate of baryta was added to it and well shaken up, in a short time a lavender, or some such tint, was observable, which lasted some hours. The second, neutralised, sunned, and filtered, with a slight deposit on the sides of the bottle, showed a much deeper stain. This was a new bath last summer, used only once out of doors for a few plates. The third, a remade bath from carbonte of silver, had the faintest discoloration. All these baths, of about 40 oz. each, were originally made with rain-water, collected in the open country in glazed earthenware vessels.

I have used throughout Mr. Henderson’s formula; viz., three grains of nitrate of baryta, and after complete dissolution, allowing the grain of influence to sink to the bottom of the bath. They are all now clear and bright, but I have not yet tested them. Now, sir, the moral I wish to draw from the above is this: if the lavender, or other tint, indicate the presence of organic matter in baths carefully treated, not over used, apparently pure and which had been working well before being laid aside, it seems to me an additional merit, beyond the great benefit the nitrate of baryta confers in greater stability and greater sensitiveness and endurance, if it can thus eliminate all hitherto unsuspected evil from the silver bath.

As I am now seeking information, I should be much obliged if Mr. Henderson or others will take the trouble to confirm or refute the observations I now venture to submit to your notice. I may add, the nitrate of baryta was obtained from a well-known chemist, and is, therefore, presumably pure. Your obedient servant,

R. M. S.

FUTURE PRESIDENT OF THE PHOTOGRAPHIC SOCIETY.

Sir,—As one of the founders of the Photographic Society of London, and one of its old officers, I have watched with interest and anxiety its history during the past year. The prospect of renewed peace and prosperity should be very satisfactory to those really concerned about the welfare of the society. As the confirmation of these prospects must depend very much I think on the choice of officers at the coming election, will you allow me to suggest to those of your readers who are members, that those most likely to conserve their interests in the future, are those who have served them well in the past. For many years, through a perilous period, Mr. Glaisier proved a highly valuable President, and I believe his re-election to the Presidency would be of the utmost benefit to the Society. It would also be a graceful recognition on the part of members that his good services were remembered, after the bitter feelings of temporary agitation were forgotten.—Yours most truly,

HUGH W. DIAMOND, M.D.

THE FUTURE OF PHOTOGRAPHY.

My Dear Sir,—Mr. Hooper’s paper read at the last meeting contains many valuable suggestions, and points to a very distressing state of affairs in the history of the Photographic Society. A sort of revival is absolutely necessary, and it behoves all concerned to lend a helping hand. I hope that photography is now old enough to do for itself what it has been accustomed to expect from a different source, and unless the profession is made aware of its duties, the decay, now only too apparent, will go on, and there is no saying what may be the ultimate result. In the absence of any genial spirit willing to come forward and expose himself to the insults of the lookers on, we must look for help from the photographic press, and there is now, I think, a capital opportunity for putting practical suggestions to the test. A Royal Charter and Diplomas are visionary expectations. The profession ought to support its own society, and support it liberally. One hundred of its most successful members could easily be found, who might be induced to subscribe five guineas annually, and engage further to pay such subscription for five years. Such an income might, in addition to other sources of revenue, place the Society on a safe footing, and considerably extend its useful press.

It is much to be regretted that among its attributes the Society has not that of giving its decisions or opinions on matters which concern the art, brought from time to time before the photographic world by its professors; such a course might save much annoyance and ill-feeling to all concerned, and put an end to dirt-throwing, of which there has been a great deal more than is necessary or profitable. The last instance to which I should like to call your especial attention is the "Kennett discussion," when the word "stolen" was persistently repeated. If it has come to pass that all works marked "St." are likely to be accused of such a charge, and to be allowed to use such language towards any one who may bring the result of his labours forward for the benefit of the fraternity I can only predict very disastrous results for all concerned. I can easily understand why the most successful photographers keep to themselves most things which they might otherwise feel inclined to make public for the benefit of others.—Yours very truly,

C. FERRANTI.

January 18th.

Proceedings of Societies.

MANCHESTER PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of this Society was held at the Memorial Hall on Thursday evening, the 14th inst., Mr. W. T. MAHLEY, President, in the chair.

After the routine business, Mr. John Boar, Jun., read a paper entitled "A Few Remarks about Silver Printing" (which will appear in our next), and exhibited a number of prints in illustration.

Mr. Brothers, F.R.A.S., said that as photography had been employed in the recent transit of Venus, he thought the members would be glad to know in what way the photographic methods had been made useful; he then, by means of a large number of diagrams, illustrated the whole subject of the transit, and con-
THE PHOTOGRAPHIC NEWS.

(JANUARY 29, 1875.

W. W.—An autotype negative may be used for producing silver prints, the same as any other negative. 2. We cannot speak with the facilities of the rapidity of the autotype as to producing large heads, not having made comparative trial.

A. K. L.—It is somewhat difficult to advise you without knowing how many prints you have any reason to make. It is a good plan to make the prints in a dark room, and also knowing whether it is required for occasional or frequent practice. If for occasional work only, one of the numerous dark tents or dark boxes might be used; if for frequent use, it would be wise to make a frame-work of wood and cover it with a double thickness of black calico. The disadvantage of this would be the tendency of all kinds of fabrics to harbour dust, and the risks which attend dust in a dark room. Can you spare a space in any room which will admit of a wooden partition to make a dark room of four or five feet square. If so, that will undoubtedly be best, and might be easily and inexpensively managed.

JOHN STONE.—Some years ago we had considerable success in electrotype experiments, but not recently. We regret that we cannot help you in your difficulty, as we do not remember meeting with any similar case.

AMATEUR PHOTOGRAPHER.—Your examples of work are very good—the landscapes especially. The portraits are good, but the lighting is not quite satisfactory, that of the lady especially, in which the face is flat from the use of a direct front light. The most defect is the white sky in the unmoved landscape. The snow scenes are effective.

COMMEN. —Much depends on circumstances. The following are good proportions:—Length 28 feet, breadth 12 feet, height at eaves 6 feet, height at ridge 13 or 14 feet; north side and roof 3 feet opaque, south side and roof 2 feet 6 inches, and the remainder glass, to within 20 inches of the ground; south roof opaque, south side about 10 feet of glass. 2. The less you mention may be used for cabinets; but if required for full-length figures it would need a small cabinet, and this would be in consequence of the smaller area on which to work the process, now a secret, will be sold for a price which will be duly published.

We fear that the practice of photo-mechanical printing is too limited to induce dealers to keep any extensive stock of such materials, but there should be no difficulty in obtaining them when required.

R. B.—Plain prints may be produced on the unsigned side of albumenized paper; but so small a size as plain paper properly prepared. The paper should be floated on the ordinary silver bath with the albumenized side in contact with the solution. The toning and fixating may be conducted as usual. We have seen very good prints so prepared, and they are as useful in photographic purposes as any other of the usual method.

2. It is possible, by applying cuttlefish powder to the face of an albumenized print to secure a surface upon it to work with crayons.

M. K. L.—There are various modes of ascertaining the equivalent focus of a portrait lens. One of the most simple is that which we proposed many years ago. Take any flat object—say an engravings or diagram—copying or drawing on it, the image of the equivalent of the original is obtained upon the ground glass. Now remove the lens and measure the distance from the ground glass to the object; one half of this distance will represent the equivalent focus of the lens.

G. M.—No report has yet been made.

J.—It is probable that the process of enamelling prints will tend towards permanence, and may be a great advantage to the image from atmospheric action. Waxing, and treating with the various enamou paste will extend to protect the image.

PROVINCIAL PHOTOGRAPHER.—If our correspondent who used this signature a fortnight ago will communicate with Mr. R. Passmore, of Swindon, that gentleman will furnish him with some albumen plates which will suit his purpose.

B. E.—The best method of adding intensity to a varnished negative, in our experience, is that which we described many years ago. It consists in treating the negative with tincture of iodine, made by dissolving eight grains of iodine in an ounce of alcohol. First mounted the varnished with plain alcohol, and then apply the tincture of iodine. In a few seconds it darkens the image and produces an olive tint which possesses great printing intensity. Cars must be taken to stop the action before a yellow tint is acquired, which is less intense. Rinse with alcohol and dry before a fire.

GUSTAVE MACAIRE.—Many thanks for the excellent specimens and the interesting details in regard to them. The post office order has been received, and the BAY-BROOKS, &c., forwarded.

Several Correspondents in our next.

PHOTOGRAPHS REGISTERED.

Messes. Childs and Hicks, South Shields.
Mr. Pears, Southampton.
Mr. W. H. W. L., Cheltenham.
Two Photographs of Fern Leaf Borders.
Mr. R. H. Rose, Cheltenham.
Two Photographs of Bishop of St. David’s.
Mr. A. Upjohn, Kidderminster. Will return a recent order.
Two Photographs of Rant’s Wesleyan Chapel.
Photograph of Industrial Exhibition at Kettering.

J. H.—Your enquiry how to make tracing paper for photographic purposes is scarcely sufficiently clear. We do not know of any photographic purpose to which tracing-paper is applied. Ordinary tracing-paper, which is chiefly used by architectural draughtsmen and surveyors for tracing plans, is made by saturating the paper with some kind of varnish, generally a mixture of turpentine and Canada balsam; but it may be purchased of most stationers better than it can be made by non-experts. It is probable you refer to paper for covering negatives to admit of easy retouching, and ordinary tracing-paper will scarcely be most suitable for such a purpose, as it will not be very easy to work upon its surface. Mr. Fry, the transparent paper best suited to that purpose may be obtained from Marion and Co., Soho Square.

PICTORIAL BACKGROUNDS AND HOW TO PRODUCE THEM.—Mr. W. E. Gower has issued in the form of a handy little pamphlet his instructions for the application of the powder process to the production of pictorial effects in portrait negatives; and illustrated his pamphlet with a capital illustration of what may be effected by the method. We are glad to possess explicit instructions in such a handy form.

SOMETHING LIKE PHOTOGRAPHY.—Mr. O. Cooke gives in the Society of Arts Journal an extract from a back volume of the Gentleman’s Magazine, which is curiously suggestive of a photogenic process. He says:—In the Gentleman’s Magazine, Vol. 88, p. 62, reference was made to a Prince de San Severo, at Naples, who had learned to give a fixed tint of any colour to white marble, so as to penetrate the mass, irrespective of any thickness, so that the figure of the Virgin, painted on a slab of white marble, was impressed on all the leaves sawn from the block. But, prior to 1800, an Englishman named Bird practised this art with success. Several specimens of marble thus coloured were shown to Charles II., and broken in the King’s presence, so as to prove such success. In the year 1745 the wife of a stonecutter named Long, at Bow, in Essex, also performed the art with success. At Oxford specimens of the coloured marble were also seen. The plan or recipe was to take two ounces of aquafortis and two ounces aqua regia, of sal ammoniac one ounce, and two drachmas of spirits of wine: also two drachmas of pure silver, with gold to the value of 4s. 6d., A.D. 1745. The silver having been calcined and placed in a vial the aquafortis was poured upon it. The silver having evaporated, a watery mixture was produced, yielding thus, then a black colour. Then the gold was calcined and placed in a vial, and the aqua regia having been poured upon it the mixture was placed aside to evaporate. The spirit of wine was then poured upon the sal ammoniac and allowed to evaporate. The result of these mixtures was a most remarkable. Those of our readers interested in photo-mechanical printing will find much that is interesting and instructive in this excellent monthly.

To Correspondents.

TALK IN THE STUDIO.

The meeting, which was very largely attended, concluded with a vote of thanks to each of the gentlemen who had contributed to the evening’s proceedings.

The space in any room which will admit of a wooden partition to make a dark room of four or five feet square. If so, that will undoubtedly be best, and might be easily and inexpensively managed.

JOHN STONE.—Some years ago we had considerable success in electrotype experiments, but not recently. We regret that we cannot help you in your difficulty, as we do not remember meeting with any similar case.

AMATEUR PHOTOGRAPHER.—Your examples of work are very good—the landscapes especially. The portraits are good, but the lighting is not quite satisfactory, that of the lady especially, in which the face is flat from the use of a direct front light. The greatest defect is the white sky in the unmoved landscape. The snow scenes are effective.

COMMEN.—Much depends on circumstances. The following are good proportions:—Length 28 feet, breadth 12 feet, height at eaves 6 feet, height at ridge 13 or 14 feet; north side and roof 3 feet opaque, south side and roof 2 feet 6 inches, and the remainder glass, to within 20 inches of the ground; south roof opaque, south side about 10 feet of glass. 2. The lens you mention may be used for cabinets; but if required for full-length figures it would need a small cabinet, and this would be in consequence of the smaller area on which to work the process, now a secret, will be sold for a price which will be duly published. We fear that the practice of photo-mechanical printing is too limited to induce dealers to keep any extensive stock of such materials, but there should be no difficulty in obtaining them when required.

R. B.—Plain prints may be produced on the unsigned side of albumenized paper; but so small a size as plain paper properly prepared. The paper should be floated on the ordinary silver bath with the albumenized side in contact with the solution. The toning and fixating may be conducted as usual. We have seen very good prints so prepared, and they are as useful in photographic purposes as any other of the usual method.

2. It is possible, by applying cuttlefish powder to the face of an albumenized print to secure a surface upon it to work with crayons.

M. K. L.—There are various modes of ascertaining the equivalent focus of a portrait lens. One of the most simple is that which we proposed many years ago. Take any flat object—say an engraving or diagram—copying or drawing on it, the image of the precise size of the original is obtained upon the ground glass. Now remove the lens and measure the distance from the ground glass to the object; one half of this distance will represent the equivalent focus of the lens.

G. M.—No report has yet been made.

J.—It is probable that the process of enamelling prints will tend towards permanence, and may be a great advantage to the image from atmospheric action. Waxing, and treating with the various emou paste will extend to protect the image.

PROVINCIAL PHOTOGRAPHER.—If our correspondent who used this signature a fortnight ago will communicate with Mr. R. Passmore, of Swindon, that gentleman will furnish him with some albumen plates which will suit his purpose.

B. E.—The best method of adding intensity to a varnished negative, in our experience, is that which we described many years ago. It consists in treating the negative with tincture of iodine, made by dissolving eight grains of iodine in an ounce of alcohol. First mounted the varnished with plain alcohol, and then apply the tincture of iodine. In a few seconds it darkens the image and produces an olive tint which possesses great printing intensity. Cars must be taken to stop the action before a yellow tint is acquired, which is less intense. Rinse with alcohol and dry before a fire.

GUSTAVE MACAIRE.—Many thanks for the excellent specimens and the interesting details in regard to them. The post office order has been received, and the BAIR-BROOKS, &c., forwarded. Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

In Memoriam.

The death of our old friend Oscar Gustav Rejlander leaves a gaping chasm in our midst, to be felt for many a year to come. His artistic productions were everywhere so well known and appreciated that his loss as an art photographer is great indeed. Those who denied that photographic works of art were bounded in their statement considerably when the charming productions of Rejlander were placed before them, for he was one of those who strove his hardest to prove the claims of art photography. If he was not successful from a worldly point of view, he certainly deserved to be; but he was too deeply wrapt up in the pursuit he loved so well to give much attention to aught else. It is surprising, too, how little credit he obtained from those outside the profession, for most people used to attribute his masterly sketches to good luck rather than to genius. “By Jove! what a pretty model that is!” was a remark often to be heard from people examining his fine studies; and it was only after a dozen pictures or so, all of them beautiful of their kind, had been inspected, that one began to think that perhaps something else besides good luck had to do with their production. How many times he made negatives before he was satisfied, and how long he had to wait sometimes before he could secure a model proper to his purpose, is known to most of his brethren. Rejlander used to compare photography and painting to steamers and sailing vessels, and would argue that the ship of the camera was more apt to reach its destination quickly to his destination and secure his result more rapidly than by the brush. Nevertheless, he said, the work was not done so quickly as some people believed, and study and thought were just as necessary with photography in carrying out any preconceived idea. Rejlander never pressed forward his claims to be a great photographer; he modestly allowed his works to speak for him. Indeed, his calm regard for everything but his art cost him much substantial loss, for his pictures were copied, and his ideas made use of by publishers and others, without permission or acknowledgment. How often have we not seen the pictures which he imagined and photographed, reproduced in illustrated periodicals? And yet it would surprise us to learn that Rejlander ever received a penny from this source. Only originals were sold, and paintings which had not been otherwise; but being only photographs, who would ever think of paying for them? Indeed the photographer should rather feel honoured in the matter, by seeing his works noticed. And so, perhaps, he might have done sometimes, had his name been attached to the pictures. Poor Rejlander’s works were admired and praised by all, by the ragged and penniless gathered round a window in the Street (where his works were generally to be seen); by the Heir Apparent to the Throne, who asked permission to carry home the artist’s own album, that he might have a better look at it; by his brother photographers, who crowded round his portfolio to see the latest efforts of their master. He had always something to show or something to explain, for he never held back experience or advice when he thought they would be salable. You must cut out just the middle— the bust, you know—and mount it on a card, and then it will sell for a shilling.” That was “usually the hope held out to him after making some great effort, and accomplishing something which secured the universal approbation. Fortunately O. G. R. he was familiarly called by his friends, cared little for worldly comforts, and he was too good a philosopher to be always grieving. He had done his best, he knew; he could do no more. He might have made money, no doubt, had he wished it, but it would have been at the sacrifice of what he conceived to be true art. He could not serve two masters, so he chose the latter, and lived as he best could with the little that fell to his providence, and careless of his means; and so he might have been, had the good-natured fellow possessed any wealth to squander. One of the last acts of his life will best illustrate his warm-hearted and kindly disposition. He desired much to help the Photographers’ Benevolent Association, but it was rather out of his power to do in the form of a donation; so he went home and made a selection of the charming studies we all of us know so well, and packed them up to be forwarded to the Secretary. He knew what it was to struggle through life, and his last desire was to aid others in making that struggle an easier one.

THE PRACTICAL PRINTER IN AMERICA.

XVII.—Continued.

There are other ways, however, to improve such a negative, and which are more or less dependent upon each other to produce the proper result. In place of shading the print after it is taken off the printing-frame, it can, if you choose, be done while printing, by shading the shadows of the negative with a cloth while the lights are printing. In the sunlight the cloth should always be in motion; in the shade, however, if the cloth is moved a little every minute or two, that will be sufficient. It is sometimes better to do the shading in this manner than in any other, when a bolder print is required than what would be obtained by shading it after it is taken from the frame. Sometimes when the shadows are very heavy, and get printed long before the lights get done, it will not then always answer our purpose to take the print off and shade it in the manner first described under the heading of this chapter, because it will often give a flat appearance, shade it as little as we choose, and instead of improving it, the contrary effect will be the result. This shows, then, that the lights need to be printed for awhile after the shadows are done, before we think of shading or tinting them by exposure to the light, and to tell when we have obtained the result we seek.

I will suppose we have a very intense negative, in which an attempt at shadow effects has been made, and violent contrasts have been produced. The subject is a lady who has gone too far away for another sitting, and the photographs are to be sent to her by mail, and as this is the only negative of her, it must be printed after it is re-touched, which latter process makes it still more intense. The printer here, then, has a difficult task to make a dozen prints from that negative, and upon making a proof of it, finds, as he expected, that the shadows are done a long time before the high-lights or lighter side of the face, and having removed the proof from the printing-frame when the shadow side of the face is done, he can then expose the lighted side for two or three seconds in the strong light of his lamp. After he has exposèd this lighted side, he takes it in, and immediately notices that the side is no longer white, but is decidedly flat, being all over alike from the top of the forehead down to the chin. There is then some detail wanted to be printed in on that side of the face, so as to prevent flatness, before we shade or tint the side by exposure to the sunlight. How can it be obtained?

There are several ways to do this, which we will here describe, showing the advantages and disadvantages of each. We might shade the shadow side of the face, by moving a cloth over the dark side of it while printing in
the direct rays of the sun, or by moving it once or twice every minute or two, if printed in diffused light.

Before proceeding further, I will here mention that we are supposed to be using the pink paper, silvered only a few seconds on a weak bath, fumed a few minutes, and then thoroughly dried.

In reference to the method last described, the results are always very satisfactory, while the disadvantages are many, viz.—1st. It is a tedious operation when the lighted side has to be printed considerably. 2nd. There is great danger of shading the background, drapery, &c., which will (especially when it takes so long a time to accomplish it) show badly, on account of the different depths of printing there is to them. 3rd. Every print you make will have to be printed with all of this trouble, and by the waste of much valuable time.

Our next object, then, is to obtain a better way to do this, which will have the advantage of being more easily and better done. There is a comparatively simple method, and we will try it. Instead of shading the shadow side when done, we will simply apply some transparent colour to the back of the negative, which will be done in such a way that while the lights are printing, the shadowed will print slower. By regulating the thickness of the colour on the back of the negative, we can make the shadows print about as we wish. Apply until you get it at the proper thickness or density, which is readily determined by printing a proof of it, with a single tissue-paper placed over the printing-board. This is to prevent the light from constricting the back of the negative, but it will print better, for this colour will more than counterbalance that which we may lose by the use of the tissue-paper.

When this colour is applied as it should be, you will then see that by the time the shadows are done, the lights will have enough detail in many places to warrant you to remove the print from the frame, and tint the lighted side as is described.

Upon looking now at the print, you will readily perceive at a glance that the side of the face of the lady's photograph is no longer flat, but there is a boldness, yet softness, to the whole. The detail which was printed in on the lighted side of the face was a little over the temple, and considerably more on the upper, middle, and lower parts of the face. This is what I mean by the back of the negative, and is just what was needed. Properly silvered pink paper, and a little judicious shading after printing, gave us a nice bold yet soft print, all detail, which we secured even in the deep shades, from a harsh negative, by proper masking or painting of the shadows.

Another way to print this negative would be to place it up against the window-glass, varnished side next to it, and lay a piece of tissue-paper on the back part of it, and with a lead-pencil mark on the paper just on the edges of the deep shadows which you wish to print slower. Now cut this paper out, and place it on the back of the negative exactly behind where the deep shadows are, and then place the negative out to print, after having placed another tissue-paper over the whole. In placing this paper on the back of the negative, raise the edges of it a trifle, so that it will not lay flat on the glass, and cause the edges of it to print.

Negatives which have either some transparent colour or tissue-paper placed on the back of them should always be placed, face up, to the strongest light, so that the places which are intended to be shaded will be so, for very often if you lay the board down flat the strongest light striking the negative causes the whole back of the glass, or the colour or paper to shade a different place than that which you intend it to do. This is especially the case when the place to be shaded is a small one.

The hands and arms, shadows under the eyebrows, shadows in the cheeks, shadows under the nose, the chin, the shaded ear, neck, &c., can very often be improved by either of the last two mentioned ways, viz., transparent colour or tissue-paper, sometimes one, and often the other, answering the better of the two. Do not carry either to excess, however, for the shadows need only to be softened more or less according to circumstances, and not entirely removed.

The transparent colour is really a good thing, as the following instance, of a very pretty lady that has come under my observation, will testify:—Miss Hattie W.'s negative is a "shadow" one, and she wants it printed in a vignette, but the lighted side does not, when the shadows are printed, possess sufficient detail unless we make use of this colour. As the prints from this negative are like the ones described last, we will have to blue-paint three-quarters of the whole face, which can very easily be done, and thus also get prints to be obtained from it, which, if we did not blue-paint it or fix in some way, we would have a very black shadow, which would greatly mar the beauty of the picture.

Sometimes two or three pieces of tissue-paper, cut to the size of the dark side of the face, and pasted (by touching the centre of each piece with a little starch) on the back of the negative, will answer the purpose.

An excellent way to print the negative, when it is to be printed either plain or in the medallion style, is to take a magnifying-glass—the so-called "sun-glass"—which has a diameter of about three inches, and by means of it to print up the intense parts of the negative, being careful, however, that you do not print the light to a focus on the negative for the you lose both the negative and print. We very frequently use the glass for the negatives, and also for printing detail in white dresses, &c.

For intense negatives, then, we can sum up the following remarks for their improvement in printing:—

1st. Pink paper should be silvered on a moderately weak bath, for a comparatively short time to what it is when prepared for weak negatives. 2nd. The paper should be silvered only a few minutes. 3rd. If printed as quickly as possible, which can be done by placing it in the strongest sunlight, with nothing over it, providing the quality of the glass, &c., permits. 4th. Soften the too deep shadows of the negative with some transparent colour, and thus permit the lights to print longer. Print such negatives under tissue-paper. 5th. Print until there is enough detail in the face to shoot the negative, but do not overprint. 6th. After removing the print from the board, soften the blanky whites of the face, light dresses, &c., by exposure to the light, protecting the rest of the print by some opaque paper, as has minutely been described above. 7th. Sometimes the whole print can be held out a few seconds with fine results. 8th. If the place to be tinted by exposure to the light are large, such as a side of the face, there will have to be some detail printed in on that side or place, as the case may be, before the print is removed from the printing-frame, so as to prevent flatness. 9th. By the use of a common magnifying or sun glass, the lights of the face, hands, &c., can be printed quickly and well. 10th. Study how to improve the prints in printing the order from a negative, and you will not fail to do something towards raising the standard of your work.

A FEW REMARKS ABOUT SILVER PRINTING.

BY J. BILSE, JUNE.*

I PROMISED this paper at our last meeting, not that I had anything new to communicate, but hoping that the little experience I have had might help these who only print occasionally, and so have time to forget how deep to print and how far to tone and fix.

Though the quality of negative is of the first importance to Trench a good print, it is not of much use discussing what that quality should be when the negative is varnished

*A communication to the Manchester Photographic Society.
and we have it to print and make the best prints possible. First, a few words about the paper: the double albumenised I have only used once, and do not intend to have any more. It gives very brilliant prints, warm tones, and is very liable to blustering, cracking, and fading. Ordinary Rives paper prints very brilliantly, and gives good tones easily, but is very liable to blister, and is not suited for printing from negatives printed in the skies—especially where the workers will know what I mean). I use it for weak, full-detail negatives and copies, but for regular printing from negatives with proper and too much contrast I prefer the thick Saxopaper, which seems to hold the fine light shades better during toning and fixing. I keep the paper flat and soft between two sheets of millboard in a bedroom which never has a fire in it.

The silver bath I use is forty grains to the ounce with nothing added, and though ten grains either way does not make much difference, I would rather have it weaker than stronger. I keep it clear by stirring it up with China clay every time it has been used; if this be neglected, the next paper floated on it will refuse to tone well, and make mealy prints. I have used everything known to clear the bath, but have found that two large jars, one large, and one large jar of water, by trouble as the kaolin, followed by settling and filtration, which I effect through a quart wine-bottle with the bottom knocked out, inverted, and the neck plugged with wet gun-cotton, which lasts indefinitely. In floating the paper I have a light at the other side of the dish, and by laying a near corner of the sheet down first I can see through this haze how low it is now; there are no bubbles, with which I am never troubled.

In summer I float the paper two minutes, draw it slowly from the solution and once over a long quarter-inch rod, hang it by a clip for ten or fifteen minutes, and dry off quickly and thoroughly by exposing the back of the paper to a fire. When all the paper is dry it is put in the cellar for five or ten minutes to damp, without which it would crack in the frame and print badly.

In winter the paper should be floated longer, as short floating makes brilliant prints, and long floating soft ones. A strong silver bath also makes brilliant, easy-to-tone prints, and a weak one softer prints, more inclined to meallness. The time between floating and drying has the same effect; for a paper dried too quickly is insensitive and prints brilliantly, while one dried spontaneously prints out. But if the light of the paper is not the reflection of metallic spots appear. In putting the paper in the frame care should be taken to dust the negative, and place any metal spot in the paper over a deep shadow; the pads and back are put on, but the springs not closed till all the frames are full. I use a pad of thick woollen cloth covered with paper saturated with a thirty-grain solution of soda carbonate, and dried. The weak negatives are printed in a weak light, either by covering with tissue-paper or placing them a long distance from the window. The good negatives are put where the best diffused light can get at them, and I have a few under-exposed ones which need the sun to make good prints, always remembering that by printing quickly a warm tone is easily obtained, and vice versa.

The judgment of depth of printing does not give me much trouble, though I make a good proportion of overdone prints through not being able to stay with the frames. I have seen it recommended to judge of the bronzing of the deep shades, but that merely indicates a strong silver bath. I judge principally by the lights and partly by the general appearance. The print should be about a third darker than it is to remain when finished, but this depends much on light, paper, and chemicals. I like to finish a lot of prints within two days from sensitising—not that the paper discoulours, but, if kept long, the metal spots seem to delight in the skies on one's most perfect pieces of paper, and this is the greatest objection to the otherwise successful methods of keeping sensitive paper white.

Suppose, now, we have a lot of prints to finish. Wash them in two dishes of water, and save it for the silver, and then wash ten or fifteen minutes in running water. I use the final washing trough for this purpose. The toning solution is the acetate bath of one grain of chloroid of gold in solution and thirty grains of acetate of soda in ten ounces of distilled water. The gold must not be very acid, and it should be added to the acetate solution at least a day before use; but if you have forgotten the gold until the prints are ready for toning, then boil the gold in a test-tube with a little powdered chalk and a few grains of acetate of soda, and add to the bath. My practice is to add to the above half-a-grain of chloroid of gold for every sheet of paper to be toned, and I make the addition when the paper is sensitised.

Now, having the untoned prints in a dish of water alongside the dish of toning solution, have a gas flame at the side of the toning dish farthest from you, and let the light be so shaded that it falls on the prints, but not on the eye, or you will soon have partial colour-blindness. The eye and flame should each be about eighteen inches from the centre of dish, and about two feet from one another. Now immerse the prints one by one, and do not have above six or seven prints to be toned at once, and large ones; for, as they begin to tone, and over a fresh light, or daylight it will look nearly as red as ever. Now put it back in the dish of water and agitate well, not with the fingers only, but with the flat of the hand, as if slapping something. I used to get very good tones by reddening the prints with salt water before toning, but it retarded that operation very much; I now get the same effect by salting after toning, but the tone must be carried a trifle deeper, as in this case they do not tone any more in the hypo, though it blackens the prints a little by dissolving out more or less of the red organic silver compound, according to the strength of hypo, and time of immersion in it. If the salt be not used after toning, the prints must be very thoroughly washed before fixing, for which I use three ounces of sodic hyposulphite to a pint water for every sheet of paper to be fixed. Two or three years since I used only two ounces to the print, and the prints have not shown the faintest trace of fading, discouluration, or imperfect fixation yet; but I use the stronger solution to save time. The prints are not allowed to rest in the hypo, but are lifted up, drained, and immersed one after the other, as quickly as possible. The time of immersion varies from ten minutes to not more than half an hour. If a print be dark in tone it is removed before those of a warmer tone, for the longer a print is fixed the blacker the tone will be. Fixing by artificial light makes the prints more permanent, and enables one to remove them from the bath before the tone gets too black after fixing.

I wash rapidly in three or four dishes of water, and after that for twelve hours in running water, for which I have a half-varnished, wooden trough one foot sixteen inches long, eleven wide, and three or four deep. One end is slanted, like the bow of a punt, and the water spreads itself by falling on this, moving the prints in such a manner that they somehow wriggle their tails, swim up to the water supply, and seldom go against the zinc grid at the bottom end of the dish, which is about half-an-inch lower than the inlets. Then I can wash them in ten minutes.

The contrivance of a contrivance. When sufficiently washed they are rinsed in a dish of filtered water, drawn over a glass rod, and put between clean calico cloths to dry. I do not believe in blotting-paper, as it cannot be washed.
Prints ought never to be mounted on white boards, as the light and delicate tones are not shown to such advantage as on a tinted mount. If a picture have not sufficient light in Herchel's comparison, it occurred to me that an instrument made to perform refraction mechanically would be useful in teaching optics, and that such a contrivance would only save pairs of wheels running on a table, into and out of a resisting medium. After a number of trials, made with the help of Mr. B. Knight, a simple arrangement has been completed, which answers satisfactorily in showing the behaviour of a ray of light under the various circumstances of ordinary refraction. Pieces of a thick piled velvety plush known as "imitation sealskin" are cut out to represent the sections of a thick plate, a prism, a convex and a concave lens, and glued on to smooth boards. The runner consists of a pair of boxwood wheels mounted loosely on a stout iron axle, and is trundled across the board, or, still better, the board itself is tilted up, and the runner let go in the proper starting direction. The following figures show the path of the wheels, always from right to left of the page.

In fig. 1 the runner starting from A enters the rectangle of velvet at B, where, its left wheel being first retarded, it shifts round into the direction B C, till it reaches C, where the left wheel first emerging gains on the right, so as to bring back the runner to the ultimate direction C D. This illustrates the refraction of a ray of light in entering and quitting parallel plane surfaces of a resisting medium, such as a plate of glass. When the runner enters at right angles to the boundary, its direction is, of course, unchanged, as with the ray of light.

Fig. 2 shows the path (ABCD) of the runner across a triangle, corresponding with the course of a ray traversing a prism. Also, by causing the runner to enter at about a right angle near E, a direction is given to it which, if the surface of the board and the triangle were similar as to resistance, would make it emerge near F, at a small angle to the side. But the left wheel passing on to the smooth surface gains so much on the right wheel, still in the velvet, that the axle sways round, the left wheel re-enters the velvet, and the runner goes off in the direction FG, thus illustrating the total reflection which takes place when a ray of light is directed to emerge very obliquely from a more into a less resisting medium, as from a glass prism, or a surface of water, into air.

The action of the double-convex lens in causing parallel or divergent rays to converge, is shown by the path of the runner in fig. 3, which requires no further explanation; nor does that corresponding to the divergent action of the double-concave lens (fig. 4). By starting two runners at once from the right-hand side of the board, so as to traverse the upper and lower parts of the convex lens, they are made to run into one another, thus illustrating the meeting of rays in a focus.

Lastly, by using two runners with wheels of different
diameters, as the refraction depends on the resistance to the wheels by the velvet, the apparatus may be so inclined as to show plainly their consequent difference of refractive

angles. The courses of the two are seen in fig. 5. This experiment, however, requires some nicety of arrangement.

Now the separation of rays of different refrangibilities by a prism being due to a like cause, this experiment serves to illustrate mechanically the decomposition of white light.

Let the large-wheeled runner represent the red ray, and the small-wheeled runner the violet ray, the principle of the prismatic spectrum becomes at once evident.

For the information of any who may wish to reproduce this simple apparatus, I may state the dimensions I have found convenient. The wheels may be 18 in. and 2 in., with rounded edges, mounted on a nearly half-inch iron axle, turned down to a 1 in. at the ends. The boards may be 2 ft. 6 in. by 1 ft. 6 in., with velvet on each side. It is convenient to place the velvet nearer to one end of the board to leave room at the other for starting the runner; and care must be taken to cut the velvet so as to present a good resisting surface, as this varies with the direction of the pile. In using the apparatus for teaching, care in manipulation is required to neutralise the defects of the texture. Some kinds of " Urechel velvet," to be had from the upholsterers, are more uniform than the " imitation seal-skin," and thus work more equally, but their effect is not so striking. Wet sand will answer equally well with the velvet, if metal wheels be used.

Recent Patents.

CHROMO-PHOTOGRAPHY.

BY WILLIAM M'GRAW.

The following specification of a method of producing various novel effects in photography was completed some time since, but its publication in our columns has been delayed:

"This invention relates to the production of chromo-photographs by the combined processes of printing, colouring, and transferring—in other words, to the making of pictures combining the fidelity of the photograph with the character, quality, and appearance of an artistic painting in oil colours, and that with the facilities of production of ordinary photography.

"In carrying out my invention I use ordinary negatives, but I do not use ordinary paper prints."

"The process is the following: I proceed in the first place to produce a print or copy from a negative that is independent of or that can be separated from the glass or paper or other temporary support necessary to its formation. For this purpose I coat one side of a glass plate with colloido-chloride of silver, having a good body of collodion, and having dried and fumed the plate with ammonia. I print strongly and tone the image, if necessary, with solutions of all or any of the chlorides of gold, platina, and sodium. With these three the operator, with a little practice, can produce a picture of almost any tone or colour, red, blue, or yellow, or combinations of them.

"To describe another suitable method:—I coat a plate of glass with plain collodion, and immerse in water for some minutes; I then pour over this wet surface a mixture of honey, albumen, and saturated solution of bichromate of potash in water, about equal parts of each, or I use other well-known substitutes, such as sugar-gum, and bichromate of ammonia. This prepared plate is dried at the fire in darkness, and after exposure to light under a positive photograph colour in powder is applied with a soft brush to develop the picture. It is now immersed in water, slightly acidulated with sulphuric acid, or a few drops of strong ammonia in the water serve the same purpose of clearing away the yellow chromate. This picture when dry is ready for the next process. For pictures of this kind a negative is required. I employ positive, or print from a negative obtained with colloido-chloride of silver, as already described.

"There are many other well-known methods or processes for producing prints suitable for this purpose, namely, the ordinary photographic collodion processes, wet or dry, as well as any improvements by the camera, the carbon process, the Woodbury process, or by any other method by which a photographic copy can be made that has the same or a similar appearance on either side when condensed upon glass. Having obtained the print on glass I proceed to the"}

"Painting.—I use the artist's oil colours mixed with Japan gold size, or other quick driers for saving time. I can also use water colours to begin with, as in the case of a portrait, for colouring the lips, articles of jewellery, or for thin white glazes, and so on. After that the picture is dried on glass, preparing the picture for the transfer. At this stage of the work some of my assistants prefer to apply the colour to the film photograph supported on paper and removed from the glass by pasting white paper on the film, using starch, sugar, or gelatine, or a mixture of these in water. This is allowed to dry, and can readily be removed from the glass. The work is then divided into small portions and applied to the glass again. This has the advantage, with others to be afterwards noted, of giving the picture in its true relative positions when finished in the case of direct prints on glass from negatives being used."

"Transferring.—The picture when dry is ready to be transferred to canvas, or any other suitable surface or material, and is, in fact, precisely in the condition of a picture ready to be lined, which is an ordinary operation of the picture liner. I smear the painted surface as well as the surface of the canvas with what is known to picture liners as lining paste (a mixture of glue and water). Then I spread the two together and press them together. The excess of paste is expelled by passing over it a smoothing iron heated to about 130°, and soon after the picture readily parts from the glass. It may be remarked that if the picture be removed from the glass while still wet and moist, a duller surface is got than when the picture is not detached for a day or two, when it then receives or partakes of the quality of the surface or its support, whether dull or polished. For the sake of cleanliness I have hitherto spoken only of painting the film as adhering to the glass; but in many cases it is the purpose of the artist to use the paper supported film for painting on, as in the case of transferring the picture to a rigid surface, such as a panel; and it becomes very important, when a number of copies of the same subject is required, as in the case of reproducing works of art, that the paper be so sized that the transference can then be affected by chromolithographic means, and when the picture has been trimmed at the edges and transferred with the painted side down, as already explained, to paper, cardboard, or other permanent support, the paper temporarily covering the picture is easily removed by passing over it a sponge dipped in warm water, or defects, as this can be dried at once. I then paint over the whole with the appropriate local colours of the parts, and the painting may be completed at once. It must be understood that the effect is to be observed from the other side, which can be readily done when the picture is placed on glass. After this painting is done I then place the picture upon glass, pasting white paper on the film, using starch, sugar, or gelatine, or a mixture of these in water. This is allowed to dry, and can readily be removed from the glass. The work is then divided into small portions and applied to the glass again. This has the advantage, with others to be afterwards noted, of giving the picture in its true relative positions when finished in the case of direct prints on glass from negatives being used."

"By another application of the same principle I can produce vitrified enamel chromo-photographs. In carrying out this part of my invention I produce a vitrifiable film photograph by either of the well-known methods known variously as Grazia's method or dusting-on process. I now cut from a large sheet of blown, thin, soft glass a piece of the required size and shape; I cover the convex side with this film, and site: filling up the concave with stucco, I subject this to heat in the muffle of an enameller's furnace. When cool, I paint this picture with appropriate enamel colours, and again fire. This thin glass, after the painted picture, is returned to the muffle picture side down, and allowed to fall over a white enamel surface prepared to receive it. The edges can now be grooved and polished to fit any setting."

"Having thus described the nature of my invention, and the manner of carrying the same into effect, I would observe that I do not confine myself to the precise details herein described, as they may be modified as circumstances may require; but what I claim as novel, and I desire to be secured to me by the hereinbefore in part recited Letters Patent is, the production of chromo-photographs by introducing colours between the photographic plate and its support, such photographs being embodied in a transferable transparant film or medium, the support being opaque."
The Photographic News.

Vol. XIX. No. 857.—February 5, 1875.

CONTENTS.

Photography In and Out of the Studio 61
The Practical Printer in America 61
A Few Remarks about Silver Printing. By J. Drier, Jun. ... 63
Mechanical Lithography. By Edward A. Tyler 64
Recent Reprints .. 64
Recent Announcements .. 65
Electoral Officers in the Photographic Society 66
Lichtdruck Printing without a Press 66
An Album Photographic. By W. T. Howe 67
Relaxed Negatives from Small Ones, without a Transparency, by the Pumps Process. By George Willis 68
Pichler's Alkaline Photo-Zincographic Process 68
Correspondence.—Election of Officers of the Photographic and Stereoscopic New England—Decisions upon Secret Processes.—Caution—Diffused Light as an Accelerator.—The "Flapper"—Life-size Portraiture or Enlargements versus Direct Pictures. 69
Talk in the Studio .. 71
To Correspondents ... 72
Photometric Report for December. By W. H. Watson 72
Photographs Registered .. 72

ELECTION OF OFFICERS IN THE PHOTOGRAPHIC SOCIETY.

When during the American war the subject of the coming Presidential election was engaging public attention, Abraham Lincoln suggested the impolicy of unnecessary change in the executive during a time of such national disturbance, and gave point to his advice by relating an anecdote of the impolicy of "swapping horses while crossing a stream." The Photographic Society has been experiencing something of this impolicy. It has had occasion, unfortunately, to change some portion of its executive at the very time it was modifying its constitution, its laws, and its mode of action. The best of intentions and the greatest ability will not always compensate for lack of experience. The preparation of new regulations was proceeding with especial novelty, and neither precedent nor definite instructions existed as a precise guide. There are exceptional conditions that need special explanation, which is lacking. And in relation to those papers sent out, we have had many letters, some making complaint and protest, more a questioning for explanations. The voting papers are, unfortunately, scarcely sufficiently explanatory. The officers do not make it clear that a complete staff of officers require selection on the present occasion; and if the member refers to the law touching election of officers for guidance, he will find that, according to law, nine new officers only are required annually; namely, president, one vice-president, a treasurer, and six members of council. On this occasion, as all officers retire, all the places must be filled. All members are therefore at liberty to vote for eighteen members of council, a treasurer, three vice-presidents, and a president; but should they, from doubt or want of information as to the suitability of the candidates, prefer to vote for a few names only, such limitation will not in any degree invalidate the votes for those actually selected.

Another point of not less importance occurs in relation to the retiring officers, who, in the voting papers, are only given as retiring officers, without any intimation that they are eligible for re-election; and from this fact, and the mode of printing their names, it does not seem with any certainty to appear that they are really issued as candidates for office. The very fact that some of them are definitely nominated for election, whilst others are not, gives further colour to this supposed. It should be borne in mind, however, that the names of those unable to secure re-election to the offices they have individually held, without any personal nomination whatever, and all those printed as "reiring" are, in truth, printed so solely in order to place them as candidates for re-election.

Another form of complaint has reached us from several correspondents, but it is one upon which we can say but little here. It is complained that members who have not paid their subscriptions for the coming year, before the annual meeting will be deprived of the privileges of voting; and it is complained that, notwithstanding the intimation to that effect, in place of voting papers, have been sent to many members. As such a course appears to be in conformity with law, there is little to be said on the subject. One correspondent asks if it is ascertained that "every nominator has paid his subscription before he nominates, and if it will be ascertained that every officer, has, in like manner, met his obligations, to form a just argument to assume office." On these points the law says nothing. We can merely regret the questionable and offensive operation of a law which has been many years in existence, but which has not before, we believe, under similar circumstances, been applied, and, we may add, will probably not be applied again when once attention to its impolicy has been called. After the next annual meeting it is probable that the majority of the inconveniences and uncertainties caused by modification of law and usage will cease.

LICHTDRUCK PRINTING WITHOUT A PRESS.

Captain Delaunoy has published in the Bulletin du Jet in a report upon Jaubert's system, of photo-mechanical printing without the aid of a press. In the first place a carbon print is obtained upon a provisional support of glass or metal. This support is coated with a thin varnish, which facilitates the transfer of the prints subsequently; that recommended is a three per cent. solution of gum-dammar in benzole. The developed picture is allowed to dry, and a margin of wax is applied all round. A solution made up according to the undermentioned formula is prepared:—

- Gelatine 2 parts
- Gum arabic 1 part
- Glycerine 1
- Water 3 parts

The gum is dissolved first, and then the gelatine is added. When the latter has swollen sufficiently, the whole is warmed in a water bath, until completely dissolved. The solution is then filtered through damp muslin, and the glycerine added. This liquid is poured upon the carbon print of such thickness that the film, after it is set, is from four to five millimetres thick. So that the gelatine may spread the better, and shall not cool too quickly, the plate is warmed during the application of the solution. As soon as the film has become perfectly cool, it may be removed from the plate, but it is better to postpone the operation for four and twenty hours, for then it increases in solidity. The margin of wax is removed, and the film is carefully and gradually lifted off. The pigment picture remains in the gelatine film. If this print is now inked, an impression may be obtained by merely employing an India-rubber scraper.

Sometimes, on first applying the ink, the colouring matter remains adherent to the whole of the film. This does not matter much, however. It is only necessary to remove the colour with oil of turpentine, and then wash the film with a damp sponge, when it will be found, after rolling a second time, that the ink only adheres to the shadows. In inking up, either the ordinary lithographic roller may be used, or a glass tube ground on the surface. The roller is coated with ink by passing it over a gelatine plate once or twice, produced in the same way as above indicated, and coated with a mixture of two parts of printed ink with one part of oil of turpentine and varnish and a few drops of turpentine.

A few sheets of paper and an India-rubber scraper, such as is employed in carbon printing, is all the apparatus required for printing. You proceed as follows:—The gelatine film carrying the carbon print is placed upon an even surface. It is slightly moistened, and the excess of water
is removed with a wet sponge. Only the gelatine absorbs the moisture; the carbon print repels it, and takes up instead the fatty ink.

After the roller has been inked, it is passed over the picture until it has deposited sufficient ink. If the ink attaches itself over the whole surface of the film, it is a sign that prints, but not if half tones have to be reproduced. When the carbon picture has been well inked—a circumstance that is soon apparent after a little practice—a sheet of paper is put upon it, and rubbed two or three times over with the india-rubber scraper. The paper is then taken off the image, inked once more, and a second sheet of paper adjusted, when another print is secured. The printing goes on till the whole of the film becomes black. When a moist sponge is passed over, and the work may begin again.

You must not press too firmly on the film, else the picture will sink in, and no more colour can be applied; in this case the film must be allowed to stand for a few hours, and then work may be proceeded with once more.

The process gives very good results in the case of black and white prints, but not if half tones have to be reproduced. At the same time prints of the latter nature have been produced in this way, which give hope of an improvement in the process in this direction.

A great drawback to the process, if but the only one, is the difficulty of getting the lines straight, for the warm gelatine poured upon the pigment picture dissolves away the edges of the line and distorts them. We are in the hope of proposing in a little while some means of overcoming this defect in the process.

AN ALBUMENIZER'S LAMENT.

BY W. T. NOVET.

Albumenized paper! Thy name strikes not unpleasantly on the ear; thy smooth and polished surface assuredly deceives the eye if thou art sought but innocent. Yet manifold are the woes that, like foul fiends, lurk in thy spotless texture, and which, anon, will make men atemp with rage ere they consign thee to the flames as a worthless thing, a worker of hideousness and mystery. Nursed in all tenderness, handled with care, thou wert bathed in costly extracts, composed of the most precious metals. Well watched, thou hast basked in the sun, and on thy surface were printed, by an invisible agency, pictures of beauty and of beauty only, were viewed with feelings of hopefulness. Also! to be exchanged for despair when, from the final water bath thou percellum may emerge stricken with leprosy, covered with spots, a useless and somden deceiver, fitted only to perish by fire, or to be trampled under foot in a ditch! Say, then, ye initiated, "Why—wherefore—what can this mean?" Say: can it be that these evils have none other remedy besides fault-finding with the paper? Columns, counted in the aggregate, represent many volumes that have been written on the uses and abuses of albumenized paper. Perplexed photographers have in various ways received instruction, and have been recommended to try this now, this now—that, in all, no end of formula; whilst albumenizers have been lectured—often well scolded—and from them has been demanded that philosopher's stone, the secrets of salting, which presented, leave the consumers as wise as before. Most certainly the secret is theirs for the asking, but they can find no relief in their knowledge; and although this ado, this glowing and chaff, have grown stale by long usage, the fact needs no argument that we have entered upon another new year with indisputable evidence before us that the printing experience of the past has taught them the mistakes of the present, and the faults, repetitions of failure, blind reliance on formula, ignorance of principles, helplessness under trifling difficulties, the same eagerness to saddle with all sins of commission and omission the much abused, but frequently innocent, paper.

Having had the good fortune—or, in some respects, misfortune—to have written on printing matters somewhat considerably, I feel that I at least must have failed as a teacher, otherwise my pupils are dullards and unteachable, and the space I from time to time occupy in the pages of the News might have been more profitably employed in giving publicity to more valuable matters. Truly I have often noted in the teachings of others the same facts and phenomena which my pen pointed out and described years ago. I care not, however, to waste time in reclaiming discoveries, as I am one among those who believe that thoughts, like cart wheels, might accidentally move in one's way on a moist sponge, and the work may begin again.

Manufacturers of albumenized papers, although a suspected race, are not quite so bad as they are sometimes painted; and who can measure the task they are sometimes called upon to perform? They have a host of fastidious patrons to please, and if their attempts to accomplish this feat ever turned out successful, the victor would be only one removed from the Pope, and his Holiness you must know, is infallible! "Hap, rap." The postman has placed in my hands some half-a-dozen orders for paper. One asks for black tones, another purple and warm. The paper must be thick, must be thin, must in texture be fine, must be coarse, must give a vigorous print. Another must have sent him a paper capable of yielding a delicate image; "and pray do not forget to write out your very best formula." Last writer in theCorrespondeud columns of the News some time since protested against this anxious inquiry for instructions of the albumenizer. Blessings on so useful a friend. I fear, however, that his instructions, like my own, passed unnoticed; at all events, it is no unusual thing with me to receive applications for advice which would take at least two or three days to give all the details in writing. To present my case as I view it, in language candid and plain, I have no hesitation in asserting that whilst too much is demanded of the paper vendors, too little is known by printers of those principles on which depend that success which makes satisfactory the paper those vendors supply. Such being the plain truths attached to the case, I, purpose, with a view of giving the facts closer home, and in as few words as possible, expositing, pro bono publico, the secrets of an albumenizer.

First the raw material known as unprepared paper. Ah! in this matter our usually enterprising countrymen have permitted to slip through their fingers an opportunity of doing a well-paying trade. The German and French manufacturers have, however, the race to themselves, and of late the latter have been doing all the running. For several years the star of the house of Steinbach was in the ascendancy; but since the decease of the senior member of the firm bearing that name, the quality of the paper produced at their mills, both in colour and texture, has greatly deteriorated, and the Riex papers have now the superior demand, so far as the English choice is concerned; nor can this alteration in their taste be well wondered at if we consider how admirably the French makers have succeeded in improving their paper; and the quality improves with the growing demand.

For some time past the prices of the raw material have been moving upwards, whilst competition has driven the quotations for albumenized paper seriously down. That in itself is no pleasant xperience for the hard-pressed producer; but his troubles go further. The Germans having sent English photographers a favourite paper—favroured because of its extra bright glaze—the English albumenizers are thus placed between two walls: they must follow suit, or lose all their customers; hence, in lieu of the freshest of albumen, which once was their boast and their pride, they must perforce, ere they use it, allow their wbumen to ferment, to emit a foul odour, or the
required glazed surface lies beyond their best skill. For
know ye, O innocent photographers! that the brilliant
surface on your paper, although set down in the advertise-
ment as the product of albumen extracted from the freshest
of eggs, is derived from an albumen whose original fresh-
ness has been exchanged ere it was used! Then it was
stale. Fresh albumen, if rightly managed, is the article of
giving a fair glaze, and can yield a good body; but the
garish brilliancy now so often seen in photographic papers,
and so generally admired, cannot be produced with unfer-
mented albumen.

If the change of fashion just now alluded to entailed no
further evil than is engendered by the mere use of stale
albumen, probably no lessening of its employeability will
probably ensue. There are, however, difficulties in-
numerable which accompany its employment, a few of
which it might be profitable here to enumerate. "Tear-
drops," unequal absorption in the process of sensitizing,
followed by blotched prints; here all is right, there a lot of
round marks on the paper, with none but the faintest traces of an image
to be seen. Defects such as these arise from the use of a few
concentrated silver solution, which is "coated" in the first
albumen too quickly, giving no time for the silver to com-
bine with the chlorides within.

Next, I direct attention to the troubles of toning. Add
more gold to the bath, and then come the "measles." This
defect is occasioned by a absence of free nitrate, which
must be present, or the prints cannot satisfactorily be
made. To adjust this the albumen has an indifferent taste.
In the fixing bath, the paper, after the toning time, is
washed out in the first washing, and better washing. Less of preliminary washing. If that
will not cure, no washing at all. One of these causes, if
adopted, cannot fail of giving the conditions of toning
success.

Next the blisters, concerning which so much has been
written and said. To account for the cause of this evil I
have gone, and the albumen has an indifferent taste.
On the paper, whose surface has no interstices to act as
safety-valves when the pressure exerted by the contact
of fluids of different densities is brought into play. I have
observed that in prints on paper subject to blisters, if fixed
in a solution of moderate strength, and afterwards plunged
into a large bulk of water, the blisters form thickly, but
neatly, and when the prints are immersed in a few
pints of water. I can give no reason for this increase of
dimensions. I therefore state the circumstance as I have
found it.

In conclusion. My readers might safely accept this
description as their rule: the higher the glaze, if not fictitious—or, in other words, the product of rolling—the greater will be the difficulties to be encountered in working.
A paper to tone easily must be porous. A paper to print
rapidly must not be too salt. A paper that "keeps"
for days after sensitizing is in some way connected with
salt. A paper to give a good image must have a high
degree of contrast. A paper that gives brilliant tones
can only do so when toned up with judgment. Even then the
chief desideratum must be a suitable negative that can
produce a vigorous image. In short, the papers prepared
by most of our English albuminizers are capable of doing
all that reason can require of them; that is to say, if the
printer knows how to guide to success. The cuckoo cry,
"O! that admirable paper!" has really grown stale, and it
is high time that this note of excuse should be changed.
Given an evenly-albumenized paper, a clean surface, a
honest "talk," and the albumenizer has done all that lies
in his power to accomplish. Remember, his profit—once,
I admit, great—is now driven down to the lowest possible
mark. So I pray you, dear readers, cease to aggravate his
wrack by your over-indulgence in groundless complaints.

ENLARGED NEGATIVES FROM SMALL ONES,
WITHOUT A TRANSPARENCY, BY THE PLUM-
BAGO PROCESS.

By George Willis.

Since I wrote my method of working the powder process
which appeared in the News, November 20th, I have made
further experiments with exactly the same sensitive solution
as then stated, but in an entirely different direction. A
plate of the size of 24 by 18 inches was coated with the
sensitive solution, which I found could be as easily done as
with collodion, by using a long glass rod to assist the
solution to the edge of the plate. It was then dried, and
placed on a sheet of blotting-paper in a large clean box
in the dark, for thirty minutes; then dried by the fire.
A thin, good, detailed negative of the size of 4½ by 3½
was placed in the holder of the enlarging camera, which is a
darkened room which has a plank of wood three inches
thick planed smoothly, and with guides at the side, and a
clamping screw to fix the dark side in its place. This is
placed in a slanting direction pointed to the sky. After
the plate was got sharp on the ground glass, the plate was
placed in the dark slide, and an exposure of thirty minutes
was given. The plate was then placed face up on a sheet of
white paper, and a large soft camel-hair brush was used to
cover the plate with plumago. It was found to be too
soft and thin, which was the result of under-exposure.
Another plate was prepared in the same way, and exposed
for one hour, and the plumago was rubbed on as before.
After about fifteen minutes’ labour with the brush a good
negative was obtained.

Enlarged negatives from small ones, without any positive
interference, as in this case, seem to me to be superior to
all other methods of enlargement, so far as I can judge
from the little experience I have had at present. There is
one thing certain: that enlargements made in this way from
a good, small, well-detailed negative (rather thin) are
better modelled and more true in their proportions than ever
can be hoped for from large direct heads taken from
life, no matter how good the lens may be.

There is another thing: the enlarged negative may be
in its true position or reversed, at will; the only thing to be
done is to place the small negative which you please in
the camera, so that if a reversed negative is required, it
can be got without any transfer of the film, which is of
great advantage for some of the mechanical processes.
I have no doubt that in summer the exposure will be reduced
to about fifteen minutes. I shall experiment further in
this direction, as I have hopes that it will turn out to be
the best process for enlargements; and I hope shortly to be
able to lay before you both negatives and enlarged prints
done by this process.

FICHTERM'S ASPHALTE PHOTO-ZINCO-
GRAPHIC PROCESS.*

That a thin film of asphalté when exposed to the action of
the sun undergoes a change, and is afterwards less soluble
in its previous solvent, is a well-known fact upon which
many photographic processes are based. The sensitive
varnish is prepared by dissolving five parts of Syrian
asphalté in ninety parts of benzole, and adding ten parts
of lavender or spike oil, and filtering the same. A great
deal depends on the choice of the asphalté; those portions
only should be chosen which do not melt in a temperature of
90° Reaumur, and which are difficult to dissolve in
alcohol.
The benzole must be separated by distillation from
the more sensitive bodies it contains, and must be free
from water. The other oil must be quite pure, and also
free from water.

A perfectly clean and very smooth zinc plate is covered

* Correspondence.
Correspondence.

ELECTION OF OFFICERS OF THE PHOTOGRAPHIC SOCIETY.

Sirs,—You have been good enough to tell us recently the precise modus operandi of the new laws for electing officers of the Photographic Society of Great Britain. But the voting paper I have just received seems to be at variance with your instructions. You informed us that an entirely new council would be required. The instructions on the voting paper make no mention of the number of officers, and, on referring to the law which is quoted, I find six members of council, one president, and one vice-president are annually to be elected. In the absence of official instructions, I presume that the printed law is the proper guide. Again, you informed us that the retiring officers would be eligible for re-election. But in the printed balloting paper I have received, whilst the names of the officers are, as a matter of course, printed at the head of an official document, there is no intimation that they are candidates for re-election, or that any of them are eligible for re-election; they are simply described as the “retiring” officers, as in contradistinction to the candidates for re-election. Can you enlighten me as to the real state of the case?

Perplexity.

[All the retiring officers are eligible for re-election; and the election is for all officers. It is a pity that the balloting paper does leave the matter in some doubt.—Ed.]

Dear Sir,—I have just received an extraordinary circular from the Secretary of the Photographic Society, of which I am an old member. It informs me that in order to obtain the privilege of receiving a ballot paper, and the privilege of voting for officers for the coming year, I must first pay my subscription for that year. On reference to the laws I find that "no member shall have the privilege of voting on any occasion unless he shall have paid his subscription for the current year." As I have been for many years a member of the society, I have generally paid my subscription at the close of the annual meeting, and have never before been told that I must pay my subscription previous to voting at that or any other meeting. I presume this must be one of the new rules about which we have heard so much during the past year, and I must be allowed to remark that it seems to me most offensive and impolitic.

In addition to the law being offensive and impolitic, I should venture to assert that its application on the present occasion is illegal. When I joined the Society the annual meeting was, as it is now, in February, and the subscriptions were due in February. I think I remember that during the last year or two the accounts have been made up to the end of December; but I cannot see that my liability for payment is altered by such a stop. It seems probable that a large majority of the members will not have paid the subscription for the coming year before February, in which case they are practically disenfranchised; and the recent changes in law will limit instead of extending the voting powers of the members of the Society. Yours very truly,

An Old Member

[There is a clause in the laws to the effect quoted by our correspondent, and it is really a part of the old rules. As the law making the financial year of the Society terminate at the end of December was, so far as we remember, duly passed, every member would become amenable to the modified law, and the subscription would be due in January. Considering, however, that many members would scarcely be likely to have paid their subscriptions before the annual meeting, we should certainly doubt the policy of putting in force a penal clause under such circumstances.—Ed.]

REMUNERATION FOR NEW PROCESSES.

Dear Sir,—I have little doubt that some of your clever contributors will be able to perfect a plan from the following ideas. It is quite certain, in the present times of great competition, that no inventor of a new process can afford to give his time and experience for nothing, especially after the manner in which many kind gentlemen in this profession have been treated by Know-alls who knew all about it before, but were not generous enough to publish it if they did. We now miss the names of such masters in our art as Robinson, Col. Stuart Wortley, and many other practical men whom we provincials often had the chance of studying in print.

The new to the plan for investigating processes. Let two or three well-known men, from either the energetic South London or the Parent Society, form a committee of investigation. The inventor should enter his process on the books of the Society kept for the purpose, and at the time of entering should pay some fee. The process, if found perfect as stated by the inventor, should be granted a certificate stamped with the Society's seal. Then every purchaser of the process should pay a fee of five shillings for the seal of the Society, to be attached to every receipt issued, which would be a guarantee to the purchaser, and also form a fund for expense of investigation. This, I think, would be the means of keeping the vendors of old dishes re-cooked out of the market, and find many more purchasers for a really genuine article. I remain, dear sir, yours very truly,

H. Shatler,

Hedon, January 27th.

COMMITTEES UPON SECRET PROCESSES.

Sirs,—Will you permit me one or two words in reply to "W. E. B.," who seems strangely to misunderstand the aim of my former letter to which he refers. He says: "Photographers generally are willing to take and continue to receive freely. But what about the giving?" And so on.
He does not seem aware that he confounds two distinct things. When I quoted the passage, the meaning was surely clear to everyone, thus: freely ye have received information; freely give information. "W. E. B." seems to think it should be thus: freely ye have received information, freely give money! And because Archer, and Blair, and others freely gave the results of their study, process-mongers should, according to "W. E. B.", freely receive the money of the present generation of photographers. I will very readily admit that many photographers are not sufficiently grateful to the leading spirits who freely impart the results of their study for the good of the community; but the secret process-monger is too often one who has seized upon the results worked out and published by others, to sell for his own gain. Real novelties do not need to be sold as secrets in order to secure remuneration to their discoverers should remuneration be desired, as a real novelty can be patented, and, as a rule, when a process is sold as a secret, it is, if good not new, and if new unimportant. Nevertheless it may easily pay a busy man to buy such processes. The one point I have to urge is, that if committees are to be appointed they will do better service by reporting upon known but comparatively unpractised processes, than by reporting upon secret methods offered for sale. The remainder of "W. E. B."'s illogical letter I may safely leave with the note you attached to it.—Yours very truly,

SHERZ.

CAUTION.

SrS,—Will you allow me to caution photographers against a person calling round to obtain silver cuttings, chloride of silver, &c., and who has a habit of taking such things away, promising to remit the value, and then not doing so. Lenses, cameras, and spare apparatus generally he obtains in the same way with the same result. Even when he buys and pays, the price given is far below the real value.—Respectfully,

S. FAY.

DIFFUSED LIGHT AS AN ACCELERATOR.—THE "FLAPPER".

SrS,—So many enquiries have been made per letter and post card, that parties must excuse my not answering sooner, having to go away from home a few days up to London. However, I have answered many, and I think, for the benefit of those who wish to be raised by the first year's exhibition of life-sized photographs taken direct, and where no fear of display it created in the minds of all art-photographers who understand and have studied that branch of their profession, by first acquainting themselves with the optical laws which govern the working out of such problems. It was evident to all that no photographer of ability would ever attempt either to reproduce his sitters in that way, or presume to put before them results so obtained. To some, these statements may appear of a sweeping character, but I have good authority for going much further; after having entered my protest against the advisability or feasibility of taking life-sized photographs direct, I will show that even portraits obtained by enlargement cannot be without defects or distortions of every description, unless the small negative be so taken that the conditions of distance from the lens be fulfilled, and such lenses used as to warrant a perfect result. A few extracts, which I will translate from a learned French book bearing on this subject, will suffice to illustrate my statements, and show to what great extent care must be used to remain within the prescribed limits:—

"We will state at once that most of the portraits now exhibited are altogether distorted. The cause is a very simple one, and the use of short focus lenses explains the matter perfectly. If I wished to describe the defects which arise from this mistake I might write a whole volume, but the fact can be easily ascertained. Artists are not to be deceived on this point, although the general public may be. A little consideration will suffice to make the thing evident; look at most portraits, examine the features, particularly notice the nose and chin—both are protruding and en-
THE PHOTOGRAPHIC NEWS.

February 5, 1875.

To the photograph.

Largely to a surprising extent. Examine those large heads, and you will at once observe swollen faces in all of them. Some will say that this is an exaggerated description, but it is nothing more than absolute truth. The matter is easily explained, and to be traced solely to the use of imperfect or short focus lenses. By disregarding optical laws and the requirements of perspective, caricatures, instead of natural reproductions, are the results. Now what will be the consequence if you enlarge a negative which represents a very highly defected face? The same result. The drawing of an unpleasant incorrectness will naturally be the result, because all the defects will be proportionately magnified. While pointing out defects it is necessary to indicate the means of avoiding them; this is easily done—use medium or long focus lenses.

The limits of this letter do not allow of entering more fully into details, which, to most experienced photographers, can only be read in an article entitled "The Influence of Competition for Prize" in the Photographic News, November 27th, 1874, which shows conclusively, with regard to taking lifesize photographs direct, that the thing ought never to have been attempted, simply because photographers of ability have been engaged for over twenty years in the production of these pictures, and have never resorted to the direct process, referred to above.—"For so far as we know, life-size heads, produced direct in the camera, had never been attempted, certainly never exhibited before." Liverpool, November 30th, 1874. C. Ferranti.

Talk in the Studio.

Simple Combination Printing.—Mr. S. Fry informs us that, having tested Mr. Tilley’s mode of combination printing with much success and satisfaction, he has acquired the interest in it with a view to bring it out and place it in the hands of photographers on satisfactory terms. He believes it will be regarded as one of the profession generally.

Triumph of Venus.—Some negatives and transparencies of the recent transit of Venus, taken by Mr. Bruton at Cape Town, will be exhibited, by means of the spectroscope, by M. Frederick York, at the Photographic Society’s meeting on Tuesday evening next.

Photographing the Next Eclipse of the Sun.—Mr. A. Brothers, of Manchester, writes to the Daily News as follows:—

"Everyone interested in the subject will be glad to see that Mr. Proctor has called attention to a mistake which it is probable will be made in the method proposed for making use of photography during the eclipse of the sun in April next. If the attempt is to be made to photograph the image of the corona as seen in the spectroscope, no other result than failure may, I think, be looked for. The matter may be tested by any one having the proper apparatus, and the moon offers a favourable object. If an image of the full, or nearly full, moon can be obtained with a short exposure, then the brighter portions of the corona may give an image on the sensitive plate; but I anticipate that no trace of the less bright portions would be visible. The corona is so feeble an appendage of the sun. In 1871, with apparatus specially adapted, but similar to that used in 1870, the photographs confirmed the results of that year, and some extremely valuable pictures of the corona were obtained. The interest in the subject was by no means exhausted at this point, and now an eclipse is close at hand when a most favourable opportunity will offer for testing the power of the instrument in which the differences as compared with the pictures obtained in the years named above. With the apparatus used on former occasions only very small picture can be made. What is required now is a lens of such a size that it would give an image of the corona as large as the one we have yet seen. Lenses of the kind here indicated ought to be prepared for use when required, and no eclipse of the sun for many years to come ought to be allowed to pass (as was the last year) without some photographic record of it being attempted. If the Daguerreotype process could be used in addition to the ordinary method, it would be very advantageous; and if the stations were supplied with duplicate apparatus, one for short exposures, taking (say) ten pictures, and the other for long exposures, to take four or five pictures, some interesting and valuable results might be anticipated."

Removing Stains from Clothing.—Fresh ink and the soluble salts of iron—such as are used by photographers in their developing solutions, &c.—produce stains which, if allowed to dry, and especially if afterwards the material has been washed, are difficult to extract without injury to the ground. When fresh, such stains yield rapidly to a treatment with moistened cream of tartrate, aided by a little friction, if the material or colour is delicate. If the ground be white, oxalic acid, dissolved in the former concentration, will effectually remove fresh iron stains. Acids produce red stains, or blacks, blues, and violets, made from the vegetable colours (except indigo). If the acid has not been strong enough to destroy the material, and the stains be fresh, the colour may generally be restored by repeated soakings in dilute liquid ammonia, applied as locally as possible. Photographers frequently stain their clothes and cloths with nitrate of silver. The immediate and repeated application of a very weak solution of cyanide of potassium (accompanied by thorough rinsing to clean away water) will generally remove these stains without injury to the colour.—English Mechanics.

Action of Magnets on Spectra.—Some recent experiments described by M. Choquart to the Academy of Sciences recall the early experiments of Daguerreotypists, in which attempts were made to augment sensitiveness to light by connecting the plate with a galvanic battery. M. Choquart states that the effect of magnetic influence on the spectra of the flames of sulphur and selenium is to cause them to pale, and finally to become quite extinguished. On the other hand, the magnetic influence may be said to have the reverse effect, i.e., to make the spectra of chlorine and bromine more brilliant. The effect, says the investigator, is so rapid as to seem magical. The result of these discoveries is to render the deductions from the spectra of the heavenly bodies only to be accepted with great caution, and the views which have been virtually introduced must be considered in drawing conclusions from the aspect of the same.

Photography and Engraving.—A curious paragraph appears in the Paper and Printing Trades Journal, in which a novel charge is inferentially made against photography. Referring to the possibility of producing printing blocks with white letters on a black ground as desirable for display, and the difficulties hitherto experienced in producing such blocks, it proceeds as follows in relation to a specimen block it prints:—

"A cheap and effective method is required for producing casts from type with sunk letter and raised gentlemen. In this process, no matter how small, or complicated, will appear clear and sharp when worked. Many attempts have been made, and with varying success; but the results, so far as we know, have been expensive and uncertain. The block now shown was produced by the type being set, and pulled in a light blue ink; this impression was sent to a photographer, who made from it a glass negative, which gave white letters on a black ground. Messrs. Leitch then produced the block from an impression sent them. The result, as our readers will see, besides being exactly similar, is inseparable from the type. The result justifies the veracity of the report, and the photographer professes his inability to prepare a better." It cannot be doubted that this blurring referred to is not from any shortcoming of photography, but from the practice of using blue printing ink on a dark ground. Such a method could scarcely do other than produce a somewhat blurred, uneven impression.
METEOROLOGICAL REPORT FOR DECEMBER.
BY WILLIAM HENRY WATSON.

Observations taken at Braystones, near Whithorn, 38 feet above sea level.

<table>
<thead>
<tr>
<th>Thermometers</th>
<th>Barometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Morning</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>30°</td>
</tr>
<tr>
<td>2</td>
<td>26°</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>23°</td>
</tr>
<tr>
<td>9</td>
<td>23°</td>
</tr>
<tr>
<td>10</td>
<td>23°</td>
</tr>
<tr>
<td>11</td>
<td>23°</td>
</tr>
<tr>
<td>12</td>
<td>23°</td>
</tr>
<tr>
<td>13</td>
<td>23°</td>
</tr>
<tr>
<td>14</td>
<td>23°</td>
</tr>
<tr>
<td>15</td>
<td>23°</td>
</tr>
<tr>
<td>16</td>
<td>23°</td>
</tr>
<tr>
<td>17</td>
<td>23°</td>
</tr>
<tr>
<td>18</td>
<td>23°</td>
</tr>
<tr>
<td>19</td>
<td>23°</td>
</tr>
<tr>
<td>20</td>
<td>23°</td>
</tr>
<tr>
<td>21</td>
<td>23°</td>
</tr>
<tr>
<td>22</td>
<td>23°</td>
</tr>
<tr>
<td>23</td>
<td>23°</td>
</tr>
<tr>
<td>24</td>
<td>23°</td>
</tr>
<tr>
<td>25</td>
<td>23°</td>
</tr>
<tr>
<td>26</td>
<td>23°</td>
</tr>
<tr>
<td>27</td>
<td>23°</td>
</tr>
<tr>
<td>28</td>
<td>23°</td>
</tr>
<tr>
<td>29</td>
<td>23°</td>
</tr>
<tr>
<td>30</td>
<td>23°</td>
</tr>
</tbody>
</table>

Rain all day.

SUNSHINE.

From the above observations I arrive at the following:

Maximum temperature observed 47° 45°
Minimum ditto 16° 28° 23°
Mean ditto 33° 36° 32°

Mean of whole day.

5°

Fair days during the month 20 Days on which rain fell 11
Days on which wind was strong 9
Days on which it was gloomy 9

Mr. J. W. CLARKE, Bury St. Edmunds.
Photographer of the Duke of Cambridge.
Mr. W. H. MOORE, Bristol.
Photographer of Miss Trendall.
Mr. J. HUDSON, Kilkerran.
Mr. C. CAMERON, Hirta.
Mr. W. C. LAMBERT, Fife.
Mr. A. GOODHART, East Renfrew.
Mr. J. CLAYTON, Newtown.
Mr. W. J. S. BAYLOR, Llanelli.
Mr. W. C. LAMBERT, Bath.
Mr. W. C. LAMBERT, Pudsey.
Mr. A. GOODHART, East Renfrew.
Mr. J. CLAYTON, Newtown.
Mr. W. J. S. BAYLOR, Llanelli.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

How to Bleach Shellac.—The Photographs of the Sun and Venus.—Chloride of Zinc and Gelatine.—A Tax on Photographs.

How to Bleach Shellac.—Those who employ bleached shellac in the preparation of their varnish often complain of its inferiority, for when in the form of a film upon the silver image it turns on a little yellow; because of this reason photographers generally content themselves with employing a light sample of shellac, which, however, not been bleached, preferring to put up with the inconvenience of the colour rather than run the risk of having a covering to its negatives which is not trustworthy. A plan for producing bleached shellac without in any way injuring its other properties has recently been given in the Hungarian Industrial Journal, and the subject is one that interests all photographers, we think the information may be useful to our readers. Ordinary shellac of good quality is dissolved in strong spirits of wine, and to the solution is added sufficient bone charcoal, in a finely powdered condition, to make a thin paste. This is put into a bottle of transparent glass, and placed in a warm place, and allowed to set for a few days, to shake up the mixture occasionally. Finally, the liquid is filtered, and the result is a solution of shellac which is of a very pale nature. We have no doubt that such a solution would be far better adapted to photographic purposes than one made from the bleached lac usually obtained in commerce.

The Photographs of the Sun and Venus.—We have seen some copies of the photographs taken on the occasion of the transit of Venus, and it is surprising how clearly the phenomenon appears on the plates. The pictures show a luminous disc of the sun about the size of an apple, the limb of the sun being in some of the pictures, far from sharp. Venus is seen like a tiny black corn in the middle of the white ground formed by the sun, now entering the sun’s limb, now progressing through the disc. The path can be accurately followed by examining a series of the photographs, and there should be little difficulty felt in making accurate measurements from the photographic results obtained. Some time must necessarily elapse before we receive the fruits of the investigations, for the calculations cannot be definitely concluded until the results from stations in different parts of the world have been received and inspected. It is said that the abstruse calculations necessary for the determination of the same position in the same general result, are undertaken by the Russians, who are looked forward to as being those from whom we may look first for an opinion. In the meantime it is matter for congratulation that our observers have been generally so successful in their efforts, and that the expenditure of so much labour and money has not been without a fair return.

Chloride of Zinc and Gelatine.—The use of chloride of zinc is being advocated in France just now for employment in collodion printing. It has been found that this substance is peculiarly fitted for addition to wet collodion in order to prevent its decomposition. Paper sized with gelatine to which a little chloride of zinc solution—say of six per cent. strength—has been added, possesses, moreover, the faculty of repelling moisture. The use of chloride of zinc with gelatine, employed as a collodion film, is also important, for if a printing block is immersed for a short time in the zinc liquid, the consistence of the gelatine is increased, and it becomes more solid, so that a larger number of prints may be pulled from its surface. The zinc, moreover, it is said, makes the gelatine surface more repellent of the ink, and the clogging of the plate with the black pigment is not so frequent as when gelatine alone is employed. If this is really the case, chloride of zinc will be an important assistance indeed to the photo-

mechanical printer, for the giving way of the printing block, and the adherence of ink over its surface, after the work has proceeded for some time, are two of the gravest difficulties that have to be contended with. Chloride of zinc thus employed would no doubt be a more innocuous clearing agent than acid, for the latter always acts injuriously on fine lines, unless very great care is exercised in the matter.

A Tax on Photographs.—The question of a tax on photographs has again been referred to, but we think there is little chance of such a measure being taken. A step of this kind would be as difficult to carry out as the tax upon matches, and would probably be quite unpopular. Only professional photographers could be taxed, for it would be impossible to charge for a very private portrait an amateur. This alone would lead to endless difficulties, for the question would be continually arising as to whether a picture was an amateur or professional production. Again, an amateur negative might be printed by a professional photographer, or vice versa, giving rise to endless difficulties. Another question would be as to the nature of the stamp, whether the same would be necessary upon a small as upon a large picture, upon a portrait as upon a landscape, and again a definition would have to be given to what constitutes a portrait and a landscape. We see the horizon so beset with clouds and fog, that any Chancellor of the Exchequer would need be a bold man who resolved to tax photographs. The utmost he could do, we should think, was to issue licences to professional photographers; but even such a measure as this would be most unsatisfactory and difficult to carry out.

FRENCH CORRESPONDENCE.

Permanent Photographic Prints.—Progress in Photochromy.—Removal of the Photographic Film from Glass.—A Simple Artificial Light.—Comparative Experiments with Different Sources of Illumination.

At the last meeting of the French Photographic Society, held on the 5th inst., a good deal transpired to bear out what I have already stated in previous letters about the progress recently made in the new methods of printing, both in carbon or greyink. M. Franck de Villeboille laid before the Society a numerous series of prints of various kinds, both upon paper and upon glass, by Mr. Johnson’s method; and Professor Stebbing presented a collection of stereoscopic pictures, and others, printed by M. Finlow, of Warwick. The latter productions proved that it was possible to print from four to five hundred impressions a day. All these are of the same general type, and fail to understand, and, as we have already stated, the Russians are looked forward to as being those from whom we may look first for an opinion. In the meantime it is matter for congratulation that our observers have been generally so successful in their efforts, and that the expenditure of so much labour and money has not been without a fair return.

M. Leon Vidal, who follows up his work with as much success as energy, sent me four impressions obtained by his new heliochromic process, for presentation to the Society. There was, first of all, a reproduction of a steam engine showing different metals; a mantelpiece in bronze, gilt, and enamel; and two bust portraits, carte size. The latter were obtained from which the impressions were taken were by M. Walery, of Marseilles.

The mantelpiece was the most remarkable of all, for the gilt was matt in certain places, and burnished in others; this appearance has been most accurately reproduced in the photochrome print. As the author remarks in his note, a mere examination of this specimen suffices to show the wide application that may be made of the process in the depiction of artistic objects alone. To any one who has but the slightest idea of painting or chromo-lithography, it is evident that it would be impossible to obtain a reproduction of the same kind, either by means of the brush or by lithography, without giving up much time to the matter; and at all events, it would be a most costly and laborious affair without the aid of the cameras.
Thanks to the photochrome process, it is possible, without being even painter or draughtsman, to obtain automatically veritable paintings exactly representing the model, and to pull them off in considerable numbers, the impressions being of an inexpensive character, carte-de-viste, for instance, costing but fifty centimes each. "At the present moment," says M. Vidalin his note, "the photochemical process has been brought to a point of per-fection sufficiently advanced to allow photography to include as one of its branches, and to permit of the widest and most unexpected applications.

A member of the Society made known at the meeting a very simple means of removing from the surface of glass the film of any cliché that may have been secured upon that basis. The method consists in rubbing the glass, before collodionizing it, by means of a tuft of cotton wool and some talc powder. The plate is then coated with collodion in the ordinary manner, and when the cliché has been taken, it may be gummed over, and yet removed with the greatest facility.

Another member remarked that the same method made use of before the preparation of plates by the Taupenot method (collodio-albumen process) preserves them effectually from any lifting of the film, which is sometimes experienced to the annoyance of the operator.

At the end of the meeting, MM. Riche et Bardy produced and exhibited to the members present a new light, of the most photogenic character, which seems likely to afford the most important services to the photographer. It was produced simply by directing a jet of oxygen upon a bit of burning sulphur.

I spoke recently of the binoxide of nitrogen and bish-phide of carbon lamp of MM. Delaichenel et Mermet. I said that it gave a very photogenic light, exceedingly regular in its character. Unfortunately, this lamp is founded on the employment of two gases whose combination gives rise to explosions, and, consequently, is looked upon with suspicion in photographic studios, especially as the gases eliminated are, moreover, of a most dangerous character. The illness, just now, of my friend Professor Stebbing, who has taken rather an active part in the experiments recently made on the subject, is a sad and striking illustration of this.

MM. Riche et Bardy have made an investigation of the matter, to discover whether it is the carbon or the sulphur from the bishphide of carbon which furnishes the photogenic ray. To solve the question, they compared, first of all, an experiment in which lights a bit of sulphur, and in order to render account of their action upon photographic preparations, they proceeded in the manner following. They prepared a glass plate prepared with pure bromide of silver by M. Stebbing, and cut it into strips two centimetres broad by ten long, and these strips they exposed one after the other under identical conditions to the influence of the various kinds of light they desired to examine. The experiments were all made the same evening; the sensitive plates were placed at a distance of fifty centimetres, from the source of light, and the exposure lasted sixty seconds, an interval registered by means of a chronometer.

The sensitive plates were enclosed in a slide under a screen furnished by ten sheets of waxed paper, superposed, two centimetres broad and of variable length. One measured ten centimetres, and, consequently, covered the entire length of the sensitive plate; the second measured nine centimetres, the third eight, and so on, until the tenth piece, which was but one centimetre long. These latter were pressed between a sheet of glass on one side, and a slice of horn on the other. The latter had marked upon it figures from one to ten, at equal distances, in such a way that the figure No. 1 was under the part corresponding to a single sheet, while the figure No. 10 was under that portion where the ten sheets of paper were superposed.

In this manner a screen was secured, the opacity of which was in proportion to the number of sheets superposed, which were indicated by numbers. For instance, if, after an experiment, it was found that the figures 1 and 2 were visible, and that, in another, the figures 1, 2, 3, 4, and 5 were seen, it might be concluded that the photogenic power in the second instance was stronger than in the first experiment, in the proportion of 5 and 2.

All the plates—prepared as dry plates, of course—were developed at one and the same time, and the table below shows the principal results obtained:—

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Oxidation of oxygen</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Zinc burning in oxygen</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Magnesium lamp</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A current of binoxide of nitrogen in a flask containing bishphide of carbon, as far as</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>A jet of binoxide of nitrogen upon a stream of bishphide of carbon showed as far as</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>A jet of oxygen upon a stream of bishphide of carbon showed as far as...</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>A jet of oxygen upon burning sulphur</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Consequently, it is the light produced by the action of oxygen upon sulphur which, according to MM. Riche et Bardy, gives the greatest impression upon bromide of silver, and for this reason they do not hesitate to recom- mend its employment practically. It has besides other noteworthy advantages. It is not liable to explosion, and it is by no means costly, for there is but little apparatus necessary. An earthen vessel in which the sulphur is lighted, and a bag full of oxygen gas (which anybody may make for himself, or may purchase in commerce), are all that is necessary.

The surface of combustion may be augmented at will by employing for burning the sulphur a long vessel, so that several jets of gas may be directed from the bag upon the burning sulphur.

This artificial light, it must be admitted, possesses one drawback, like all others which deal with sulphides of carbon: a suffocating odour of sulphurous acid results from the light; but it is easy to get over this difficulty in a laboratory by placing the light under a chimney. The fumes are not very great in a spacious room; but in a small apartment they are unpleasant, and should be avoided. The most simple remedy consists in placing the vessel containing the sulphur under a large tube communicating with the chimney, in which a current of air is set up; or, better still, burning the sulphur in a glazed cupboard which is ventilated by a chimney shaft.

The experiments made by MM. Riche et Bardy before the French Photographic Society, with the assistance of Professor Stebbing, proved of the greatest interest to the members assembled. —Ernest Lacan.

ON THE VARIOUS STYLES IN PORTRAITURE.

By J. M. Turnbull.*

In the present short paper on the above subject, I will first set out by noting the various processes and phases of photography that have passed through. I do not, however, intend to dwell on them. Photography, for so young an art, has had many and various transitions, from the metal in the Daguerreotype to paper in the positive, and from that to paper in the negative process, to carbon tissue in the autotype, to greasy ink in the photo-lithographic and heliotype, till it will be difficult to tell where its various and final ramifications will end. Like other arts, it has

* Read before the Edinburgh Photographic Society.
also had its fashions and its follies. At one time the rage would be stereoscopic; at another microscopic; at another time enlargements would be the cry, at another some new dry process would absorb attention; while at another time photography would be chasing after some new and pantoys, much was to consider with respect to the art of photography, but which would in the course of a few months be quietly put to bed, never to lift its head again.

Photography may be divided into four parts: chemical, artistic, optical, and mechanical. It is natural, in an art like photography, that that part of it which first had birth (namely, the chemical) should first engage the attention of those professing it, and that until the conditions required of it in that direction were understood, little progress could be made with others. I need not here speak of the optical and mechanical, as they have kept pace with the chemical; when the chemical conditions called for mechanical arrangements, they were not found wanting. I do not overstep the mark when I say that the chemical and mechanical conditions required in photography are now so thoroughly understood that they may be considered as perfect. When I say this, I am very far from thinking we are at the limit of our chemical or optical developments. Indeed, I hope not—but what I mean to convey is, that the wet process, by which photography is ordinarily practised, is now so well understood, that I should not regard any man who is a professional photographer as worthy of the name who would make the condition of his chemicals an excuse for bad work. It is different, however, with the artistic division of the art, which has only of late years begun to attract the attention it deserves. It could not be expected of the early practitioners of the art that they could devote much of their attention to artistic matters, when they were groping their way with chemical difficulties and bad materials, sometimes brightened up by the appearance of one good picture out of a dozen bad ones, at other times in the depth of despair, from some calamity or other which was then beyond their knowledge.

In the Paris Exhibition of 1867 were exhibited some remarkable photographs; they were by a gentleman whose name has since become widely known: I refer to Adam-Salomon. The opinions regarding those pictures were very different. The opinion of some was to the effect that they were photographs untouched, while others maintained that a great deal of their effect was attained from retouching; while others were the length of way that they were not photographs, and that their whole effect was due to working-up. But all agreed as to their beauty, and that whatever their success was due to, they were pictures such as had never been before produced by photography. The practical effect of the exhibition of these pictures was to open the eyes of those interested in photography, more widely than ever they had been before, as to its capabilities, both artistic and manipulative. Their effect was to raise up many imitators of their style, and also to draw attention to the retouching of both the negative and print, to both of which the success of these pictures was no doubt partly due.

This retouching the negative has with some photographers assumed the form of a mania, so much so that every picture done by them, whether good or bad, had to be retouched, and this to such an extent that the photographic deficiencies were not only touched out, but others, done carelessly to the touching, were put in, till the final result was a silly waxified looking picture, the effect of which could not be considered due to photography. I do not deny that the result of retouching was sometimes what might be called pretty to look at, but when looking at any of these excessively retouched prints, it always puts me in mind of the following incident. When I was a child of nine or ten years of age (now a good many years since) I was taken to see a large travelling waxwork, by a near relative of my own. After having seen the whole collection, from Daniel in the lion’s den, and King Solomon in all his glory, to the last celebrated murderer—after having seen them to my heart’s content—the question was put to me, “But do you not see that they want something?” After having in my mind what it was that they wanted, I went over them not only properly but gorgeously dressed, that there was real hair on their heads, and colour in their cheeks, and that some of them were actually moving. I at length asked what it might be they wanted, and got for an answer, “They want life.” Now I never look at any excessively retouched (and may be beautiful) pictures, but the unwaxed waxwork, with the waxwork on it, while the waxwork in my mind, “They want life.” Certainly, if photography is capable of rendering a face with any degree of character or life in it, retouching, such as has been practised for years back, is just as capable of polishing it out again. It must not be thought, from what I have said, that I entirely condemn retouching. Photography has its defects as to colour, and it imperfectly renders some faces, as we all know. These defects I consider it quite legitimate to remove what I condemn is, the abuse or indiscriminate use of it, and the almost entire obliteration of all the delicate photographic detail. It is the practice of some photographers to sit for hours touching a single head, while all the touching that I would consider necessary would be to strengthen a little some of the lights, or make up any deficiencies in the shadows; it being more certain than any other way for the defects, all of which could be done in a few minutes. I am glad to see that a more healthy opinion regarding touching is beginning to spread among those who practise it most, and that those who formerly would not use it at all are now putting it to its legitimate use. I will wind up what I have to say on this point by a quotation from Sir James Reynolds:—"The thing in photography that I most abhor is the vain, unless at the same time there is preserved a breadth of light and shadow." Now retouching cannot put shadows in, though it takes them out; the most it can do in this direction being to bring up the lights, which is a very different thing from putting in shadows; in fact, its whole tendency is unnatural to flatten. My opinion of retouching, therefore, is, the less of it the better, as we all know, these defects I consider it quite legitimate to remove. One of the latest styles of portraiture I will now say a few words about. Though it is somewhat of a misnomer to call these pictures "Rembrandts" (at least, in so far as they bear any resemblance to portraits by Rembrandt), I do not object to the name, as they certainly bear a closer likeness to the style of Rembrandt than that of any other painter. But the pictures which pass current as Rembrandts in photography bear hardly little in common with pictures by that master. They want that beautiful luminous softness which is most apparent in Rembrandt's works, and I have never as yet seen any attempt in photographic Rembrandts to break up the black even background on which they are usually done. This is very different from the backgrounds in Rembrandt's pictures, which, though generally painted in a very low tone, are always full of gradation, softness, and contrast, which gives value and roundness to the figure. Listen while I give an extract from Fuseli:—"None ever like Rembrandt knew how to improve an accident into a beauty, or give importance to a trifle; if ever he had a master, he had no followers. Holland was not made to comprehend his power; the succeeding schools of art—cottage, cottage, the boor, the ale-pot, the shambles, and the haze of winter, with orient hues, or the glow of setting summer sun. No one combined with so much transcendant excellence so many in all other men unpardonable faults, and reconciled us to them. He possessed the full empire of light and shade, and all the tints that float between them; he tinged his pencil with all the hues in the cool of dawn, in the moonday ray, in the livid flash, in evanescent twilight, and rendered darkness visible."
Photographic portraiture in the so-called Rembrandt style has, however, been a valuable lesson to photographers; it has taught them that study more than ever they had previously done the various styles and effects in lighting, and the different ways and conditions under which a pleasing and satisfactory result could be arrived at. If Rembrandt photography had done nothing more than this, I hold that it will have done a great deal to advance photography. It is only by the careful study of lighting that the exponent of photographic portraiture can make any claims on, or make any real advance into, the domain of art. I do not, however, think that the Rembrandt style of lighting is the ultimate object which it should be the photographer’s highest ambition to achieve or master. I think it should only be a stepping-stone to lead us on in the study of lighting.

Of what I regard as the highest style in portraiture, examples are to be found in the works of Raimondi, Laurence, Gainsborough, Sir Henry Raeburn, Jackson, Northpole, and others. There is now on view at our Industrial Museum a collection of engravings from the South Kensington Museum, which is the finest collection of engraved portraits I have ever seen. They are nearly all splendidly executed by the same hand, and photography can have any claims on, or make any real advance into, the domain of art. I do not, however, think that the Rembrandt style of lighting is the ultimate object which it should be the photographer’s highest ambition to achieve or master. I think it should only be a stepping-stone to lead us on in the study of lighting.

A BATCH OF RECIPES.

We call from the pages of our excellent contemporary, the Scientific American, a batch of small recipes, all of which will probably be found of service at some time or other by photographers:—

1. Protosulphate of iron in powder, rubbed up with raw linseed oil, is an antidote for external poisoning by cyanide of potassium.

2. Rubber rings, slipped over bottles in packing, ensure safety against breakage.

3. Leather can be made hard by saturation in a solution of shellac in alcohol.

4. Paraffine is the best material for protecting polished steel or iron from rust.

5. Photographers who use large quantities of nitrate of silver should allow all the excess of silver, acetic acid, and other matters from the plates undergoing development to run into stone jars containing fragments of zinc. By that means the metallic silver may be collected. It should then be digested with dilute sulphuric acid, washed, and dried in an oven, so as to quite a large saving may result.

6. Lead nine parts, antimony two parts, and bismuth one part, is an alloy which expands on cooling, and which will be found useful in filling small defects in iron castings, &c.

7. Glycerine is an excellent coating for the interior of plaster moulds.

8. A strong solution of sulphate of magnesia gives a beautiful quality to whitewash.

9. Glass can be drilled with a tool moistened with dilute sulphuric acid. This last is better than turpentine.

10. White lead rubbed up with linseed oil to the consistence of paste is an excellent application for burn.

11. Gelatine mixed with glycerine is liquid while hot, but an elastic solid when cold. Useful for hermetically sealing bottles.

12. Black cement for bottle corks consists of pitch hardened by the addition of resin and brickdust.

13. Soap and water is the best material for cleaning jewellery.

14. Awnings may be made waterproof by plunging first in a solution containing twenty per cent. soap, and afterwards in another solution containing the same percentage of copper. Wash afterwards.

15. A handful of quicklime, mixed in four ounces of linseed oil, and boiled to a good thickness, makes, when spread on plates and hardened, a glue which can be used in the ordinary way, but which will resist fire.

16. A good walnut stain for wood is composed of water one quart, washing soda one and a-half ounces, Vandyke brown two and a-half ounces, bichromate of potash quarter of an ounce. Boil for ten minutes, and apply with a brush, either hot or cold.

17. A piece of alum as big as a nut will render clear a pale of muddy water. Dissolve the alum, stir, and allow the impurities to settle.

FURTHER OBSERVATIONS UPON SENSITIZERS.

BY PROPHOR H. VOGEL.

It has been settled beyond dispute that there are certain bodies which augment very considerably the sensitiveness of photographic plate, such, for instance, as nitrate of silver, nitrate of mercury, morrhine, pyrogallar acid, tannin, &c. Some time ago I proved that the property of these bodies rests partially on the tendency to combine with iodine, but is also dependent upon their absorption power of light rays. Among other things, I showed that pyrogallic acid may act sometimes as an accelerater of, and sometimes as retarding, the decomposition of light, according as it is employed one way or another, allowing the light to pass through, or become absorbed. Thus a solution of pyrogallic acid upon iodide of silver plates lessens the sensitiveness of the same, because it renders them more transparent; whereas if the covering of pyrogallic acid is allowed to dry, the sensitiveness of the plates is materially enhanced, because the transparency then disappears.

Now it is very remarkable that certain sensitizers upon bromide of silver act differently upon iodide and bromoiodide of silver. I first remarked this fact with morrhine. A solution of this material made up by dissolving one grannme of pure morrhine in 1,400 grannmes of water acts as a vigorous sensitizer upon bromo-iodide of silver; it enhances very materially even the same for green and yellow rays. As I have found in my spectrum of experiments. Upon bromide of silver there is nothing of such a sensitizing action to be observed. Neither in taking ordinary objects in the camera, nor in working with the spectrum, is an excited sensitiveness of bromide of silver to be found in the presence of morrhine, even in a dry state, but rather a decrease of the same, if anything. A similar negative result is given by pyrogallic acid upon bromide of silver.

This fact is not a solitary one. The same thing may be remarked with coloured sensitizers, such as fuchsin, for instance. This renders bromide of silver very sensitive to the action of yellow rays, so that with a long exposure the working of the yellow light exceeds that of the blue. Quite different is the action upon chloride of silver; in this case, in a short exposure, there is nothing to be observed of an increase of sensitiveness for the yellow rays; it is only after some time that the action becomes
apparent, and then in a less degree than in the bromide of silver.

It will be seen, therefore, that one cannot deduce from the action of an accelerative upon one silver salt the result upon another cafe.

An explanation of this abnormal behaviour should be sought for more in physical than in chemical influences. The plates are only affected radically by such rays as they absorb. The absorption depends, however, not alone upon the action of the colouring matter or sensitizer added, but upon their action in common with the chloride of silver or bromide of silver and the collodion. Perfectly neutral bodies may have an influence upon the matter. Fuchsin, dissolved in alcohol absorbs, for instance, only yellow and greenish-yellow, but dissolves in ether, or collodion, it absorbs the orange rays. For this reason it is that bromide of silver coloured with fuchsin is sensitive, not only to greenish-yellow rays, but also to orange. If chloride of silver shows this action in a lesser degree, it may be because that salt modifies the absorption properties of fuchsin. Further experiments in the matter are being undertaken.

So much, however, may be remarked in regard to the preparation of dry plates, viz., that it is an error to suppose that a preservative which works favourably for iodide of silver plates has the same action upon dry plates prepared with bromide of silver.

RecentPatents.

A REVOLVING CAMERA.

BY EDWARD ROGGIN.

The following specification describes a camera with revolving drum carrying a series of plates, in place of the ordinary dark slide. The patent was not completed.

"This invention relates to cameras for taking photographs in the studio or in the open country, and has for its objects to supersede the present form of cameras, with their cumbersome dark slides and focusing screens, which are continually getting out of order, and the intricate or complex arrangements of ordinary dry plate cameras; for getting the prepared plates into position without damaging the film thereon, or breaking the glass plate intended to receive or carry the negative picture; and to take or produce a number of pictures more rapidly and at less cost than by any other photographic apparatus hitherto used for the purpose.

"The means by which I propose to carry out the said objects of my present invention are as follows—: I construct a hollow drum, or the skeleton frame of a drum, or of a many-sided figure hereinafter called the 'drum,' of suitable materials and dimensions, in the top and bottom discs of which drum grooves are cut or formed therein for the insertion therein of any convenient number of prepared glass plates, either wet or dry, on which portraits or other pictures are to be photographed. The skeleton frame may also be formed with any number of sides, according to the size and number of the plates desired to be placed therein, leaving a narrow slit or opening behind or opposite to a fixed plate of ground glass, called the 'focusing glass,' to focus through. The angle pieces of the said skeleton frame are properly grooved to receive and hold the prepared glass plates. These arrangements being made, so as to form a figure with regular and equal sides, or nearly so, in order that each prepared glass plate may, in succession, be brought, by the motion or turning of the drum, into the exact position previously occupied by the focusing glass, this drum is then inserted in a box or case, and is so pivoted therein that it can be freely revolved or turned by a handle or框架协议 on the upper portion of the skeleton frame. The box is provided in front with a sliding lens, and behind, and directly opposite the said lens, with a small strip or plate of yellow or other suitably coloured glass to focus through, and to protect the prepared plates from the effects of the light thereon when revolving the drum.

"Securely fixed on the top or lid of the box, and centred on the said upper pivot of the drum, in a circular drum plate, and near to the circumference of which, at the proper distance from, and corresponding with the number of plates or sides of the drum, the ground or focussing glass plate being fixed in, and forming one side of the drum, is always in its place, and cannot be easily damaged or destroyed; this focussing glass I denominate Number 1, and the prepared glass plate next thereto—say on the left hand—Number 2, and so on with the remainder of the plates in the drum, following in the same direction.

"In operating my improved camera, I turn or revolve, or partially revolve, the drum, which has been previously supplied with prepared glass plates, so that the figure points to or is over Number 1 on the drum plate, when the focussing glass is in position behind the lens, and directly opposite the coloured glass in the box, and the narrow opening in the drum, on looking through which coloured glass and opening so placed in line the picture is seen on the ground glass, and the apparatus is ready for focussing. When the focussing is completed, I close the slide behind the lens, and move the finger to Number 2 on the drum plate, which prepared glass plate is in position, behind this glass plate occupied by the focussing glass, when it is ready to receive the image or picture, as previously seen on the focussing glass. In this way the whole of the prepared glass plates in the drum are, in succession, brought before the lens, and receive an impression or picture.

"When different views are required on each of the plates in the drum, after taking the first view as previously described, the finger and ratchet wheel are again turned round to or over Number 1 on the drum plate, when the focussing glass is again behind the lens, and the apparatus ready for view; when this is arranged, the drum is turned until the figure points to Number 3 on the drum plate, so as to present another prepared plate behind the lens, and the second view is taken, and so on for the remainder of the said prepared plates in the drum, the sections of the drum serving the place of dark slides at present used.

"My apparatus may be made in different forms, the main or leading features being retained in each case. For example, for a camera for the studio, where only one or two plates are required at one time, the 'drum' may be only a quadrant, or one-fourth of a circle or polygon, wherein the plate or plates died material which will not warp or be otherwise injuriously affected by variations of climate. It may also be made of paper for a toy camera, with a bull's-eye lens to exhibit small transparencies. Its construction being exceedingly simple, it cannot easily get out of order. It is very portable, and can be at any time put together, or disassembled, where the drum revolves on a vertical axis or on pivots.

"My improved revolving camera is especially adapted for taking small views to be afterwards enlarged, and for taking 'negatives' for producing transparencies for the magic lantern; also for taking views in streets, and of processions, and the like, as from thirty to forty views can be taken in a few minutes.

"The camera may be of any size or dimensions, and can be produced at less than the present cost of similar articles, and be more durable. It may be made of wood, tin, brass, or other suitable material which will not warp or be otherwise injuriously affected by variations of climate. It may also be made of paper for a toy camera, with a bull's-eye lens to exhibit small transparencies. Its construction being exceedingly simple, it cannot easily get out of order. It is very portable, and can be at any time put together, or disassembled, where the drum revolves on a vertical axis or on pivots.

Photographic Use of Platinum and Indium.—Salts of these metals are, according to Mr. Willis, in the Polytechnisches Notizblatt, sensitive to light. If paper be fixed ready to receive a solution of platinum chloride and plated with platinum chloridum, then dipped into a solution of nitrate of lead, dried a second time, and finally washed over with an acid solution of oxalate of iron, a sensitive surface results, on which images may be printed under a negative. They require development with a hot solution of oxalate of potash, which brings them out of a rich black colour.
Contents Page
Photography In and Out of the Studio 73
Chemical Experiments 74
On the Various Styles in Photography By J. M. Tungate 75
A Batch of Recipes 76
Further Observations upon Sensitizers By Prof. H. Reichenbach 77
Recent Palmites 77
White Enamel Used as a Substitute for Opal Glass 78
The Albumen and Beer Process, and the Recent Transit of Venus 78
Toughened Glass for Negatives 78
Methylated Alcohol in Photographic Manipulations 79
On the "Annex," the Editor, and Secret Processes 80
—Dying and Graining, Improvements in Photography—
—Removing the Nitrates Bath—Preserving Gelatine—The
Cost of Exhibitions of the Photographers Society of Great
Britain—Edinburgh Photographic Society—Photographers'
Beneficial Association 81
Talk in the Studio 82
Proceedings of Societies. Photographers' Society of Great
Britain—Photographic Society of Great Britain—83
To Correspondents 83
Meteorological Report for January 84

White Enamelled Plates as a Substitute for Opal Glass

A novelty which possesses much promise has just been
introduced in the United States. It consists of a ferro-
type plate with a perfectly white enamelled surface,
intended to take the place of porcelain or opal glass as a
basis for a collodion-chloride of silver prints. The American
journals speak in high terms of the results as very
promising, and the great advantages over glass scarcely require
enumerating to be appreciated by photographers. The
plates are thin, light, not fragile like glass, easily cut like
paper; unlike glass, they are not rigid, and are therefore
less likely to injure the negative in printing; and they
will doubtless be less costly than glass. The surface is
said to be very delicate, and of a pure white. There is
one point in which it is probable they will scarcely equal
pictures on porcelain in beauty. The surface will necessi-
tarily be opaque, and hence the peculiar diaphanous effect,
which is an especial charm in the photograph on opal
glass or porcelain, due to the semi-transparency of the
material, must necessarily be wanting.

But there is another point of considerable importance
upon which we feel bound to suggest a caution. Our
American contemporaries speak of the prints as of
undoubted durability; and the assumption, in the absence
of experience, is a fairly legitimate one. But, although the
Nonpareil plate, as it is termed, is a novelty, we have
sufficient experience to interpose a doubt. About ten
years ago, soon after we had perfected the collodion-chloride
process sufficiently to justify us in giving it to the public,
we sought about for various substances with fine white
surface upon which the prints might be produced, the
sensitive collodion-chloride emulsion lending itself to a
variety of novel forms of printing. One of the first things
which occurred to us as suitable was the ferrotype plate,
it being made with a white enamelled surface in place
of a black one. As this experiment was not easy to try,
we thought of another substance somewhat analogous: we
obtained some tablets of paper made with a white
enamelled surface, which would be produced, we apprehended,
in a manner very similar to the white enamelled surface on
a ferrotype plate. The results were in many respects very
sharply contrasted, but there were one or two drawbacks. We
found, on more than one occasion, that the whites of the
finished picture darkened somewhat in sunshine and
further experience suggested a cause: we found, in some
cases, when we cleaned off the film in case of an unsatis-
factory print, that a faint image had been formed on the
enamelled surface itself beneath the film of collodion.

The albumen and beer process, and the recent transit of
Venus

This showed that an actual combination had been formed
between the free nitrate present and the white enamelled
surface. Whether this combination were formed with the
resinous substance in the varnish which forms part of the
enamel surface, or with the white pigment mixed with it,
we cannot say: but a combination which darkened under
the action of light, and which was not easily removed by
the action of the fixing salt, was clearly formed, and such
a combination is clearly iminal to permanency. Another
incidental difficulty once occurred. The ether and alcohol
in the collodion chloride, and the heat of direct sun printing,
on one occasion sufficiently softened the surface to produce
adhesion, and we found tablet and negative in such perfect
contact that they were not separated without the destruc-
tion of both. This latter misfortune—possibly the former
also—was probably due to the enamelled surface being
less perfectly finished in the few tablets which were pre-
pared expressly for our experiments than they would have
been in ordinary cases, and, perhaps, slightly greater risk may
be found in the Nonpareil plates; but the possibility
should be noted, and so serious disappointment possibly
avoided. We hope that our caution will prove needless
with the new plates.

Toughened Glass for Negatives

A discovery has recently been made in France, which,
if it should prove equal to its promise, will be found a
boon of great value to photographers. There is no
mistake in photography, perhaps, more mortifying
than the breakage of a fine negative in the midst of
demand for prints, and it is an accident that, in spite
of the greatest care, will occasionally happen. A discovery
whereby the fragility of glass could be entirely
removed would be one of the most valuable contributions
to science which can be conceived, and it is at least a step
in this direction which has just been secured: a means of
making glass comparatively tough without destroying its
transparency has been discovered. We give the details
just as we find them in the Times of a recent date:

"It has long been known that when glass is heated to
redness, and kept at that temperature for a considerable
time, it acquires properties of porcelain in a round
manner. Thus it becomes opaque or feebly translucent,
much harder and tougher, and somewhat like porcelain
in appearance. This change is termed 'devitrification,' and
is caused by the conversion of the glass into a confusedly-
crystalline mass, of which sections are beautiful objects
when seen with a microscope in polarized light. The
subject was investigated by the renowned French philoso-
fopher, Réaumur, early in the last century; and to objects
of devitrified glass the name of Réaumur's porcelain is
usually applied. Such objects are exhibited in the
Museum of Practical Geology in Jermyn Street. It has
been reserved for another Frenchman, a gentleman
farmer, to discover the singular fact that when glass is
heated to redness and then cooled or annealed on its
surface toughness is greatly increased, or, what is equivalent, its
fragility is greatly diminished, while its transparency
remains the same. Thus, suppose a rectangular pane of
glass placed flatwise and supported on two of its opposite
edges to break when a given weight is allowed to fall upon it
—say from the height of two feet—it would, after
having been toughened in the manner above stated, resist
the same weight falling upon it from the height of six
feet or eight feet. It is strange that, although glass has been
manufactured during the last two thousand years, yet such
a simple and probably very important fact as this should
only recently have been found out, and equally strange
that the discoverer should be a gentleman farmer. The
foregoing information on the new process of toughening
glass is given on the authority of Dr. W. Siemens,
F.R.S., well known in connection with telegraphy,
and the furnace which bears his name. His brother,
an eminent glass-maker at Dresden, has tried the process,
and pronounces it to be 'certain and unquestionable'."

METHYLATED ALCOHOL IN PHOTOGRAPHIC
MANIPULATIONS.

At a recent meeting of the French Photographic Society,
M. G. Noel, an amateur, called attention to the advantages
that may be derived from the employment of methylated
alcohol, or wood spirit, in the operations of developing
and intensifying the image. The cost of methylated spirit
is, of course, much less than that of the pure alcohol, being
only about a fifth of the price, but this is not the main
point. M. Noel states that by using wood spirit in his
developer he is able to reduce the exposure of the plate in
the camera very considerably—from fifty-eight seconds to
eight, or even six, he tells us.

M. Noel's formula for preparing his developer with
methylated spirit is the following:—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>...</td>
</tr>
<tr>
<td>Ammonisal sulphate of iron</td>
<td>16</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>... 8</td>
</tr>
<tr>
<td>Methylated spirit</td>
<td>... 15</td>
</tr>
</tbody>
</table>

He affirms that a developer thus composed may be used
with confidence with very short exposures, and afford
results quite equal to those given by an ordinary developer
with a prolonged pose. In compounding his intensifier
M. Noel also uses methylated spirit, making up his solu-
tion as under:—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>...</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
<td>... 200</td>
</tr>
<tr>
<td>Citric acid</td>
<td>... 60</td>
</tr>
<tr>
<td>Methylated spirit</td>
<td>... 10</td>
</tr>
</tbody>
</table>

M. Noel has such confidence in both these solutions,
that he has ceased to employ any other in his photographic
work.

CORRESPONDENCE.

RE "SENEX," THE EDITOR, AND SECRET
PROCESSES.

Sir,—I trust you will permit me a few words in reply
to "Senex" and yourself. "Senex" is perfectly right
when he says of me that I am not aware I "confound two
different things." When "Senex" reflects upon what the
wealth of a nation consists of, he will see that information
forms no inconsiderable portion, while money is not wealth,
but simply the measure thereof; thus information and
money are not so wide apart as he appears to place them.

However, let us take his new way of putting it—the way
I was so stupid as not to see: "Freely ye have received
information, freely give information." Well, how about
those who have no information to give? In this case you
would have men who are capable of original advancement,
freely giving and receiving information from those of equal
capacity; in short, it would be simply an exchange, and
the noble army of incapables receiving, and giving nothing
in exchange. Truly this is an equitable arrangement!

However Iobese I may be, I certainly never argued that
because "Archer, &c., gave freely, process-mongers should
receive money from the present generation of photographers."
This is such a novel idea that I consider it worthy, and
intend to insert this original bit of "Senex" in the
exercises given in the Appendix to Whatley's Logic.
However, I would say to those who may have valuable
information, and the result of their own investigation, to
reflect upon the magnificent rewards given to such men as
Archer, &c., before taking the advice of Mr. W. E. B.

And now for the "remaining of W. E. B.'s illogical
letter." In Blair's amount I was in error; my file of News
being at my house some eighty miles away, I could not refer,
and spoke from memory: this you will excuse. In Archer's
case I was right: compare £747 with the £1,000 asked for
an enamelling process (the annuity of £50 is the bounty of
the nation, and not the profession); compare Goddard's
works with £500, asked for the formula of an intensifying
paper. These instances show what value commercial men
place upon small work. By a similarity of reasoning, what
would be the value of the works of Archer, Blair, and
Goddard? In the main I was right when I said a couple of
thousand pounds would cover all that the fraternity has ever
given to these early pioneers. And now let photographers
lay their hands on their hearts and say they have done to
those men as they would have others do to themselves.
Why, Mr. Editor, if you were to die, poor photography
would let the workhouse officials dispose of your remains.

I still think the schoolmaster argument sound; but there
is a peculiar ambiguity in the word "new." There is a
sense in which the instruction of the teacher is new, and
there is a sense in which it is not. Which of these
meanings are we to use? That is, if we are further to discuss
the matter by my undertaking to show that the teacher and
so-called process-mongers are alike.

As you appear to misapprehend me, I may say, once for
all, I do not pretend to defend, nor have I any sympathy
with, any process-dealer who makes false representations.

Yours, &c.,

W. E. B.
Halifax, February 6th.
SELLING AND GIVING IMPROVEMENTS IN PHOTOGRAPHY.

Sirs.—There is an error entertained by many, in connection with the history of photography, which has been so often repeated that it is now somewhat regarded as a fact. It is so definitely stated in the otherwise able letter signed "Sene," in your issue of the 28th ultimo, that I am tempted to offer a correction. "Sene" states what has often been stated before—namely, that almost every great discovery and great improvement in photography has been given freely to the public. This, I venture to say, is a very decided error, and although the statement is ungracious and unkind, it is recounted in proof of my assertion. It is a fact that almost every great discovery and improvement in photography has been protected by patent, instead of having been given to the public. Let us look to the record.

Daguerre, who received a handsome pension from the French Government in consideration of giving his discovery freely to the whole world, notwithstanding this secured a patent in this country.

Fox Talbot patented his Calotype process, as well as a number of less important improvements.

To Scott Archer there is little doubt the credit of discovery of the collodion process belongs; but the fact that the process grew out of an attempt to improve the surface of paper with collodion, all the steps of which were familiarly known to many persons, and the fact that prior suggestions and experiments with collodion had been made, prevented the completed discovery from being patentable; but Mr. Archer patented immediately after the smaller thing, to which his claim was safe—namely, the use of gutta-percha for transfixing the negative film.

Poiernin, Fargier, Swan, and Johnson, all patented their great discoveries in connection with carbon printing, and a number of others patented minor and less important matters connected with carbon processes.

Woodbury patented the process connected with his name, and has also patented a number of minor inventions and improvements.

The number of patents taken out for real or supposed photographic improvements is very large indeed, extending, I believe, to some thousands; some for real discoveries or inventions, some for valuable improvements, and a still greater number for things which were old, unimportant, or worthless. In all cases the labourer is worthy of his hire, and of remuneration when a really good thing protected by patent, as, besides giving the real inventor a chance of remuneration, it also affords the public the guarantee of excellence which is only secured by some one person having an interest in making the best of the process; whereas it often happens, when a thing is given to the public, it is like a piece of public land: as everybody may cultivate it, no one person does so. A patent for a good thing is a public benefit, whilst a secret is a public evil.

Nevertheless, whilst I deny that the majority of great discoveries and improvements have been given freely to the public, I do not deny that a spirit of genuine liberality has prevailed amongst photographers as to points of improvement in practice, and sometimes even in relation to discovery. I may mention the collodio-chloride process, given by the Editor himself; the collodio-bromide process, by Messrs. Sayce and Bolton; the great improvements in that process by Col. Wortley and others; the alkaline development process, which, if not invented by Major Russell, was well worked out by him, and freely given; a score of points of improvements in practice of such men as Robinson, Blanchard, Abney, Bovey, Fry, Crompton, and others, of which I might almost take the index of the Year-Book of Photographic News for the last few years as a muster-roll. If every minor improvement made by such men were preserved as a secret, and sold at a price, a revolution would be effected in the spirit and relations of photographers of a very undesirable sort. It is to the minor improvements freely made known in societies and journals that so much real progress is due. Great discoveries and great improvements can be, as they have a right to be, easily protected by patent; but it is a bad sign of the times when small improvements, insufficiently novel or insufficiently important for protection by patent, become the subject of petty buxtering. If, however, such things may, in some cases, be with propriety tolerated, at least let photographers avoid dignifying the practice by appointing committees to report upon their claims. Buying a secret must always resemble making a venture in a lottery; let those who are prepared to stake the amount, take all the risk without grumbling; and remember that whilst it is a pleasant fact to contemplate that many photographers have been very liberal in aiding their brethren, that fact does not give photographers generally a vestige of claim to be taught everything for nothing.—Very truly yours,

Y.

RENOVATING THE NITRATE BATH.

Sirs.—I cannot agree with Mr. El. Shaylor that it is the province of societies to investigate and report upon processes offered for sale. Indeed it is the aim, and very properly so, to avoid all connection with the commercial side of photography. But some years ago the South London Society appointed experimental committees, and I remember that some very useful information was contained in their reports and the members were not compelled to do more than to report on questions of the day? For instance, making the nitrate bath and keeping it in order has recently been brought under attention. I have never had any difficulty in doing this, but I should not object to pay a guinea or two to anyone who could teach me a better plan, or I would gladly contribute to an experimental committee fund. In the meantime, if those of your readers who are willing to "get information" can do so, it would affect the examination of such committees. My method is as follows, and is based upon hints and information given many years ago by Mr. Rejlander, and Mr. Blanchard in the News.

As I never make a new bath, but keep constantly renovating one I have had in use for years, I need not speak of the new bath, which generally works well. I keep two baths constantly going, which I use on alternate days, and sometimes change during one day of hard work, as I believe in rest for a bath. The moment a bath shows signs of being out of order, I pour it into an equal quantity of distilled water, add a few drops of a solution of carbonate of soda, and place it in a glass barrel on a shelf near the light, where it remains some weeks or months until required. I then always keep a bath, when not in use, in the light, which is constantly aiding it to throw down impurities. The barrel is covered with a piece of gauze or muslin, and there is constantly a slow evaporation going forward, which aids in removing ether and alcohol. When I require any of the solution for use, I withdraw it from the barrel by means of a glass tap about an inch from the bottom of the barrel, and immerse the barrel and tap both in boiling water to break the strength with crystals of nitrate of silver, and rarely find any difficulty in getting good results at once. Now and then I find boiling necessary, but not often; it is, however, always efficient. I scarcely ever add nitric acid to the bath, but when necessary I add a little tincture of iodine to the collodion instead.—Very truly yours,

AN OLD PORTRAITIST.

PRESERVING GELATINE.

Sirs.—It may be an advantage to those who are experimenting with gelatine, as well as those who require an antiseptic agent for other purposes, such as the preservation of albumen, paste, &c., to know that salicylic acid, used in very small quantities, preserves organic matters from decom-
position of any kind. A solution of gelatine, ten grains to the ounce, has been now standing several weeks on my kitchen mantelpiece, sometimes fluid, always tolerably warm, yet kept perfectly unchanged by one-eighth of a grain of salicylic acid per ounce.

Salicylic acid is an extract from coal tar, and is one of the commonest of carboxylic acids. It is without odour and almost tasteless, as well as non-poisonous. It is very slightly soluble in water, but more so in glycerine or oil, and produces, so far as I can see from my experiments, no chemical effect injurious to the reactions involved in photographic operations. This acid has been known for a long time, and was extracted from the oil of wintergreen at a cost of less than $1 per pound. It has, however, been found useful in photography, and is now made artificially in the presence of caustic soda, by which means it has been reduced in price as to become available for general photographic uses. It is sold by Hopkins and Williams at two or three shillings per ounce, whereas it once cost £10, and only a few months ago I paid twelve shillings.—I am yours truly,

W. J. Stilleman.

THE COST OF EXHIBITIONS OF THE PHOTOGRAPHIC SOCIETY.

DEAR SIR,—There was one statement made from the Chair at the Annual Meeting of the Photographic Society, touching the recent exhibition, which was not, I think, rendered very clear. When Mr. Hooper was deploring the cost of the last exhibition, the Chairman interrupted him with the remark that it had not cost the Society so much as the previous one, for whereas £28 was expended in 1874, as much as £126 (I believe these were the exact sums) was spent in 1873.

This statement was true enough, so far as it goes, but it was scarcely a business-like way of viewing matters, for although in 1873 as much as £126 was expended, the Society received in return £130 from admissions, sale of catalogues, and advertisements. Thus in 1873 the Society was actually benefited to the extent of a pound or two by its exhibition; whereas last year, a loss of about forty pounds resulted to the Society from its exhibition. It was a pity, I think, that the Chairman did not make this clearer to the meeting, especially after he had taken the matter out of Mr. Hooper's hands.—Faithfully yours,

H. Badem Prythead.

Proceedings of Societies.

PHOTOGRAPHIC SOCIETY OF GREAT BRITAIN.

The annual meeting of this Society was held in the Architectural Gallery, Conduit Street, on the evening of Tuesday, February 9th, Mr. J. Spiller, F.R.S., in the chair. The minutes of a previous meeting were read and confirmed, and the following gentlemen duly elected members of the Society: Mr. W. D. Bosanquet and Mr. M. P. Tench.

The Chairman read the Annual Report of the Council, which contained a memoir of the late O. G. Holender. The report will appear in our next.

Mr. Wager wished to ask three questions: first, he wished to know who was responsible for the photographic circuit sent out to members whose subscription had not been paid for the coming year, informing them that until it was paid they could not receive voting papers; second, why the voting papers were marked with certain initials; and third, why the marks on these papers were different.

The Secretary, at the request of the Chairman, answered that the circular was simply an extract from the laws of the Society. He was only the servant of the Society, to obey its rules; and he saw no means of doing this except by issuing the circular he had sent out. As to the marks on the paper, they were merely his initials, as a guarantee that the papers were sent out by himself. There was no difference in the marks, except in one case, in which a star was attached because a doubt existed as to whether the member to whom it was sent had paid his subscription.

Mr. Wager had seen three or four papers all marked differently, and it certainly opened a door to the suspicion that the secretary of the Society might be violated. The proper plan to secure certainty would have been to stamp each voting paper with the stamp of the Society. He still thought the circular offensive, and the proof that it was so was found in the fact that several old and esteemed members of the Society had resolved to resign in consequence. Country members were put to special inconvenience and disability, and the course was, he thought, most unfair and impolite.

Mr. Stilleman did not consider the circular offensive. Some people were annoyed when tradesmen mailed them in bills. As for him, he was in vain asked to mark on the voting papers; they could not be used, as they were all delivered sealed to the scrutineers, who burnt them as soon as they had taken the numbers.

A Member said that he had paid his subscription, and had received the offensive circular.

Mr. Prythead said the duties were new ones, and the Secretary was new to the duties, which had been unusually heavy, and some allowance should be made. Mr. Hooper, Mr. Bird, and Mr. Davis briefly spoke to a similar purpose.

The Secretary accepted the responsibility as it stood, and, except in relation to the accidental sending of a circular to the member who had paid, he contended that no other course was open to him. The report having been duly passed and adopted, the Treasurer read his report, from which it appeared that the balance to the good of the Society amounted to upwards of £534.

Mr. Hooper noted that the exhibition had been a greater cost to the Society this year than the previous year, and suggested that it would be important to try to make the exhibition as attractive as possible, without increasing the expenses.

The Chairman said that the expenses had been rather less, but unfortunately the income had been less in still greater proportion, so that the result to the Society were not so favourable. Mr. Howard suggested that in no manner could the funds of the Society be better spent than in the maintenance of their annual exhibition.

The Treasurer's Report having been received and adopted, and votes of thanks to the retiring officers passed, the Scrutineers' Report was received, from which it appeared that only 110 votes had been received. The elected officers were as follows:

President—J. Gissher, F.R.S.

Vice-President—J. Spiller, F.C.S.; V. Blanchard; Captain Abney, R.E., F.R.A.

Treasurer—R. W. Thomas.

The Chairman offered a few words of comment and explanation, in which he apologised to Col. Wortley for having nominated him without consulting him, and remarked that by doing so, and practically running two liberals against one conservative, they were naturally beaten. He referred to the circumstances of disturbance when he took the position of Chairman, and expressed his willingness to serve the Society in any office.

Mr. Blanchard expressed his wish not to accept the office of vice-president, but on being asked to reconsider his decision, withdrew his resignation.

A slight modification in Law 9 was passed, referring to the necessity of candidates for membership being submitted to the Council previous to ballot in the meeting, and notice was given of motion to alter the clause in Rule 11, in relation to voting, by 26 to 30, to a meeting to be held at the close of the March meeting. The object of the alteration proposed by Mr. Hooper is to entitle a member to vote who has paid his subscription for the past year, instead of, as at present, his subscription for the year just commencing.

* Two correspondents have written to point out that as, out of the 110 votes cast, Mr. Gissher received 65, leaving only 45 to be divided between the two candidates, it was unfair to suggest that Mr. Gissher's election was due to any division of his votes, as he must have had a majority of 30, even if only one other candidate for the presidency had been nominated. It is sufficient to note the matter here, without printing the letters and comments of our correspondents.
Mr. York then showed by means of the lantern some negatives of the Transit taken by Mr. Bruton, of Cape Town. The proceedings then terminated.

EDINBURGH PHOTOGRAPHIC SOCIETY.

An ordinary meeting of this Society was held in St. Andrew Square, on the evening of Wednesday, the 3rd inst., the President, Dr. Wilson, in the chair.

The minutes of the previous meeting were read and approved, and Messrs. James J. Fulton, Alexander Porteous, and W. Hannah were admitted ordinary members.

The President laid on the table an album containing a large collection of copies of the late letters of Mr. Bejlander, lent by Mr. Constable, and a fine collection of mounted prints by the same artist, lent by Mr. Elliot. He said that, before proceeding to the ordinary business of the evening, he thought it necessary briefly to allude to the loss which the whole photographic world had suffered by the death of Mr. Bejlander, and some others, one sense true, and the work of any particular photographer will be work of art, or not, just in proportion to the little or much artistic feeling that it has in it. The photographer with a true knowledge of art will conceive the picture in his mind, brain and soul, and work to make his camera reproduce the conception. This was the way Bejlander set about his work, and the result—those magnificent pictures on the table—was beyond all praise. If those were not art, then he was sorry for art, and had no doubt that some of the pictures were the best he had ever seen. He thought that Bejlander's works were especially of the wonderful command of light and shadow, and effect simplicity of composition. Bejlander trusted little to upholstery, and less to retouching, and, which was better, neither had to such an extent as was the case with many of the other photographers. He hoped that the motto, "Photography is a fine art," might be brought to a higher position than it had yet been. The objects of the Bejlander's works were more at home than in the society of men of the highest art fame. No one could be in his company for many minutes without feeling that he was in the presence of an artist in the truest sense of the term. Photography had before it a wonderful future, and the photographer who should have a fine artist for his model had done. He had set before himself an ideal to which he had worked up, and that with such success that some of the compositions could not have been better treated by even the best of the old masters. Photography in portraiture could only rise to art when the photographer brought a thorough knowledge of art to bear on his treatment of his model. This Bejlander had done, in a way which was worthy of all honour and patient study.

Mr. N. McCall wished to corroborate all that had been said in favour of Bejlander and his works. It amply proved the remark made by Mr. Bejlander, that he never had a model who was not a model of some sort, and that he always had a model upon whom the opinion of many, the art of photography, in every shape, would have to be based. Besides, the fund Northern heart not to be gladened by a true representation of a baby's very pleasant, though very evanescent, smile, merely because the background may not be so speckless or spotless as it should be? And have we not, amongst these of ladies and gentlemen before us, ample evidence for it, although Bejlander invariably aimed at something higher than fine manipulation? In the mere mechanical part of our art, he was a workman who needed not to be ashamed of his work? Probably you have seen the biographical sketches that have appeared in the journals, as well as the letter in the hand of a kind friend and patron, Mr. Constable. The writers all bear witness to his undoubted genius as an artist, as well as to his very genial and loving nature as a man. Mr. Constable has kindly sent me several letters written by Mr. Bejlander upon his death-bed; very, very appreciative and affectionate, and showing that he knew his Bejlander, containing an account of his husband's funeral, the expenses of which, I fear, leave but a small balance at her banker's account. A few friends, however, in Edinburgh are endeavouring to dispose of Prince Albert's picture by subscription, for the benefit of his wife. The proceeds of the subscription should go to the right and proper way to honour the memory of our departed and lamented brother, O. G. Bejlander.
that the members generally felt in the death of Mr. Rejlander, and that a copy should be sent to his widow.

Mr. Turnbull then read a paper on the "Various Styles in Portraiture" (see page 74).

Mr. Ross entirely agreed with Mr. Turnbull in objecting to retouching. He was glad to see, however, that the practice was gradually abandoned, or, at least, that those who had done most in this way were finding out that it would be better to do less. A really good negative did not need it, and operators should strive rather to make perfect negatives than trust to get their omissions partly cured by the art of the retoucher.

Mr. Macbeth thought Mr. Turnbull's paper was written in a capital spirit. If photographers would only aim at educating themselves, and then make the camera obey their wishes, there would be little need for retouching, and photography would go on with rapid strides to perfection. Mr. Rejlander owed nothing to retouching, and yet his work was such as to make even the best enby him.

Mr. W. Nelson had listened with pleasure to Mr. Turnbull's paper. He had no objection to retouching so long as the public insisted on it, but he thought the public ought also to be educated to the errors, and that the reputation of the person to whom allusion had so often been made, always took care to throw in a little light into their shadows, and he thought retouching to that extent was fairly allowable, and it might also be legitimate to use it in softening the hard lines, so long as the true texture was not hurt.

Mr. Norman Macbeth did not like to appear severe, but he regarded the practice of retouching as beyond condemnation. He would strongly press on the attention of photographers the importance of a more careful study of development. In this he was certain that it was rarely done, and as in the art of the master, to whom allusion had so often been made, always took care to throw a little light into their shadows, and he thought retouching to that extent was fairly allowable, and it might also be legitimate to use it in softening the hard lines, so long as the true texture was not hurt.

Mr. Ross hoped they would all lay to heart what Mr. Macbeth had said. He once got a picture from Rome. It was a first retouched specimen he had seen, and he wished it had been the last. It had no bones, no muscle, no nothing, in fact, that a picture of a man and gave rather the idea that the model had been a man of plastic putty, misused by a clumsy hand.

The usual distribution of prints was then made by ballot, and Dr. Nicol, the corresponding secretary, intimated that he had received from Messrs. Coxson, of Southport, a supply of their little almanacs; and as there were not sufficient to go over all the members present, he should give one to each of those who had drawn a blank; and he might say that, as each of the almanacs contained two pretty photographs, they would have cause to be well pleased.

A few thanks were then given to Mr. Constable, Mr. Elliot, and Mr. Turnbull, and the meeting adjourned.

Photographers' Benevolent Association.
The ordinary monthly meeting of the Board of Management was held at 174, Fleet Street, on Wednesday, the 3rd ultimo, Mr. Skinner in the chair. After the minutes of previous meeting had been read and confirmed, Messrs. Stevens, Lane, Dighton, Banks, F. Stockard, Patterson, and Miss Jones were duly admitted members of the Executive Committee. The Secretary was instructed to convey the thanks of the Board of Management to those ladies and gentleman who so kindly and efficiently contributed to the success of the entertainments at the General Meeting. The Secretary was also instructed to get a card of membership printed.

Two applications for relief were presented and considered.

Five pounds were voted for the relief of one applicant, who had been ten weeks out of employ, and had had his daughter and wife ill. For the relief of the other applicant a sum of money was ordered to be sent to a photographer in the neighbourhood, asking him to take a ticket for the destination of the applicant, this course being adopted on account of the unsatisfactory result given to those who had done most in this way were finding out that it would be better to do less. A really good negative did not need it, and operators should strive rather to make perfect negatives than trust to get their omissions partly cured by the art of the retoucher.

After the transaction of some routine business, the meeting adjourned.

Talk in the Studio.

Lantern Readings.—We have just received from Mr. Frederic York another of his excellent little adjuncts to successful lantern exhibitions, in the shape of a descriptive lecture to serve as a "lantern reading" for a series of slides illustrating the Indian Empire. It will prove very welcome to all interested in lantern exhibitions.

Designs for Magic Lantern.—A correspondent of the English Mechanic, referring to Mr. Biggs's recent paper on the magic lantern, quoted by our contemporary from the News, says:—"Will you permit me, as a mechanic and photographer, to express to you the pleasure that I have experienced in the way of doing that which is more difficult than it at first sight looks to be, to secure true geometrical drawing on a three-inch circle of glass. I would, were I possessed of a lathe with overhead motion and geometric chuck, take pieces of glass as flat as you please, I have three and a quarter inches and I have a black varnish of such consistency as to scratch cleanly, chuck them, and, with a fine-pointed tool, describe the required patterns; thus producing a negative which could be printed from direct. Such pictures I am certain would be—provided the varnish were such as to give a clean scratch—unreliable in anything I have ever seen. Any fellow-reader who could carry out the mechanical and artistic part of the idea, I would willingly assist with the photographic.""
HENRY SPINK.—The nitrate of silver obtained from boiling down a bath should be quite available for a negative bath; but if you have any doubt, use it for printing purposes and use fresh silver for the negative bath. Streaks in the direction of the dip under these circumstances are often due to scum on the surface of the solution.

PAPER BIRM.—It is very difficult to give general advice in relation to all that you contemplate. If you state any point or points upon which you are in doubt, we shall have pleasure in aiding you; but you will see, on consideration, that it is necessary we should have your plans before us before we can offer any opinion or suggestion. As to question B, we cannot give any certain answer. Of course the matter is a delicate one, and can only be determined by trial. Write to any of the gentlemen in question, and try.

J. EASTHAM.—We will write to you.

Several Correspondents in our next.

METHICROLOGICAL REPORT FOR JANUARY.

BY WILLIAM HENRY WATSON.

Observations taken at Braystones, near Whithaven, 36 feet above sea level.

<table>
<thead>
<tr>
<th>Thermometer</th>
<th>Barometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>Noon</td>
</tr>
<tr>
<td>1 2° 29' 32"</td>
<td>2° 29' 54"</td>
</tr>
<tr>
<td>2 4° 33' 43"</td>
<td>4° 38' 43"</td>
</tr>
<tr>
<td>3 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>4 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>5 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>6 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>7 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>8 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>9 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>10 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>11 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>12 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>13 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>14 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>15 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>16 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>17 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>18 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>19 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>20 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>21 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>22 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>23 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
<tr>
<td>24 4° 54' 43"</td>
<td>4° 59' 41"</td>
</tr>
</tbody>
</table>

From the above observations I arrive at the following:

<table>
<thead>
<tr>
<th>Maximum temperature observed</th>
<th>Minimum temperature observed</th>
<th>Mean temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4° 59' 43"</td>
<td>4° 54' 43"</td>
<td>4° 56' 43"</td>
</tr>
</tbody>
</table>

Difference

<table>
<thead>
<tr>
<th>Mean of whole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of days on which rain fell</td>
</tr>
<tr>
<td>Number of days on which it was sunny</td>
</tr>
<tr>
<td>Number of days on which it was gloomy</td>
</tr>
</tbody>
</table>

The mean temperatures of the months of January, February, and March, 1875, have been determined by the C. E. of the Atmospheric Society.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

TINTED DRY PLATE FILMS—FLEXIBLE GLASS—IMPROVEMENTS IN PHOTOGRAPHIC BOOK ILLUSTRATIONS.

Tinted Dry Plate Films.—It is a circumstance worth noting by those who have little experience in dry plate photography that the tinting of the film, as now practised commercially, has the effect of rendering a longer exposure in the camera necessary. Those, for instance, who have been accustomed to underexpose plates, and have been using exposures of perhaps a few seconds only, will be considerably surprised to find, when developing a batch of films that have been tinted, that the pictures secured are considerably under-exposed. One cannot, it seems, attain one advantage without the sacrifice of another, and if we get rid of the objectionable backing, then longer exposure must be used or the glass must be thicker. All things considered, it is the tinted film we shall most prefer, because, if before the greater cleanliness and less liability to become spotted by dust particles, which are most difficult to avoid when one has to do with a layer of loosely attached pigment on the reverse side of the plate. The tinting of the film, as everybody knows, is for the purpose of rendering it more opaque, and thus avoiding the annoyance of the phenomenon of light and shade, by which the light can readily penetrate the film. If the coating of collodion could be made dense enough without the mixture of colour, such a course would be, of course, preferable, for it would then be unnecessary to sacrifice any of the sensitiveness of the plate, or have recourse to the employment of backing; unless, indeed, we can make some progress in the line of Dr. Lebmann Vogel's interesting experiments, which have proved that, under certain circumstances, the sensitiveness of bromide of silver is materially improved by the addition of colouring matter.

The day may come, perhaps, when we shall have dry plates fitted for all kinds of services at the disposal of the photographer; thus when he desires to depict an image in which there is a large amount of green light, he will employ a film which absorbs these particular rays, and is especially sensitive to green; when he has a red subject, he will make use of a film that absorbs red rays, and so on. If we can only get the colouring matter we now add to dry films to fulfil a double object, to render the collodion at once more impenetrable to and capable of absorbing light rays, and to be so tinted that Dr. Vogel has been able to do in his experiments with the spectrum, then, indeed, we shall be making a great step of progress in the matter. In the meantime, however, we would warn those who are not practised in dry plate photography to be careful to give good exposures to plates which have been tinted with any colouring matter.

Flexible Glass.—There seems some chance of a great photographic problem being solved, if what we have been recently told in the "Times" and "Athenaeum" should turn out to be true. For a long time past we have been looking for a substitute for glass, for a basis for collodion, which, while as rigid and transparent as that material, shall not be so brittle and fragile. The Vienna Photographic Society deemed the subject of such importance that two years ago they offered a gold medal and a sum of money to anyone who should bring forward a thin transparent film, tough and flexible, suitable for coating with collodion and receiving an image in the camera. Many experiments have been made to secure such a material. Gelatine has been used in every form and variety, and although most delicate and insoluble sheets may be obtained with it, these are found exceedingly liable to be torn, and also to swell and to absorb moisture in a damp atmosphere. Collodion mixed with castor oil, or some such material, is little better, for although it affords a hard, flexible mate-

rial, the same is endowed with little strength. Indeed, the only substitute of the kind we have for glass are sheets of mica, and these, as photographers know, are at times by no means satisfactory. But now we hear of a discovery which seems likely to be a great boon to photographers. We hear that a glass worker at Dresden, a Herr Meeser, brother of Messrs. Siemens, the celebrated firm of telegraph engineers in London, has been successful in producing a tough, malleable glass, which can be bent without breaking, and which may be produced in the thinnest sheets without being brittle. Ordinary glass is simply heated to redness, and on cooling it is annealed in oil, this process having the effect of greatly increasing the toughness of the material. The process is by no means an experiment, we are further informed, but "certain and unquestionable" in its results. If such is really the case—and there is no reason for doubting the matter—photographers have great cause for rejoicing, for a very large percentage of their productions are lost by the glass of their negatives giving way under pressure in the printing-frames, the trial through which clichés pass in pigment and collotype printing being often very severe. We shall have much pleasure in giving our readers further news of this matter as soon as more detailed information reaches us.

Improvements in Photographic Book Illustration.—We are glad to notice that Messrs. Ward, Lock, and Tyler, the well-known publishers, have taken up the matter of photographic illustration. A volume they have issued, under the curious title of "Treasure Spots," consists of a score of cabinet-sized photographs, printed by the Woodbury process. The best part about the volume is the way in which the photographs are displayed and mounted. A print simply pasted upon a sheet of letterpress, or surrounded by a margin of black printer's ink, of a different tint altogether to the photograph itself, is a most unsatisfactory illustration in a book, as has been pointed out in our remarks on the previous pages. In the case of this photographic book illustration in question, special attention seems to have been given to this matter, and the tint of the photograph is in perfect harmony with the printed margin that surrounds it. In this way a very effective publication has been produced, and one, too, which will pave the way, we think, to others of the same kind.

THE PRACTICAL PRINTER IN AMERICA.

XVII.

In the following chapter on printing with weak negatives Mr. Hearne enumerates a number of dodges which his experience as a practical printer has proved good. He has, however, omitted to refer to a point of primary importance. One of the most important aids to brilliant contrast with weak negatives is the use of a lightly sailed and highly albuminized paper. A River paper coated with undiluted albumen, containing not more than four or five grains of chlorids of ammonium to each ounce, will be found very valuable with thin fine negatives. This albumen should be made strong on neutral or slightly acid forty-grain bath, or, if the bath be not neutral or alkaline, the paper should be fumed. Weak negatives gain greatly by printing in the shade. We now let Mr. Hearne speak.

"As is the case in printing intense negatives, so paper should also be prepared especially for printing weak negatives. White paper should be silvered for a specified time on a strong silver plate; both by from forty to one hundred and eighty seconds, on a bath from 45 to 80 grains strong of nitrate of silver to the ounce of water; but the strength of the bath and time of floating should vary according to the temperature of the weather, class of negatives to be printed, &c."

"When the paper is ready for fuming, it should be fumed not less than fifteen minutes, and often for half an hour. Sensitive albumen paper, when it has been sensitized
the day before, is excellent for printing very weak negatives, giving much bolder prints than it would if it were freshly sensitized. The paper for weak negatives, like that for intense negatives, should be kept by itself, and for this purpose have a box or drawer labelled 'Paper for Weak Negatives.'

"There are only a few negatives out of a day's printing that require any special treatment before printing."

"In by far the majority of cases the beauty of the negatives consists in their thinness, unless they are so thin as to give very flat prints. In a thin or weak negative, such as one as I at present have in my mind's eye, its beauty consists in detail throughout in the strongest high-lights, as well as in the shadows; also in its colour, lighting, &c. In exposing there has been plenty of time given to the negative, and consequently detail is found in all the shadows and draperies, with the exception of three or four places in the deepest shadows, where there is no detail, and which accounts for the brilliancy of the negatives.

A cool grey colour to the deposit adds greatly to the beauty of the negative, as well as to its printing qualities.

"A nicely lighted negative, besides being beautiful—as we judge it by looking through—also prints better, because then there are left, by the artistic taste of the operator, a negative's saving graces, such as quarters in the hair, which by contrast are generally close to that part which has been powdered, and is photographically full of detail; and when we admire beautiful negatives, one of the first parts we look at is the hair, especially if it is a lady's, and we very often involuntarily exclaim, 'How brilliant and full of detail the hair is!'"

"Now prints from these negatives, which are so brilliant, bold, and full of detail to the eye, very often astonish us, on account of their being exactly opposite to what we had been led to expect when we looked through them, and at first the photographic printer is bothered a little to account for it. This is accounted for as follows: they printed too fast, and the negatives may not, perhaps, have the photographic colour which produces the best print. To print slower, and to give the photographic colour they require, coating the back of the negative with yellow varnish has been advised, and I have tried it with considerable success; but the prints have a look of forced boldness and coarseness which spoils them in the eyes of most printers. Undoubtedly the yellow colour of the varnish is not what we wish. Nothing is better to give a good printing quality to the negatives than white tissue-paper."

"The way to overcome this rapid printing is to print either in the sunlight or under several times as long as we have used as eight or ten—the latter when you wish to place the board in the sunlight; and, besides printing slower, they will also print better. When a negative is very thin, we generally print it under a porcelain-glass, in the sunlight, and the prints are thus very much improved. Try it. Printing under several pieces of the greatest of window-glass is a very good thing, as a safeguard of the prints."

"A way which I very often try, if the negative is not too thin, is to coat the back of it with ground-glass varnish, and which I can vouch for as a good thing. The ground side of a ground-glass laid close to the negative is also excellent.

"But a negative which has flatness throughout, without any boldness worth mentioning, cannot be doctored by any such simple treatment as the above. More decided measures will have to be resorted to.

"One way to improve flat negatives is by the use of the blue-paint dodge, which has been so repeatedly described. I have very often laid it all over the face of the negative, but on the unvarnished side of it, and after removing what may be over the eyes, then have printed it, after having covered the back of the negative—or, better still, the printing-frame—with tissue-paper.

"Then a very good way to allow the shadows to print up under tissue-paper, while the face is protected, so as to make them print bold (which they will do if printed under a piece or two of tissue-paper), is to cover the whole negative-board with tissue-paper, and then lay a dark cloth on that part which you wish to be shaded, moving it every few minutes while there. By a little ingenuity in the way of arranging tissue-papers they can be made to answer a variety of purposes."

The method of producing a duplicate image of the negative at the back by means of the powder process will also be found very valuable, and should not be forgotten.

THE RELATION OF LIGHTING AND EXPOSURE TO TEXTURE.

BY G. CROUGHTON.

Mr. Neilson, in a short but able article contributed to the [Photographic News Almanac for this year], has struck a key-note worth following up. The article in question is upon developers and texture. It is, as he says, a somewhat neglected subject, but it is one which should demand serious attention; for there are, in my opinion, few things which have lately come into universal use among photographers which have done so much to photography artistically, and are certainly utterly destructive to texture. I allude to retouching upon the negative, and the use of reflecting screens, or, rather, I should say, the abuse of these, for both in their places are useful, and, properly used, may help us to secure natural texture, whereas we could not get it without them.

"It may be asked—"Texture upon a photograph means what different thing to texture in oil painting or water-colour drawing. In oil or water colours the artist uses certain means for obtaining a natural texture (in flesh painting, we will say); he has to load up his colours, glass, and scumble, and so get a texture upon his canvas, which, when looked into, is anything but the texture of the smooth skin of a beautiful young lady, yet when seen at the proper distance gives that texture with all its soft, glowing colours and gradations to the life. It requires no departure from nature to get natural texture in a photograph."

Photography has been admired by artists for its wonderful reproduction of the texture of different fabrics, which has been used by them as guides on account of its accuracy. It has failed so completely at this that no effort of light or the fact of yellow being reproduced as a dark instead of a light colour, all flesh, however fair, being made up of yellow to a much greater extent than an inexperienced person would think.

To mend this inaccuracy retouching was called in, and if it had been confined to this, and gone no farther, it would have been a gain instead of a reproach; but with some persons it seemed that once the pencil was in their fingers they did not know where to stop, and the result, in nine cases out of ten, is the destruction of all natural texture, and the substitution of a mechanical stipple all over the face, representing to the eye nothing so much as a plaster cast or a face cut out of stone. How many times have I heard the public protest this, but in terms which should be their greatest condemnation? "How beautiful it is—just like a statue!" Not "How like life!" simply because they were not like life. In these over-worked abominations we have an incongruity most offensive to an artistic or educated eye—a marble head with drapery the fabric of which is reproduced with the greatest fidelity.

The remedy in this case is easy: do not overwork the natural texture in the negative; mend all defects, matching (as well as human eyes and hands can do) the texture, and..."
do not attempt to substitute another, for all such attempts must end in failure. There is nothing so beautiful as the texture of flesh in a good negative, and it is worse than folly to do away with it and substitute a stippled mechanical one, which must end in smooth hardness, making the flesh look like polished stone.

Before proceeding to show how the use of reflecting screens has produced such destruction of texture in flesh, I would wish to say a few words as to the best means of securing a natural texture in the photograph. Mr. Neilson, if I understand his article aright, says it is to be secured by using a strong developer after a weak one; in my experience it is entirely a matter of lighting and exposure. Given the right lighting and exposure, I will guarantee to obtain an effect with any developer. Try a sitter in the ordinary ridge-roof gallery, blocking out all side-light. Look at the face; the more front the light, the less marked the features and texture of the skin. Now close all front light and use only side light, and see how all is reversed. The texture of the skin is exaggerated, and every pimple looks at least twice the size it is. Every photographer who is in the habit of taking the side-lighted photographs, or the so-called Rembrandts, will at once recognise the accuracy of this description. With the light from behind the sitter, the accidental marks and texture are generally much exaggerated; and if the intensity of the light be not modified in some way, it will give no end of work to the retoucher. It is for this kind of portrait that the use of reflecting screens has been mostly recommended; and, if judiciously used, they do a great deal of good in softening the heavy shadows, and getting rid of the exaggerated texture caused by the extreme side light.

Over-reflection will give exactly the same effect as over-touching—the destruction of the natural texture—in the same way as the front-lighting. In my own practice I never use a reflecting screen at all; if a judicious combination of side and front light, and a bit of good development, there is a much better way of doing it; and for the Rembrandts I close up all light at the camera end of the gallery, bringing the sitter half-way up, leaving the side light behind all open, and softening the shadow with a high side light, or combination of top and side, in advance of the sitter, as the face may require, and with this lighting can always secure texture if the right effect is desired.

In my experience the exposure has as much to do with securing natural texture as the lighting. An underexposed negative which has to be forced in developing will be coarse in texture, while over-exposure will be utterly destructive to all texture.

Mr. H. F. Robinson’s lesson in the same Year-Book upon softness, taken with Mr. Neilson’s underexposed, is a salutary dose which photographers will do well to take; for there is just as much want of texture in the over-softness condemned by Mr. Robinson as in the hardness condemned by Mr. Neilson. But, while agreeing with Mr. Neilson so far, I must say, with all due deference to him as an artist and a photographer, that I cannot agree with him in seeking texture in developers. Texture is not a photographic model, and can be secured by any developer provided the lighting and exposure have been properly adjusted.

STEREOSCOPIC TRANSPARENCIES.

By F. Howard.*

In calling the attention of the members to this phase of photography it must be understood that I approach the subject particularly from the reproductive aspect, and I am afraid that in venturing on this subject I am calling attention to what has not been a popular feature of photography, or rather, I should say, to what has been a neglected one.

For several reasons the stereoscopic has been very much favoured partly because of the hundreds of bad and inferior instruments and slides with which we were flooded, and partly also from another cause, viz., the bad taste displayed in many of the subjects chosen. Bad instruments fatigue the eye, and bad subjects give the whole thing a bad name. Good glass transparencies are, on the other hand, if viewed in a good instrument, always a source of pleasure; and it is from this circumstance, and the fact that they are much fonder of glass transparencies than of pictures, that I have for some time past endeavoured to obtain the requisite knowledge and materials to amuse myself with their production.

The increased area of work which stereo. pictures offer, viz., marine and instantaneous effects, also makes the subject more attractive; but since Mr. Bresson’s picture very little has been done, and it is still almost untrod ten ground. I have taken the trouble of going to the trouble, and have obtained a number of transparencies by printing in the camera. My reasons for doing so are:—Firstly, because printing by superposition necessitates cutting the negative, and it is also necessary that the negative should be exactly the same size you wish your transparencies to be, and this is not always convenient. Printing by contact is very likely to damage the negative, and the preparation of plates is attended with a much more considerable consumption of time; and when the amusement is only to be indulged in at spare hours, and those are not many, camera printing becomes more easy.

I will now state the method I have followed in producing the slides which I now show you; it is also necessary that I inform you that all the slides I exhibit this evening are printed in the camera. I have adopted for the camera 7 x 5 inches, and for allowing some margin, not too large. The width between the lenses is three and a-quarter inches.

The camera I would recommend is a rigid one, or at least one without a bellows box, because of the tendency to harbour dust. The negative for printing a stereo. transparency from should be as perfect as possible, and dust is of the greatest importance. Minute defects which would be observed in a paper print will on glass show most annoyingly.

There is a legend that the operator who prepares plates for exposure and printing by the albumen process is compelled to demure himself of his clothing, grease his hair, and hold his breath to avoid dust; but for the truth of this I cannot touch. I can certainly do without the fine

In my opinion the exposure has as much to do with securing natural texture as the lighting. An underexposed negative which has to be forced in developing will be coarse in texture, while over-exposure will be utterly destructive to all texture.

Mr. H. F. Robinson’s lesson in the same Year-Book upon softness, taken with Mr. Neilson’s underexposed, is a salutary dose which photographers will do well to take; for there is just as much want of texture in the over-softness condemned by Mr. Robinson as in the hardness condemned by Mr. Neilson. But, while agreeing with Mr. Neilson so far, I must say, with all due deference to him as an artist and a photographer, that I cannot agree with him in seeking texture in developers. Texture is not a photographic model, and can be secured by any developer provided the lighting and exposure have been properly adjusted.

* Read before the South London Photographic Society.
vigorously to allow of the printing being carried far enough, the same as in paper prints, and your negative shadows perfectly clean and free from fog. The various colours are much influenced by the exposure and the method of development. Iron developer with varying exposure will give brown tones; pyrogallic development with varying exposure, black and bluish tones. Toning with gold and platinum will give black and blue-black; bi-chloride of mercury and ammonium will assist in giving sepia tones from a vigorous negative.

Now as to the best kind of glass. Remembering that you have to mount two pieces together, the thinnest glass you can obtain is that most desirable, but the thinnest glass means a very imperfect in quality; but a little increase in price will allow of its being selected, and that which is somewhat imperfect can be utilised for mounting as imitation ground glass. This glass is of French manufacture, and is, I think, only to be obtained at one house in London. The thin ground glass can also be obtained, I believe. I have found it a good plan to make a varnish of three grains of white wax dissolved in an ounce of ether or chloroform; this added to an amber varnish gives a very good imitation of ground glass, and is a very satisfactory method.

In printing-in clouds much the same method is adopted as with paper prints, viz., masks are used to protect the sensitive surface, and the printing is done in a diffused light. The plates must be examined when warm for the first time; but, like other difficulties, it is soon surmounted. A lithographic card is a great finish to the mounted slide, and also a great protection. I do not think these are to be purchased. I make my own; that is to say, I lithograph the design and have it printed, also the binding paper with a border.

SUGGESTIONS ON RETOUCHING.

In the course of an article on retouching in the Western Photographic News, the following suggestions are given:

"1st. Practice with the pencil until perfect precision and delicacy of touch are attained."

"2nd. Use the 'hatch lines' more than the 'stipple dot' wherever it is possible."

"3rd. Turn the negative partially upon its side while working the upper portion of the face, to enable the work to preserve the same direction as the natural lines of the face."

"4th. Work upon the forehead, the least about the mouth, eyes, and chin."

"5th. The darkest parts of shadows are near the edge, the centre being illuminated by reflected light."

"6th. If it becomes necessary to lighten up a shadow, do so by working most on its reflected light."

"7th. To give relief, brilliancy, and effect, work just as little upon the shadows as possible."

"We will suppose the retoucher to have before him a

PERFECT NEGATIVE:

that is, one that has bright and strong high lights, delicate and yet sufficient shadows, possessing texture and fine gradation of lights and shades throughout the whole, and an expression of face all that could be desired. Now, I would say to him, 'By all means leave those shadows alone.' Work out the spots and objectionable points in the light until they become round, smooth, and nicely blended with surrounding parts, and then leave it. Endeavour not to make a stroke more with the pencil than is necessary. And the more delicate and sure each stroke the finer the result. Again, we will suppose that we have before us a

VERY INTENSE NEGATIVE:

one that has large thick patches of light, without suitable gradation into the shadows, with shadows unilluminated and too dark. The most that can be done in this case is to make the brightest lights much brighter at their very highest points of light. For the shadows, if too dark, work as much as possible in the illuminated portion, and just as little between these two extremes as the negative will admit. Now we have a

THIN FLAT NEGATIVE,

one that would make a better solar than contact print, neither bright light nor deep shadow, a tameness that would invariably produce a muddy, expressionless print. Now, as we cannot make the shadows darker only by contrast, it follows that the brighter we make the lights the darker the shadows will appear. The quickest method I have ever found to do this, is to draw an unlimited number of fine lines over the thickest portions of forehead, cheek, nose and chin—lines so fine as not to be discernible to the eye, only in effect; and when the negative is sufficiently dense by this method, then fill the interstices as carefully and abundantly as though first commencing work, smoothing the whole face, with the thought of giving a more perfect idea of the natural form of each feature. The smaller space this lining and interlining takes up, and yet be nicely graduated into the half-lights, the better."

CHROMO-PHOTOGRAPHY OR PHOTO-MINIATURE.

BY A. LIEBERT.*

Preparation of Paper.—Unbennetonized Steinbach paper is floated upon a gelatine bath for a period of three or four minutes, the gelatine surface downwards. The bath is thus made up:

1 litre Chlorified water
10 grammes Chloride of ammonium
3 grammes White gelatine
10 grammes Citric acid
18 grammes Bicarbonate of soda

The drying of the paper should take place in a warm room.

The most beautiful and richest tones are secured with an ammonia silver bath; this glass is uncoated in the advantage that it allows of less intense negatives being employed; the depth of tone is considerable, and the lights are white and brilliant.

The ammoniacal silver bath is thus prepared. In one bottle there is placed a solution made of:

160 grammes Nitrate of silver
1 litre Water

The half of this solution is put into a bottle; to the other half is added in small quantities so much concentrated liquid ammonia that the precipitate forms at first is again perfectly dissolved, a circumstance that is brought about by continually shaking the liquid. As soon as the latter begins to get clear again, the ammonia should be added very slowly and in very small quantities so that the process then comes into the solution. Half of it is taken, and so much pure nitric acid added that blue litmus paper dipped therein changes to a fresh red colour. All the solutions are then poured together, and the mixture filtered.

As soon as the bath blackens after being some time in use, it may be cleared by adding a few drops of nitric acid and filtered. The bath must not be exposed to daylight, as it is particularly sensitive, and no more should be prepared at a time than is absolutely necessary. The paper, as before stated, should be permitted to float upon the solution for three minutes.

Prints produced by means of this bath do not become much lighter in the after processes, and for this reason must not be much over-printed in the frames, as is the case with albumen pictures. The silver bath must always be in good filtered condition, and kept in a well-stoppered bottle, otherwise a film of metallic silver is forced which is the cause of spots in the prints. The toning and fixing of the prints are carried on in the same way as usual.

In producing photo-miniatures two prints are necessary from the same negative. The best: format for these pictures is 21 by 27 centimetres or 24 by 30 centimetres. As it is inconvenient to retouch to any extent, it is well to employ good, sharp negatives, if possible with a dark

*Photographic News. 40.
ground. Both of the prints must be a few centimetres larger than the finished picture is required.

We will suppose that we have to print from a negative 24 by 30 centimetres. One of the prints is put in a damp condition upon a glass plate measuring 21 by 27, the edges are folded underneath, and gummed down with thick gum, so that the picture when dry lies perfectly flat.

In four little porcelain dishes, four pigments are mixed, as under:

1. Naples yellow, about 4 parts
2. Red madder 1 part
3. Carmin 1 part
4. Sepia 4 parts
5. Red ochre 1 part
6. Red madder varnish 1 part
7. Carmin varnish 6 parts
8. Naples yellow, mixed with sepia, 1 part
9. Naples yellow, mixed with sepia, 1 part

With a somewhat thick camel's hair pencil, all the flesh parts of the portrait are covered with No. 1 mixture. All the applications must be made quickly, and in a sweeping manner, without any pause or hitch, so that on looking through the print under, mixed with colour are visible. When the first thin film of colour has dried, there is applied, one after another, three coatings of No. 2 mixture. The shadows under the eyes, the nostrils, ears, and chin are strengthened by a coating of No. 4 mixture, and then the whole is allowed to dry.

For blue eyes, cobalt blue may be employed; for grey, Indigo; the browns, burnt Sienna, with a little umber or sepia. But all these colours must be applied in a very dilute form. The point of light in the eyes must be delicately put in by means of Chinese white. Blonde hair is painted with yellow ochre or burnt Sienna, brown with umber, which may be made darker and blacker by the addition of sepia, &c.

The drapery is covered with smooth tints. Such stuffs as are not rendered well by photography, and are represented dark in the print—such as red, yellow, green, &c.—must be blocked out in the negative, so that they can afterwards be tinted the right colour. White lace is put in with the aid of white pigment. Gold ornaments are put in with Indian yellow or gamboge.

The background is covered with an even tint, according to the subject, mixed with sepia or Van de Velde brown, mixed with some vert de veste, may be employed for the purpose with advantage. The colours must be used in a dilute form, and be applied two or three times over, in order to secure body.

When the first picture has been painted and finished, it is rendered transparent, and attached to a glass plate. To do this, the following mixture is requisite:

- Canada balsam: 100 grammes
- Spermaceti: 75 grammes
- White wax: 25 grammes

This wax is heated in a water bath, and, on becoming cold, forms a stiff paste. To cement the picture, a small piece of apparatus is necessary such as shown in the cut here given. It consists of a little iron table, F, G, H, I, of about thirty by forty centimetres, which stands upon four iron feet fifteen centimetres in height. Under the table are put four spirit lamps, D, E, with an arrangement for raising and lowering the wicks, so that the flames may be increased or decreased as may be necessary. A and A are scrapers having their lower margins fitted with very soft chamois leather. The dish C contains the abovementioned mixture, and a spatula H. In the drawer are contained other things necessary for the process, such as brushes, colours, and the like.

The coloured picture attached to the glass is separated by means of the blade of a knife; the margin is cut through all round, leaving two or three millimetres adherent to the plate.

Upon the iron plate B is put a sheet of blue paper, and upon this a well-cleaned sheet of patent plate glass. As soon as the glass plate has become pretty warm, it is brushed over with the wax mixture, the same being equalized by means of the spatula. As soon as the mixture has become fluid the picture is placed face downwards upon it, and the air-bubbles are then pressed out by the aid of the two scrapers before mentioned. After the lapse of ten or fifteen seconds, the picture becomes perfectly transparent. The spirit lamps are then removed, the picture is lifted up, and a further sup. of wax is put upon the plate; the picture is again pressed down upon it, and rubbed well in order to prevent too much of the mixture becoming absorbed, and to avoid the formation of air-bubbles. When the plate has become cold, it is taken from the table and its surface is cleaned first with turpentine and then with alcohol.

The picture now appears flat and without vigour. To give it the necessary vigour and brilliancy, a second print must be laid under it. This is prepared as follow:

The glass plate upon which the first picture has been coloured is covered with a thin film of gum solution, and the second print is now placed face upwards upon it, and rubbed in all directions, so that it adheres well in every part. After drying, the print is coloured quite superficially. The outline of the hair and the shadows of the face are tinted light blue, the darker ones being strengthened with sepia. Cheeks and lips are treated with a mixture of zinnabar and carmine, and over the whole of the flesh is laid a thin layer of Chinese white, in order to blend the colours together. Blonde hair which has come out too dark is covered, in order to lighten it, with a mixture of white and chrome yellow. Certain portions of the garments are strengthened, especially in the shadows, with colour that has been mixed with gum-water. The background is treated with pastel with the finger in such a way that the tone around the head is light, and increases in depth towards the margins of the prints.

On the margins of the picture are cemented strips of cardboard from one to two millimetres in thickness, and the first print, which has been rendered transparent, is placed upon it so that all portions accurately coincide.

The slight space existing between the two prints gives the finished picture a beautifully harmonious character. It is possible, if considered desirable, to mount the lower picture upon stout cardboard instead of upon glass, and upon this, in a dozen places in the deep shadows, to put little bits of cardboard to act as a support to the top print; but these supports must not, of course, be visible.

When everything has been thus carefully carried out, the margins of the double picture are skilfully covered with paper, so that their relative positions shall not change, and no dust penetrate between. It is the best plan to mount such double pictures in a velvet frame, or passepartout.
THE PHOTOGRAPHIC NEWS.

Vol. XIX. No. 859.—February 19, 1875.

CONTENTS.

Photography in and out of the Studio ... 83
The Practical Printer in America .. 83
The Relation of Lighting and Exposure to Texture 83
Stereoscope. By R. P. Hill ... 86
Stereoscopes. By F. A. Walker .. 87
Suggestions on Retouching .. 88
Chromo-Photography or Photo-Miniature. By A. Liebert 88
Diseases of Photographers ... 90
Photographic Exhibition in Brussels .. 90
On the Preparation of Silver from its Solutions by Copper 90
By William Henry Watson ... 90
Experiments with Iron Developers. By M. Mottler and W. A. H. ... 91
On the Preparation of Nitro-Glucose. By M. Noton 92
Meteorological Notes on the Year 1874. From the Register of William Henry Watson 92
Correspondence.—Out of the Photographic Exhibitions—The Ballot of the Photographic Society—The Photographic Society—Development by Vapour—Diseases of Photographers—Mechanics for Photographers. 93
Feet of Man—South African Photographic Society—Manchester Photographic Society 95
Talk in Studio ... 95
To Correspondents .. 96

DISEASES OF PHOTOGRAPHERS.

A correspondent on another page suggests that a series of articles on the diseases to which photographers are peculiarly liable should be introduced. We have already expressed a like opinion, and we repeat our suggestion by mentioning the names of several gentlemen, who have been well known in connection with the art, who are alleged to have been the victims of one painful and not very common malady. We may say at the outset that we do not think that there are any diseases to which photographers are, as photographers, especially liable, or to which the practice of photography is directly, or necessarily subject to mental strain, or times unhealthy atmosphere, irregularity of hours of refreshment, and other causes detrimental to vigorous health, to which photographers often submit themselves, they suffer in common with many engaged in other avocations; but these influences, whilst undoubtedly injurious to health, are not entirely inseparable from the practice of photography.

In regard to the cases cited, we can set our correspondent's mind somewhat at rest. There is an error in his information. Mr. Rejlander never suffered from Bright's Disease; his death resulted from a not less painful, and probably equally fatal malady, diabetes, which, although essentially different, is, like Bright's Disease, a disease of the kidneys. We desire our correspondent to turn the pages to enter into the technicalities of disease; but we may briefly state that in the latter disease these organs, instead of secreting albumen and eliminating urea, perform exactly the opposite function, discharging the albumen and allowing urea to be absorbed into the system, eventually producing blood-poisoning. In diabetes there is a tendency to convert everything into sugar, which finds its discharge through the kidneys. The death of Mr. T. R. Williams was due to the latter malady. Certain circumstances connected with the illness of Mr. Lacy, to whom our correspondent makes reference, led us to consult with an eminent physician who had made Bright's disease a special study, in order to ascertain whether any of the influences to which photographers were subject should render them specially liable to this malady, and we received his assurance that he saw nothing whatever in the occupation or influences affecting the photographer which should in any way especially tend to the disease in question.

The photographer is, as we have on former occasions remarked, subject to the pressure upon his nervous system involved in the exercise of a profession causing at once some strain on the scientific, artistic, and social capacities. The heat of the studio and the fumes of the dark room are at times depressing; and, probably more injurious than all, the photographer often continues under these depressing conditions, forgetful or regardless of the necessity of regularity in taking refreshment, and so invites dyspepsia and its attendant train of evils. But all these are common to many pursuits, and may to a large extent, by resolutely judicious men, be avoided. To special diseases the photographer is in no unusual degree liable, and as the notion that he is so is in itself unwholesome and depressing, we recommend our correspondent, and any who may for a moment have shared his notions, to dismiss them as without the slightest foundation.

PHOTOGRAPHIC EXHIBITION IN BRUSSELS.

We are informed that the Belgian Photographic Association will hold its first exhibition at Brussels in July next, under the patronage of the King. The collection of pictures will be exhibited at the Cercle Artistique et Litteraire (Literary and Arts Club), in Brussels, between the 15th July and 15th September next.

Any inquiries should be addressed to the Secretary, M. Rommeiaere, Rue de Namur 44, Brussels; but we very briefly state here the principal conditions of the exhibition. Application must be made for space by intending exhibitors not later than the 1st May, and a charge will be made at the rate of five francs per square metre, half the amount due being paid on the 15th May at latest. The exhibition will be opened by the Minister of Public Instruction, on the 1st July, carriage paid, with the proper advice, the name of each subject and how it was produced being included in the information given.

A hanging committee will decide as to the fitness or otherwise of the pictures for exhibition, and foreign exhibitors will be compensated by medals in the following branches of the art, viz., heliographic engraving, hellotype, Woodburytype and albumenized, processes and carbon photography, silver printing, and photography upon glass or porcelain. Moreover a medaille d'excellence will be offered to the exhibitor whose work most merits.

The jury for making the awards will be composed of eleven members, of which five will be foreign. There will be no charge for the sale of the pictures exhibited, but a lottery will take place at the close of the exhibition, the works chosen being paid for by the Association. All pictures must be withdrawn at the cost of the exhibitor a week after the close of the exhibition.

ON THE PRECIPITATION OF SILVER FROM ITS SOLUTIONS BY COPPER.

BY WILLIAM HENRY WATSON.

The method of precipitating silver from solutions of its salts by copper or zinc is unquestionably one of great utility to the photographer, and a great improvement on the processes which used to be adopted.

\[\text{Ag NO}_3 + \text{H}_2 \text{O} + \text{Cu} \rightarrow \text{Ag} + \text{Cu NO}_3 + \text{H}_2 \text{O} \]

This action is rapid, for immediately the copper touches the silver solution the decomposition takes place. The precipitate formed is repeatedly washed with water, and finally dissolved in moderately dilute nitric acid to ensure it as silver nitrate. It has been observed, however—and upon the subject I have made experiments—that along with the metallic silver there is generally precipitated more or less cupric oxide, so that the silver obtained by this process is not in an absolutely pure state, but contaminated with copper; and on dissolving in dilute nitric acid the result is a mixture of silver nitrate and cupric nitrate, thus unfit for many experiments in which silver nitrate is required. The results of my experiments alluded to above have been as follows:

A solution of silver nitrate, containing 0.5 of Ag NO₃,
100 of water, was prepared and used during the experiments below, a sheet of copper being used as the precipitant. The precipitate was washed till there was not a trace of Cu(NO₃)₂ present, dried, and examined.

Cupric oxide found in 100 parts of precipitate.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.65</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.71</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.69</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.68</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.63</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
</tr>
</tbody>
</table>

Hence 100 parts of the precipitate would furnish, on treatment with nitric acid,

\[158.23 \, \text{Ag NO}_3\]
\[5.86 \, \text{Cu (NO}_3)_2 \, + \, \text{H}_2 \text{O} \, \text{.}

163.79 total.

It has been suggested that the precipitation of the cupric oxide along with the metallic silver is due to the action of atmospheric air in absorption, and experiments have generally agreed with this view. If, again, the copper be exposed to the air during the process, the amount of cupric oxide precipitated is increased. Thus it will be seen that we do not arrive at pure silver by precipitating and carefully washing the precipitate in water, but that it is requisite to wash it with dilute hydrochloric acid, in which the cupric oxide is readily soluble, while the metallic silver is not soluble. Adopting the view that the precipitation of cupric oxide is mainly due to atmospheric oxygen, it seems probable that by boiling the solution of silver salt, and thus expelling from it much of the gases in absorption, prior to commencing the process of precipitation, the cupric oxide formed would be considerably diminished.

I may add that these remarks apply to precipitation by zinc as well as by copper.

EXPERIMENTS WITH IRON DEVELOPERS.

Bulletin de l'Association Belge.

Some experiments have been undertaken by us with the view of discovering what are the most suitable bodies to be introduced in the composition of developers made with iron salts, and to find out the proportions in which these should be mixed in order to produce the best results.

In the experiments made, all of which have been conducted by means of the ordinary wet process, we have worked by comparison. Two clichés produced under identical conditions were developed by different developers, the one of these solutions being a standard, the other, one whose qualities it was desired to find out.

In order to obtain two latent images as exactly alike as possible, we made use of a binocular camera, and obtained upon a plate measuring nineteen centimetres by eleven centimetres the double image of some objects grouped before an apparatus, in the same way precisely as when a stereoscopic negative is taken.

To develop the two latent images obtained, there was placed, first of all, across the middle of the cliché, as it came out of the camera, a strip of glass, which divided the two halves, and allowed the developer to be poured upon one portion without developing the other, which was treated as soon as the first picture had been finished. This plan was attended with some inconveniences, and for this reason was not always used. Every time that it was necessary to work with accuracy and precision, the following method was substituted, the results of which were far more trustworthy.

The plate which it was proposed to employ was in the first instance scratched with a diamond across that place where, later, its division was contemplated, to separate the two images. The plate was then in a condition to be easily broken on coming out of the camera, so that it was possible to develop the two images separately.

Finally, to take the experiments in a certain order, we examined, successively, the influence upon the period of exposure, and upon the nature of the images produced by—

1. The quantity of sulphate of iron.
2. The acids introduced into the developer.
3. The nature of the iron salt employed.

The influence of the quantity of sulphate of iron.—We have found, after many other investigators, that the quantity of sulphate of iron contained in the developer exercises a very great influence upon the nature of the negative produced. Whilst a developer containing but a small quantity of sulphate only gives rise to a faint image of a violet transparent character, those of a more concentrated nature produce negatives of considerable vigour and opacity. With a dilute liquid the image develops slowly, whilst with a stronger solution the plate is instantly developed. A weak solution penetrates into the collodion, and produces a deposit of silver throughout the whole thickness of the sensitive film, while a concentrated developer which acts briskly, only gives rise to an image upon the surface of the cliché.

Between certain degrees of concentration the negative grows in intensity according as the amount of sulphate of iron increases. This difference in intensity, very apparent in developers which contain only moderate quantities of sulphate of iron, appears to be less marked when the concentration of the liquid is increased, and when developers are employed containing exaggerated quantities of sulphate; indeed, reverse results are at times produced. In this case the developer by strong solutions are less vigorous than those obtained by dilute liquids.

Clichés secured by the aid of developers more or less concentrated differ not only as regards the intensity of the images obtained, but also in the physical nature of the particles of silver deposited.

When the proportion of iron contained in the developer does not exceed certain limits, the metallic particles, which together constitute the cliché, appear in general to be large in the proportion as the developer employed upon them is more concentrated, and there seems to exist up to a certain point a relation between the size of these particles and the degree of concentration possessed by the developer. The cuts here given convey some idea of the aspect of the particles viewed under a microscope capable of enlarging 800 diameters. Fig. 1 is a cliché obtained by means of a developer containing half per cent. of sulphate of iron. Fig. 2 is a cliché secured by the aid of a developer containing eight per cent. of sulphate of iron. The mean dimensions of the particles of silver in fig. 2
DEVELOPMENT BY VAPOUR.

Dear Sir,—The time is come when amateurs would do more in photographic work, but they must be enabled to do so without soilng a white kid glove. And why not? What is wanted is the developing and fixing by vapour, such as was obtained by the old mercury and iodizing boxes used in the Daguerrotype process; and as alkaline or acid vapours can be produced easily, some photographic chemist should fix his attention to what vapours shall produce the picture on the sensitive plate, and so fixed that all the future operations,—printing, enlarging, &c.—could be done by the professional.—Yours truly,

J. SOLOMON.

There is undoubtedly room for experiment in this direction. It is probable that a bromide plate may be developed by the fumes of ammonia, and we have ourselves successfully intensified a negative by submitting it successively to the fumes of mercury and iodide.—B.N.

DISEASES OF PHOTOGRAPHERS.

SIR,—I see it mentioned in your contemporary that the death of the late Mr. O. G. Rejlander was due to a painful disease known as "Bright's Disease," and another photograph is also mentioned who recently died from the same uncommon ailment. This recalls to my mind the fact that Mr. Lacy, a photographer of considerable mark in the Isle of Wight, also died of "Bright's Disease," and I have heard it rumoured that the death of the late Mr. T. R. Williams was from something of a similar nature. As these cases are of which we hear, it is not unnatural to speculate on those which do not come under public attention, and to ask if there is anything in the practice of photography which brings about or predisposes the victim to this fatal illness? Amongst the many good services your journal has done the lovers of our art, I think the issue of a series of articles on the diseases to which photographers are especially liable would not be the least.—I am, sir, yours gratefully,

L. L. P.

MECHANICS FOR PHOTOGRAPHERS.

Dear Sir,—In my large acquaintance amongst my photographic brethren in the provinces, I know of none to whom the knowledge of mechanics and the use of tools would not only be desirable, but in many cases, is absolutely necessary. The making of frames and stretchers for pictures properly belongs to the art of carpentering, but, being a very light branch, can be easily carried on, and oftentimes with better success, by an amateur. Accidents will frequently happen to apparatus. Experiments may be required which would serve to improve the formation of some suitable appliances. In the Photographic News are often put forward ingenious contrivances, easily made by those who know how, but otherwise almost useless. I have often heard it said: "Oh! any common carpenter can do it." This is a fallacy; the hands of a common carpenter, from the coarseness of his work, become hard and bony, and his touch insensitive. He is as unfit to mend or make a delicate piece of photographic apparatus as a blacksmith would be to do the same by a watch. Seeing this, I have often regretted that none of your correspondents have offered to give a few familiar instructions in what may be termed photographic mechanics. I will, with your leave, do my best to supply this requirement, first promising that I do not write for the clever ones who know everything, and secondly I promise that I do not advise any one to undertake the making of articles that can be obtained in the trade properly manufactured. The use of a knowledge of mechanics to a photographer is, that he may be ready in contrivances when and where they may be required, no assistance being at hand.

A short time since, in the News, a very interesting paper was given upon glue and its uses; it being the article of all

THE BALLOT AT THE PHOTOGRAPHIC SOCIETY.

SIR,—The report of what Mr. Spiller said at the Photographic Society's meeting renders it necessary for me to say a few words.

When it was seen that I was proposed for President, a number of my friends wrote to me asking what I wished done, and, in many cases, enclosed me their ballot papers to fill in.

In all these cases I (as a point of honour) struck out my own name even as Vice-President. In this way I know that I deprived myself of such a number of votes as would have obtained for me the latter position.

This was the necessary sequence of Mr. Spiller having proposed me without my knowledge, and I regret having been proposed in opposition to Mr. Glaisher, for whom I have strong personal liking and esteem.—Yours, &c.,

H. STUART WORTLEY.

THE PHOTOGRAPHIC SOCIETY.

SIR,—I see that Mr. Verge alludes to a circular sent out to a number of the members who had not paid their subscriptions as "offensive," at the late meeting of the Society. I received one of these circulars (not having paid my subscription), and I at once complied with its request, and paid my subscription for this year. So far from thinking the circular "offensive," I think it very right and proper that all bona fide members should pay up their subscriptions for the year, before they are allowed to exercise any rights of membership.

This is an inflexible rule in all clubs and societies of gentlemen, and is most strictly enforced. How long would Mr. Verge and his brother dissenters like to exercise the rights of members without paying their fees? Is it one, two, or more years? I heard rumours when the Society was nearly broken up, that there were some members voting and speaking at meetings who had not paid up their subscriptions for several years. It is to be hoped this is not the case. If it is to be the rule in future, I believe the Society will not last much longer. Already their fate of other photographers (old members of the Society) is talked of. Let us institute a rule by which the advantage of the Society seems to rest with those "professional" photographers who do not even condescend to pay their annual guineas to its funds, but take care to advertise their establishments by getting the best places on the walls for their pictures at the annual exhibition.—I am, sir, faithfully yours,

FRANCIS W. TURTON, Commander, R.N.

Bedford, February 16th.
experiment mentioned, and, finally, I found I had 530 grains of nitro-glucose. The powdered and dried lump sugar used weighed one and a-half ounce, or 666 grains, the weight of nitro-glucose being 120 grains less. The loss in converting was equal to 18.3 per cent., leaving 81.7 per cent., as the percentage of nitro-glucose obtained.

This second batch, I believe, is very good. It dissolves readily in collodion, and also, but slowly, in methylated spirit. A few drops of this last solution put into water gives a fine white cloud, which is excessively slow at settling.

The next experiment I made was on the 7th January last. Three and a-half ounces of dried and powdered saltpetre were put into the jar. Upon this was poured four fluid ounces of sulphuric acid stirred well in, then the jar covered over with the glass plate, and surrounded with water in the large wash-hand basin as before. Temperature in the yard, 46° Fah. In about two hours another ounce of acid was added, as the mixture had become quite hard. Three and a-half ounces of dried sugar were then gradually stirred in. The sugar made the mixture stiffer at first, but heat began to be produced, which made it quite thin, and show a yellow colour. I could see that mischief was brewing, and in a few moments carbonisation began, accompanied by volumes of red nitrous acid gas, which drove me away, the result being a large quantity of black, spongy, wet carbon, as before. This was the third failure. In this experiment I had again been operating upon too much material for the size of the jar, and there was a great change of weather.

On the 28th January, for the sixth and last time of trying, I endeavoured to repeat the experiment made on the 33rd December, when I obtained 530 grains of nitro-glucose. The same quantities of materials were used, but the water rose on the thermometer being now at 52° Fah. instead of a keen frost. While the mixture of acid and saltpetre was cooking, rain fell, and I had to wait till it ceased. The mixture when cooled was only half solidified, and the sugar made it still thinner. I should have had the carbon process over again directly had I not at once brought up a force I had in ambush in the shape of a jug of cold water to quiet the rising tendency, and produce tranquility, &c. All was put to filter, and after washing and kneading in warm water next day, I found I had 4714 grains of nitro-glucose, being 1841 grains less than the original weight of sugar used. This gives 28.17 per cent. as the loss in converting, and leaves 71.83 per cent. of nitro-glucose obtained. This result is about ten per cent. worse than the other—still think, the higher temperatures and greater moisture of the weather. My appetite for making nitro-glucose is now satisfied. I set out to try whether saltpetre could be used instead of monohydrated nitric acid, and I have proved that it can; and that ordinary commercial sulphuric acid may be used in place of fuming sulphuric acid.

In the absence of a proper arrangement for carrying away the corrosive vapours it is not a pleasant process. You are liable to be "over-exposed" out of doors, and may get a chill which will affect your "tone;" then "over-fuming" is sure to happen, and you get "decidedly acid," so you must not begrudge a good washing. You had better not have your Sunday clothes on, or, when you think you are "well mounted" you may discover some "spots" which will be rather difficult to "stop out.”

METEOROLOGICAL NOTES ON THE YEAR 1874

From the Register of William Hy. Watson.

The monthly mean, maximum, and minimum temperatures observed at Braystones, near Whitehaven, during the year ending December 31st, 1874, have been as follows:—

1874.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>37°5</td>
<td>45°2</td>
<td>29°6</td>
<td>37°5</td>
<td>45°2</td>
<td>29°6</td>
</tr>
<tr>
<td>Feb.</td>
<td>44°</td>
<td>50°9</td>
<td>37°7</td>
<td>44°</td>
<td>50°9</td>
<td>37°7</td>
</tr>
<tr>
<td>Mar.</td>
<td>50°</td>
<td>56°4</td>
<td>42°2</td>
<td>50°</td>
<td>56°4</td>
<td>42°2</td>
</tr>
<tr>
<td>Apr.</td>
<td>58°7</td>
<td>64°8</td>
<td>50°9</td>
<td>58°7</td>
<td>64°8</td>
<td>50°9</td>
</tr>
<tr>
<td>May</td>
<td>58°6</td>
<td>64°7</td>
<td>50°9</td>
<td>58°6</td>
<td>64°7</td>
<td>50°9</td>
</tr>
<tr>
<td>June</td>
<td>58°5</td>
<td>64°6</td>
<td>50°8</td>
<td>58°5</td>
<td>64°6</td>
<td>50°8</td>
</tr>
<tr>
<td>July</td>
<td>58°4</td>
<td>64°5</td>
<td>50°7</td>
<td>58°4</td>
<td>64°5</td>
<td>50°7</td>
</tr>
<tr>
<td>Aug.</td>
<td>58°4</td>
<td>64°5</td>
<td>50°7</td>
<td>58°4</td>
<td>64°5</td>
<td>50°7</td>
</tr>
<tr>
<td>Sept.</td>
<td>58°3</td>
<td>64°4</td>
<td>50°6</td>
<td>58°3</td>
<td>64°4</td>
<td>50°6</td>
</tr>
<tr>
<td>Oct.</td>
<td>58°2</td>
<td>64°3</td>
<td>50°5</td>
<td>58°2</td>
<td>64°3</td>
<td>50°5</td>
</tr>
<tr>
<td>Nov.</td>
<td>58°2</td>
<td>64°2</td>
<td>50°4</td>
<td>58°2</td>
<td>64°2</td>
<td>50°4</td>
</tr>
<tr>
<td>Dec.</td>
<td>58°1</td>
<td>64°1</td>
<td>50°3</td>
<td>58°1</td>
<td>64°1</td>
<td>50°3</td>
</tr>
</tbody>
</table>

In the whole year 72°78'5" 72°18'8" 50°38'1" 72°78'5" 72°18'8" 50°38'1"

The following table shows the number of fair days, the number of days on which more or less rain fell, the number of fair, clear, and sunny days, and the number of fair days gloomy:

<table>
<thead>
<tr>
<th>Year</th>
<th>Fair Days</th>
<th>Rainy Days</th>
<th>Fair, Clear, and Sunny Days</th>
<th>Fair but Gloomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1874</td>
<td>176</td>
<td>189</td>
<td>106</td>
<td>70</td>
</tr>
</tbody>
</table>

Thus, during the year 1874, there have been 18 more days on which rain fell than absolutely fair days; and of the total number of fair days, the clear and bright days preponderate by 36. On comparing the means of the observations, we find that the mean temperature of the mornings was exactly the same as that of the evenings. In April the temperature was unusually high for that month. The mean temperature of December was 2° below that of December 1870, which was the last frost we had of any moment, and 5°2° below the mean of the same month in the previous four years.

Correspondence.

Dear Sir,—I think it would have been well if Mr. H. Baden Pritchard, before giving you his version of my remarks concerning the Exhibitions of 1873 and 1874 (made at the recent meeting of the Photographic Society), had taken the trouble to correct his own impressions by looking into the accounts published last year by himself. He will there find—

1st. That the total cost of the Exhibition 1873 was £112 13s. 7d., and not £128, as he tells you in his letter.
2nd. That the admission fee and sale of catalogue realised £83 odd; and that £50 was received for special advertisements inserted in the catalogue.
3rd. The total amount taken was therefore £113, and not £130, as stated by Mr. Pritchard.

"quis custodiet ipsos custodes?"

I am, yours, etc.,

John Spiller.
PHOTOGRAPHIC NEWS.

FEBRUARY 19, 1875.

SCORIAC.—The irregular light patches in the prints enclosed are not negligible, as you say, but simply a fault of the negative, and these may have been produced in various ways. They appear to us very like the results produced by an uneven coating of collodion. If the collodion flow in an uneven way, leaves such quick ridges or patches, and makes the silver solution flowing unevenly over the surface will cause such patches in development. Sometimes a reflection of light shining on the plate, and also such cracks, will cause such effects. Sometimes the uneven flowing of the developer will produce such a result. The first cause we have mentioned is most likely, from the appearance of the patch, where it is most probable.

HYDRATE OF CHLORAL.—Dallastype is the name given by the inventor to a method of producing, by photography, blocks for surface printing in the ordinary typographic press. The method consists in treating the surface of the type with a water-soluble compound of copper, to which is added a mixture of hydrate of chloral, or of chloral hydrate, and of solutions of gum arabic, and of any other materials, to give the desired property to the surface of the type. The type is then printed with the ink received from the type, and the result is a printing which is said to be superior to that obtained by any other method. The method is said to be very economical, and to give a printing which is much superior to that obtained by any other method.

Correspondence.

[Column continues with various letters and articles of interest to photographers and the photographic trade.]

To Correspondents.

FARNBOROUGH LANE.—The phenomenon you describe is by no means uncommon; we have seen it many times. The dark colour being developed in the collodion was, as you conjecture, the result of the liberation of free iodine. This was due to some trace of acidity in the air. It is a well-known fact that when collodion is treated with a solution of an ordinary chemist's somewhat acid; and either kept in a photographer's establishment, in a bottle not quite full, and exposed to light, will frequently become acid. The change back again from dark red to a comparatively colourless state is, although by no means uncommon, not so certainly explained. We have often seen it, but never except methylated ether or methylated spirit was present; and the probable explanation is that an iodide of methyl is formed, taking up the free iodine liberated.

H. ROBERTS.—We cannot give you a full explanation, because we are not quite certain of all the steps in the alleged process, of which the paragraph in question was, you would seem to be aware, a brief summary extracted from another journal. It is very probable that "and" should be substituted for "or." You are aware that a wash of iodide of potassium will destroy the sensitiveness of an exposed plate, and that exposure to light is supposed, in some processes, to improve the plate after it has been made insensitive by an iodide. The special novelty consists, apparently, in final treatment with a solution of tannin, instead of a solution of silver. Dr. Vogel has proved that tannin acts as a sensitizer to iodide of silver. Of course, after the plate has been treated with the tannin, it will require the same care to protect it from light as an ordinary plate rendered sensitive in the silver bath.

E. DODSON.—You are still scarcely sufficiently explicit as to the character of the photographs you possess, and the mode of exhibiting them which you wish to try. Are they transparent, and do you wish to exhibit enlarged images of them on a screen by the aid of the magic lantern? Or are they paper prints, and, by using them for a "peep-show," do you mean to enclose them in a box with a good light upon them, and exhibit them through a large lens? In either case you will be able to obtain the requisite apparatus through some dealer in photographic instruments.

See second page of our advertising sheet. 2. The collection which is too thick may be diluted either with new thin collodion, or with equal parts of ether and alcohol.

P. A.—A quarter-plate portrait lens will answer well. As a rule, the focus of the condenser should be about twice its diameter.

NORMAN MAY.—The use of permanent plates for intensifying carbon prints or negatives was indicated by Mr. Swan some years ago. We will, however, at an early date refer the communication, and furnish you with details. Many oaks.

ALEX CHARDON.—The use of permanent plates for intensifying carbon prints or negatives was indicated by Mr. Swan some years ago. We will, however, at an early date refer the communication, and furnish you with details. Many oaks.

A YOUNG PHOTOGRAPHER.—We have, in the volumes of the PHOTOGRAPHIC NEWS and in the Year-Book, already published given very many articles on the production of transparencies for typographic printing. We have also published practical articles on the usual practice of the art in all departments, the primary object of a journal is to give a record of the progress of photography, its discoveries, modifications, and improvements, rather than to repeat known processes, which we have already published. If you have our back volumes, you will, on reference to the indexes, find many articles on the subject of your enquiry. We do not remember that the gentleman to whom you refer has published any details of the process he works. Professional men working a specialty often feel inclined to enter into such detail. If you will tell us the methods you have tried, and any special difficulties you have encountered, we can probably help you. In the meantime, we will boar in mind your wish, and when opportunity serves give a resume of the most approved practice.

A BOUGHER.—Many thanks.

AN OLD MEMBER.—We cannot give any precise information on the subject, and it is not wise to discuss it on conjectural information. You will probably obtain the information on enquiry at the meeting. We understand that some voting papers were rejected, and that the ground work was no worse than the one that was referred to, by the owner's wish, not nominated for the council. Is it not well, for the Society's sake, to let the whole matter rest?

ERRATA.—In our list of officers of the Photographic Society the name of Mr. H. E. Bould was seen in error. It should have stood fourth in the list of the council. In the letter of Mr. C. Ferranti, published a fortnight ago, on "Life-size Portraiture," first line of second column, page 70, for a deal of great satisfaction, read "debt of gratitude," and in last line of second paragraph of the same column, for "make the attempt" read "made the attempt."

Several Correspondents in our next.
The Photographic News, February 26, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

DIFFICULTIES IN PORTRAIT PHOTOGRAPHY—The East Indian Eclipse Expedition and Dr. Vogel—Action of Light on Aniline Colours.

Difficulties in Portrait Photography.—Some years ago there were many things inveighed against by portrait photographers, who knew they could never produce satisfactory results for their sitters if the latter came dressed in garments unfavourable to photography. Blue dresses, for instance, were disliked, because they came out light; and white ones, because they came out dark. Black and grey, or generally, any shade of black, were considered safe for the sitter. But should any individual have worn an apple green, or grey, or anything in between, the photographers would have had their hands full, and the result would have been a failure. This, however, is no longer the case. It is now found that, with the new lamps of electric light, and other more efficient illuminating apparatus, all sorts of dresses can be photographed without serious inconvenience.

Action of Light on Aniline Colours.—M. Borlinetto, in the Révue des deux mondes, has given an account of some experiments he has been making to test the sensitiveness to light of aniline colours. He mixed them with various substances, such as starch, gelatine, and albumen—or, rather, spread the pigments upon papers prepared with these materials. He found that Hofmann's blue changed its colour quickest upon starch-paper, and more slowly upon the sized and albumenized papers. But if the solutions be applied to cloth and left to dry, they remain perfectly original. The result is that of a mixture which, although not so sensitive as the pigments, is very sensitive, and may be used in photography without any inconvenience.

Difficulties in Portrait Photography.—Some years ago there were many things inveighed against by portrait photographers, who knew they could never produce satisfactory results for their sitters if the latter came dressed in garments unfavourable to photography. Blue dresses, for instance, were disliked, because they came out light; and white ones, because they came out dark. Black and grey, or generally, any shade of black, were considered safe for the sitter. But should any individual have worn an apple green, or grey, or anything in between, the photographers would have had their hands full, and the result would have been a failure. This, however, is no longer the case. It is now found that, with the new lamps of electric light, and other more efficient illuminating apparatus, all sorts of dresses can be photographed without serious inconvenience.

Action of Light on Aniline Colours.—M. Borlinetto, in the Révue des deux mondes, has given an account of some experiments he has been making to test the sensitiveness to light of aniline colours. He mixed them with various substances, such as starch, gelatine, and albumen—or, rather, spread the pigments upon papers prepared with these materials. He found that Hofmann's blue changed its colour quickest upon starch-paper, and more slowly upon the sized and albumenized papers. But if the solutions be applied to cloth and left to dry, they remain perfectly original. The result is that of a mixture which, although not so sensitive as the pigments, is very sensitive, and may be used in photography without any inconvenience.

The East Indian Eclipse and Dr. Vogel.—Our readers will be glad to learn that our friend Dr. Vogel, of Berlin, will take part in the British eclipse expedition, which is now on its way to Singapore. The Royal Society issued invitations to three foreign gentlemen to take part in the observations; Dr. Vogel will represent Germany; M. Janssen goes on behalf of France; and Prof. Tacchini will be the Italian assign chosen. The main object to be secured will be a photograph, or rather a series of photographs, of the spectrum of the sun's corona. The whole expedition is under the charge of Dr. Schuster, who sailed ten days ago for the East. M. Janssen is already at Singapore, awaiting the arrival of the expedition.
FRENCH CORRESPONDENCE.

PHOTOGRAPHY AND OCEANIC STORMS.—A FRENCH MANUAL ON CARBON PRINTING—PREPARATION OF THE PIGMENTS—PORTRAITS IN CARBON—SULPHOCYANIDE OF AMMONIUM FOR PRINTING.

Photography, which has rendered such important services to astronomy on the occasion of the transit of Venus, may certainly find other similar applications in the domain of science. Thus the different theories which have been advanced hitherto touching the movement of a ship upon a stormy sea has only been of an approximate character. Photography offers the means of registering with mathematical accuracy the successive inclinations impressed by the billows, and in this way it would be possible to learn something of the law that governs the movements of the ocean. Some curious experiments, the results of which have been communicated to the Academy of Sciences, have been made at Brest by an officer of the French navy. I need not enter into the description of the process employed, because it would lead into too abstruse matters; but I will say that the impressions exhibited to the Academy have excited a most lively interest, and appear to be of a most conclusive character.

One of the veteran photographers in pigments—M. Boivin, of Marseilles—has sent me the manuscript of a very complete manual of this method of printing, which, as I mentioned in my last letter, has at last obtained a firm footing among the professional photographers of France; this work is the fruit of several years' study and observation, controlled by experience.

The teachings that the author draws from his long practical studies are the following:—The sensitizing of the paper should be done in a solution of bichromate of potassium which is kept in a closed vessel; the fixing and washing taking place in a croyderol bath. The drying of the tissue should be conducted in a warm and airy apartment. The solubility of the pigmented paper should be ascertained before placing it under the cliché. The tissue requires to be printed with accuracy, as determined by the aid of a photometer. The washing of the pigmented paper after printing should be as rapid as possible, and the contact between it and the transfer paper must be as perfect as possible. The plate must be developed in water, which should not be too warm, and ought to be filtered if necessary. The fixing takes place in a solution of alum, of three or four per cent.

As to the failures which may be encountered in the process, M. Boivin resumes as follows:—Where the contact between the paper and the print is imperfect, the transparency of the half-tones is lost, and one is liable to partial lighting of the film. The operator should take heed not to change the temperature of the water too suddenly which is used for development. Filtered rain water is best to use for the purpose. An image rendered yellow by the bichromate may be made white again by passing it into a two per cent. bath of cyanide of potassium. If the exposure has been too short, the half-tones are wanting; if it has been too long, the other hand, the impression is thickened, and refuses to develop.

The preparation of the colouring mixture which compose the pigmented tissue is one of the most important points in the process, and M. Boivin makes, in reference to this, the following observations:—In preparing black tissue, employment can be made of lamp-black, which as may be obtained in commerce, well purified, and finely ground. It is mixed in a mortar with glycerine and a trace of phenic acid, and in this state it will be found to keep perfectly. If ordinary soot is to be used, it is necessary in the first instance to separate the grease from it, and this is done by washing it in benzole, and then in potash, ammonia, and water. For carmine black (a tone which comes very close to the tint of ordinary photographs) refined lampblack is taken, and to it are added a few drops of an ammonical solution of carmine. Such pigments as red chalk, and the like, are prepared by washing and levigation so that an impalpable powder is secured.

The pigments are put into a fine linen cloth, of which a bag is made by tying the edges together, and plunged into warm water in the same way as if you were using a stick of Indian ink. When the water is very much charged with colouring matter, it is poured into a glass vessel, and the operation is continued until the pigment has all gone. After having allowed the liquid to stand for some time, so that the coarser particles have had time to settle, two or three times, the solution is extracted of the precipitate, which is afterwards obtained from this serves as a pigment for the tissue. It is preserved with glycerin and a trace of phenic acid, in the same way as the lamp black. If it is desired to employ sepia, in order to render it without any action upon gelatine, it is boiled first of all with a saturated solution of bichromate of ammonium, and then thrown upon a filter, and, by means of ordinary water, the precipitate is washed repeatedly, and is then ready for use. Thus prepared, the sepia employed in the preparation of the pigmented tissue has not the inconveniences of sepia in its natural state, which renders gelatine perfectly insoluble in a very little while. As to plumbago, which is employed in certain instances, this is reduced to an impalpable powder in the mortar, and is then diluted with water, which is evaporated by placing the mixture in a water bath, from which prints produced with plumbago resemble very much drawings in crayon, and are of a very artistic nature.

One of the most interesting sections of M. Boivin's work is that concerning the production of a print in its true sense by double transfer. He assures us that the operation may be easily performed as follows:—After having well cleaned a plate, it is rubbed with a flannel dampened with a solution of a little carbon tetrachloride or petroleum oil is adherent. After having allowed the solvent to evaporate, which takes place in a few minutes, the glass plate is rubbed uniformly with a very dry flannel, so that no very large amount of wax remains on its surface. The plate is preserved in this state, and when required for use the surface is coated with old collodion that has been rendered very fluid by the addition of alcohol and ether. The plates are then plunged into a water bath, where they remain whilst the printed tissue is being washed in another vessel; then the tissue is placed upon the film of collodion and withdrawn from the bath, and, having passed the squeegee over the image to ensure perfect contact, the same is allowed to dry spontaneously. After destillation it is merely necessary to lift the print in order to uncover the negative. The production of a solution of wax, of which mention has been made, M. Boivin employs very successfully castor oil, or even stearine dissolved in alcohol; all these materials give identical results. This process of double transfer furnishes prints which rival the best that can be obtained with silver printing. Thus M. Boivin observes they are at once in their proper condition, and glazed; the method therefore is especially suitable for cartes-de-visite and portraits of this nature. In the reproduction of engravings in which a fine matt tone is desired, no collodion or gelatine should be used; in this case it is preferable to employ paper as the definite basis—gelatino-alum paper, for instance.
that gentleman has written me a few lines on the subject which it will be useful to all to know. M. Meynier, as a manufacturing chemist, produces the salt at two francs and a half per kilogramme, and at this price it is sold wholesale to chemists, who retail it again at about six or eight francs. This is a fact which has an interest for every photographer. The agent in Paris, it appears, contents himself with a profit of half a franc only per kilo, and if all chemists were to do the same, it is certain that sulphocyanide would be generally used for fixing; and a great demand for the material would arise, so that vendors would soon recoup themselves for any abatement they might make in the price now charged for the product.

Ernest Lacan.

THE PRACTICAL Printer IN AMERICA.

XVIII.

"A Few More Remarks about Printing—Treatment of Broken Negatives.

"In my chapter on The Positive Bath for Albumenized Paper, I have given a variety of formulas for both preparing and taking care of the printing-baths, which I have either by my own, or by the experience of some photographic friend, proved to be very fine in their results, if carefully put into practice, as is recommended.

"When some samples of paper are floated upon the silver bath, a treatment is required which at first seems peculiar. If you float this paper upon a medium-strong silver bath (40 to 45 grains strong in summer), it will have to be floated a long time to obtain good results, and if floated upon a weak silver bath (35 to 40 grains strong, also in summer) it will have to be floated a short time. The reason of this is obvious. A strong silver bath repels the paper at first for quite a number of seconds, and if removed from the bath before the paper has taken to it, it will dry in tears-drops, and when printed it will be marbled in its looks, which is in itself a sure sign of too short silvering. If the paper when removed from the bath curls considerably, then that is another sign of too short silvering, and, consequently, paper silvered on a strong silver bath should be silvered for a longer time than what you would silver the same on a weak bath, and then the paper will have a strong solution on it, and will be very brilliant, both when just removed from the printing-frame and when dried and finished; but it will be much more bronzed in the shadows. For weak or flat negatives that paper would be useful, but for more strong, i.e., neither weak nor weak negatives— it would not, and for the intense negatives it would be sadly out of place.

"For medium negatives, the bath for sensitizing the paper should be from 28 to 33 grains strong, of silver alone, to the ounce of water during the summer; and while you float in the former case on a bath of 46 grains, from thirty-five to forty seconds, you should not in this case float more than from twenty to twenty-five seconds. If you float some samples of paper on a 50 to 33-grain bath longer than twenty-five seconds the paper will print 'woolly,' even if silvered only five seconds more than the allotted time. The paper is easily told as to whether it will print woolly or not by examining the surface of the freshly silvered sheet as soon as it is removed from the bath; if it looks dead and suntanned you may be assured that it will look exactly so when it is printed. The experienced printer, when he removes the first sheet of paper from the bath, can tell whether he is silvering the right time or not (at least, very nearly), and then he can act accordingly, with astonishing accuracy.

"There are often very bad results occasioned by having the silver solution too cold. This is especially the case in the winter. Look out for it, if you wish to avoid it, both in the sensitizing and working of the paper. During the hot months of summer the paper should be kept in a damp box for a day or so before it is silvered, for when the albumen on the paper is in a damp state it will more readily take to the bath than when it is dry and horny. During the winter the paper should not be kept in a hot room, for the same reason. "Treatment of Broken Negatives.—In many cases, a negative that has been broken can be mended so as to be strong enough to resist all ordinary pressure of the back-board while printing, providing another glass is first laid in the frame and the negative laid on it. "Lay a piece of cotton flannel on a level bench or table where there is plenty of light, and match the broken pieces of the negative on it, face up. Examine the pieces closely with a magnifying glass, and lay them in exactly the position they were in before the negative was broken. Now cut strips of plain unsalted paper, about an inch wide—no more, though—and apply melted glue to one side of them; now place the same side of the paper to the borders of the negative, permitting about half an inch of the width to project out beyond the glass. Do this to all of the sides, and then turn them over the edge—i.e., the thickness of the glass—on the varnished side of the negative and rub the paper with a tuft of cotton to make it stick. The negative, as it is now, has a half-inch strip of paper glued to the four sides of the varnished side of it, and also a half-inch strip projecting out beyond the edges of the negative, which has glue on it, but is not as yet stuck to the other side (Fig. 1). When the paper is dry, turn this negative over and apply moisture to the glue on the paper, and draw it tightly, yet tenderly, over the edges of the glass, and press it down smoothly on the back of the negative. Do this in turn to all the sides, and then, when the paper is dry, you will find the pieces quite strongly held together, and you can move it about in and out of the frame, without any danger of the pieces separating. "But, however, if those strips of paper do not hold the negative sufficiently together, as in some cases they will not, then lay the negative, face up, on a piece of plain unsalted paper, match it, and with a knife or shears cut the paper around the negative, leaving sufficient of it on all sides to allow it to turn over, not too far, on the varnished side, which you remember is uppermost (Fig. 2). Mark with a lead-pencil on the paper on all sides of the negative, close to the edge of the paper. Now remove the negative and apply glue to the side of the paper which has been marked. Apply evenly, and lay the pieces of the negative quickly on in their proper position, before the glue has commenced to dry. Bear in mind that the glass or back part of the negative is laid down on the glued paper, and see also that the negative when placed together lies on the paper as it did before you removed it to glue the paper, which position is easily told by the marked lines on the frame. "When the pieces are matched exactly by the aid of a magnifying glass, then gently draw the paper up which projects out beyond the sides of the negative, and stick them to the varnished side of the glass. This paper should not cover so much of the varnished side as to cover any part of the negative that is to come in the print when it is finished. The negative should then be turned over, which can very well be done if you were, in the first place, to place under both paper and negative a whole glass of the same size, or a little larger if desired, as the mended
negative would measure. By taking hold of this under glass, and placing a couple of fingers on the broken negative to prevent it from slipping, you can easily turn it over, and then lay it on a level state covered with soft flannel. First, blow a tube upon the paper which is stuck on the back of the negative, commencing at the middle and rubbing outwards, so as to secure both perfect contact and for the purpose of removing air-bubbles between the two surfaces. Let dry, and you will have a negative that can be printed, if you wish, without another glass being placed first in the frame, and which can now be used.

"This negative having a thick white paper on the back of it, will necessarily print slowly, but if printed face up to the strongest sunlight, but little difference in the time of printing will be noticed. Medallions or plain prints can best be made from such a negative, though it may be vignetted by placing a Wasmuth vignette-paper on the back of it. The contraction while drying of the expanded paper will draw the pieces of the negative more firmly together, and thus secure greater exactness."

THE CAUSE OF SOLAR HEAT.

BY DAVID WINTSTANLEY.*

When a body possessing the visible energy of mechanical translation is arrested in its course, that energy, according to the laws of conservation, is not destroyed, but becomes apparent in another form, generally in the form of heat. Should a body receive two equal impulses in diametrically opposite directions at the same time, mechanical translation as a result thereof is impossible, and the energy thus expended, it appears to be agreed, will in the main assume the form of heat. Should a body, however, receive two equal impulses in directions inclined to each other, mechanical translation will ensue, but the value of the energy of visible motion thus communicated to the body in question is not equal to the sum of the impulses, being, as is well known, justly represented by the diagonal of a parallelogram the length of whose sides is proportioned to the value of the primal impulses. What, then, in this case, becomes of the residue of energy applied, and not converted into visible motion? I apprehend it assumes the form of heat. If so, in the instance of a body receiving equal impulses in directions inclined to each other at an angle of 120°, the resulting visible motion will just account for the energy of one of these impulses, and the resulting heat for the energy of the other; and then, a body being a certain visible energy observable as rectilinear movement have a series of impulses imparted at an angle of 120° in each instance to the line of motion, and equal in value to the visible energy of the body at the time of application, the body in question will gain nothing in visible motion through the application of these impulses, but will simply alter the direction of its movement at each application, and heat at the same time an amount of heat of which the impulses is the mechanical equivalent. Adopting this view, it matters not at what angle the impulse may be given, for so long as the figure representing its amount yields with that representing the visible motion of our body a parallelogram whose resultant is equal to the line of visible motion, it follows that the energy of mechanical translation remains unaltered, and the energy of visible motion transformed into heat. This condition of things, however, is what obtains in the instance of a body in planetary revolution in a circular orbit. It is continually receiving impulses through the instrumentality of gravitation at or nearly at right angles to its line of flight, and its energy of visible motion does not increase, whence I infer that the mechanical energy by which its rectilinear movements are destroyed is converted into an equivalent of heat which elevates the temperature of the planet so far as its conditions of radiation will permit. The aggregate value of the impulses required to make a body describe a circle and return to its starting point, and derive the principal and direct gain of visible energy, I have endeavoured to determine graphically by means of the mechanical parallelogram. The result at which I arrive is, that the aggregate in question exceeds the momentum of the body to be deviated in the same proportion as the circumference of a circle exceeds its radius, and this irrespective of the circle's size. I have not attempted to calculate, nor attempted to deduce, what fraction of the matter of the earth would be elevated by a sudden stoppage in its orbital path, for it appears to me that satisfactory data for doing this do not exist. The number of thermal units to which such a stoppage would give rise if multiplied by 6.28 indicate the amount of heat which, upon the present hypothesis, the earth annually receives through the instrumentality of solar gravitation. This amount will, I apprehend, amply account for a certain initial temperature of the terrestrial matter, and for that excess of internal heat which appears to have been pretty well made out. It will be evident that any heat which, in virtue of this hypothesis, may be supposed to fall to the lot of our earth, will, in some calculable proportion, fall to the lot of the other planets also. The assumption that the planet's mass multiplied into its velocity in orbit, and divided by its periodic time. Of course this amount of heat will be distributed over the entire matter of the planet, the temperature of which will depend on the capacity for heat of the matter composing it, and on its facilities for radiation. These latter will clearly diminish with the comparative diminution of superheating, and, in a great part, by the larger extent of their atmospheres. In the case of bodies moving in elliptic orbits, the amount of energy which, according to this hypothesis, will be transformed to heat in a single revolution will be practically as before; i.e., 6.28 times the planet's visible energy of motion at its mean distance from the sun. There will, however, be this difference between the two cases: in the instance of a body moving in a circular orbit, the ascension of heat will be a constant quantity in equal increments of time and in all parts of the orbit, whereas in the case of a body moving in an ellipse, the ascension will be least in approaching the perihelion, and greatest in receding from it, inasmuch as the solar gravitation produces an increase of mechanical translation in the former instance, and diminishes it in the latter. Assuming the theory to be correct, this circumstance is one which will greatly mitigate the extremes of heat to which, apart from such a consideration, we should expect cometic bodies to be subject. Indeed, in spite of the enormous distances to which they recede from the sun, the voluminous nature of their atmospheres, by which radiation must be diminished, may, in conjunction with this view of the case, afford an explanation of the unexpectedly high temperature which, in the case of these bodies, the spectroscope certainly seems to indicate.

The application of the views herein advanced to an explanation of the cause of solar heat is briefly this:—As the mutual and ever-acting gravitation of the sun and his attendant planets produces in the instance of the central luminary no more acceleration of visible motion than in the instance of the planets themselves, the gravitation must result in the exhibition of some other form of energy, which, in the one case as in the other, will, I apprehend, be the form of heat. Carrying, however, this idea to the extreme, we should be led to infer that the force of gravitation, which in some circumstances is certainly capable of transference into the form of mechanical translation, and thence into the form of heat, is in others just as capable of transference into the form of light. Whatever this may be, it is to be regarded as the individual movement of a multitude of particles whose simultaneous movement is observable as mechanical translation, it is but reasonable to suppose that

* Read before the Manchester Philosophical Society.
The photographic News.

February 28, 1876.

A force acting upon all, but, from the circumstances of the case, incapable of producing a simultaneous and concordant movement, will produce an individual, and in a sense discordant, motion of those same particles. Looking at the matter in this way, any agglomeration of particles whatever must have some initial heat as a result of that gathering. The present consists of little quanta or molecular units as elements of translation. And as in our experience gravity is unceasing, this heat, so far as we can see, should be never ending during the continuance of those conditions which prevent the movement of translation; and a never-ending supply of heat must cause an elevation of temperature which will only cease when a point is reached at which the rapidity of radiation equals the rapidity of supply. The more numerous the particles comprising the agglomerated body, the less become the opportunities of radiation, and the more elevated the temperature, which latter attains its maximum in our own system in the instance of the suspended body which maintains the superficial mundane heat by irradiation from its fires.

It will be seen that the theory here projected places itself in accordance with the doctrine that "a stone high up" has anything which can justly termed "the energy of position." But I have already occupied sufficient time without staying now to combat further the doctrine I have named.

To those who have been accustomed to regard gravitation as a property which enables bodies to act where they are not, the present consideration will present itself as mechanical not encountered by others who accept the beautiful, and to my thinking more rational, hypothesis that the simple mechanical movement of infinitesimal particles is the immediate cause of that grand effect, the law of universal gravitation.

ON THE CAUSE OF DEPOSITS OF SILVER UPON WET COLLODION.

By G. Vander Mersbrugge.

I have been giving some attention to the subject of irregular deposits of silver which are very often seen upon wet collodion plates during development. In order to explain clearly the remarks I have to make on the subject, I may state, first of all, that every liquid possesses at its surface a tension or contractile force of its own, which diminishes as the temperature becomes more elevated. For this reason the same phenomenon take place as if there was a skin or membrane stretched evenly over the surface, supposing the temperature to be uniform, the tension being greatest where the temperature is lowest. It follows from this, that if we suppose a superficial film of a liquid, without weight, non-adherent to a solid body, and perfectly free to obey the interior forces that exist, this film will contract at once, and assume a spherical shape, corresponding to the least possible surface for any given volume. Weight alters more or less, but does not destroy this construction, as proved by the spherical form of rain, soap-bubbles, &c.

The fresh surface of distilled water at a temperature of 15° Cent. possesses a tension or contractile force about equal to 7-5 milligrammes per millimetre of length, while the tension of ether, at the same temperature, is only 1-9 milligrammes, and that of alcohol 2-5 milligrammes. It follows, therefore, that if we plunge a plate of glass into distilled water, and then withdraw it with a pair of perfectly clean pincers, and deposit upon the film of water adhering to the surface of the plate a drop of alcohol or ether, the plate being held horizontally while the tension of water, being much stronger than that of the ether or alcohol, will produce a rapid spreading of the drop, and the liquid film will thus possess thickness of a very different nature at different places over the surface of the plate. The same phenomenon takes place when distilled water is substituted for a solution of silver.

It is clear, after these experiments, which are easy of repetition, that if the liquid film covering the plate, after it has been withdrawn from the silver bath, contains here and there little quanta of the solution, the necessarily produced phenomena of dilation at those places where ether and alcohol are to be found. Therefore the film will be more or less unequally distributed, and the chemical actions developed by the luminous rays will themselves be very irregular at certain points.

As soon as the quantity of ether and alcohol mixed in the plate becomes large enough to resist the force of the plate may contain these liquids in every part, and then the phenomena of dilation are less pronounced, or even still, provided the evaporation of the plate is the same throughout. Now this last condition of things is very difficult to realise, and thus the warmest portions are more or less attracted towards the colder places.

In general, it is necessary, in order to obtain a regular distribution of the liquid film covering the plate, not to place it in contact with any body of a greasy nature, nor to touch it even with the fingers, for there always become detached little particles of grease, which, although invisible, are quite sufficient to dilate the liquid on the plate by reason of its weak superficial tension.

To render this more intelligible, I may quote the following experiment. Into a glass dish, filled with a scrupulous care, there is poured some distilled water, and upon the surface of this is deposited a few small pieces of camphor, not more than one millimetre in size. They will be found to begin to turn rapidly, moving about with extreme vivacity; these movements are due to the fact that there separate from the surface of camphor in contact with the water a very minute current of essential oil, much less contractile force than water; and as this oil does not detach itself equally all over the surface of the atom in contact with the superficial film of water, it moves about with unequal force. If we plunge a finger into distilled water, every movement of these particles ceases as if by magic. This is because invisible greasy matter has become detached from the finger, and has diminished too sensibly the tension of the liquid to permit of the particles of camphor being set in motion.

These experiments demonstrate, I think, the necessity of some precautions to prevent deposits of silver of irregular character from taking place during development.

1. To attenuate the differences of tension of ether, alcohol, and the silver plate, by adding any insensitive substance to the latter, and to lower the tension of nitrate of silver. The addition of camphor to the silver bath is said to prevent the blistering of paper sensitized upon it; perhaps this remedy acts from an analogous reason.

2. To render as short as possible the differences in temperature of different portions of the sensitive collodion plate, for the tension diminishes as the temperature augments, and thus the fluid portions are drawn towards the coldest. This remark seems to me to give the key to many failures with which photographers are afflicted during very hot and very cold weather.

In conclusion, I will mention a substance which acts like camphor, and which will thus be of assistance to operators in preventing irregularities in the thickness of liquids. I refer to saponine. A very weak solution of this (0-01 per cent., for instance) possesses the singular property, discovered by M. Plateau, to oppose great resistance to every displacement of surface, or, in other words, it enjoys very great superficial viscosity; I believe further, that it is inert, and, therefore, the addition of it in minute quantities to a liquid might be advantageous.

Should the preceding conjectures be borne out by experience, the theory of the superficial tension of liquids will be of undisputed significance in photography.
The Photographic News. [February 26, 1875.

Vol. XIX. No. 850.—February 26, 1875.

CONTENTS. PAGE
Photography In and Out of the Studio 97
French Correspondence .. 98
The Practical Printer in America 99
The Craftsmen's Manual ... 100
On the Course of Deposition of Silver upon Wet Collodion. By G. Vander Maelbreughe .. 101
"Rembrandt" and Other Effects in Photographic Portraiture 102
A New Photographic Paper—Bromide of Silver for Printing 103
Affectionately Yours, Little Photos 104
The Action of Sunlight on Certain Minerals. By Mr. Schmutz 105
Companions of Photographic Societies and Photographers—Equivalency Focus of a Portrait Lens—The President of the Photographic Society—Cost of Photographic Exhibitions—Management of Funds for Others. 106
Proceedings of Societies—Photographic Society of Great Britain—Edinburgh Photographic Society—West Riding of Yorkshire Photographic Society .. 107
Talk in the Studio ... 107
To Correspondents ... 108

"REMBRANDT" AND OTHER EFFECTS IN PHOTOGRAPHIC PORTRAITURE.

We always regard with pleasure, as a healthy and satisfactory symptom, the reading of papers on the artistic side of photography before societies. Three such papers, each containing much both of interest and of valuable practical suggestion, have been recently read: one before the South London, and two before the London and Birmingham. It has been often remarked that of pictorial art, as of poetry, the faculty must be in-born, as no study, no training, without the natural instinct, would ever make an artist. Ruskin suggests that mere painstaking is valueless without something much higher, when he remarks that "patience and sand-paper will not make a picture." All fine art and painting, in reality and higher qualities of art, and true enough in relation to the highest qualities possible in photography. No study, no training, would have made a Rejlander, his work distinctly being the produce of a creative faculty. But an artistic instinct may lie dormant, and require educating and developing. Interest in good art, and familiarity with the best examples, have a wonderfully educating influence. Knowledge of what constitutes good art is one of the most important elements in the education of the artist, and that is a thing which can, to a considerable extent, be acquired by study. Hence the reading of papers on such subjects, and their consideration and discussion, cannot fail to have a valuable influence in raising the general standard of amateur photographers. It is very important, however, to avoid error as far as possible in such papers and such discussions, and in proportion to the excellence and weight of the dicta becomes the danger of error, as the error may easily gain the authoritative weight of truth from being found in its company.

The immediate purpose of our reference here is to call attention to certain allusions which occur in each of the papers to which we have just referred, and to some of the discussions which followed. It has often been the custom of late to refer with considerable disparagement to a style of portraiture which has acquired very much vogue during the last few years, and which is distinguished by the name of "Rembrandt." The name is probably foolish enough, insomuch as it provokes comparison which must of necessity be with Rembrandt. The intention, however, in adopting the designation is plain enough. The general custom in photographic portraiture, which prevailed for many years, was to flood the sitter with so much light as could possibly be used with any chance of securing fairly rendered contours and some degree of relief. In what is termed the "Rembrandt" portrait the avowed aim is to secure a similar prevalence of shadow and half shadow to that which characterized the works of the great master of chiaroscuro; and the mode of securing this effect was—to compare great things with small—not unlike that used by the painter; in both cases the sitter being illuminated by light from a narrow, concentrated source. But passing by the somewhat unwisely ambitious name, let us glance for a moment at the thing. In doing this, let it be understood that we do not take the failure in type more than we condemn a system because of its abuse. The black faces, with a streak of light indicating the outline of a nose, are really travesties of the style. He who imitates a style because it is in fashion (not because he appreciates it, or comprehends its intention) generally burlesques it unconsciously, by exaggerating the obvious characteristics and overlooking the subtle beauties. It is by far more intelligently produced excellence the same degree of success would be judged. To avoid invidious reference, we may refer to the "Rembrandts" of such men as Kurz and Napoleon Sarony, of New York, and Lockhardt, of Vienna, as examples of what we mean.

But in order to estimate the style rightly, it should be borne in mind that it existed long before the questionable name was applied to it, and its greatest master, if not its originator, was O. G. Rejlander. In his compositions, and pictorial studies especially, and frequently in portraiture, he delighted in rendering the bulk of the picture (often including the face) in half shadow, with the smallest possible touch of pure direct light to complete the scale of tones. Mr. Robinson has, from the time of his earliest known photography, been a master of the art of Edinburgh portraiture. The degree of the effect produced by faces in shadow, which are illuminated by a single touch of sunshine. It is only of late years that the system of producing faces in mezzotint instead of full light has been conventionalized, and, being adopted by some photographers of no artistic culture, the results have at times been offensive just in proportion to the ambition of the attempt. But to the photographer who knows his art, the highest mark of the highest degree of producing pictures of this kind is a valuable education, which he would never have attained by remaining in the commonplace groove to which so much of photographic portraiture has belonged. Mastery over lighting is the most important element in the culture of a photographic portraitist; and judgment in applying the various possible lights is the test of the best individual result, and avoid general monotonv in his work, is of no less importance.

A curious error or misconception appears in one of the discussions at the Edinburgh Society, if we read the report correctly. It was objected that certain effects, in the nature of reflected lights—or, as it is phrased in the report, "effects produced by "false reflected light"—were thoroughly untrue to nature. Surely this is a curiously misleading statement. What, it may be asked, is the direct light or the reflected light which alone is true to nature? Every light in which a person may by any chance be placed in, its degree, true enough to nature. It may be unusual, and hence give the person an unusual, and, by latitude of expression, an unnatural, appearance; but in unusual lighting the question of the aim must be considered, whether it is to secure a pictorial or realistic effect. If unusual lighting is to be condemned as unnatural, the glorious lighting of Rembrandt must fall under that condemnation, inasmuch as the concentrated light coming through a small high window of a mill—the typical lighting of the master in question—could scarcely be considered either usual or natural. The most usual, whistling it to secure the sitter to that secured by the narrow side light of a window in an ordinary room, and this would probably most nearly approximate to the lighting adopted in producing the mass of the so-called "Rembrandts." But if it is difficult to affirm that any form of direct lighting is really unnatural, how much more so it is to decide what reflected lights are unnatural or
false? The skilful rendering of reflected lights is one of the greatest charms of pictorial art, and the glorious quality of Rembrandt's work is very much due to them. The mass of most of his pictures is in shadow, but these shadows glow, reflected lights carrying the eye into the deepest gloom. The reflected lights on a figure are produced in degrees by every object around it, and are perpetually changing. The only really false reflected light is that which has been heightened in a photograph by combination printing, in which figures are printed side by side which, not having been produced side by side in the camera, have not, and cannot have, that effect of truth which would have been produced if the minor reflections produced by each on each had been present. Reflected lights being so numerous and varied, there is not much risk of their present being forgotten. The really great drawback we have noticed in many of the "Rembrandts" has been the absence of sufficient reflected lights to make the masses of shadow luminous. The effect of transparency in shadow is only secured by the presence of detail, and this can only be rendered in the shadow by reflected lights; and it is because the crying sin of photography is its want of this characteristic style in particular, is the want of the multitude of reflected lights which give the artificial and real pictorial value to the presentment, and because of the far too common presence of black, opaque shadows, that we call special attention to what appears a dangerous misconception. The use of reflecting screens undoubtedly requires judgment, as it is possible to give flatness rather than aid in the effect of roundness and relief, by producing a false reflection; but judiciously used, we feel assured they may be very valuable, and produce effects neither false nor unnatural.

We so cordially agree with the condemnation which is applied to the excessive retouching by which the effect of stone is substituted for the texture of flesh, and by which all anatomy is worked out of the face, that we are scarcely inclined to express the general truth of life, ameliorates the exaggerated rendering of features, nose-mark, red hair, &c., to which photography so often does less than justice, will always find his art popular. Let it also be remembered that Rejlander, whose aim was to make his art true more than popular, and who is often cited against retouching, was really one of the earliest who applied artistic manipulation to supplement the shortcomings of photography. The modern system of working all the out of a negative he utterly condemned; but no one was his superior in manipulating a negative to improve its pictorial value, by masking, subduing, and combining; and further, by using a pencil of light by which he could literally work as with a crayon on a print which he deemed needed treatment. He felt that appliances of this kind were legitimate enough for a dark and careful character, but that to abandon such aids, in his strong disgust of the falsehood which the modern mode of tampering with negatives had introduced into what he regarded as the art of truth.

A NEW PHOTOGRAPHIC PAPER—BROMIDE OF SILVER FOR PRINTING.

PROF. SCHULTZ-SELLAC communicates to the Mittheilungen a very interesting and important article on the use of bromides in albuminized paper, either wholly or in part, as substitutes for chlorides. He says:—

"The chemico-photographic printing process involves the employment of chloride of silver. The principle, known since the commencement of the century, that paper impregnated with chloride of silver, especially in the presence of an excess of nitrate of silver, becomes darkened by light, first attracted attention on the publication of Talbot's experiments, which were made known at the same time as Daguerre's great discovery. Afterwards the coarser paper surface was replaced by albumen, starch, or collodion films, the colouring in this way being rendered more lively, as in the case of a printing under a varnished surface. Fuming with ammonia has been the most important improvement in this method, by combination printing, in which figures are printed side by side which, not having been produced side by side in the camera, have not, and cannot have, that effect of truth which would have been produced if the minor reflections produced by each on each had been present. Reflected lights being so numerous and varied, there is not much risk of their present being forgotten. The really great drawback we have noticed in many of the "Rembrandts" has been the absence of sufficient reflected lights to make the masses of shadow luminous. The effect of transparency in shadow is only secured by the presence of detail, and this can only be rendered in the shadow by reflected lights; and it is because the crying sin of photography is its want of this characteristic style in particular, is the want of the multitude of reflected lights which give the artificial and real pictorial value to the presentment, and because of the far too common presence of black, opaque shadows, that we call special attention to what appears a dangerous misconception. The use of reflecting screens undoubtedly requires judgment, as it is possible to give flatness rather than aid in the effect of roundness and relief, by producing a false reflection; but judiciously used, we feel assured they may be very valuable, and produce effects neither false nor unnatural.

We so cordially agree with the condemnation which is applied to the excessive retouching by which the effect of stone is substituted for the texture of flesh, and by which all anatomy is worked out of the face, that we are scarcely inclined to express the general truth of life, ameliorates the exaggerated rendering of features, nose-mark, red hair, &c., to which photography so often does less than justice, will always find his art popular. Let it also be remembered that Rejlander, whose aim was to make his art true more than popular, and who is often cited against retouching, was really one of the earliest who applied artistic manipulation to supplement the shortcomings of photography. The modern system of working all the out of a negative he utterly condemned; but no one was his superior in manipulating a negative to improve its pictorial value, by masking, subduing, and combining; and further, by using a pencil of light by which he could literally work as with a crayon on a print which he deemed needed treatment. He felt that appliances of this kind were legitimate enough for a dark and careful character, but that to abandon such aids, in his strong disgust of the falsehood which the modern mode of tampering with negatives had introduced into what he regarded as the art of truth.

A SUGGESTION.

BY A LITTLE PHOTO.

There is a question well worth the attention of the professional photographer which has scarcely yet been sufficiently discussed. It is, do we take the public enough into our confidence, and cannot some of us, by the
issuing a few hints as to the capabilities of our art, and
also of its shortcomings (if one may admit), in order to
better understand between operator and subject? Many
have been done to elevate the public taste by photography,
and, on the other hand, much to degrade it. Is it not time a
bolder step were taken in the direction of elevating? Are
we not continually being tainted that our pictures are
nothing compared with the photographs of the Continent?
And is it not in most cases the sitter’s fault that such a state-
ment has a foundation in fact? Your average Englishman
and woman have an overweening sense of their dignity. They
cannot or will not descend to be a bit easy and natural
in a photographic studio; on the other hand, the Continental
photographer gets good sitters, for whether it is from the
habit of living, as it were, a more public life, or indulging so
much in the wicked pastime of dancing, it is certain that it is
easier to photograph foreigners than natives; the former are
easier posed, and are not afraid of making fools of themselves like your Englishman. It’s nice, after you have ex-
plained, and posed your sitter, to have the wind taken out
of your sails with “Oh! I know I look silly.” To hear that
has often made the bit of hair that nature and the focussing
cloth have left on my head rise in dismay, for where is your
explanation of it from that is the idea in the mind? Am
I not stooping too much? Where is any hand come to the bit?
I don’t look well side face.” These are a few of the troubl-
es of an English photographer even at the present day, not
counting the fact that shadow must be introduced but
springly, and you must be sure and bring out all the lace
and jewellry.

A cure is wanted for this state of affairs. I do not write
for the manufacturer, but for the artists and businesses for of course one
does not meet with such sitters; but of the want of taste in our
middle class there can be no doubt, and they will dictate to the
photographer. On the contrary, Continental people
understand good pictures, and have confidence in their
photographers. That is what we want to educate our patrons
—having confidence in their photographers.

There are several ways. One way is, as suggested above, to
issue tracts about our art, which has been done already by
the American photographers, but rather in some cases in an
offensive manner, at least to English ears. Something more
comprehensive and polite is wanted.

The best method would be to have local exhibitions of
photographs, to which admission should be free. That
would bring the art and its capabilities more before the
public, and so inculcate more the photographs’ guidance, there can be no question, for they would
naturally say: “The men that do these things understand
their business.” There are difficulties in the way, no doubt,
but where there are societies, such as at Liverpool and Man-
chester, it would be easily managed; and where there are not, let
the photographers sink their petty jealousies, and join
together, and get them up once or twice a year. A need
not be afraid, because B.’s pictures are better than his, that
he will lose trade. Don’t let them be personal advertising
 mediums, but only exhibitions to draw public attention to
the art, and elevate taste for good versus bad photographs
It would run out the quacks in time, and back-alum
photography would suffer; but it would raise the art and its
professors in public estimation, and raise the social status
of photographers immensely.

Even in small towns where two or three are gathered together
it could be done, and have some effect in the desired direction;
and in large towns there ought not to be any difficulty in
getting up such exhibitions, if the photographers’ so much
boasted love of their art is a fact, and not a mere clap-trap cry.

THE ACTION OF SUNLIGHT ON CERTAIN MINERALS.

BY DR. SCHUMANN.

Many of our readers will, perhaps, be surprised to learn
that the colours of certain minerals are very much in-
fluenced by the actinic rays. Singularly enough, the
action is observed only in the case of the hardest minerals,
and their colours are termed permanent stones. The poin
t of the actinic rays is maximum in the very hardest body known, the diamond.

According to the evidence of Dr. Flight, the sensitiveness to light of a coloured diamond is so great that it may be
compared with chloride of silver in this particular.

Our ancestors were acquainted with the fact that certain
coloured stones and gems bleached gradually in sunlight;
and hence, in the absence of light, the so-called chry-
sopras and the green emerald is acted upon in time by light, as I myself,
unfortunately, am able to testify, for an emerald ring I
have carried for seven years proves the fact conclusively.

But it is the diamond that behaves most remarkably in
the presence of sunlight. If coloured diamonds are heated,
the colour disappears more or less completely and for ever,
at any rate in most cases. At times, however, the colour
is only changed by heat, and through the influence of light the
same colour is restored. M. Martin, a noted diamond merchant, once exposed a
diamond to a high temperature in order to remove the brownish tints of the same, and he converted the gem into
a rose-tinted diamond. M. Caster tried the same experi-
ment with a brown diamond, and this, also, assumed a
rosy colour. The most singular thing, however, was,
that the colour was only visible in the dark, and in four
five minutes it disappeared—as soon, indeed, as it was
exposed to daylight. Then the gems assumed again a
light brownish colour. This change took place in a room
where, therefore, no bright light could penetrate.

Another diamond, of a dirty yellow colour, was heated
to a glow in a porcelain tube with hydrogen, and then
allowed to cool; the colour disappeared, but not its brill-
ience. As soon as this diamond was exposed to daylight for a period of six or seven minutes its original
yellow colour came back again. The experiment was
repeated, but this time the diamond was heated in chlorine
at a higher temperature; the colour again disappeared,
and could not be remarked in the dark; but as soon as it
was exposed, even for a few minutes, to daylight, its
original colour returned.

These phenomena have, no doubt, some relation to
phosphorescence, and the difference in coloured diamonds
may be compared with the analogous contrasts in char-
acter of the phosphorescent pro; erities which different
diamonds exhibit after being exposed to powerful light
rays.

Correspondence.

DISEASES OF PHOTOGRAPHERS.

Sir,—I have read the sensible and practical comments,
in your last week’s leader, on a letter of your correspondent
"L. L. F.,” with great satisfaction. I have read your other
remains, from which any of your readers who may be in doubt will, I trust, derive confidence and comfort. I have been a
sealous amateur photographer for upwards of twenty-four
years, and having been intimately associated with many
amateurs and professionals, have failed to observe any
peculiar disease which could be referred to the practice
of photography. Diseases of the eye are not infrequent among photographers, but they are not, I
apprehend, more common to them than to others where
brain work is a chief motive power—such, for instance, as
literary men, artists, musicians, &c.

The vapors of ether, alcohol, and acetic acid—the main
factors in the dark room—are well known depressants;
did to these, ill-restituted dark rooms, irregular marks,
anxiety to produce first-rate work, pressure of business, and uncertain exercise in the open air, and the wonder is, not that one occasionally falls out of the ranks, but that many are not more or less seriously injured.

Dabbling with bare hands in the toning bath (as I have often witnessed), carelessness in the use of chemicals (such as soda and bromine acid in the rough) used sometimes on cut or abraded fingers, is not rarely the unsuspected cause of mischief. Of the inconstant use of this salt I was, as you know, for two years once the victim, as was also lately that eminent artist, M. Silvy.

I would, then, earnestly say to all photographers, amateurs (professional, especially to the latter), let each make it a part of his religion to take good care before entering his studio—a good brisk walk—filling his lungs with pure fresh air, and as often as possible go into the open air at intervals of his work; take extra care that his dark room be thoroughly ventilated; secure some fixed hour for his meals, with which no engagements should be allowed to interfere; avoid alcoholic liquors (which aggravate the condition of nosophores), handling cyanide and pyro, and keep his hands well washed, not only the toning back (for, as I once mentioned in your columns, chlorido of gold is an energetic poison, and apt to cause ulceration of the skin).

I am not aware of any reason for ever suspecting that photography is a predisposing cause of diabetes, Bright's, or other allied affections; indeed, I know too well that they often arise as mere accidents where the conditions of life are unexceptionably good; and I am only re-iterating my own excellent remarks when I express my full conviction that, when ordinary prudence and intelligence are exercised, there is nothing in the practice of photography likely to be detrimental more than in the pursuit of any other occupation.—I am, sir, your obedient servant.

A Physician of Forty Years' Standing.

NEW LIGHTS IN PHOTOGRAPHY.

Dear Sir,—I have lately read a new mode of producing artificial light for photographic purposes, communicated by the ex-President to the Photographic Society, May I ask if there is any difference in the effect or advantage of the different lights, which was used, with much success in days gone by, and was very economical, although, since deposed by the magnesium light? And also, is there any danger of explosion? As a boy I used to make an explosive powder of nitre and sulphur, causing all sorts of mischief in the kitchen (where I experimented), and alarming the neighbourhood,—the only advantage being the cleaning of the chimney, and saving the cost of the sweep.

EQUIVALENT FOCUS OF A PORTRAIT LENS.

Sir,—The following is, I think, a new method that I have discovered for finding the equivalent focus of all lenses used in photography. It is tolerably accurate, and very simple. Go into a room where you have a view through the window of some distant object which stands out prominently, place a table against the wall opposite the window, and on the wall fasten a sheet of smooth white paper. Lay the lens on the table, and slide it to and from the wall until you have an image of the window projected on the sheet of paper. Single out the prominent object, and focus it accurately with another lens, by trial; then measure the distance between the sheet of paper and the end of the lens-tube nearest the sheet; note it down, then measure the distance between the paper and the other end of the lens-tube; note it down also. Reverse the lens-tube so that the back lens now fronts the window; repeat the focusing and measurements as before. There are now four measurements. Add the four measurements together, and divide the total by four: the product will be the equivalent focus required. The process will be facilitated by unshipping the flange, &c., so that the lens-tube may lay flat on the table.

I. W. DAWSON.

THE PRESIDENT OF THE PHOTOGRAPHIC SOCIETY.

We have received the following for publication:

The Hon. Secretary of the Photographic Society of Great Britain presents his compliments to the Editor of the Photographic News, and begs to forward to him for publication the enclosed copy of a letter received by him from Mr. James Glaishee:

1, Dartmouth Place, Blackheath, February 17, 1875.

My Dear Sir,—Since the receipt of your letter this morning I have had under thoughtful consideration the acceptance or not of the post to which I have been elected. I have all along believed I had the confidence of the Society; and although I had resolved not again to return to the presidency, still, with such a large vote in my favour, it would seem to be ungracious on my part not to accept the proffered honour. This determination I have arrived at on account of what is expressed by old and valued friends, who say that it will be for the good of the Society that I do so. For these reasons I have resolved to accept the presidency of the Photographic Society. At the same time I fear that I cannot promise regular attendance, and I should wish it to be understood that I resume the chair but for a limited period.—I am, dear sir, faithfully yours.

JAMES GLAISEE.

COST OF PHOTOGRAPHIC EXHIBITIONS.

Dear Sir,—I am obliged to Mr. Spiller for his practical and official confirmation of my statement relative to the monetary results of the Photographic Society's Exhibition of 1873. It is unnecessary for me to occupy your space with an analysis of the actual income and expenses (which I only professed to give in round numbers), since Mr. Spiller's letter so clearly confirms my remark to the effect that the 1873 Exhibition realized a small profit to the Society, whilst that of 1874 was an actual loss, to an amount between forty and fifty pounds. I did not enter into any remarks on the causes of the loss, but Mr. Fry's letter supplies instructive comment, and shows that the late agitation, besides causing serious disorganisation and discord, has inflicted a serious monetary loss upon the Society. Faithfully yours,

J. H. BADGE PATTENS.

23rd February.

MANAGEMENT OF BALLOT FOR OFFICERS.

Sir,—I see, by various communications, that some little difference exists in the opinion of members as to the way in which the late ballot of the Photographic Society was conducted. Will you allow me to state that in the many societies to which I have had the pleasure to belong, I cannot learn that over the votes given for one office were allowed to be accumulated to add to another. Probably the scrutineers had some precedent which authorised them so to act. I enclose you a balloting paper for the approaching election of officers for the Medical Society of London, as I shall not exercise my privilege. Such paper, being filled up, is enclosed in a small envelope; this is placed in another with name of the society, and addressed to the President, and it is opened at a council meeting, when, if the member is entitled to vote, the unopened paper is given to the scrutineers. Thus absolute impartiality is secured. Party feelings are occasionally strong at elections, and some years since I remember more balls being taken from a ballot box than there were members present to vote. Of course, it was an accident.—Yours, &c.

HENRY W. DAVISON.
Procoedings of Societies.

PHOTOGRAPHIC SOCIETY OF GREAT BRITAIN.

"For the first time in the history of the Society the Report of the Council does not comprehend a full period of twelve months, inasmuch as the present council and officers were not elected until the 18th of May last, when a special general meeting was held to elect the officers for the past year. The council, however, be incomplete were we not to commence by referring to the resignation of the president's chair by Mr. Glaisher after six years of active and excellent service to the Society. Our late President has carried with him in his retirement a grateful recognition on the part of all the members of his steady and unyielding work, which he conducted its affairs during that term of office, and a considerable measure of regret that these services were not continued, especially after having so successfully steered the course of the Society through a period of difficulty and embarrassment. The thanks of the Society are due to Mr. Glaisher for this estimable service, and will remain recorded in its annals upon that ground.

"Notwithstanding the difficulties inherent to a sudden change in the constitution of the Society and selection of new officers, some good work has been accomplished. Thirteen communications have been read at meetings of the Society during the past year, and the usual exhibition held in October, which was well supported and contributed to by the members, and received favorable notices from the press of the metropolis. Mr. Crowshay's competition was the means of bringing some additional works under the same roof, and certainly added to the interest of the collection. The exhibition remained open for more than three weeks, and opportunities were afforded for examining the pictures in the evenings, and occasionally adding to the private view reserved for members and their friends at the opening ceremony on the 18th October. The total number of exhibitors enumerated in the second edition of the catalogue was 87, exclusive of the Crawshay competitors, and the Society received a considerable accession of new members from this list. The financial aspect of the exhibition will appear in the Treasurer's Balance-sheet.

"At a Special General Meeting, held on the 30th June, the designation of the Society was changed to 'The Photographic Society of Great Britain,' in accordance with the general system of ballot in future governs the election of president, treasurer, and members of council.

"Twenty-five new members have been admitted into the Society during the year, four have retired, and the council mourns the loss of a distinguished colleague in the late Mr. O. G. Bejlander, who died on the 18th ultimo, and in respect of whom an obituary notice is appended.

"Marking the advance of photography at home and abroad, the council notes the establishment of a new society in the West Riding of Yorkshire, and observes, with unmixed satisfaction, the fourteenth anniversary of the Belgian Photographic Association, which, still continue in active operation. Carbon printing has made some technical progress, and the gelatino-bromide and emulsion processes have been certainly advanced a stage. Preliminary lighting, as a means of reducing exposure, has been further studied and applied, and Woodbury printing popularised; but with so many facilities existing for the publication and discussion of photographic novelties, it is to be regretted that no greater triumphs have been achieved during the past year, and that the brilliant, but somewhat ill-considered, report to report success in the extended scientific use of photography as a means of recording the phases of the transit of Venus, which occurred on the 9th of December. On that occasion one of its most distinguished members, Captain Abney, took an unexampled part. Lord Kelvin, seconded by Mr. England, was conveyed to him in the following terms:—'The council have received Mr. Bejlander's resignation of his seat at their board with very sincere regret, and desire to convey the assurance of their deep sympathy with him in his illness, coupled with the expression of their most cordial regard.'

"By birth the son of an officer in the Swedish army, and by training an artist-student from Rome, Bejlander took up the practice of photography, and settled in the town of Wolverhampton, and there produced 'The Swedish Girl,' which was highly commended for its artistic merit, which gained for him a considerable reputation. Designed for showing the art capacities of photography, and the possibility of 'combination printing,' the work was sent to the Manchester Exhibition of Art Treasures, and was afterwards frequently described by himself in the columns of the 'Journal.' On the 6th of April, 1888, a full report appearing in the 'Journal.' Several works of more or less ambitious character, all distinguished for their high artistic excellence, quickly followed, the majority of them being shown at the Society's annual exhibition, ending with the Albion of Studies on the table in 1873, and 'Scrap of Expression' and a portrait of Gustave Doré in 1874.

"A paragraph contained in Mr. Bejlander's communication of 1859 reads now like a prophecy in course of fulfilment, and no one is required for reproduction in the form of a daguerreotype, (says Bejlander) a time will come, and that not far distant, when real art and photography will go hand in hand, the latter as a means to the artistic end. It cannot be otherwise: photography will be the holding of a mirror up to Nature; and the more thoroughly a mind is imbued with the love for, and a discernment of, the true in art, the better will it embrace and refresh itself at the fountain of its inspiration, and draw from its ample, but to many hidden, treasures.

"Several years past Bejlander resided in London, where he died, and having been a member of the 38th Middlesex (Artists') Rifle Volunteer Corps, was buried with military honours at the Kensal Green Cemetery, in the presence of several members of this Society, and many friends who mourn his loss.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The second annual meeting of the session was held in Queen Street Hall, on the evening of Wednesday, the 17th instant, when there was, as usual, a very large attendance.

The exhibition consisted of a series of pictures illustrating a tour through the North and West Highlands, and were the joint productions of Mr. Wilson of Aberdeen, Mr. Valentine of Dundee, Mr. Doorley, and several of the members who made the tour.

The President (Dr. Thompson) in his address, said that he thought it right to take the opportunity, when so many of the friends of the Society were present, to call general attention to the work which the Society was doing, and to the ordinary general meeting of the members, where papers on photography and kindred subjects were read and discussed from which much [mutual] benefit was derived, there were during the summer a series of the most delightful outdoor meetings, when, cameras in hand, the members roamed over hill and dale in search of the picturesque and the beautiful; and although they might not always be able to secure all they could wish in that line, they never failed to get fresh air, necessary exercises, and most genial social companionship; and, as a natural consequence, good health and much happiness. Those two branches of the Society's operations were carried on at comparatively little cost, but it was different with the third, and certainly not the least
valuable, part of the work in which the Society was engaged—he alluded to the popular meetings, of which the present was an example. The “popular evenings” of the Edinburgh Photographic Society had, he said, become an institution in the city. These gave gratuitously to many hundreds of the inhabitants an opportunity of seeing some of the finest productions of the camera, in our own or other countries; and by means of the generally interesting lectures which accompanied those exhibitions, they were also afforded a large quantity of valuable information. As those productions have increased, it would be very evident, cost a good deal of money, and the Society looked to the public to assist in finding the necessary funds. The public hitherto had responded very well, as would be understood from the fact that they had probably two hundred of what he might call non-photographic members; but those who were members was between a hundred and two and a half; and as the subscription was only five shillings per annum, he hoped that the Secretary would have many applications from gentlemen, and ladies too, who were willing to submit themselves to the ordeal of the hat-box.

Mr. Davis then proceeded with his lecture, in which he stated that, along with several of the members of the Society, he resolved to spend a few days in the North and West Highlands, for the double purpose of shaking the city dust out of their brains, and getting material for a popular evening. They left Edinburgh by train, arriving at Pitlochry at nine o’clock in time to catch the Lona (that prince of Scotch steamers), which quickly and pleasantly carried them down the Clyde to Rothesay, and through the far-famed Kyles of Bute to Ardrishaig. Instead of following the usual or royal route to Oban, they then divided, the one party being in the largest steamers, capable of doing only some eight miles, and the other seventeen. After a day or two of rest and work, they went next through Glencoe to Fort William and Corpach, in the enjoyment of Highland air and “mountain dew,” and so well pleased as to have been in the latter part of the enjoyment, that, out of gratitude, they unanimously carried Ben Nevis as an honorary member of the Society, thus proving them to have been a set of “tight’uns” (Tighties). From Corpach their route led to the Caledonian Canal to the famous Falls of Foyers, and thence to Inverness. In the Highland capital they enjoyed themselves much, and secured some good pictures, and proceeded through Culloden Moor to Aberdeen. They were not fortunate enough to find Mr. G. W. Wilson at home, but made the best of their time by visiting some of the largest granite works in the world, and then started for Balmoral. Here, of course, they wanted to try their plates; but, having omitted to get the necessary order, they were somewhat afraid that a difficulty might occur with the old woman who kept the gate at which they wanted to get in; and to let you see the result of the experiment, however, proved an “open sesame,” and all went well for them. They afterwards discovered that there was no necessity for even the expenditure mentioned, as any ordinary piece of writing would have answered the purpose, the old lady being perfectly innocent of the laws of chemistry. They then went to Braemar, in expectation of being present at the annual “gathering,” which has made that place famous, but found that they were just too late by a week, and had to content themselves with a picture of it, which was shown on the screen. Here some pleasant days were spent, and some excellent pictures secured. The return home was through the heart of the Grampians by the passes of Cluny and Glenhee, the first halt being made at Blairgowrie. Here there was neither time nor opportunity for photographic work, but the loss was fully compensated for by a visit to see the national drama of “Cromwell’s Brig” performed in the Theatre Royal, a canvas erection, which, if not quite up to the usual mark, had at least the great qualification of being thoroughly ventilated, and where they saw the company feasting on a real shovell brick at a low charge—not for permission to the boxes—but for permission to the boxes—of three pence each. From Blairgowrie they found their way to Bonnie Dundee, where some pictures were also obtained, and thence through the kingdom of Fife back once more to Auld Reekie, very much delighted with the tour.

The pictures were unusually fine, and elicited the almost continuous applause of the large audience.

On the motion of Mr. Dobie, a hearty vote of thanks was given to Mr. Davis, and also to Messrs. Wilson and Valentine for their share of the pictures exhibited.

West Riding of Yorkshire Photographic Society.

The annual meeting of the Society was held at the Victoria Hotel, Bradford, on the evening of Monday, the 20th inst., Mr. J. W. Gough, President, in the chair. There was a numerously attendance of members.

The minutes of the last meeting having been read and confirmed, the following gentlemen were elected as members—Messrs. J. Bottomley, J. Beldon, W. M. Arundale, and A. Coe, Bradford; Mr. S. S. Priestley, Huddersfield; Messrs. Wm. Huggon and G. A. Huggon, Leeds; Messrs. Wadsworth, J. Whiteley, and H. Woodhead, Halifax; and Mr. Cattford, Halifax.

The rule announced for discussion— namely, as to the propriety of the Society’s holding exhibitions and offering prizes for competition—then came under notice.

Mr. Smyth (Halifax) suggested that the words “the Society shall offer prizes” be altered to “the Society may offer prizes”.

This proposition met with general approval, and on the President putting the rule in its amended form, it was unanimously carried.

Mr. J. Howarth then read a paper on “Warming Studios”, and laid on the table a large diagram of his heating apparatus which was inspected by the members with great interest.

Mr. Whiteley stated that he had much pleasure in testifying to the efficiency of the stove and its great heating power, as he had one in operation for some time.

In reply to a question from Mr. Howarth, Mr. Howarth said that his apparatus might be fitted up at a cost (roughly estimated) of about three guineas.

A communication, for members’ use only, from Mr. W. H. Brunton, Whitehaven, “On the Acceleration of Exposures,” was then read by the Secretary.

On the motion of Mr. Smith, a vote of thanks was unanimously accorded to the gentlemen who had contributed papers.

Mr. Greaves having kindly consented to demonstrate the development of carbon prints at the next meeting, the proceedings terminated.

Talk in the Studio.

Fuming Albumenised Paper.—A correspondent who has had considerable trouble in obtaining rich, brilliant prints from fine, but somewhat thin negatives, having adopted our advice to try fuming, has been singularly successful, his prints at once becoming rich and vigorous, as well as delicate. He says:—

“I write to thank you for your suggestion (which has in my case proved most valuable) that I should famine my sensitized paper in the same way as fuming albumenized paper, and I am satisfied that the result was excellent. Without having dried the paper or strengthened my silver solution (which I have always carefully kept neutral), or without having intensified my negatives, I can now get satisfactory prints by adopting the fuming with ammonia. I tried the experiment without much hope of success, but it was entirely successful. They then议ed to be the almost magical effect which the ammonia had produced. Instead of the disagreeable fogy red which has always hitherto appeared in the printing-frame, now I get an indescribably rich purple; the prints appearing bright blue in the early stages of printing, and gradually changing to purple; the shadows bronze much more than is the case with paper not treated. The toning and fixing also now proceed much more satisfactorily; but in the first operation it is somewhat more difficult to judge the right length of toning, because the prints are of such a colour before entering the toning bath that they appear more toned than is really the case.”

West Riding of Yorkshire Photographic Society.

The next meeting of the above Society will be held on the 1st inst., at 7.30 p.m., at the Victoria Hotel, Bradford.

Art Union of the Photographers’ Benevolent Association.—A circular has been issued by the Association in explanation of the postponement of drawing. It seems that some misunderstanding of the reply to an application made to the Art Union Trade for permission to use the name of Union after handbills and tickets had been issued, and the co-operation of agents solicited, nearly 3,000 tickets having been sold, and the proceeds paid into the London and County Bank, to the credit of the Photographers’ Benevolent Association, “at the last moment the Secretary received a letter threatening proceedings from a...”
THE PHOTOGRAPHIC NEWS. [FEBRUARY 26, 1875.

W. B. C. — As a rule, equal proportions of ether and alcohol are well suited for clearing collodion for ordinary purposes. For large plates it is well — especially in hot weather — to use a larger proportion of alcohol, the exact proportion being governed by the amount of contraction of the collodion.

A. R. — A good half-plate negative will answer very well for enlarging purposes. The extent of enlargement depends on the distance of the lens from the subject, and the distance of the sensitive plate from the same. If, for instance, you wish to enlarge the object six times, with a lens eight inches focus, the camera must extend to allow fifty-six inches between the lens and ground glass, and the distance between the lens and plate will be a consequence between the two.

C. R. — We do not know any medical man in London who has given special attention to the diseases of photographers; indeed, we stated, all to whom we have ever mentioned the subject have taken the idea of our paper. It is not uncommon for you to have a letter in the present number. Dr. George Johnson, of 11, Savile Row, has made the study of Bright's disease a speciality, and diseases of the kidneys generally, we believe. We shall have occasion in receiving letters from you to mention.

F. W. R. Y. — We are glad that you find that fuming meets your difficulty. The print you send is certainly very fine indeed. With fuming it is manifest that your negative is just right. The probable reason that fuming is so comparatively little practised in this country arises out of the character of the negatives produced. As a rule, the negatives are intense and brilliant enough to give satisfactory results. A negative should be exposed fifty times, and then fumed. Fuming renders the paper more sensitive, and secures more rich and vigorous prints. It is therefore especially valuable with a certain class of negatives. With the same paper unfumed, and a negative which permitted a print without becoming too deep in the lights, you would also secure vigorous prints. But, as a general rule, we recommend fuming as giving many advantages. The paper in question is probably somewhat aided by the use of albumen in a state of fermentation.

T. J. A. — With the space at your disposal — that is, thirty feet from north to south, and fourteen feet from east to west — you may secure good lighting. The building will be, of course, a ridge-roof, and you will have glass on both sides. As a rule, it is probable you will find the light from the east side suit your purposes best; but you must work through by personal effort and patience. The business of a lithographic printer generally requires an apprenticeship, and photographic work involves the same amount of study and care, even if the subject is much superseded. When you have got a perfect plate, the task of "inking up," to get it into a satisfactory working condition, requires much skill and patience, alternate sponging with water, and inking with the roller many times, being revolving the plate in such a manner as to keep the ink well mixed, and to produce the best results. In lithography, the ink used is lithographic ink, not ordinary printers' ink. With great regularity, the inking of the plate is done by a printer, who is very skilled in the science, and the use of the lithographic roller made of leather, or one covered with india-rubber, is used.

J. W. DAWSON. — The best lens for a pocket apparatus would be a single-scope lens, which, of course, produces a picture three or four inches square very perfectly. 2. Such a lens may be obtained for the price you name. 3. Any good dry plates will answer for the purpose. If you are familiar with the working of bromo-gelatine plates, they will answer well.

J. C. B. (Sydney). — We have not had much personal experience of the printing of copies of engravings in line in carbon; but we can readily conceive that, under some circumstances, the difficulty you mention might be experienced, as there is less contrast between the lines, and it is possible that the printer might not be able to render the lines sufficiently distinct for the purpose you propose. The liquid you mention would be, for such subjects, to adopt the single transfer system. Another would be to give the glass plate a preliminary coating of india-rubber, and in transferring allow this film to leave the glass and remain as a permanent coating to the paper. It is rather likely that this latter would answer best for your dry climate; an extra proportion of sugar, or a trace of glycerine, would probably make it tougher and more suitable than the tissue prepared for the humid climate of England.

BRECKEN, LEMMER, AND CO. — The small yellowish white spots on prints may proceed from various causes, not always easy to trace, especially in the cases of black and white. The presence of impurities in the mounting board or mounting paper will cause such spots, as will also the fermentation of the paste, &c., used for mounting. Minute bubbles forming on the surface that is printed while in the mounting board will cause such spots, and these do not always become manifest until some time afterwards. Sometimes imperfection in the albumen water and the way in which it is used may be specially, if it has been kept in a damp place. Contact with brass powder used for "gold" printing will cause such spots.

WILHELM. — The best plan will be to communicate with M. ARNOUX, 24, Rue du Faubourg-Saint-Honoré, Paris, France. You can write to him in English.

GEORGE G. F. — As you have not mentioned the exact sizes of the pictures, it is difficult to say just what the size of studio.

A good general plan would be a studio with ridge-roof, 20 feet long, 10 wide, 13 feet as ridge, 7 feet as eaves. South side and roof glass, 8 feet each, with both eaves. South side and roof 8 or 9 feet, ridge and side lights coming to within about 20 inches of the floor.

G. W. P. — Each possesses merits, but we should prefer No. 5. This kind acts on a large scale. We refer the case of the thick papers and the thick urethane, which have been used in the manufacture of the thick papers, which are still in use to-day, and are marked for the deficiencies of a paper. The advantage of the thick papers, which are still in use, is that they are very durable, and that they are very much superior to the thin papers, which are still in use, and are marked for the deficiencies of the thick papers, which are still in use. The advantage of the thick papers, which are still in use, is that they are very durable, and that they are very much superior to the thin papers, which are still in use.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

A PHOTOGRAPHIC VOCABULARY—THE BELGIAN PHOTOGRAPHIC ASSOCIATION—A NOVEL PHOTOGRAPHIC ESTABLISHMENT.

A Photographic Vocabulary.—It would be a good thing if we could re-model our photographic vocabulary to some extent. Take the words positive and negative, for instance, the capital words in their way. Unfortunately, they do not at times mean exactly what we want to express, and then we are driven to employ such names as cliché, transparency, diapositive, and all sorts of expressions. It would be well, indeed, if we had the word cliché in our language, or followed the French example of having something in our vocabulary which means a transparency only, such as yields an impression by printing through, without giving result by reflection or negative. We have now to employ positive clichés so often, for one process or another, that their production is at present very widespread; and, in referring to them, one is often tempted to call them positive-negatives at the moment, to distinguish them from ordinary negatives. Again, we are given to talking about reversed negatives and reversed positives, with nothing of a rendering art in the least; although a photographer, of course, knows well enough what is meant by the terms. In describing our manipulations, too, we are sometimes puzzled how to render matters clearly; how to distinguish between the silver bath for dipping plates, and the silver bath for exciting paper; how to name the dark slide and shutter correctly. Again, in lenses, we call the whole womb in a lens, and when it is directed to unscrew the back or front of a lens, the pupil is just as likely to err in the matter as not; whereas, if we had a distinctive name for the separate lenses, in the same way, pretty well, as in microscopes, &c., calling the glass nearest the object the object-glass, and that one nearest the eye the eye-piece, no difficulty whatever could arise in the matter. It is the same thing with wet and dry collodion plates: one never knows whether, for instance, plate signifies the glass and sensitive film together, or the glass alone; and it is often necessary to read through the context of a paper to be able to form an opinion. One of these days, perhaps, we may have a dictionary of photographic terms which will set all these doubtful matters at rest for us.

The Belgian Photographic Association.—The new Belgian Photographic Association has begun life vigorously enough, and we sincerely trust it may continue its energetic measures for many a year to come. Its Bulletin, which is issued monthly, is quite a budget in its way, Professor G. de Vylder, Professor of Photography at the Ghent Industrial College, who is the president of the Association, being evidently its chief supporter. Some capital original papers have already appeared, as our readers are aware; for we have deemed them important enough to translate and reprint in full in these columns. Besides these communications, one special feature of the new journal is to give full abstracts from all the principal photographic journals of the day—French, German, Italian, and English—as they appear, giving a digest of each number as it comes out. As we have, too, already acquainted our readers, the Belgian Association, in a letter—whereas, it is true, the trimming, which it certainly does not show workmanship, was most probably not done by a worker, but by one who was not well learned; most probably by a boy, or a very careless assistant printer.

The Practical Printer in America.

XIX.

Cutting and Mounting.

There is no part of photographic printing that is more difficult, or shows more the taste, skill, and worth of a photographic printer, than this simple (7) process (as it is called by some) of "cutting the prints." Many have been the prints that have been ruined in the trimming, that were otherwise good. What would be the value of a print that was brilliant and most beautifully toned if it had been ruined in cutting?

I have often been surprised that prints, which are so beautiful in other respects, should be so abominably cut out as some have been that I have seen, when, at a glance at the prints, we could see that, with this exception, the printer thoroughly understood his business, for even upon the closest examination of it, before it was even burnedish, we could not see either weakness or coarseness of the paper in the slightest degree, too much bronzing in the shadows, lack of brilliancy, printed neither too dark nor too light, toned so finely that we cannot criticise it a particle, and, in fact, the whole print was a perfect gem, with this exception.

We will pause here a moment and consider. Undoubtedly all of those parts of this print which show workmanship were done by a workman of the most excellent one, too, at first-glance trimming, which it certainly does not show workmanship, was most probably not done by a workman, but by one who was not well learned; most probably by a boy, or a very careless assistant printer.

It has very often been said, and I myself have heard the expression several times, that "any one can trim prints who has been in a printing-room two days;" and I must here beg leave to differ, for, on the contrary, it takes years instead of days to trim them as they should be; and
it is owing to the belief of many photographers in the quotation I have above cited that the almost inexperienced help is told to trim the prints (so as to keep them busy, you know!), while the foreman printer and his experienced assistants are printing, &c., with only this advice (and often not that), "to be sure and have the nose or mouth come in the centre of the print." This part of the work should be entrusted only to an experienced person with a correct eye and good judgment as to the effect required in the finished picture.

In the cutting of the prints there are a variety of rules to be observed which tend towards the production of properly cut, and, although it is in some cases almost utterly impossible to give rules that will reach them, not knowing the style, &c., of the prints, as almost every operator possesses different ideas of what can be cut by the rules which will be given below.

The implements, &c., that are used in cutting the prints are:—One large plate glass, 10 by 12 inches in size, for cutting the print upon, and in case you cannot obtain a plate glass, a thick, level, ordinary glass of the same size will answer; one wheatsone; one Robinson’s photograph trimming knife, of a length of 8 inches; one scraper, or knife; one glass, size 7 by 8 inches, for cutting 8 by 10 prints; two 4 by 4 glasses, one 6 by 8 inches (for ordinary 4 by 4 mounts), and one 6 by 8 inches (for prints that are to be mounted on lithographic mounts); one oval 4 by 4 brass mat guide, size of opening 5 by 7 inches; two imperial sizes glasses, one 4 by 5 inches, which is the size generally used for 4 by 5 mounts, and one 5 by 7 inches, which is the imperial size glass wanted a little larger for special cases; one cabinet glass, size 2½ by 4½ inches; two cartes-de-viste glasses, size 2 by 3 inches, which is the ordinary size, and one 2½ by 3½ inches, which is made larger for the same reason as the imperial. When the latter class is used the prints should have been printed upon large card pieces, as the pieces that are obtained, as has been shown on a previous page, are a print not manufactured glass.

If printers wish to obtain a great number of small card pieces from a sheet of paper, they will then have to have their card-glasses shorter.

Have places for these things, and always keep them in their places, except, of course, when in use. Prints larger than 8 by 10 inches are very seldom cut, either before finishing or after, for they are not so likely to tear in the water during the future operations which they are destined to go through. In many galleries the 4 by 4 prints are not cut to any particular size, but trimmed as the larger prints are, and mats are also placed over them when they are about to be framed.

Considerable saving can be made as regards the expense of water and gas if every time a print is framed, if the prints are cut to the exact size and style being framed, especially in regard to the common carte. For instance, if you were to cut your 4 by 4 prints either oval or square before toning, the prints could then be mounted upon your 4 by 4 cardboard which was prepared for it, and, as will be shown, you can save considerable money in the course of a year or two by so doing, of course, in a greater or less degree, according to the amount of business the photographer has. To do this, however, it is necessary to have mounts prepared especially for the purpose, for if the prints were mounted upon the plain cardboard, and no mat placed over them when framed, the effect would not be at all pleasing.

(Waraw Studios.

BY JOHN HOWARTH.*

From what little experience I have had in the practice of photography I have found that the want of a proper system of warming and ventilating studios is seriously felt. My purpose in this paper is to point out what I believe to be the best means of accomplishing that most desirable object—a studio properly warmed and properly ventilated.

Every part of the room should be equal, or nearly equal, in temperature; all the air in the room should be constantly changed; and the foul air and deleterious gases, always generated in such structures, should be got rid of as they are formed, and give place to a constant supply of fresh, pure air.

There are three modes of warming studios usually adopted, to all of which, on various grounds, I strongly object. I purpose now to point out a plan which will be found to be better, cleaner, healthier, and cheaper than any or the best of the three.

The Open Fireplace System.—This is objectionable in a studio on account of its not acting uniformly all over the room; although by stopping up all the small defects for the inlet of cold air you can raise the room to a considerable temperature, yet the heat is oppressive and unhealthy on account of the foul air not being replaced by fresh oxygenised air. In addition to this, the fresh air which enters in any case to supply the fire being colder and heavier than the air already in the room lies at the bottom, making the heat very little felt when the heat is in the chimney, taking with it the greater part of the heat from the fire, whereby causing great waste of fuel. Cold draughts, smoke, and the photographer's enemy, dust, always attend the open-fire system.

The Close Stove System.—In a studio warmed by a close stove, there are neither draughts nor smoke, and comparatively little dust; therefore several of the disadvantages of an open fire are obviated. There is, however, one disadvantage under which it labours which is of great importance, viz., that only a small quantity of the air reaches the stove, and, being usually made of cast iron, the heated surface acts very injuriously upon that portion of the air which comes in contact with it, rendering it unfit for breathing, and leaving upon the photographic papers other unpleasant sensations owing to the large quantity of carbonic oxide and sulphurous gases given off by all heated cast-iron surfaces in contact with fire.

The third system—that of hot water circulating through pipes—is used to a certain extent, and, although less objectionable on many grounds than the other two, it has its disadvantages. The principal of these is, the great bulk of the apparatus, the expense of fixing, the chances of water freezing and bursting pipes, the constant liability of leaking from the pipes, joints, &c., and the great length of time required to keep the fire going before any effect of warmth is produced, and consequent loss of fuel. On this point I may say that I have the best authority for stating that half the heat of combustion is applied to use by any mode of warming, as in the system of circulation mentioned.

The system to which I will now call your attention is the one I adopt; it is, in my opinion, the best adapted to the wants of the photographer of any hitherto used. The introduction of the George’s calorigen,—with which all readers of the photographic journals will be familiar,—is a step in the right direction, but falls very far short of realising the full capabilities of the system.

I may here tell you that warming rooms to very high temperatures has been my closest study for the last twelve years. The result of that experience has been the production of a stove for small rooms, and of a furnace and apparatus for large rooms and public buildings, which, embodying all that can be done in securing the advantages to be
derived from an abundant supply of fresh, pure air, with the benefit of utilizing the heat of combustion to its fullest extent, in their application to warming and ventilating purposes.

I was led to the idea of their suitability for warming studios from having, some time ago, come into possession of a gallery of my own. Putting in one of my stoves I have had the benefit of experience in its use ever since, and I would not now like to be without it. I believe that an abundance of pure, dry air is what the photographer most requires for every part of his premises, and that it would be found to be better for his health, better for his comfort and pleasure, and better for his business. If he take up his cloth or leather to wipe his glass previous to coating a negative, what is more disagreeable than to find it already saturated with moisture? The glasses themselves, if cleaned some time beforehand, are bound to be coated with a film of moisture, which is a prolific source of streaks, and the films slip off in washing under the tap. All these annoyances disappear like magic under the influence of warm, dry air. The cloths are found crisp and dry, and, if the glass for the negative be held for a moment over the stove just previous to coating, there will be no such thing as the film dancing off the plate, or even of driving it off with reasonable usage.

In speaking of dry air, I do not mean that the air is absolutely dry, but that there is no visible moisture in the room, air having the property of taking moisture in proportion as it increases in temperature. Thus, at a low temperature, this capacity is very small, but it is rapidly increased as the temperature is elevated. Then any dampness or moisture ceases to be visible, and the warmed air (for instance, a sponge with water) takes up the moisture and holds it in solution. You can test this by taking a tumbler of cold liquid or a looking-glass into a room heated to no more than a hundred degrees warmer than you suppose to be dry air, and you will find the cold surface immediately covered with a film of moisture. However, if at any time the air be thought to be too dry it can easily be altered by placing water in a receptacle prepared for it in the stove, or by fixing a small fountain of spray inside a glass vessel in a convenient part of the room or studio. The effect would be both ornamental and very refreshing and agreeable when the room was warm.

An arrangement can be easily fitted at the top of the stove to receive wet negatives as they are made, where they will dry without trouble or care, and keep warm ready for varnishing at any convenient opportunity. The operator will find it the quickest, cleanest, and least troublesome means of varnishing he can possibly employ. Another advantage is that it is the most efficient ventilator, both for winter use with fire, and for summer use without fire. If the cold air to supply the stove be taken from a cellar or other cool place, it will aid very materially in modifying the high temperature which usually exists in all glass structures in hot weather. There is no difficulty in keeping baths, chemicals, and everything in order, as you can have a summer temperature, with a full supply of fresh air, all the year round.

I know it has been the custom for many years to cry down heated air as an objectionable mode of warming rooms, but I have found that the various theories put forth do not hold good in practice. The evils complained of do not apply to air which is constantly changed in the process of heating, but only when the same air is heated over and over again. I have often proved that air can be raised to very high temperatures without being vitiated. I have seen hundreds of instances of persons suffering from congestion of the lungs, and other disorders of the respiratory organs, relieved at once on entering a room warmed in this manner. I claim this as a point of superiority over every other form of stove—that, however hot it may be in the room, ventilation goes on in the same ratio. The hotter the stove the quicker the admission of pure air, and, however warm the room may be (and I have often tested it at very high temperatures), there is no feeling of oppressiveness through the want of purity of the air. This result is as attributable to the mode in which the heat is applied. I leave altogether the vexed question as to part of cast iron out of the question entirely, as it is only from a surface of best wrought iron that good results can be got; and I hold that no system of warming can be correct that does not secure a regular and uniform change of the entire contents of the room from the top to the bottom at regular intervals.

Taking the calorigen as the best stove in the market, I assume the points of difference to be greatly in my favour. First, I can warm a much larger area with the same quantity of fuel. Second, the air is in greater volume and purer. Third, where the conditions of the structure of the building will admit of it, I can warm two or three rooms as easily as one, and from the same stove. Fourth (which is of paramount importance), it will not cost above half the price.

In reference to the first and second of these points, I may say that the passage for air is much too contracted in the calorigen stove, and has to strike too many points of heated surface before it can discharge itself into the room. If you take a sketch of that stove, you will see that the passages are formed as shown in the figure, and in part of the calorigen, the end of which is terminated at the top of the stove. Now the air in its passage through this soiled pipe is compelled to strike so many points of heated surface that it must of necessity become superheated, and consequently, to some extent, vitiated. My stove is made as far as possible on the principle that air should only strike the heated surface once, and the air drawn off into the room; and, as I have before pointed out, the effect of the stove becoming very hot is not to vitiate the air, but to make it move quicker, and so warm the rooms sooner.

It is common in all close stoves for the ashes and clinkers to choke up the grate bars, and the fire has to be put out to enable it to be cleaned. In order to overcome this difficulty, I have put in a grate with an arrangement by which half the bars can either be drawn out or one end let down into the ashes drawer, the other end working on a pivot A. Thus every alternate bar being away, you can insert an instrument between the other bars and let down the dead fire into the ashes drawer. The loose bars being
THE NEW PATENT BILL.

As many of our readers are deeply interested in the subject of patents, we condense the following from an abstract, which appeared in the Engineer, of the new bill by the Lord Chancellor, recently read a second time in the House of Lords:

Clauses 1 to 4 are preliminary and definitive.

Clause 5 defines the constitution of the Patent Commission, which includes, as at present, the Lord Chancellor, the Master of the Rolls, and the law officers of England, Ireland, and Scotland, with five new Commissions, who are to be appointed by Royal Warrant. Two are to be nominated by the Lord Chancellor and three by the Board of Trade.

Clause 6 provides for the appointment of examiners, not less than two, and not more than four in number, to be chosen by the Lord Chancellor, who shall state in writing that they are "specially qualified for the office by legal or scientific knowledge."

Clause 7 refers to the appointment of referees, who "shall be persons specially qualified for the duty by knowledge of manufactures, art, or science." They are to be chosen jointly by the Board of Trade and the Commissioners every two years, and are to be "distributed in penalties according to their several qualifications."
Clauses 8 to 10 define the mode of making applications for patents. The applicant is to file a full specification of his invention, and any person who infringes the grant may be sued. "The use and publication of the invention by the applicant, during a period of six months from the date of the application, shall not prejudice the grant of a patent for it (which protection is the converse of use and publication in this Act referred to as provisional protection)." The application shall, "on the expiration of the prescribed time," be referred to an examiner and a referee. A transfer of a patent or a referral shall consider the application and relative documents, and shall report to the commissioners therein, and especially with reference to the following questions: (a) Whether the invention is a proper subject for a patent within the definition of Monopoly. (b) Whether the specification is sufficient. (c) Whether the invention is new, as far as they can judge thereof from an examination of former specifications and other details of patents and publications in the Patent Office. (d) Whether the invention is in the nature, wholly or mainly, of a combination of known machinery, substances, or processes. (e) Whether, regard being had to the last mentioned considerations, or to the consideration that the invention is not of great importance or utility, or for any other reason, it is expedient that the duration of the patent be granted for it (if any) be limited to seven years; or (f) Whether, by reason of the frivolous character of the invention, or for any other reason, it is not worthy of a patent.

Clause 12. The application, accompanied by the report of the examiner and referee, is always to go with the specification, is transmitted to the law officer, who will give his opinion. The application and opinions will then be made public.

Clause 13 to 16. Notice to proceed having been given by the applicant, a patent and a warrant will be prepared and submitted to the Lord Chancellor. If the law officers’ report is adverse, the applicant may, nevertheless, petition the Lord Chancellor for the grant and sealing of a patent, but, "any person" may petition against the sealing, and the patent will not be sealed, "unless a request for the sealing thereof is made within three months from the date of the warrant, and within the period of provisional protection. The sealing must take place within seven days before the expiration of the provisional protection, and not sooner, and every patent shall be dated the day of application.

Clause 17. Patents to extend to the United Kingdom, but may in certain cases also include the Colonies.

Clause 18. Powers are reserved to the Lord Chancellor to extend the period of provisional protection, and the period during which the patent may be sealed.

Clause 19 relates to foreign inventions and to applicants resident abroad, or to aliens wherever resident. The provisions are as follows: "1. A patent shall not be granted on the application, unless the applicant declares himself to be the first and true inventor, and no patent shall be granted in respect of a communication from abroad. 2. A patent shall not be granted after the expiration of a foreign patent for the invention, and, if, so granted, shall be void. 3. If at the time the application there is a foreign patent for the invention in force, a patent shall not be granted unless the foreign patentee is the applicant, and his application is made within six months after the expiration of the foreign patent, or the earliest foreign (if there are more than one). 4. A notice of every foreign patent for the invention existing at the date of the warrant for the patent shall appear by endorsement or otherwise on the patent. 5. The patent shall be subject of the foreign patent (if any), or of each of such ones of the foreign patents (if more than one) as first cease.

Clause 22 enables the patentee to amend his specification. No amendment will be allowed which would extend the patent beyond the original claims. Patents may amend after the patent is sealed.

Clause 23 provides that a patent may be revoked on petition to the Lord Chancellor, the proceeding by scire facias being abolished.

Clause 24. For the registration of licences and provisions for the registering of license deeds and assignments at the Patent Office, and do not materially differ from the regulations now in force.

Clause 25. Within two years of the date of a patent it may be revoked by a suit or any process in the Supreme Court of Judicature, or unless the patentee fails to grant licenses to proper persons requiring the same, on terms which the Lord Chancellor deems reasonable.

Clause 26 empowers the Lord Chancellor to allow extensions of patents which have only been granted in the first instance for seven years, but the whole term of the patent is in no case to exceed fourteen years from the date of the patent.

Clause 30. 30 to 33 deal with cases of fraud.

Clause 32. A patent shall have to all intents the like effect as against Her Majesty’s subjects, her heirs and successor, as it has against others. But the officers or commissioners administering any department of the service of the Crown may, by themselves, their agents, contractors, or others, use the invention for the service of the Crown, or for the accommodation of any department or commissioners and the patentee, or, in default of such agreement, settled by the Treasury.

Clauses 36 to 43 relate to procedure, and, with the remaining clauses, are mainly of a technical character.

The schedule gives the list of fees, which are generally the same as at present, the only material alteration being a reduction of 2½ in the cost of a patent for the first three years.

A DRY ALBUMEN PROCESS.

BY FRANK M. PICKERILL.*

First of all clean and albumenize the plates as follows: —

Coating for the Glass.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>White of eggs</td>
<td>4 ounces</td>
</tr>
<tr>
<td>Honey</td>
<td>3 "</td>
</tr>
<tr>
<td>Iodide of potassium</td>
<td>60 grains</td>
</tr>
<tr>
<td>Bromide of potassium</td>
<td>15 "</td>
</tr>
<tr>
<td>Dry salt</td>
<td>5 "</td>
</tr>
</tbody>
</table>

Place all of the above in a large bowl, and with a wooden fork beat them into a thick froth; then let them stand twenty or twenty-four hours to settle. When settled, filter through four or five thicknesses of cambric into a solution bottle. After the coated glass has been carefully heated over a spirit lamp, it must be allowed to get perfectly cool before plunging into the silver bath.

Silver Bath.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>1 quart</td>
</tr>
<tr>
<td>Nitrate of silver</td>
<td>4 ounces</td>
</tr>
</tbody>
</table>

When the silver is all dissolved, add six ounces of No. 8 acetic acid; shake well for a few moments, and then filter through paper. The albuminized glass is to be plunged into this bath quickly, then allowed to remain there for ten seconds, and then taken out and washed thoroughly, and placed upon its edge in a clean and dark place to dry.

Developing Solution.—Have ready in a pint bottle a saturated solution of gallic acid, and in an hour or six-ounce bottle a solution of the nitrate of silver, say five grains of silver to each ounce of water. When you wish to develop a picture, pour into a wide-mouthed two-ounce bottle as much of the gallic acid solution as you think will cover your glass; then place into the same bottle a very little of the silver solution; shake them together; then pour them over your glass, and the picture will soon begin to appear.

This solution is to be allowed to remain on the glass until the picture is fully out in all its detail; then the picture is to be well washed; when washed, it is ready for the hypsilophite of soda solution.

Hypsilophite of Soda or Fixing Solution.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>16 ounces</td>
</tr>
<tr>
<td>Hypsilophite of soda</td>
<td>4 "</td>
</tr>
</tbody>
</table>

Dissolve and filter. This solution is to be allowed to remain until the picture is all cleaned up; then wash it well, and put it on some clean place to dry. When the picture is dry it is ready to print from.

Note 1st.—Should small dark particles form on the glass while developing with the pyrogallic acid, you will at once pour off the developer and wash the plate and put on new.

Note 2nd.—When heating the glass over the spirit lamp drain all the albumen off you can; but should the film appear thicker at one end than at the other, flow it again, and flow off from the opposite corner, heating as before.

Note 3rd.—If you want the plate to work quicker, first coat with collofion, let dry, and then flow with the albumen as directed.

Time indoors of the original to three minutes, outdoors a half to three minutes. A great deal depends on developing, as it can be over-developed or under-developed, according to the amount of time given the exposure.

Note 4th.—In developing, place the glass on four wires standing on end supporting each corner of the glass, and when developing, place a piece of white paper under it, and you will soon see the picture appear.

* Anthony’s Bulletin.
GELATINE NEGATIVES.—INTENSIFYING BY PERMANGANATE OF POTASH.

We have been favoured with a letter from Mons. Chardon, of Paris, calling attention to a communication he made to the Photographic Society of France, at a recent meeting, on a method of reproducing negatives by the carbon process, and intensifying the image by means of permanganate of potash. The process consists in first producing a transparency on glass by the ordinary operations in carbon printing. From this transparency a negative is then produced, by a simple repetition of the same proceeding. Any degree of intensity may now be imparted to this image by the application of a solution of permanganate of potash, which is decomposed by the gelatine, intensity being secured by the precipitated manganese deposited. In making this communication to the Society, Mons. Chardon believed, of course, that it was really, as he knew that so far as he was aware, an original discovery. It was announced, however, that it was too late, and that a patent for this process had been applied for this year.

CAPTAIN ABNEY’S MODIFICATION OF THE STRONG ALKALINE DEVELOPER.

We gave, in a brief article, three weeks ago, some details of the mode of working dry plates employed by Captain Abney in his photographic records of the transit of Venus, whilst in Egypt. We learn since that a slight error crept into the formulation which it may be important to correct—the more so, that, in developing the plates in question, prepared by the albumen and beer process, he found a departure from Colonel Stuart Wortley’s formula necessary to perfect success. The principle of using a strong alkaline developer is due solely to Colonel Wortley, and it has proved very important and valuable in dry plate work. The formula, as employed by the Colonel for bromide plates, and found efficient by Mr. R. Manners Gordon for gum-gallic plates, stood as follows:—

No. 1.—Pure strong carbonate of ammonia 80 grains

Water 1 ounce

No. 2.—Bromide of potassium ... 120 grains

Water whole is self ... 1 ounce

The above ammoniacal acid ... 90 grains

by any other ... 1 ounce

If liquid ammonia were used, six minims of a 90-grain

NEW FORMULA in the place of the 12-grain

NEW FORMULA drops of strong liquid

water are deeply three drachms of water.

To follow that each ounce of develops, of the above more than three

second time of 10 minims of six minims of liquid

dissolution differs from that in the development, and

inert, and does it destructive—inefficient and aid proportion of

is not distinguished. The Board.

ne to be a quaia

of examining, no poss...

like knowledge“ enrolled on the

Mons. Chardon, who “shas the

of manufacture, as

by the Board. All are to be quia, in a “invention.”
THE PHOTOGRAPHIC NEWS.

REMBRANDT PORTRAITS AND REFLECTED LIGHTS.
A SUPPLEMENTARY PAPER.
By G. CROUGHTON.

Some remarks in the excellent leader in last week's News suggest to me that our esteemed Editor has somewhat mistaken my meaning as expressed in the paper contributed by me to the South London Photographic Society, and upon the whole, I think I am justified in saying half light, with a very few touches of bright light, if that light be used with discretion and feeling; and no photographer with any pretension to artistic knowledge or taste would condemn this, or any other style of lighting, simply because it was unusual. I wish it therefore to be distinctly understood that I do not agree with the disparagement which has been bestowed upon the so-called Rembrandt style; my remarks were intended as a caution against the abuse of reflectors in lighting up the shaded side of the face. I had no intention of condemning the use of reflectors, any more than I had of condemning all retouching. I do not use them myself, because the studio I work in is somewhat narrow, and I can get all the effect which I require from a well-tinted half light somewhat in front of the sitter (or rather, I should say, over the camera); but in large galleries, where reflecting surfaces are a long way (comparatively) from the sitter, reflectors are absolutely necessary; but they want great care, combined with judgment and artistic feeling, in their use, for by their misuse, effects at once unusual and unpleasing are perpetrated.

It may be, as the leader says, that there are no conditions of lighting that can be really false or unnatural; yet I have had negatives pass through my hands upon which reflecting screens had done their worst, and the result has been quite false to nature, in the same way as over-lighting is false—destroying texture, and giving an effect to the face of being out of drawing. One would never, under ordinary circumstances, see a face under the conditions some of these portraits must have been taken. I have one now before me in which the reflected light upon the extreme edge of what ought to be the shaded side is as strong as the dominant light, but that reflected light is upon the face only, the drapery being in deep shadow, clearly showing what a small reflecting screen must have been held very close to the face on that side; the result is that the light under the forehead of what ought to be the shaded side of the face; the two edges of the face come forward, and the centre of the face being the darkest, and, moreover, between the lights, is made to retire. This, to say nothing of the two opposing lights in the eyes, gives an effect at once unnatural and painful. Photography may have (and, indeed, has) reproduced what was before it, but the operator had done his worst upon his model, and given her an unnatural appearance to commence with; therefore, I contend, the result is practically false.

To get the best effects in shadow pictures requires some study, and should be set about with a good knowledge of what is required. I can speak of my experience in the studio in which I am now working, which is some nine feet wide and eighteen feet long, with twelve feet of glass, and the ordinary ridge-roof; I can also speak of experiments in another roomier and taller studio, which was sixty long, forty feet wide, and some twenty feet to the ridge; in this gallery there was only one small part used of it, which in size would correspond very nearly with the one in which I am now working, all the other part being screened off. Here reflectors had to be used, but not the small hand reflectors I have been advised; they were large three-leaved screens, some eight feet high, each leaf being two feet wide, covered on one side by black and on the other by white calico. These were placed, as a rule, several feet from the sitter, the three leaves enabling the operator to adjust his reflectors to a nicety; as the end leaf would, if required, be brought somewhat in front of the sitter, the reflections were soft and subdued, as from the surface of a large mirror. In each of these galleries the background was placed in the same position, viz., brought forward so that its edge rested against the glass, and then sloping inwards away from the light, while the camera was moved to the opposite corner, so that the lens looked towards the light, the sitter being placed about midway up the gallery, all light being either stopped out entirely, or subdued at the camera end, up to the level of the sitter, thus leaving open the light behind and at the side, but not in advance. This is also my own practice; the side light up to the sitter is entirely blocked out with an opaque blind, the top light, to correspond, being subdued by a white one, which lets in enough light to relieve the dark shadow, and so secures sufficient contrast; my reflected lights are the natural reflections from the wall of the studio, which is papered with a light green-grey paper. I get more or less light upon the face by moving the opaque blind a little in advance or behind the sitter, as the face may require or taste dictate. My experience is in favour of bold lighting and full exposure; by this both brilliancy and softness are secured. Remember that you must see the details in shadow, or you will not produce a result that no shadow, however deep, should be without them. The difference in the exposure in my studio is that in a good light I get the ordinary lighted head in from eight to twelve seconds; the Rembrandts take from twenty to thirty seconds.

BROMIDE OF SILVER FOR PRINTING.
By W. T. DOVEY.

There is nothing new beneath the sun, depend upon it. Even our truly wonderful photography, despite its few years of existence, has its history linked with coincidences obtained from identical thoughts arising in the minds of independent discoverers and experimentalists. About six years ago, the late Mr. Trull, of Falmouth, undertook to prepare for him a photographic paper sufficiently sensitive for direct solar-camera printing; and knowing full well that no amount of chloride would yield what was wanted, I proceeded to experiment with bromides, which, used in admixture with albumen, gave what was needed in the way of sensibility, but the resultant prints were not so rich in colour, as are those produced with albuminized paper prepared in the usual way. It therefore occurred to me that a combina-

* Mr. Croughton is here under a misapprehension. Our leader was written before his paper was read, and could, of course, have no reference whatever to his remarks, which coincided. Cross ignorance in using either direct or reflected light may issue in results unusual and grotesque, which are so unlike the ordinary aspect of nature that they may be fairly called unnatural.——No.
GELATINE NEGATIVES.—INTENSIFYING BY PERMANGANATE OF POTASH.

We have been favoured with a letter from Mons. Chardon, of Paris, calling attention to a communication he made to the Photographic Society of France, at a recent meeting, on a method of reproducing negatives by the carbon process, and intensifying the image by means of permanganate of potash. The process consists in first producing a transparency on glass by the ordinary operations in carbon printing from this transparency a negative is produced, by a simple repetition of the same proceedings. Any degree of intensity may now be imparted to this image by the application of a solution of permanganate of potash, which is decomposed by the gelatine, intensity being secured by the oxide of manganese deposited. In making this communication to the Society, Mons. Chardon believed, of course, that it was really, as he knew that so far as he was concerned it was an original discovery. It was announced, however, that Mons. Lambert, whose name is associated with a method of enlarging and finishing, had been beforehand, and had in October last secured a patent for this mode of intensifying. Others have also made claims in reference to the process, and Mons. Chardon, having been informed that the first announcement of the use of permanganate for intensifying as early as 1868, is good enough to express a wish that we should enable him to give publicity to his claims.

We are fortunately in a position to state the case very precisely. In the year 1868, it is true, we announced, as the result of some experiments of our own, the value of permanganate of potash for intensifying negatives; but these were ordinary silver images. It is to Mr. J. W. Swan, at a later date, that photographers are indebted for the process of intensifying images in gelatine by the use of the salt of manganese. In the autumn of 1871, Mr. Swan favoured us with details of his discovery, and after verification we described the operations in the Photographic News of November 3rd of the year in question. It may be interesting to note, bringing out salient details from the article in question. Having described the operations of producing a transparency in carbon, we proceeded as follows:—The transparency thus produced is generally vigorous enough to reproduce negatives from; but if further intensity be required, it may be secured by the method which we shall presently describe. To produce the same transparency process is repeated in all its details, using the transparent or black. When the negative has been developed, it remains to be intensified; and it is in this part of the process that the chief novelty consists. After thoroughly washing, a solution of permanganate of potash is applied to the negative, by which a process of intensification is secured similar to that produced on a silver image by the same solution. The permanganate is decomposed by the gelatine, and a precipitate of manganese oxide of manganese, of a rich chestnut-brown tint—or, at times, a brown inclining to olive, which is highly non-actinic—is thrown down on the image, readily producing printing intensity. The strength of the permanganate solution is not very important; we have used Condy's red fluid, which, diluted with three or four times its bulk of water, answers well. This method, we conceive, may be employed to intensify the transparency if it be found desirable to increase its vigour before employing it to print the negative. A similar method might be employed to modify the tint of carbon prints if desired.

The patent of Mons. Lambert, is, therefore, we fear, rendered invalid by prior publication of the process. The process itself, which is both simple and efficient, has, singularly enough, not come into general use. As an aid to reproducing negatives by means of carbon tissue it possesses much value, which has not been generally recognized. It may be found also to possess another use. One of the common complaints against negatives produced by means of the gelatino-emulsion process is lack of sufficient vigour to give brilliant prints. Here is a simple method of intensifying them, which it is probable may remove every difficulty.

CAPTAIN ABNEY'S MODIFICATION OF THE STRONG ALKALINE DEVELOPER.

We gave, in a brief article, three weeks ago, some details of the mode of working dry plates employed by Captain Abney in his photographic records of the transit of Venus, whilst in Egypt. We learn since that a slight error crept into the formula which it may be important to correct—the more so, in developing the plates in question, prepared by the albumen and beer process, he found a departure from Colonel Stuart Wortley's formula necessary to perfect success. The principle of using a strong alkaline developer is due solely to Colonel Wortley, and it has proved very important and valuable in dry plate work. The formula, as employed by the Colonel for bromide plates, and found efficient by Mr. R. Manners Gordon for gum-albite plates, stood as follows:

No. 1.—Pure strong carbonate of ammonia 80 grains
Water 1 ounce

No. 2.—Bromide of potassium 120 grains
Water 1 ounce

No. 3.—Pyrogallic acid 96 grains
Alcohol 1 ounce

To each dram of No. 1, add one minim of No. 2, and from one to six minims of No. 3, according to the density required in the negative. If liquid ammonia were preferred, the formula stood thus: six minims of a 96-grain pyrogallic acid solution, three minims of the 120-grain solution of bromide, and two drops of strong liquid ammonia (sp. gr. 880) added to three drachms of water.

In this formula it will be seen that each ounce of developing solution contained a fraction of one to three grains of pyrogallic acid, a fraction over two grains of bromide of potassium, and nearly six minims of liquid ammonia. Captain Abney's formula differs from this in containing nearly four times as much pyrogallic acid, no retarding—or, as Captain Abney phrases it, destrucrive—bromide, and an exceedingly diminished proportion of ammonia. The corrected formula, employed in developing the transit plates, stands as follows:

Pyrogallic acid 12 grains
Water 1 ounce

To this were added two drops of a 20 per cent. solution of liquor ammonia—in round numbers, something like one-twelfth of the proportion used in Col. Wortley's formula. The strong developer prepared by Col. Wortley's formula
gave, as we have said, most valuable results with emulsion plates, and also, we understand, with dry plates by various other processes. With the beer and albumen plates prepared by Captain Abney's process, and used in the transit records, the formula, thus greatly modified, was, however, found to be better than any of the others. I am glad to have the opportunity of stating in minute details important. The mode of intensifying with pyrogallic acid, citric acid, and silver, remains as stated in our former article.

REMBRANDT PORTRAITS AND REFLECTED LIGHTS.
A SUPPLEMENTARY PAPER.
BY G. CROUGHTON.

Some remarks in the excellent leader in last week's News suggest to me that our esteemed Editor has somewhat mistaken my meaning as expressed in the paper contributed by me to the South London Photographic Society,* and upon which it again I think perhaps I have not expressed myself sufficiently clear upon the question of Rembrandt portraits; I therefore take this opportunity of clearing up any misconception that may exist as to my real meaning.

So far from condemning all Rembrandts or shadow pictures, I am convinced, from my own practice, that in most cases a more characteristic and certainly a far more real light may be secured by a quarter of an hour spent in the half-light, with a very few touches of bright light, if that light be used with discretion and feeling; and no photographer, with any pretension to artistic knowledge or taste would condemn this, or any other style of lighting, simply because it was unusual. I wish it therefore to be distinctly understood that I in no way agree with the disapprobation which has been expressed upon the so-called Rembrandts as a style; my remarks were intended as a caution against the abuse of reflectors in lighting up the shaded side of the face. I had no intention of condemning the use of reflectors, any more than I had of condemning all retouching. I do not use them myself, because the studio I work in is somewhat narrow, and I can get all the reflected light I require from the hall, aided by the long light somewhat in front of the sitter (or rather, I should say, over the camera); but in large galleries, where reflecting surfaces are a long way (comparatively) from the sitter, reflectors are absolutely necessary; but they want great care, combined with judgment and artistic feeling, in their use, for by their misuse, effects at once unusual and unpleasing are perpetrated. It may be, as the leader says, that there are no conditions of lighting that can be really false or unnatural; yet I have had negatives pass through my hands upon which reflecting screens had done their worst, and the result has been quite false to nature, in the same way as over-exposing is false—destroying texture, and giving an effect to the face of being out of drawing. One would never, under ordinary circumstances, see a face under the conditions of the present portraits must have been taken. I have one now before me in which the reflected light upon the extreme edge of what ought to be the shaded side is as strong as the dominant light, but that reflected light is upon the face only, the drapery being in deep shadow, clearly showing what a small reflecting screen must have been held very close to the face on that side; the result is the same within six years from the hat upon the forehead of what ought to be the shaded side of the face; the two edges of the face come forward, and the centre of the face being the darkest, and, moreover, between the lights, is made to retire. This, to say nothing of the two opposing lights in the eyes, gives an effect at once unnatural and painful. Photography may have (and, indeed, has) reproduced what was before it, but the operator had done his worst upon his model, and given her an unnatural appearance to commence with; therefore, I contend, the result is not practically fair, but too taut a statement in minute details important. The mode of intensifying with pyrogallic acid, citric acid, and silver, remains as stated in our former article.

To get the best effects in shadow pictures requires some study, and should be set about with a good knowledge of what is required. I can speak of my experience in the studio in which I am now working, which is some nine feet wide and eighteen feet long, with twelve feet of glass, and the ordinary ridge-roof; I can also speak of experiencing another nearer situation, sometimes two feet wide, and of the largest I have worked in, which was sixty long, forty feet wide, and some twenty feet to the ridge; in this gallery there was only one small part used of it, which in size would correspond very nearly with the one in which I am now working, all the other part being screened off. Here reflectors had to be used, but not the large hand reflectors I have seen advised; they were large three-leaved screens, some eight feet high, each leaf being two feet wide, covered on one side by black and on the other by white calico. These were placed, as a rule, several feet from the sitter, the three leaves enabling the operator to adjust his reflectors to a nicety; as the end leaf would, if required, be brought somewhat in front of the sitter, the reflections were soft and subdued, and from the other, which had the white calico, were hard and bright. In each of these galleries the background was placed in the same position, viz., brought forward so that its edge rested against the glass, and then sloping inwards away from the light, while the camera was moved to the opposite corner, so that the lens looked towards the light, the sitter being placed about midway up the gallery, all light being either stopped out entirely, or subdued at the camera end up to the level of the sitter, thus leaving open the light behind and at the side, but not in advance. This is also my own practice; the side light up to the sitter is entirely blocked out with an opaque blind, the top light, to correspond, being subdued by a white one, which lets in enough light to relieve the dark shadow, and so secures texture. My reflected lights are the natural reflections from the wall of the studio, which is papered with a light green-grey paper. I get more or less strong light upon the face by moving the opaque blind a little in advance or behind the sitter, as the face may require or taste dictate. My experience is in favour of bold lighting and full exposure; by this both brilliancy and softness are secured. Remember that you must see the details in the eye or you will not be able to see up them and that no shadow, however deep, should be without them. The difference in the exposure in my studio is that in a good light I get the ordinary lighted head in from eight to twelve seconds; the Rembrandts take from twenty to thirty seconds.

BROMIDE OF SILVER FOR PRINTING.
BY W. T. BOVEY.

There is nothing new beneath the sun, depend upon it. Even our truly wonderful photography, despite its few years of existence, has its history linked with coincidences obtained from identical thoughts arising in the minds of independent discoverers and experimentalists.

In the house of the late Mr. Trull, of Falmouth, I undertook to prepare for him a photographic paper sufficiently sensitive for direct solar-camera printing; and knowing full well that no amount of chloride would yield what was wanted, I proceeded to experiment with bromides, which, used in admixture with albumen, gave what was needed in the way of sensibility, but the resultant prints were not so rich in colour as are those produced with albuminized paper prepared in the usual way. It therefore occurred to me that a combina-

* Mr. Croughton is here under a misapprehension. Our leader was written before his paper was read, and, of course, have no reference whatever to his remarks. Rich iron compounds. Gross ignorance in using either direct or reflected light may issue in results unusual and grotesque, which are so unlike the ordinary aspect of nature that they may be fairly called unnatural.—Ed.
THE PHOTOGRAPHIC NEWS.

[March 5, 1875.]

ON NEW PRINTING METHODS.

BY DR. H. VOLCK.

During the many years that I have been actively engaged in photographic journalism, I have had an opportunity of remarking that certain photographic novelties pass away without leaving a trace behind them, while others, which are far less deserving, make a great noise in the photographic world. Thus the pictures produced by Denier, of St. Petersburg, produced a vast amount of correspondence and Thomson's first bath for negative, &c. Many published details of the process openly, while others offered to divulge "the secret" for a sum of money varying from three or four pounds upwards; others, again, expressed themselves perfectly willing to communicate the whole of the details to me if I would interest myself in getting them appointed Court Photographers, &c. After all these experiences, one would fancy that the whole world was about to produce photographs a la Denier, but, as we have seen, only a few, a very few, have taken up the method. At the same time, this particular method of printing is not a very difficult one, and may be adopted with advantage, probably, by such photographers who have not a very large business, and who are unskilled in the matter of retouching.

The simplest way of proceeding is to print the negative in a bath of half a litre of the cliche one or several plates of mica, or films of white, dry, transparent gelatine. How many such films are necessary can scarcely be predicted at the outset, but a thickness of half a line should suffice. A few experiments are necessary to settle the question. Through this medium the cliche does not print sharply, and thus the outlines are softened, and spots on the face, as well as any wrinkles that may exist, are rendered less prominent. For this reason any previous touching of the negative is rendered unnecessary.

The peculiar waxy character of the Denier prints do not seem to be altogether approved by art critics, but the public generally seems to be very pleased with it.

More difficult to carry out are two more novel processes, which are offered for sale by travelling agents, viz. Van der Weyde and Lambertype processes. As regards these two processes, I think photographers in a small way of business would do well to abstain from them. Both processes yield, in the hands of skilled retouchers, results which are very taking with the public. I say advisedly "with the public," for I personally share the opinion of a photographer who recently said to me: "I do not find the Van der Weyde pieces at my taste, but the public will be enchanted with them, and I shall produce them, therefore, not from art motives, but from those of business." In addition, I may remark that my friend has, as yet, received but few orders for such pictures. We should all of us like to find ourselves up in the heaven, but the cloudy leaden-coloured sky, such as M. Van der Weyde surrounds us with, seems to please but few.

Photographers should be exceedingly careful of purchasing processes of this kind. It is well, in the first place, to see what the journals have to say on the subject, and to learn something of the verdict accorded by those in the Capital; the reason why sellers of photographic novelties usually avoid societies is generally because they do not desire to have discussions upon their inventions.

The negative of Van der Weyde is represented in a shading secured by means of graphite and gum arabic, and the plate is, is scarcely suitable for photographs; more sympathetically appears the new Lambertype, although the latter presents no novelty, being a negative retouching process of an elaborate character, which, it should be understood, is only adapted to very large negatives. Lambert employs it for enlarged negatives, which are, of course, more expensive. The negatives of this process are covered with fine structureless paper, and this is worked upon in a suitable manner with black lead. The negative itself, in order to be adaptable to the process, must be very thin. For this reason the application of the process is limited, and the more so because of the necessary routine in the matter of retouching the negative. The more making of strokes upon the paper is not enough, but we must know exactly where to do it, and it is impossible to describe; one must be shown. Those, however, who have seen the method carried out, cannot do likewise, unless they possess some amount of artistic skill.

In a modest manner I have for some time past used the device of covering my negatives with paper, and with the greatest success. If, for instance, it is necessary to produce a thin part of the negative, the foreground, for instance, from printing through, I paste over the back in this past a bit of tissue or tracing paper, and with a pencil work up such parts as I desire should be thrown up. In portraits I have often employed the method when the background has come out too light. I then cover the figure on the back with paper, the outlines being carefully attended to, and in this way I have secured the figure of a much lighter nature than the background. The background is pasted on too much because of its opacity, then I employ negative varnish, which is applied with a brush, and is more transparent.

All this, however, is not new, for I have employed it for many years already, and I should be very sorry to see anybody call it Vogel-type on my account. Indeed, as it is, I think we have quite enough types of one sort or another, with proper names attached, and may certainly dispense with any more.

ON THE EDUCATION OF PHOTOGRAPHERS.

When photography was in its infancy, it required its followers from all ranks of men. At first, it was the painters and draughtsmen with more business than artistic knowledge who occupied themselves with the matter, and worked the new art as if it were a gold field. Later, everybody gave its contingent of men and women to the art, all of whom cultivated it with much profit and advantage to themselves, for the demands of the public were at first very moderate indeed. People were so enthusiastic over the invention, and the magical work of the sun's rays, that they were glad to give a high price for any specimen of the new art, no matter whether it was good or bad. Moreover, the artistic knowledge of the public is not at my time very deep, the number of real art connoisseurs being exceedingly small. The true art critic can only be formed by studying the highest works of art in existence. But who has opportunity for this in our small town, and

Photographische Notizen.

Photographische Mitteilungen.
how many are there of those dwelling in the larger cities who make any use of their opportunity?

Everyone, it is true, is born with a certain amount of taste, some possessing much, some little. By education this is remedied more perfectly. In Germany a taste is cultivated for music especially, but not for painting or drawing. This given in schools being the main thing being not only to make pictures (but to sell them), and then he is instructed in the technical part of his work, so as to become a good operator; furthermore he learns to know the public, to practise himself in the arrangement and lighting of his sitters, and, finally, acquires the requisite skill in negative retouching.

All these things can only be successfully acquired by those who have been grounded in some scientific knowledge. Photography, as a chemical operation, requires a knowledge of chemistry. It is ludicrous to hear skilled operators maintain that one need not necessarily possess chemical knowledge. The truth of the matter is that they themselves know something of the elements of that science. They may not have learnt it at school, but they know very well from practice that pyroxylin dissolves in a mixture of alcohol and ether; that nitrate of silver is soluble in water, and common salt, when put in the camera, is a mixture that by phosphite of soda dissolves salts of silver, and so on.

This is all chemical knowledge, and if any one will take the trouble to read through the list of photographic defects that are recorded in the printed handbooks on the subject, he will find that a great deal of chemical knowledge is requisite to avoid such accidents. How often have we heard of the mechanical operator committing the greatest blunders in employing manganese, india-rubber, acid, or ammonia, simply because he had no idea of the chemical action of these substances.

The same mistakes are made with the optical apparatus, arising from ignorance of these instruments. Many obtain lenses after lens, from which they expect the most impossible things, and they obtain in the end no more than a blurrier in employing their instruments.

For this reason it is obvious that a knowledge of the outlines of optics and chemistry is very necessary in the education of photographers in the case of such aspirants who desire to become something more than mechanical workers. Before all, it is necessary that they should cultivate taste in artistic matters. This may be done in two ways. Examine books in sketching, and therefore give some time to retouching, and educate the eye as to aid in the posing of models; and by studying the history of art, in which are included examples or copies of the finest masterpieces of all time. Further, a course of lessons in perspective and anatomy may be added, for the latter teaches of one of the main points in portrait photography, the human form.

To undertake studies of this kind is, of course, only in the power of those with means. So long as there is no photographic academy at which aspirants can study, we would recommend all those who can do so, to reside for one year in such a capital as Berlin, and to make use of the opportunities there afforded. Here are to be found establishments where art-industry is especially fostered, and where talented youths for study and practice are provided with every convenience. This bearing on photography, viz., drawing, anatomy, art history, chemistry, photographic chemistry, and optics.

Those who use their time well may secure the proper scientific knowledge in six months, but for most students a year is not too much for the purpose. It is generally the wish of all young hardworking photographers to serve as assistants for some time in one of the more renowned studios in the capital. Unfortunately, the establishments in which anything can be learnt are very few, and the principals are not always in a position to take assistants. It is not because they do not wish to do so, but it is a well-known fact that a third person is in the way in taking a portrait. The time, too, is too valuable in a busy studio, and the attention of the principal is too
much taken up for him to pay any regard to a pupil. Not unfrequently is the complaint heard from pupils that, instead of being allowed access to the studio, they are employed only in polishing plates and in stopping out defects in prints, experiences which could be gained just as well elsewhere. In this respect only a photographic academy could help, in which pupils could be instructed in posing and lighting with living models.

A PHOTOGRAPHER’S EXPERIENCES IN THE LIBYAN DESERT.

BY PHILIPP REMELI.*

New Year’s Eve we solemnized as well as we could under the circumstances. We had no goose, neither would the good people of Farafrah allow us to catch a couple of ducks that were swimming about on the principal pond of the place. But we managed to get a turkey, and this, and a glass of grog brought with us from Europe, served to while away pleasantly the last hours of the old year. At midnight the servants got out our fire-arms, and we saluted the new year with many a salvo, and illuminated our camp with the aid of magnesium wire.

On New Year’s Day I made an excursion to the western portion of the oasis, about six miles from Farafrah. Professor Zittel, who had visited the spot the day before for geological purposes, had called my attention to certain interesting places in the vicinity. As I did not start till eight, and the camel that carried my baggage was a remarkably slow animal, I did not reach my destination till nearly eleven. In the meantime it had grown very warm, and as I could get no shelter for my tent, the temperature inside it, notwithstanding that a north wind was blowing, was 28° Reaumur. The bath and chemicals simply refused to act, and the desiccation of the film over the plate was of a most unequal character. The collodion film was still wet at the lower portion of the plate, while above it was already dry, and after treatment in the silver bath the well-known blue streak was visible. The silver bath became turbid, and caused the plate to fog. By strengthening the liquid, however, and adding a few drops of glyceric acid solution, these defects were removed.

All this took time, and it was fortunate for me that there remained still plenty of light to operate with. With a little trouble, I was enabled to take my first pictures of the desert. The exposure was excessively short. With an aperture of 1/40 of a second, using a diaphragm of ½ five seconds were sufficient, and a stereoscopic image was taken in much shorter time. The plates developed very flat, and required much intensifying. I attributed this to the short exposure which the general illumination of the landscape necessitates. In such landscapes as these everything is in a full glare of light, and in a few places only is there a patch of dark shadow; at a longer exposure, in which the plate would be rendered more dense, could not be made use of, as it would be untrustworthy, the shadows not remaining sufficiently clear. Only with a short exposure can we hope to be successful.

As the expedition was to start next day at ten o’clock, and I had not taken any pictures of Farafrah, I was up by time these pictures were undertaken without trouble. With the couches and rendezvous in the garden, I found our tents had been struck, and everything was packed ready for our journey.

But the Arabs who accompanied us gave us so much difficulty that we could not make a start. One of them, especially, was always playing some stupid trick or other. After a number of iron boxes had been filled with sweet Farafrah water for our journey to Dachel, this latter was ordered to empty some other boxes which had been filled at Bir Kerani, a day and a half’s journey from Farafrah, with brackish and scarcely potable water. Instead of doing as he was told, the man went and poured all the sweet water away, and left the salt liquid in the boxes. The trick was, of course, discovered, but the filling of the boxes again from the distant well took a long time. Other of our Arabs refused to proceed any further, because they said they had not prayed sufficiently to ensure their safe arrival at Dachel. They would not have finished their devotions till the afternoon, and the end of it was that the start was postponed till the following morning.

The first day’s journey towards Dachel was of little interest. We journeyed for nearly three days over an almost level track, 500 to 1,000 yards broad, bordered on both sides with sandhills, and a low range of mountains high, a sort of natural highway of gigantic dimensions and monotonous form, which we, for want of a better term, called a road. Slowly ascending, the path lost itself in a high plateau full of picturesque lime rocks and steep mountain walls, forming a labyrinth through which our camels stepped slowly and laboriously. As the beasts dared not be overburdened in this heavy and not dangerous portion of our journey, we all of us walked on foot, and the interesting nature of the landscape did away with any feeling of fatigue. Through a grand rocky archway, named, after the German consul in Alexandria, Bab el Jasmund, we came to the long-wished-for declivity stretching towards the oasis Dachel. A second and more distant one, over natural daggers, and the recent natural destructions of the mountain Tops, at one of the wells, known traveller Cailliaud, Bab el Cailliaud, gave us a view over the valley in the wilderness of the finest beauty, in the vicinity of the oasis.

On the 7th January, at four in the afternoon, we came to Gaar Dachel, the capital of the oasis; we were welcomed by the head officials of the place, and the next day moved into a house made ready for our reception, which, although of a somewhat tumbledown description, was nevertheless adapted to a sojourn of some days than our more airy tents.

In Dachel began my actual work. For the further journey west, Gaar Dachel was made principal depot, and the command of it was given to me, so that I had plenty of time to depict the interesting points around Dachel and the adjoining portions of the Desert. For the latter purpose I arranged excursions of my own, sometimes stopping out two or three days together.

In the upper portion of our house I established a portrait studio, in order to comply with M. Rohlf’s wish to secure some types of the inhabitants of these oases. For my purpose, I made use of a smooth cloth background, and a very stable head-rest. With the aid of an Arab sheik named Mohamed Daud, who was in good odour with the inhabitants, I was successful in securing pictures of a large number of these brown Africans. No fees were, of course, to be had, but, on the contrary, every model had the sum of one franc paid him for the sitting. Without this stipulation had been made, I should, I fear, have done but little business.

The weather during the time of my sojourn at Dachel was no way so favourable as my experience of Siut and Farafrah had led me to expect. Very often there was a powerful wind that materially interfered with my operations, and sometimes we were troubled with a samoom, which rendered the practice of photography simply impossible. After a wind has once begun to blow, it is some time before the sand has been loosened sufficiently to be carried on with it. A light colouring of the sand in the portion of this, which sometimes occurs very suddenly, is the first signal of the coming samoom. The sand is blown in streaks over the desert first of all, and only rises a little from the surface, so that for some time one may continue the journey feeling the sand eddying past one’s knees. As the wind grows stronger, the sand rises more and more, until one’s lofty seat upon a camel no longer affords shelter. The sand striking upon the skin produces a strong prickling sensa-
tion, and the fine particles are driven through one's clothes and into every fold of the packages.

As the wind grows stronger the sand rises high into the air, so that the whole atmosphere is impregnated with it; the sun appears red like a sharply cut disk in the heavens, and the sand fog is so thick sometimes that you cannot see fifty paces from you. Sometimes this fog divides, and then there are to be seen sharply outlined sand clouds of a similar form to those in the sky.

(To be continued.)

A FEW FACTS ABOUT ALBUMEN.

The Western Photographic News gives the following summary of facts about albumen:

Albumen is an organic compound found both in animal and vegetable substances. Its properties are best studied in the white of an egg, which is a pure form of albumen. It also abounds in the blood and chyle, and more or less in all the serous fluids in the animal body; it also exists in the sap of vegetables and in their seeds and other edible parts. Albumen forms the starting point of animal tissues. The chief component elements of albumen are carbon, hydrogen, nitrogen, and oxygen, with small proportions of sulphur and phosphorus. It is believed to be a definite chemical compound, though the exact proportions and the rational formula have not been definitely ascertained. Carbon forms fifty-four per cent. of it, nitrogen sixteen, and sulphur two. The disagreeable smell arising from the decomposition of eggs is from the generation of sulphuric hydrogen.

Albumen is capable of existing in two states: in one of which it is soluble, in the other insoluble, in water. As soluble in water, it is found in the egg, the juice of flesh, the serum of blood, and the juice of vegetables. Soluble albumen may be converted into the insoluble form in the following ways:

1. By the application of heat. A moderately strong solution of albumen becomes opalescent and coagulates on being heated to about 150° Fah., but a temperature of 212° is required if the liquid is very dilute.

2. By addition of strong acids. Nitric acid coagulates albumen perfectly without the aid of heat. Acetic acid, however, acts differently, appearing to enter into combination with the albumen.

3. By the action of metallic salts. Many of the salts of the metals coagulate albumen completely. Bichloride of mercury, acetate of lead, sulphate of copper, and nitrate of silver form insoluble compounds, and the egg is therefore used as an antidote to these poisons. The white precipitate formed by mixing albumen with nitrate of silver is a chemical compound of the animal matter with protoxide of silver, and has been termed albuminate of silver. Albumen also combines with lime and baryta. When chlorid of barium is used with albumen, a white precipitate usually forms. By long keeping, albumen loses its alkaline reaction, and becomes sour and more limpid than at first. Mucous and acid gums form a web form in it, which appear to be caused by oxidation.

Ammonia added to albumen is said to preserve it for a longer time, and a lump of camphor floated in the liquid has a good effect. Alcohol, ether, creosote, and tannic acid likewise cause the coagulation of albumen.

Correspondence.

LATITUDE AND LONGITUDE BY PHOTOGRAPHY.

Sir,—In your French Correspondence I see a naval officer has been applying photography to delineate oceanic storms. That our art-science has many valuable applications, other than that of portraiture, need scarcely be said; but that the purely scientific aspect of photography has but little inte-

rest to the general body of its professors I am pretty well convinced; and hence, being in possession of a means whereby it will aid, if not supersedes, the present means employed to obtain latitude and longitude from the sun at sea, I shall have pleasure in sending particulars to the officer in question if M. Lacan can supply me with his address, preferring so to give the method an opportunity of being useful, rather than lie in my desk, as it now, has done for over a year. Originally I had written it for non-nautical readers. Upon receipt of the required information, I will re-write it to suit changed circumstances.—Yours, &c.,

W. E. BATHO.

ALBUMENIZING PLATES.

Dear Sir,—I doubt not that many of your readers who may be interested in practical photography, particularly when preparing plates for the "dry process," have often experienced difficulty in smoothly applying the preparatory coating of albumen, unless they resort to the careless practice of first dipping the plate into water, which greatly dilutes the mixture, so as to seriously lessen, when it does not entirely destroy, its efficacy; and the result is, that the film will subsequently slip during development, and ruin the negative.

For a long time I experience great annoyance myself from this source, until I discovered that all difficulty could be removed by simply breathing upon the plate before pouring on the albumen, when the solution will run as smoothly as if the surface were the best of silks. During the process of development, the fluid shows any hesitation at any point, it is only necessary to breathe upon that particular spot, and the difficulty will be obviated.—I remain your respectfully,

J. HENRY WHITEHOUSE.

Hotel "Beau Rivage," Ouchy, Lausanne, Switzerland.

NEW LIGHTS IN PHOTOGRAPHY.

Dear Sir,—In reply to "Enquire!" in last week's News, will you permit me to point out that Moulé's light was a pyrotechnic composition of the same nature as the "Bengal light" used for signalling in the Royal Navy. It consisted of nitre and red ochrement (sulphide of arsenic), and must be burnt either in the open air or within a glass lamp, in case with good draught to carry off the arsenical fumes. The "explosive powder" mentioned by your correspondent was not likely to have been sulphur and nitre alone, but probably contained in addition carbonate of potash, which serves much the same purpose as the carbon in gunpowder. The old "pulver fulminans" was a mixture of one part of sulphur, two of pearlash, and three parts of nitrate of potash, and behaves in a very different case with good draught to carry off the arsenical fumes.

The "explosive powder" mentioned by your correspondent was not likely to have been sulphur and nitre alone, but probably contained in addition carbonate of potash, which serves much the same purpose as the carbon in gunpowder. The old "pulver fulminans" was a mixture of one part of sulphur, two of pearlash, and three parts of nitrate of potash, and behaves in a very different manner in the case of the mixture of sulphur and nitre with which I am acquainted.—Yours truly,

J. HENRY WHITEHOUSE.

Talk in the Studio.

THE PHOTOGRAPHIC SOCIETY.—At the meeting of the Photographic Society, to be held on Tuesday evening next, Captain Abney will read a paper detailing some of his photographic experiences in Egypt in connection with the Transit of Venus Observations.

A DAILY ILLUSTRATED NEWSPAPER.—On the 10th March a paper will be read before the Society of Arts by Mr. Henry Blackburn, on "The Art of Illustration as Applied to Books and Newspapers," when the feasibility of daily illustrated newspapers will be discussed, and some particulars of the working of the Daily Graphic of New York communicated to the meeting.

ASSOCIATION BELOR DE PHOTOGRAPHY.—This society, which is only a few months old, has already considerably more than two hundred members. A monthly Bulletin is published by it, full of excellent matter and photographic illustrations. A peculiarity of this Society, worthy of note, is the establishment of a section in each large city. The members of each section
most at least once a month, and communicate their labours to the central committees. The society also elects into honorary connection with its body, foreign photographers whose names have been associated with the progress of the art. At a recent meeting, Mr. J. H. Dallmayer and Mr. Wharton Simpson were elected honorary members.

MAGICAL LANTERN SLIDES BY TRANSFER.—Mr. Gordon R. Bennett, in the following note, states: "Thoroughly saturate plain Saxo paper with a solution of gum benzine in alcohol, one part of benzine by weight to ten of methylated spirit. When dry, press flat and albumenize, and sensitize in a 60-grain bath, the print being finished in the usual manner. Then let the strip of the glass to which the picture is to be attached be floated with a solution of gelatine, and place on a levelling-stand till the surface is just tacky; the picture may then be pressed in contact and allowed to dry. Then apply strong alcohol to the back of the paper, which will dissolve the gum benzine and leave a thin albumen film attached to the glass. There are many other processes, but I consider this the most certain."

A GOOD CHEAP BATH.—Mr. J. D. Long, in the Western Photographic News, gives the following: "The following is my plan of making a glass bath, durable, cheap, and reliable. Select two pieces of flat glass the required size. Cut three strips of glass, an inch or more in width, for the ends and bottom of bath. Take the three strips of glass, and cement them together with pitch or rosin, and on a smooth piece of paper, moisten one side of the paper with water and find the edges of the glass strips until perfectly smooth and even and they are all of equal width. To put the glass together use a cement of glycine and ground litharge, made thick as putty, and put on with a knife. Use wood clamps to hold the cemented glass together until dry. Take a tight wood box about one inch larger than the glass jar, and suspend the same in it, leaving half an inch space on the bottom, sides, and ends. Melt good beeswax, and, being careful not to have the wax too hot, pour in around your glass jar until it is full, adding the melted wax as fast as it settles. When you have a wax bath, lined with glass, which will last you a lifetime."

We Correspondents.

TYRO.—Full details of Captain Abney's albumen and beer process appeared in our Year-Book for 1874. You will see there, on reference, that any colloidion giving a fine, creamy film in the wet processes may be used. Extended bromide may be added for special work, and subjects in black and white of one to five figures of much contrast, or for dense masses of foliage. As a rule, the plates do not require backing.

O.K. —The whole thing appears to be a "cook-and-bull story," not worthy of attention. We have heard various versions of the story, and, on enquiry, we find that all are false or exaggerated. It was first stated that a printed circular for canvassing photographs was put in circulation. That, we believe, was the statement that letters were sent out, written on paper with the official stamp or heading of the Society. That, we learn, is just as false as the former. Next it is stated that being so written created an impression that the letters were official, and that the late president wished Mr. Glaser to be elected. The fact that no letters on the official paper were so sent out disproves of that notion; but, apart from that, it must be sheer nonsense to affirm that Mr. Spiller wished the election of Mr. Glaser, seeing that he had not even nominated him, but did nominate another gentleman. It is rather an odd notion that one member is not to ask another member of the Society by brute force a special officer whose election he believes will be beneficial to the Society. 2. Mr. Glaser was elected by the votes of considerably more than half the members who voted. The undesirable mode of dealing with the voting papers doubtless limited the number of votes recorded. The system of adding the votes recorded for one office to those for the election in another office appears to be open to considerable objection, and an election to which you refer was the result, we are informed, of the combined votes for two offices, either of which alone would have been sufficient to secure the nomination.

W. A.—There is a photographic society in Bengal, and it issues a journal at intervals. Various photographic goods may be obtained in the bazaars, but there are no regular dealers in photographic work. There are, however, great many copies of the Photographic News to India. This is the best we can do.

H.—The committee in question have not rendered any report, and, so far as we learn, have no intention of doing so.

W. C..—We have frequently described the process of fuming briefly in this column. Take a box of any kind—a packing-case will do—and line it with paper, to stop up all cracks and crevices; then place a saucer at the bottom containing half an ounce of liquid ammonia. Then, in the bottom of the sensitive papered tube, face outward, and close the box for ten minutes or a quarter of an hour. The paper will then be ready for the printing-frame. You may frame it up as you would any other sheet, and on the sensitive paper in the printing-frame.

C. E. P.—By the "platinum printing-process" we presume you mean the use of platinum for toning. It is not more to be depended on for permanency than gold toning. We have published formulae repeatedly. You will find some details in our Year-Book for 1874. We recommend, as before mentioned, a weak solution of the chloride of platinum: say one grain in fifteen ounces of water. The free acid, always present, should be neutralized by the addition of carbonate of soda. This should be added until a slightly alkaline reaction is manifest, when a trace of nitric acid may be added, just sufficient to give a very slightly acid reaction. This solution will tone prints to a fine black.

F. P. BULL.—Your cards possess some good qualities. There is a little too much front top light.

T. J. A.—The ground plan in your note indicates our meaning with one or two exceptions: the camera must be placed from the northeaster corner, so as to be directly opposite the background. We think you will find fourteen feet wide enough for all purposes, and more convenient than a greater width. The Year-Book which contains Dr. Coxe's article on glass-rooms, with illustrations, is out of print.

P. O.—In printing transparencies for the stereoscope on carbon you need not have any trouble. Place a mask on the negative with aperture of the size and shape required, making care to place it so as to include just that part of the negative you require. Cut your piece of sensitive tissue just the proper stereoscopic size, and place it carefully on the negative so as to bring the apertures of the mask in the proper position for the picture. Then, in mounting the tissue upon the glass for development, you simply take care to place the two evenly, edge to edge, all around, and the image must be in its proper place.

2. A transparency for producing an enlargement should be deeply printed, delicate, and full of detail.

KATHRYN.—You had better apply to Mr. Meagher, whose announcement you will find in our advertisement page. He is personally a practical worker.

NORTHUMBERLAND.—You will find much of the chemical information you require in Captain Abney's "Instructions in Photography." 2. If your images are so close together that you cannot cut out two the proper sizes, each including the proper amount of subject, the lenses should be separated a little more. The lenses should be about three and three-quarters to one another, or even four pictures. For printing the prints, the right hand picture, when mounted, should contain just a trace most of the right hand side of the subject; the left hand picture of the left hand side of the subject. Of course, you would not be able to mount in mounting. The object of cutting the negative is to transpose the halves, so that the print may be produced and mounted without cutting in two for transposition. The print is pretty good, but it is not as the subject exists altogether. It is the problem of how long the sensitive carbon tissue sent out by the Autotype Company will keep. Much, doubtless, will depend on the weather. It will keep best in cold, dry weather, and worst in warm, moist weather.

ARCHER CLARKE.—We will take care that your suggestion is conveyed to the proper quarter, and something of the kind will probably be done.

C. A.—We cannot very well enter into a comparative description of the various lenses you mention here. The new one is, however, an unquestionable improvement upon the old one, as regards by the same maker, and takes more of the character of the third you name, by another maker.

S. W. L.—We have no means of knowing whether you could obtain a situation as assistant operator or printer. Your best plan will be, either to answer advertisements for assistants, which you will see in our advertising pages, or to advertise yourself. In either case you would have, in answering applications, to state details of your qualifications, which we believe, under the circumstances, the negative in the specimens you send is slightly under-exposed and much over-saturated, so that the print is hard. As a print it is perfectly black to the eye. 3. For your trouble.

D. F. B.—Considerable discussion appeared in our pages during last year on the subject of the beer to be used in the albumen and beer process. But as beer is not, in any case, an absolutely constant product, it is not possible to point to the product of one sorts, is 17.44 per cent for the purpose. We believe that Bass's pale ale generally answers well.

Several Correspondents in our next.
as a means of investigating the laws of oceanic storms, and as soon as the paper in question appears in the Comptes Rendus, or official proceedings of the French Academy, we shall have pleasure in placing a more detailed account of the research before our readers. An ingenious suggestion was made some years ago by an officer of the French Navy to make application of photography to show the course steered by a ship. A sheet of sensitized paper was placed in the binnacle underneath the compass, and this had a tiny hole through which the daylight penetrated; the sheet of paper was drawn along underneath the aperture, and became impressed, therefore, with a continuous line. This line, as the vessel moved, indicated the course that the latter had been steered. Under certain conditions this plan was found to answer very well, but much care, obviously, was necessary in the arrangement of the apparatus, and, moreover, it could only be employed in the daytime. For these reasons no practical employment was made of this ingenious suggestion, which was, however, tried for some time by several masters in the French mercantile navy.*

*Alumen and Pigment Photographic Transparencies.—We are glad to notice that transparencies other than the alumen prints of the well-known firm of Leon et Levy, of Paris, are beginning to make their appearance in commerce. It is certainly high time that such charming productions as glass photographs should have a far more extensive sale than has hitherto been the case, the celebrated French firm we have just mentioned having pretty well the whole business in their hands. These Paris pictures are world-renowned, and for many years they were unapproached by any other works of the kind, saving, perhaps, those of the late Mr. Brees, of Sydenham. It is time, we repeat, that other clever photographers, both in this country and abroad, should compete in the production of these charming works, for it is, in fact, the only form in which photographs are done full justice to. Lastly, we have fancied—it may be only fancy—that pictures of this kind that we have had many years are scarcely so perfect now as when they were first purchased. The transparencies are still as sharp as ever, but, somehow, they appear more hard and glaring than formerly. In some cases the pictures are unpleasantly harsh and unagreeable, while in other cases, the advantage of sharpness or microscopic clearness. Whether this is due to our having lately become accustomed to transparencies prepared with pigment, and therefore of a warmer and more pleasant character than the alumen tone of the earlier pictures, or whether these are fading, to some extent, and hence are a little unpleasant to look at, we scarcely like to venture an opinion at present. But, on examining, very lately, a large series of stereoscopic slides of this nature, we could scarcely believe but that they had parted with some of their original freshness and tone. In any case, however, if we can obtain pigment photographs of a pleasant tint, and as sharply executed as the alumen slides, the former will, we doubt not, be much preferred by the public, by reason of their more agreeable character. The alumen slides, as is well known, is a very high one, and this circumstance alone, we should think, would be a powerful argument on behalf of photographs of this nature being more abundantly produced than has been the case for many years past.

A PHOTOGRAPHER'S EXPERIENCES IN THE LIBYAN DESERT.

BY PHILIPP REMEL.†

It was my eyesight that suffered most in the sandstorm I had to encounter. A strong umbrella gave me the best
shelter under the circumstances. The dry wind created also a feeling of great thirst, especially when it happened to be hot. You have to drink four or five times as much water as usual to quench the burning thirst. In our case, with our food exhausted, a hot samoon will often dry up the liquid in a few days, and in this way cause a whole caravan to perish.

The so-called Chasmin, which is felt in April and May, is, in fact, nothing but the samoon, only there is this difference, which the air is for about a day, it comes from the south, and is invariably very hot. It felt its effects already in March, when I went out to take a few pictures with my camera. Although the wind was then very slight, and, owing to the dull atmosphere, the sun had little penetration, the interior of my tent had a temperature of 30° Resumur. The chemicals would not act; a thick fog covered my plates when I developed them; the silver bath, as glacial acetic acid was of no avail, had to be doctored. I made use of a plan which had previously been most successful, and added cyanide of potassium to my bath. It was then placed in the sunlight and filtered. The latter operation was, however, a tedious one. That day I had employed two donkeys to transport my plates; and as these animals are, in the desert, of very small stature, I had to lighten them as much as possible, and the funnel was one of the things I left behind me. Under these circumstances I scarcely knew how to help myself, but at last I managed, by employing a good quantity of paper, to make a solid filter which I held in my hands until the liquid had passed through. After that I was not troubled with fogging any more.

That the pictures were not very brilliant may be imagined, but they could, at any rate, be used. To obtain some contrast between lights and shadows, I exposed for a short time only, viz., three seconds, with the smallest diaphragm of my apianastic. The pictures developed very faintly, and required much intensifying; I had to keep my hot tent for about an hour with each of them.

A sudden samoon surprised me in the desert on the morning of the 18th January, as I was busy operating. My otherwise very stable camera-stand, to which the iron triangle of my camera was screwed, was thrown down by the powerful wind, and the camera broken against the heap of sand. A few negatives had been taken, and, which were upon a drainer on a flat stone to dry, were also exposed to the sandstorm, the sharp particles rattling against the glass. I tried to save them, but arrived too late, for the dry film was pierced with innumerable tiny holes. With my wrecked apparatus, and without any trace of my day's work, I lost for my part the desert, which never appeared to me so grey before. Out of curiosity I preserved one of the negatives which had been spoilt by the storm.

Arrived at Gair Dachel, my servant, who during the storm had firmly kept hold of the tent ropes, and prevented the misfortune being more extensive, took the camera in hand, and by the next day had put it again in a serviceable condition. He turned out quite a practical mechanic. The hazel wood of one of the plate-boxes was used for the repairs. Fortunately the lens had suffered no injury, and the ground-glass was only cracked, and was easily patched up again, therefore. To the circumstance that in cameras of Meagher's construction the ground glass is not tightly cemented, but is held in its place by two easy springs, I have to attribute the fortunate preservation of my focusing glass.

During the time I was occupied in taking pictures in Dachel and the neighbourhood, I never had any days free from wind, and for this reason the depiction of landscapes which plants and shrubs occurred was a difficult task.

The trees here (especially the ubiquitous date palm) shake much more than our more sturdy trees at home in Germany. For this reason it was that in no Egyptian pictures which I saw did I find the palm tree sharply rendered; the boxes play with the camera, and the camera with the objects. No Egyptian, landscape, such pictures are of little value. How difficult it is to portray the tree in a striking manner, many a painter knows.

The many acacias seen around Dachel, whose leaves and twigs are most small and delicate, as also the oil trees found in the vicinity of Farrafr, are excessively difficult to reproduce in the camera. For about a week it rained perfectly still, I was fortunate, however, by riding my time and watching for opportunities, to secure some sharp negatives. In taking views of this kind, the main thing to be attended to is to see whether the foliage is really at rest or not. Many a landscape photographer believes everything to be favourable, and exposes his plate only to secure an uninteresting image. On the contrary, from my experience as a landscape photographer, this happened to me several times in the depiction of tropical acacias.

A peculiarity of this otherwise very dry country is, that the air often contains large quantities of moisture, which condenses as clouds, and which, on one evening in February, fell like rain, and continued for a whole day. A steady rain was sufficient to keep everything wet out of doors, and make itself felt everywhere. Unfortunately, at this time, the roof of Professor Ascher's room fell in with a loud noise; and had not the heavy downfall, which had set in at midnight, ceased soon after, our whole house, and perhaps a large portion of Gair itself, would have been reduced to ruins. Everything is built of dried clay bricks, which fall to pieces when thoroughly wetted, the worst was to be feared. Such a powerful rain as that to which I refer is, however, of rare occurrence. Trustworthy people told us that they had not known such a thing these thirty years.

During my sojourn at the Dachel Oasis, from January until the 15th March, I secured one hundred and fifty negatives—not a very large number for so many days, but there was other work on my hands which absorbed many an hour and day of my time. Gair Dachel was the headquarters of the expedition. It was my duty to fit out the caravans proceeding through the desert, and to receive and put in order those which arrived. All the post and provision caravans came here. It was no very easy task, for employments had to be arranged for the men in contact with the lowest vagabonds one could imagine. Wherever the drabs could cheat, they took an opportunity of doing so, and every request made to them had to be accompanied with a present of money. The black fellows returning with the empty trains and camels from the desert were exceedingly rebellious, and I had many a struggle in order to maintain discipline; for as soon as they found themselves relieved from the personal supervision of the Great Man, as Rohibs was called, they became insubordinate. Nobody was more delighted than I, therefore, when at last my comrades returned from the desert in the middle of March, coming from Sinah by way of Farrafr. It was with much anxiety that their arrival was looked forward to, for as their journey had been so protracted a very long time, and beyond the term for which they had taken provisions, and forage and water for the camels, it began to be thought that the caravan must have perished.

(To be continued.)

ART-CRITICISM.

BY W. HILLSON.*

To be in strict accordance with its title this paper should treat of the art of criticising art; but my aim is merely, by

* A communication to the Edinburgh Photographic Society.
making some general remarks bearing on the subject, to arrive at some particulars regarding photography.

Photographic societies do right in fully discussing the science of photography; but, if too exclusively confined to that, an impression may be made that the means employed are more important than the end to be attained. At any rate, our art lags behind our science. The necessity that lies upon us graphically to express ourselves and the laws of art has already been well enforced here in the paper read by Mr. Mackay, and in remarks by Mr. Macbeth and others. I would add that it is also desirable that they should come to an understanding of what fine art is—it's capabilities and limits, and its relation to the artist, the public, and the times; for a thoughtful consideration of such questions in graphic art is to enable the artist to take his true position. As my remarks tendering in that direction must necessarily be concise, I have ranged them under separate headings in the hope of making them more distinct; and I cannot think that our time is wasted by having several evenings this session devoted to subjects bearing on photography as connected with fine art.

Science and Art.—On these two related yet opposed words the civilisation of the world turns; the one gathering in the abstract, the other in the material; the one concept, the other embodiment. Macaulay said, in his dashing way, that "every well-informed schoolboy has now more scientific knowledge than Sir Isaac Newton possessed." The reason of this spread of knowledge is evident. A few colossal intellects, looking into the secrets of nature, put them in form to be handed down as heirlooms—centres of ever-increasing cumulation. But art is the mirror. And mechanical art, a child of science, has kept pace with its parent. The master-spirit lays his hand (say) on steam or electricity, and a thousand lesser men carry them into endless ramifications. Thus in our century we have, for instance, the kingdom lighted with gas, steam navigation, the spinning jenny, the locomotive, the tabular bridge, and the stretched wire that carries our whispers to the ends of the earth. But, observe, this kind of art can be fixed in form, as measured by the yard or pound, and handed from generation to generation with the certainty of still increasing. Nothing of it is lost. But what of fine art? It is wholly different. Raphael, Shakespeare, and Beethoven cannot bequeath the secret of their working to be carried on by others. We cannot say here nothing of it is lost. The master-spirit dies and the art is lost. Fine art is no different from a different foundation; and the connection he arrives at—that is, the expression of his own individuality—is far bad in proportion as his faculties are well or ill balanced.

But the general community pursues quite a different line. They are apt to judge of a picture either solely by the subject it represents, or, if they have an extraordinary endowment of our common inheritance, vanity, they will pick you out before you can wink what they call a fault, and depreciate the artist by way of exalting themselves, or their admiration is wholly devoted to details. Their limited vision can see nothing in a picture but the clear, brilliant details:—"What a pretty boy!" says the old lady. "Oh! that darling of a dog!" cries the girl. And "How very clearly the twigs of that tree come out!" quoth pater familias. If any one doubt that such is the common run of art-criticism, he can easily put it to the test. Let him take a dozen or so chance companions, not artists, of course, one at a time, to see some pictures, concealing the names of the artists, and if he be not amused and amazed at the remarks he hears it is probably time for him to think of weighing himself in the balance.

As a sample of the world I shall give a bona-fide experience. Last autumn a great exhibition was held at the Smith Institute, in Stirling, which contains an excellent collection of several hundreds of ancient and modern paintings; among others a "Murillo," lent for exhibition by Sir William Maxwell Stirling—probably the finest "Murillo" in Britain, and certainly not surpassed in our public galleries. During my three visits of several hours each I saw only one individual person stop to look at this exquisite painting. Out of curiosity I took note of what were the chief objects of attraction; and I am sorry to say they were not the best pictures. "Distant twigs," "Darling dog," and such like details carried the enthusiasm. And these people were not mere benighted natives: they were mostly tourists, English ladies and gentlemen, kindly stopping to patronise provincial art, on their way to the Trooseachs to patronise provincial nature.

It reminded me of the long ago, when a tourist in his way, in a pair of red whiskers, walked and re-walked all day about the Brigg o' Turk, with a thrust-out hand, demanding a penny in a Gaelic shout; I, like a by-bosh Samaritan, offered him a shilling, which put him in such a fury that my discretion got the better of my value at the rate of eight miles an hour. So sad to see people peer paper to silver, while admiring a Brigg o' Turk or in a picture gallery! The conclusion I wish to state is that the taste of the general community is almost wholly confined to details, and that their opinion of works of fine art is of no great value, to say the most of it.

Details.—The passion for strikingly, startlingly graphic details is so universal that it may take rank among the "signs of the times." And it is not a bad sign, in so far as it indicates a spread of intelligence in the community, not capable of comprehending a subject in its totality, but still sufficient to take an interest in it. Yet this very proof that there has been some advance measures how small that advance has been. It is self-evident that when a subject, which has been restricted to the smaller circle of intellects trained in that department, is to be brought before the general community who have not been so trained, it must be supplemented in a different form and character. Ideas must be interpreted simply through their details. In other words, to suit the populace they must suit the popular comprehension and taste. A kind of deterioration inevitably takes place.

In literature we find how this has taken place, as the circle of readers widened throughout the community. Those which were formerly confined in tough volumes for the learned trained in that department are now broken into details for the popular magazines. The solid style of Hume's History has given place to the brilliant details of Macaulay. The thoughtful novels of Fielding have gradually degenerated into the endless details of Dickens. Dickens, with all his genius, wonderful invention, power of individualising, broad humour, and sentimental pathos, was chiefly indebted to his pen and the unique business of literary details. Fortunately for his unrivalled popularity, he had no faculty of generalising. His whole works were made up of details and details. His successors, with rare exceptions, in poverty of genius follow the path in which he triumphed, and get their novels read by stuffing them with details, especially of furniture and dress—said to be dearer and damper half of humanity—and with descriptions of Nature, which, fortunately, she cannot bear. No poetry is popular now unless it is choke-full of pretty details. The giants are out of date; Shakespeare himself has become heavy, and Milton decidedly dull. The argument might be strengthened by considering the theory of what is called the music of the future. Architecture pays more attention to
THE PHOTOGRAPHIC NEWS. [March 12, 1875.

details than to proportions. And what of art? Has it withstood the tide of this popular demand? No, it has not.

Fine Art.—The central principle of fine art is the same, whether embodied in poetry, painting, music, or other mode. It has one soul, so to speak, but different bodies; always the same thing embodied, whatever the instrumentality may be. It may be considered as having two departments, which, for the sake of distinction, I shall call the higher and the lower platform. When a picture gives details so as to represent its subject without carrying you in feeling beyond it, it is a work of art on the lower platform. When a picture gives the necessary details of its subject so as to carry you beyond it, rousing the vague impressions that are left in us by the experiences of life, so that we have a feeling of the universal, it is a figure for the art on the higher platform. I do not in one of his works, talking of grand music, say: "It dilates the heart into a capacity for the infinite." This is the same idea. He does not say that it suggests grand ideas, and excites the imagination: of course it does that, as almost anything may do—even the grunting of a pig, or the most wretched dabb. But, as fine art, it expands the heart, rouses the emotional impressions of our being, boundless feeling of the universal. Or, if it ascends from art, the lower platform, into fine art, the higher platform. Fine art includes art, and what it embodies will excite the imagination, as any work of mere art will; but as fine art it appeals directly, as its chiefest function, to the highest part of our being—the emotional—in which are fixed the impressions of our lifetime. To put it in a figure, the art on the higher platform, the noble idea of the one, and from which we draw out the precious wealth of life, and "thought" is merely a porter at the door, pointing the way and keeping things in order. Fine art does transport with the porter at the door, but only in order that it may pass on to draw out the inner wealth of the bank. Art never gets a step or two beyond the porter.

In the salmy days of fine art there were comparatively few painters—men whose innate genius impelled them to the work—and they had the advantage of working for a comparatively limited circle, and not the general community, who received their Madonnas, and the like, only as symbols of religion. In our latter times, as the demand for books increased, under the auspices of the march of intellect, so gradually arose a demand for pictures; and academies of art were instituted to meet the demand, and elevate the public in their art. Look at this fine art as a glass of another fine art. What would have been said of academies proposed to train men to become poets? The idea would have been received with more than a little laughter. Yet you might turn out a thousand men per annum to write the pretty sort of verses generally found in magazines, which are appreciated by the general public just because they suit their taste, being full of details and little else. In fact, your men would be poets in everything except "the vision and the faculty divine." You could not expect them all to be Homers.

Now, let us turn the idea back to the academies of art, and ask: "If you cannot train men to be poets on the higher platform, can you train men to be painters on the higher platform?" The answer must be the same in both cases. How may teach them the art of drawing, colouring, and composing, in so far as that can be taught, and they will turn out pretty pictures of all shapes and sizes; but you could not expect them all to be Raphaelles. Britain, like other countries, has its few pre-eminent painters, and many more of eminence, whose position would have been the same if academies of art had never existed. I do not allude to those who have been artists but for their training in an academy. Unable to reach above their height, these men necessarily remain on the lower platform, devoting themselves to the art of giving what Sir Joshua Reynolds calls "the punctilious delineation of details." When you consider that this style of painting is that most appreciated by the general community, and also the great number of men who produce such pictures, you see at once how the demand and supply fit into each other, and how the appetite for details is fed, and how such feeling increases the appetite. In fact, such has become the rage for brilliantly-graphic details, that even men who might achieve higher work are found accommodating themselves to the popular demand of the day. The public is the great patron now, and it is to be feared that the noble idea of the artist elevating the patron's taste may be resolved into the patron giving law to the artist. The pocket with the cash in it commands the situation.

These remarks are not intended to disparage the thousand artists of the day. They fill their place, do their work, and meet the public demand. They produce very pretty and pleasing pictures, that give delight to thousands; and the skill they, as a body, have acquired is quite wonderful. It is admitted now that there is a Scotch as well as an English school of painting of high standing, and the nation has reason to be proud of both. The annual exhibitions in Edinburgh, no less than in other places, show not only that there is a general excellence in manipulation, but that many artists have a feeling of fine art, which would probably bear more in proportion to the public taste. On the whole, these exhibitions have, no doubt, to a certain extent, a refining and elevating effect on the public; yet not of the loftiest kind. Pretty detail and high finish are too much the rule; and there is too little evidence of the simple greatness which results from a high aim and a lofty habit of contemplation.

(Co to be continued.)

CAMERA FOR LANDSCAPE WORK.

BY DAVID AIRD.*

While the resources of landscape photographers have received valuable additions in those varied dry processes which have been perfected during the past few years, to those especially who only practise our fascinating art in their hours of leisure and relaxation, the ease and certainty with which dry plates can now be prepared render them a boon which cannot fail to be felt and appreciated; but it is a curious fact that the more we advance in improvement, the more we feel how much may yet be done.

To workers of the wet process, the usual arrangement of camera and dark slide appears to be all that can be desired; but when we take an excursion into the country with two or three dozen of dry plates, the number of slides for their storage in the camera is almost preposterous. The size of each camera usually adopted by camera makers. In the centre of this upper compartment is the focusing screen A, held forward in its place by the two springs BB; the slide for raising the plates is an open frame, being simply two slides of brass, C, one passing down each side of the focusing screen and joined by a round cross-bar D, at both ends, a short distance from the side. The length of each strip of brass is furnished with a small projection, E, the use of which we shall presently see. In the under com-

* Communicated to the Edinburgh Photographic Society.
A NEW PLAN OF PREPARING TRANSFERS FOR MECHANICAL PRINTING.

By H. L. Boalhettro. *

I cover a well cleaned glass plate with oxgall, which may be made to keep a long time on the addition of crocets. With the help of a bit of woolen rag I gently rub the surface of the glass in such a way as to distribute the oxgall evenly over the surface, without leaving any lines. I lay at a gentle heat, and while the plate is still warm I place it on a levelling stand. In the meantime I prepare a solution of gelatine made up of—

Gelatine .. 5 grammes
Water ... 1 part
Rock alum .. 1 gramme.

This is thoroughly filtered through a bit of flannel after the gelatine and alum have been dissolved. While it is still warm, I pour it upon the plate treated with oxgall, and if the gelatine does not spread well I assist matters with a strip of cardboard. I then take a sheet of white paper, rather strong, and this I immerse in a dish of water, and when perfectly moistened it is drained by pressing against blotting-paper. The sheet is stretched over the gelatine, having a care that no air-bubbles arise, and that no gelatine gets on the back, and is left in this position till the next day. If the weather is not too damp the paper covered with gelatine separates from the plate of itself, but should this not be the case the margins are lifted by means of a penknife. The surface of the sheet is of a most brilliant nature, and may be kept in this state for an indefinite period.

When I desire to make use of it I plunge it into a three per cent. aqueous solution of bichromate, and suspend it to dry, after which it is exposed under a negative. As soon as the image appears in all its detail I plunge it in a solution of—

Nitrate of silver 1 part
Alcohol .. 20 parts
Water ... 50 parts

The surface then becomes of a brick-red, in consequence of the formation of chromate of silver. I wash with pure water, and then throw over the image some liquid ammonia diluted with three times its volume of water. Under this reaction the red that disappears (chromate of silver being gives place to ammonia), and there remains an image of a pale greenish tint, formed of oxide of chromium. After this transformation I wash again with water, and place the picture (face uppermost) upon a hard board, very clean, to which it is fixed with drawing-pins. A dry and very clean sponge is now passed over the surface, and in this way the excess of humidity is removed from the surface, after which the image is inked up by means of a lithographic roller.

The advantage of this process over those with which I have hitherto experimented is, that the ink attaches itself immediately to the impression, even when it has been over-exposed, and that one never gets reverse images, as is the case in other methods, when the undecomposed chromium has not been eliminated. The gelatine, by its association with alum in the first solution, and its immersion in the bichromate of potash bath, becomes perfectly insoluble, its consistence being argued by the effect of the silver solution.

To Restore Old Collodion.—Mr. R. A. Robison says, in the Western Photographic News:—To a pound of collodion add two pounds of water; shake thoroughly and let settle, when the cotton will all precipitate. The ether and alcohol being on top may now be decanted, and the cotton obtained from the water by straining through a piece of muslin. There will be a trace of water in the alcohol previously decanted, which may be removed by adding a little unslacked lime, and allowing it to stand a day or two. The cotton you have obtained mixed with an equal quantity of new, makes a fine soft working collodion. The ether and alcohol after above treatment may require the least quantity of acid. For this purpose, take one drop of muriatic acid, and add to one ounce of collodion, shake up and add a drop to your collodion. It may also be necessary to add new excipients. Filter the solution carefully to remove the lime. Should any of the lime remain in suspension, it will in a short time precipitate in the form of a white powder. Old and apparently useless collodion treated in this way I have found to work equal to or better than new.

* Revista Fotografica
A NOVELTY IN PORTRAITURE.—BOUDOIR PORTRAITS.

Regarding portraiture in its business aspects, the introduction of a novelty calculated to give an impetus to demand must always be interesting to professional photographers. This month, as an effort to introduce to our readers a new style of portrait which cannot fail, we think, if judiciously brought before the public, to secure general approbation, and create a new demand for photographers. The idea of the new style is due to Mr. Valentine Blanchard, who has felt the need of a popular style of portrait, for production and circulation in large numbers, like the card and cabinet portraits, but larger and more important than either. The size should be sufficiently important to do full justice to modern costume, without being so large as to interfere with the existing demand for large sizes, such as ten by eight and upwards, intended for framing. It should also possess symmetrical proportions, well fitted for doing justice to full-length standing figures—a style generally satisfactory, as permitting flowing draperies to be fairly rendered.

All these and various other desirable points are secured in the style which Mr. Blanchard recommends to his brother portraitists, as worthy of public favour, under the name of the “Boudoir portrait.” The size of the print is seven inches and a-half by four inches and three-quarters; the size of the mount is eight inches and a quarter by five inches. It will be seen that this gives precisely the same proportions as a card picture, and is, in point of fact, exactly the size of four card pictures. A narrow margin of mount, one-eighth of an inch wide, is left at the top and sides, and half an inch at the bottom, after the usual mode of mounting card portraits. The effect of a fine photograph in this style is singularly attractive and imposing, and must, we feel satisfied, take the public fancy at once. It will probably be difficult to secure uniformity in price; but there may be, at least, a uniform principle in charging. Mr. Blanchard charges, for half a dozen of the new style, two guineas, which is just twice his charge for the same number of cabinetas. As each picture is just the size of four card pictures, it will be wise to make four times the price. That is, in the same case especially as the larger size will make a greater demand on the artist’s resources to produce a perfectly satisfactory result.

The most effective subject for the new size will be found full-length figures of ladies in modern fashionable costume, to rendering full justice to which the boudoir portrait especially lends itself. The head in such a picture is about an inch long, or somewhat less than that. Three-quarter lengths, vignettes, are singularly charming in this style, and may probably in many cases involve less trouble in production. The proportions of the picture are, as it will readily be seen, admirably well suited to pictorial purposes for full-length and three-quarter figure figures, being as nearly as possible the same proportions employed by Gainsborough, Sir Joshua Reynolds, and other distinguished portraitists in painting a similar class of portraits. The shape of the picture relieves the artist of the necessity of filling up a vast space of background at each side of the figure, often a trouble in wider shapes, whilst it furnishes facility enough for the effective introduction of a few suitable accessories, or a little suggestive sketchy landscape effect. Another possible advantage of the proportions necessary in the figure, but an advantage which it will be wise to use charily, is the possibility of printing cabinets, or even cards, from the same negative where they are imperatively required.

An important question will arise in the minds of portraitists as to the mode of launching such a novelty. Fortunately, facilities for this are already provided. Mears, Marion and Co., of Soho Square, have already manufactured albums, cases, frames, mounts, and all aids to placing the boudoir portraits before the public in a complete form at once. Portraitists know well the importance of such aids to launching a new style. A complete set of specimens in mounts and frames, in cases and albums, have a much more important and attractive effect than when or three small examples and other disturbing agents induced to try the new style, and to purchase an album, will at once stimulate her friends to sit for similar portraits to fill her album. The new size will not involve any serious mechanical difficulties. A whole-plate lens will serve admirably for producing such portraits, and a ten by eight plate, used with a camera with repeating-back, will serve perfectly for two negatives side by side, and so absolutely printing in a complete form at once.

We commenced our remarks on this novelty by referring to it as possessing primarily a trade interest; and this is a form of interest which even the most lofty-souled artist should not affect to despise. Every art and every science in existence has its relation to such interests. One great aim of the tradesman whose ambition never soars above the shop is to stimulate the market, to create wants, to induce the public to do not simply what the artist wants, but things which, although the artist does not require them, they may be well enough pleased to have when once a desire for them has been awakened. In many important branches of trade a constant change in fashion is of set purpose secured, in order to keep up an equally constant demand for novelties. Mere wear and tear of an ordinary kind in the goods they supply would not maintain the trade, and hence the demand must be stimulated by the desire for change, which is initiated by changing fashions. To those who look at the matter in a strictly business light, a taking novelty will at once recommend itself; and to those who are unwilling to regard their profession as a trade governed by trade influences, it may be easily shown that arguments closely analogous are as applicable to the artist as to the tradesman. “A man’s favourite desire is to create wants: its first and most essentially educative operation is to stimulate a desire for something higher than the bare means of living. ‘Allow not nature more than nature needs: man’s life is cheap as beast’s.’” The mere means of living supplied, bare food for the body provided, the art instincts begin to assert themselves, the refinements of life are desired, and every advance in science and art creates as well as satisfies some higher taste or aspiration. Photography itself is a notable example. Portraits of beloved friends have become almost a necessary of life in every home, from the palace to the cottage; whilst a little more than a quarter of a century ago the portrait was a comparatively scarce luxury, which it never entered into many minds to desire to possess. Every good
novelty in photography is, then, worthy of the attention of all professional portraitists, whether their primary aim is to push a trade, or to work out one of the functions of art by creating and satisfying refined tastes and aspirations.

ANOTHER NEW STYLE.—IMPERIAL PORTRAITS.

In the preceding article we describe the novelty in portraiture which Mr. Blanchard has recently introduced under the name of the Boudoir Portrait. We have just received a series of very charming specimens from Mr. Abel Lewis, of Douglas, Isle of Man, produced in a style which he names the Imperial Portrait. It is practically a whole-plate portrait, mounted with a narrow margin, card fashion. To be precise, the prints are just eight inches and a-half by six inches and a-quarter, and the mounts, which are of buff cardboard, are ten by seven inches. The portraits are chiefly three-quarter lengths, and are probably printed from ten by eight or even larger negatives. In some cases the portrait is printed in a circle, with a grey margin. This plan is adopted with children, and is very effective and pleasing. As examples of art photography, we have rarely seen anything more charming than these pictures. Placing them side by side with the Boudoir Portrait, they are so distinct in size and effect that they need not clash, and may both fairly take the public taste, although, for a large run, it is probable that the Boudoir style will be best suited. Mr. Lewis has found the Imperials a success beyond his anticipation, and he has not found it interfere at all with the demand for larger sizes, but, on the contrary, to act as feeders if we may use the term, to the taste for larger work. Mr. Lewis states that he has long felt the need for something larger than the cabinet, in a similar style, and hence he adds independent testimony to that of Mr. Blanchard, to the effect that an opening for a suitable novelty or novelties exists. Mr. Lewis has already published some studies in the style which have at once taken with the public and sold largely. Many other leading photographers in the North are already adopting the Imperial size, we understand.

There is, perhaps, a slight disadvantage in the fact that the term “Imperial” has already been employed by some photographers in America to designate the cabinet portrait; but as it is manifestly unwise to use a new name for a familiar size, we may fairly leave the error to correct itself, and adhere to the use of the term Imperial to describe the noble size which Mr. Lewis has introduced.

TRANSLIT OF VENUS.

We are indebted to Mr. J. Smale, of Dartmouth, for a brief note on the operations of the observing parties in the south. Two of the gentlemen in charge of the photographic observations of the American party, being passengers on board the Edinburgh Castle, which put into Dartmouth after a rapid passage of twenty-four hours from the Cape, handed the note in question to Mr. Smale, who has been good enough to forward it to us for publication.

EDINBURGH CASTLE. March 5th, 1875.

The General Expeditions at Kerguelen, 49° S., 71° E.—The expeditions were successful. The American party observed ingress, and obtained sixty-five negatives with Venus on the disc of the sun.

The English Expedition.—An extract from Father Perry’s is as follows:—“We were fairly successful on December 9th, having obtained a first-rate observation of ingress at one station, and a very good one of egress at another. Egress was fairly observed at our first station. Photography has not been a success with us.”

The German Party.—The Germans were fairly successful, obtaining a first-rate observation and about sixty negatives.

The American party left the island on 12th January. The voyage to the Cape was very pleasant. The party then separated, part remaining on board the man-of-war Monongahela, and will go to Rio Janeiro, Brazil; and the rest coming to England, and then home. The parties left on the island were well.

G. W. DRYER, Photographers to IRVINE STANLEY, American Party.

MOTTOES FOR PHOTOGRAPHERS.

BY O. G. REJLANDER.

[The following mottoes, selected as applicable to photography and photographers by the late and lamented O. G. Rejlander, will interest all our readers. We are indebted for them to Mrs. Rejlander, who, having recently found them amongst her late husband’s papers, knew that they would interest us, and kindly placed them in our hands.—Ed.]

1. To an Operator.
 "She who hesitates is lost."

2. To a Printer.
 "Make hay whilst the sun shines."

3. To a Toner.
 "Let not thy left hand know what thy right hand is doing."

4. To a Retoucher.
 "A stitch in time saves nine."

5. To a Spotter.
 "Keep within bounds."

6. To a Mounter.
 "Act on the square."

7. To a Publisher.
 "Live and let live."

8. To a Purchaser.
 "A labourer is worthy of his hire."

9. To a Critic.
 "Ne sutor ultra crepidam."

FRENCH CORRESPONDENCE.

A SUBSTITUTE FOR RETOUCHING.—REPRODUCTION OF ENGRAVINGS AND HALF-TONE.—THE PHOTOGRAPHIC MANSIONS OF PARIS.—M. LIEBERT’S NEW FRANCO-AMERICAN STUDIO.

I have just received from M. Hassan, a photographer at Uran, a letter, in which that gentleman describes a method of dispensing with the retouching of negatives. The whole of the method consists in interposing between the negative and the prepared side of the sensitive paper during printing a light tissue, like crape or gauze, such as dressmakers make use of. The exposure is conducted in the ordinary way, only that from time to time, when viewing the progress of the plate, the tissue, which is elastic, is stretched, and the thread or network, changing its position, contributes to render the result very soft and delicate. In the case of large plates, such as one is obliged to print in big frames, closed by three or four covers, the tissue may be changed or removed altogether, after the printing has gone far enough for your purpose, leaving the impression, during the last period of its sojourn in the frame, in direct contact with the negative film. The author of this communication recommends especially the employment of a good varnish upon the clichés, and recommends that the operator should assure himself of the same being perfectly dry, so that there is no chance of the tissue adhering to the same. One need not fear that the dark shadows will lose their brilliancy—or, at any rate, that the prints will be produced of a grey, blunt character—for if the tissue
in a strong solution of iron (I used old developing solutions) till the film is saturated. They should be now well washed and again immersed, this time in a bath of a saturated solution of gallic acid. It is well known that a mixture of gallic acid and iron in solution forms ink. In this case the film is first impregnated with iron, and then converted into ink upon the application of gallic acid, and if, on examination, it is found that the negative or positive is not sufficiently dense, the same process can be repeated again and again, taking care each time to thoroughly dry before immersing in the iron bath.

They say "Out of evil comes good;" and if I had not read in the last week's issue of the News the article in which Mr. R. M. Monro stated that Mr. Monro had patented a method of intensifying carbon negatives, I certainly should not have thought of giving publicity to mine.

Trusting that this wee bit of information will find a welcome place in the columns of your valuable journal— I beg to remain yours obediently,

Charles Whiting.

Proceedings of Societies.

Photographic Society of Great Britain.

The usual monthly meeting of this Society was held on the evening of the 9th inst., in the Architectural Gallery, Conduit Street, Mr. J. Glaisher, F.R.S., in the chair.

The Chairman said that somewhat unexpectedly he found himself in the position of chairman amongst them. He would simply express a hope that all their proceedings would be characterized by unanimity and a general aim to secure the advancement of the science.

The Secretary read the minutes, which were confirmed, and Captain Vernay was elected a member of the Society.

Captain Abney then read a paper giving details of his photographic experiences in connection with the transit of Venus observations in Egypt, which will appear in our next. Some examples of negatives and transparencies were shown in illustration of remarks in the paper.

Some conversation followed, in the course of which Captain Abney stated that the temperature during which his photographic operations were conducted ranged from 40° to 90° Fah., giving a difference of 50°. He had found the dry and wet bulb of great value, as often indicating the probable exposure required.

The Chairman expressed the great interest and pleasure with which he had listened to the paper, and proposed a vote of thanks to Captain Abney, which was carried by acclamation.

Mr. P. York exhibited, by the aid of the magic lantern, a view of the station with photographic and astronomical erections used by Captain Abney at Thebes, and some negatives of the transit, taken by Mr. Bruton at Cape Town. After a vote of thanks, the meeting having been made special.

Mr. M. More than a resolution of which he had given notice, to the effect that payment of subscription for the past year be taken as a qualification for voting, in place of the offensive rule which had been recently put in operation, making payment of subscription for the current year imperative before voting at annual elections.

Captain Abney seconded the resolution.

Col. Stuart Wortley objected that the special meeting was not properly called according to the rules, which required it to be called by the council, or on the requisition of twenty members, and notice according to the rules had not been given to every member.

The Secretary explained that the special meeting was duly announced by the president at the last meeting, and due notice had been given in the Journal to every member.

In the by-elections the regular members followed on various points, in which Mr. Brain pointed out that the proceedings were perfectly in order, and in accordance with the rule. He did not agree with Mr. Hooper's motion, but contended that he was perfectly in order in bringing it forward, and the meeting was competent to deal with it, as it would be with another motion, of which he intended to give notice.

Mr. Stillman believed the meeting to be irregular and out of order. He was proceeding to point out that the Society was altogether disorganised and in a muddle, with rules drafted, accepted, broken, and misunderstood, but was interrupted by cries of order from the body of the meeting. After more desultory conversation, in which Mr. Hooper, Col. Wortley, Captain Abney, Mr. Bird, Mr. Stillman, Mr. Spiller, the Secretary, and the Chairman took part, Mr. Hooper's motion was put to the meeting and carried.

The Chairman said that the vote showed the feeling of the meeting; whether it possessed a legal value or not he could not say until he better understood the rules, which having been made in his absence, he was not prepared at present authoritatively to interpret.

The proceedings then terminated.

Edinburgh Photographic Society.

An ordinary meeting of the Society was held in the Bible Society's Rooms on the evening of Wednesday, the 3rd inst., the President, Dr. Thomson, in the chair. The minutes of the previous meeting, and the minute in connection with the death of the late Mr. Carl Rejlander, were read and approved; and the following gentlemen were admitted ordinary members: Messrs. David Small and Thomas Davidson.

Mr. Neilson read a paper entitled "Art Criticism" (see page 122), illustrated by several fine large and small photographs.

The President congratulated Mr. Neilson on the admirable and exhaustive paper which he had read. The paper was one of great value, and showed that he was thoroughly at home in the subject. He had given much study to it. It had been said that artists were born, not made; but even genius required education, and he thought the present generation enjoyed greater advantages than their predecessors, in so far that if one only brought his powers of observation into play, it was impossible to have a better work. The finding mass was the only one. He could remember the time when there was no gas in our streets, and when the shop windows were required for light, and not for show; now, however, matters were very much reversed, and we had in the windows of the print-sellers, the furniture dealers, and importers, a constant changing series of museum's pieces, or art galleries, that were daily exercising an abiding influence on all who cared for such study.

Mr. Norman Macbeth was very much pleased with the paper just read, and especially with the pictures by which some of Mr. Neilson's views were illustrated. He had worked and written in the right direction, and both pictures and paper went far in corroboration of what had been said, and strongly maintained, on a previous occasion.

Mr. Mackay had great pleasure in listening to the paper just read; especially as he pleased with Mr. Neilson's observations on fine art, which did not consist of minute detail, but in a proper working up of the ideal. This, he thought, was well shown in Mr. Neilson's pictures, which he did not hesitate to say were equal to anything of the kind that he had produced in Iceland.

Mr. Boyd agreed with the greater part of Mr. Neilson's paper, which he considered an able production. Much indeed depends on development, and he might say that where it was desired to produce texture, the least possible quantity of silver should be used, and as far as possible. More than a year ago, he read a paper before the Photographic Society of Scotland on this subject, and had at that time developed with gallic acid alone, without a particle of silver. He thought it might be held as axiomatic, "the less silver, the more texture."

Mr. Neilson said that there was less need for silver in intensifying than was generally supposed. He found that, after fixing, he could get a considerable increase in the intensity by the application of iron alone.

Mr. David Aird then exhibited, and read a short paper in explanation of a camera for large plates, which he had arranged, that, without dark slides, a dozen plates might safely and certainly be exposed in any required order. (See page 124).

Mr. Turnbull understood that there had been a camera patented—he thought by Cook—having the same object in view. He had not seen it, but Mr. Neilson believed that the one now on the table was in certain respects much more convenient and certain in action. One great advantage he considered to be the power to take the plates in any order, and that so easily and certainly that a mistake seemed impossible. Another important point was the fact that the camera contained in one piece everything required, so that nothing could be either lost or forgotten.

Dr. John Nicoll thought Mr. Aird deserved much credit for the perseverance and labour which must have been expended in having (unaided) produced such a complete result.
KEEPS QUALITIES OF THE PELICHEL
EMULSION.
BY WILLIAM ATKINS.*
In accordance with a promise made at our last meeting, I now wish to make a few remarks on the keeping qualities of pellicel emulsion prepared by Mr. W. B. Bolton's process.
It will be remembered that at the April meeting of our Association, the author exhibited two transparencies produced by means of this procès—of one upon a plate prepared the previous January, the other upon a plate made from the same batch of emulsion used on that occasion, and which had in the meanwhile remained in my possession untouched, being at the time eighteen weeks' old.
A few evenings since I again tried this old emulsion, and the result are now before you. The conditions observed were as nearly as possible similar on each occasion, the same negative having been used and the same exposure to gaslight (ten seconds) given. No gold was used for toning. The results, upon comparison, are as good as the previous one. The emulsion has not deteriorated in the slightest degree. A slight opalescence is observable upon drying the plate; but this may arise from the ordinary decomposition of the pyroxylene, which takes place with even plain collodion; or it may be caused by some chemical action traceable to the organic matter used in the emulsion, which, in this case, consisted of tannin, soap, and sulphate of quinine. The latter substance has since been found to exercise a very powerful effect as a restrainer, and it is very probable that its action does not stop there.
The plates prepared from this particular emulsion exhibit now, as previously, a tendency to slowness in development, but in that respect are in no way different to what they were thirteen months since, thus proving that no chemical change has taken place in the emulsion itself.
This, I think, fairly shows that the emulsion is possessed of satisfactory keeping qualities. Holding in view the additional twelve months' experience gained, and recent improvements in the details of the process, I think it holds out a fair prospect that a sensitive emulsion may be made which will retain all its good qualities as long as ordinary bromized collodion, or, indeed, indefinitely.
These remarks refer simply to the sample of emulsion I have possessed since January in last year, before the process was published by Mr. Bolton. Since that time improvements have been made in the details of the process, but the unchanged nature of this preparation is, I think, established. The pellicel previous to solution will undoubtedly keep indefinitely.

GLUE AND GELATINE.
As gelatine in various photographic processes, and glue for mounting purposes, become more extensively used every year, it is only natural the the readers to know something of the variable composition of these bodies as found in commerce. Mr. S. Dana Hayes gives, in the American Chemist, the analysis of various samples which he has examined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Analysis by Mr. S. Dana Hayes</th>
<th>Analysis by the Photographic News</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (loss at 100°C)</td>
<td>16.70</td>
<td>16.28</td>
</tr>
<tr>
<td>Gellanin, with a little animal fiber</td>
<td>79.85</td>
<td>80.42</td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>Sulphate of lime</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>Phosphate of magnesia</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Alkaline salts</td>
<td>0.17</td>
<td>0.12</td>
</tr>
<tr>
<td>Silica, oxides of iron, &c.</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Oxide of zinc</td>
<td>1.01</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Total: | 100.00 | 100.00 |

* A communication to the Liverpool Amateur Photographic Association.

grades, and from different makers, showed the proportion of water contained in them to vary from fourteen to eighteen per cent., averaging seven per cent.; and the proportion of ash or mineral matter varied from three to seven per cent., averaging rather less than four per cent. Two of these samples contained about one per cent. of white zinc, and two of them contained sulphate of lime.
And of two samples of grade, one contained sixteen and a-half per cent. of water, and 2.56 and 3.11 per cent. of ash respectively. There was no oxide of zinc or sulphate of lime in these gelatines.

The presence of so much water was quite unexpected, and, as the quantity is nearly the same in fresh and in seasoned specimens, it is not a make-weight, although steam is very freely used in the rooms where glue is packed by the manufacturers. The carbonate of lime comes from the quicklime used for cleaning and preserving the animal matter, or "glue-stock," while the sulphate of lime is formed by the addition of small quantities of sulphuric acid during the manufacture, to neutralize the lime that is carried forward by the solutions of glue. The oxide of zinc is said to be added to "prevent souring," or the acidity caused by decomposition, and it also improves the colour of the glue; but it is not very generally used, and it is generally believed that it impairs the keeping qualities of the glue. I have heard of the use of sulphate of zinc, alum, magnesia, &c., by glue-makers, but I did not find any other substance than those named above in these specimens, which represented the article commonly sold and used.

The impure glues, or those containing the most mineral matter, became almost insoluble after they had been broken into small pieces, and heated in a hot air-bath (copper even), at 100°C., for two or three hours, until they were heated, they then soften and become dough-like, but do not dissolve when boiled in water for some time. The purer gelatines were not so much injured, and on boiling containing only 0.8 per cent. of mineral matter were not affected by this thorough drying. The solid sheet glue, while drying in this way, tansified, and became very porous; the frozen glue did not alter in structure.

Correspondence.

REMOVING EXCESS OF IODIDE FROM THE BATH.
Sir,—I have noticed that it has been recommended to add barium nitrate to the bath, either at the time of making it, or to rid it of excess of iodide. Allow me to state that those who are troubled with excess of iodide will find that to the bath solution barium sulphate be added, and shaken up on filtering, all excess will have been carried down. In certain chemical manipulations with clay I have been in the habit of using this to clear a water solution.—
Yours faithfully,
W. D. W. Abney, Captain R.E.

STRONG DEVELOPMENT.
Sir,—I notice with interest your article in last week's issue on strong development; but I ask leave to point out that the principle of strong development is the same, whether the strength of the pyrogallic acid or of the ammonia be reduced, so long as one of them is strong. You will remember that I have pointed out that the proportion of ammonia and pyrogallic may be varied indefinitely, according to the class of negative required, and, no doubt, Captain Abney's work being special, he required to modify my formula for his special case.
I beg to conclude by thanking you for the way in which you speak of my introduction of this new principle in dry plate work.—Faithfully yours,
H. Stuart Wortley.

INTENSIFYING GELATINE NEGATIVES.
DEAR SIR,—In the winter of 1873-74, having some carbonized papers to make, I found it desirable, in some instances, to intensify them, and after experimenting a little, I could intensify gelatine transparencies or negatives to any extent, and with comparative ease. I now purpose giving publicity to the means I employed, and I hasten to do so lest some more ambitious worker than myself should think of the same, and look it up from the photographic world, or in other words, 'improve it.'
These transparencies in my case were made in the ordinary manner, the tissue of the Autotype Company being sensiti-ised, printed, and developed on glass, using the Autotype varnish as a substrate. When quite dry, immerse them
M.E.TEOROLOGICAL REPORT FOR FEBRUARY.
BY WILLIAM HENRY WATSON.

Observations taken at Braystones, near Whitby, and at sea above sea level.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Atmospheric Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Morning</td>
</tr>
<tr>
<td>1.00</td>
<td>45°</td>
</tr>
<tr>
<td>2.00</td>
<td>43°</td>
</tr>
<tr>
<td>3.00</td>
<td>54°</td>
</tr>
<tr>
<td>4.00</td>
<td>34°</td>
</tr>
<tr>
<td>5.00</td>
<td>38°</td>
</tr>
<tr>
<td>6.00</td>
<td>30°</td>
</tr>
<tr>
<td>7.00</td>
<td>37°</td>
</tr>
<tr>
<td>8.00</td>
<td>30°</td>
</tr>
<tr>
<td>9.00</td>
<td>34°</td>
</tr>
<tr>
<td>10.00</td>
<td>34°</td>
</tr>
<tr>
<td>11.00</td>
<td>34°</td>
</tr>
<tr>
<td>12.00</td>
<td>34°</td>
</tr>
<tr>
<td>13.00</td>
<td>34°</td>
</tr>
<tr>
<td>14.00</td>
<td>34°</td>
</tr>
<tr>
<td>15.00</td>
<td>34°</td>
</tr>
<tr>
<td>16.00</td>
<td>34°</td>
</tr>
<tr>
<td>17.00</td>
<td>34°</td>
</tr>
<tr>
<td>18.00</td>
<td>34°</td>
</tr>
<tr>
<td>19.00</td>
<td>34°</td>
</tr>
<tr>
<td>20.00</td>
<td>34°</td>
</tr>
<tr>
<td>21.00</td>
<td>34°</td>
</tr>
<tr>
<td>22.00</td>
<td>34°</td>
</tr>
<tr>
<td>23.00</td>
<td>34°</td>
</tr>
</tbody>
</table>

From the above I arrive at the following:

- Maximum temperature observed:...
- Minimum... 25° 34°...
- Mean... 34° 36° 37°
- Mean of whole... 38°+1

- Number of fair days...
- Number of days on which more than 3° fall...
- Number of fair and sunny days...
- Number of fair days but gloomy...

- During the month, the rain fell to the amount of 1.48 inches, and an evaporation to 1.90 inches.

Chemical Laboratory, Braystones, near Whitby, March 3rd, 1875.
The Photographic News, March 19, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.
COPYING BY PAPER TRANSPARENCIES—Himes' DRY PLATES—THE VALUE OF SWAN'S DISCOVERY OF INTENSIFYING CARBON PRINTS.

COPYING BY PAPER TRANSPARENCIES.—Some time ago we mentioned the application of photography to the handy and architect, who found the process very handy for the purpose of making rapid copies of their plans and drawings, simply putting a sheet of sensitized paper under the tracings, enclosing the between a pair of glass plates to keep them flat, and bracketing the two together by a few American clips. Professor Alexander Hershel, of Newcastle, also gave our readers a description of the method he adopted for copying his tables and observations, employing iron salts in the process, which rendered his MS. and figures in blue characters. Photography the professor found so useful for copying in this way, never making a mistake in a fraction, a figure, or decimal point, or blurring over the abstruse terms to be met with in science, that he never employed any other medium, for he could always upon an exact exactitude without the trouble of having carefully to go over the copy and compare it with the original. Accountants, in like manner, we should think, would also find photography useful occasionally in this direction, as they could always rest assured that no error, however slight, has crept into any copy they have got the sun to make for them. One objection, more than any other, has perhaps摄影 in in the matter of copying of facts and figures in this way, and that is the circumstance that your work is not, as a rule, produced upon paper so transparent as to allow the light to penetrate freely. When one is not satisfied with white lines on a dark ground, and desires to print from a negative instead of a positive, the difficulty becomes all the greater, for it is next to impossible to get an impression from a photographic print produced under ordinary circumstances. Waxing the original may be had recourse to, but pressing the heated wax into the paper, besides being a tedious operation, may have the effect of injuring a document you desire to preserve intact. The discovery of Herr Füsscher, which has now been published some little time, may be made use of in this connection, with admirable results. This adhesive, as some of the experimenters may know, has invented a simple method of rendering paper transparent, and also of restoring its opacity again afterwards. One volume of castor oil is dissolved in two or three volumes of spirits of wine, and into this is dipped either plain paper or paper which already bears a drawing or writing of some kind. The mixture rapidly soaks into the paper, and makes it transparent; and, but a short time after the removal of the paper from the bath, the spirit evaporates, and a dry transparent film remains. In the case of plain paper, any design may now be traced or sketched upon it with Indian ink and such like pigments. Designs upon paper of this kind would copy admirably as clichés, for there is transparency enough for the rapid production by photography of a second, and consequently, a third, and so on, until the operation is stopped by its being necessary, if need be, afterwards as a negative. From the latter, good and vigorous impressions can be obtained in the right sense; and although, possibly, they might not be so suitable for all purposes as copies written or sketched by hand, they would, nevertheless, be perfectly trustworthy as regards their accuracy. Professional men who would thus employ photography for copying their tables, formula, or designs, would do well to use either washed albumenized paper and fumed pads of cloth or paper, or the durable sensitive paper sold in commerce, which will keep good a long time; for obviously they would find it very irksome were they called upon to prepare a bit of paper every time they wished to make a copy. Their original MS. or sketch can be changed back again to its former opaque condition by rinsing it in a bath of methylated spirit, which speedily washes out every trace of the castor oil.

Himes' DRY PLATES.—In a recent number of the American Journal of Science, Professor Himes, of Dickinson College, gives full details for preparing his photographic plates in daylight by desensitizing and re-sensitizing the silver compounds contained in a salt of bichromate of potash, which is used for this purpose, the surface of the light being annulled by pouring a few per cent. aqueous solution of iodide of potassium over them. If the plates, after dipping in the nitrate of silver bath, are rinsed, and then exposed for several hours to sunlight, or diffused daylight, and in this way rendered insensitivae, they may be dry and will keep for an indefinite period. Just before use their sensitiveness is restored to them by immersing them in a solution of tannin (fifteen grains tannin in one ounce of water), the latter operation being of course conducted in the dark. Unfortunately, this operation alone renders all the other advantages claimed rather questionable, since, after all, the sensitizing of the plates, and drying them in the dark, in an even temperature and sheltered from the dust, is just as most difficult and tedious manipulation connected with the preparation of dry plates. The subsequent sensitizing of Professor Himes' films with the tannin solution would probably occupy but a few minutes, but the drying of them would still necessitate some hours. Moreover, the mere fact of the plates being dried twice over is a grave question not to be overlooked, for the desiccaty process would, no doubt, tend to a repetition of the collodion, which would often prove the destruction of the plate, from the adhesion of dust particles in contact with the film. For these reasons, we do not think the process so simple of carrying out as others that have recently been brought forward.

The Value of Swan's DISCOVERY OF INTENSIFYING DRY PLATES.—Swan's discovery that permanganate of potash can be used for intensifying the carbon image will no doubt be largely made use of when carbon printing comes to be more vulgarized. Any one who has developed a pigment print upon glass, with a white sheet of paper underneath to watch when the action has proceeded far enough to give a good positive print, must have been surprised the first time he removed the paper and looked at the print by transmitted light. What would be a good vigorous picture upon a white basis is the mere ghost of an image looked at by transmitted light. The darkening, and nothing more, or more forcible colouring, is necessary before a good transparency can be made of it. By employing a blacker tissue, it is true enough, a good vigorous impression, such as would serve for enlarging, is at once obtained, but then it sometimes happens that this dark-tinted tissue is not at hand. But perhaps the most useful application of Swan's discovery is the following. In the case of one's negative being broken, it would suffice merely to take a good well-printed carbon positive that you may already have secured from the cliché, and cement this down with indiarubber solution, or some such matter, to a glass plate. Contained immersion in lukewarm water would remove the paper backing, and leave the faint carbon positive adhering to the glass plate. This impression would then be intensified with permanganate of potash, and be capable of yielding in its turn another negative.

ART-CRITICISM.

BY W. NEILSON.

Photography.—If this long preamble have succeeded in indicating the abuse of details in art, the application to photography is self-evident. If the artist be tempted to pander to the prevalent taste of the day, and merge the
central idea of his picture in an undue prominence of unnecessary details, the photographer is naturally still more strongly tempted in that direction, seeing he can render details with a minuteness and delicacy no artist can approach. In turning out his wonderful details, it is especially for him to remember that facility in working is not always felicity in work.

I hold that, as taste is the judgment arrived at by the embodiment and balance of the artistic faculties in the individual, it generally exhibits itself in the community in modes that are far from giving one an idea of perfection; and I must add that the faculties which appreciate beauty and grandeur do not give general evidence of being greatly developed. No doubt multitudes have pleasant associations about the country in the abstract, connected with pastoral idylls, love in a cottage, and the like; but when they stand face to face with nature, they feel no responsive thrill. The blue-domed temple is no temple to them. I shall give one sample, and it is far from being exceptional.

Frequently, sailing on Loch Lomond in a steamer full of tourists, I have observed that not one in fifteen seemed to observe the mountain where they chatted, looked at their guide-books, and enjoyed the locomotion and the hill air; in short, they were “doing” the fashionable in a healthy and pleasant manner; but they were not admiring Nature. Yet these same people would look with delight on photographs of the scenes through which they were passing. The grand details of nature are not as easily believing their magnitudes against the wide spread of shine and shade, were beyond their appreciation; but to see a tree or a rocky island put into three inches, with all the details of twigs and sparkling points brought out in a clear, startling distinctness—ah! that was worth looking at. And sometimes they would have the sense to say, “Photography is a wonderful art.”

The same sort of thing may be seen in Edinburgh any summer day, when Princes Street is crowded with tourists on their way to the Highlands. Few are the glances bestowed on the unique view of Castle and Old Town; many are the heads that gravitate in the other direction towards the shop windows, which, no doubt, are well worth looking at. It is from such as these, who have little or no feeling of the beauty and grandeur of nature, that the demand for photographs full to overflowing with a mass of details has sprung, and they who supply the demand are engaged in a profession which, from a point of view, they have a fine field for their energies; but they need not think they are cultivating an art, or elevating the public taste.

Art does not consist in imitating, but in representing nature—quite a different thing. The artist knows that he cannot imitate nature without omitting her principal feature—the grandeur of her magnitude—and that to give all her details diminished to a petty scale would be a mere caricature, turning the grand giant into the semblance of a paunchy dwarf. He considers how he can represent in a small space some feeling of the unattainable magnitude. How is the dwarfing canvas to give a gigantic effect? He must contrive that the leading features of a landscape shall distinctly传出 from the minor or unnecessary details by enhancing the one and obscuring the other. Knowing the incompetence of art to give the oil of nature, his aim is to pronounce the leading idea of her grandeur. He throws a deep shadow on one part—not that the spectator may imagine something, but that the prominent feature may have its value enhanced by the mantling grandeur, and thereby from which it rises; and he throws another variety of shades here and there, to give a feeling of softness, or refinement, or tenderness, as required by the theme; and thus, whilst he pronounces the idea of the scene by so merging its unnecessary details, he carries us beyond it into the bygone of our impressions connected with the feelings of grandeur or refinement or tenderness with which he has imbued his picture. It is only by thus representing nature that a picture obtains breadth, force, simplicity, and repose, which are essential qualities of art.

The painter has an advantage in his brush that we have not in our noble tool, the sunbeam, inasmuch as he commands his brush, while our tool commands us. But art binds all her votaries alike: they must aim at representations. When the photographer first considered his landscape and got it properly composed—his first great difficulty—he must study it under every aspect of light, and seize the moment when the shades fell most advantageously to enhance the leading features and merge the unnecessary details. He must remember that the success of his picture depends on its shades. Let him get the gradation of shades right, and the lights will take care of themselves. The same rule applies in the studio. Brilliant details, when unnecessary, are the death of art.

Texture.—Texture is one of the essentials of fine art, and, like the other essentials, depends on an innate feeling. It cannot be acquired. It is in art what the timbre of the voice is in music; you may cultivate the voice, but you cannot cultivate timbre. The artists when painting a face to think of the cheek of a peach. Texture gives the peachy softness, the life touch, the completing charm, which cannot otherwise be attained. Sir Joshua's own works show much of this charm, which is not so apparent in those of Sir Thomas Lawrence.

That something equivalent in effect to this texture can be obtained in photography I am in no doubt. I hold with Sir J. J. Clarke that photography is an art comparable in analytical ingenuity than a flesh consistence. The question is how to keep the lens from producing such results in heads of three inches and upwards?

Mr. G. Crompton did me the honour of noticing some remarks of mine on the subject, in an interesting paper read before the South London Photographic Society. He says, "In my experience I have sometimes been on the point of saying, ‘It may be obtained without any developer.'" Perhaps his remarks were intended to apply only to small-sized heads. I have always found the common style of developing in large-sized heads to be productive of anything but life softness, giving a mere imitation of the fibres of the skin. The larger the head the more pronounced must the texture be.

(To be continued.)

THE PRACTICAL PRINTER IN AMERICA. XIX.

CUTTING AND MOUNTING.*

In many galleries the prints are cut as described above, and mounted upon cardboards ornamented with gilt stripes in the oval and square forms, inside of which forms the prints are carefully mounted. Below the mounted photograph the photographer has his name printed in small gilt letters. A print cut oval, and mounted upon one of the oval mounts, has the appearance of having an oval mat over it, with the advantage of having your name printed on it. A great objection to this is that of having to choose the frame at the time of making your choice of picture, so that the check can be made out properly, thus enabling the operator to mark on the negative either square or oval, which means to cut the 4-4 prints square or oval, according to what is marked on said negative. For instance, a lady wanted a 4-4 arch-top, and on

* Continued from page 119.
choosing the frame at the time she decided on the style of print; she chose a square one, and the check being made out properly (having all the particulars on it), and being passed to the operator when she entered his domain, he reserved his part of it, and sent her according to orders upon it, and marked the negative as per check: One 4-4 Arch-top, No.—(of negative). Often the words, cut square, are placed on the negative; but in this case, when the style is an arch-top, it is not necessary, because the print cannot, with taste, be cut any other way.

When the print is to be mounted upon a lithographic mount, the operator marks the negative L. M., and then the printer also marks the same letters on the back of the print before it is toned, being sure in doing so that he marks in the shadow or drapery part of the said print, and the mounter, as she pastes the print, sees the marks, and consequently mounts such prints upon the lithographic mount. If the lady had chosen an oval frame, she would have to have a vignette style of print to look well, and the negative should then be marked (also as per check): One 4-4 Vig., No. — (of negative), cut oval. Of course prints that are printed either in medallion, square, or arch should be cut square, except in a few cases when the prints are printed plain; then they can sometimes be cut oval, if desired.

To those photographers who are not in the habit of this mode of working, the above may appear to be very complicated, but it is so arranged in every well-regulated gallery and where there is perfect system throughout the establishment. It is one of the most perfect ways, as regards system, connected with the orders, that there is known, and it is very seldom any mistake occurs when once the plan is in good working order and if it be followed, this would cause trouble when duplicates are wanted from the negatives, but that is not so, for when duplicates are ordered from frame-photographs (i.e., those photographs which are to be framed), the patrons almost invariably order the same style of frame and print that was before purchased, and the printer is thus greatly benefited, besides no money has to be paid over. Upright prints that are ordered from "old negatives," and when there should happen to be a variation in the style of frame and print, the thinking photographer will readily invent some way to prevent mistakes.

When the prints are to be cut in an oval form, the excellent tool known as the Robinson Photographic Trimmer is indispensable. (See fig. 1.) It does its work so quickly and with ease, and the one can estimate it too highly. It will outwear a gross of knives, and does its work better, without tearing the prints. Guides that can be used with it are furnished at a trifling cost. This trimmer, by the way, is also an excellent thing to use in cutting medallions and masks whenever you may wish to make them. When you are about to cut square 8 by 10 prints, the plate-glass is first laid down on a level bench and the print on it, and upon the print is laid the glass that is used in cutting the print. Adjust this latter glass, and with the knife cut a quick and clean line on it, including the head and close to it. If you choose, you can cut the other sized prints, such as the Imperial and Victoria, by the aid of the shokknife and the proper glasses. I have recommended a shochknife because it is cheap, costing only about twenty cents; then, again, it is better handled than a penknife. When cutting with the glass and knife, place two or three fingers of the left hand firmly yet lightly upon the glass, and cut with the knife in the right hand, cutting around the glass, shifting the elbows a little to one side or the other as occasion requires. (See fig. 2.) The Robinson Trimmer will also answer for cutting square prints with a very slight round corner. There are a great many printers who use the knife altogether in the cutting of the prints, and then, again, there are many who use the shears. I generally use the shears for cartes and imperials, but for larger prints I use the knife.

It may appear to be a small matter for me to write here how you should use your glass and shears in cutting, yet there is one thing which, if observed, will save your cutting glasses, and also save your shears from getting dull so quickly; it is this:

Many persons in using the shears cut down at the lower part of the glass at an angle, so that the blades of the shears run along the edges at the bottom part of the glass-guide, and consequently the glass is very soon nicky, and in a short time some of the corners are broken off, and the shears is worthless. Now this is owing to the style of cutting (or chopping) with the shears, because every time you cut a print you also cut the glass, or try to. You should allow the blades of the shears to fall parallel to that side of the glass at which you may be cutting (see fig. 3), and you will save your glasses, and also prevent the shears from getting dull so quickly.

The rules which will perhaps help the beginner in cutting the prints are the following:—1st. Never have the nose or chin higher than the middle of the print, if the head is of an ordinary size, and the print is printed plain. 2nd. Allow a trifle more space on that side of the print toward which the head is turned, being careful not to allow too much, however, as very often the shoulders suffer by the abuse of this rule. 3rd. If the print is to be cut in a medallion, and the head is very large, it ought to be cut higher up in the print than otherwise, so as to obtain plenty of the body to balance the head. 4th. In cutting out a print, when the figure is leaning on a table, chair, &c., always cut in enough of the accessory to give an air or look of solidity to the base of the print. 5th. Always lay your glass, when you are about to trim the prints, in the same direction as the body is, providing it is not leaning on a table, for then, of course, you must represent the idea of leaning; but when there is no such idea to be conveyed, then trim as before said, so that the body will not appear to be leaning too far forward or backward, and thus give the beholder the idea of falling. 6th. Sometimes by cutting the print so that the person will appear to be leaning slightly, the head and face will be made to look better, and the figure is that of a large Berlin head. Look out that you do not overdo this, however. 7th. If the print is printed in a medallion or arch-top, you should cut it so that there will be as much of the tinted border show on one side as there is on the other, and as much at the top as there is at the bottom, and always cut prints that are printed in either of these styles in the direction that the oval or arch-top may be, and never cut them so that the cut and the oval or arch-top will lay in different directions. To do this you must be sure, in placing on the oval or arch-top for printing, that you get them to lay in the right direction. 8th. If the figure is a standing one, and the whole of it can be cut in the print, then do so, and not
cut in only part of it, as is very often done. 9th. If it is a sitting two-thirds figure, then do not think of such a thing as having the nose or chin come in the centre of the print, as per Rule 1st, but have it come considerably higher up in the print, being careful, however, that you do not get it too high. 1oth. Sometimes there are groups of two, three, four, or even five persons in a carte-de-
visite photograph, and, in cutting out these kind of prints, be sure that sufficient of the drapery on either side is cut in, as the neglect of that will make these outside persons appear very slender, being no balance to the figures; and, for such cases as these, either in the small card or the imperial, we have made the larger glasses as described above. 11th. If the figure is a standing one of a lady (a bride), with a long train dress, and leaning on a chair, then in cutting, not only cut the print so that you will give the idea of leaning on the chair, but cut a very great portion of the dress in, even if the figure of the lady herself is over to one side of the print, for the face is turned (or should be) towards that direction, and you can trim as above, without danger of hurting the look of the print, for, on the contrary, you will greatly improve it. 12th. When the background of the print is one that shows interiors or exteriors, such as the panels of doors, or a set of perpendicular rows of columns, &c., always cut the prints so that these uprights will be parallel to the sides of the trimmed print, and the cross-panels parallel to the base of the print. This kind of a background is more often found in the large prints, more especially so when the "Bennand Backgrounds" are used. 13th. In standing figures, very often the place where the floor meets the background comes in sight when the print is trimmed, and in such cases you should always cut the flooring parallel to this line; and, in the great majority of cases, if the position is properly arranged, the figure will lie in the proper proportion as observed by the simple rule. 14th. Do not, when cutting prints, try to see how quick you can cut them, but how well, for a dozen well-trimmed prints are worth more than a hundred indifferent ones. First try and see how well, and then, after you have learned that, then see how quickly, you can cut them.

The advice and instruction which we have endeavoured humbly to give in this chapter is intended for those persons whose experience at printing has not been so extended as ours, and it is emphatically for such persons that we have written the above, and not for learned printers.

THE ART OF POPULAR ILLUSTRATION.

BY HENRY BLACKBURN.*

It was well remarked lately by Mr. Waterhouse Hawkins, in a paper on "The Graphic Method of Teaching," that through the pictorial system the mind receives impressions with the least effort, and in the quickest way, and that the graphic method was the true way of imparting knowledge. Are we, then, in the matter of giving information imparting knowledge through the medium of illustrations, adopting the least perfect and least effective methods? I venture to say that in the majority of cases we are doing nothing of the kind. We have pictures in abundance which delight the eye, which are artistically drawn and skilfully engraved, but in which, in nine cases out of ten, there is more thought given to effect as a picture than to illustrating the text. This question was discussed by the members of the Society of Artists about a month ago. Speaking of the system of book and newspaper illustration then and in vogue, it was argued thus:—

"The great want at this time is a simpler and better form of illustration for novels, tales, magazines, newspapers, and for all literature of the butterfly kind. The present system is too cumbersome, too costly, and too absurd to last. It is an absurdity, for instance, committed every day, to give an elaborate drawing of furniture made out to the exact square of the page, for the purpose of expressing a lover's devotion, and almost as unnecessary to make a careful view of Hyde Park as the groundwork for a pen." To standard works, and those of high artistic aim, these remarks do not, of course, apply.

The objections pointed out in the Athenæum to the carefully shaded view of Hyde Park, and to the imaginary drawing-room, were well founded. That for moderate and low-priced economy, such details can seldom be well engraved. 2. That they are generally untrue. 3. That the space occupied, and the cost incurred in production, tend to decrease the number of illustrations, and to a lack of variety.

After expressing a belief that the time will surely come when we shall look back upon the present monotonous method with considerable amusement, and upon a book or newspaper that is not illustrated as an incomplete production, Mr. Blackburn proceeded: Let us consider, shortly, the means at our command, both artistically and mechanically, and see what are some of the possibilities in illustration.

First, in the daily press. A "special correspondent" is someone who, to what is called the seat of war, or is stationed in some remote country, to give the readers of a newspaper the benefit of his observations. What does he do to express himself most clearly and quickly?

In the imperfect, clumsy language which he possesses in common with every Minister of State and national school boy, he proceeds to describe what he sees in a haphazard, when two lines would tell the same story much more efficiently and successfully his meaning pictorially. I think you will admit that our ordinary-written language is clumsy, when I remind you that in order to provide the copy for a newspaper correspondent's letter such as we see written in the Times every morning, the point of the pen has had to travel over a distance of more than one hundred feet! This is the actual ascertainable measure of the average letter, which tells us what the ups and downs, cross and dashes of an average letter as it arrives from abroad; and yet we hear of letters "written under fire," "written on a drumhead," "in the saddle," and under the greatest difficulties when rapidity of record is everything. By systems of shorthand the time occupied in transmitting intelligence by letter is reduced, but the pictorial method of communication should continue to suffice us, and really as simple forms will soon be transmitted by telegraph.

Think what interest would have been added to Dr. Russell's letters in the Times, from the Crimea, if it had been possible to have inserted here and there with the type a line or two pictorially, or even a little diagram of a movement or position. It may be said, "we had our illustrations in the newspapers ever so long ago, but now sketched by special artists." True, but the illustrations took time to prepare, and the reader of these vivid letters had "gone on to something else." The pictorial record should have been simultaneous with the verbal—the picture was wanted when the letter was read. Again, in time of peace there are many events of interest and scenes passing before the newspaper correspondent's eye, which are not adequately described in words. In every city or town, in every place, there is some leading feature, architectural or natural, that gives character to it; and it would add greatly to the interest of letters from abroad to have them headed sometimes with sketches. On important occasions, and for special subjects, the foreign correspondent would be accompanied by an artist trained in the fine arts, who could draw, and sketch himself. He could present to us often in outline the aspect of a street, or the curve of a line of hills on which some event of public importance was taking place; he could indicate the shape of a church spire, or a new bridge, and the plan or diagram of many objects of interest. If he could not do this actually with his own pen, he could often get it done, or transmit photographs of it, on which it is now possible to make a little outline in relief to print with the type in six or eight hours. The point is, that the sketch

* Condensed from a paper read before the Society of Arts.
PHOTOGRAPHIC NOTES.

BY THE REV. F. L. SADLER.

Durable Sensitive Paper.—If you add to a silver printing bath some nitrate of alumina, the paper that is sensitised thereon will keep its whiteness, and it will never assume that yellowish tint which is generally observed upon stale albumenised paper, formed from the organic matters of the paper. You may add as much nitrate of alumina as nitrate of silver, if you like, or only half the quantity of the former. As a means of preservation, this method has no advantage over others that have been proposed, but it has several additional qualities that may be mentioned. For instance, the nitrate of alumina solutions of albumen which yield an image in a silver printing bath do not deposit any organic matter in the bath, and therefore the latter does not become darkened as is the case usually. Again, the paper treated on an alumina bath does not harden so much on drying, and it is not so liable to curl up at the corners, as when the ordinary bath is employed; this is a consideration of some moment, as it will lie flatter against the negative. The drawback to the process is, that the prints turn so slowly in the gold bath, so that it becomes either necessary to allow the pictures to remain in the solution for a longer period, or to employ a stronger bath.

Bromised Collection.—The alkaline developers that have succeeded well except with a little iodide of silver, for with the result obtained. Bromide of silver, unfortunately, however, forms very slowly in the exciting bath. It is for this reason that one is obliged to augment the amount of soluble bromide in collodion, and in like proportion the nitrate of silver in the negative bath. In the ordinary process of iodide of silver forms much more rapidly; I think this is due to the difference in the bromide of silver forming a very close and slightly permeable film, which retards the transformation of the underlying bromide. I have tried many ways of making it more porous, and therefore more easily penetrated, and have succeeded in the matter by adding a little glycine to the collodion. By allowing a plate covered with a film of this kind to remain in the sensitising bath for (say) five minutes, a film of bromide of silver is deposited on the plate and has a uniform character, and such as will yield a capital image. Ten to twelve drops of glycine suffice for every hundred c.c. of collodion.

To this quantity of collodion it is well to add three or four drops of alcohol in which a little nitrate of silver has been dissolved. After the lapse of some time a slight excess of nitrate of silver is precipitated in the state of bromide, and the collodion is deposited on the plate, and the transparency which it keeps indefinitely.

Collodio-bromide.—The collodio-bromide process has not yet realised all the hopes which its disciples entertained. Very simple at first sight, the process became quite embarrassing by reason of the care to be exercised to keep the collodion from the light, and also because the liquid had a tendency to become poorer in bromide of silver, which it deposited, and thus the solutions of bromide were continually altered. I have found that by adding a little acetic acid to the collodion, the precipitation of the bromide of silver is retarded, and sometimes even completely arrested. Acetic acid is one of those products of the decomposition of ether exposed from time to time to the atmosphere; and if you often find differences in the properties of such and such a collodion to hold bromide of silver, the ether is probably to the more or less decomposed character of the ether contained in it. Acetic acid employed in this way will be a resource for such amateurs—rather few, I fear—who desire to make use of collodio-bromide. If photography upon glass had made its debut with this process, there is no doubt the process would have been improved by separating the two products, and employing them as is done at the present moment. (To be continued.)
THE LATE PROPOSED ALTERATION IN A LAW AT THE PHOTOGRAPHIC SOCIETY.

A curious illustration of the danger of a litigious spirit taking possession of individuals or communities was furnishing at the late meeting of the Photographic Society, when a proposed minor alteration in a law was met, not with a consideration of its expediency, but with an astonishment that it should be a strained application of an existing law. And the most remarkable feature in the case was, that whilst nothing need have been more simple than the case as it stood, nothing more obvious than the actual power of the meeting to make the alteration, if, on consideration, it were found expedient to do so, all this was lost sight of in the spirit of litigiousness which suddenly bunged up and enveloped the real question in the smoke of the discussion.

The facts are simple. In the laws of the Society a clause exists, which has existed from the beginning, to the effect that no member shall have the "privilege of voting on any occasion unless he shall have paid his subscription for the current year." This clause has, however, been practically a dead letter, and has no questioning as to payment was ever raised previous to voting. When, however, twelve months ago, a requisition was sent to the Council calling a special meeting to make changes of a revolutionary character, and when it was found that amongst the names appended to the requisition was one, at least, assuming membership without ever having paid one penny to the Society, either of subscription or entrance fee, it was found desirable to put the clause in question in force, and make payment of all dues to the Society a condition of voting. Until the annual meeting just past this was the only occasion on which the clause was ever enforced. The late annual election involved new machinery: the Secretary found this law in existence, and having no instructions, took the obvious course which presented itself, namely, sending to each member a card circular with an extract from the enactment in question, and intimating that a balloting paper would be forwarded on receipt of the amount of subscription due. The receipt of this circular gave offence to many, and the operation of the law, it is probable, materially limited the number of votes returned. Mr. Hooper was anxious to secure a modification in this clause in order to avoid trouble, and having had the due notice in time for a motion at the annual meeting, the Chairman at that meeting announced that the next meeting (that held on the 9th inst.) would be made special for considering Mr. Hooper's motion, of which he then gave due notice; and the notice was duly printed in the Society's Journal. The meeting having been made special, at the close of the last ordinary proceedings, Mr. Hooper proposed his motion, which was simply to the effect that no member should be permitted to vote unless he paid his subscription for the past year, instead of the current year as the law now stands, the object being to avoid the inconvenience of disqualifying a member for non-payment of his subscription within a few weeks of its having become due.

The wisdom of adopting such a motion is, of course, open to question, and much might be fairly said on both sides. We are strongly inclined to endorse the views expressed by Mr. Bird, that in the affairs of a Society, as of a nation, taxation and representation should go hand in hand, and any payment from the pockets of the members of the officers of that year; although, at the same time, if there were no other method of meeting the difficulty, we believe that many would probably acquiesce in the motion as a matter of expediency. But in the debate which followed, the rectitude or expediency of the motion was almost ignored. The motion was no sooner proposed than Col. Wortley objected that the meeting had no power to deal with the question, because, according to Law XL, no alteration could be made in any law except at an annual meeting or special meeting, and a special meeting could only be called by the Council. He further objected that a notice to every member was requisite of the intended motion. But in truth the meeting was a special meeting, duly appointed by the President, who for such purposes has the right of calling the representatives of the Council. It had been most fully and duly given in the organ of the Society, its own Journal, sent to every member. Col. Wortley contended that notice should be by letter; but this is an interpretation of his own which finds not one word of warrant in the laws. Another point as to the legality of meeting for such business was curiously overlooked: a special general meeting could be adjourned, in die in diem at the chairman's pleasure; and the chairman on this occasion practically did no more than adjourn the business meeting, then in progress, for a month, to permit of the due notice of the proposed motion being given. Thus it will be seen the vision of cumbersome machinery called up was doubly baseless, and unsupported by any ground of fact. The President answered, however, that the situation was this: the provisions of laws which had been made during the period of his absence from office, and which, with a touch of human nature (pardonable, if slightly amusing), he seemed not unwilling to believe were so obstructive as Col. Wortley described them to be. Mr. Stillman, ever ready as a Freelance to join in any fray, at once endorsed Col. Wortley's objection to the legality of the meeting and the President's comment on the law, which he stigmatized as obsolete and impractical, innocently overlooking the fact that the law in question was, with the exception of the final ratification clause, copied verbatim from the cumbersome and prolix code of twenty-five laws and seventy-six clauses recommended by the committees of which he himself was a member! The law, it is true, might be simpler in construction, but there could not be a doubt as to the meaning of its provisions in the mind of any reasonable man.

Turning for a moment, however, from the question of construing laws, let us glance at the usual practice. Where an actual doubt exists, it is customary and wise to seek its solution in precedent. The custom of the Photographic Society—which has always had similar enactments, but still more stringently expressed in relation to the alteration of laws—when any similar modification in the existing code has been found desirable, has been for the chairman to announce at one meeting that the next meeting would be made special for such and such a purpose, due notice in the Journal has followed, and the desired alteration has been effected at the termination of the next monthly meeting made special for the purpose. The Society has, in short, carried out precisely in all respects similar arrangements to those made at the last meetings for
Mr. Hooper's motion. This has been the general precedent. But let us cite a special instance which possesses a singular pertinence to the present question. The difficulty which Mr. Hooper's motion attempts to meet arises chiefly out of the fact that the Society's financial year commences in January, whilst its annual meeting does not take place until February, thus making the subscription become due a month before the annual meeting. At one time the financial year and the annual meeting were at the same time, but for certain reasons it was deemed expedient a few years ago to change the commencement of the financial year. Now, this very change in the laws was made at just such a meeting as that held on Tuesday, week, announced in precisely the same manner, and with precisely the same kind of notice to the members. But there was one other objection raised by Col. Wortley. The chief difference between the present enactment as to the alteration of laws and that in the old code is a provision against revolution in the Society without time for deliberation; and a final clause enacts that the ratification of any change in the laws agreed to at a general meeting shall be by ballot of the entire Society. Col. Wortley objected to invoking such cumbersome machinery for a matter about which no objection seemed more natural and sound enough; only it was singularly inopportune. Col. Wortley and every one else joining in the discussion seemed to forget that the code of laws itself has not yet undergone that ordeal. The laws passed during last session have not yet been ratified by a ballot of the whole Society. The delay in carrying out such a project was intended to meet just such contingencies as the present. When the new code was somewhat hastily prepared, it was foreseen that minor points might easily be overlooked, and when the laws were presented to a special meeting called for the express purpose of receiving them at the end of the session, it was distinctly announced from the chair that they would very possibly be found capable of revision, which would be considered at the next annual meeting. It would manifestly have been wise not to press for their final ratification, by the ballot of the entire members, until after opportunity of revision had been made available to every member who might consider it desirable.

As Mr. Hooper's motion was passed subject to further consideration of the legality of the proceedings, it is probable that it will acquire force and must be treated as the present law, as we apprehend, scarcely necessary. All the objection complained of might be avoided, without altering the law, by following the precedent of other learned societies. It would be simply necessary—instead of sending a note to members in arrear, informing them that a ballot paper would be forwarded on payment of such arrears—to send to every member a ballot paper, with a circular of instructions stating the law on the subject. All ballot papers duly sealed could be forwarded, together with the amount of subscription, to the treasurer, who would hand the sealed document to the scrutineers. We need not enter into further detail as to the machinery here; it is sufficient to indicate that a mode exists whereby payment of current subscription, as a condition of voting, can be carried out without inconvenience or offence.

SPONTANEOUS DECOMPOSITION OF PYROXYLINE.

In a recent letter to our Philadelphia contemporary, Dr. Vogel raises the question whether photographic pyroxylne is liable to spontaneous combustion or not. He says:

"A high judicial court has recently raised here the question if photographic cotton is subject to spontaneous combustion or not. A merchant forwarded a package of gun-cotton (wrapped in paper) by mail, and the package exploded on the way, causing considerable damage. The merchant had to appear before the court, as by our laws it is forbidden to forward articles by mail which are subject to spontaneous combustion. An expert, who is not a photographer, but an apothecary, states that gun-cotton very readily explodes by spontaneous combustion; and this dictum causes, of course, much surprise. Probably the apothecary mistakes the cotton used for colloidion for the cotton used for blasting and gunnery. Both kinds are absolutely different; the one is not likely to explode, the other is. The one explodes with great violence, the other without; the one dissolves in alcohol and ether, the other not; the one used for photographic purposes contains a lesser amount of nitrogen than the other. These differences are unknown to many chemists, or they do not take them into consideration. Unfortunately, most of our learned chemists do not trouble themselves much about photography; so I read recently, in a very good new hand-book of chemistry, that iodide of silver is reduced by sulphate of iron, which is absolute nonsense.

"In regard to colloidion cotton, I have observed circumstances under which the cotton would not have escaped combustion if it was at all subject to it. I have received specimens from England, France, and America; they are accessible to my school, who are very particular in their treatment. Some samples are wrapped in paper, others in bottles. One sample, packed in a tin box, was exposed for months to a hot summer sun. In short, the cotton has been exposed in every way, and I have never heard of spontaneous combustion. I do not hesitate, therefore, to declare colloidion cotton not subject to spontaneous combustion, and the explosion in question was probably due to carelessness of the post-office officials, who likely smoked.

The question raised is one not free from difficulty. Photographic pyroxylne, whilst undoubtedly a very different body in many respects from gun-cotton proper, is so nearly allied to it that in the manufacture of either there is apt to be produced a trace of the other. The enquiry into the Blowmarket explosion some time ago showed that much uncertainty still prevails as to the possibility of spontaneous explosion in gun-cotton, the general tendency of the evidence being to prove that imperfectly washed gun-cotton is readily liable to such a result. In like manner we have known pyroxylne of a perfectly soluble character decompose spontaneously; not, indeed, so as to cause combustion or explosion, but sufficiently to cause the solution in red nitric acids, leaving a little semi-liquid gummy residue. The danger of such a result with carefully prepared and well washed pyroxylne is very slight; but it exists, and is sufficient to suggest the necessity of care in storage. The danger is greater if it be kept closely packed and protected from the atmosphere. If kept loosely packed in tin boxes or glass jars, with loose covers, the danger is reduced to a minimum. The possibility of coming into contact with sparks of fire or a lighted cigar, common sense will dictate should be avoided.

ON PHOTOGRAPHIC STATUS.

BY EDWIN COOKING.*

My name having been mentioned in a paper read by Mr. Hooper at the January meeting of the London Photographic Society, implying that I was the first, or nearly so, who brought before the notice of photographers the subject of some distinctive mark being conferred upon them, probably a few remarks from me on the subject at that time may not be out of place at the present moment. In 1867, when I read before this Society my paper, "A Suggestion for Raising the Status of Photography," I had arrived at the fact of the inability on the part of the public to properly distinguish between those who practised photography mechanically, and those who brought cultivated
taste and artistic feeling to bear upon it; hence I thought
that some extraneous expression of opinion other than that
of the photographer himself, or the public, would meet the
difficulty. The idea I endeavoured to illustrate was this, that
some properly-elected body should possess the power of
determining the fitness of those who submitted themselves
to such a tribunal, and also to grant some sort of certificate
to such fitness. The immediate result of this, I thought,
would be that those who did not consider it necessary to
avail themselves of this examination must be content to be
certified by no means, or, at all events, outside the ranks
of qualified operators.

I advocated two degrees of merit—the one being, as I
have just mentioned, universal in its application, attainable
by all who evinced capabilities for photographic work, both
in the matter of artistic taste, and in chemical and optical
knowledge; the amount of proficiency necessary to gain
such certificate to be set forth from time to time by the duly
elected examining body. These photographers would be in
position something like the medical profession, who obtain
the title given by the College of Surgeons, or the ordinary
chemist or druggist, who obtain certificates from the Apothecarists' Company or Pharmaceutical Society, without which
any one who appeals to the public for patronage would be a
quack; in short, not a fit and proper person to undertake
the practice of his calling.

I then further advocated the possibility of a much higher
grade of examination by a mixed tribunal of artists as well
as photographers, to possess the power to grant some
honourable title to such as had produced great results, the
number of such to be limited; and this, consequently,
would inspire emulation throughout all ranks of our
profession.

I never for one moment entertained the idea that the
simple payment of a subscription to any society should entitle
the person doing so to any distinctive mark. My object was
the gradual raising of professional status, by having some
defined standard of excellence in all branches established, so
that every photographer could see how near, or far from,
the desired position of honour he might consider himself.
How far the last seven years of the history of photography
would have justified such an order of things, and whether
the time is ripe for such an institution, may possibly now
be the subject of thought and discussion.

It will, I think, be granted by all who give any thought
to the subject that, without interfering in any way with the
liberty of any one person who thought fit to venture upon
gaining a living by entering our profession—at the same
time it is not to be supposed that a man without a taste
marvel—its true friends must see the necessity of laying
down some laws or rules for the future working of the same,
and the introduction into its ranks of more properly-
educated, and, consequently, more qualified, exponents than
has hitherto been the case.

But the germ of what I have been suggesting, I think,
already exists, inasmuch as the Photographers' Benevolent
Association, just established, must in its working enforce
some sort of qualification before it could with justice dispense
any of its funds; so that we have only to build up a ladder,
as it were, of gradual ascent to arrive at the pinnacle of
what I think, if once established, would prove to be
as valuable an aid to the progress of photography as
anything that has hitherto been done towards that object.
It must be admitted that, supposing such a tribunal had
existed seven years ago, the necessary scale of qualifications
must have been raised much higher at the present day,
when we see the marvellous strides that photography has
made in its pictorial element—by which I mean the active
cultivation of latent artistic feeling, the daring efforts to
regulate light and shade, and the greater attention given to
the disposition of lines, involving the study of composition,
showing that there has arisen a woeful loss of development
of power evincing design and thought.

All these results, I cannot but think, point to the fact
that we have approached the time when such a matter as
that I hinted at seven years ago may now be duly weighed
and pondered over.

So far we have considered the advantages of some dis-
tinctive title in favour of the public or those who benefit
by the advanced photographer; but something else remains
which should receive the earnest attention of all who have
felt the difficulties arising from the uncertain status, or
want of assured defined social status, that of late has forced
itself upon those who do not like to realise the possibility
of any one looking upon as one's shopkeeper, simply selling
a manufactured article, whilst the other half exercises and
cultivates some higher mental thought and power than is
usually considered necessary for those who merely buy and
sell.

I take it, then, at the moment, the impetus which this
subject ought to receive must spring from the desire to raise
and elevate the author and composer of pictorial pro-
duction far above the more disposal or supplying of the
same, which really only should be supposed to exist as a
secondary matter.

If, then, the cultivation of latent artistic tendencies and
consequent higher phases of productions have brought
about a desire to have some distinctive marks conferred,
whereby the results of cultivated mental and elevating
feeling and taste for good works in art and science should
not only be distinguished from what is simply mechanical,
but should meet with a reward both personal and social (which many would so deservedly be entitled to),
nothing should stop the hearty co-operation of all those
who by the power of their names can put the machinery into
motion for such a consumption.

I do not take upon myself to make any practical
suggestion relative to how all this might be done. I
simply once more sound the key-note, so that all those
who sympathise will respond and take up their parts.

HINTS AND SUGGESTIONS.
BY D. H. CROSS.

I have tried varying the strength of silver solutions for
genatives, and have been surprised to see the extent of
variation that can be successfully employed, and that, too,
without essential change of the collodion, developer, or
manipulation. Forty grains of nitrate of silver is the
maximum, and fifteen grains the minimum, to the ounce of
collodion. Both this is more than would be required in
succession, on all kinds of work, without injurious change,
except that common to all baths from accumulation of
alcohol and ether. For a standard strength in the studio
I should not exceed thirty grains to the ounce of water.
First. Because less injury results to the plate if it remain
in the solution a few minutes after it is sensitised. Second.
A longer time may elapse after the plate is, placed in the
plate-holder before it is developed without the appearance
of the annoying matt stains, which are so common in the
hot season, when forty or forty-five grains are employed.
These experiments have proved to me that much greater
latitude may be exercised with our bath formulas than is
generally supposed, with equally as good results.

Iodising the bath I consider not only unnecessary, but
also injurious, since the strength of the solution does not
exceed forty grains to the ounce. Having tested this
matter often within the past ten years, I have abandoned
the practice entirely. If let alone the bath will take care
of itself, in this respect, from first to last, while nothing
desirable is sacrificed; pinholes are thus banished effectu-
ally by removing the cause, viz., excess of iodide of silver.
Cleaning the plate with spirits of ammonia, and then
mercury is better to reduce the proportion of iodide from five
to three and a-half grains; of bromide, from two to one and
a-half grains, to the ounce of plain collodion, if the bath is
thirty grains or less to the ounce.

* Read before the N.P.A. America.
The practice now becoming general, of dipping the plate in the bath, film side down, I strongly recommend; by so doing, uniformly clean work may be made, without the formation of that scum; I find it only after evaporation, and avoid frequent evaporation, by leaving the cover of the bath open, so that the fumes of alcohol and ether may escape spontaneously.

A cover for the bath should be made so that it will allow these fumes to escape, and exclude the light and dust. Here is a chance for a little inventive genius. Having had but few years to try several processes for producing “large work,” I have concluded that it is much better and easier made direct when the best appliances are at hand, and the required size does not exceed 20 by 24.

For small children, or very restless subjects, box-light copies, &c., enlarging processes are indispensable, of course; still it will pay many establishments to provide themselves with the improved instruments for large direct work. Life-size bas-reliefs may be made with an exposure of one to one and three-quarter minutes very satisfactorily as plain photographs. Children, three-quarter length, on 18 by 22 plate, with ten to twenty seconds’ exposure, when circumstances are favourable. During exposure of the plate, I have often succeeded best by facing and engaging the sitter by conversation, or other means that judgment and experience suggest at the time. Instances are not uncommon where the best results are obtained by keeping the sitter unconscious of being in the “dentist’s chair” — by not informing “when the tooth is to be drawn.”

Let us not degrade ourselves or our profession by trying to talk off faulty work, or by reducing prices, but bear in mind that good work will find its way out of the unskilful hands of the amateur. Many people to-day can readily discriminate between the good and the bad, and he who adopts this principle will surely gain by it in the end. Let us not content ourselves to practise our art mechanically as artisans, but think, study, and earnestly strive to be artists in a proper sense; and see to it that we elevate our profession to a higher standard, if not, indeed, to fine art itself.

The sky-light is an abiding faith in the canon of photography, that it is destined to be the art (if it is not already) in the realm of portraiture, at least. “Last, but not least,” let us avail ourselves of the light the old masters have thrown upon the subject of art culture. Many very valuable works may now be obtained upon this hitherto neglected subject.

HOW TO LIGHT THE SITTER.

BY H. W. BOOZER.*

Among the changes in photography during the past few years, none have been more noticeable than the methods of lighting our models. For a time “posing” the sitter was the all-engrossing photographic topic; but the disposition of light and shade, and the best means to effect the desired object, is now the operator’s great work.

The sky-light of our venerated fathers of the art was too littley what its name implies, and is justly censurable for much fault-finding from the unlucky wight who “vegetates” beneath. The sky-light is chargeable with much of the ill-health peculiar to photographers as a class. It gives him an atmosphere of great extremes; a furnace of heat in summer, a frigid zone in winter. In low rooms, and especially in tents and cars, the breathing is done in a strata of the most impure air, most of the time overheated, and this, of course, is more the time than the floor, enough of itself to induce permanent ill-health. As a general thing, the sky-light is too high and difficult of access; it is almost an impossibility to keep it clean; the occupant beneath abiding in the delusive belief of a large area of transparency, under-times, consequent on the large surfaces of dirt and stains generally invisibly spread out between the sitter and the arctic power he so nervously wooes. In wet weather the “light” leaks more or less, this is more than a occasion; but “what can’t be cured must be endured,” and after soaking cameras, back-ground, carpets, &c., a few times, they are, with exception of carpet, carefully placed out of danger before the storm, and kettle, pails, &c., take their place. Very few skylights there are but what are affected with this malady to a greater or less degree.

Let driving down on your lens and into the room, making false lights which bewilder and confuse, deranging the perceptions during the limited available time spent in the sitting, rendering the impression, on examination, a defective one. It is seldom the sun does not reach it more or less of the time, and the changes are so rapid that timing is much of the day difficult, to say nothing of the intricacies involved in the production of effects of light and shade, where the fundamentals with which to do are never twice alike.

Did you ever work a sidelight? If not, you would be astonished on trial at its availability for photographic use, and at the effects that can be obtained by the use of “cut-offs” and reflectors. A marked sky-light effect can be obtained by a white reflector stretched from the top of the studio to the front of the sitter, or to a reflector on one side of the sitter. An intercepting “cut-off” prevents over-lighting on the one side, and a reflector on the other mollows the shadows into half tone. With care the eye can generally be rendered pure and beautiful without false lights, or at least the latter so subdued as to be very slight, and always made good by lightly retouching the print. It is an absolute change in this direction that will convince the photographer under the influence of that potent word “sky-light,” bequeathed us by the fathers in the art, whose ideas of light were entirely satisfied by a hole in the roof facing north. But when it is remembered that one of the world’s best operators has attained a wide spread reputation in Montreal by the use of high sidelight only, the latter is certainly worth a careful trial by the photographic truth-seeker.

The great masters in the world of fine art, the men of the past who through their works will always live, have given us as the proper lighting of the portrait a small volume of light falling from some distance on the model, at an angle from above of forty-five degrees. It should be the work of photography to produce just this effect in detail, by the means available to it. If the light falling in this way is used, the result would be vastly different in photography from that in nature. In the one instance the light is gently modulated, giving fine and clear half tone, and great detail even in the deepest shadow; while in the other there is over-lighting on one side of the face, which abruptly turns into the deepest shade, obliterating the half tone in both light and shadow, and making it the freest thing possible from that which was seen, and an entire failure in an artistic point of view.

It is learned by photographic experiment that the diffusion of light over the face increases in proportion as the model nears the glass surface, and decreases with distance; also that the actinic power of light increases in the same geometric proportion in the same way, and vice versa. Putting these facts together, it is evident that the best effects are attained by bringing the model near the glass, and the fact is proven by so doing. Experience in demonstrating this has brought low skylights in fashion, and many galleries now lessen distance by false raised floors, which thus bring the sitter nearer the glass surface, and so much improve the quality of the work as well as shorten the time for sittings.

It is evident that a light built at an angle of forty-five degrees would not be much photographically unless it were placed at an extreme elevation, from the fact that the light from the sky is more powerful than that from among the

* Western Photographic News.
dark objects on the earth’s surface. And it will be found that the inclination of the glass should be two-thirds in a vertical and one-third only in a horizontal direction, on the second floor of a building. It should be about nine by ten feet only in size, the longest up and down. Can be made in two sashes, and thus be self-supporting. The room should be nine feet in height at the upper portion of the light. The sash should reach within twenty inches of the floor.

By the general use of a tissue paper intercepton on the light, and a small reflector the further side of the subject, any effect conceivable may be obtained. While detail is exquisitely fine throughout, the picture will also be vigorous and brilliant, the prominences and high lights being brought out finely by the seeming play of a flash of light over the face from the right angle above and forward.

As regards direction, a north light obviates the use of curtains, which must be used more or less at times from any other point of the compass; the objection to it being that it is weak at a time of day when much of the custom comes in late in the afternoon. In this respect a west light is available, when it is in full consideration that so much cloudy weather is encountered, one is usually tempted, after trial, to curtain during sunlight, and use a west or south light. An east light is essentially a north light for much the largest proportion of work that is done. All who have experimented know that the actinic quality of the solar ray is the same from side to side to side, and that it is its right use only that will produce good results.

After twenty-three years’ experience with almost all kinds of both sidelights and skylights, it is the opinion of the writer that the above-described light will be in the future the model one of the art photographic; and among the reasons for this belief not the least is the fact that the history of photography, especially during the last few years, shows that the practice is working in this direction as fast as a change of such a nature, involving as it does such great difficulties, will allow.

HINTS IN ENLARGING.
BY A BELGIAN SUBSCRIBER.

I know that it is the custom to impart to brother photographers any little information one may possess, or any what you term in England a "dodge" which may have been successful. My plan of enlarging photographs may possibly be worth noting, and for this reason I have jotted down a few particulars.

The picture to be enlarged, whatever it may be—whether a carte-de-visite or other format—previously to being set up in its place, is marked on the margin with a few black dots, which I find aid one materially in the operation of focusing.

The collodion I employ is any kind that will work well for wet plates, and, as soon as my film has been sensitized in the silver bath, I wash, to remove all the excess of silver about it, and then cover it with a mixture of—

Glauber’s salt 1 part
Water 1
Albumen 1

The exposure I give varies from one to two hours, according to the size of the picture. I operate in a good light, and, if possible, I reflect upon the object the sun’s rays by means of a mirror.

The development is proceeded with as if one had to do with a dry plate, the exposed film being put into a horizontal dish containing an alkaline developer, the formula of which has frequently been published. I intensify generally with a four per cent. solution of bichloride of mercury in water, and ammonium, the image being well washed after the application of the bichloride. I fix in the ordinary way.

CITRIC ACID.

Dear Sir,—Will you allow me a space in your News for a few remarks as regards citric acid. Citric acid, as we know, is imported from the West Indies, and, as it comes so far, is liable to undergo decomposition on the way. On this account it is very advisable for the photographer to prepare his own. It is very simple, and easily managed. Take ten ounces of expensed lemon juice and boil for fifteen minutes, then add to it, when cool, the whites of three eggs, and stir the mixture so that the albumen is mixed with the juice. Boil again, stirring all the while, and allow the coagulum to settle. When cool, filter the sour liquid, and boil again, adding to it, gradually, powdered chalk as long as effervescence is produced. Citrate of lime is now formed, which is but sparingly soluble in water. The dark coloured mucilaginous liquor is filtered off, the residue is well washed, and afterwards decomposed by a quantity of sulphuric acid, the same weight as the chilk which has been added. The sulphuric acid is diluted with seven times its weight of water until the citrate of lime is completely decomposed. By filtration the citric acid is separated from the insoluble sulphate of lime, and is afterwards evaporated until a pelllicle forms it, and set aside to crystallise. The dark coloured crystals are removed from the supernatant liquid by a strainer, and again dissolved in pure water. The liquid is again evaporated as before until the formation of a pelllicle takes place, and set aside to crystallise. By repeating this operation two or three times the crystals become quite pure.

Asking pardon for trespassing on your valuable space,—I remain, dear sir, yours truly,
C. H. P. Varnum.

Grafton, Underwood, Kettering.

NITRO-GLUCOSE.

Dear Sir,—In the years 1865-6 I was conducting a course of experiments with nitro-glucose, having been led to do so from an article in your paper, as to its uses in the process of printing out enlargements by the aid of the solar camera, by Dr. Van Monckhoven. Finding it difficult to procure, I set to work to make it myself, and, like friend Noton, after repeated failures, succeeded. Dr. Van Monckhoven’s instructions were insufficient, as I believe I proved at the time. After making a few ounces, and finding it very difficult to eliminate the acids, I applied to Messrs. Hopkins and Williams for a sample, which they kindly supplied, and having occasion to go to Newcastle I saw the late Mr. John Mason and his partner, Mr. Joseph Swan, to whom I detailed my experiences, and obtained from them a sample that they had kept in a bottle for some years. On my return I tried all three samples, and had the gratification of finding my own manufacture the best of the three. Unforeseen circumstances stopped my experiments, and from that time to the present I have not resumed them, but feel inclined to do so this year.

My object in addressing these few lines is, that they may reach the eyes of Mr. W. B. Bolton, who wrote two able articles on this product in August, 1874, and also Mr. Noton, who has detailed his experiences before the Manchester Photographic Society last month, and that both these gentlemen will favour me with a sample, with full particulars as to its age and character. At some future time I shall have much pleasure in detailing my experiences with this substance. I remain, dear sir, yours truly,
65, Cannonbury Park South, N.
George Hooper.

THE BOUDOIR AND IMPERIAL PHOTOGRAPHS.

DISEASES OF PHOTOGRAPHERS.

Sir,—The introduction of any novelty in order to stimulate photography will be welcomed by all engaged in it professionally. The "Boudoir" portrait, now, I may pre-
name, fairly launched, will no doubt take, and the "Impe-
riri of the Mr. F. Pugin," but I would call your attention to the
"Imperial," of Mr. Robinson, referred to in the News of
September 25th, 1874. Would it not be advisable to com-
municate with those gentlemen, and consider the size under
such a title, and so secure uniformity, as also whether this
size had not better be circulated under glass, or framed?
No one is better able to undertake this matter than your-
self, and I hope you will see your way clear to do this, that
frames and models can be made to this size also.

I was much interested with your remarks upon the health
of photographers, as also with the letter of "A Physician."

The fresh air will do much when it is possible for
photographers to take exercise, and in addition to this, let
me again recommend the Turkish bath, which I know from
experience will draw from the system the chemical that so
insidiously permeates it.—I am, dear sir, yours very
truly,

[The size which Robinson and Cherrill designate as
Imperials is, so far as we remember, 10 by 8, and is issued
under glass ready for framing. The new style introduced
by Mr. Lewis under that name is expressly intended to avoid
the necessity for glass, and is really intended for placing
in an album, as are all the styles issued with narrow margined
mounts. When this becomes really popular and even popular
under a special name, it is probable that the name will cease to be used to designate something else.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The usual monthly meeting of this Society was held in the
Hall of the Society of Arts, on the 11th inst., the Rev. F. F. STATHAM,
M.A., presiding.

The minutes of the previous meeting having been read, Mr.
Vernon Heath was elected a member.

The Honorary Secretary (Mr. Cocking) then read a paper
"On Photographic Status" (see page 189), which was followed by a
desultory conversation, in which the President, Mr Aldridge, and
others took part.

A vote of thanks having been awarded Mr. Cocking, the
proceedings terminated.

WEST RIDING OF YORKSHIRE PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of this Society was held on Monday
evening, the 1st instant, Mr. J. W. GOUGH, President, in the
chair.

The minutes of the last meeting having been read and confirmed.

The Secretary laid on the table the February number of the
Philadelphia Photographer, the photograph which accompanied
the letter being inspected by the members with interest.

The conversation turning upon Mr. Howarth's stove,

Mr. Lillingworth stated that since the reading of Mr. Howarth's
paper he had had one of the stoves placed in his establishment,
with the performance of which he was highly satisfied, the stove
heating his gallery, reception room, and work room, keeping
the former at a temperature of 50 deg., and the two latter at
60 deg.

Mr. Grunow confirmed the remarks of the last speaker by stating
that in his gallery, one cold, frosty morning, when he arrived
had he found the temperature at 28 deg., and in one hour from the
stove being lighted the thermometer at a distance of five yards
from the stove registered 50 deg., and in the course of the day
reached 80 deg.

Mr. Gravells (Halifax) then exhibited to the members the method of developing and transferring carbon prints, developing
a number possessing great delicacy and beauty, some of them being
fine examples of lighting and posing.

Mr. Gavins (Halifax) was of opinion that the carbon process
was not as yet likely to supersede silver printing, as he thought,
owing to the difficulty in printing, it would require much more
care than a silver print, which could be inspected during progress.

Mr. Gravells replied that, so far as the difficulty in printing
was concerned, a man of good judgment in silver work could print equally
well in carbon. All good printers classified their negatives, and
nothing more was necessary in Autotype printing. Having ascer-
tained by the spectrometer the requisite number of tints necessary
to fully print any negative, by marking that number on the nega-
tive there could be no further difficulty, as that was a guide for
every other print from that negative, one tint being a standard of
intensity.

In reply to a question by Mr. Braithwaite (Leeds),

Mr. Gravells said that, in his opinion, an Autotype print
would bear rough usage than an ordinary print upon albumen-
ized paper; and that, although a certain matt surface was
insurable from the single tray process, with the method of
autotype it was easier to use with the operator whether
he produced a matt or glossed surface. He might produce a print
with a perfect enamel surface equal to the polished surface of the
finest plate glass.

In reply to a further question by the same gentleman respecting
the cost for small pictures,

Mr. Gravells further said that a photographer executing his
carts in Autotype must raise his prices—he should think about
twenty-five per cent. If he personally could devote his time to
printing and developing the prints, he should certainly prefer it
to silver printing, as it was much more desirable to execute the
prints in permanent colour; but under the present arrangement
of business, in which that department had to be left to an assist-
ant, it would probably not be so satisfactory, as the development
costs were higher than the manufacturing when the paper is
made and fixed. Therefore, comparing results, a silver print unques-
tionably had the advantage, in being more easy of production.

The Secretary inquired if in practice it was found necessary
to make allowance for the continued action of the light after the
time during which the negative had been removed from the
interest, supposing the prints were to be developed shortly afterwards.

Mr. Gravells said that in his practice he had found it advisable
to allow a margin if the prints were to be kept for a few hours.

He had purposely been keeping them till next day, with the method of
autotype he had had his negatives etherized for a week, which
the action of light, and put away for a short time, it would be found
to have become insoluble, and if it were developed a tint would
be found over the whole surface.

The Secretary was of opinion that the question might be solved by printing on tissue from a negative sufficiently dense to
preserve the whites, placing away for a while, and then develop-
ing. If the action were continued only where the lights had
acted the whites would remain pure, but if the action were all over
the film the whites would be proportionately suffused.

On the proposition of the Chairman, seconded by Mr. Rawnsley,
the thanks of the Society were unanimously accorded to Mr.
Gravells for his interesting practical lecture.

A paper on the Woodbury Process had been prepared by Mr.
W. E. Bartho, but as the evening's proceedings would not admit
of consideration, he had requested to enlarge it and read it at
the next meeting of the Society.

This concluded the business, and the meeting was then
adjourned.

Talk in the Studio.

Mr. Morley's catalogue.—We have just received a copy
of Mr. Morley's recent catalogue of new and second-hand
apparatus of all kinds—engravings, paintings, prints, and varied
and extensive array of instruments. Such a catalogue must possess
great interest for all contemplating fresh purchases.

DALLASTYPE.—Mr. Duncan Dallas has just issued his
programme of the conditions upon which he is anxious to sell
the secret of his process to five hundred subscribers at £20 a
piece. We shall have a few words further on the subject
shortly.

Photographic prey.—On Tuesday, at Bow Street,

Charles Urquhart was charged on remand before Mr. Vaughan,
upon several summonses, for selling and importing pirated
photographic copies of engravings, the copyright of which
belongs to Messrs. Graves and Son, the well-known engravers.

In the absence of Mr. Lewis, Mr. Graves, jun., conducted the
prosecution, and Mr. Silberberg defended. The case had been
adjourned for the production of evidence to prove the importa-
tion of the photographs, and yesterday several letters to the
prisoner from the well-known firm of photographers in Berlin, Messrs. Seal and Co., were read; and these conclusively proved that the prisoner had been in the habit of importing these photographs for some time past. It also appeared that the prisoner was the agent who obtained the engraving, sent it to Berlin to be photographed, and then sold the copies in England. Mr. Vaughan, in summing up the case, said that he found upon the prisoner, and had examined the defendant's fulls, that the defendant said his object was to prevent the piracy, and not to obtain money. There was also a second charge against the prisoner for selling, and having in his possession for the purposes of sale, a number of indecent photographs. This case was tried by Mr. Justice Ayrton, and the prisoner was committed for trial.

Bath of Acetic Acid before Toning.—The custom prevails largely amongst American printers of immersing the print, before toning, in a bath of one drachm glacial acetic acid in an emulsion removed from Mr. Anthony, clinging to the practice of giving "almost without exception, the American photographers use the fumes of ammonia in their printing. It is a fact that paper thus prepared retains sufficient ammonia to convert the free nitric acid into nitrate, and the paper is coated in a weak solution of acetic—made into acetic of silver. There can be no doubt that the acetic is formed, as it is perfectly visible in the water. We do not know whether the plan of using acetic acid is adopted to any extent in England; but we can assure all who feel disposed to try it that it is a very important appendix to the ammonia fuming process, and almost as useful, from the fact that it saves very long washings before toning, enables one to save all his surplus nitrate, takes less gold in toning, and causes richer tones. Acetic acid can be replaced, and with advantage, by other vegetable or organic acids. Citric and oxalic give especially fine results.

The above assertions are founded on practical experience, as I have used the acid wash ever since I discovered its importance in our everyday work. I hope the photographers of England will not be as long before adopting that acid wash as they have been in the case of ammonia toning."

Collodion-Chloride Prints Turning Yellow.—Mr. H. J. Newton says:—"In reference to the fact that prints on collodion-chloride occasionally turn yellow I will state: A gentleman told me that he had prepared a glass of collodion having his prints turn yellow. I spoke to him about using the acetate of lead for the purpose of eliminating the last traces of hyposulphite of soda. He said he had tried it, but did not succeed until he made a solution of acetate of lead to which a large proportion of alcohol was added, which enabled him to penetrate the film. Since he adopted that plan, he had not had a yellow picture." In our own experience these prints, if fixed and washed with moderate care, never turn yellow except where a sub-stratum of albumen is used.—Ed.

Blackwell Yellow.—These well-known yellow stains can be removed, either from the skin or from brown or black woolen garments, by moistening the spots for a while with per-manganate of potash, and rinsing with water. A brownish stain of manganese remains, which may be removed from clothing with aqueous solution of sulphurous acid. If the spots are old they cannot be entirely removed.—Chemical News

To Correspondents.

* * To AGENTS AND ADVERTISERS.—Next Friday being Good Friday, the Photographic News will be published on Thursday, the 35th. Advertisers should send in their Announcements not later than Wednesday, the 24th.

Mr. Lincoln.—Your negative was distinctly fogged, but just what caused it has the characteristics commonly produced by the use of a new, somewhat thin, and nearly colourless collodion, and a newly mixed iron developer. A little larger proportion of the solution used probably would be permanent. Photographic of Mr. M. W. D. Messrs. Newhall & Co., Boston, probably would be permanent. Photograph of Earl of Kintore. Messrs. Brown & Co., Tampere. Photographer of Sir James Ethington, Bart.

J. T. Rolle.—The Autotype Company, we believe, supplies tissue of the same sort of prints, and we are sure they will be pleasing to the customer. It is probable that, on suitable terms, they could prepare the tissue of any desired colour. The use of permanganate for intensifying negatives made on carbon tissue and transferred to glass film had tried, but we obtained the form was a mixture of manganese. It is manifest that an attempt to tone carbon paper on paper would fail, as the permanganate would be decomposed by the carbon paper, and the ink would be left in the whites. The toning, if it be found to succeed at all, must be effected whilst the image is on the plate or zinc plate on which it is developed before it is transferred to the paper.

Photographs.—You can only remove the nitrate of soda or of ammonia from the silver bath by precipitating the silver and redissolving it.

A. Clarke.—Without a precise description of your operations it is impossible for us to form any idea of the reason why you sometimes obtain a positive effect sometimes nothing. The reasons why the film sometimes slips from your plate may be various, but the most probable reason is the use of a bath containing too much acetic acid. With a bath of acetic acid, especially when there is also some want of skill in manipulating, slipping of the film is not unfrequently a trouble. A preliminary coating of dilute albumen will prove a remedy. As a rule, rain water is not pure enough for the silver bath. Pure distilled water should be used.

J. N. W.—The writer of the article in question resides in Australia, and as such, therefore, there is no possibility that he can express an opinion from his description, that, in the covering of the tent, top and sides are sewed together.

B. B. W.—Your simplest plan will be to describe your qualifications in an advertisement accompanying your paper, stating that you require a certain number of specimen prints which are to be returned.

R. T. Wall.—A negative about half-plate size is a good size for enlargement. Of the lenses you name we should prefer No. 4; No. 3 is also, we believe, a useful lens, but we cannot speak from personal experience. In either case a lens of about eight inches equivalent focus may be used for the work. You will find in our last Year-Book full details as to the preparation of such lenses.

C.—So far as we know, oileographs ought to be moderately permanent; but we have heard of cases in which the brilliancy of the colours has faded. Much will depend on the colours used in printing them. In such matters there is at times a temptation to use cheap fugitive colours, which have a brilliant effect at first, but which do not stand the test of time.

C. H. Homes.—Hypo sulphite of soda may be kept in solution, and will remain good if it have not been used.

C. E. F.—There are two or three modes in which salts of platinum can be used for printing. A paper prepared by mixing gold and exposed to the light under a negative, and then immersed in a bath of chlorides of platinum, will give an image in the latter metal. A process of this kind was described by Dr. Diamond in our last Year-Book. There is good reason to believe that there is much in the permanency of such pictures when carefully produced. But it has not been, as yet, tested fully by time, therefore we cannot say how that may stand after a considerable length of time.

Silver.—The silver solution required for securing an electro deposit of silver on copper is made by dissolving chlorides of silver in a solution of cyanide of potassium. We cannot possibly, however, give you full details on the electro process in this column. Procure a hand-book of electrolyte manipulation, which will cost you about one shilling.

W. A.—Toning may be effected with a solution of absolutely neutral chloride of gold without any addition. On the addition of acetate of soda to ordinary chlorides of gold the acetate of soda is slowly decomposed, the base going to the free hydrochloric acid and monoclinic, whilst a trace of acetic acid is a decided advantage rather than a disadvantage in toning. You should not write questions to the Editor in the letter addressed to the Publisher. It causes delay, inconvenience, and risk of being overlooked.

Mr. Howarth's address is 3, Thornton Road, Bradford.

R. Holgate.—Thanks.

A. W. Adams.—Letter forwarded.

H. Brueers.—Thanks; in our next.

Several Correspondents in our next.

Photographs Registered.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

ABOUT PYROXILIN, SOLUBLE AND INSOLUBLE, AND ITS STABILITY.

The extensive employment of gun-cotton, nowadays, by photographers and surgeons, and especially by miners and military engineers, renders it a matter of absolute necessity that we should be thoroughly acquainted with the properties of so powerful an explosive. It has always been an unfortunate circumstance connected with its investigation, that no sooner have chemists made some sort of progress in their experience of gun-cotton, than a lamentable accident in its manufacture at once puts a stop to— or, at any rate, seriously retards—the further study of its properties in the laboratory. In this country we have had two very serious accidents with gun-cotton: at Messrs. Hall's powder mills at Feverham, very soon after the material was invented, and recently at Stowmarket, an occurrence which will still be fresh in the minds of many of our readers. Other minor mishaps have from time to time occurred, but it is due to the two accidents we have mentioned that suspicions have grown rife in this country concerning pyroxilin. Dr. Vogel's recent remarks upon the subject, which were given in our columns last week, show how much uncertainty still exists in the minds even of chemists about the liability or not of pyroxilin to spontaneous decomposition, and this is not the only point upon which uncertainty still exists. I have no doubt that some kinds of pyroxilin are liable to spontaneous change, but then it is argued that the material in these cases was not properly prepared in the first instance.

When Schoenbein made his discovery first of all, only one kind of pyroxilin was recognised, and it was not till some time afterwards that it was shown there existed two sorts; one perfectly soluble cotton, which all photographers and surgeons make use of in collodion, the other containing more nitrogen, and being far more explosive. This latter, which is termed by chemists tri-nitro-cellulose, is soluble only to a limited degree, for if shaken up in a mixture of ether and alcohol only one-sixth of its bulk, at the most, is dissolved. Indeed, the degree of solubility that tri-nitro-cellulose possesses is one of the tests of its purity; and if, as is very often the case, it is not free from impurities, it is impossible to use it for photographic purposes. It is highly probable, however, that the material used by photographers is free from such impurities, for if more than the proportion of tri-nitro-cellulose stated is dissolved on treatment with the solvent mixture, then the material has not been properly prepared.

Returning, however, to the question of whether collodion gun-cotton and tri-nitro-cellulose are perfectly stable compounds, or whether they are, under some circumstances, liable to spontaneous decomposition or combustion, we approach a point which is hardly so clear as it might be. Professor Abel, the chemist of the War Department, who is one of our greatest authorities on the subject, would, we doubt not, unhesitatingly answer no to the question. If the material is properly manufactured, and the cotton has been thoroughly cleansed of all impurities, to begin with, and is well purified from the acid afterwards, he has over and over again stated his firm confidence in its stability. Other chemists have also expressed their thorough belief in the stability of pyroxilin, and especially of collodion cotton, if manufactured with care and precision; but, here, unfortunately, comes a condition which cannot always be guaranteed. The specimens of gun-cotton which have to our personal knowledge become decomposed, may, of course, have been imperfectly manufactured; but, we would ask, how are we to guarantee a perfectly pure and durable material? The catastrophe at Stowmarket was ascribed, it will be remembered, to the addition, through malice or accident, of acid after the cotton had gone through the conversion process; and this acid, remaining in the cotton when dry, fed, as may easily be imagined, to its ignition. Since that time a very safe precaution has been adopted, which it would be well for all photographers who have a large stock of pyroxilin by them to profit by. It is simply to keep the material wet from first to last, and to store it in this condition. Under these circumstances accidents can never arise, and the drying, which is dangerous if not properly conducted, should be undertaken with small quantities at a time. Any one who has seen a red hot iron bored into a half-pound block of moist gun-cotton, will be at once convinced of the harmless nature of the substance under these conditions, and engineers and miners are now enabled, thanks to the valuable discovery of Mr. E. O. Brown, of Woolwich, to make use of it in this condition, whether for the purpose of mining or blasting. So valuable, indeed, has gun-cotton proved for works of the latter description, that the Arctic Expedition, under Captain Nares, will make use of this explosive for blasting the ice, should the ships unfortunately be unable to free themselves from the masses of ice in any other way. For Arctic work pyroxilin has the great advantage over such blasting agents as dynamite and other nitroglycerine compounds, that when in a frozen condition, it does not become more dangerous to handle; while nitroglycerine, on the other hand, when cœlanged at a low temperature, needs to be employed with extreme care.

The most remarkable discovery which Mr. Brown, whose collarion is well known to us all, at Newcastle some years since, was due, it will be remembered, to the explosion of some nitroglycerine which had become frozen. Keeping gun-cotton wet, besides rendering it at once an innocuous compound, has a tendency, also, to promote its stability; if it be of a suspicious nature, and when conveying it in large quantities from one place to another. In this respect it is worth mentioning that we earnestly recommend the moistening of it first of all. Another plan for reducing the explosive power of photographer's pyroxilin would be for chemists to manufacture it in solid blocks, pressing the short fibre of the gun-cotton, when moist, into little pellets or slabs, as is the case with gun-cotton used for firing, for in this form the material, even when dry, is comparatively harmless and burns fiercely rather than explodes, supposing it is not confined.

We have heard that the Stowmarket Gun-cotton Company have intentions of manufacturing soluble gun-cotton for photographers, this being now almost a waste product at the works, because, as we have just said, a large amount of soluble cotton existing in tri-nitro-cellulose renders the latter unfit for use. As all the guncotton manufactured at Stowmarket is reduced to pulp and then compressed, there is no doubt that the Company would produce their photographic pyroxilin in the form we suggest.

At Faversham, where another guncotton factory exists, calling itself, we believe, the Guncotton Powder Works, the material is also reduced to a fine state of division, for the double purpose of effects its washing more thoroughly, and being able to compress it into any desirable shape. Instead of the cotton being reduced to pulp, however, as is done at Stowmarket, they grind the fibre between millstones, and in this way break up the cellular structure of the cellulose, and prevent it from retaining any trace of acid when finished; for it is the generation of acid fumes that is generally the first step towards the decomposition of guncotton; and any photographer purchasing pyroxilin should always refuse to accept a material of a reddish tint, especially in the event of his not wanting to use the material at once in the manufacture of collodion.

WUNDER'S COLOURING PROCESS.

BY FRITZ HAIG.

Notwithstanding the many favourable opinions which were expressed regarding this process in the photographic

* Photographische Archiv.
journals at the time of its publication, it has never received any extensive application; and the remark of M. Wunder, that after a few years (the process was made known in 1872) all high-class studios would practise the method, has turned out to have been at least premature. There can be no doubt that the process merited more attention than it has, and was given to it, for where the photographer has been placed before the public, they have been well received, and the extra price asked for them has not been grudged.

This fact has caused me to give a little information about the process, and the method of carrying it out, although I cannot say whether M. Wunder still proceeds in the way he used, and which I have here described. From a communication, however, which I have recently received, I may assume that he does not work exactly in the same manner as heretofore, the modifications he makes use of are of but minor consequence.

So far as regards the practice of the process, it is easily carried out. The photograph to be coloured must be toned a little more than is usually the case, so that it may not be of a brownish tint, but rather of a bluish-black colour.

After the photograph has been fixed in the ordinary manner, and washed thoroughly, and dried, it is rendered transparent by the application of a varnish made up according to the undermentioned formula:—

- French oil of turpentine ... 90 grammes
- Mastic, finest quality ... 15 gr
- Venetian turpentine... ... 33 gr

After the picture has been treated with this mixture and dried, it is placed face downwards upon a flat surface, such as a glass plate covered with a sheet of paper, and coloured vigorously on the back with honey or gelatine colours. So as to be able to judge better of the effect of the colouring from time to time as the work is proceeded with, the image is turned over and looked at from the face, upon a basis of white paper. If the picture appears under these circumstances to be sufficiently coloured, it is ready to be mounted. A card mount is coated very evenly with a solution of gum arabic in water. This first coating is allowed to dry, and then a second is applied, and while this is yet moist the coloured photograph is pressed on to it in the ordinary way, and the picture carefully pressed down by means of a soft linen cloth. Perfect adhesion is brought about by gently pressing the photograph down with the cloth. The picture is not put through a rolling-press, but allowed to dry in this condition, the edges of the card being trimmed from gum arabic means of a rag.

Should the colouring show any lack of uniformity afterwards, this may be easily rectified upon the finished picture.

THE PRACTICAL PRINTER IN AMERICA.

XX.

WASHING AND ACIDIFYING PRINTS BEFORE TONING.

It will be seen in the following chapter that Mr. Hearne refers to the practice of immersing prints in acetic acid before toning as a matter of course. The custom obtains almost universally in America, whilst in this country it is comparatively little practised, although it has its origin here.

About fourteen years ago, soon after the use of the alkaline mordant was abandoned in this country, and counterbalanced by the introduction of toned prints, томе.

Mr. Fry, if we remember rightly, introduced the bath of diluted acetic acid previous to toning as a remedy which proved efficient for this trouble.

Mr. Hearne's practical remarks on the action of acetic acid are excellent; but he does not seem quite clear as to the exact action. It is possible that the bleaching operations instead of retarding them, whilst chlorides of sodium would have the opposite action. In toning, it is necessary that chlorides of gold should be decomposed, so as to precipitate the gold on the print. The chlorides of silver and free chloride of sodium resulting from the use of the ordinary salt bath will certainly not facilitate the decomposition of the chloride of gold, whilst acetate of silver by double decomposition, and acetic acid as a reducing agent, will both aid in reducing the gold. Hence the value of the acetic acid bath.

Next in order comes the washing of the prints, although in many galleries the acidifying of them is done first. It is a question whether the prints are the first in the acid water or not, and there are many photographers that believe in washing them first; and then, again, there are many that believe to the contrary. It is not in my mind a matter of so much importance, but for several reasons I am most in favour of washing them first; and so I will commence with the washing.

It was supposed by many photographers, two or three years ago, that the washing of the prints was a matter of considerable time, and consequently they would let their prints wash half an hour in running water, moving them occasionally with the hands. Within the last year or two, however, the photographic printers have found out that such long washing is not only unnecessary, but injurious to the prints; and at the present day, in many of our prints, this part of the process is done in a few minutes. The way we should advise our brother printer to wash his prints is as follows:—Take a half-sheet dish—although any other, if large enough, would do as well—and pour into it lukewarm water, until the dish is about one quarter full. Now place the prints in, by letting a few drop out of your left hand at a time into the dish, while you hold the right, you push them under the water, until you have placed the whole batch of prints in the bath. Again, do this as quickly as possible.

I have recommended to let a few (three or four) drop from the hand at a time in the water, because beginners are apt get some of the prints wet (and let them stay in the hand for some time in that condition before they are placed in the water), if they were to take them from the left hand with the right one, and then place them in the water as they might want. By being very careful, however, they can do it. The objection to getting the prints partly wet and then remaining in that state, even for a few seconds (say eight or ten seconds), before they are wholly submerged in the water, is, that where the water has touched them, they will turn red, and if they are thus saturated by the water after getting out in the dish, they will show spots redder than the other parts of the prints, which will sometimes be very troublesome in the succeeding operations. After the whole batch of prints that are to be toned are placed in this bath of warm water, move them about briskly for about five minutes, and then gently pour the water off into a barrel, leaving the prints to lay flat on the bottom of the dish. Then rinse them with a little more water, and pour this also into the barrel.

These first two waters we save, and throw down the silver in them, by sprinkling a little common salt in the contents of the barrel, upon the addition of which the silver in the solution will be deposited on the bottom in the form of chloride of silver. Upon adding salt to the solution, it will turn blue; whereas, before it was added, the solution was of a cold slaty colour. When this chloride of silver is thoroughly deposited, then draw off the clear water by either a syphon or a faucet, as may suit the taste of the printer.

Before taking for granted that the silver in the solution is all precipitated because you have previously sprinkled salt in the barrel, the solution should again be tested by a pinch or two of salt, and if there is no more precipitate, then the silver is all precipitated, and the liquid can be drawn off without any further delay. When you have rinsed the prints, wash in one or two other changes of water, which you need not save, and then they are ready to be placed in the acidulated water. When the prints are in
The first change of water the washing is done quickly by permitting them to come to the surface, and then gently pushing them down again to the bottom. The prints are washed more thoroughly and quickly in this way than in any other. The time required to do the above washing, after the whole batch of prints are placed in the bath, is only from five to ten minutes.

Now, once this is done, the prints are ready to be placed in the acid water; but, before we do so, we will pause and consider for a few minutes the object of doing this.

It has been supposed by many printers, and in fact that is the general opinion at the present day, that the prints are placed in this bath of slightly acid water for the simple purpose of turning them red, so that they will be able to watch the toning, and also to tone them better. Now this is partly so, but it is by no means the principal object of placing them in the bath, as we will presently endeavour to show.

If our only object in placing the prints in this bath was to make them simply red, why should we not, as was formerly done, place them in a bath of salt water, and thus render that part of the work as simple as the acid does, besides being very much cheaper?

The answer from some of these printers may be that they cannot obtain such nice tones as they could if the prints were 'red up' with acetic acid: and, if that is so, is it not evident that there is something in the action of the acetic acid on the prints that renders them better for the toning process than the action of the salt water?

The action of the salt water on the prints converts the remaining silver left in the prints after washing into the pure chloride of silver; whereas before, part of the silver on the surface of the prints was the chloride, albuminate, and the nitrate, for it must be borne in mind that the salt in the water, when it is floated upon the positive bath, takes up the silver it needs, and forms chloride of silver, which is washed away from the positive board; the nitrate, however, in the albumen of the paper takes up some, and forms albuminate of silver; and, besides this, there is some more absorbed merely mechanically, which is properly the nitrate.

Our attention was first called to the fact we have just explained upon reading, a couple of years or so ago, the action of the positive bath on the albumen paper, when floated upon it, in letters from Mr. D. F. Arnold (Photogr. News, September 1870).

Thus you see that all of the silver that was on the surface in different forms is now reduced to the same form, viz., pure chloride of silver.

Now if you were to place the prints in a very diluted bath of acetic acid instead of salt, then the remaining silver in them will be perfectly converted into the acetate of silver, if they are permitted to remain in the bath long enough for the acid to overcome the other natures of the silver, and that is why I have below recommended the prints to remain in the acid water ten minutes, for the acid to do its work; and that is also the reason why (if the prints stick together for any length of time), even if they have once been wet all over with the acid water, the prints at those parts where they had laid close together will not be properly converted into the acetate of silver, and will not tone well, although they may not have changed colour any — i.e., those parts of the prints which may be stuck together will be full as red as the rest of the prints, and thus to a careless eye may be all right; but in the toning of them, the printer will perhaps wonder what makes some of them tone so much better than others, although in the distribution of colour on the surface they seem to be all alike.

The acetate of silver is worked upon better by the toning solution than either the chloride of silver or the mixture that composed the silver on the prints before they were placed in the acid or salt water (being chloride, albuminate, and nitrate).

* It must be borne in mind that the paper having been toned, there may not be any difference in form of acetate of silver, as would be the case if only free nitrate were present in the prints.—Ed. Photogr. News.

The proof of the above can be observed by the toner as he tones the prints that have been 'red up' in either the salt or acid water; and then again as he tones those which have not been 'red up' at all, but simply washed.

I do not mean to give the young beginner the impression, however, that prints that have been placed in the salt water, in lieu of the acid water, will tone badly in the toning bath. On the contrary, they will tone very fairly. The good old-fashioned tone (good if it is old) will show; but I do mean to say that better tones can be obtained with the use of the acid water, provided the conditions are right. An excellent toner may take prints that have been placed in salt water, and obtain better results than an indifferent toner would with prints that have been placed in acid water.

The quantity of the acetic acid required is just sufficient to properly convert the remaining silver in the prints into acetate of silver, as has been said before, and no more. I use generally about an ounce of the acid to the gallon of lukewarm water. I use lukewarm water because it will more quickly do the work required than cold water.

In Germany and England glacial acetic acid is used; but when that is used I say, if not equal to the good old-fashioned toner, as it is much stronger than the acetic acid No. 8. This acid (glacial acetic) is not used at all, I think, in this country, and when the acetic No. 8 can be obtained it had better be used, as the glacial is very expensive, more so than it is proportionally stronger.

When you commence to make your acid bath, place the lukewarm water first, and then float the salt out of the bath, and then after measuring out the quantity of the acid in a small vial, pour it into the water at different places, and then, with your hand, stir the water well for about one minute, so as to get the acid thoroughly mixed with the water. Now place the prints into this bath as quickly as possible, in the manner described in the preceding chapter, i.e., by permitting two or three to fall at a time from the left hand, while with the right hand, I repeat, as quickly as possible.

When you have placed every print in the acid water, then keep them in constant motion for ten minutes, for the reason above mentioned (viz., that the silver in the paper will be equally converted into the acetate of silver), and then pour off the acid water and save it (for this acid water has released still more silver from the prints), and then place the prints in the toning bath (see the Proceeding of Photographers), so as to remove the bad smell of acetic acid from them. It is very necessary that the prints be washed well after acidifying them, because, if the superfused acid water is not well washed from them, false, deceiving tones will be obtained in the toning bath, which will in a great measure be destroyed in the further operations with the prints. The tone will be a superficial and uneven one. The prints are finally sufficiently washed for the toning operations when, upon smelling them, there is only a very slight vapore of the acetic acid given forth.

ART-CRITICISM.

BY W. NEILSON.

Retouching.—By "retouching," I mean painting lights on the negative, or "bumping" up. It almost seems pre-assumption to speak against it; for no fashion has been more prevalent or more generally admired since the graceful crinoline went out of date. It has even been exalted into the "artistic touch" which gives brilliance to a photograph; reminding one somewhat of the artistic touch a girl gives her cheek when she dresses in the highest height of fashion, and becomes brilliantly vulgarised. It is but common humanity to sympathize with the next generation when they shall see the general run of the brilliant "retouches" of their fathers looking as if the originals had been touched with leprosy. It is altogether a mistake.

* Concluded from page 124.
Art is not to be juggled with. Trick and tinseling of every kind is alien to its nature. Every art is complete in itself; indebted to itself alone. What would you say of the painter who could not finish his picture without calling in extraneous aid, wholly apart from brush and pigment? You would say either that painting is an incomplete art—that is, no art at all—or that the painter was incompetent. In like dilemma, the photographer who resorts to the brush casts a slur either on himself or photography. Either the one is not a true art, or the other is not a true artist. Perhaps it may be said that certainly is true; yet retouching bears the same name. To retouch is the words of the "I am Done," when George IV., who had come to believe that he led the charge at Waterloo, appealed at a dinner party to the Duke of Wellington if that were not the case, the Duke replied, "I have heard your Majesty say so before."

Photography, like every other art, must act solely by its own law, having its own idiocy or peculiar constitution, according to which it can render any desirable requirement of light and shade. It is difficult, no doubt; but difficulty is the boast of art and test of the artist. Photography should not imitate the effects of painting or chalk drawing. To imitate is to confess want of originality—the resource of incompetence. Photography, as different from other modes of representation, should be true to itself, and not only, as commonly, accomplish by its own idea the subdued tone of graduated lights and shades, in which alone its charm consists. It should work, so to speak, in a minor key. If a painting may be compared to the effects of a sunlit view, photography may rather be compared to the effects of a moonlit view. Take away from it this difference from other modes of representation, its subdued rendering, and you leave—what? Brilliancy, what is translated into the vulgar language, means "chalkiness."

I object, then, to retouching:—1. Because by imitating the high lights of painting it depraves from the idiocy of photography. 2. Because introducing a high light destroys the subdued effect of the graduated scale of shades peculiar to photography. 3. Because it destroys the texture, always proportionate to a less of a chalky or flat effect. 4. Because it interferes with the likeness. If we could have a photograph of Shakespeare, would you wish it to be retouched. No. And why? Just because it would interfere with the likeness. Every man should be represented as he is, and not what the retoucher thinks he should be; unless the man, aspiring to the beau ideal, is content to be turned out as an ideal bean.

But if you have, as I have, attended at the first photographic exhibition of his day. If ever photographer stood on the higher platform he is the man. Latterly Rejlander never retouched.

These remarks are, of course, not intended to bear upon professional photographers, may of whom, I know, have to do what they dislike in order to please their customers. Trade, as well as art, has its prerogative—"Who live to please must not live to live." But amateurs, at least, are freemen. We know that there are men among them of taste as well as skill; and it is for them especially—if they can forego the easy pecuniary that is acquired by a few dabs of the brush—to rely upon their art, and show the subdued style of beauty peculiar to photography, without which it has no pretense to be called an art. Already there are prophetic signs. I am told that in Germany a reaction is taking place, and that retouching is beginning to be regarded as a mere "dodge," unworthy of any man who has the capabilities of an artist.

Life-size heads.—Mr. Crawshay has rendered great service in calling attention to the capabilities of the lens. Not having seen the pictures which gained his prizes, I can merely say that I believe the judges were conscientious in their verdict, and that the pictures were excellent, even without allowance for the attractions of the fashionable brush. That life-sized heads should be confined to the portrait painter I think can be proved by the fundamental principle of art. But, passing that, there are two difficulties in taking direct life size heads. The one is that few skins can stand the near scrutiny of the lens without losing on the negative many uneasily spots. Skins that show no frown is to the eye often do so to the lens. The other difficulty lies in the point of the nose. This very prominent feature is very apt to have, whether it is curled downwards or upwards, a prolongation at the point, as if nature intended humanity to be led by the nose, which it very often is. In most positions of the head this nasal knob perks itself unduly into the light, which, falling at an incorrect angle, becomes more perceptible, and an amount of glare that causes exaggeration in the negative. For the same reason, though the hand be in perfect focus, the glaring fingers come out enlarged. This happens in small photographs also. Of course there will be distortion if the focus of the lens be too short for the occasion.

As somewhat in illustration I have laid before you three of the pictures I sent to the exhibition. These were not retouched and the fact is that the photographic novel. of course, look flat and dull beside those made brilliant with the "artistic touch." Since the exhibition the print of the large head has had the spots on cheek and forehead touched, giving it a more finished look. Several artists have seen it, and found the drawing correct, save a slight width at the nasal knob. They also agreed that it has a richness of effect not found in the larges and a more striking likeness. I think there is none who has all this and could be improved by heightening the lights. The reply was, No! Indeed every artist I have talked with speaks of retouching with abhorrence.

In expressing opinions in a paper of this kind one is apt to appear dogmatize. If I have done so it is partly owing to the fact that any artist I have had an opportunity of conversing with on the subject have substantially agreed with what has been advanced.

In concluding, I am aware an opponent might say, "You have, for the most part, merely expressed opinions without meeting objections which might be brought against them. My reply would be, "I grant it, sir. One can't do everything in half-an-hour. I have merely tried to shoot you on my line; and if it do you no harm to remove from that point of view, and indulge in a little contemplation without partiality, and, if possible, without prejudice."

THE ART OF POPULAR ILLUSTRATION.

By Henry Blackburn.

Would it, then, be too much to ask of those who cater for and really create the public taste, that they should give us one of two things, or rather two things, in our illustrated newspapers, the real and the ideal? *

* Continued from page 187.
1. Pictorial records of events in the simplest and trustiest manner possible.

2. Pictures of the very highest class that can be produced on wood, and printed with the type.

If I were pressed for examples of excellence in each division as issuing from the press to-day, it would be difficult, and might seem invidious, to select them. Mr. Samuel Smillie of London, Nares, making a sketch on a cigarette paper as he walks may be more truly conceived as one of the genius d'artiste, ready to smoke or to swallow it on an emergency, is a good picture of artistic activity in this direction; but speaking generally, I would say that, in the first division—in fact, the true—some of the best sketches from the seat of war have appeared in the Illustrated London News, as in the Monde Illustre, published in Paris. They do not fail all the conditions asked for, and even they sometimes lack the simplicity and decision of touch which we hope to attain by training.

In the second division, "the ideal," the public need not be reminded that the Graphic newspaper is producing work of a higher artistic order than anything we have been accustomed to in newspapers. The illustrations by Sir James Lonsdale, Lord Houghton, H. Allingham, and others, which have appeared lately, are superb productions of fine drawing and engraving, in composition, colour, and in all technical qualities, the highest standard of excellence yet achieved. In this branch of illustration there is legitimate scope for both artist and engraver; but it is a question of taste how far events of the day should be treated in this way. Unfortunately, such, for instance, as the accident on the Matterhorn, depicted by Dore, and the burning of the Cospicua, by Durand. Some will think that such scenes should be left to the historian, he be painter or man of letters. In illustrations to novels and tales in newspapers and magazines, there is often more thought given to producing a work of art than to illustrating the text. The result is generally satisfactory to the public, but it is scarcely illustrative in the true sense of the word. Portraits, although they have been well described as the "ideal biography of the man," belong to the first division, the real, and in no branch of illustration do our newspapers more legitimately excel. The portraits of Dr. Manning, and of Carlyle, which have appeared lately, are remarkable examples of what may be accomplished, both in illustration and engraving on wood, for the weekly press.

Here, then, are two opposite schools of illustration which only require to be kept distinct, each in its own place, and our interest in them would be doubled. We ask first for a record of news, and then for a picture-gallery, and to know, to use a common phrase, "which is which." In the illustration of books, I would remark generally that the present fashion of drawing and engraving is too elaborate, the cost of which discourages publishers, and deprivates the public often of what it would care to see. Instances of this occur every day. I saw lately the author of a book of travel and exploration lay before his publisher a collection of sketches, photographs, and the like, which he had taken years to collect. To have seen these, or any other, presented in the true manner, in his book, would have been a valuable addition to our stores of knowledge. But the publisher was wise, from a business point of view, and out of some fifty of the most important subjects he selected ten, and had them drawn and engraved in the best drawing-room manner. The book is a success financially, and everybody is satisfied excepting the author himself, who knows that perhaps half the interest of that book lies in a drawer in his own chamber—waiting for the millennium!

Next, as to the processes for reproducing drawings, especially those adapted for the fac-simile reproduction of sketches. During the past few years so many processes have been put forward for producing drawings in relief, for printing with the type, that it has become a business in itself to test and understand them. First, as to wood engraving. I need not tell the practical part of my audience that on the 10th of March, 1875, the best known process is wood engraving; at least, it is the best for fac-simile reproduction of drawings, as at present understood in England, whether they be made direct upon the wood or transmitted by photography. There is no process in relief which has the same certainty, which gives the same colour and brightness, and by which gradation of tints is so completely possible, as which we ever will know, how much the engraver has done for the artist. "For good or for evil," it may be said; but I am thinking now only of the good—of occasions when the engraver has to interpret the artist's meaning, and sometimes, it must be confessed, to come to the rescue and perfect imperfect work. The artist who draws for reproduction by chemical and mechanical means is at least his own resources. He cannot say to the acid, "Make these lines a little sharper," or to the sun's rays, "Give a little more light;" and so, as we cannot always have good wood engraving, as it is not always cheap enough or rapid enough for our needs, we endeavor to draw in positive black lines exactly what we want reproduced, either a sketch in line or a diagram, or a more finished drawing, with tints obtained either by engraving, or by some other process, and resort to one of the photographic processes by which a stereo block can be produced, if necessary, in six or eight hours.

A wonderful and startling invention is here, worthy of a land of enchantment, which, without labour, with little more than a wave of the hand, transfixes the written thought, and turns it into a monument; by which the most delicate and dainty stroke of the pen is not only rendered visible for the eye to decipher, but it is brought out in sharp relief, as bold and strong as if hewn out of a rock. Here is an argument for doing "the best and truest work we can," a process that renders indestructible—so indestructible that nothing short of cremation would get rid of it—every line that we put upon paper: an argument for the new, for the fine, for the mechanical and the artistic, that is the method best adapted for photographic reproduction by the press. As to the relative value of the different photographic relief processes, that must be decided by experts. Speaking generally, I may say that there are six or seven now in use, each of which is, I am informed, the best, and several of which I know to be applicable to cylinder machines in the same manner as a metal cast from wood engraving, and improvements in these methods render us working more and more rapidly that what was best yesterday will not be the best to-morrow; and it is a subject of such importance that it might be worth while to devote a special evening to its consideration.

In answer to the question—perhaps on many lips to-night—"Has anything worthy of the name of an artistic result been produced by these relief processes?" I answer emphatically, "Yes," and that the results obtainable are, as yet, only half revealed. Drawings reproduced in relief by photographic processes differ curiously from each other, and all, of course, differ widely from wood engraving, which is never in absolute fac-simile. As adjuncts to, but not as substitutes for, wood engraving, the processes have great value, both in the printed page and in the sheer technical value, sometimes a quality of work which, for technical reasons, cannot be accomplished by the graver—a quality for which there is no other word than artistic. Some of the blocks are deficient in relief, and in the bearing up of the fine lines; but some have answered admirably, and have had as many as 100,000 impressions printed from them. The specimens put forward by the promoters of the photo-relief processes are very unequal; some are very good, and some, I must admit, are very bad indeed. They say, "Give us good work, and we can reproduce it;" but they want something more than this; they want drawings that will be reproduced mechanically; they want something, in fact, which, for want of practice, few artists are able to give.

(To be continued.)

THE ALBUMEN-BEER PROCESS.

The testimony borne by Captain Abney to the simplicity of the Albumen-beer Process, and the sensitiveness and trustworthiness of the plates under circumstances of special importance, must invest the subject with unusual interest to all dry-plate workers. We have already published copious details of the process, and we give to-day the resume of the operations used in the Transit plates. To the flaxen standards thus laid before the photographers, we are enabled to add a few further hints of value, obtained from Captain Abney in response to questions which arose to our mind after hearing his paper and examining the very fine quality of the negatives the process presents.

First, as regards the albumen. In Captain Abney's experience, dried albumen answered in every respect as perfectly as albumen from fresh eggs; and in view of the excellent results thus obtained, and from the advantages afforded by this preparation, he expressed a conviction that it might with advantage supersede fresh eggs in the majority of photographic applications. The primary difficulty standing in the way of this arises from the fact that samples of dried albumen vary, some being perfectly soluble, whilst other dissolve less freely, and leave some insoluble residue, a fact which at once introduces uncertainty into the strength of the solution. Captain Abney, in his paper of Egyptian experiences read before the Society, refers to a sample from one maker as always dissolving perfectly. This sample, we ascertain in the interests of our readers, is prepared by Mr. Thomas, of Pall Mall. It dissolves perfectly in cold water in a few minutes, fifty grains of it in one ounce of water furnishing, in Captain Abney's experience, a solution equivalent in all respects to the white of a fresh egg. According to the instructions of the maker, if we remember rightly, seventy-five grains per ounce should be used to produce a solution equivalent to white of egg; but Captain Abney never found it necessary to use more than fifty grains.

One of the most frequent enquiries which has reached us as regards this process has had reference to the quality of the ale used. Captain Abney's answer to this question is: "Any ale, so far as I know. I have used many kinds with good results, but we use, by preference, Tennent's ale." A good pale ale, moderately rich in malt and hops, is always found to answer well. An important point, however, requires attention. When it is least fit for drinking—that is, when it is quite flat—it is best suited for use in photography. Captain Abney found it necessary, with boiled ale especially, and with draft ale if it were at all brisk, to allow it to stand some hours in an open vessel, sometimes heating gently, in order that all the carbonic acid should escape, otherwise this, when brought into contact with the ammonia, would form carbonate of ammonia. Another point in connection with the ale it is important to observe: it should never be mixed with albumen solution until immediately before use, and any remaining over should be thrown away, as its use would only issue in uncertainty and probable failure. The reason is simple: if the solutions are suffered to stand for a time after being mixed, a precipitate is formed by the reaction between the tannin in the ale and the albumen, and two elements in the success of the process, tannin and albumen, are, to a certain extent, eliminated from the preservative.

At the mode of modifying the physical condition of the collodion by the addition of water, described by Captain Abney, is important. The method is a very old one, but it has not received sufficient attention. In most dry processes it is of great value, and also frequently in the wet process. A dozen years or more ago Mr. Window described in the Photographic News a dry process without preservative, yielding very sensitive and certain plates. An important element in the success of the process consisted in adding water to the collodion to the utmost point possible, without rendering the collodion glutinous and its film reticulated. Many persons tried the process and failed, and in every case where we could trace the operations we found that the process of watering the collodion had been neglected as unimportant and trouble some in working later plates by the wet process, especially in hot weather, this treatment of the collodion is most valuable. When, owing to the hornly repellent character of the film, must silver stains are troublesome, watering the collodion judiciously is an almost certain cure. The procedure is one, however, which requires care and judgment. The best plan is to take a portion of the collodion to be treated in a large dish, weighing the rate of two or three drops to such ounce at a time, shaking well, and then, after allowing the bottle to stand for a time, trying a plate. When the extreme verge has been reached, and crispness begins to be apparent, a little of the unwatered sample may be added to restore working conditions and get rid of crispness. There are two different defects produced by too much water not always present to each other. The most common is the production of a reticulated, crude film. This is easily removed by adding a little untrebled collodion. The other defect is an irregular glutinous consistency, giving an irregular, lumpy film. This is not always got rid of at once on adding more untrebled collodion. When once it is produced, it sometimes happens that the addition of much collodion is necessary, and in conjunction with the fresh collodion, will effect a cure.

In the albumen-beer process, Captain Abney finds the watered collodion invaluable. It will readily be seen that such collodion should be valuable in all dry processes. The film prepared with such collodion is much more permeable by water than a film from unsophisticated collodion, and, consequently, much more readily permits the removal of free nitrate of silver by washing. It also permits the ready penetration of the preservative and sensitizer—a condition manifestly of value; and it receives, and absorbs the aqueous solutions used in developing easily, so making the process of development almost rapid and easy as that of a wet plate.

ENAMELLED OR "GLACE" PHOTOGRAPHS.

The enamelled surface for portraits appears to be the rage amongst American photographers at present. A substitute is proposed in the Photographic Times in the use of what is termed "diamond glossy" paper and colloidio-chloride of silver. The paper in question appears to be the same as the ordinary glazed on which the deposit of a pigment and a glazing process. We have frequently used it for colloidio-chloride printing with great advantage. It gives a fine surface and great delicacy in rendering every detail in the negative.

The following method, given in the same journal as the
mode employed in Frederick's studio (one of the first portrait establishments in New York), may afford good hints to those who have not yet succeeded in producing enamelled surfaces satisfactorily.

"Have your glass free from bubbles and scratches—plate glass, size about 54 by 73 inches for cabinets. Clean well, and run a little streak of gum around the edges. This precaution must be taken, or else the picture will leave the glass before it should do so. When the gum is dry, it is ready for the collodion.

Coal-tar, ether, alcohol, glycerine, cotton. Coat the plate with this, and set away to dry: half an hour will be enough.

Gelatine No. 1.—Best French gelatine ... 1 ounce Water 12 ounces

Let the gelatine soak in the water twelve hours, then heat either by sand-bath or glue-pot principle; never let the heat be over 180° Fahrenheit or under 115°. Place in the solution, one by one, the pictures which you wish to enamel. Take your collodionized glass and warm it slightly on the back; then take a picture from the gelatine solution and lay it carefully on the glass, face down; rub the back lightly with a piece of cotton flannel, in order to remove the surplus gelatine on the glass and picture. Let the surplus thus removed run into a suitably prepared drain, lay the glass down flat, and keep on until all the pictures are thus placed, and let them remain half an hour; they are then ready for the next process.

Gelatine No. 2.—Gelatine same quality ... 2 ounces Water 8 "

Soak in this solution the cardboards for backing from five minutes upwards, and mount on back of pictures, in the same manner that pictures were placed. These mounts should be thin enough to allow of two thicknesses being placed; then put the glass aside for twenty-four hours or more in a dry place; the longer they remain up to a certain time the finer the glass; they are then ready for cutting; in doing which, be sure to cut inside of the gum which is placed on the edge of the glass for holding down the picture. Be sure not to allow the gelatine to get over-heated, as this destroys the whole process. Also be sure to slightly warm the glass before placing the picture on it, in order to drive off the dampness. Don't heat too much, as this will injure the collodion film.

"The collodion may be varied according to atmosphere; if a dry atmosphere, use more alcohol, and less cotton. The finer the surface of your first backing-board which comes in contact with the picture, the finer the result. The gelatine must be thin enough to allow of two thicknesses being placed; then allowed to cool, then re-heated before using. The process of staining or filtering produces small bubbles, which only disappear by cooling the solution. Never strain or filter it unless actually necessary to get out specks or dirt. The small card pictures need only one thickness of cardboard for backing."

SOFTNESS AND INTENSITY.

The *Western Photographic News* (Chicago) gives the following summary of the conditions which produce intensity and contrast in negatives:

"The normal conditions that produce contrast, chemically are, first, an increase of the per cent. of acid in any of the solutions; second, tincture of iodine in the emulsion, which may be classed as an acid, as it produces a vigorous acid in the bath; third, short exposure is a well-known method; fourth, certain positions of the model, and directions of the light and camera during exposure; fifth, motion of the plate during development; sixth, short setting of the collodion film; seventh, short immersion of plates in bath; eighth, certain conditions, such as washing and development. This has been relied on too much, as it is one of the lesser causes of this effect, and then only conditionally true. Some of the abnormal conditions of excessive contrast are, first, impure chemicals, and an inharmonious adaptation of the solutions to each other; too new a cadmium collodion; too alkaline a bath, or a nearly neutral one. A neutral bath, if impure, gives great contrast, and hazy or foggy effects; acid here will give softness, if used in proper proportion, and merely to neutralize or slightly acidify. If a slightly acid condition does not remedy the fault, the bath should be purified by neutralizing, and subjected to the permanganate of potash and light treatment, or light simply, as preferred. The causes that operate in an opposite direction, to produce softness, are given inferentially the ill-suggested, in each case of excessive contrast. I will briefly enumerate a few.

"First—decrease the proportion of acid in one or all of the solutions. Second—Long exposure. Third—Certain positions of the subject, and direction of light upon the same. Fourth—A quiet plate during development. Fifth—A copious use of developer, which produces softness by washing the silver off the plate. Sixth—Long setting of the collodion film, and long immersion in the bath. Seventh—An increase of the per cent. of iron in the developer. Eighth—Alcohol in the developer, which gives softness as well as lowering properties."

LOOK OUT FOR YOUR EYES.

BY H. BRUTER.

Attention is again being called to the sanitary condition of the operating room, and, despite the reiterated warnings against the use of cyanide, its convenience, safety (as regards the stability of negative), and quickness of result, will never banish its employment whilst hypo is the only substitute. Ether and alcohol have both had their share of abuse—none more than chloroform; the ill-springing from focussing by the eyes seem totally to have escaped general criticism. Perhaps the following argument may direct more attention to this neglected portion of human economy.

The easy focus of the eye is from nine to eleven inches, varying according to physique, on the same principle that, although we are all generally formed alike, particularities make one tall, another short; one stout, others thin. This will also apply to the slightly varying focus of the eyes, which, for the sake of distinction, will be called the "normal focus."

If a piece of printed matter be placed at this distance (normal focus) from the eyes, and both eye and hand instinctively hit the distance, the eyes feel easy, unrested, and direct the subject to the point; the eye should be able to focus at the right point, still the sight is easy. Direct the gaze to the distant stars, no unnatural effort seems to arise in their viewing. Try the converse; at the distance of normal sight place the printed matter; then gradually advance it towards the nose: every inch of advance increases the feeling of uncomfortable, till the nerves are absolutely palpable in their tension, and quite a feeling of relief ensues when the sight returns to its normal point. This experiment is adduced to show that nature has given illimitable sight beyond the "normal focus," but the power of seeing within this focus rapidly diminishes.

The photographer is placed in the latter condition who, to distinctly view the camera image, has to place his eyes far within this normal point, and, by a curious anomaly, has to ignore the laws concerning his own sight to conform to others governing the distinct vision of small bodies. Although the eyes in the end adapt themselves to this new order of vision, still the penalty must be paid in impaired vision, in seeking to force an unnatural power on the eyes, viz., making them a microscope; and the image on the ground glass when the entire depth of the subject is represented a carte portrait may truly come under that denomination.

Two circumstances prevent the immediate perception of this accuring evil. Firstly, during the bloom of early life
the physical power is sufficient to mask the harm, acting in the same manner respecting any other bodily excess. Secondly, the defect, though daily happening, is so inconsiderable as to be unperceivable, and is only felt when declining years, and that peculiar decadence of the eye (arcus senilis) weakens its organization, when the deterioration of the eye is found to be in greater proportion than years or the change alluded to would warrant.

I am afraid this will appear to you more than thought distant, "use a focuser." The usage and adjustment of this well-known instrument would be a platitude to describe, and the practice of a large and rapid business, extending over a lengthened period, gives an emboldenment to the above advice. Without wishing to make an invidious selection, the form of eye-piece manufactured by Solomon, of Red Lion Square, is as good and as economical as any in the market; but where all these instruments must be insisted upon: the absolute necessity for a "clamping ring," for without it the constant pressure of the eyebrow will little by little derange the focus, and blame might be attached to the performance of the instrument, due only to the neglected precautionary measures of the operator.

FRENCH CORRESPONDENCE.

AIME GIRARD'S MICROSCOPIC INVESTIGATION OF PAPER FIBRES—BORIC ACID IN THE DIPPING BATH—TONING WITH ACETATE OF LEAD—THE FRENCH TRANSIT OF VENUS OBSERVERS—PHOTOGRAPHIC EXHIBITIONS.

M. Aimé Girard, who has communicated to the Academy of Sciences the results of some interesting investigations which will be of some importance to photographers. For more than twenty-five years complaints have been made, and not without cause, against many paper manufacturers, concerning the material produced at their factories, the quality of paper made by the best firms being sometimes called into question. The reasons of these complaints have been sought for far and wide, and all kinds of means have been resorted to secure an improved product by modifying the raw material employed in the process of manufacture. M. Aimé Girard has now taken up the question from a new point of view, making a microscopic study of the vegetable fibre of which the pulp consists, and in this way he has been enabled to determine the precise condition in which a vegetable fibre should fulfill in order to produce a paper of first-class quality. The fibre must be long and thin, and should be capable of being doubled back upon itself with ease, so that the paper may acquire solidity in the process of felting. The tenacity of the fibre, upon which it is usual to lay such great stress, is only of secondary importance, it appears, for when a sheet of paper is torn, the fibres are not entirely torn, but glide between one another. The result of his experiments has led M. Girard to divide into five classes the different materials which serve for the fabrication of paper, and these he thus defines:—1. Round and nervous fibres. In this class there is to be found the fibres of flax and hemp only. 2. Round and smooth fibres slightly nervous, such as the esparto grass, the agave, and the agave cane. 3. Flattened, or ribbon-like fibres. In this class there is only one material to be found: the pulp produced from wheat and rye straw. 4. Flat fibres, like those of cotton, or such as are extracted from the wood of the mulberry tree and bamboo by chemical means. 5. Imperfect raw material. This is obtained from wood by mechanical means, and does not consist of fibrous matter all, but of bundles of fibres adhering to other fibrous matter in some other way. They are suitable only for coarse paper, which only requires a little beating.

Such material as this introduced into pulp can only serve to produce a very imperfect paper. In the course of his investigation M. Girard was not content to examine the different fibres under the microscope of which he speaks, but he photographed them and prepared enlarged pictures from the clichés, so as to be able to study their form more deeply, and to classify the types.

At the last meeting of the French Photographic Society M. Fleury Hermagis alluded to the employment of boric acid for acidulating negative baths. No handbook of photography has yet advocated the employment of this acid for the purpose indicated; nevertheless, according to our skillful optician, it may be so employed with advantage, always keeping the bath slightly acid with it. "It is a known fact," says M. Hermagis, "that the addition of small means of nitric acid the best collodion is exposed to partial lifting of the film, and the latter, moreover, loses some of its sensitiveness. It is well known, also, that acetic acid, less energetic in its action, evaporates very fast, so that fogging and other defects, which are dissipated by its presence, reappear again just at the most inopportune moment. Boric acid has the triple advantage of not causing at all damages to the coating at once, and also of causing the film to lift, and of preserving the sensitiveness of the iodobromide of silver in the same degree as if the dipping bath was in a neutral condition. The operator commences by putting his bath into a neutral state by the use of a concentrated aqueous solution of bicarbonate of soda. A few drops added to every hundred grammes of bath will suffice. As soon as the bath is in a state of equilibrium, enough soda has been added. The bath is then filtered, and acidiolated with about two or three grammes of boric acid for every litre of solution. A white colloidal will work very well under these conditions." M. Hermagis states that with a bath of this kind the time of exposure may be reduced by one-sixth. It is essential that the boric acid should be added to the bath, as it does not answer with this treatment. It is necessary also to take great care not to change the iodiser in the collodion, but to have a special bath for every different kind of collodion. M. Fleury Hermagis adds that you may succeed sometimes without fulfilling these conditions, but they are, nevertheless, necessary for operating smoothly and uniformly.

The skillful provincial photographer has addressed to me some interesting observations upon the employment of a fixing agent containing acetate of lead. The process, which was published in England twelve or thirteen years ago, is scarcely ever employed in this country, although it would be well, perhaps, to make use of it. The correspondent of whom I speak has still in his possession prints made by this method, which, in ten years, are not much different in this way. Despite their age, they have preserved all their brilliancy in the whites, and this freshness they possessed from the first, while other pictures, produced on the same date, toned and fixed in the ordinary manner, have faded very perceptibly, M. Aleide, my correspondent, deduces from this that acetate of lead, far from injuring the prints, on the contrary, has protected them. A picture may remain more than thirty minutes in a bath of hyposulphite of soda containing acetate of lead and ten per cent. of bicarbonate of soda, without the whites being in any way altered. The old prints of which he speaks were only passed into an old acetate of soda gold bath, which had been exhausted, and then, without being washed, put into the hyposulphite solution, prepared as we have described. They were there immersed for forty-five minutes, until they had assumed a beautiful violet tone, which they still preserve. The whites have remained quite pure, and the albumenized paper retains to this day all its brilliancy. In this process the washing requires much more care, and it is necessary that the water should be renewed from time to time. If a print is not rapidly washed, it assumes a yellowish tinge, which defaces the color. Last Monday M. Mouches, one of the French savans who were instructed by the French Academy to observe the Transit of Venus, gave a personal account before the members of the difficulties he encountered, and of the dangers he had to undergo, before he attained the success that fell to his lot. He had passed three months on St. Paul's Island, and I need not say that he had a most enthusiastic reception by the Academy. M. Mouches has
described in detail all the work that his companions and himself accomplished during the duration of the transit. By a circumstance as happy as it was unexpected, the weather, which had not ceased to be very unfavourable, cleared up suddenly at the right moment, and during the whole time of the transit it was possible to secure photographic images of the phenomenon. As many as four hundred and forty-three Daguerreotype plates were secured, and one hundred and forty-two collodion clicks, from which, however, must be deducted sixty-seven Daguerreotype plates and two hundred clicks to be very unsuccessful. There remain also four hundred and eighty-nine good results, which may be employed for making micrometric measurements, which will be at once conducted under the personal superintendence of M. Fizeau. When we take into consideration these prodigious results, we cannot but congratulate ourselves on the marvellous progress that has been made in photography during the last few years.

At the Palais des Champs Elysées they are organizing at the present moment an International Exhibition of industrial products for exportation, and a place will be reserved for photographs and photographic apparatus. An old photographer, M. Moulin, has charge of this portion of the exhibition, and he has just addressed to his colleagues an interesting letter. Another exhibit of a purely photographic nature, is also about to be organised at Brussels, as your readers have no doubt been informed, and it is in this direction that the attention of our artists is turned for the present. The Parisian photographers will, most probably, avail themselves in good numbers of the hospitality of the Belgian Photographic Association. It is very desirable that our English colleagues should also take part in this exhibition, so that the assembly may gain in interest and importance.

ERNEST LACAN.

PHOTOGRAPHIC OPERATIONS IN EGYPT IN CONNECTION WITH THE LATE TRANSIT OF VENUS.

BY CAPTAIN ABNEY.*

I have been asked to give an account of my photographic operations during my late visit to Egypt in connection with the transit of Venus. This I am happy to do. I should like to add, in some degree, to the interest of that remarkable country—remarkable for its climate, its river, its ruins, and its history. Where my chief work lay was at Aswan, on the south of the 60th degree of latitude, and it was a matter of no small anxiety to me how I should transport all my instruments and observatory to that spot. The boats, or "dahabees" as they are called, would hardly have taken all unless I had engaged one which was out of all proportion to the passenger accommodation which I required. My party consisted of myself and three Sappers, whose names I should like to record, as owing to them, in a great measure, resulted the success of my work. They were Sapper Laffeaty, chief photographer, and Corporal Milne and Sapper Farr as assistants. I may here say that the hearty good-will with which they worked and carried out instructions, sometimes preparing plates to the small hours of the morning, is beyond all praise. I may truly say that all failures (for failures at first there were not taken to heart by them, equally as much as by myself; and had not it been for the *enfente cordiale that existed between us all, the photographs we brought home might not have been so good even as they are. Honestly, I never knew so thoroughly before what a godsend it is to have soldiers who know you to work with you. I am prouder than ever I was in belonging to a corps that can produce such true men. Well, owing to the kindness of Mr. Campbell, and of Colonel Burton, who was going to make eye-observations of the transit) tows up the river by a government tug, on which I placed my hut. The instruments I took on board my boat, stowing them, as you may imagine, with most jealous care; for I was going to a place where it was hard to purchase even a nail; all great repairs would have been hopeless.

We started on the 25th October from Cairo, our baggage (which had occupied three large trucks on the railway) distributed as I have indicated. On the 7th November we sighted Karnak just at sun-set, and a glorious vision it was. The old ruins seemed like rubies set in the dark, while the palms which rose between us and them, I certainly have never before been so impressed by any sight excepting, perhaps, by the first view of the Alps from the Jura, when there was no rail to Geneva, and where one had to go by diligence from Dole. It is really beyond word-painting, and certainly beyond the palette. The scene was soon over as the sun set, and we were nearly in darkness by the time we arrived at Luxor. The next morning we moored up against an island just above Luxor, and the same day began erecting our observatory. This wooden observatory is one which is well worthy of a study; it is so complete in itself. Each part was accurately fitted, and there was no driving of nails to put it together. Each piece was numbered, and had its own screws and bolts. The roof of the hut all took down, being hexagonal, each part could be put in a separate box according to the position of the sun. One fact worthy of record is this, that it was watertight, a quality usually absent from such erections. I had it nearly a year at Chatham before I took it to Egypt, and, to my knowledge, not a drop of rain entered it when the shutters were up. After using it so long at Chatham, the feeling of knowing every nook and corner in it was one of intense comfort. The only point in it which would have borne improvement was the dark room, which, for a hot climate, was just a little bit too small, being 8 feet by 4 or thereabouts. The internal arrangements were admirable for wet plates, and the additions I made for dry plates answered very well.

I will first give a sketch of the drying cupboard, certain improvements in it having been suggested by Corporal Sharpe, R.E. It was a box attached to the side of the wall of the dark room away from the developing-sink. It was divided into two portions in its length, and each length had a separate flap-door opening upwards, with a lock and key. In each compartment were two shelves, so that it would contain two rows of plates.

The plane of the plates as they stood up to dry was at right angles to the front of the box. The top corner was held by a triangular notch cut in a bar of wood, traversing from back to front. (There were many bars as the number of plates that the cupboard could hold.) The bottom corner for draining was held by a porcelain inkpots. The plates when drying were about two and a-half inches apart; and by this means about six dozen plates would be prepared at one working. The size of the plates was 6 by 6 patent plates, slightly ground at the edges.

It was a week before we set regularly to work; there was so much preparation in adjusting the instrument and getting chemicals, and so on, in order. I think it was on the 15th that we took our first sun-picture. We lived on board our boat, our Syrian dragonman Milmah Ouardy (a capital man, by-the-by, and fully up to his work) catering for us. Mutton, chickens, and pigeons were our principal diet. The keys and cement in the currently seized were used much for the time of opportunity. We took our own liquor with us, a supply of Tennant's beer being laid in for the alcohol-beer process. Though not strictly photographic, I will record our times of eating—coffee and eggs at eight, breakfast (really a lunch) at twelve, and dinner at six. We always got up before the sun, which was generally about six o'clock, and went to bed when our work permitted. Up the Nile one does not require so much sleep as at home, the air is so exhilarating. * Read before the Photographic Society of Great Britain.
bitter ale. Care should be taken that, by a gentle heat, the carboxylic acid is all liberated, otherwise carbonate of ammonia will be formed on the addition of alkaline albumen.

(i.) Any ordinary collodion will answer. The bromo-iodized sample supplied by Thomas of Pall Mall, with 2% of pyroxylene added to each ounce, gives very rapid results. For sun-pictures, however, a modification is advisable, as much will depend on the climate in which it has to be employed.

(ii.) For a cold climate, collodion made by the following formula will be found to give good results:—

Thomas's bromized collodion ... 20 ounces
ordinary bromo-iodised ... 20
Plain collodion, not iodised ... 6
Pyroxylene 270 grains
Water 400 minims

(iii.) For warmer climates the following will be found to answer better:—

Thomas's bromized collodion ... 20 ounces
bromo-iodised ... 20
*Altschul's exp. gr. -805 ... 6 on 8
Pyroxylene 300 grains
Water 120 minims
With (i.) the ordinary nitrate of silver bath, 40 grains to the ounce, is used. If greater sensitiveness is required, 10 grains of nitrate of uranium to each fluid ounce of the above are added.

With (ii.) and (iii.) the above bath should be used, together with another made 60 grains to the ounce of water.

A substratum to the collodion is recommended, to insure adherence of the film to the glass plate during development. This is made by mixing the white of one egg with 400 grains distilled water, and applying it to the surface of the plate by a piece of swan's down, calico, or flannel folded over the edge of a strip of glass and used as a brush. The brush is dipped in the fluid, and drawn down the plate in parallel lines till the whole surface has received a coating. Here I may mention that a clean plate is necessary; but much polishing with a silk handkerchief or chamois leather prevents the substratum taking kindly to the glass.

Another substratum, which seems to give almost better results than the albumen, may be substituted for the above:—

Sheet gelatine 75 grains
Distilled water 60 ounces
Ammonia ¼ ounce
Alcohol 1

The gelatine should be softened in 30 ounces of cold water, and then dissolved by 30 ounces of boiling water. When cold, the remaining ingredients should be added.

If a plate (after the substratum has been thoroughly dried) is coated with collodion (i.), it is sensitized in the ordinary manner in the 40-grain bath, i.e., for about four minutes in cold, to 2½ in warm weather. If the plate has been coated with (ii.) or (iii.), it is plunged in the 40-grain bath, and kept there till all "greasiness" has disappeared. It is then transferred to the 60-grain bath and kept there for seven or eight minutes longer, i.e., until a creamy film is obtained. The plate is next plunged into distilled water, or spring water; which has been rendered slightly alkaline by adding a few drops of ammonia to it (if iron be present as an impurity), and to which, after boiling and filtering, a few drops of nitric acid have been added to restore neutrality. When the "greasiness" has disappeared from the film, the plate may be washed under the tap for a minute, or in different dishes of water, until all free nitrate of silver is washed off. It may be affected rapidly by adding a pinch or two of common salt to the last washing water but one in the dishes. In a small tumbler are next mixed equal quantities of A and B, stirred up with a glass rod, and floated over the washed film. If

* The better the climate, the more alcohol will be required.

* Drawn up by request of Sir G. Airy in March, 1874, for the transit observers.
† Communicated to the Photographic Society of Great Britain.
Correspondence.

ELECTRO-PLATING BRASS WORK.

Dear Sir,—Every photographer must have had reason to deplore the destructive effect upon his camera of the solutions he uses: hinges drop to pieces, corners open (in the dark slide especially), and our friend the light, who, like fire, is a very bad master, becomes master in the wrong place. Brass binding mitigates the evil, but does not cure it, for the composite metal becomes soon more or less reduced to nitrates, screws get loose, and their heads come off.

As it does not yet appear to have been tried, I venture to suggest the simple plan of electro-plating the brass work with nickel; the process costs only about one-fourth the price of silver plating. The nickel coating will resist entirely the oxidizing influence of the sun, and sulphured hydrogen, and is comparatively but slightly affected by nitric acid, and not at all by any other acid likely to be employed.—Yours respectfully, P. Roza.

PROTECTING CAMERA SLIDES, ETC.

Sir,—Having used the varnish mentioned at foot in our picture framing department for Oxford and other wood frames for several years, I have been led to an old camera and slide which has lain by during the winter, and consequently looked decidedly seedy. The result is a presentable article, and an inward vow not to order a new camera just yet. Varnish for woodwork dries in the sun or warm room, being careful not to place the article varnished near a fire, as it will blister.

Orange shellac..... 2 ounces
Sandaro..... 1 ounce
Bensoin.....
Rosin.....

Methylated spirits of wine..... 1 pint

Place in a warm place, and shake. Archer Clarke.

Proceedings of Societies.

The Edinburgh Photographic Society gave another of its "Popular Evenings" in the Queen Street Hall, on Wednesday, the 17th inst., when, as usual, every available seat was occupied. The exhibition was entitled "Sketches of English Life and Scenery," and included pictures of several of the principal gardens and cities of the Horticultural Society, the Zoological Gardens and many of their tenants, and a large number of genre pictures illustrating various phases of English life, both grave and gay.

Dr. John Nicoll, who occupied the platform, commenced by saying: 'Those of you who have been in the habit of attending the popular meetings are aware that the committee who are charged with the arrangements have always tried to secure for each exhibition a series of connected pictures which should form a base on which to build a story and description of a tour, &c. In this way we have together, during the last dozen years, visited various parts of the world, including most of the grand scenery of our own land, generally with much pleasure, and sometimes, I hope, with profit also. To this rule, however, there has been one exception, when the experiment of a series of unconnected pictures was tried, being selections from the works of the best photographers throughout the country. The experiment was so successful that the committee resolved to risk another attempt in a somewhat similar direction. The exhibition of to-night, however, differs from that of the experiment alluded to, in so far as, while it consisted of landscapes, architecture, this is altogether, or almost altogether, of figure subjects. I say almost altogether, as I confess that at the eleventh hour I began to have some misgivings as to the result, and applied for a few pictures of a somewhat different kind. What I wish you to understand is simply this: that the pictures for the exhibition of to-night are of such a nature that each will speak for itself, and tell its own story—in fact, better than I can do—and that therefore I shall have little more to do than merely mention the titles, most of which you will find exceedingly appropriate, although you will please to remember that I have neither the responsibility nor the credit.
them, as I shall simply quote from the printed list. Before the room is darkened, I wish to take the opportunity of saying that the members of the Society—and I may say, also, the friends who have honoured us with their presence—are much indebted to Mr. York, of Notting Hill, London, who, in the most literal sense of the word, has adorned his fine specimens of paintings and lantern pictures at our disposal. The transparencies are all produced by himself, and the figure subjects from negatives by Mr. Gille, of Bridgewater. Some of our members know a little of the difficulties encountered in photographing babies, and will have been struck by the striking beauty of Mr. York's process. I had with in getting the negatives of the inhabitants of the Zoological Gardens, and they will, I am certain, when they see the results, agree with me in saying that he has succeeded beyond what could have been thought possible. The pictures by Mr. Gille prove him to be an artist of no mean ability, and a photographer of great technical skill, and at the same time give abundant evidence that in skilful hands photography can be readily raised to the dignity of high or fine art.

The pictures were then projected on the screen, and formed a most delightful exhibition, which, with the running commentary of the lecturer, kept the audience in a continuous state of laughter during its whole course.

Talk in the Studio.

Obscene Photographs.—At the Middlesex Sessions, before Mr. Edloe, Q.C., Assistant-Judge, Charles Uffix, 31, hawker, pleaded guilty to selling a large quantity of obscene photographs, which he procured for himself. Mr. F. H. Lewis appeared for the prisoner. Mr. Cooper said that this was the first occasion on which the Society had taken up the prosecution of such a case as this. It had been ascertained, from a letter found at the prisoner's premises, that he had been selling the papers since November last. Mr. F. H. Lewis said that a short time since proceedings had been taken at the Mansion House against the prisoner for selling pirated photographs of engravings published by Messrs. Graves, and, on the officers going to the premises, they found the papers. He thought it would be as well to recall that the proceedings had been carried on the business for so long a period as that mentioned by the prosecution,—The Assistant-Judge passed sentence of twelve months' imprisonment with hard labour.

More Obscene Photographs.—At the same sessions William Oliver, 28, picture frame maker, pleaded guilty to unlawfully publishing and selling indecent prints. Mr. Besley said that in 1873 there was gradually springing up in London a sale of photographs which were of so obscene a character that the Society took the Suppression of Vice fell to the Caroline of the carbonte of socede will produce as a result of the remarkably. If the night is not sufficiently clear, or the chemicals are not in sufficiently good order to secure an instantaneous picture, the image of the moon will, of course, be formed from its movement, unless, by some contrivance, you make the camera move more gently and regularly, following the movement of the moon.

B. M. F.—If your pyroxylene tends to give a somewhat thick, glutinous collodion with a tough film, the iodide and bromide of calcium will increase that tendency, whilst the use of ammonium salts will reduce the tendency. With the latter, the collodion will more quickly ripen, and as it ripens the collodion becomes less glutinous, and the film loses touch and hardness.

The addition of a few drops of tincture of iodide to a new, colourless collodion will often enable it to be worked without fog. 3. We, as a rule, prefer equal parts of ether and alcohol. In our own practice we have found no disadvantage arise from the use of methyl ether and alcohol. Ether and alcohol are different, and the use of alcohol and ether are different, but the use of alcohol and ether is different. The former is wo'd spirit, the latter is ordinary alcohol to which ten per cent. of methyl alcohol has been added, with which addition—because it is used for staining purposes, it is permitted to be sold without payment of duty. Methylated ether is other manufactured from methylated spirits.

L. D. — The refuse of your gold bath to tone, and the dirty brown colour it has assumed, are suggestive of decomposition caused by touching it with fingers which have been immersed in the fixing, or in contact with hypo in some form. The print enclosed is sure to have been exposed with a hypo at some time; it succumbed before toning in a dish which has probably been used for washing prints after toning, and, therefore, traces of hypo about it. Are you careful to keep each dish to its own use? An unfiltered print should never be placed in a dish which has had the T. ARNAUD DE RIVIERE.—Waste of iron, or waste of iron in conjunction with sulphate of iron, used as a developer for negative, gives greater intensity and a somewhat more non-acidic colour than sulphate of iron alone. The process of preparing the solution is as follows: Take a litre of water; mix the two solutions, and filter out the white precipitate of sulphate of lead; then add a ten minims of acetic acid, and the solution is fit for use. Or dissolve twelve grains of sulphate of iron in a glass of soda and six grains of acetic acid, and two or three drops of liquid ammoniac, which will be sufficient to reduce the solution into acetic of iron. Alcohol may be added in any case to aid the flowing freely of the solution, at the pleasure of the operator; but, of course, the alcohol only possesses this mechanical value. We leave it all to the developer.

B. W. H.—The addition of excess of nitric acid will sometimes cause fog, but it is probable that the water employed in making the bath has been contaminated with some organic matter, in which case a thorough standing—fall, boiling—will probably be the best remedy; or you may test it with a solution of permanganate of potash. Take a ten-grain solution and add a few drops more, shaking each time, and allowing an interval of (say) ten minutes between each addition. If a faint pink observable tint remains, the organic matter is removed, and you may filter, and try a plate.

LUNAR.—Your inquiry as to where information on "night photography" and "moon photography" may be obtained appears somewhat indefinite. Do you mean by this astronomical photography in which a telescope is used, or simply how small images of the moon may be obtained in the ordinary camera? We have published many papers on astronomical photography. In our fifth volume, pp. 17 and 31, you will find much interesting information on lunar photography. But if you refer simply to cameras on the moon, we do not remember at the moment that anything has been published, except incidentally. There is not, in fact, much to say on the subject. A bright, clear night, with the moon shining brightly, and the ordinary wet process, will enable you to secure an instantaneous picture. If the image of the moon will, of course, be formed from its movement, unless, by some contrivance, you make the camera move more gently and regularly, following the movement of the moon.

E. E. (No. 1.)—The precipitate was double and a mixture of the carboante of silver and aurum. On neutralizing a bath with carbonate of soda it is useless to test it with litmus paper until it has stood some time, because the carbonate of soda will produce as a result of the remarkably. If the night is not sufficiently clear, or the chemicals are not in sufficiently good order to secure an instantaneous picture, the image of the moon will, of course, be formed from its movement, unless, by some contrivance, you make the camera move more gently and regularly, following the movement of the moon.

B. M. F.—If your pyroxylene tends to give a somewhat thick, glutinous collodion with a tough film, the iodide and bromide of calcium will increase that tendency, whilst the use of ammonium salts will reduce the tendency. With the latter, the collodion will more quickly ripen, and as it ripens the collodion becomes less glutinous, and the film loses touch and hardness.

The addition of a few drops of tincture of iodide to a new, colourless collodion will often enable it to be worked without fog. 3. We, as a rule, prefer equal parts of ether and alcohol. In our own practice we have found no disadvantage arise from the use of methyl ether and alcohol. Ether and alcohol are different, and the use of alcohol and ether are different, but the use of alcohol and ether is different. The former is wo'd spirit, the latter is ordinary alcohol to which ten per cent. of methyl alcohol has been added, with which addition—because it is used for staining purposes, it is permitted to be sold without payment of duty. Methylated ether is other manufactured from methylated spirits.

L. D. — The refuse of your gold bath to tone, and the dirty brown colour it has assumed, are suggestive of decomposition caused by touching it with fingers which have been immersed in the fixing, or in contact with hypo in some form. The print enclosed is sure to have been exposed with a hypo at some time; it succumbed before toning in a dish which has probably been used for washing prints after toning, and, therefore, traces of hypo about it. Are you careful to keep each dish to its own use? An unfiltered print should never be placed in a dish which has had the T. ARNAUD DE RIVIERE.—Waste of iron, or waste of iron in conjunction with sulphate of iron, used as a developer for negative, gives greater intensity and a somewhat more non-acidic colour than sulphate of iron alone. The process of preparing the solution is as follows: Take a litre of water; mix the two solutions, and filter out the white precipitate of sulphate of lead; then add a ten minims of acetic acid, and the solution is fit for use. Or dissolve twelve grains of sulphate of iron in a glass of soda and six grains of acetic acid, and two or three drops of liquid ammoniac, which will be sufficient to reduce the solution into acetic of iron. Alcohol may be added in any case to aid the flowing freely of the solution, at the pleasure of the operator; but, of course, the alcohol only possesses this mechanical value. We leave it all to the developer.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PROGRESS IN PHOTO-ENAMELLING.—HONOURS TO PHOTOGRAPHERS IN BERLIN.

Progress in Photo-Enamelling.—Like his brother the late Prince Consort, the Duke of Sax Coburg Gotha takes a lively interest in art matters, and we see that very recently he has paid some attention to that beautiful branch of our art, enamel photography. There cannot be a doubt that these charming pictures will take the highest place in photographic portraiture, and one may safely rely upon good enamels never becoming very common. The Duke of Sax Coburg, it appears, has been struck with some fine productions of this kind produced by a German artist, M. Stender, of Hanover, and in order to encourage further work in this direction, and to promote the production of imperishable photographs in this charming form, his Highness has conferred the Gotha medal for art and science upon M. Stender. We are glad of this for two reasons: it shows how highly the art-science is esteemed by one of the best authorities on such matters in Europe, and it will moreover serve as a great incentive to others to perfect the process as much as possible. Fortunately for the better class of photographers, the preparation of photo-enamels can never be practised except by those who systematically work up the subject, and possess considerable experience and taste. We shall never see photo-enamels selling at five shillings a dozen, neither is it likely that ill-executed productions of this kind will find many buyers at all. Only if an enamel is really first-rate will it sell at a sufficiently high rate to compensate one for its production. It is only those who have tried the experiment know how difficult the production of perfect enamels is. At Limoges, whose enamels were famous centuries ago, the art has been completely lost, and one of the professors at the Polytechnic School of that town recorded that the art had been revived among the townsmen, employing photography, however, instead of painting, as in days gone by. There seems, however, to be no information extant, either of a written or printed character, for the old Limoges enamellers seem to have passed their knowledge of the art on from one generation to another without committing any of their experiences to paper. So the learned professor finds it necessary to revive the name of Limoges enamels, the only way is to begin from the beginning as all photographers have been compelled to, and work step by step through the delicate process. Many have inveighed against the art because there is always a lack of certainty in its results; but this uncertainty is not only inherent to photo-enamels, but has existed ever since the commencement of the art of enamelling, and constitutes, indeed, one of the main reasons why enamels of all kinds are so rare and sought after. The delicacy of the burning-in operations, and the chance of success that attend them, are phases in the preparation of those charming productions which cannot be regarded altogether as drawbacks. In the same way as in the olden time the casting of a bell was always attended with doubt and difficulty, so we portray in Schiller's well known Lay of the Bell, so photographic enamels can never be predicted as safely finished until they have gone through the very last operation. But then there is all the more cause for congratulation when the risky business is over, and all one's cares and troubles are ended; the fruits of one's labours and the result of several trials being centred in the shining enamel before us. Every operation has been carefully watched and cautiously conducted, and three times, probably, have you committed the delicate picture to the tender mercies of a fiery furnace; for it is only after the image has been fluxed and cooled that the work can be said to be finished. How eagerly you wait that last operation of all! A soft but vigorous portrait has been produced so far upon the white tablet; you pour upon it the flux, and proceed to burn-in for the last time. The tablet is put upon a bit of clay near the glowing furnace to warm, then turned round to be heated throughout; then the image is approached nearer and nearer until you consider it may be safely introduced into the entrance of the furnace. As it is pushed farther and farther into the interior, the portrait gradually disappears from view, and nothing is seen for some time beyond a dull reddish surface; presently the picture begins again to reappear, this time covered with a vivid gloss, which, acting like a transparent varnish, adds redundant brilliancy to the picture. Gradually the tablet is withdrawn, gently it is allowed to cool beside the furnace, and in another five minutes you may rejoice in the success of your work and the end of your labours.

Honours to Photographers in Berlin.—Referring to honours conferred upon photographers abroad, it is satisfactory to find the same falling upon worthy heads. In Germany we find it rare for any photographers to make their mark in one of the bigger cities without some recognition from royalty, and such men as Fritz Luckhardt, of Vienna, and Albert, of Munich, do not remain long unrecognised. Either a medal is given in cases of this kind, or the title of Court Photographer, which is worth having, under imperial rule. We notice that the well known portraitist, Messrs. Loecher and Petch, of Berlin, whose works are widely known throughout Europe, have had the rank conferred upon them by the Emperor of Germany in the same way as the gentlemen previously mentioned enjoy the title from the Emperor of Austria and King of Bavaria respectively. Another firm, M. W. Fechner, also a Berlin photographer, has, it appears, also been the recipient of honours lately, but in this case they came from the Emperor of Japan, who forwarded a costly pair of Japanese vases as a present to M. Fechner, in return for an album containing portraits of a party of Japanese youths who are now studying in Berlin. What, however, we were most glad to hear, in the shape of honours from Germany, was the news recently published of our friend Dr. Vogel, of Berlin, being given a chair at the Industrial College of Berlin, where he has been for a long time lecturer and instructor in photography. On his return from India, where he has gone at the invitation of the Royal Society of Great Britain, in company with Mr. Schuster and M. Jansen, to watch the approaching eclipse of the sun, his services will doubtless not be forgotten, either in this country or his own.

DULL DAYS.*

For many years past we have not had such a dull winter as the present one. Since the end of November, 1874, we have lived in a state of sun-eclipse. Sometimes, on rare occasions, the solar orb has shown itself for a couple of hours in the forenoon, but it is soon crept back again behind the clouds, and hid itself more obscurely than ever; so that by the time you had sensitized a batch of paper ready for printing, your chance was gone, and the sensitized material became yellow and useless by keeping. Many a day there was scarcely a print per negative to be had, and this, too, about Christmas, or New Year, when one always finds a little ready money very handy. But nothing could be done. It was all very well to say, "Never mind, as Japan sunny we shall get brighter weather," but it never came. You might watch the barometer and thermometer as much as you liked, and deduce the most favourable results from the data they furnished, but, for all that, the weather remained dull, grey, and wretched.

That no work could be done for Christmas customers is not to be wondered at. With a shake of the head, I inspect my December work. There are all in one under-exposed, notwithstanding the flood of top-light which I

* Photographische Notizen.
had to use, and which made my models appear hollow
eyed; all seem to regard me with a sinister expression, as
if it were my fault they are so unhappily depicted. But
what could I do? I can draw back my blinds, but I
cannot draw back my eyes after the sun has risen and the
lines long enough to reach up there have still to be discovered.
The only consolation you have is, that all of us are in the
same boat, whether we are court photographers or not.

It is very obvious that one cannot undertake any fancy
lighting of the sitter in such dull weather. To attempt to
secure Rembrandt or any other effects would be madness,
even if one gets visits from ladies every now and then
who desire to be depicted in that style and no other.
You may draw back your blinds to their utmost extent,
and light up farther with mirrors and reflectors, but
such negatives, when developed, always turn out grey and
extremely thin, so as to require very much intensifying
before being fit for use. Brilliance may be obtained by
carrying on the intensifying operation for some time, and
a better print is then secured than can be got from a thin,
grey negative. The clichés need not be so vigorous as in
summer, and they print, indeed, much better in the dull
light we are having.

As regards collodionising the plate, you very often fall
into the error of pouring the liquid too thin, and this is
just the reverse of what should be done. Winter plates
always need more agitation, for only then do you get excited sensitiveness. You may allow the
collodion to flow several times up and down the plate
before it is drained off, and in this way a much thicker, and consequently more sensitive, film is secured. Rather
more ether should be contained in winter collodion, so
that if you are in the habit (say) of mixing your solvents
in the proportion of—

| Alcohol | ... | ... | ... | 75 parts |
| Ether | ... | ... | ... | 45 |

when preparing collodion for ordinary work for the spring
and summer, you may alter the proportions very profitably
to—

| Alcohol | ... | ... | ... | 60 parts |
| Ether | ... | ... | ... | 60 |

when preparing the collodion for winter use. Good recei
tives may be found in Vogel's Handbook.

Very important is the condition of the silver bath in
winter. Everybody knows that, in the first place, the
operation of sensitizing takes a long time when the bath
is cold. It is therefore ridiculous to follow such people's
advice who tell you always to sensitise for a period of two
months. You should introduce your plates into your
silver solution until all marks of greasiness over its surface
have disappeared. I will not assert that the temperature
interferes with the sensitiveness, but one thing is very
certain: that far more alcohol and ether get into the
bath in winter time than in summer. I sensitise in a
horizontal dish, and I have merely to allow the bath
to remain uncovered during the night in summer time to
be rid of the spirit therein; but in winter this precaution
does not avail me, for the alcohol and ether will not
evaporate. If the alcohol should not happen to be abso-
lutely pure, then it follows as a matter of course that a
bath may get out of order in winter through the effects of
cold, as it does in summer from the effects of heat.
Organic substances are seen to accumulate on the plates.
At first they are taken for streaks in the direction of the
dip, for they all assume this position, and do not dis-
appear on agitating the plate in the liquid. If the bath is
poured out into a flat dish, and the operation of sensi-
tizing is then proceeded with, the marks are still formed,
but they proceed from the four corners, and are bent
towards the middle of the plate. At the first they are of
so little importance that they make no impression upon
the prints, although a sharp operator will see them during
the process of development. Soon, however, a lack of
sensitiveness becomes gradually perceptible, and this is
the worst trait of winter photography. The best remedy
against this is permanganate of potash, for the assistance
of the sun in sunning the bath is not to be thought of.
One must be careful not to add too much permanganate to the bath. A drop should first be put in,
and then, if the reddish tint disappears rapidly, another
drop is added, and so on until you remark the red tint
imparted by the permanganate remains in the solution for
some time; finally, as many drops of nitric acid are added
as previously of the permanganate solution.

It must not be forgotten that in cold weather a warm
developer should be used, as it brings out more details than
a cold solution. A temperature of 15° Reaumur is the
best.

These are some of the points to be taken into considera-
tion in dull weather. It must be remembered, however,
that a quick-acting lens is one of the most important
things under the circumstances, for without an instrument
of this kind the best chemicals will avail little. Again, one
must sacrifice a little sharpness during dull weather, for to
employ stop in the camera when the light is bad amounts
to the same thing as drawing the curtains. Masterpieces
in the way of portrait photographs cannot be expected
under such disadvantageous circumstances.

THE PRACTICAL PRINTER IN AMERICA.

XXI.

TO ING BATHS.

Mr. Hearn rightly remarks that, of all parts of photo-
graphic printing, this is undoubtedly the most important
and difficult, with the exception, perhaps, of the manage-
ment of the printing bath; and he predicated his practical
hints by a few explanatory remarks, as follow:—

"There are a great variety of toning baths in use, a
great proportion of which are excellent for certain cases.
We shall here give our humble thoughts or ideas in the
making and care of the different toning baths, with such
quotations as may be found necessary from others probably
far more skilled in this branch than the author may be.

"Before proceeding further, I will explain to the
beginner the reason why there is such a bath, called 'the
toning bath,' used.

"The prints, as they were left in the last chapter, need
some agent to remove the silver left in them, else they
would continue to darken upon exposure to the light, and
in a short time be so dark as to be indistinguishable.
This agent is none other than hypo solution. If we want
to tone the prints as they are now directly into the hypo
solution, they would turn a dirty yellow colour, to get rid
of which and give a more pleasing one, a bath called, as
before said, 'the toning bath,' is made.

"Hence, then, the object of the toning bath is to give
partly permanence, but principally to give the colour or
tone to the prints, and in this colour we may expect to
find character, beauty and beauty, according as to how the prints
were treated while in the bath.

"In the first place, good chloride of gold is necessary in
the making of these toning baths, and to those persons
who do not wish to make their chloride of gold for them-
sewes, among whom the young beginner should certainly
be classed, I would advise them to purchase a stock
from some reputable toning manufactory. Each bottle contains fifteen
ounces, which may be dissolved in a bottle containing fifteen
ounces of pure filtered rain or distilled water. Label
this bottle, 'Stock gold solution, one grain to the ounce
of water.' This solution will be slightly acid, which it
should be, to prevent the light from precipitating the gold.
Keep this bottle in the dark, or at least out of the
brightest diffused light.

The formula for the acetate bath is well known, and
need not be repeated at length here. In its simplest form
it consists in dissolving one grain of chloride of gold in ten ounces of distilled water, and adding half a drachm of acetate of soda. The bath is fit for use in a few days, and may be used over and over, simply adding fresh solution from a stock bottle, made as at first, from time to time. It shall never be kept in the light. We may add both a brief explanation of the theory of this kind of this bath, which Mr. Hearn does not give. Chloride of gold as commonly sold contains a trace of free hydrochloric acid, the presence of which prevents its ready decomposition. To bring it into a suitable condition for toning, this hydrochloric acid need to be neutralized, as its presence would retard toning, and would also cause blotches over a brief explanation of the theory of the hydrochloric acid, having a greater affinity for the soda than the acetic acid with which the soda is allied, gradually decomposes the acetate, forming chloride of sodium, and liberating acetic acid. The latter does not injure the prints, and facilitates toning. As the reaction takes place slowly, a day or two at least should elapse before the mixture is used for toning. It should be remembered that a trace of free acetic acid is present in the acetate toning bath, and prints should always be rinsed after the toning, before immersion in the fixing bath, otherwise a slight decomposition of the hypo, with liberation of sulphur, to the detriment of the prints, will take place.

SAL SODA TONGING BATH.

Mr. Hearn, in using the carbonate of soda bath, uses a very large proportion of the alkali, as a saturated solution may be regarded as containing in round numbers 50 per cent. of the salt; hence he uses 120 grains of carbonate of soda to 3 grains of chloride of gold.

Distilled or boiled ice-water 64 ounces

Acid sol. chloride of gold (4 grains to the ounce) 1 ounce

Saturated solution sal soda 1 ounce

“Toning bath feels quite slippery to the fingers. Make it a full half hour before you wish to use it, and during the cold weather make it with the water slightly warm. Make it every night, and save the old solution, and throw down the gold with protosulphate of iron.”

“This bath bleaches a little more than baths generally do, and so the prints should be printed quite dark. The prints when first placed in this bath will turn quite red after a minute or two, and later they have dissolved into turning red. Wash them closely, for they will now very soon commence to tone so that you will readily notice it, and when they have once commenced to border on the tone you desire, they will very quickly arrive at the proper stage.

“In toning disregard the shadows, but watch the highlights and half tones of the face, and when they just commence to look purplish, and the red look has disappeared, they are tone 1, and should be immediately removed to a dish of running water. The hair, draperies, &c., may not look to be toned, but they are.

“When you are fixing these prints they will turn a variety of colours before they turn the right one, and then when that colour to which you toned them you may be sure they are fixed.

CHLORIDE OF LIME BATH.

“With this bath pure whites and fine blacks can be obtained; such effects as are suitable for architectural drawings, pencil sketches, &c. It should be made forty-eight hours before use, and when about to use it add a little of the gold solution, also a little of the chloride of lime. There is considerable fault found with this, both on account of the uncertainty of its composition, and also with the various results obtained with it. That is owing to the photographer’s using what is called the saturated solution of the chloride of lime, when in many cases the solution is far short of being saturated. When you commence to make a saturated solution of this chloride of lime, and have placed nearly two ounces of the chloride in about twenty-five ounces of water, there will be a precipitate in the bottle which will make you think that the solution is saturated, since it will not dissolve the repeated shaking of the contents; but this is simply a part of its compound (the hydrate of lime), and you can still add more of the chloride of lime to the solution before it is saturated, as this chloride is separated and dissolved, whereas another part of its composition is not, for the beginner must bear in mind that the so-called chloride of lime is a compound.

The amateur who is still in the dark as to the use of this bath, and who is not aware of how to use it, will not find difficulty in using this bath, and to obviate we recommend that, instead of using a saturated solution, to accustom himself to weigh the chloride of lime, and then he can, after he has once started rightly, keep it always the same. This bath can be used a number of times by decanting the clear liquid out of the bottle and adding a little gold, enough to tone the prints, and a trifle of lime. It is made as follows:

Water 64 ounces

Chloride of lime 5 grains

Chloride of gold 4 "

The chloride of gold may be made in strength at about one grain to the ounce of water, and may be neutralized with carbonate of lime, if it is acid. If the chloride of lime bath is made as above, we do not think that there will be any difficulty in working it.

(To be continued.)

THE ART OF POPULAR ILLUSTRATION.

BY HENRY BLACKBURN.

Besides the photographic processes there is the well-known French system of drawing on lithographic transfer paper, or on stone, from which relief blocks for printing with type are quickly obtained. This is largely used in France and England for periodical illustration of the “butterfly” kind, and as a substitute for the common kinds of engraving. There is also the system of drawing on wood plates with an etching needle, which has been known for ten years, but which has only lately made much advance. In the Portfolio there have appeared some artistic etchings by Alfred Dawson, printed with the type; and the process is now largely used both in books and newspapers. This system, however, requires special knowledge and practice on teaching and handling of the sciences, the results obtained (I believe it can be learnt in a week), produces the sharpest and best results—in fact, the nearest approach to wood engraving we have yet seen.

These two last processes are, I believe, the most suitable for making rapid illustrations for books and newspapers, it being now quite possible to make a drawing by these means at six in the evening and publish it next morning in a newspaper. That the blocks print well, and are in sufficient relief for working, on cylinder machines, you will be able to judge by the specimens in the room. There are yet other relief processes, some of which, like the “Graphotype,” have been known for years, and it is unnecessary to describe them. The reason for calling attention to processes generally is this, that owing to the perfection of the beautiful system of electrotyping the "fac-simile," such as the Autotype, the Heliotype, the Woodbury, and others, but as they are not available for printing with type at ordinary presses, I will not

* The term Sal Soda is commonly used in America to designate common carbonate of soda, NaO CO+10 Ag.—Ed. Phot. News.

* Continued from page 149.
refer to them rather than to express surprise that they are not more utilized for the immediate reproduction of paintings, drawings, and sketches. On the Continent it is generally the artist's first thought to prepare a copy of his picture in monochrome on purpose for the camera, so that accurate copies are obtainable simultaneously with the completion of the original. The facilities for copying pictures photographically are only half-developed in this country, and the result is this, that works that would instruct and delight the public, pass direct from the studio to the lonely halls of a mansion in some private park. Not one in fifty of our best pictures are seen by the people they happen to be exhibited for three months at Burlington House.

I shall be reminded, perhaps, that the engraver's art and the etcher's art have supplied and are supplying the public with copies of our best pictures, and, in fact, "meet the public want." But a good steel engraving takes years to produce, and is never an exact fac-simile. Some of the plates in the Art Journal, for instance, take eighteen months to produce. Consider this: a journal of art in the latter part of the nineteenth century taking more than a year to present its readers with a copy of a picture! I am thinking at the moment more of the title, and what a real Art Journal might be with the present facilities of reproduction at command. The excellent publication which bears this name, and in which fac-similes of Sir Edwin Landseer's works are now appearing, hits at exactly the public taste, and need not be disturbed, for it is doing good and useful work; but my theory of an "art journal" is a paper that should present to its readers, in some pictorial form, monthly (or weekly would be better) the artistic events of the day, and give in outline (on some such plan as I have suggested) an idea of the composition and scoring lines of every new picture as soon as it is exhibited.

Let us not be blind to the fact that the public is, as a rule, either impatient or indifferent; that if you do not give it a good thing quickly, it will take a bad one. We who have only a few years to live, and many of us really only a few hours left to devote to art, cannot rest content with a process that reproduces one work in two or three years. If the original is in this room to-night, but it has a picture if he will, and if his health and enthusiasm hold out well; but for reproduction in the press let us use the quickest and most method that science can now supply. That method at the present moment seems to be wood-engraving; which, in its quality of work, aided by good printing, almost approaches steel. Looking at the wood-engravings in the leading illustrated newspapers and at the publications of such houses as the Messrs. Cassell (I mention them because they represent, perhaps, the distribution of the largest numbers of cheap and good pictures), there would seem little left to be done. But we are moving on, and on, I believe, to a more artistic period still, when, by the power of photography, we shall attain far more simplicity and truth in popular illustration.

Mr. Guernsey, in his valuable work, upon the growth and progress of photography, has not only given an account of the development of the art during the last fifty years, but has also added much of interest and information. The necessity of running every word and thought into uniform lines has actually cramped and limited our powers of expression and of communicating ideas to each other. The child of three years old endeavours to express itself pictorially, but when it puts forth its hand to draw, there is no one to guide it. It has been born in an age of advanced civilisation, which knows no method of expression for the young but one—"pothooks and hangers"—and so for seven years of its growing life the subtle fingers are cramped to the achievement of parallel lines; and when the day comes to "learn to draw," say at ten years old, the delicate index is less sensitive, and much of the freedom and power of expression by the hand has gone for ever. That is not only the case of most of us in this room, but happily no longer so with the young; therefore there is hope that, even in our generation, we may see a great advance.

With the means now at command for reproducing any lines drawn or written in perfect fac-simile, mounted on squared blocks to range with the type, giving little or no trouble to the printer to tie the printers, is the handwork of the author and the artist appearing on our pages. We need not fear the multiplication of much crude amateur work by these means—our publishers will take care of that—but we should infuse more character and originality into every publication that comes from the press; and when I speak of originality, I refer specially to the originality of the author. The fact is, that in all the books, but especially in the books on art, and"editions of luxury," we are too neat and tidy. We fall submissively into the same mechanical toils, our noblest thoughts are printed like our weakest, and are all run out in lines together, as in the making of maccaroni. I fancy the editor of that most artistic periodical, the Portfolio, must oftentimes feel under the mechanical restraints imposed upon him. I think what he is interested in is an artistic craft, rather than an art in the direction of the problems presented to his papers on "The Sylvan Year" if a spray of grass, or leaf, or rare flower had been permitted upon the page— if it had not been swept so clean, if its forest walks had not been so highly rolled.

It is all a question of fashion, but the fashion may change suddenly, and a call be made upon us to produce more beautiful books. It is a question of money; but if we cultivate more systematically in our schools the art of drawing for the press, and treat it as a worthy profession. Let it not be said again, as it was to me to-day by one who has devoted half a life to these things, "The processes of reproduction are to hand: where are your artists?" There is the talent amongst us, the power of expressing ourselves pictorially to a much greater extent than is possible in the room to-night, but it plays about us like summer lightning, whereas we want the precision and accuracy of the telegraph.

In conclusion, shall it be said of our artists that the chariot wheels of the press move too fast for them—that chemistry and the sun's rays have been utilized too soon—that, in short, the processes of reproduction have been perfected before their time? I think not, and that an art which has existed for ages, and is now best understood by the Japanese, may be cultivated amongst us to a more practical end.

PHOTOGRAPHIC OPERATIONS IN EGYPT IN CONNECTION WITH THE LATE TRANSIT OF VENUS.

BY CAPTAIN ABNEY.*

Some gentlemen apparently seem to find this albumen-beer process not answer, and say it is the beer. I cannot say if it be the cause; all I can say is, that any beer seems to give me equally good results, and I have tried many. One thing, I think, may affect sensitiveness, and that is the collodion. I make mine rotten with water, and then add the same unwatered collodion to it till all "crappiness" disappears from the film. I lay great stress upon this point, as I believe the constitution of the pyroxyline is altered by it, and certainly the film becomes more porous. At all events, at Chatham the process is a general favourite with the men and officers; and we stick to it, as we find it the most manageable, and the easiest to teach.

* Continued from page 144.
I am not aware who introduced the gelatine* substratum as it stands. I know it has often been tried before, and failed to give satisfaction. When used with a Blanchard brush, it is first-rate.

Such is the process adopted at all stations belonging to the British expeditions, and I hear that it has been carried out most successfully and with less drawbacks than I had in Egypt.

On the day of the transit we exposed a plate about every one and a-half minute during the transit, beginning about twenty minutes after sunrise, and finishing twelve minutes before internal contact. This gave us about forty plates to develop, we exposed about forty-five. Just before internal contact, the slabs which carried the plate, and placed ready in position, was exposed. As you are aware, each plate is made to bear fifty different impressions, at intervals of one second of time; and, by so doing, very small differences of interval between the limb of Venus and the sun are obtained, and will be used for micrometric measurements. As the time of each exposure is accurately known, the results will be valuable. M. Janssen had the credit of first publicly proposing this plan, though it is a method that would have struck any one who was accustomed to a repeating back in a camera. Mr. Christie designed the form we used, and very ingenious it is. Mr. Dallmayr carried out the design with his usual ability. More Janssen plates were exposed in the interval between internal contact, and the contact and the measurement of the crescent will be very valuable. The small difference in apparent places of the sun and Venus being magnified largely as the limb of the latter is just leaving the former.

The manner we carried out our arrangements during the time was this:—We had six slides and twelve boxes to hold six plates each. These were all lettered, and each plate, that would be exposed, was numbered from 1 to 6. The whole of the slides, which were numbered from 1 to 6 as well, were filled from one box by one man inside the dark room, and passed out to the Sapper attending on me. As each plate was exposed, it was passed into the dark room through a different aperture, taken out of the slide by a second Sapper in the dark room, placed in its own groove, and the slide passed to be filled from the next box. I can remember the slides in the photothepist box, exposed each plate, taking up the time from my chronometer, and registered the number of the plate as shown on the back, together with the exact time of exposure. The first, thirteenth, and every twelfth plate after were developed during the transit, and the time of exposure was regulated according to the appearance of the image. Naturally as well, the plates got shorter exposure than they did near sunrise. When we first saw Venus on the sun's disk she was most unsteady; one photograph shows her as a square with rounded corners. The atmosphere was anything but still, the limb of the sun till very nearly internal contact appearing to boil. A fact worthy of remark is, that with dry plates, with the same exposure, the irregularity caused by this atmospheric disturbance is much diminished; for, dealing with the negatives, I cannot assign a reason for it which is too long to enter into here.

Directly after the transit had finished, the remaining plates were developed. This operation took till the evening. I believe the pictures we brought back have given satisfaction to the Astronomer-Royal, and no higher meed of praise do I desire. From first to last I have found it my task to work for that distinguished gentleman, his clear conception, grasp of mind, and accuracy of thought, invariably helping me in any difficulties that have arisen.

From our President I received the greatest encouragement at Greenwich.

It is rather the fashion to despise military routine; but I can honestly say that had it not been for military discipline and drill—krismos drill—I believe I could not have carried out all that I desired; as it was, the only hitch on the day that occurred was my fault, and not that of any of my subordinates. It was not a great matter, simply forgetting, in one instance, a word of command. As it happened, the mistake was advantageous, as I got a result which I should otherwise not have obtained. The transit-day over, we took two or three days of rest. Personally I was glad of it, as I believe even the most placid of men would suffer from the excitement of two hours' intense strain on the nerves. Much had still to be done in the way of making duplicates of the negatives; and here we encountered much difficulty. Transparencies are generally easy to make; but, owing to the necessary thinness of the negatives, we found it no easy task.* At length I had to come to the conclusion that the whole negative must be mounted on the image on the dry plate prepared as above. The sun appeared to be on unaltered bromo-iodide, whilst the sky was quite strong by reflected light. I then intensified with a wash of—

Pyro 1 grain
Citric acid ... 20 grains

with two or three drops of 20-grain solution of silver

This answered admirably for our purpose, and the sharpness is fairly equal to the original. These transparencies we accomplished in a cruise we took up the river, when we paid a flying visit to Assuan, the First Cataract, and Philae, getting back to Thebes for Christmas Day. I picked up the butt of a souvemone—cigarette. It was the first present I received from my homewards on December 27. It was an unexciting process floating down the stream back again to Cairo, though helped by eight oars. However, we found plenty to do in packing up our small traps; and we reached Cairo on January 3. I have not touched on other photographic work than that of the transit of Venus. There is another matter I should like to mention, a long number of days I spent at the Suez Canal. I was the first European to enter into that subject. Suffice it to say that the Nile voyage, undertaken with a view to photography alone, is most enjoyable. Egypt is delightful in almost everything except in the system of backasheesh and in mosquitos, and these latter you lose at Thebes.

I cannot close this paper without referring to the kindness we received from the authorities. The Khedive gave us everything we required; he travelled with me personally Suez to Cairo, and back from Cairo to Suez; he gave us guards, tents, and police; he put at our disposal a steamer, and aided us in every possible way, even allowing us the free use of the telegraph for about fourteen hours to obtain our longitude at Thebes. The Eastern Telegraph managers, Mr. Gibbes and Mr. Cross, were simply invaluable. Mr. George was it was the first Egyptian telegraphers, sent to great personal inconvenience to us in getting through our time-signals. I have been officially in several foreign countries, and certainly never met with so much courtesy as we received in Egypt. Captain Browne, the head of the expedition at Cairo, reports equally favourably; and the English Government, I fancy, have given an official acknowledgment of it. Our whole action has been under the authority of the Egyptian Government. I think the Khedive and his Ministers more heartily congratulated us than they did. Never were expeditions more carefully planned and organized than they were by Sir G. Airy; and though, perhaps, rather expensive, I know I am right in saying that there was no breakdown due to anybody connected with it.

Although New Zealand was unfortunate, I am sure my brother officers there were as well (if not better) prepared than the rest of us.

* The negatives were necessarily thin to allow of measurement.
REJLANDER MEMORIAL FUND.

A brief announcement in our business columns informs photographers that a committee has been constituted for the purpose of receiving subscriptions towards a fund tributary to the memory of the late O. G. Rejlander. As we know that there are many of our readers who will gladly contribute to a fund for the purpose in view, we shall very briefly explain the object contemplated. Mr. Rejlander, as most photographers know, was not successful in a pecuniary sense. A passionate lover of his art, he was at all times more earnestly engaged in developing and illustrating its pictorial possibilities, than in securing the legitimate pecuniary results of such work. His wonderful fertility of invention, rare originality, admirable art knowledge and culture, great industry, and withal not a little of the feu sacré of genius, Mr. Rejlander did not possess the useful, if vulgar, faculty of making money. Without being regardless of business, or negligent of business, he was not a business man; and so far as making a fortune was the end of his labours, he was a failure. His was the higher success by which photography, and all associated with it, gain, of elevating his art, of doing much of the noblest pictorial work possible in painting with sunbeams. It was impossible, with such fecundity as well as excellence of production as a study of portfolios illustrates, for the artist to have been absolutely impecunious; but the extent of his illness which was, Mr. Rejlander's death, which absolutely prevented work, whilst business obligations were accumulating, inevitably issued in pecuniary complications and embarrassment.

Mr. Rejlander left a widow, who was, fortunately, in photographic matters, a help-meet for him. In a dying request made to us personally, he referred to the monetary obligations which had accumulated during his illness, and to the future of his widow. If the one object for which he referred could be satisfied, and the peaceful possession of his photographic effects, especially the subject negatives, with the printing and publishing of which she was personally familiar, could be guaranteed to his wife, her future would, he thought, be fairly provided for; and he added a conviction that there were many photographers who would be glad to remembrance of him to aid in bringing about such a result.

We appeal, then, to photographers in a twofold sense. We ask those who knew and loved Mr. Rejlander, and those who admired his great genius, to contribute to place his widow in the position of honourable independence which she can secure by the continued printing and publishing of his works. And we ask all photographers to contribute to the fitting memorial which such a fund, and such disposal of it, will form, to one who did so much to elevate their art, who did so much to diffuse art feeling amongst photographers in teaching by example, showing what was pictorially possible in photography, and stimulating effort by the marvelously beautiful results which were produced in such prodigal succession for many years. Looking at the matter in this sense, there is possibly scarcely a photographer who is not indebted to Mr. Rejlander. If a tithe of these debts be discharged, an ample fund, worthy of Rejlander's name, and in every way adequate to the fulfilment of his wishes in regard to the widow, lady he left behind; the obituary committee, to whom Sir Coutts Lindsay, Bart., the friend and patron of Rejlander, is Chairman; Mr. F. W. Mills, Secretary; and Mr. H. Baden Pritchard, Treasurer, is already formed; but the co-operation of other gentlemen who knew and admired Rejlander, especially some in the North, is desired, and the Committee will gladly hear from any who are interested in the matter. Contributions should be forwarded to Mr. Pritchard, at the Chemical Department of the Arsenal, Woolwich. The names of a complete committee will in due time be announced.

OBITUARY.—THOMAS SUTTON, B.A.

We announce, with deep regret, the death of a gentleman whose name, for upwards of twenty years past, has been one of the most familiar to all readers of photographic literature. After a very successful career Mr. T. Sutton died on the fourteenth of March, in the fifty-sixth year of his age. For some years past Mr. Sutton's health has been considerably shaken. Upwards of twelve months ago he informed us that he had been, for some time a constant sufferer from dyspepsia, the symptoms of which had been, we understand, considerably aggravated for some time before his death, which was recorded only very recently. After weeks of continual illness he succumbed to a sudden seizure of cramp in the stomach, from which he was released by death in a few hours.

Son of a gentleman of scholarly tastes residing at Kensington, whose name was familiar to numismatists, Mr. Sutton was born and educated in the neighbourhood of London, having been at one time a pupil of the present esteemed president of the South London Photographic Society, the Rev. F. F. Statham, M.A. At Cambridge, as a member of Caius College, he was distinguished as an ardent student and good mathematician, and acquired his degree of B.A., taking position as twenty-seventh wrangler in 1846. In the following year he went to Jersey with a student with whom he was reading in the capacity of tutor, and there resided for several years. For some years he was engaged in photographic research and contribution to photographic literature. In 1856 he commenced the issue of a monthly journal entitled Photographic Notes, which, for some years, was conducted with great vigour and interest. This journal was finally merged into the Pictorial Photographer, which, after a struggling existence of a year or two, dropped out of existence. In 1861 Mr. Sutton was appointed successor to Mr. Hardwick, lecturer on photography at King's College, a position he resigned in a few months, finding residence amid the turmoil of the great metropolis uncongenial to his tastes and habits. He returned to Jersey, and subsequently resided at Redon, in Brittany, where he undertook the duties of French Correspondent to a weekly contemporary. For the last few months he had been residing in North Wales.

Our personal knowledge of Mr. Sutton commenced in 1859, when we visited him in Jersey, and commenced an intimate friendship, which was maintained for many years, although somewhat interrupted by the polemics and politics which, in the history of photography, have at times been unfortunately conducted with a degree of warmth altogether beyond the adequacy of the occasions. None know better than ourselves, and none can more willingly testify that he was a writer of great ability, and a keen,
ardent, and enthusiastic experimentalist, the varying and occasionally contradictory character of his utterances being largely due to this enthusiasm. He wrote with a degree of trenchant vigour which, whilst it always possessed a charm, at times, on polemical subjects, suggested a rancour which was by no means in keeping with his true intention. For many years the deceased gentleman personally was prepared by his study of some of his writings for the winning, genial, gentle, and frank modesty of his personal bearing.

But whilst his name is most familiar to photographers in connection with photographic literature, it will also be associated with many practical points in the progress of the art. Indeed, his name is now practically as well known as the name of any artist, and he has been, and is, to a great extent, the father of the system by which carbon or various other processes, and many of his improvements in ordinary printing were of great value at the time of their publication. His experiments in the manufacture of collodion, and his introduction of his alcoholic colloidon, did much to revolutionize the system in which a very large proportion of other—at one time considered nearly as sure to succeed—were made, and he was the first to secure attention for permanent printing, whether by carbon or various other processes, and many of his improvements in ordinary printing were of great value at the time of their publication. His experiments in the manufacture of pyroxyline issued in practical formula by far the most trustworthy of any at the time issued. Without entering into detail, it may be fairly said that, as an experimentalist in almost every department of photography, he left much on record in connection with all, which was read with interest and instruction, even by those who felt it necessary on many points to dissent from his conclusions.

"ANOTHER NEW SWINDLE."

A letter to a daily contemporary, the Standard, appeals a few days ago with the above heading, in which the writer goes to some lengths to suggest the necessity of the art in which all our readers are interested, and concludes, that the letter, which is addressed to the public, is somewhat amusing, to contemplate the indignation about so small a matter which induced the writer to send a letter to a daily contemporay in complaint or warning, and not less amusing to find that, with every facility to ascertain whether there was really any swindle intended, no such attempt appears to have been made. I will print the letter, which will best explain the ground of complaint.

To the Editor of the Standard.

Sir,—As you so kindly open your columns to warnings to those who are easily imposed upon, may I ask that you will give publicity to the following?

On the 22nd of February last, and several preceding and succeeding days, two itinerant photographers were in the neighbourhood of Saratov taking photographs of the different houses, with the ostensible view of enabling some new American process of photography. They made no charge for taking the photograph, only asking as a favour that the lady of the house or the children and servants would stand to make up the picture. Having obtained this favour and the photograph taken, it was an easy matter to induce the servants to bespeak copies, which of course had to be paid for at once. A receipt was given on the back of a card which bears a name and address, but it is intimated that no copies have ever been sent, and that letters sent to the address given meet with no response. I understand that many servants and others have been induced to part with their money, and I write this to ensure that it may be a warning to others not to be so foolish. I may add that in cases where payment was declared until copies were sent no copies have been sent.—Your obedient servant, J.

On reading this letter, two very obvious considerations present themselves. In the first place, a little reflection might have suggested to the letter writer the improbability of two photographers deriving any advantage by taking pictures of a room and its inmates, expending time and material in taking groups of the "lady of the house" and children, on the mere chance of inducing the "servants" to bespeak copies, and pay for them in advance. It is possible that some photographers may be enterprising enough to engage in piratical portraiture; but the notion of taking groups of the family on the chance of selling a few copies to servants, or even of obtaining the price of the prints without supplying them, does not seem a promising or probable form of speculation. But we are informed that a receipt was given on a business card, containing name and address, which it is not alleged were fictitious. This being so, where was the swindle? At worst there is a tardy performance of contract. That a few weeks should elapse in winter between receiving an order, even with cash in advance, and supplying prints, may be a grievance, but if it be regarded as evidence of intention to swindle, we fear that the reputation of many professional photographers will be in danger.

SIZE AND PROPORTION IN PORTRAITURE.

By Robert Faulkner.

The introduction of a new size for photographic portraiture, though not an event to be marked as a red-letter day in the calendar of photography, cannot but be interesting to those engaged in the production of pictures by the camera. The commercial aspect of the question has been considered, but its merits from a fine art point of view seem to have been forgotten or ignored. Yet, in my humble opinion, it is not a subject altogether unworthy of a little thought. Photographic writers are very apt to refer to the works of Vandyke, Reynolds, Gainsborough, and such luminaries in art, and this fact induces me to give a list of the sizes of the various canvases employed by those great men in the production of their portraits, viz.:

<table>
<thead>
<tr>
<th>Size</th>
<th>Inches</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>2 1/2</td>
<td>2</td>
</tr>
<tr>
<td>Three-quarter</td>
<td>6 1/2</td>
<td>2</td>
</tr>
<tr>
<td>Kit-kat</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Small half-length</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Half-length</td>
<td>4 1/2</td>
<td>3</td>
</tr>
<tr>
<td>Bishop's half-length</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Whole-length sitting</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Whole-length</td>
<td>7 1/2</td>
<td>6</td>
</tr>
<tr>
<td>Large whole-length</td>
<td>8 1/4</td>
<td>7</td>
</tr>
</tbody>
</table>

It if is conceded that the works of these artists are worthy of imitation, then, I think, the sizes they adopted should be the basis of the scale for the dimensions of our pictures. Exceptions might be found to some, but certainly three of them—the whole-length, half-length, three-quarter or head-size—should be scaled on the above standard. The magnitude of these proportions lies with the manufacturers. They appear to have come to the conclusion, that only one size is good for the purpose—and that size is the mean and lanky carte-de-visite. If you attempt to discuss the matter with a maker of photographic frames, he will rejoin, "We study the requirements of the public, and not the caprices of photographers. We find the frame and album manufacture sell well enough—that is sufficient for us."

These commercial despot forget that a good shaped frame or album has not yet been made, and consequently the public has not had an opportunity of escaping from the regulation pattern, and adopting a good thing. I may remind them that many people of refined taste repudiate albums altogether, preferring to keep their pictures in boxes. If, in spite of refined taste, manufacturers are to continue to produce albums containing three sizes, surely a medium size—similar to the cabinet, but larger—should be selected. This, although a little too wide for a whole-length, is admirably adapted for the half-length, three-quarter or head-size.

Our lawyers, the manufacturers, should have some pressure put upon them to ensure their adhering to the sizes selected, otherwise they will deviate a quarter of an inch one way or the other, as I have experienced more than once.

A writer on art has said: "Proportion is the basis of beauty." Again, "Excellence is made up of the little more or the little less" (1 quote from memory). These golden axioms apply with peculiar force to photography, which, being so poor in resources, should seize upon every judicial expedient to promote its excellence, even in the apparently trifling matter of the proportions of frames and mounts.
ALBUMEN AS A PRELIMINARY COAT FOR GLASS PLATES.

BY A. BORLAND.

In reading some of the articles in the News and Year-Book, I have been surprised to find that the writers of them speak disparagingly of, or altogether condemn, the use of a preliminary coat of albumen. My surprise has been great from the fact that I have had several years' experience in the use of a subrasum of albumen, and I have always found it trustworthy when properly applied.

Amongst the many sins laid to its charge I find the following:—First, that it is a prolific source of spots and streaks; second, that it increases the exposure in the camera; third, that when used as a preliminary coat for collodio-chloride pictures it is a cause of fading; fourthly, that it is not always possible to obtain fresh eggs, and that store eggs are not to be depended on. These are very strong objections, but still I think I shall be able to give a good answer to all of them.

To begin with the last first, I am happy to say that there is no need for running after fresh eggs, as the dried albumen of commerce answers the purpose quite as well when properly treated. My own plan of preparing a stock solution is as follows:—To one ounce of distilled water add one drachm of the dried albumen, and two or three drops of strong ammonia. The ammonia is not added for the purpose of making the albumen keep, but for the purpose of making it dissolve more completely. That it does so may be easily proved by omitting the ammonia, and, after the albumen has apparently all dissolved, allowing it to stand for an hour or two, when the albumen will be seen to have settled to the bottom, leaving the water almost clear. Now add the ammonia and shake slightly, and again allow to stand, and it will be seen that no change takes place. If the stock is wanted to keep, a few drops of carbolic acid may be added to each ounce of solution, and it will then keep for some time.

To the third objection I have to say that the evil is caused by using the albumen too strong, one ounce of the stock solution in about thirty ounces of water being quite strong enough to answer the purpose it is intended for—namely, to keep the film on the plate; and it does this so well that the picture may be washed until every trace of hypo used in fixing is removed, which cannot be done without great risk where no albumen is used.

But I think I hear some one say, That does not dispose of the albumen sale of silver formed in the film. My answer to this is that these prepared in this way may be exposed to strong sunlight for months, and no change can be seen after the most careful inspection, the film of albumen being so very thin that any discoloration from the effect of light is not perceptible, and the coat of collodion a good protection from atmospheric influences.

To the second objection I give the same answer as to the third; viz., too much albumen is used.

In answer to the first objection, I think I cannot do better than state in full my mode of operation in the application of a subrasum of albumen: and to those who will try it fairly I can promise the same success that I have always had with it. I may say, first of all, that my experience was gained whilst working as an operator in America, where it is used by almost every one. The firm I worked for provided a boy with the necessary duty, to clean glass; but although I superintended the work, I could not always depend upon having clean plates, although I believe the boy did the work as carefully as he could; but in this, as in cleaning glass by the ordinary method, there are many little things require attention which none but a person of experience can see the good of; and for this reason I determined to undertake the albumenizing of glass for my own use, and I found myself a gainer by the operation, as I hardly, indeed, had a dirty plate, or a film leave the glass afterwards—a matter of great importance when plates up to 14 by 17 are in constant use.

It is best to prepare enough at one time to last about a week, the following being the order in which I do the work:—In the morning, before commencing other work, put a drachm of albumen to soak in one ounce of distilled water, and add two or three drops of strong ammonia; it will be ready for use in the afternoon, when it must be added to about thirty ounces of tap water, and filtered through paper, when it is ready to be poured on the plates. If new plates are to be used, they should have the sharp edges taken off by drawing them over each other from corner to corner, after which they are put, one at a time, into a solution of sulphuric acid and water (about one ounce of acid to twenty ounces of water), and allowed to remain until the afternoon. If old varnished negatives are to be used, they are put into a strong solution of printer's lye, and allowed to remain for a day or so, and then taken out and rubbed over with a piece of rough felt, washed under the tap, and then put into the acid, the same as new glass. The albumen having been filtered into a beaker glass or graduate, a plate is taken from the acid solution, and, after giving it a slight rub on both sides with a piece of felt, it is washed well under the tap, and, after draining for a few seconds, it is placed on the tips of the fingers, and a small quantity of the albumen poured on to the plate and allowed to flow all over, which it does freely, driving the water that remains before it. Do not pour back into the beaker, but allow to run into the sink, and then pour on some more of the albumen, and repeat the process, until the plate is covered, being careful to let it run down the sides of the glass, so that it may not cause bubbles. Stand the plates in a rack where they will be free from dust. Be very careful, when putting them in the rack, not to take hold of the top corner, as doing so is sure to cause streaks across the plate. When quite dry, they may be stored in plate-boxes, or piled together in the usual way.

Plates prepared in this way will be found free from all spots and streaks that may be caused by the use of albumen; and the great freedom with which negatives may be washed after the various operations adds very much to the comfort of the operator, in removing all fear of the film leaving the glass, or from stains caused by insufficient washing where such fear exists, and there can be no doubt negatives that have been prepared in this way are much less liable to cracking of the film than those that have been but slightly washed.

I leave these few rambling remarks in the hands of the fraternity, and hope they may be of some service to all who read them.

A MATT VARNISH.*

BY ANTONIO BOOHER.

It is known that a film of normal collodion coloured with fuchsine gives the most delicate and uniform covering to a negative, and that by its use vigorous shadows may be produced, but not lights. I have found it very good for thin negatives and such as are of good quality, but the retouchers must handle the film carefully, as it is easily damaged. One mode of producing a matt coloured, tough, and permanent film, is to be found in negative varnish to which a little tartaric acid has been added, the mixture being shaken occasionally, and allowed to stand for some days. This somewhat rough varnish permits retouching with the greatest facility; lights may be put in, or the film may be scraped, no delicate handling of the basis being necessary. The mixture is not always certain when a commercial varnish is employed. It sometimes happens that waves are formed (if shellac is present), or the dried film shows white streaks, and when these are removed the surface underneath is glossy. Nevertheless a good result is secured in most cases. The best and most certain result is obtained by means of a mixture of normal collodion and commercial amber varnish;
the plain collodion is diluted with ether and alcohol until it contains three per cent. of pyroxylin; and so much amber varnish is added as will render the mixture somewhat darker than olive oil in colour. One cannot be too precise with the details, because the nature of the amber varnish obtained in commerce continually varies. The mixture is shaken, filtered through cotton-wool, and applied like ordinary collodion; it gives at first a dense, milky, and not very trustworthy film, but while drying the film becomes very pure and fine, and perfectly uniform in character, its surface being such as it would be impossible to produce upon ordinary glass, either by mechanical or chemical means. In the space of fifteen minutes after the varnish has been applied, the film is dry in an ordinary temperature, and may be worked upon with a little care. If, however, it is left to become thoroughly decolored, requiring less time to do so than ordinary varnish, it permits of the application of high lights, the firm basis allowing the pencil marks to be made with certainty and uniformity. That it permits of scraping, and that it withstands the influence of moisture and is a protection during the printing process, follow as matters of course.

Experiments with the colouring of this varnish, which is only necessary in very few cases, I have not carried far; but I may mention that a fair result may be secured by the use of gum tragacanth. Among the aniline colours there are a few that may be made use of. Fuchsin is decomposed in contact with amber, shellac, or other resins, into a disagreeable lavender blue, and coraline seems to exert an injurious influence upon the tone of the prints. The employment of aniline blue is not possible, because of its liability to change and its behaviour in reference to actinic light; and picric acid is useless from many reasons. There remain, therefore, only violet and green, or mixtures, or certain vegetable colours attached to it. The varnish, however, being not tinted with aniline blue, and thus made to yield a matt blue surface, which would no doubt be grateful to the retoucher's eyesight.

For negatives of large dimensions, which require a good covering, I employ thin paper—either tissue, French, vegetable, or even writing paper, according to circumstances. The reverse side of the negative is used, and the paper is stilettoed colourless with gum spirit. The varnish is then, however, mounted on the paper and then made to yield a transparent patch, and graphite or colours are applied for covering.

HOW TO AVOID UNNECESSARY WASTE OF SILVER AND GOLD.

BY E. Z. WEBSTER.

AGAIN, "after many days," I take up my pen to bring to a close the series of articles upon this subject.

A paper which I had prepared, showing the immense waste of time, effort, and paper which might be avoided in the printing department of photography, I feel constrained to omit, because I have already made myself rather prolix. We will take up the subject where the pictures are ready for the toning.

Without stopping to discuss the subject of toning baths, we will suppose that you are using the common bicarbonate, or sal soda, or any other toning bath which is generally thrown aside when the batch of prints is toned; now, instead of throwing it away, pour it into a bottle, and do the same next time, and again if necessary; by that time enough old toning solution has accumulated with which we can proceed to the next operation, which will be the fixing or hypo bath. Now, instead of using plain water, take the old toning solution, and make your fixing bath of that, and when the prints are fixed, pour off the solution into another bottle, a few crystals of hypo to insure saturation, and let it stand till the next batch of prints is ready, and use it again, and even once more if there be not sufficient old toning solution to make another. You need not be afraid of sulphur toning; make it strong, and keep it so. And when you are done with the old fixing or hypo solution for prints, pour it into the tray wherein your negatives are fixed. The tray should be at least 20 by 24 inches by 3 inches deep, made of wood if you like, and watertight, of course.

Here you have the routine; now we will go back and get the why and wherefore. The first place in which I think you should know the general rule for toning is about one grain of gold to one sheet of paper, but there always remains a good portion of the gold in the solution when you are done, and to utilize that gold we will put it into the hypo or fixing bath, where it adds to the depth and beauty of the toning, instead of allowing the raw saliva to destroy a portion of what the prints already contain, thereby obviating the necessity of carrying the first wash so far, and requiring less over-printing, and from one-third to one-half less gold.

Secondly.—By using the paper "fixing" solution in the negative "fixing" tray, the same is not only made to do double duty, but the silver contained therein has a beneficial effect upon the negative film, as it tends to prevent the soda from attacking the delicate detail in the negative, and leaves upon the surface an extremely thin translucent veil, which adds to the softness and beauty of the print.

Thirdly.—The negative fixing tray being large, several negatives can lie in the solution at once if necessary, and the broad surface of solution exposed accelerates evaporation, by which means the tray is kept in good working condition, by the additions from the print "fixing" solution, but sometimes you freshen the water occasionally getting too full, depending altogether upon the amount of water used in your toning and "fixing," and the state of the atmosphere. When the solution becomes syrupy, pour it off and precipitate the silver with some pieces of zinc, and submit the precipitate to the action of hydrochloric acid; wash the precipitate thoroughly, then reduce the nitric acid to ammonia, and use it; or you can put a piece of copper into the fixing tray and let it remain; the silver will gradually collect upon the surface of the copper in the form of pure metallic silver, requiring only to be submitted to the action of diluted nitric acid to be converted into nitrate of silver.

Finally, by following the foregoing routine more silver can be saved than by any other means; and that the plan will work I will guarantee, as several years of constant use and practice of the same has satisfied me of its merits.

In these papers I have made it a point to suggest the simplest possible means adapted to the ends, knowing that the great mass of my brother photographers have neither the means nor inclination to adopt expensive or complicated measures. I have merely scratched out one side of a plan, to illustrate and cover a principle; and that is, a simple and inexpensive means by which you can avoid unnecessary waste of silver. And if my efforts should prove beneficial to some of my poor "shadow catching" brethren, I shall be satisfied; however, such as it is, you have it, with my best wishes.

RETOUCHING WRINKLES.

BY A. DUNBAR.

Those thoroughly versed in the various branches of the profession, my attention for the past few years has been especially directed to the retouching of negatives. This branch has been so often discussed that I feel a diffidence

*Continued from p. 647, vol. xviii.

* Philadelphia Photographer.
CLEANING, FROSTING, AND LACQUERING BRASS.*

Taking into consideration the numerous weekly applications made to us for information on the above processes, we have thought, for the benefit of the following recipes, which will be found practical and trustworthy:

To clean tarnished brass having flat, or nearly flat, surfaces.—Make a saturated solution of oxalic acid in water. Rub briskly over the tarnished surface with a firm roll of clean flannel dipped in the acid solution. When the tarnished appearance has been removed, remove all traces of acid by swilling the article in an abundance of water. Dry quickly with a warm rag, and bring up the polish with a soft leather and a little of the finest washed whitling.

To clean surfaces which are embossed or deeply under-cut.—Make a mixture of one part nitric acid, two parts water, and six parts hydrochloric acid. Boil the articles to be cleaned in a strong soda-ley, and then leave them in the above solution until they become covered with a black layer. Now remove from the mixed acid, rinse in plenty of water, and use a fine scratch-brush to remove the black mud. When clean, rinse in hot water, and dry in hot sawdust. Articles thus treated acquire a brilliant lustre. Should it be desirable to give a very rich orange-yellow tone to the brass, the nitric acid in the last recipe may be advantageously replaced by an equivalent weight of powdered alum.

To produce a dead appearance.—This, called by the French mat, may be obtained by plunging the articles in a mixture of strong nitric acid 200 parts, sulphuric acid (sp. gr. 1.845) 100 parts, common salt 1 part, sulphate of zinc 2 parts. The articles will require thorough rinsing before the chloride of silver is applied, since the mixture contains no chloride of silver, suitable for large work.

To produce a cold appearance.—This, called by the French polissee, is made by plunging the articles in a mixture of strong nitric acid 100 parts, sulphuric acid 1 part, water 1 part, sulphate of zinc 2 parts. Dip the articles and rinse, again dip and rinse, until the earthy yellowish dulness gives way to a clear mat, without earthiness.

Frosting small brass work.—Fasten a circular scratch-brush, made of very fine brass wire, on the lathe, and having previously scorched the brass with strong pearl ash, hold the work against the revolving brush, which must be driven at a good speed.

Curling flat surfaces.—Holtsaapfel, senior, introduced this style of ornamenting flat metallic surfaces, and the following description of the modus operandi is given by his son:—"The work (after being held, scraped, and passed over with Water-of-Ayr stone) is cloaked with a piece of charcoal and water, by means of which the entire surface is covered with large curly marks, which form the ground. The curls resemble an irregular cycloid pattern, with loops of from .5 in. to 1 in. in diameter, according to the magnitude of the work. Similar, but smaller, marks are then made with a piece of snakestone, bluestone, or even a common slate pencil, filed to a blunt point. The general effect of the work much depends on the entire surface being uniformly covered; with which we shall first continue the lacquer, to prevent chilling. To lacquer a flat surface, clean carefully by boiling in American potash and water. Dip in hydrochloric acid if it be desirable to heighten the colour of the brass; wash well, first in cold water, then in hot (removing any black meadness with a fine brush), and dry in hot sawdust. When dry, burnish it required. Place upon a flat stone plate, just lukewarm. Lacquer quickly but evenly over the surface by means of a rather large but fine camel-hair brush. Be careful not to pass twice over the same spot, or a ridge is almost sure to appear. Warm the lower plate until the work is quite dry.

* English Mechanic.

THE BELGIAN PHOTOGRAPHIC EXHIBITION.

Sir,—In your impression of the 19th February last you have been good enough to refer to the principal points...
April 2, 1875.] THE PHOTOGRAPHIC NEWS.

167

connected with the Photographic Exhibition to be held in Brussels in July next.

We have to thank you for this notice, and we sincerely hope that it will call attention to the matter in England, where photography has so many distinguished masters in all departments of the art.

There is, however, one observation that we desire to make. In the last paragraph of your article it is stated, "There will be no sale of the photographs exhibited." If the impression conveyed by this remark is that the exhibitors cannot sell their pictures, then it is erroneous, for all works exhibited may be sold. We shall, indeed, exert ourselves to the utmost to dispose of the articles on the most eligible terms, and to this end we have desired exhibitors to mention the price at which the pictures may be sold. (See Art. 8 of the Prospectus.) The price must not, however, be set upon the pictures themselves, and this is the only restriction imposed upon exhibitors.

May we venture to hope, in the interest of our future exhibition, that you will be good enough to make the little correction we have indicated in the next impression of your journal?

With the assurance of our profound respect,

The President—Dr. VLYDER.
The Secretary—LEONCE ROMMELLAERE.

The Belgian Photographic Association,
44, Rue de Namur, Brussels, 17th March, 1875.

PICTURES FOR THE MAGIC LANTERN.

Dear Sir,—Since writing my last contribution I have read with much pleasure the interesting account by Mr. Biggs of the various photographic operations by means of which a picture can be produced for the purposes of the magic lantern, but I fear he is too sanguine in supposing that to obtain an outline is an easy matter, unless he infers that no one would attempt in any way to produce a picture for the lantern unless he possessed some general artistic knowledge, both as a draughtsman and a colourist. That this must be the case is evident, as gouty and feeble lines, when so highly magnified as they appear on the screen, would (especially in architectural subjects, the rigging of vessels, &c.) become so obvious as to spoil the whole effect, however well the picture may have been coloured. As a knowledge of the various means of obtaining an outline, either of the same or of a reduced size, from a copy may be serviceable to your readers, not only for the production of lantern pictures, but also for various other purposes, I will, with your leave, offer them some information as to the various means of producing it. The advent of photography has rendered the use of some mechanical contrivances for this purpose obsolete, such as the camera-lucida. The pentapod is still, no doubt, useful, especially to architects, but its cost would prevent its being used by any other than professional men. Reticulum, or the process of producing an enlarged or diminished copy of an outline from the original, is frequently used by artists to place a design of a picture upon canvas after having first produced it as a drawing on a smaller scale; but as this requires some knowledge of geometrical proportion and correct drawing, it would prove too difficult for general use. The camera, originally constructed, and as may be now obtained at toy warehouses, offers a simple and effective means of obtaining a reduced copy of anything. The ground glass or diaphragm should be so arranged as to allow of its being removed, and thus, after the outline is made upon it by means of a blacklead pencil, it may be treated as a photographic transparency, and copied by any required size by means of photography. Although a back of the diaphragm might be desirable to a photographer, yet this would not be desirable, as the whole thing complete can be purchased at a less expense as a toy, than its materials only would cost separately. It might be as well, perhaps, to use a better lens than those generally sold with it. Then, again, it is necessary to say that the drawing of the tracing should be made with a firm and free hand. The draughtsman should understand what constitutes an outline, otherwise his labour may be greatly increased to no purpose. The most simple—and, I believe, the most effective—method of obtaining a copy of a tracing made with ink, is to place a piece of cloth or flannel, a roller now being passed over the whole, taking care that the paper above has not been shifted, a correct reversed transcript of the drawing will be found upon it. Yours truly,

JAMES MARTIN.

5, Clarence Place, Ifracones, March 30th.

PS.—Can any of your correspondents inform me of any substance that will greatly increase in size when wetted?

Talk in the Studio.

Fire at Mr. Trench's Warehouse.—A fire broke out in the photographic warehouse of Mr. Trench, in Fleet Street, on the evening of Saturday last, and continued some time before it was discovered. The damage was very extensive, some portions of the instrumentality of the firm being destroyed. The cause is involved in mystery, as the premises had been closed two days at the time the fire was discovered. Fortunately the manufacturing department was not injured, nor any damage to prevent the ordinary transaction of business.

Forbidden Portraits.—It is stated in a daily contemporary that several prosecutions of Bonapartists for the unauthorized hawkwing of books and prints have recently taken place in France. In Paris a publisher has been fined 600 francs for circulating photographs of a Bonapartist agent. In the department of the Orne a curé has been fined fifty francs for distributing pamphlets and portraits of the Prince Imperial picking up ballasts at Saarbrück; and an agent of the Bonapartist paper, the Oner, has been fined 600 francs for distributing photographs from Chielhau.

Reducing Intensity of Negatives.—Mr. R. Benecke gives the following in our Philadelphia contemporary as a sure and reliable process to reduce the intensity in over-intense negatives without in the least lessening in the faintest degree the shadows:—"I always have been an advocate of intensifying, for the reason that there was no practical way known of reducing the intensity in the high-lights without injuring more or less the detail in the shadows, or risking the negatives. I am now not more afraid to get a negative too intense than I was formerly to get it too weak. The enclosed two negatives were taken on one plate, both developed simultaneously, had the same intensity; then the plate was cut, and one half treated in the manner presently to be described. The object was a book resting on a green leather chair, and having a piece of black velvet by its side. The process is based upon the property of sulphide of silver, which combination is a very permanent or obtinate substance in regard to the action of nitric acid or cyanide of potassium, &c. Here it is. Take a very diluted solution of sulphide of silver (about one in the fixed and washed negative; watch it from the glass side. The sulphuret will penetrate the thin deposit first, and the sulphide of silver, being of a darker colour than the reduced metallic silver, the negative will look somewhat like a positive from the glass side. Now wash and dry on a solution of mercury and iodide of potassium (my favourite intensifier), or mercury alone, or iodine and iodide of potassium. The negative will now be very intense, but never mind; dip it into your cyanide bath for thirty to sixty seconds, wash it, and examine it. Should it be not quite weak enough, or did you wish some parts of it particularly reduced—as, for instance, a white dress, &c.—you may treat it again with mercury, especially those parts
S. S. Young.—Sulphate of copper is meant, we believe, in the American recipe to which you refer.

A. J. Miller.—The transparency described seems to be a piece of fast printing solar negative. No patent on it!

Conversion of Lithographic into Letterpress Plates.—A perfectly engrossed and polished zinc plate is first coated with weak phosphoric acid, then well wiped off, quickly placed over an alcohol flame, and rubbed dry with a woolen cloth. An impression on paper from the lithographic original in a moist condition is placed upon the zinc, and passed through the press. The result is then treated as an ordinary lithographic stone, except that varnish is employed instead of oil of turpentine. The plate is next wiped off and dried, and the drawing dusted with finely powdered colophon, every particle of the latter being carefully removed from the free portions of the plate. It is then very cautiously heated to the fusion of colophon, and graphite dusted upon the plate and rubbed until the drawing acquires a decided lustre. The plate is then placed in a half-saturated solution of sulphate of copper until a black deposit forms upon it, after which it is removed, washed, and replaced in the copper solution, the process being repeated two or three times, when the deposit appears in decided relief. The free portions of the plate are then coated with a mixture of gum-arabic, ocher, whitelead, &c., but not higher than the relief of the drawing, and this finally treated with a solution of gum arabic, &c., rolled with transfer ink. The drawing may be further strengthened by removing the layer of gum, immersing it in water, and treating it again with sulphate of copper, until the broad spaces are deep enough to allow it to be used in the letterpress method.

Negative Varnish.—Mr. H. L. Bingham gives the following in the Western Photographic News:—"Select four ounces of bright, clear orange shellac, rejecting any having black scales. Dissolve the shellac in twenty ounces of alcohol, and four inches high. Pour this into the prepared plate, and air dry, in a mortar, then add to alcohol, and shake thoroughly, placing the bottle in a water bath, and agitating it frequently. The shellac will soon dissolve. When cold, filter. Having powdered two ounces picked gum sandarac, add the same, and dissolve by all of water bath as before. After filtering it is ready for use."

To Correspondents.

John Holt.—We have very often described the process of fuming sensitive paper, and can only briefly indicate the method here. Take a small sized box—any kind of packing case will serve—line it with paper to make it air-tight, and see that the lid fits well. Pour a little water (say) an ounce of warm water at the bottom of the box, and ammonia at the bottom. Pin a sheet of sensitive paper with its back to the lid, close the box, and allow the surface of the paper to receive the fumes of the ammonia for ten or fifteen minutes. It is then ready for the printing frame.

A Young Photographer.—It is possible to produce enlargements with a magic lantern and paraffine lamp. A correspondent wrote some time ago describing his success. He said:—"Very good transparency enlargements in the Stereotypy style can be produced with paraffine and a good lantern. Those who wish to try this method of enlarging will find they can produce a three and a half or four inch negative in an hour. The lantern is built with iron development, with an exposure of seven or eight minutes. Pyrogallic development may be used, but the exposure may be calculated at one and a half as long. The lantern is fitted with a large half-reflector, used in connection with a quarter-plate lens. The lamp I use is known as a passage lamp, having a wick seven-eighths of an inch broad. There are only two points to be attended to in the use of a lamp of this description: first, the body holding the oil must be kept cool; secondly, the flame must be turned edge on, or nearly so, to the condenser, as the illumination is much better in this way. An oil lamp is, of course, not a state where he uses rock salt. It is probable that common salt will answer. 2. We do not know where the gasoline rollers may be procured. 3. Sulphate of copper is inflammable with water, but as being shaken the bath acts somewhat like coal in carrying down with it other matters which were in solution. Nitrates of baryta is soluble, and remains in solution in the bath. 4. Our correspondents should refer to our communication, the communication alludes to "Borinatto's last," as we are otherwise left in uncertainty as to his precise meaning.

Photographs Registered.

Miss E. Sawtry & Bird, Great Yarmouth,
Photograph of Drawing of Primitive Methodist Temple, Great Yarmouth.
Mr. T. Winter, Waterford,
Three Photographs of Rev. T. N. Barker.
Miss M. W. Jeffrey & Co., Hastings,
Photograph of Rev. A. Hall.
Mr. W. W. Wilkes, Worthing,
Photographs of late Benjamin Atwood.
Mr. A. McLeod, Birmingham,
Photograph of Mr. Sankey.
Mr. L. Bartlett, Brighton,
Photograph of Mr. Moody.
Three Photographs of Mr. J. Levy.
Two Photographs of Miss Rose Coghlan.
Five Photographs of Madame Lemmens, Sheringham.
Mr. G. Nibbert, Bournemouth,
Photograph of a child knelling in prayer.
Mr. C. J. Shaw, Watford,
Photograph of Apley End Church.
Two Photographs of Rev. D. Inglis.
Mr. Pickstone, Belfast,
Photograph of "Honeymoon," winner of the Waterloo Cup, 1873.
Mr. Adam John Cook, Three Photographs of the late Bishop Lushby, of Cashel, lying in state.
Photograph of Funeral Procession of Bishop Lushby.
Mr. J. Matthews, Great Yarmouth,
Photographs of Canon Mathew.
Mr. Plumtree, South Lincoln,
Photograph of Peter Blanchard.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

DULL WEATHER—HEALTH OF THE TRANSIT OF VENUS OBSERVERS.—THE INFLUENCE OF COLOURED LIGHT ON VEGETATION.

Dull Weather.—From all sides come complaints of dull weather. In November we expect little else; and, indeed, until January we generally do not look for much light during the twenty-four hours; but this year even bright frosty days have been extremely rare, and the sun has never thoroughly recovered the Transit of Venus. And not only in this country, but from the Continent, complaints reach us of the extraordinary dullness that has prevailed, and we all find ourselves looking for the warm summer time with the same longing almost as frozen-up Arctic explorers. What between the murky skies and east winds, we have been sorely tried during the present year, and never will green buds and April showers be more welcome than at present. No reliance whatever could be placed on the weather we have been afflicted with for the past six weeks. There was no knowing whether you could use up the batch of paper you had prepared, or not; and many an afternoon's work has been cut short by the suddenly darkening skies that have been oppressing us. The days of sunshine, so precious to photographers at this time of the year, since midwinter might be reckoned on one's fingers, and then the heavy clouds only separated for a time, and soon became a dense mass again, through which no sunbeam could pass. It was little use withdrawing your blinds and taking out your stops, for a brilliant well-lighted picture was sure not to come out of the question. What an unfortunate thing it is that one cannot bottle tropical sunshine, and import it like Apollinaris water, or other foreign produce! We should have plenty of trade for the West Coast of Africa then, and nobody would object to pay a heavy duty. We believe it has been tried once, and Dean Swift has given an account of the experiment somewhere, but we suppose the secret has since been lost. It is some consolation for us to know mean-while that we in this country are not the only people who have suffered from the freaks of the sun, but that our French and German neighbours have had also reason to complain, for, as we were recently told by a German correspondent, the Fatherland had been favoured this year with a total eclipse of the sun of some months' duration.

The Health of the Transit of Venus Observers.—The Transit of Venus observers, unfortunately, have not escaped the vicissitudes of travel and climate in the performance of their duties, and it is not until the end of this month that the last of the scientific staff will find themselves home again. Captain Abney did not get back soon enough to escape a slight touch of fever, while some of the New Zealand and Kerguelen's Land observing parties suffered a good deal from climatic influences. Lord Lindsay, who went to the Mauritius, might have been home a couple of months ago, but the attack of fever has so wasted him already somewhat that gaunt frame, that he was ordered to remain in Italy until the Spring. He had anticipated being back in London soon after the opening of Parliament, for his lordship is one of the representatives of Wigan, but this was found to be simply impossible, especially with such rigorous weather as we have lately experienced. The Kerguelen's parties, who constituted the most trying journey of all to undergo, will have been absent from this country ten months, so that the imperfect little photographs that have been secured, and astronomical observations that have been made, have proved very costly matters. It is a subject, however, of sincere congratulation that all the stations have been tolerably successful, and that we have not to lament any serious accident, or death, among the many scientific men who volunteered on so perilous an enterprise.

The Influence of Coloured Light on Vegetation.—An Italian chemist, M. Macagno, has, we see, made some interesting experiments upon the influence of different coloured light upon vegetation. The plants he practised upon were French beans, which were sown in boxes and allowed to grow some under ordinary light, and some under red light, yellow light, and light, the plants in the three latter cases being covered with glass of the respective colours. The seeds were sown on the 30th July, and the experiments terminated on the 24th August, taking place, therefore, in a summer temperature. It appears that of the seed sown, the last to germinate, and the first to rise, was that under red glass; in the case of the plants under the red and yellow glass, they had so changed that it was with difficulty only that they could be recognised at all as bean plants. The plant grown under white glass was far more perfect than that under violet glass, and was, indeed, the only one that came to perfection. M. Macagno examined the plants chemically, and found that the most organic matter, and also the most ash, was given by the beam of white light, and from this he concludes that all the elements of white light, and not only the actinic rays, have to do with the growth of vegetation.

ON THE EMPLOYMENT OF CHROMIUM SALTS AND PERMANGANATE OF POTASH IN PHOTOGRAPHY.

BY M. CHARDOX.*

I have thought it would be interesting to the Society to make known the results of some new experiments which I have recently made, and which, if they have not much practical bearing at present, are not without some value, and may possibly find application at some future time. The action of permanganate of potash being well defined, and conforming to theory on every point, it was easy to make experiments with copies of a similar character. We knew that if the action of gelatine upon chromic acid is prolonged for some instances, the latter is decomposed, and oxide of chromium is formed. This oxide plays in intensifying the same role as oxide of magnesium, but it has a less free action, and is therefore of less practical value. Nevertheless, oxide of chromium being a little more soluble than oxide of manganese, it may be replaced by chloride of gold, and consequently form a toning which softens down a hard image.

On repeating these experiments, and employing as original matter a film of bichromated albumen, I was enabled to confirm an assertion which has already been made, viz., that, under certain conditions, over-exposure reverses the ordinary result. Thus, having exposed to light two plates under a negative, the one for ten minutes, and the other for three-quarters of an hour, the first I found developed with regularity, and, after being intensified with permanganate of potash, yielded a positive; the second, after hand, development, and intensified under the same conditions, gave a negative.

Both plates, it must be remembered, were prepared without admixture of colouring matter. At first sight this fact appears strange, but it is easily explained. The over-exposure in the case of the second plate completely decomposed the albumen where the light had acted strongly—that is, in the transparent portions of the negative; and that the organic matter, being, as we speak, absorbed, was incapable of acting upon the permanganate of potash; whereas in the less transparent parts of the negative, the albumen, not being altogether decomposed, had been capable of precipitating the permanganate in proportion to the tints of the cliché. For this reason a negative is produced by means of a negative.

* Bulletin de la Société Française,
permanganate of potash may be in photography. In a process based upon its use to which I recently called attention, I proposed to employ it for intensifying carbon transparencies on glass, so that they might be used as negatives; and one of my colleagues has now claimed the honour of having discovered and patented this circumstance as far back as last October. Without in any way questioning the value of this patent, such a subject being out of the province of this Society, I will discuss from a theoretical view the formula given in this communication. The patent is thus worded:—

"The gradual intensifying action which I apply to the chromic salts is a solution of 300 cubic centimetres of water, 10 grams of permanganate, and further, according to the vigour of the cléche desired, a few drops of a saturated solution of permanganate of potash. The cléche is put into a bath containing this solution, and then, if one desires more intensity, the liquid is strengthened with a little more of the permanganate solution. The cléche thus intensified gives a print of the same depth as the original. I claim, therefore, this mode of intensifying cléches, also new methods of using chromic salts, &c.

The patentee has given little attention to the theory of the matter, for he intensifies by means of chromic salts, and these salts are without action upon permanganate of potash. He forgets one point which is to make clear the question, for he does not indicate that the reaction operates upon organic matters, such as gelatine, gum, sugar, albumen, and other bodies that might be utilised in photography. Let us pass to the solution: water 300 cubic centimetres; one drop of ammonia, which is absolutely useless unless it is to soften the organic matter, of which no mention is made; sugar one gramme. Here, theory seems to me at fault. Either the sugar is in too small a proportion in the solution, and then it is valueless; or, if its proportion is large, it is injurious, for in that case it reduces the permanganate and other intensifying action, the latter not taking place, it must be remembered, in the same way as if salts of silver were employed. In the latter case the intensifying solution is generally composed of pyrogallic acid, nitrate of silver, and acetic acid, to retard the formation of gallic of silver. It acts by a decomposition of the solution to the advantage of the image, a proportional decrease of the colour.

Intensifying by means of permanganate of potash takes place in a different way. It is decomposed only in such places where it is in contact with organic matter, and the proof of this is that the permanganate which is not decomposed leaves a solution perfectly limpid, which may be employed in a subsequent operation. It is necessary, therefore, to suppress in the solution all organic matter which will be liable to decompose without advantage to the image.

In suggesting the employment of pure and simple permanganate of potash, I have said that with gelatine alone perfect images may be obtained; I may add that this is the case with all organic matter susceptible of being spread in uniform films.

If only knew the process which has been taken as the basis of the patent of my honourable colleague, I should be in a position to reply to the observations he has made in his usual courteous manner. I may add, in conclusion, that I had no pretence to the invention of permanganate of potash, nor to its applications, but I cannot accord this honour to the owner of the invention patented in October 1874; for already in 1868 I find in the Bulletin a communication by Mr. Wharton Simpson, who, in some highly interesting and perfect original researches, indicated an application of this product which he used for the purpose of intensifying cléches produced by means of silver salts. Furthermore, in a communication made by Mr. Swain, in 1872, which is now before me, I find that gentleman, whose works upon carbon printing are well known, has indicated the employment of permanganate of potash for the progressive intensifying of carbon impressions. He indicates the care which it is necessary to employ in making use of the process, the reaction produced, and the formation in the film of gelatine of sesquioxide of manganese. He gives details relative to transparent positives, as also to colouring by the action of permanganate of potash; he omits none of the practical details, and supports everything upon his theory. These facts I leave for the consideration of all.

THE PRACTICAL PRINTER IN AMERICA.

"CITRIC ACID TONING BATH.

'This is a most excellent bath, either for portraits or landscapes, there being, at its composition no strong alkaline or acids that will be apt to hurt the albumen on the prints a particle. We used this bath two years, and it is a most worthy one. Here it is:

Solution No. 1.

Citrlic acid... 1 ounce
Water 20 ounces

Solution No. 2.

Chloride of gold... 15 grains
Water 15 ounces

Stock Solution.

Now take of Solution No. 1, 21/2 ounces; make slightly alkaline with saturated solution of bicarbonate of soda 21/2 ounces, or about that. Solution No. 2, 1/2 ounce; water, 65 ounces.

"When ready to tone, take sufficient of the stock solution (which should never be less than three or four days old) and add thereto one ounce of gold solution No. 2, and make this fresh solution which you are about to add to the bath a little alkaline with bicarbonate of soda.

"A better way, however, for the beginner to add this fresh gold to the bath, instead of pouring the gold immediately into the bath, is to pour it first into a clean graduate, and there make it alkaline. Pour some of the toning solution (stock) into the graduate, and thoroughly stir with a glass rod, and then add the whole to the rest of the bath which is in the dish, and stir well again. To every four sheets of paper you tone, add about an ounce of gold solution; adding, however, at different stages of the toning operations, and not all at one time, as that would make the few first batches of prints tone too rapidly. Do not add any gold while there are any prints in the bath, and stir well, and allow the bath to stand without being used for about three or four minutes after you add the gold. I recommend the above cure to beginners, because they often obtain uneven tones by the abuse of the advice given above.

"Do not tone in a too strong light, but in rather a weak one, and judge not tone of the prints while in the hand, but while lying down in the dish.

"Tone exactly as you wish them when dried, and no more nor less. Wash the prints constantly in running water after toning. Fix as usual.

"BICARBONATE OF SODA BATH.

"This is probably one of the best of baths, and I have seen some of the very best of tones obtained with it.

"It is argued by some that the simpler a bath is the better, and that it is only chloride of gold in the toning bath that tones, and that all other ingredients that are placed in the bath are useless; and this bath is just what these photographers advise, since there is nothing else to be placed in it. Here it is:—

Chloride of gold solution (one grain to the ounce of water) 1 ounce
Water 16 ounces
Bicarbonate of soda (saturated solution) 10 minims

Make half an hour before use, so as to allow it to ripe.
examine them, for you will surely then be deceived, and take them to be under-toned, when by examining them lying in the dish they will appear to be toned plenty.

"The prints are toned when the high-lights and half-tints of the face appear clear and a little blue when they are lying down in the dish and examined in a weak light. Take them out immediately, even if upon looking at them in a stronger light the shadows and draperies should appear as red as fire, for the prints are toned. In nine cases out of ten you will at first overtone the prints rather than undertone them. Tone for the lights and half-tints, and let the shadows take care of themselves.

"The salt in the above bath is the improvement of this bath over the common sal soda bath, and it is partly owing to this salt that such beautiful tones can be obtained. In case you overtone, the tone will never be a disagreeable slaty one, but rather a pretty blue."

THE SULPHUR FLAME AND OTHER LIGHTS SUITABLE FOR PHOTOGRAPHY.

BY MM. A. RICHET ET C. BARDY.*

MM. DELACHANAL ET MERMET have published a very interesting note, in which they give a description of the bisulphide of carbon and binoxide of nitrogen lamp, which produces in a continuous manner a very photogenic light, such as till now has been obtained but in an intermittent manner, and for a few instants only. The apparatus consists essentially of a glass flask containing bisulphide of carbon which is directed a current of binoxide of nitrogen, and of a metal tube filled with iron filings to prevent explosions, at the extremity of which the mixture is inflamed.

This question of artificial illumination is one of much interest, because the production of photographic enlargements is often conducted by means of artificial lights; moreover, it is by their aid that night scenes are reproduced, and dark localities are illuminated. In countries, too, where sunshine is more rare than in ours, the use of artificial light is a matter of greater importance, and no wonder the English journals have interested themselves in the matter, and special mention has been made of the dangers of explosions, which such an apparatus as that just described may be liable to.

In considering our experiment, which have also struck us, have led us to examine the subject once again, and to seek means of guarding against dangers that may arise, either by modifying the method of operating, or by suppressing the employment of the bisulphide of carbon altogether; we also determined to examine and compare the nature of various flames which are capable of impressing the salts of silver.

1.—We started with the natural idea that the flame of bisulphide of carbon and binoxide does not owe its photogenic power to the carbon, that burns with a yellowish white flame, but to the sulphur, the light of which is of a very pure blue. To realise this idea we fused some sulphur in an earthen vessel, five centimètres in diameter, and, when liquid, we directed by means of a tapering tube, placed as vertical as possible, a jet of oxygen coming from a gasometer. In this way we produced a continuous blue flame, which quickly impressed bromide of silver, as will be seen in the table of results given below.

If nitrate of potash is heated in the same manner to a temperature at which it begins to decompose, and fragments of sulphur are thrown into it, the light is very bright, white, and endowed with less photogenic activity than the preceding light.

2.—We substituted in the second experiment bisulphide of carbon for the sulphur, directing the jet of oxygen upon the sulphur alight in the vessel. This liquid burnt

* Bulletin de la Société Française.
without explosion, with a blue light, similar to the preceding one.

3.—We replaced, in a third experiment, the oxygen by binoxide of nitrogen, the operation being conducted as in the former experiments. The gas was in the same gasometer which previously contained the oxygen, and the table and vessel were the same. The light appeared similar to the previous ones, but, as will be seen further on, its photogenic power was less.

It is evident that no explosion need be feared when the bispurphide of carbon is operated with in this manner, because the reacting bodies are not enclosed in an apparatus of oxygen, and hence the binoxide of nitrogen upon the sulphur on the surface of a bath largely mixed with air.

The importance of substituting oxygen for binoxide of nitrogen is at once apparent, whether regarded, on the one hand, because the gas is more easy to prepare and more economical, or, on the other, because it does not give off any gases dangerous to breathe.

4.—We next proposed the comparison as closely as possible of the foregoing lights obtained without risk of explosion, with a light given by means of a current of oxygen or binoxide of nitrogen upon bispurphide of carbon enclosed in a flask.

The gas, after having traversed a bottle filled with pure water, was introduced with bispurphide of carbon which was passed through a long tube of glass containing iron filings and was then illuminated at the extremity of a metal tube of a larger caliber than that used in the preceding experiment, through which the oxygen or binoxide was generated. With the oxygen we took the precaution of surrounding the flask and the tube with carpet, a precaution which was not altogether futile, for as soon as fire was approached, the flag on the apparatus, which burst, and the bispurphide of carbon took fire.

The experiment succeeded perfectly with the binoxide of nitrogen and the bispurphide of carbon, and the bispurphide of silver was vividly impressed, but with an intensity less great than was the case with the combustion of sulphur in oxygen. At the same time, we may remark that this experiment cannot be compared to the preceding ones, in the same way as these may be likened to one another, because the form of the flames is different, and the gaseous mixture has been checked by the iron filings and pumice stone, an effect that we have desired to counterbalance by augmenting the caliber of the delivery tube.

Finally, we have compared the sulphur and bispurphide of carbon flames, to the oxyhydrogen light obtained by carburetting ordinary coal gas with petroleum spirit, with the Drummond light, the magnesium, and that given by zinc strongly heated in a jet of oxygen. To appreciate the chemical activity of these lights we exposed to their action, under identical conditions, some sensitive dry plates produced by the excellent method of M. Slebbing, who was good enough to prepare for us a large plate, which was cut into stripes two centimetres broad by ten long. The experiments, of which the results are given in the table below, were all made the same evening. The sensitive plates were fifty centimetres from the source of light, and the exposure lasted sixty seconds, the time being measured by means of a chronometer. The sensitive plates were enclosed in a frame under a cover formed of ten sheets of waxed paper superposed, two centimetres broad, and of variable length. One measured ten centimetres, and consequently covered exactly the whole of the sensitive plate; the second measured nine, the third eight, and so on, so that the last sheet was but a centimetre long. These sheets were pressed between a layer of glass on one side, and a layer of horn on the other, and there were figures from a to ten at equal distances, so placed that No. 1 corresponded to one sheet, and No. 10 to the ten sheets superposed. In this way a screen was obtained the opacity of which was proportional to the number of sheets superposed, and which were indicated by numbers. If, for instance, it was seen that after an experiment the figures 1 and 2 were printed, and in another 1, 2, 3, 4, 5, it was obvious that the photogenic power of the second light was to the first as 6 is to 2. All the plates were developed together, and every experiment was repeated. The following table enumerates the principal results obtained:

<table>
<thead>
<tr>
<th>Nature of the light</th>
<th>Exp. No. 1</th>
<th>No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxyhydrogen light</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Drummond light</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zinc burnt in oxygen</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Magnesium lamp, oxygen</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Current of binoxide of nitrogen in a flask containing bispurphide of carbon</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Jet of binoxide of nitrogen upon a vessel containing bispurphide of carbon</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Jet of oxygen upon a vessel containing bispurphide of carbon</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Jet of oxygen upon a vessel containing sulphur</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

It is therefore the light obtained by the action of oxygen upon sulphur which appeared to be endowed with the greatest amount of chemical activity upon bispurphide of silver, and we do not hesitate to recommend a practical trial of this illuminating method. There is no danger of explosion to be feared. It is, moreover, far from costly, for the only things wanted are a saucer or crucible for the sulphur, and a bag of oxygen, a gas that anybody can make for himself, or can purchase if he prefers it.

By replacing the earthen crucible by a vase of an elongated shape, into which are directed five jets of oxygen, we obtained, as may be imagined, a much more active light, and which, on an apparatus of higher seconds, rendered the figure 9 apparent on the sensitive plate.

By replacing oxygen by atmospheric air under great pressure, a blue and faintly luminous flame was obtained, possessing but very little photogenic power.

A mixture of oxygen and air gives a light whose action upon salts of silver is in direct proportion to the amount of oxygen it contains.

Finally, by substituting the protoxide of nitrogen for the oxygen, we obtained a very beautiful blue flame, whose photogenic power is about one-fifth less strong than that of the flame produced by a current of oxygen when operating under the same conditions.

Protoxide of nitrogen may be prepared with the utmost safety, by means of an apparatus and flame which are without danger in India-rubber bags; we think that it may be substituted with advantage for oxygen, the price of which, if obtained by means of chlorate of potash, is much higher.

The process has a drawback in common with all the bispurphides of carbon methods, viz., the suffocating smell of the sulphurous gas that is formed. This inconvenience is easily remedied in a laboratory where a cupboard or chimney can be made use of, or may be put up with in a spacious apartment, but in a small room the matter becomes serious. It may be obviated by placing a funnel above the vase communicating with the chimney by means of a tube, a current through which is established by means of a gas flame, or better still by placing the whole apparatus in a glass cupboard communicating with a chimney.

In a studio the extremity of the funnel may be put in communication with an aspirator, forcing the products of combustion to pass through a series of Woelfl bottles containing an alkaline solution, which effectively absorbs the sulphurous acid.

The apparatus we have described is only a rough one, for we have confined ourselves merely to the production of light; it can be improved by a much safer and more powerful, and perfectly free from danger, leaving to each experimenter the question of constructing his apparatus in the most appropriate manner.
In conclusion, we beg to call attention to another light whose employment we believe would be of great service under many circumstances. Everybody uses in their dark rooms yellow glass and yellow light, which is unfortunately not always free from action upon silver salts. By replacing this with white light, and the aid of this glass with the monochromatic sodium flame, one may operate without the risk of fogging the most sensitive compounds. This circumstance we have proved by placing a bromide of silver plate, half covered with an opaque shield, at a distance of ten centimetres only from the flame, and heating it in this manner for five minutes. After development both halves of the plate were precisely the same, and no trace of fog was perceptible upon the half that had been exposed.

This sodium light may be obtained by burning ordinary gas in a Bunsen jet. The Bunsen burner employed in all laboratories is constructed in such a way that the gas, more suitable proportions, burns with a scarcely visible blue flame; and in this way it is heated. Two-thirds up this flame is introduced a little wick formed with platinum gauze, and containing a grain of marine salt, fused, about the size of a pea. The flame instantly assumes a yellowish tint, becomes very brilliant, and continues so long as there is any salt left on the little wick. The only precaution to be taken is to place from time to time a little fragment of salt upon the gauze whenever the flame grows less brilliant.

TOUGHENED GLASS.

The following interesting details in relation to the production of a glass much less fragile than that in use, to the discovery of which we recently referred, appear in the Times, and will doubtless interest our readers:—

Although the manufacture of glass has been carried on for about two thousand years, it does not appear that any attempts to overcome its inherent brittleness and liability to fracture, and at the same time to preserve its transparency, have proved successful—if, indeed, they have been made at all. Which is not difficult, and not that the French philosopher Reaumur many years since hardened glass somewhat by exposing it to a high temperature for a considerable time. But this process, which is technically termed devitrification, while it hardens, at the same time destroys the glass. It renders it opaque, the product being known as Reaumur’s porcelain. Seven years since, however, M. Francois de la Bastie, a French engineer, began to investigate glass, and was thus led through the most difficult channel of research to the discovery of a simple means of rendering glass practically unbrittle, and at the same time of preserving its transparency. There were many delicate conditions involved in the process by which he obtained this result, his success being achieved much in the same way as was Pailley’s, but on endeavouring to repeat the successful experiment he failed signally. For two years more M. de la Bastie, who possesses ample means, tried in vain to rediscover the secret of his success. At length, however, he succeeded in doing so, and has since been engaged in perfecting his invention, and in developing a laboratory experiment into practical working. The process of conversion of the main body of its simplicity, that it seemed singular it was never thought of before. Broadly stated, it consists in heating the glass to a certain temperature, and plunging it while hot into a bath composed of a half-saturated solution, by which it is covered a simple means of rendering glass practically unbrittle, and at the same time of preserving its transparency. There were many delicate conditions involved, and the details of the process upon which a satisfactory result depends, and the neglect of any, even in a slight degree, constitutes the difference between success and failure. The view of solving this problem, by the effect of the bath, or it may be overheated, and it will then lose its shape, or, again, it may be slightly heated and yet be spelt in the course of transformation to the bath. Moreover, this same condition continues until the glass, temperature have an important bearing upon the ultimate result. These and numerous other points of detail have all been satisfactorily settled by M. la Bastie, who has designed a method of which his toughening process can be carried out practically without fear of mishance. The time occupied in the actual process of tempering is merely nominal, for directly the articles are brought to the required temperature they are plunged into the bath and instantly withdrawn. The cost of tempering, too, is stated to be very small.

We have observed that M. de la Bastie went through a long course of experimental research before he attained success. He first worked, as an engineer naturally would, upon mechanical principles. Knowing that the fragility of glass results from the weak lateral cohesion of its grains, he was impressed with the idea that, by forcing those molecules more closely together, and thus rendering the mass more compact, the strength and solidity of the glass would be increased. But this, it must be remembered, is a very different thing from solidifying the glass with iron and steel, as Sir Joseph Whitworth has practically demonstrated, does not apply to glass: compression failing to toughen it, even if applied to it when in a fluid or soft condition. By applying compression to glass, which is cut, and in which a wire is introduced, is attained, and the physical properties of the material become altered in a very remarkable manner. To this singular fact we can testify from the inspection of a number of toughened glass articles, at the office of Messrs. Abel Rey and Brothers, 29, Minning Lane, the representatives of M. de la Bastie in England. In those articles, which consisted of watch cases, plates, dishes, and shot glasses, both coloured and plain, neither transparencity nor colour is affected at all, and the ring or sound only slightly. These articles—some of them being exceedingly thin—were thrown indiscriminately across room against wall and fell spinning on the deal floor. Water was boiled in a sauce over a fire and the saucepan was knocked out and removed to a comparatively cold place, and was unaffected by the sudden change of temperature. One corner of a piece of glass was heated and expanded, and the piece was then cooled, but the heat was not communicated to the other portion of the glass, neither was it cracked from unequal expansion. A comparison of the experiment was then made with a piece of ordinary plate glass, and a piece of toughened glass, in which the respective powers of resistance to fracture, from the force of impact by a falling weight. In each case the glass was about six inches square, and was placed in a frame, the weight being dropped from a given height into the centre. With the ordinary glass, a two-ounce brass weight falling on it from a height of twelve and eighteen inches respectively did no damage, but at twenty-four inches the glass was broken into several fragments. With a similar piece of toughened glass, the same weight was dropped from the same height, the pressure was the same as before, but the two pieces, when inspected, gave similar results. Upon the height being increased to six feet, however, the glass broke. But here another singular result was produced instead of breaking into about a dozen pieces, as did the ordinary glass, it was literally smashed to atoms. The largest fragments measured about half an inch in length and breadth, and these were easily removed by the fingers to atoms varying in size from that of a pin’s point to that of a large pin’s head. The lines of fractures in the fragments presented to the eye the appearance of irregular lace work, and these lines were, moreover, apparent to the touch, but more palpably so on one side of the glass, which was the side on which the fluid was introduced. The first impact of the blow we were unable to determine. Another peculiarity is, that the edges of the fractures are by no means sharp, and therefore capable of cutting through the skin. It would seem that the toughened glass possesses enormous cohesive power, but that if the equilibrium of the mass is disturbed at any one point the disturbance or disintegration is immediately communicated to the whole piece, the atoms no longer possessing the power of cohesion.

Of the practical nature of M. de la Bastie’s unique discovery there can be no question whatever, nor can there be any doubt of its value in the arts, sciences, and manufactures. The applications which suggest themselves are innumerable, and above and beyond the usefulness of the process with regard to articles of domestic use come important considerations affecting the applied sciences, especially in connection with chymical manufactures and similar industries, where a material, alike uninfluenced by the action of heat or acids, has been so long and so vainly sought for—notably in connection with vitrol chambers in the manufacture of sulphuric acid, and for piping in chymical works. For the present there remains one purpose to which toughened glass cannot be so easily applied, and that is to water staining in odd sizes, as in the making of vases, pipes, or other ordinary means. Our glaziers will therefore have a respite, but we cannot give them much hope that it will prove a long one, as experiments of considerable promise are being conducted in this direction, and devices are being invented by experts for cutting the proper sizes before toughening if desirable. The glass, however, is readilyearable either by fluoric acid in the usual way, or by Mr. Tligmann’s elegant sand-blast process. It can be easily coloured, and it can also be treated to acquire a metallic lustre like the like. It only remains to congratulate M. de la Bastie on the useful and valuable discovery he has made, and to add that he is carrying out his works in France to carry out in practice his ingenious process.
THE NEW SIZE IN PORTRAITURE.

An interesting illustration of the wide-spread feeling amongst professional portraitists that the introduction of a new size was desirable, not only for the purpose of giving a new stimulus to trade, but to fill an existing hiatus in the ordinary series of sizes adopted in photography, is found in the fact that a new size, in some respects analogous to that suggested by Mr. Blanchard, is receiving attention in the United States. In both cases a size that largely exceeds the former, and of proportions analogous to those of the card portrait, have been adopted; but, amusingly enough, names not only different, but diametrically opposite, have been chosen. Mr. Blanchard, as our readers know, has chosen the term “Boudoir Portrait,” as suitable to the new size and style; whilst our American friends have adopted the term “Promenade Portrait,” as appropriate. The size and proportions of the Boudoir portrait, our readers know; the following are the dimensions of the “Promenade”: the mounting card is seven inches by four inches, the print is one inch and an eighth less than the card, leaving a white margin of one-sixteenth of an inch. The print itself, however, is surrounded by a fancy photographic border of a marble pattern in the example before us—somewhat less than half-an-inch broad. This leaves the print proper just twice as long as it is wide, the size being six inches by three inches.

The proportions in both cases are clearly chosen with an especial value to effective standing pictures of ladies; and it is probable that in each case a variety of good reasons may be adduced for the proportions adopted, and no change is likely to be accepted in either country. One of the best reasons, perhaps, which now exists for English photographers adopting Mr. Blanchard’s size is the fact that mounts, albums, frames, and various other adjuncts for such a size have been prepared and are accessible. Hence if the size be accepted by common consent, sitters having once tried the style, can fill their albums and obtain a profusion of prints of the kind throughout the kingdom, to the manifest benefit of all. But, apart from the argument derived from facilities prepared, we think that the proportions of the “Boudoir” portraits are best in an artistic sense. Mr. Faulkner and some others have protested against it as too “lanky,” earnestly desiring that the width should be a little greater in proportion to its height. The arguments would apply to the “Promenade” portraits also, for that form. Whilst the proportion of width to length in Mr. Blanchard’s pictures is, speaking in round numbers, as two to three, in the American picture it is but as two to four. In Mr. Faulkner’s interesting communication in our last, he gives the actual proportions of the canvases for varied styles of portraits which have acquired a classic character by universal acceptance amongst great painters. As it will be seen, they are, in the majority of cases, much wider in proportion to length than the usual sizes which have of late prevailed in photography. But this table of sizes really affords a very strong argument in favour of the proportions adopted in the “Boudoir” portrait.

As Mr. Faulkner rightly remarks, the proportions of portraits in photography may surely be safely called on the same principal adopted by great artists who have painted portraits; and it will be seen that the standing whole-length portrait of seven feet ten inches by four feet ten inches is, as nearly as it is possible to be, of the proportions adopted by Mr. Blanchard in the “Promenade” portrait, which is essentially intended for standing figures.

It is possibly a misfortune that no facility of any kind exists for intercourse and consultation between professional photographers on points interesting to the profession. If any organization existed for such a purpose, subjects like the one to which we have been referring might fittingly be considered and decided, either by the general vote, or by that of a majority, especially in the case of large portraits. A committee of counsellors there is wisdom: and, besides the probability of a satisfactory decision being obtained as to size and proportion, in such a case mutual agreement would secure common action, and all the very definite benefits which arise from universal consent in introducing a novelty to the public. Meanwhile, we heartily echo Mr. Faulkner’s demand for facilities to facilitate the shape of albums, for some other proportions better suited for half-lengths, busts, &c., than those of the card and Boudoir portraits, which are manifestly best suited to the rendering of whole-length figures. There is no better method of creating and increasing demands for portraits than their display in the proportions and with such encourage which gives them their highest pictorial value. Good taste in this respect is in many cases especially to any work, whilst bad taste may deprive the finest picture of its real value. All portraitists have, therefore, an interest in giving weight to Mr. Faulkner’s appeal to manufacturers to depart a little from the cut-and-dried groove, and furnish the desired novelties.

PHOTOGRAPHY IN THE WEST.

The tide of civilization and progress throughout the world’s history has flowed westward, and the course of photography, as one of the most interesting developments of civilization, is certainly no exception to the general law. In the early days of the art it made much more rapid strides in America than in the Old World; and, if we may judge by many of the evidences which come under our attention, the set of the tide of photographic progress is still westward, even on the American continent. The next meeting of the National Photographic Association will be held in San Francisco, the city in which the President of the Association (Mr. W. H. Rulofson) is a distinguished photographer. But amongst the cities of the Western States it is Chicago which attracts attention as a city in which photography especially progresses. It is the home of a large number of exceptionally skillful portraitists; it possesses an active and successful photographic society; and it has recently commenced the issue of a most interesting and promising photographic journal entitled the Western Photographic News, published by Mr. C. W. Stevens, proprietor of a very large and flourishing photographic deposit, and edited by Mr. G. A. Douglas, Secretary of the Society. The annual dinner of the Photographic Society, held some weeks ago, appears to have been on a very grand scale, and the proceedings singularly successful and interesting. We were fortunate enough to receive an invitation to this dinner; but, unhappily, the few thousand miles which intervened proved an insuperable obstacle to
THE PHOTOGRAPHIC NEWS.

April 9, 1875.

The pleasure we should have had in meeting the Chicago photographers. The very handsome printed ticket, and a menu including nearly a dozen courses, forwarded, enabled us, however, to form some idea of the style in which the thing was managed. A circular issued about the same time—dating, as is the fashion with another craft, anno lucis, in place of dominus—gave the varied advantages of the Society, and invites attendance at its meetings.

Photography in Chicago is a sufficiently prominent fact to demand the notice of the daily press of the district, and a number of the Chicago Tribune before us devotes nearly four columns to a very well written history of photography in Chicago, with notices of the most prominent photographers at present practising there. In Chicago, it is said, "the chief places of business and art were offered to the public in a rude, aboriginal fashion within eight years after the first publication of the discovery in France," and "the interest has since developed with a rapidity unparalleled in any other department of industry, until the business, at the present time, is represented in seventy-five galleries, giving employment to three hundred operatives, besides those engaged in stock houses and other branches of commerce connected with the art. There is probably no other city in the world," the Tribune adds, "where photography has attained a higher degree of efficiency and practical perfection, or where a higher order of intelligence, enterprise, and skill are exercised in the interest of the art, than in Chicago." A detailed notice of the studios of a number of the leading artists and followers, and of the chief places of business associated with the art. Amongst the latter, the "Great Central Depot" is described as an "extensive four-storey marble-front building," and its proprietor, Mr. Stevens, the proprietor of the journal to which we have referred, as probably "the most extensive importer, manufacturer, and dealer in the west." Our readers will probably agree with the author, "that no city does photography appear to have attained a higher position or greater vitality than in Chicago, the Garden City.

THE SOLAR ECLIPSE.

Dr. Hermann Vogel, of Berlin, our readers will remember, accepted the invitation of the Royal Society of London to take part in the Solar Eclipse Expedition, to observe the eclipse which took place last Tuesday, the 8th inst.; and our esteemed colleague has sent the following account of the observations which it is proposed to make to the Photographische Notizen:

From many sides I have had questions touching this new expedition to India addressed to me, and I cannot do better, I think, than answer them in your journal. It is a question of another solar eclipse when the sun will be completely hidden by the moon for a space of three minutes, so that only such portion of the great luminary is visible as stretches out beyond the margin of its disk (that is to say, the atmospheres surrounding the sun), and these appear to be of a most wonderful nature. In the first place, there are carmine red flame-like forms, which here and there project from the obscure orb: these are the protuberances. Then around the luminary again is a broad white halo of glory, as it were, of irregular form, which is called the corona. When, in 1868, the Eclipse Expedition went out to Aden and to India, it was one of our duties to fix the form of the protuberances by photography, and this we were enabled to do. It was found, however, that in the pictures taken at Aden, and in India an hour later, the form of the protuberances changed, and that they had no fixed shape, but altered pretty much as our clouds do. At the same time it was proved by observances made with the spectrums that the protuberances were nothing more than glowing hydrogen gas. This was not difficult to prove. If, for instance, a spectrum apparatus is directed towards a tube in which hydrogen gas is warmed to a glowing heat by the passage of electric sparks, there are to be seen in the spectrum three bright lines—a red, a light blue, and a dark blue line. When directed towards one of the protuberances of the sun, there are to be seen precisely the same three lines; therefore it is obvious that one is looking at glowing hydrogen. At the present day we have arrangements by means of which the bright lines of the protuberances may also be seen in full daylight without an eclipse, and it has been seen how these strange forms appear and disappear rapidly, as if they were mighty explosions of gas upon the surface of the sun. They are not problems to us any longer, and in the more recent solar eclipses we have therefore directed our attention more especially to the halo of light, or corona, of the sun.

In America, in 1869, an attempt was made, and successfully, to photograph the corona. The protuberances are brighter, and impress the plate more quickly, five seconds' exposure being enough for even a weak lens. Much less vigorous is the light from the corona, for in this case eight times the exposure is necessary. In such a picture as this the protuberances appear over-exposed, but the corona appears fully. That the camera is constructed in the form of a tube, and not in the ordinary box shape, is a matter of importance in so far as photography is concerned. The camera should be connected with a clockwork arrangement to move the camera at the same rate that the sun—or, rather, the earth—is moving, is of the highest importance. A great deal depends upon the care with which this movement is controlled, for if the camera does not quite follow the course of the sun, an unsharp image is the result.

In this way both corona and protuberances have been photographed, but in the former case the pictures have taught us little. Here again the spectroscope came in to solve the problem. Different bright lines were to be seen on examination of the corona, which were different from those furnished by the protuberances, and the nature of these lines we have yet to learn. For this reason it is that we are making frequent and rapid measurements of the solar eclipse, in the hope of clearing up the matter. As, however, the eclipse only lasts a short time, and during the brief period at the observer's disposal many things may be overlooked, photography is now to stop in and aid in the spectrum observations. This time we are going to try to photograph the lines so that these may be studied afterwards at leisure. We shall take from an exposure of five minutes at the camera, and from a glass plate with the cameras alone we can do nothing. A spectroscope is necessary in combination with camera or telescope, and the photographic plate lies behind this. Description of the apparatus would lead me too far, but I may briefly say that first comes a telescope, then the stereoscopic, and then the photographic apparatus, all three on a stand, which is moved by clock-work.

The photographic work is carried out by means of ordinary collodion of the most sensitive possible character. No impression is made by the yellow and green lines, but the violet and blue are well reproduced, and it is just these which are difficult to see with the human eye. I shall, however, try to reproduce the former with my prepared bromide plates, which, it is well-known, are sensitive to the green and yellow portions of the spectrum. The difficulty to be overcome is the circumstance that in spectr um photography but very little light enters the camera, and, consequently, a very much longer exposure is necessary than in the case of depicting corona.

The eclipse at which this interesting experiment will be made lasts three minutes. The exposure of the plate cannot last longer than this, therefore, and we must hope that it will suffice. There are other difficulties, such as those connected with a hot climate, &c., but if there is a supply of ice handy these should be overcome without much ado. A great deal, of course, depends upon the nature of the apparatus, and the quality of the telescope employed.
The Royal Society of London, which has organized this expedition, invited three foreign savans to take part in it—a Frenchman, an Italian, and a German. Responding to the call, I am now on my way to the field of operations, this being the third Solar Eclipse Expedition that I have undertaken. The party go together to Ceylon, and then we divide; one portion goes to Siam, one to the kingdom of Birman, and one to the Nicobar Islands. I am going to Birmah. Besides myself, there are other photographers, whose task will be, however, but the depiction of the corona. It is only with the photographing of the spectrum that I have to do, and it is hoped that the aid of some of the members of returning Transit of Venus parties may be pressed into the service. Several gentlemen have, in fact, arrived at Calcutta, where I join them to make the journey to Birmah.

The eclipse takes place on the 6th April, and after that I propose going on to India to undertake some experiments relative to the intensity of light in that country. After my experiences I will relate further in another letter.

SEASONABLE THOUGHTS SHOT AT RANDOM.

BY W. T. HAMB.

Although the respective operations connected with silver printing have been exhaustively dwelt upon by writers innumerable, and theorists have vied with professional practitioners in making all things connected therewith clear to less gifted inquirers, yet, somehow, an important matter belonging to the process, known as toning, has been overlooked, and it is with the omitted information alluded to I purpose now to deal.

For years past I have never ceased to warn photographers against that rigorous truthfulness they are but too prone to place in formule; and I have from time to time endeavoured to show how evils complained of might be averted if printers could only be persuaded to make their work a trifle less mechanical. That a foolish reliance on the virtues embodied in so many ounces, grains, or drachmas, is, as a rule, the way to failure, I have proved a thousand times in my earlier experience. That success depends on an intelligent guiding hand is now my desire to show.

"Beautiful Spring" brings with it something more than plum blossoms and primroses; for with these pleasant months the photographer associates his often longest-after time when the air is charged with plenty of action. March, April. May, contain red-letter days, more especially for the printer, who, without experiencing the exhausting heat of later months, can go the whole frame, and find in each the very best impressions the negatives are capable of producing; and if he has any but a sluggish, unsatisfactory nature, his whole soul glows with pleasing anticipation of a glorious crop of prints to place before his employer on the coming morrow. With extra care he trims and washes his prints, the required preliminaries which precede the toning. He mixes his gold solution, as per written rule, places it in a well-washed dish, immerses the prints, and then he is in spirit-damping troubles. The pictures come so extraordinarily fast his nimble fingers cannot keep the color within desired limits; and, what makes the matter worst of all, there is no fugitive colour to be removed by the hypo. Ultimate result: inksiness, absence of richness, even though there be no loss of vigour. Now the reason why disasters such as just described are no means difficult to discover. Spring time presents all the requisites for extra perfect printing. The air is cool and moist, the chemical rays are at their maximum vigour. Under such favourable conditions the prints produced possess enlarged magnetic attraction, and in that state need a very weak gold solution to tone them; otherwise, if the ordinary strength is given, the gold is hastily decomposed, and certain black spots follow. In my own case, a day or two after for the past week I had been adding to my toning bath from two to three grains of gold daily, and have found that quite enough to tone over a

quire of paper; i.e., I give the gold fair play, be it remembered, not bothering it with haloid adjuncts, acetates, carbonates, and so on. Very wrong in me, doubtless, thus to bid defiance to popular opinion. Fact of the matter is, I succeed, and cannot, for that reason, afford to part with eccentricity. To those who at this time are troubled with the effect already first found so nicely, but now yields colour of ink, I tender this advice: reduce materially the strength of your toning solutions; and for guidance I once more repeat: a print, to be brilliant, must have merely a transparent glaze of gold, for if the red beneath is killed by too opaque a covering, blackness results, and adieu to translucent tints of ravishing richness.

FUMING WITH AMMONIA.

Appropos of this subject, I am sorely puzzled when I notice among the queries addressed to Mr. Editor an inquiry whether fuming with ammonia makes any difference in the quality of the prints. Surely the best answer to such questions would arise from actual trial. I practised this system several months, and am thus enabled to say that under certain conditions there must be placed to the credit of fuming an important amount of advantage, more particularly with low salted papers, or where nitric acid has been sparingly mixed (a most pernicious practice) with the albumen to make it more readily workable. In establishments where a considerable quantity of paper is used every day, however, the process of fuming consumes too much time; and for that reason I have taken some pains to obtain the advantages that arise from the practice without the trouble of submitting the sheets to the ammonia exhales, and after many trials discovered that with a judicious admixture of chloro-ammonia with a slight salt of ammonia fuming might be dispensed with; at all events, as far as my own work is concerned. Some photographers, believing that an addition of ammonia to the silver bath would serve in lieu of fuming, have tried it, and the experiments have turned out failures. It cannot be too widely known that with the majority of English papers an alkaline silver bath is a sad mistake. Repeatedly I have tried it, and only with the one result: comparative failure. As a rule, I recommend in all photographic operations abstinence from empiric admixture with the active principle that is indispensable in the solutions used; as, for example, for the so-called printing bath, I use nitrate of soda, because it obviates the necessity of using potassium. The solution never discolors, thus proving that the salt described is a practically valuable adjunct. As for the best, because it is a trifling quantity of silver carbonate in winter, and silver just as much in summer, I recommend to Messrs. Johnson and Matthey. I never have occasion to test the bath, add no acid nor alkaline agency, and, by leaving well alone, am rarely troubled with any printing difficulty other than those which arise from leaden skies, pea-soup-colour fog, and other similar uncontrollable enemies to photography. The silver bath should be neutral, or, if any change from that, very faintly acid. The lines produced with paper floated on solutions that are made alkaline with liquid ammonia are in part fugitive, whilst the acid or neutral silver bath, such as just described, gives the requisite conditions for making the colour produced in the gold bath stable and permanent.

A NEW DISCOVERY—

Which, I presume, means that I shall shortly be informed of no end of persons who knew it, but who, being modest, kept the secret for private circulation. A few weeks since I had a rare hunt after the cause of orange-tinted spots of various shapes which occasionally spoiled a few of my prints. I thought at first they arose from the presence in the water of sugar, but "couldn't be, neither—the water was too cold.

Whilst in the act of hanging up the prints one day, however, I noticed a large black spot in one of the sheets, and thought it was smut. On closer examination, I found the substance was solid, with edges jagged and
serrated. Taken between the fingers and removed from the paper, lo and behold! a duplicate imprint was seen on the print: 'twas of the often seen orange hue. On inspecting the solid, I found, 'twas oxide of iron (otherwise the well known iron rust), and I had lighted upon what I now offer as my newest discovery.

I had intended writing of several other matters, but at this instant find that I have already made considerable encroachments on the Editor's patience and space, and must await some other moments of leisure.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

INTRODUCTION.

It is with great dilloence that I place before the intelligent photographer a series of articles on his art; but a knowledge, formed by an extensive reading of works already devoted to photography and the complaints I have heard so generally expressed of them, as they appeared—of their too theoretical character generally—gives me that excuse vanity demands, that I shall be able to supply a want.

In a study of photographic literature the reader cannot but be struck with the strange diversity of thought and method in the treatment of almost every detail—chemical or manipulative—of our art, and the beginner, and not infrequently the finished scholar, in trying to follow out the theories and advice of those teachers, has been thrown into a very undesirable state of 'fog,' from whence to extricate himself he has been forced to take charge of the helm for himself, if his knowledge was sufficient, or as is seldom the result, to give up in despair. There is, of course, as those who have succeeded know well enough, a great deal that must be studied individually, and a point where the best book ever written as an ally deserts one. A feeling of independence and spirit of self-reliance are indispensable to the student who would excel.

While success is the reward of patience and studious research, there are still the majority who will ever remain in the rank-and-file, who will ever need counsel and advice; and for these it is necessary to provide simple and intelligible rules of working, and the formation of formulae by which, in following, they may overskip the discouraging impediments which befall the first steps of progress in our art. It shall be my endeavour, in placing these before the reader, to do so in as simple language as possible, without any mystifying technicality, and with just sufficient theory to explain why each manipulation is conducted, and so let the student pursue a course, not because it is so set down, but intelligently, as a means to a certain end, the which he fully understands. This plan, it appears to me, is, not only one called for by intelligent pupils, but a simplification of tuition. First, what has to be done—that understood, how it can be done—and why the means adopted are the best.

I propose, as my plan, to take the reader by the hand, and conduct him step by step through the various manipulations and processes, just as if he were a pupil in a gallery; to fight his way, as the writer has done, from glass cleaning, where he learns his first great lesson that nothing can be done too thoroughly!

He will then be introduced to the Dark Room, and its construction explained. The chemicals will next be brought under his notice, and their use and properties explained, in order that his dark room manipulations may not be groppings in the dark indeed. Here I shall take advantage of the opportunity of impressing on the reader, that whatever may be of service in these pages, may be rendered of no service to the reader who, after once seeing personal, throws it aside, or by a loose and inefficient method of practising the directions here set down, or a slovenly and dirty manipulation.

PRECISION

is absolutely necessary. How is it possible to judge the effect of a formula without a strict adherence to the quantities, to directions, to time, to degrees? Too often has the operator, in the perusal of a book or journal of his art, come upon a formula which promises well; say a developer, than which there is hardly a more delicate agent, liable as it is to variation by heat or cold or any trifling change in the proportions of the ingredients. In consequence of his discovery of a new developer, he takes his iron, perhaps kept in a brown-paper bag, which has burst, or a imperfectly-stored bottle, a percolated bottle, so oxidized as to have assumed a rusty-grey powderly appearance. In weighing out an ounce, he may put in an extra crystal. He solaces himself with the thought, 'that just turns the scale,' and proceeds in like haphazard manner to measure out his acid. Water he scarcely thinks worth taking the trouble to measure. He feels satisfied, and with a too easy conscience proceeds to try this thoroughly original developer. If it answers, he feels pleased, and a glow of self-satisfaction comes over him; but reproduce it he cannot! Or if, as is most likely to be the case, it does not answer his expectations, and the promises made for the developer he has not made up are not realized, he throws it away with the angry remark, 'I never did learn anything from these books—all try any of these formulae again, which is a very wise determination to come to.

But it may happen that he may have taken every care as regards the proportions of the solutions, weighed and measured them out with exact nicety; but he is not a believer in that principal of photographic virtues, cleanliness.

Some foreign substance has been mixed up with the solution, caught up with the iron or organic matter in his bottles, or from his fingers. Then, in the test, the collodionized plate is stained with marks of his dirty fingers; he throws a quantity of the developer over the plate, allowing most of it to spill into the sink, carrying with it most of the silver from the plate, the retention of which is so necessary to a proper determination of the value of the formula—indeed of beauty of the negative—and the result is stains, streaks, spots—and disgust.

You cannot too early or too thoroughly learn these two cardinal virtues of precision and cleanliness. It is observable in every movement of the first-rate operator: the neatness of his person as far as the nature of his work will allow; the cleanliness of the camera, lens, chemical, bath, solution, and what not under his care; and the neatness of the reception, operating, and dark rooms—these are the evidences; the result is perfection. I do not by any means intend to say that a clean and careful operator is always a clever one; but with these qualities he is always at his best, while the talented, slovenly man is at his worst. Even if it does sometimes appear that an admired worker in the dark-room or printing department is not as painstaking as he might be, this is more apparent than real, for some of the hard rules are of necessity relaxed by the master of his business.

Cameras should always be ready for use, free from dust, and in good repair. Spare lenses should be placed where they are not liable to get injured. The posing chair and accessories of the plate house should come to keep such a case; dust and stains, last longer, and present a better appearance to the sitters. When necessary to move a chair, background, or headrest, it can be done as expeditiously quietly, as with a great noise and racket, which not only annoy your customers, but destroy your property.

Order and neatness should reign in the chemical room, and are observable in the arrangement of legible logging of all bottles and other vessels. Funnels should be kept clean and to their proper uses, and the filtering paper...
ready at hand. In the dark room, which has generally to serve as a chemical room, also—though this should not be if it is possible to set aside a separate apartment for the reception of chemicals—there is great scope for the display of neatness and convenience of arrangement. The carriages should stand near the silver bath, which should be kept well covered when not in use, to preserve it from dust.

On a shelf over or beside the sink should be kept the developing solution and glass, free from dirt and crystals of inorganic salt. Collectors' rock glasses should not be constantly cleaned. From this cause alone many negatives have been ruined. The collodion bottles, handily placed, ought to be well looked after; the lip of each bottle on which the collodion collects should be wiped each time after using, thus guarding against any of the spots and stains which so trouble operators. Above all, the floor of the dark room ought to be very clean (mopped out every morning) that, in moving about, the operator does not raise a cloud of dust, the particles of which find their way into bottles and solutions, on to coated plates, and create mischief in a thousand and one ways. Order and cleanliness, in short, should reign supreme.

I am sure no thoughtful reader needs further examples of the mischief done by the neglect of these rules. If the collector in his own business is not seriously minded, let him think of the effect of an overdose of a drug by a chemist in making up a prescription, and in many other ways he may think of in a moment, and let him take the lesson to heart.

I hope this little sermonette has not been preached in vain, but that its lesson will show its work as we go on with our studies. The darkroom work mastered as it can be at this early stage, the student will be introduced to the glass house, to learn its construction, the effect of light on the salts of silver, lighting the figure, and the general work of this department, with a few hints on artistic and

On this head I shall be content to give only some general rules, leaving the higher perfection of the student to his own knowledge of art and many splendid works already written on the subject—notably Mr. Robinson's book on Artistic Photography, which every photographer with ambition to excel ought to possess.

Printing the negative will next engage the attention of the reader; but in this, as indeed in most of the manipulations and processes of our art, practice is the great thing. The pupil must study as much as possible to explain orally, and show the pupil how to do a thing, than it is to write rules and understandable instructions; and it is in this respect that all books of instruction in an art fail to a very great extent.

(To be continued.)

PHOTOGRAPHIC EXPERIENCES IN PARIS.

We have been favoured by Monsieur Adolphe Beau with the following, translated from a French paper:

So great has been the number of photographers in Paris, that should a few of them happen to die off suddenly, it would hardly be noticed. People live long in the photographic line, and perchance they might never die, were it not for ugly women. Ugly women are, indeed, to photographers what parsley is to parrots. Ugly women will be made pretty, and they positively howl when a true likeness is shown to them.

At a study of a photographer of my acquaintance is a lovely beauty of Blanche Pierson (the actress) before the war. It is a coloured, fair, pink, smiling likeness, with a certain piquant and roguish expression; just a little bit of a shoulder, the arm bare, the hand half closed, and, in a word, a pose which in itself may be termed a good—fortune—a god-send.

Then some horrid creature, thin, angular, with a dark yellow skin, a broken nose, and protruding jaw, comes into the studio and undergoes the operation. She has the shoulders bare (churchyard shoulders); uncovered arms (vampire's arms); a hideous and satanic smile pervades her face from left to right; and long teeth, as if made of orange peel, bite her upper lip.

"The proofs are printed. The lady was to come on the following day. She has come. The print has been made to beautify her as much as could be. Lilies and roses have been lavished all over her person. However, she proceeds with darkening eyes and dilated nostrils. "What an awful thing this is!" says she; 'you must have done it on purpose; it is monstrous!' 'Madam,' stammers the photographer, 'we cannot do better.' The lady, suddenly discovering the portrait of Mdle. Pierson, exclaims, 'Look here!—this is how I mean to be.' "Well, then," answers the photographer, 'take this portrait home, and say it is you.'

Correspondence.

PHOTOGRAPHING LARGE GROUPS BY MAGNESIUM LIGHT.

Sir,—Application was made to me a short time since to take a photograph of a fancy ball by the magnesium light. It was proposed that I should be stationed on a gallery, and take a general view of the company. I expressed some doubt as to its success, and was told "the thing had been done," and it was considerably added, "Of course they would have to stand still for a long time." I declined to undertake it. Can you, or any of your readers, inform me whether such a thing has been done successfully?—Your obedient servant,

D.

〔Have any of our readers had experience in this direction?〕

Proceedings of Societies.

LIVERPOOL AMATEUR PHOTOGRAPHIC ASSOCIATION.

The monthly meeting of this Association was held at the Free Public Library and Museum, on Monday, the 6th instant; the Rev. J. D. Betley, President, in the chair.

The minutes of the previous meeting were read and confirmed.

Mr. Houlgrave exhibited a number of negatives to show the excellence and keeping qualities of plates by the emulsion-without-washing process, as prepared by Mr. Bolton's formula. Several of the plates had been kept eight or ten months, and with them were shown companion pictures taken on plates by Major Russell's tannin and bath formula, showing the superiority of the former, although Mr. Houlgrave had previously practised Major Russell's process. He (Mr. Houlgrave) said he had now preferred to use Mr. Bolton's pellicle process to any other he had tried, there being so little liability to stain or spot the plates consequent on the little handling they had in their preparation.

The Rev. H. J. Palmer showed some interiors of Beverley Minster, taken on Kennett's gelatine plates. The exposure had been only one minute ten seconds in December last. Every detail was there, and he (Mr. Palmer) would not have given, with his experience in taking interiors, less than an hour with any other dry plate.

The President then read a letter from Mr. H. Baden Pritchard in reference to a fund that was being collected for the widow of the late Mr. O. G. Rejlander. He (the President) or the Secretary would be glad to take charge of any subscriptions that were sent in.

The members then adjourned to the Lecture Hall for the purpose of holding a "popular" meeting. Here they were joined by a large company of their friends.

The President, in opening the proceedings, said that the late Mr. Rejlander's presentation of a model of the temple of kirthar. He object being more to show a miscellaneous collection of transparencies selected chiefly for their novelty and interest, and also for their beauty and excellence as photographs. The transparencies had been nearly all produced by Mr. F. York, of Notting Hill, London, who had
been wonderfully successful in obtaining from life the portraits of so many of the animals in the Zoological Gardens. Many of these would be shown on the screen, and also a selection of Mr. York's beautiful views of London, India, and America. The members were greatly indebted to Mr. York for his kindness in granting the use of them for the evening. They had also to thank the use of the excellent films and of his excellent views of American scenery, as this would enable Mr. C. Dawson (who kindly undertook the duty of lecturer) to give them a description of a country with which he was intimately acquainted.

Mr. Knott then entertained the company for nearly an hour and a-half with some of the most effective and entertaining of films which are continually manifested by the applause of the audience. The entertainment was rendered all the more enjoyable by the amusing remarks and descriptions of the lecturer, who seemed equally “at home” in America, India, London, or with the animals in the Zoological Gardens.

Talk in the Studio.

CERTAINTY AND PERFECT CONTROL IN LIGHTING.—Mr. Vanderwayde has just invented and patented a form of studio, or method of lighting a studio, which gives the most singularly complete control over the direction of the light that can be conceived. Having visited almost every studio of note, not only in this country, but in America and Continental Europe, he has given himself the best of very many of the most successful methods for lighting the sitter, and with the small amount of light reaching the model, compared with the amount reaching the windows of the studio, and with the want of control over the direction of the light generally prevalent; and observation and reflection have led to the invention of a new system. We have just seen, from the model studio we have seen, the concentration of the light and the control afforded are most admirable. All the light entering the studio is of absolute use in lighting the model, who may be perfectly illuminated at whatever point of the studio that it is desired to be placed, and another light or lights, if another light is desired can be placed. The result is to save a huge amount of time and labor, and to get a result as good as is to be had from any other system.

The Solar Eclipse.—The Times, referring to the eclipse of the 6th, says:—“The most striking thing about the Royal Society programme is its simplicity. For the first time in Eclipse Expeditions, no eye observations are arranged for; all the phenomena are to be photographically recorded. Here we see the enormous advantage which has lately been made in these studies; for we may remind our readers that in 1871, when the Astronomer Royal was appointed, the theory and use of the spectroscope were in their infancy, and we have no accurate observations of the eclipse of that year, a committee of that Society would not agree to employ photography at all!” An article in the Daily News, accredited to Mr. Proctor, referring to the same subject, says: “From the 26th to the 28th of August next, the transit of Venus may be expected to be accomplished, and the opportunity which it affords of obtaining an accurate measurement of the distance of the sun from the earth, and of observing the effect of the solar prominences and the solar disc, in a condition of partial darkness, will be of the greatest interest to all who have a love for scientific pursuits.”

Good photographs of the corona on this occasion will throw important light on questions of solar physics. The sun during the eclipses of 1870 and 1871 was marked by many spots, indicating a condition of great disturbance. The corona photographed on those occasions was therefore the corona belonging to a disturbed sun. Now it has been noticed by Professor Young, of Dartford College, N.H., that as the spots have gradually diminished in number during the last three or four years, the coloured prominences have become smaller and less brilliant. This effect must be due to the gradual increase of the hydrosphere. As the spots have made their way through the sun’s corostrum, the hydrogen, being the principal constituent of the sun’s atmosphere, must have disengaged itself from the rest of the gas, and have thus increased the surface of the sun. The result has been that the corona has become less brilliant and less extensive, and it is probable that a similar diminution of the corona will take place during the eclipse of 1872.

J. W. DAWSON.—In making the iodide of mercury intensifier to which you refer, the solution of iodine is added to the mercury solution a little at a time, until you obtain the intensity desired, and continue until the iodine has been diluted as much as possible, and the mixture is just as clear as you wish it to be. You may add, almost as durable, as stimulated glass. The addition of dragon’s blood to a deep red-orange plate of orange, can be obtained. For lamp shades the coloured varnish can be applied with a brush.”

To Correspondents.

J. W. DAWSON.—In making the iodide of mercury intensifier to which you refer, the solution of iodine is added to the mercury solution a little at a time, until you obtain the intensity desired, and continue until the iodine has been diluted as much as possible, and the mixture is just as clear as you wish it to be. You may add, almost as durable, as stimulated glass. The addition of dragon’s blood to a deep red-orange plate of orange, can be obtained. For lamp shades the coloured varnish can be applied with a brush.”

La Morale Photographic.—Our duty enjoins us to make friends of foes, but against it proud science contends; though not meaning the weightier command to oppose. She instructs us to make phase of friends. —Judy.

Colloclio-Chloride.—Anthony’s Bulletin says:— “A very good way to make colloclio-chloride of silver print richly and perfectly dark is to put some of it in a bottle, and to desire to use at any particular time, and to add to that a drop or two of concentrated ammonium. It will not do to add the ammonium in any considerable time before using.”

Blackening Sheet Zinc.—The following is a new process lately discovered for obtaining zinc sheets of a solid black colour:—The sheet of zinc is cleaned by hydrochloric acid and sand, and then plunged into a solution of equal parts of chlorate of potash and sulphuric acid. A slight velvety-black deposit is immediately formed. The plate is carefully washed with water, allowed to dry, and then plunged into a solution of sulphuric acid, and rubbed with a piece of cotton rag. —English Mechanic.

How to Glaze a Dark Room.—Mr. A. W. Bingley says, in the Western Photographic News:—“Dissolve dragon’s blood (which is not expensive, and can be obtained at almost any drug store) in alcohol, and add the solution to a varnish (best made of shellac and alcohol) and you obtain the requisite depth of colour. Varnish your plates of glass with this as you would a negative, and glass your dark room windows with it. The cost is but little in addition to that of the glass, and is as effective, and, f may add, almost as durable, as stained glass. Add a little of dragon’s blood to a deep red-orange plate of orange, can be obtained. For lamp shades the coloured varnish can be applied with a brush.”

To Correspondents.

T. M. G.—We have given instructions for producing colloclio transfuse very repeatedly, and cannot possibly devote sufficient space in this column to repeat the details. You will find many articles in the best photographic magazines, which describe the process. In our Year-Book for 1874, page 74, you will find full instructions. We have also given various recipes for the preparation of sodium glass. Orange chrome (ground in oil, and applied to the surface of the glass) added to metallic varnish will answer well.
J. H.—One of the best semi-transparent coatings for partially obscuring glass to obstruct the direct rays of the sun is a dilute solution of starch applied hot.

ADOLPHUS.—There are two reasons for the reticulation of the photographic film. One is to allow the glass to be in constant trouble with direct sunlight. We fear that your aspect will involve some trouble, as the sitter will be illuminated with light from the south-east. You do not state the size or proportions of your projected studio, hence it is very difficult to give you any advice as to the proportion of glass to be employed. Of course both ends will be opaque, and as you build against a wall the west side should be glass. On the east side let six feet next the sitter be end and be opaque, and let the same amount, or two or three feet more, of the roof at that end be opaque. Then have ten or twelve feet of roof and side glass, the glass at the side coming within twenty inches of the ground.

LEARNER.—The collodion peeling from the glass in drying may proceed from various causes. One of the most common causes is the use of a dirty plate. Another cause is under-exposure and under-development. Another cause is imperfect washing of the collodion. Another cause, excess of acid in the bath. The slight crystalline deposit of silver in the shadows may be due to the developer being too weak. Sometimes it is due to the use of a newly mixed developer. Adding a little of an old developing solution will often prove a cure for this in glass positives.

B. K. W.—That marked D of the rapid form, will answer well, or the rapid single lens of the same maker. We have seen some specimens you cannot speak up to its rapidity.

COL. MARSHALL.—Thanks. We published some articles on the subject some years ago, both in the News and Year-Book, but we will give you the subject our attention again.

PERPLEXED.—The defects you described are more likely to be due to the collodion than the nitrate bath. The rotten film, the gray shadows, and other symptoms, all indicate the use of an old decomposed collodion; and such a collodion would tend to produce grey fog and a scum forming in development. This is due to the formation of a chlorid with a phophoric acid, it is only necessary to add the acid to the nitro solution a little at a time, continuing as long as any precipitate is thrown down.

C. B.—The strong affinity of sulphuric acid for water undoubtedly gives the desiccating power to a drying bath. The common oil of vitriol is of a sufficiently uniform strength to answer every purpose. How often it would require renewing could only be ascertained by experience, and, of course, would be governed by the amount of acid used and the amount of aqueous vapour to be absorbed. Whether its efficiency as a desiccator is sufficiently valuable to counterbalance the risks and inconveniences of its use, we cannot say, nor have we any record at hand of its use in drying boxes. We should hesitate to recommend its use. Thanks for the contribution to the Rejlander Fund, which shall be duly handed to the treasurer.

AMATUR.—The causes and remedies for blisters in prints have been much discussed, as you will ascertain consulting recent volumes of the Photographic News. The causes are various, as are, of course, the remedies. In the first place, they most frequently occur in the albumenized paper. Short floating on the silver bath, by which the film of albumen is not thoroughly coagulated throughout, is a frequent cause. Longer floating, or immersing the print in alcohol before toning, is a remedy. Adding alcohol or ether to the hypo bath is found by some to be a remedy. Immersing the print in a strong solution of alum after toning and fixing is recommended as a remedy. Immersing in a strong solution of silver nitrate after fixing and before washing has been found beneficial. Immersing the print in the fixing bath without washing after toning is sometimes a cause, and should be avoided. Sometimes they show after the print is dried, and are then of course, injurious.

C. A. M. W.—We regret exceedingly that the number for Feb. 27, 1874, is out of print, and we do not know of any method of procuring a copy, except the chance of advertising. If we can hear of one it is pleasure in letting you have it.

W. H. M.—The simplest and only efficient plan will be to advertise in our pages for an engagement as assistant operator.

L. L.—Experience along with a satisfactory answer to your query. To decide such a question a long series of comparative experiments would have to be undertaken, and at present we have no evidence. Our prepossession would be in favour of the uranium.

W. H. WATSON.—Many thanks. We reproduce the original article, as you will note, in the present number.

MESSRS. HARVEY, REYNOLDS, AND CO., and J. BYRNE.—Thanks. In our next.

Several Correspondents in our next.

THE PHOTOCO-GRAPHIC NEWS.

[April 9, 1875.]

METEOROLOGICAL REPORT FOR MARCH.
BY WILLIAM HENRY WATSON.
Observations taken at Braystones, near Whitehaven, 35 feet above sea level.

<table>
<thead>
<tr>
<th>Date</th>
<th>Temperature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Morning</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>24-2-75</td>
<td>25-0-25</td>
<td>28-0-34</td>
</tr>
<tr>
<td>25-2-75</td>
<td>25-0-25</td>
<td>28-0-32</td>
</tr>
<tr>
<td>26-2-75</td>
<td>25-0-25</td>
<td>28-0-30</td>
</tr>
<tr>
<td>27-2-75</td>
<td>25-0-25</td>
<td>28-0-28</td>
</tr>
<tr>
<td>28-2-75</td>
<td>25-0-25</td>
<td>28-0-26</td>
</tr>
<tr>
<td>29-2-75</td>
<td>25-0-25</td>
<td>28-0-24</td>
</tr>
<tr>
<td>30-2-75</td>
<td>25-0-25</td>
<td>28-0-22</td>
</tr>
<tr>
<td>31-2-75</td>
<td>25-0-25</td>
<td>28-0-20</td>
</tr>
<tr>
<td>1-3-75</td>
<td>25-0-25</td>
<td>28-0-18</td>
</tr>
<tr>
<td>2-3-75</td>
<td>25-0-25</td>
<td>28-0-16</td>
</tr>
<tr>
<td>3-3-75</td>
<td>25-0-25</td>
<td>28-0-14</td>
</tr>
<tr>
<td>4-3-75</td>
<td>25-0-25</td>
<td>28-0-12</td>
</tr>
<tr>
<td>5-3-75</td>
<td>25-0-25</td>
<td>28-0-10</td>
</tr>
<tr>
<td>6-3-75</td>
<td>25-0-25</td>
<td>28-0-08</td>
</tr>
<tr>
<td>7-3-75</td>
<td>25-0-25</td>
<td>28-0-06</td>
</tr>
<tr>
<td>8-3-75</td>
<td>25-0-25</td>
<td>28-0-04</td>
</tr>
<tr>
<td>9-3-75</td>
<td>25-0-25</td>
<td>28-0-02</td>
</tr>
<tr>
<td>10-3-75</td>
<td>25-0-25</td>
<td>28-0-00</td>
</tr>
<tr>
<td>11-3-75</td>
<td>25-0-25</td>
<td>28-0-00</td>
</tr>
<tr>
<td>12-3-75</td>
<td>25-0-25</td>
<td>28-0-00</td>
</tr>
<tr>
<td>13-3-75</td>
<td>25-0-25</td>
<td>28-0-00</td>
</tr>
</tbody>
</table>

From the foregoing I arrive at the following:—

<table>
<thead>
<tr>
<th>Maximum temperature observed</th>
<th>Minimum &c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>41°</td>
</tr>
</tbody>
</table>

PHOTOGRAPHS REGISTERED.

Mr. T. Winter, Waterford.
Three Photographs of the Very Rev. Father Burke, O.P.

Mrs. Flute, South, Lincoln.
Photograph of Peter Dianchard.

Mr. L. Benet, Brighton.
Five Photographs of Miss Rose O'Gahlan.
Photograph of Mr. J. Leber.

Mr. B. Smith, Derby.
Two Photographs of Mr. H. Holloway.

Messrs. Sanderson and Hanway, Gilmour.
Photograph of Mr. W. T. Westerfield.

Two Photographs of Vochdale Hunt.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Dr. Vogel's Attempt to Photograph the Spectrum of Corona.—Allen Young's Arctic Expedition.

Dr. Vogel's Attempt to Photograph the Spectrum of the Corona.—The task which Dr. Vogel set himself to do on the occasion of the solar eclipse on the 8th inst., is one of the most interesting that has ever yet fallen to the lot of the photo-astrophysicist. He has been familiar with the nature of the Corona of the Sun—that bright halo with which all are acquainted who have seen eclipse photographs,—is the great problem just now before astronomers; and to clear this up satisfactorily we want something more than the report of an observer who has examined the phenomenon by the aid of a stereoscope. In the first place, the time at the latter's disposal is but three short minutes, an ample period enough if it were a question of merely recording the presence or not of the lines of a certain metal; but as it is a close examination of the whole spectrum that is required, and an accurate account of many lines, the task is almost impossible in the short limit available. Dr. Vogel is going to photograph the lines in the spectrum, therefore, and although he cannot reproduce the colours, still the position and nature of the lines in the spectrum upon which the sunlight has fallen will demonstrate plainly what they are. He would, however, merely get a record of one end of the spectrum only if he worked under ordinary conditions; for it is but the lines in the violet and blue (and, perhaps, green) portions that would be impressed upon the sensitive plate. Of the lines in the orange and red he would get no trace, and therefore the most important part of the spectrum would be secured, such as might be of a great aid to the astronomer, but which would not wholly satisfy him. Dr. Vogel hoped that by employing his tinted films of bromide of silver he might be enabled to reproduce the whole spectrum intact, availing himself of the important discovery he made last year. This discovery,—which, our readers remember, gave rise to much controversy at the time,—is the fact that if bromide of silver is tinted yellow or red, it becomes sensitive to the red and yellow portions of the spectrum, the maximum sensitiveness of the plate being for these particular rays, and not for the blue and violet to which ordinary plates are most sensitive. Dr. Vogel found this out only by accident at first, and the fact that the colour which absorbs a certain part of the spectrum, the maximum sensitiveness of the plate is for that special colour. The singular importance of this discovery, which has since been confirmed by the well-known French physicist, Becquerel, is, at once apparent; for we may now be able to get impressions of the yellow and red, which trouble physicists so much, as readily as blue or violet. Dr. Vogel hoped, by employing tinted plates, to reproduce the lines in the red and orange portions of the spectrum of the corona (during the eclipse); and, should he have been successful in doing so, he will be able to lay before astronomers a perfect record of the whole phenomenon, which ought at once to solve the question as to the nature of this atmosphere round the sun. Of course a separate plate must be used for each part of the spectrum, and its fullest detail, and the main difficulty will lie in the amount of exposure at his disposal. Ten or twenty seconds were necessary, we believe, to produce the plates showing lines in the red parts of the spectrum which Dr. Vogel forwarded for our inspection; but to produce these he had full sunlight coming through the slit of his spectroscope. At the time of the eclipse, on the other hand, although he was at liberty to expose for three minutes, he had no actual light coming from the orb itself, but only that coming from the halo or corona around the luminary, which, although bright enough, apparently, has little power compared to the sun itself. Eight seconds, exposure, are necessary to give a detailed image of the corona, whereas we know very well that the smallest fraction of a second suffices to impress an image of the sun upon a sensitive plate. The spectrum of the corona will therefore be very weak compared to the spectrum of the sun itself, and we fear lest the three minutes at Dr. Vogel's disposal will be really sufficient to give him an image strong enough for his purpose. However, it is to make the attempt that Dr. Vogel has made a journey of several thousand miles to a tropical climate at the hottest season of the year, and we are only re-echoing the sentiments of every astronomer and photographer in this country when we express a fervent hope that the worthy Professor's labours will be crowned with success.

Allen Young's Polar Expedition.—The Polar Expedition, under Lieutenant Allen Young, of the Royal Naval Reserve, which will accompany H.M. ships the Alert and Discovery, will comprise a scientific staff of its own, independent of such gentlemen as may be attached to the Government enterprise. A naturalist and a photographer will be included, and already Lieutenant Chermaide, B.E., who accompanied Mr. Leigh Smith in his journey north, and who afterwards returned to the Lisbon laboratory before the Photographic Society, has been asked for advice on the subject, as also Mr. Baden Fritchard, the War Department photographer. Dry plates are to be chosen for the work, but a small stock of chemicals for the preparation of wet plates will be taken, for in the summer weather the temperature will not interfere with the moist films. There will be probable little for the camera to do, however, for although some bold headlands may be met with, capable of giving good pictures, the stretches of snow and ice-fields, when once reached, may be photographed once as well as a dozen times. The open sea which is said to exist at the North Pole itself would certainly be worth while depicting, and we hope that the expedition will be instrumental in bringing us back some characteristic views of the country in those remote regions.

FRENCH CORRESPONDENCE.

M. Leon Vidal, who has been in Paris for some days, has obtained a series of well-merited successes during the present week, of which photography will not be slow in profiting. At the Scientific Congress which took place at Paris, M. Vidal was under the presidency of the Minister of Public Instruction, at the general meeting of the Acclimatization Society, and finally at the last meeting of the French Photographic Society, M. Vidal, who brought with him an album full of specimens of various kinds of his photo-chromic process, received an enthusiastic reception. The first glance at these striking pictures convinced everybody of the part which the invention is destined one day to play in science, public instruction, and industry.

We have foreseen this success for some time past, but this is not all: photochromy has now arrived at such a degree of perfection that it may be worked on a large scale. Men most competent to do so have passed a favourable judgment upon it, and it is with much pleasure and satisfaction that I can announce that the Société Anonyme des Publications Périodiques are now treating with the inventor for practically working the process. This Company has not only considerable relations in Paris and in France, but throughout Europe. Seven journals are published under its auspices, all of which belong to the Company; these are:—"Le Moniteur Universel," "Le Petit Moniteur," "La Petite Prusse," "Le Miroir Illustre," "La Presse Illustrée," "Les Études Illustrées," "Le Petit Bulletin du Soldat et du Marin." Besides the above the Company undertakes to publish on commission many other journals, and among others "Le Moniteur de la Photographie." Every day papers and
prints are issued by the company which may be counted by the hundred thousand, for it possesses printing presses capable of throwing off 24,000 copies per hour. The embryo of the photographic plant is actually under the same roof. The company owns a block of many houses on the Quai Voltaire and Rue de Lille. Photography has a place in its vast establishment, which employs all the graphic processes known; and now photochromy is to find a home here too. All the necessary steps for the installation of the process have been taken so as to work photochromy out of the most perfect equilibrum, for the company does not care for its own wants, but will execute any commission it may receive for the pictures, many applications for the prints already existing.

At the same time that M. Vidal arrived, we had the honour of receiving a visit from M. Ernest Boivin, of Mans, who brought with him the models of two photographometers of which he is the inventor. It is by reason of their excessive simplicity of construction, and the working that these apparatus differ from others, and such essential qualities should assure their success. The first is destined for the purpose of regulating the time of exposure when photographing landscapes, &c., by means of dry plates. It is composed of a little plate of mahogany, five centimetres long and three broad, upon one face of which is placed a sheet of black paper, with a strip of mahogany longer than the mahogany, and does not adhere to it completely, so that between the two may be introduced a piece of sensitive paper. Upon the upper face of the mahogany plate is a little opening, circular in form, which is covered with yellow glass, and, if required, may be closed with a very light shutter of copper turning on a pivot. A washer of sensitive paper, which consists of a piece of paper about a third thick, and the surface of the yellow glass, and a little disc of a lighter tint placed in the centre, permit the light to pass into the space which remains uncovered between the two; the latter represent the two normal tints which correspond to the necessary exposure for architectural subjects or for landscapes with verdure, &c. When you desire to work with the apparatus, the sensitive paper is introduced, and the cap of the photometer is removed at the same time that the lens is uncovered. As soon as the sensitive paper becomes tainted to the depth of one or other of the normal colours beside it, the lens is capped, and the operator knows that the exposure has been exact, and that on development a good negative will be obtained. With the same piece of sensitive paper many experiments may be made, for it is only necessary to see that a fresh piece is brought under the opening every time a plate is exposed in the camera.

The second photometer of M. Boivin is composed of a rectangular box, the form and size of a tobacco box, and acts also in a very simple manner. It is destined exclusively for carbon printing; but without a sketch, unfortunately, it would be impossible for me to give your readers an intelligible account of it. I have no doubt, however, it will be promptly manufactured by photographic dealers.

At the last meeting of the Photographic Society on Friday, M. Fleury-Hermagis exhibited what may be truly termed a pocket apparatus for working with dry plates. The camera is composed of four wooden sides connected with hinges, the extremities of which, required to close on one another, are cut to such an angle that when the box is shut up it is a perfect octagonal shape. Folded together, the sides of the camera take up no more room than a cigar case. The little plank which holds the lens and the focussing glass, or frame containing the dry plate, form the ends of the camera. This is mounted upon a three-legged stand, which closes into the form of a walking-stick such as mountain excursionists use.

What is most curious and new in this apparatus is the way of mounting the lens. Instead of being fixed into a tube and worked to and fro with a rack-and-pinion arrangement, the lens is fitted so as to form a screw of itself, turning in a socket. This is a much more simple arrangement than the ordinary one, and the apparatus can be packed in a closed box. The objects to be photographed are those prepared by M. Himson for his portable apparatus, which I have already described in these columns.

At the same meeting, M. Laurent, of Madrid, exhibited to the Society a numerous collection of prints of large dimensions, representing the principal paintings and works of art in the Spanish museums. The pictures were very fine indeed, and comprised an album of great artistic value, which will be of considerable interest to the student of art and history, for the objects are such as should not be allowed to perish. For this reason it is a matter for regret that the reproductions have been printed by the silver process. M. Laurent would have rendered them far more valuable had he printed them in carbon. We are too well acquainted with his skill as a photographer to admit for a moment that he would have found any difficulty in producing prints by the process, which is now placed within reach of all. Fortunately, there is still time, and we hope that in the next edition of his superb work M. Laurent will not pass over the immense advantages which printing in pigments offers, especially in the production of rare and costly plates.

The Industrial Exhibition of Exports is in course of organisation at the Palais des Champs Elysées, and is daily acquiring more and more importance. Looked upon rather coldly at the commencement, it betokens at the present day considerable activity. I have already said that photography takes a part in the exhibition, and, according to news that have reached me, it appears that the art will occupy a most important position in the same way as it has occupied among our own representa
tives, have determined to send their productions. I do not hesitate, therefore, to ask the assistance of English photographers in making this a grand exhibition, and they may rest assured that they will receive a cordial reception from their French brethren here.

Ernest Lagan.

MY LATE EXPERIENCE WITH THE WET PROCESS.

By Frederick York.*

The subject I have selected is the old, old story, the management and formulæ of our every-day life, which is a subject. I think, we shall have many more years to bother us, although we have been informed on all sides, for the last five years, that the time is not far distant when the silver bath will be a thing of the past. My impression is that many thousand gallons of silver bath will have to be doctored before that time. We see a startling advertisement: "Away with the silver bath, and use dry plates." I am disposed to think this firm's motto is, "Do not be afraid, and do not ask why." This circumstance is pressed home more closely this evening by our friend Mr. Kennet, who is going to show us the future by practical demonstration. This process, like all others, will have to be worked out by some painstaking amateur, for the business man is too much absorbed in other occupations to devote much time to experimenting, unless in a secret process, which seems all the rage at present.

The title I have given to this paper is, "My late experience." I will commence with the glass used. I have
abandoned patent plate, and now use British flatted crowned up to 8 by 6, and for larger sizes machine polished sheet, which is a very good substitute for patent plate, at one-third its cost. The process of cleaning is one recently recommended in the photographic journals—to use a paste of whitening or rouge, allowing it to get thoroughly dry on the glass, and then polishing with absolutely dry cloths. I have had success with a paste to which I have noticed when polishing immediately after using a wet paste, which I used to attribute to dirty cloths or leathers. I have tried albumen in various ways, by coating a wet plate, and applying it to a dry plate; there is such a degree of uncertainty about it that I have discarded it, except to put it round the edges of the glass to keep the collodion from dripping.

There are so many excellent collodions in the market that to give my formula would be superfluous. I iodize a Winchester quart at a time, and always keep one in reserve ripening. When the one in use is empty, I take the ripe collodion into use, and refill the other, which is set aside until required. I find this insures clean work. I am not in the habit of adding additional bromide for particulars, as I only use a quart and a quarter of the ounce (although three grains are generally recommended). I do not notice any increased advantage, even for interiors; but I notice one great disadvantage—a more rapid deterioration of the silver bath. Those who used to work simply iodized collodion and pyrogallic developer must have noticed that the baths now get out of order much more quickly. I remember when I first experimented with bromo-iodized collodion and iron developer, that I could never get satisfactory pyro negatives from a bath that had been used with collodion containing bromide.

This brings us to the third part of the process, the much maligned silver bath, the source of all our woe, as the late Mr. Belgander expressed it; many will remember his delight when the question was once more to be discarded entirely. The system I have adopted will appear rather troublesome, but to me it is a saving of time. In making a new bath, I always neutralize it with oxide of silver, and put it in the sun, and when filtered add two drops of nitric acid to each pint of twenty ounces. I have four Winchester quarts; I use only one, and I seek only to evaporating dish and boil for a few minutes, to get rid of the spirit; neutralize with oxide of silver, fill up the bottle with distilled water, and add silver to make it up to its original strength of thirty-five grains to the ounce, and put it out to sun. This bath now has a rest, and, when filtered, eight drops of nitric acid are added. I never think of using a trial plate, so reliable is the plan. At the end of the season they begin to show signs of getting sandy; I then reduce them by Captain Abney’s process, and make new baths out of old ones. I am disposed to think that I shall now save myself trouble, and adopt Mr. Henderson’s recommendation of adding nitrate of baryta to a sandy bath, which certainly is most effectual. I have tried it with a useless bath, giving myriads of pinholes, and the effect of this is in removing the dirt with the spume. I was reluctant to adopt it, being a soluble salt. I was in hopes sulphate of baryta would have answered the same purpose, but it does not. I submit plates from the same sandy bath, treated with sulphate and nitrate. You will perceive the sulphate has no effect—the bath is the same as before; but with the nitrate the objection is entirely removed. I am not able to explain its action, and trust it will provoke a discussion, that we may know the chemical effects of this most useful adjunct to the photographic laboratory. I do not think we have yet arrived at the cause of a sandy bath. We naturally conclude it is from excess of iodide, as it seldom shows itself until the bath has been in use some time. My own impression is that it is not iodide; for the crystals found adhering to the sides of the bath and bottle are insoluble in a solution of iodide of potassium. The precipitate formed by the addition of nitrate of baryta is not affected by exposure to sunlight. And again, I have strengthened an old bath, working well, and the next day the plates have been covered with myriads of pinholes. I am anxious to know why this occurs, because it is opposed to the theory of supersaturation. Strengthening a bath ought to retard, and not induce, this effect. I hope our worthy vice-president, Mr. Spiller, will be able to enlighten us a little on this most important subject.

I have very little to add respecting the use of the bath. I find that in taking interiors the plates are better for being only a short time in the bath—just sufficiently long to remove greasy lines—and then well aired, by resting on the dipper, and finally re-dipping two or three times in the bath. It is also important to add a quarter of the ounce of the anhydrous, to pack it well with blotting-paper, to absorb all the superfluous solution. I am rather extravagant in its use, as it preserves the carriers and clothes, and prevents stains where working. The following incident occurred at the Albert Memorial in 1872, when the place was swarming with photographers. I always worked there very early—in fact, the earliest—and the police in charge made me clean up all the stains made by others the day previous, before allowing me to commence. We are now arrived at the development. This is a subject I have given great attention to. My experience is at variance with many eminent men. I prefer simply sulphate of iron, and with a small quantity of acetic acid. My plan is to make a half-saturated form, so that one drachm mixed with seven of water makes an ounce of developer. The advantages are, simplicity in mixing as required, and uniform action; for it has undergone the process called ripening, which many regard as valuable for clear pictures. The proportions are:

- Water: 3 parts
- Acetic acid: 1 part
- Half-saturated solution of sulphate of iron

In summer I use one drachm in the ounce, but for interiors, and in cold weather, I use two drachms in the ounce, spirits of wine, quantum suff. The proportions of this developer are about twelve grains of sulphate of iron, seven drops of glacial acetic acid, to the ounce of water. I prefer using distilled or boiled water, or water in which a few grains of nitrate of silver to the gallon have been added, as I have traced pinholes, similar to a sandy bath, to hard water; for after development I still use pyrogallic and citric acid before fixing, and acetic pyro after fixing. In the latter case, I always flood the plate with iodine, to prevent stains, which occur very frequently if not thoroughly washed after fixing. It is most important to use a dilute solution of cyanide after intensifying with acetic pyro, or the negatives will, in time, turn brown, and get so dense that they are useless. I always use cyanide for fixing, as I am reluctant to carry about hypo.

In conclusion, I should like to call your attention to the most perfect non-acetio glass I have ever met with. It is prepared from an alcoholic solution of aurine mixed with collodion, the glass coated in the ordinary way, and afterwards varnished with diluted carriage varnish. I did not get favourable results by dissolving the collodion. I was answered for the old bath I experimented with. I tried smaller quantities, but found, after filtering, that the addition of more nitrate caused a further precipitate, which ceased after five grains were added. I did not use the bath between addition. It is possible that a much smaller quantity may be used."
A NEW DRYING BOX FOR DRY PLATES.

BY W. DALLAS,*

The apparatus consists of a box (A, figs. 1 and 2), in length two feet, eighteen inches in width, and one foot in depth, with a loose lid. One of the long sides is divided about one-third from the top, the parts being hinged together. On a level with these hinges is a glass plate (a b) extending nearly the length of the box, and so as to leave a communication between the upper and lower compartments, into which the interior is thus divided. Heat is applied through a closed boiler, B, ten inches in diameter and six inches deep; in this is suspended an air-vessel (c), eight inches in diameter and about two in depth, the interior of which is partially divided by three partitions, d, e, f, as seen in fig. 3. One end of the air-vessel communicates with a cylinder (C) fourteen inches long and four inches in diameter, in which is placed any hygroscopic substance—such as quicklime—and this cylinder projects beyond the end of the box. At the other end of the box is a chimney (D) communicating with the upper chamber. The whole is supported on levelling screws, for the purpose of adjusting the table, a b, upon which the plates to be dried are laid.

The action of the whole is, that the air entering through the cylinder C becomes more or less dried, and in making its way through the air-vessel c the temperature is raised; on entering the lower chamber at b it becomes further heated by contact with the hot surface of the boiler. The air then passes into the upper chamber, and in its progress towards the chimney will dry anything it meets upon the shelf a b. The passage of the air may be traced by the arrows in the figures. The apparatus easily raises the temperature inside the box 60° above that of the external air. Should greater heat be required, the waste steam may be rendered available by passing it through any length of tin tubing.

ON THE AID WHICH PHOTOGRAPHY HAS RENDERED TO THE FINE ARTS.

BY ALEXANDER HUNTER, M.D.*

When photography was first discovered it was thought that it would eventually rival, if it did not supersede, the fine arts. This it will never do, for several reasons: first, from the limited size; second, the texture or surface of the materials employed; and third, from the deficiency in colour and finish. It may be objected, that photography has not yet had time to be thoroughly perfected and developed, as it is really only an invention of the last half century; while painting, drawing, fresco, modelling, sculpture, architecture, and ornament, with all their multifarious applications and combinations, have been known, practised, and nearly all perfected to a very great extent, nearly two thousand years ago, and some of the fine arts have an un- doubted antiquity of three thousand years; for, if you search through the marginal references of your Bible, you will find that 1045 years before our Christian era, David and Hiram were employed in collecting materials for the building and decorating of the Temple, which was commenced b.c. 1015, and completed in eleven years—modelling, chasing in metals, embroidery, and carving in wood, having all been brought into use for the perfecting of this grand Temple. Shortly after this period, or about 800 b.c., we find that architecture, sculpture in stone, and casting in metals, were brought to considerable perfection in Nineveh, when Jonah was sent to preach repentance. Then at a later date, or 580 b.c., we find Nebuchadnessar setting up a golden image (see Daniel iii. 1) ninety feet in height; and from this period to the second or third century of our era the fine arts appear to have been brought to great perfection in Egypt, Greece, and Italy. I need not enter into further particulars regarding their relative ages, for we have abundant proofs that the fine arts were known, practised, and encouraged, many centuries before photography was ever thought of. Almost every year brings to light new discoveries relating to photography, which prove that as a science it is not yet perfected, while an aid to the fine and industrial arts there is hardly any limit to its applications; and we must all admit that there is not one branch of art or of industry to which it has been applied that has not materially benefited by its use.

If we take a glance at some of the multitudinous applications of photography, we find that although artists are greatly indebted to photography for multiplying, cheapening, and preserving valuable record of what has been done in art, still there are limits or bounds to its usefulness, and, in a few instances, defects which will probably never be overcome; though, even in hazarding a statement of this kind, it may be safer to say that up to this period the following appear to us to be the limits of its utility, and the defects of photography. The members of this Society will perhaps be startled to hear me talk of the limits and the defects of this science, but there is no objection that we are running into a few dangerous and questionable applications—as, for instance, the attempt to produce life-size portraits upon paper, believing that these will bear favourable comparison with nature, or with portraits painted in oil with the hand, drawn with chalk, crayons, or water-colours, or sculptured in marble. The very nature of the materials with which we work shows us at once one of their serious defects, for these life-size portraits always suggest the idea of the sitting being pachydermatous—thick and coarse-skinned—or that he or she has lately recovered from a severe attack of small-pox. Here, then, is one of the limits which ought to be placed upon the practice of photography. Do not attempt a portrait or figure above one-third of the size of life, for, independently of the roughness of texture, there is a feebleness in the light and shade, and often a commonplace vulgarity or vacancy of expression, which are exaggerated by being magnified.

But there is another extreme which is equally vicious, degrading, and commonplace in photographic portraiture, and this is the wretched small cheap and nasty cartes-de-visite, where the face is about one-sixth of a pose, and where the art of the tailor, dressmaker, bootmaker, or hatter are obtrusively conspicuous, or where one-third of the picture is perhaps occupied by a table or a drawing-room chair, with vulgar spiral or commonplace turnery, that detracts from instead of improving the picture. I do not condemn all cartes-de-visite, but I think most people now prefer...
POTASSIC PERMANGANATE AS AN INTENSIFIER.

BY W. H. DAVIES.∗

This question has been again brought under discussion, in consequence of some remarks made by me in a paper read before this Society at a late meeting, in which I characterized the method of intensifying with permanganate of potash as unstable. This remark has been called in question, both at the time of publication and since, by the Editor of the News, Dr. Vogel, and others who hold such positions that what they say must be considered and replied to. In all matters of dispute, the questions at issue must be settled by evidence; therefore a detail of my experiences with permanganate as a toning as well as an intensifying agent may aid in settlement of the case.

Some years ago I was engaged in getting up a lot of trays, and being desirous of giving them a rich golden brown tone, I experimented with a considerable number of toning agents, including gold, indium and gold, platinum, palladium, &c., and finally got pretty near what I wanted in permanganate of potash. The colour was all I desired, and although not completely under control as to uniformity of tint, it was, in this respect at least, as sure as any of the others. Another quality it has for this purpose is the clearing up of the transparent parts of the pictures. After a time I began to suspect that the colour of the trays was changing, and I set to work to find whether this was so or not, and the why and wherefore thereof. A pair of test pictures were made, one of which was varnished, the other left unvarnished; these were exposed freely to light and air, being placed up against the window of the glass house, accompanied by another varnished one, which had been gold toned. The whole of these were wet collodion prints, and as a test another was made and treated precisely as the two first, but varnished and kept away from light, air, and variations of temperature, as far as that was possible to be done. The lapse of a very few months sufficed to show that the first pair of pictures had sensibly deteriorated in colour and quality, while the gold toned picture had not changed at all, or, if so, then it was so little as to be undetectable. The last of these two, the unvarnished plate, next to the varnished one, and least with that which had been shielded from light and air. This deterioration has gone on steadily ever since, until now the one unprotected by varnish is a mere shadow of its former self. This would have been tolerably good proof in most cases, but, unfortunately or fortunately, I was not satisfied to rest with a much more delicate proof, but in the same time, absolutely certain proof of the instability of the permanganate as an intensifying and toning agent.

On the occasion of the marriage of the Duke and Duchess of Edinburgh, about a year ago, I was asked to make the two life-size transparencies of the royal couple on about thirty by twenty inch plates, which I did by the ordinary wet process, and finished them by what I then thought the finest method I had yet hit upon; such delicate brown tints were equalled only by the best mezzotints after Sir Joshua Reynolds; and in doing them I thought I had not only discovered "a thing of beauty," but that it would be a "joy for ever." Alas, alas! I had not to wait a year, a month, a week, a day—no, only a single night—ere the beauty was flown for ever: the exquisite transparency of to-day became, under the influence of burning gas and little care, leaden generation. The combination of superexpose of manganese on a silver basis, together with the added products formed by four hours' combustion of good Edinburgh coal gas of twenty-eight candles' value; and what that may produce, who can judge? The examples are before you, and you can see for yourselves how they have been destroyed, and you see, also, that these two samples have faded in spite of the varnishing.

I have not taken especial care over these examples of the failure of the per-(to)—the super-oxide of manganese as a stable intensifier of the silver image. It may be said that these experiences are of transparencies only. This I admit; but we all know that the conditions under which the respective images of the negative and the transparencies are produced are identical, both being made by the wet process; so that what holds in one case would also hold in the other.

There cannot be a doubt that varnish, and complete exclusion from light and air, do to a certain extent preserve the film of manganated silver, as in the examples I now show, which are prepared in the same way, and finished, rendered air-tight, and, to a great extent, kept in the dark, except when in use in the lantern. These seem to have undergone no deterioration whatever; but that, I submit, is no proof of the stability of the permanganate as an intensifier. I may mention that I have another pair of test examples presently undergoing trial, on which, some months hence, I will bring up a further report.

* Read before the Edinburgh Photographic Society.
The Photographic News.

Vol. XIX. No. 867.—April 16, 1875.

CONTENTS.

Page
Photography In and Out of the Studio.......................... 181
French Correspondence... 182
My Late Experiments with the Wet Process. By F. York.... 183
A New Drying Box for Dry Plates. By W. Dallas........... 184
On the Baird and the Photographic Society has Frustrated to the Fine Arts.
By Alexander Hunter, M.D.. 184
Potassium Permanganate as an Intensifier. By W. H. Davies 185
A New Emulsion in All its Details.............................. 185
A Few More Words about Dried Albumen....................... 186
Photomechanical Processes in Commerce....................... 186
Paper Negatives for Enlarged Photographs............. 187
Correspondence.—Toughened Lenses—Proportions of Land-
scape Photographs—Res and Proportion in Perspective—
Bronze Castings of Photo-Bas-Relief......................... 188
Proceedings of Societies.—Photographic Society of Great
Britain—South London Photographic Society—Manchester
Photographic Society—Edinburgh Photographic Society.... 189
Times and the Times.. 190
To Correspondents... 192
Photographs Registered... 193

A VERY SIMPLE AND EFFICIENT ENLARGING PROCESS.

A very curious illustration of the fact to which we have more than once recently adverted, that much valuable matter lies entombed in the journals, comparatively unproductive, for the want of enterprise on the part of some skilled worker to carry the processes indicated from the point at which they had been left by the experimentalist to their highest practical issues; and an illustration further of the independent discovery or re-discovery of a method identical with one of those processes published long ago when it was first communicated. The process of enlarging described by Mr. Blanchard at the Photographic Society on Tuesday evening is, we venture to say, one of the most simple and efficient in existence; and the examples with which he illustrated its capabilities were amongst the finest enlargements we have ever seen. We may go further, and affirm that we have rarely seen landscapes taken direct equal them in some of the highest and most valuable pictorial qualities. The process with Mr. Blanchard is, beyond a question, an original one, and yet it is a process we ourselves worked out and published years ago. It is about fifteen years since we first attempted the process, and a few years subsequently we worked it out and described it in the News. When the question of enlarging was brought again prominently before the public two or four years ago, we were again reminded of the method in question and published it in the Year-Book for 1872. As the article is brief, and contains some suggestions of interest, we reproduce it on another page. Fortunately for the photographic public, Mr. Blanchard hit independently upon the same idea, and has worked it out to a degree of perfection for which we should scarcely have hoped, and to which, in our experimental efforts, we certainly never attained. We say fortunately, because it is so in a double sense: first, because his skill has so fully shown the capabilities of the process; and, second, because, with his characteristic liberality, he gives the results of his experience freely to his photographic brethren. On ascertaining that it had been already published, Mr. Blanchard at once abandoned the notion of bringing the method before photographers as a novelty, and it was with satisfaction that he consented to place before the Photographic Society a process and illustrations for which we feel certain every one present was grateful.

The process briefly stated is as follows:—An enlarged transparency of the full size of the required print is obtained from the negative by the ordinary wet process. This transparency must be perfectly dry, and it is possible, if for any reason it is not, for all the prints finally obtained should be facilitated by the transparency. Slight retouching may, if necessary, be effected on the transparency, but with a good negative this should not be necessary. From this enlarged transparency a print is obtained on albumenized paper by the ordinary method of printing in the pressure frame; and this print is the enlarged negative from which all subsequent prints are to be produced. It is important, therefore, that it be a good print in all respects, clean, sharp, and vigorous. It need not be toned, but simply fixed, and well washed. It is touched as may be required; then washed, to render it transparent, and is straightforwardly ready for printing.

Many of the advantages of such a process are obvious; but there are some not quite so apparent until they have been considered. We shall, therefore, briefly summarize some of the most important advantages.

The process is simple and easy, involving no operations unfamiliar to photographers generally. The negatives are not fragile, and are easily kept in stock.

The negatives are easily retouched with either pencil, stump, or water colour.

Where large numbers are required, nothing is more easy than to produce a number of negatives by printing from the transparency, and so print from a score of negatives instead of one or two.

The negatives can be printed at either side, either direct or reversed.

Paper negatives present the most admirable facilities for double printing, either in such simple form as the introduction of a background to a portrait or a sky to a landscape, or the more elaborate work of producing combination prints and similar photographic compositions. Ordinary methods of masking being employed, paper negatives facilitate the operation; but they present also additional facilities in the possibility of neatly cutting up and joining the various negatives, attaching the portions to a plate of glass, and producing one combined negative for printing at one operation, rather than printing portions of a series of masked negatives in successive operations, with all the care necessary for perfect junction at every printing.

Paper negatives, moreover, possess a beauty essentially their own, and yield prints with a specific texture which generally pleases the artistic eye. The texture need not be either coarse or granular; but it often gives a soft, delicate, atmospheric quality rarely otherwise attained. The examples showed by Mr. Blanchard on Tuesday night showed how finely landscapes produced from stereoscopic negatives, enlarged to sixteen inches by twelve. Without any lack of sharpness or crispness of definition, they all possessed that soft, delicate, painting-like quality which at once charms the artistic eye. In some cases, where the taste has been educated only on photographs, the observer may miss the hard wavy incisive line which charms the technical microscopic eye and disgusts the cultivated artist; but we imagine that few examined the specimens by which Mr. Blanchard's paper was illustrated without echoing the general sentiment that whilst they surpassed by far the greater majority of enlargements, they had rarely been equalled in pictorial qualities by prints taken from negatives direct in the camera.

A FEW MORE WORDS ABOUT DRIED ALBUMEN.

A further examination of the dried albumen to which we referred in our last impresses us more strongly with the numerous advantages it presents, not simply on the score of excellence, but also as a matter of economy and convenience, especially to amateurs—and, indeed, for photographers generally—for except in the preparation of albumenized paper the photographic consumption of albumen is rarely large. The chief use of albumen in the dark-rooms is for employment in preliminary coatings, and in the preservatives employed in many dry plate processes. A
very common form of failure with beginners in applying
albumen to both purposes arises from the albumen
being imperfectly liquified by beating, slight filaments
in the albumen solution causing a speckled deposit
in the plate. The dried albumen before us gives a perfectly clean
lucid solution, and by its use defects from such a cause
become impossible. Frequent failures arise from the
impurity to use a solution which has been kept for
a time, and which does not seem so palpably deteriorated
as to make its condemnation certain. The use, therefore,
of a good brand of albumen impossible is, manifestly, an economical proceeding.

There is, moreover, inevitable waste in preparing white
of egg for use at all times. Besides the risk of occasional
bad eggs, and the waste necessary in removing the germ
from impregnated eggs, there is always considerable waste in
preparing a small quantity of any viscous solution, from the
mode in which it clings to the sides of vessels and other
apparatus used in preparing it. If the whole quantity pre-
pared for use be not consumed, it is not a pleasant thing to
keep in stock, being apt to decompose and cause both
stench and waste. The advantage of being able to
prepare any quantity from a drachm to a pint, of any
strength which may be required, and have it ready for use
at a few minutes' notice, is a gain in convenience and
economy not very easily overrated. The
least sample before us is a really elegant preparation:
clear, bright, and sweet, it dissolved in cold water in a few
minutes, without residue, giving a bright limpid solution
ready for use at once. Even in the small bottles, in which
it is sold at the rate of one shilling and sixpence per ounce,
it is not a dear article; but as it is sold in quantities of
eight ounces and upwards at the rate of one shilling and
fourteen pence per ounce, it becomes very cheap indeed, and absolutely more
economical than fresh eggs to the ordinary consumer.

Mr. Thomas considers one ounce to be equal to the whites
of seven eggs; but as there is the inevitable waste to
which we have referred in preparing fresh albumen, it is
easy to understand that, as a practical fact, one ounce
furnishes more solution than the whites of seven eggs, and
confirms Captain Abney's experience, to the effect that one
ounce of dried albumen is more nearly equal to the whites
ten eggs, giving ten ounces of solution of the
consistency of fresh albumen. We feel, therefore, that we are
doing numerous readers a valuable service in placing
forcibly before them the advantages in cleanliness, con-
venience, economy, and freedom from risk, waste, and
annoyance, which this admirable preparation places in
their hands.

PHOTO-MECHANICAL PROCESSES IN
COMMERCE.

There cannot be a doubt that an extensive opening exists
in this country for the commercial application of photo-
mechanical printing processes. For some singular reason,
while we constantly learn from printers and publishers
that they would gladly avail themselves of any good pho-
tographic process applicable to ordinary press printing,
we also constantly learn from gentlemen associated
with photographic experiments in this direction that they have
processes in every way perfect, and awaiting a fair chance
of introduction, yet very little seems to be done. In America
greater progress appears to have been made, and a daily
newspaper, the Citizen, is illustrated by a process in
which photography plays the initial part. In this country the
Woodbury process appears to be most extensively
used for publication purposes; but the results which have
come under attention lately have frequently been unequal
and imperfect. Photo-photographic processes have also been
used to a moderate extent; but, from all accounts, with
equal uncertainty. Another photographic process, em-
ployed as an aid in illustrating a popular periodical, has, we
have been recently informed, been given up, as more trouble
than hand-drawing. And photo-block printing processes
have hitherto failed to obtain any accepted position in the
printing trade. Perhaps the most interesting application
of photography in this direction is the use to which it is
applied on Punch. The charming illustrations by Du
Maurier are drawn by the artist, on account of some dis-
abilities of eyesight, on a very much larger scale than
they are printed. They are then reduced and placed as usual, in the cutting of the block.

The most successful of the photographic processes pro-
duced by photographic means is that to which the inventor
has given his own name, calling it Dallastype. Being a
secret process, only worked by the inventor, its applica-
tion has necessarily been limited, and the tests of its capa-
bility have necessarily been as limited; but some very ex-
cellent work has been produced by Mr. Dallas himself. A
proposal to dispose of the secret for a sum to be raised by
the subscription of a number of photographers has re-
cently been issued by the inventor. The aggregate price
demanded will probably startle many; but it is argued
that as the cost to each individual will not be large, and as
the process is the result of a lifetime of experiment and
study, the large total should not be considered exorbitant.
This is not, however, a point for us to discuss; we merely
remark that the interests of the public calls briefly before
them. The process is offered to five hundred or more sub-
scribers at £20 each, making a minimum sum of £10,000.
The names of subscribers will be received up to the end of
September next, and, we presume, no sale will be
affected unless the number reaches five hundred. When
the total number of subscribers has been received, and
the money paid, each subscriber will receive a printed
copy of "Directions" for work, and for a guinea extra
may see the process worked, or for five guineas more may
receive three lessons. The subscribers will not be pledged
to secrecy, each one dealing as to him may seem best with
the knowledge he has purchased.

The proposal is, doubtless, a novel one, but it is care-
fully stated, and various reasons given for the mode
adopted in carrying out the project, the document in
which the matter is set forth occupying four closely
printed pages of post folio. Those interested in
the question should carefully read the proposal in detail.

PAPER NEGATIVES FOR ENLARGED
PHOTOGRAPHS.

The following description of a very simple method of
enlargement, referred to on another page, appeared in our
Year-Book for 1872 —

"The simplest method of producing paper negatives with which
we are acquainted is one we have often practised
with success. It consists, first, in producing from the
small negative, a good, vigorous, well-exposed, enlarged
transparency of the size desired. This is easily effected
without extensive or expensive appliances: a small room
the ordinary dark room will often answer—which can be
closed upon; a hole in the floor to admit of the negative;
a good card lens; and a screen upon which to rest the
sensitive plate: the appliances, in short, which we have
before described for producing the transparencies for
Sarony's photo-crayons. Thus equipped, without large
camera or lens, the large transparency can easily be
produced. From this it is simply necessary to produce the
genitive on paper by contact printing. We have found
that a piece of albumenized paper, immersed in the bath
instead of flatting, plain side in contact with cliché,
printed deeply, and fixed without toning, would generally
give a negative of sufficient printing vigour, admirably
suited for working upon, the highest lights being applied
by the pencil. Where sufficient vigour is not obtained by
printing out, development printing may be adopted, the
ordinary calotype formula being used, and a few seconds
only of exposure in the printing frame. We have found that paper prepared with fluoride of silver, printed until a slight image appeared, and then developed with gallic acid, gave an image of fine non-actinic colour, well suited for printing purposes. The paper negative, after finishing and touching, should, of course, be waxed, to render the paper transparent, in the manner generally employed in the calotype process.

 Correspondence.

TOUGHENED LENSES.

Dear Sir,—As it is probable M. de la Bastie's grand discovery of a method of toughening glass without destroying its transparency contributes also to a great increase of density, it has occurred to me to throw out a hint to our friends the opticians to examine the matter with a view to practical applications in their line.

It would be interesting first of all to know the indices of refraction toughened crown and flint glass. This could soon be determined. The non-liability to fracture in a lens, though very important, is of little value compared with improved optical qualities. I should say very few valuable lenses get broken. Still it will be an advantage to have a lens not easily injured.—I am, dear sir, yours truly,

383, Gray's Inn Road, April 10.

DUNCAN O. DALLAS.

PROPORTIONS OF LANDSCAPE PHOTOGRAPHS.

Dear Sir,—As a subscriber to your valuable journal, and being myself a landscape and animal painter, besides a portraitist, perhaps you will kindly allow me a little space to call the attention of my photographic brethren to the great discrepancy that exists between the size of enlargements made, and the canvases that are sold by the well-known firms of Newman, Windsor and Newton, Reeves and Son, Rowney and Co., &c. The subjoined list gives the photographic enlarger's sizes and the artist colourman's, and by your readers will be able to judge that the photographer makes no distinction at all, which there should be, between the human portrait and that of animals—say mounted equestrian portraits, for instance. The thanks of all artists generally are due to Mr. Faulkner for calling special attention to this subject, and it would save a great amount of inconvenience both to the artist and the engraver if the latter would have a list prepared with sizes special for animal and landscape subject's. An artist who thoroughly understood his business would never think of using a 24x18 in canvas for a portrait, or a 21x14 for an animal picture. The Enlarger's Sizes.

The Artist Colourman's Sizes.

<table>
<thead>
<tr>
<th>Portrait</th>
<th>Landscape</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x8</td>
<td>8x6</td>
</tr>
<tr>
<td>12x10</td>
<td>10x8</td>
</tr>
<tr>
<td>15x12</td>
<td>...</td>
</tr>
<tr>
<td>20x16</td>
<td>...</td>
</tr>
<tr>
<td>22x17</td>
<td>...</td>
</tr>
<tr>
<td>25x20</td>
<td>...</td>
</tr>
<tr>
<td>28x22</td>
<td>...</td>
</tr>
<tr>
<td>30x25</td>
<td>...</td>
</tr>
<tr>
<td>34x26</td>
<td>...</td>
</tr>
<tr>
<td>36x28</td>
<td>...</td>
</tr>
<tr>
<td>38x28</td>
<td>...</td>
</tr>
<tr>
<td>42x24</td>
<td>...</td>
</tr>
<tr>
<td>44x30</td>
<td>...</td>
</tr>
<tr>
<td>48x36</td>
<td>...</td>
</tr>
<tr>
<td>50x40</td>
<td>...</td>
</tr>
<tr>
<td>55x46</td>
<td>...</td>
</tr>
<tr>
<td>60x44</td>
<td>...</td>
</tr>
<tr>
<td>68x50</td>
<td>...</td>
</tr>
<tr>
<td>80x60</td>
<td>...</td>
</tr>
<tr>
<td>100x70</td>
<td>...</td>
</tr>
<tr>
<td>104x72</td>
<td>...</td>
</tr>
<tr>
<td>120x84</td>
<td>...</td>
</tr>
<tr>
<td>125x85</td>
<td>...</td>
</tr>
<tr>
<td>150x120</td>
<td>...</td>
</tr>
</tbody>
</table>

I will just mention this, that a negative has been taken of a lady mounted on horseback, and she wishes it to be reproduced in oil colours, with the special proviso that the size of the picture without the frame is not to be more than 21 by 14 inches. The artist who receives the commission can at once obtain canvas measuring that, but he cannot obtain an enlargement from a photograph of that size, the nearest approach to it being 20 by 16 inches. Now the enlarger will say that the last named size is correct; and so it is for human portraiture, but not for animal as well. I see among the photographs lately registered that there are some of a particular hunt. Now it would be almost absurd to enlarge one of these negatives, even to make a perfect composition a picture in oil, or even water colour, of it, and make it the same proportionate scale that you would a life-size head and bust.

Each succeeding year photography is more largely employed by artists, and therefore, for their better convenience, it is to be hoped that the photographic enlarger will issue a different scale of sizes, and not mix up indiscriminately human portraiture with either animal or landscape sizes.

I am, dear sir, yours faithfully,

GEORGE CECIL HANCE.

Jarrow-on-Tyne, Durham, April 12th.

SIZE AND PROPORTION IN PORTRAITURE.

Sir,—Permit me to explain that I apply the term "lanky" to the boudoir size only when it is used for other description of portrait than the whole-length, the especial size for which it was designed by Valentine Blanchard. In talking with him on the subject, I said: "The introduction of a new size which is opposite to one description of portrait cannot but have a beneficial influence upon photography for many reasons chiefly, the difficulty most people experience in standing naturally during the length of exposure necessary in our miserable light; the few photographers who possess sufficient knowledge or skill to make a presentable whole-length picture; the dearth of natural, sensible, or pictorial accessories; the absolute importance of proportion in properly representing the sitter. Considerations will in a short time compel the great mass of photographers to abandon the whole-length altogether, and take refuge in half-length or three-quarter pictures, for which your new size is unsuitable. Then publishers will ruthlessly cut down all photographs from 15 by 10 to 8½ by 6½ to the Boudoir size, regardless of proportion or effect. Manufacturers will play their usual pranks with it, and the average size in every respect, the top arch or elliptical, shaped, absurdly round off the four corners—indeed, every conceivable bad alteration will be made."

Already some of my anticipations have been realized. I saw, for instance, a large figure, which I presume was originally 15 by 12, thrust into the Boudoir size; the head was one-sixteenth of an inch from the top of the picture. Permit me again to say, "Proportion is the basis of beauty, and inferior to the proportions of the canvases employed by the old painters, which, I submit, ought unhesitatingly to be adopted for photographic portraits.

I would ask the manufacturers to consider the height of a man in proportion to his width. If it is necessary to have 7½, 10½ in. by 4½, 10½ in. to represent a whole-length, surely a different and squarer size ought to be used when, instead of size of length, we have the same. The reason, good taste, the teaching of all writers on art, and the works of all great artists, teach this. Ignorance, custom, prejudice, and a mistaken greed of gain are against it.

From personal knowledge and experience, I know how solicitous artists are with regard to the proportion of their pictures, and rightly so; for it is the true proportion of a picture—that is to say, its width with regard to its length—which enables an artist to make an excellent composition. It is the necessary width which affords him the space to give breadth and solidity to his picture; which permits him to balance his masses of light and shadow; contrast, support, convey, the lines of his figure; in fact, proportionate width is an absolute necessity to a fine composition. The late William Essex, the eminent animal painter, once told me that Sir Thomas Lawrence altered the size and propor-
tion of a half-length picture six times before he pleased himself. My father, who also knew Sir Thomas, confirmed this by saying he had seen him add or take away a quarter of an inch from a large picture. Anyone not wilfully blind would admit the importance of proportion if they troubled themselves to think on the subject, or would take a whole-length engraving from a great picture, and proceed, to cut it down to a life size or head size, as is done by printers and manufacturers to photographers. It is not a little strange that while the size of the glass employed in making negatives is in every case good, the finished result is false in symmetry and proportion, due to the malign influence of maskers of frames and albums. I ask, how long will photographers tamely submit to this dictation? That a good album size would be a commercial success I have personal evidence and experience.

Many years ago, disgusted to see my pictures mutilated, and the very part cut off on which I had bestowed my best efforts—viz., the width—I had twenty-five albums made, with three carte-de-visite openings or mounts, proportioned to give the pictures the utmost importance. The first copy I forwarded to you as Editor, and you did me the honour of describing the album in your journal in most favourable terms. Encouraged by your approval, I submitted my album filled with pictures to three of the photographers most esteemed by the public at that particular time. One and all approved: one and all gave the same words and sentiments for not joining in my effort to introduce a good and sensible album. Placed on a table in my reception room, it attracted the attention of the first man of taste who called on me, who immediately wished to purchase a similar album. In this way twenty were soon disposed of, and the purchasers, finding it difficult to fill up the spaces, applied to me to supply them with my prettiest pictures.

For years I felt the favourable influence of those albums. For years afterwards people came to sit to me, in consequence of seeing them. At the same time I induced a manufacturer to supply me with toned cards. He warned me against them: "they would not be liked," &c., &c. But from the moment of their introduction to the present time I have scarcely seen a white mounting card.

I mention these instances to show that a good thing is only to be seen to be appreciated by those of cultivated taste, and they influence the mass sooner or later.—I have the honour to be, sir, your obedient servant,

ROBERT PAULKEN.

BRONZE CASTINGS OF PHOTO-BAS-RELIEFS.

Sir,—Having experimented successfully with a process that gives bas-relief, I wish to reproduce them in bronze. Can you or any of your readers kindly inform me how I can melt copper, tin, &c., on a small scale for the bronze castings?

P. M.

Proceedings of Societies.

PHOTOGRAPHIC SOCIETY OF GREAT BRITAIN.

The usual monthly meeting of this Society was held in the Conduit Street Gallery on the evening of Tuesday, April 13th, Mr. J. Glazebrook, F.R.S., in the chair. The minutes of a previous meeting were read and confirmed, and Captain Horatio Ross was elected a member of the Society.

Mr. Glazebrook read a paper on a new method of enlargement, which will appear in our next. He exhibited some enlarged glass transparencies from stereo negatives, a number of very fine paper negatives made from them, and a selection of exceedingly perfect prints, which were much admired.

The Chairman, referring to the charm of paper negatives, said he had recently examined some carbon prints he had made thirty years ago, and found them as perfect as when first produced; the wax preserved them, and gave them a quality almost like tate.

CAPTAIN ABNEY said that Mr. Blanchard had some time ago told him of this method. At that time he was pursuing a somewhat similar plan, but using dry plates for the negatives. He at once adopted the paper, and was perfectly satisfied with the results, as good as those obtained by the collodion negatives. He might add that, in waxing the negatives, it was a good plan first to wax the blotting paper.

The CHAIRMAN said he employed a tin dish in waxing the negatives.

Mr. BLANCHARD, in answer to a question, said he had generally used albumenized paper for the negatives, but for some he had used a plain paper prepared for him by Mr. Thomas, who added, he believed, a little albumen to the salting solution.

Mr. BROWN remarked that all the specimens were landscapes, and asked if the process was good for portraits.

Mr. BLANCHARD explained that all the specimens were produced two years ago, and he had been so much otherwise engaged since that he had not had time to produce others; but he might say that portraits so produced were even finer than landscapes. He might explain how that the process was not, it seemed, a new one, but had been described in the Year-Book some years ago, as he had recently been informed by his friend Mr. Wharton Simpson. He was not aware of that, but believed it to be original; if he had known, he might probably not have worked it out under the impression that it was new. On learning that it had been published, he gave up the thoughts of reading a paper; but Captain Abney and Mr. Wharton Simpson had so strongly urged him, he consented to read the paper they had heard.

Mr. NORMAN HARTLEY said he had used solid paraffin in place of wax. It was, he thought, better, as being more transparent.

Mr. BLANCHARD had not tried it.

A MEMBER said he tried the recently proposed mixture of caster oil and alcohol, and found it answer well in printing.

A vote of thanks was passed by acclamation.

Mr. J. R. SAWYER then read a paper describing improvements in double transfer carbon printing by the use of Weston’s Burnisher, but it was imperative that the prints should be dried by the fire immediately before burning, otherwise the gelatine image was so greedy of water that it absorbed damp from the atmosphere and rendered burning impossible. The effect in giving transparency, detail, and richness to the shadows was marvellous, and made the prints rival the finest on albumenized paper.

Mr. HOOPER, whilst admiring the results and the promised permanency, could not but think that the future of permanent photography, at least for small pictures, did not rest in carbon printing. The process was too much before its time; in ten years, and time after time improvements were made and brought before them; but still photographers did not take it up. There must be a reason, and, apart from the complications of the process, he could not but think that it was due to the fact that in small pictures, at least, the results were inferior to silver printing. He deprecated attention being solely directed to carbon printing for permanency. He believed that a process was yet to be worked out in which beauty and permanency were fully combined. Without being able to explain the reasons that led him to favor carbon printing, he might remark that the results of that process rivalled any other in beauty, and he believed that, properly worked, they were quite permanent. A small carbon print which the Chairman had been good enough to hand to him was very delicate and fine, but he had fastened strongly to the vulgar glass used to give depth and transparency.

The CHAIRMAN said the carbon process had come before them from time to time, but each time with some definite improvement.
He must confess that he sympathised heartily with every effort to secure permanency. At the same time, the Society gladly extended encouragement to all improvements, and he should be glad to see such a process as Mr. Hooper had indicated, it was by competition perfection was attained, the history of the English microscope affording an admirable illustration of perfect results and of the wide efforts of good men who were determined not to be beaten by each other.

Mr. Blanchard called Mr. Sawyer's attention to the advantages of paper negatives, as superseding the necessity of double transfer. A vote of thanks to Mr. Sawyer was carried by acclamation, and acknowledged in a few words.

It was announced that Mr. Spiller would read a paper on "Recent Advances in Photography" at the Society of Arts on Friday night, and that at the next meeting of the Photographic Society Col. Wortley would read a paper on "Comparative Rapidities." The proceedings then terminated.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The usual monthly meeting of this Society was held in the rooms of the Society of Arts, John Street, Adelphi, on the evening of Thursday, April 8th, Mr. S. B. Davis in the chair. The minutes of a former meeting having been read and confirmed, Mr. J. Porter and Mr. J. B. Hall were elected members of the Society.

Mr. F. York then read a paper on his experience with the wet process during the past year, and exhibited some negatives taken with a bath giving sandy plates, with the same bath after treatment with barium, and with the same bath after treatment with nitrate of baryta. The last plate was the finest he had made, the second little better, whilst the third was quite clean and free from any defect. He also showed some examples of non-acidic glass made by coating plain glass with a solution of silver in nitric acid, which came out of the bath after washing and was dried with pinholes, although it had been working quite clean before.

Mr. W. Secord mentioned that he had found a decided advantage in the use of methylated spirit in the developer. He had referred to its advantages in one of the Year-Books for three or four years. Referring to the treatment of colloid, he had frequently added bromine with advantage. He put six or eight drops of pure bromine into an ounce of alcohol, and allowed it to stand in the sun for a few days until it became colourless, and then added a few drops to an ounce of silver chloride; it gave sensitiveness and brilliancy.* Mr. Foxley said, in answer to a question, that absolute methylated spirit was not now permitted to be sold. The strength was generally about 65 o.p.

A desultory conversation on the subject of methylated spirit followed. Some members used it constantly in the developer, but did not notice any special effect. Others found difficulty in obtaining this spirit except in the form of "finish," with a certain portion of gum dissolved in it.

Mr. Wearton Simpson suggested that he had found a simple method of making this difficulty. The law prescribed to certain dealers that they must not sell methylated spirit retail without the addition of a certain proportion of some gum, but it did not say what gum. He therefore asked to have gum-arabic added; and as this was insoluble in the spirit, he removed it without difficulty. By this means he had been able to get the developer to which the Chairman had alluded, if he remembered rightly, it was methylated spirit, or wood naphtha, which was said to give the advantages in exposure; not methylated spirit, which was a different thing. Methylated spirit was ordinary ethyl alcohol, with ten per cent. of methyl alcohol added. Mr. Barnes had found positive disadvantage in the addition of methylated spirit to the developer.

A conversation on the addition of nitric acid to the bath, and Mr. Black's extremely acid bath, followed, and on the bleaching of the samples of collodion plates. Mr. York thought that the idea the use of methylated spirit caused the rapid loss of colour after adding iodine was an error. He attributed it to the use of old ether which had become osonized, and this osonized produced the bleaching action.

A conversation on the price of pinholes followed.

Mr. Foxley thought that the pinholes were due simply to excess of iodide of silver, as pinholes were unknown in the old days of simply iodized collodion. He thought the minute crystals formed were probably an iodine-bromide of silver.

Mr. York thought that the precipitate of silver, as the precipitate by the barium addition did not darken in the light.

Mr. Warnack said he had reason to believe they were fulfilled of silver formed by the action of alcohol on nitrate of silver, as he had carefully tested, and found that a collection of the etchings possessed the fulminating or explosive quality.

Mr. Simpson said that the question of pinholes, and their various causes, was certainly a perplexing one, and by no means as yet thoroughly solved. It was not impossible that a compound salt containing both iodine and bromine was sometimes formed; but that excess of iodides alone would produce pinholes he had must indispensible evidence. Something like twenty-two years ago, when the saturation of the negative bath with iodide was proposed, he tried the experiment, and very literally saturated it. To his horror, the plate which came out of the bath afterwards was literally riddled with pinholes, although it had been working quite clean before.

Mr. Waimeir then proceeded to give an interesting demonstration of the working of the galene emulsion process, from the preparing of the emulsion by means of his ammole pellicle, to the production of a transparency by exposure to the light of a gas flame. The demonstration was very interesting, and especially illustrated the sensitiveness of the bromo-gelatine by the extreme darkness necessary in coating, developing, &c., the smallest trace of light producing deep ruby glass being the only permissible illumination in the darkroom.

After a vote of thanks the proceedings terminated.

MANCHESTER PHOTOGRAPHIC SOCIETY.

The ordinary meeting was held at the Memorial Hall on the evening of Thursday, the 8th inst., Mr. W. T. Markly, President, in the chair.

The minutes were read and passed, and Mr. B. P. Gregson, of Blackburn, elected a member of the Society.

Mr. Frankland presented the Society with an oxy-hydrogen lantern, made by Messrs. Pamphrey Bros., of Birmingham.

The President said the members could see before them the handsome present of Mr. Frankland, and would no doubt acknowledge it in a suitable manner.

Mr. Frankland received hearty cheer for his liberality.

There was no special business before the meeting, the proceedings terminated at an early hour.

C. Arly, Hon. Secretary.

EDINBURGH PHOTOGRAPHIC SOCIETY.

An ordinary meeting of the Society was held in G, St. Andrew's Square, on the evening of Wednesday, the 7th inst., Dr. Thomson, the President, in the chair.

The minutes of previous meeting were read and approved, and the following gentlemen admitted ordinary members:—R. Orevatt, Robert H. Alston, William Nelson, Thomas Lymington, W. D. Young, Henry Welsh, and Andrew Slater.

Mr. Black, of 2, George Square, then laid on the table, for the inspection of the members, several folios of photographs which his brother, who had recently brought to Edinburgh. They were principally copies of the works of the ancient masters, including Titian, Paul Veronese, Guido, Michael Angelo, &c., &c., from the best
April 16, 1875.

THE PHOTOGRAPHIC NEWS.

museums, galleries, and churches in Italy, and were intended to
give to those who cannot themselves see those interesting collec-
tions an opportunity of seeing and studying those fine works.
The collection was very admirably arranged, and much surprise
was expressed at the admirable way in which the difficulties of such
reproductions had been overcome.
The following question from the "box" was then read:—
"Can the relative merits of lenses by different makers be discussed at
the Private Members' meeting?"

Mr. W. Newson said that he thought the only answer possible
was No. As a society, it would not be right to pass any verdict
on any question between rival makers. Such a discussion ought
not to be held, unless at the request of one of those concerned. If a
number of people desired to send an appeal to the Society with the
request that it might be tested and reported on by a committee, he
could understand that coming within the province of the Society;
but to the question as put he proposed that "No" be given as
an answer from the Society's point of view.

Mr. W. Dallas then exhibited and described a new drying
box (see page 184) for dry plates, especially gelatine films,
where it is desirable to be able to secure a well-regulated supply
of warm, dry air. The arrangement was much commended, and
an appeal was made to send a gelatine plate in pressure of the
members, there could be no doubt that it would be found to be all
that its inventor claims for it.

Mr. W. H. Davis then read some "Notes on the use of permanganate
of potash as a toning and intensifying agent," and exhibited a
photograph by that process by way of illustrations of his opinions
(see page 185).

Dr. Hunter thought that there was sometimes a difficulty in
attributing fading to its true cause, as he had often found it to
come on when no extraordinary chemical had been used, and in cases
where it returned when a much cheaper process was used. He
thought, however, that in many cases it was caused by impurities in the
washing water. He had found that prints washed with the pure
water from the hills in India stood much better than those that
had been washed in the sometimes impure water of the plains,
and he believed that this was due to the fact that much more
transparency that had been toned with the permanganate salt.

Mr. Tannahill had frequently used the permanganate in toning
and intensifying, but had not paid much attention to its keeping
qualities. He thought, however, that when there was a doubt in the
matter, and as there were plenty of equally useful chemicals, it
might with advantage be laid aside.

Mr. A. S. Mackay wished to call attention to some of the
enlargements exhibited by Mr. Dallas, especially to two from the
same negative, the one touched, the other untouched. The un-
touched was a character and breadth which had been altogether destroyed by the touching to which the other had been subjected.
The touching of such heads should only be attempted by a really skilled draughtsman. He did not, of course, mean to say that all touching should be avoided, but simply to ask the members to look at the pictures on the table, and satisfy themselves as to the amount of character that had been sacrificed, and, if they did retouch, see that it was skillfully done.

Dr. Hunter then read a paper on "The Aid which the Fine Arts has Been to the Photographer" (see page 184), and illustrated it
by a large collection of prints, &c. The paper was listened to
with much attention, and elicited frequent expressions of
approbation.

The Chairman said the meeting had been peculiarly fortunate
in meeting with so much interesting matter before it. Dr. Hunter had
furnished much material for interesting discussion, but the late
hour to which the business had extended would, unfortunately,
prevent its taking place. He then laid on the table some prints
for the Society's album, sent by Marshall Wane, through Mr. Williams, of every form of every plate manufactured by a number of the most of the earliest plates. Mr. Swennerton, at one time a student in Edinburgh, and at present resident in Rome; the group was his last production, and showed evidence of great ability. He (the President) proposed that the thanks of the meeting be given to Messrs. Black, Dallas, Davies, Dukinfield, Grieve, &c., for their kindness in sending material for the album.

The Chairman then read a communication from Mr. Baden
Pritchard, in reference to a proposal to raise a fund for the benefit of
Mr. Rejlander. He wished he had sufficient eloquence to plead
the cause of the widow as she deserved. The Society had recently
shown a sympathy for that of Dunlop, &c., and this act of putting the sympathy into practical effect. What was especially
wanted was the handing over to Mrs. Rejlander the whole of the
negatives left by her lamented husband, and thereby putting her
into a position of honourable independence, and he had no doubt
the Society, or rather the members, would consider it a privilege
to do each their part in the good work.

Mr. H. Davis suggested that the subject be placed in the
billet calling next meeting, and that Mr. Pringle be requested to
act as secretary, to receive subscriptions, and the meeting
adjourned.

The first out-door meeting of the season was held on Thursday
the 9th inst. The members assembled at the West End station at
ten o'clock, and went by Caledonian railway to Colinton, where
the cameras were unpacked and set up, and the work of the day
began. Curiously enough, all the plates on the ground were the
familiar deer and alburnum.

The first exposures were got at the old Snuff Mill, almost the last
of its kind in Scotland; and as it and its vicinity afford excellent food for the camera, nine plates were exposed.

The party then, on the invitation of Mr. Fleming, visited the
interior of the mill; but as the process of grinding the tobacco was
in full operation, they soon sought the open air, with the except-
ion of some half a dozen, who, in spite of the inconvenience,
remained long enough to have the whole process of fermentation,
grinding, mixing, and sifting, explained to them.

From the mill they proceeded up the water-side, by Juniper
Green, to Currie, where the work of the day was brought to a close
on some of the quaint old cottages that lie on the river's bank. An
adjournment was then made to the Baccarat Arms, in which a
pleasant hour was spent, and then the party took the train for
Edinburgh, all highly pleased with the excursion, and hoping that
it would prove a type of many such pleasant excursions that they
would have during the approaching season.

Talk in the Studio.

M. Davenne's Formula.—M. Davenne gives the following
formule, which we feel sure will have a practical interest for
many readers, coming, as they do, from so distinguished a
photographic chemist and so good a practical man—For
the positive printing bath—

Mr. Distilled water 100 c.c.
Silver nitrate 10 grammes
Add a few drops of a solution of carbonate of soda.

We may remark that this addition is made, first, in order to
correct the acidity of the bath, due to the free nitric acid which
common silver nitrate contains; and, secondly, in order, by the
presence of a little lime, to render the bath a little more
neutral, to prevent the discoloration of the albumen. For the toning bath:—

Water 1,000 c.c.
Double chlo. of gold and potas ... 1 gramme
Spanish white 5 grammes

For iodizing wax paper:

Scumined milk, clarified 500 c.c.
Potassium iodide 7 grammes
" bromide 2"
Sugar of milk 10 gramme

This formula will, no doubt, be found good by those who
prepare plain paper for enlargements done by development with
gallic acid.

Toughened Glass.—Upon this subject, respecting which
we gave an extract in our last, a correspondent writes to the
Times as follows:—"'With reference to the theory of toughened
glass,' I venture to suggest that it is the same as that of
Prince Rupert's drops, viz., that by the sudden cooling of the
glass its exterior is contracted to such a degree as to compress the
central portion into a smaller space than it would have occupied if the whole had been cooled gradually. Hence the
centre is in a state of extreme tension, which bursts the drop into minute fragments when the equilibrium between the inside and outside pressures is broken by breaking off the thin end of the
'bub' or by engraving the toughened glass with a diamond.
The glass, therefore, cannot be said to be toughened, but case-
hardened, and hence it comes under the same category as case-
hardened iron, tempered steel, &c. This theory is directly
opposed to that of Dunlop, &c., who considered that the rapidly
cooled exterior, by preventing the contraction of the heated
interior, keeps it in a state of tension, instantly relieved by
breaking the smaller end of the drop. But in this case there
would be no explosive tendency, but, on the contrary,
collapse; whereas the Rupert drops scatter their fragments so widely as to render them dangerous playthings. Whichever be the true theory of the discovery, its applications are so numerous and important, that we may expect that glass will show a larger increase in the use of metal household and artistic purposes. In conclusion, I would suggest that since semi-transparent porcelain differs very little from glass in its composition, it may, perhaps, be possible, by carefully heating valuable specimens of China, and subjecting them to this process, to render them to such a degree that Master-families may see with equanimity her best Sévres or Worcester China service scattered over the floor by her maids or children."

PALMISTRY.—"Mr. Woodbury recommends," says the London Medical Record, "that for purposes of identification (of criminals, for example) it is only necessary to get a distinct photographic, that is, one hand, taken in a strong oblique light, so as to bring out the markings strongly. This will be found in a map, he says, never alike in two persons; no disguise short of actual disfigurement can do away with the difference. Upon this the Standard makes the following comments:—"Mr. W. B. Woodbury's recommendation as to the best means to be taken for the purpose of identifying criminals is one of those suggestions which are theoretically perfect, and practically replete with difficulties. It is doubtful true that no two hands are precisely alike, and that a student of palmistry would be able to detect differences; but at the same time it is probable that a great many of the hands which are habitually devoted to the practice of picking and stealing differ from each other so slightly that none but a scientific person could swear infallibly to a hand from a photograph. At any rate, the ordinary observer there is much more dissimilarity between faces than between hands, and while we can obtain likenesses of the former, it seems idle to seek for the latter. Mr. Woodbury's suggestion is ingenious, but, we fear, not feasible."

PUBLISHING BUSINESS.—In the course of some remarks on this subject in our Philadelphia contemporary, Mr. F. B. Cleland says:—"I am satisfied that it is hard for the public not to know what they want in the way of pictures, and it is for the photographer to decide and show. The public will buy any amount of pictures more than they do if they can be brought to their notice in a proper manner. In 1855 I bought my first 4-4 camera, and it sat in the corner of the operating-room for a month without being used, business, of course, being dull. One day I comenong figured the dividends it was returning me sitting there, and the result was not satisfactory to me. I got it out and cleaned off the dust, and turned over a new leaf. The next week I was a young lady for sale, and when she came in for her cards, I had it framed up on the wall for a specimen; I also had an extra one made for her to buy, but she did not buy, so I gave her the picture. She then purchased a frame, on which I made enough to pay for the camera and everything; besides, I had learned, and that is knowledge, and knowledge is capital. So I tried to figure I was ahead on the transaction. I filed the negative away, and in about six months the lady called to see if I could make six duplicates, also brought her sister to sit to make it, thus making a good paying job. Thus, by keeping my spare time employed in this way, I soon had plenty for my 4-4 lens to do. I think if those who complain of dull business would get out the big camera, or any other camera they have advertised for sale for want of use, and put it to work, they would soon be plenty for it to do. Try for a month by putting a card in your work room headed speculation work, and on it put amount of money received for speculation work. Make negatives of all likely subjects you can get hold of; ask them on the street, or wherever you find them, to come in and give you a check— you want to get out some new styles. Show unfinished proofs, but have them look as well as possible, for it is hard to make folks see what you are going to do by retouching; they generally judge by what they see in the proof.""

FOUNDED GLASS. Useful for screens, etc., is made by laying the glass with a strong solution of sulphite of zinc. The salt crystallizes on drying."

CLEANING SILVER.—A strong solution of hypo-sulphite of soda is excellent for cleaning silver. Cyanide of potassium answers a similar purpose, but, being a dangerous poison, its use is better avoided."

To Correspondents.

* * * Some delay may occur at the present moment in answering correspondents, owing to the absence of the Editor from London. * * *

P. Z.—The reason for the delay in making the drawing in the Art Union connected with the Photographers' Benevolent Association was explained some time ago. You will, however, find an announcement respecting the matter in our advertising columns this week.

CYRIL VANDER.—There is no book published on the powder carbon process. An article describing the details appeared in the Photographic News for 1870, page 243, vol. xiv. It is precisely the same in principle as the powder process of reproducing negatives described repeatedly in our volume for last year, and in our last Year-Book.

ONE IN THE TRADE.—There is no specific law by which the matter can be decided. You can only ascertain by trial. Begin with the thinnest piece of common cardboard, and gradually increase by that thickness until you hit the precise distance. Use cardboard rings in making the experiment.

GUNNER.—Several of those you name are very excellent, but they are not intended for small plates, and, hence, altogether for field use, extreme portability rather than space for working is chiefly considered. That you indicate by D is the most convenient, especially as it must serve the purpose of a dark-room at home, as well as a tent for field work.

A. J. SIMPSON.—P. O. order duly received and passed to your credit. We have no collection of the circumstances you name, and as you give no date we have no close for reference. It is quite certain, if we received any specimens, we should acknowledge them, and if no acknowledgment appeared, that fact may be taken as evidence that the specimens never reached us. We do not know of any method whereby you can obtain specimens of various kinds unless you have some agent in London who will select and purchase them for you. Failing that, if you send a remittance to some photographic publishing house, such as Marion and Co. or the Stereoscopic Company, and ask for a selection of a given kind, you will probably meet with what you wish. We cannot tell you the price, because we do not know what size you require. Card size, the price will be one shilling each. The Photographic News during 1874 had several articles on cameo medallions and cameo vignettes. Our Year-Book for 1874 has an article on the subject, page 117. There is no better bath for toning a rich purple than the acetate bath, but it is necessary to have a fine, brilliant negative in order to secure the richest tones in the print.

A. B. C.—You cannot do better than apply to Mr. Blanchard, 26, Albion Court Yard, Soho. We regret that we have not time to write privately; but we could not give you better advice in the longest letter.

O. A. G.—If you are not familiar with the operations you will find it best and most economical to send to a retailer.

BELOW.—We regret that we cannot give you any technical information as to the manufacture of bellows for cameras.

A. J. F.—Thanks; a copy had been found.

Several notices and articles are compiled to stand over for want of space.

Several Correspondents in our next.

REJLANDER MEMORIAL FUND.

Subscriptions received:—

<table>
<thead>
<tr>
<th>Name</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Faulkner</td>
<td>£2 0 2</td>
</tr>
<tr>
<td>Dr. Diamond</td>
<td>£2 0 2</td>
</tr>
</tbody>
</table>

PHOTOGRAPHS REGISTERED.

Mr. G. W. Lovett, Sterling, Eight Photographs of Views and Buildings in India.

Mr. H. Harris, Hull, Photograph of Dr. Kenelly.

Mr. J. T. Allen, Bromley, Engraving.

Mr. W. Brooks, Manchester, Photograph of Old House in Manchester.

Mr. W. J. Burrows, Bradford, Photographic Views of Anderson and Burleton's Life Boats.

Mr. W. J. Burrows, Manchester, Photographic Views of Old House in Manchester.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Candidates for Admission to the Royal Society—The Rejlander Memorial Fund.

The Candidates for Admission to the Royal Society.—There were upwards of fifty candidates for admission into the Royal Society last year; and as the number elected is limited to fifteen annually, the proportion was about four aspirants to every fellowship. For many years past there has been as large a number of candidates as this for the "blue ribbon" of science, for obviously the more limited and select a body becomes, the more anxious are outsiders for admission into it. It is for this reason that one sees scientific men year after year striving for the honour of a chair in the English Academy, as though, strange as it may appear, it always seems that the longer a candidate waits the less chance he has of election. If a man is not elected after the third year of his being before the Council of the Royal Society, the odds are against his ever being able to secure the letters F.R.S. after his name at all, although, on the other hand, again, he must have secured a very large share of public attention if he were ever to obtain the object of his desires at once. Either he must have made some scientific discovery, the importance of which is still fresh before the world; or he must enjoy a position, or post, such as at once stamps him as a man of superior ability. There were this year several candidates for Royal Society honours known in photographic circles, and we had hoped sincerely that some of them would be among the chosen few. Captain Abney, Mr. J. W. L. Glashier, Mr. Spiller, Colonel Stuart Wortley, and, we believe, Lord Lindsay, were put forward by the Fellows of the Royal Society as eligible men for election into that body. It is a polite fiction, by the way, that no one can nominate himself as a candidate, but must leave the matter entirely in the hands of friends who are already Fellows, and who are supposed to nominate you will. It is a well-known and unasked and unknown to you. This is the theory; but we fancy a candidate is rarely proposed without knowing a good deal more about the matter than one might give him credit for. Captain Abney, it will be remembered, was of considerable assistance to the Astronomer-Royal when arranging the Transit of Venus observing parties; and we see that Sir Richard Airy, Dr. de la Rue, Mr. James Glaisher, and other well-known astronomers of eminence, independently of Captain Abney, he is known not only as a photographic astronomer, but as a chemist, and he received support, therefore, from two parties at once. Unfortunately, there was another Engineer officer for election—General Scott—and this gentleman has been selected, so that Captain Abney cannot now secure the honour until next year. Dr. Dupré's claims as a chemist were also strong; he is known as a practical teacher of the sciences, and also as a sound investigator, some researches he made with cotton having, no doubt, made his name familiar to many photographers. His candidacy was so strongly supported by chemists that he could not but be successful. Mr. J. W. L. Glaisher, the son of the worthy President of the Photographic Society, and, with Captain Abney, a member of the Council of the Astronomical Society, is well known both as an astronomer and mathematician, having been second of his year at Cambridge; and although still a young man, his qualifications for the Royal Society have gained him admission to that body at an unusually early age. Mr. Spiller's name is known to all photo-chemists for his researches connected with the latent image, the preservation of dry plates, and other matters, and his name, like that of Colonel Stuart Wortley, is too well known among photographers to require any comment on our part. The strong alkaline developer of Colonel Stuart Wortley was one of several claims put forward on behalf of that gentleman for admission to the Royal Society. Mr. Roberts, the Chemist to the Mint, is among the selected for admission to the Society, being the only other chemist besides Dr. Dupré.

The Rejlander Memorial Fund.—The Rejlander Fund, which has been started for the purpose of satisfying a few claims that arose during the protracted illness of the late Mr. O. G. Rejlander, and securing to his widow the valuable art negatives that are in existence, is making fair progress, we are glad to hear; and there is every prospect of the efforts of the committee being successful if photographers generally will only take up the matter and contribute donations, however small, to the object in view. The works of Mr. Rejlander are so well known among photographers, and their tendency to improve our art so thoroughly recognised throughout the country, that there are few among us who have not benefited in some way from their teaching, and for this reason, no other request that I can think of would void which his loss has caused among us. We earnestly hope that a handsome sum of money may be raised for the Rejlander Memorial Fund.

ON A METHOD OF ENLARGING.

By Valentine Blanchard.*

Is the "good old times" most of the good old plays commenced with a prologue? My play may be bad; therefore my prologue shall be as long as possible. In the race for supremacy most really good things come in first, by the very force of their goodness, but not always. The reason why the Daguerreotype has become a thing of the past, lies, I believe, in the fact that, whilst, it possessed the "thing of beauty" and, I firmly believe, under proper conditions, might become a "joy for ever," it has not had within itself the power of multiplication. On the other hand, however, that which we know as the Calotype or Talbotype process (and after it, following in the same groove the collodion process) has grown into a gigantic success partly because of qualities, unknown in the Daguerreotype process, which have taken hold of the public mind, but also largely because the power of multiplication is very great. But, after all, these are limited; and, for extensive publication, new methods, such as the "Woodburytype" and "Albertype," have come to the front for book-illustration.

The method of what we call negative-printing took the lead of other processes because of its powers of multiplication; but if, instead of this, we had had in the early days of photography a method of producing a perfect transparent positive as the first product of our labours, and from this we had had the power of multiplying ad libitum our negatives, how much the sphere of usefulness would have been enlarged, and how different would have been the position of photography to-day! By the method I am about to describe, the powers of multiplication are most extensive; for the negatives can be reproduced without limit.

My justification, then, for appearing before you to-night is contained in my prologue. The examples of my method are before you in your hands. From a photographic point they are not superior to two or three other methods of enlargement extensively practised; but for artists they have a quality of texture unknown in other methods. My method of working is, I believe, by several artists of great distinction amongst others, several Royal Academicians. On this question, however, the tribunal is competent to award a verdict; and I await the decision.

The method I have the honour to describe to you is partly based upon a process of enlargement described by me about ten years ago, and held in large popular favour throughout the country as a secret process. In the paper I refer to, I dwelt upon the fact that if a transparency were made larger than the negative required, some of the defects were reduced instead of being increased. This is so clear that I need not now dwell upon this point. I have always had a great affection for paper negatives. I have not yet forgotten my first great delight, nearly thirty

* Read before the Photographic Society of Great Britain.
years ago, when I was permitted to see a paper negative developed; and I can now say, after all these years of experience, that the pleasure now felt in producing a good collodion negative is nothing in comparison to it. I am sure all here who have practised the Calotype process will agree to my words.

Well, now, without more circumlocution, I will briefly describe my process.

I produce at one operation a transparency of the size required. The best method I find for this is to use a reflector of looking-glass fixed outside one of the windows of the studio at an angle of 45°, and using north light only, never sunlight. This reflected light falls on a sheet of fine ground glass, which has replaced one of the ordinary squares of the millboard for the light, and being put on a piece of millboard. A hole of the requisite size is cut in this, and the negative is fastened by drawing-pins to the millboard. The millboard fills exactly the pane of ground glass, the square side of which is, of course, turned outwards.

A long bellows-camera is now brought into position, and a glass transparency is made from the negative. The exposure is very important, and the time can only be learned by practice. The image is developed with a weak solution of iron about ten grains to the ounce; and when the detail is fairly out, a much stronger solution may be employed to give force. I would here say, en passant, that all photographers are much indebted to Col. Stuart Wortley for his demonstration of the importance of strong solutions for giving force after all the details are brought out by weak ones. It is important for my method is that the glass, by a shall have every detail possible, and at the same time as much power as can be obtained. Indeed all the force of a good negative must be there, but in reverse. The transparency must be fixed and varnished in the usual way.

When the varnish is hard, all the transparent spots can be marked; and if the shadows are weak in places, another coating of ink or other colour can be employed either on the front or the back of the transparency. When the print is well washed, it is dried; and now any defects of the opposite kind can be touched out. The next process is to wax the paper negative, to make it more transparent. This is done by aid of a flat iron. The print should be made very hot by the frequent passing of the iron, and whilst still hot rubbed with a cake of white wax; alternate ironing and waxing will soon get a tolerable film of wax all over the negative; but a little skill will be necessary to do this part of the process nicely. The print should now be put between thick blotting-paper, to remove the superfluous wax, and the paper negative is now ready for use as an ordinary printing negative. It should be much over-printed, for the waxing process reduces the strength immensely. The right depth, of course, can only be found out by practice. It will be seen that by this method the original is not used except for the transparency, and that the negatives can be made ad libitum from the transparency by an ordinary printer. If, therefore, a large number of plates are wanted in a hurry, it is only necessary to multiply sufficiently the number of negatives from the transparency to supply the demand.

PHOTOGRAPHY IN PERMANENT PIGMENTS, WITH RECENT IMPROVEMENTS IN AUTO TYPE TRANSFER.

BY J. R. SAWYER.

There is no branch of photography more interesting in itself, and more worthy of consideration, than that which relates to the production of photographic prints in a permanent and unalterable form; and here, at the very outset, it is worth pausing to inquire what effect a statement like the preceding (which implies that photographs are produced in a form otherwise than permanent) must have upon those outside the profession, who are not supposed to know or to inquire too curiously into the modus operandi of a process giving them pictures which seem, for a time at least, to be perfectly unexceptionable. Well, now, without more circumlocution, I will briefly describe my process.

I produce at one operation a transparency of the size required. The best method I find for this is to use a reflector of looking-glass fixed outside one of the windows of the studio at an angle of 45°, and using north light only, never sunlight. This reflected light falls on a sheet of fine ground glass, which has replaced one of the ordinary squares of the millboard for the light, and being put on a piece of millboard. A hole of the requisite size is cut in this, and the negative is fastened by drawing-pins to the millboard. The millboard fills exactly the pane of ground glass, the square side of which is, of course, turned outwards.

A long bellows-camera is now brought into position, and a glass transparency is made from the negative. The exposure is very important, and the time can only be learned by practice. The image is developed with a weak solution of iron about ten grains to the ounce; and when the detail is fairly out, a much stronger solution may be employed to give force. I would here say, en passant, that all photographers are much indebted to Col. Stuart Wortley for his demonstration of the importance of strong solutions for giving force after all the details are brought out by weak ones. It is important for my method is that the glass, by a shall have every detail possible, and at the same time as much power as can be obtained. Indeed all the force of a good negative must be there, but in reverse. The transparency must be fixed and varnished in the usual way. When the varnish is hard, all the transparent spots can be marked; and if the shadows are weak in places, another coating of ink or other colour can be employed either on the front or the back of the transparency. When the print is well washed, it is dried; and now any defects of the opposite kind can be touched out. The next process is to wax the paper negative, to make it more transparent. This is done by aid of a flat iron. The print should be made very hot by the frequent passing of the iron, and whilst still hot rubbed with a cake of white wax; alternate ironing and waxing will soon get a tolerable film of wax all over the negative; but a little skill will be necessary to do this part of the process nicely. The print should now be put between thick blotting-paper, to remove the superfluous wax, and the paper negative is now ready for use as an ordinary printing negative. It should be much over-printed, for the waxing process reduces the strength immensely. The right depth, of course, can only be found out by practice. It will be seen that by this method the original is not used except for the transparency, and that the negatives can be made ad libitum from the transparency by an ordinary printer. If, therefore, a large number of plates are wanted in a hurry, it is only necessary to multiply sufficiently the number of negatives from the transparency to supply the demand.

The late Mr. Blair, in England, and the Abbé de Laborde, in France, almost simultaneously hit upon the same idea of Poitelin’s failure; they showed that the action of the light induces a very thin insoluble film over the whole surface of the picture which had been in contact with the negative; therefore, in order to be able to attack the gradations of solubility corresponding to the gradations of intensity in the negative, the operations must be directed to the back of the picture. To effect this they spread their gelatine on very thin paper, as transparent as possible, and imposing this material upon a negative, with the thin paper in
contact with its surface, printed the image through the thin paper. It is easily comprehensible that by such a procedure the back of the picture could be at once got at for the purpose of development; and the action of warm water proved quite sufficient to remove those portions of the gelatine to which the action of the light had not penetrated, and which were consequently soluble.

From this it will be seen that an Autotype picture is really a relief, the elevations and depressions thereof being due to the lesser or greater penetration of the light into the film, this being in accordance with the gradation of light and shade in the negative: the light parts of the picture are those where the light has had a feeble action; and the greater portion of the gelatine and pigment being washed away in development, the film is so thin in these places as to allow the paper or material upon which the picture is placed to show through, the half-tones and deep shadows being correspondingly made by the varying thickness of the pigment.

Passing over the many ingenious methods suggested for doing away with the necessity of printing through the thin paper by which the gelatine-pigment had been supported, we arrive at the invention and working out of a new and better method of printing in permanent pigments by Mr. Swan, of Newcastle-on-Tyne. This consists in making a tissue of gelatine and pigment by coating a sheet of glass with collodion; upon this he spread his compound, which, when dry, he stripped from the glass. He placed the collodionized side of this tissue in contact with the negative in the pressure-frame. Before development he cemented the surface which had been in contact with the negative, adding the proportion of the paper which the support of the pigment was desired to remain, with some material insoluble in hot water. The development was therefore carried on from the back; and the various grades of the picture appeared by the washing away of more or less of the gelatine in accordance with the gradations of light and shade in the negative. The idea soon struck him that the troublesome method of making the tissue as described could be dispensed with, and that the pigmented compound could be made upon ordinary paper if it were possible to remove this paper before development. It must be borne in mind that an Autotype picture cannot be developed from that side which has been in contact with the negative, because it is covered with an insoluble film, and that the action of the light penetrates to a greater or less depth into the gelatine according to the intensity of the action. It would follow from this that if the compound was in sufficient thickness on the paper, the light would not anywhere penetrate its entire depth; and as there would be a film of total insolubility on one surface, there would be a layer of complete solubility on the other.

Mr. Swan coated paper with the pigmented gelatine of considerable thickness; this, when dry, was exposed under a negative to the action of the light; and, before development, it was coated with a solution of india-rubber, and laid upon a piece of paper similarly treated. The two were then pressed into contact by means of a rolling-press. On placing these conjoined sheets in warm water, the soluble layer of gelatine in contact with the paper upon which it had been spread (that is, at the back of the picture) became washed away by the action of the water, allowing the paper to be stripped off, thus leaving exposed the back of the picture, which the action of the water speedily developed, by removing that portion of the gelatine which still remained unacted upon by light, and therefore retained its original solubility.

But here another difficulty presented itself. A little consideration will show that a picture so produced (if from a negative taken from a mirror) will be reversed. To remedy this Mr. Swan carried on the operation one step further; he coated paper with gelatine treated with alum, so as when dry to form a nearly insoluble compound. Upon this paper, in a moistened condition, he laid down the developed picture, to which it adhered firmly, the picture being now imprisoned between two pieces of paper. When dry, the india-rubber coated paper covering the face of the picture was moistened with benzoin, which, dissolving the rubber, allowed the paper to be peeled off, disclosing a photograph in permanent and unalterable pigment.

Without doubt Mr. Swan succeeded in working out an absolutely perfect method of producing photographs in permanent pigments; but at the same time it cannot be denied that the method was not an easy one. It involved the use of costly apparatus, and it was scarcely calculated to meet the wants of those members of the photographic profession who contemplate the printing of permanent photographs from their own negatives.

(To be continued.)

ON THE AID WHICH PHOTOGRAPHY HAS RENDERED TO THE FINE ARTS.

By Alexander Hunter, M.D.*

We must now proceed to particularise, and to describe by photographs which I shall now hand round, some of the most useful and applications of the art, for that it is now a branch of the fine arts, and one of its most valuable conjoiners, every artist must admit. At the same time, I hope to be able to satisfy our photographic friends that the fine arts have some advantages, amongst which must be classed a larger, grander, and nobler field for the display of their talents; a wider field, both of vision and of application; a more delicate refinement, both of sentiment and of observation; and lastly, it allows the artist to abstract from nature beauties of outline of form, of light and shade, and of colour, which, if not so early of attainment in photography, have hitherto been not so successfully mastered.

On the other hand, while we claim for the fine arts the higher place in relation to deep thought, delicate refinement, and powerful expression, we must not overlook the fact that photography can also boast of being able to catch delicate feelings and passing emotions and efforts, and to give them a wonderful reality and permanence. Here, however, it is that the difference is apparent: passing actions, sentiments, or emotions must be well and truthfully represented, or they cannot be got in the camera. In fact, we must have the good actors, or we do not get the good pictures; and besides these, we must have the good manipulator, the skilled chemist, and the eye that can catch the tasteful arrangements, grouping, and the subtle indications of detail to make up a picture. The artist, on the other hand, has the power to select beauties, reject deficiencies, omit redundancies, and to refine and combine all the varied agencies of his art. Some of these the photographer must take as they come, and to his sorrow he finds that all nature is not suited for his art; that very little of it is perfect, and that little is often very difficult to combine harmoniously.

But I can better explain my meaning now by coming to particulars and comparisons. One of the grandest applications of photography has been the reproduction of the frescoes of Michael Angelo, Raphael, Correggio, and the Italian masters. Some of these are fully more pleasing now than the frescoes themselves, as the latter have suffered most materially from dampness, and the surface layers of dust and dirt have been removed by the chemical action of the water. But we have the power to return it to the artist whose work is thus preserved, in its original beauty and perfection, and this is a great advantage.

Much attention has been paid to the reproduction of the great antique statues and monuments, and we have here an opportunity of seeing how well the result is. Some of these statues, it is true, have suffered much from corrosion, and would have been lost forever, but the chemical power has been a great blessing in preserving them for future ages. The result is very pleasing, and the bas-reliefs and alto-reliefs can be represented with great

* Continued from page 185.
A VERY SIMPLE AND EFFICIENT ENLARGING PROCESS.

A very curious illustration of the fact to which we have more than once recently adverted, that much valuable matter lies entombed in the journals, comparative unproductive, for the want of enterprise on the part of some skilled worker to carry the processes indicated from the point at which they had been left by the experimentalist to their highest practical issues; and an illustration further of the independent discovery or re-discovery of a method identical with those processes published long ago without fructifying, was recently published. The process, an enlarging described by Mr. Blanchard at the Photographic Society on Tuesday evening, is, we venture to say, one of the most simple and efficient in existence; and the examples with which he illustrated its capabilities were amongst the finest enlargements we have ever seen. We may go further, and affirm that we have rarely seen landscapes taken direct equal them in some of the highest and most valuable pictorial qualities. The process with Mr. Blanchard is, in a word, a question, an original one, and yet it is a process we ourselves worked out and published years ago. It is about fifteen years since we first attempted the process, and a few years subsequently we worked it out and described it in the News. When the question of enlarging was brought again prominently before the public three or four years ago, we were again reminded of the matter, re-visited the question, and published it in the Year-Book for 1872. As the article is brief, and contains some suggestions of interest, we reproduce it on another page. Fortunately for the photographic public, Mr. Blanchard hit independently upon the same idea, and has worked it out to a degree of perfection for which we should scarcely have hoped, and to which, in our experimental efforts, we certainly never attained. We say fortunately, because it is so in a double sense: first, because his skill has so fully shown the capabilities of the process; and, second, because, with his characteristic liberality, he gives the results of his experience freely to his photographic brethren. On ascertaining that it had been already published, Mr. Blanchard at once abandoned the notion of bringing the method before photographers as a novelty, and it was with all satisfaction that he consented to place before the Photographic Society a process and illustrations for which we feel certain every one present was grateful.

The process briefly stated is as follows:—An enlarged transparency of the full size of the required print is obtained from the negative by the ordinary wet process. This transparency must, as far as possible, be facsimiles of the transparency. Slight retouching may, if necessary, be effected on the transparency, but with a good negative this should not be necessary. From this enlarged transparency a print is obtained on albumenized paper by the ordinary method of printing in the pressure frame; and this print is the enlarged negative from which all subsequent prints are to be produced. It is important, therefore, that it be a good print in all respects, clean, sharp, and vigorous. It need not be toned, but simply fixed, and well washed. It is touched as may be required; then waxed to render it transparent, and is straightforward ready for printing.

Many of the advantages of such a process are obvious; but there are some not quite so apparent until they have been considered. We shall, therefore, briefly summarize some of the most important advantages.

The process is simple and easy, involving no operations unfamiliar to photographers generally. The negatives are not fragile, and are easily kept in stock. The negatives are easily retouched with either pencil, stump, or water colour.

Where large numbers are required, nothing is more easy than to produce a number of negatives by printing from the transparency, and so print from a score of negatives instead of one or two. The negatives can be printed at either side, either direct or reversed.

Paper negatives present the most admirable facilities for double printing, either in such simple form as the introduction of a background to a portrait or a sky to a landscape, or the more elaborate work of producing combination groups and similar compositions. If the ordinary methods of masking are employed, paper negatives facilitate the operation; but they present also additional facilities in the possibility of neatly cutting up and joining the various negatives, attaching the portions to a plate of glass, and producing one combined negative for printing at one operation, rather than printing portions of a series of masked negatives in successive operations, with all the care necessary for perfect junction at every printing.

Paper negatives, moreover, possess a beauty essentially their own, and yield prints with a specific texture which generally pleases the artistic eye. The texture need not be either coarse or granular; but it often gives a soft, delicate, atmospheric quality rarely otherwise attained. The examples showed by Mr. Blanchard on Tuesday night were chiefly landscapes produced from stereoscopic negatives, enlarged to six-inch or eight-inch prints by twelve. Without any lack of sharpness or crispness of definition, they all possessed that soft, delicate, painting-like quality which at once charms the artistic eye. In some cases, where the taste has been educated only on photographs, the observer may miss the hard, wiry incisive line which charms the technical microscopic eye and disgusts the cultivated artist; but we imagine that few examined the specimens by which Mr. Blanchard's paper was illustrated without echoing the general sentiment that whilst they surpassed by far the greater majority of enlargements, they had rarely been equalled in pictorial qualities by prints taken from negatives direct in the camera.

A FEW MORE WORDS ABOUT DRIED ALBUMEN.

A further examination of the dried albumen to which we referred in our last impresses us more strongly with the numerous advantages it presents, not simply on the score of excellence, but also as a matter of economy and convenience, especially to amateurs—and, indeed, for photographers generally—for except in the preparation of albumenized paper the photographic consumption of albumen is rarely large. The chief use of albumen in the operating room is for employment in preliminary coatings, and in the preservatives employed in many dry plate processes.

A THE PHOTOGRAPHIC NEWS. [APRIL 16, 1875.

Vol. XIX. No. 807.—APRIL 16, 1875.
of work you cannot stop to choose your plate. Every piece should be fitted into the carrier, for nothing is so annoying as to find, when a plate has been coated and sensitized, that it is too large or too small to rest in the carrier.

The Method of Cleaning the Plates.—Having ascertained that each piece of glass is perfect and properly fits the carrier, roughened round the edges to guard against cutting the film and damaged, and then rinsed under the tap to remove from their surfaces the dust and straw of their packing, they are placed, one by one, into an earthen pot of undiluted commercial nitric acid, that the acid may gain free access to all parts of the glass. With new glass, an hour or two will be sufficient. They are then thoroughly washed under the tap, and albumenized.

The Albumen.—Dissolve the white (perfectly free from gorms) of one fresh egg—ordinarily about an ounce—in twenty ounces of water. A large stoppered bottle is the best thing, in which is placed half a handful of broken glass; this, when the bottle is shaken, serves to cut up the albumen, so that it mixes with the water. When shaken into a stiff froth, sift the bottle upside down over a filter of clean sponge or a clean lamp, and line it up to clean bottle. This solution should be perfectly clear, but with the eggs not perfectly fresh it generally presents a milky appearance. In this case add a few drops of ammonia. This will in most cases clear it perfectly; if it does not, a second filtration will accomplish it. For pouring the albumen on the plate, a graduate will be found handy. The plate has been cleaned in the acid and washed, and should not have been allowed to dry, as so often appear from unequal drying, which it is afterwards impossible to remove. For albumenizing, however, it is imperative that the plate be wet and clean. To insure against grit from the running water, tie up the tap at which you are washing with two or three thicknesses of cotton linen to act as a filter.

Hold the plate horizontally, resting on the edge of the first finger, the thumb over the edge of one corner holding it firm. At the corner, diagonally opposite that held, the albumen is poured on, the graduate being brought as nearly as possible, without touching, to the surface of the glass, to prevent splashing. The plate is tilted that it runs toward the opposite corner, then to that held by finger and thumb. This is actually allowed to drain off at the other corner. Do not pour the whole solution, which you can see dripping the water before it, and do not suffer it to run over the edges. The beginner will on his first trial recognize the fact that although this sounds easy enough, the performance is by no means a simple one, until experience has been gained. Indeed it is almost absolutely necessary in this operation, as well as coating the plate with collodion, and, completely covering the exposed plate with developer, to see it done by an experienced operator, before success can be attained. The plate is, when albumenized, placed in a rack, the corner at which the albumen has been allowed to run off being placed lowest, that it may drain and dry spontaneously. The surplus albumen has been allowed to run into the sink, as from the inexpensive character it is not worth preserving. As the surplus is again plate, however dry you can put them together without fear of injury. Stand them on end in your cupboard—albumen side inside—ready for use. Guard against damp. Stood up close together they are safer from dust than in a rack, and it is only dampness, a fatal enemy, you have to guard against. If, however, a doubt should at any time arise as to which side has been albumenized, you have only to breathe on the glass on the uncoated surface the breath lingers a moment or so, but scarcely an instant on that side coated. For Old and Used Glass it is necessary to have a strong solution of concentrated potash. As with the acid, this solution must cover the plates perfectly. In about twelve hours the old varnished films will float off under a stream of water. The plates are then immersed in the acid solution, and, after a rather longer stay in it than in the case of new glass, they are treated in the manner already described for new glass.

There still appears to linger some prejudice against the albumenizing of glass plates—a groundless one, I venture to think. It is urged that the ammonia which it is necessary, in most cases, to use in the albumen solution injures the silver bath as it does the hand; if it is done carefully, cannot see how any of it can touch the silver solution, as the substratum of albumen is entirely covered by the collodion film. The method, however, says so much unpleasant and really hard work, and is so uniformly certain in working, that it more than compensates for the little injury, if any, done to the silver bath.

The learner having seen how to coat his glass plates will soon acquire the skill and facility in that most important operation, we may safely introduce him to the scene of his future trials (certain) and (let us hope) triumphs—

The Dark Room—that he may study its construction and understand the work of its various parts. First it will be observed that it is dark only in name.

The door closed, he is able to read in any part of it, but the light is coloured orange or yellow in a manner, to his unmingled eye, suggests a dark room. No cracks must be left open; doors must fit well, and every place of ingress of white light be carefully guarded. The dark room should also, if there is any chance for such a distinction, be the most orderly and cleanly room in the gallery, and with as few shelves as possible, for they harbour dust. The less room (consistent with ease and comfort of working) allotted to this department the better. It should have a convenient and ample supply of water, well under control; a large tank or trough occupying the middle of one half of the side of the room; on each side a shelf—one for the bath, but well out of reach of splashes from the water, developing, and so on—and the other for the developer, developing glass, intensifying solution, and silver. In addition to these, all that is requisite in this room is collodion, pouring bottles, the negative glass, and the carriers.

C is the little shelf for collodion and glass plates, near the door, that in coating the plate the operator may have light. The plate coated, he turns round, and two steps bring him to BB, the baths, into one of which he slowly and steadily, without stoppage, lowers the collodioned plate. Properly coated, the plate is withdrawn and placed in the carriers or holders at H, then taken out to the camera. The exposure made, the operator returns the carrier to its place at H, takes out the plate, which he develops over the sink, B. Water is here laid on, the fawcet, F, being conveniently to hand. The operator in a dark room of this construction has not to race all over the room at each process, but can quietly, and, without disturbing any dust, follow each manipulation by walking only a step at a time.
iodised collodion was solely used, and the bath was universally saturated with iodide of silver, pinholes were unknown; and he was disposed to believe that the deposit on the plate producing pinholes was an iodo-bromide of silver. This may on occasions be true, but the premises are scarcely exact. In the earliest days of the collodion process the practice of saturating the bath with iodide of silver was not thought of. It was, if we remember aright, suggested by Mr. T. R. Williams in the year 1853 and the same year the district of Belgium was due to Mr. Thomas. Pinholes, although much less common, were not quite unknown. As we mentioned at the meeting, the first example of pinholes which we ever saw was in the early days of the collodion process. When the recommendation to saturate the nitrate bath with iodide was first made, we tried the experiment, securing thorough saturation. The result was a plate literally covered with the clear transparent spots only too well known now as pinholes; excess of iodide of silver being clearly the cause then, as it has been in thousands of cases since.

It is not unnatural, perhaps, to attribute all defects of apparently one character to one cause, and hence the common tendency to regard all pinholes in negatives as due to one cause. Having traced them in many cases to excess of iodide of silver, many of the habits of pinholes as due to that cause; whilst, on the other hand, pinholes having been found where it was scarcely possible excess of iodide of silver could exist, there is danger of coming to the conclusion that excess of iodide of silver and pinholes had no legitimate connection. Pinholes undoubtedly arise at times from other causes than excess of iodide. In the case it seems very probable that the defect was due to this cause. The result of the successful remedy applied suggests, indeed, another cause. Mr. York added nitrate of baryta to an old bath giving a sandy film and multiplicity of irregular pinholes. The result of this addition was a precipitate, which, when removed by filtration, left the bath in perfect condition, giving plates clean and free from defect. The most legitimate conclusion from the formation of a precipitate on the addition of nitrate of baryta is, that sulphate of silver was present in the bath, and that being decomposed at once on contact with the baryta salt, sulphate of baryta was thrown down, and the bath was so purified of the deleterious matter. Some eight or ten years ago Dr. Vogel traced pinholes to the presence of sulphate of silver, and proposed nitrate of silver to be added so as to form a precipitate

THE WET COLLODION PROCESS.

A NARRATIVE of the experiences of any successful worker in the most familiar and extensively practised of all photographic processes, the wet collodion process, is always certain, despite its familiarity, of an attentive and interested audience, and rarely fails to evoke an animated interchange of opinions and information in a photographic meeting. Mr. York's paper at the South London meeting, dealing with his recent experiences with the wet collodion process, in which he declared that he had "no new thing to tell, only the old, old story, the management and formulae of every-day life," which every photographer is interested in. The journals have for years past abounded with hints, suggestions, and information; and the great advantage of a paper like that of Mr. York's is, that it gives the successful results of those novelties which a skilful worker of extensive experience has tried.

Commencing with the cleaning of the plate, Mr. York has not been successful in using a substratum of albumen. Which formula he used was not stated; but we may suggest that if the dry albumen described in a former number, in very dilute solution—say one grain of the dried albumen to the ounce of water, and applied to the dry cleared plate with a "Blanchard's brush"—it would be difficult to fail. The mode of cleaning the glass, adopted by Mr. York from some recent suggestion in one of the journals, is one the excellence of which we can strongly commend. We first employed it nearly twenty years ago, and used it for many years with great satisfaction. We employed sometimes rouge, sometimes whitening, sometimes rottenstone, generally making it into a cream with methylated spirit and water. The plates were rubbed well with the mixture, which was then left on the glass to dry, being subsequently polished off with a soft linen cloth, or a soft, clean, dry wash-leather. The glass so treated was always perfectly and satisfactorily cleaned. There was one slight drawback to the method which may easily be guarded against. In the first place, if the final polishing away of the dried whitening, or whatever it is the operating room, the detached particles of dry powder floating about in the air were sometimes troublesome; and next, if the glass were roughed at the edges, particles were apt to adhere, and so contaminate the bath.

In dealing with the nitrate bath, the ever-recurring subject of pinholes arises. Mr. York attributes pinholes to something other than the supersaturation of the bath with iodides, use: bromide and iodised collodion is in some way associated with the production of pinholes. Mr. Foxlee held a similar view, saying that in the earliest days of the collodion process, whilst simply
presence of bromide in the minute crystals causing the pinholes has never been traced, and further that bromide of silver, unlike iodide of silver, is not soluble in solutions of nitrate of silver. Whether the double salt of iodide and bromide of silver may be formed and become the cause of pinholes remains a subject for investigation. It should be remembered that another and perfectly explicable cause for the greater prevalence of pinholes at the present time, than formerly, exists without referring it to the use of bromides. It is admitted that whatever may be the ultimate cause, bromide of silver has given to the use of a bromide bath and worked bath; and there is little doubt that the enormously increased production of negatives in this day, compared with that of (say) sixteen years ago, when the use of bromo-iodized collodion began to obtain, and the rapid over-working of baths in consequence, will explain much of the greater prevalence of pinholes now than in former days.

This reference to over-worked baths brings us to the really practical part of the question. As a member observed at the meeting, he had never met with pinholes except in an over-worked bath, and the really recognized treatment of dilution, sunning, and strengthening, never failed to restore the bath to good condition, and remove the pinholes. Mr. York meets the practical part of the question by describing the double action of an inhibiting agent, nitrate of baryta, adding five grains to the ounce to the defective bath. His practice of keeping a large quantity of solution in alternate use and rest is also strongly to be commended. Another remedy, described in our columns some time ago, has been found most efficacious. It simply consists in adding a few drops of hydrochloric acid to the bath, by which a precipitate of chloride of silver is formed, which carries down with it the cause of the effect defective, and restores the conditions by which clean and spotless negatives are obtained.

SOME RECENT ADVANCES IN PHOTOGRAPHY.

The perusal of Mr. Spiller's paper before the Society of Arts, on Friday evening last, possessed some special points of interest, beyond those involved in the improvements he recorded. It is only by looking back, and fixing the eye upon the well-defined landmarks, that an estimate of the rate of progress can be made. And as in the Society of Arts the Photographic Society had its birth two and twenty years ago, the history of the art during that time may be regarded as fairly indicating the character and extent of the advance really made. It is worthy of remark that whilst there has been improvement in every direction, and many actual gains in the shape of discovery and invention connected with various branches of the art, in its main features it remains unchanged. The wet collection process is still the universal method of producing negatives for all general purposes, and the ordinary method of silver printing in vogue twenty years ago has not yet in any important degree been displaced. That there has been enormous improvement even in these methods, which retain their position with such tenacity, there is little room to doubt, but it is in the various added facilities, in the new processes, and the extended applications of the art, that its secured gains are most manifest, and it is as a record of these that Mr. Spiller's admirable paper possesses especial interest and value.

Without attempting to add anything to Mr. Spiller's excellent resume there are a few points in which it is desirable that the statement of facts should be modified. In assigning discoveries and inventions to their originators, Mr. Spiller adopts the wise and just principle of recognizing the primary claims of the worker-out of a process, rather than the intangible claims of those who may have made vague and nebulous suggestions, or made equally vague and unsuccessful experiments. But in referring to the collodio-bromide emulsion process of Messrs. Sayoe and Bolton, it is suggested that this discovery of the process was a sequence upon our own introduction of the collodio-chloride process. So far as we remember, without having facilities at hand for verification, the collodio-chloride and the collodio-bromide processes were introduced as nearly as possible simultaneously. Emulsion processes had been attempted many years before, especially with iodides and bromides; but no successful method of producing negatives with such emulsions had been discovered until the collodio-bromide emulsion process of Messrs. Sayoe and Bolton was invented. The idea of a collodio-chloride process had not been suggested, except in the frankly confessed failure of M. Gaudin, whose experiments in the production of emulsions, whilst very interesting, did not lead to practical issues.

Referring to the most recent improvement in carbon printing, it is important, duly to appreciate its value, to unmask its precise relation to the method which has been in use for the last few years. The difference between the use of a rigid support, and a flexible support, for the film during development, scarcely accurately, we think, indicates the distinction. Mr. Johnson's improvement did not consist simply in introducing a rigid support; in fact, rigidity simply was no part of his claim. It was the method of adhesion of an impervious substance, with an elastic surface, which constituted the real basis of his improvement. So far from a rigid support constituting the real claim of his patent, he also claims in the specification the use of flexible supports, admitting of the same principle of adhesion. But the improvement in Mr. Sawyer's process, as we understand it, is not the use simply of an impervious flexible support, but of an impervious flexible support with an elastic surface. He had noticed that a special defect in carbon prints was due to the strain between a surface like that of carbon tissue, expanding when wet, and the unyielding, unelastic surface of glass, zinc, and other rigid supports: hence he felt that if the support to which the tissue was attached could be made as elastic as the tissue itself, and at the same time retain its impervious quality, a great gain in the delicacy of the print would be secured; and his patent transfer paper appears to meet all the wants of the case. All genuinely interested in the progress of photography must hail with satisfaction every step which simplifies the production, and increases the beauty, of the only class of prints of which, up to the present moment, it was impossible to say that they are really permanent, and we congratulate Mr. Sawyer on his valuable contribution to the value of the carbon process.

DEVELOPING BROMIDE PLATES.

As the Photographic Section of the American Institute, Mr. D. C. Chapman described a method of developing bromide plates which, so far as he knew, was novel. It was, however, in point of fact, the method which Col. Wortley and Captain Abney have used for some time for emulsion and other dry plates, and which we have more than once published. It may be interesting to give Mr. Chapman's statement as it appears in Anthony's Bulletin. Mr. Chapman, addressing the meeting, said:—

"In making some experiments in dry plates I have fallen upon something which I think is new. It is new to me, at any rate. These are bromide plates: not emulsion, but dry plates. They are made with a Morrison lens, thirty seconds' exposure, and they are all that I could ask for as negatives. I was trying some regular bath plates, developing with silver and pyro, and I had one of these bromide plates in my hand, and did not notice it until after the picture was developed. I was surprised to find that I could develop a bromide plate without any iodide in it with acid pyro and silver, after the first details are brought out by an
alkaline development. I repeated the experiment, and found that I could make a picture in much less time with no danger of fogging, and perfectly clear in the shadows. In these plates the first details were brought out faintly with a strong alkaline solution. If that alkaline solution had been diluted the plate it would have caused the image all over; but the details came out readily under that strength of developer. The plate was then washed, and the high lights were just as intense as the shadows, and no more so. It was then treated with a little citric acid, to neutralise the ammonia solution, and strengthened up with pyrogallic acid, tannin, and citric acid; the ordinary developing solution. It intensified as readily and quickly as an iodide plate, and in future, with my bromine plate, use that development.

"The great advantage is, that you can use a very strong alkaline developer to start your image, and then there is no danger of fogging afterwards, if you use acid silver to strengthen up the faint image on the plate. You get no pinholes, and the image is perfectly clear in the shadows, and easy to work on. All that must be done hereafter is to wash it with normal solutions of pyrogallic acid, tannin, and silver."

"I have tried Stillman's developer, in which he used liquid ammonia. My experience with the ammonia is, that it has more tendency to fog. For my standard developer I take twenty grains of carbonate of ammonia, one grain of bromide of potassium, and one ounce of water; that I keep as a stock solution. Take a grain and a half to the ounce of pyrogallic acid—that is the solution for developing—flow that on the plate until you cover it, say, half an ounce. Flow over the plate or two or three times after it has been washed with water. Then add three drops of the alkaline solution to that, and flow over the plate again, and the image will appear very quickly. This alkaline developer is left on only long enough to show the image by reflected light, and then the plate is washed quickly, and flowed with a second grain solution of pyrogallic acid, to neutralize the ammonia that may be left in the film. Then re-develop with pyrogallic acid, tannin, and silver. It strengthens up very readily; perhaps in a minute the whole thing is done."

RECENT ADVANCES IN PHOTOGRAPHIC SCIENCE.

BY JOHN SPILLER, F.C.S.

In this room, on the 20th January, 1853, the Photographic Society of London was founded, after a very successful exhibition of photographs had been held under the auspices of the Society of Arts. The then new collodion process, invented by Frederick Scott Archer, had given a great impetus to the study of photography, and was already being widely practised by amateurs, who sought in the newly-formed Society the means of interchanging experiences and discussing their results. Helped by Royal patronage liberally bestowed, and by the zealous working of its early members, the art was soon made commode advances, and the Journal of the Photographic Society for the next following years may be consulted as the sole record in England of a history which has in latter times borne fruit since has rarely been equalled or excelled in other departments of applied science. For some of these improvements, and especially those of recent date, it will be unwise on my part to dispute your attention; taking, as far as time allows, merely an immediate cognisance of those principles and processes which have served to popularise photography in the present day.

In this effort, let me begin by acknowledging my indebtedness to many friends who have kindly aided me by sending specimens illustrating several of the newest phases of the art. Some of these photographs are shown as notes and examples of high artistic value, including portraits, landscapes, "combination prints," enlargements, and transparencies; other specimens are either of historical interest, or shown as illustrative examples of particular processes. The programme being somewhat wide for the limits of one lecture, I must hasten to approach my subject under appropriate headings.

Collodion Processes.—Beyond the general recognition of liberal proportions of bromides and more alcohol than formerly used, the composition of photographic collodion cannot be said to have been altered from the practice of former years. Cadmium salts are now in general use as "sensitizers," and more attention is paid to the quality of pyroxylene (or nitro-cellulose) employed, some operators preferring that made from paper, according to the recommendation of Dr. Lawes and Ladd, and others that the "emulsion processes" are gaining ground from the fact of their enabling us to dispense with the "nitrate bath," the collodion-bromide process of Messrs. Sayce and Bolton leading the way to this improvement. This admirable suggestion is founded upon an earlier observation made by Mr. G. Wharton Simpson, who used a collodion-chloride emulsion for coating paper to be used in the printing process: the leading fact being that chloride (or bromide) of silver may be produced in collodion by double decomposition, so as to furnish a product containing at once all the ingredients ready for immediate use—whether in camera or printing-frame—and which may be kept for lengthened periods without sensible deterioration; since the haloid salt is formed in so finely divided a state that its rapidness is a decided advantage. Lieut-Colonel H. Stuart Wortley advocates the introduction of nitrate of uranium together with the silver, and has published formulae which are even now on their trial, the advantages claimed being greater sensitiveness combined with special superiority in rendering colour—an effort which Dr. Hermann Vogel believes he has equally successfully attained.

For "dry plates" possessing permanent sensitiveness, the writer claims to have led the way by publishing in 1854, in conjunction with Mr. Crookes, the first dry-plate process; and although the nitrate of magnesium is no longer employed for this purpose, the possibility of the case was established, and a host of other "preservatives," including the collodion-albumen and gum-gallic processes, are of daily use, and the latest development of the art being the albumen and beer process of Capt. Abney, R.E., which has done such good service in securing photographs of the recent transit of Venus.

Collodion Transparencies and Enlargements.—Collodion-chloride of silver has been used very successfully by Dr. Van Monckhoven for copying and enlargements, and her Majesty's War Department makes good use of the same process for reproductions. As a method of copying faded photographic prints this plan of working has been shown by Mr. H. Baden Prichard to offer great advantages. Mr. James Hughes, of Ryde, produces "transfer collodion enlargements" by development upon glass, and subsequent transference of the toned collodion film to a sheet of white paper or cardboard, by which excellent results are secured, the permanence of the finished work being in no case impaired by the unalterable nature of the materials employed. A similar principle is made use of in the production of photo-enamels, the film being transferred in these cases to surfaces of porcelain or enamelled copper, and subsequently fired. Several operators have brought this process to a state of perfection, and the permanence of these photo-enamels is beyond question.

Mr. Valentine Blanchard has within the last few days described a process of enlargement in which albumenized paper is employed for the production of paper negatives with promise of great results. Mr. Edwards has recently shown some good enlargements, and Messrs. Spencer, Sawyer, Bird, and Co. use the autotype process for the same purpose, where the generally admitted delicacy of
the carbon print is taken advantage of both in securing the intermediate negative, or "transparency," and finished print. The details of this process will be again alluded to under the head of carbon printing. The Woodburytype impression delivered upon glass also furnishes excellent transparencies; but none of these processes give better results than the simple collodion when properly toned, as many of the capital lantern slides of Mr. Frederick York, and the excellent enlarged transparency of the full moon which our worthy Chairman gave me in 1860 as an average sample of his work.

Silver Prints.—The charge of want of permanence brought against the ordinary photographs printed upon paper prepared with the chloride and nitrate of silver is sustained by a mass of evidence, and the fading action is observed to be closely connected with the use of hypophosphites as fixing agents. Much can be done by careful manipulation and by paying great attention to chemical conditions, in the way of overcoming, or reducing to a minimum, the destructive action of sulphur compounds upon the silver which forms the basis of the photograph; foremost amongst needful precautions may be mentioned the use of ammonia or carbolic acid to maintain the fixative to the last moment of the fixing bath, and this followed by a most careful washing, completed with at least one immersion in hot water. Silver prints subjected to this treatment are to a great extent protected against the chance of fading, especially if preserved in a moderately dry atmosphere or closed portfolios; but there is yet another cause for suspicion whenever the solvent has been used for the purpose of imparting a glossy surface to the paper. White of egg is known to contain a certain proportion of sulphur naturally combined with the organic elements, and whenever the albumen undergoes decomposition this sulphur is either in part liberated, or free to act upon the silver. We do not know at present of any sure method of counteracting this evil, but it might be worth while ascertaining how far tannin or carbolic acid, applied in the final stage, renders such organic changes impossible.

Mounting materials and the cardboard itself have often to be tested for impurities, the presence of which may defeat all our previous efforts towards securing the permanence of the silver print, however well it may have been toned, fixed, and washed.

Printing in Carbon or Pigments.—For the reasons just now stated it has become imperative to seek for other means of securing a finish, dispensing altogether with silver and sulphur, may escape the possible contingencies for the old process is liable. Uranium printing offers a better chance of permanence, but although experiments have from time to time been made in this direction, the evidence is not yet sufficiently conclusive to warrant an absolute reliance being placed in this mode of working. The necessity for appealing to a chemical process involving the use of a costly metal appears, however, to be mainly disposed of by the fact that so much progress has lately been made in carbon-printing that improvements seem for the present to arise out of the mastering of its details. So far as I am aware there is no instance on record of a faded carbon print, and there is a reasonable ground for believing in the permanence of combinations of gelatine and chromic oxide, which form, as it were, the cementing materials around the particles of carbon (or pigment) composing the gradated shades of the picture. The chemistry of carbon printing is perhaps not yet fully made out, but it has received much attention from Mr. J. W. Swan and others, who have helped forward its practical realization. We all know how unalterable is a sheet of parchment, and yet this is but an untanned film of animal gelatine. It dissolves slowly in boiling water, but resists attack from the ordinary oxidising influences of the atmosphere. Properly tanned, or indurated with certain metallic salts, it becomes insoluble, and even more indestructible. Indian ink, Frankfort black, and other forms of carbon (including black lead, used in some experiments by M. Marion) may certainly be depended upon for permanence, and so also may chromic oxide, which for years past has been employed as a pigment. The only question that arises in my mind is that we might perhaps "make assurance doubly sure" by resorting to an after-tinning process as I pointed out five years ago. Let alum and the metallic ingredients do their work as now, and finish in a bath of tannin or other astringent.

Having thus reviewed the chemical question, we must descend to practical details, and learn how a carbon print or "autotype" is usually produced. This I am enabled to place before my hearers with all the advantages of latest improvements, inasmuch as an admirable summary of all that is known upon the subject has just been communicated to the Photographic Society by Mr. J. R. Sawyer, in a paper entitled "Photography in Permanent Pigments, with Recent Improvements in Autotype Transfer."

Mungo Ponton having shown that paper coated with potassium bichromate is affected by light, and Becquerel that the presence of gum or gelatine hastened the change, Poitier conceived the happy idea of introducing a pigment which, by becoming locked up in the altered gelatine tissue, rendered it possible to obtain a carbon print. This end was secured merely by washing with water to remove the unaffected portions of the chromated surface, leaving insoluble those parts, in gradation, according to the greater or less marked action of the light. Mr. William Blair, on the other hand, having improved the process by directing his operations to the back of the positive coating, producing superior results as regards the rendering of half tones, but necessarily obtaining reversed pictures. Mr. J. W. Swan, of Newcastle, greatly improved the process by introducing a system of transfer in which india-rubber paste was employed to turn over the image, and it could be developed with greater certainty by washing in warm water after transferring the picture to an appropriate mount. Mr. J. R. Johnson proposed the use of a rigid temporary support, such as a plate of zinc or glass, to receive the pigmented gelatine film and hold it during the process of washing. By employing reversed negatives Mr. Johnson was enabled by "single transfer" to mount the carbon print on a sheet of aluminised green paper.

Such was the state of the process when Mr. J. R. Sawyer observed that he could obtain much finer results by discarding the rigid supo and, returning to paper specially prepared, which, permitting of extension and contraction during the washing and subsequent drying of the carbon print, or autotype, was not so apt to break the fine lines. Mr. Sawyer's patent "flexible support" is paper treated first with chroine alum and gelatine and allowed to dry; such a coating is insoluble in water, as Mr. Swan had previously shown. Upon this a layer of ordinary gelatine (5 to 10 per cent.) is applied, and this is coated with a solution made in a digester, as follows:—

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button, or bleached lac</td>
<td>1 lb</td>
</tr>
<tr>
<td>Water</td>
<td>5 quarts</td>
</tr>
<tr>
<td>Borax</td>
<td>4 ounces</td>
</tr>
<tr>
<td>Soda crystals</td>
<td>1 ounce</td>
</tr>
</tbody>
</table>

In order to get a perfectly smooth surface, the paper is subjected to rolling pressure between metal plates, and each sheet at the time of use is rubbed over with resin and turpentine mixed with a little wax. It is not difficult to imagine that a "flexible support," built up in this manner, would act as a soft couche or bed, for the reception of a carbon or pigment print about to be developed, and we readily believe that superior results can be obtained in this way. The final result is transferred to sheets of paper coated with an emulsion of gelatine and

Journal of the Photographic Society, October, 1869, p. 109.
precipitated sulphate of baryum, mixed with a little chrome alum.

As the temporary support can be used repeatedly if again rubbed over with the repellant coating of wax and resin, the cost is no bar to its employment, and the process is said to be admirably adapted for amateurs' use. If these bright anticipations are realized, we may shortly hope that carbon will replace silver for all ordinary purposes, and that no more complaints will be heard of fading photographs.

(To be continued.)

PHOTOGRAPHY IN THE PARIS PRISONS.*

It is now some time since the Paris Police availed itself of the aid of photography in securing pictures of those who come under its notice, and there are now two young and skilful operators engaged by the Prefet de Police for fulfilling duties of this kind. The routine labours they have to perform have in no way dampened the ardour and energy of these gentlemen, who are to be congratulated on the results already attained under their auspices.

Criminal photography—which made its début under very modest circumstances, and which is now carried on in Paris in a manner scarcely favourable to its full development, the rooms and studio being established behind barred windows on the upper floors of some houses—has, however, been called to fulfil, for the staff, besides satisfying the wants of the various Police Stations, the House of Detention, Masses, Saint Lazare, and other prisons, undertakes the portraiture also of subjects in the Morgue.

Those who are acquainted with the aspect of Paris prisons—with the House of Detention, for instance, which is a veritable well, daylight only entering from above—will understand that general apparatus and especially rapid lenses are necessary in the case of criminal photography; and as a fact, we may mention that all the parapetmaphia, aplana
tic and rapid lenses are French, and bear a name which of itself is sufficient guarantee of the quality of the articles.

We must also render homage to the skill of the operators, who, under the most unfavourable conditions, know how to obtain with rapidity the most excellent results, not only from a likeness point of view, but as artistic productions. The photographers of the Prefecture have the rank of inspectors, and the authorities can rely upon their discretion in all matters that come under their notice. The division of labour is pretty nearly the same as in private establishments; only retouching, which is often abused in our best studios, is here almost entirely suppressed, for it is the work reserved for anything. The portraits, however, receive much oare in cataloguing and describing, every one having attached to it particulars respecting antecedents, &c., which are drawn up with scrupulous exactness. The advantage of having a portrait of this kind, whether for establishing the identity of an individual who refuses to give up his name, or for arresting or even for the police, must be obvious to all. By merely examining the copy of a portrait of any individual whom it is desired to find, and distributing the pictures among police-officers and detectives, you naturally enough multiply the chances of finding him.

All prisoners are not photographed, however, for this would be too long a business, and in many instances quite useless. Such a proceeding would, indeed, be abusing the art, although, no doubt, the authorities have a perfect right to secure a picture of all prisoners. Every dangerous or habitual criminal, or person likely to be one, is, however, photographed, and thus all the habitudes of the prisons are included in the police albums. Some of these characters have been honoured by having two portraits taken, one in profile, and one full face, so that there is little chance of their escaping recognition afterwards.

The reproduction of photographs already in existence is a branch of duty which the police photographers do not overlook, in case they already possess a picture of the person "wanted" which has been obtained from a friend or accomplice.

An illustrated journal recently gave a sketch of a fancy nature, representing a rebellious criminal held down by main force in front of a camera; unable to stir from the spot, the model is depicted meeting every grimace and contortion possible, and thus he contrives to prevent a natural photograph being taken, which might compromise him hereafter. Such an incident as this never took place in prison, although it may happen often enough that the model does not take kindly to the photographer. But it would be little good a prisoner resisting, for the authorities know very well how to treat refractory patients.

The operation of posing, however, far from being disliked by a prisoner, is often looked upon by him as a treat, for during the quarter of an hour that he is out of his cell, he enjoys a little pure air and daylight, which represents a souvenir or tasteful of liberty. Many, indeed, pose themselves with a degree of coquetry that is perfectly surprising. It is, in fact, scarcely credible that in the courtyard of the House of Detention, a degree less lively than the Valley of the Shadow of Death, the most of all to rob and assassinate of both sexes, often clad in the vilest rags, should strive to get themselves taken in a graceful position, covering what corporal imperfections they may possess, the results of intemperance, accident, or punishment, and making quite an unparalleled display of vanity. After the House of Detention, the prisons of Masses and Saint Lazare form the most work for the photographers of the Prefecture, and then comes the Morgue, where also a dark room and laboratory are provided.

It is easy to understand the importance of photographing subjects in the Morgue, whether the pictures aid friends in discovering the body, or, after interment of the deceased, indicate where the various bodies have been buried, so that it is some satisfaction to acquaintances who identify the body too late, that they are informed of the resting place of the unfortunate. Many questions of a delicate and confidential nature, which need not be made public, are in this way solved without unnecessary pain to relatives.

Besides criminals and the victims of the Morgue, there is a third class which the police photographers occupy themselves with. There are many indigent strangers wandering about the streets, and whose friends at home have to be communicated with. Portraits obviate a great deal of unnecessary expense and trouble. Finally, it is contemplated to photograph the scene of any crime or accident, and such pictures will be added to the instructions given to the prosecutor, who will thus be enabled to supply the jury with much more accurate details of a crime than he would otherwise be in a position to give.

The results already prepared by the police photographers are thoroughly appreciated by the authorities; the portraits of guilty parties and of victims, which have been prepared, have very much facilitated the administration of justice, and the fidelity with which letters, plans, signatures, and documents of all kinds have been copied by photography is invaluable on many occasions. Sometimes application is made by foreign governments for copies of documents and portraits, for the purpose of pursuing a criminal, and in this case it is rare that the French authorities refuse to give their assistance.

In a word, whether it is question of a murder, a fire, a robbery, forgery, or other crimes, political or not, photography comes to the aid of the judge, as it does to the humble policeman. At one time despised, the art to-day fosters itself upon public attention; and such is its importance, that it will rapidly come to be one of the best safeguards against crime, seeing that none can escape its crucial observation.

*Moniteur de la Photographie.
NOTE ON CARBON PRINTING.

BY M. GRAND.

I do not suppose I am the only one who has found that if a carbon image developed upon a provisional support is attached to its final basis while still swollen with water, it loses much of its delicate character. It is essential that the image should be quite dry before it is separated from the provisional support. For this reason I have been compelled to reject stearine paper as a support, because I find that the pellicle forming the image becomes detached as soon as the latter dries. Many other supports hold the dry image firmly, and only allow of its removal when alcohol, benzole, and other appropriate solvents are employed; but all of them seem to demand great care in development, especially when the prints are of large size, for otherwise the thicker parts of the picture will be found to leave the support.

I have employed, with much success, as a provisional support for developing a carbon image, paper which has been treated with caseine, the latter being dissolved in dilute ammonia, into which the paper is dipped, being afterwards immersed in an alum bath. Under the influence of the small quantity of ammonia retained by the dry caseine, the latter absorbs some alumina, which renders the caseine perfectly insoluble and impermeable. The carbon tissue is applied under water to this support, and pressed for some minutes with blotting-paper. On development, the image adheres with such force to the caseine that it may be handled and treated as roughly as a good silver print.

The image washed, aluminized, and dried, is applied (still under water) against the definite support, which should be faced with gelatine and pressed with blotting-paper. To separate the two papers, it is only necessary to plunge them when dry into ammonia diluted to ten times its volume of water; they are gently moved to and fro, and at the end of a few minutes the caseine dissolving, the two papers separate of themselves, or, at any rate, with very little resistance, exactly as in the first operation of development. The dry image is pure and brilliant, and preserves all its delicacy and half tones.

The advantage of operating in this way consists, above all, in the great adherence of two soluble bodies in aqueous liquids, which is much more powerful than between a soluble body in water, and another body soluble only in a combustible liquid, such as alcohol or benzene.

The solution of caseine for facing the paper should be as viscous as possible, to give the paper the brilliancy of an albumenized material. The caseine should be freed from all gready globules, and one litre of milk will furnish as much as one hundred and fifty grammes of caseine.

The paper treated with this material is most excellent as the definite support for the image, in case the operator is working with a reversed negative; and I am convinced that any photographer making trial of it in carbon printing will abandon other methods which may be more familiar to him, and which may yield passable results.

I may observe further, that dilute, and even concentrated ammonia, has absolutely no action upon the image, or upon the gelatine in the sizing of the paper.

In reference to this last remark of M. Grand, M. Chardon is of opinion that ammonia has not that innoxious character claimed for it above. According to his experience, ammonia, when contained in water in the proportion of only five per cent., under ordinary circumstances, attacks and destroys the sizing of paper.

* Bulletin de la Société Française.

Correspondence.

ENLARGED PAPERS NEGATIVES.

My dear sir,—I am sorry I was not present at the meeting of the London Photographic Society last Tuesday, when Mr. Blanchard read his interesting paper. It is very strange that I have been working the same process for the past three years, in proof of which I send by this post a negative that has been done all these years. I am sure that our old friend Mr. Blanchard will not think for a moment that this is sent in an unkind spirit. I thought that it was original on my part, and I have no doubt he did the same. It is a process of great promise, but to work it successfully there are several points that require making clear, or in ordinary hands it would give a great deal of trouble, and that is why many good and beautiful processes lie buried in the photo. literature of the past.

I can reproduce small carte negatives (same size as original), giving capital results, by making a transparency in another manner. It would be too long to go into the whole details of the process here, as I should wish, but at some future time I hope to be able to give the results of my labours fully in the form of a paper at one of the meetings. For an article for the Photographic News—that is, as soon as I can find time; but you are well aware that with a professional photographer time is fully employed.

Trust me that Mr. Blanchard will look upon this note with the true friendly feeling that he always displays at our meetings and social gatherings where I have had the pleasure of making his acquaintance,—I am, dear sir, yours very truly,

Stratford Green, E., April 19th.

W. Brooks.

Proceedings of Societies.

THE SOCIETY OF ARTS.

At a meeting of this Society, held on the evening of Friday last, the 17th inst., Mr. WARREN DE LA RUE, F.R.S., in the chair,

Mr. John Spiller read a paper on "Recent Advances in Photographic Science" (see p. 200), and exhibited a number of fine examples of the new and improved processes of the last few years.

In the course of the conversational discussion which followed, Mr. BLANCHARD, at the request of the Chairman, gave a detailed description of his method of enlargement recently brought before the Photographic Society.

Mr. J. B. Sawyer gave an interesting explanation and demonstration of his modification in the carbon process.

Mr. J. T. Taylor, referring to Dallmeyer, expressed his opinion that it was a typographical rather than a lithographic process, and Mr. W. Noel Hartley pointed out the analogy between the Woodbury process and the method of nature printing employed by Mr. Henry Bradbury some years previously.

Dr. W. J. Russell would like to have heard more definite information about the chemical action of chromate on gelatine under the influence of sunlight. He was inclined to believe that the carbon print was permanent, whereas albumen was one of the worst foundations for a photographic record, since it was so difficult to purify, and always contained sulphur.

The Chairman, in moving a vote of thanks, regarded with satisfaction the present condition and future prospects of the art, and pointed out some of its astronomical and scientific uses.

The vote being duly acknowledged, the proceedings terminated.

Talk in the Studio.

INDIAN MEDALS.—Our readers will learn with pleasure that Mr. William Bedford, son of Mr. Francis Bedford, has received the Viceroy's gold medal at the Bengal Photographic Exhibition for the best landscape.

DILUTE ACETIC ACID BEFORE TONING.—In referring to the common use in America of acetic acid in the washing water for prints prior to toning, a few weeks ago, by a printer's error
ALAN CLARKE.—The yellow spots are due to hypo. They have all the appearance of spots caused by imperfect fixation, in which instance hypo is the cause, and spotting with any fixing material, whether the use of a weak or worn-out fixing bath, or imperfect immersion of the print in a strong fixing bath, will stop the spots. If the spots appeared before fixing, they are due to the print having been brought into contact with hypo before fixing; probably the blotting-paper of which you speak has been contaminated with hypo by some means.

A. B. C.—For general purposes the rapid, beyond a question.

SUBSCRIBER.—So far as your description goes, I think all these pictures you mention are copyright. The presence of photographic copies in the market freely advertised for sale does not in any degree prove or suggest that the pictures are not copyright. In the case in question the right of photographing has been purchased from the owner of the copyright, and hence the photographs are published under the copyright.

R. EVANS.—You will find in our advertising columns the addresses of several gentlemen who undertake to give lessons, from whom, of course, you will be able to obtain particulars of terms, &c., on application.

C. W.—The number you received was forwarded from the publishing offices, though not enclosed in the usual wrapper.

NORTHUMBERLAND.—The marking on the piece of sensitized paper you enclose is caused by the formation of air-bubbles between the paper and the solution. The remedy is to place the paper on the surface of the solution. If you have any reason to fear that a bubble has been formed, the sheets should be raised again instantly, and the bubble replaced on the surface of the bath. Condensed steam from an engine is not always pure, and not safe to use for distilled water in photography.

B. FEATHER.—If this gentleman will forward his address to us, we will furnish it to a former customer, who wishes to communicate with him about a portrait.

J. T. F.—In the first chapter of the "Practical Printer," in which the term soda is used, we explained that it was the American term for common carbonate of soda, used in the households in this country as "washing soda."

T. E. B.—We do not know the addresses of the makers of fans and other fancy mounts for photographs. It is very probable that you will find them advertised in the "Stationer," a monthly journal published by Dean and Son, Johnson's Court, Fleet Street.

Mr. Fray's article on his mode of enlargement appeared some time back.

ROWLAND LEIGH.—Novelties in photographic apparatus are frequently shown at the autumn exhibition of the Photographic Society, but only recent novelties. A few hours spent in visiting the establishments of camera dealers and photographers will afford the best opportunity of seeing various examples of apparatus.

BELL.—Try reducing the exposure considerably, and using a weaker developer of (say) six grains potassium of iron to the ounce, and twenty minims of acetic acid. It is probable that you have been trying new and thin samples of collodion. Very often under such circumstances the solution of a grain of potassium permanganate to each ounce of collodion proves effective. The addition of a trace of gelatine to each ounce of developer often proves useful in such cases. 2. In producing carbon transparencies on glass you will find a preliminary coating of collodion useful.

M. D. L.—The markings on your sensitive paper are what are commonly known as "tear-drops," and arise from drops of the silver solution remaining in isolated spots on the surface of the paper, instead of draining off in a steady stream, and drying evenly. The tendency to this may arise from two causes:—sometimes, but not frequently, from the use of a too strong silver bath; most frequently from the paper having been kept in a very dry place, so that the albumen surface has become hard, taut, and repellant. The remedy consists in avoiding the use of the tube, but when the wet condition is reached, and the paper is drying, they may be removed by blotting-paper.

Severa Correspondents in our next.

PHOTOGRAPHS REGISTERED.

"GIBBONS' PHOTOGRAPHIC COMPANY, LONDON.

Two Photographs of Mr. M. R. Brand, Esq.

Mr. W. BEARDSLEY, Sculptor.

Three Photographs from the "Viscount" at Cleveland.

Mr. E. O'NEILL, Birmingham.

Three Photographs of Mummies in Cairo.

Mr. C. G. T. Read, Swanswick's.

Three Photographs of Mr. Thomas Holdway.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PHOTOGRAPHY FOR PHYSICIANS—GERMAN PHOTOGRAPHIC LITERATURE—TOUGH GLASS.

Photography for Physicians.—There is nothing new in being able to photograph the invisible, for it has long been known that the photographic lens perceives much that is passed over by the human eye. In the violet end of the spectrum, for instance, there are lines and double lines whose existence was discovered by spectroscopic examination until photographers came and fitted a camera to the eye-piece of the instrument, and thus secured a record of things which previously were not known to exist. Until Dr. Vogel made known his discovery last year, it was thought, too, that there were some lines of the spectrum visible to the eye and invisible to the camera; but this appears not to be the case, for so long as a suitable collodion plate is employed, any of the lines of the spectrum may be reproduced, whether they are in the province of the violets or the orange. A little while ago we called attention to a very useful application of the camera in photographing the invisible which is made use of in Paris at the Bank of France, by M. Gobert, a photographer attached to the establishment. An invention has been made upon cheques, for instance, the quick eye of the lens often discovered the obliterated word, which was quite invisible to the eye, and thus aided in the detection of fraud and robbery. Any one who has copied a cheque which has been enclosed in a letter knows how much more vigorous marks upon it resulting from contact with the writing come out in the copy than they are in the original; indeed, sometimes being made up of yellow ink, printed off from a letter in the copy, but not in the original. Those who occupy themselves with photolithography, or the reproduction of maps and sketches, know, too, how annoying it sometimes is to find big patches over their plate which were altogether invisible upon the original, a closer investigation showing a rougher texture. Now we learn that even the smallest under ordinary circumstances, escape notice. It is now suggested, by Dr. Vogel, we believe, that physicians might employ photography with advantage for the purpose of forming a diagnosis of a case, for if we are to believe some statements which have recently been made, the art would aid the medical man considerably in coming to a decision. Thus a circumstance is mentioned of a woman who, though her face was not free from any eruption, the negative showed spots all over the face, and within a day or two the model was found to be suffering from a severe attack of small-pox. Now if the camera can perceive these spots before the eye discerns them, it is obvious that a photographic plate may at times be an important assistance to medical science, as it has been for many other of the sciences already. In registering the different forms of disease and illustrating characteristics thereof, the camera is already freely used by medical men, and it will only be necessary to call their attention to this new method of employing it to ensure a trial of its capabilities in this direction. For the purposes of medical instruction at schools and colleges photographic diagraphs are now largely used, the preparations being enlarged under the micro-camera, and then further amplified in a lantern. In this way a good deal of microscopic work may be avoided, and a demonstration can be made much clearer than when the student does not enjoy the benefit of the professor's assistance when looking through the microscope. The medical profession are therefore faced with the new science of photography, and it is by no means impossible that a camera, or adaptation of it of some kind, may in a little while be deemed as important a medical instrument as the stethoscope of the present day.

German Photographic Literature.—Germany is to have a weekly photographic journal, and the first number of the new paper is now in our hands, dated April 3rd, 1875. Its title is the Photographisches Wochen-Blatt, and the editor is Karl Schrider, of Weimar, who for some time assisted Dr. Vogel in his photographic laboratory at Berlin, and who was one of the chief photographers attached to the Prussian staff before Strasbourg and Paris during the recent Franco-German war. It is impossible to judge of the merits of the new journal from the first number, but it is matter for surprise that so extensive a country as the Waterland, should not have possessed a weekly journal before this. However, from the circumstance that both Helios of Dresden, and Lich of Berlin, came to an abrupt end last year, one cannot say much in favour of the prospects of photographic literature just now, and we believe that the only two periodicals in North Germany at present are the Mittheilungen of Berlin, and the Archive of Elsbfeld. In South Germany there are also two, the Correspondenz and the Notizen. The Wochen-Blatt does not profess to be the organ of any society, but will maintain an independent footing, and although its editor resides at Weimar, the paper will be published in Berlin.

Tough Glass.—The important invention of rendering glass tough is attracting attention everywhere, for brittleness has hitherto been the main drawback which has prevented the use of the material in many ways. Glass has so many qualities to recommend it for use: it is transparent, scarcely ever attacked by chemicals, has no corroding action upon other substances, and is capable of being moulded into any shape, it is agreeable and cleanly material. The new tough glass is not, however, faultless; it cannot be worked into shapes, neither can it be bored or ground any more than a diamond; so that if it were desired to have photographic plates of the material, those would have to be made the proper size at first, for they could not be cut or fashioned after the glass has been toughened. As regards its appearance, the tough glass is not to be distinguished from ordinary glass, for it is just as transparent and pure as the ordinary material. The method of toughening appears to be a secret, and takes place during the cooling of the material. It is said that the inventor has demanded a sum equal to one franc per head upon the whole population of France for the process, which would amount to the respectable sum of forty million francs; but this demand is altogether too exorbitant. Many chemists are engaged in experimenting in order to find out the key to the problem, and Professor Bauer, of Vienna, seems to be in a fair way of discovering the secret, having already produced a hardened glass which is not brittle, and which will withstand a high temperature, Professor Bauer's method of working is to place ordinary glass in a furnace until heated to 500° to 600° Cent., and then to lower the temperature by dipping the mass into hot paraffin, so that the glass shows a temperature of 400° C. Subsequently the mass is gradually allowed to cool down to 40°.

RECENT ADVANCES IN PHOTOGRAPHIC SCIENCE.

BY JOHN SPIELER, F.C.S.*

Photography in the Printing Press.—Of late years great advances have been made in this interesting department of photographic printing, and there are now distinct principles of working, which under varying circumstances are capable of meeting the object in view. The reproduction of maps, plans, line engravings, and subjects destitute of half-tone, presents no difficulty whatever, any one of

*Continued from page 365.
PHOTOGRAPHY IN PERMANENT PIGMENTS, WITH RECENT IMPROVEMENTS IN AUTOTYPE TRANSFER.

By J. R. SAWYER.

To Mr. J. R. Johnson we are indebted for the invention of a method of double transfer, doing away with the indiarubber coated paper, and which went a very long way towards making the process simple and easily workable. His method is based upon the fact that if two impervious surfaces are pressed into contact, and the air entirely removed from between them, they will adhere, by virtue of atmospheric pressure, without the necessity of using any cement or adhesive material at all. Here we have a distinctly new principle, which Mr. Johnson applied as follows:—The pigmented tissue being printed, it was immersed in water, and when it had become just limp was laid down upon a plate of metal, glass, slate, or other impervious body. This was called the rigid temporary support. The air and water were pressed from between these two surfaces by means of a sort of india-rubber edge fixed into wood, and known as a squeegee. The two surfaces so forced into contact were allowed to remain for a few minutes, then placed in the hot water, which, dissolving the layer of soluble gelatine immediately in contact with the paper, allowed the paper to be stripped away, the back of the

THE PHOTOGRAPHIC NEWS. [April 30, 1875.

the photo-lithographic processes lending itself to this purpose, and invariably producing satisfactory results. Mr. Butter, of Woolwich Arsenal, has executed a large series of plates illustrating military equipment. Mr. Griggs has done some admirable work for the India Office, including patterns of Cashmere shawls, &c., involving the use of colours. Major-General Sir Henry James and the Topographical Department at Southampton, working by a modification called photo-sinography, are reproducing the Ordnance maps; and the Chatham establishment is doing very similar work by a process devised by Captain Angus and Mr. Papyrus. The Dallastyle, Kerography of W. J. Linton, the Electro-Photography of Chas. Hancock, probably come into this division, but no details of these processes have ever been published, although the results in some instances have been highly satisfactory.

The simplest form of photo-lithography is that in which a sheet of paper prepared with gelatine and chromate is exposed to light under a negative, next uniformly coated with a thin layer of litho ink supplied from the ordinary inking-roller, then submitted to the action of warm gum-water to loosen the attachment of the unaltered gelatine, and with it the superimposed greasy ink, which, washed away, leaves a transfer ready to be laid down upon the lithographic stone. Great care is requisite to prevent abrasion and injury to the design in the process of developing the transfer; but, at this point attended to, it is manifest that the ink adheres permanently only to those portions which have been hardened and rendered insoluble by the action of light, and these are in turn transferred to give the design upon the stone.

Another class of processes includes those employing a layer of gelatine, which, by the action of light, exhibits a different rate of water-absorption according to the depth or extent of the indurating action induced by the solar exposure, and in these we have true gradations of tone.

The first in this category was Paul Pretsch's photo-galanography, which, aided by the encouragement and assistance of the Chemist and Publisher, Dr. Hugo Muller, certainly paved the way for greater results. Pretsch's first English patent is dated November 9th, 1854; he described his process here in April, 1856, and specimen prints were afterwards issued with Nos. 89 and 103 of the Photographic Journal. Mr. R. H. Courtney's process of later date is very similar.† The general principle was to expose a thin film of chromated gelatine (under the negative) for just such a period of time as would just bring out clearly the effect of relief when afterwards sponged with water. A cast was taken in gutta-percha or plaster of Paris of the whole surface, which exhibited depressions corresponding to the intensity of light-action, and then from this cast an electrolyte was made which could be printed from like any ordinary surface block.

Omitting the successive steps in the history of photo-mechanical printing, we come now to the latest examples of work in this class as exhibited in the Albertype, and the collographic process of Messrs. Spencer, Sawyer, Bird, and Co. A grand step in the way of progress was presented in 1869, by Herr Joseph Albert, of Munich, whose invention was rewarded a year later by the Photographic Society of London. In these specimens the gradation in tone is perfect, and we know that an immense number of impressions may be printed from the same plate without appreciable loss of delicacy. The mode of proceeding is somewhat as follows:—A thick glass plate is levelled and floated with a liberal supply of chromated gelatine, which when set is exposed to light under a negative; the upper surface is then acted upon by water and an antiseptic to give at once a printing block. By the judicious use of gum-resins a certain quality or texture known as "slippee" is imparted to the surface, and the ink applied with a roller for each impression. The "Utrecht Paletter" reproduced for the Paleographical Society, coins in the national collections (Numismatist), Thomason's "China" (4 vols.), and Mundy's "New Zealand" may be quoted as examples of recent work executed by the English firm already mentioned; whilst a kindred process, the Heliotype, has served to illustrate Mr. Plimsoll's work, "Our Seamen; an Appeal."

Woodburytype.—Having had the privilege of bringing the first specimens of this process to the notice of the members of the photographic artists, I am under the impression, the Photographic Society, of the R.I.A., 1887, I felt a great interest in inspecting last week some of the most recent examples of the Woodbury process, and for a certain class of work where rapid production is imperative the results leave little to be desired. Mr. Downey's portraits of H.I.M. the Shah were published by thousands within a week of the negatives being taken, and the regular appearance of the illustrations in the "Figaro Programme" (weekly), and the "London Sketch Book" (monthly), attest to the practical success of the process. The details are now so well-known that a brief description suffices. Mr. Woodbury works the chromated gelatine for the purpose of obtaining a hard insoluble film on development, which he terms "gelatine relief." With this plain type metal is cast by action of an enormous hydraulic pressure, which, singular to relate, does not crack the matrix. The mould or printing block thus produced is then served with a warm gelatinous ink, the paper laid on the top, and the excess of pigment squeezed out, which leaves the desired impression, requiring only to be fixed in an alum bath.

The gelatine relief gives admirable casts in plaster of Paris, which forms a pleasing mode of reproducing microscopic objects, and these also were shown at Dundee, but as yet little practical use seems to have been made of the idea.

In conclusion, I must ask your indulgence for many shortcomings in this attempt to bring a very large subject within the scope of a single lecture, and I beg to refer you to Mr. Henry Blackburn's "Handbook of the Pigments," and "The Art of Popular Illustration," Journal of the Society of Arts, March 19th.

† See "Photographic News," Nov. 30, 1874.
picture consequently exposed, and the conditions for successful development fulfilled.

The problem of how to produce permanent photographs with ease seemed now to have received a satisfactory solution. The operations were not difficult, they required no costly apparatus, the materials employed were not expensive. Why, then, did not this improvement at once give rise to a vast development in the direction of permanent photography? Mr. Johnson had, it is true, patented his invention; but it had been patented after the discovery had been come;—the only conditions being that the tissue and material used should be purchased of the company formed to prosecute the enterprise.

In Autotype printing the standard of excellence to be attained has been the exquisite though fleeting beauty of a silver print. These productions are eminently beautiful; the toning with compounds of the precious metals gives a variety of rich, beautiful colouring. The paper upon which the photograph is printed is of a very fine quality, and the finished picture is susceptible of a very high glass and finish. It is not improbable that, for small pictures, Autotypes made by this process of double transfer did not present that delicacy and finish which would make them acceptable to the connoisseur and to the public.

With large work the reverse was the case. For reproductions of paintings, drawings, sketches, engravings (especially of a large size), this process at once showed its inferiority; for besides the value attaching to these productions by reason of their permanent character, there was an additional element of satisfaction in the fact that they reproduced not only the colour of the original, but in many cases the very material in which the original was worked. Thus the "facsimile" of a drawing in red chalk would be reproduced in a tissue having red chalk for its pigment, and similarly with respect to other colours.

And now another step forward was made. It will be remembered that prints from ordinary negatives appear reversed, and need another transfer to cause them to appear in their correct relation. To save time and trouble, it was considered desirable to reverse the negatives; and in copying pictures, works of art, and those objects to which Autotype printing seemed particularly to lend itself, this was accomplished by means of the reversing-mirror.

This proceeding reduced the number of operations to a minimum, and a great success was at once achieved by those who adopted this method of producing their works.

Printing from reversed negatives is known as the operation of "single transfer," and is conducted as follows:—The only materials required are the pigmented tissue and a paper coated with insoluble gelatine known as "single transfer-paper." When the tissue has been printed under the negative it is immersed in cold water, together with a piece of single transfer-paper rather larger than itself. These are brought into contact under water, lifted out together, laid upon a slab of slate or piece of sheet zinc, and pressed into contact with the squeegee; allowed to remain for a few minutes, then placed in warm water. The soluble gelatine at the back of the picture soon begins to dissolve, releases its support (the paper), which is stripped off and thrown aside. The development is continued, and when coated with paper this is rinsed in water, lifted out of the water, and dried in a few minutes in a weak solution of alum, which indurates the gelatine. It is then rinsed in the cold water, hung up to dry, and when dry is ready to trim and mount.

It is apparent that the operation just described cannot well be more simple; and for small pictures it was found that there was always a more crisp definition and sharpness of line than could be obtained by the transfer from a negative to support. I discovered why this should be the case was the next problem.

It occurred to me that the cause was to be found in the yielding nature of the support upon which the picture was developed—namely, the transfer-paper. It will be remembered that in the process just described the printed tissue and transfer-paper were put into contact in a moist condition, consequently they expanded or contracted together—there was no strain between the two surfaces; but if a limp and yielding surface like wetted tissue is laid upon an absolutely rigid support, such as a plate of zinc or porcelain, is it not likely that there will be a strain set up between the two surfaces by reason of the contraction of the damp tissue, and partly by setting-up? And is it not possible that this be of itself quite sufficient to impair the delicacy and crisp detail of small photographs? Mr. J. R. Johnson had suggested the use of a paper coated with an ammoniacal solution of lac; but dealing, as he did, mostly with large work, he did not insist upon its value as a yielding surface, even if he were aware of the fact. Taking, then, the idea that the superior quality of pictures produced by the single transfer process from reversed negatives was due to the soft and yielding film upon which they were imposed for the purposes of development, I endeavoured to discover if some such basis could not be found for prints from ordinary negatives; the material to be perfectly soft and yielding when wet, to receive the limpid negative or couche; but not to contract or suffer strain during development, and, finally, to give it up easily when the development was completed. After many experiments and repeated failures, I at last hit upon a combination that, after a very long practical trial, seems to answer perfectly: and the ease with which it is manipulated is not the least part of its merit.

This tissue, which I have named "flexible support," and for which I have obtained a patent, is paper treated first with a coating of gelatine, then coated with a solution of chromic alum; this, when dry, is coated with a solution made by dissolving (at a high temperature) lac by means of borax and soda.

The coating of gelatine forms the bed or couche upon which the picture is held during development, the lac being the resisting coating which enables the print to leave the surface when finally transferred. The mode of preparing the flexible support is this:—A solution of gelatine is made of variable strength, according to the quality of surface desired in the finished print: for a print to have a dead or matt surface, I employ about a five per cent. solution, for a more highly glazed surface about 7½ per cent., and for a surface about equal to highly glazed albumenized paper a ten per cent. solution. Paper is drawn on a reel, and passed by means of rollers in a bath of the solution of gelatine. It is then passed upon a carbon-paper-making machine with these solutions, and when dry is cut into sheets and subjected to a pressure of many tons in an hydraulic press. The solution of lac is made by dissolving one pound of gum or bleached lac in five quarts of water, in which has been dissolved four ounces of borax and one ounce of soda: this is put into what is called a digester, and heated until the lac is dissolved; the solution is then filtered, and when cold is ready for use. The gelatinized paper is floated upon this solution in a shallow bath or tray, hung up to dry, and then finally rolled between metal plates in a rolling-press; each sheet is rubbed over with a little of a solution made by dissolving resin in turpentine, and adding thereto a few grains of wax. This was employed by Mr. Johnson to rub his rigid supports, to prevent final adhesion, and I believe, used by Firing in a very early stage of carbon printing. As soon as the spirit has evaporated, the "flexible support" is ready for use.

The mode of using is extremely simple: after the tissue has left the frame, it is plunged into water with a piece of the flexible support a little larger than itself; the two surfaces are brought into contact, and air-bubbles lifted out together, and hung up in the air for a period which may vary from ten minutes to one or two hours, as may suit the convenience of the operator. The adhering sheets are then plunged into warm water
and the paper upon which the tissue was made peels off. The picture is developed, and when finished is slipped into cold water, thence into the alum bath, and after rising is ready for the final transfer.

The material upon which the picture finally rests is paper coated with gelatine containing sulphate of baryta as an emulsion in the solution, and rendered partially insoluble with the addition of albumen. Pieces of the paper are cut to the proper size, and immersed in hot water to soften the gelatine; the picture to be transferred is placed in contact under cold water, the two are lifted out together, hung up to dry, and when dry the finished leaves its temporary support with the greatest ease.

The temporary support may be used repeatedly, by rubbing it up with Hill’s Peptole. In the process of the removal of the resin and wax, and will last a very long time. I hope to convince you by practical demonstration that the process is very simple, very easy, not liable to failure, and that the results are such as will bear comparison with the best work of the silver printer; whilst if I can convince you that these productions are “things of beauty,” I can assure you they will be “joys for ever.”

THE PRACTICAL PRINTER IN AMERICA. XXII.

Artistic Toning.

As a rule, in toning the prints, the following will, as a general thing, answer admirably: “tone the prints just as you wish them to be when done.” Looking over a journal one day, I noticed an article headed “Artistic Toning,” and upon reading it I learned several things about toning, and one little clause was the one above quoted. This clause seemed to me to be very important to the young printer, and I wondered at the time why I had never been told that, and I immediately knew, upon reading the above clause, that I could tone, and so I determined to tone a batch of prints as soon as possible, and one rainy afternoon, when the printer did not appear after he went to dinner, I resolved to do the toning myself without saying a word to the employer about it. So I made the bath as I had seen the printer make it a score of times before, warmed it slightly, let stand a few minutes, got, washed, and acidified the prints, washed again, and then commenced to tone them, toning three at a time, and as there were on duty to be toned, being as that had been printed on account of the darkness of the day and the scarcity of the negatives, I did not doubt but what I could tone and fix them all without help. This was the first batch of prints that I ever had the complete management of the toning and fixing of, and I determined to let Mr. L., the employer, and Mr. B., the printer, know that I could tone. With anxious eyes I watched the first batch of prints—in fact, I glared at them—and when they arrived at that stage at which I wished them to be when finished, I took them out and set them to washing in running water. When my next batch of prints was almost toned, I placed in the bath a print that was not toned, and compared the two, upon doing which I found that I could tone much better. I toned them all finally, fixed them all, and one evening when it was raining, I took them through, the “bone” happened to think that there was “no toner upstairs” (so he expressed it, as I afterwards found out), and he came rushing up where I was to tone the prints before it got much darker, for the weather was lowering, and it was getting dark pretty fast. I told him that I had toned, and he expressed his surprise, and inquired, “Are any of them good?” a question which I did not think very complimentary. I assure you. I told him that I thought quite a number of them were good, and when he, upon looking at them, told me that they were “very nice indeed,” I felt bigger at the time than I ever have since. I asked the printer, Mr. B., the next morning how the prints were toned, and he said, “Very well, only they were toned a little uneven,” and upon his showing me what he meant, I determined, as a natural consequence, to do better next time. That little clause led me on, in time, to do the toning in that and other establishments, and made more for the reason of showing a young beginner what he can do by a little reading of how another beginner did, has led me to write this short sketch of my first attempt at toning.

From the above, you who take the first step in toning, or to tone a batch of prints, would give the impression to the beginner that it was a question of so many minutes, as it is in fixing prints, consequently I have here taken special pains to contradict this erroneous thought, so as to prevent the novice from beginning wrongly, as he would be apt to do if he was in a place where the printer or printers would not take any pains to show him, but would be contented on the hurry to get the work done.

Now, since you are to tone the prints as you wish them to look when finished, let us see if you have the right idea in your mind as to how they should look when toned.

You should not wish to have them what may be called “red tones”—i.e., to have the background, draperies, hair, and the face as red as a brick, or, in fact, anywhere near it. You should not tone them so that the draperies and shadow box look blue. You should tone them until the red is just slightly blue, and then the prints should be taken out, even if the rest of the printed paper is quite red. With some baths—especially such ones as the “acetate of soda,” and the bath described last in the preceding chapter—this can be done very easily and successfully; but there are some baths, as the citric acid, chloride of lime, &c., that this treatment cannot be used so well, and in the case of the “citric acid toning bath” the shadows also will have to be regarded, else the whole print will be as red as a brick.

But a little experience in toning with any one bath will give you an idea as to how far you should tone before you discontinue the operation and set the prints to washing. You may say that which I have just written will conflict with the rule given above, but it does not; for the only rule is this: only that part of the print which should be red with another one, when the proper state has arrived, the prints should immediately be removed, and should not be allowed to remain in the bath until the tone has reached the more decided stage. In baths containing either the acetate or the chloride of sodium, or both, in their composition, the above rule should be strictly carried out. The beginner should also bear in mind that he should endeavour to tone even. By toning even I mean, to tone all prints of the same person alike.

Some of my readers might say it means to tone the whole batch of prints to the same tone or tint. Now I suppose that this could be followed out, but would it be called “artistic toning” to tone blondes, blondines, and brunettes all the same tint, and make the light hair in one face black when it is red through, and make another black, and another red black, &c.? You may say that red hair takes black, which it surely does, but if it lies in the power of the toner to tone the hair red, at least a little so, should he not do so? Another person may have black hair: should not the toner get a good dark-brown tone on the print, so as to make the hair look black (which it will do when the print is dry), and thus make the print more in keeping with the original? Should not a blonde have her hair look light in tone, and neither red nor brown, but about somewhere half-way between? The negatives of the last-mentioned class of subjects are generally so made that when you tone the face as per rule given above, the hair will be all right. So it is generally in by far the
majority of cases, the yellow and red hair being exceptions. Of course, you cannot obtain, and I doubt if you wish to obtain, the yellow tones for the hair; but if such hair is taken nicely in the negative it will very often come round to the right tint in the print, without masking the rest of the print at all yellow, but of a light-brown tint. While writing this I have in my mind such a print, wherein the hair is of a faint yellow tint, and the draperies, background, &c., are of a rich brown tone. I have obtained much of the same tones as this one by the use of the “citric acid toning bath.” Excellent tones for the red hair, with clear light-highs and half-tints in the face, are easily obtained with a bath containing chloride of sodium in its composition. The young beginner might obtain a few ideas by the close perusal of the preceding chapter about toning-baths.

You might say that it is a difficult thing for a toner to tone his prints in the style spoken of above, and also that he cannot tell when the hair should be a decided red, black, or medium, on account of his never having seen the original. For this reason it is advised by some photographers that the operator should do the toning, as he knows more about the “style of beauty” than the printer, who never sees the original. As far as lies in the printer’s power to tone the print as near as he can to proper colour, and his guides should be the original. A lady was the possessor of “lovely (?) aurora hair,” once said to a photographer. “Why, you have made my hair jet black, when it was aurora!” “Yes, said a friend, “they have made your lovely black hair, sure enough!” Red hair was the fashion at that time. I know of many first-class photographers that dislike the red tones for the reason, as I have heard them say, that “they are not artistic.”

There is a great diversity of opinion among first-class photographers about the proper kind of tones to be obtained, as many of us are aware. I myself have always admired the German portrait stereographs, the tones of many of which, I think, are perfect. It is not only in the portrait work that this toning is to be so observed, but it should be more so in landscapes, marine views, &c. Always tone them more than you would portraits, as red tones on views are abominable, and then by toning them a rich brown the finished print will look as the views do in nature, and trees, rocky cliffs, fences, wood-piles, water, logs in water, reflections in the water, steamers, &c., will all be delineated in the print with wonderful fidelity.

Weak prints should be toned in a very weak toning bath. A bath very thin, the bath very weak, and face down in the solution. Intense or hard prints should be toned quite quickly in a strong bath, and face down in the solution. Prints face up in the toning bath tone slower than when face down. Weak prints, in all solutions, should be subjected to mild treatment. A black tone is obtained by toning full strong in almost any bath if it contains a trace of chloride of lime. A chocolate tone is obtained by toning a little longer than what you would for a red tone, in almost any bath except the chloride of lime bath, and sometimes it can be obtained in this bath in a greater or less degree, according to the quality of the negatives. A decided brown tone is obtained by toning a little longer than what you would do to obtain a chocolate tone. To obtain a purple tone you should tone between chocolate and brown until the print commences to show the least possible signs of this tone, then take it from the bath and fix and wash, and when it is finally all finished it will be purplish in tint. The “sal soda bath” is excellent for these kind of tones, and they are quite easy to obtain, especially if the prints are strong, bold, and possess good toning qualities. A “nitrate of uranium bath” is also excellent. A blue tone is obtained by almost any kind of a blue; and a pretty blue is a little harder to obtain, unless the negatives from which the prints were printed are excellent ones, containing good toning qualities. The “bicarbonate of soda” is an excellent bath to obtain rich blue tones.

All of the above tones are obtained more by removing a print at certain stages of the toning from the solution than by any particular bath, although some baths may be better than others for producing particular tones. It is in a great measure, however, simply a matter of taste and experience.

PHYSICAL PROPERTIES OF COLLODION FILMS.

By W. N. Orpin.*

In a film of colloidion is poured upon the surface of a very clean glass plate, it may be separated from the glass, after drying, in the form of a very thin transparent sheet which can be placed in a frame. This membrane, with its polished surface, reflects light in the same way as glass; it polarises light both by reflection and transmission. The maximum angle of polarisation is 33°55'4", reckoned from the surface, Whatcher's normal. From this we deduce that, according to the law of Brewster, colloidion has an index of refraction, n = 1.5108-1, which is rather higher than that of crown glass.

It is possible, with the aid of this index, and by observing the displacement of the fringes of interference produced by a membrane of this kind, to calculate the thickness thereof. The membrane, upon them, was found to have a thickness less than 0·01 of a millimetre, the numbers varying from 0·0081 to 0·0088.

Through this extremely thin screen the membrane of colloidion allows a large proportion of radiating heat to pass. Taking as the sources of heat, sometimes the flame of a moderator lamp, sometimes that of a candle placed in the focus of a metallic reflector, and maintained at a constant temperature, it was found that the membrane allowed 91% of the luminous heat to pass. When a blackened can of boiling water was taken as the source, + the proportion of heat which was transmitted was not more than 70%. If the can were maintained at a temperature of 50° C, only 0·60 of the heat passed, and this amount did not sensibly decrease when the temperature of the source was 20° lower.

When two films of colloidion were placed in the track of the heat emanating from a can heated to 100° C, the amount of heat transmitted was 0·583; the first transmitted 0·70 of the heat, and the second film allowed 0·80 of the heat which traversed the first screen to pass through it.

It is possible to form polarisers by means of colloidion films. They may serve both for light and for heat. At the same time they may be dried, or exhausted, as anyone pleases, for the films are apt to break when submitted to an excess of tension. The polarisers are formed by cementing colloidion films upon tiny plates of zinc cut in the form of frames, superposing and inclining the sheets of colloidion at an angle of 30°-35° upon the direction of the rays. They have a transparency much superior to mica, which is usually employed in researches upon heat. If the polarisers are more fragile than those made from mica, they are, on the other hand, more easily repaired.

If two instruments, each composed of six films, are placed to intercept the heat rays, it will be seen that those crossed, in which the planes of incidence are perpendicular, only allow 0·66 part of the heat transmitted by the parallel instruments to go through. By placing nine films before a Nicol's prism, and noting the deviations of the galvanometer when the principal section of the prism is parallel or perpendicular to the plane of polarisation of the films, it is found that the polarised heat consists 0·6 to 0·7 of the pencil transmitted.

The facility with which anybody may construct polarising instruments, and the superiority of these in some respects over those of mica, will, the author thinks, justify their employment in heat investigation.

* Gramma Zambus.
POISONING BY BICHROMATES.

We have more than once called attention to the poisonous action of salts of chromic acid, whether taken internally or absorbed through the skin. A recent case described in the British Medical Journal by Mr. Louis Lewis, M.R.C.S., again calls attention to the importance of caution in relation to the use of this particular substance now familiarly used in photography. In the case in question an operator mistook the yellow-looking solution for pale ale, and took a good draught before he discovered his mistake. Fortunately, medical aid was speedily obtained, and by the prompt administration of sulphate of zinc, till vomiting and purgation had been induced, and subsequent exhibition of olive oil, the patient recovered, remaining, however, very weak for some time, the stomach tolerating the blandest food only.

It may be useful and interesting here to repeat some details we gave in our volume on printing in pigments, on the poisonous action of bichromates generally. Most of our readers know that, taken internally, they are active poisons; but, fortunately, up to the present time, few cases appear to have occurred, or at any rate, to have been placed on record. Dr. Closs, who made a careful investigation into the condition of health of the people engaged in a bichromate manufactory, states that, taken internally, it is not poisonous in such minute doses as cyanide of potassium, about fifteen grains being necessary to cause death in a healthy adult person; but it is in coming in contact with the mucous membrane, or with a slight abrasion of the skin, that its most injurious action is found—obstinate and dangerous ulcerations, issuing occasionally in complete destruction of the part, ensuing. It is to be observed that when used with care, no danger whatever need be apprehended, as it is quite innocuous on the skin when there is no abrasion; no absorption of the poison taking place, except by the mucous membrane, or through a wound of some kind. The important point for photographers to observe is, to avoid contact with the bichromate, where there is any scratch or lesion of the skin, and to avoid contact with the eyes or nostrils with fingers which have recently touched the chromic salt. Dr. Closs says:

This salt (bichromate of potash), in small doses—say a few grains—acts as a purgative; if in larger doses—say fifteen grains—it is a poison. A workman in a factory put some bichromate into a barrel of cider, by way of joke. The cider was rendered dark in colour, but still the other workmen drank of it, and were all affected with severe colic and diarrhoea. Disease of the nostril has been produced by workmen who, having stained their fingers with the salt, have put them into the nose.

In transforming neutral chromate of potash into bichromate, by means of acid, the vapour arising carries with it an infinity of pulverulent molecules of the product, which spread through the workshop. This cloud of particles is easily visible in a ray of sunlight. The molecules inspire a bitter and very disagreeable taste to the palate; but as profuse salivation is the result, the chromate is thrown off in the saliva, and has not time to inflict any permanent injury. If, however, respiration be made through the mouth, the molecules are absorbed, for part which lies on the membrane, creating a violent pricking, suffusion of tears, and irresistible sneezing. In time, the membrane begins to be thrown off, and portions of it are carried into the hindermost used in blowing the nose. This process, once started, goes on so rapidly, that after a period of six or eight days the septum becomes thin, permeated with openings, and is ultimately detached altogether. Snuff-takers escape this evil.

On the skin, in its normal state, and intact, the bichromate exercises no noxious influence; the hand may, in fact, be plunged into a hot concentrated solution of the salt without fear; but the hand may also be covered with the salt for an entire day without any observed effect; but if the skin is torn or abraded, however triflingly—by the prick of a pin, for example—a sharp pain is felt on contact of the salt, and if it be left in contact with the wound, the caustic character of the salt is brought out intensely, the cutaneous tissue is decomposed, and violent inflammation is established. These symptoms are accompanied with intense pain, especially in winter, when the cold is severe. The action of the salt does cease until the cauterisation has penetrated to the bone.

When the skin is abraded, and the bichromate has produced ulceration, the best treatment is to wash the part thoroughly with a feebly alkaline water; then, if inflammatory action follows, to employ calamine, and afterwards freely apply subacetate of lead in solution.

Dr. Taylor recommends, for cases where the poison has been taken internally, emetics and carbonate of magnesium or chalk, mixed with water into the consistency of cream.

A NON-INVERTED IMAGE WHILST FOCUSING.

The old proverb says that use is second nature; but there are some things to which it is possible to become perfectly accustomed without ever feeling them natural or pleasant. One of these is the inverted image of the sitter seen on the ground glass whilst focusing. The portraitist becomes familiar with it, and regards it as inevitable; to the discomfort he may become reconciled, but he is scarcely likely to make the best use of it, and an improvement on it. What the ground down limits his opportunity of estimating the pictorial effect of a multitude of details, which may be of great importance in the final result. Mr. Joseph Byrne, an ingenious photographer at Margate, has not only felt the trouble, discomfort, and other disadvantages involved, but has provided a remedy. The "Re-Optum," as he designates a nother of his inventions, is an invention, which, with certain framework to attach it to the back of the camera, and adjust it to any required position in relation to the ground glass, the image thrown upon which is in a non-inverted position on the Rectum. The effect is surprisingly pleasant and charming: on the perfectly reflecting surface is seen the upright image, apparently more realistic than it is on the ground glass; and as it is viewed flat before the eye before the operation of examining the image with a minuteness impossible before, and with a degree of comfort scarcely to be imagined. The sharpness of every object in the picture becomes easy to examine, and the composition and arrangement are all clearly placed before the eyes, as in an ordinary picture, materially conducing to the production of higher art of the highest order as well as to the removal of cases in focussing hitherto unknown. Mr. C. E. Elliott is agent for Mr. Byrne's clever invention.

THE "HARBOGATE REST."

The head-rest has been, from the earliest days of photographic portraiture, regarded by the public as an instrument of torture—not simply a terror to moving sitter, and a
praise to those who sit well, but an engine of oppression which the malignant photographer applied with Proutesque uniformity to all his victims, protest and entreaty being alike impotent in securing immunity from its iron grip.

"Please do not screw me up!" "I can sit still without that iron thing!" It was that vice which held my head case against plate!" and a hundred similar protest and remarks are familiar to the portraitist, who, however, generally been quite satisfied that the use of the rest was imperative to prevent moving. But it is unfortunately true that the head-rest has been, for many years, more or less an instrument of torture; and, what is worse, it has often been destructive of ease and grace in position, and a forlorn expression of the model as well as a useless feature for the sitter. The old stiff unyielding rod of iron too often rendered it necessary to place the sitter to suit the rest, rather than to bring the means of rest and support to the natural position of the sitter. The true theory of the rest is suggested by its name. An easy, natural, graceful position having been secured, a support or "rest" is required just at that part of the head or body which will support that straight and steadyness of position of the sitter, the utmost pliability in the rest is necessary; and this must be secured without loss of firmness and rigidity, and without unnecessary complication. All the changes of position should be easily made, but absolutely firm support must at the same time be secured.

Considerable improvement in such rests has of late years taken place in the "Hiramic Rest," in its present perfected form, which has been submitted to our attention by Mr. Harvey, Reynolds, and Co. It seems to approach nearest to perfection, having regard to all the requirements of the sitter and the photographer, which we have seen. It is firm and rigid without being cumbersome, and possesses the utmost pliability and adaptability to every position of the model, standing, sitting, or sitting, being at all complex. Every change of position is easily made, and as easily and firmly secured, head and body each receiving comfortable support, not constraint, in almost any position of standing or sitting. A curved slot in the main pillar permits a lateral movement of the rest without disturbing the base, and also permits the rest to be thrown out of the upright, to accommodate leaning or stooping figures in groups and figures for group photographs. In short, the rest, being once placed in a moderately suitable position beside the sitter, will not require to be moved about to accommodate slight changes in position; but, after the model is satisfactorily posed, the several portions of the rest can be quietly brought into contact, and firmly fixed, without the slightest disturbance to the sitter, to whom it will be really a stay and comfort, rather than the irritating source of constraint so often, and not unjustly, objected.

Critical Notices.

In the handsome got up quarto volume before us, Mr. Woodbury's chief aim appears to have been to bring together in one volume a score and a half of pretty photographs of beautiful or interesting places, and so form a useful gift book. There is no connection or sequence in either text or illustrations. A "Street in Cairo" is followed by a "River Scene in Java," that by an Interior of a Mosque in Cordova, and so on; the short detached descriptive chapters by different pens being also without connection or sequence. But this somewhat desultory character is really an element of value in a book intended for the drawing room table, as it makes no demand on continuous reading, whilst it will aid in rendering agreeable many a moanous quart d'heure. The photographs are for the most part good ones, well printed by the photo-relief process; and the brief chapters attached give generally sufficient details to increase the interest of the pictures.

This successful, although comparatively new, competitor for the smiles of the public claims notice in a photographic journal on the double ground that photography plays an important part in the numerous very fine illustrations, and the comic aspects of photography are frequently made subjects of good-humored fun in the new journal. We strongly recommend it to our readers, of the cheapest and best yet issued of the mirth-compelling weeklies. Here is an extract which will amuse our readers:

"The Whistling Photo."

"But the month's whistling. You can almost hear it!"

So one day says the Cliff to Ben the farm photographer.

And the thing's so droll they can't help laughing over it, and wanting to know how it came about. So I may as well set down the story, once for all.

It was a hot July day, and our village was baking in the sun.

The heat made us all lazy and dozy, and the look out for anything that might happen, when all of a sudden the whole place was woke up."

There was a hearse on the Green!"

We couldn't believe our eyes. Nobody was dead. There hadn't been a funeral thereabouts for six months. What did it mean? Nobody had an idea. But there was the hearse. No mistake about it. And what made it the more surprising was that the horse in the shafts was white, with spots like wafers all over it—not what under-taken a horse would usually like.

You may be sure we flocked out to see what it all meant, and a white-faced man in a black cloak, who was sitting the nose bag on, looked up, bright and smiling, as we gathered about him.

"So it's you, I thought," he said, "that drew you, ha!

"What 'dey mean by 'drawed us'?" demanded the landlord of our inn—the Blue Boy and Spud.

"Ha, ha!" cried the pale man, throwing off the black cloak. "I'm an artist, I am, and I've got to draw my customers before I photograph 'em. Now there's nothing fetches 'em out like this travelling convenience"—pointing to the hearse. "Whenever they see it in any village, they're sure something's up; and as it seems to be a weakness of human nature to take an interest in seeing friends and relatives buried off and out of the way, I'm never long in getting round me an intelligent and enlightened assembly like that which I have now the honour of submitting specimen of my art, "Aft-a-crown—shilling—sixpence."

He had taken from under his cloak, as he was speaking, small caskets in cases, and now handed them round. Then he proceeded to open the door of the hearse, and to drag therefrom a camera, the stand for it, and a number of articles useful in his art.

"Handy, you see," he remarked, still in reference to the hearse, "so carry things in, as well as to get the best thing in the world for a dark-room—the original one, in fact."

Talking on, he had by this time ripped up his camera, brought out the little box with the prepared plates in it, and was ready for a customer. We were taken with the humour of the man, but all a little shy. But out comes Matt Jones from the Blue Boy, striding along with that viscous bull-terrier of his at his heels.

"I'm on, man," says the man. "I'm on!"

"Certainly, sir, certainly!" says the pale man, looking about with an air of business; "take the camp-stool, sir, and sit here—just here, and I'll do. Stool, please.

He laid his hands on Jones's big broad shoulders to get him into position, and as he did so an ominous growl from the bull-terrier was audible.

"Lie down, Growler!" cried Jones, and the growl subsided.

The artist retreated to the camera, made his preparations, and was ready to begin. His head disappeared under the black cloth.

"'Steady, sir," said he, reappearing, and throwing himself into an attitude, "please to fix this thing for a minute, and I'll do a little more straighter—that's it. Now, perfectly still, please, till I tell you."

The expression which at that moment came into Jones's face was curious to behold. He was afraid to move his head, but even without doing so he could perceive a suggestive movement on the part of Growler. He saw that treacherous beast, who seemed for the first time to have taken a kindly interest in the artist, advancing toward the thrust-back calf of that individual, who stood watch in hand. It was a critical moment. Jones didn't like
to spoil the chance of a good likeness by calling out "Down, Growler!" and for the same reason he didn't care to let the beast fix on to the tempting calf. A compromise suggested itself. He gave a low whistle, without moving his lips, as he believed, and the dog hesitated; he ventured on a louder, and the brute glared at him; a louder yet, and he slunk back.

"But the artist had seen the lips twist.

"Confound it, sir!" he cried out, raising his arms in a passion, your whistling'll spoil all, you.

A yell ended the sentence. Growler had spoilt it. Believing that an artist was meditating, he had darted forward and fixed his teeth in the plumpest part of the tempting calf. Down went the artist, down came the camera, forward darted Jones, and through and over the dog, and the smashed apparatus were all mixed up in the wild struggle on the ground. It was a minute or more before Growler could be beaten off, and when his victim was released from his fangs he was not in a state to take more portraits that day.

Next morning the beast was gone, and, strangely enough, has never been seen there since.

But Jones had secured his picture—his mouth distorted with the whistle in it; and there it hangs in the bar of the Blue Boy and Spud, known to everybody as the Whistling Photo.

FRENCH CORRESPONDENCE.

DUOUC DU HAURON'S HELIOCROMIC PROCESS—VANDER WEYDE'S NEW METHOD OF LIGHTING—BOYMIA AND VIDAUX'S PHOTOGRAPHIC MANUALS.

While M. Leon Vidal is preparing for the practical working of his heliocromatic process in the establishment of the **Moniteur Universel**, M. Ducou du Hauron, whose name is also familiar to your readers as a worker in the same line, has continued his investigations into the prove his process by a method different from the one he lent to the composition of the late collodion, and rendered it sensitive to the red and green rays.

As to the pigmented papers, yellow, red, and blue, which he employs for the production of his prints, M. Ducou du Hauron prepares them in the manner following:

In making the red paper, he dissolves ten grammes of carnate in a litre of ammonia, which is poured into a green bath. After several hours, when the ammonia has reacted so as to leave scarcely any odour behind, he adds rain water in sufficient quantity to fill up the original measure again. Then he takes sixty-five cubic centimetres of the solution, adds thirty-five cubic centimetres of rain water, allows about fifteen grammes of soluble gelatine to soak in the same for an hour, adds one gramm of sugar, and makes a solution of the above in a water bath heated to 50° or 60° Cent. He then filters the mixture, still warm, by the water bath; and, finally, he pours into a graduated glass measure the quantity of mixture necessary to cover the sheet of paper, the latter being put upon a glass plate previously to the mixture being poured over it. When the gelatine has set, the paper is taken from the glass plate, and put to dry in a stove, the temperature of which is constantly kept between 18° and 22° Cent. To prevent the paper, from contracting, it is placed, whilst drying, between a pad of blotting-paper and a wooden frame, the weight of which is sufficient to maintain it in a flat condition.

To prepare the yellow pigmented paper, M. Ducou du Hauron pours in a mortar twenty-five grammes of clear chrome yellow (water colour), adding by degrees rain water, until they are reduced into one hundred and seven grammes of this liquid (which is shaken up before it is used) put fifteen grammes of gelatine and one gramm of sugar; and, after this has remained for an hour, you proceed exactly as above.

For the Prussian blue pigment paper, M. Ducou simply employs the permanent blue ink of commerce (15 cuts. cent. m. 80 c.c. of rain water), and he proceeds to treat this exactly the same manner as the red and yellow pigmented paper.

The three papers thus prepared are sensitized in a bath composed of 100 grammes of bichromate of potash reduced to powder, dissolved in a litre of water. A little ammonia is added by degrees, the mixture being stirred the while until the dark-yellow colour of the solution becomes really clear. To be quite sure that the whole of the bichromate of potash is combined with the ammonia, an excess of the latter is added, the odour of which indicates when there is no further combination taking place. According as the weather is warmer or colder, twenty to fifty grammes of sugar are added to the bath per litre of solution.

The period of immersion of the pigmented paper in the sensitizing bath varies also with the temperature of the locality in which the operation takes place, the gelatine absorbing far more liquid in a given time in hot than in cold weather. The immersion should take from two to five minutes.

When the pigmented tissue has been printed under one of the negatives, it is covered with a slight film of normal collodion (five grammes of pyroxil dissolved in 100 cts. centimeters of a mixture of ether and alcohol), and after desiccation the sheet is plunged into a cold water bath, at the bottom of which is placed a glass plate covered with a thin film of wax. The glass and the paper are withdrawn together, the gelatined side of the latter being in contact with the waxed surface, and their perfect adherence is further assured by employing an Indian-rubber squeegee. After a few moments the hot water has been in contact with the glass and the paper are plunged into water moderately warm contained in a zinc bath placed upon an oven. The paper soon becomes detached, and the developed image remains upon the glass.

To transport successively to the same sheet of paper the three monochromes, red, blue, and yellow, thus obtained are printed on different glasses following the same process.

An alcohol bath is first prepared by mixing two parts by volume of alcohol at 31° with one part of water. This solution is poured into a horizontal bath, and a glass plate bearing the yellow monochrome is plunged into it, together with a sheet of gelatined paper; after a few minutes the glass is taken out, together with the sheet of paper, maintained in contact by a thumb and index finger of the hand as close to the gelatine facing. A rubber squeegee makes adherence more complete, and after it is thoroughly dry the image adhering to the paper leaves the glass plate. If the separation is not effected at once, however, the glass plate is slightly warmed, when the yellow image detaches itself with ease by lifting one of the corners.

To dissolve away the collodion and the traces of wax adhering to the monochromes, these are immersed for an instant in an alcohol and ether bath. When the ether and alcohol absorbed by the paper have evaporated, M. Ducou proceeds to the application of the yellow monochrome to the blue one. To do this, he immerses in the alcohol bath of 60°, which has already been employed in the process, the glass carrying the blue monochrome, and the paper bearing the yellow monochrome; and after a few moments they are mixed together. In the presence of the light, the separation being then proceeded with as above. In this case, however, it is necessary to pay attention that the outlines of the objects coincide; this is done by looking at the prints as transparencies, and drawing one gradually over the other, an operation that is facilitated by the circumstance that one print is upon paper, and the other upon glass. The operation being thus accomplished, the aden is effected in the same way as before, and afterwards the third monochrome image, the red one, is superposed on the other two in the same way. The compound print is finally mounted on Bristol board; but before this last operation it is well to immerse the image for a few minutes in an alum bath, which, among other advantages, has that of rendering the curmatine perfectly permanent. The paper which serves for the definite support should be well faced
with gelatine, and for this purpose a ten per cent. solution is used.

The mode of printing which has just been described may, as M. Ducos du Hauron observes, be applied to the production of heliochromes upon glass—that is to say, vitrines, stained windows, and the like. To secure perfect adhesion of this emulsion is only necessary, after having produced a heliochrome upon paper, to immerse it in an alcohol bath as above, and to ensure adherence in the way already described, the glass having previously received a very thin film of gelatine treated in alum.

It is obvious that the whole series of operations here described is very ingenuous, and evidently M. Ducos du Hauron has made much progress since his first publication on the subject. The working of this invention, however, is still difficult, complicated, and requires important simplifications before it can be worked practically. We know, too, that the intelligence and activity of the inventor will speedily overcome the difficulties that now attend the operations, and which at present render any industrial use of the process impossible.

I received this week a visit from Mr. Vander Weyde, who desires to make known to French photographers his new method of lighting studios. He is already in communication with one of our principal portraitists for the establishment of a model studio where his patent may be worked and exploited. The invention, of which he has already communicated to me the principal points, is of most ingenuous and very successful. Mr. Ernest Boivin, of Marseilles, whose communications I have on several occasions reproduced in these columns, is going to produce a work very shortly which will certainly be well received by photographers, for it will contain a résumé of the process which has lately taken place in the production of negatives by the dry-plate process, and in printing in carbon. These are both of them subjects which are at present pregnant with importance, and the present operators with a summary of the improvements accomplished recently in these two branches of the art, M. Boivin will render a sensible service.

It appears that M. Leon Vidal is also engaged in preparing a new and enlarged edition of his excellent manual of carbon printing.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER II.

The manipulations of the dark room are so important, and their success is dependent on some apparently trivial circumstances, that it will be well for us to use all the time and attention the subject of this department, how to secure a room as nearly perfect as possible. In many cases, of course, the room is already set out and fitted up according to the ideas of some former tenant; or, if building for yourself, it may be found that your ideas must be modified considerably to suit the accommodation at your disposal. It must be an idea for a dark-room as a whole, and leave it to the intelligence of the reader to follow it with such modifications as circumstances demand, or its ingenuity devises.

It should certainly be in the immediate vicinity of the skylight, for quickness and success of working; and this consideration should outweigh many even grave objections to its immediately adjoining the glass house. So many dark rooms are to be found that are thoroughly unsuitable to the purpose for which they are designed (?), that if the reader has ever attempted to work in them he will recognize the great necessity for placing it certainly on the same floor as the glass house, and easy of access.

The room should be wholly lined with wood closely fitted, and without crack or aperture to admit scintillating light. The ceiling should be painted in, to allow of dust and dirt being wiped off as occasion may require. Do not fall into the fond error that shelves are "so handy." A shelf for the plate-holders, one for the glass plates and collodion pouring-bottles, and one handy to the sink for the developer and strengthening solutions, are as many as you require; others only harbour dust, and tempt you to make use of the dark room as a common receptacle for rubbish. Everything like chemicals, bottles, and negative papers, &c., &c., must be banished—everything but that immediately appertaining to your work. Dust is one of your most insidious enemies, therefore you paint your walls and ceiling, because paint does not retain it so readily as paper and rough wood, and is easily cleaned, consequently you are not constantly troubled with dust falling from walls and ceiling. For the same reason you have only those shelves you absolutely require, they being easily kept clean and you are not tempted to bring round you a choice collection of rubbish.

The size of the room is a very important consideration. Let it be as small as possible, consistent with comfort; one eight feet by ten or eleven ought to be ample for almost any amount of work. This room should be kept most scrupulously clean, and for this purpose a mop should be used every morning to clean the floor. Sweeping is not tolerateable, as it raises dust that troubles you long after the operation. A sash about two feet square, glazed with orange yellow glass, should be let in immediately over the tank, the light of which allows you to watch the development of your plate. See that this window is neither too high, rendering it useless, nor too low for comfort, so as to be out of your reach and. Cooling and health are things which should be studied in photographers' quarters, as there is quite enough to try the patience and constitution. The sash is to be provided with glass or shutters, light frames covered with yellow paper, that may be easily let down to cover the window when it is necessary to shut out a portion of the light. By all means have a window which is openable when not in use, for the purpose of ventilating the room.

Where it is not possible to have a window at which to develop, the only thing left to you is to have a shaded gas-burner fixed a little lower than the level of the plate in your hand. The shelf for the plate-holders should be covered with several thicknesses of blotting-paper to catch any drippings of silver (which should be few) from the plates. These sheets, when they are taken up as being dirty or full of silver, to be sent to the assayer to extract the silver, and fresh ones put in their place.

The tank should be of sufficient capacity for a day's work, that all the washings may be kept till the end of the day to be precipitated, and to allow of the clear water to be drawn off the first thing in the morning. The tank may be about three feet high, and rest on the floor, eighteen inches in width, so that the window, the illumination of which aids you in determining the development, may not be too far off, and as long as you can spare space for. The water with which you wash off the developer at the point of proper delineation is admitted from a reservoir by a pipe holding the tap placed conveniently under control, which should admit of a clear and plentiful stream running down the back of the plate. This should also be fixed another tap with a little tray, independent of the main tank, at which you can wash the negative when fixed, the soda or cyanide washings being carried away without passing into the tank. But of this, further when the subject of manipulation engages our attention. The tank should be fixed with a false bottom, making a tray eighteen inches deep, and the reception of used glasses. This false bottom is perforated with holes, through which the water is running the tray dry; below is fitted a waste pipe let into the tank about a foot from the bottom, the end inside the tank being carried down to within two inches of the bottom, by which means, in letting off the waste, the silver deposit at the bottom of the tank is not disturbed. Of course it will be seen that for this pipe to empty the tank to the level of the end inside the tank it must be lowered on the outside of the same level fitted with a tap, that the wash...
ings may be retained till they can be precipitated with a saturated solution of copperas, a common salt of iron.

The accompanying little sketch will explain the arrangement of the tank, which must of course be perfectly watertight. T T are the taps at which the negative is washed.

that over tray C for the negative after development, the washings running into the tank; and the tap T over tray marked B, for washing the negative after fixation, the washings of which run away down the pipe indicated (A) on the left of the diagram. The pipe on the right (W P) is the waste pipe of the tank, the tap (D) at the bottom retaining the contents of the tank till it has been precipitated with the saturated solution of copperas.

The dark room should be kept as nearly as possible at an average, comfortable temperature all the year round, as much for the sake of the work as of the worker. A little stove should be fitted in the winter to warm the room to about 60°, and in summer the operator should seek by means of ventilation to keep the thermometer from ranging into the eighties and nineties.

Much trouble is saved, and good order assured, by having an apartment appropriated to the purposes of a chemical room, in which to boil baths, clean and albumenise glass (if you decide on accepting my suggestions in favour of this latter operation), and for keeping chemicals, bottles, graduates, funnies, &c., &c. A small cupboard may be fitted for the reception of the various chemicals; separate utensils, bottles, and funnels should be used for the various solutions, and should be kept to their proper use. Let all your bottles be kept clean, and be neatly labelled.

THE WOODBURY PROCESS.

BY W. R. BAYNE.

The process I am about to describe is one which it is my firm conviction is destined to play a most important part in the future of photography. As a discovery it will rank in importance next to that of the collodion process, and will link the name of Woodbury with those of our greatest discoverers. In printing operations it will ultimately prove as great a boon as collodion did in the negative processes of old.

The principles involved in the process are few and simple, and they ought to prove a lesson to us as to what may be produced with genius from apparently insignificant means.

The essence of the Woodburytype is a fact well known to us all, and has proved to be the starting-point of more printing processes than I could enumerate in the time at my disposal. I refer to the circumstances that gelatine and other analogous substances, when a bichromate is added thereto, become insoluble under the influence of light.

A moment's reflection on this will show that a layer of such a bichromated gelatine will, after the unequal action of light and subsequent solution of the soluble portions, present a film of varying thickness. Suppose, for instance, I had a film of this nature, and upon it I placed, say, a penny (an article, by the way, more familiar than a five-pound note), and then exposed the whole to the action of light; clearly, all the portions but that covered by the coin would have become insoluble; and were I to dissolve away this covered portion I should have as a result a hollow disc corresponding in size to a penny, and, as a master of course, raised portions all round. Now this action is found to bear an exact but inverse relation to the density of the negative; in other words, the action is greatest in the parts under the clear portions of the negative, less under the half-tones, and so on, until the parts protected by opacity are totally unaffected. Thus not only would a negative be represented on such a film or tissue in raised and sunken portions, but the deviations and hollows would also bear a perfect relation in relief to the shadows and lights of the negative.

As it may aptly be termed the "back bone" of the process, I will proceed to enter more minutely therein under the heading of the "relief." A bichromate is intimately mixed with a quantity of gelatine and water, and this is poured upon a plate as a support, and dried. This, as you will perceive, is similar to sensitised carbon tissue minus the colouring matter. With talc as a substitute for the paper the use of the transparent support will soon be obvious; other media besides talc may be, and are, used. The drying of these films is a troublesome operation; but, let this process once come fairly into play, and a little pressure on the rollers will bring into the market a tissue with paper as a support to be sensitised, dried, and developed like a carbon print.

Now suppose ourselves in possession of a film of this kind on talc, of which I must know the means for printing the same. You are all aware of the necessity for developing from the back in the case of carbon printing in order to preserve half-tone, and as we are dealing with similar materials it would be a waste of time to point out the necessity of the same rule being observed here. The use of the talc now appears. Being transparent it enables you to print from the back, and thus save transferring; so we will suppose the talc and gelatine placed in contact with the negative, from which it is desired to obtain the relief.

Now comes a most important point—one which, unless attention be paid to it, will bring about certain failure. I can best illustrate it in a manner familiar to us all. When it is desired to print a vignette, to produce this effect a piece of onedothboard with a suitable print is used. We all know the result of placing it in the direct rays of the sun. You obtain thereby a tolerably sharp counterpart on your sensitised paper of the opening in the cardboard, with your picture, perhaps, struggling in at one side—an effect which cannot be pronounced either neat or gaudy; yet, when the same arrangement is printed in diffused light—or, as it is termed, "in the shade"—quite another effect is the result. How about it? It is quite difficult to explain, and, indeed, would it be necessary to attempt to explain an effect the cause of which is so obvious.

Now let us return to our negative with the sensitised film in contact, and examine it. Obviously the gelatine has an appreciable thickness, and parts of the relief are, therefore, formed at some distance from the negative. Your attention need not be drawn to this circumstance to see that if diffused light were used for printing a relief, the result would be more or less indistinct, and hence only parallel rays must be used in order to obtain a sharp image. This condition may be complied with if you print in the sun, of course keeping out diffused light. Artificial light may be employed. Mr. Woodbury used the electric light, which, however, will be found costly to fit up, besides increasing the exposure considerably. Whenever the relief is produced the effect after development is such as you now hold in your hands.

We now proceed to the production of the mould. At first electrotyping was employed; but this was superseded by the discovery of Mr. Woodbury that hydraulic pressure might be used. The delicate gelatine relief is placed in contact with a plate of metal, and these, placed between two perfectly true steel plates, are then placed in a press and subjected to a pressure of about four horse-power. It is my opinion, that it is here where the chief difficulty hitherto operating in the non-application of this
method of printing is to be found. The hydraulic press is a piece of apparatus few, indeed, would add to their plant. If ever the photo-relief process becomes generally employed, one of two things must take place; either some firm will undertake to make the moulds, or some method better suited for general application must be employed. To this latter point we will devote a little time. Casting in wax, sulphur, and other analogous bodies, is not to be despised. A gentleman (and, I care I now remember his name) has called attention to the use of sealing-wax, and shortly after doing so gave a very valuable method whereby moulds can be easily made with a piece of apparatus which many of us have discarded— I mean a rolling-press. A piece of soft type metal was placed in a shallow steel box so as to allow of the type metal projecting slightly above the edge. Upon this was placed the relief, and a steel plate again upon the whole, and run through the ordinary rolling-press. A moment’s reflection will show that no distortion can take place if care be taken not to have too much metal projecting.

Again: Mr. Woodbury names a means, included in a recent patent, where tinfoil is pressed into the hollows of a relief, and this is again backed with a suitable material. I have not seen any production of this kind, but think they must be similar to those patented by Mr. Dallas in 1866, as he says:—"I also mould with tin, lead, or other metal foil by beating it with a brush," and then some adhesive material is pressed well upon it. He further says:—"Sunk surfaces prepared accordingly to my invention may be employed to produce prints with half-tints." After describing the method, he says:—"This method of printing is now known as photo-relief printing." Perhaps you have had enough of the "relief," and to relieve you I will treat of the last point, viz., the printing, which I can put into a very few words.

The principle involved in this operation is, that varying thicknesses of a semi-transparent material give corresponding variety in the depth of tone; so that if a mould be filled with a semi-transparent mixture, but portions which occupy the hollows pressed out, and a material be furnished to which the ink will adhere, the result would be a print in perfect half-tone. This is what is done in the process now under discussion, and some results of which you now see. My object is accomplished if I have turned attention to the most valuable process not in general use—a process destined to mark a new era in our art.

Correspondence.

WASHING PRINTS.

Dear Sir,—Will you allow me space in your News as regards the final washing of photographic prints? I will give a plan I have used for the last year, which, although a very old one, is a first-rate plan. After the prints are removed from the hypo, I place them in a pail of water with some chloride of sodium (common salt) for five minutes, and then I place them on a glass slab large enough to hold eighteen cabinets, and dab them; then take them up, swill the slab, dab the back, and then dry them. This is an excellent plan, although old. I have three glass slabs, so I and my assistants can wash fifty-four in a very short time.—I am, dear sir, yours truly, C. R. R. VERSON.

Grafton Underwood, Kettering.

PHOTOGRAPHY IN DEVONSHIRE.

Sir,—A good suggestion was made in the Year-Book as to the publication of a photographers’ guide-book to interesting scenery. I trust some one will adopt the suggestion, and supply a real want. In the meantime, would you or any of your readers give me any kind of photographic information about the north of Devonshire? I should feel greatly obliged for information as to the central place for a few weeks’ stay, within easy reach of good subjects, together with any notes or hints, the result of personal experience.

Such information would probably be interesting to others of your readers. I would gladly, in return, give Continental notes to any requiring such.—Faithfully yours, W. A. C. A.

Proceedings of Societies.

WEST RIDING OF YORKSHIRE PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of the above Society was held at the Victoria Hotel, Bradford, on Monday, the 8th instant, the President, Mr. J. W. Goulston, in the chair.

The minutes of the previous meeting were read and confirmed.

The Chairman proposed" 'That a sale and exchange list, for members' use only, be issued with each monthly notice of meeting, and that each notice of any article for sale or exchange be subject to a charge of threepence for the first eighteen words, and three-pence for each extra nine words.'

Mr. A. W. Birk seconded the motion.

Mr. Moir most heartily supported the resolution, remarking that it would be much more satisfactory to know the persons whom they were having transactions with besides there being a possible opportunity of seeing the article offered. He had on more than one occasion exchanged through the medium of an advertising journal, and been victimized. There was no means of redress.

Other members expressed their approbation, and the motion being put to the meeting, the chairman for the time being, it was unanimously carried.

The following gentlemen were then elected members:—Messrs. Braithwaite (Leeds), Gunson (Bradford), and Appleby (Brighouse).

Mr. Howarth then exhibited to the Society, by request, a model of his stove for heating studios, which he had inspected with much interest by the members. He (Mr. Howarth) taking it to pieces and explaining the principles of its construction.

Mr. W. E. Batho laid on the table the three carbon prints referred to in his communication on the continuating action of light in carbon printing (see Photographic Journal, March 20), which were handed round, the general opinion being that there was no material difference in the three prints. After some desultory conversation therupon, he (Mr. Batho) read a paper on "The Woodbury Process" (see page 214). A number of reliefs and copies from prints by the eminent firm of M. Godard, were handed round for the members' inspection, the prints being pronounced by several to be equal to silver prints.

In reply to a question by a Member, Mr. Batho stated that the pressure required for the production of the relief was very constant, being estimated by some at about four tons to the square inch, but he believed the prints handed round were produced with a pressure of a hundred tons, which was considerably under the other estimate.

On a Member inquiring if lead would answer for making the relief, Mr. Batho said it did not, but he said that it was not so much a matter of £ s. d. as the advancement of the art, and photographers should devote more time and attention to them.

Mr. Wormald said it was a matter of £ s. d. to most photographers. The process, he said, although carried out very considerably, was out of reach of mechanical appliances, hydraulic presses, &c. If any one could be found who would undertake the making of the reliefs it would be a different matter.

In reply to several remarks, Mr. Batho said the Woodbury process was not more difficult than any other of the methods of reproduction; but of course it required some amount of practice.

The Chairman remarked that one great difficulty with many photographers was that they received information regarding these processes by instalments, and thus did not get to know them sufficiently well. If the method was published in a concise and practical form, no doubt more attention would be given to it. A hearty vote of thanks was accorded to Mr. Batho for his very interesting paper.

Mr. Batho, in replying, made several remarks regarding the method of doing business. He was of opinion that photographers ought to discard the traditional dozen cartes, and
endavor to get larger orders, and thus mechanical printing processes would be found economical.

Mr. Berson said that there would be some difficulty in persuading the public to change its method of doing business; it had been tried by most of the photographers of reputation. He believed Mr. Sarony had tried the experiment. He had commenced doing carte portraits at thirty for £1, but he had returned to the dozen.

Mr. Wake had also tried departing from the generally-accepted method by charging for the negatives, irrespective of what number of pictures might be taken. For the first negative he charged 5s. 6d., for the second 2s. 6d., and for further negatives 1s. 6d. each; but he had not found it pay. The matter lay more with the public than with the photographer, and so long as the public chose to abide by the present method of doing business, the photographer must acquiesce.

Mr. Berson asked if any member had tried the addition of methyl alcohol to the developer, instead of the ordinary methylated spirits of wine. He (Mr. Berson) had been using it according to a formula given in the Photographic News for February 12, and had found considerable advantage in its use during the late dull weather. He was of opinion that there was a gain of almost one-half in shortness of exposure.

Mr. Afflloyd said he had also tried it, and had found a similar advantage, though he scarcely thought to the same extent as Mr. Berson had experienced.

After a little further conversation the meeting was adjourned.

Talk in the Studio.

The Royal Academy.—It is understood to be extremely probable that the Royal Academicians will, at an early meeting of the Council, take steps in furtherance of the long-since proposed reform in the constitution of the body, by adding at least ten Associates to the number established about three generations ago. Undoubtedly this will be a reform in the right direction, and it will certainly be very popular with artists, a considerable number of whom will expect to be elected forthwith. Of course it is understood that the proposed ten new A. R. A.'s will belong to a distinct class, and will not share the duplicate system of life, and pension fund of the Academy. We suppose this fund, although a considerable one, would not support so great a new demand as the reverse of this supposition would imply.—Athenaeum.

To Persons about to Marry.—The new humorous and satirical journal issued at Tunbridge Wells, the Moppee, in a capital article on brides and bridecakes, has a practical suggestion which we believe will be of use to all who wish to marry. It proceeds thus:

"Here is a note to all those who are about to marry.

"Pray don't let the word out, but we have found a sure plan which never fails. When the bride is in her best, ask her to stand in a lighted room, and say, 'If you don't like the dress, the pleats and the accessories, we will do as you please.'

"We have found that this plan always works, and never fails, and we hope this will be of use to all who are about to marry."

No Correspondents.

VENATOR.—The flux mentioned will answer your purpose well. The article is altogether a good and practical one, and you may keep it for future use.

Mr. Angel.—We are receiving the details of your method of making a bellows for a camera. Of course the first the photographer desires the thanks of the society, rather than those who retain for their own private improvements which they work out.

GALA.—The yellow spots are without a doubt due to the bromide powder used in the "gold" printing on the cards. The "inhibitor" used with the bromiding machine would not have any very good effect. A very slow effect, but no reason for concern. The bromiding process would aid in distributing the injurious particles of bromine over the surface of the prints.

A READER (ALAN C.)—It is scarcely probable that you could observe any very great effect by examining a year's negatives for this one year, and printing and printing in the pressure-frame, to produce a negative, etc., etc. It is probable that both surface and texture would be irregular, and produce greater results for the first time. It is sufficient printing force in such images. You will do wisely to present the recognized beaten track of photography until you have mastered the technical details, and acquired manipulating skill; then you will have the advantage of improper experiment and try novel plans. It is not necessary or desirable to tone a paper negative at all, as the brown tint produced by simple fixing in the hypo bath is best for negative purposes. Paper prints may be fixed.

Cadmium.—If the surface of the Daguerreotype have been scratched by the rubbing to which you refer, there are no means of restoring its pristine beauty. Washing with a weak solution of an aqueous solution of potassium will remove the tarnished effect which sometimes follows exposure on a Daguerreotype; but, if possible, you should entrust the work to a photographer who is familiar with the treatment of damaged plates.

LEROY.—The spot on the negative to which you refer is what is commonly known as a comet, and is probably due to the colloid, in some insulated or unexposed particle has been present. Similar colodium iodized with iodide of potassium is very liable to this trouble, small particles of the salt, or impurities in the salt, remaining in suspension in the colloid, and causing insipid appearance with tails; the tail itself generally running in the direction that the colloid flowed on the plate.

PYRO (1.)—We have published many formulae for retouching various kinds of prints, and instructions for the mode of using them. We cannot with propriety occupy the columns of the Photographic News in the future with such instructions. A very good varnish of the kind may be made by dissolving thirty grains of gum dammar in an ounce of spirits of turpentine. In recent Year-Books you will find many formulae of the kind.

ONE IN THE TRADE.—Mr. York added five grains of nitrate of silver to each ounce, and found that answer. It has, we believe, a tendency to gradually increase the density of the picture. It is one of the general experience teaches, injure sensitiveness. Acetate of iron gives intensity, but does not permit of decreased exposure. It is only desirable to use it when there is difficulty of getting sufficient intensity. If you wish to use it, you must prepare it yourself. The addition of a drop or two of liquid ammonia to the ordinary iron developer containing acetate of iron will form a portion of acetate of iron in the solution, as will also the addition of acetate of soda. It may be made by adding a solution of acetate of lead to a solution of sulphate of iron, filtering out the sulphate of lead, and treating the acetate of iron with the solution of the developer. They are, in our opinion, an improvement; and if added in a very large proportion, the proportion of the acetate of iron may be reduced.

YOUNG BEGINNER.—It is difficult to answer your question as to the amount of possible study at a good school. You will, of course, be much the better of the experience which you gain, but much the worse of the experience which you lose. As much depends on the standard of excellence you set up. If your means and space impose limits, you may do good work in a house 15 by 10 feet, using a good quarter-plate lens. No. 2 or 3 of the lenses you name will answer for views and general purposes.

P. M. SUTCLIFFE.—We have on more than one occasion met with cases in which photographs printed with India-rubber solution in an album have been discoloured. The India-rubber itself undergoes decomposition, and acquires the character of a brown resin. The prints you enclose have precisely the character of those to which you refer. The yellowness, or brown tint, is not the ordinary type of photographic fade, but is the result of decomposition of the India-rubber, which had partly permeated the substance of the print. One of the best mounting materials we know for the protection of photographs is a 30% alcohol solution of gelatine which we described some time ago, and which is sold under various names, such as "Parlour Paste". "Marion's Mounting Solution," &c.

ASSUR.—The experience you relate is annoying and perplexing; but it is difficult to suggest a remedy, unless you are prepared to recover the silver from your residues yourself. We shall have something more to say on the subject in our next.

B. SLADE.—We have forwarded the address.

PERPLEXED.—It will be impossible to do really fine work regularly in such a studio as you describe. The lighting of the spacious entrance is certainly very good, but you may work much out of focus. The best plan you can adopt will be to have a very complete system of blind to cover at will the east side and half the top on the same side, and the west side and half the top on the opposite side, using the room in the afternoon. Tissue-paper or tracing-cloth answers best for keeping direct sunlight.

Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO

Photography and Wood Engraving—The New Foreign Fellows of the Royal Society—Absolute Alcohol.

Photography and Wood Engraving.—Nothing seems easier to a photographer than to produce an image upon a wood block for engraving, and yet, practically, there are few more difficult operations he can have to do with. The print is required sharply limned upon the box-wood block, so that the engraver may see every detail of the picture, this being especially necessary if the image is not the reproduction of a drawing, but an object from nature. In the latter case, there are no lines shown, but only dark and light tones, and a very good cutter indeed is necessary, who must himself be a bit of an artist in order to reproduce by lines, sufficiently thick and close together, the dark tones of a photograph under his hands. One very serious difficulty occurs at the outset, and that is the expansion of the block in water or a liquid of some kind. In order that the block should not suffer by such treatment, one of very good quality must be selected, consisting of three or four centres, well fixed together. If the block is to be coated with a thin film of albumen, or some such material, first of all, it is of course necessary that the surface should be wetted; and the same holds good if a carbon image is to be developed on or transferred upon the surface of the wood block, by some ordinary procedure. In doing this, there would be no absolute need for moistening the surface. Unfortunately, the wood engraver dislikes any trace of grease upon his block before it is cut, and if any assistance from a draughtsman's pencil is necessary, no touching can obviously be done upon a greasy surface. There is also an objection to the albumenising of the block, for if there happens to be any water on the wood, the cutter cannot produce a clean picture. One is therefore beset with difficulties as soon as work practically begins. Recently we have been experimenting once more in the matter, and this time we have laid aside the albumen printing method, and employed the carbon process. The former involves steeping the wood in liquids two or three times, and if the surface has warped in the slightest degree after sensitising, then it becomes impossible to set the contact between the cliché and the wood block, any undue pressure simply resulting in the fracture of the glass plate. It was impossible, we found, to apply a film of collodion or rubber dissolved in benzol to the wood surface first of all, in order to protect this from the action of warm water when it came to the development of the carbon print, for although, when dry, a good enough film is produced over the wood, it invariably gave way as soon as it came into contact with hot water. It was desirable, too, that the wood-block should be whitened a bit in the first place, and when either of these liquids was applied after a little powdered chalk had been rubbed on, the adhesion was less perfect than before. Next, gelatine was employed with the chalk, and alum added to make it insoluble, but the result was a film of too decided a character, although very fair image was secured in this way. A better result we were enabled to get by using a paste made up of fine chalk and sizing preparation, that sold by Newman, of Soho Square, being the particular material we employed. This white paste was rubbed well into the wood, and, when perfectly dry, brushed off with a soft brush. In this way the pores of the wood were filled with particles of chalk which were cemented in by the sizing, the latter, moreover, protecting the wood when put into warm water. A bit of carbon tissue that had been impressed under a cliché was swollen in cold water, and then pressed against the wood-block thus treated, and after a few minutes the image was developed in warm water as usual. The result was a perfect image upon the whitened block, which seemed to have been rendered impervious to water by the sizing and chalk applied to the surface. There was, moreover, no film to interfere with the cutting, and retouching subsequently with the artist's pencil over one or two flaws was a matter of no difficulty. In our case, it was a foreign woodblock that had to be reproduced, and therefore the cutter experienced no difficulty in cutting, any more than in the case of the original, except that the reproduction being a little smaller, the lines of the picture were somewhat finer. On development the pigment lines appeared thicker than they should be, but on drying they diminished in a great degree.

The New Foreign Fellows of the Royal Society.—If the Royal Society have not this year selected any Fellows connected with photography from among scientific men at home, it has honoured several foreign gentlemen of distinction, whose names are household words among us. There is, first of all, that veteran in photographic science, M. Fizeau, of the French Academy, whose name has been associated with our art ever since the days of Daguerre. Every novelty in photography, or memoir concerning it, that is presented to the Academy of Sciences, is almost, as a matter of course, first of all referred to M. Fizeau for his opinion, for no one knows better than he what is new and important in photography. Then comes M. Janssen, who, it will be remembered, discovered, simultaneously with Mr. Norman Lockyer, the fact that the protuberances of the sun can be seen during solar eclipses as well as during an eclipse, and who, for the past five years, has headed the French expedition that has been making spectroscopic and photographic observations of an astronomical character. During the siege of Paris he escaped from that capital with all his scientific apparatus in a balloon, proceeding to the Mediterranean to undertake an observation of some importance. Another new Fellow of the Royal Society is the German chemist, M. Kirchhoff, whose spectrum work is world-renowned, and he was one of the first, in conjunction with Bunsen, to draw up a concise spectrum table. Another German chemist of note, Kekulé, is also included in the list.

Absolute Alcohol.—A method of preparing absolute alcohol has been recently suggested by Mr. J. L. Smith, in the Chemical News. Photographers are aware that commercial absolute alcohol contains more than 98 to 99 per cent.; and the fluid of this kind is easily procured by basting up a litre of 94 per cent. alcohol with 120 grammes of freshly ignited lime, at intervals, during the period of a week. The lime is allowed to subside, and the alcohol will then be found to contain about 98 per cent. If really absolute alcohol is required, a further treatment with lime is necessary, another similar quantity of the freshly prepared material being added and shaken up as before. When the alcohol is basted a second time, it will be found to be absolute. The method may be a little tedious, but if absolute alcohol is required, it is as simple a plan of securing it as can well be devised.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

Chapter III.—The Negative Bath.

The silver baths, both "negative" (that in which the collodionized plate is sensitized) and "positive" (the bath for sensitising the paper for printing), are often found to be very troublesome; but generally to those only who, too indolent or stupid to endeavour to obtain a proper acquaintance with its properties, are ignorant of its constitution and chemical action; to these—and let us hope there are few such among our readers—the negative bath is a constant nightmare, and brings them to the confines of distraction. When it is "out of order," as it usually is, if it can ever be said to be in order, its disorders are extremely varied in character, and vexatious to the operator, who is at a loss as to the cause. One operator finds his bath addicted to that unpleasant habit of "fogging," and of this alone there are several species—an universal veiling of the plates in lights as well as shadows, though
of course it is not so perceptible in the former as in the latter; and in some cases entirely obliterating the image on the plate, or only a partial eclipse in the shadows. The bath of another worker may produce negatives too thin or weak, or with not sufficient contrast. A troublesome deposit, causing minute holes in the negatives, called "pinholes," is also another sign that the bath is out of season, or that the operations have been driven to the verge of insolvency by dreadful streaks and stains, the which they knew not how to get rid of! None can be entirely free from these visitations at times, but the operator of intelligence can generally determine the cause, when it is easy in most cases to remedy the defect.

One of the most fruitful causes of trouble in the negative is taken away by the bath, however to state before, in having too small a bath-holder, by which severe loss is suffered in many ways. In the first place, it can only be worked a short time before it gives signs of becoming disordered. Secondly, as it is out of order, it must be renovated, and this entails time wasted, trouble and loss of silver in pouring from vessel to vessel, in boiling and filtering, and therefore this loss has to be made up by the addition of new silver and this is sure to disturb the harmonious working of the bath, and entails on the operator the horrors of continual uncertainty. The fourth, and by no means the least, objection to a small bath, is the fact, that it is likely to get out of order at any moment, and at just the moment when you want it most. It may be said, with great force, that the smallest loss of silver is worse than very large; but with a bath of good size (say three gallons) you can calculate with some degree of certainty by the amount of work done. It may be further urged that a new bath should be ready to take the place of the disordered one, and is equally necessary with a large as with a small bath. Very true, but as a new bath is never as good as one a little older, it is often found that the same bath is the better. A silver bath continues to improve up to the very moment of its decay. A small bath is soon overcharged with iodide, the source of "pinholes" galore.

Need more be said? Are time and temper, worry and anxiety, nothing? If economy were in question it would be another matter, of course, because for a few shillings and a piece of wood we can construct a bath of a size that is able to contain the whole of a large bath, and in this case even economy is on the side of the large bath. The larger the bath, the less change is there really in its constitution, and consequently the more certainty of working is assured.

To Make the Negative Bath.

Dissolve, in the bulk of water you require, nitrate of silver, until the hydrometer when placed in it marks thirty grains. One-half of this solution should then be poured into another vessel, and iodized by adding to it ten or twenty grains (according to the quantity of solution) of iodide of potassium or ammonium, when it will be found to turn to a milky colour, and a slight precipitate may be observed. Filter the uniodized solution, and into this clear solution filter the iodized portion. Observe this order of procedure, because by reversing it and filtering the uniodized portion last, it takes up from the filtering paper the surplus iodide left behind from the iodized solution, and the consequence is an approach more or less closely to a fully iodized bath, a thing you do not, of course, desire. This bath should be quite clear.

If you do not require to use this bath at once, it should be placed in a clear "white" glass bottle, and placed in the light and sun. It should first be ascertained whether the solution is acid or alkaline: if acid, blue litmus paper will turn more or less acid, according to the amount of acid in solution, and litmus ammonium should be added to the solution carefully (shaking the bath to mix it thoroughly after each drop of ammonium added) until the silver solution, on being tested with litmus paper, shows no trace of acid; that is, when blue litmus paper does not change colour, and red paper changes to the colour of the blue paper. It is safer, in using liquor ammonia for this purpose, to put a few drops in an ounce of water, by which means you have more command over it; also, in the operations of adding ammonia or acid to a bath, it should be thoroughly mixed up before testing or adding more, or you are likely to overlook the change.

The bath, slightly alkaline then, is placed in direct sunlight, and after a short time it will grow black and inky, organic matter being in solution, and afterwards deposit this organic matter as thick mud at the bottom of the bottle, while the solution will become clear as crystal. This should then be filtered quite clear, and can be acidified with nitric or acetic acid. In the choice of acids there is some difference of opinion, some operators inclining to a preference for nitric acid, others never using anything but acetic acid for this purpose. I cannot say that I ever detected any difference in the baths made up with these two acids, but I have generally used nitric. It can be said in favour of this, that if a new bath shows signs of acidity in its first state as silver and water, it will most certainly be from the acidity of the silver salt, thus denoting the presence of nitric acid, and it seems reasonable that that acid should be the one we choose; and, too, the same acid is liberated in the bath from plates coated with red collodion, containing free iodine.

A perfectly neutral bath can scarcely be said to exist, chemically speaking; but if it is what is generally called neutral or slightly alkaline, the application of the developer to the plate sensitized therein will fail to bring out any image, or it may make its appearance for a few moments, and will be immediately covered universally with the deposit known as "fog."

The effect of acid in the bath is to decompose any organic matter present in the solution, as well as to oxidize any oxide. The acid is taken out of the bath, place in it a piece of blue litmus paper, which will of course turn red; now drop in cautiously, in the manner described in making the bath, a few drops of liquor ammonium; this throws down a blackish precipitate—oxide of silver. Be careful to stir the solution on each addition of ammonium, that too much be not poured in; the gradual change of the litmus paper back to its normal colour being your guide.

Care should of course be taken to guard against the entrance of foreign substances into the bath solution, as many are fatally antagonist to its photographic action. Of those in use in the dark room: iron (the developing agent) and hypochlorite of soda, or cyanide of potassium, are especially to be guarded against.

HYALOGRAPHY AND ITS APPLICATION TO PHOTOGRAPHY.

BY JOSEPH LEITOLD, OF LISBON.

The art of etching glass is no longer new, for among others Professor Böttcher and Dr. Braunsie was given much attention to the subject many years ago, and as these gentlemen found that the characters etched on glass could be multiplied by printing, they gave to this branch of industry the technical name of Hyalography. But very few disciples followed these two experimenters in their labours, as, indeed, is not to be wondered at, seeing that the graphic arts at that time were not in such a forward state as they are at the present day, when they are used in every connection.

Böttcher and Braunsie were quite aware of the perfect uniformity presented by a mass of glass, and the great advantage it therefore possessed in this respect over copper and steel for etching purposes. They prepared a sketch upon a polished glass plate which had previously

Photographic Correspondence.
been covered with the same preparation as that used for copper, and having bordered it with wax, poured upon it the clear fluid from the vessel, which was allowed to act upon the plate for several hours, until the lines were sufficiently deep for printing. The etching liquid in this case was made by placing in a covered vessel of platinum or lead some powdered fluor spar, and pouring upon this the necessary quantity of sulphuric acid, diluted with twice its volume of water. After mixing well, the clear fluoric acid at the top is separated, and this can be added to the vessel as needed, for etching may be etched either with concentrated acid or acid vapour, both plans having special advantages. In the latter case the vessel in which the sulphuric acid and fluor spar is contained is warmed moderately, and at the same time the etching is being done, the etched surface is covered with a sheet of paper, which is removed when the etching is complete, when the plate is ready for printing. The printing blocks produced in this way are flat and smooth, while those secured by means of acid appear polished.

In the State Printing Office at Vienna, as also in Domdorff's establishment at Frankfurt, impressions on glass have been produced in this way for the last twentyfive years. Very great difficulties have been found, however, in printing from such plates, as the glass is always in danger of springing in the printing press. Of course it is not possible to print the more delicate forms of engravings, but in this case the peculiar characteristics of glass engraving disappeared, and, as a consequence, no doubt, why the art of photoengraving is but little cultivated. By applying photography to the art, however, we think that a new impetus will be given to this important industry.

It is known that in France—and, perhaps, elsewhere—plates for fundamental purposes have been produced by means of photography and the etching process. If such productions as these are not altogether suitable for printing (they are not, of course, intended for such purpose), it is quite clear that the photographic negative plate, if submitted to a proper etching process, presents no difficulty for use as a printing block. Six large plates are now in our hands from a French establishment, which are intended for window ornamentation, and upon which, it appears, landscapes have been printed by means of photography, and subsequently etched in. The half-tones of the photographic pictures are wanting in these plates, and they seem never to have been etched in at all. The action of the acid has made a grain which renders the lights and shadows most perfectly.

In making a photographic cliché taken from a picture which has been reproduced by lines and dots, the operation is a much easier one. When the plate has been properly intensified and fixed with quicksilver and chlorides of platinum, it withstands perfectly the subsequent etching with dilute fluoric acid. M. Scaunon has given valuable directions in his handbook of heliography (St. Petersburg, 1872) for preparing photographic plates for etching. M. Auel, of Cologne, who has adopted a similar process of etching photographic reproductions of line-drawings, has shown some fine results, which were produced with much certainty. We believe, indeed, that to M. Auel belongs the honour of having been the first in Germany to apply photography to the art of halography.

Plates etched on glass in this way have a very delicate, but, at the same time, neither a soft nor warm appearance; they are, in fact, as cold and transparent as the material in which they are produced. If transferred to the lithographic stone the impressions lose their cold, glassy appearance, but then, again, a large proportion of the purity and delicacy of the glass engraving is lost.

THE PRACTICAL PRINTER IN AMERICA. XXIII.

FIXING BATHS AND FIXING PRINTS.

As has before been written in one of the preceding chapters, the prints need a fixing agent to remove all traces of the silver in them. This fixing agent used is hypophosphate of soda, and a bath of it is made of a certain strength by dissolving this in a quantity of water, and the prints are immersed therein for a number of minutes. Cyanide of potassium is never used in fixing the prints, although it is sometimes used in fixing the negatives. The reason of this is because it spoils the beauty of the tones, bleaching the prints fearfully, and on the whole is a miserable fixing agent to use for delicate photographs.

There is a diversity of the etching among photographers about the strength of the fixing bath, some using it much stronger than others do. I myself am inclined towards having a weak bath, and fixing a longer time than what I would with a strong bath, as the action will be more gentle, and on the whole better results are obtained by doing so, and blisters and bleaching are, in a great measure, avoided. It is very important that the hypo bath should be made up every time you require its use, as old hypo baths are very injurious to the prints. Take a two-gallon bottle, and place in it about one pound of the hypo crystals, fill up with water, shake well, and label this bottle "Sat. Sol. Hypophosphate of Soda," and when you have made it saturated, you are then ready to make the bath as per formula given below. To be sure that this hypo solution becomes saturated, make it up by boiling it, and let it cool for two days before you wish to use it. Just before using, shake the contents in the bottle for about two minutes.

When you wish to make the bath, take of—

Sat. sol. hypophosphate of soda	1 ounce
Water	...
Sat. sol. bichromate of soda	1 ounce

Large quantities in proportion. Make it up in a dish which is kept expressly for this, and this alone. The bichromate of soda is used in the fixing bath for the purpose of making alkaline any free acid there may exist in the solution. This is very important, for in case the solution should happen to be acid, it would finally be the means of liberating sulphur and forming sulphide of silver, and it would deposit itself on the prints, affecting them seriously in look, tone, and permanence. Aqua ammonia is sometimes used for the same purpose, but if it is to be used, only a few drops of it are necessary, as any more will cause the albumen on the prints to become very tender, giving a nontransparent appearance to the whole print. The prints may be easily torn when the ammonia is used to excess, on account of the softness of the paper. On the whole, I think it better to use bichromate of soda, as it is, as before said, a much milder alkali than ammonia. During the cold months of winter, and also at all times when the water is cold, the soda solution should be heated to about a lukewarm state (no more), as the action of freezing hypophosphate of soda solution will be very slow, and also injurious to the prints, causing innumerable blisters all over the prints.

An assistant should pass the prints from the wash tank, a number at a time (so as to get them in as near as possible at the same time), and place them in the hypo bath (without touching the hypo solution with the fingers, which will cause the hands to get discolored). The operator at the hypo bath should separate and cover them with the solution as soon as he can, for if this is not done, and the prints are fixed imperfectly, they will then have mottled yellowish-brown spots all over them which have been laid together, and which are very observable when washed and dried. More about imperfect fixing, &c., at some future time.

After you have had all the prints placed in the bath, then note the time by the clock. Keep the prints in constant motion while in this bath, and do not allow one single print to stick to another, even for the space of ten seconds, if you wish to have them properly fixed. Too much attention cannot be given to this little thing if you wish to have your prints fixed evenly, and not have them come out, when a.....finished, full of darkish-brown spots, yellow stains, &c.
An old or porous collodion is a necessity. I am quite sure that I can attribute many of my early failures to the want of a suitable collodion. The sample with which I succeeded best was supplied to me by Messrs. Roux and Co., of London, and the negatives now before you were taken with this collodion. Messrs. Roux and Co. call it "D," or special bromo-iodised collodion. It had been in my possession for some ten years, when poured upon a plate had a very slight tendency to solidify like jelly. To this collodion—in quantity eight ounces—I added two ounces of newly-iodised collodion, and then to the whole ten ounces I added two grains per ounce of powdery pyroxylene and one grain per ounce of cadmium bromide. I found the collodion to be exactly what I wanted—namely, of a creamy consistency when poured upon the glass plate, and after immersion in the nitrate bath, giving an even, white film like opal glass.

As regards the nitrate bath, it should be forty grains to the ounce; and here let me state that the larger the bath the better, more even, and reliable will be the sensitive plates. Any bath of the requisite strength which gives a clear wet-plate negative will do for this process. The time of immersion is a matter of four minutes, and lengthening, or shortening, will only make a weaker negative.

From the silver bath the plate is transferred to a bath of distilled water, and then rinsed under the tap for half-minute, after which it is ready for the preservative, which is made thus:—Procure three bottles, which label Nos. 1, 2, and 3. In No. 1 bottle place the whites of four eggs, or a relative quantity of Thomas's dried albumen, which answers admirably for this, and in each add four dreams of liquid ammonia; in No. 2 bottle five ounces of plain beer; in No. 3 bottle five ounces of beer and ten grains of pyrogallic acid.

Take a quarter-ounce of No. 1 and the same quantity of No. 2, which mix together, and then pour over the plate, on which allow it to remain half-minute. Then wash the plate under the tap for a quarter of a minute, after which apply half-an-ounce of the preservative, which allows to drain without washing the plate, and the latter will then be ready for the drying-box.

I now come to the development, which is the most important part of the process, and with which, I believe, many persons have failed, as I did myself when first trying this process. I was under the impression that consider-.

The glass plate requires a substratum, the cleanest and most efficient being a solution of gelatine, which is made thus:—

Gelatine	:	75 grains
Distilled water	:	90 ounces
Ammonia	:	1 ounce
Alcohol	:	1

It is better to place the gelatine in twenty ounces of cold water, and when softened, to add forty ounces of hot water.

I have tried albumen as a substratum, but prefer gelatine as it is free from specks, and enables the collodion film to adhere to the glass so tenaciously that a strong stream of water will not injure the film; neither does it injure the bath, as is the case with albumen. I apply the solution with a Blanchard brush.

THE BEER AND ALBUMEN PROCESS.

BY T. CLARK.*

Your Secretary suggested yesterday that I should prepare and read a paper on the result of my experience with the beer and albumen process, particularly with reference to those points which require the greatest care when testing this process for the first time, and for the want of which knovnowledge has been continually during my early trials.

This process was first introduced by Mr. W. H. Davies, of Edinburgh, and is much used by the members of the Edinburgh Photographic Society. Subsequently, however, Captain Abney published a somewhat different formula in the early part of last year, and having tried both formulas I may state that my most successful results have been obtained with that of Captain Abney, to which in future I intend to adhere, and my remarks will accordingly be directed principally to that modification of the process.

The glass plate requires a substratum, the cleanest and most efficient being a solution of gelatine, which is made thus:—

* A communication to the Liverpool Amateur Photographic Association.
In developing, first rinse the plate under the tap, then flood with half-ounce of pyro- solution No. 1, after which add to the same solution two drops of ammonia solution No. 2. When detail is free of burr, wash the plate, and apply half-ounce of pyro-solution No. 1, with six drops of solution No. 3. To the same solution afterwards add two or three drops of silver nitrate until density is acquired. Wash and fix in a solution of hypochlorite of soda containing one ounce of soda to six ounces of water. It will probably be found necessary to intensify with pyro and acid silver after fixing, with which any amount of density can be obtained.

I may here state that before the last application of acid silver I drench the plate with a solution of iodine and potassium, which prevents stains and keeps the shadow bright. It is composed thus:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Iodide of potassium</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td>1 pint</td>
</tr>
</tbody>
</table>

So far as my experience goes, these plates do not require any backing, the film being sufficiently opaque to prevent reflection.

You are, no doubt, aware that the recent scientific expeditions undertaken for observing the transit of Venus were supplied with plates made by this process. The results have been, I understand, in every way satisfactory. I may also state that these plates are rapid. The negatives on the table were taken with an exposure of one minute in a comparatively dull light in the afternoon, the lens being Dallmeyer's whole-plate double-doubled with a half-inch stop.

I must say, in conclusion, that I can confirm all that Captain Abney has said in favour of the process, and I certainly prefer it to any other I have tried, both for reliability, perfection of result, and the comparative ease with which the plates can be prepared.

PRACTICAL SUGGESTIONS ON RETOUCHING.

Some capital hints of a practical kind on retouching various kinds of negatives appear in our Chicago contemporary, the *Western Photographic News*, from which we quote as follows:

The Negative of an Aged Face.—It is difficult to determine just how much modifying and removing of wrinkles is allowable in retouching negatives of this class; but certain it is that much more of it is done than is consistent with a correct likeness of the original. Let nature be the guide. Only the lines and shall find in a correctly printed photograph not a natural line, but a work upon it with a retouching instrument, that needed more retouching to make the shadows light enough than anything else. If an operator makes such negatives as a rule, we must conclude that his knowledge of the art is very limited, or his materials for the work exceedingly poor. To the retoucher I would say, you have a sorry task to perform, and the usual directions contained in these papers will, I fear, not be to your very much, as they describe the treatment of negatives likely to be made under more favourable circumstances.

Slightly Blurred Negatives, from whatever cause (either the moving of the subject or the focussing of the instrument), show no dividing line between the lights and shadows. As a consequence, to remedy this defect, the contrast must be made more distinct with the pencil. To do this, first draw a sharp line just where, had the negative been a perfect one, there would have been a distinct line of light next a dark shadow. Work upon this line until it becomes blended with surrounding parts, leaving the dark side as sharply defined as necessary to produce a proper effect. This method is particularly available in bringing out the features more perfectly. For instance, the sharper division of the nostrils, and a decided point of light upon the tip of the nose, are necessary. The upper eyelid must be sharply upon its lower edge and the upper edge of eye, though the difference between the white of the eye and iris much more distinct; also the light of the eyes within the iris may need a decided touch. The edge of the lips, and the slight shadows about the hair, and must receive attention. The forehead and chin must be made to come out sharply from their surroundings at their very highest points of light. Of course it would be manifestly improper to draw a sharp outline of the face, or any outline of the face, or any feature belonging to it, around the entire outline. These sharp divisions are only allowable upon the nearest points of light. As the face or feature recedes, it should be correspondingly softened about the edge, and dimmed in point of light. The careful study of a perfect negative, lighted nearly the same as the one to be retouched, will be a sure and safe guide for the placing of these shadows, and even at that the direction of the pencil can rest assured that it is possible to double the value of a negative of this kind; if care and judgment be used in following the above method.
WHAT TO DO WITH RESIDUES.

One of the perplexing questions which the photographer in a small way of business finds it difficult to answer is, What is the best mode of dealing with residues and waste solutions, so as to recover the value of the precious metals they contain? It is wrong to the interest of the photographer to let anything of value go away; it is troublesome to recover the metals when only small quantities of material are to be dealt with, especially in inexpert hands; and the inexperienced photographer is entirely in the hands of the refiner if he save his residues to send them for sale or to be reduced. We believe, in most cases, he may trust the refiner safely, and that he will take his best care of the metal, not, as will be seen, always. We have published from time to time very simple methods of recovering the silver from various kinds of wastes, whereby from fifty to seventy per cent, or even a still greater proportion, of the original silver employed may be recovered without much trouble or expense. But even the simplest of these requires some experience and some appliances to carry out successfully, which a few refiners could not always provide, with little assistance, present difficulties. Our frequent advice to such inexperienced photographers has been to throw down the silver, and send the precipitats to a refiner with every facility for reducing them, rather than risk wasting time and material in unsuccessful attempts themselves. But another difficulty from time to time occurs, of which an example has just been brought under our notice, from design, or accident, the refiners’ estimate of the value of the precipitates forwarded appears to be singularly inadequate. In the case to which we refer, a correspondent divided a quantity of residues into two equal parts, and sent to two different refiners. The amount received in return from one was little more than one-third of the amount received from the other. A remonstrance brought another remittance, and a further remonstrance a still further remittance of cash, the total amount, however, still remaining far short of the amount forwarded in the first instance by the other refiner. Here is our correspondent’s statement of the case:—

"DEAR SIR,—Will you tell me how to get the most money for my ashes, &c., if there is a convenient method of recovering the metal by myself? Because I am not satisfied with the rate of what I have sent to the refiners. I use about half an ounce suspended in the tub, precipitate the silver, &c., from the hypo solution. I then filter through felt and dry in the oven, and pound it to powder, and then burn it over the fire in an iron pot that I use to burn my cuttings, that it may be thoroughly dry. I have been allowed 6d. per ounce for forty-four ounces. The cuttings, filters, &c., I burned over the fire in a large iron pot. I received 1s. 6d. per ounce for sixty-seven ounces. I trim all my prints before toning, &c., and use thirty-five grain bath.

"The first lot of ashes I ever sent to the refiner’s I divided into two parts, twenty-nine ounces each, and hypo residue thirteen ounces each part, and sent to two refiners, whom we will style A and B. A sent me £3 5s., and B £1 7s. I was careful to mix well the ash, that it should be the same quality, if possible, all through. I wrote to B and told him he had made a mistake, and sent me the money intended for another person, as I was sure my ash would yield more metal than he had allowed for. He answered he would make two more parts, and sent me to two refiners, whom I wrote to say that after two more careful trials, he finds he cannot allow me more than £1 18s. I wrote again, and told him I had sent a like quantity to another refiner, and the result. He answers that he has again made two more careful trials, and cannot allow me more than £2 for it; and if I am not satisfied, I can have my waste back by paying him for his trouble.

"I think photographers ought to know how they can be cheated. I was then using a sixty-grain bath, and he wanted to give me 27s. for twenty-nine ounces of ash and thirteen ounces of precipitate. I remember, when in a situation in London some years ago, I had precipitated the silver, &c., from the hypo in the same way for my employer, and he received not only the amount per ounce, but also the weight of the metal, the quantity of gold it contained, and allowing for the same.

"Allow me to apologize for troubling you.—Yours faithfully, ASHES."

There might be several explanations offered to meet the case described; but we fear that none of them would be regarded as probable or satisfactory. It is barely possible, if not probable, that refiner A made a mistake and remitted too much, whilst B remitted too little. The discrepancy between twenty-seven shillings and sixty-five shillings must certainly have resulted from a serious mistake, or something else equally serious. It is not, however, to discuss the possible mistakes in assaying, or in estimating fair profits of an individual, that we now refer to the matter. Our correspondent’s case may be that of many, and our aim is to obtain a statement of experience from other readers as to their dealings with residues, either in assessing them at home, or in forwarding them to refiners. In large establishments we believe the system of reducing the residues at home is carried out with satisfaction; but we shall be glad to obtain, if possible, comparative results of reducing at home and sending to the refiner’s, and especially to learn the experience of amateurs and portraitists conducting private businesses, who have systematically recovered the silver from wastes, either by reduction at home, or through the aid of the refiner.

IMITATION IVORY MINIATURES.

In M. Liebert’s new work entitled La Photographie en Amerique, there are instructions as to the preparation of coloured paper pictures which appear exactly like well-executed ivory miniatures, and which are especially noticeable for the freshness and clearness of their colours. The process is a simple one, and requires less trouble than the ordinary method of tinting by means of water-colours. Steinbach paper is allowed to float for three minutes on a bath of—

Filtered water	...	1 litre
White gelatine	...	24 grammes
Iceland moss in paste with sugar	10	"
Chloride of ammonium	...	12 "

The back of the paper is marked with a pencil so as to be recognized. After drying the paper is kept in a portfolio, where it will remain good a long time.

The sensitizing of this paper takes place on an ordinary
silver bath made up to fifteen per cent. strength, and when the paper has dried, it should be used forthwith.
The printing is done by means of a vignette, the image being toned, fixed, and washed as usual. When it comes out of the washing trough, and before it is dry, it is strained upon a wooden frame, and as soon as it has dried in this position, it is coloured by means of water-colours. The picture is then placed on an even surface that is heated underneath with a spirit lamp, and the back is rubbed over with melted white wax. As much as possible of the wax is afterwards removed with a flannel, and when no more can be rubbed off, a sheet of straw-coloured drawing-paper is placed against the print, the paper being backed up by a piece of wood to keep it flat. Finally the picture is put into a passepartout of patent plate glass, with a gold border, or framed in any other suitable manner.

Thus finished and mounted, these pictures appear very clear and fresh, and have all the characteristics of a miniature painting executed upon ivory.

TO MAKE OVALS OF ANY SIZE.

A simple and old-fashioned mode of striking an oval without the aid of instruments may be useful to many of our readers. The method, which, we believe, is known to most workers, has been so many years familiar to ourselves, that we should scarcely have thought of describing it; but a recent conversation amongst a dozen educated men on the subject showed it to be so little known, that we determine to repeat it for the benefit of our readers. The diagram was recently given in the Scientific American:

To make an oval, tie together the ends of a thread or string. Two pins arranged within the loop, as shown, govern the size of the oval, which is marked upon the paper by means of a pencil carried against one side of the loop as indicated. The dimensions of the oval may be made larger or smaller, as desired, by enlarging or diminishing the size of the loop. Elliptical mounts, mattes, masks, &c., may be accurately made in this way.

LIGHT A MECHANICAL FORCE: MR. W. CROOKES' REMARKABLE DISCOVERY.

BY W. T. BOVEY.

The great Sir Isaac Newton gave utterance to no idle lament when he likened his truly wonderful performances in the arena of science to a child gathering pebbles on a seashore, whilst a boundless ocean of unexplored mysteries stretched far out beyond the horizon before him; for, however richly endowed with mental gifts a man might be, his most strenuous efforts to gratify his cravings for knowledge develop the fact that a long lifetime spent in such labour only succeeds in exposing the vastness of his own and all other men's ignorance; that matured knowledge, although uppered by much thinking and patience, is, as a rule, the immediate offspring of those unlooked-for accidents called chance. A lamp swung to and fro as it hung suspended from the cathedral of Pisa; and Galileo, as he curiously watched the oscillations, obtained therefrom his earliest ideas concerning gravitation. An apple fell from the bough of a tree; and Newton was thus inspired to complicate the world which Galileo had begun. These and a thousand other instances, on record, of a similar character, prove how slight an impetus is needed to direct an observant mind in the way of progression; and yet how faltering must necessarily be the footsteps of every earnest explorer, because of the experiences of that past where theories, which at the time of their conception were conceived in the work which crumbled into the rottenness of error and oblivion at the withering touch of some newly developed truth; and it is not impossible (nay, I hold it as a doctrine more than probable) that Mr. Crookes has struck a death-blow to a portion of a belief we have inherited concerning the nature and constitution of solar optics. From Newton's day even down to the present time, solar light was and is religiously regarded as a make up of composite rays, viz., heat, light, actinism; or, as represented by colour, red, yellow, blue. The prism, by analysis, has betrayed the latter fact, whilst the thermometer and photography are regarded as faithful supporters of the former proposition. The eye has seen, the mind has cogitated, and is satisfied.

Habet, down with the thumbs. Why seek further knowledge? Each solar ray possesses its specific chemical, physical, and heating qualities, calculated with mathematical exactness; and modern opticians will bend you a ray of light into very curious angles. Surely, these being accomplished facts, our present knowledge of solar physics cannot be aught but perfect." To reasoners who would give expression to thoughts such as I have imaginatively quoted, I would say, science is the resultant of reason, and reason is too often a misguided sophist, which twists through a wilderness of doubts ere it succeeds in elucidating absolute facts. Our present views concerning the nature of light might dovetail in with practically demonstrated phenomena. They are, however, too abstruse, too complicated, too full of inconsistencies, to harmonize with the beautiful simplicity observed by the Maker of all things in the arrangement of His marvellous, and in many respects incomprehensible, works.

It is given to men to see the internal economy of nature's machinery in brief glimpses; hence the reason why that the stages of knowledge are separated by a span of years. Newton in his day was privileged, and the world was thereby enlightened. Since Newton's time others have gone out over the same ground, and modified ideas from time to time have thus been obtained—notably, the undulatory theory. The theory was based by Descartes, in a form adopted by Huygens, Euler, and our own able countryman, Dr. Young; and, in reference to the discoveries of these and other explorers, it is worthy of note that whilst they have handed down a missing link as a legacy to philosophical thinkers of the present, they succeeded in laying down truths which no future discoveries can destroy; hence we hail the advent of Mr. Crookes, not as one who will remove the landmarks we cherish and love, but as one who points toward a more perfect knowledge, inasmuch as his clever invention provides a reasonable clue which, followed up as it will be by rendezvous minds, will ultimately extract facts from inconsistencies, mysticism, and involuntarily-conceived doubts.

Briefly, the wonderful little engine to which I have more than once referred in my prelatory remarks, and which has so thoroughly succeeded in puzzling our savans of science, might be described as a marvel of ingenious contrivance, consisting of a glass tube having a bulb blown at one end, which is completely exhausted of air by means of a Deringer air-pump. Within the bulb is mounted in vacuo two light straws that cross at right angles, with a circle of silver painted at each of the four arms or extremities, one face of each disc being blackened, the other left white. On exposing this little machine to the action of light, the
arms revolve more or less rapidly, according to the nature and intensity of the light, which, for the first time, is seen to possess some mechanical force; and as the tiny engine whirls its marvellous rounds, science, with feelings of astonishment, looks on, and is sorely perplexed to account for the cause of its unlooked-for phenomenon. And is it not on account of the temporary bewildertment referred to, that I with much diffidence venture to step upon the platform to give some description of a matter that has provided me with material for observation and meditation for many a year. With no other laboratory than that of my mind, with none other guide than my own observations, it is possible that I have arrived at erroneous conclusions; but, as the final finding actually accounts for the motive power visibly developed by Mr. Crookes' machine, I am encouraged to hope that my recital might be read with some interest, even though doubts may be raised concerning the accuracy of my views.

When I first embarked in my calling as a photographer, I made it a subject of searching inquiry, and by unseasoned study I endeavoured to understand the theories, both chemical and optical, which had been written upon and accepted by the most distinguished men of that time. No doubt I still retain my early dissatisfaction with the accepted views relating to actinism, insomuch as my practical observations detected inconsistencies which the standard works on what I will term chemical optics could not explain; as, for example, the solar rays, when at their brightest and strongest, were sometimes almost entirely void of summer-like actinism, whilst at other times, when the thermometers averaged 60°F, the actinic power was at its maximum of vigour. At first I attributed the change to an absence of moisture in the paper, but on pushing my inquiries I found that similar experiences had befallen clever workers with the camera and wet plates. I then commenced a series of observations on the effects produced on persons of nervous temperament by the presence or absence of actinism, and duly noted the influence exerted by light on flowers and plants. It would weary my readers were I to describe the tortuous track pursued by my thoughts ere I reached a final conclusion. I will therefore at once to the point, by explaining the heterodox views which I arrived at, in spite of my wish to be loyal to my earlier impressions.

To make a clean breast of the matter, I must confess that I discarded belief of the tri-coiled light, as it did not meet with my practical experience, nor, in my mind, was the idea in keeping with the beautiful mechanism of creation. I could not realise a lively faith in the existence of distant planets, eternally frozen up in a lifeless torpidity, induced by a thousand times intensified cold; nor could I believe in a sun which capriciously shoots forth its rays without constancy of quality, now weak, anon strong in chemical power; in short, this seemed too much of random. I tried hard to reconcile these discrepancies by following up the accepted belief concerning invisible and intermingling mists, but extended observation convinced me that, under all conditions of atmosphere, the variations of actinic force were apparent. Hence I at length placed actinism under a less distinguished category; and in lieu of it being a direct emanation from the sun, I now recognise it as a resultant, which owes its force to its antagonism to the solar ray proper. And now to dovetail this idea with other and generally accepted theory.

That which philosophers describe as ether I regard as a normal electric fluid, which encircles the earth, and, like ozone, is changeable in quantity. This fluid, in a state of quiescence, is latent; in other words, cannot be detected by the presence of electric charges. The sun, however, excites this fluid, being repellent to each other, and such antagonism would naturally create undulatory movements. And on the rapidity of these undulations depend the intensity of heat and of light. My proposition, therefore, is that—

1st. The yellow ray is the true solar light. 2nd. That the red ray is the result of undulations of inconceivable rapidity, which develop heat, and ultimately change to uncombined electricity.

The blue, or violet, subject to a less violent agitation, is excited without losing its combined qualities, hence electrical force is developed, which lessens as the waves of motion grow slower at the edges, and in this proposition is accounted for the phenomenon of chemical force being found beyond the visible rays, as perceived on the violet end of a spectrum, whilst the idea of an existing repulsion would give some reason why those violet rays are known to extend further in length than others.

Now, if we take the views as I have faintly—perhaps imperfectly—propounded them, we at once can find some explanation why chemical force is often at its weakest when the solar rays are most powerful; and, further, we are not at a loss to understand why plants turn their leaves towards the sun, as such leaves are peculiarly sensitive to the attraction of free electricity. Nor shall we be unable to account for the reason why the dandelion opens so wide its petals when sunshine is full upon them. All yellows or less repel the chemical rays, whilst transparent substances of that colour give free passage to the free electricity; and here we have an explanation why yellow glass protects the chemical classes tinted with the colours just described, is reported as behaving in its working just as I in theory had expected; and it was not until I read that description which followed the earlier report given in the Telegraph that I mustered up courage to pen these lines. On meeting the question now entered upon to our esteemed Editor some three or four years ago, he evidently considered at the time that had not arrived for the propounding of my theory. But as the marriage service states it concerning wedding, "for better or for worse," so I, having during my scientific career been wedded to the pages of the News for better or for worse, therefore select those pages as a fitting medium whereby I might, without loss of character, bear the basting which I fully anticipate after publication of my present heterodox disclosure.

I might add that my views are entirely consistent with and are explanatory of those dark bands which constitute the phenomena known as spectrum analysis. But with this matter I may not now deal, as I fear I have already gone beyond my usual trespass on space.

PREPARATION OF GLASS FOR NEGATIVES.*

Glass plates are in general use as a basis for collodion pictures. In some places—America, for instance—sheet iron is employed in the practice of ferrotype, which is covered with a coating of permanent varnish, and then serves as a support for the collodion picture; and there are rare instances of waxed cloth being used in a similar way. These latter are known by the name of pantypes, and have the advantage that they are very rapidly produced; but they are not likely to take the place of pictures produced upon paper by means of glass negatives.

The choice of plates for the negative process is not an easy one to make. We require them to possess a certain amount of resistance against chemicals, and this power of

* Photographische Werke-Blatt.
resistance is not always present. Glass has naturally a hard film or skin upon the surface, and, on grinding, this horny crust is removed, and the softer material underneath laid bare. For this reason patent plate, which is often chosen by reason of its uniformly flat nature, is more open to attack from chemical solutions than the ordinary crown or plano-concave plate, however, red, and covered with cases. No solution or even water, should be allowed to dry upon the surface. Sheet or Rhenish glass, besides little imperfections upon its surface, possesses a certain curvature extending throughout the plate. We are in a position, however, to render this curve innocuous, even if we cannot remove it. If, for instance, the hollow surface is employed for the collodion, the curve of the glass is somewhat remedied, when the negative is put into the dark slide, by the pressure of the spring. But as the focus of an image, especially when a portrait lens is used, is in a curve, the form of the glass plate is well adapted to the reception of a sharp image. In the case of smaller plates the question of curvature is of little importance, because of their limited dimensions; and for this reason it is seldom that this plate glass is employed. When, however, large pictures have to be taken, or plans and maps have to be carefully reproduced, then patent plate must, as a general rule, be employed.

New glass requires to be thoroughly washed, first in acidified water, and then in ordinary water. Glass that has already been employed must be first of all freed from the varnish and collodion films upon it. This is easiest done by steeping in a concentrated solution of soda. In one or two days the films will be perfectly soft, and the glass is then transferred to a second bath made up of:

- Commercial nitric acid 1 part
- Water 1

Or, what acts more energetically still—

- Bichromate of potash 1 part
- English sulphuric acid 1
- Water 15 parts

A period varying from six to ten hours is sufficient to free the plates completely from all organic matter. The plates are then washed, the edges, especially, being thoroughly rubbed with a linen rag. It is a good plan, indeed, to file the edges of the glass, before it is used, with an old file, so as to make them more easy to handle, and to provide for the collodion adhering more surely to the plate.

The plates are placed upon a drying-board to drain, and are then dried with a cloth, and are ready for polishing. This may be done in many ways, alcohol, tripoli, or old collodion being used for the purpose. The best polishing material is, without doubt, that mentioned by Professor I. Vogel. A few drops of ammonia are put upon a plate, and this is rubbed over with a linen rag, a second rag being afterwards used for the purpose. In this way even dirty plates may be cleared at a pinch.

In order that the silver bath may be kept pure and uncontaminated, it is always well to keep the back of the plate perfectly clean; and to ensure this a cleaning-board or cloth should be used for placing the plate on. After this the plates are ready for coating with collodion, for only dust particles will be found resting upon the surface—easily removed by the application of a dusting-brush. A polished plate, however, it should be borne in mind, will only remain good for four-and-twenty hours, and after that period should not be used without being polished a second time. For this reason many coat their plates with a protective solution of albumen, or gutta-percha, or some such material; and in this case there is no need for so careful a polishing in the first place. Indeed, the albumenizing of a plate may be undertaken immediately after the last washing. The water in which the plate has been finally rinsed is removed by pouring over a little distilled water, and the albumen solution is then applied twice running over the surface of the glass. The plate is afterwards placed to dry. If there is no object in saving the labour of polishing when a preliminary coating is used, but the operator only desires to get ready a provision of clean plates for after use, it is well to polish the glass surface in some degree, and then to apply the albumen solution by the aid of a broad camel's hair brush. In this way you prevent the back of the plate becoming coated with albumen, and thus contaminating the dipping-bath. Plates coated with a film of albumen are dry in a dozen hours, if left in a suitable locality free from dust, and may then be collodionized, or, if needed, kept for twelve months before they are used. One great advantage of employing an albumen substratum is the circumstance that old and almost worn-out plates may be used again if thus protected by an albumen coating.

The albumen solution is made in the manner following. Fresh white of egg is mixed with an equal quantity of ammonia, and then beaten to a stiff froth, after which it is covered up and allowed to stand. In a few hours the fluid portion is poured off into a bottle for preservation. Of this one part is taken, and mixed with two parts of distilled water; the whole is filtered, but in such a manner that the solution is allowed to run down the length of a glass rod, as otherwise air-bubbles would infallibly be formed. The concentrated solution may be kept for weeks, and can be used, even if it does not smell altogether sweet. It must be filtered, however, when used, and should afterwards be thrown away. Sometimes it happens that the liquid in which the albumen has been dissolved, and of this solution a little of the albumenized plates have been kept in a damp place. If any phenomena of this kind are observed, the plates must be washed, and albumenized once more.

The coating of glass plates with gutta-percha solution is exceedingly simple. One part of raw gutta-percha is dissolved in ten parts of collodion solution. The solution to this part is dissolved with one hundred parts of light benzine. This liquid, when filtered, is poured upon the washed and dried plates in the same way as collodion, and five minutes after the operation the plate is ready to be collodionized. Unfortunately, when the solution happens to be a little too strong, or when certain kinds of glass are used, the film of gutta-percha is apt on drying to come down very thick, and to become a gutta-percha substratum. M. Scharwachter, of Berlin, however, who was one of the first to employ this kind of substratum, has now used it for a considerable period, and with much satisfaction. Before applying the collodion, all plates, whether treated with albumen or gutta-percha, should be carefully freed from dust, by passing over them the dusting brush very lightly. Lastly, it is scarcely necessary to mention that all photographic glass must be as free as possible from imperfections, and should be of a soft nature.

PHOTOGRAPHING THE INVISIBLE.*

At a meeting of the Vienna Photographic Society held a short time since, there was read a communication from a photographer at Innsbruck, in which he stated that a portrait of a lady had been secured, showing spots over the face and hands which were not visible upon the model at the time she was posed. The sitter a few days afterwards became covered with smallpox marks, and these corresponded with the spots upon the negative.

We are not in a position to enquire into the truth of this appearance, but we must here say, it was claimed that a portrait of a lady had been accidentally photographed a day before she fell ill of the smallpox. Upon the face in

* Photographische Mittheilungen.
the picture were many spots which were invisible upon the
original at the time of the pose, but which became very
prominent the next day when the disease broke out.
Dr. Vogel then remarked that perhaps photography might
be employed in obtaining a diagnosis of a patient under
some circumstances.

It is unknown to us whether any use has been made by
the faculty, or any experiments conducted to clear up this
point, but the matter seems to us worthy of investigation,
for the very surprising accuracy the photographic film reproduces details which are scarcely per-
ceptible to the human eye.

We remember, for instance, the case of a Berlin photo-
grapher who, in copying an old map, found a lot of little
dull white spots with dark margins, whose presence could
not be accounted for by any defect in the photographic
process. The circumstance that these spots appeared in
every negative in exactly the same place led to the discovery
of the cause of the phenomena. The original was very care-
fully examined, and there were found a large number of fine
yellow spots that were scarcely visible to the naked eye,
and these corresponded to the positions of the spots upon the
negatives.

M. Ebrard, who found this out, remarked that a year or
previously the same experience happened to him. He had
to take a landscape picture which, among other things,
included a white building. On the negative there was
plainly to be seen writing of some kind upon the whitewashed
wall, while, at the same distance from the original,
nothing of the kind was observable. It was only when
you approached very near to the house that writing was perceptible in most characters under the whitewash.

In Italy, indeed, the camera has been used to good
purpose by making use of this special feature of photo-
graphy. Old oil paintings have been copied on purpose
to find out the places where they have, at later times, been
painted over, it having been found that the photographic
lens is a much sharper observer than the human eye in this
particular way.

The Library at Brussels possesses a rare manuscript, of
which a large portion has faded away, and has been unreadable for the past three centuries, so that in its
present condition the MS. is very incomplete. The French
Academy was asked to assist in deciphering the faded
pages, but this learned body had to give up the task
in despair. Finally, the idea struck the authorities to have the document photographed, and behold! the camera revealed what had not been seen for generations past.

A similar observation was made by M. C. Silvy, at the
time of the London Exhibition of 1851, when that gentle-
man copied the "Manuscrit Sforza." This MS. was so
pale that the characters were scarcely to be recognised;
but on being photographed the writing came out quite
clear and legible.

The value of photography, therefore, in aiding to
decipher faded prints is obvious, and the services rendered
by the camera in this way deserve to be borne in mind.

ELECTRICITY AND THE PHOTOGRAPHIC IMAGE.

BY MAJOR FLORIDA DUNAS.†

I AM thoroughly convinced that everything sets in nature by vibrations, and that the result produced upon the sensitised collodion film by an object exposed before it is brought about by vibrations which the object produces upon the collodion. In my opinion all caloric, electric, luminous, and magnetic effects are produced by the differences of intensity, or direction of the vibrations, of one universal agent, which may very well be that which we term electricity.

Without entering at length into any theoretical exposition

† Read before the French Photographic Society.
Your correspondent has chosen North Devon for a few weeks' summer tour. Well do I approve of his choice. For soft and delicate beauty in lanes, slopes, and dells, as well as the bold and rugged grandeur of its coastal scenery, it immeasurably surpasses the South of Devon. I state this from personal observation and experience. A large number of these places I have photographed. Stand on the cliff of Ilfracombe, and listen to the music of the ocean, and watch the delicate rays of the setting sun striking on its creakes and caverns of rare beauty. From thence pass round the rocky bend of Morte Bay, with its bold and bluff cliffs of massive grandeur, to Westward Ho! There stand in wonder and admiration, as you must, on that long ridge of pebbles, thrown up as a barrier to the Atlantic rollers as they come up angry and unbeckoned to spend their strength on its ever shifting slopes. Away far out in the Channel, hanging as a soft hazy cloud in a summer sky, is Landy Island, almost a terra incognita to photographers: teeming with wild and weird granite rocks. Far down in the bend of the Bay, looking like a long silver thread, is the massed mass of Lynton and Lynmouth. Has not heard of its sylvan retreats of singular beauty? Poets, artists, and photographers have alike vied with each other to make known its charms. Beyond a jetting far into the Channel is the broad shoulder of Hartland Point, against which, almost every winter, some noble ship has been dashed and shattered to pieces. Happily, during the past winter, the breakwater has passed to pieces. Happily, during the past winter, the breakwater has passed, which it is hoped may avert similar catastrophes.

From the above points, a few miles inland, any photographer, to be busy, would have not only weeks of work, but months. I would recommend, as two good central spots, Westward Ho! and Ilfracombe. Say a fortnight's stay at each place, would enable any one to get a good many negatives of the choicest bits of North Devon scenery. Westward Ho! is a new and rising watering-place, and has many charms of its own. From thence Appledon, Bideford, and up the Torridge to Torrington, each of these are within easy distance, and all have distinct points of interest of their own. Then Clovelly can be taken, Hartland Abbey, Hartland May, and the Point, as well as the rocky coast scenery. Ilfracombe has many charming bits of its own. From thence go round to Lynmouth, which is one of the most beautiful sylvan retreats that can be imagined, where every bend and turn forms a picture. Having pointed out the route, I will proceed next week to point out the spots of greatest interest worth photographing, interspersed with a few practical hints.—I remain, sir, yours respectfully,

Dear Sir,—If you think the following will be of any use to "W. A. C. A.," please publish it.

I think as good a place as any in Devonshire is Lynton, some ten or fifteen miles north of Barnstaple. Quite near are the Valley of Rocks, Waters Meet, &c. The scenery is magnificent; here you have the sea, forests, mountains, and waterfalls all at hand. If you wish to live well, there are many good hotels; but if reasonably, a very comfortable little halting-place, very conveniently situated, called the "Cottage Inn," can be found at Lynn Bridge, about half a mile before arriving at Lynton.—I am, dear sir, yours truly,
B. F. Q. R.

PAPER NEGATIVES.

Dear Sir,—Referring to William Brooks' letter, mentioning that he had been taking paper negatives for some two or three years, I think it will be within your recollection that in the last year or two, I have taken some photo-silk banners of large dimensions; and as I was then working photography on textile fabrics, I beg to say that all these were printed from paper or calico negatives, and I have still one by me that measures six feet by four feet—rather large and expensive if taken on plate glass. Mr. Blanchard, as I understood him, only brought forward the method or adaptation as one worthy of greater publicity, and not as anything particularly new, and I can assure all my friends, and would add one word, and that is, when only one or two copies are required from a paper negative, there is no necessity to print it so dark, and waxing may be dispensed with altogether, the only caution being to keep the negatives and the sensitive paper dry.

Referring to another subject, will your able correspondent Mr. George Willis kindly favour me with fuller details of his method of obtaining the develop as described in the present Year-Book page 68? I presume 120 grms. of sulphate of copper is intended, not 120 ounces. Also whether they require 20 to 30 minutes exposure, or 20 to 30 seconds. I have not been able to obtain any successful result with the latter exposure.

In conclusion, sir, permit me to thank those correspondents who have so kindly forwarded me samples of nitro-glycerine in response to my last communication.—Yours truly,
G. Hooper.

68, Caunbury Park, South, N.

Proceedings of Societies.

LIVERPOOL AMATEUR PHOTOGRAPHIC ASSOCIATION.

The monthly meeting of this Association was held at the Free Public Library, William Brown Street, on Tuesday, the 26th ult., Mr. W. Atkins, Vice-President, in the chair.

The minutes of the former meeting were read and confirmed, and Mr. E. Twigge and Mr. Ed. Whalley were elected members of the Association.

A vote of thanks was unanimously passed to Mr. F. York, Mr. C. Dawson, and Mr. Knott, the success of the lantern exhibition at the popular meeting being mainly due to their contributions and assistance.

A number of Mr. F. York's lantern slides were handed round, the subjects being very amusing—groups of children, &c., taken from life.

The Secretary recommended the members to try and produce similar pictures. The ingenuity displayed in grouping together with their novel and characteristic, would render them more interesting than the usual photographic work.

Mr. Thomas Clarke then read a paper on "The Beer and Alburnum Process" (see page 220). The paper was illustrated by several whole-plate negatives and transparencies, showing the excellence of the process, and the vote of thanks was afterwards passed to Mr. Clarke for his paper.

The Rev. G. J. Barker exhibited some of Burgess's gelatine plates which he had exposed and developed that morning. He had had them for two years, and they showed their keeping qualities by developing perfectly clean and well.

The Rev. H. J. Palmer said that, finding he could not get intensity with the rapid plates prepared by Mr. Kennett's gelatine emulsion, he had written to Mr. Willis, of Scarborough (who had been so successful in taking interiors with them), asking him if he would undertake to give his method of development for the benefit of the members. Mr. Willis kindly replied, stating that he found no difficulty in getting any intensity, provided that the plates were first placed for five minutes in a solution of twenty-five grains of bromide of ammonium to a pint of water, and afterwards in plain water previous to development. He (Mr. Palmer) found Mr. Willis to be right, and he would strongly advise the members to try the process, which was a very easy one when mastered.

Mr. Atkins showed two stereoscopic transparencies mounted with glass coated with the varnish-collodion opal backing. There was one drawback with them—the transparencies had to be reversed, or the picture had to be looked at through the backing. He (Mr. Atkins) said he had no difficulty in obtaining an even film if the mixture were well filtered and the glass free from dust.

The Rev. H. J. Palmer exhibited and explained the method of working one of Mr. Edwards' graphophone cameras, which he
(Mr. Palmer) afterwards presented to the Society, and for which he received a hearty vote of thanks. It was decided that there should be an excursion to Lymn on Wednesday, the 12th inst., and the meeting shortly afterwards adjourned.

Talk in the Studio.

DR. VOGEL’S DISCOVERY.—A long letter by Mr. Stillman appears in the last number of Nature referring to Dr. Vogel’s discovery as to the actual value of adding certain coloring matters to a film of bromide of silver to render it sensitive to the usually non-actinic rays. Mr. Stillman recalls the non-success of various able experimentals in repeating Dr. Vogel’s experiment, and suggests that such results as have been obtained may be due to other causes. It is scarcely necessary, however, to remark that many negative results in a new and comparatively little understood direction prove nothing. Further facts and repetition of the experiments under strictly test conditions may be required, which Dr. Vogel himself may be able to supply. His recent pressings engagements in connection with astronomical photography, and his absence from home in connection with the recent eclipse expedition, must necessarily defer his immediate attention to the subject.

MUSIC FOR SITTERS.—A correspondent of our Philadelphia contemporary suggests music as an aid to successful portraiture. He says:—“Volumes have been written how to manage our customers, but little has been said of the power of music in obtaining happy expressions. I have often wondered at it, and would like to draw the attention of my photographic brethren to this fact. Everybody is influenced by it, and while you are listening to a well-known and familiar air, the time of the sitting seems to be only half as long, and the awkwardness of the situation is forgotten. Shakespeare says:

‘The man that hath no music in himself,
Nor is not moved with concord of sweet sounds,
Is fit for treasons, stratagems, and spoils;
The motion of his spirit is black as night,
And his affections dark as Erebos;
Let no such man be trusted.’

I leave it to my ingenious brethren how to administer it (piano, good music-box, &c.), and if they then, in spite of it, get a customer with savage looks, say, with Shakespeare, let no such man be trusted—make him pay the whole in advance.”

CAMERA-OBSCURA ON THE RAILWAY.—An American paper says:—“Among recent curious inventions is the application of the camera-obscura to a railroad car, imparting to the travelling and wondering beholder a moving diminutive picture of the country through which he is passing.”

FAINTLESS PHOTOGRAPHY.—A Danbury photographer promises to revolutionize the business by the introduction of a gas which renders the sitter unconscious during the taking of the picture. He has already issued cards announcing “Photographs in all styles taken without pain.”—Western Photographic News.

To Correspondents.

A LADY.—Various methods have been adopted to give a high surface to carbon prints, and amongst others varnish may be employed; but the varnished surface is by no means really pleasing to an artistic taste. The plan of enamelling as applied to albumen prints may be employed if you like the highly glazed surface. Mr. Blanchard recently described a method which he has found successful. It consists in burnishing the surface by means of a Weston burnisher. It is important in such cases, to adopt two precautions: one is to use the burnisher very hot without too much pressure, and the other to dry each print before the fire immediately before burnishing, as the material of the image so readily absorbs moisture from the atmosphere, that unless it be so dried it is apt to be injured in burnishing. If you wish to try burnishing, an ordinary negative varnish may be employed, in the same manner as it is applied to a negative. When the prints are developed on a piece of plate-glass they retain a fine surface after transferring.

HOPES.—It is probable that the distilled water was not absolutely pure, a circumstance by no means uncommon. Your best plan will be to neutralize the bath by means of carbonate of soda; pour it into a dish and submit it to the action of nitric acid until you get two, or a few days if you can spare the time; then filter carefully through pure cotton-wool, and try again. We do not like the plan of iodinating by means of a collodionized plate, although it is very commonly used. A much better method is to titrate with tincture of iodine is better in our experience.

A SUBSCRIPTION.—The irregular lumping film and morocco-like texture may arise from two or three causes. The presence of too much air in the drying of the bath is a frequent cause; but, from your description of those employed, they can scarcely be so in your case. The same result will arise from an unsuitable sample of pyroxylene. Samples made at a low temperature, giving a thin film of plate-glass when very few grains to the ounce are used, are apt to give the coarse irregular film. This tendency is much increased by the sole use of cadmium salts. The same collodion salted with iodide and bromide of ammonium would probably give a better film, especially after a little ripening, which rapidly takes place when alkaline salts are used. When cadmium salts only are used a sample of cotton made at a high temperature, giving a limp collodion and powderly film, should also be employed. Age may improve this, or mixing with a sample of old collodion giving a powdery film.

S. B. M.—Developing by means of a bath of iron solution, and fixing a bath of copper solution is very common. But it is advisable to use potassium iodide, and not be uncommon. We have frequently used such baths when producing collodion positives. But they both possess disadvantages. For developing negatives the bath has the disadvantage of diluting the plates of silver on the plate, and to this extent not secure intensity, which depends much on the presence and reduction of the free nitrate on the plate. Some skillful operators use a dish for developing. The dish is made up of small portions of plate-glass round the edges of plate-glass of the required size. In this case the dish being shallow, only just sufficient iron solution is used, and the extreme dilution of the nitrate is thus prevented. If you wish to use a dipping bath, take care that it is shallow, so as to avoid the use of a large quantity of iron solution. Remember that its developing strength is reduced by the immersion of every plate, and that it will require the frequent addition of fresh iron solution. The chief disadvantage of the use of a cyanide bath is, that it gives off fumes of hydro-cyanic acid, which are unwholesome. If the cyanide is used very weak, and kept covered up, there is no great danger. Watchfulness must be used, as, if the plate be left too long in the bath, the image will be attacked, which is not the case when using hypo in a bath.

P. R. G.—We have no means of hearing of giving you the information you ask. Almost every professional enlarger has his own mode of working; but whether in the cases you mention, development or direct enlargements; or whether enlarged negatives are used, we are not able to say with any certainty, of course, whether they will be permanent or not; but the presumptiion is, that proper care is used. For mounting such pictures nothing is better than glue.

BRISTOL.—By adding ammonium to your bath you have precipitated a portion of the silver as oxide, and left the solution weak and alkaline. Your best plan will be to add sodium carbonate, and to add a trace of nitric acid, if you wish to use a dipping bath, take care that it is shallow, so as to avoid the use of a large quantity of iron solution. Your bath will then probably work all right. For experiment you may as well try this method with a portion of the bath first.

P. M.—Waste of intensity may result from many causes. Your bath may be too weak, or not of order. Are you using a new sample of collodion? The use of a thin collodion or a new collodion is a frequent cause, especially when the film appears thin and not creamy. In this case, the addition of a thick collodion, or the addition to each ounce of a grain of soluble cotton will aid you.

VENATOR.—Many thanks. We shall have pleasure in publishing the description in our next.

T. SAWYR.—Decidedly an improvement; but you must be careful, with this lighting, not to under-expose, and so lose detail and transparency in the deep shadows.

W. BROOKS.—Many thanks. We shall look with interest for details.

ALEX. HENDERSON.—The order for 2s. 6d. duly received. The account rendered was for 2s. 1s. 9d.

PADY.—Thanks. In our next.

O. BRUCE.—We will endeavour to send some one as you wish.

P. GUTHNER.—Received, many thanks.

J. ATKINSON.—Received, many thanks. We will write to you.

L. LAWSON.—Thanks. In our next.

Several Correspondents in our next.
back again for negatives. The two chief disadvantages of glass—weight and fragility—would thus be obviated, and the travelling photographer would be made a happy man. We might have the material sensitized in rolls, in the same way as they do the carbon tissue now—a-days, and there would be no need for sensitizing and washing a number of plates every time dry films have to be prepared. This would be better even than employing the tough glass people have lately been talking about, and it would also do away with the necessity of discovering a thin, tough, transparent film for collodion support, for the invention of which the Vienna Photographic Society has offered a gold medal for the last three years. We shall have everybody turning photographers when all these improvements are made, and the advantages of alkaline development and emulsion processes will become subjects of every-day conversation.

Test Papers, and How to Prepare Them.—Some people imagine you can obtain test papers for almost every chemical reaction, and that in the same way as blue litmus paper is employed in testing for acid, so other papers stained with different materials or compounds can be secured suitable for making nearly every chemical test. M. F. Mohr, a German chemist, has lately published a good deal of information on the subject, and has enumerated the different kinds of test papers that may be found useful in chemistry, and the mode in which they are prepared. Many of these will be found useful to photographers, for there is no more simple test to be desired than the use of test papers such as these in the preparation of litmus paper the litmus should be washed with hot alcohol, Mohr tells us, and then extracted with cold water; the colouring matter thus obtained being employed for staining the test paper. It is scarcely necessary to say that the paper used for the purpose should be freed, first of all, by washing, from any alkali or acid. Turmeric roots, it appears, contain a substance upon which litmus would be affected by the action of the litmus itself, being washed in alcohol only which is affected by alkalis; the roots are washed in water until they yield no more colouring matter, and then they are treated with alcohol to extract the dye. To detect iron, Mohr recommends the use of paper soaked in sulphonate, or ferrocyanide of potassium. Bodies which act as reducing agents—such as the hypnotophiles, iodide of potassium, sulphurous acid, sulphur, etc.—are oxidized by that of potassium, and the litmus turns red. Paper that has to carry is still too heavy and breakable. We have taught our amateurs how to do with a little, and yet they grumble that they have anything at all to carry. "Now what would you have?" we asked a gentleman the other day, who complained that either he was limited in the number of views he could take in a day, or must needs have a sort of repeating back to his camera, as full of plates as the stereo-stand used for transparencies. His reply was brief and to the point. "I'll tell you in two words. Your dark slide should have a little cylinder on each side of it; in one of these cylinders place a roll of thin sensitive paper, and as you take picture after picture unroll sufficient of the paper for each negative, the paper exposed being rolled up in the cylinder on the other side of the dark slide. When the whole supply of paper has been exposed, come back, cut it into bits whose marks show position of the plate, and develop. You would then merely have to carry about with you a roll of sensitized paper beside the camera and dark slide." This was the suggestion, and although not a new one, it is one that we shall not improbably see put into practice before we are much older. Talbot's early suggestion to employ paper for the negative may, after all, come to be the process of the future, and those who have experience of it, know what charmingly soft pictures it can give us. The fibre of the paper, which is the chief difficulty that stands in the way of securing uniform prints, may, since the improvements recently made in the paper trade, be in a position to be altogether overcome, and if this were the case, the landscape photographer, whether amateur or professional, would not be the only person to welcome paper

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER IV.

THE RECTIFICATION OF THE DISORDERED NEGATIVE BATH.

The disorder to which the negative bath of nitrate of silver is subject, when properly used, are, it may be said, simply and easily and surely prescribed for, and it is only when, ignorant of its character and the disorders to which it is liable, the operator gropees in the dark, that the work of restoration is uncertain and vexatious.

To guard against the necessity of constantly renovating the negative bath, it has been advised that a large bath-
holder, with a correspondingly large supply of bath solution, be adopted, so that it requires little attention in works of the future. As it may at any moments arrive at that stage when it is found not to work properly, another bath, in working order, should be always in its place, which you can work when No. 1 becomes disordered. A third in course of renovation may, on the deflection of No. 1, be restored and put in its place, while the disordered solution is treated in the manner to be described.

Whatever amount of silver you can set aside for the negative bath, be it great or little, or the baths with which you work large or small, depend upon it that it is much the simplest plan to have three lots of solution, one in use, a second quite ready, and a third preparing; by this plan you can never be taken at a disadvantage.

The Causes of Disorganization.——Generally, the first change in the bath is caused by an accumulation of alcohol and ether, causing a repulsion of the developer when flowed over the plate. This may be remedied in two ways:—1st, by adding sufficient alcohol to the developer to counteract the repelling influence of the alcohol and ether in the sensitizator; or, 2nd, by evaporating them by means of heat. The first method is only efficacious up to a certain point, and the presence of alcohol in the developer is not always beneficial. Place the bath in an evaporating dish over a stove until it commences to steam; air will then be driven by the volatiles, which are easily driven off.—ten minutes steaming will be sufficient. If the solution is much reduced in quantity, and the strength at the time of taking it out of the bath is not weakened (as may be ascertained by the hydrometer, an instrument by which the specific gravity of liquids is tested), the solution, by the evaporation of the water, is strengthened; there being the same amount of solution, and less water, so that it should be re-supplied by the addition of pure water, and filtered whilst still warm. This is done because iodide of silver is more soluble in a warm than a cold solution, and should any iodide be precipitated by heating the bath solution (which will only be in the case of an excess, when it is necessary to reduce the quantity), it may be filtered out in its present state; when cold it would be re-deposited. Filtered, the solution should be perfectly clear; if not, it must be filtered again.

Fogging is the new disordor to which the bath shows tendency; a mistiness, or veiling in the shadows, that in developing, instead of remaining clear and bright after fixation, there is a deposit not caused by detail, which destroys their brilliancy. Fogging may arise from a variety of causes, ascertaining which the remedy is simple. Fog may be generally classified under two heads: chemical, that caused by impurities in the chemicals; and what is sometimes termed mechanical, as light improperly admitted to the plate (otherwise than through the lens) or from dirty glass, &c.

Taking the first, or chemical causes of fog, it may be found to veil the entire plate, lights (though not, perhaps, very observably) as well as shadows. In other cases it may entirely obliterate the image. If then the fog is universal, veiling the entire plate, and it is found that it is removable by a gentle rubbing of the finger or a tuft of cotton, without harming the image and film beneath, this is chemical fog, and the cause is to be found in the colloid, bath, developer, hypo, or in the manipulation.

If the fogging is but slight, try the other bath, which, if free from the cause, will most likely show that the fault is in the sensitizing of the plate; proceed as follows: pour the solution at fault into the evaporating dish or clear bottle. If the solution is discoloured, the probability is that dirt was the cause of the fog: remedy, filter. If perfectly clear, test for acidity; if absent, add a few drops of acid. If acid, test the strength; and if below thirty grains, boil up to that strength, and filter. If after this treatment the bath works satisfactorily for a time, and again shows signs of fogging, it may be again and again restored in like manner, until simple boiling and filtering fails to remove the organic matter with which it is charged.

Under- and over-exposure, and too strong light shining on the lens, are also causes of fogging. With too short an exposure the silver reduced by the developing agent is attracted so slowly to the image that it falls on the shadows. Remedy, more time. When the exposure has been too long, the reduction of silver on the application of the developer is so rapid that the operator has not time to wash it off before the silver is attracted to the shadows as well as the lights. Of course less time is the remedy.

Temporary relief to a bath disorganized by the presence of organic matter can be obtained by adding a small quantity of a solution of permanganate of potash until the bath shows a violet colour. Place in the sun, in a white bottle, until clear, when the precipitation may be filtered out. Permanganate of potash in contact with the bath—the organic matter becoming oxidized—liberates permanganic acid, forming permanganate of silver, which remains in the bath, and is precipitated to the bottom in brownish-black flakes. The bath will require filtration and the addition of a few drops of acid after this treatment.

Temporary fogging by mechanical fogging from the chemical variations as not being universal, but formed in irregular patches, marks, &c., and not being removably except with the collodion film. The plate, perhaps, is dirty; clean your glass more perfectly. The albumen with which the plates were albumenized may not be pure; in which case see that the eggs are quite fresh, and that the solution is filtered clear. Or the cause of fog may be found in dirty fingers or plate carriers: remedy obvious.

Pinholes caused by an excess of iodide in the nitrate of silver solution are very minute, of a regular crystallized form, and are distributed evenly over the entire surface of the plate. From pinholes caused by an excess of iodide those from dust are easily distinguished, being generally larger and of irregular shape, and not scattered regularly over the plate. The causes are numerous: dust in the colloid or on the plate before collodionizing; in the bath, where the plate receives the particles on its surface; in the carrier or on the dark slide, which, on being withdrawn, sets the particles flying; in the camera, and in other ways are these kind of pinholes produced. Search out the cause, and remedy it. Those from iodide may be plainly seen on the withdrawal of the plate from the bath, covering the plate from the surface; they prevent the reduction of silver falling on the parts they cover, and being afterwards dissolved in the hypo-sulphite of soda solution, leave the fine holes or transparent spots termed pinholes. Remedy, dilution; and filtration, and strengthening of the solution by addition of silver, or by boiling up to proper strength. (To be continued.)

COLOURATION OF STATUARY.

By ROBERT N. Bow, C.B., F.R.E.S.*

The purpose of this paper is to introduce a somewhat novel mode of treatment of statuary, being a modified kind of colouration, dealing at most with two colours, and even using by preference the simple admixtures of black and white; and in order to show that this should be regarded as a very mild innovation, I may quote a few facts, and regarding the practice of the Greeks at an early time when they had attained to their highest excellence in the sculptorial art.

The two most celebrated works of Phidias, the Minerva of the Parthenon and the Olympic Jupiter, were of gigantic

* Read before the Edinburgh Photographic Society.
risé, and both composed of an immense number of pieces of ivory and plates of gold, the naked parts of the figures being of ivory, and the drapery and accessories of the metal. And, in the case of the Minerva, at least, the eyes were formed of inserted precious stones. Again, the renowned work of Polycleitus, the Juno of Argos, was similarly built up of ivory and gold; and not only were the eyes frequently inlaid with metals, glass, and precious stones, but sometimes also the lips. Colours were also frequently applied to the eyes, lips, and hair, as well as to the drapery and ornaments. It does not appear, however, that means were used to give the appearance of complexion or rose-tint to the skin, as was the case of marble statues; but it is a curious fact that this effect was by some method imparted to some bronzes even of great excellence, the works of Praxiteles and other sculptors. The gilding of the hair in marble statues was a very common practice. These aids to the expression of the simple statuary appear to have been employed more or less throughout the three hundred years during which Grecian art maintained a high position, i.e., from the times of Pericles down to the fall of Greece to the status of a Roman Province; and we may therefore well suspect that our present notions of what constitutes legitimate art in sculpture are far too restrictive.

The ancient Romans in their polychromatic work departed still farther than the Greeks from the simplicity of ordinary sculpture. They attempted to copy very closely the actual thing, by building up the statues of coloured marbles and alabasters; but we may pass over their doing as carrying less weight in questions of taste.

Owen Jones is of opinion that the Greeks used colour very generally, both on buildings, sculpture, and groups, and that even the flesh was coloured, but only conventionally, so as to avoid any attempt at direct imitation of nature.

I do not offer any arguments or opinions myself in favour of the use of a variety of actual colours even employed conventionally. But I propose to apply for the most part to every piece of sculpture; for undoubtedly there exist many beautiful statues and groups of the case of which it would be felt by all to be sinning against good taste to modify in the slightest degree their uniform white surface, or to employ any obvious device by which the eyes or other features might be more forcibly indicated than results from a pretty strict adherence to the simple portrayal of the natural thing. But I propose to apply for the most part confined to those characterised by placidity of expression, and intended to convey ideas of repose, indifference, or patience; the eye is a blank in which it is left to the imagination of the beholder to picture the appearances of intelligence, and incapable of exhibiting the side-glance of coquetry, suspicion, or alarm; or of reinforcing the expression of the eyelids in the upward gaze of admiration, or surprise, or the downward droop of reverence and humility. And it must be borne in mind that in many phases of expression the eyelid and the eyeball contradict one another in action, as in coyness, cunning, watchfulness, and horror. These the sculptor cannot render or distinguish from some of the former without marking in some way the surface of the eyeball.

Statuary is constantly weak in the rendering of the eyes. What is well modelled exactly according to nature, a very disagreeable effect would generally result from the light failing most powerfully upon the part where the pupil and iris occur, and thus rendering it lighter instead of darker than the rest of the eyeball. The usual device to mitigate this reversal of light and shade is to make the curvature of the eyeball less intense in front, securing at the same time a shadow from the exaggerated contour. The effect of the eyes was that when the expression to be conveyed is active or passionate, the absence of the positive shades of the pupil and iris are such unequivocal blinshes. It is the strictness of rendering often is still further departed from, especially by the modern sculptor, with a view to reduce the evil. This is most commonly done by drilling a hole where the pupil occurs, so as to get a deep-cast shadow as a substitute for the positive darkness, and defining the circumference of the iris by a slighter ring-like cut. Another mode of treatment is to score out a saucer-like depression as large in diameter as the iris. Now no doubt these modifications may be claimed as the work of the sculptor's tools alone; but such a pretence would be mere quibbling, for the effect is got by a direct departure from the modern sculptor's first rule of art, which restricts him to the most accurate rendering of the surfaces that the material will permit of.

But it is not in the eye alone that the want of positive shade is felt. The eyebrow even plays an important part in expression, and here also is involved the issue of light and shade, but the weakness is not so seriously noticed, since the eyebrow, though coloured, is not a mere surface indication, but has its form and position, defined both by elevation and variety of texture. In the case of the mouth, however, much of the individuality of expression depends upon the form and position of the line where the carmine of the lips joins the skin-colour; this may be strikingly shown by changing that line in an actual face by means of painting the surfaces, or by painting variously the lips of casts from the same head; it is therefore a necessary and important feature in individual likeness, and it is somewhat surprising that the device of a fine cut has not been had recourse to for marking the outline of the deeper colour of the lips: I believe it is here, even more than the eyes, that the difficulty arises in conveying the idea of likeness in portrait busts.

It might, perhaps, be possible to employ colour generally if in a very subdued manner, and under the skillful hand of a true artist, so as not to give rise to that feeling of repugnance produced by waxwork-like imitations of life. And some art-critics indeed think that Gibson succeeded in the case of his tinted Venuses.

The more satisfactory of these objections are produced by waxwork-like imitations of life are very striking, and it may be worth attempting to get some insight into its nature. Perhaps the solution should be found in this, that the art-character of the work should never be disguised, but that, along with the pleasure or interested feelings called forth by the beauty or effectiveness of the representation, there should be mingled a feeling of admiration for the art displayed in the wax replicas. Judged in such an eye, both the present and how unsatisfactory must be any attempt to produce an absolute representation of the reality of nature; for if by any possibility we were successful, we could regard the work merely as a substitute for the reality, and should miss the feeling of art-admiration, on the other hand, putting aside the impossible, the nearer we attempt to approach a verisimilitude of living nature, the defects in our work must become more numerous, more easily detected, and much more offensive, from the very pretensionness of the sham.

It may be objected to this explanation that in the case of a painting on a flat surface the work is more admired the more perfect the delusion of its reality can be carried out; but here the imposition is not of the same absolute kind, and the art-admiration constitutes a large part of the pleasure experienced. Perhaps the peculiar nature of the deception attempted in the case of painted sculpture, or waxwork figures, may be brought more clearly out by the following consideration. When we see a mutilated ordinary statue, say one from which has been broken part of an arm or leg, we do not find the statue to become repulsive; but if this same statue were painted, and treated in so masterly a manner as to represent a living form very to sory, I think it must be apparent that the statue was as I have supposed would become hideous. Now no similar feeling could be produced by a pictured figure merely mutilated by an accident to the canvas; it only presents itself as an injured work of art, exactly analogously to the mutilated unpainted marble statue.

(To be continued.)
THE PRACTICAL PRINTER IN AMERICA.

XXIV.

WASHING THE PRINTS.

The prints, after they are removed from the salt-water bath, are then to receive the final washing, which will render them ready for the further operations, such as mounting and finishing. I would here most earnestly advise all printers to allow their prints to soak about ten minutes in salt water, before proceeding to wash them, as besides saving the annoyance of having blisters on them, they will also be much more easily washed.

This washing is the most important of any of the washings before mentioned, because if it is insufficiently done, the result will be much more disastrous than any of the others. The other washings were only to prepare the prints for other solutions, and it was not so important, as the silver would finally be removed in the fixing-bath.

But in this case, when you discontinue the washing and proceed to mount the prints, they will then in the future be good, bad, or indifferent, according as to how the final washing was done. This destroying power which is so necessary to be removed is the hypo sulphite of soda, a considerable quantity of which still remains in the print.

The theory of washing is that the water gradually dissipates the hypo in the prints, providing the washing is permitted to go on long enough, and then the prints can be mounted and dried without any danger of bad results from further chemical action. The young beginner can thus see the necessity of frequent changes of water to remove this destroying agent, and hence it would be a good plan for the first half hour or so after the prints are fixed to wash them by hand, and then put to the washing apparatus, whatever that be, in small establishments this can be done by permitting the water to run into a dish at one corner. If they are so done, it would be best to do as recommended, as they are likely to be all together the greater part of the time when thus washed.

Washing by hand can be done in the following way:—

Take a suitably sized dish, fill about half full of water, and when the prints are removed from the salt water, place them in this bath of clear water with one hand, while with the other you place them under the surface. When the prints are all placed in this bath of water, then move them all about for five minutes, and then pour off the water and fill up again, and let them stay in five minutes more. Do this for four or five times more, using lukewarm water, as it will do the work quicker than cold, and then they will be ready to wash in the dish, as above described, by arranging the dish so that the water will run through and between the prints. When there are only six or eight scores of prints, they will be washed in a short time.

The great secret in washing prints is to keep them separated, thus permitting the fresh water to move between them all the time. In large batches—say twenty, thirty, or forty sheets of paper—this washing cannot be done in so simple a way as the above, hence it becomes necessary to have washing-tanks that will, on account of its peculiarly adapted make, wash the prints perfectly, and a longer or shorter time is required according as to how thoroughly the tank does its work.

To keep the small cartes from getting between large prints—say 14 by 17, and even larger ones—and thus getting imperfectly washed, a series of washing-tanks are arranged, a large one of which is intended for the washing of large prints alone, and a smaller one for the cartes-de-visite.

Every photographic gallery has some sort of a tank which is intended for this washing, and I will mention here that these final washing-tanks should never be used for any of the other operations, such as the other washings, fixing, &c.

These tanks are more or less perfect in performing their work, but there is one idea that is generally carried out in them all, and that is to have an outlet in the bottom of the tank or tanks, so arranged that without sucking the prints in, the water can be let out at the opposite side to where the fresh water is supplied.

To keep these prints in motion while washing, and thus make them "self-washing," a rotary motion is given to them on account of the manner in which the water enters the tank. A half-inch pipe generally runs along the inside of the tank, suspended midway between the top and bottom, and having small holes so made in it that the water strikes the water on the opposite side, as well as on the whole of them, and on different parts of the surface, thereby causing the water to rotate around the tank, carrying the prints with it. The tank is so made that the diameter increases as it proceeds towards the bottom of the tank, so as to prevent the prints from sticking to the sides of it; and to be doubly sure that they will not adhere to the sides, there is on the under surface of the pipe an array of small holes running the whole length of it, sending small streams of water down the sides of the tank, driving away the prints which may be there. To prevent the apparatus from overflowing, an overflow is made, which, when the water has reached that level, it can be run off without danger of carrying the prints with it. But better still are those tanks which are got up on the siphon plan, and then when the water has reached the proper level, etc., it is all let off, leaving the prints on the bottom of the tank, which is, of course, so made as to prevent any hurt coming to the prints.

A washing apparatus got up on the siphon arrangement, and emptying itself every twenty or twenty-five minutes, is one which I used in a printing-room of an excellent gallery for a number of months. It consisted of a bottom, towards the bottom, for the same reason as was stated above, i.e., to prevent the prints from sticking to the sides. The pipe in it was arranged as was described above, and the bottom of the tank was covered with small pebbles about two inches in depth, which are or should be evenly distributed. Close to the bottom of the tank, on the side, a hole was made (hid from the prints by a piece of glass, the edges of which were ground smoothly), which permitted the water to pass through by means of a little iron pipe (varnished) two inches in length, which fits in exactly close to the wood. About an inch of this pipe projects beyond the tub, and a piece of suitable rubber hose is fastened and bent in the form of a siphon, the higher level of which is fastened by a wire in its proper position. When the water in the tub has reached the highest level of the siphon, which has been gradually increased as the water will fall therefrom, and in a few minutes the tank will be emptied of the water, although there is a stream running in all of the time. The prints will be gently let down into the pebbles, and the water, after it has ceased to run out, will again cover the prints, and set them afloat before they have stopped draining. The supply water never should enter the tank nearly as quickly as the siphon carries it off when it has once started. No danger need be apprehended from the drying of the prints while the tank is filling up again after it has once been emptied. For large prints this is not very good, especially if there are a quantity of them, but on the whole it is a very good arrangement.

In large establishments the prints are generally allowed to wash all night, and if there are many to be washed it had better be so done, unless the whole of the washing is done by hand, and then a shorter time will answer.

Prints which are toned and washed Saturday afternoon should be washed by hand and mounted up before you leave the establishment for the night, as remaining in the water over Sunday will very much affect the prints; for, of course, they are not to be mounted on Sunday. In some establishments the printers do not print photographs on Saturday, but spend the day framing, making porcelains, &c., &c.

The prints should be tested before they are removed from the tanks, for the purpose of being sure, to see as to whether they are perfectly washed or not.

Dr. H. Vogel, in his "Handbook of Photography,"
boil also four ounces of isinglass, and mix the two together; place them in a water bath (glue kettle) with half a pound of white sugar, and evaporate till the liquid is quite thick, when it is to be poured into moulds, dried, and cut into pieces of convenient size. This immediately dissolves in water, and fastens paper very firmly.

Removing Ink Stains.—A solution of chloride of lime in water to which a little acetic acid has been added is among the many receipts recommended to remove ink stains from linen.

Staining Marble.—Marble can be stained different colours by the following substances:—Blue, solution of litmus; green, wax coloured with verdigris; yellow, tincture of gamboge or turmeric; red, tincture of alkanet or dragon's blood; crimson, alkanet in turpentine; flesh, wax tinged with turpentine; brown, tincture of logwood; gold, equal parts of verdigris, sal ammoniac, and sulphate of zinc in fine powder.

Mounting Microscopic Objects.—A mounting fluid for microscopic objects is made of gelatine one ounce, honey five ounces, distilled water five ounces, rectified spirit half an ounce, and creosote six drops. Filter through fine flannel. Heat the honey before adding to the gelatine, which last must be dissolved in the boiling water. When cool, add the creosote, and when it is not the least bit of it, is still present, the washing should be repeated. When we wish to test finished pictures by this method we must soak them first in water, and then test the water as described above.

Before you proceed to remove the prints from the tank let off all of the water in it, and rinse them well in a bath of clean rain-water, so as to remove all traces of the iron rust and settings from the water, which may have been carried in the tank through the supply. Rinse the prints in two or three changes, so as to get them as clean as possible, and they will be much nicer and cleaner when they are finished. When the prints are removed from the tank always rinse it, and fill up again with fresh water, and it will be ready for use next time. If the peppers are used in the tank they should be washed every day. If the tank is made of wood, then once a week or fortnight let off all the water in the morning, and dry it thoroughly, and varnish all over the tank and pipe with some shellac varnish, and you will keep the tank in better condition by so doing, being more easily cleaned in the future from settings, &c. Once in every two or three months scrape off the old shellac with a broken piece of glass, and varnish it anew. Thin and clean the tank, and in front of it, to all your tanks and sinks, for they should all be shellacked.

All of these little things help towards making fine work.

ANOTHER BATCH OF RECIPES.
We select, chiefly from the pages of the Scientific American, another batch of recipes, the majority of which will be found useful to photographers.

HYDROXYLSINCE INK.—The main objection most people have to sending communications on postal cards is that the writing is, of course, open to general perusal. A good way of avoiding this difficulty is to use sympathetic ink. A solution of ten grains hyposophite of soda in five ounces, or until the whole fuses uniformly. Take out the melted mass, and, when cold, powder it and dissolve it in boiling water.

PORTABLE MUCILLAGE.—To make pocket mucilage, boil one pound of the best white glue, and strain very clear.

WATERPROOF CEMENT FOR CAST IRON PIPES, ETC.—Take equal weights, in dry powder, of burnt lime, Roman cement, pipe-clay, and loam, and knead the whole with about one-sixth the weight of linseed oil. The addition of more Roman cement improves the quality.

CEMENT WHICH RESISTS MOISTURE AND HEAT, BUT NOT THE DIRECT ACTION OF FIRE, FOR GAS AND STEAM PIPES AND SIMILAR PURPOSES.—Two parts of red lead, five parts of white lead, four parts of pipe-clay; fine and dry, and work them into a stiff mixture. Use for mixing the parts of bright iron filings or fine chips or borings with one part powdered sal ammoniac, and moistening with urine; when thus prepared, force it into the joint. It will prove serviceable under the action of fire.

STONE CEMENT FOR THE JOINTS OF IRON STOVES.—Mix, together with finely sifted white ashes, an equal quantity of finely powdered clay, and a little salt. When required for use, add enough water to make a stiff paste.

IRON CEMENT WHICH IS INSUSCEPTIBLE TO RED HEAT.—Four parts iron filings, two parts clay, one part fragment of a Hessian crucible; reduce to the size of rape seed and mix together, working the whole into a stiff paste with a saturated solution of salt. A piece of fire brick can be used ahead of the Hessian crucible.

CEMENT FOR FASTENING WOOD TO STONE.—Melt together four parts pitch and one part wax, and add four parts brick-dust or chalk. It is to be warmed, for use, and applied thinly to the surfaces to be joined.
The Photographic News.

Vol. XIX. No. 871.—May 14, 1875.

CONTENTS

Photography In and Out of the Studio ... 200
Photography. By Dr. William Henry Fox Talbot 200
Oclusion of Statuary. By Robert H. Bow, C.E., F.R.S.E. 200
The Present State of Photography in America 200
Another Batch of Recipes .. 203
Experimental Committees in Photography 204
M. Peynet on Phot-Enamelling .. 205
How to Produce Photographic Portraits without a Camera 205
French Correspondence .. 205
The Action of Hydrochloric Acid upon Nitrate of Silver 205
Correspondence.—To Make Ovals—Devonshire Scenery—What to do with Residues .. 207
Proceedings of Societies.—Photographic Society of Great Britain—Edinburgh Photographic Society 238
Talk in the Studio ... 239
to Correspondents ... 240

EXPERIMENTAL COMMITTEES IN PHOTOGRAPHY.

A point of some interest arose in course of the discussion of Colonel Wortley's paper at the Photographic Society on Tuesday evening last. In referring to the uncertainty of many modes of estimating varying rapidities, Col. Wortley suggested the importance of appointing committees of competent gentlemen, whose report, after adequate trial of suggested novelties, would be of much value to the photographic community at large, who were often bewildered by the various processes and modifications proposed in different quarters, any attempt to test the whole of which would be a hopeless task for photographers generally.

The suggestion met, however, with less favour than might at first glance have been anticipated. It was not much discussed; but after definite condemnation from Mr. Hughes, as one of the disadvantages from the Chairman, it found no champion or advocate except Colonel Wortley himself. Mr. Hughes remarked that the appointment of committees to investigate various subjects seemed to be a common practice in some foreign societies; but he could not call to mind the reports of any such committees, or any advantage arising out of them. The history of two committees appointed by that Society would be familiar to the members. In one of them, it would be seated to lament the causes of fading in silver prints; but after all its protracted and careful labours he scarcely thought that any increased permanency in prints had been secured. The other committee was the well remembered collodion committee, and he did not think that any one had heard of any good which arose out of its labours. The duties of such committees, if properly performed, would be unrewarding and thankless, and the results, he thought, of doubtful value.

That a careful and efficient performance of the duties which would devolve on such committees would be a serious tax upon the time and attention of men capable of undertaking them, and that the office would be a thankless one, there cannot be a doubt; and it is in this fact rather than in the doubtful value of the reports of such committees the chief difficulty in securing their establishment lies. It is true that the celebrated, or notorious, collodion committee was in every way a lamentable mistake. Established at a time when little was known as to the sources of excellence in collodion, it should have been prepared to examine every collodion, details of the preparation of which were submitted to it. As a practical test it examined the collodion of one manufacturer only, and, without comparison with others, pronounced this the best. The labour of this committee cost the Society, if we remember, ariht, upwards of one hundred pounds. Collodion was supplied ad libitum to the members for examination and testing, and gallons of it, we have been assured, were in existence years afterwards, in use for cleaning glass plates. The whole purpose and the action of the committees constituted one huge blunder; and its history would probably serve as a beacon, indicating what to avoid in the formation and action of future committees. In the printing community the action of Hughes was not fortunate in his illustration of inutility. If the immediate results in the shape of absolute permanency in silver prints were not as marked as might have been desired, it may be safely affirmed that the photographic community at large knew much more of the immediate causes of fading after the publication of the report of that committee than had been known before, and it is not to be supposed that mere knowledge of the causes of existence, if not absolute permanency, has been given to hundreds of thousands of prints by the information diffused in that report. It is a long time since it was published, and much experience in photography has been gained since that day. It is not improbable that another committee appointed for the same purpose, and conducting its operations with the same care, would arrive at results of great interest and value to the community.

Colonel Wortley, replying to the objections of Mr. Hughes, said that the difficulty of dealing with such extended subjects as permanency in photography must be admitted; but his suggestion was of a much simpler nature. Some one suggests, in the journals or the Society, that an addition of a certain kind—say, of nitrate of uranium—to the negative bath would secure a definitely increased ratio of sensitiveness. Three capable gentlemen appointed by the Society could determine the results of a couple of hours' experiment, and their dictum would be invaluable in settling the perplexities of the photographer who was bewildered by the multitude of suggestions which appeared from time to time. Probably no proposition could more admirably harmonize with the wishes and wants of a large portion of the photographic community than that of Colonel Wortley. What could possibly be more desirable than that every improvement in photography, every suggestion for increased sensitiveness in the plates, for greater excellence in result, or for greater advantage of every kind, should reach the non-experimental worker with credentials as to its precise claim and degree of trustworthiness, which should enable him to determine without test or experiment whether it was right or wrong? Occasionally he would no doubt think it was very good of the capable men in London who sacrificed their time and energy for his benefit. Occasionally, too, others would come to the conclusion that the reports were not very trustworthy, after all; that the members had some personal purpose to serve; that they were "armchair" or "couch," who in some occult and inconceivable manner served their own ends by devoting their energies to the public service in connection with the art they loved. That experimental committee could be of inestimable service in many respects we think might easily be demonstrated; whether it would be wise or desirable to institute them for the purpose of establishing points which must energetic and capable photographers may easily settle for themselves, and which all desiring the advance of the investigations published from week to week in the journals should be willing to test for themselves, is a question. The point out of which the discussion arose—namely, a suggestion for a committee to test a point which Col. Wortley mentioned in his paper, the advantages to be gained by the addition of nitrate of uranium to the negative bath—was one on which the report of a committee would, doubtless, be interesting; but is, at the same time, one which presents very little difficulty for verification to the intelligent photographer in his everyday practice. Col. Wortley, who, in connection with the Wohlytype process, and in connection with his own emulsion process, has experimented extensively with ura-
PHOTO-ENAMELLING.

At the last meeting of the French Photographic Society, M. Geymet called attention to his method of enamelling, and gave some further details on the subject. The sensitive liquid he employs for coating the plate upon which the image is produced is made up of:

- Water...
- Glucose...
- Honey...
- Powdered gum...
- Saturated solution of bichromate of ammonia...

No great skill is required to pour this sensitive mixture upon a glass plate. The film is dried, and is then exposed for two minutes in the shade. The image being afterwards developed by means of enamel powder passed over it with a brush. This operation should be repeated two or three times, leaving an interval of two or three minutes between each manipulation.

The film is covered with a film of solution containing 1% per cent. of pyroxyline, and when the gelatine has formed, the plate is plunged into a bath of acidulated water which contains 10% per cent. of hydrochloric acid. The plate is then washed in the first bath with some precaution, for the gelatine will be found to be soluble in that acid. After a few minutes' sojourn in this second water, the image is lifted by means of the plate, and placed in a sugar solution:

- Water...
- Sugar...

The enamel plate, cleaned with borax, is then pushed under the gelatine, and the print is upon its definite support. The plate is put upon filter paper, which absorbs the excess of sugar solution. The gelatine is covered with tissue paper, and it is pressed, softly in the first instance, with a tuft of cotton-wool. Afterwards more pressure is used, the tissue paper being changed and the gelatine being dried. It is then placed, while wet warm, in a saucer of sulphuric acid without water, to destroy the colloidion, which happens after half an hour. Nothing now remains but to rinse the gelatine plate in two or three waters, and when dry it is burnt in a muffle furnace, heated to a cherry-red temperature. Any retouching that is necessary is done, and the lights are heightened by touching them with dilute hydrofluoric acid, and afterwards the gelatine is put into the muffle again to get a final glance. Any colouring that may be necessary is applied by means of a brush, taking care that the tints on the face and hands must be applied at the very last. Flesh-coloured tints must be burnt in with a very moderate heat.

HOW TO PRODUCE PHOTOGRAPHIC PORTRAITS WITHOUT A CAMERA.

A HUMOROUS sketch of a Chinese studio is given by M. C. Kardatz, who was one of the gentlemen attached to the transit of Venus staff that proceeded to the seaport of Tachifu, to make observations in the neighbourhood. The Chinese officials, our German collaborator tells us, marvelled much over the solar instruments that were imported to take the necessary astronomical observations, and their use was explained through an interpreter. An image of the sun was secured and handed over to the chief dignitary, who was exceedingly delighted with this sonar presented to him.

M. Kardatz was asked anxiously if he could photograph them on the earth as well as in the sky, and this he proved by taking a group of the officials then and there assembled, with which the Chinese dignitary was highly delighted. He thanked M. Kardatz a thousand times, and gave him a pressing invitation to come into the interior, to see his estate and to depict any objects he desired in the neighbourhood. M. Kardatz gave no decided answer to this polite invitation except that he would consider of it.

The reason for all this ceremony towards the photographer of the party would appear to be the fact that he brings the first camera that has yet been seen at Tachifu, which is, by the way, not an unknown spot, but the most fashionable watering place among the Southern Chinese. The doings, therefore, of our brother in the art were looked upon as miracles, and much and much more dogged and his movements watched wherever he went. Nevertheless, it turned out there was a photographic studio at Tachifu, and one, too, at which a good deal of business was conducted. You could go in at any hour of the day, providing you were a Chinaman, and get a portrait executed in a very short time. This Chinese artist, somehow, did not appear to have much affection for the novel representative of the art, however, and instead of affording a welcome in any way, he seems to have studiously avoided a meeting. His studio was considered a sort of tell-your-fortune abode, and, so it came out, did not even contain so much as a camera or a lens. The heretofore Chinese had merely acquired a large collection of portrait negatives, and when a customer came, he took his picture mentally, looked through the stock, and chose the picture most like. As all Chinese heads are pretty similar, and their piglets much about the same length, it was never difficult, apparently, to make a match, for the public were quite content with what they got for their money. The photographer seemed to thrive, for the good people of Tachifu were never tired of having their portraits taken, and, as everybody was satisfied, there was no reason why matters should be changed, although it is M. Kardatz's opinion that if a Shanghai photographer were to pay the place a visit during the bathing season he would run the heathen Chinese very hard, and, no doubt, make a lot of money.

FRENCH CORRESPONDENCE.

In reference to the process of enlargement communicated to the Photographic Society of Great Britain by Mr. Valentine Blanchard (a process which much resembles
that made known by Mr. Wharton Simpson in the Year-Book for 1872), M. Valette, a Paris photographer, informs me that for several years past he has used an analogous method, but with a very advantageous modification. He is able, by the plan he adopts, to retouch the transparent positive, which serves to secure the enlarged negative, and to change in an important manner the image to be reproduced in a very simple way. He simply stretches behind the positive cliché a sheet of vegetable paper, upon which the changes and additions are effected that may seem desirable, after he has scratched away by means of a point or eraser any spots or blemishes he desires to remove. This is a dodge which, without being very new, will be of much practical advantage to the operators.

At the monthly meeting of the French Photographic Society, which took place on Friday last, a curious document was exhibited by one of the members. It was one of the first engravings produced by Nicéphore Niépce. This sketch, which brings to mind the early essays of our art, dates from the period between the years 1829 and 1833— that is, during the time of the partnership between Niépce and Daguerre, which was terminated by the death of the latter partner. There is no need to remind my readers that the first experiments of Nicéphore Niépce were made in the direction of photo-engraving, having for their object the etching of the image traced by light upon the metal plates covered with bitumen of Judea. The subjects chosen by the illustrious inventor were stamps, or old engravings of a simple character.

M. Franck de Villescholle presented through M. Davanne a photometer of the Autotype Company of London. The readers of the Photographic News certainly know all about this little instrument, so that I need only mention the favourable manner in which it was received.

It is well known that for some years past the interposition of coloured glasses between the sensitive plate and the object to be reproduced has often been employed with success. An optician, M. Berthiot, has conceived the idea of constructing lenses with the interposition of parallel glasses of a blue colour, and he exhibited one of these instruments before the members of the Photographic Society last Friday. It appears that it is not a matter of indifference where the coloured glass is placed, and after a number of ingenious experiments he has found that the same should be fitted between the two lenses, quite close to that which forms the anterior face of the combination. M. Davanne, who has tried a lens of this character, did not find that it had a more rapid action than those of combination, but he found that the pictures were still much more intense than in the absence of the coloured glasses, even when the objects taken offered very great contrasts. M. Leon Vidal, who was present at the meeting, observed that in many cases it would be well to change the colour of the glass interposed between the lenses, and he suggested the mounting of glasses in such a way that they might be slipped in or out at will, as is the case with diaphragms.

M. Berthiot also exhibited a lens with a multiple focus, the novelty of which consists in the mounting of different lenses. The ensemble occupies a very small space, and forms a suitable pocket instrument.

M. Ribera has forwarded a numerous collection of specimens of a new matt paper, which possesses the advantages of being very economical, and preserving intact its whiteness; it is capable of giving very fine impressions, as is proved by the beautiful pictures that accompany the communication he sends. The sensitizing of the extreme paper, as it is called, takes place upon a six per cent. silver solution only, and there is the advantage that the bath never becomes discoloured. The image, being upon the surface, is easily retouched. The sensitizing bath is composed according to the American formula, which consists in adding nitrate of ammonia to the silver solution. The nitrate of ammonia is prepared by saturating ammonia with pure nitric acid, or, in other words, by mixing the two materials in equal parts. According to the quantity of nitrate of silver taken, half the same measure of this mixture is added; thus, to make up a litre, thirty cubic centimetres of the mixture are taken, and to this are added six or seven hundred grammes of water, and this mixture is added to the rest of the water dissolved sixty grammes of nitrate of silver. The whole is mixed, and then filtered. A slight addition of alcohol or of sugar is useful; it is well also to have the bath slightly acidified with nitric acid. To maintain the bath in its proper condition, which is of course necessary, it is well to have a separate bath of 64 per cent. strength, for instance, and every time the paper is used, the quantity exhausted in the actual bath is replaced by the addition of this stock bath, so that the solution always remains at its proper strength. The paper, upon which, as we have seen, very fine translucid prints may be obtained by means of the wax or varnish applied after fixing, appears to be exceedingly useful for enlargements.

M. Aime Girard made at the end of the meeting a very interesting communication respecting the production of micro-photographs, which he employs as enlargements in his lectures at the Conservatoires des Arts et Métiers. He has before the members presented an excellent method of enlarging the image in the camera, and the projection of the image upon a screen. M. Girard laid stress on the point that he did not make use of any novelty, but that he simply utilized the processes already known, and made use of them for his benefit. Thus he employs an oxyhydrogen lamp from an ordinary vertical microscope, and a camera of short focus fitted to a microscope by a tube furnished with a plane mirror inclined at an angle of 45 degrees. As a matter of course, the whole of the apparatus is properly fitted together. The focusing is easily effected by moving the ground glass to and fro, so that the grain cannot interfere with the detail of the picture. A micro-photograph was taken before the members upon wet collodion with a pose of ten seconds only. The sensitizing and development took place through the medium of yellow light of a gas jet burning with a fragment of chloride of sodium.

After having terminated the complete operation of printing upon glass a microscopic image, M. Girard exhibited to the members a whole series of photographs of the same kind enlarged upon a screen, employing for the purpose the apparatus of M. Moldein. In this way he was able to show the members a means of recognising adulterated flour, and to follow into all its details the fabrication of various articles, and to examine the most minute structure of several plants. No auxiliary is so powerful for seconding scientific instruction as the art of photography. M. Aime Girard has proved this once more by indicating to his colleagues of the French Photographic Society the importance of these pictures, which photography has taken a large share in obtaining, and which are better than the most skilful draughtsman could furnish.

To complete the account of this interesting meeting, I must mention that M. Rousselon, who reproduces every year for the firm of Goupil and Co. the paintings shown by artists at the Salon, exhibited a further series of prints illustrative of the recent progress he has made in the art of heliography. The opening of the Salon for 1875 has given M. Rousselon a large amount of work, and he has lately produced some interesting clichés. It is to be hoped that, instead of printing them by the ordinary method, he will employ his patent process, which is to prepare permanent albums, which, by reason of their artistic and historical value, will be hereafter of great importance. Durable photographs of this kind would gain admission at once to all libraries, from which silver prints are at present excluded by reason of their uncertain permanency.

Ernest Lacan.
THE ACTION OF HYDROGEN UPON NITRATE OF SILVER.

In a recent number of the Comptes Rendus appears an account of some experiments recently undertaken by M. Békét off upon the action of pure hydrogen on nitrate of silver solution. He has proved that this action is a substantial one, but slow in its progress. His experiments have continued above four months. He placed the silver solution in contact with the pure hydrogen in sealed tubes enveloped in several sheets of paper, and placed in a horizontal position in a dark locality.

M. Békét off sums up the conclusions that his experiments have led him to as follows:—

"I think I may conclude from my experiments that pure hydrogen reduces silver in the manner of other metals, in neutral or feebly acid solutions. The difference between my results and those obtained by M. Pellet seems to me capable of explanation either from the short duration of his experiments compared to mine, or on account of the solutions of silver that he made use of being too acid. As it is probable that the reducing action of the hydrogen is limited, and stops altogether when the liquid has attained a certain degree of solidity, I propose to clear up this last question in a further investigation."

The issue of M. Békét off's further experiments will be looked forward to with interest by photographers, for the subject is one that may possibly be of practical importance to them. If hydrogen can be made use of in photographic operations for reducing the time of exposure of the plate in the camera, there is no reason why it should not be employed as an accelerator in some instances. So far back as the beginning of this century, experiments were made with the gases in the camera to facilitate photographic action, Nicéphore Niepce working for some time in this direction.

Correspondence.

TO MAKE OVALS.

Sir,—One small but important omission has been made in your short article quoting from Scientific American, "To make Ovals of any Size," and that is how to determine exactly the method of using the string to give a definite size. It is this: draw a couple of crossed lines truly square,

\[x \]

now mark half the width of the oval wanted at \(a \) and \(b \), next measure half the length of the oval wanted from these points to a point on the line \(c \), as at \(x \) these two points are the foci of the oval wanted. A very useful way to catch the string is to cut a circular notch about one-eighth of an inch from the point of a lead pencil. This prevents the thread from varying its position.—I am yours,

W. H. Davies.

DEVONSHIRE SCENERY.

Sir,—Westward Ho! is an euphonious name, and there are but few authors who have lived to see their works give a name and a township to a locality. Those who have read Caspar Kingsley's work "Westward Ho!" know what a charm he has thrown around the immediate locality of which I am writing. Almost every spot of interest he has invested with a living reality that few who have read it but long to visit those scenes so vividly depicted. Your correspondent should drop that work in his travelling case, and read it when he has time, and I can assure him many of his photographs in this district would be doubly enhanced. Whether that photograph should be the long bridge of Bideford spanning the Torridge, a scene depicted near the Bloody Corner of Appledore, the "House of the Seven Gables" at Northam, a picture of the romantic fishing village of Clovelly, or by the weird granite rocks of Lundy Island all are depicted by Kingsley with a living detail that makes one regret that a good deal of the work is fiction.

I will suppose your correspondent to take Westward Ho! as his starting point on his photographic tour. If his means are somewhat limited, he may lodge cheaply at the village of Northam, which is about half a mile from the above place. Here there is a very fine tower and church worth photographing, both the interior and exterior. In the yard he will see many a headstone erected by the kindly hands of the villagers to the memory of many a stranger who has been cast by shipwreck on the sands of Northam Burrows. He may also get one or two good pictures from Bone Hill looking towards the Bay. This spot is close by the church, and therefore there would be no trouble. He may then run up and take a photograph of the "House of the Seven Gables." Although it retains the historic interest with which Kingsley has invested it as the residence of his principal hero, yet I must confess it has lost much of its charm by being modernised a few years ago by its present or late owner. Though it retains something of its ancient form, yet its old quaintness is gone.

Westward Ho! as a watering-place may be commended, moreover, for its breezy openness, its quietness and repose, its extensive sands, its golf links, and its zigzag walks on the gorse hills, on the slopes of which are built its terraces. I consider about a dozen different negatives may fairly represent the most interesting of its scenery, and its natural objects of curiosity. There is its wonderful "Pebble Ridge," extending along the beach, terminating with a range of sand hills; its like as a geological puzzle is unknown, although something of the kind is seen at Portland. Yet, for size of pebbles—more like boulders than anything else—is unapproached in many parts of Devonshire, and extends towards the sea to a depth of near forty feet. Yet sometimes, at a high spring, and in a N.W. gale, the sea leaps over this natural barrier. Two or three good negatives may fairly represent this object. They should be taken late in the day, so as to get the cast shadows on the land side.

Two or three negatives should be taken of the "Raised Beach." These become interesting to geologists. Two or three general views from the Pier and the Ridge will also be interesting; these will be better to be taken late in the day, as the sunlight is then streaming across the gorse hills, lighting up the deep green and golden yellow (scented) but non-scented masses of flowers. Several negatives can be taken in various picturesque spots from the hills above, and the slopes, which are a fine extensive range.

Cloud effects and "scapes" no place is finer than Westward Ho! Here the breakers come up full and unchecked from the Atlantic, and, with the strong active power of light, instantaneous pictures can generally be taken in fair weather. Clouds can at any time be taken. I use a wide-angle Dallmeyer landscape lens, and can secure clouds at any time without trouble. If the sun is staring on the lens it is a good plan to use an umbrella to shade it; in fact, it is an article I always take when working out doors.

From Westward Ho! we will trudge along the clifves to Peppercombe, Buck's Mills, and then to Clovelly. Each has some exquisite bits of rock scenery worth a plate or two; in fact, the former has not been done.—I remain sir, yours respectfully.

Theo. Tredake.

Bideford May 11th.
Sir,—I notice that in your last week's issue a correspondent enquires where he may most profitably pitch his tent for scenery in this country. But to generalise as much as possible, I would suggest Ilfracombe or an adjoining village for bold coast scenery. Near, on the old coach road, there are magnificent hill views; and to visit landscapes within easy walking distance, I think anything might be found.

In another district there are Okehampton and Bedford; the latter is noted for a beautiful valley and Waterfall.

Now I want a little help myself. What is the best manner to produce skin-like texture on the face, &c., of a photo, after the style, for instance, of the "Alisee Lorraine" pictures, or of the Prince of Wales by the Chichester photographers. Yours truly? B. T. Rolls.

Aina Cottage, Lynmouth, Devon, May 7.

WHAT TO DO WITH RESIDUES.

Dear Sir,—Your correspondent "Ashes" may have been cheated in the return given for his residues, as a good opportunity offers to those not conducting their business in a fair manner to do so; but let us be charitable, as it is just probable that your correspondent's mode of precipitation would be found a source of much trouble, and uncertain, even wasteful, results in unskilful hands or by careless treatment. My own experience of refiners is (and I only deal with well-known respectable houses) that they give a very fair return for the waste entrusted to them, and my mode of treating wastes is at the service of "Ashes."

I precipitate from hypo solutions by a saturated solution of sulphur and ponceau; collect the black precipitate; wash it well; and when sending it to the refiners append a caution that it contains a little sulphur, and is likely to be inflammable.

If "Ashes" has a furnace and would like to smelt it himself, he should add bicarb. of soda, grind all together in a mortar, and melt with a small piece of borax.

The plain silver washings may be treated to salt, the resulting precipitate placed in a porcelain capsule, and caustic potash added until the whole mass acquires a black colour. Dry, and the black oxide is ready for the furnace; with the addition as for the sulphide and a small portion of nitre. The treatment of the residues is very simple, as it only requires a little bicarb. of soda mixed with it, and may then be readily melted down to the metallic state by placing it in a crucible, and adding a small piece of borax and a little nitre. A scrap of brown soap might also be added.

I think he will find that by attending to these very simple directions, he will experience no future difficulty.—I am, dear sir, yours faithfully, D. K. GRIFFITHS.

Proceedings of Societies.

PHOTOGRAPHIC SOCIETY OF GREAT BRITAIN.

The usual monthly meeting of this Society was held in the Coudert Street Gallery on the evening of Tuesday, May 11th, Mr. J. GLASHER, F.R.S., in the chair. The minutes of a previous meeting having been read and confirmed, Sir George Prescott, Bart., was elected a member of the Society.

The President then informed the meeting that Mr. Edwin Cocking had been unanimously elected by the Council as Assistant Secretary.

The Secretary read a paper by Col. Stuart Wortley on the subject of "Comparative Rapidities," which will appear in our next.

The Chairman, referring to a suggestion in the paper as to appointing a committee for the purpose of making certain investigations on the subject, said it was not made to the President and Council, but to the society or meeting; and the meeting must deal with it if they thought fit.

Mr. SPILLES, referring to the alleged fact that the addition of a trace of uranium to the bath gave increased sensitiveness, remarked that from its yellow colour it might have been supposed to possess a retarding quality, and asked if the increased rapidity were due to its fluorescent qualities.

Mr. FISHER (the Hon. Secretary) remarked that, being one of the most fluorescent bodies, it might possibly accelerate in virtue of that quality.

Mr. HARRIES said that the idea of establishing testing committees had more than once been mentioned lately. On the Continent they seemed very fond of the practice. They often heard of committees being formed for that, and the other, but he must say he did not so often hear of any results arising out of their action. No doubt the reports of such committees would be very interesting if they were published; but they might not amount to much, after all. He remembered two committees formed by this Society: one was the Printing Committee, who, after much experiment, reported, but photographic prints were, unfortunately, much more stable, and more likely to be invited to form. They had made no report, and were not likely to be thought probably each one of them had made a resolve not to be caught on a similar committee again.

The idea of such committees was doubtless an attractive one, but he doubted, after all, its desirability, as well as its practical value. In conclusion, referring to the alleged accelerating qualities of minute of uranium, he asked if there were any chance of an iodide of uranium being formed by its addition.

Mr. SPILLES said he thought not. Chloride of uranium was very soluble, and he believed the iodide was also.

Mr. W. NOEL HARTLEY said the iodide was still more soluble than the chloride.

Mr. FISHER asked if Col. Wortley made any photometric examinations of the flame of his gas burner, as it would vary throughout the day, and the hours of eight and ten at night were specified by the Act as the period when the gas should possess a certain standard of illuminating power, and at all other times it was uncertain.

Col. Wortley always commenced his measurements by such an examination, using Whistler's photometer. In relation to Mr. Hughes's objection to the Committee that the proposed were of a simpler character, and to deal with different matters to those referred to as failures. The subjects they undertook were complicated and difficult; but if A. B. affirmed that the addition of one gram of uranium to the bath gave a certain specific increase of sensitiveness, a committee of three or four capable photographers appointed by that Society could determine the question in a couple of hours; and their Aye or Nay would be gladly accepted by photographers who would be saved the perplexity necessarily involved in the publication of novelties, or guarantee, appearing in the journals. With regard to the period of uranium in the bath, to which Captain Abbey had already testified as well as himself, he hoped at some future time to give details.

The Chairman did not see that a committee could satisfactorily determine the point, as it would be very difficult to get a standard burner, owing to the varying pressure of gas.

A vote of thanks to Col. Wortley was then passed.

The Chairman announced that an exhibition would be held in the Pall Mall Gallery, to be open during the month of October and November. He also read a circular calling attention to the Belclaire Memorial Fund.

It was announced that at the next meeting Mr. Hooper would read a paper on the advantage of sulphocyanide of ammonium as a fixing agent. The proceedings then terminated.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The seventh ordinary meeting of the session was held in the Secure, the evening, the 6th inst., the President (Dr. Thomson) in the chair.

The minutes of the previous meeting were read and approved,

Mr. Bow, C.E., one of the vice-presidents, read an interesting paper on the "Colours of Sunlight." (See page 280), and illustrated his views by a number of busts and statues, both plain and tinted.
Mr. Alexander Mackay said that he had listened with much pleasure to the reading of Mr. Bow's paper. He thought the subject was a most interesting one, and he was considerably impressed by the many cases where sculpture would be largely benefited if colour could be properly laid on marble. Anyone who would take the trouble to look at a marble bust, placed in an ordinary well-furnished room, would see that it was made to look pallid and unnatural by contrast with the colored curtains, carpets, and furniture, and he had no doubt that by the judicious application of colour a bust in such a position would be wonderfully improved. He was much pleased with the effect produced by the tinting of some of the specimens exhibited by Mr. Bow, but thought the colour a little too violent, and believed that a much better result would be obtained by lighter shading.

Mr. Ross quite agreed with what Mr. Bow had said regarding the advantage to be derived by sculpture from proper colouring. There could be no doubt that in sculpture there had always been a desire for colour, and he thought it was impossible that one could be reconciled to the absence of expression given by the eye. All else might be well enough, but the finest statue that ever was made had always at least the one fault of being that of one that was blind.

Mr. Bashford thought that the real difficulty lay in getting a suitable colour or tint for marble. Gibson's Venus was, he thought, a little too strongly tinted; but he certainly, if it was possible to do it properly, would prefer a tinted bust to one without colour, especially so far as the eyes were concerned.

Mr. Heaton agreed with Mr. Bow on this point, regarding the ability displayed in this interesting paper; but he must still adhere to what he had formerly occasion to state, that sculpture should not be coloured. He believed the fundamental principle of fine art is likeness in unlikelihood, which involves to a certain extent it's being natural. In accordance with this, if the tinted portrait painter gives the colours of nature on a flat surface, and on the same principle the sculptor should give the rotundity of nature without its colours. Mr. Bow does not violate this principle when he says that certain busts or statues would have their expression more pronounced by the addition of shadow tints. But sculpture should be sufficient in itself, without adventitious aid. The "tinted Venus" showed what colour can effect, giving a voluptuous beauty to a statue, but at the same time, destroying the principal artistic and chief charm of sculpture, viz., the sort of semi-transparent spiritual effect that results when the human form is represented in the purity of white marble.

Mr. Turner thought the effects produced by Mr. Bow very pretty, and had no doubt that, for busts that were to be kept under glass, something of the kind should be attempted. However, had a doubt as to its suitability on statues that were exposed to the weather. The question was one for the chemist to grapple with, and try to discover some means of permanently stabilising the marble to the required tints.

Mr. Ward said that those who did not agree with the views expounded by Mr. Bow, he thought that much benefit would result from his and such like papers coming before the Society. Hitherto photographers had given far too much attention to chemicals and cash, and too little to matters at least equally important, and he was certain that if they would give more attention to art they would be both better men and better photographers. He moved a hearty vote of thanks to Mr. Bow for his remarkably interesting and suggestive paper, which was unanimously adopted.

The Chairman then read the following question that had been found in the box:—"What is the cause of and cure for streaks in the backgrounds of wet collodion negatives?" which elicited a somewhat lengthy and interesting discussion, in course of which it appeared that the general opinion was that the streaks were caused by condensation of ether and alcohol in the bath, or a corrosive and repellent sample of collodion. As a cure for the latter, Mr. Bashford said that he could always with the greatest ease convert a sample of tough, horny collodion into one giving an open powdery film, or at least change one that, when poured on the glass, would not partially flow over but flow across it to form a tough film on each side, into one that when treated in a similar way left straight lines only. The change was effected by simply giving the collodion a vigorous shaking, and then letting it settle.

Dr. Dyer was glad to hear of Mr. Bashford's discovery. If it was really so, one of the difficulties of all dry processes would be got rid of, namely, the difficulty of getting a suitable powdery cotton. He had long known that believers in homoeopathy had much faith in shaking their medicines, but had never suspected that it would be of any use in photography. He should, however, try it, and report results at a very early opportunity.

Mr. Bashford assured the members that there really was no doubt about the effects of a good shaking, and said that if anyone failed to get the desired result, and would bring the sample to him, he should be glad to try it.

The usual distribution of photographs by ballot then took place, the pictures being the gift of Mr. Alex. Nicol, and consisting of a lot of extremely fine portraits of children going to and returning from the well; for which he received a vote of thanks.

Mr. Tunnell, on his visiting the room, paid a welcome after his six months' sojourn in America, and we understood that he has agreed to give at next meeting an account of his impressions, from a photographic point of view, of art and photography in the States.

Talk in the Studio.

Saturated Solution of Hyposulphite of Soda.—A correspondent, Mr. G. A. Avery, calls our attention to a manifest inaccuracy in the "Practical Printer in America," by Mr. Hearn, in our last, in which one pound of hypos is referred to as saturating two gallons of water. This is a serious error, whether a slip of the pen or a printer's error. Hyposulphite of soda is an extremely soluble salt, one ounce of water dissolving hundred parts of it. As a rule it is wise, in preparing solutions, to take a definite weight in all cases rather than deal with the question of saturated solutions, inasmuch as the precise point of saturation will necessarily vary with temperature, and, in degree, with other conditions.

Fay e. KAMPMEIER.—A case of some interest to photographers was tried in the Kingston County Court last Friday. Mr. Fry, of Surbiton, sued the defendant for the value of silver cuttings and clippings of silver. Letters acknowledging the liability, and promising to pay, were placed on photographic paper and collected their residues, had callow in August last, and purchased silver cuttings, &c., and promised to remit value at once. This he had not done, although often promised.—Verdict for plaintiff, and immediate payment ordered.

"It is Finished."—The London Stereoscopic Company have just published a fine photograph of a very noble piece of sculpture, by Callier, of the head of Christ at the moment of death. The head is in alto relievo, in a circular niche, and is singularly grand and pathetical. An admiring variéty of expressions in the life of Christ, give especial interest to work which will be equally prized for its art excellence and its touching appeal to high religious sentiment.

"Spiritual Photographs" in Paris.—The Paris Correspondent of the 'Times' has the following to say on the subject:—It appears that the mediums are not only capable of calling spirits from the vastly deep and communicating with them, but that they have now succeeded in photographing them. Such is the last discovery here, and you may probably like to know how it was made. A few weeks ago a paper devoted to the spirit-world published the following:—"M. do P——, a gentleman who had thoroughly studied the doctrines of Spiritualism, manifested the desire to obtain, by means of spiritualist photography, the portraits of his parents, and especially of a brother whom he had tenderly loved. He declared a medium, and after two attempts succeeded in getting the portrait we offer to our readers to-day. The medium was able to give him that great satisfaction, and at the same time to prove to the incredulous world the immortality of the soul, and the possibility of direct relations between the departed and the living. Underneath this announcement was the photograph of M. de P——, with the image of his brother hovering over his head. The discovery seems to have taken, and in the same time the mysterious photographer-medium traded profitably on the folly and credulity of human nature. At present, however, he has gained a name among the police of having been swindled out of his money, and the medium was arrested. A search was then made in the photographer's atelier, 'and the mysterious 'spirits' were found to have turned into mechanical lay-figures."
Europe. Two almost invariable characteristics are prominent: first, that the proprietors—the ones in whose name the work goes to the public—were educated artists before they became photographers. Indeed, in nearly all cases where success has been marked, they have been actual workers under the sky". Let us notice a few prominent names. Adam-Salomon, of Paris—acknowledged king among photographers—is also a sculptor. Leescher and Felsen, of Berlin, were one or both educated and practised artists. Luckhardt, of Vienna, was thoroughly educated in all the principles of art before he gave attention to photography. Nottman, of Montreal, was originally a portrait painter, if I am correctly informed; as was also Kent, of Rochester, N. Y. And they in a few years succeeded to reputation with many others, equally capable as men, after twenty years' hard work, had failed to attain, because they lacked this art knowledge. Our Sarony, too, was a trained and practised artist for years before he entered the photographic army and stopped at once to the front. Kartz also was an artist; and Mora, who is coming on so rapidly, was educated in the art schools of Paris. All who have named are workers with skilful hand and trained eye, putting their art knowledge to practical use in arrangement of graceful 'pose,' artistic and effective lighting, suitable accessories, and controlling every possible aid to perfect results. The list might easily be extended in this country by the addition of such names as those of Rejlander, Robinson, Faulkner, Bedford, Mudd, and a host of others.

PADDY’S PORTRAIT.—A correspondent at Redcar sends us the following:—

Dear Kitty, by this you will see that I’m taken,
But not up for murder, or fighting, or drink;
It’s up in a room on a glass that I’m taken,
And faith ’tis a very good likeness, I think.

They brought me up to a room decorated
With calico curtains and rods made of brass.
I wondered to see myself so elevated,
And to find every slate on the roof made of glass.

Th’ gentleman axed me to please to keep steady;
He axed me to scrub to the back of my head,
I’m sure he thought I was intoxicated,
For that was to keep my head steady, he said.

He then put his head in a bag like a boomer,
And told me to try and keep steady awhile.
I sat all the time like a modest young woman,
Objecting to frown, and yet longing to smile.

Then he took direct aim with his lunettes at me,
I jumped from the chair crying, "Mother! you shan’t
Take my life." "Don’t be frightened," said he, smiling at me;
"It is not your life, but your focus, I want.

And then he completed his grand operation
In less space of time than a minute could pass.
It’s held by my identification;
And sure enough the was was in the glass.

A VARNISH FROM Vulcanized RUBBER.—The following description of a method of making a varnish from vulcanized rubber is taken from the Moniteur Industrial Belge. In answering questions relating to the dissolution of vulcanized caoutchouc, we have repeatedly doubted the possibility of coagulating. The present process, however, seemingly includes burning out the sulphur, &c., and then dissolving the residue. If any of our readers practically test the recipe, we should be glad to learn the result. The fragments of vulcanized rubber are deposited in a deep earthenware pot, which is closed by a tightly fitted cover, and exposed on burning coals for about five minutes. During this period care must be taken not to open the vessel, as the vapour is highly inflammable. On removal, the mass is examined by pushing a wire into it to see that it is uniformly molten; and if this be the case, it is at once poured into a large, well-laden tin pan, and left to cool. When hard, it is broken into small pieces, and immersed in a bottle with benzole or rectified essence of turpentine, and there thoroughly shaken and stirred. The dissolution then takes place, and after a brief rest the clear liquor which forms the varnish is decanted from the impurities which settle at the bottom.—Scientific American.

GOLD BRONZE for furniture is a mixture of copal varnish mixed with gold-coloured bronze powder. The last is bicalophile of tin.

DIVER.—A couple of double dark slides to carry four plates will be more portable, less trouble, and, we think, less costly, than a changing box, as from the neatness and precision in the fitting of the latter it cannot be made very inexpensively. The only ingenious alternative is an ordinary plate-box and a changing bag, in which the plates might be transferred from the box to the dark slides; but this is very inconvenient, and always involves some risk to the plates.

M. R.—It is very difficult to deal with negatives where the prints, having not soaked with rain during printing, have been suffered to dry with the paper stuck in fast contact. The adhesion is caused, of course, by the albumenized surface, which, being softened and made slightly tacky with the rain, causes it to stick fast when dry. The print cannot, of course be saved; but in a little judicious care the negative generally may. Slightly moisten the back of the print with a sponge, or by placing a piece of moist blotting paper at its back, watching carefully when the albumenized surface is sufficiently softened to admit of its release without allowing the moisture to penetrate unnecessarily into the negative film.

ZINC.—Water kept in a zinc cistern may be used for ordinary photographic purposes; but distilled water for baths, &c., should be kept in a glass bottle. 2. Good portraits may be taken with an east light; but you will have the disadvantage, during the furniture, of having to do the direct lighting.

S. CURB:RAN.—We shall have pleasure in giving our opinion, but it must be borne in mind that every such decision is but an opinion; it may be valuable, of course, as based on large experience, but no such decision is of an absolute and unchallengeable character.

M. L.—There is no such list in existence that we know of. An announcement in our pages would reach the majority.

G. B. R.—The "Holy Family," which is the copy of an old painting, is not, as far as we know, copyright. The other probably is; but we cannot state with certainty.

G. WILKINSON.—We remember to have seen photographs of the statue of Gutenberg in the city of Mainz, in the shop windows in that town; but we are uncertain whether any are procurable in this country. We have been informed that we have seen it in Mr. England’s series of Swiss stereoscopic views; but we are not certain.

H. W.—There are several modes in which wax is used in conjunction with coloured photographs. One method, which was patented by Mr. Sarony many years ago, and the patent now expired, consisted in taking a plain paper print, coloured in the ordinary way in water colours, only making the tints unusually bright. When completed, it was saturated with pure white wax, and backed with a piece of white paper. The effect, if well done, closely resembles that of an ivory miniature. Another plan consists in taking a tinted, somewhat delicate print and colouring it on the back, washing it, and then backing it with another dark print roughly but vividly coloured. We have often given details, and of course cannot repeat them very minutely here. On page 90 of our last Tran.

Photo.—We shall be glad to hear further from you. There is some slight confusion in dealing with the "furnace enamelling," as it is not, and of course could not be, applied as a treatment to paper prints.

BYRN.—Thanks. We are satisfied that much comfort and convenience would be gained by using the "Reception," and shall certainly have pleasure in recommending it to photographers.

JOHN GREEN.—Many thanks. Another correspondent had been good enough to suggest the additional information before we received your favour, and the latter was in print when yours reached us.

F. BAUM.—Thanks for details. We hope the event will be better than you fear.

G. AVERY.—Many thanks. We make the correction, as you see, in another column. The additional details you suggest also appear in another letter.

THOMAS SIMS.—Thanks. In our next.

ALBERT SCHRIBER.—Received.

J. G. ATKISSON.—Received. Thanks. Notice in our next.

D. WINTHROP.—Received. Thanks. In our next.

Received: The "Chemistry of Light," by Dr Hermann Vogel.

Several articles in type are compelled to start over for want of space.

Several correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Photography and Military Equipments—Picture Galleries for Everybody—The Hot Weather.

Photography and Military Equipments.—We have on several occasions called attention to the useful application which the War Office makes of our art in securing pictures of warlike materiel, and in recording changes that take place from time to time in equipment, in ordnance, in uniform, &c. Even alterations in the conduct of military exercises in the country, in the training of the mililary, or in the tools and mortars trained, or a pontoon bridge built—all these things are depicted by the camera, and the pictures sent far and wide, to the indies and to our colonies, wherever British troops are stationed, and wherever, therefore, the influence of the change would be felt. The manner in which men are to be equipped is also important enough to invoke the aid of the camera, for even non-military readers know what importance is attached to keeping the parade being properly and uniformly dressed and accounted for. A recent instance of the ready way in which military changes in dress and uniform can be effected throughout the army in a short time has recently been exemplified. The Adjutant-General decided, not long ago, that there should be a change in the dress and equipment of the Pioneer, a regiment stationed near London. The body of the regiment, as mentioned in our last issue, was ordered to report themselves at the War Department Photographic Establishment at Woolwich, and here, having been satisfactorily accounted for in the new style by officers appointed for the purpose, were forthwith photographed. Each soldier was depicted from the back and front, standing properly at attention, and thus a score of pictures showing what importance is attached to keeping the army perfect in uniform. The hundred and more regiments of the British Army have now ten thousand copies of each, and these photographs will now be distributed, and from a month of the order being given by the Horse Guards, every commanding officer will have in his possession a set of photographs, showing the position of every strap and buckle on each man’s uniform. Within this brief period every Pioneer of the army will be dressed as accurately uniform as if the Adjutant-General had himself superintended each individual equipment. With the corps of Pioneers, of which no two are equipped alike, from the serjeant (who is generally the carpenter) downwards, any attempt at describing the equipment in writing would necessarily be imperfect, and however elaborate the wording might be, it could never convey so good an idea as that given by a photograph. The exact place where one tool or the other is to be fitted to the waist belt, whether it is carried under the arm, or on this side or that, how the pick and shovel are to be strapped together, where the armour is to carry his gun spikes and hammer—all details of this kind, which to a non-military mind may appear of little importance, but which in the army, where much stress is laid on uniformity and discipline, are matters of material weight, are demonstrated in a photograph in the plainest way possible. This is, therefore, a very happy way of solving a military problem.

Picture Galleries for Everybody.—We see that Holman Hunt’s picture, “The Light of the World,” has been purchased for the purpose of being reproduced by photography. This is, we trust, a sign that artists are becoming fully alive to the merits of photography as a means of turning their copyright to account. In many cases it may happen that a picture will scarcely pay the expense of being engraved, while copies of it would sell very well at a moderate price; and in instances such as these the artist would no doubt make a substantial profit by having his work photographed in two or three different sizes and reproducing prints by a摄影 process at a reasonable rate. No one, it is true, cares about giving a guinea for a silver photograph that may fade sooner or later, but for handsome copies of pictures of a permanent character no one would grudge a fair price. Only a short time ago we referred to this subject, and mentioned the fact that already in Paris the pictures in the Salon (the French Royal Academy’s gallery) were being photographed, and of thousands of these prints would be distributed, and others of these copies of a large number of them. There is no reason why reproductions of this kind should not find a ready sale among the many hundred thousand visitors who flock to the Royal Academy, if only the copies were brought properly to the notice of the public, and by publishing (say) at five shillings, ten shillings, and twenty shillings per copy, very nearly half of them would be disposed of. Private galleries can be considerably reduced if they can offer these copies at a low price, and indeed the layman in the few wealthy families, we should then have the middle classes possessing their library and modest collection of pictures. The supply of such pictures would soon create an enormous demand; but, as we have just said, we must secure to the purchasers a permanent picture. There need be no interference with engravers. Such pictures as it will pay to engrave may still be reproduced in the medium of photography, and only the more expensive pictures would be the more envied. And as to piracy from photography, this would never occur to any great extent, for to photograph a painted picture well, much skill and good apparatus is necessary, and these are not usually possessed by those who occupy themselves with unlawful pursuits.

The Hot Weather.—The change from winter to summer has been so sudden this year that one cannot help thinking that the clerk of the weather has got confused and confused over the recent cold, and has been and left out the spring. Only the other day we were calling out for the hot water can to stand the developer on; now we are asking for ice to cool the collodion and other chemicals. The glass plate in the slide, if it is allowed to remain very long in the hot glass room, or leaning against a tree out of doors, is apt to get very warm, and then there is good-bye to all your developed plates. Streaks and stains are almost unavoidable no matter how skilfully you pour on the tepid developer, unless you are a very rapid worker indeed. A good cooling of the glass prior to development is obviously one of the best preventives against disagreeables such as these; and in the case of dry plates even, the development is rendered much more under control if the temperature of the glass is first of all lowered. Vessels with ice containing a bit of flannel or old blanket soaked in them, which can be conveniently wrapped round any bottles of solutions to be cooled, will be found most convenient under the circumstances, the flannel preventing a too rapid thawing of the ice, while at the same time it is handy to use.
PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HEIGHWAY.

CHAPTER IV.—(continued).

TREATMENT OF THE THOROUGHLY WORN-OUT BATH.

After repeated partial renewals of the bath, as already described, it will, in time, from a combination of causes—as excess of alcohol and ether, of iodide and other additives—require a more thorough renewal. Proceed as follows:—

Pour the bath solution into one-fourth its volume of water, when it will immediately become "milky." In this way it dissolves more iodide than by pouring even a greater amount of water into the bath solution, because the water is greatly in excess of the silver solution during the greater part of the mixing, and the bath is so greatly reduced in volume that it cannot take up or redissolve much or any of the iodide. The bath added to the water is thoroughly filtered through two or three thicknesses of filtering paper. Filter perfectly clear.

It is to be borne in mind that the solution, which is now reduced to about twenty grains of silver to the ounce of water, is saturated with iodide, so that when the solution is raised in strength, the percentage of iodide is reduced to the proper proportion.

Pour this clear solution into the evaporating dish, and heat it on the stove until it begins to steam. Test the solution for acid by placing in it a piece of blue litmus paper, which will turn red from the acidity of the bath. Four in, drop by drop, a dilute solution of liquor ammonia on the surface of water, stirring the solution while the ammonia may thoroughly mix, until the discoloured litmus paper resumes its blue tinge, but not beyond. The acid neutralized (by the ammonia) the solution still boiling black and muddy, and finally clears as the organic matter is precipitated, sticking to the bottom and sides of the dish, the coagulated albumen rises as a thick metallic scum to the surface, and the heat dried and left clear and dry.

When the solution is cold it must be filtered and acidified as already explained, with nitric acid. It must be borne in mind that the nitric acid must not be added until the solution is perfectly cleared from organic matter by filtering, because acid holds the organic matter in solution, while the alkaline liquids (in this case ammonia) favour precipitation. The addition of acid before filtering would undo a great part of the work of renovation you have been engaged in, by redissolving the organic matter.

When after several treatments of the disordered bath in this manner, if it persists, there remain two other methods—fusion and precipitation, and re-dissolution.

To Fuse the Bath.—Pour the bath into one-fourth its volume of water, and filter out the precipitated iodide; then, placing it in the evaporating dish on the stove, evaporate to dryness without adding ammonia or other neutralizing agent, because upon adding ammonia oxide of silver is thrown down, and if the bath were now evaporated to dryness, this powder, to which the name fulminating silver has been given, would be thrown down. This fulminate is of a most dangerous explosive character, even under water-heated to 212° Fahr. What is more, a touch is sufficient to cause its violent decomposition.

When the solution approaches dryness it becomes violently and, rises in the dish like soapuds, until some of the bubbles burst, allowing the escape of vapour. Scrape the mass down into the middle of the dish, when the salt begins to liquefy again. When melted it remains quiet, without boiling or steaming, at the bottom of the dish. Insert a straw or splinter of wood, and continue the heat until it ignites, which shows that the organic matter is carbonized, and thus rendered perfectly insoluble. When cold the fused mass may be dissolved in pure water by gentle heat. The organic matter is entirely separated, and will be left behind in the filter. It is now ready for use as a new bath.

To Restore by Precipitation.—Dilute and filter out the iodide, and pour the solution into large glass jars, half filling them, and add a little at a time, and continually agitating the solution the while, finely powdered bicarbonatet of soda; this, uniting with the silver with violent effervescence, forms carbonate of silver, which, being insoluble in water, falls to the bottom of the jar. Now fill up the jar with pure water. When settled, pour off the water, fill up, and more. After several of these, thus right to ten times, to thoroughly wash the carbonate of silver; after the last washing drain off the water, and add, very cautiously, nitric acid, which will dissolve the carbonate of silver with effervescence. Leave the least amount of carbonate of silver undissolved, or too much acid will be added, and the work have to be done again, the organic matter in the bath being dissolved if the silver is made acid. The least amount of precipitate of carbonate of silver undissolved leaves the bath neutral. Now filter the muddy solution.

To throw down Silver in a Metallic State.—Place the solution in a clean evaporating dish with pieces of bright clean zinc, when the silver will commence falling down in a metallic state, the zinc dissolving and taking the place of the silver. In five minutes the whole of the silver will be all thrown down. Pick out the undissolved zinc, and scrape it from the silver clinging to it. Now add to the mixture a solution of sulphuri acid one part, water three parts, to dissolve any particles of zinc which may be left in the dish. Allow this to stand until no more bubbles of hydrogen gas are given off. Pour off the acid, and wash the silver in several changes of water until it no longer reddens litmus paper. The silver is now dissolved in nitric acid diluted with two parts of water, evaporated to dryness, and fused.

ON MICRO-PHOTOGRAPHY.

BY DR SCHMANN.*

The microscope has become an indispensable instrument to the student of natural history. The results of microscopic investigation have widely extended our knowledge of natural history, and have brought to light facts connected with the development of the lower animal kingdom of which, before, we had no anticipation. Daily the microscopical journals bring us new discoveries.

The permanence of microscopic preparations is often very limited, and yet it is very desirable that they should be preserved for scientific as well as instructional purposes. Under these circumstances it is a matter of importance to secure trustworthy images of the same; and how we have to obtain these has been put to the test by all. A draughtsman finds pencilling a microscopic object a most tedious labour, and very often the result is, after all, of an ideal nature; moreover, it requires one skilled both as a microscopist and draughtsman to be able to produce such drawings.

Many instruments have been constructed to lighten the laborious task; as, for instance, Wollaston's camera lucida for microscopic drawings. Overhauzen's drawing apparatus with prisms for projecting the picture on paper, &c.; but photography has now held out a helping hand, and already, in the days of Daguerreotype, the camera was employed for making microscopic pictures.

The first presentable pictures were obtained by Donné. After that, Leon Foucault obtained some results, in 1845, which were used as a basis for the copper-plate illustrations in an atlas of flowers.

With the employment of collodion in photography, and the use of albumenized paper, micro-photography made a big stride of progress. By means of negatives, large numbers of copies could be produced, and with the Lichtdruck process of the present, it is possible to publish books illustrated by micro-photographs. Professor Benecke, of Königsburg, who has translated Moitessier's handbook

* Read before the Berlin Society for the Advancement of Photography.
entitled "Photography as the Aid to Microscopic Science," has shown how much may be done with the new art, although, unfortunately, it is not everybody who has such a well-adapted studio and apparatus as the author I have named. Dr. Fritsch's "Diatomaceae" is another work showing the importance of micro-photography.

The difficulty in obtaining micro-photographs, exclusive of the various colours and the uneven thickness of the microscopic preparations, is the focus difference of microscopic lenses. Even when these can be corrected by application of other apparatus, the operation is a tedious and difficult one, and is not a mode of procedure which can be carried on by the ordinary student of the subject.

Benecke himself says: "It would be desirable to have photographically-corrected lenses," and this wish has since been heard from others; so that I am led to bring forward an apparatus which I have employed, and some specimen prints obtained by it. The most important thing about the instrument is the corrected lens, which is screwed on the microscope tube without an eyepiece. The bellows camera is upon a brass tube, fastened to a horse-shoe pedestal, so that it can be readily focussed by a screw arrangement, and it is brought in a vertical position over the microscope tube, an arm upon the camera being drawn over the tube to shut out the light.

The screen for focussing is a glass plate with fine dia- matic markings, and the farther this is from the lens the larger will be the image. In short, the question of lighting is one of great importance, and the use of condensers with direct light, or limelight, is indispensable. Enlargements of twenty-two diameters may be prepared in this way.

In America, Wales has, according to Rutherford, constructed corrected lenses with one-eighth of an inch focus, but the Hebb of the United States has secured a picture of *Pleurisigma Angulatum*; by enlarging to 19,000 times, a sharp image was still obtainable. Corrected lenses are also, to some extent, manufactured in Germany, MM. Siebert and Kraft, of Wetzlar, preparing them from one inch to one-eighth of an inch focus.

COLOURATION OF STATUARY.

BY RICHARD H. ROW, O.M., F.R.S.E.*

But though we may thus see that there are good grounds for eschewing any attempt to copy the actual colours at the same time with the solid forms of nature, there may be no reason why we cannot with the same degree of success in sculpture by adopting some modification of ancient practices.

In order to convey properly the sense of expression in the forcible manner, we must define the positions of the eyes, the characteristics of the lips, and the mouldings of the hair—whether that be of the eyelashes, eyebrows, head, or beard—in a more precise and decided manner so that from cast and contour shadows.

Taking up a photograph or engraving of a head, we find the features and expression brought out by simple light and shade. But the shades are divisible into three kinds—1st, the contour shades, or shadowings produced by the surfaces represented being placed at various inclinations to the incident light; 2nd, the cast shadows arising from other parts of the object, as the light is cut off; and 3rd, the colour shades representing the darkening effects of the colours of the surfaces, or their power of absorbing in various degrees the light that actually falls upon them. And, as supplementary to this classification, we must not overlook the important modifying effects of the more or less polished states of the surfaces.

In the simplest while statuary the effect rests wholly upon the contour and shadows, with occasionally (as in the Veiled Vestal) the employment of the contrast of polished and unpolished surfaces. Now, the purpose of my paper is to suggest and enforce that we should superadd the third kind of shading representative of colour, but in as great moderation as may be, and by preference only using shades of grey when the whole surface has to be painted.

When the general surface of the statue, or other piece of sculpture, has not to be painted, and possesses of itself a tint different from grey, we must be guided in the choice of the two extremes of the scale of shades to be used in our dichromatic treatment by the analogy of an engraving printed in brown or other coloured ink upon tinted paper; that is, if shaded tints to be employed should be such that the natural colour of the material will take it readily of them; and it is open, of course, to apply any such dichromatic scale, even when all the surface of the subject is to be painted or enameled.

Restricting ourselves to the use of such a scale of shades, I believe we could attain to much excellence of effect, without in any degree awakening the disagreeable feeling that results from attempts to give life-like colour. A piece of statuary so treated would, in fact, convey all that an engraving could, with the added charms of stereoscopicity, changing points of view, and changing arrangements of the lighting.

And, as connecting the subject with this Society, I may state that a bust so shaded would be a most valuable addition to the studio of the photographer, to assist him in the practice of the art of sculpture. In the case of big palatial figures we must not only have the cast and contour shadows becomingly arranged, but so tempered in severity as to harmonize agreeably with the positive shades. When the cast shadows are too faint, we have the eyes, eyebrows, &c., given as black marks upon a white ground; and when the cast shadows are made too decided, one or both of the eyes may be lost altogether in the darkness secured.

A weak point in ordinary statuary, arising from difficulties in the workmanship alone, is the absence of the eyelashes; we lose the effects both of the positive colour and of the cast shadows. This defect was well known to the ancients, and examples are still extant in which eyelashes of copper are inserted; and, to make our busts completely satisfactory, it would be necessary to follow some such practice. The defect may, however, be in a great measure supplied by a painted shading on the edges of the eyelids; the inner surfaces being at the same time shaded to represent the carmine shading there.

In thus advocating the employment of neutral tints, or simple light and shadow, to reinforce and complete the effect of statuary, I do not wish it to be understood that I am altogether hostile to the greater boldness and freedom advocated by Mr. John Jones. But I think the dichromatic treatment I have proposed might be erected into a distinct and not unimportant branch of sculptorial art. In carrying it out difficulties would no doubt arise, but we may trust to technical skill also arising to overcome these, should encouragement be given. I add only two hints here of a practical character—1st, Keep the polish or lustre of the flesh tints rather under than over that of nature; but the degrees of glossiness of all the surfaces should be studied so as to reproduce with approximately correctness the effects of regular and irregular reflection. 2nd, When the tint chosen for the nude part of the figure is lighter than in reality, let the scale of shades be all correspondingly weakened.

And now a word in conclusion on the general bearing of the subject. When we look at a complicated pattern of interlacing geometrical figures, the eye, as every one knows, can single out some particular figure and regard it separately, and again and again, new figures or parts of the combination may be so selected at will by the eye. Now there is an analogy between this and the contemplation of an unpainted bust: the eye through the fancy may regard it under all the different aspects that it would be possible to evolve by variations in the painting; and it may be brought forward as the chief objection to the painting of
sculpture, that this freedom of the fancy is curtailed, and the contemplation restricted to one phase of expression alone. Without denying some weight to this objection, and granting that some pieces of sculpture would be best left unpainted, it may be replied that the painting gives the artist the power of fixing the best aspect of his subject, or bringing out that expression which he seeks to convey; and in the case of a portrait bust, every one must admit that the advantages are all on the side of the use of shade-painting or enamelling.

ON THE COMPARATIVE SENSITIVENESS OF VARIOUS PHOTOGRAPHIC PROCESSES.

BY LIEUT.-COL. H. STUART WORLEY.*

I HAVE for some considerable time past been testing experimentally the sensitiveness produced by various modifications of the photographic negative processes, both with the bath and with an emulsion. I have frequently noticed during the course of these experiments that my experience has been opposed to that of others who have recorded experiments in some directions to the contrary of the photographic journals. Where the quality of the negative is in no degree sacrificed by increasing the sensitiveness of the materials composing the film, I have always thought that the more sensitiveness we can impart to the film the more advantage and facility do we obtain in our work; and I think that the subject on which I am writing is of such great importance that I must insist on bringing it under the notice of the Photographic Society. We frequently find it recorded in the journals that such and such a process has given such and such results; but there has never been an attempt to produce those results by a standard measure of illumination, and we finally arrived at the "reductio ad absurdum" in connection with the subject when we were greatly told (though I do not think many people remained grave when they realized it) that a transparency could be printed on a certain kind of dry plate by half a second's exposure to the light of a farthing candle! Feeling, then, as I do, the great gain to the photographic world at large that even a slight increase of sensitiveness gives to a negative process, I venture to make the following suggestion to the president and council of the Photographic Society. I think it would be worth the time and assistance of the photographic public if the council would appoint a small standing committee to investigate from time to time the sensitiveness of the various modifications of the photographic negative processes, wet and dry, that may be brought before them— to do which they would have to establish a standard method of illumination, and use certain standard negatives from which to print transparencies. In my own practical use of a standard Argand gas burner, at a certain distance from which a shelf was placed whereby the printing frame containing the negative and plate on which to print the transparency is laid, and the time of exposure can be regulated to a great nicety. I have used in my experimental work during the last three years one standard negative, from which I must have printed some thousand is of transparencies, and I need hardly say that the information I have in that manner acquired has been of great interest and value. In cases where it has been deemed desirable to take a negative, I have endeavoured, by burning a certain amount of magnesium wire, to obtain a standard result; but I find that the printing of transparencies in the way just described gives results much more certain and more reliable.

If this committee were to be appointed, and if good men were to be found who would undertake this somewhat troublesome duty, we should find that many preconceived opinions would be ruthlessly demolished; we should find that there is no inherent virtue in gelatine over collodion for making an emulsion with, and that a properly made collodion-emulsion is every whit as sensitive (owing to the latitude which may be allowed in exposure and development of a collodion dry plate, and which a gelatine plate is not, in reality, more capable of standing) as a gelatine emulsion; we should find that the addition of ten to fifteen grains of nitrate of uranium to the ordinary silver bath gives a considerable additional to the sensitiveness; we should find that under certain circumstances, current work, Mr. Carey Lea has been correct in pointing out the additional sensitiveness imparted to the emulsion by the use of an iodide therein; and we should find that the use of a chloride in the emulsion or in the collodion used with the bath is an element of insensitiveness, though the reverse attribute has been claimed for it by some writers who have followed in the footsteps of Mr. Carey Lea, whose proposal to introduce it into an emulsion for purposes other than to gain increased sensitiveness.

I could give you many other instances and many other results of my own work; but I feel that I should be in that case be anticipating the labours of a committee that I much hope to see established; and I do not wish to prejudice cases that in all probability would be decided against the use of the various photographic processes.

My proposal will be favourably received by the members of the Photographic Society, and that I shall be supported in bringing my suggestion before the president and council.

THE PRACTICAL PRINTER IN AMERICA.

XXV.

Mounting the Prints.

Or all subjects of photography, this has received the least attention. The simple process of mounting is a thing of some little mechanical skill, as I think all photographers will agree with me in saying. The making of the starch paste, if that is used, is at first a little troublesome to the beginner, as is also the glue, gum, &c., and then the placing of them on the cards, although a mere mechanical process, should be done well.

In galleries where only two or three hundred of small cards are printed in a day, surely those few, when compared to fifteen or twenty hundred, which is the daily average in some galleries during the winter season, are not a very small fact, and excellent, when we consider that all that is required to make them so is only a little care. What is the effect left upon our minds when we examine prints that are nicely printed, cut, toned, &c., and are mounted badly? Does it not strike us unfavourably? I think it does.

It is acknowledged by many photographers that the starch used in mounting is the cause of their fading; and the reason why this is so universally used is, because all photographers have learned to make it, and because they are either ignorant of its effects on the prints, or, if not ignorant, too careless or heedless to take measures to prevent the use of it. But if this mounting is really the cause of their fading, which I think is partly true (but also I think that too much blame is given to it, when careless manipulation has considerable to do with it), why is it then used? I have mounted prints with starch and one day, after mounting a batch of them with it, I saved a few for myself for the purpose of experimenting, and wrote on the back of the mounts such writing that would tell me at some future time why I had saved these particular prints. I experimented considerably with them, and placed them in a very dry atmosphere for a month, then directly in a very damp cellar for another month, in a dark album for a fortnight, among the samples of work in the reception-room, on a shelf in the chemical-room for a week, in the dark-room for a fortnight, where there was a strong smell of cyanuret of potassium, ether, &c., down cellar again, under strong diffused light for a fortnight, in the damp-box for a week, and in spite of all these tests I could not get the
prints to show either stains, bleaching, cockling, or fading. Very little, if any, of the former were detected, and the prints tested well, and "they stood the test like a matter, and, as far as theory goes, it is correct—that the starch used in mounting the prints would form an insufficient "rubbing down" of the prints after mounting. The small prints, as they are removed from the water, are laid in a neat pile face down. A suitable size frame, say 8 by 10, is covered with the same size piece of clean moistened paper, which is thoroughly wetted, and when the prints in the water are thoroughly rinsed, they are laid in a perfectly even bunch on it, the different sizes to themselves. The paper laid on the glass serves to keep the prints damper than the bare glass would. Use a clean paper every time you prepare to mount the prints. Ths prints are mounted for convenience in a wet state. The object of mounting with the starch or glue, as it is called, is to make the process cheaper, and thus bring the print in perfect contact with the card-mount, which is sided very much in the so-called process of "rubbing down."

You should apply the starch or glue to the prints quite thinly, and after laying them carefully on the mounts, lay a sheet of thick writing-paper—or, better still, some un-inked printing-paper—on it, and rub the prints, commencing at the print in the centre and rubbing outwards, which process will perfectly remove all air-bubbles from under their surface. Then bend backwards the mounted print, and rub the finger along the edges carefully of all the sides of it. I recommend beads in of the back of the mount because, in drying, the print draws the thick cardboard inward, and this counteracts it, and the dried prints will be flat, and can consequently be mounted better. Then, make the gum-water, add it gently, and then they would not be so likely to cockle as they would if they were dried by the fire.

In mounting large prints, lay a print at a time on some thicknesses of clean paper and where there is no trace of starch, and after pasting mount it on a suitable size cardboard, and rub well from the middle outwards as in the small prints, examining afterwards to see that there are any air-bubbles which escape notice, and if so, be sure to remove all of them. When applying paste to the print for the purpose of mounting, examine the surface, and if there are any hard bunches of paste, dirt, &c., even if in a small quantity, as a lump or two, remove them with the finger-nail, as these places will show after they are mounted, and spoil the look of the work. Dry these prints on a suitable size book, except for the purpose, and under a sheet of blotting-paper, and when they have been an hour, remove to another place of the book, under fresh and dry blotting-paper.

Chinese or Indian Ink.—Although the Chinese prepare their ink from the kernel of some angygalaceous fruit, yet, by the aid of our present chemical appliances, we are able to produce a composition in no way inferior to the best Chinese ink, by the adoption of a formule which is given in Riquet's treatise on the "Manufacture of Colours." The following is the formula:—Calcinated lamp black, 10 parts; boghead single black, in impellable powder, 80 parts; indigo carmine, in cakes, 10 parts; carmine lake, 6 parts; gum acacia (first quality), 2 parts; purified ogeal, 20 parts; alcoholic extract of mastic, 6 parts. The gum is dissolved in 50 to 60 parts of pure water, and the solution filtered through a cloth. The indigo, carmine, lake, lampblack, and single black are incorporated with this liquid and the whole ground upon a slab, with a muller, in the same manner as ordinary colours; but in this case the grinding takes much longer. When the paste is thoroughly homogeneous, the ogeal is gradually added, and then the alcoholic extract of mastic. The more the black is ground, the finer it is to be. The black is then heated under an air, until it has acquired sufficient consistency to be moulded into cakes, which in their turn are still further dried in the air, out of the reach of dust. When quite firm, these cakes are compressed in bronze moulds, having appropriate designs engraved upon them. The moulded ink is then wrapped in tissue, with a second envelope of gilt paper. The ink which has been prepared in this manner possesses all the properties of the real Chinese article. Its grain is smooth, it flows very well, mixes perfectly with many other colours, and becomes so firmly fixed to the paper that other colours may be spread over it without washing it out. Scientific American.
that the addition of from ten to fifteen grains of nitrate of uranium to the ordinary silver bath for negatives gives a considerable accession of sensitiveness. Whether this proportion of the uranium salt is intended to be added to each ounce, or to some indefinite number of ounces, was not stated. Captain Abney, who affirms a similar experience as to the gain in sensitiveness, adds, if we may rightly, ten grains of the uranium salt to each ounce of silver solution, and we presume that the addition referred to by Col. Wortley is intended to be in similar proportion. This is a novelty which can be very easily tested by every one, and it is a method which will not involve any manipulative trouble or departure from routine. The precise mode of the acceleration of the action of the solution appears to have been ascertained, but, remembering the known photographic qualities of the nitrate of uranium, it does not appear necessary to go far to find a reason. It may possibly be too much to say that its fluorescent properties have nothing whatever to do in the case; but we do not think there is any ground for supposing that they have. In the first place, the fluorescent qualities would become almost nil—or, at least, inappreciable—in the thin film of the free solution on a drained plate, or the still smaller trace left on a dry plate which had been excited in a bath containing the uranium salt; and in the next place, the known action of the nitrate of uranium is quite compatible with the experience of Captain Abney and Col. Wortley. The test-nail of uranium and some other bodies when exposed to light part with one or a few of their atoms and have a reducing power; some of the interesting processes of Sir John Herschell have been based upon this reaction. If a piece of paper be coated with a solution of nitrate of silver and nitrate of uranium, without any chloride or haloid salt of silver, it will readily darken under the action of light, which with nitrate of silver alone it would not. To this new feature of the operation. Under the action of the light the nitrate of uranium passes with oxygen, and acquires the power of reducing the nitrate of silver in contact with it. It does not seem unfair or unnatural to suppose that the same reactions are in operation in the film of colloid in which nitrate of silver and nitrate of uranium are in contact, plus the haloid salts, on which the silver salts chiefly depend. Whatever may be the theoretical explanation, it is certain that there is one which is so easily tested that no one need remain in doubt who is interested in securing the advantages it offers.

Some months ago we published details of Dr. Van Monckhoven’s proposal to reduce exposure by the use of a more energetic developer. An experimental committee of the Photographic Section of the American Institute was recently appointed to try the matter, and they report that they find that the exposure is reduced one-third by the use of this developer, twenty seconds giving the same result with this developer which could only be exposed by the ordinary developer with an exposure of thirty seconds. They also found that a similar reduction in the time of exposure might be secured by the use of a developer containing sulphate of magnesia as well as sulphate of iron. Here is the formula:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>16 ounces</td>
</tr>
<tr>
<td>Sulphate of magnesia</td>
<td>2 ounces</td>
</tr>
<tr>
<td>Protosulphate of iron</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Acetic acid No. 8</td>
<td>3 ounces</td>
</tr>
</tbody>
</table>

The ordinary developer used by the committee was composed of—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>16 ounces</td>
</tr>
<tr>
<td>Protosulphate of iron</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Acetic acid No. 8</td>
<td>2 ounces</td>
</tr>
</tbody>
</table>

The advantages offered by the modified developer are as easily tested as those offered by the addition of uranium to the bath. We shall hope to hear reports of the experience of some of our experimental readers on both methods.
OBITUARY.—MR. CHARLES BREESE.

We announce with much regret the death of Mr. Charles Breese, formerly of Birmingham. Most photographers are familiar with his name, and with the charming and poetic transparencies for the stereoscope which he made his special work. Mr. Breese, a gentleman of a singularly ingenuous and inventive turn of mind, as illustrated in many branches of Birmingham industry, early made instantaneous photography a special study, and his work in this direction many years ago attracted the attention of royalty. Being but ill satisfied with the imperfect rendering which a paper print yielded of some scenes in nature's poetry, of which the negative contained a fairly complete register, he confined himself chiefly to the production of transparencies for the stereoscope of scenes instantaneously produced, often of a daring nature: a breaking wave, a storm at sea, a balloon in the air, a sparkling waterfall, the rising or setting sun seen through rifts of driving clouds, moonlight scenes, groups of art objects consisting of all polished silver and glass, and a variety of other subjects in which any special and unusual charm could be secured. If it presented unusual difficulties, the charm to him became greater, and he rarely failed in securing success. His mode of printing his transparencies, generally on wet collodion, and frequently from two or three negatives, was retained a secret, and the mode by which many of his results were obtained was the subject of much speculation and curiosity, which he left unsatisfied, feeling, doubtless, that the mystery of the art lay at the heart of the art. Some years ago he devoted himself to the commercial production of his transparencies, for which he had found, as an amateur, a considerable demand. He has practically had no rivals in his special work, for whilst many have produced fine instantaneous pictures and good transparencies, Mr. Breese's work could always be distinguished in a moment by its rare delicacy and beauty in production, and the feeling of poetic and artistic values which pervaded his pictures. He had been for some years in a state of declining health, and was, we understand, staying at Matlock in search of the conditions required by an invalid, where he died on Monday morning last.

THE VIENNA VOIGHTLANDER MEDALS.

It may interest our readers to know the nature of the medals offered by the Vienna Photographic Society during the course of the present and forthcoming years. Candidates for membership by becoming members of the Society, and all communications are to be addressed to the President, Dr. E. Hornig, 3 Haupstrasse No. 9, Vienna. The names of those competing must not be openly stated, but should be contained in a sealed envelope having a motto or device on the outside corresponding with one on the packet with the communication, negative, pictures, &c.

A gold medal of the value of one hundred and forty ducats, or one costing forty ducats together with one hundred ducats in money, for a process to increase the sensitiveness of wet negative plates. The increase of sensitiveness shall be so great as to make it possible to give only a quarter of the exposure of that usually allowed to produce a detailed picture. The increased sensitiveness shall not be obtained at the cost of vigour or harmony of the picture. This process, again, shall be such that half an hour's exposure can be given, say, in the case of an interior, and that it can be employed anywhere without difficulty. Processes which give good results without actually fulfilling the requirements will be rewarded with prizes of lesser value. Competitors must forward their communications by the 31st October, 1875.

A modified photo-relief printing process.

A method of producing photo-mechanical printing plates has recently been patented in America by Mr. L. E. Levy and D. Bachrach, the results of which are highly spoken of by the editor of Anthony's Bulletin. It will be seen that a gelatine image in relief is obtained in the usual manner, the modifications being chiefly in subsequent details. The gelatine relief is plunged into a solution of nitrate of silver, and, subsequently, into sulphate of iron, for the double purpose of obtaining crispness and sharpness in the gelatine image, and of rendering its surface conducting in the electrolyte bath. The precise mode of printing finally employed is not stated. The following is the specification:

First. Gelatine is dissolved in water to the consistence of a thick jelly, solid at ordinary temperatures. When required for use the solution is liquefied by heat. To this solution is added a saturated solution of bichromate of potassium or ammonium, or its equivalent in rendering the organic substance of the film sensitive to light, in quantity sufficient with the temperature and with the class of work required to be produced.

Second. This mixed solution is now spread upon glass plates which have been thoroughly cleaned, and poured on until a thick layer covers the glass evenly over the whole surface. The thickness of the layer depends upon the general character of the work for which it is intended; the greater the relief required the thicker should be the film. It should, however, even for the most uniform work, be of considerable thickness. The plate is allowed to dry either spontaneously, by ordinary evaporation, or by being placed in an oven and heated moderately until hard.

Third. This film is now exposed under a negative of adequate density, such as are generally used in printing copies of line-engravings, to solar light. Care must be taken to have the rays of light reach the negative directly from the perpendicular. To end side light must be excluded, so as to prevent the film from being affected by diagonal rays. The amount of exposure to light is an important element in this process. This exposure can scarcely be too prolonged; it should be at least half an hour to direct sunlight. Portions intended to remain white may be protected by an opaque covering or coating on the negative. Two, three, and even five hours' exposure to diffused light (reaching the negative through a long box) is now complete the requisite action. This is to ensure the complete reduction of the bichromate to chromic acid, thus securing the most perfect insolvability of the exposed portions of the sensitive film, even in the finer details of the picture, and thus to keep all the lines on one plane.

Fourth. After the exposure of the film, the edges of the plate are provided with a rim of melted wax, which is to prevent the film from peeling from the glass by the continuance of any accidental peeling at the edges.

Fifth. To partially swell the film it is now soaked in cold water, but only during a limited space of time, dependent upon the thickness of the film and the quantity of bichromate used in sensitizing it, with the view of retaining a quantity of the bichromate as a base for the next subsequent operation.

Sixth. The film—still retaining the varnish—of the bichromate is then taken out and plunged into a solution of nitrate of silver. Here the swelling is completed, which condition is negatives of 10 by 12 measurement at least, one being a landscape, one an interior, and one a landscape with architecture, together with every one of each, and twelve prepared plates; details of the process, as also of the chemicals used, must be given. The candidates must forward the same by 1st March, 1876.

Three silver medals will be given for: —1. A collection of twelve nature studies, taken with an aid to aid artists. 2. A collection of twelve instantaneous stereoscopic pictures. 3. For a collection of transparencies for the stereoscope. Negatives and two copies to be sent of each subject, not later than the end of October, 1876.
indicated by the chromic acid in the affected portions showing marked signs of red-tinting. The silver solution, while-in, and in this case the shrinking of the same, and the resulting bi-chromate of silver offers the requisite basis for the subsequent operations.

Seventh. It is now washed under a tap, and immediately plunged into a solution of the sulphate of iron in water. This solution is calculated, to enable the reduction of the metallic deposit to proceed more freely. The action of the iron solution is allowed to continue until the picture is plainly visible from the back of the glass on the upper black ground. A metallic substance is thus obtained which is hung down through the entire thickness of the film, instead of being on its more superficial deposit. This is an essential element to the success of the work, and must be fully carried out. It has another important effect upon the film, inasmuch as it coagulates or "sets" it, rendering it capable of enduring without alteration through the subsequent operations.

Eighth. When taken from the iron solution the plate is coarsely washed under a tap, and immediately flowed with a dilute solution of the sulphate of potassium. This application turns the film to a black colour, consequent upon the reduction to the sulphate of silver, and the action of the solution is continued until the entire deposit of metallic silver is uniformly reduced to a sulphate.

Ninth. In this condition the film is sufficiently electrolytic for all practical purposes. It may now be hung in the electrolytus, with the silver deposit on the negative of the emulsion thus secured.

Tenth. To insure the easy and rapid action of the battery we cover the sulphurated film, after drying, with a coating of platinum. The dried sulphurated film receives the platinum with the greatest facility, and it may be brushed on and fixed as easily on wax.

Eleventh. The plate is now attached to a wire or other suitable arrangement by which it may be connected in the precipitating trough with the positive pole of the battery. Here it receives the deposit, which may be completed with much less rapidity, according to the condition of the bath, battery, &c.

Twelfth. In certain conditions of the copper solution the copper shell does not readily leave the film, but tends to adhere to it with sufficient tenacity to endanger the shell in being taken off. To preclude breaking it in stripping from the mould, the glass plate is evenly heated to a moderate temperature, in which condition the copper plate may easily be lifted off the glass, carrying the film of gelatine with it. It is then plunged into a solution of concentrated lye, which readily dissolves the gelatine, and leaves the face of the electrolyte bare and clean.

This is the complete process. We append the following references to details and modifications:

First. Ordinary glue may be used in place of gelatine, being preferable to many kinds of woods.

Second. The swelling may be brought about in a solution of alum, in a solution of the persulphate of iron, in a solution of tannic acid, and in other solutions and liquids, and the silver deposit be afterwards precipitated.

Having described our invention, we claim the following:

1. In the preparation of photo-relief plates for printing, &c., the described process of effecting the complete swelling of the gelatine film as a continuous operation, after being partially swollen in water, by treatment with the nitrate of silver solution, substantially in the manner and for the purpose set forth.

2. The described process of producing the deposit of metallic silver on the surface and the body of the gelatine film, in the manner and for the purpose substantially as set forth.

3. The described method of producing an electrolytic deposit of sulphate of silver by means of sulphate of potassium, substantially in the manner and for the purpose set forth.

4. The described process of producing relief-plates for printing and other purposes, consisting essentially of the several steps above described in their order of succession, substantially as set forth.

VISCUOUS AND COLLOIDAL SUBSTANCES IN THE DEVELOPER.

BY D. WINTHASTLEY, F.R.A.S.

It is known that when viscous and colloidal bodies are added to developers, a retardation of development ensues, and the substances in question may be looked upon as true restrainers. On the fourth of August last, Mr. giving some attention to this matter, I re-performed experiments illustrative of the point.

Collodion plates were washed, and their halves exposed for equal lengths of time in immediate succession, the same instruments and objects in each instance being used. The halves were then developed simultaneously with iron solutions having equal strength; one half being brought out with plain iron alone, the other with iron which was saccharated. The following tabular arrangement of only three experiments will show the result at a glance the action of the sugar and its influence to restrain:

<table>
<thead>
<tr>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick end of 6" film—1st half of plate.</td>
<td>Thick end of 6" film—1st half of plate.</td>
<td>Thick end of 6" film—1st half of plate.</td>
</tr>
<tr>
<td>Developed with solution containing in one ounce—iron ammonium sulphate, & 1 dram; water, quantum suff.</td>
<td>Developed with solution containing in one ounce—iron ammonium sulphate, & 1 dram; water, quantum suff.</td>
<td>Developed with solution containing in one ounce—iron ammonium sulphate, & 1 dram; water, quantum suff.</td>
</tr>
<tr>
<td>Result—slightly more detail and slightly more density than the 2nd half.</td>
<td>Result—slightly more detail and slightly more density than the 2nd half.</td>
<td>Result—a little more detail, and less the same density than the 2nd half.</td>
</tr>
</tbody>
</table>

In the instances of two of the experiments recorded in the table, it will be seen that those halves of plates brought out with un-saccharated iron possessed somewhat more of density and detail than their neighbours, a circumstance, however, which must be attributed, as I have elsewhere shown, to their being on the thick end of the film.

I am unable with certainty to name the date at which saccharine and colloidal bodies were introduced in virtue of their restraining powers as ingredients in developers, but I find attention called to them by Mr. Wharton Simpson in 1869.

Concerning the mode of action which such bodies take, two statements are all that I have found: the one, that they mechanically impede precipitation, and hence retard development; and the other, that they "cement together, as it were, the film and silver particles thereon."†

The former of these ideas suggests itself as a rational hypothesis, but the latter, it is manifest, cannot be entertained.

If we allow a stone to sink or a bubble to ascend in a vessel filled with water, a certain time elapses before the journey is performed. If treacle be the medium used, that length of time will be increased; or if Canada balsam be employed, the time will be still more prolonged; indeed before a bubble will get clear. And this, as I understand, illustrates the method of retardation supposed to be exercised when viscous and colloidal bodies are made use of in developers. To ascertain, however, for a certainty, if the explanation given be correct, it is desirable by some means to estimate the extent of viscosity produced by the addition of various substances to the developer, for if the theory given be correct, the extent of retardation will be the same where equal degrees of viscosity have been obtained, no matter what organic bodies have been used. For the purpose, then, of measuring in some sort the "thickness" of various viscous fluids, | † British Journal, 1874, p. 306. | Mr. Dunmore in The British Journal, 1876, p. 621. |
I used a Schuster's alkaliometer—an instrument of the kind depicted here below. By fusion, and by filing, I caused the opening in its nozzle to assume exactly such a size that the contents of the vessel when filled with water were capable of being discharged in a minimum time of sixty seconds. The vessel, in the case of each experiment, was filled to the lower portion of the neck (marked A), and when its contents were poured out, it was tilted to such an angle that the level of the fluid reached the portion opposite (marked B), the inclination being gradually increased to keep it there until the amount of fluid left was insufficient to reach that point, when this final inclination was preserved until the last drops were discharged. Repeated trials showed that when the vessel had been filled with water, the noted variation of the period of discharge was but one second out of sixty, and consequent experimental error under two per cent. Various developers were then prepared with different organic ingredients, and varying in viscosity from one degree (one minute in discharge) to four (four minutes in discharge). Their results were then compared, when it was found that the retardation did not depend upon the thickness of the fluid. Assuming no chemical action to have taken place (a point not easy to determine), it is clear that the mechanical action of viscous bodies in developers must be sought elsewhere.

It is known that the precipitated metal forming the photographic image penetrates the pores and external cavities in the body of the film, a circumstance which proves the developer to have preceded it in getting there; and I infer the probability of the film acting as a septum through which the saline ingredients of the developer have to dialyse before reduction can take place effectively. And this necessitation of dialysis I apprehend to be the way in which viscous substances retard the process of development.

HYALOGRAPHY AND ITS APPLICATION TO PHOTOGRAPHY.—LIGHT A MECHANICAL FORCE.

BY THOMAS SIMS.

APRON of this subject, a paper was published in the Journal of the Photographic Society, written by me about the year, I think, of 1859—60. (I have no means at hand of verifying the date). It is one of a series of some thousands of experiments of kindred nature which formed a mode of recreation at spare hours for some years. The substance of that communication, as far as I can remember, was the following.

A collodion positive on glass, made with a collodion the pyroxylne of which was of a powdery nature, or else the collodion of ordinary kind disintegrated by having alcohol of ordinary proof strength, and therefore having enough water to produce the effect. The exposure in complete darkness rather under than over timed; well developed with ordinary proto-sulphate or proto-nitrate developer; fixed with hypo-sulphite; and well washed, and dried.

After this, these photographs were put into sheet-iron boxes in a furnace, the fuel of which was either charcoal or coke; here they roasted at a dull red heat for from a quarter to half an hour, during which time the collodion became calcined, and the silver partly reduced to the metallic state, and partly absorbed by the surface of the glass, the guide being the amber-like tinct seen at the back of the plate when looked at in the light, glass being more sensitive to the sulphide of silver stain than any other with which I am acquainted. The image becomes indelibly absorbed, by continuing the heat long enough, in the most delicate and beautiful perfection.

The pictures are then exposed to the vapour of hydrofluoric acid, a gentle heat being applied to the bottom of lead pan to drive off the vapour with sufficient energy, and the glass kept warm to prevent condensation of watery particles. After a short exposure to the action of the vapour, the plate is washed in warm water, and dried, when the result will be felt rather than seen, for very little can be seen by transmitted light if the glass is fit for the purpose of etching deeply.

Good plate glass is best. The natural surface yields a more visible image merely on the surface, but where etchings on glass are wanted to be looked at merely, finely ground glass is best, for where the silver image does not protect the glass the image will be more transparent, and therefore look dark by transmitted light after being etched.

If any one would wish to stain glass with all the delicate half tones and tracing of the photograph, the above plan is very easy and sure, only the picture must be made from the negative, i.e., a transparent positive. If fixed with cyanide of potassa should be sulphurised afterwards, and washed. The result, after from a half hour to an hour or more in the furnace, will be the yellowish-brown sulphide of silver stain in the body of glass, everything being so smooth and delicate as, or much more so than, the original photograph.

In any way I could ascertain the extent and quality of such engravings was the following simple method. I put a thick slab of plate-glass on the table (a polished lithographic stone answers as well); a single drop of water is let fall upon it in the middle of slab; the engraved glass is put, back downwards, on the drop of water (this is to ensure adhesion, after which no ordinary pressure will break it); a piece of tissue-paper, which has been singed, carefully and uniformly laid down and cut (for transferring drawings), is laid, loaded side up, upon the engraved, and a piece of thin albumenized paper or ordinary writing paper which has no wire-mark is laid upon the loaded paper, and held firmly by the left hand, whilst the right uses a boxwood or ivory paperknife as a scraper. Very pretty blacklead drawings may be obtained in this way.

I am sorry I have not time to condense this communication, and yet say what I mean. My manuscripts have been laid aside many years, and I cannot now refer to them, but the date of the original communication may have been as early as 1854.6.

A few words on Mr. Bovey's ideas under heading—Light a Mechanical Force. All forces become mechanical if applied. Whenever we by the laws called chemical disturb the affinities of material elements, we at some time unbend or retie the most titanic force or forces. Whenever there is chemical action taking place, then one of the phases of force shows abnormal conditions. Every ingenious invention which goes to prove this is useful, because it popularises science by giving ocular demonstration; but those who can deduce from the facts of general science, and such publications as Professor Crowe's "The Correlation of Forces," Tyndal on "Heat and Light," Rev. M. Bircks on "Matter and Ether," etc., are as sure that light is a force as that heat is a force, or that electricity is a force; mechanical if mechanically applied, as though they could, like Thirriol, ride on a sunbeam.
HOW TO MAKE A BELLOWS FOR A CAMERA.

BY R. L. F.

First measure the inside of the camera, which is, let us say, a half-plate size, which we will say is 7 inches by 6 inches inside. Make a block or mould of boards nailed together a little smaller than the inside of camera—say about 3 inches smaller. A little longer than the bellows is required—say 15 inches. Get a piece of good black twill about 13 inches wide and long enough to go right round the outside of mould and lap over 3 inches. Paste the edges together, making a firm joining, taking care not to paste the mould. Over the whole of the twill paste a piece of orange-coloured paper free from holes. Then cut some pieces of cardboard to form the folds,—say 72 pieces, 36 of which will have to be 6½ inches long, and 36 5½ inches long, and each ½ of an inch wide, with each end bevelled to form the corners. Commence about an inch from one end, and paste the pieces of cardboard on all round with the long and short bevils opposite each other, thus:

leaving a small space between each for folding. The long and short ends should come opposite each other at the sides when all are put on, which will be 18 on each side. Paste over the whole another thickness of orange paper, and over that again another thickness of black twill, last side outwards, making the lap where the bottom of the bellows is intended to be. Thin leather can be used instead of the outside twill, but I find twill answer admirably; one made with that material, for a 12 by 10 camera, I have had in constant use about twelve years.

It should now be left till quite dry, then taken off the mould and gently folded. About an inch is left at each end without cardboard for tacking inside the camera, which should be done with strips of leather or thin wood over it, so that it may hold it in the camera firm and strong. The bellows will be about 1½ inches thick, and will allow focussing from about 4 inches to 14 inches. I find good four paste, made rather thick, and with a little powdered alum in it, much better than glue.

If this description is not clear enough, I shall be pleased to give any further information I can.

NEGATIVE RETOUCHING VARNISH.

BY JEAN EPPLE.

There are many kinds of retouching varnish used by photographers, some purchased commercially, some made up at home; but I must frankly admit that none of those I have tried have given me satisfactory results. Moreover, the mixtures that one boys are generally of an expensive nature.

For some time past I have prepared and employed with much satisfaction a formula for a negative retouching varnish which I can strongly recommend, and which is largely employed in Vienna, and has been for some time. It consists of a solution of American colophonium or resin in rectified oil of turpentine, so as to secure a liquid of the consistence of a transparent colloidon. The proportions generally are:

- Oil of turpentine 2 parts
- Resin 1 part

but they vary according to the nature of the constituents.

The powdered resin is added by degrees, and it is allowed to dissolve by being placed in a warm locality (in the sun in summer), the mixture being shaken up continually. By adding more and more resin the right consistence is soon attained, and a little experience teaches what should be the proper thickness; the resin should dissolve entirely without leaving any residue behind.

To apply the varnish a small quantity (about two drops for a carte-de-visite) is put upon the negative and rubbed over by means of a soft rag which is stretched over the finger, the rubbing being done smoothly. If the varnish sticks much to the film during the rubbing, the solution is then too thick, and must be diluted with a little oil of turpentine.

The varnish is allowed to dry upon the plate for a few minutes, and then it is possible to retouch the surface with any pencil, no matter how soft or hard, as well as upon paper. I generally employ Hardmann’s Nos. 3 and 4, which generally answer for most purposes. In order to put in high lights in the flat portions of drapery, &c., I seldom employ colour, but make use of No. 2 pencil, by means of which the most effective high-lights may be secured, such, for instance, as are seen upon lace, &c. As a rule I render all high-lights with No. 2 pencil, and retouch face and hands with No. 3; while to make any portion more harmonious and to give the appearance of uniform grain I employ No. 4. Translucent spots in the negative I prefer to cover up with white, which seems to me to answer the purpose better than carmine.

In order to remove any retouching from a negative which does not appear sufficiently good, I take pure oil of turpentine, and rub over the surface with a soft linen rag just as I described above when applying the varnish. The varnish may also be used with safety for the manipulation of very old plates, as by its employment no fear need be entertained of the film breaking or springing, as is often the case when old films of varnish come to be worked upon by a sharply pointed pencil.

Correspondence.

DEVONSHIRE SCENERY.

Sir,—There is one spot I ought to mention before passing on to Clovelly, that is well worth at least three or four negatives: I refer to Kenwith Castle, in Abbotsham, and now occupied by the worthy rector of that parish. This place is about two miles from Westward-Hill, and has a name, a character, and a history; or, rather, that line between myth and history. It was occupied by Odun, the brave Earl of Devonshire, who fought Hubbs, the Dane, and defeated him under the castle walls, and drove him into the sea. Our postman poet, Casper, has embodied this page with a living reality:

"The Danes were below the castle wall
When Hubbs spoke to his band—
'Tis tower so strong, my true men all,
No Northernan shall withstand.'

Spake Odun, the Earl of Devonshire,—
"Thy Northernan may be true,
But before brave Odun yields his sword,
They have much rough work to do."

Though this place is much modernised, yet the grounds around it, rising in artificial mounds, indicate that the place was used for defensive purposes.

Portledge, Peppercombe, and Bucks will well repay some hours to each place. The points are easily reached from the main road to Clovelly. The two former have never been done; each has some fine bits of rocky scenery. The first named place is remarkable for the termination of the red sand bed that runs in a narrow strip through the whole of the North of Devon. Peppercombe has a place known as the “Castle,” but why it is called by that name I am unable to say; but that object, with the limekilns and rocks in the foreground, make a good picture. The morning, in fact the early morning, will be the proper time to take each of those places. These spots
lying rather out of the beaten track of tourists, have not been kept hidden from the sight of the photographer. It can, however, be beautiful, as a rule, will not sell," consequently will not pay for doing. "Bucks Mills," lying within sight of Clovelly, has only been photographed by one professional photographer, and only with partial success, the points from the house not being visible. The town and its pictures, as a commercial speculation, would sell with the other local views, because there is a peculiarity and quaintness about the place that is equal to Clovelly, and it is all its own.

Two miles further on we come to the "Hobby Drive" of Clovelly. "Hobby Drive" is the "Hobby Drive," and certainly it is one of the most charming that can well be imagined. For two miles we pass under a canopy of thickly netted trees, through which, and under the "Quarter Deck" is reached a pace is invariably made, feeling as if we were going to the Channel, and known as Hartland Point. Clovelly lies lowly on the greatest bend of the bay, flashing back the rays of the morning sun from its white cottages and the dense masses of foliage, while shooting out from its little semi-circular pier are the calm and bold rise of Sandy Island, its white lighthouse glittering as a pillar of salt, and the grey granite peaks of Rat Island wonderfully distinct. This clearness of Sandy is known to fishermen as a sure sign of rain. This is the picture from the Hobby Drive—this the fascination of the photographic art. Now we see the clearness of the air, over which they have command, is the use of short-focus wide-angle lenses which dwarf the distance. I fell into this error myself; but I saw a picture the other day in which this was avoided, and there would have been but little to be desired for the sea being almost a patch of white. The morning is the best time for taking this view. Pass on towards the village, and see four or five negatives would well repay the trouble of securing. Having reached it, the first business after supplying the warm robes for the man at the "New Inn," there being another hostelry there, will be to walk down the steep and slippery street to the little pebbles built pier, and take a look at the tiers of cottages that rise above. One is at once struck with their picturesque character and peculiar quaintness, and how any one, whether he be fisherman or not, could be drawn at some remote period to fix his dwelling on the very edge of the rock against which the sea was ever beating. It will be seen that all the views from the pier and beach will be better taken early in the morning. The special views I will mention, yet the interest attached to them. I remain, sir, yours respectfully.

THOS. TRIMBLE.
Bideford, May 18th.

WHAT TO DO WITH RESIDUES.

DEAR SIR,—As an amateur photographer with a fair knowledge of practical chemistry, I was very much pleased with your article last week and it so accords with my own experience, that I quite agree with you that it is high time the grievance should be remedied.

Only last week a photographer told me that he sent seventeen ounces of residues to a refiner, who sent him back two and a-half ounces more, and that was being made 1.5% less than silver, although, taking his account of the character of the "waste," I feel confident that it contained at least six to eight ounces of the metal itself. This matter in my opinion is one capable of an easy and effective remedy; but the first step is, that photographers should be able to judge for themselves, within moderate limits, the approximate value before sending it to the refiner. This can be learnt literally without any chemical knowledge, and I propose (if you approve) in two or three very short articles to give a few data by which they may be able to protect themselves.

I may say that my object in doing this is simply from the fact that as an amateur I owe a great deal to the profession. I have been so fortunate, rather to my surprise, that photographers and refiners are not inferior than most men, and in trying to obtain the practical knowledge I required, I have found them always ready, not only to impart the information I have asked, but to put me up to the little "wrenches" and "dodges" which are of such great practical value. If I can in a single degree repay the obligation it will give me much pleasure. I am, dear sir, yours, &c.

PHOTO CHEMICO.

[We shall have much pleasure in receiving the further communication of our correspondent. —]

FLEXIBLE NEGATIVES.

DEAR SIR,—In your leader of yesterday I find a suggestion that had also occurred to me—to use sensitised bands.

Further on the effect of texture is deplored. I have had a "happy thought." When in the East, I often admired the Chinese and Japanese translucent "rice paper," which I think is just what we want to produce a flexible negative. It presents an appearance similar to that of a very thin sheet of white wax, such as is used for artificial flower making, but is much stiffer, and although it would not bear double up, it might be rolled. Further, there would be no difficulty in obtaining the article in quantity at a very moderate price.

I had not, at the time I refer to, been bitten by photography, or should probably have tried the question on the spot. I have none of the paper by me, but if any of your readers should have specimens of this Chinese paper or rice paper, I shall be most grateful to receive them on this paper, and be willing to sacrifice a curio to the art, I hope they will acquaint me with the result.

In the mean time I shall endeavour to hunt up a sheet or two and try for myself. I scarcely doubt success, and will certainly communicate the result through your columns. I am, dear sir, yours truly,

L. T. ROLLS.
Alme Cottage, Lymington, Devon, May 13th.

Proceedings of Societies.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of this Society took place on Friday, May 14th, in the rooms of the Society of Arts, the Rev. F. F. STATTHAM, M.A., F.G.S., president, in the chair.

The minutes of the former meetings having been read and confirmed.

Mr. J. B. SAWYER gave some interesting details of the gradual progress of carbon printing from its origin, and very clearly stating the improvements made by each inventor and discoverer who had given attention to the process, from Mungo Ponton, Becquerel, Poitrenin, Blair, Abbe Laborde, Swan, Johnson, to the latest improvements in double transfer invented by himself, consisting of a moist sheet suspended to the carbon tissue, which, when dry, allowed the picture to be peeled off. A practical demonstration of the process by Mr. Sawyer was then given.

The President, in passing a vote of thanks, said he was most particularly pleased with the history of carbon printing which Mr. Sawyer had so graphically described, and asked whether the process was applicable to large works, such as copies of oil paintings, &c.

Mr. Sawyer said that for very large prints there was no other way. Mr. A and the flexible strip which was being made works 40½ by 9½in. Replying to a question by a member, Mr. Sawyer then made some practical remarks respecting the printing in conjunction with the use of the actinometer, and threw out a hope that some day it might be possible to see the printing.

An interesting conversation ensued, during which it was stated that any amount of brilliancy could be given to a carbon print by hot rolling.

Mr. Wilkinson then read a paper entitled "Archer's Formula," and then put a question to the members, enquiring why chlorate of silver (as mentioned by Archer for the exciting bath) was not experimented with now?

Another interesting and practical conversation then took place. The Chairman said it was often useful to look back to old formulae, and thought, by careful reading of old original ideas, a large amount of information might be gained.

After a vote of thanks the meeting was adjourned.
C. T. ROLLS.—Boric acid was doubletless meant. We have not
tried it; but we think you are in error in supposing that boric
acid would precipitate the silver, unless, indeed, the silver solution
we e alkaline.
A. M. S.—Many thanks. You will see, however, that the informa-
tion we have given is in your last.
A. H. ASHLEY RANKS.—Many thanks for your courteous informa-
tion, which is, however, very sad.
J. BURG.—Thanks for further hints. We shall again call attention
to the matter of air.
C. M. SCHRIEBER.—If we heard of anything likely to be of use to
you, we will write.
CAPTAIN T. T. G. W. A. C. A. wishes to thank those of our corre-
pondents who have given him information in relation to the scenery of pho-
tographic interest in Devonshire.
D. DE LAUDE.—Thanks. The matter shall receive attention in
due time.
J. MCC. —The advertisement, so far as we know, is bona fide,
but inquiries will be made as to correctness of address.
Several correspondents in our next.

METEOROLOGICAL REPORT FOR APRIL
BY WILLIAM HENRY WATSON.
Observations taken at 2 a.m., on, near Whitchurch, 30 feet above sea level.

<table>
<thead>
<tr>
<th>Date</th>
<th>Maximum temperature</th>
<th>Minimum temperature</th>
<th>Barometer</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-31</td>
<td>68°F</td>
<td>56°F</td>
<td>29.83</td>
<td>Fair, but cloudy.</td>
</tr>
<tr>
<td>2-4</td>
<td>56°F</td>
<td>56°F</td>
<td>29.83</td>
<td>Fair, but cloudy.</td>
</tr>
<tr>
<td>5-8</td>
<td>56.5°F</td>
<td>56°F</td>
<td>29.83</td>
<td>W. S.</td>
</tr>
<tr>
<td>9-12</td>
<td>68°F</td>
<td>68°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
<tr>
<td>13-15</td>
<td>68°F</td>
<td>68°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
<tr>
<td>16-18</td>
<td>68°F</td>
<td>70°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
<tr>
<td>19-21</td>
<td>68°F</td>
<td>68°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
<tr>
<td>22-24</td>
<td>68°F</td>
<td>68°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
<tr>
<td>25-27</td>
<td>68°F</td>
<td>68°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
<tr>
<td>28-30</td>
<td>68°F</td>
<td>68°F</td>
<td>29.83</td>
<td>S.W.</td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>Date</th>
<th>Maximum temperature observed</th>
<th>Minimum temperature observed</th>
<th>Mean of whole</th>
<th>Fair days during the month</th>
<th>Days on which more or less rain fell</th>
<th>Fair days, sunny</th>
<th>Fair days, cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-31</td>
<td>68°F</td>
<td>56°F</td>
<td>58°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2-4</td>
<td>56°F</td>
<td>56°F</td>
<td>56°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5-8</td>
<td>56.5°F</td>
<td>56°F</td>
<td>56°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9-12</td>
<td>68°F</td>
<td>68°F</td>
<td>68°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>13-15</td>
<td>68°F</td>
<td>68°F</td>
<td>68°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>16-18</td>
<td>68°F</td>
<td>70°F</td>
<td>69°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>19-21</td>
<td>68°F</td>
<td>68°F</td>
<td>68°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>22-24</td>
<td>68°F</td>
<td>68°F</td>
<td>68°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>25-27</td>
<td>68°F</td>
<td>68°F</td>
<td>68°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>28-30</td>
<td>68°F</td>
<td>68°F</td>
<td>68°F</td>
<td>10</td>
<td>22</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Note.—During the month, as will be seen from the foregoing table, we have had many fair weather days, out of 23, the 16th being the brightest, and
generally the light has been very active. It will be remembered that April, 1873, was very warm, considerably warmer than April, 1872, as will be seen by comparing my tables in your impression of day 8th, 1874, with the present. The rain during the month amounted to 11 inches, and
was very much below the average for the month, 27.4 inches, of 11 inches in height, which generally visit here very early was on the 18th, and the first rain was on the 26th.

The weather up to to-day is fine, but hazy. Rain is much wanted to promote vegetation.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Gin's Baby—Salicylic Acid—The Vienna Exhibition—

Lord Lindsay.

Gin's Baby.—Few photographs have acquired such fame as Mr. Rejlander's "Gin's Baby," which is to be seen in the windows of every photographic dealer, and which is one of the few, the very few, studies produced by that master photographer, of a profitable nature. Mr. Draper, an old friend of Mr. Rejlander, and well known as one of the founders of the Savage Club, in writing about copyright the other day in the Pictorial World, tells us of one thing about this popular little picture. Mr. Rejlander one day had an infant for a sitter, and before he could obtain a presentable likeness, suddenly caught the child in a fit of passion. The image thus produced, he enlarged, touched with chalk, and again reproduced. After he had taken all this trouble to secure a good artistic picture, somebody came forward alleging that he was the grandfather of the original subject, and claimed, not only copyright, but actually an account and payment of all profits made by the sale. Nay, more, he even issued a writ to enforce his claim, although he did not, fortunately for Mr. Rejlander, continue the proceedings. Thus the proceeds of this picture, which was, perhaps, the only one that ever brought its producer a slice of luck, was well-nigh lost in law expenses. We believe that seven or eight thousand of this little picture were disposed of, and although but a tithe of the profits only reverted to the photographer himself, these amounted to a substantial sum. When first sent in for exhibition at Pall Mall East, the picture was called "Mental Distress," or something of the kind, but the Secretary, in cataloguing, rechristened it, and gave it to the public in the guise of Mr. Jenkin's popular little book. The change did not, however, please the artist, and he demanded that the original title might be substituted in the next edition of the catalogue; but his request was of little avail, for despite all he could say, "Gin's Baby" was in everybody's mouth, and it was already beyond the power of any one to change the name.

Salicylic Acid.—Salicylic acid, the use of which has been recently suggested in photography, is a good preserving medium for many things, and will doubt be found useful as a means of preventing the decomposition of some of the liquids and solutions used by photographers. Further experiments are necessary to determine the influence of this body upon the chemicals and compounds employed in photography, but it may no doubt be used in most cases in lieu of carbolic acid. It is difficult to dissolve in cold water, but is readily soluble in hot water, as also in both alcohol and ether. It has far more antiseptic action than carbolic acid, and has neither the disagreeable taste nor smell of the latter. It lends itself, therefore, readily to medicinal purposes, and would be exceedingly useful for preserving eggs, fruits, and vegetable matter of various kinds, such as are prone to become mildewed or rancid. Salicylic acid has been known for some time past by chemists, but it is only lately that Dr. Kolbe, of Leiпис, has shown how it can be made artificially in large quantities and at a moderate cost. We should think that in most cases it might be employed for preserving solutions of gelatine, albumen, starch, &c., sweet and good; but we repeat, photographers will have to study its action more closely before it can be universally employed in medicinal purposes.

The Vienna Exhibition.—The opening of the Austrian Photographic Exhibition has taken place at Vienna, and we have news that the collection is considered a satisfactory one. The exhibition is held in the Imperial Museum for Science and Industry, and the pictures, to a large extent of a high character, make a most favourable impression upon the visitor, the lighting, with one or two exceptions, being very satisfactory. The best pictures in the exhibition, according to the Photographische Notizen, are some magnificent prints of large size taken by the Court Photographer, Victor Angerer; Fritz Luckhardt's stereoscopic studies, which it will be remembered attracted much attention in our own exhibition two years ago at Pall Mall East; some portraits, large size, of Vienna celebrities taken by J. Gertinger; some excellent transparencies of microscopic subjects prepared by Caarl Haack, of a class therefore, such as have as yet been little included in exhibitions in this country; studies of animals by L. Scholdisch; interiors by Rückwardt of Berlin, Lichtdruck prints by Hoffmeier and Jonas of Dresden, phototypes of L. C. Zamaraki of Vienna, a collection of Aubel'druck prints by Aubel and Kaiser of Cologne, &c. Great Britain is represented by Brownrigg of Dublin, Hedges of Lytham, and H. P. Robinson of Tubridge Wells; in the latter case, the pictures exhibited are those that won the "Good Taste" medal, Vienna 1873, and are the property of the Vienna Society.

Lord Lindsay.—It is gratifying to learn that Lord Lindsay is again comparatively restored to health after his expedition to the Mauritius. The press of work and excitement connected with the observations of the transit of Venus, together with the unhealthy climate of the island, combined to throw his lordship into a violent fever, and for some months his health has been such as to give cause for much anxiety among his friends. A return to England was not permitted for some months after his arrival in Europe, a prolonged residence in Italy being insisted upon by medical men. We are glad to hear, therefore, that Lord Lindsay has returned so far to his previous state of health as to take part in a fête prepared in honour of his return by the Conservative working men of Wigan, which town Lord Lindsay has represented in Parliament since the last election. We are informed that many thousands of people thronged the streets to welcome him back after his tedious, though successful, journey to view the transit of Venus, while bands of music paraded, and the church bells were set going. The horses were unyoked from his lordship's carriage, and this was drawn through the town to Haugh Hall, the residence of his father, Earl of Crawford and Balcarres, amid the cheers of the people.

PRACTICAL PORTRAIT PHOTOGRAPHY.

By William Heighway.

Chapter V.—Colloion.

Although so many samples of commercial colloidion are very excellent, and, perhaps, from the large quantities made up at one time, of more reliable and even quality than the operator can make up for himself, I think it certainly not a waste of time for him to learn how to make it for himself. Should I even advise the student to procure for his early use a good sample of commercial colloidion? I should yet think he was not to know of what it is composed, and the nature and properties of these several ingredients.

Colloidon is made by dissolving pyroxyline or gum-cotton in a mixture of ether and alcohol. Pyroxyline is insoluble in water, alcohol, or ether, but with regard to the last-mentioned, many samples contain a percentage of alcohol; in these pyroxyline is sparingly soluble, but in alcohol and ether, of almost any proportion, it dissolves quite readily. A mixture of about equal parts is generally adopted in making colloidion for ordinary use. Certain iodides and bromides are added to excite or sensitize the colloidion, the iodides and bromides of ammonium, cadmium, and potassium being those most generally used—all, except potassium, being readily soluble in colloidion. Colloidion may
be "iodized" at the time it is made—that is, sensitized by the addition of the iodides and bromides according to the formula by which you are making it—or it may be kept "plain," to be iodized as you may require it.

Plain Collodion is made by adding ten or twelve grains of pyroxylene to every ounce of alcohol, and when it is well soaked, adding an equal amount of ether. The cotton may not entirely dissolve, nor is this an evidence of a bad sample of cotton. When the collodion is settled perfectly clear it should be filtered through filtering-paper or cotton (it being advisable to cover the filter with a plate of glass to prevent evaporation as much as possible), and preserved in a cool place.

The Iodides and Bromides used in the manufacture of collodion have various effects on it—those of an acid reaction, such as the iodide and bromide of cadmium, having the tendency to thicken and glutenize the collodion, tending to retard its setting on the plate, but giving a depth and richness to the negative; while the alkaline iodides and bromides, as those of ammonium and potassium, have rather opposite effects. They tend to render the collodion, in time, more liquid, and, liberating free iodine, give the collodion a sort of sensitiveness; they, however, give the required intenseness quickly, and cause the collodion to set rapidly.

The Sensitized Collodion requires care, cleanliness, and some little intelligence in its preparation, together with the proper purity of the chemicals used. The reader, if he has studied photographic literature to any extent, will have noticed that almost all writers differ in the proportions used in portrait collodion; and to a great extent in the iodides and bromides used; but a great number, if not a majority, seem to agree that the proportion of three grains of the bromides and five of the iodides to an ounce of collodion gives the best results. I shall not, therefore, be giving anything new in the formula I subjoin, though I have a lurking fear that I shall be looked down upon that I do not produce something more startling. To disarm criticism on this point in some measure, I may say that it is rather my intention to endeavour to be of use to the reader by furnishing him plain and reliable instructions than to give him difficult and doubtful problems to solve:—

<table>
<thead>
<tr>
<th>Alcohol and ether</th>
<th>5 ounces each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton 6 grains to the ounce of alcohol and ether</td>
<td>25 grains</td>
</tr>
<tr>
<td>Iodide of ammonium</td>
<td>25</td>
</tr>
<tr>
<td>Iodide of cadmium</td>
<td>16</td>
</tr>
<tr>
<td>Bromide of ammonium</td>
<td>16</td>
</tr>
<tr>
<td>Bromide of cadmium</td>
<td>16</td>
</tr>
</tbody>
</table>

Grind these in a mortar, adding the alcohol, and as they are dissolved pour the liquid into a bottle of sufficient size for the whole. There should be no residue, if it has been properly done. The above are all readily dissolved in alcohol and ether, but where bromide of potassium is substituted for ammonium, the operation of dissolving it is more difficult, potassium being very sparingly soluble in alcohol, and scarcely at all in ether; but by uniting it with iodide of cadmium the difficulty is at once overcome. Grind the potassium fine in a dry state, and add to it, gradually, the iodide of cadmium until they are thoroughly incorporated; now moisten with alcohol until evaporating, it leaves behind a snow-white paste. Continue to add alcohol and grind, pouring off, after each addition, into the bottle until all is dissolved. When all the iodides and bromides are dissolved, the ether must be added a little at a time, the mixture being agitated before each addition of ether. When you have added all the ether, filter this mixture through filtering paper, through which it should run clear and easily. You can now add the cotton, tearing it up into little tufts. A little shaking will aid in the dissolution of the cotton. There may be a tritifying sediment of cotton, but this does not greatly matter. When this has settled perfectly clear, as it should in a day or two, it will be improved by an addition of some old collodion of the same formula, and will continue to improve with age.

When this collodion is poured on the plate, it should flow perfectly smooth, and be quite transparent. The plate being well dusted, and carefully guarded from dust which may (but shouldn't be) flying, the film should be soft, and free from ridges or lumps; but as the ether evaporates, leaving the alcohol in excess, the collodion will show signs of glutinizing, setting on the plate in lumps and ridges. The remedy is to add ether in the manner already described, until these ridges cease to appear. Fill ether the added ether as soon as possible.

The collodion, when first made, should be of a lemon colour; a dark red denotes too great acidity, and this may be neutralized by the addition of half a grain of bicarbonate of soda; but it were preferable, when it is too acid, to reject it, and seek purer chemicals.

In flowing a glass plate with collodion, the residue should be poured into a bottle kept for the purpose—not the "bottle from which it is poured." All bottles holding collodion should be kept well stoppered to prevent evaporation. To flow a plate, stopper the bottle, and take another to receive the surplus collodion from the plate; and that, without agitating the plate in hand, the young student will find is no easy matter, but he will manage it with practice. Do not get into a clumsy way of doing it at first.

The Practical Printer in America.

XXVI.

Finishing the Prints.

When the prints are mounted, all spots are to be touched out, and the high-lights in the eyes, &c., are to be placed in, as will be presently shown. It is not at all necessary to wait until the cards are dry to do this, but, on the contrary, it is perhaps better to touch the spots out while the cards are damp, so that if an ordinary roller is used the prints can be rolled while a little damp, and a better polish is thus secured.

When the beginner commences this work on the prints, he will think, if not before, see the importance of thoroughly dusting the negatives while printing, as the neglect of it will have occasion him considerable trouble, as well as the final result not being so nice as it would be if there were no such places to be touched out.

For this reason I have often thought that if the beginner was served as I was when I commenced to print it would be a good thing: it was to assist at printing on one day and the next to assist at the touching of the prints, for the space of a fortnight or so: and thus he would learn how much trouble was saved by a little care being taken in the first place, and a valuable trait towards making a good printer would be early acquired. But even if the greatest pains were to be taken in the dusting of the negatives, there are instances in which it would not prevent some places from printing—said places being in the film that is on the glass, occasioned in some of its manipulations, such as the varnishing, or by some defect in the glass itself, either scratches, bubbles, or something of that sort.

It will be seen that the better printer will take pains to be occupied in the touching out of these spots that I have, in a previous chapter, recommended not to "touch out holes" in the film any larger than what is necessary, and also where there are scratches, whether large or small, to print the negative either under one or two ground glasses, and even sometimes a tisue-paper, so that such places will not show any more in the resulting print than what is really necessary.
manipulator tries to assist him (the printer). A very noted New York photographer once said to me: "In my gallery, the object of those in each department is to assist each other as much as lies in their power by doing their work so that they will not have to rely upon the person or persons whose duty it is to do the next in routine to cover up their defects; for there is always enough of their own work to do, without doing any more of another's than what is absolutely necessary."

There is no small amount of work to be done by the lady in touching out the absolutely necessary corrections on the prints—there is no one who has ever tried to touch out can tell for a certainty, it being likened unto the work of a negative-toucher, both of them being more or less severe on the eye.

Any good brush, of a suitable size and with a good point, will answer for this purpose. In the mixing of the colours, which should be done every day, proper attention should be given to obtaining the same tint as the tone of the print indicates to you, so that the touched-out places will have the same appearance as the rest of the print. Water colours are used, India-ink, yellow and red colours predominating in the mixing, according to the tone you desire, which is generally of a reddish tint.

In applying the colour to the prints as it is now, they will dry dull, and when looked at obliquely these dull spots will appear as if there was a piece of dirt on them, a good glass to the print everywhere except where this colour is applied. To obviate this, a liquid solution of gum-arabic (made by dissolving the gum in as little water as possible) is mixed with the colours in such abundance as to give a good gloss to the prints when they are touched.

More often, instead of dissolving gum-arabic as described above, a lump of the pure gum is wetted with the tongs and rubbed through the brush, and the remainder of the lump is stuck to the pallette upon which the colour is to be mixed. In touching out, in case the colour after a while shows no signs of the arabic, then first rub the wet point of the brush on the lump of arabic, and then take up some of the colour and proceed to touch out the spots as before. The use of the arabic makes the colour a trifle more difficult to be touched-out, but will white you not notice it. A glass of clean water should be near at hand for you to wet your brush in and to cleanse it when necessary. The beginner in touching out with the brush and colour should be careful and not touch too heavy as well as too light, and never leave a spot unless the colour applied gives the same dark tint as the surrounding places, and he should not touch out a larger spot than what the spot really was, experience will tell him what is to be touched out, and what is not.

All dirt spots (i.e., light spots on the prints which are usually caused by dirt adhering to the varnish of the negative) should be touched out wherever they occur. The most noticeable places are in the cravat, face, background, &c. The unevenness, if there is any, of the retouching should also be glanced at—i.e., those places on some parts of the face which are lighter than the surrounding parts caused by the pencil of the retoucher taking too heavily.

I mentioned above about placing the high-lights in the eyes, and as the beginner may not know what I mean by it I will here explain. In many prints the eyes, owing either to the carelessness or ignorance of the operator, have no high-lights in them, and when such is the case they should be placed in each eye, as the proper place, by the brush, upon which a little white paint (water colour) is dissolved. The greatest experience is required to do this as it should be done, and the apprentice should always attempt it on his own responsibility until he has been thoroughly taught how and where they should be placed. In many cases the high-lights should in a measure be touched out, and all other reflected lights should be removed.

A common lead pencil of a medium grade of hardness is used for the purpose of modelling the face, as well as touching out the slight spots that are in the face, draperies, &c., whether occasioned by the retoucher in touching the negative, or by the printer in printing them. The Siberian graphite, No. 2, H. B. pencil, I have used with very good results. A good, not too sharp, point is made, and a slight touch of it will very neatly touch out the thin and long dirt spots, and in modelling, both in the lights and shades, it is capital. There will not be enough difference in the tone of the pencil-mark and the colour of the prints to cause any attention from this source, unless the places are larger than the head of a tolerably large common pin. The pencil very often makes the lines a little sharper and more defined than a brush, therefore it is used considerably, when it can be, with good results. For diving in between the shadows in the cheeks, and filling them up (not too much), and touching out those dirt spots which may happen to show on the high-lights, and in all places where only a very slight touch is required, the pencil is much better than the brush, as it will make a much better mark.

To ease the eyes in touching out the minute spots a large magnifying-glass is placed conveniently in a sort of a vise, by means of a suitable rod which is attached to the glass. This glass is placed at some six inches from the prints, and the person touching out can not only do the work better, but the trying of the eyes is in a great measure prevented. A little flesh-wash is given to the cheeks and lips of the ladies and children with good effects.

NOTES ON RETOUCHING.

Our Chicago contemporary continues the useful articles on this subject.

Freckles.—Experience teaches that negatives requiring much retouching upon every part of the face will never produce thoroughly artistic prints, and a negative that will become sufficiently smooth by working only upon the lightest and nearest portions, leaving the receding parts delicate and shadowy, will produce a face of wonderful relief and life-like brilliancy. The class we are now considering seem to baffle our attempts at perfection in this respect by forcing us to carry our work far beyond the desired limits.

Of course, good taste and ability in the operator may, and often does, greatly reduce our work, by throwing forward the focus on the face and producing a proper detail in the shadows. But to be sufficiently comprehensive we will suppose these negatives under consideration need very much retouching to make them smooth. The first work put upon them is the most difficult and important, that of touching out the freckles, and requires the aid of a magnifying glass, until every one, however minute, has disappeared. To do this the utmost care must be observed not to use too great force with the pencil, as no amount of after-work can make a smooth surface if coarsely done this first time. No stroke of the pencil should be observable except in effect, and the old adage, "The more haste the less speed," was never better applied than in this work. After the freckles have all disappeared, lay aside the glass, and, from a sufficient distance to enable the whole effect of the work to be seen, proceed to fill up the larger spots caused by the uneven surface the previous work has made. After this has been thoroughly accomplished it is usual to call the negative finished, and it is sent to the printer in that condition. No greater mistake is made than, "as will be seen by the careful inspection upon examination. If you possess two negatives of this class, that before retouching were considered alike, it is easily observed that smoothness has been obtained at the sacrifice of brilliancy and expression. That which was before retouching a curve of the forehead, or an indentation of the cheek, is now flat surface. The delicate shadow under the eye, on the shaded side of the face, has disappeared. The shade there under the nose had its share of freckles, and as a consequence the upper lip now looks swollen and unnatural. The mouth has lost its character,
the eyes their expression, the nose has become flattened; in short, a dull tameness pervades the whole face. To remedy these evils, the highest points of light and the darkest portions of the shadows must be rightly located, and their contrasts made as great as in the untouched negative. Even greater than this is admirable, if the original picture be flat enough to make such treatment desirable. Then we can more justly consider the negative retouched, and deliver it into the printer's hands with a better grace. In carrying out the above method, I would impress upon my readers the importance of preserving the same order of work as here given.

Our next subject to be considered will be the more diversified ones.

Copies.—Of course negatives of this class may possess any of the faults already described, and require the treatment therewith given. But the ones most frequently met with, and which I wish to dwell upon most, are those possessing no contrasts whatever; the face, drapery, background, and accessories being void of bright light or deep shadow, and possessing the same tone throughout. Of course it is not possible to make perfect negatives out of these; but it is possible to so improve and renovate them that their faults will be but lightly dwelt upon.

To begin, then, with a negative of this kind before us. The face, hands, and white drapery (if any there be) must first receive attention. After the surface above them is ground, their entire limits must receive the powdered crayon of the method already described, taking care to exceed the limits, or to omit any portion within them. Pass the crayon stump lightly to and fro until no streaks are discernible, and the surface has received all the crayon it will contain. If very great opacity is required, pulverized blue or pink pastel is superior, as possessing a desirable colour and great body; but from that we descend to No. 5, 2, and 1 Conti Crayon, according to their depth of shade, and bring quite hard; and as but a small amount will adhere to the ground surface, it is most desirable where the picture needs but slight raising of tone. After brushing away the residue we proceed with the pencil to smooth up the face, taking each feature separately, raising the light upon it as much as it will bear, and yet be a correct likeness; making the most of the minute in places that helps the idea of its correct form, brightening the eyes, making the division-lines sharper between lights and shadows; in short, bringing out the features distinctly that were suggestions in the original. The degree to which this can be carried must be learned by experience. The beginner will be sure to overdo it, and produce an unnatural picture. But as the prints show less of this than the negatives, it follows that a little intensifying of them becomes a necessity. After working upon the face until sufficiently smooth and well defined, the hands and drapery must receive attention. The fingers must be retouched as carefully as the features of the face, and the folds and detail of dress be well brought out. Care must be observed if lace or embroidery appears about the throat, not to trace it in the negative, but to give the features their natural tone by contrast you should make the face seem more inconstant than before. Next the background, which in this case is supposed to be undesirable, being too light, too dark scratchy, or too near the colour of the face, we wish to improve upon. First, entirely blot out the original background by covering the unvarnished side of the negative with an abundance of Conti Crayon using a small brush upon the outline of head and figure, and larger one for the remaining space. Now make a print or impression of the negative upon silvered paper, cut out the figure carefully, and when a perfect print is made possessing a white background, lay this shield over the figure, and shade the remaining portions to any desired tint, remembering that the background must be darker than the lights of the face. If it is desirable not to show the hands, a very pleasing picture can be made by vignetting the figure, besides stopping out the background.

Then, if the face is too dark to look well with its surroundings, place the back light, or part of the face, head, and hand, a small portion of the figure, exposing the remaining portions to the light until shaded quite dark.

I am aware that these suggestions belong to the printer, somewhat. But as we cannot learn too much of each department of our art, my friends will pardon the digression, I trust.

A PHOTOGRAPHER'S EXPERIENCES IN THE LIBYAN DESERT.

BY PHILIPP REMLE.

About five miles west of Gæs Dachel there was to be found the ruins of an Egyptian temple, the stones of which, so far as they were apparent, were covered with hieroglyphics in a well preserved condition. The heavy sandstone blocks of the roof had been thrown down, presumably by an earthquake, but the walls and inner spaces seemed to be passably perfect, so far as one could judge in their buried condition. Acting on M. Rohlf's instruction, I caused this temple to be photographed between the 19th and 25th February. In this way I was enabled to execute some perfect photographs, and the reproductions of the hieroglyphics proved of especial interest to those interested in the history of Egypt.

On the 18th March we took our departure from Gæs and proceeded to the Oasis Chargheh, the journey occupying five days over a most miserable bit of desert, and we were heartily rejoiced by Dr. Schweinfurth, who had occupied Chargheh. The celebrated temple at that place took up all my time on the following day, and I had little to spare, for our stay was limited to a couple of days. The hieroglyphics covering the whole of the walls had to be taken in portions, and a large number of plates, therefore, was necessary for the purpose. My tent, fortunately, I was able to set up in the shade, otherwise I should have had a great deal to worry me. On the following evening my task was finished, and I had secured thirty negatives. I was also fortunate in obtaining a very fine landscape picture of the oasis in the vicinity. As regards reproducing hieroglyphics in the camera, I should mention that these, in order to come out plainly in the photograph, here we were heartily rejoiced by Dr. Schweinfurth, who had occupied Chargheh. The celebrated temple at that place took up all my time on the following day, and I had little to spare, for our stay was limited to a couple of days. The hieroglyphics covering the whole of the walls had to be taken in portions, and a large number of plates, therefore, was necessary for the purpose. My tent, fortunately, I was able to set up in the shade, otherwise I should have had a great deal to worry me. On the following evening my task was finished, and I had secured thirty negatives. I was also fortunate in obtaining a very fine landscape picture of the oasis in the vicinity. As regards reproducing hieroglyphics in the camera, I should mention that these, in order to come out plainly in the photograph, here we were heartily rejoiced by Dr. Schweinfurth, who had occupied Chargheh. The celebrated temple at that place took up all my time on the following day, and I had little to spare, for our stay was limited to a couple of days. The hieroglyphics covering the whole of the walls had to be taken in portions, and a large number of plates, therefore, was necessary for the purpose. My tent, fortunately, I was able to set up in the shade, otherwise I should have had a great deal to worry me. On the following evening my task was finished, and I had secured thirty negatives. I was also fortunate in obtaining a very fine landscape picture of the oasis in the vicinity. As regards reproducing hieroglyphics in the camera, I should mention that these, in order to come out plainly in the photograph, here we were heartily rejoiced by Dr. Schweinfurth, who had occupied Chargheh. The celebrated temple at that place took up all my time on the following day, and I had little to spare, for our stay was limited to a couple of days. The hieroglyphics covering the whole of the walls had to be taken in portions, and a large number of plates, therefore, was necessary for the purpose. My tent, fortunately, I was able to set up in the shade, otherwise I should have had a great deal to worry me. On the following evening my task was finished, and I had secured thirty negatives.

Our last desert journey from Chargheh to Esneh on the Nile, where we arrived on the 31st March, put our patience and endurance to a hard test. The hot Charmin wind had already commenced, and had a most relaxing effect upon us, especially on the first day. The thermometer showed an atmospheric temperature of 84° Reaumm. Unfortunately, too, some of our comforts had been exhausted, and among others our stock of wine. Our camel was almost broken down, and it was only with the greatest difficulty that they pursued their laborious course.

On the 8th March we first became aware of the vicinity of the Nile from an appearance of smoke in the horizon in an easterly direction. The smoke proved to come from a sugar factory, and it was with the loudest cries of joy that we greeted this first trace of civilization. Every feeling of fatigue vanished in a moment, and all of us pressed eagerly forwards. But our goal was still a long way off, and it was not until the next evening that we arrived in sweet Esneh.

* Continued from page 122.
The well-known temple of Eme Android is almost wholly buried, and is only the forecourt that is exposed. By reason of the very weak illumination of the place I only secured a serviceable photograph after much trouble. I gave an exposure of 15 minutes, and the high temperature was fatal to many of my plates.

In Thebes, also, where we rested for a day on our return journey to Cairo, I was fortunate in securing some interesting pictures of relics of ancient Egyptian monuments. The great heat had, however, an injurious effect upon the photographic manipulations, and it was only after much trouble that I finally secured some good negatives. At Thebes my photographic labours ended.

The winter of 1875-6 in the Libyan Desert, as also in other parts of Egypt, was extraordinarily cold. Even in March, when the temperature is generally of tropical nature, we had very few days of very hot weather, and it is to this circumstance that I attribute, in great measure, the success that attended my efforts.

In very high temperatures the collodion was generally the chief source of failure. The Beyrich instantaneous collodion, which I took with me, is rich in alcohol and water, and while it worked well under normal conditions, it did not dry uniformly upon the plate, when the weather was hot. The upper and thinner side of the plate became too dry before the lower and thicker margin had done draining. This, of course, gave rise to many defects, and every plate exhibited the well-known blue margin. By adding an appreciable quantity of ether to the collodion, the latter showed a good deal of improvement. The film upon the plate then set more quickly and uniformly.

In this way a thinner and less sensitive film was produced, but this was a matter of minor importance. According to my experience, therefore, I should recommend the employment, in a dry, tropical climate, of a collodion containing a minimum of water, and of a quick drying ether—full nature.

In the very clear, transparent atmosphere of the Libyan Deserts, the contrasts of sunshine and shadow were much more considerable than they are with us in Germany. This glaring illumination of the scene is to be found in all my pictures; it is not hardness, but it is remarked, but a true reproduction of nature. A desert landscape appears to the eye of the observer exactly in the same way. As I had no photograph with me, unfortunately, I was unable to test the intensity of the light from time to time; but it is certain that the shadow I was able to produce, if I had occasion to print some negatives at Dachel. As a rule I gave the same exposure as I should have done in Germany in summer time. The difference in temperature during the day and night had, however, a material effect, as may be readily understood when it is mentioned that the thermometer at sunrise was often 35° Reumurr, while at 2 p.m. it marked +18° R. in the shade. That cold chemicals work slowly is well known, and therefore I had to regulate the exposure not only according to the nature of the object and the way it was illuminated, but also according to the temperature at the time being. If the photographic tent stood in the sun, as was usually the case, the temperature inside was, on an average, 10° to 12° R. higher than in the open air.

Very annoying in my photographic work were the masses of flies that swarmed everywhere from the beginning of February, and I was attempting portraitures. My brown native models were never very clean; they all possessed a shiny and greasy appearance, and evidently had a great abhorrence to washing themselves. My models attracted the flies in numbers, those settling upon their faces, and especially about their eyes, nose, and mouth. Not only, therefore, were all sorts of grimeux made, but the people wore rarely quiet during the sitting, from the insects teasing them so. I used, therefore, to begin work as soon as possible in the morning, before the flies began to be worrisome.

The few words necessary to warn my sitters to be steady were easily learnt, and I found both men and women very docile and attentive to my instructions, keeping the eyes in the proper direction and the head steadily to the rest. Generally, however, I employed one Sheikh Mohammed Daub as interpreter, for he spoke French with tolerable fluency. When the flies did not cease very much, the sitter sat quite still, and it was only the Barber of Dachel, who was so severely enjoined to be still that he became terribly frightened over the whole business, and shook in time making. Running, or if the flies were very numerous, the plates had to be carefully protected in drying, for, obviously, insects walking over the film during desiccation inevitably destroy the picture.

The water at hand for use, which I obtained from the different wells and springs, was for the most part very impure, and it was only the spring at Farafrah that yielded almost pure water. The water from the Dachel Oasis contained much iron and salt. All the springs at Dachel were warm ones, the temperature of the water varying from 30° to 36° R.; and, on standing, flocculent iron matter settled down. The iron developer prepared with this water acted all right when first poured over the plate, but as soon as the image began to appear, a white cheese-like precipitate was formed, which partially adhered to the film, and could only be removed by very energetic washing. Sometimes this phenomenon was so marked that it injured the pictures. In such cases there was nothing left but to purify the water first of all with nitrate of silver. The water was mixed with a little nitrate of silver solution, sunned for a short time, and then filtered, after which it could be employed for the preparation of the developer. The operation was a very elaborate and tedious one, but it was the only way to get good results.

In the Charch Oasis I found most of the springs contained salt, although, singularly enough, there was in the neighbourhood of the temple a spring of very fine pure water.

The Nile water, renowned throughout the whole of Egypt for its purity—or, as the inhabitants term it, its sweetness—was after filtration found to be very suitable for the preparation of solutions. It was necessary, however, to draw the water direct from the stream itself, for that taken from canals fed by the Nile was, on the contrary, very dirty, and often contained an appreciable amount of salt in solution.

[The publication of this last portion of M. Remond's interesting diary has been delayed for some reason unknown to us, and we have been unable, therefore, to supply our readers with it before. They will be glad to hear that the Viceroy of Egypt has just presented M. Remond with the order of the Medjije, in recognition of his valuable services.—Ed. P.N.]

"TOUGHENED GLASS."—Lieutenant-General Sir Henry James writes to us as follows:—"Under this head you refer to a process by which glass is made in such a manner that it entirely ceases to bebrittle. But I think it is to the account of, apparently, a similar discovery in the time of Tiberius by Phyn, Dion Cassius, and Suetonius:—"In the reign of Tiberius, it is said, a combination was devised which produced a flexile glass; but the machinery of the artist was totally destroyed, we are told, in order to prevent the value of copper, silver, and gold from becoming depreciated."—Phyn, B. xxxvi., chap. 66. According to one account, Tiberius ordered the artist to be put to death. I hope M. Francois de la Bastie will reap the reward which the Roman artist ought to have received, instead of death."—Times.
SHORTENING EXPOSURES.

A COMMUNICATION from Mr. Werge, which we print on another page, gives details of some interesting experiments suggested by our recent article on obtaining increased sensitiveness in the wet collodion process. Before referring to the results obtained, we may remark that we always regard with great interest, and attach considerable weight to, the experiments and results of photographers of experience and eminence—Mr. Werge, one of the early portraitists, who has passed through the entire curriculum of photography, from the Daguerreotype downwards; one who, whilst steadily working in the recognized practical paths as a professional photographer, has always had a keen love of exploring the diverse side-paths as an experimentalist, being familiar, practically, probably, with every process and modification which has been suggested in the art, and who now, in devoting some time to photography, brings to bear the habits and experience of a professional photographer and the zest of an amateur. We make these preliminary remarks because the calibre of the experimentalist materially qualifies the value of the experiment, and we regard such work from such men with especial favor.

Mr. Werge sends us examples and details of experiences in two of the directions to which we referred in our recent article: the use of diffused light as an accelerant, and the use of nitrate of uranium in the nitrate bath for the same purpose. We will take the latter first. From the experiences of Captain Abney and Colonel Stuart Wortley, and our knowledge of the behavior of the uranium salt under other circumstances, we were led to hope that a valuable accelerating agent was available for photographers, and to urge its further trial. In Mr. Werge's hands the result is miserably disappointing, nor is the result deduced from one hasty series of experiments. The attempt to utilize nitrate of uranium in this way is not new with Mr. Werge. He has before worked in the same direction, always with the same result. The rejection of the suggestion induced him once more to repeat the experiments, and he sends us details and examples of the results. Nothing could be fairer than the mode of conducting the experiments; nothing, apparently, more conclusive than the results. A plate was coated with a collodion of known sensitive character, and, after coating, divided in the middle: one half being then sensitized in ordinary silver bath, then, and the other half in a similar silver bath to which nitrate of uranium was added in the proportion of ten grains to each ounce. They were then exposed simultaneously under the same conditions, and developed in similar manner. The half excited in the ordinary silver bath yields a good, well-exposed picture; that excited in the uranium-treated bath is hopelessly under-done, certainly not half enough, probably not one-fourth, in effect, as much exposed as the other half. The experiment was repeated, substituting a new unsensitized silver bath for comparison with the new one containing the uranium salt. The discrepancy in exposure does not appear to be quite so great: the bath with uranium yields a poor, under-done negative, whilst the new bath without addition yields a fine, well-exposed picture. In a third experiment the old bath, in good condition, was tested against a portion of the solution with nitrate of uranium added. The contrast here is as striking in the first experiment. In this case the discrepancy in exposure does not appear to be quite so great: the bath with uranium yields a poor, under-done negative, whilst the portion of it which has been treated with uranium is a miserable failure, under-done beyond estimating.

Now, here is a perplexing paradox! Two gentlemen so experienced and able, both as practical photographers and experimentalists, as Captain Abney and Colonel Wortley, find the addition of nitrate of uranium to the silver bath a definitely accelerating agent. Mr. Werge, as non-experienced, finds it not only not an accelerator, but an unmistakable and serious retarder. That each of the gentlemen named has obtained the results described there cannot be a question; and as no result can arise without a cause, there must be, in some part of the operations, a serious variation in the conditions. What it may be we are not at this moment in a position to state; but we may refer to an analogous case. The addition of nitric acid to the silver bath was for many years regarded as having a seriously retarding effect; and so it doubtless had under the conditions in which it was employed: that was, with a simply iodized collodion. With the free use of bromides in the collodion, nitric acid is not only not retarding, but, under some circumstances, possesses actually an accelerating effect. It has been suggested, then, to note in what points the conditions of working in the case of Colonel Wortley and Captain Abney vary from those of Mr. Werge, in order to account for the discrepant results recorded. That some variation exists we assume as certain; and we are only plentifully declaring the thing as it is in insisting upon it. Nothing could, perhaps, better justify Colonel Wortley and his committees than the results to which we have been calling attention. Half a dozen capable gentlemen, testing, first separately and then together, would more readily trace the causes of such discrepant results than half a hundred working independently and without collaboration.

The definite confirmation which Mr. Werge is able to adduce, and the advantage of pre-lighting in a satisfactory as the uranium results are perplexing. The use of diffused light to supplement an enforced curtailment of the exposure proper, whether from movement of the sitter or other cause, seems to possess advantages over pre-lighting, on the ground that it is more often required to compensate for such curtailment, than as an addition in case of premeditated curtailment; otherwise we think that on theoretical grounds pre-lighting is preferable to after-lighting. But this is a point which might be definitely determined by a committee of capable men, if such could be induced to undertake an examination of all the methods proposed of late years for reducing exposure. Failing this, the special effort of individuals in testing methods and recording results, in manner similar to Mr. Werge, will form most important contributions to a final settlement of many questions of vital interest in the progress of the art.

ASPHALTE AND BITUMEN IN PHOTOGRAPHS.

The use of bitumens of Jutland in producing photographic prints has almost passed out of notice amongst photographers. As, however, the question has more than once recently been raised by correspondents as to whether the process had not sufficient claims for more general practice, it may interest some of our readers to be reminded of the
treacherous character of bitumen as a pigment. The
Atheneum says:—

"An artist of distinction expresses his surprise at learning
the other day from his colourman that the old practice
of using that extremely fallacious pigment, asphaltum, is not
only not discontinued by painters, but is as common as ever.
We are compelled to endorse the remarks of our informant
on this subject, that these collections of paintings are well aware that irreparable and
constantly increasing mischief has attended the employ-
ment of asphaltum. A large proportion of Wilkie's later
productions have been ruined by abuse of the facilities
which attend the use of asphaltum. The material, unlike
most other pigments, seems never at rest, for a slight
increase of pigment renders it opaque and unadap-
table to useful change; hence it has been the occasion of
the most curious deception under the guise of art,
and this occurs again and again, separating the
material from its neighbours, to the ruin of both.
Decrease
of temperature, on the other hand, causes it to shrink,
and ultimately it appears to shrivel to a condition approaching
dryness, and it is then apt to part from the canvas on
which it has been placed. The results are obvious in such
pictures as Hilton's 'Sir Calpe rescuing Serena,' one of
the artist's best works, formerly shown in the National
Gallery; and many people may remember that one of
Serena's eyes slipped over the cheek below it. The picture
had to be turned upside down till the wandering eye
slipped back again. One of Newton's pictures in the col-
lection of the Duke of Devonshire is in a disastrous state
owing to this cause; it is cracked all over. Nor does the
increase of pigment change in its original colour: it becomes
rusty as it deteriorates in other respects. Several of
Reynold's sitters are said to have contracted with him
that only permanent pigments should be used in their
portraits. We suggest that picture-buyers should imitate
Reynold's employers in this matter, and covenant that
their purchases shall be innocent of the bad material,
otherwise their investments may, in a few years, be
valueless."

UTILIZATION OF RESIDUES.

BY PHOTO-CHEMISTS.

In the following remarks on the above subject, so im-
portant to photographers, we wish, at the outset, to depre-
cate all criticism from a scientific standpoint.

To those who possess even the moderate amount of
chemical knowledge, these observations will be useless.
We are not going to write anything that is not already well
known, but our object is to explain a few chemical facts in as simple a manner as possible; to show their prac-
tical importance and value to that numerous class of hard-
working, practical photographers whose time is so absorbed
by their every-day work that they have none to spare for the
acquisition of chemical knowledge; and if they find,
as we trust they will, that a little careful attention to our
details will effect for them a considerable pecuniary saving,
our aim will have been fully accomplished.

Without further preface, we commence by pointing out
that the order of silver waste in photography is as follows:

1st. The development of the negative.
2nd. Fixing it by dissolving out the free iodide of
silver.
3rd. Washing the prints.
And, lastly, fixing them.

It may facilitate our explanation if we commence with the
simplest case of all, and deal first with the chloride of
silver obtained from the process of print washing.

Now, the first and most important point we wish to
explain to our readers is one of the fundamental laws of
chemistry, viz., that all simple bodies—or, as they are
called, elements—have a remarkable peculiarity, which is
that they unite to form compounds in certain unalterable
and fixed proportions. It is unnecessary to explain this
theoretically, but we will give a practical illustration of
it in the case of the metal silver of which we are now
treating. For the sake of brevity we must ask that our
figures be taken for granted.

Silver, then, is said chemically to have a weight or
combining number of 108; chlorine of 353; sulphur, 16;
iron 28. Now we can show our meaning so as to be easily
understood. Let us take the case of the process of washing
a print. The milky water is poured into a bottle and
some salt is added, and the result is that a white curdy
substance falls to the bottom. Why does this occur? In
this way:—The washing water contains free nitrate of
silver; the salt is composed of chloride of sodium. Now,
when these two substances are mixed, the result is no
longer nitrate of silver and chloride of sodium, but a change
takes place, and we find it to be nitrate of soda and
chloride of silver; which latter, being insoluble, falls to
the bottom.

Now for the lesson we wish to impress. This chloride
of silver has a fixed constitution. It is always the same;
no matter whether too much or too little salt has been
added, no matter whether it be summer or winter, whether
the water be dirty or clean, hot or cold, the resulting
chloride is the same, and consists of 108 parts of pure silver
and 353 parts of chloride; in round numbers three-
fourths of its weight will be pure silver, and the photo-
ographer who deals separately with his print-washing should
get approximately this value. If the return do not amount to at least two-thirds, either he has not received
the value, or he has allowed it to become mixed with some
less valuable material. But by a very simple process any
photographer who chooses to take the slight trouble involved
in keeping his print washings separately from the other
waste need not be at the mercy of the refiner. If he will
simply keep a jar or cask containing a pound or two of
scrap zinc, and a tap at about one-fourth from its bottom,
and run off the clear water by this tap after it has rested
all night, he will at length find a considerable quantity of
black powder at the bottom, which will be absolute pure
silver, but somewhat contaminated by the zinc. Let this
at intervals be carefully collected and soaked for a few
hours in a mixture of oil of vitriol one part, water nine
parts; and the remainder can be either converted into
nitrate of silver, or fused into the metallic state, or sold at
its actual value. The total cost of recovering ten ounces
of silver by this method ought not to amount to more
than one shilling. One or two cautions may be advisable.

1st. In pouring off the clear water from the jar or
barrel, it will be well to test it occasionally by adding two
or three drops of solution of salt to a tumbler-full of
the water. If this should turn milky, the conversion of
the chloride into metal is not complete, and the vessel
should be shaken, or its contents stirred, and again left at
rest for a day or two.

2nd. Under no circumstances should any fixing agent,
either cyanide or hypo, be allowed to mix with this or any
other residues, but they should be kept and treated
separately, as these agents dissolve the chloride freely, and
are not to be separated in so advantageous a manner.
This process is also the best for recovering the metal
from an old bath, and with ordinary care the actual loss
is almost inappreciable, while the resulting metal is
practically absolutely pure.

In our next we shall treat of the developing and fixing
wastes.

A CELESTIAL STUDIO.

BY D. K. GRIFFITH.
Shanghai.

It must not be surmised, from the title of these notes,
that they will embody any heavenly vision, or conjure up
for the amusement of the reader a fairy dream-land.
With this short prelude to what is matter of fact, I will
introduce you to a China-man’s studio in the “Far East.” There is a staircase to ascend, and you are at once in the reception rooms, adorned by a few dilapidated cane chairs, a circular Nippono table, a glass case containing a small assortment of very old portrait cases and frames of the cheapest kind; a mirror of common glass is suspended over the dirty mantelshelf, and reflects your visit in the most unprepossessing style of its kind. China-men and imbecile looking foreigners garnish the walls, and hang published libels of the art appealing to public justice against the growing depravity of photography, and seeming to wonder how long their spirit of patience is to be tried. But the visitor’s mind is utterly lost in astonishment while contemplating the heterogeneous display of coloured wonders. Miseraably vague would my efforts be to describe their amazing effect upon the artists’ visitor, nor shall I attempt it, so please to draw upon the fund of your own imagination. Nor is English literature overlooked, as we find a London Directory for the year 1840, which the enterprising proprietor has recently purchased at auction, and after a hard contest succeeded in securing for tis. 6 or about £2), which, considering its age, is a cheap copy.

So much greed and love of a cheap style is ingrained in the China-man’s nature, that it is not possible for him to lavish or even expend the necessary outlay in the fitting out of his premises. A China-man, when buying, must buy cheap, or at least something under the market prices, to feel satisfied with his purchase. Saving a few cents is his object of greater importance than getting a really suitable and becoming in the exterior arrangement of his studio, the accessories, and apparatus, a too plainly perceptible cheap style pervades, and, in consequence, their studios are but little encouraged by resident foreigners, their only patrons being sailors from foreign ships in harbour, or occasionally a foreign merchant’s clerk sitting for a “sppos.”

Indeed, so exclusive is their business with sailors, that the China-man will ask the question, “What ship you belong?” —if you “belong” as captain or engineer? —or “belong” chief sailor man?”

Many of them do a very good business, and, with the natural characteristics of China-men, plod on with praise-worthy perseverance, imitating their more able and better-supplied foreign brothers in every little novelty that may appeal to the time; and often those efforts are very grotesque.

The native artist has little support from his countrymen, and from this cause none are to be found away from foreign settlements. Some few enterprising Cantonese have tried to push business in a few of the large towns of the interior, but were obliged to withdraw, from the hostility of the natives, who display their repugnance of the art by various petty annoyances upon all occasions, sometimes resulting in serious consequences and danger of life. In my own case I have had my chair torn to pieces on the road, my coolies beaten, and my camera broken; but, owing to the wholesome dread of a foreigner entertained by the natives, I happily escaped with only a display of stone-throwing; in the case of a China-man he would have fared worse. The whole series of graphic manipulations is due to a strange belief, which it is impossible to eradicate, that the photographic image is the soul of the original, the withdrawal of which from the body very naturally producing death. This tragiend may not take place for a mouth or more, but I have heard two years given as the longest time the photographed vic- sim can exist. Some few are to be found who avail themselves of the art, and indulge in a portrait of themselves and their families. In this case, great are the preparations bar the sitting. Their number one (best) clothes are dis- patched by a coolie; they are put on in the studio with such care and more talk; the victim seats himself, spread-

Tails vary in value, the average in Shanghai being six shillings.

A term applied to all on sea of petty larceny or swindling.

The photographic news. May 28, 1875.

*If the sitter and the artist are natives of different provinces, the conversation is conducted through the medium of an interpreter; or if both are familiar with “Pidgen English,” it is carried on in that peculiar idiom. For illustration and convenience we will conduct it in the latter way.

During the considerable time occupied in the sitter’s preparation and toilet operations, the artist has been channelling himself, and pondering possible profit, comfortably reposing on a Singapore reclining chair, with his pipe and fan. The China-boy approaches, when the learned professor of the black art extends himself at greater length, and comes out with the expressive words “What thing?” The boy explains that the sitter is ready for him, when he deigns to take the purely mechanical discovery, with cat-like steps he enters and confronts his visitor. Both bend low in the characteristic salaam, meeting their hands together as required by their etiquette. A short altercation then begins as to which of them is to reseat himself first. At length their politeness decides that both are to be seated at the same time, cups of tea are brought, and each takes the same number of sips. Their introduction being gone through, business commences by the artist putting the quaint question:

“How fashion you wante that picture? Wanté like like, or number one handsome?”

The unintimated in “Pidgen English” is to understand that he desires to know if the sitter requires a nice picture, got up regardless of expense, or the more understanding, of himself on his own terms, with a choice of his own choice. The gentleman in this case, we will suppose, desiring the latter, the artist rises, and prepares a glass. The interval is usually filled up by questions of so personal a nature as to be most offensive to foreign ears, but with them perfectly decorous, and in accordance with the rites.

The portrait taken, the “artist” returns with the satisfactory announcement that it is “number one,” and “too much like.” In the language of the place the sitter asks him to “pay my look see.” But firmly, though politely, the “artist” declines by the admonishing phrase: “My no can suppose you spolre him.”

This being considered conclusive, the delicate question is asked: “How much cost twelve picture?”

Artist. —“Fire döllor.””

Victim. —“My think five dollar belong too much.””

Artist. —“How fashion belong too much?” You pay my all the same other piece man. My no wanté squeeze you one cash. I suppose my squeeze you, my must lose face, and every man savey my do pidgen that fashion. No, my talké truse; five dollar belong custom.”

All being eventually settled agreeable to their mutual
satisfaction, the sitter again changes his clothes, and passing by printing-frames and sundry other photographic paraphernalia, with a parting salaam he again takes the street, and entering his sedan chair goes on his way rejoicing.

DR. VOGEL AND THE ENGLISH ECLIPSE EXPEDITION.*

Our prospects are not brilliant. Since we have been in the Indian Ocean the weather has never ceased to be clear, and except upon the few days he has had no appearance of blue, but veiled, so that the photographic action of the direct sun is unfavourable, though I had, owing to the height of the sun, anticipated the reverse would be the case. Still more gloomy are affairs connected with the instruments. My invitation came from England, and I was informed that instruments would be placed at my disposal. Judge of my surprise, therefore, when, on unpacking, I found nothing but heavy, unmerely playthings. In the first place, I have no telescope, but only an ordinary six-inch lens, endowed with an awful focal difference, and without a camera. This lens, which is upon a stand, is to throw an image of the sun by means of a mirror which receives the sun’s rays. The lens, however, is in motion, and the mirror ought, therefore, to be able to follow its path, if the image is to remain reflected upon one spot, which is a matter of course in photography. The mirror ought, therefore, to be provided with a clockwork movement; but there is none fitted to it. My assistant is to turn the instrument, it appears, and is to practise so as to do it accurately.

Really one hardly knows what to think when one looks at playthings that have been made. The two members of the expedition from England have, of course, provided themselves better; they have telescopes with clockwork and all kinds of perfections such as are necessary to the successful accomplishment of the difficult task we have in hand. I compare myself to the stork, in Esop’s fables, that is invited to dinner by the fox, and finds itself unable to eat the broth set before him, in a flat dish, with his long neck, while the fox sits away at the service but undivided pleasure. So it may happen that my English friends, who have learnt from my writings how to photograph a spectrum, will be successful, while I may prove unfortunate. Unluckily, I shall be unable, like the stork, to have my revenge.

My only hope is that the Indian observers may have a chance to be unprovided, or that I may be able to borrow one from the German Transit of Venus Expedition, and for this reason I have telegraphed to Singapore, where the party is now occupied in making longitudinal observations. The stupidity of the whole business is that the Astronomer Royal in London possesses a suitable telescope, but he would not allow the same to be sent out, as the expedition is undertaken without his sanction.

I am already beginning to feel the effects of the tropical climate, the fearful heat, and the vapoury atmosphere. The sleep at night is quite a tour de main. Unfortunately, too, there are a great many ladies on board, and for this reason we are much inconvenienced. During my first voyage there was not a single fair passenger, and we slept on deck, on the table of the saloon, or anywhere else we chose.

To-morrow we arrive at Ceylon. For the first time I shall see tropical vegetation. We shall remain three weeks in the Nicobar Islands, and then proceed to Calcutta. Captain Waterhouse, of Calcutta, will be one of the observers. It will be a pleasure to meet him, as I know him personally, and he speaks German. Another gentleman, a member of the Berlin Society, M. Schirmer, shall also have the pleasure of meeting. I hope to meet M. Eschke returning from the Transit of Venus Expedi-

* Photographiche Mittheilungen.

tion, and if so, I shall take him with me as my assistant, for I have already permission to do so.

I think of remaining in India to the end of May, and returning to Europe in June.

I hope to bring some interesting pictures from Aden and India, which I shall purchase rather than take. In Aden very fine photographs 8 by 10 inches, mounted, can be purchased for a rupee; and at Suez the same may be had for a mark. The cost of unmounted prints is very much in vogue, and I think the custom would become popular in Germany. The photographer saves the expensive cardboard, which, if the print decays, is always lost; while the purchaser can roll up and transport his property more easily, and have it mounted as he likes. When it is borne in mind that the cardboard often costs as much as the picture, the matter becomes one worthy of consideration. The tearing of unmounted prints is easily avoided by the seller; pictures of the same kind are placed in a heap, and covered with a thick glass plate. In this way every purchaser could see them without touching, and we know how many pictures are spoilt by dirty fingers.

On board the Baroda, before Ceylon, March 14th, 1875.

Correspondence.

ANOTHER PHOTO-RELIEF PROCESS.

Sir,—In your issue of the 21st I see a patent has been taken out in the land of Stars and Stripes for a new photo-relief process. It may not now be out of place to give the outline of another and more valuable one worked out, I believe, by myself; it is as follows:—A transparency is coated with chromatized gelatine, and exposed to the light, the result being a relief in gelatine, the lights of which are represented by elevations, and the shadows by depressions. This relief is subsequently hardened, so as to stand a fair amount of use in printing. How the film is so hardened it is not my intention to particularly describe at present; sufficient is it to say metallic substances are deposited in the body of the gelatine, and means taken to prevent the swelling of the gelatine printing surface by materials repellant of water.

Those of your readers who may be acquainted with the Woodbury method will see many advantages in the above outline of a modification thereof. I merely write this to prevent anyone placing restrictions on the profession by patenting that which is now sufficiently indicated to prevent the possibility of it, and which ultimately shall, so far as I am concerned, be freely placed in the hands of those who may be inclined to use it. — Yours truly,

W. E. Barno.

Halifax, May 22nd.

SUPPLEMENTARY LIGHTING, AND URANIUM IN THE BATH.

DEAR SIR,—The remarks in your leader of last week, on "Uranium and other aids to increased sensitiveness in the work," induce me in hard words to give evidence of the advantages of supplementary lighting. As you will see marked on the print, the simultaneous exposure with twin lenses has three seconds with a supplementary exposure of three seconds more on one of the pictures. You will easily distinguish the one from the other, and observe the immense gain in detail, density, and delicacy. In short, the one is a useless negative, and the other is a usable one; always was, and am yet, a believer in the desirability of giving the proper amount of exposure through the lens to obtain the best results, and was consequently for a long time a sceptic in the advantages to be derived from either preliminary or subsequent exposure. Mr. Foxlee took great pains to make me a convert to supplementary exposure, and I thought I was converted, but as all my
Experiments in the winter months gave me more fog than increase of detail, I became a backslider, and relapsed into my old ways.

Short exposures are of great importance to me, for I make the difficulties of grouping and posing children my recreation. I employ the quickest lenses I can buy, and endeavour to have and keep my collodion, bath, and developer in the very best conditions; but notwithstanding all these advantages I find that simple exposure and developable conditions is not sufficient. It was only the other day I required five seconds to obtain a good picture, but my sitter was too restless to give me more than two seconds sitting. By after-exposure I made up the deficiency, and obtained a usable negative thereby. This induced me to make further experiments, and I am now thoroughly convinced of the efficacy of supplementary exposure, and I consider that subsequent lighting by any of the previously described methods is the best, perhaps the simplest, and one that involves neither outlay for new apparatus, nor loss of time in the one that I employ, which is simply to hold a piece of white blotting paper, or filter paper, before the lens, close to the hood, immediately after exposing on the sitter.

I do not think it probable that either the optician or chemist can reduce the ratio of rapidity to fifty per cent, or two-fifths, which light alone really does; and I would recommend all those who are anxious or find it necessary to work rapidly, to try after-exposure by the simple, ready, and inexpensive means I have described. I recommend subsequent exposure for the following reasons.

First, obtain the proper amount of exposure through the lens if possible.

Secondly, if you do not obtain the right exposure from the sitter, resort to subsequent exposure to supply the deficiency.

Thus, if five seconds are required to obtain a good result, and only three are given by the sitter, take diffused light for the other two, and so on, regulating the time of the subsequent exposure according to the time obtained from the sitter. I have generally found that the best results were obtained by giving about two-fifths of subsequent exposure, though as much as one hundred per cent. may be given with safety in cases of very short exposures on the sitter.

Nitrates of uranium in the nitrate of silver bath, as recommended by Col. Stuart Wortley, is not an accelerator. I have made experiments with nitrates of uranium in various solutions and emulsions, and have always found it a great deal slower than the silver salts in all forms, and a retardant. As in the cases of the addition of nitrate of uranium to the silver printing bath and collodion, so it is in the silver sensitising bath for negatives, the very reverse of an accelerator. Every grain of nitrate of uranium added to the exciting bath of nitrate of silver makes it more and more insensitive. It is years since I satisfied my own mind on this point, but I have recently made careful and important experiments, and send you the results, that you may satisfy yourself and your readers on that subject.

The examples sent herewith are all numbered and described on their faces, but I will here give you a detailed account of the manner in which I made my experiments, and I think you will admit that it would scarcely be possible to make any experiment of a comparative character in a fairer or more convincing manner.

First, I coated a plate with a known sensitive collodion, cut the plate in two afterwards, and excited one half in a known sensitive silver bath. The other half was excited in a new nitrate of silver bath with ten grains per ounce of nitrate of uranium added. Both halves were simultaneously exposed to the same light.

Result of No. 1 experiment—The uranium half as many times under exposed.

Secondly, I treated a plate in the same manner, and excited one half in a new nitrate of silver bath, and excited the other half in a portion of the same silver bath with ten grains per ounce of nitrate of uranium added. Both halves were exposed and developed at once as before.

Result of experiment No. 2—The uranium half still very much under-exposed, though the difference is not so great as in experiment No. 1.

Thirdly, I took a portion of my regular working bath, which was in excellent condition, and added ten grains per ounce of nitrate of uranium to it. Coated a plate with the same collodion, cut the plate in two, excited one half in the silver bath, and the other half in the uranium-nitrate of silver bath. Exposed and developed simultaneously as before.

Result of experiment No. 3—Urano-nitrate half vastly under-exposed, and the fallacy of the uranium accelerating theory fully exposed. In all the exposures the time given was ten seconds in a north but somewhat variable light, but that does not damage the results of the experiments, for in all cases each pair was treated exactly the same, and the results are in all cases immensely against the addition of uranium to the nitrate of silver bath as an accelerator. I remain, dear sir, yours truly,

J. Wason.

MR. SAWYER'S DOUBLE TRANSFER PATENT.

Sir,—I have just read in your journal of April 30th the conclusion of Mr. Sawyer's paper, respecting his new double transfer medium, and I notice that he does not say that he coats his single transfer paper with plain gelatine previous to applying the lac solution, as Mr. Spiller says in his 'paper that he (Mr. Sawyer) does. I have used since last October, for double transfer, single transfer paper coated with a solution of lac in ammonia. I did not think of any one patenting such an article, or should have published it in your journal. I see Mr. Spiller gives Mr. Johnson the credit of introducing reversed negatives. He must be mistaken, for Mr. Johnson certainly never claimed it himself, and he would if he had brought it out. Your respectfully,

E. H. D.

Boston, U. S.

[Mr. Sawyer's patent is not for the use simply of paper prepared with lac dissolved in ammonia, which was used many years ago by Mr. Johnson, but for double transfer upon a flexible impermeable support with an elastic surface. The use of reversed negatives is very old.—Ed.]

A BATCH OF QUERIES.

Dear Sir,—Your advice on the following will oblige:—

1. Will "rice-flour paste" do for mounting C.D.'s? If not, why not? I have heard that it is the best article to use for pasting paper work. It is nearly transparent, and, I fancy, will not turn sour so soon as other pastes.

2. I have always found my worn-out gold bath work well if I put the prints in without washing them in the usual way; while if I washed them first the bath would not tone at all. The pictures do not look so bright as they do when previously washed. What is the cause?

3. When I use nitrate of baryta in the negative baths, I find all the negatives, after fixing, look as if they still retained a trace of iodide of silver. A decided blue tinge appears when they are viewed slanting; but when viewed straight through, they appear as usual. What is the reason? Can (and ought) it be remedied, and how? Is it hurtful to negative in any way?

4. Is the following "wrinkle" known to photographers? If not, then it originates with me. To the sensitising bath (of twenty ounces) add a tablespoonful of whitening, and, when going to use the bath, shake it well up, and pour whitening and all into the dish. In a few seconds the whitening settles to the bottom, leaving the solution clear as pure water. Pour it off, and return bath to bottle in the same manner as poured out. Bath is always neutral, never discoloured, never requires filtering. The whitening cleans it of all impurities. Add fresh whitening when you add fresh silver.

[1. Yes: as well as any paste.]
Proccedings at Societies.

WEST RIDING OF YORKSHIRE PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of this Society was held on Monday, the 3rd instant, at the rooms of Mr. J. W. Gouge, President, in the city of Bradford.

The minutes of the last meeting having been read and confirmed, Mr. G. Stolfferpe, Bradford, was elected a member.

There being no further business on the paper the question-box was opened; and the first question to hand—"How does the half-holiday affect the business of the photographers who now enjoy it?"—was laid before the meeting for discussion.

The Chairman remarked that as the Bradford photographers had tried the experiment, the meeting would doubtless be glad to hear the result of the trial.

Mr. F. R. F. O. stated that, so far from the practice deteriorating his business, he believed it to be a decided advantage. He himself invariably closed and went into the country, returning to his work the next day with, greater zeal, and he believed he had not lost any customers by it, as they all came on some other occasion.

Mr. Gunstone said they had found it to work satisfactorily, and were not aware of the slightest diminution of business.

He would be extremely sorry were the half-holiday discontinued.

Mr. Thompson also spoke in favour of the movement.

Mr. Wormald was of opinion that, if the holiday were granted, the operators thus benefited should make up the time on another occasion, though the average number of hours worked in a week should be taken into consideration. If a man was to be up work at four, he could not see the necessity for the holiday in such a case.

Mr. Broadhead fully recognised the necessity for the week-day half-holiday; and said that, although it was not a custom in Leeds, he had found it to his advantage to give each of his assistants a half-day weekly, though he did not close his places of business, but allowed each of the assistants the vacation on a different day. If, however, the Leeds photographers should arrange to close their respective places of business on one particular day, he would gladly coincide with the arrangement.

Mr. O'Gorman also spoke in favour of the movement, and said that an out-door operator did not require the holiday so urgently as the indoor workman. For the man spending the greater part of his time amongst the deleterious vapours of the dark room a little fresh air and recreation became a prime necessity. For his own part he should like to advocate closing for the whole day, as with most photographers comparatively little business was done except preparing for the afternoon's work, and a half-day was too short a time to go any distance. He should very much like to see the matter thoroughly discussed among the profession.

Mr. Wormald considered it was not necessary for a man to travel a great distance to enjoy a holiday or derive benefit from it. If a man had a garden and would dig in it an hour or two it would do him as much good as a long excursion.

The Chairman, on behalf of which he had been connected, said the system had proved highly successful. Patrons had often come in just at closing time, but when the matter was properly represented to them, they cheerfully acquiesced in the request to come another time.

Mr. Ratho entirely approved of the movement, quoting the saying, "All work and no play makes Jack a dull boy." If they wished a man to produce good work the holiday would have a decidedly beneficial effect, as there could be no doubt that if a man were overworkcd the quality of his work would necessarily deteriorate. If all photographers would combine, and unanimously decide to close their respective places of business on a given day, the matter would be easily managed; and when the public became aware of the custom they would accede to it.

Mr. Holgate suggested the advisability, as far as possible, of photographers avoiding having their holiday on the days when other trades had theirs, so as to afford the assistants on their holiday an opportunity of visiting the photographer's shops.

The Chairman suggested that as the meeting appeared to be unanimously in favour of the movement being set on foot, it might be advisable to appoint a committee for each town represented by the Society, such committee to consist of a principal and an operator, who should call upon the other members of the profession and solicit their concurrence.

The Secretary said the movement in Bradford had been carried out in a similar manner. A member of one of the leading firms in the town called upon two or three of the other photographers to ascertain their opinion on the matter. At the meeting of all being in favour, a committee formed themselves into a committee, and called on the various other members of the profession requesting their co-operation, and the scheme met with so much approval that there was not a single dissentient voice.

Seeing this question could not be definitely settled it was resolved, on the motion of Mr. Balmer, seconded by Mr. Ratho, that the discussion should be postponed, several of the members promising to see the others who were not present, and ascertain their opinion on the matter.

The next question from the box was—"Has any member tried bichromated glue for lining a bath?"

The Chairman said that, chrome alum not being readily obtainable, he had used ordinary alum, and found the dish perfectly waterproof, but the bath solution was much disorganised.

A Member said he had used a bath lined with wax dissolved in benzole, but had found it too brittle, as it left the dish in small flakes.

Mr. Balmer suggested that a little india-rubber dissolved in the bath would have a tendency to make it less brittle.

The Chairman had tried the last-mentioned method. He found the rubber solution did not spread evenly, but rose up in small lumps.

Mr. Wormald said the best composition he had been able to find for the purpose was shellac dissolved in methylated spirit. When dry it absolutely repelled the solution. His method of using it was to have dishes made of cedar, which, owing to its lightness, he preferred to any other wood. He warmed them, coated them well with solid paraffine until the wood had absorbed a considerable quantity, and then gave them two or three coats of shellac. He had followed that plan for some time, and found it very satisfactory.

Mr. Ratho inquired if Mr. Wormald had found the bath solution to have any effect upon the shellac. He thought the question remained in it must be a question of Mr. Balmer. Mr. Wormald had not found any deleterious effect arising from any such action. In his opinion the quantity was so small as to have no effect.

After some further desultory conversation, Mr. Bouzas asked if any member had had any experience in toning transparencies with platinum or iridium salts. He had experimented with them before and after fixing, each method giving very different results; but he had not been able to secure the fine brown tones seen in some of the commercial articles.

Mr. Ratho said the platinic chloride should be neutralised with carbonate of soda, as the presence of hydrochloric acid prevented the toning action.

No other subject being brought forward, it was decided, on the motion of Mr. Holgate, that the Society should hold its first out-door meeting, in Bolton Woods, on the 26th inst., and the meeting was adjourned.
Disputed Photographic Partnership: Whatey v. Monte—At the Bloomsbury County Court this case was heard before Mr. Judge Russell, on the 22nd inst., in which the plaintiff, described as a photographic business in High Street, Camden Town, sued the defendant, a photographer of Wood Green, to recover compensation for an alleged breach of contract, and for the value of some negatives and other articles detained by the defendant. Mr. Willis appeared for the plaintiff, Mr. Rylott for the defence. The plaintiff said in January, 1874, he was a tenant of the defendant’s, and owed him £88 arrears of rent, in consequence of which the defendant purchased various articles amounting to £21, and received from the plaintiff an IOU for £21, the balance due. The plaintiff further stated that with a view to set up in business for himself, the defendant offered that if he would bring his own connection, and devote his whole time to the business in High Street, he would take the plaintiff into partnership; and in consequence, on the 14th of January, 1875, he entered into this arrangement with the defendant. The defendant said under the name of Russell, he had, with the defendant’s consent, the names of Monte and Russell printed upon cards, and also had the receipts printed in their joint names. The plaintiff admitted, in cross-examination, that he never paid any of the local rates or taxes during the time he rented the premises from the defendant’s establishment. Miss Emily Taylor stated that she was employed by the defendant to receive customers, keep the books and cash, and her instructions were, after paying all trade expenses, to return to the plaintiff the balance of the receipts. Mr. Harris urged that as the plaintiff had failed to prove the existence of a partnership, there could be no case for compensation against the defendant. The defendant said that the plaintiff was formerly his tenant, but in consequence of his being in arrears of rent, offered to give the plaintiff’s goods together with the IOU, in satisfaction. Subsequently the plaintiff proposed to establish a number of portrait clubs, when it was agreed between both parties that the defendant should pay all the working expenses and divide the profits of the business. But the plaintiff’s speculation proved a failure, the arrangement could be terminated at once. The defendant said he was not aware of any cards or receipts being printed in their joint names till just before the plaintiff left, and that when he was dissatisfied with the defendant’s conduct he removed all the negatives and cleaning materials to his other establishment at Wood Green. The defendant further said his only object in entering into this arrangement with the plaintiff was that of rendering him some assistance, as the plaintiff was in need of assistance and out of work at the time. Miss Emily Taylor, being questioned, she had no idea of the existence of a partnership between the parties, and always looked to the defendant for her salary. Mr. Harris, having addressed the Court, the judge said he would reserve judgment for a week, and eventually gave judgment for defendant with costs.

Photography of the Electric Sparks—Mr. Leo Daft, photographer, of Troy, N.Y., a gentleman whose name seems familiar to us as at one time a photographer in this country, has sent the Scientific American several photo stereo scenes, recently made by electric discharges between the terminals of the static electrical machines. In some of the examples the picture shows the electrical flow divided into ten streams, which have the appearance of ten fine, white, zigzag wires, sharply defined, and arranged in the form of a elliptical framework. It is probable that the rays used in the terminals had something to do in giving the remarkable electric power to the sparks which these photo impressions indicate. Mr. Daft intends to continue his photo-electrical experiments, which are certainly very interesting.

A Photographer—Sergeant Verrall, of the East Sussex Constabulary, was charged before the Cockfield magistrates with assaulting Mr. Lombardi, photographer, at Brighton. Complainant, while returning home, was called into a house to assist in attending to a man who had been fallen down. The defendant was then in the house. On the opinion of several witnesses, he was the worse for liquor. Mr. Lombardi asked his number, which he refused, and an altercation followed, during which the alleged assault was committed. Verrall was fined 40s. and costs.

Diaphragm.—The position of the Waterhouse diaphragm between the front and back lenses of a portrait combination is determined by the fact that the front lens is seven-eighths of the total length of the said lenses, and the back lens is one-eighth of the total length of the said lenses; and so, whatever the focus of the lenses, in due relation. We do not know the lenses in your half-plate combination, but you must ascertain first, and then place the diaphragm so as to make the position of the objects more plain: suppose the front lens a focus of 10 inches, the back lens a focus of 15 inches, and the total separation 6 inches, the diaphragm must be placed 9 inches in front of the back lens, and 2 inches behind the front lens. This position gives the maximum of advantages. To secure extreme flatness of field you may place the stop nearer to the front lens.

H. W.—Your copying camera, with lens in the middle, and grooves for negative and dark slides at the ends, ought to have been provided with a means for uncovering the lens without opening the flap at the top. The simplest means is to place a hinged shutter behind the lens, which opens and shuts by means of a pinion at the side of the camera. The absence of this arrangement is doubtless an oversight in making. It will be easily added by a camera maker; or it would not be difficult to improvise if you were skilful in the use of tools.

H. Taylor.—An arrangement of curvatures such as you mention may be made to give pretty good effects of light and shade. Let the canopy overhead project at least six feet; the curtain on the shadowed side of the face about eight or ten feet; and that on the other side only a foot or two. Then, if you have some sliding arrangement which will permit you to adjust these so as to suit different sitters and different conditions of light, etc. We fear from your example and description that the lens is not a very good one; but the want of sharpness may arise from want of experience in focusing; or it may be from the ground glass and sensitive plate not being in exactly the same plane when in the camera. Do you get a sharp image on the ground glass? If you do not, and not in the negative, the fault may be remedied. But if you cannot get a sharp image on the ground glass, the fault is in the lens. Either C or D of the names you mention will be most likely to suit you. We shall at all times have pleasure in helping you.

K. E. C. B.—There is no international copyright law between England and America, and hence an American copyright is not protected in this country, nor an English copyright in America.

W. B.—You had better throw away your hypsophot, which is contaminated with iron. There is risk in using it. 2. On adding bicarbonate of Soda to a silver bath to neutralise it, carbonic acid is given off, and heaping with lime, an acid reaction is of course found to exist. After the solution has remained some time in an open vessel to allow the carbonic acid to escape, you will find the solution neutral. The simple test of sufficient of the carbonate being having been at all, there has been pressure, if a turbidity appears, it shows that all the free acid is neutralised, and that the soda salt is decomposing the nitrate of silver, and throwing down carbonate of silver. No more of the soda solution should be added after that.

An Amateur Reader.—In sensitising common paper with bichromate of potash you form a combination between the chromic salt and the size. This being by a considerable extent in the body of the paper, the picture of any opposite phenomena, the use of a mixture of gelatine or albumen with very short float on the chromatate solution affords the best hope of remedy; but we have never seen brilliant or rich prints obtained by the method you are trying.

Y. M. F.—We do not know of any objection to a one-grain solution of India-rubber as a preliminary coating in the wet process, except that it is somewhat more troublesome to deal with than albumen, the solvent being necessarily very volatile, and the process time-consuming, of course, as the white water experimental approached.

F. Hopkins.—There is not any general law so far as we are aware in relation to the show-rooms of photographers. A case like yours would be dealt with under the local laws of the place where the business is conducted. As our specimen.

L. Hill.—The address has been misprinted; but we will endeavour to find it and let you know.

Received.—"Ram Rhydes," by W. A. Chandler, Illustrated by Edwin Cocking.

Several Correspondents in our next.

To Correspondents.
PHOTOGRAPHY IN AND OUT OF THE STUDIO

THE RECENT GUNCOTTON EXPLOSION AT WOOLWICH.—THE ACTION OF HYDROGEN UPON NITRATE OF SILVER.—THE BREMEN PHOTOGRAPHIC SOCIETY.

The Recent Guncotton Explosion at Woolwich.—The disastrous accident with guncotton at Woolwich, last week, can scarcely be without interest to photographers, for, after its employment as a military and blasting agent, there is no greater application of the material than in photography, although the products used by photographers for the manufacture of their collodion are not precisely the same chemical compound as the very explosive material that engineers and miners deal with, still there is enough resemblance to cause them to be practically regarded as the same thing. It was only the other day that we recommended our readers to keep any large supplies of guncotton they might have in a moist state, adding twenty or thirty per cent. of water to it, for, if in damp condition pyroxetin is a comparatively harmless body. Not only will it refuse to explode under the same conditions as dry guncotton—that is to say, by means of a detonate fuse—but it is altogether uninflammable when a flame or red-hot iron is approached to it. According to the experience of chemists well versed in its properties, wet guncotton would be exploded only when a charge of material is in contact with it, and this is fired first of all. That no other way exists of detonating or exploding wet guncotton it is, perhaps, too much to say in the face of the explosion that has recently occurred; but, that photographers may not be alarmed in any way, we will detail the precise circumstances under which the charge of wet guncotton was actually exploded at Woolwich. Some experiments were being made at Shoeburyness with the object of testing the explosive properties of dry guncotton, and to carry these on a few shells filled with the explosive were required. When dry guncotton was put into shells and fired some years ago at Shoeburyness, the charge exploded, on the discharge of the gun, while yet the shell was inside the bore of the cannon, and the latter being badly injured, no further experiments were made. When, however, it was found that wet guncotton could be detonated under the conditions we have mentioned, such experiments were decided upon by shells filled with wet guncotton. It is, of course, the object of artillerymen to detonate a shell at the end of its flight into as many fragments as possible, and the violent manner in which guncotton detonates seemed to promise an effective way of doing so. The wet guncotton, it was found, did not explode on the discharge of the gun, so they determined to cram in as much cotton as the shell would hold, in order to shiver it into fragments. Wet guncotton has been considered to be such a harmless material that instead of being manipulated in a small shed far removed from human habitations, as is the case when gunpowder is handled, it has been worked in a factory where many scores of men and lads were engaged on other operations. Four men, who had been specially instructed to fill the shells employed a powerful hydraulic ram for pressing the material into the projectile, and in this way it was tightly filled. A space was required at the head of the shell to receive the charge of dry guncotton which was to start the detonation, and, to make room for this, a pointed metal plug was forced into the mass of cotton. At this moment the explosion occurred, the fragment of shell breaking into pieces lacerated two men so severely that they died soon afterwards, while a third was badly injured. The curious part of the business was this: although there was an explosion, only a small portion of charge was burnt, and the shell was broken up into very large fragments. Had there been a detonation, the whole mass of guncotton would have been consumed, and the shock been far more violent. Indeed, not only the factory, but buildings in the vicinity must have been levelled to the ground under such circumstances, and herein lies the cry. The solution of the matter would appear to be that heat was evolved by the hydraulic ram forced into the guncotton at a high pressure, so that a portion of the material around became dry, and the friction between the ram and the bottom of the iron shell (supposing the ram to have reached the bottom) set fire, and exploded so much of the cotton as would burn, and in this way the shell was burst in the mild form we have, seen. It was, upon one must admit, a very severe test for even the safest of explosions to bear, and really one can hardly be astonished that even wet guncotton should not become dangerous under such a trial. One cannot have to do with a dangerous material without running some sort of risk; but photographers, we repeat, need not be apprehensive in any way at the occurrence. There can be no doubt that to keep pyroxetin in a moist state is the best plan of insuring oneself against risk, and as photographers never have occasion to treat the material in any vigorous manner, similar to that we have described, there need be no fear of danger from its storage in this way. Under any circumstances, it is foolish to regard pyroxetin, or other similar compounds, in any other light than as dangerous explosives, and they should therefore always be treated with such. We are doubtless that the authorities of the Royal Arsenal will take measures to prevent the recurrence of such a lamentable affair.

The Action of Hydrogen Upon Nitrate of Silver.—It will be remembered that a short time ago we alluded to some experiments undertaken by Dr. Russell, whose results seemed to prove that pure hydrogen had a reducing action upon nitrate of silver. The experiments were made at Shoeburyness with the object of testing the explosive properties of dry guncotton, and to carry these on a few shells filled with the explosive were required. When dry guncotton was put into shells and fired some years ago at Shoeburyness, the charge exploded, on the discharge of the gun, while yet the shell was inside the bore of the cannon, and the latter being badly injured, no further experiments were made. When, however, it was found that wet guncotton could be detonated under the conditions we have mentioned, such experiments were decided upon by shells filled with wet guncotton. It is, of course, the object of artillerymen to detonate a shell at the end of its flight into as many fragments as possible, and the violent manner in which guncotton detonates seemed to promise an effective way of doing so. The wet guncotton, it was found, did not explode on the discharge of the gun, so they determined to cram in as much cotton as the shell would hold, in order to shiver it into fragments. Wet guncotton has been considered to be such a harmless material that instead of being manipulated in a small shed far removed from human habitations, as is the case when gunpowder is handled, it has been worked in a factory where many scores of men and lads were engaged on other operations. Four men, who had been specially instructed to fill the shells employed a powerful hydraulic ram for pressing the material into the projectile, and in this way it was tightly filled. A space was required at the head of the shell to receive the charge of dry guncotton which was to start the detonation, and, to make room for this, a pointed metal plug was forced into the mass of cotton. At this moment the explosion occurred, the fragment of shell breaking into pieces lacerated two men so severely that they died soon afterwards, while a third was badly injured. The curious part of the business was this: although there was an explosion, only a small portion of charge was burnt, and the shell was broken up into very large fragments. Had there been a detonation, the whole mass of guncotton would have been consumed, and the shock been far more violent. Indeed, not only the factory, but buildings in the vicinity must have been levelled to

THE BREMEN PHOTOGRAPHIC SOCIETY.—A photographic society has just been established at Bremen which already numbers thirty members. Hamburg, a sister seaport town in the north, has for a long time past had its society; but these two are the only second-rate towns of Germany which have such bodies. Berlin till very lately had two societies, but one of them, we believe, now extinct; at any rate, its organ, Licht, has for some time past failed to appear. Since Dr. Krone, the president of the Dresden Photographic Society and editor of Helios, went off to the South Pacific to observe the transit of Venus, we have had no photographic news from that nautical capital. The recent Vienna and Berlin have been the only two cities where photographers have met together. We trust that the formation of the Bremen Society is a good omen, and that other large cities in Germany will also follow suit in the revival or organization of photographic societies.

THE PRACTICAL PRINTER IN AMERICA.

ROLLING THE PRINTS.

The prints, after they are properly "spotted," are ready to be rolled, which should be done at the time when they
are slightly damp, as a better polish is then given to them. There are a number of presses in use which are generally good. A nickel plating is given to many presses, because it prevents their rusting. There are, of course, a number of different size presses for large and small prints. The common cartes and imperial prints should never be rolled on a table. The press should be thoroughly cleaned with a piece of cotton-flannel, and a little common alcohol. When not in use, always keep the presses covered. About once a week they should be thoroughly cleaned, and oiled with a drop or two of sweet oil. When the press is cleaned the prints are, one at a time, to be placed in between the rollers, either face up or face down, according to which roller is the polishier. They should be placed in with the left hand, while the right hand turns the crank. The pressure at the press should not be so heavy that the operator at it will experience any difficulty whatever in turning the crank with one hand, while the press is fed with the other. Do not stop turning the crank while a print is between the rollers, or it will be creased, and consequently ruined. Roll the print carefully, with a decided pressure, the lengthwise, and then twice sideways, and then roll the card only once. Then turn the crank, the pressure being on the print, and place the card on the other side of the press where it comes out; take hold of the card when it appears, and bend it so that the back will bend in slightly, and thus give the picture the look of being pressed forward. Bend in the back of the card, but a very little, however.

Mr. Bearn recommends the judicious use of Entrain's Oscillating Enameller, an instrument which gives a similar result, by somewhat similar means, to that produced by Weston's Burnisher. He says: "It is good for several reasons, among which are the following:— 1st. It decidedly improves the tone of the print. 2nd. It makes the general appearance of the print richer. 3rd. It gives transparency and bearing the whole print, especially in the shadows."

The prints, after they are rolled, are ready to receive the final treatment, which ends the processes through which they have to go before delivery.

Waxing of the Prints.

For the purpose of finding the best thing for waxing the prints, I have, at the expense of considerable time, experimented, and I have, I think, succeeded in finding what I was after; and although it is not new, yet I can recommend it to be the best, of more than a score of kinds of pastes that I have made, mainly on account of its cheapness and simplicity in the making.

Boiling water is generally used in the making of this paste, and for those who may wish a formula containing it, the one below will be found to be excellent.

- Virgin white wax... ... 2 ounces
- White Marseilles soap... ... 1½
- Boiling water... ... 2

Cut both the wax and soap into very thin slices, and place in a clean china mug containing the boiling water, and place the mug with its contents into a tin pan, also containing boiling water, the whole of which is placed on a hot stove. Add the wax and soap, a portion at a time, until all are dissolved.

I recommend the dissolving of the soap and wax in small quantities, as it will be more thoroughly done. In obtaining Marseilles soap, always procure the white, and never the spotted. While the wax and soap are dissolving, stir thoroughly with a clean glass rod. This paste, when made, will have the consistency of "cosmoline." When cooled, it is ready for use, and should be applied as will be given below. A few drops either of the essence of lavender, cloves, citronella, rosemary, bergamot, &c., may be added to give an agreeable perfume to the paste.

The above formula containing benzole, oil of spike, gum elemi, &c., in various proportions, which ingredients being a little difficult to obtain and to prepare, it is a matter of considerable trouble to the beginner, consequently I will not place them here.

Out of all of the different kinds of paste I have made I have settled down to that of plain wax and spirits of turpentine. It is made as follows: white wax is placed, in a common clean china mug; which mug is placed, as above described, in a pan containing water, which is kept at a boiling state by being placed over the gas stove. Dissolve about two or three ounces of the wax in the mug, and then gradually add about t-four quarts as much spirits of turpentine as there is dissolved wax, stirring well all of the time, and finally add of some essence—as the essence of bergamot—in quantity sufficient to destroy the small of the spirits (said quantity being about half an ounce). Stir the whole thing well.

So that a quantity of photographs can be waxed in a comparatively short time, I made a couple of wooden frames (see fig.), one for the small carte, and another for the imperial. They are very simple in construction, being merely a suitable-size piece of placed pined wood (upon which the back of the card rests while waxing), with narrow strips of wood nailed on the top, bottom, and one side of them, The prints are placed in those frames for the purpose of keeping them from slipping about. Instead of having the strips A A A fastened to the main board, as it is in the fig. they (the strips) can be movable, and fastened to the print when necessary by means of a thumb-screw.

By the aid of these frames I have thoroughly waxed one hundred carte-de-visite photographs in an hour and a quarter.

This paste should be applied to the prints by placing a small quantity on the hardest (i.e., the unopened) side of some Canton flannel and rubbing it well over every part of the print, and then, with another and a cleaner piece of flannel, the surface of the print is rubbed briskly until quite dry, and then the final polish is given by using the soft (napped) side of the same piece.

I have recommended to use the harder side of the flannel first, because if the other is used before the greater part of the wax is rubbed dry it will remove the stringy cotton stuff, and thus it would be rubbed in the wax on the surface of the print, which will, especially when looked at obliquely, show very badly. Rubbing quickly will give a most marvellous polish to the print, especially if it has previously been cleaned, and assists wonderfully in bringing out detail in the deep shadows, and also gives a fine effect to the whole print.

Soiled photographs are rendered so clean by the use of this paste that they will look like fresh ones.

The prints, when waxed, should be allowed to remain all night, or at least for a few hours, in a cool and thoroughly clean room.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER VI.

THE MANIPULATIONS IN THE DARK ROOM.

Coating the Plate with Collodion.—So many descriptions have been written of this operation, most of which seem to paraphrase Hamlet's instruction of Rosencrantz and Guildenstern in the art of playing on the pipe, that I am almost tempted to tell the reader to see it done by some experienced operator, for that is almost necessary. Practice alone will enable you to coat a plate with a perfectly clean and even film. The plate is held, resting on the edge of the first finger and middle joint of the second finger, with the face of the plate, and the tip of the thumb over, as seen in the diagram. It would be well to practice holding the plate in this position firmly yet gently, before prac-
the fore-finger into the centre of the under side of the plate, and the thumb over the corner, the result being that the warmth communicated by the tips of the fingers to the plate causes the collodion to set, on those points too rapidly, and thereby spoil the negative, as the thumb has done its share of mischief by coming in contact with the collodion, causing stains and breakage of the film.

Hold the surface perfectly horizontal when pouring on the collodion at point A, and continue till the collodion has reached the outer edge of the plate, then direct it by gently tilting it to B, then by lowering the level of the corner at C it will flow there, and letting it escape the tip of the thumb flow it to D corner, under which you should have the collodion bottle ready to catch the surplus. Without *very much* alteration of the horizontal position of the plate, it should be very gently rocked until its film is set; i.e., when on touching its surface with the finger it receives an impression of it as in soft wax without tearing away. It is now ready to be immersed in the bath. It is very necessary to succeed that while enough collodion is poured on the plate, it shall not receive too much. Experience alone can enable you to determine this.

The Immersion of the Collodionised Plate into the Silver Bath. —This operation is also a peculiar one, requiring care and steadiness. The plate is placed on the dip rod in the direction held in the previous manipulation, the edge B A resting on the edge of the “set” film that one edge—that which the collodion first covered (which we will call the upper edge)—is thinner than that which it last reached, and was lowest when the surplus was drained off. Of consequence, the upper edge sets a little quicker than the lower, and is one of the reasons why it is immersed first. The plate, properly resting on the dipper, is gently lowered, steadily and without hesitation, into the silver solution, and immediately it is submerged it is subjected to a gentle motion by a circular movement of the hand. When first immersed the alcohol and ether in the collodion film repels the water of the bath, and if the plate were now viewed it would be seen to have what is technically known as a “greasy” appearance, similar to a greasy plate on which water has been poured. The nearer solution first clings to the plate in drops and patches, then in little rivers and streaks, and finally the whole of the collodion film becomes smooth and creamy; after this point is reached allow the plate to remain in the bath a minute.

If the plate has been immersed too soon after coating with collodion, before it is properly set, the water in the bath precipitates the copper of the collodion, and gives rise to a spotty appearance on the plate. If, on the contrary, the plate has been held too long before putting it into the bath, the uneven evaporation of the collodion causes bluish patches in the film, which are insensitive to the action of light. Too rapid an immersion causes streaks, and a plate arrested in its descent will be marked with a horizontal line indicating the surface of the bath solution at the moment of stoppage; these are known as “hesitation lines.” When the plate is removed too soon, although it may have a smooth surface, the required solution has not flowed out, causing streaks by inequality of sensitiveness, which streaks become painfully manifest on development of the plate. Being perfectly satisfied that the plate is sufficiently sensitized, it is held up on the edge of the bath to drain for a few moments, and then placed in the carrier or holder. This should be done as the plate was before placed on the dipper, the thin edge downwards, because the flow of the water in draining the plate has been that way, and to reverse it would cause a reflow of the silver over the surface of the plate, thereby causing streaks, and because after exposure, the plate is taken out and held by the now upper and thick edge, that being the best to develop from, for reasons which will be explained when we come to consider the development of the plate. The film at the time of placing the plate in the holder should be perfectly smooth and of creamy semi-transparency, not at all bluish in colour. After exposure in the camera, to which it is taken when the shutter of the holder is closed, it will be found to have gained in density, i.e., become more opaque, retaining its creamy colour, showing conclusively that decomposition has been going on after its withdrawal from the bath. The plate should not be prepared any considerable time before it is required for exposure, otherwise insensitive patches mark the places where the film has dried, and metallic silver stains where the solution on the surface has been drawn from the lower edge (as in the carrier by capillary attraction). Improperly carrying the carrier or holder in a horizontal position causes the same markings, by allowing the silver solution to run over the plate.

Nothing definite can be said relative to the length of exposure, as that is entirely dependent on the amount of light and the nature of the subject, the state of the atmosphere and the time of day, &c. This subject will be treated more fully when we are under the skylight, and we may presume that having done our part in the dark room, the plate has been handed to the skylight operator, and that it is properly timed in the exposure.

We now approach the most delicate and beautiful of the manipulations of the dark room—developing. Before we say anything on this subject one or two remarks in warning are necessary, which will be the duty of the carrier. It must be held or stood in perpendicular or upright position from the time of the plate being placed in until it is taken out. It should not be kept a long time waiting for the arrangement of the sitter, as that should be done before the plate is withdrawn from the bath. Two pictures should not be made on one plate, unless they are two of the same sitter in the same position with the same light and exposure, or unequal results will be the consequence, as will be seen when we understand the development. It is impossible to get identically the same conditions in a plate at different times, because the character of the plate is undergoing a continuous change; nor can you get the same conditions of light and exposure. Keep the carrier clean. After each plate, wipe it out with a cloth or piece of cotton, or piece of blotting-paper, or in dusty, as, on its withdrawal to make the exposure, the dust is set in motion to the detriment of the plate. Preserve the carrier from splashes of any of the solutions. Silver is a great enemy to the existence of the carrier, and to guard against some measure against its action on the wood and corners it should be frequently rubbed over on the inside. This, too, attracts and holds any stray particles of dust (which are sure to be set in motion by the withdrawal of the slide), as well as protecting your finger from the action of the silver from the plate. Place one or two thicknesses of blotting-paper on the back of the plate in the carrier, as this prevents a great deal of silver from running down.
NORTH LIGHT FOR STUDIOS.

Mr. S. V. Allen, in our Chicago contemporary, the Western Photographic News, in the course of a series of articles on "Popular Photographic Blunders," attacks the common prejudice in favour of a pure northern light. He says:

"The respondent with scorn the offer of any other than a pure northern light. Perhaps it would be more exact to say he repels the suggestion with contemptuous indifference. The merest tyro, as well as the practised operator, is equally settled in his convictions on this point. With nineteen out of every twenty photographers, the vast majority of a northern light for any and every other light is a point that is absolutely settled—settled beyond the remotest possible necessity of discussion. The suggestion that all this may possibly be wrong, and that further consideration might well be given the subject, is a photographic heresy so rank, and indicates so plainly the mere breakeen, that it does not even provoke irritation. It does provoke pity, and it may beget contempt for your chimerical notions. So much I know will presage the ultimate extinction of the books advocating north lights, as though no other lights could by any possibility compete with them. In fact, the books ignore everything except a north light; or if, by chance, an east or west light is mentioned at all, it is with expressions of sympathy or commiseration for the unhappy proprietor. But if a west or an east light is mentioned at all, it is a sop of the north-light builder, what shall be thought of the one who deliberately and of choice expends money on a south light? The silence of our favourite writers on this subject is significant—be it evidently beneath compassion. The enormity of his blunder protects him even from ridicule.

"Now, if we could always secure a 'pure northern light' in constructing our ateliers, this subject might not be a very important one. But it is often more convenient to obtain a south sky and side light. Hence the vast importance of knowing the relative values of different lights.

"First let me say that I regard this exaggerated prejudice against 'southern lights' as one of the most surprising photographic blunders. I am often astonished at the great number of persons who have the idea, as I am not, that a north light is of more use than a south light. But there are a few of which I must speak in this article.

"Especially dear to the heart of the photographer, and believed in with all the irrational taste of unreasoning superstition, is the theory that a north side and skylight is superlatively stable, unchanging, reliable, and not given to perplexing changes as all other lights are. Our books are full of this notion; our ideas are saturated with it. It is a theory so well fixed in our minds that we never reason on it. But in reality no notion could be more erroneous, no theory more false. In the whole circuit of the heavens be selective of the skylight that is more subject to perplexing changes and to absolute variations of the light. In this matter I am trying to be practical. I am referring to ateliers as they exist—to the ninety and nine out of every hundred, and not to the mythical atelier with a 'pure, steady, unchanging, unobstructed northern light,' which, strangely enough, we all think so common, but which in reality has an existence, except in the unfeigned pliability of our imaginations, and which, further, I firmly believe to be practically an impossibility.

"I would particularly wish it understood that when, in this connection, I speak of a 'steady, unchanging' light, I do not refer to the changes in the amount of light, for a skylight in any direction whatever will be subject to such changes. I refer only to what is of vastly greater importance, viz., the changes in the direction of the light.

"To give greater perspicuity to this division of the subject, I will use the term north top window, instead of northern light, and for further convenience, let us suppose all northern windows divided into two classes, the first class being entirely protected by some means (such as high buildings, shutters, screens, walls, &c.) from the rays of the sun throughout the year, the second class not being so protected. The first class, of which there is, perhaps, one gallery in a hundred, is easily disposed of; for there is, even with the best arrangement, a certain loss of at least one-fourth of all the light that should fall upon the top window. This may be thought a wild statement; careful observation will prove that it is a true one.

"But how is it with the second class? As a rule the sun's rays, especially in summer, strike first in the morning upon the north-east corner of the top window, gradually changing towards noon to the north half (or to the whole, according to the pitch and other obstructions), thence in the afternoon gradually changing to the north-west corner, and finally in summer shining more or less fully and squarely upon the whole top window. Thus it will be seen that with most galleries the light, even on a clear day, is not the same for five minutes at a time. It is quite impossible to arrange the screens, curtains, and reflectors, and without changing them, make two negatives that are identical in the light. (It may be seen from this, by the way, how thoroughly absurd it is to talk in terms of artistic blunder, of supposing that the art of lighting can ever be taught through books, by showing which curtains should be opened and which closed, for absolutely different results would be obtained at nearly every sitting.) To illustrate this, let us suppose a sitter placed at any point under a top window, say under the centre. In the morning the light is uniformly dull from the whole top, a little later a strongly concentrated light comes from the north-east corner, later still a broadside from the whole north half, then from the north-west, and finally, later in the day, a flood of bright light from the whole top. Of course, as I have said, this will not be the exact order of variation for every north top window, but it fairly represents the variability of all of which I have enumerated class two, which means nineteen of all the ateliers in the country.

"Not only is the direction of the light constantly changing from morning to evening, but even its changes are not the same from day to day. As the path of the sun varies with the time of the year, from a nearly horizontal direction in winter to a nearly vertical direction in mid-summer, so do the changes of the light vary—a fact which alone is a very serious inconvenience, for on only two days in the year, the sun follows the path of the sun of the opposite.

"Now add to all these sources of uncertainty the fact that on all days on which there are floating clouds in the sky the direction of the principal light is subject to absolute, absolute, and momentary changes (from bright clouds reflecting the sun's rays at every possible and 'unexpected angle'), and you have my principal reasons for exposing myself to the censure of my photographic friends on the question of the north window. A north window is nothing more than a more perplexing and changeable of all lights. Except for the truths contained in these assertions, it would be quite impossible to account for the enthusiastic and absurd effects of lighting so frequently produced in first-class galleries by competent artists; and it also accounts for the exquisitely beautiful effect of light which we occasionally see produced in miscue, to produce the effect by means of which we understand even the first principles of correct lighting. They are produced by chance. The skilful operator poses his subject, places his camera, draws his curtains, adjusts his eye-rest, sets his reflectors, animates his model: the effect is just to his liking. One minute passes, and he is ready to expose. But now the lighting does not suit him quite as well as before. Why? The sun has changed its position very slightly; the light is changed—only slightly, but the effect is more tame—just a portion of the
delicate brilliancy is gone. But time presses, and the exposure is to be made; in fact, it must be made, and it must be made that very instant, otherwise the sitter becomes nervous, and the expression listless. There is not one second of time to fool away after the focus is drawn and the model is ready. The skilful operator knows all this intuitively, so the exposure is made and the plate is done in a burst. But for all that, he must precisely when he aims to produce, only in the moment of exposure. He has no time to stop and say, 'This is a good negative, but it lacks a little brilliancy he hoped to secure, and would have secured if the lighting had not changed. Another sitting is made; the same careful adjustment of accessories; the same beautiful image is seen on the ground glass; the plate is ready; five seconds gone; your lens is uncovered. But he is not satisfied, and you have not anything so sensitive as paper, or of that 'hope deferred which maketh the heart sick,' when they develop their negatives. With such artists, really intelligent operators have little sympathy. It is worthy of note, however, that these self-satisfied gentlemen always make their pipes of contentment where specimens of their ignorance of the laws of lighting are to be found in abundance. They cannot comprehend that delicacy and precision in lighting are truth and harmony in representation. Like Plate, they may ask feebly, 'What is truth?' but, like him also, they are indifferent about the answer.

This, however, is a digression. I have endeavoured to point out as clearly as possible, an imperfection in our means of lighting that is a constant source of annoyance and embarrassment, and a frequent source of failure to every operator who aims to produce fine pictures. I think every competent operator will, on careful thought, agree with me that fully one-fourth of the failures in lighting may be ascribed to the causes I have mentioned. The question is, I suppose, that of the means of getting rid of the difficulty. Is there any possible way of securing in reality what we all so sincerely believe we already possess? — i.e., an unobstructed light that is constant in its direction, and not subject to the varying changes that have been described? Theoretically it is quite impossible; but for all practical purposes there is a solution to the difficulty."

FORMATE OF IRON AS A DEVELOPING AGENT:

BY S. BOTTOMS.

When I first took up the study of photography, in 1854, my kind friend, Mr. H. Deane, called my attention to the peculiar effect of formic acid in changing the tone of the metallic deposit, when employed in conjunction with sulphate of iron in the developer. In those days negatives were developed either entirely with a weak iron developer, or with pyrogallic acid alone; the successive application of the two being undesired. I was considered a very successful positive operator, and naturally turned all my attention to that particular branch of the collodion process. The great aim of those who produced glass positives was to procure as white a deposit as possible, so as to insure plenty of contrast. A recipe in which formic acid formed an essential feature, and which gave rather peculiar results, was as follows — Sulphate of iron, 60 grms.; water, 4 ovs.; alcohol, 1 dram; formic acid, 1 dram; acetic acid, 1 dram; formic acid, 30

ACTION OF DIFFERENTLY REFRAangible RAYS ON IOIDE AND BROMIDE OF SILVER.

BY E. BECQUEREL.

When a sensitive photographic plate, prepared in the ordinary manner with iron solution and collodion, is exposed for a short time to the solar spectrum, the image, when developed with pyrogallic acid, is found to extend only from the violet to between F and G. But if a little chlorophyll is added to the collodion employed, the plate, under the same conditions, shows also a feeble but well-defined action, extending from E to beyond B in the red, with a remarkable and strongly marked band of maximum intensity between C and D. The yellow and red bands of this band, however, is much weaker than that which takes place in the violet, and attains the intensity of the latter only when the red end is exposed from five to ten times as long as the violet. Other much less strongly marked bands may be perceived between E and B. The author finds that the conspicuous band between C and D coincides in position with the characteristic absorption-band of chlorophyll, as he observed it in the collodion solutions made use of in preparing the plates. The colouring matter on the photographic plates obviously does not act as a screen, cutting off the absorbed rays, for in that case the contrary effect would be produced; but we may explain the phenomenon by supposing that the silver salt is so connected with the chlorophyll that an action set up in the latter by the rays it absorbs communicates an impulse to the former by virtue of the intimate association of their particles.

The author long ago showed that when sensitive plates are exposed for an instant to sunlight before submitting them to the spectrum, the range of the chemical action is greatly extended towards the less refrangible end. These earlier observations are readily explained by the results above described. We may suppose the exposure to operate by producing a change of colour, or other physical condition of the upper film of the plate, by which its absorptive power for the different rays is altered.
"NONPAREIL" OR "ALBA" PLATES FOR PHOTOGRAPHS.

We called the attention of our readers to an American novelty in the shape of a white enamelled iron plate as a substitute for opal glass in photography, announced as "Nonpareil" plates and "Alba" plates, both being, we believe, precisely the same thing, the different names indicating different agencies rather than different manufacture. We are now indebted to the courtesy of Messrs. Anthony and Co. for an example of the Nonpareil picture, and to the courtesy of Mr. Atkinson, of Manchester, for examples of the plates, and of the collodio-chloride of silver with which they work. Anthony and Co. for working with these plates. A few words of description of the materials and results will probably interest our readers.

The Nonpareil plates seem to be in every way a singularly excellent basis for a photographic portrait. Thin, light, and sufficiently rigid, like the ordinary ferrotype plate, the Nonpareil, instead of black or chocolate, like the ferrotype, presents a fine delicate matt surface of pure white, surpassing almost any similar surface we know, but most like the surface of pure white marble, smoothest, but not polished. Whilst perfectly rigid and free from liability to warp, cockle, or readily bend, break, or injure in any way, it is as light as a piece of card, and may be cut with scissors in a similar manner; hence for lobbies and similar matters it affords singular convenience. The Nonpareil picture sent from New York is printed by the collodio-chloride process; and is in every way charming. We at once put the collodio-chloride sent by Mr. Atkinson and the plates to the test of practice. The plates do not require preliminary coating or preparation of any kind, but are sold ready for use. The collodio-chloride prepared by Messrs. Anthony and Co. is sent out in two bottles, one containing colloidion with nitrate of silver in solution, and the other a mixture of sodium chloride in solution. The two require mixing in equal parts in accordance with accompanying instructions, and the mixture, after standing for a short time (say a quarter of an hour), is ready for use. The plate is coated in the ordinary way, and allowed to dry in the dark. It is scarcely necessary to remark that care should be used to see that the coating is thin, and where it is too thick it should be quite dry, so as to avoid injury to the negative in contact printing. In the instructions forwarded with the collodio-chloride, fuming the film is recommended, and we have no doubt, from experience, that greater sensitiveness and greater richness would be the result; but we proceeded to print without the fuming, and obtained perfectly satisfactory results. The exposure in printing was much shorter than would have been necessary with ordinary albumenized paper, and the colour a rich warm purple, bronzing readily in the deep shadows. We tried toning with a bath of sulphocyanide of gold, similar to that which we have described as working well with collodio-chloride prints on paper, which answered admirably. We also tried an improvised bath, made by adding a little chalk to a concentrated solution of chloride, then pouring in water cold. In this case we made the bath very weak, about fifteen ounces of water being used to one grain of chloride of gold. This toning bath also answered perfectly. In fact, any of the usual toning baths, employed somewhat weak, will, we doubt not, give good results. The fixing and washing are very rapidly effected, involving neither the time, labour, nor certainty involved in washing prints in the ordinary silver printing process.

The operations in producing the Nonpareil photograph are as simple as the results are pleasing. In working with collodio-chloride on opal glass, considerable care is at all times necessary to avoid injury to the surface of print or negative from the pressure of two unyielding surfaces, and equal care to avoid the breakage of the glass. There is also necessary in working with a movable frame to secure exact register in examining the progress of the work. With these plates such care and anxiety become unnecessary. Whilst the plates possess sufficient rigidity for every purpose required, being very thin, they are not absolutely unyielding, and therefore there is no risk of breakage or abrasion of the surface. Being elastic, the progress of printing may be examined as in paper prints, rendering no special pressure frame necessary. In short, this plate seems to supply both in beauty and convenience the very tablets for which we often wished in prosecuting our experiments in working out the collodio-chloride process before presenting it to the public. It is easy and simple to use, and the results are charming; and we think there can be but little doubt of the advantage of the method.

We should add that whilst the Nonpareil plates are especially designed for collodio-chloride printing, they appear to be available for various other purposes. They may be used for developed collodion prints produced in the camera by the wet process, for transferred collodion films, and as a basis for carbon prints, and, in fact, any purpose where a very pure white surface is required on a support almost indestructible.

WOODWARD'S MICRO-PHOTOGRAPHS.

The Photographic Society of Vienna has been favoured with a collection of pictures from Lieutenant-Colonel Woodward, of Washington, produced by means of a microscopic lens. Colonel Woodward, it appears, has experimented with all sorts of lights in the production of photographs of microscopic objects, and has used for the purpose sunlight, electric light, lime light, and magnesium light. He does not work with the aid of a camera, but in a darkened room, so that between the lens and the dark glass there is a free space, and the focussing in this way is more easily effected.

Colonel Woodward prefers sunlight to any other, now that he has been able by means of a particular kind of illuminating apparatus or condenser to modify the sunlight, so that it gives results similar to the lime and electric light, which in the first instance gave the best results. Colonel Woodward is also using sunlight for his purpose, as in cloudless Washington, where clear skies are frequent, it is the cheapest mode of illumination; but he has made much use of magnesium light also, and has devised a peculiar arrangement for subduing the disagreeable magnesium vapours. He provides the short chimney of the box, in which the magnes-ium is burnt, with a spiral of wire, and round this is placed some coarse net, the end of the spiral or tube ter-
minating in a wide bag. The air goes through the netting whilst the cooled oxide of magnesium is collected in the interior of the pipe or in the bag.

Woodward employs various lenses for the production of his photographs; in the case of very large amplifications, immersion lenses are employed. His enlargements embrace the scale of a 400 diameters, and has been expanded with the Sanitary Division of the United States Army, and his main efforts in micro-photography are directed to the production of physiological preparations. The establishment to which he is attached possesses already thousands of negatives, and Colonel Woodward has forwarded to the Vienna Society a series of "test objects," which are, of course, exceedingly interesting. The Nobert Scota and Pleurosigma angularis and foraminas he has produced in different degrees of enlargement, illuminated by direct and also diagonal lighting. The pictures are exceedingly fine, and give a wonderful idea of the construction of the diatomacca. Of course, in the case of very extensive enlargements, the pictures are not very sharp, but the lines and drawing are remarkably clear, and not only are seen on the thousand negative, but some distinct detail is shown, and they are not merely rendered by three distinct lines; even the six-angled cells are visible in the pictures.

The Woodward photographs, being for the most part of a physiological nature, will be exceedingly useful for medical schools and museums. The employment of microscopic tube in this line of work would be obviated to some extent by micro-photographic illustrations, and these thrown upon a screen in class-rooms and lecture theatres, by means of artificial light, would be a material aid to professors. We know that many of the medical staff of our hospitals in London would consider themselves very fortunate to secure such photographs as Colonel Woodward has produced, and their publication to the public, and we are not only of the opinion would be a boon to many scientific men.

FRENCH CORRESPONDENCE.

METHOD OF OPERATING BY REFLECTION—HOW TO PRODUCE ORNAMENTAL BORDERS TO PORTRAITS—BLUE GLASS LENSES—DAY PLATES—A REGISTERING PHOTOMETER—M. LAMBERT IN ENGLAND—SPIRIT PHOTOGRAPHERS AND THE POLICE: A CUPBOARD FULL OF SPIRITS DISCOVERED.

Some days ago I received from a photographer who is already well known as having prepared a new kind of pyroline (M. Tassan, of Montauban) a letter describing a series of ingenious processes.

The first permitted him to utilise any space or apartment situated on the ground floor, and therefore but inadequately lighted, for carrying on photographic operations, being able to produce portraits as easily as in any glass studio. M. Tassan places the model about a metre from the illuminating opening or window; behind the model he places a portable background about a metre broad, and in front he fixes a mirror. It is the image reflected by the mirror that he photographs, and not the sitter. He asserts that by this means he can obtain all the effects of the light, including the lighting up of the face.

In the manner following he transforms old clichés, varnished or unvarnished, into pellicle images. He pours upon the negatives, placed horizontally, a film of special collodion, which he allows to dry. The cliché is in this way covered, as it were, with varnish, and is in a position to resist the printing of any number of copies. When it is desired to detach the film of collodion and negative image from the glass plate, the whole is plunged into a bath of water, and after three or four hours' immersion the whole image comes away with the greatest ease, and as it preserves its suppleness and flatness, it can be easily kept in good condition. I have had now in my possession, for some weeks, several clichés of this kind, and they are as perfect and as flat as on the first day. The author of this publication has also sent me some pictures of medallion format, with an ornamental border or framework which is obtained at one single printing by the aid of two clichés superposed. The first is an oval portrait in the middle of a plate which has been kept transparent at the margin during its sojourn in the camera, and the second cliché is executed from a bas-relief, the central portion (corresponding to the oval portrait) of the sensitive plate being protected by a mask from the action of light. The photographic apparatus is placed at a convenient distance, to reduce the image of the bas-relief to the proper dimensions of the plate. When the second negative has been obtained with a clear oval in the centre, the film is slipped on the way, and superposed on the first negative, so that the two may then be printed together. The same ornamental margin negative will of course serve for any number of portrait negatives.

The different processes of M. Tassan are ingenious, and the results which they furnish plead in their favour.

I spoke in a recent letter of the lenses of coloured glass which M. Berthiot has introduced into the middle of the instruments for increasing their rapidity, or, at least, to render the pictures they furnish more harmonious. M. Boivin has communicated to me a more simple means still, and quite as efficient, which he employs for the same purpose. It consists in placing about two millimetres in front of the sensitive plate (in the dark-slide) a plate of glass more or less tinted with blue, according to the effect it is intended to produce.

The dry collodion process is, in conjunction with carbon printing, the subject which just now occupies photographers most. The experiments made in this direction tend above all to augment the rapidity of the process, and I am very much mistaken if M. Francck de Villecholle has not solved the problem. I assisted, the other day, in his studio, at an apparatus which appears to me to be capable of considerable character. A plate prepared by him nearly a month previously was placed in a stereoscopic camera, and a view of the surrounding houses was obtained. One of the lenses was uncovered for ten seconds, giving one half of the plate this period of exposure; the other halt had but six seconds' exposure, through the second lens, and then the two pictures were developed at one and the same time, being, of course, upon the same plate. It was found that the first six seconds was ample. The development, which was very rapid, was conducted in the most simple manner. In the first place, alcohol and water, in equal parts, was poured upon the impressioned film, and then a mixture in equal parts of an alkaline solution and of pyrogallic acid. M. Francck has not yet given us the formula, nor the composition of his collodion; he has only affirmed that the whole of the improvement in the process consists in certain modifications of the old tannin process. Under the action of the alkaline developer the image appears immediately in all its details; without trying to develop it too much, it is intensified with silver, and in a few seconds assumes the requisite amount of vigour. M. Francck has assured us that with a portrait lens, and operating in a glass studio, it is easy to obtain, in a second very satisfactorily; and this is easy of belief after having seen the results.

M. Lucbert is constructing just now a registering photometer after an idea of M. Lambert. This very ingenious apparatus—which we will describe more fully as soon as the necessary drawings can be secured—possesses the advantage of advising the operator when the pose is sufficient. The photometer may be regulated according to the weather, just in the same way as a clock alarm may be set according to the hour you desire to be awakened. The same idea has been already worked upon by M. Boivin, who showed some time ago a bell photometer; but M. Lambert, it appears, has been the first to patent the invention.

Since I have mentioned M. Lambert's name, I may say how pleased I am to hear of his departure for England.
am sure that he will be graciously received in a country of progress like yours, for he is a man of intelligent activity, who has succeeded, despite the trammels of routine, to bring out upon a practical footing a process of enlarging and printing in carbon, which has for a long time past been considered by many to be attended by insurmountable obstacles. I am quite certain that when English photographers have seen his invention, Lambert-type, at work, they will at once understand the success that has attended his efforts in France, and they will find that nothing exaggerated has been said about the fine pictures produced in this style.

Last year I entertained the readers of the Photographic News with an account of the stir that was being made in Paris by fantastic portraits executed by a so-called spirit photographer. Notwithstanding some severe strictures in the public press upon this enterprise, it seems that a very large trade has been done in these wares for a long time past. So gigantic has the affair become of late, that the police have stepped in and put a stop to speculations which rested upon the credulity of purchasers. As I announced some weeks ago, the Prefecture of the Police has now a studio of its own, and thus it is enabled to appreciate and understand very readily any photographic matter that comes under its attention. One day a number of photographers accompanied by one of the photographic staff, presented themselves, therefore, one morning at the studio of the spirit photographer, and these customers desired that their portraits might be taken accompanied by a spectre. The artist posed one of them, focused and then, under the pretense of invoking a spirit, he asked his visitor to withdraw and to stop for a while into the waiting-room. After an absence of ten minutes the photographer called them back again, and begged the model to take his place once more. Instead of doing so, however, the Commissary of Police produced his badge of office, and introducing himself and his friend under their real titles, called upon the medium to acknowledge his trickery. It was no good refusing under these circumstances, and the operator, withdrawing his dark slide and to stop for a while into the waiting-room, which was a very weak image, which had been impressed upon the plate during their absence, of a little figure made up like a ghost. If the operator had not been arrested in time, a portrait would have been produced besides the ghostly figure, and a spirit photograph would have been the result. In an adjacent room I found quite a collection of draped dolls more or less like great men that have departed this life, which were used as occasion served. Quite a store cupboard full of spirits was discovered.

At this moment, the ingenious but misguided photographer in question is under orders to present himself before the Paris tribunal to answer to a charge of swindling the public.

A GRATIFYING ACKNOWLEDGMENT.

BY W. T. BOVEY.

The many, among photographers, whose minds have long been painfully exercised because of the humiliating status ceded them by a non-discerning public, cannot but feel highly gratified by a recent and graceful compliment paid to their art and labours by an erudite, and in all other respects an expert and accomplished writer, who, in a critique published in the columns of the Daily Telegraph, accredits photography as the immediate resuscitator of a dying art, which in its zenith had transcended human forms and features with exactness and grace.

"Prior to the advent of photography" (so writes our correspondent in his dispatch) "British portraiture was more than dead. It was an unburied corpse, ghastly and repulsive. Portraiture in England had become a lost art, and in the art of producing representations of the human form divine we might have taken lessons from the war canoe dandies of New Zealand, or the pot-painters of the Celestial Empire. Two causes brought about the revival of the art. [Note.—Photography was the first.] The earliest Daguerreotypes of Claudet and Beard—flat, cloudy, ugly, and evanescent as they were—still from an artistic point of view were superior to the best average pictures exhibited at the Royal Academy as a portrait by Titians or Vandyke was superior to one by Miss LaCorey or Dicky Fitch. But when the Daguerreotype gave way to the Tablotype, when the magical wands of collodion and alumen were waved over plates and paper, and when the wonderful invention of photographic printing was developed, the doom of the conventional portrait was sealed, and the revolting thing became not only a monstrosity, but virtually an impossibility. In the face of the blessed sun, drawing so beautifully, distributing light and shade with such marvelous grace, rendering expression, atmosphere, substance, transparency, texture, with such astonishing fidelity, conventional portraiture could not but feel ashamed—could not but feel that henceforth it was no longer permissible to talk about such lies as had hitherto passed current."

Well done, honest critic! A veritable Daniel art thou in wisdom and in judgment; and with the courage of a Wilberforce thou hast bravely fought prejudice, error, and misapprehension. Thou mayest venture further, and tell the world that all portrait photographs are not "ordnance maps," or "microscopically objective charts."

I grant you, photography does not create expression; but faithfully it transcribes if taught of expression exists in the countenances of the original. If the works of A. Salomon, V. Blanchard, Robinson, the smaller productions of M. Crambey, together with those of the less celebrated and other talented photographers, be compared with examples of hand painting, it must be acknowledged that no painter, no engraver, ever succeeded in depicting more life-like and faithfully those mental characteristics which can be read by a glance at the faces of many of our eminent men. When features bear no impress of the mental light which hidden shines within, as in the case of Oliver Goldsmith, a portrait of such individual as painted by a Vandyke or Reynolds is much to be preferred to any camera production because the producer, by his skill, whilst preserving the likeness, impresses on it a reflex of the qualities of mind; and thus is the man as nature moulds him throughout, save that flesh becomes transparent and mind is seen in every feature. Rarely, however, has there been a more cunning hand at work than in producing these powers. More frequently has he to gratify, with an addition of naturally false gifts, courtly dotes, socially elevated misues, dukes, lords, baronets, snobocrats, and wealthy equires. These must be presented to posterity not as they appear in life, but with additions which to their wealth and station are best suited. Meaningless smirks, uncomfortably plain faces, receding foreheads, expressionless features, must be changed by the brush, which does what the camera cannot, inasmuch as it lyingly imparts to canvas a spuriously contrived semblance of intellect and dignity.

Where character exists, and the face of the possessor can show it, photography transcribes intellectual expression with inimitable fidelity; and the masters of photographic art are named, know full well how to control light, to arrange lines, to compose throughout with harmony and balance; in short, to accomplish everything that can be suggested by experience, artistic taste, and refined culture; and given intellectual models, and not inanimate living puppets on whom to exercise their skill, no painter's hand would succeed in producing more naturally and strikingly the leading characteristics of the persons that form the subject. All of these things are well when the faces have been registered, the power of paint rules supreme; but if a face is to be transcribed with its lines, its warts, and wrinkles added to whatever of mental power is indicated by the form
of each feature, photography can and does produce such works as which painters might after poch好转, but their skill would be at fault if the hand essayed imitation. I have at this moment in my mind's eye, portraits produced under the guidance of a Saloman and Blanchard, beautifully drawn marvellous faces, skilful distribution of light and shade, expression, substance, wondrous fidelity. Before such productions "conventional portrait" shows hideous, disgusting; on such, even the great masters of portrait painting, meek with involuntary admiration. Also! photographic triumphs end here; it is the apex of its capability, and should be acknowledged as the outer limit of its means of satisfying ambition. Photography has its mission—it transcribes more faithfully than human hand could do the work, and to a limited extent it interprets the wishes of the producer. But it does not, cannot, usurp the place occupied by the masters of hand-painting, because those can cause the workings of their minds to guide the brush or pencil which registers on blank canvas his thoughts as readily as an author describes imaginary scenes and characters with his pen, his ink, and his paper. Photography as a reproducer of hard facts should rigidly adhere to realities, and when it is seen that the follower of the art claim no more than legitimate due, the feelings of distrust which so long have blinded the judgment of art critics will slumber, and in their critiques on matters affecting our art they will ultimately adopt a just course, and thus will assist in raising the character and status of photography.

Photographs have sometimes ranked with impostures simply because photographers, unknown to themselves, are sometimes impostors, who delude themselves with ideas that their compositions class with high art, when, in the eyes of discerning observers, those productions intended to class as sublime are more nearly allied to the ludicrous. It is, however, an encouraging fact, that as years roll on, ambition is more and more prone to keep within sensible limits, and it is chiefly on that account that the claims of the art are admitted as genuine, because experts in art are not slow to perceive that photographers, as long as they keep within bounds, are fully entitled to praise, because of the aid they have given in enlarging the knowledge and technical skill of the painter. To have it admitted that the revival of the art of portrait painting is due to photography is an acknowledgment we have good reason to be proud of. As photographers, in their turn, they, and their art, will doubtless gain a position of which they need not, as now, be ashamed, when it is said, "Oh! he is only a photographer."

TOPOGRAPHICAL PHOTOGRAPHY.

BY D. WINSTANLEY.

Of the momentous changes which the steading hand of time effects slowly—very slowly, to be sure—but with a certain and completeness from which there is no appeal, many are of a kind of which in their various stages photography (to use an alliterative phrase) may make most masterly memoranda.

The pictures of ancient Liverpool, recently exhibited in that town, and, as I understand, now published by a local photographic firm, are of greater interest to others than those residing near the place, illustrating as they do the wonderful and complete changes effected in specific localities by the extension of civilised life. The site of St. George's Hall—a colossal modern pile, with ponderous cornices and massy columns—was but a little time ago the location of a rustic residence of the inter-timbered style characteristic of the architecture of a bygone age. Where we have now what may be described as a floating street leading to what before the fire was the finest landing-stage yet built, Messrs. Vandyke and Brown's reminiscence of the past shows it to have been a spot dedicated to the use of bathing vats.

And so, in the neighbourhood of every rising town, changes are going on which must at any rate be of interest to the local antiquarian, and which I would urge upon photographers to record, although the negatives of such subjects may frequently have little to recommend them from a pictorial point of view. The changes brought about by time, unaided by the hand of man, are, however, often so startling in their kind, that their photographic representation must inevitably prove of the very highest interest to those who follow after them.

No one, for instance, can visit the islands in the British Channel without being impressed profoundly with the changes that have made them as they are, and I cannot better illustrate the desirability of representing changing nature apart from her pictorial aspects, than by a reference to those interesting events which have separated Jersey from the Continent within historic times, and altered the coast of Brittany within the memory of living men.

From a work, "Les Mouvements de la Mer," it appears that "in the Gulf of Corduan, at the mouth of the Gironde, the sea has advanced 730 metres in eight-and-twenty years," and now flows more than ten yards deep over what a white age was but a sandy beach. The bay on whom is the site of the once flourishing city. When the tide is low, druidical remains, altars, monuments, may be observed beneath the waves, whilst groves of elms, as it is recorded, have been seen disposed with a regularity which shows a plantation once there was.

From the summit of Mont Orgueil Castle, near the town of Gorey, on the eastern coast of Jersey, may be seen today the mainland of Coutances (with its white cathedral spire), stretching in loneliness against the distant sky, and with many wide miles of water rolling in the space between.

From manuscripts and an ancient map in the monastery of Saint Michel, it appears that thirteen centuries ago the separation was effected by a rivulet bridged by a single plank, which the inhabitants were bound to keep in a condition of repair for the passage of the archdeacon of the church on his annual round.

The cause of these extraordinary changes are the effect in the sinking of the land, the reverse of which is taking place both north and south around the poles. About the coast of Brittany this subsidence is progressing at the rate of about two yards per hundred years. Should this continue for another thousand years, "the peninsula of Cotentin will become an island, and the ports of La Manche be destroyed," and in a period less than half as long as that during which the pyramids have braved the ravages of time, Paris itself will be engulfed beneath the Atlantic wave.

UTILISATION OF RESIDUES.—No. II.

BY PHOTO-CHEMICS.

We now come to the treatment of the development waste, and in connection with this part of our subject it is surprising how little photographers appear to know its value, and seem to consider it as a small quantity of silver, mixed up with a large amount of impurity and useless matter. This is really by no means the case.

The decompositions which ensue on the addition of iron to nitrate of silver are theoretically rather complicated, but for practical purposes it is sufficient to say that the precipitate in the process of developing consists of metallic silver in combination with iron. If this precipitate be collected and placed in a wide-mouthed bottle, and treated with diluted sulphuric acid till no more be dissolved, the residue when melted will consist of silver only.

FIXING SOLUTIONS.

The hypo or cyanide after use cannot have the silver separated by salt in the form of chloride, but we are com-
pelled to adopt another expedient, and precipitate it in the form of sulphide, by adding to the solution sulphide of potassium, or, as it is commonly called, liver of sulphur. There are one or two amusing facts in connexion with this process which are worth mentioning. The first is, that in America it has been made the subject of a patent. To show the utter absurdity of this, we may just mention that long before photography was even heard of, the use of sulphides for precipitating most of the metals was one of the simplest and best known facts in chemical analysis. The use of the same process in photography is nothing more than an application of non-photographiy known and logical research for separating the various metals into groups; and to show how absurd such a claim is, we may remark that if a photographer sent some old hyp to a chemist, and, without knowing what it was, asked him to separate the silver it contained, he would in the ordinary course do so by this means; while if the photographer did it himself, he would be liable to an action for infringing the patent. How our “cute” chemists can tolerate the exclusive working of a process which has long been public property is, as Artemus Ward would say, a “goat” of the richest character.

The next amusing point is, that on talking to a photographer lately as to the amount he received for his “plate,” when he came to his hyp residue he told us, “Oh, that’s worth a whole lot of money!” in the case of a photographer, because he makes less than a very little silver. Now, how does the matter actually stand? Reverting to our “combining numbers,” it will be seen that silver is 108, sulphur 16, so that, in fact, nearly seven-seighths of the weight of the precipitate formed on the addition of sulphide to old hyp consists of silver, or would do so but for the circumstance that some excess of sulphur is likewise deposited, which excess could easily be burnt off in an iron ladle, leaving the sulphide of silver nearly pure.

To those with a very little practical knowledge of chemical manipulation the conversion of this, together with the ashes from paper, &c., into nitrate of silver would be by no means difficult; but we think that this process could be better performed on a larger scale by the practical refiner. We have no wish to interfere with his legitimate business. We know that as a class they are men of probity and honour; but in their profession, as in other professions, there are many black sheep who take advantage of the ignorance of their clients, and fix their own value, from which there is no appeal or redress.

If those of our readers who are inexperienced in this matter can still be led to use quantities of coating paper for printing, and to this circumstance is, no doubt, due the fact of the increasing price of eggs, so that we are all of us on the look out for a substitute for albumenized paper. Every photographer would—especially if it obviated the many defects which such paper is liable to—be glad to meet with a substitute of this kind. We have not, however, got quite so far yet, and albumen may still have a long era before it; indeed, for years past the consumption of albumen in photography for one thing and another seems to have been on the increase.

To the photographer, therefore, it will be very handy to have albumen of uniform quality—as good as that from fresh eggs—in a dry state, ready to hand at any time, it being merely necessary to dissolve the dry material in a certain quantity of cold pure water. Such an albumen is now prepared commercially, the yolk, as well as all its good properties, being dried and preserved separately. The importance of this product cannot be valued too high, and its preparation is still surrounded by difficulties, owing to the easy decomposition of the egg-oil, as it is a question of preparing an article of food, and not merely a technical product. Eggs may be preserved in many ways unchanged in the shell, but must, of course, by reason of their fragile character, be well cared for.

The dry albumen is prepared both in sticks and in powder. It is easily dissolved in distilled or ordinary water; the solution is, however, in the first place turbid and full of flocculent matter, and requires to be beaten up and allowed to stand for some time, just like ordinary fresh white of egg, in order to clear it. When the liquid under the scum is poured off and diluted with water, for employment as a preliminary substratum for plates, and a drop or two of ammonia has been added, the albumen solution can be filtered perfectly clear with ease, even through good filter paper. In the latter case I have remarked that the filtering goes on much more rapidly if a uniform current of air is allowed to fall upon the liquid in the filter. In this way the solution is kept agitated, and the deposition of matter is prevented, and, consequently, the filter is not choked up; indeed, this is a good practice in all cases where it is difficult to filter. The funnel and filter-paper must, of course, be large enough for the purpose, so that any bubbles that are formed do not rise above the paper. The current of air may be arranged in several ways—for instance, by means of a gasometer, whose exit tube is connected with a glass tube that is allowed to dip down into the middle of the powder. The velocity of the air current is regulated by the tap. This method is only applicable to aqueous solutions, for such as are easily evaporated—collodion, for example—cannot be treated in this way.

If the albumen solution is filtered through wet sponge, or through linen, its clearness is by no means perfect, and strong solutions cannot, unfortunately, be treated in any other way. It is worthy of note that the dry albumen, if well preserved in and well dried, may be kept for a very long time, but solutions appear to become decomposed much sooner than that prepared from fresh albumen. As, however, a solution can be prepared at any time, the matter is of little importance.

It is easy to prepare the dry albumen itself, if such a course should appear desirable. Raw white of egg is beaten to a stiff froth, and then allowed to spontaneously in flat dishes at a temperature of 15° to 18° Resanum. It is necessary that the albumen should be well protected from dust or other particles falling upon it, and this is very well accomplished by the film of froth above becoming dry and hard. That a dry locality is necessary for the operation need scarcely be said. The glassy, brittle mass of dried albumen is very easily powdered. On dissolving the dry powder in water, it is necessary to see that it does not cake together, and it is well, therefore, to sprinkle the powder gently into the water while it is being stirred. The preparation of a solution is therefore rather a long operation.

Commercial albumen powder should be provided with a label, stating the amount of water necessary to produce a solution of the same consistency as fresh egg; this would be easy to calculate, the degree to which it must be diluted for the various purposes of the photographer.

Correspondence.

DEVENSHIRE SCENERY.

Sir,—I left off my last letter just as we had got down on the little pier that protects the crawlers and the base of the village of Clovally from the destructive effects of the N.W. gales. I forgot to say, that before I got there on the last occa-
sion, my assistant and I were nearly placed *hors de combat*. I mention it as a warning to any brother photographer who may be going that way on a similar errand. We were just driving down the Hobby, admiring the beauties of the peeps through the foliage, when our pony stumbled on a loose stone, and fell, pitching us both out of the trap with our outfits. A moment later, curiously enough, we found our chemicals, so severely shaken, that it in all probability spoiled several negatives that otherwise might have been good.

It will be seen that Clovelly Pier, built by Sir John Cary in the time of Richard II., of huge boulders, of the same character as are scattered on the beach, forms a picturesque object of itself. Three or four negatives can only fairly represent its peculiar character and construction. In 1850 a portion of it was extended after a terrible calamity happened to a score of fishing boats in the bay. A good general view from the pier, and also from the beach, with a wide-angle lens, should be taken, as it takes the whole village, and shows the peculiar character of the cottages rising one above another. Then one or more negatives should be taken of "Maseed Katie's Cottage," the favourite object for the artist, taking in the hills, the distant waterfall, and the sea. There is a sad history also connected with it, to which our postman poet, Cepem, has given expression, in a poem of touching sadness, under the above heading, and in the following lines:

"Under the cliff by the western shore,
Where the waters ever wander ever, wander
Looking for one she will never see more,
In the little cove down by the sea."

If Clovelly could be photographed from the sea, it would make the best picture. The street, both up and down, should be taken. It is only within the last few years that it has been supplied with as many like buildings. It was covered with the boulders of the beach, and woos beside him who was not well on his feet in wet weather! A view should be taken from Mount Pleasant, as it gives the character of the singular village. The church should be taken, both the exterior and interior (the latter I have not seen done), because it has some beautifully formed pillars. The Court House is always photographed, but as it is a modern building, erected on the old abbey burnt down, it has not much to commend it beyond being once the residence of the sole proprietor of the whole village.

After photographing these objects, you pass through grounds of the most lovely and picturesque character to Mouth Mill, a guide being supplied you. There are several noteworthy objects of which a picture or two should be secured, such as Wiggan Farm, Gower's Mill, Gallantry Bowe (which is a perpendicular rock, beautifully veined, three hundred feet in depth). This can easily be done from above, with the sea below. Mouth Mill is very interesting, and it has a remarkably large rock, severed by some confluence of nature from its fellows, with a cavern right through it, and is known as Black Church Rock. There are also the lime-kilns in sight, with the gurgling steam passing over its bed of boulders. Each and all can be made a good picture, and will repay the trouble of photographing.

I have by no means given all the interesting bits of Clovelly, but the objects mentioned, if well done, will sell commercially.

We pass on to Hartland, which is about six miles; but, as there is nothing of particular note in the village, we pass on to the old abbey, a sight that will amaze the strangest of old wise wise in their generation, for a more lovely valley could not be conceived for placing a monastery. Sheltered and deeply wooded on either side, with a trout stream meandering by, a path at the rear, where the deer wander, no wonder if they did sing:—

"Here would my willing soul stay,
If for its own sake it could be its last earthly lay.""}

There, however, is the Abbey, with the lofty church tower rising in the rear; and a splendid picture it makes. The building has been modernised. The cloisters of the old abbey form the basement of the eastern and western front, both of which should be taken. The church, which is near by, is well worth three or four negatives. It has a splendid lofty tower, and in the interior it has a very ancient screen. The church is dedicated to St. Nectan, and was famous at one time as containing the relics of that holy man. About a mile from this spot is Hartland Quay, where there is a fine opportunity to take in more sea views. The rocks here are grand, being both massive and precipitous, and are beautifully veined. A half dozen negatives taken would well repay the labour. A couple of miles further down is Hartland Point, well known both to ancient and modern seamen as a very dangerous promontory. The lighthouse now lifts its beacon of warning on it, and as the point has never been photographed, it would be doubly interesting to do so now. Between the Quay and the Point is also a magnificent waterfall, well worth a plate or two.

The principal reason why Hartland Point has not been photographed has been the difficulty of getting there; but this is now removed by going there by the Trinity Road to the lighthouse.

I have now done with this part of the coast, and next week I shall say something of Ilfracombe and Lynton.

Yours respectfully,

Theo Treade.

DEAR SIR,—I believe your readers will agree with me that a guide likely to prove of service to photographic tourists should be written in an unbiased and comprehensive manner, treating generally and fairly of the entire district of which it professes to speak, and not confined to a florid description of a small portion only, as this would be much like an advertisement for a particular hotel company. It would be useless to attempt giving a particular description of all the various objects of interest contained in an area of some two hundred square miles, as this would require more space than could be afforded in such a work as the *Photographic News*. A residence in this beautiful county of between thirty and forty years, principally in its Northern districts, enables me confidently to state that over the entire county are scattered objects of interest of almost every description worthy of the photographic tourist's notice; but provided his preference inclines to bold and rocky scenery, he will find this in its most sublime aspect in North Devon.

Great improvements have lately been made as to the convenience of transit, and to a London tourist there are now three lines of route open, each having its terminus at Ilfracombe, with branches to other places. The first would be from London to Exeter, thence to Barnstaple, thence to Ilfracombe per rail throughout. The next route is from London to Taunton, thence to Devon and Somerset, rail to Ilfracombe, saving distance and expense to the extent of forty miles. The third route would be from London to Taunton, thence to Minehead, thence per coach to Lynton, thence per brake to Ilfracombe. But should the tourist be a stout pedestrian, fond of wild moorland and river scenery, fishing, or peeping into out-of-the-way and secluded places, he can take the stage at Portlock, and diverge from the main line of route to Dulverton, or North Molton. Should he proceed direct he will reach Lynton and Lynmouth. The scenery of these places comprises rock, wood, and water, and in its own peculiar style rivals, if not excels, that of any other place in North Devon. The tourist having entered the district by its Eastern extremity, can proceed with the greatest facility through its whole length, stopping or diverging at various places as he pleases. Passing through Combemartin by the new road through Watermouth, whose giant caves are objects of great interest, the tourist will reach Ilfracombe, where accommodation can be procured suitable to any scale of expenditure. Conveyance by sea and land are readily obtainable by which to visit all parts of the district. As this town and neighbourhood are certainly most central and interesting positions of North Devon, I shall not be doing my duty either to them or the
tourist should I not give them something more than a mere passing notice; I will therefore do so in my next and concluding article.—Yours truly,

JAMES MARTIN.

PHOTOGRAPHING HORSES.

Dear Sir,—Will you allow me a space in your News as regards the photographing of horses? I will give a plan which I have used with every success. I got a man to shake some oats in a sieve, and got all the horse’s attention, then suddenly put the sieve behind his back. The horse will of course look for it, and in that moment take his photograph. I use one of Dallmeyer’s O.D.V. lenses (rapid), and enlarge after.—I remain, &c.,

C. R. P. VERNON.

EXPLOSIVE SILVER COMPOUNDS.

Dear Sir,—There was in the News a short time ago a warning against the use of ammonia or other alkali when boiling a silver bath, on the ground that the oxide of silver produced is explosive to a dangerous degree.

As I did not fear much mischief from the small amount of gas that could be liberated, I tried the experiment, using first washed oxide of silver thrown down by potass. A small quantity was placed wet on some filtering paper, and then over the hot part of a gas stove, the paper charred and smoldered away. The oxide of silver darkened in colour, but did not frighten anyone! Afterwards I tried some thrown out by ammonia, and not washed, drying it over a naked gas flame until the paper charred and took fire. In this case also there was nothing suggestive of the fifth of November.—Yours truly,

Ed. Serlet.

Talk in the Studio.

PRECIPITATION OF SILVER BY PROTOXIDE OF URAMIUM.—M. Isambert, writing on this subject in the Comptes Rendus, says:—When metallic oxides act upon solutions of silver salts, the latter commonly combine in the precipitation of the silver oxide, but there may be produced in some cases a deposit of metallic silver. Ebelmen has shown that protoxide of uranium produces in solutions of nitrate of silver a deposit of metal exactly as does copper, one equivalent of uranium replacing one equivalent of silver, without escape of gas. On repeating Ebelmen’s experiment, the author finds the final result completely exact. Protoxide of uranium being thrown into a very neutral solution of nitrate of silver, and well stirred, a bulk of protoxide is formed, whilst the protoxide dissolved, and the liquid becomes green. On continuing to stir, this colour disappears, and is succeeded by a yellow shade, characteristic of the sesqui salts of uranium. At the same time, the precipitate decreases in bulk and changes its appearance, passing from its original state of oxygen to that of metallic silver. Hence protoxide of iron, in like manner, produces a precipitate of metallic silver, with formation of sesquioxide of iron. This property of protoxides, of passing to a higher state of oxidation, and of throwing down metallic silver, is shared by their salts.—Chemical News.

Mrs. Partington, visiting a photographic gallery recently, asked the proprietor the names of the different style pictures, and was politely informed that they were the “Rembrandts,” “Berlin Heads,” “Embosed Cameo Vignettes,” “Medallion Cartes,” “Romance Black and White,” “Victoria and cabinet,” &c. Mrs. Partington called Ike (who was looking at a stereo view upright) up to the show cases, and pointing to them in the same manner that the photographer did, informed Ike “that’s the sunburnt style, that’s burning heads, that’s Boss camilla vignette’s, no smudging on it, that’s the victoria and cabinet, that’s the victoria cartes, and that’s the cabinet and showworth. I shouldn’t wonder if the next unfailing style will be the vinagrete again?” added Mrs. P., looking over her spec. at the photographer. “I should not wonder at all—you are fond of pictures, I perceive, madam.” Yes, but then I am one of the amateur sort, but still I am partially fond of pictures of exquisites personages.—Written in a Photographic News.

A SILVERING POWDER for coating copper consists of nitrate of silver 30 grains, common salt 50 grains, cream of tartar 34 drachms. Mix, molition with water, and apply.

IGNORAMUS has deprived us of the opportunity of giving him any information or advice, by great carelessness or lack of knowledge in the packing of his negatives which reached us in a hundred fragments. A piece of tape placed behind a piece of board without edges or packing of any kind to keep off the pressure, must inevitably be cracked or broken up into fragments, however carefully treated in transit: each blow or the stamp, adding the rate, post card, &c., would produce a fresh fracture. The issue is that our correspondent, by taking insufficient care, has wasted the care expended, and is disappointed of the answer for which he wished, and we have our writing table covered with dangerous minute fragments and spicula of glass, falling out, despite care in unpacking the parcel. To travel safety, negatives or plates of glass must be placed in a box, or its equivalent. If the boxes used here had had narrow strips of wood glued or fastened with brass all round the edges of one of the boards, to form a cell or box, and the negative, folded in a piece of wadding, or cloth, or flannel, placed therein, it would have travelled with perfect safety. “Ignoramus” does not say what the nature of the defect is. Let him describe it, and send us a print from a defective negative. We may then possibly be able to satisfy him.

STUDIO.—We prefer No. 1, which will permit more effective light to reach the sitter. You will find the west a troublesome aspect, we fear, for portraiture, as you will be troubled with direct sunlight during the greater part of the day. But I will probably be most effectual, and most easy to work. You will probably find a large movable screen covered with tracing cloth or tissue-paper useful in breaking the direct sunlight falling on the sitter, without seriously destroying the illumination.

T. J. ACR.—It is impossible to give special advice for general cases. Almost everything depends upon the size and shape of the interior, how they are illuminated, and many other conditions. It is necessary to meet which practical judgment and experience applied on the spot are imperative. If the circumstances admit, a portrait lens with small central stops may be used. In other cases a single lens, with the stop in front placed variable. You will find an article on p. 82 of our Year-Book for 1877, that furnishes many very useful practical hints on photographing interiors.

SOUTHERN HEMISPHERE.—P.O. order received, and handed to our Publisher, who will attend to your business instructions. Of the lenses that you mark, B will answer best. The general character of your studio appears to be very good. There is nothing better than starch as a permanent means of obstructing the direct rays of the sun without losing much light, as it gives a thin, delicate translucent film; is easily applied; does not soon soil, and is easily removed when necessary. Ebelmen’s results are necessarily of a varied character, and require various varieties of lighting. The principle is that in all cases to admit a strong direct light through a narrow aperture, and to have means of securing reflected lights in position by the use of movable screens. There is no one best formula for portraits or landscapes, as all formulae require at times modifying to suit conditions. The ordinary recognized formula is the best one, and we have published hundreds of times. You can scarcely suppose that we have kept unpublished the best formula, in order to impart it in an answer in this column. To intensify with chlorite of gold, apply the ordinary toning bath used for nitrate to the fixed and washed negative. A strong solution of chlorite of gold will work quicker.

K Y B E R.—It is possible that the plan of making blinds which you propose may answer; but we are not sufficiently familiar with it to recommend it. We have however a large number of lights for the top light, blinds on spring rollers placed at the ridge; and for the side light, curtains sliding on rods. The character of carpet for the floor of studio is not of a matter of taste. It should not be too large or pronounced in pattern. Any quiet neutral tint you may prefer will answer for interior of studio. You should never mix up advertising matters or business concerns of any kind with questions addressed to the Editor, as it causes much delay, and the latter to the different departments for attention to different portions.

JOHN T. GLOVER.—We hope shortly to be able to publish more particulars of Mr. Vander Weide’s electric system of lighting. Thanks for the interesting facts you communicate.

CAPTAIN TURTON.—Thanks. Will be duly acknowledged in next list of subscriptions. Either of our English correspondents will supply the information.

TO ADVERTISERS.—Owing to the pressure on our advertising space the Publishers beg the notice that advertisements are compelled to hold over for the next issues.

Several Correspondents in your next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

SUMMER TOURS.

It is a mistake to put off one’s summer outing till late in the year. We know very well it is fashionable to do that, that the weather is cooler then than in June; and that summer works such charms upon the foliage as to render the landscape tints more bright and varied than is the case when mere masses of green hang from the boughs, and clothe the country with verdant tapestry. There are the autumn fruits to be enjoyed, and wonderful sunsets to be seen, and a hundred and one other advantages of autumn; but, for all that, we recommend an early holiday, especially to the tourist or traveller going abroad. Photographic apparatus can now-a-days be packed away within such trifling limits, that certainly amateurs have little need to trouble about it, and may go anywhere in the country without feeling inconvenienced thereby. There is no reason why they cannot avail themselves of all the advantages that ordinary tourists enjoy, for their companions in travelling is very often far less than one sees the fashionable tourist with. A camera, box of dry plates, and even dark tent and chemicals, do not together make up the amount of baggage that some of “Cook’s tourists” are wont to carry with them, for it would be a bulky equipment indeed that would not go within the space of an ordinary sized portmanteau, and perhaps not only not fill it, but leave a good deal of room for more valuable articles. Many take a cloche coat and silk waistcoat with them to appear in at the grand hotels at Interlaken and Baden-Baden, for, in some of these fine hostels, it is almost de rigueur to appear in a dress suit at table d’hote. A man in Scotch tweeds or knickerbockers will soon become a rarity in those civilised regions, and a mountain tour will henceforth involve not only boots and suits of flannel, but a supply of dress shirts, white ties, and laced-up shoes. If you do not come accompanied by trunks and portmanteaus, you are looked upon coldly by the grand maître d’hôtel and his satellites, and so replete are they with custom that in le gros de la saison, as our French neighbours aptly express it, a modest traveller with a knapsack must pray to be taken in. It is not a question then of getting bed and supper at a moderate rate, but to get one at any cost, and the exorbitant sums demanded, and of course obtained by hotel proprietors, frequently cripples one’s finances, so much so, perhaps, as to compel you to shorten your tour, or forego it the succeeding year. In the season, in Switzerland, the prices rise with the demand. Point d’argent, point de Suisse, is a saying most people have heard, and many know the meaning of. On the Rhine, at the German Spas, in Scotland, the English lakes, or wherever you turn, matters are no better in the usual holiday time, and this is one of the main reasons why we advise those who can to take their holiday early. Although the photographer may lose some effects by not waiting for the autumn, he is not so trammeled as the painter, and the changing undergrowth in woods and dells, the ferns and forest flowers, are as pretty in June as they are three months later. Then there are such glorious long days about this time of the year, which must certainly not be forgotten on the side of summer, and if the traveller should be troubled with a few very hot mornings he must remember that in September and October one is apt also to be unfortunate, and to come in for a slice of dull November weather, or cold winter rain, as being the red leaves down in shoes, and sudden the ground for four days together. In early summer he is comparatively undisturbed by other tourists; he does not find the inns and hotels filled to overflowing, but the landlord is glad to have him, and looks after him with care and attention, such as he could not secure later for love or money. When he visits this place or that, he does not find nature spoilt by crowds of visitors, giving an air of cockneyism to everything he sees, and this freedom from groups of tourists is one of all others which the landscape photographer desires.

Robinson, in his work on “Pictorial Effect in Photography,” has pointed out how a pretty rustic landscape may be altogether spoilt by the introduction into it of a portrait unsuited to the scene—a finely dressed dandy in a country lane, for instance—and many of our readers may have seen the poor artists at Botwe get badgered by their clients, in all sorts of costumes, who take up positions in the Fairy Glen on the Conway, straight in front of the painters’ canvasses. It is generally considered a very funny thing on the part of tourists to plague a painter or photographer when earnestly at work, and the latter is especially at their mercy, for with him the picture depends upon securing a few moments’ favourable lighting after he has drawn the slide. Thus both a saving of worry and anxiety, as also of money, is generally effected by those who travel in early summer, and as everybody takes an outing now-a-days, and wants to be as fashionable as he can, quitting town at the right moment, when Parliament is up, and coming back again just when the theatres and the winter exhibitions are commencing, it follows as a matter of course that hotels and tourist districts are full to the very top during this brief period. In June you may go to the most charming spots on the Lake of Lucerne in the Engadine, on Windermere, in North Wales, or on Loch Lomond, and make arrangements to stop a week or ten days at a comfortable hotel for a moderate amount, while later on not only will they refuse to listen to any bargain you desire to make during your stay, but you may consider yourself fortunate to get taken in under any circumstances at all. One more hint to those going abroad. Travellers who can speak the language of the country they are visiting, or at any rate, are sufficiently familiar with it to get on somehow, have, of course, great advantages over those who must perform trust themselves to Cook, or Gaze, or other of the excursion agents. It is a good plan when you have fixed on your route, and calculated the expense of travel you have to meet, to consult the “circular tours” which almost every foreign railway issues tickets for in summer. Cook’s Excursionist contains a number of these “circular tour tickets,” which oftimes may be used to advantage; in like manner every railway company pretty well, in France, Germany, Switzerland, &c., have their own tours. Head to each photographic, the German Excursionist contains several closely printed pages of these tours, and when an intending tourist has sketched out his route, it is very likely he can get one of these plans to suit him, in which case he may take a ticket at a very reduced rate. We will give one illustration of this. Supposing you desire to visit the Pyrenees; you go to Paris, and then find that a second-class ticket to Bayonne will cost you between two or three pounds; then come sundry railway fares to help you on your way across the mountain range—say, as far as Toulouse—and then the journey back to Paris. In this way the cost of the railway journey from Paris to the Pyrenees and back would amount at least to seven pounds; and yet a circular ticket, first-class, out and home, which you can use or not, just as you like, when you get among the Pyrenees, can be had in Paris, for five pounds, which would not take you there and back third-class. So from Cologne, from Frankfort, from Berlin, and from scores of other places, circular tickets are issued through interesting districts, and those of our readers who are meditating a foreign tour this summer will do well, therefore, to study these before making definite arrangements.

A NEW DRY PROCESS.

Mr. Carey Lea gives, in the Scientific American, the following details of his most recent modification of the emulsion process, of which he appears to think very highly. He says:—
The method gives, by simply pouring an emulsion over glass, not only a high, but I may say an intense, sensitiveness. Moreover, by virtue of the silver iodide which they contain, these plates need no backing. They develop with great rapidity, and need no intensifying, so that the whole operation, from first to last, is reduced to the most absolute simplicity. The advantages in the way of facility of management and the high degree of sensitiveness are such that I should not be surprised to see these dry plates largely supersede the wet plates. In fact, a beginner will more easily work this dry method than the wet. When the emulsion is to be obtained commercially, which it soon will be, as I do not propose to place any restriction upon its manufacture by any one who may choose to prepare it.

Collodion.—To each ounce of solvent, consisting of alcohol and ether in equal parts, take ordinary crystalized cadmium bromide, six, and a-half grains; ammonium bromide, two grains; ammonium iodide, one and a-half grains; cupric chloride, one and a-half grains. About eight grains of intense pyroxylone to the ounce, with two drops of aqua regia. Saturate with silver nitrate, using from twenty to twenty-five grains to the ounce. The first-mentioned quantity is excellent for ordinary work; when a very high degree of sensitiveness is desired, the larger quantity may be used. For the reason that the emulsion is to be dried, some economy may be practised by making a more concentrated emulsion, as follows:—

Ordinary cadmium bromide ... 9 grains
Ammonium bromide ... 2
Ammonium iodide ... 2
Cupric chloride ... 2

Use about ten grains of intense pyroxylone. The silver nitrate must be increased in the same proportion as the silver iodide is diminished, in order to maintain the strength of the collodion. Three ounces of this collodion will, after treatment, give four ounces of finished emulsion.

The best results are obtained by keeping this emulsion, with occasional shaking, for from twenty-four to thirty-six hours. It is then to be poured out into a flat dish and allowed to set. Particular care is needed in this part of the operation; the preservative must be applied just at the right time—neither too soon nor too long after the pouring out. The emulsion must be occasionally examined, and moved about in the dish to promote equal drying. As soon as a skin forms on it, holes must be made through it, and the collodion underneath made to flow out and over it. If this be neglected, the surface will become hard and leathery, while the bottom is soft. The object is to keep the whole mass as nearly uniform as possible, and, as soon as it is gelatinous, to apply the next treatment. The proper condition can be judged of by touching with the tip of the finger; as soon as nothing comes off upon the finger, the emulsion is ready for the preservative.

Any preservative may be used. As to the effects of different preservatives, I will speak presently. If the last quantity of silver be used, the preservative may actually be applied in its ordinary condition; but if the larger, then it will be well to add to the preservative one-tenth of its bulk of ordinary acetic acid (No. 8 or Beaufoy’s).

The preservative is to be poured into the dish, and then immediately the film is to be plunged up with a porcelain, horn, or glass spatula (not a metallic one), and reduced to flat places; and the whole, presented in a film, is to be transferred into a convenient glass jar—not too small. The flakes of emulsion are to be occasionally stirred, and left in contact with the preservative for fifteen minutes from the time when it was first poured over the mass. (In operating upon a large scale, commercially, it will probably be found better to leave a little longer in contact with the preservative, and always to acidify. For working with a few ounces, the foregoing is the right way.) The preservative is then poured off, and water poured on, the flakes well stirred up, and the water changed several times. The flakes are then left to stand under clean water for about an hour; then several more changes, then stand another hour; then several more changes. By this time everything soluble is extracted from the flakes; indeed, after the first hour no silver can be found in the wash water. We have now only to dry. This may be done at ordinary temperatures, or the vessel may be set over a stove, provided its bottom be not allowed to become hotter than the hand can bear. The vessels must be thoroughly; the flakes are wonderfuly, and curl up like tea leaves. They are not white, but of a medium grey colour, notwithstanding which they make a pure cream-coloured emulsion.

To re-emulsify, the dried flakes are put into a bottle, and are covered with one-third ether, one-third alcohol, and one-third plain collodion. They must be well shaken at intervals. The new emulsion is not in good order till after at least forty-eight hours, and is better at the end of a week. When it has once been thoroughly mixed with the liquids, and has been shaken at intervals for some days, it seems to lose all disposition to settle, and makes a most excellent emulsion. There is no reason why it should not keep indefinitely. Or it may be preserved in the dry state, and emulsified at any moment, by pouring twenty to twenty-five grains of the dry emulsion to each ounce of solvents. Three- and-a-quarter ounces of collodion, formula No. 2, will yield about one hundred grains of dry flakes.

Preservatives.—The character of the image will depend very much upon the preservative used.

Albumen Preservative.—This gives an exceedingly sensitive and delicate plate, with much less density than most of the other preparations. For this reason I prefer it to the rest, as tending to give detail in both lights and shadows, with great variety of half-tone. My formula is—

Water 12 ounces
Thick gum and sugar solution 1 ounce
Prepared albumen 1 pound
Sixty-grain alcoholic solution gallic acid 1
Sixty-grain tannin solution (in water) 1

To be added in the order named. If rather more density be required, double the tannin. I use it as above. This preservative works very cleanly and satisfactorily. I use it exclusively.

Gallic Acid and Coffee.—A mixture of gallic acid and coffee, using about two ounces of sixty-grain solution to twelve ounces of infusion of roasted coffee, gives very good results; it should, however, be acidified with acetic acid, using about half-an-ounce of Beaufoy’s (No. 8) to the above quantity. It gives a blacker image than No. 1, and more intensity. It will probably be useful when the pyroxylone is deficient in inert aty. It gives excellent transparentities by exposure under a negative, but too intense for lantern work, for which No. 1 is much better, as well as for negatives.

Development.—For a 1/4 by 1/4 plate pour four ounces of water into a 7 by 9 dish, add half a drachm of sixty-grain solution of pyrogallic acid in alcohol, and put in the plate. Mix in a bottle equal quantities of a fifteen-grain solution of potassium bromide and an eighty-grain ammonium carbonate. Of this mixture pour one fluid drachm into the dish. When the detail appears, add another drachm, and later, if necessary, a third; or add half a drachm of the ammonium carbonate solution without bromide. The two first additions must have bromide; the third is best without for a negative—best with for a transparency. Fix in the hypophosphite solution of the same strength as used for wet plates.

I should have mentioned that I always keep the colloidion for a month—for several, if possible. The plates should be edged with a solution of india-rubber in benzole.
The principle of applying a preservative to a mass of material at once, and then washing it out again, could be patented. This is common to the new processes. The plan of applying a silver bath to a mass of partially dried collodion is also new and patentable. Convinced as I am of the very great usefulness of these processes, I believe that such patents would be very valuable. I prefer, however, to give them freely to any one caring to use them, asking only, in return, to have them ascribed to their author, and not appropriated by those who may make trivial modifications on them.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER VII.

REDEVELOPMENT, AND INTENSIFICATION.—THE FIXING SOLUTIONS—VARNISHING.

Redevelopment and Intensification are corrective measures; properly lighted, exposed, and developed, the negative should not require either of these manipulations to produce the required effect. The difference between these two methods may be thus described. Redevelopment is a second application of developer, or a solution of pyrogallic acid and silver, before the negative is fixed, for the purpose of bringing out further detail, which the developer has failed to do; while intensifying or "strengthening" is the application of the pyrogallic acid solution and silver to any extent, after fixing the negative, tending only to strengthen the image already formed on the plate, and having no effect in bringing out any further detail.

As I have said before, these methods should not be resorted to unless, from some cause, you are unable to get sufficient time of exposure on the plate, as in the case of a child or nervous sitter, or from the weakness of the light. With your bath and collodion in proper working order the negative should grow under development to a perfect density. If your negatives come up uniformly weak and thin, and you know the lighting is good, and have confidence in your sensitizing solution, weaken the developer a little with water, adding a drop or two of acid.

In the case of a negative being too thin or weak—that is, lacking sufficient contrast between the lights and shadows—it may be strengthened in various ways, either before or after it is "fixed."

If it is found necessary to strengthen before fixing, the negative should be thoroughly washed, and flowed with a small quantity of a solution of

Pyrogallic acid 40 grains
Citric acid... ... 40
Water 30 ounces

Pour a little of this solution into a small glass or graduate similar to that used for the development; pour the solution over the plate two or three times, covering it in every part, draining it back into the glass, not to waste it; to this add a few drops of 20-grain solution of silver (in water), and with this flow the plate until the desired density is gained, or the solution turns "muddy."

If it is not sufficient to strengthen the negative, great care must be taken to thoroughly wash off the hypo-sulfite of soda, as its presence causes bluish stains and streaks. This carefully done, proceed to strengthen with pyrogallic acid and silver, using the pre-
cautions before described against streaks. This operation of strengthening after fixing the negative has the tendency to change the colour of the film to a bluish hue, but the colour better adapted to printing purposes, of an olive brown, may be restored by placing the negative again in the hypo-sulfite of soda solution after thoroughly washing off the intensifier. Thoroughly wash away all traces of hypo-sulfite of soda.

While the process of redevelopment or strengthening before fixation of the negative must be conducted in non-
actinic light, and before the negative has been so exposed after development, because actinic light has still an influence on the iodide of silver, it is not absolutely necessary with the intensification of the fixed image, a weak diffused light not affecting the deposit of silver.

When the negative is of a subject white and black, as copies of engravings, printed matter, manuscripts, &c., sulphuret of potassium or bichloride of mercury and ammonia are used as intensifying agents. Permanganate of potassium, tincture of iodine, &c., are also sometimes used as intensifiers.

To Strengthen with Sulphuret of Potassium.—Strengthen the negative before fixing as before described with Pyrogallic acid; fix and wash the negative thoroughly. This will not be sufficient, as you want the whites of the negative perfectly opaque. Take in your developing glass a piece of sulphuret of potassium of the size of a common marble, filling the glass with water; and, without waiting for it to dissolve, flow it over the plate; continue this, the solution gaining strength as the sulphuret dissolves. The plate was now gradually assumed a purplish black hue until the required intensity is gained. The reason why the sulphuret is not allowed to fully dissolve before beginning the intensification is, that its action would be too rapid to allow the operator to flow the plate without causing streaks and stains.

The objections to the use of sulphuret of potassium are so strong, almost to nullify its virtues as an agent for intensification. In the first place, negatives strengthened by it cannot be kept in a state of preservation long, owing to the decomposition of the sulphuret of silver which is formed in the film; secondly, it can only be prepared in solution at the very moment of use; and thirdly, the smell of sulphuret of potassium is so offensive that some operators will use it at all. For these reasons, you will say, They certainly are; but still the sulphuret is at times very useful as a rapid and sure intensifier.

To Intensify with Bichloride of Mercury and Ammonia.—Strengthen the negative with pyrogallic acid and silver as before described, wash, and fix, and again treat it to a thorough washing. Now flow the plate with a saturated solution of mercury in water, 1 part to 6 parts of water. (When a liquid has dissolved as much of a solid as it is capable of doing, it is termed a saturated solution. Therefore you will understand by a saturated solution of bichloride of mercury that the water in which the bichloride of mercury was dissolved has taken up as much as it was capable of doing.) Continue to flow this solution on and off the plate till the image, first turning to a greyish white and gradually growing more pure and uniformly white. Wash the plate, and flow on a weak solution of ammonia 1 part and water 8 parts. Gradually and cautiously increase the strength of this solution by adding ammonia. The plate will now darken until it grows perfectly opaque and black.

The New and Simple Method of Recovering Silver from Hypo-sulfite Wastes.

BY JAMES CHISHOLM.

In the Bulletin for April, 1874, I communicated a short method of recovering silver from hypo-sulfite of soda.
SULPHOCYANIDE FOR FIXING.

HYPOSULPHITE of soda has been at once one of the greatest boons and the greatest banes ever introduced into photography. If hyposulphite of soda as a solvent of silver salts had been known earlier, it is probable that photography as a practical art would have been removed, three or four months older than it is now. Sun pictures, as is well known, were produced at the commencement of the present century, but, for want of the knowledge of a fixer agent, no enduring results followed the early experiments. In the earliest works of Talbot and Daguerre, the fixers employed were very imperfect. Daguerre if we remember it was a soluble salt of common salt, whilst Fox Talbot used bromide of potassium. Sir John Herschel's introduction of hyposulphite of soda at once banished all other imperfect solvents of silver salts, and became recognized as the fixer agent, *par excellence*, a position which it has maintained to this day. It has been the subject of almost unlimited obloquy and denunciation, but it has never been superseded.

The avowed object of Mr. Hooper's paper, read at the meeting of the Photographic Society on Tuesday evening, was to aid in superseding it by the use of sulphocyanides as fixing agents. In answer to a challenge as to his own practical experience in the use of the sulphocyanides, he distinctly avowed that his aim was rather to stimulate experiment and enquiry than to state his own limited experience. The evidence he had collected from the statements of the gentlemen who a dozen years ago urged the use of sulphocyanides in fixing seemed most satisfactory and conclusive as to their superiority to hyposulphite of soda. It only required to be manufactured in a larger scale and at a cheaper rate to meet every desire of photographers. Mr. Spiller followed, and in a brief paper pointed out the advantage of using it as a by-product from gas liquor at a cheap rate, so that, instead of paying three or four shillings per pound, it might be produced to sell at three or four pence per pound. With somewhat of caution and hesitation, he said, in answer to the President, that, though he thought it was a better fixing agent than hyposulphite of soda; but he had not had much practical experience in its use. The call for the results of practical experience, responses were poured in on the night, none of which was, unfortunately, met with any response, and no practical information was forthcoming. We can, however, to some extent supply the omission.

When, a dozen years ago, sulphocyanide of ammonium was introduced by Mons. Meynier, of Marseilles, as a fixing agent, to supersede hyposulphite of soda, the claims made for the new fixing salt were so attractive, that we gave considerable practical attention to the subject, our experiments extending over many months. The claims put forward gave it, if verified, a right to supersede both cyanide of potassium and hyposulphite of soda at once. It was stated to be as active as cyanide of potassium, and as easily removed by washing. Unlike cyanide, it did not attack and dissolve the image when it had completed the fixing; and unlike cyanide, it was not poisonous. It was alleged to fix more perfectly than hyposulphite, and to be much more easily removed by washing. Unlike hyposulphite, it did not form insoluble salts with silver, if the fixing solution were too weak; and unlike hyposulphite, it did not readily decompose, and liberate sulphur, to the detriment of the prints. These claims, generally, we found borne out by practical test, and hence at first it appeared that the millennial of silver printing had arrived.

But there was another difficulty: a difficulty which will, we fear, unless some new discovery removes it, be absolutely fatal to the idea of adopting the sulphocyanide in place of hyposulphite for fixing. We must state this as clearly as we can consistently with brevity. To make the matter clear, we must first describe the property which makes hyposulphite of soda so valuable as a fixing agent. When a silver print is first immersed in a bath of hyposulphite of soda strong enough for fixing purposes, the chloride of silver and nitrate of silver present in the print are converted into a double hyposulphite of silver and soda, which is absolutely soluble in water. Hence, by long washing, this double salt of silver and sodium, being insoluble in water, is removed. The process is frequently performed, the perfectly fixed and perfectly washed print may be fairly said to be permanent. But when sulphocyanide of ammonium, or other base, is used for fixing, the reactions, generally similar, vary in their issue. The print, on being immersed in the sulphocyanide bath strong enough for fixing, undergoes at first a similar change to that effected in the hyposulphite bath, involving the formation of silver and ammonium being formed. This salt is perfectly soluble in solution of sulphocyanide of ammonia, but it is not soluble in water. Hence when the print, duly fixed in the sulphocyanide, is removed to water for washing, the double sulphocyanide of ammonium and silver in its texture cannot be perfectly removed by washing. This double salt, instead of being dissolved by water, becomes decomposed into ammonium and sulphocyanide of silver. The sulphocyanide of ammonium, being soluble in water, is removed, and the sulphocyanide of silver, being insoluble, remains in the print. To obviate the difficulty involved by this fact, it was proposed to use two fixing baths. After first fixing, and washing for a short time, the print, still containing insoluble sulphocyanide of silver, was immersed in a fresh bath of sulphocyanide of ammonium, which dissolved the sulphocyanide of silver. Unfortunately, the double salt formed was again decomposed on a second washing, and again a trace of sulphocyanide of silver was left in the print. By repeating the process a few times the trace of the sulphocyanide of silver left was reduced to an insignificant quantity, and the print might be regarded as practically saved. We trust, that after this degree of care, which might be regarded as considerably in excess of that which in any ordinary photographic operation could be accorded. The first effect appeared in every way satisfactory. The prints were brilliant, of fine tone, and singularly pure in the whites; but on exposing one half to bright light, and protecting the other, during several months, the exposed portion darkened, while the unexposed part of the sulphocyanide of silver which were sensitive to light.

We had feared this result from previous experiments in the test tube, and the practical results in printing verified the suggestion of laboratory experiments. We do not enter into further details here, as the result appeared to us conclusive against the use of sulphocyanide for fixing prints. On the question of purity we have said nothing, as we regard absolute purity as a preliminary imperative
 condition in conducting experiments. The risk of impurity is small, inasmuch as its detection would be certain. The chief impurity to be feared is a polysulphide which would blan-ken or discolour the prints brought into contact with it at once.

GEYMET’S PORTABLE CAMERA.

At the last meeting of the French Photographic Society M. Geymet exhibited a little camera for tourists and amateurs specially constructed for dry plate work. The two portions of which the apparatus consists weigh together one kilogramme, or two pounds, and it is possible to obtain with it pictures eight centimetres square.

M. Geymet claims the construction of the apparatus as novel, and thus describes it:—The camera consists of a box of acacia wood four centimetres thick. It carries a globe lens (No. 1), fitted to a copper cylinder, which serves for focussing, in consequence of the backward and forward motion it imparts to the lens. The back of the camera has copper fittings also to receive the ground glass. The latter, which is fixed firmly, is just ready for focussing as soon as a screw is turned, and when the operation of focussing is complete it is pushed back to give place to the sensitive plate. The screw or button is a tube 1/5 centimetre in diameter, containing a focussing glass.

In the upper part of the camera is a groove in which the dark slide fits. A box of dry plates containing fifteen prepared glasses forms the second part of the equipment, and a mechanical arrangement allows each plate in turn, according to its number, to slip from the box into the dark slide in the camera. After the first pose, when the plate has been taken from the camera and returned to the box, a slight pressure from the outside suffices to place the second plate in position ready to be slipped into the dark slide. An indicator outside leaves no doubt as to the position of the next glass to be exposed.

HOW TO PLACE THE CAMERA PARALLEL TO THE OBJECT IN COPYING MAPS AND PLANS.

BY M. HUGUENIN.

The ground glass and the partition which carries the lens must be in two perfectly parallel planes, which may be tested with a lead-line. The optical axis of the lens—that is to say, the line that passes through the centre of the different glasses composing it—should fall perpendicularly upon the ground glass; the point where this optical axis falls should be marked by a cross pencilled upon the glass. To find the exact spot where this mark should be, the two lenses that are combined are covered with two diaphragms of opaque paper, the centres of which are pierced with a very small opening. Then a brilliantly lighted object is focussed, and you obtain upon the ground glass a luminous circle, the centre of which is the point sought for. Finally, as in drawing out the camera the parallels become the ground glass, and the optical axis (as found) it is well that the lower frame, or rear portion of the camera, should be exactly adjusted between the two sides, so that any deviation that may take place can be rectified. It is unnecessary to add that in making reproductions of all kinds it is necessary to have good rectilinear lenses, and of long focus, as short focus lenses are too apt to distort a good deal.

The camera being properly constructed, it is necessary that the plane surface to be reproduced (geographical maps, plans, engravings, pictures, &c.) should be placed before the camera in such a way as to be perfectly parallel with the lens and the ground glass, and the middle of the surface should be the prolongation of the optical axis above mentioned, so that a straight line from the middle of the plate passes through the centre of the lens, and falls perpendicularly upon the point which represents the middle of the picture to be reproduced.

These conditions are very quickly realised by means of the method which I have employed since 1859. A square mirror of about twenty centimetres is taken, and by means of three screws fixed behind the frame it is levelled. The screws are regulated in such a way that the plane which exists between this plane and the silvered surface; once the mirror is regulated, it serves for all reproductions.

To ascertain the relative positions, the mirror is put against the centre of the subject to be reproduced, and the operator looks at the ground glass. If we suppose the centres in a straight line, and the parallelism exact, the image of the lens will reflect itself in the mirror, and as the rays which form this image fall perpendicularly upon the silvered surface, they are reflected rigorously upon themselves, and give an image of the lens in the middle of the ground glass. If all the centres are upon the line of optical axis, the point marked in pencil upon the ground glass as being the centre will also be the centre of the image of the lens. If, on the contrary, the parallelism is not exact, the rays falling upon the mirror are reflected no longer perpendicularly, but according to an angle more or less considerable; the image of the lens is deviated to the right, or left, or above, or below. Matters are then rectified by varying the position of the mirror, and of course that of the support, until the conditions are realised, viz., to put the image of the lens in the middle of the ground glass where the pencil cross is.

If, from some reason or other, the image of the lens is not visible enough, the frame may be surrounded by a strip of white cardboard, or by placing before and towards the

METHYLIC ALCOHOL IN THE DEVELOPER AS AN ACCELERATOR.

In the course of a discussion at the South London Photographic Society allusion was made to a statement made in one of the journals to the effect that a continental photographer had found the addition of methyllic alcohol to the developer enabled him to secure good negatives with very much reduced exposure. The experience of members as stated at the meeting in question afforded no confirmation of the statement, but was rather opposed to the notion that any benefit was derived from the addition in question. We find in a letter by M. Alexandre in our French contemporary, La Moniteur de la Photographie, the allegation as to acceleration repeated; but a much more precise statement is given as to the formula in which the wood spirit is used.

M. Alexandre states that by the addition he describes, the iron developer acquires great energy, and permits very short exposures. "Into a flask is put—"

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric acid</td>
<td>... 6 parts</td>
</tr>
<tr>
<td>Water</td>
<td>... 4</td>
</tr>
<tr>
<td>Methylated spirit</td>
<td>... 4</td>
</tr>
<tr>
<td>Powdered peroxide of manganese</td>
<td>... 6</td>
</tr>
</tbody>
</table>

This compound is distilled over a mild fire. I employ simply a lead pipe, doubled back, and placed upon a garden pot, the tube fitting into the bottom of the pot through a cork. The garden pot is filled with water to serve as a condenser. The liquid secured contains a large quantity of methyl, and corresponds to the aldehyde series of spirits of wine. Five cubic centimetres of this liquid added to a hundred cubic centimetres of the iron solution will render the latter quite as rapid as a developer made with formic acid.
MAGNETIC PHOTOGRAPHS.

BY W. HORSEMAN KIRKBY.†

These photographs show the lines of direction, and the field of magnetic influence between the poles of horseshoe magnets. The negatives were obtained in the following manner:

In photograph No. 1, all four magnets were laid on a table, their poles forming a square, every N. pole having a S. pole for its immediate neighbor. On this table lay a daylight face upwards, and the iron filings dusted on. Under the influence of the magnets, the filings arrange themselves in a definite pattern, and this is facilitated by giving the plate a gentle tap. All these operations were conducted by candlelight. The gas was then turned on for three minutes, and the plate afterwards developed in the usual way, the filings having been first carefully dusted away.

The second photograph was with the poles arranged so that the N. pole of each magnet was next to the S. pole of its neighbour.

The third was a combination of the two preceding figures.

The fourth was with the poles forming a triangle.

The idea of using photography for this purpose struck me when lately witnessing some experiments by Mr. Philip Braham, of Bath, who expressed his regret that he had no handy means of recording the figures he met with in his investigations on magnetism, and I then and there experimented as above, and these are the results.

HOW TO GET CLEAR SKY IN OUT-DOOR NEGATIVES.

BY HANOLD DOUGLAS.†

Since my early days in photography I have examined photographic journals many times to find something that would throw light on this subject. Most architectural photographers have their skies worked out mechanically. The leading photographic writers strongly urge against this practice; but when cloud effects cannot be obtained, I am of the opinion that a clear blank sky is better than a uniformly dark one, which generally tends to make prints look flat.

This subject has been my special study for a year past. Experience has led me to the following conclusion:—If the sky appears uniformly dark blue to our eyes, or if there is any haze in the atmosphere, it will surely come out dark in the prints. On the other hand, if it is light blue, or if there are white clouds of any kind, it will act strongly on the negative, and the result is a clear, if not perfectly white sky in the photograph. Hence it is advisable not to attempt architecture in hazy days, unless you are going to paint out the sky. Another thing tends to help the getting of clear skies: use as little acid as possible in your silver, and expose while the sun is obscured by a white cloud, which will remove harsh contrasts; and if the negatives lack intensity, they certainly will gather some if you dry them in the sun before fixing. Try it.

† A communication to the Liverpool Amateur Photographic Association.
† Photographic Times.

In architectural photography, swing backs (both ways) are indispensable; yet there are still a few who have never used a swing-back camera box. If you are troubled with the building taking pyramidal inclinations when the camera is inclined either upwards or downwards, an adjustment of the vertical swing will at once correct it. The lateral swing will help in getting the distances into focus with the foreground without necessitating the use of a small stop. Especially is this the case when you have to take street scenes, when it is impossible to get those parts near the instrument into focus with those receding with a non-swing-back box.

Correspondence.

DEVONSHIRE SCENERY.

Sir,—When your correspondent "W. A. C. A." asked to be informed "where he could find a good central spot, with good subjects for photographing for two or three weeks, within easy distance of each other, not Devon, I must confess I was not without fear and him an "area of two hundred square miles" to select his objects of photographic interest from, and to say they were within "easy distance."

I recommended "Westward Ho!" to spend a fortnight so as to be able to do that, Bideford, Clovelly, &c., and a fortnight at Ilfracombe, so as to photograph that place and Lynton. I had no idea of giving "a puff" to any hotel company, nor any special object. The "puffing" must be left to the left to be who feels it his "duty" to do it. If I have invested the most picturesque objects with their local or historical interest, it might be vanity to suppose that it would be more interesting to do so than leave the hard and "bare bones." This might have been done in a "florid style," but it is an unfortunate habit I have acquired through a long connection with the newspaper press; but it is one that Mr. Martin is not likely to fall into, judging from the first instalment, which he has sent it its "duty" to give us at the eleventh hour, in favour of Ilfracombe. I had indicated in my first letter that I intended to say something of this place and Lynton; but as your correspondent of last week feels that the weighty "duty" calls him to say all that can be said on the subject, and to say it in an "imperial manner," I feel it is not possible for two suns to shine in one hemisphere, therefore I must retire before his superior merits, and hide my diminished head. But should "W. A. C. A." or any others who may follow in his track, find I have over-stated anything, let them come into 46, Mill Street, and "blow me up"—or, what is better still, do it in the News.—I remain, sir, yours respectfully,

THOS. TENDRAKE.

Bideford, June 7th.

P.S. I have sent per post several photographs of some of the interesting objects mentioned in my letters.

[The prints received are admirable photographs of pleasant scenes. We and our readers are much indebted for the vivid descriptions and valuable information, which were not, in our view, open to any charge of partiality or prejudice, or they would not have appeared in our columns.—Ed.]

PHOTOGRAPHING HORSES.

DEAR SIR,—Mr. Vernon gives a simple and, I have no doubt, very effective plan of keeping a horse quiet when being photographed. Perhaps some of your readers would like to know the method we adopt at Woolwich to secure tranquillity for a few moments when we are operating with the camera upon military subjects.

When we have a gun with six horses or a detachment of mounted men to photograph, it is almost impossible to get the group perfectly steady without recourse to some artifice, for one horse or the other is continually bowing its head,
or changing its bit, or shaking its trappings. Under these circumstances we employ one of two plans, either of which usually succeeds. When the picture has been focussed, the slide is drawn, and an operator stands ready to unroll it. A trumpeter then ordered to blow a loud and prolonged flourish, when the horses at once prick up their ears and remain perfectly steady. The other plan is to let a horseman gallop straight towards the horses, coming at them full speed, and pulling up sharp when at a short distance off. The models watch the approaching cavalier in perfect quietude, and the object is to make the air cars in capital style.—Faithfully yours, H. Baden Pechard.

War Department, Woolwich, 8th June, 1875.

MR. SAWYER'S IMPROVEMENTS IN THE CARBON PROCESS.

Sir,—I did not see, till too late for reply last week, the letter signed "E. H. D." In reply, permit me to point out to that gentleman that if he will do me the honour to read my descriptive paper, he will see that I do not coat single transfer paper with plain gelatine, nor do I use a solution of lac in ammonia at all. For the information of those who care at all about the matter, I may here state that I first coat paper with a solution of gelatine rendered insoluble by the addition of borax. A heavy pressure, then coat with a solution of lac dissolved in soda and borax. It is to be hoped that my having patented this application will induce "E. H. D." and many others to publish anything they may hereafter find likely to prove of advantage. As far as I am concerned, he is perfectly well to use my patented support, if he chooses to purchase it at the very small price charged for it, but, as I see he has from the "Hub of the Universe," he will in all probability have a much better thing of his own.—

J. R. SAWYER.

THE PROPERTIES OF WET GUNCOTTON.

Dear Sir,—Permit me to call your attention to a slight error in your account of the recent guncotton explosion at Woolwich, wherein it is stated that moist guncotton cannot be exploded by means of a detonating fuse, and that, "according to the experience of chemists well versed in its properties, wet guncotton can only be exploded when a charge of dry material is in contact with it, and this is fired from all!"

Without doubt, the employment of an initial charge of dry guncotton is both convenient and advantageous as a means of starting the explosion of a larger bulk of the wet material, and is for this purpose commonly resorted to in practice; but the statement that it is absolutely necessary is not correct, or, at any rate, is contradicted by several passages in Professor Abel's "Contributions to the History of Explosive Agents." A paper read before the Royal Society in February, 1874, and published in abstract in the "Proceedings," from which I quote the following:—

"The absorption of three per cent. of water by guncotton (in addition to the two per cent. which it normally contains) rendered its detonation doublant by the 'detonator' ordinarily used. By considerably increasing the initial charge of fulminate, damp guncotton could, however, be detonated entirely." —

Mr. E. O. Brown having proposed to apply the detonation of dry guncotton itself to the development of the explosive force of the compressed material when in a moist state, a series of comparative experiments were made for the purpose of determining the relative amounts of mercuric fulminate and of air-dried guncotton which it would be necessary to employ in order to insure the explosion of a quantity of compressed guncotton containing seventeen per cent. of water; and it was found that about ten grammes of air-dried guncotton would do the work of thirteen grammes of the fulminate.

Hence, from motives of economy, it is deemed advisable to employ a priming charge of the former, which is itself fired by the fulminating mercury, and acts at once on a larger surface of the wet cotton than in the former instance, and the admission that there is a "remarkable difference in the behaviour of one and the same explosive substance under nearly similar circumstances," as stated by Professor Abel, I cannot concur in the opinion of your correspondent, except when he affirms, "That no other way exists of detonating or exploding wet guncotton, it is, perhaps, too much to say, in the event of the explosion that has recently occurred."—I remain, dear sir, yours very truly,—

John Spiller.

London, June 7th.

PROCEEDINGS OF SOCIETIES.

PHOTOGRAPHIC SOCIETY OF GREAT BRITAIN.

The usual meeting of this Society was held in the Architectural Gallery, Conduit Street, on the evening of Tuesday, the 8th inst., Mr. J. Glasier in the chair. The minutes of a former meeting having been read and confirmed.

Mr. G. Hooper read a paper on "Sulphocyanide for Fixing," which will appear in our next. He placed some examples of the salts on the table, marked "pure" and "impure." Mr. J. Spiller, read a brief paper on the same subject, chiefly devoted to a consideration of the question of producing the salts in question. In answer to a question from the President, he said he thought it was a better fixing agent than hypophosphite of soda.

Mr. Hughes, in answer to an appeal from the Chairman, said he tried sulphocyanide when it was first proposed as a fixing agent a dozen years ago; but without remembering the precise details, he knew they came to the conclusion that no advantage was gained by its use. Referring to the samples exhibited with makers' names attached, and the words "pure" to one and "impure" to another, he protested against the immodest notion of such a course, when the alleged impurity rested on no definite evidence, but a mere ipse dixit. He further protested against a paper which was a mere resume of historical matter published years ago, without one particle of personal experience on the subject.

Mr. R. Friswell (Hon. Sec.) referred to the non-poisonous character of the sulphocyanides.

Mr. Hooper, in reply to Mr. Hughes, said his object was not to obtrude his own limited personal experience, but, if possible, to assist in the direction and scientific experiments on this important subject which seemed to be neglected. As for the samples, he had mentioned no names in his paper; and as he regarded meetings as intended to have an educational result, he thought the exhibition of samples would be useful. He suggested that possibly Mr. Hughes' failure might arise from the use of impure samples, or from failing to use two baths.

Afer some further conversation and a vote of thanks, the Chairman announced that the exhibition would be opened by a soiree on the evening of September 28th, and would continue open until the 22nd of November. He then adjourned the proceedings until November.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The last indoor meeting of the session was held in the Hall, 5, St. Andrew Square, on the evening of Wednesday, the 2nd inst., the President, Dr. Thomson, in the chair.

The minutes of the last ordinary and out-door meetings were read and approved, and Messrs. William Donaldson and W. M. Bryce were admitted ordinary members.

Mr. Turnbull read a paper entitled "Notes on a Substitute for the Glass as a Coupling Membrane in Landscape Photography; an Improved Portable Spirit Lamp; and a Useful Glass Clip" (see page 280). He exhibited the lamp and glass clip, and showed practically the application of paper to the glass, and the exceedingly fine surface thereby produced.

Dr. Thomson said that the glass, as prepared by Mr. Turnbull, was certainly very suitable for the purpose for which it was intended. He had found that a well-made starch paste
also answered admirably, and if protected by a coat of varnish, it would last indefinitely. With reference to the observations of Mr. Turnbull regarding the use of an actinometer, he thought that in some cases it might be of use, but there were very many conditions with which it could not be available. In the following question—the observer of photographs and the camera were in different positions relative to the light, and the actinometer could then only mislead. If the camera was in the shade and the landscape brilliantly illuminated, or if, as in the case of taking an avenue, the camera was in the light, while only the most feeble rays were reflected by the trees, it would, he considered, be altogether useless.

Mr. Pringle was quite satisfied with the surface produced by the putty, but he had some doubt as to that material being always available. He had had experience in broken focusing glasses, and found that a rub with a tallow candle could generally be got ready as putty.

Dr. Nicol agreed with the President in thinking that the landscape photographer was not likely to derive much benefit from the use of an actinometer. Referring to Mr. Turnbull's suggestion of a standard paper and standard lights, he thought such an arrangement would be of much value. It would doubtless very much facilitate photographic communication if one could say that by any particular process a picture could be obtained in two minutes with light of 700 units. The only thing wanted would then be a standard negative, and then everybody could tell everybody else all about everything connected therewith. He, however, feared that much difficulty would be found in making a paper that would really be equal everywhere if its manufacturer was not a paper manufacturer; and much more would it be so if it were to be produced by several makers. During some recent experiments with various sizes for paper, he had found that the age of the size very much influenced the printing qualities, especially in regard to the time required to produce an image. The same observation also applied to albums, which, when used quite fresh, made a much slower printing paper than when it was allowed to get stale before use. So far as landscape photography was concerned, he did not think there was much necessity for any actinometer, as he thought every photographer of even moderate experience had, whenever he put his head under the focusing circle, an intuitive feeling, which told him, pretty clearly, exactly, what number of seconds or minutes would be required. This, in his own case at least—and he had no doubt others had experienced it also—rarely failed to be correct.

Mr. W. Neilson said he always listened to Mr. Turnbull with pleasure, as his communications were not only the result of experience, but always thoroughly practical. He quite agreed with Mr. Turnbull when the mechanical arrangements were much too much to learn regarding activism, and thought that those who were fond of experimenting, and had time to gratify their desires, should turn their attention to that department of photography. As a small contribution to the general stock, he might say, that he had generally found that longer exposures of even moderate experience had, whenever he put his head under the focusing circle, an intuitive feeling, which told him, pretty clearly, exactly, what number of seconds or minutes would be required. This, in his own case at least—and he had no doubt others had experienced it also—rarely failed to be correct.

Dr. Nicol, in reply, stated that he was quite sure that the stretched pictures alluded to by Mr. Neilson owed their quality more to faulty development than to improper exposure.

Mr. Matheson said that he had had the actinometer that was bought a year ago, and it had been recharged, and he thought it was as good as ever. He had not put it to any practical use, however, as he could generally hit on the proper exposure quite easily. A few days ago, however, while photographing the Scott Monument, he had used it, and found that it could be of use in connection with the camera and object equally illuminated, but on going to the Grass-market, where the conditions were reversed, it was of no use. This, of course, corroborated what the President had said.

Mr. Dobie agreed with Mr. Turnbull, that it was awkward for a photographer to be without silver—in fact, it was awkward for anybody to be without silver—but he really thought that they should take an example of ships of war, yachts, &c., and always carry duplicates of all essential articles and material when they went to the field.

The President said that he had no difficulty with paper prepared in the way that he had already published. He could guarantee that it would keep perfectly for at least six months, and, if fumed, it toned quite as readily and satisfactorily as paper freshly prepared.

Mr. Turnbull found his method—that of floating on a five-grain solution of citric acid after sensitising—also very satisfactory for at least a month, and he had no difficulty whatever in toning. The print, however, required to be very well washed before being put into the gold. In fact, he considered it a general rule that the longer a paper was kept the more washing would be required before toning. It was also stated on good authority that paper prepared with stale albumen was much easier toned than that prepared with fresh, and also that tinted paper required more time in the gold solution than white paper.

Dr. Nicol then said that as the members were always anxious to see anything either new or good in the shape of apparatus, he begged to exhibit two articles, which he had no doubt would meet with their approval. The first was an Aird's Airplane, which had been constructed by Mr. Neilson, and which on examination would be found to be a piece of very beautiful work. The camera was for plates of 75 by 45, and contained one dozen. It measured 9 by 9 by 11 inches, and weighed, when fully equipped, nine and a-half pounds. It worked, as they could see, with perfect certainty, and, to him at least, the comfort derived from having everything connected with the exposure of a dozen plates in one package, and that neither heavy nor very bulky, was very great. He might say that since Mr. Aird introduced the camera to the Society he had had several days with it in the field, and found its comfort and convenience greater even than he had anticipated. The camera was examined with much interest, and very highly spoken of by several of the members who bad seen it at work. The other piece of apparatus, he said, was "Hare's Patent Automatic Changing Box and Bils," kindly lent by the maker for exhibition. The box, he said, is, in construction, something like the once well-known changing box manufactured by Ottewill, but without any of the disadvantages which that had, and especially without the large projecting cover. The mechanical arrangement by which the metal frame of the box turns into a groove on the top shunts and opens the slit through which the plate passes is very ingenious, and the whole movement is so simple that it can hardly get out of order. To those who do not object to more than one package, nothing, he said, could be simpler, or, as far as could be seen from the working of the box, more efficient. It was, he said, somewhat curious that they should have for exhibition on the same night two pieces of apparatus intended for the same purpose, but seeking to serve it by such different means, and it was quite as satisfactory as they could wish it. As for the other apparatus, the only difficulty which he could see was that of deciding as to which to choose.

The members generally heartily endorsed Dr. Nicol's statements, and spoke very highly of both camera and automatic changing box.

On the motion of Mr. Dobie, votes of thanks were given to Dr. Nicol and Mr. Turnbull, and to the President for his unremitting attendance during the session, as well as for the urbanity and ability with which the duties of the office have been carried out; and the paper was taken back to be charged as a good one.

The next out-door meeting will be held at St. Monica on the 10th inst. Members will leave the Waverley Station at 6.30 a.m.

Liverpool Amateur Photographic Association.

The usual monthly meeting of this Association was held on Wednesday, the 2nd inst., at the Free Library, the Rev. H. J. Palmer, Vice-President, in the chair.
Talk in the Studio.

Photography at the Royal Observatory.—From a report just issued by the Astronomer-Royal, detailing the year's operations at Greenwich, we glean interesting details of the definite and recognized position photography now occupies as an aid to the study and record of astronomical and meteorological science. Mr. J. Glaisher, F.R.S., President of the Photographic Society, retired, is seated, from his active duties at the Observatory at the end of last year.

Newmarket Play.—In a recent article on these plates a clerical error occurred. We referred to the agent as Mr. Atkinson, of Manchester. It should, of course, have been, of Manchester Street, Liverpool. Mr. Atkinson’s name is, however, so well-known that our readers would not be misled by the error.

A Cosmopolite Rogue.—Gallery.—The "London Lounger," in the South London Press has the following:—“International prison photography is the latest innovation. An American with a roguish look lately discovered from Paris, bearing away some costly jewellry which he had obtained from a too confiding dealer. The robber was quite unknown to the Paris police, who never got on his scent, but it appears that their professional brethren in London might have been able to lay their hands on the man. In particular, the confederate figure in the rogue’s album in possession of the Scotland Yard authorities, and it would really seem that an interchange of cartes amongst the heads of police in the leading capitals of Europe would be of service in aiding in the construction of cases. A certain thief had relations with the jeweller extending over several days, during which his visits to and fro were frequent, and had some Paris detectives previously scanned his photograph they might have been able to lay their hands on the man. This photograph was taken in London, and is, it is said, the most wanted of the lot. It is noticeable that the number of high-class swindlers is exceedingly limited, and that by the very necessities of their craft they must always be on the move. Sooner or later they fall under the clutches of the law, and punishment might overtake them sooner rather than later by making photography an instrument in their detection.”

Filtering.—A correspondent of the English Mechanic says:—“For filtering large quantities of solutions, especially when they run through slowly, or one has not a large funnel, I have found nothing better than the india-rubber capsules with two tubes attached. These can be procured at any drugist, and it is only necessary to cut one tube a little shorter than the other, and when the bottle is inverted over a sized funnel by adjusting the dip of the tubes there will be no danger of overflowing. There is also the advantage of a considerable agitation of the contents of funnel as the air enters the second egg, as the level varies.”

Washing Prints.—Another correspondent of the same journal says:—“Having constantly large numbers of photo-

prints to wash after fixing, I came to the conclusion, as many before me have done, that the length of immersion is of little importance, but that a few minutes after removing the hypo, and that frequent changing of the water in everything, had seen water-wheels agitating boxes, in which the prints were contained, and I was certainly very much pleased with the results. I have now a habit of using two pipes, one of the ordinary style, and one which has a long outlet, by means of which the water is directed on the surface of the prints. I have found that this greatly helps the wash.”

The Duchess and Photographer.—It is rumoured that the Duchess Sophia—sister of Duke Charles, a brother of the Empress of Austria, who has taken to studying surgery, with a view to making himself an expert oculist—not long ago married the Duke of Alesund, one of the Orleans princes of France, has taken such a fancy for practical photography that she has actually copied with a Bavarian photographer, and is on her way with him to this country. If this story should prove to be true, how humiliated will all our photographers be! For what young lady, even of the Fifth Avenue, has yet much as offered to slope with one of the craft!—New York World.

Loyalty Promoted by Photography.—“Some well-meaning people,” says Funny Folks, “years ago predicted that photography would be fatal to loyalty. They believed that the process was a sort of Grand Jury, investigating the Royal Family as so many sacred abstractions, and that the inevitable effect of familiarity would be contempt. It has proved quite the reverse. With every second shop-window full of portraits of her Majesty, the Prince of Wales, and every other of the vast family, the children of the illustrious branches, with a place for the Royal portraits in every portrait album in every house, the sentiment of national regard is strengthened rather than the reverse. A closer attachment seems to have sprung up from the true presentation of the family than if the portraits had been mere sawdust prints with the ideal portmanteau on the coins. The Queen and those about her seem to belong more to ourselves—heads only of the great national family.”

A Gloop which will resist the action of water is made by boiling one pound of glue in two quarts of skimmed milk.
neither does he believe the movements to be due to electricity developed on the moving body, or on the glass apparatus, by radiation; nor to the results of evaporation and condensation, as suggested by Professor Osborne Reynolds. We will give Mr. Crookes' explanation of the matter in his own words:— "My own impression is that the repulsion accompanying radiation is directly due to the impact of the waves upon the surface of the moving mass, and not secondarily through the intervention of air-currents, electricity, or evaporation and condensation. Whether the ethereal waves actually strike the substance moved, or whether at that mysterious boundary-surface separating solid from gaseous matter there are intermediary layers of condensed gas which, taking up the blow, pass it on to the layer beneath, are problems the solution of which must be left to further research."

The Retirement of Mr. Glaisher from the Greenwich Observatory.—It is with much regret that we learn that Mr. Glaisher, F.R.S., the President of the Photographic Society, has resigned his appointment at the Royal Observatory at Greenwich. After being upwards of forty years in that establishment, connected for the most part with the Meteorological Branch, of which he was director, the information and experience he possessed must have been very great; and it will be very difficult, if not altogether impossible, for the Astronomer-Royal to secure another officer so fit and able as Mr. Glaisher for the responsible post he has vacated. Although it is, we believe, the privilege of all officers in Government employ to retire on a pension after a certain number of years' service, and while we fully admit that Mr. Glaisher has well earned his reward, we cannot but regret that some effort was not made on the part of Her Majesty's Government to induce Mr. Glaisher to make an experimental investigation of "Attraction and Repulsion accompanying Radiation," we must go back to his lecture on the subject at the Physical Society. To exhibit first of all the phenomena of attraction in air, and repulsion in a vacuum, he used a glass bulb in which was suspended from a silken thread a fibre of glass with a pitch ball at either end. When this apparatus was fastened to an ordinary pressure a ray of heat or light falling on one of the pitch balls gave a movement indicating attraction. When the glass bulb was exhausted by an air-pump, then strong repulsion was shown when radiation was allowed to fall upon one end of the fibre. Ice, or a cold substance, produced the opposite effects to heat, the pitch ball being energetically repelled by a warm hand, and as strongly attracted by a cold one. Mr. Crookes then tried interposing screens between the ultra-violet rays of the spectrum and the pitch balls, and he found that if he placed between them a cell containing a solution of iodine in disulphide of carbon, which is opaque to the luminous and ultra-violet rays, but transparent to the invisible heat rays, there was not a trace of repulsion to be observed; while when he interposed a thick screen of alum between the ultra-red and the pitch ball, the latter behaved with unabated energy, although alum, it is well known, cuts off all the dark heat rays. When the ultra-red heat rays of the spectrum were allowed to fall on the pitch ball, whether there was a screen ofiodine solution or not, there was an energetic movement of repulsion. When the alum and iodine screens were united, then there was no action upon the pitch ball either of attraction or repulsion, no matter what ray was allowed to fall upon the apparatus. Mr. Crookes argues that the motion of the index cannot be ascribed to any currents of residual gas which theoretically must exist in vacuo, even when almost absolute.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER VII.—continued.

THE FIXING SOLUTIONS.

For fixing negatives either cyanide of potassium or hypophosphite of soda may be used; but for several reasons the latter is to be preferred. Cyanide of potassium is highly poisonous, and, entering the system either through wounds on the hands and the pores of the skin, or its fumes being inhaled, its effect on some constitutions is indeed terrible. When used as a fixing agent, dissolve one ounce of cyanide...
of potassium in six of water, and it may be used until its strength is exhausted.

Make a saturated solution of hyposulphite of soda. A flat dish or tray in which two or four negatives can lie side by side is to be preferred to the dipping bath sometimes used, as you can leave them in the solution for a long time without hurt. This solution should be constantly changed—that is, every day, or two, or three days, according to the amount of work done—as it after a time becomes saturated with iodide of silver, and deposits crystals of iodide on the negative, causing pinholes precisely similar to those caused by the bath when overcharged with iodide. The old fixing solutions may be preserved for reduction in a barrel, and the silver is thrown down as sulphide of silver with sulphuret of potassium.

VARNISHING THE NEGATIVE.

After fixing the negative, it is thoroughly washed and dried, and is now ready for varnishing. Here too much care cannot be exercised, as many negatives are ruined in this operation by carelessness.

A good varnish will dry, giving a surface perfectly smooth and hard, and will not present a "dead" appearance. The negative, before varnishing, should be warmed to a gentle heat, and for this purpose a little tin oven is used, fitted with grooves at an angle of 30°, in which the plates can stand safely side by side about an inch apart. Under a false floor a gas jet may be inserted to keep the stove at an uniform and gentle heat. When the negative has been perfectly dried, and is warm—not hot—to the touch, flow it with the varnish as the plate was flowed with collodion, allowing the varnish to soak into the film for a few moments before the residue is poured back into the bottle. This should not be the pouring bottle, but one kept handy with a filter, in which the surplus varnish is caught. This surplus is thus filtered at once, and when full the bottle may be used as the pouring bottle, while the other holds the filter. In this way dust and dirt are not carried back into the bottle from which you pour the varnish. Bock the plate gently after the surplus varnish is flowed off, to prevent the film setting in ridges. Now return the plate to the oven, and when dry the varnish should present a smooth, hard, and glossy surface.

Should the varnished surface present a dead appearance when dry, it shows that the plate was not sufficiently warmed before applying the varnish, or that it was chilled during the operation. In this case it should be heated to the proper temperature, and revarnished more carefully. If through inadvertence the negative has been varnished before it is perfectly dried, a stain will mark the presence of the dampness of the film under the varnish, a second varnishing, first subjecting the plate to heat, may remedy it, but great care should be exercised to guard against dampness and dust spoiling the negative at this stage, for failure is easy, and an accident is almost irreparable except by the exercise of great skill, and certainly at the expense of much wasted time.

An alcohol varnish film may be removed by pouring alcohol on and off the surface. Take in a glass a small quantity of alcohol, and evenly flow the film (this will moisten the varnish); then continue to pour alcohol on and off, catching it, as it runs off, in the pouring glass; the film will dissolve and run off with the alcohol; but this should not be resorted to except in extreme cases, as the negative is liable to become stained.

Much of the beauty of the negative, and more of its usefulness as a printing cliché, depends on the varnishing. I have abstained from giving the reader a formula for varnish, as I am of opinion that from the difficulties to be encountered in its manufacture, he had better purchase one of the many good commercial samples.

When by evaporation of the alcohol it becomes too thick, the addition of alcohol will be needed. A varnish showing tendency to dissolve the collodion film evidences the presence of ether in its composition, and should at once be cast aside.

[By inadvertence the foregoing chapter has appeared before that on development, which will follow.]

THE PRACTICAL PRINTER IN AMERICA. XXVIII.

SALTING THE PAPER.

To be sure to have a good quality of paper for sensitising, we almost invariably salt it ourselves; and as it is not at all difficult to do, we should advise our readers to do it.

When the printers wish to salt their own paper the following formula will be found to be excellent:

- Pure rain water 60 ounces
- Chloride of ammonium 360 grains
- Gelatine 120

We add the gelatine to the solution, as it gives a much better surface for the ink-worker to work on. Mix in a large wide-mouth bottle, in which the sixty ounces of water are first placed. This water may be used quite warm if the printer is in a hurry, as the chloride will be dissolved more readily. The gelatine to be dissolved is placed in a small evaporating-dish, and a small quantity of water (about four ounces) is taken from the sixty ounces in the bottle, and added to it. The dish is placed on a hot stove, and the water is heated to a boiling state. When this gelatine is dissolved, add the liquid to the bottle containing the dissolved chlorides, and stir very thoroughly, either with a clean glass rod, or by repeated shakings of the bottle. Filter the solution, when it has cooled, through a couple of thicknesses of good cloth or a piece of paper into another wide-mouth bottle. Always keep the bottle covered with a clean glass when not in use, whether it has the solution in it or not. This solution should always be filtered again immediately after use. When ready to salt the paper we obtain a suitable size dish—a half-size porcelain dish will do—and thoroughly clean and rinse it. Pour the solution in the dish, and if there are any bubbles formed in doing so, break them. The paper can either be floated upon or drawn through the solution. If floated, examine the paper thoroughly, and float the side that has the finest grain. As the dish is a half-size one, the paper will have to be floated in half sheets; but when floating is adopted, a whole-size dish had best be used. Float ten seconds.

If you prefer to draw the paper through, which is the way most generally recommended, and followed out, then place the dish containing the solution in the middle of the room firmly set upon a stool, and where there will be plenty of allow room. Take the paper by the two opposite corners, place it behind the further side of the dish, and permit it to hang suspended there. Now draw the paper slowly over the side of the dish, curving and diving the side which you have hold of beneath the surface of the solution. Do not pause, but continue drawing the paper over the side of the dish, under the solution, being careful that you wet all parts of it, and then hold the sheet over the dish by the same corners which were taken hold of in the first place, and allow the solution to drain from the sheet into the dish.
The most important part of this simple process is to get the paper under the solution at first in drawing it through, and to do this we have recommended the use of sixty ounces of solution in the dish (a hundred would be better still), as the paper can be drawn under better than it could with a less quantity. When drained the paper should be hung up by the two corners in a warm room to dry. Do not hang up plain, salted, and sensitised paper to dry, by the same pins.

The air should be absolutely free from all dust in the drying-room while the paper is drying. This solution can be used repeatedly; the bubbles should be removed from the solution every time they appear. These bubbles are caused principally by the dripping of the solution into the dish, when the sheet of freshly salted paper is suspended over it. The forming of these bubbles can, in a great measure, be avoided if the sheet had its lower corner in the dish and besides draining as well as before, there will not be any drops that will fall any distance from the sheet, so as to occasion the bubbles.

If, after salting, and while the paper is draining, there should be seen any fresh bubbles on the paper, blow at them, and break them as soon as possible. After you are through using the solution, pour it back in a bottle, and filter it into its former receptacle. Clean thoroughly the dish, and set it away, bottom side up, on some clean paper. Such is our mode of salting, which we always find productive of excellent results.

Positive Bath for Plain Salted Paper.

The paper when salted and dried is ready to be sensitised. A different bath is most generally used for the plain paper, as will be explained further on. A plain bath of nitrate of silver, forty grains strong to the ounce of water, can be used, and is better than the one we recommend for many of our first-class photographers, as the very best for plain paper use. It is most assuredly excellent. For plain paper a plain nitrate of silver bath—thirty grains of nitrate of silver, water one ounce—is the best.

Then, again, the ammonio-nitrate bath is very often used. It is made as follows: Make up sixty ounces of solution of nitrate of silver so that it will be forty grains strong to the ounce of water. Take two-thirds of this solution (forty ounces), and add aqua ammonia to it until it has become clear after it has once become muddy. While adding this ammonia, add a few drops of it at a time, stirring well after each addition. Now add the remaining one-third to the two-thirds, stir well, and filter before use.

When the paper does not foul the solution the albumen silver-bath is used by a very great many photographers, and it is floated upon it in the same way as the albumen paper. Although it does not seem to hurt the bath for albumen paper in some cases, yet the plain paper undoubtedly discolours the bath quicker and deeper, and is likely in time to get many impurities in it that will after while hurt the albumen paper. For this reason we have always been a party of a different solution for plain paper, and always use such, whether we float or swab our paper, as then, if we should prefer at any time to float our paper we can do so. We should advise the beginner to use a different bath for the plain paper until he had experience enough to observe the effects of floating plain paper on the albumen paper bath. The care of this bath is the same as it is in the case of the albumen paper bath.

Uranium and Its Uses.

By J. Webb.

Uranium was unknown to the ancients. The Phœnicians, in some of their visits to Cornwall for tin, might have picked up the ore or source, but they did not know it, nor what it contained. For a long time the mineral or compound mass was supposed to be a zinc ore, and was named "pitchblende;" but in 1789 Klaproth discovered that pitchblende contained uranium. The metal was named after the planet discovered by Herschel in the same year. There is very little uranium in the earth. Perhaps there is more in Uranus, but that country is afar off, and we are not likely to get there. However, the little we have has been found useful in the arts.

There are various salts of uranium, but nitrate and persulphate are the most common. The latter is employed chiefly by glass makers, potters, and enamellers for making yellow stains.

The nitrate of uranium is of most use in photography, and is obtained by burning the crude pitchblende with wood ashes in a muffle, and digesting it in nitric acid, diluted with four parts of water. The nitric solution is filtered, and sulphurised hydrogen passed through it to throw down other metals. The clear solution is poured off, boiled, filtered, evaporated, and crystals of nitrate of uranium are deposited. All photographers may not be so well acquainted with uranium as they are with silver. Here are samples, labelled. Examine for uranium. Now for its use.

Theory and practice are sometimes widely at variance; but my practice has invariably confirmed my theory respecting the use and value of nitrate of uranium when employed in photography. My earliest experiments with uranium convinced me that it was in no form so useful or so sensitive to light as the salts of silver, therefore I adhered to the theoretical instruction that would add nitrate of uranium to the nitrate of silver bath, to obtain increased sensitiveness; for, speaking figuratively, I thought it folly to expect the pace to be quickened by yoking a slow horse to a fast team. That the uranium salts are less sensitive to light than the silver salts is known to most photographers; but, if any evidence on that point be needed, I think that the two examples I now place before you will apply it. No. 1 is salted paper floated on a sixty-grain solution of nitrate of silver for three minutes. No. 2 is plain paper floated on a sixty-grain solution of nitrate of uranium for three minutes. Both were exposed under the same negative, for the same length of time. They are the two halves of a stereoscopic negative. Mark the difference! Light alone reduced No. 1 to what you see it; while the undeveloped half of No. 2 nullified any image upon it, and even the developed half is much more feeble than the silver print. As far as uranium is concerned, it makes very little difference whether plain or salted paper is employed. No. 3 is a uranium print on salted paper. The paper was immersed in the uranium bath, otherwise the print was treated as the same as the developed half of No. 2.

Much may be done, photographically, with uranium, and I have done long time past experimented with it, and endeavoured to utilise it in my business. I have met with both disappointments and surprises. The general experience with uranium printing is a latent image, or, at the most, a faintly visible one, which must be developed with a solution of ferricyanide of potassium; but I have succeeded in obtaining a tolerably vigorous visible image—quite as good as a weak silver print on plain paper—without development. No. 4 is an example of the visible image. The grey half is just as it came from the printing-frame. The red half was developed with ferricyanide and washed. No. 5 is a better and unsophisticated example of the non-latent form of a uranium print. On account of the uranium image being much more in the paper than on it, I have made many experiments, with the hope of producing a brighter picture. Nos. 6 and 7 will illustrate these methods.

Positive uranium positive prints on plain, salted, albuminised, and gelatinised papers, examples of which I place before you; and, in consequence of the general colour being red, and the picture more in the paper than on it, I thought that good paper negatives could be obtained with uranium. Here are examples. I thought the uranium...
negatives would be better than silver negatives on paper; but that is not the case, as this silver negative from the same transparency will show.

I have worked with uranium in water, alcohol, ether, size, starch, albumen, and collodion, and obtained pictures on paper, glass, wood, and ivory; but my greatest success has been on canvas. This example was produced with a color and a strong of uranium chloride. The exposure was very short—only while I held it in my hand in sunshine. The developer was ferricyanide of potassium. For some time I almost despaired of producing a collodion uranium picture on canvas, it was so difficult to prevent the prepared ground from working up with the emulsion; but by previously coating the ground with starch, I overcame the difficulty.

I think I have exhausted the list of the photographic usefulness of uranium, and will now endeavour to point out its uselessness.

It is useless to add uranium to the printing bath with the hope of obtaining any beneficial results, and I think that fact has been sufficiently proved by the unenviable sobriquet of a "worthless type" having been bestowed on the Wothley type process. It is true a slight addition to the ordinary bromo-iodised collodion, for either delicacy, density, or rapidity is obtained thereby. This negative exhibits a deficiency in all these desirable qualities. One-half of the plate was coated with ordinary bromo-iodised collodion, and the other half with a portion of the same collodion, with six grains of nitrate of uranium added to one ounce. The plate was sensitized in the usual working bath, exposed in a twin-lens camera for ten seconds, and developed with iron.

It is worse than useless to add nitrate of uranium to the negative bath, as all the examples I now lay before you will show. I have tested the urano-nitrate bath against the ordinary silver bath in all conceivable ways, and tried it in all proportions, from two to fifteen grains to the ounce; I have worked with various collodions, and have run all the changes of mixing; I have added nitrate of uranium to old baths and new baths, to plain solutions of nitrate of silver, to iodised solutions, and to solutions containing nitrate of barytes; I have tried it in the developer without being able to arrive at any other conclusion than that the addition of nitrate of uranium to the negative bath, or any of the solutions employed in the wet process, is a delusion and a snare.

ON A NOVEL SYSTEM OF MASKING, AND THE PRODUCTION OF BRILLIANT PRINTS FROM WEAK NEGATIVES.

BY W. BROOKS.*

I wish this evening to bring before your notice a novel system of masking negatives for printing for the purpose of producing brilliant and vigorous prints from weak and indifferent negatives, and I do not put it forward as anything new, although I have not seen anything published relating to it. In my own practice I have found it of great or occasions through being able to increase or decrease the intensity or printing power of any negative at pleasure without altering or endangering it in any way whatever.

In the first place, we will suppose we have a negative that has been varnished, and on printing we find it so thin that it is impossible to get a presentable print from it, either by printing in the shade or by using highly-salted paper a strong and long exposure being the most skilled operator a negative will sometimes turn out in this way, and in some instances it is not possible to get another negative of the same. Now, if we carefully study the negative, we will find generally that the contrasts are not great enough, which causes it to print flat. There are many ways of giving more intensity to varnished negatives, but I consider it is always attended with great risk, and it is a dirty affair at the best of times.

The system I adopt is this:—I print a proof in the usual way on either Saxe or Rive paper. I prefer the former, and print a little darker than usual. The paper should not be salted with less than twelve grains of chloride of ammonium excited on a sixty grain bath, although an eighty-grain bath is preferable. In the exposure I allowed the high lights only for a short time, and used the strong light for the rest. This exposure was given only as a precaution, and not for the purpose of enobling the dark grounds, as it is well known that the strongest lights do not affect the photographic negative in the high lights. Tone slightly with gold in the usual way I know some will say that toning is not requisite, but I find that I got a little more density by it if not carried too far; if it be carried on to the black tones it loses its non-acetic power and colour, whereas slight toning seems to increase it. From this paper print, after being spotted out in the usual way (waxing is not needed), print a paper negative in the printing-frame. I must here mention that if the original negative in the first instance be a very thin one, the paper positive, before being used for printing the paper negative or mask, may have the shadows strengthened with Indian-ink. If only a slight intensity be required, this strengthening can be dispensed with, and the depth of printing the paper mask is regulated accordingly. I also strongly recommend it be dry. In the original glass negative over this paper negative mask so that everything coincides as nearly as possible, and trim in the usual way. When trimmed at this stage it saves trouble. Wet it to cause it to expand, and just press it between blotting-paper to take up superfluous moisture. Rub a margin of thin glue of about a quarter of an inch round the edge of the paper, and then place the bare glass side of the negative in it, taking care to keep an exact margin all round the glass. When dry it will be strained perfectly flat like a sheet of drawing-paper on a board.

On looking through the negative from the varnished side one will be surprised to see how the negative has improved in quality and in general appearance. Before printing anything more to the negative it is best to print a proof. In some instances it will be found to give all that is needed; but sometimes the negative is too intense, which can be easily altered. Lay it, varnished side down, on a table, and give the paper negative backing a coat of castor oil dissolved in twice its bulk of ordinary methylated spirits with a flat brush, which will render it more transparent. I consider the oil and spirit better than white ink when it comes to thinning, but such a method of printing the silvered paper for printing the proofs. On printing another proof, if this be found to give too hard a print, it will be best to print another paper negative mask not quite so deep. This system may be applied to a negative which has been over-exposed and fogged, and will not give a decent print in the ordinary way.

Another point I think worthy of attention—it seems to do away with a vast amount of the so-called retouching. These retouched prints put one in mind of the French and German lithographic prints we see in the show-windows, which seem to have nothing natural about them. The only legitimate use of retouching is to supply that in which photography falls short—such as freckles. I find this system of masking seems to meet these shortcomings to a great extent.

Another point I also consider worthy of note, especially in landscapes: sometimes the foreground prints black and heavy, and, at the same time, the negative possesses abundance of detail, although not strong enough to print. Print a proof and paper negative, and mask, as in the first instance. If it be the foreground that requires the strength, lay the paper mask down on a sheet of glass, albumenised side up; take a brush charged with a strong solution of cyanide of potassium, and go over all the parts of the foreground, which must be left untouched. All those parts will be black and heavy, and there is no need to go over them again. When quite white; it must then be well washed, and attached to the glass negative as before described. If the sky does not print white enough, or if it be washed, I take the
paper positive, before printing the negative from it, and treat it in the same way with the cyanide, which will cause the negative mask to print very dense, so as to completely mask the sky. I believe this to be a very efficient and neat system of masking out a sky when required.

We now come to a negative that is very hard, but possessing abundance of detail. By using a positive of instead of a negative mask matters will be found to improve. I think Mr. S. Fry, some years since, spoke of a method of using a glass positive for this purpose to give a softer print. If the negative be a valuable one, it is best, after the masking is correct, to fasten a sheet of glass over the mask to protect it from dust and injury.

In these remarks I do not recommend photographers to take negatives at random, regardless of intensity, thinking they can mask it up to supply the shortcomings of slovenly manipulation.

A NEW METHOD OF EMULSION WORK.

By Caret Lea.

In my last communication to the Society, made a month ago, I described a method which gave plates of extraordinary sensitiveness, arising from the introduction of an iodide into the emulsion. Since then, aiding myself with this principle, I have been endeavouring to work out a method of operating with the least possible expense and with the least possible effort. I have succeeded in this, and it is the purpose of the present paper to give such explanations as will enable any one to prepare these plates. A year or more ago, Mr. Bolton devised a very ingenious new mode of managing emulsions. He poured them out, allowed them to dry, then with water washed out all the soluble salts, dried the pellicle, and dissolving it with alcohol and ether made a new emulsion, which needed only to be poured upon glass plates, and after backing, was ready for use. With all its ingenuity, this system had the fatal fault of affording plates deficient in sensitiveness and needing long exposures. From my own trial, I should say that these plates needed as many minutes of exposure as those which I am about to describe need of seconds. Moreover these plates required to be backed to prevent blurring, and of course to be washed off again before developing.

One reason for this want of sensitiveness lay in the fact that Mr. Bolton did not succeed in applying to his plate the principle of using an excess of silver nitrate with a chloride and aqua regia. He reported that the result of such treatment was failure, and that the operator must be content with the degree of action resulting from the use of bromides only, with an excess of alkaline bromide.†

By using an iodide in the collodion as well as a chloride, and aqua regia with an excess of silver nitrate, I obtained a considerable degree of sensitiveness, but still not sufficient. With further experiment, I discovered a new principle of treatment, which at once solved the difficulty, and laid the foundation of a process combining the highest degree of sensitiveness and the utmost facility of execution. This new principle consists in applying at once to the whole mass of collodion the same preservative (or rather accelerator, as it should more properly be called), the same treatment that is usually applied to each plate in detail; that is, instead of applying an albumen, gallic, tannin, gum, &c., preservative to each separate plate, it can be applied to a pound or a hundred pounds of emulsion at once, and then be washed out again. Of course the saving of labour is something prodigious, and the result a uniformity of plates, a certainty and regularity of action, which was perhaps an impossible gain with the old method. A great deal of time is saved in applying this new principle, and using this method in connection with the emulsion process, which I described, one obtains plates of the same exceptional sensitiveness, and with greatly less labour.

Let us for a moment compare the amount of work involved in this process with that required for making a dry plate with a negative bath. In the latter method, the plate must be coated; and then plunged into a nitrate bath. After remaining for some time in this, it is taken out, carefully washed in several waters, and then placed in a preservative solution, where it must remain nearly ten minutes. If a batch of plates is being prepared they get much in each other's way, and to go on regularly, one needs two or three batters; I generally have three, finding it less trouble, or if one pours the preservative over the plate, this takes some considerable time, and without care and dexterity the action is not uniform, and there results the irregularity of action which has done so much to render dry plates unpopular.

Next the plate is to be dried. The wetary, and often sticky, solutions with which the plate is covered, make its drying slow. Small plates may be dried by heat, but larger plates are apt to dry unevenly. So a soaking box is needed, and much trouble with it. Then there is the backing; and after exposure there is the backing to be washed off; this I have always considered the most disagreeable part of the whole work, and a single drop that gets round the edge ruins the plate.

In the way which I here describe, the plate is coated, and then is done. No washing, no bath of preservative, no drying box, no backing, no washing off. The film, being dry, moist with alcohol and ether, dry rapidly. Ten or fifteen minutes dries them, or, to make sure, they may be let to stand half an hour in a rack, and can then be transferred to the slides or plate box. The iodide of silver, which by my new mode of working is introduced into the film, makes it opaque and yellowish, and prevents both internal reflections and irradiation, the causes of blurring. And so the troublesome and vexatious operation of backing is got rid of.

The cost of obtaining this extreme simplicity is that of taking a very moderate amount of trouble with the emulsion once for all. As these emulsions will soon doubtless be manufactured commercially, even this trouble will be spared the dry-plate worker. In travelling, for example, what a simplification to carry a bottle of emulsion, and prepare plates in an hour in the evening, enough then to last for perhaps a week's work! As everything soluble is washed out of the emulsion, there appears every reason to expect that these plates and the emulsion itself will keep indefinitely. Moreover, the dried material may be sealed up in bottles, and probably will keep good for years, ready at any time to be placed in alcohol and ether for use.

Comparing the cost of this method and the very close adherence to the following directions. They have been arrived at by very long and laborious work, and a departure from them, seemingly very unimportant, may have the effect of producing plates requiring a fivefold or tenfold exposure.

As the emulsion is to be dried, it may be prepared a little stronger than eventually needed. I usually make it so that three ounces of the first emulsion make four of the final.

(To be continued.)

† Read at the April meeting of the Photographic Society of Philadelphia.

‡ Mr. Bolton says: "I have never been able to obtain any satisfactory result with emulsions which contain no soluble bromide."—British Journal, 1875, p. 153.
DRY PLATES WITHOUT GLASS.

A COMMUNICATION made to the last meeting of the South London Photographic Society bids fair to revolutionize landscape photography. Herr Leon Warnerke, an Austrian gentleman resident in this country, an experienced photographer and enthusiastic experimentalist, has worked out a method, novel in almost all its details, and combining many of the advantages of which landscape photographers have often dreamed, but which until now have never had even the possibility of proceeding on a photographic tour with the material for (say) a thousand negatives, without more increase in the bulk or weight of his equipment than is now occupied with a score of dry plates. Great sensitiveness, perfect keeping qualities, simplicity in manipulation, and, in fact, all the conditions which make landscape photography a pleasure rather than a toil, are secured.

Primarily, in explanation of all this, we should state that Herr Warnerke has discovered a method of making paper supply the place of glass in dry collodion work, with all the advantages which will at once be seen to belong to such a material, without any drawbacks that we can see, and with some superadded advantages which could not have been anticipated. Important amongst the latter we may mention increased sensitiveness. Working with various emulsion processes, he finds that the bromide emulsion on paper is incomparably more sensitive than it is on glass. He finds that it keeps perfectly, examples prepared five years ago working satisfactorily now. We saw a negative developed which had been prepared twelve months, and it was free from defect of every kind. Here are two of the important considerations which concern the photographic tourist—sensitiveness, and good keeping—satisfactorily met. The various collodion emulsions with bromide and bromo-iodide of silver, and the gelatino-bromide emulsion process, have all been tried, and all work satisfactorily on the paper basis which Herr Warnerke has invented. The whole system is singularly ingenious and elegant, and can only be duly appreciated on witnessing the operations and results; but we will briefly indicate details of the process, promising our readers full details from Herr Warnerke’s pen in our next number.

We may premise that the completed system is the result of years of experiment, in the course of which various modifications have been found to give good results; but the final mode of working, which we shall describe, gives the best results. Ordinary white enamelled paper is taken, and the whole back of it is covered with a frothy mass of a bath made by mixing gelatine, with oxide of silver and bromine, rather than with salts of bromine, and so escaped the necessity for washing with colloidal-chloride of silver. This is coated with plain collodion to which a little of a solution of paraphine in alcohol has been added. As the collodion, when dry, leaves the paper very easily, an edging of varnish is applied, which effectually checks a tendency in the film to leave the paper before required. When the film of collodion is dry, a coating of india-rubber in benzine of about the consistency of ordinary collodion is applied in the same way. When this is dry, another coating of collodion containing casor oil is applied, and when this is dry, a coating of india-rubber. When this is dry, the sensitive emulsion is applied. The object of applying several coatings, rather than one thick coating, is to secure a more even and perfect film than could be easily obtained by one thick coating. The sensitive coating being dried in the dark, the paper for ordinary purposes is cut up to the requisite sizes, and, with tissue paper between each, stored away for use. It is exposed much in the same way as Calotype paper. When large sheets are used, it is exposed behind glass; small sheets are attached to cardboard, ferrotype plate, or similar substance, without glass in front. Twenty such sheets, attached to ferrotype plate, may be placed in an ordinary dark slide.

The operations in development afford a surprise to the photographer who sees them worked for the first time. The image may be developed on the paper, but this is not advisable. The bath is applied by means of a sheet of paper. A penknife is slipped under one corner, and the film slips from the paper as easily as we write the words describing it. A plate of glass is made wet under the tap, and the film is laid down upon it without the slightest trouble; and there it remains, without moving, without blisters, wrinkles, or trouble of any kind, throughout the operations of trimming, fixing, washing, etc. When washed, a sheet of blotting-paper is placed upon the film, and rubbed down without the slightest fear of injury. In a few minutes it is surface dry, and is placed away between sheets of blotting-paper under slight pressure. When dry—it needs no varnish—it may be handled like a sheet of paper. We saw many scores—probably hundreds—of these negatives stored in books between leaves of plate-paper, all perfect and satisfactory. For printing, it is better to place them in contact with a plate of glass, to which they adhere by atmospheric pressure perfectly, a straightedge covered with cloth or felt being used to rub the film down as a squeegee would be used.

We have referred to the process as applied to ordinary work for which distinct plates are used; but Herr Warnerke has availed himself of the flexible qualities of paper further. Coating a long slip of paper in the manner described, he winds this upon one of two rollers fixed inside a modified dark slide, attaching one end to the other, so that a certain portion is stretched between them exposed like a plate to the lens. By means of a pinion he can unwind from one roller to the other, and expose a fresh portion, continually, until the whole is exposed, and one dark slide may easily be equipped with material for a hundred or more negatives. A clever little contrivance permits the operator to see precisely how much he is unwinding, the continuous band being marked and numbered for each space of a negative. A pair of clamping screws keep the band in a proper state of tension. A band of (say) one hundred negatives having been exposed, may be removed from the dark slide and cut up for development as we have described.

Herr Warnerke has used various collodion emulsions, and also Kennett’s pollicide, with success. As will be seen, an emulsion not requiring washing is desirable, if not absolutely necessary; and as his experiments commenced at a period long anterior to the discovery of the action of solution of paraphine in alcohol, he has worked with oxide of silver and bromine, rather than with salts of bromine, and so escaped the necessity for washing.
Referring to emulsions, he remarked, that the recently described process by Mr. Carey Lea might be simplified, as very excellent results in the same direction might be obtained by using a good sample of commercial bromitized collodion, with additional bromide added, pouring it into a dish until it formed a thick film, then pouring in ordinary negative silver bath, and allowing it to remain until the whole of the salts were converted into bromide and iodide of silver, cutting up the film and washing, finally redissolving in ether and alcohol. This gave an admirable emulsion of the character of that recently described by Mr. Carey Lea.

We have very hastily indicated the general characteristics of Herr Warnecke's invention, and the advantages which must attend it. A method of getting rid of the weight, bulk, and fragility of glass is alone a great boon. The freedom from "blurring," by internal reflection, is no light consideration. The possibility of using a curved surface, and so avoiding a multitude of optical difficulties; the possibility of using either side of the negative; the facility for junction in combination printing, and a host of other advantages may be added to the gains of the tourist already indicated. Lastly, Herr Warnecke gives the results of years of experiment to photographers freely, without charge or trammels of any kind, and so lays the whole photographic community under a debt of gratitude which, we trust, they will not be slow in expressing.

URANIUM IN PRINTING.

In Mr. Werge's interesting and comprehensive paper on the photographic uses of uranium, read before the South London Photographic Society, he did not refer specifically to one of the purposes to which uranium may be applied, and, judging by the results of some experiments we made about seven years ago, with every promise of advantage. In the same work we exhibited the double process of uranium and silver for printing, and obtained fine results with a solution so dilute, that with silver alone we should scarcely have obtained an image. Using a solution containing only five grains of the double salt, practically only about two grains of nitrate of silver, and immersing various samples of plain unsalted paper, we obtained images as vigorous as those ordinarily yielded by a dark salted paper, excited on a four grain bath. The prints were rich and rich, toning easily in the toning bath of sulphocyanide of gold, but rapidly disappearing in a bath made by any of the usual modes with traces of free chlorine liberated. It is not necessary to repeat all the details here, but those of our readers interested in the question will find particulars in our twelfth volume, p. 421. The chief advantages which might possibly be derived from the use of this double salt would be economy of silver, a simple mode of obtaining good plain paper prints, and a probability of permanency, for as the prints contain no chloride of silver or other insoluble salt, hypoamylide would not be required for fixation. As regards the Wohlfert type process, we have a strong conviction that it fell into disuse from commercial causes, rather than inherent defects as a printing process. Certainly, some of the finest prints we have ever seen were by that method of printing.

FRENCH CORRESPONDENCE.

The great advance which carbon printing has made of late years in France, leading one to hope that its employment will shortly become general throughout the country, has given rise to the want of an apparatus which, till now, has been but little employed: I mean the photo-meter.

For this reason, there is just now a quiet race for popularity among various photographic dealers, and before long we shall have before the public several instruments of the kind. There is the photo-meter of M. Leon Vital, simplified and improved, an instrument which till now has existed more in theory than in practice; the photo-meter of M. Liebert, and the pocket photo-meter of M. Boivin, suited either for carbon printing, or for the working of dry collodion plates.

Since I have spoken of M. Boivin, I must mention that that gentleman is about to bring out a new and enlarged edition of his work on carbon printing, a work that was first published in 1865. The author has now added to his book a perfect manual upon carbon printing, together with a description of the various processes of photo-electric engraving, photo lithography, and photocollography. I may be allowed to borrow from the latter portion of M. Boivin's M.S. a few extracts which will interest the readers of the Photographic News. To obtain what he terms a photo-electric engraving, M. Boivin takes a sheet of gelatinized or albumenized paper, and covers it with a film of gum arabic; he pours over this a varnish of bitumen of Judea and benzole to which a little ether has been added. He exposes the sheet thus prepared under a cliché for a period varying from fifteen minutes to an hour; then he transfers the image by pouring it into a metallic plate charged with a current of electricity, and finishes the print in the first place with essence of turpentine. He removes the paper by means of warm water, and then develops by means of essence of turpentine containing a few drops of benzole. Finally he washes lightly with a solution of soda or cyanide of potassium, and then a second time with water, and allows the image to dry. To make the varnish more adherent to the bitumen forming the image, it is diffused in a bath of concentrated nitric acid. The prints are then engraved either by means of acid or an electric battery, the latter being preferable. By using an ordinary negative, a printing-block in relief may be produced; with a positive, on the contrary, it is an engraved plate that is obtained by this plan of operating. An engraved plate may also be secured with a negative, by covering with gum arabic the image already transmitted in the image with a film of copper, employing for the purpose an ammoniacal sulphate of copper bath, or cyanide of copper. The bitumen is removed by means of warm benzole, and then the stiching is done, either by using acid, or a battery. In this last process the thin film of copper acts as a reserve, while the zinc is attacked by weak nitric acid. If a positive cliché is employed in this process, a flat photographic or relief plate is produced. Men of Judea may be replaced by a carbon print transferred to a grained zinc plate; but, in this case, the gelatine which acts as the reserve is not always sufficiently resistant, and is incapable of supporting the series of operations through which it has to pass. When the deposit of copper has been formed, the gelatine is removed by means of a warm solution of cyanide and of boiling water. The image is then very distinctly visible, appearing damascened in copper upon a zinc surface, and it only remains to etch the block by means of acid. M. Boivin indicates still one other way of obtaining an analogous result, which may be thus described. By means of a battery, a plate of zinc is covered with a thin film of silver. Upon this plate is poured in the dark room an alcoholic solution of iodine; it is then washed, and a tannin or pyrogallol liquid is applied which is allowed to dry. The plate prepared in this way is then exposed for a few minutes to the sun, after which it is carried into the dark room, and plunged into a gold electrolyzing bath, attaching it to the negative pole of the bath. A very curious action then takes place. All the portions of iodide of silver which have been acted upon by the light have become conductors of electricity, and are therefore covered with a deposit of silver, while the other portions act like non-conductors, and repel any metallic deposit. The iodide
of silver is then removed by cyanide of potassium, and the plate is submitted to the etching process; the acid, of course, will not act upon the gold.

On the occasion of the last meeting of the Photographic Society, M. Fleury Hermigui presented a stereoscope with combined lenses, which has the effect not only of rendering the pictures in relief, but depicting them in their natural size. The optical system is composed of two square achromatic lenses of large size, of the same dimensions as the prints, and of two other smaller lenses, placed in front of the former, and which augment the enlarging power of these. The result of this combination is such, that on looking at the pictures in the stereoscope, it seems as if it is nature itself one is looking at. The stereoscope itself is mounted upon an elegant case, with a drawer to take the prints. It is to be regretted that the system of lenses cannot be adapted to the so-called American stereoscope, which is so simple, and so convenient to use; there exists between the print and the two first lenses but a space of two centimetres about, which does not allow sufficient room for the rotary movement of the prints, and it is to this proximity to the image and the square lenses that the extraordinary enlargement is due. We learn that the plate was one of the Prefecture of the Prefecture or Prefects of various states, who have been sent to use this apparatus, which will much facilitate the law in furnishing magistrates and officers with more striking representations of subjects than they have hitherto possessed, in order to come to a decision.

We inspected at the last meeting of the Society some results which if not altogether new, were nevertheless very interesting and of scientific point of view. They were photographs of different plants reproduced with a greenish tint upon a black ground. The plant itself had been placed upon paper prepared with silver salts, and exposed to light, and this formed the cliché. When an ordinary photographic impression has been thus secured, the design, which has been traced by the plant itself, is coloured by means of a chemical reaction; in this way a very exact image is secured, which will no doubt be useful to the herbalist and botanist.

The reports of the different sections composing the international jury of the Vienna Exhibition have been published at last; that of M. Davanne is now in our hands, and one thing strikes us very forcibly in reading it: it is the energy which has been shown among photographers during the last two years. We have had very few consignations and complete work of our colleague reads like a summary of the past, although the author has in many cases actually predicted the future. What he foresaw has come to pass and is gone, and this circumstance we call attention to, feeling sure that M. Davanne himself will be one of the first to rejoice over the event.

If I may believe the rumours that reached me respecting the Maritime Exhibition which is about to open in Paris at the Palais de l’Industrie, and in which a place has been reserved for photography, the collection of objects exhibited is not so extensive as was anticipated. At the same time, I know many artists in the first rank who have promised to contribute, and numerous pictures have been forwarded, which I know will not fail to secure the attention of visitors.

THE CORRECTION OF THE CLOCK ERROR BY PHOTOGRAPHY.

BY D. WENTHALL.

Photography, as the readers of this journal know, is used to make a registration of various meteorological fluctuations; but, so far as I am aware, it has not been used as a means of automatically recording the information needed to correct the error of the clock. An instrument, however, having this for its object is neither difficult nor expensive to construct, and in many localities would still be a desideratum.

Assuming the solar meridian passage to be the phenomenon it is desired to record, it is simply necessary that the sun should leave some distinctive mark at the moment of apparent noon, together with a record of the time then indicated by the clock. This being done, a few figures only are required to ascertain the error of the clock, and set it right. The equation of time for the day, and the correction for the longitude of the place, are added or subtracted, as the case may be, to or from the hour of twelve, the result being the time at which the sun was taken to rise.

By comparing this with the indicated time of the clock at once seen.

Regarding the first part of the operation—viz., the leaving an impression at the moment of apparent noon—it is clear that an apparatus must be used into which the sun will shine only at the time required. A metallic tube mounted like a transit instrument could evidently be used to form this office, but the necessity for almost daily alterations in its elevation to suit the varying declinations of the sun, and the use of a graduated arc to make them, are objections to its use. Two discs of card or metal, in the form of quadrants, fixed parallel with each other, and having a diaphragm in the form of an elongated slit connecting their curved edges, would answer no less efficiently than the tube, and without the drawback of a moving part. At the angle of the discs—i.e., the centre from which their curved boundaries are described, and between the two—must be placed a stop, perforated by two holes, whose line of juncture is horizontal, and whose distance from each other such that the sun’s rays may shine through them simultaneously for only a brief increment of time. A strip of photographic paper placed behind this stop would then receive, about the time of noon, a strong impression through one hole; a little later, a momentary one through both; and a final impression through the second one alone. Now, if this strip of paper is allowed to move with measured speed the white, lines will result from the section of the sun as thus:—

That portion of the paper where a single line is seen indicating that at the moment of its passage underneath the stop the time of noon was passed, or had not yet arrived, whilst the centre of the part on which two lines are found shows that the moment of its passage took place upon the stroke of noon.

The remainder of the apparatus will be obvious at a glance, consisting merely of a cylinder round which to fold the photographic strip, and a clock attached thereto to indicate, according to itself, the time at which a given portion of the strip passed by a given point.

Such an instrument I am now constructing. Its quadrants have a radius of a foot; the distance of their separation is an inch; the width of the slit the tenth part of an inch; the inclination of the diaphragm thirty-six degrees above the horizontal plane, and the separation of the holes therein one-fifth part of an inch. The diaphragm will be situated immediately above the external surface of a cylinder having a diameter of one foot, and connected with the minute spindle of a clock, so as to revolve therewith completely in an hour. The sensitised paper wrapped round this cylinder will be protected from the influence of any light save that passing through the pinholes of the stop. The diameter of the cylinder is such that over one yard of it will pass the diaphragm in an hour, so that with a reading reliable only to the tenth part of an inch—a very easy reading—the time will be indicated to within ten seconds of the truth. By applying another and much smaller cylinder to the spindle of the crown wheel, the indication may be readily obtained to within one vibration of the pendulum.
NOTE ON THE PRODUCTION OF SULPHO-
CYANIDES.

BY JOHN SPIFFER, F.G.S.*

The use of sulpho-cyanide of ammonium as a fixing agent in photography, proposed in the year 1863 by M. Mouyier, of Marseilles, does not appear to have been generally received with so much favor by the manufacturers as to induce them to turn their attention to the economical production of this salt. It may still be regarded as a laborious preparation; and the comparatively high price is no bar to its employment in the gold-
toning bath, for which purpose alone it seems now to be re-
erved. Very recently M. Jacquemin has communicated to the French Academy a process, or chemical reaction, by which two fixing agents now employed in photography may be made to produce a third. The object was not so much to produce the sulpho-cyanide of potassium directly in this manner, as to take advantage of its formation as a means of detecting the potassium cyanide in the presence of non-
poisonous double cyanides. By boiling together sodium hyposulphite (NaS₂SO₃) and potassium cyanide (KCN) the S₂ divides itself equally between the two salts, forming sodium hyposulphite and potassium cyanide. The chemical reaction is manifestly as follows:

\[\text{KCN} + \text{Na}_2\text{SO}_3 = \text{KCN} + \text{Na}_2\text{SO}_4 \]

To put this to the test of actual experiment, I boiled 4 oz. of the hyposulphite with about 1 oz. of Liebig's cyanide of potassium dissolved in half a pint of water. The odor of prussic acid soon disappeared, and after five minutes' boiling the change was completed, the solution now giving the characteristic blood-red colouration with ferric chloride. It was decidedly alkaline, and fixed both paper prints and collodium negatives in a satisfactory manner, although much slower in action than the original cyanide.

There does not appear to be much difference in the behaviour of the potassium and ammonium sulpho-cyanides when employed as fixing agents; but if the latter be preferred, it may be well to remember that vast quantities of this salt are being thrown away in the waste liquors from gas works, and that, after recovering the ammonium, no use is made of the sulpho-cyanide still left in solution. This could be precipitated with mixed iron and copper salts, and the white cuprous sulpho-cyanide economised for the production of the corresponding alkaline salts. Already I have tried this process on the small scale, and it appears to answer perfectly.

THE ADVANTAGES OF SULPHO-CYANIDE OF
AMMONIUM AS A FIXING AGENT.

BY GEORGE COOPER.*

In order to be explicit in communicating a few remarks upon the above subject, I have thought it advisable to divide the same into five headings, as follows:—First, to consider the matter historically; secondly, chemically; thirdly, theoretically; fourthly, practically; and fifthly, economically.

Sulpho-cyanide of ammonium, as a fixing agent, both for prints and negatives, was first made known to the photographic world by M. Mouyier, of Marseilles, who laid the matter before the Society, and succeeded in getting an experimental committee appointed to report upon the subject, as far back as the 9th January, 1863. This report was given about three months later; and on the 22nd of the same month a very interesting and practical paper was read before the late North London Photographic Association by Mr. G. Wharton Simpson. During the twelve years that have elapsed little has been said upon the subject; and, in order that it may not collapse until it has been much more fully investigated than has yet been the case, I have thought it advisable to bring it prominently and forcibly before the Society, in hopes that our practical and experimental members will take the matter up with spirit, and decide definitely which is the most perfect fixing agent for photographs—hypop-
sulphite of soda, or sulpho-cyanide of ammonium. Having the conviction that the immediate future of photography lies more in the permitting of the silver process than in the carbon printing (I mean for small work and small commissions), I feel it an important step in the right direction if we can find an agent that shall more thoroughly dissolve out the silver left in the prints after toning than is the case with hypop sulphite of soda. It is my conviction that photographers generally have stuck to the use of hypo-
sulphite of soda chiefly on economical grounds; but if it can be shown that this substance, by a very general consump-
tion, can be produced at a price that will favourably compete with hypop sulphite of soda, this consideration will be entirely swept away—although I must add that I think it is one that should always be held as of very secondary importance.

I shall now say a few words upon this substance chemi-
cally. It is a notorious fact that many disputes arise in the photographic journals through very different results being obtained by the same formula; whereas the solution of the problem is simply in the fact that one person is using everything of the purest kind, whereas the other party has a very inferior article; and I was informed by Mr. H. Cooper, only last December, that a certain process of obtaining genuine albumen treatment was an entire failure in the hands of many who had purchased a certain process, simply on account of the difficulty of obtaining the purest albumen in country towns.

Perhaps I cannot better illustrate the above remark than by the three samples of sulpho-cyanide of ammonium I have laid upon the table, obtained from two different manufacturers. One I have marked as an inferior sample, and the third as the pure article. Now the first of these has such an excess of sulphur left in it that it makes it impolitic to use it at all as a fixing agent for prints. I found it answer for negatives instead of cyanide of potassium; but considerable washing and a second application are required; not so the other two samples. Sulpho-cyanide of ammonium is composed of sulphur, hydrocyanic acid, and ammonium; and I have succeeded in converting hydrocyanic acid with ammonia and evaporating gently to dryness, or digesting hydrocyanic acid with sulphide of ammonium, and boiling off any excess. There are various other ways, but this is how it may be obtained in the laboratory.

I shall next touch upon it theoretically. That sulpho-
cyanide of silver is formed by the immersion of the toned print in the primary action, and that a double salt is afterwards formed through the excess of sulpho-cyanide of ammonium in the secondary action, and that a certain small amount of sulpho-cyanide of silver (which is insoluble in water) may ultimately remain in the prints is the true result.

This leads me to my fourth heading, namely, the con-
sideration of it in its practical bearings; and the following question naturally arises, that supposing, for sake of argu-
ment, a small trace of undissolved silver be left in the prints, which is the lesser of two evils: to have a small portion of sulphide of silver left in the prints, or a small amount of sulpho-cyanide of silver? Although this may be a some-
what difficult question to settle off-hand, yet I ask whether some of our experimental chemists cannot decide the matter for us definitely, and even find a substance that shall be capable of entirely dissolving out this objectionable product, and yet leave the print in possession of all its beautiful qualities as regards tone and brilliancy?

However, it is open to dispute whether there is really the slightest trace of sulpho-cyanide of silver left in the print when the operation of fixing has been carefully and properly conducted; and on this point I shall quote rather fully from Messrs. Davanne and Girard's researches, who
were two of four gentlemen appointed as an experimental committee to test the properties of sulphocyanide of ammonium as a fixing agent, and who, trying its action upon albuminate of silver, found that it was much more energetic as a fixing agent than hyposulphite of soda. "If a certain quantity of albumen be precipitated directly by nitrate of silver, and, after the precipitate is washed and treated two or three successive times by sulphocyanide of ammonium, or dried and calcined, we recognise that the residue, dried and calcined, leaves only very minute quantities of silver in the ashes; whilst in operating in a similar manner with hyposulphite of soda the ashes contain considerable quantities of silver. The sulphocyanide of ammonium appears, therefore, to present a real superiority over hyposulphite of soda in respect to the absolute fixing of the whites of the prints."

Again, in another article, M. Meynier states thus:—

"Sulphocyanide of ammonium dissolves the silver compounds employed in photography very readily; and its most remarkable property with respect to the permanency of the pictures is, that notwithstanding the presence of sulphur among its elements, it does not precipitate that element under the action of acids, which is the primary cause of prints becoming more or less hazy, or even blackening on the addition of hyposulphite of soda to the solution of albuminate of silver. To verify this property, a saturated solution of hyposulphite of soda was placed in one test glass, and a saturated solution of sulphocyanide of ammonium in another. A drop of acid added to the solution of hyposulphite of soda caused an abundant white precipitate of sulphur. The solution of sulphocyanide of ammonium similarly treated, on the contrary, remained liquid. This impurity was not changed under the action of a very strong proportion of acid. The liquid only became feebly coloured yellow-red. From this fact it evidently results that sulphocyanide of ammonium does not precipitate sulphur under the influence of acids; and, admitting that some sulphur must be liberated, soluble compounds only are formed, which will be removed by washing, and leave no sulphur in the substance of the paper."

Again, in a very comprehensive article upon the same subject, published first in the Bulletin of the French Photographic Society, and afterwards in the Photographic News of May 1st, 1863, we find the following remarks by Messrs. Davanne and Girard, beginning with the question, "Can sulphocyanide of ammonium dissolve all the silver compounds? We have no hesitation in replying in the affirmative; for at the very time it has been discovered that the sulphocyanides dissolve the salts of silver. This fact is recorded in all treatises on chemistry; but experiment has shown us that its solvent faculty is more absolute than that of hyposulphite. The action of this salt upon nitrate and chloride of silver is more decided, as every one may ascertain for himself. Take a solution of nitrate of silver, and pour it into some drops of the alkaline sulphocyanide, a white precipitate of sulphocyanide of silver will appear; upon adding an excess of the reagent, the precipitate will quickly disappear. Chloride of silver, shaken into a solution of sulpho-cyanide, is dissolved in the same manner. The clearness of these two reactions admits of our passing them over quickly; we therefore devoted all our attention to the solution of albuminate of silver. We recognised that the solution was complete, and the action of the sulphocyanide was, from this point of view, even more energetic than that of hyposulphite of soda. For, on the one hand, we precipitated some albumen by nitrate of silver; then, after well washing the precipitate with distilled water, we treated several times one portion with sulphocyanide of ammonium, the other with hyposulphite. Again well washed, the precipitates were well calcined. That which had been treated with sulphocyanide furnished truces of silver only; whilst that treated with hyposulphite furnished a considerable quantity. On the other hand, we fixed, by means of these two agents, some albumenised paper, which we afterwards burned; and in this case we recognised a difference of the same kind quite favourable to the employment of sulphocyanide, but which was less marked than in the first case. Thus sulphocyanide attacks albuminate of silver more energetically than hyposulphite, and consequently presents a decided superiority over the latter with respect to the absolute fixing of the whites of the prints."

Sulphocyanide of ammonium, in conjunction with chloride of gold, makes an excellent toning bath, the best proportions being 6 grains of the former to each grain of gold. This toning bath should be composed of sulphocyanide to two parts of water; and whilst the first should be thrown away after the prints have remained in five minutes, the second bath of the same strength may be preserved, in order to be used as the first bath for the next batch of prints. Five minutes in each bath will be found sufficient, provided that the prints are well washed between the two fixings. It has been proved to be more economical to use a solution of this strength, and it will not be found to reduce the prints more than the ordinary hyposulphite bath.

For fixing negatives, sulphocyanide of ammonium is to be strongly advocated, in preference to cyanide of potassium or hyposulphite of soda.

Make a saturated solution, and keep it corked. It will be found as energetic as cyanide (no offensive smell); and most authorities declare it to be innocuous, though upon this point I cannot speak positively, and do not care to try the experiment just yet.

Lastly, a few words upon economical grounds, as compared with hyposulphite of soda. Although, as I have stated before, I consider this a secondary matter, yet we can live in hopes, if not upon hopes. Hyposulphite of soda was once a guinea a pound, and is now less than a guinea per 20.; but this is not so much on account of the few tons used by photographers, but by the many tons used by calico-bleachers and paper and cardboard manufacturers.

Sulphocyanide of ammonium can be produced from gas refuse in large quantities—in fact, gas liquor is a material thrown away as a useless article; but if some enterprising firm will only take the matter up and make a few tons, there is little doubt but that it would entirely replace cyanide of potassium, and, to a great extent, hyposulphite of soda. Sulphocyanide was sold in Paris twelve years ago at about 4s. 1d. per pound; and although one sample upon the table cost 5s. per pound, and the pure sample 4s. per pound, I consider the latter is the least cost of its purity. But there is no reason why it should not be greatly reduced in price, if photographers will only wake up and use it generally. I have been informed by Mr. John Williams that a patent has recently been taken out for making Prussian blue from this material; and if a really good blue is attainable, which appears very probable, there is little doubt but that sulphocyanide of ammonium will come down in price to about 4d. per pound, instead of 4s. per pound.

In conclusion, I ask the opinion of photographers generally whether sulphocyanide of ammonium is not a more perfect fixing agent for prints than hyposulphite of soda when properly used; and whether there is any necessity whatever for the continued use of that objectionable, poisonous, and even costly chemical, cyanide of potassium, for the fixing of negatives.

Why not banish it from our midst? Only try sulphocyanide of ammonium, and I feel confident this will be the result. Then shall we have no more heart-rending stories of accidental or non-accidental death by poisoning with cyanide of potassium; the monotonous part of the art will be made less unwholesome; and all these advantages will be realised without a single disadvantage to counterbalance the recognised gain.
ON AMMONIO-SILVER CARBONATE.

By SEBASTIAN HARRIS.*

By adding, to a concentrated solution of silver carbonate (\(\text{Ag}_2\text{CO}_3\)) in ammonia, ethyl-alcohol (\(\text{C}_2\text{H}_5\text{OH}\)), a peculiar grey precipitate is received, containing the elements of ammonia. In order to study the reactions and the nature of this compound, some experiments were made, the results of which are as follows:

The silver carbonate was prepared by mixing concentrated aqueous solutions of hydrosium carbonate (\(\text{HNa}_2\text{CO}_3\)) and silver nitrate. The yellowish precipitate of silver carbonate obtained was well washed and dried over sulphuric acid; the dried salt was dissolved in ammonia, 0.930 sp. gr., and from this solution the ammonio-silver carbonate compound was thrown down by means of absolute alcohol; the resulting grey precipitate was washed and dried. The ammonio-silver carbonate thus obtained gave the following reactions:

1. The compound in the state of perfect dryness takes a more intense dark color; some drops of ammonia immediately turn the substance black, and readily dissolve it.

2. Gently heated to 80°, it commences to yield ammonia gas, which disappears at 100°. This was proved by placing on the top of the crucible red filter paper, which turned blue. Some drops of hydrochloric acid gave, with the evolved gas, white fumes, proving the gas to be ammonia.

3. Two grms. of the substance, heated on a sand-bath in a porcelain crucible at the following temperatures, undergoes the following changes:

- 100° The substance blackens.
- 160° Conversion into a uniform black mass.
- 240° The substance partly whitens from the decomposition into metallic silver.
- 306° Conversion into metallic silver.

4. A solution of ammonio-silver carbonate in ammonia, dried over calcium chloride, gives needle-shaped crystals of irregular form. The crystals dissolved in ammonia turn black, and the undissolved part falls down in the form of a black powder.

5. The ammonio-silver carbonate, in the form of a black powder, resulting from the experiment No. 4, was dissolved in hydrochloric acid. There was a strong reaction, evolution of gas, and production of silver chloride (\(\text{AgCl}\)) and a small quantity of neutral ammonium carbonate [\((\text{NH}_4)_2\text{CO}_3\)], by the following reaction:

\[\text{Ag}_2\text{CO}_3 + 4\text{NH}_3 + 2\text{HCl} = 2\text{AgCl} + (\text{NH}_4)_2\text{CO}_3 + 2\text{NH}_4\text{H}_2\text{O}\]

The presence of the ammoniacal salt was proved by testing the solution by means of sodium hydrosulphite (\(\text{Na}_2\text{S}_2\text{O}_3\)). Ammonia gas was received from the decomposition of the salt:

\[(\text{NH}_4)_2\text{CO}_3 + 2\text{H}_2\text{O} = \text{Na}_2\text{CO}_3 + 2\text{NH}_3 + 2\text{H}_2\text{O}\]

6. The ammonio-silver carbonate may be considered as a direct compound of silver carbonate and ammonia, having the formula \(\text{Ag}_2\text{CO}_3 - \text{NH}_3\). At ordinary temperatures, this substance is a stable compound, which may be preserved for a long time without alteration; but, as it is seen from the experiments, it is readily decomposed by the action of heat and acids, with the evolution of ammonia gas.

Correspondence.

DOCTORING BATHS.

Sir,—Has any one ever tried the experiment of doctoring refractory baths on homeopathic principles?

The question was suggested upon reading Mr. Turnbull’s amusing and instructive article in the News of last week, in one part of which he relates the incident of the woman who usurped his bath, developer, &c., in a coal house, and, gathering the different solutions in the bath holder, consorted him with the remark: “I don’t think you have lost any, as it was spilt on the table, and I gathered it all into the dish with my hand again!” Mr. T. further states that he filtered it, and, upon trying a plate, found, much to his surprise, that it worked as well as ever. The paragraph is concluded with a recommendation to try a little iron solution to a disordered bath. Now, though it seems a strange theory, I think a great deal may be gathered from the foregoing fact, which might be improved upon, if followed up by some of our indefatigable experimentalists.

Trusting we may hear further from homeopathic practitioners of our fraternity, I am, sir, yours obediently,

THOS. FOTHERTON.

TRANSIT OF VENUS.

Sir,—There must be some mistake in the telegram from the American transit of Venus party here alluded to in your paper of 18th December, as the number of good pictures was 113, about 170 having been taken altogether. This I happen to know, as I was assisting in the photographic house. The sky was obscured for weeks prior to the transit, and was only clear on that day for a short time, none of the contacts being sufficiently clear to make any reliable observation with the eye, and, of course, impossible to be registered by photography. From practice beforehand we found we could take twenty-five views of that portion of the sun’s limb on which the planet would appear (one inch square) in thirty-nine seconds. The diameter of the image was about one inch, and the transit was attained by the use of an apparatus designed by Professor Harkness for use at the time the contacts were taking place.—I remain, sir, yours faithfully,

O. MACMAHON, Major, Royal Artillery.

Proceedings of Societies.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The usual monthly meeting, being the concluding meeting for the present session of this Society, was held on the evening of Thursday, the 10th inst., Mr. F. T. Yorke in the chair.

The minutes having been read and confirmed, Mr. William Brooks read a paper entitled “A Novel System of Masking, and the Production of Brilliant Prints from Weak Negatives” (see page 292).

The Chairman, in moving a vote of thanks, remarked that the process seemed to be one of great value. The hard lines of junction in combination pictures were often very objectionable; but by adopting the method recommended in the paper to which they had just listened, they would be done away with. He could see several ways by which the suggestions could be utilized; he might give, as an instance, the lightening up of dark foregrounds.

Mr. Wilkinson thought that the matter had been presented with such completeness as to leave no room for discussion.

Mr. Brooks said that he had found the process was useful in the case of very thin negatives, as well as for imparting artistic effect to such subjects as drapery. Mr. Brooks then gave a practical demonstration of the method of removing any portion of a picture by means of an application of cyanide of potassium, handing the pictures thus operated on around the meeting for examination.

Mr. Atkins asked if there was not a difficulty in effecting the complete removal of the cyanide of potassium from the mask.

Mr. Brooks said that this could be easily done by washing well with a brush. There was no danger of the cyanide acting upon portions upon which it had not been applied.

Mr. W. considered that in this process Mr. Brooks had allied the art of photography to the art of painting. He (Mr. Werge) recommended the application of plumbago by a stump to the back of the negative, as it was more under control. They could distribute or blend it away as they liked. The subject was then dropped.

Mr. W. then read a paper on “Uranium and its Uses” (see page 291).

The Chairman had never tried uranium except as an intensifier with ferric-cyanide of potassium, when he found its use not to be recommended.

Mr. Brooks agreed with all Mr. Werge had said respecting the alleged accelerating influence of an addition of nitrate of uranium to the negative bath; the only effect produced was to render it slower.

After some remarks by Mr. Tulley, Mr. Kennett, and others,
Mr. Warrenek said that if red uranium prints were flowed over with sulphuric acid and bichromate of potash they would vanish; but, on being treated with solution of citrate of amylne, they would reappear as a black colour. A print of a greenish-black colour would be turned into one of a purple colour by solutions of the alkalies.

A vote of thanks was then tendered to Mr. Werge.

Herr Leo Warrenek then described an important mode of working with bromine and other chlorinating gases on flexible and paper supports, and an apparatus for working such films; and gave a practical demonstration of the process. This communication was delivered extempore; but a request having been made that it should be reduced to writing and published in extenso, it was agreed that it should be handled in a later number of the Society's Journal. It will be published in the next number of the Journal.

The communication was very interesting, and the thanks of the meeting were cordially given to Mr. Warrenek.

The Secretary announced that the next ordinary meeting would be held on October 14th. The meeting then adjourned.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The third out-door meeting of this Society was held on Thursday, the 10th inst., at St. Monance, in Fife. The members left the Waverley Station at 8.30, and arrived at their destination about 9 o'clock. Breakfast, of course, was first claimed their attention, for that purpose they proceeded to McPharlane's Hotel, where, in spite of the rather unpromising appearance of the exterior, they were sumptuously entertained.

St. Monance, a clean-looking fishing village, with a population considerably above the average of such places in appearance and industry, and affords much picturesque work for the camera, in the shape of fine combinations of rocks and rock, while the harbour, with its fleet of fishing boats, affords scope for many excellent pictures. It possesses also a tolerably fine ruined castle and round tower, which may be combined with much pictorial advantage from several points of view. The glory of St. Monance, however, is its ancient church, one of the oldest in Scotland, and in a fairly good state of preservation, and as the sea at high water almost reaches its base, it is a never-ending source of admiration to visitors, and is always eagerly seized on by all artists, whether they rely on the brush or the camera.

The cameras of the party were, very naturally, first turned in the direction of the church, and then each bestowed himself to the kind of subject most congenial to his taste, or best suited to the use of plate which he was working, and so the day was pleasantly spent until dinner time.

The weather, which looked gloomy and dull in the morning, fortunately took a favourable turn, and they had the advantage of fine, though not hot, weather for the whole day. The wind, however, was rather high, but as there were no trees, the only danger was in the possibility of the cameras being shaken, and, judging from the results, that, by the aid of pretty heavy stones, &c., seems to have been generally preserved.

At three o'clock they sat down to dinner, which was served up by Mr. McPharlane in capital style, and very thoroughly enjoyed. After dinner the members constituted themselves into an ordinary meeting of the Society, with the President in the chair; but the business transacted was simply of a routine character. On comparing notes, it was found that, in all, forty plates had been exposed, including Davie's beer and albums; Captain Akroyd's modification thereof; colloido-bromide emulsion, and plain beer; and we understand that fairly good results have been got by all.

The party proceeded to the hill, where the party assembled at 4.30, and arrived in Edinburgh at 8 o'clock. Very much pleased with the excursion, and very hopeful of satisfactory negatives.

We understand that the annual holiday, which has apparently been one of the Edinburgh institutions, is to take place on the eighth of July, and that the excursion will be, as usual, by barge, to Almond Dell.

Talk in the Studio.

A DIPPER FOR FLAT BATHS.—A correspondent of our Philadelphia contemporary gives the following:—"Get two pieces of heavy silver wire (or sheet steel tipped at the ends with silver) about one foot long, bend in the shape of U's, and affix to the sole of a long horse-shoe, turning up the ends about one-fourth of an inch; next drill two holes in each piece on opposite sides about three or four inches from the top of curve (wires being flattened, if necessary). Slip one of the wires inside of the curve of the other, so that the four holes will correspond, and run a small wire through, and bend both ends to prevent its slipping out. Your dipper is now complete, and has the appearance of the following figure. Commence dipping your plate, and place it in the dipper face down, and grasp both curves in one hand, and you will find that the plate is firmly held without effort, and may be immersed vertically or diagonally as desired. The hands of the person forming rests for the plate while in the dish.

When coated, it can be raised, drained, and placed in the holder without the least trouble.

PRODUCTION OF OZONE.—Ozone may be easily and abundantly produced by means of a solution of permanganate of potash and oxalic acid. A very small quantity of these salts, placed in an open porcelain dish, is all that is necessary, the water being renewed occasionally as it evaporates. Metallic vessels should not be used.—Scientific American.

BLEACHING BONES AND IVORY WITH OIL OF TURPENTINE.—Bones exposed three or four days to sunlight in oil of turpentine are bleached perfectly. They should rest on little blocks to keep them out of the acid products which settle on the bottom.—English Mechanic.

To Correspondents.

S. P. Q. R.—Matt silver statues, such as you describe, may be induced by various causes, but the primary and most frequent cause is the use of a horse, repellant colloidum, upon the surface of which the free silvery solution is apt to settle in portions rivulets, rather than to flow in an even sheet. The silver solution rapidly concentrates and dries, especially in warm weather, and so causes stains by the reduction of silver into the metallic state. One very simple and sweeping remedy is the use of another sample of colloidum which is free from the tendency to question. The same sample of colloidum when older will get rid of this tendency. The addition of a little liquid to which each owner will often affect a cure. Immerse the plate as soon after coating as possible. Allow as little time as possible to elapse between removing the plate from the bath and developing. Be very careful not to let the light play on the inner frames of the dark slide clean. Place a fresh piece of clean blotting-paper at the corners of the dark slides with every plate. Place a piece of wet blotting-paper at the back of the plate. It is probable that by attention to these hints you will get rid of your trouble.

ONE IN THE TRADE.—The steps should be central to the lens. It does not follow that because the aperture is not quite in the centre of the plate or in the brass that it is not opposite the centre of the lens. See to that. 2. The scratches would have been better absent, because by dulling the surface at the point in question they obstruct a small amount of light; but the amount is probably not sufficient that any perceptible annoyance is caused by it. 3. About opposite the breast of the model is the best position for the lens in taking standing figures. The sliding front is of great value, but a swing-back is not of much use with small pictures.

A. C. SUSE.—We should think Mr. Morley probably most likely to apply it; but we do not know of any one who makes a specialty in dealing in second-hand lanterns.

R. P.—We do not quite see where your difficulty is in getting an even coating, unless you use the solution too thick or too cold. It ought to be easy enough to spread. Herr Warrenek's paper may afford you some hints. See that.

W. G. A.—The colloidum you describe is probably useless. We do not know of any efficient method of reviving the sensitiveness of "old brown colloidum insensitise, rotten film." You may find it useful in some cases to add to a new tough sample inclined to fog from want of ripeness. Such a colloidum as yours will aid in ripening a new sample. It is, as you suggest, useful in cleaning plates, but in success it is painful and injurious to the eye. 2. It is possible to take interiors with a single lens. Place the stop very close to the lens. This will bring the correct curvature of the lens and the increased curvature of the field, which is not an evil in an interior.

M. F.—The toning bath which has turned a dirty brown and refuses to tone is useless. You have probably touched the solution with fingers contaminated with hyposulphite of soda, which has decomposed the solution. Fingers which have been in contact with hypo should be thoroughly washed before they touch anything.

Several Articles in type are compiled to stand over for want of space.

Several Correspondents in next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Status of Photographers.—The Intensity of Different Coloured Lights.

The Status of Photographers.—The status of photographers, a subject which has many times been discussed in these columns, is just now being ventilated by our Austrian brethren in Vienna. Dr. Vogel, of Berlin, recently sent a paper on the subject contributed to the Photographiche Notizen, and which we reproduced in this journal some months ago, and the point seemingly under discussion is, whether the position of photographers would be raised by establishing an academy or college for instruction in matters of which all those connected with photography should know something. It is in respect to art culture especially that the photographers of to-day are said to be so sadly deficient; but no one party seques
PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HUGHES.

CHAPTER VI.

THE DEVELOPER AND DEVELOPMENT.

WITH SOME SPECULATIONS ON THE NATURE OF THE INVISIBLE IMAGE FORMED IN THE CAMERA.

Development is one of the most beautiful of the photographic manipulations. It is performed in non-acetin light, and if the plate has been carefully handled, and has not been exposed to acetin or white light, except in the camera, where it has undergone a change of the nature of which we cannot be said to have any exact knowledge. Looking at the plate, we can discover no perceptible alteration in the film; no image is visible; yet an image is latent, and the developer brings it out. On the skill and intelligence of the operator in this manipulation depends the success of all the work that has gone before—his to mar, and, to a certain extent, in some cases, to correct. That the reader may understand how important development is, and that he may bring to bear all his knowledge in the operation, let us consider the effect of the developing and fixing solutions on the unexposed and unprocessed films of collodion sensitized in the nitrate of silver bath.

Coat a glass plate with collodion, and sensitize in your negative bath. A coating of iodide and bromide of silver is formed on the surface, and the plate is moistened with nitrate of silver. If (this operation having been performed in a room, as your dark room should be, free from acetin light) you now flow the plate with a solution of silver nitrate, you will find that some of the iodide of silver is reduced to the metallic state floating about on the surface of the plate. By washing the plate under the tap, all the "free silver," as it is termed, will be washed off. Place it immediately in a solution of cyanide of potassium or hypo-sulphite of soda, and the surface of the plate will be left very much in the state it was when the collodion was poured on.

Open the plate, and before pouring on the solution of iron in water (the developer), expose the plate to the acetin rays for a few seconds. Bringing back the plate to the dark room, we can perceive no change in the film; yet a remarkable change has taken place, for, on applying the developer, we perceive that, although the silver is reduced, as on the other plate, instead of its floating about the plate as before, a portion of it is attracted to the film and is fixed, and the plate is seen to darken and grow opaque. Only a portion of the silver, too, can be washed off under the tap; and the plate being placed in the solution of hypo-sulphite of soda (which has not the property of dissolving metallic silver), it remains unaffected.

Once more taking a sensitized plate and putting it in the carrier, by half opening the slide we expose one-half of the plate. Now, on developing, we find one half (that exposed) darkens by the attraction of metallic silver to its surface, while on the other the silver floats about in a free state. Washed and placed in the hypo-sulphite of soda solution, the exposed half will be found to have an opaque film, as the plate of the second experiment, while that half of the plate unaffected by acetin light will have an appearance similar to that of a plate covered with collodion, and like the plate of our first experiment.

By this it will be seen that, all the conditions being identical, acetin light must have worked this marvellous change; and on this, it may be said, is photography based.

When the plate is first exposed in the camera, it receives, by the action of the acetin rays, an impression on its surface; and the developer, when passed over the plate, dissolves the reduced silver being attracted to those parts affected by the light. There is now remaining on the parts of the negative unaffected by light, iodide of silver; and unless this is dissolved and removed, the image is in danger of being obliterated by the action of light; and the shadows being opaque, the passage of light in printing is prevented. This dissolution of the iodide of silver in the solution of hypo-sulphite of soda or cyanide of potassium is termed "fixing" the image, after which it is well washed under the tap.

It has been seen that the action of light on the sensitized plate has caused no perceptible change in its appearance, nor can any be detected by the aid of the most powerful magnifying glass. That a change of some kind has been effected is proved by our experiments, and the fact has been established that the impression is not of a temporary nature, but is permanent, and the developed plates kept months after exposure, and with perfect success, provided always that the plates have been protected from acetin light in the interval.

What, then, is the nature of the invisible image? All that is advanced on the subject is a matter of conjecture. These theories may be briefly given:—1. That during exposure of the plate, a reduction of a small part of the iodide to the metallic state accelerates and directs the subsequent reduction caused by the iron developer. 2. The reduced silver forming the image under the action of light in the camera is produced instantaneously, and the free acid of the nitrate of silver solution in the film tends to weaken and destroy it. We know that if we expose the plate in the camera for a considerable time, and then examine it before a brilliantly lighted object, a faint visible image is impressed on the plate without application of the developer; therefore it is assumed the change of the silver salt under the action of light is to a metallic state. 3. A molecular change of the silver unattended by separation of the elements, such as occurs in the case of a visible image impressed with light, is supposed to be the character of the action of the developer. The development of the image is the process by which the reduction of the silver has taken place as to predispose it for the reception of silver when reduced by the action of the developer to a metallic state.

Development.

In developing the invisible image, the agents generally employed are prosulphate of iron, the double sulphate of iron and ammonia, and pyrocatechus. A solution of prosulphate of iron and ammonia may be poured on to a plate sensitized with nitrate of silver, the reduction is immediate, and to retard this action an acid is added. The rapidity of action of the developer is also affected by the temperature of the atmosphere and of the developing solution— the reduction of the silver being slower at a very cold than at a very warm temperature. In portrait photography the prosulphate of iron and ammonia is more generally used than the prosulphate of iron and acetic acid, as the latter is injurious to the paper, and the ammonia is used for developing universally, of strength varying according to circumstances. The usual strength is, one ounce prosulphate of iron and one ounce acetic acid to sixteen ounces of water. This solution, after a day or two, turns yellow, and deepens in colour as it is kept, and a sediment falls to the bottom of the bottle; this can be easily filtered out. It does not appear to affect the chemical action of the developer, and though many prefer a new solution, I have failed to discover any difference.

After dipping many plates in the negative bath, it accumulates alcohol and ether from the collodion, which prevents the developer from flowing evenly over the plate, in which case a little alcohol added to the developer is sufficient to overcome the difficulty; but it is better to remove the bath in this condition, as the alcohol has already worked a change.

The effect of a strong developer is to reduce intensity, making the image appear thin and lacking sufficient contrast, while a too weak developer brings the image out slowly and too intensely in the high lights, leaving the shadows comparatively bare. Another effect of a developer of this character is, that the reduction set in motion by it is so slow that the shadow loses its integrity before the lights are sufficiently brought out; and the same effect is caused by a strong developer, because the reduction of silver is too rapid to be properly watched, so that, before the developer can be washed off, the silver has been deposited on all parts of the negative, giving the shadows a misty, veiled appearance.

The flow of developer over the plate must be rapid and
steady, poured on from the thick edge of the film, that uppermost in the carrier (see Chapter VI.). The plate is held as explained in the manipulation of flowing with collodion. Just enough developer being poured on to cover the plate with a steady flow, none should be permitted to remain. In a moment or two, after the application of the developer, the image will begin to appear. Allow the solution to remain on the plate until the high lights are nearly out, and before the deepest shadows have any delineation, as development proceeds on to a certain extent while the developer is being washed off.

The timing of the exposure being correct, and the lighting conditions being perfect, the image on the plate should come up under development in a few moments after coating the plate with developer, and continue to grow to its proper intensity without any of the agonized gymnastics so often indulged in by operators in this manipulation, and so painful to behold. The plate should be held perfectly still and straight, that none of the silver be lost from its surface. Sometimes when lighting and timing (by which is expressed the time of exposure of the plate) are not quite right, a little gentle motion may aid the development. The effect of an under-exposure of the negative is, that the silver precipitated by the sulphate of iron does not deposit on the plate sufficiently to form a perfect image, the brightest lights alone receiving it, and the delicate lights that all present lines being preserved void; while, with an over-exposed plate, the proper gradation is lost by extending the deposit to the shadows. So, too, with the development: if the iron solution and silver be washed off too soon, much the same effect as in an under-timed negative is seen; and over-development will make the most brilliant negative flat and uninteresting.

A NEW METHOD OF USING PAPER IN PLACE OF GLASS FOR NEGATIVES IN DRY-PLATE PHOTOGRAPHY.

BY LEON WARNERKE.*

All photographers are aware that photography out of the studio, with the systems now employed, presents certain difficulties which make the process of taking a photograph anything but pleasant. Having, in my photographic excursions, experienced all these inconveniences, I adopted from time to time different improvements; and, having now arrived at a point (in the case of the operator who is the dark room) only discovered as he develops the plate. He has to bring all his experience to bear on the instant.

The excess was returned to the bottle for future use, and the following solution was immediately applied—

Sulphuric ether... 4 ounces
Alcohol 4
Solution of bromine 1 dr. in alcohol 1 oz. 20 minims
Pyrogallic acid ... 30 grains
Alcohol 1 ounce
Ether 20 ounces
Alcohol 40
Castor oil... 1 ounce
Pyroxyline 1

After drying, another India-rubber coating, and, lastly, another sizing of bromide, bromo-iodo-chloro, in the washed collodion emulsions, is applied. When gelatine emulsion is preferred, the last India-rubber coating is omitted. I find the film is equally good when, after first coating of the colloidion and paraffine, the following solution of gelatine is applied:—

Gelatine 1 ounce
Sugar 1 drachm
Glycerine 6
Water quant. suff.

* Communicated to the South London Photographic Society.
After it is dry, coatings with collodion and india-rubber follow, and lastly the sensitive emulsion.

In preparing the film, I prefer to build it from several thin coatings, instead of one of requisite thickness, because in that way I can avoid irregularities in thickness occasioned by curling of the paper. For the same reason draining of the solution is made each time from a different corner.

The prepared negative film, with its supporting paper, is cut to the desired size, interlaced with tissue paper for extra security, and preserved from light for use.

Exposures.—For large plates the film is exposed in the usual dark slide behind the glass plate. I choose the glass plate the same thickness as the ground glass in the focussing-frame, and, after reversing the last, I have the sensitive and focussing surfaces to coincide. For small plates, from 6 by 8 down to 2 and 1, I prefer to avoid the use of the glass plate, and attach the paper with sensitive film to some rigid support. Mounting boards answer the purpose very well; but when even this inconsiderable thickness is objectionable, ferrotype plates are an excellent substitute. Negative films with supporting ferrotype plates are so thin that in my excursions last summer I was able to put twenty of these plates in every dark slide; and having with me Howard’s tent, attachable to the camera stand, in three dark slides sixty negatives were taken without necessity to repair home, or to have a plate box for those sixty plates.

Development.—For the development, I have to detach one corner of the film with a penknife, and, holding it with two fingers, all the film can be easily detached from the supporting enamelled paper.

After this, it is attached to a glass plate of the same size by means of a few drops of water. From that moment the development of the negative is proceeded with in the manner familiar to every photographer. In fact, the film is attached so firmly to the glass plate that there is not the slightest difference in the behavior of that and old glass plates.

After development, fixing, and washing, some blotting paper is applied to remove the last drop of water. This mode of drying—provoking shuddering in the followers of the old glass system—need not be feared with my films. The final drying—especially when gelatine is used in the formation of the supporting film,—must be executed under light pressure, between blotting-paper, in a book or otherwise.

If convenient, it can be dried on the glass plate and varnished, avoiding varnishes requiring heating of the plate; but there is no necessity for varnishing, except to facilitate retouching.

In this stage I have used the process for the last two years with invariable success, and have hundreds of negatives to testify it.

But I must confess I am subject to all the human imperfections. We are never satisfied with what we possess; and this spring, waiting for longer and brighter summer days, and planning my new excursions, the thought of carrying in my pocket Howard’s tent, and prospect of plunging my head into that tent for changing each plate after the exposure, looked to me an unbearable torture. For consolation I retired to my work room, and,
after some time, succeeded in preparing the slide which is intended to remove the last of the impediments in any way.

Dark Slide.—The principal components of the dark slide (see illustration) are two rollers on which the sensitive film, with its supporting paper or without, is wound, and there is room enough for one hundred plates. A darkened glass plate is fixed in the front, in the place corresponding with focusing surface; this glass plate guides the sensitive film in the progress from one roller to the other, and secures its proper position. Each roller has a metallic head by which it can be put in motion. By means of these heads all the ribbon of sensitive film can be consecutively drawn from one roller, and, after exposure, re-wound on another roller. But to secure perfect flatness there is attached to each head a pressuring screw, that arrangement permitting stretching of the film when in position.

Before the sensitive ribbon is attached to the roller it is divided into sections, corresponding with the size of plates, by black lines drawn in pencil or otherwise, and each section is numbered.

In the sliding shutter is a little window secured with orange glass and spring metallic shutter. Through the orange glass I am able to observe the black lines forming divisions between the plates and corresponding numbers. This permits me to judge of the proper position of each consecutive plate, and tells me which plate is to be exposed; and if any imperfection was observable, and which plate to avoid.

The production of negatives in the field with the aid of these improvements is a real enjoyment, because all the hard work is removed, and advantages gained over the old system are numerous.

Volume and weight of plates and apparatus are diminished.

Chance of breakage there is none; chance of abrading the sensitive surface is diminished. I ascribe to the flexibility of the support the greater amount of resistance to rough treatment my film offers.

There is no blurring possible. In application to the panoramic camera, what can offer facility similar to the new film? All costly cylindrical plates and special printing frames are useless; the sensitive film can take any shape in the dark slide, but will be flat in the printing frame.

For printing in carbon, and for all processes requiring reversed negatives, the film negative is ready without preparation. For printing stereoscopic negatives transposition is easy.

For storing negatives, no room, no boxes, or shelves are necessary. Film negatives are not destroyed by atmospheric influences.

Lastly, who can with the glass system, while going to distant lands, dream of taking one thousand plates for his long excursion? But with my film that number, or one still larger, would not increase the weight of the traveler's luggage more than by a few ounces, and by few inches the volume.

When I look to the future the circle of the beneficial effect still widens.

Pliability of the sensitive film can alter optical conditions at pleasure. Our lenses will be smaller. Definition more perfect. Distortion, spherical aberration, and other optical imperfections diminished. Aperture increased, and consequently exposure shortened.

I conclude with another less important improvement. I do not like the black cloth we use to cover our head when focussing. It gives a mysterious appearance to the operator, and increases the curiosity of the passers-by. Very often it conspires with the wind, without any respect for the head-dress of the operator, or stability of the camera.

In my apparatus I substituted a looking-glass inclined 45° to the ground glass. The image appears in right position, is much brighter, and when shut the frame containing the mirror offers a protection to the ground glass, taking infinitely less room than the black cloth.

PAPER ON ASTRONOMICAL PHOTOGRAPHY.

DR. G. B. CHAPMAN.*

Photography, as applied to solar and lunar work, is very important, but the principal advantage derived from its application to astronomy is in star work, as it greatly facilitates determining the direction and amount of motion of the stars.

All other methods practised require experienced observers and fair nights, one demanding large salaries, the other occurring whenever the conditions are favourable, and that be less than one half of the time. In the case of photography a cheaper class of labour can be employed. A photographer may be obtained for a few hours on fair nights, during which time he can make negatives enough of groups to keep one person employed for months in measuring, which can be done in the daylight by operators at small salaries, and without loss of time to the principal.

There was a question, however, as to whether the photographs could be relied upon for measures of precision. Does the film, during the manipulation and drying after exposure, remain absolutely fixed in its position?

The subject engaged Mr. Rutherford's serious attention for some time. The photographing and measuring of stars of known distances apart convinced him that the film was perfectly reliable. Afterward, however, there being some known to Mr. Rutherford, which I have shown upon Mr. Rutherford instituted another series of trials—which I executed—to ascertain, if possible, the facts in the case. These satisfied us that, with properly albuminised plates, the film can be relied upon for work requiring great precision.

The albuminising is a matter of the greatest importance, for if the albumen is not in the proper condition, it not only does not hold the film, but is a fruitful source of errors to the bath as well. To the conclusion that if we could get an albumen solution in which the albumen would be entirely coagulated by a forty-grain silver bath, then the albumen would do no harm. But as only a portion of the albumen is coagulated, there remains a part which is soluble in the silver solution. This is easily demonstrated by dipping three or four albuminised plates, without being coated, in a cold coagulating period, clear silver bath, then standing them in the sunlight for awhile.

The above is true with albumen in its best fresh condition, and it is still worse when the albumen has been kept for a time, no matter under what circumstances. Everything which has the property of keeping the albumen makes it more deleterious to the silver, for there is nothing that I am acquainted with which is used that does not have a tendency to coagulate in quantities sufficient, a portion of it will be coagulated, and it is that part which is most desirable to retain; for the greater the quantity which will be coagulated in proportion to that which will not be, the better. If we use ammonia, or the like, which has a tendency to dissolve the albumen, then in time, in proportion to the amount of ammonia used, the albumen will be changed to a condition in which the silver will not coagulate it. In this condition it is worse than nothing. A small amount of ammonia may be used (say one drop to the ounce of albumen solution) to keep it for a short time where a person is using only small quantities, but its best condition when freshly made and alone; then one ounce of albumen to thirty of water is sufficient. My practice, in albuminising plates, is to wash one and set it up between two nails, with one corner down, while I wash another and set it up in like manner. The first is then albuminised and set upon clean blotting-paper, on one corner, with the albumen side toward the wall. The third plate, is then washed and set up to drain, and the second is albuminised. By this method the albumen is not diluted, as the surplus water drains off, leaving the surface wet enough to allow the albumen to flow readily; at the same time the edges of the plate have dried sufficiently to prevent the albumen from flowing over on the back. The albumen may be used over several times if not kept too long.

* Read before the Photographic Section of the American Association.
M. LAMBERT'S SYSTEMS OF ENLARGEMENT AND CARBON PRINTING.

The name of Mons. Lambert as a photographer, not only of rare ability, but of singular inventiveness, has already been brought under the attention of our readers. Last autumn we described the operations in the method of enlargement known as Lambertcy, which we had witnessed at the inventor's studio in Paris, and we subsequently sent to the Photographic Exhibition a couple of samples of the results produced, which won glowing opinions from all who beheld them. Mons. Lambert is now in this country for the purpose of introducing not only the Lambertcy system of enlargement, but also, under the name of Chromotype, a modified system of carbon printing, combining great simplicity with charming perfection of result. The special object of Mons. Lambert's visit to this country, which will be continued during the next month or two, is to give practical tuition to his licencis; and it is scarcely too much to say that—as he is one of the most skillful manipulators we have ever had the pleasure of witnessing—and his appliances are replete with ingenious contrivances not necessarily associated with his system, but of vast value in general work—a day spent in watching his operations must prove to many a boon of inestimable value educationally, forming no light consideration in the contract for a license.

In relation to the Lambertcy method of enlargement, it is not necessary to add much to the details we published some months ago, beyond remarking that all the additional examples we see, whether produced by the inventor or his pupils, only confirm the high opinion of the method and its results we have already expressed. We may again say that many points of the method may have been partially anticipated. The use, for instance, of a transparent paper for receiving the retouching of the enlarged negative was described by Mr. Crouthorne in our pages a year or two ago. But it is in the extension and completion of this and other methods, and in the combination of several of them, forming practically a system of working, producing results of rare excellence with the expenditure of comparatively little labour, that the claims of Lambertcy consist.

By the intervention of the various operations and appliances involved, Mons. Lambert seems to be practically independent of the quality or character of the original small negative. Weak negatives, hard negatives, dirty negatives, cracked negatives, even poor small prints, are all alike made to yield an enlarged negative, from which fine prints scarcely requiring a touch to render them perfect may be produced.

The process termed "Chromotype" is, as we have said, a modified system of carbon printing, yielding prints of rare delicacy and brilliancy. We can scarcely undertake to state the precise claims of the patent, as we have not seen the specification. In many respects it is allied to Mr. J. R. Johnson's method, and in virtue of this fact, alliance with the Autotype Company, rather than antagonism, has been established. The claims made for the chromotype process are, as compared with the ordinary method of carbon printing, greater simplicity in manipulation, greater sensitiveness in the tissue, and higher finish in the result. That the tissue is very sensitive, very easily developed, and the results very excellent, we have seen demonstrated. But of the relative superiority in these points we offer no opinion, not having seen comparative trials. The tissue can be manufactured at a cheaper rate, we understand, than the Lambert tissue, and the carbon prints are facted and supplied by the Autotype Company, but only to Mons. Lambert's licensees. The same marvellous ingenuity displayed in the Lambertcy process pervades the operations in the chromotype process. The registering printing frames, by which are effected masking, double printing, &c., of the carbon prints, so that tinted margins, name, address, or other design may be produced on the plates, are singularly ingenious and simple, cheap, and efficient. The tinting of the prints where required, the finishing with an enamel surface, are not less simple and efficient. So much more can be learned by a single sight of operations and results than be conveyed by mere description, that we strongly commend all in any degree interested in the matter to pay a visit to Mons. Lambert at his temporary English studio.

"NONPAREIL" PHOTOGRAPHS.

The new metal plate, invented in America, to supersede opal glass, and designated "Nonpareil" or "Alba" plates, appear to be exciting some interest amongst our readers, several of whom speak highly of the results. The editor of the Photographische Archiv gives his experience with the plates, in which the manipulation appears to be slightly different from that we adopted, and which with us answered well. It may, however, be interesting to repeat his remarks.

The plates are in the first place dipped in a bath of alcohol until the film is quite impregnated with it, and in this way the formation of air-bubbles is prevented. Colloido-chloride of silver is then poured upon the white surface, and allowed to dry spontaneously.

The printing is carried rather deeper than the finished picture is to be, by Leon N., and is then fumed with ammonia—an operation which is by no means necessary, the fuming should not occupy more than from one to three minutes.

After the printing is completed, the plate is taken from the frame and rinsed in the first place with water, and then put into a weak solution of common salt, until the image assumes a light red tint all over it. It is then taken out and toned for a very short time in a weak alkaline gold bath, after which the plate is allowed to sojourn for ten minutes in a saturated solution of common salt. Finally the print upon the plate is washed thoroughly in water, and dried under the influence of slight warmth.

Very agreeable tones may be secured with the sulphocyanide of gold bath; alkaline toning baths do not give the most favourable results with colloido-chloride prints.
PAPER NEGATIVES.

BY WM. BROOKS.

As this subject of late has been creating a little interest, I venture to give my experiences in the matter, trusting they may be of service to those who wish for a good, simple, and reliable process for enlarging and giving results of a very high character. It is very strange that Mr. Valentine Blanchard and myself should have been working a process which we both considered original—as I believe it was with us individually—and it was peculiar that Mr. Blanchard after he had read his very interesting paper at the London Photographic Society, that in a little conversation we had on the subject, we found that we had both been working it out in detail in exactly the same manner in every respect. This will show how two minds may at the same time be engaged upon the same subject without the slightest idea of each other's path of investigation. Instance, again, Mr. J. Spiller with his nitro-sulphur light, an French gentleman (I forget his name at the present moment), a member of one of the French Photographic Societies; but, both, in this instance, brought their discoveries before the societies in England and France at the same time.

I will state how I first came to work in this direction. I reasoned in this way. I found, as every photographer has, that making ordinary bromide paper, after being blackened by the action of light, made the best opaque paper masks, and kept the parts they shielded white most effectively, no matter how long exposed even in direct sunlight; and, on the other hand, I found that if paper is left white, instead of being blackened by light, I could print through it, and obtain the most intense blacks suitable for the shadows, but with the half-tones I found it most difficult if not impossible to obtain the grain of the paper, showing, which in small work is objectionable, though in large work it does not matter. I consider it an improvement, rather than a defect, giving a kind of stipple, which gives a peculiar softness when examined at a little distance; whereas in small work it spoils the effect, which is easily seen. At last I have managed to overcome the difficulty so as to print with a good grain as well as before, by using a fixer, with which I think is a step in advance. I have not tried this class of negative for carbon printing, but should think they are most admirably suited for it, being able to print from either side of the negative, so as to do away with the double transfer, which is a great boon.

The class of negative does not seem to matter from which we obtain the enlarged negative, providing that it is not a poor one; a good negative is best obtained on the ordinary way in the camera, taking care that the high lights of the transparency must be bare glass, for if they have the slightest deposit or veil on them, a good and perfect result must not be expected; and at the same time the deepest shadows must be perfectly opaque, for if they are in any way transparent or non-acetic in colour, it will render the print's flats, similar to an over-exposed or fogged negative. For the transparency I use a collodion of a high colour, and an acid bath if small negatives are to be produced—that is, from quarter-plate up to whole-plate or 10 by 8.

I prefer a pyrogallic acid developer, viz.:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogallol</td>
<td>1 dr.</td>
</tr>
<tr>
<td>Citric acid</td>
<td>20 gr.</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>1 dr.</td>
</tr>
<tr>
<td>Water</td>
<td>20 oz.</td>
</tr>
<tr>
<td>Methylated alcohol</td>
<td>quant. suf.</td>
</tr>
</tbody>
</table>

With this developer the exposure is about six times as long as for iron development. For iron developer I generally use:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferric-protosulphate</td>
<td>10 gr.</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>15 min.</td>
</tr>
<tr>
<td>Water</td>
<td>1 oz.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>quant. suf.</td>
</tr>
</tbody>
</table>

With the developer the exposure is about six times as long as for iron development. For iron developer I generally use:

With the iron developer, if the light is weak, I sometimes find it difficult to get sufficient intensity in the shadows of the transparency. If, after fixing in the usual way, I find a slight degree more of intensity is required, I flow over it the following (it is an old formula, and very useful if used with care)—To a saturated solution of bichloride of mercury add a 10 grain solution of iodide of potassium in 1 ounce of water. A red precipitate will be formed. The iodide solution must be added until the red precipitate is re-dissolved, or nearly so, and it is then ready for use after filtering.

If the film, after it has been wetted again (if it has been dried), is to be flooded with the above, which increases the intensity very much. If only a slight increase of intensity is needed, about half-a-drachm of the above to one ounce of water will be sufficient, but care must be taken not to carry it too far. At first it changes the colour of the film to an olive green, which is the colour required; if carried farther, it gives a canary yellow, but is not needed. Or, instead of the mercury iodide, the persulphate of uranium may be used with advantage, as only one or two printings may be required from the transparency. I am quite aware of the drawbacks of this intensifier—of its gaining intensity on its being exposed to the light. It is sometimes an advantage here, if the transparency is not dense enough, to give a good paper print in the first paper negative.

Having obtained a suitable transparency perfect in every point, the next step is to print the negative, which is done in the ordinary way in the printing-frame. I prefer thin Saxe paper highly salted (say with twelve grains of chloride of ammonium), and excited on a bath of not less than sixty or eighty grains of silver to the ounce. It must be printed very deep. If the intensity is sufficient, and everything correct in the printing, the grain in the paper negative will appear as white lines; the high lights, or intense parts of the negative, perfectly opaque.

After printing, I like to tone slightly with gold in the ordinary way, and fix as usual. If only a print or two be required from the negative, it need not be waxed. A negative thus obtained can be used to print from on either side, or both sides, as required. Waxing reduces the intensity very much; if a number of prints are required, waxing is indispensable. I think this part of the process is not understood by photographers. In all instructions I have seen printed, great stress seems to be given to ironing the paper, after waxing, between blotting-paper, to take up the superfluous wax. Such a method I think very wrong—at least, I find it so, for it draws all the wax out of the paper and leaves the grain, which is required to be seen as little as possible.

I proceed in this way. I take a sheet of glass, perfectly clean, on which I lay the paper negative, alumenized side down. I use, for this purpose, an instrument like those used by chemists for spreading plasters or blisters, with a wooden handle; they are better than the ordinary flat iron. I use two: one is heating while the other is in use (either heat in the flame of a spirit lamp, or a Bunsen burner); when well hot, I take a lump of white wax or waxing composition, which I use composed of:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan wax</td>
<td>3 parts</td>
</tr>
<tr>
<td>Solid paraffin</td>
<td>1 part</td>
</tr>
</tbody>
</table>

I melt these together; hold it against the hot iron to melt it, and let it drip over the paper. When there is sufficient, I commence to spread it well about with the hot iron. The paper will become perfectly saturated. Spread very evenly by means of the handy tool described. No ironing between blotting-paper is needed. I find this the most effective way of rendering paper transparent. Another system I find very excellent—some may prefer it: lay the negative down as before, and, with hog-hair varnish brush, give it a good coat of ordinary negative varnish, and hang up to dry; it can be made perfectly transparent with one coat; do not attempt a second,
thinking to improve matters, after it is once dry, or it will become patchy, so as to render the negative perfectly useless.

A word respecting white wax. I find it very difficult to get it undulatered. Have paid as high as five shillings per pound for it, which comes expensive. The Japan wax I find answers every purpose; it has a slight colour in the mass, but that does not matter, as it will not be seen when in the negative. It is cheaper than white wax, but, with the paraffin added to temper it, it answers admirably. This Japan wax costs from eighteenpence to tenpence per pound—a vast difference in price compared with the white, and equally as good for the purpose. Paraffin alone I find too brittle.

If it is only required to reproduce negatives the same size as the original, I print the transparency in carbon, using that known and sold by the Aristotype Company as the dense tissue. The transparency is developed on glass, and the negative afterwards obtained in the same way on paper as the enlarged negatives before described. Having obtained the negative, and everything carried out successfully, I quite agree with Mr. Blanchard, that paper negatives seem to possess a charm peculiar to themselves, not to reproductions on glass; but if the subject compels the use of imagination was so strong that his dupes believed they saw the portraits of their relations. They burst into tears, fell upon their knees, kissed the photographs, and were profuse in expressions of gratitude to the professor, as well as lavish of gifts to him.

"Notwithstanding the palpable exposure of the imposture in open court, a host of respectable witnesses, including a distinguished Marquis, the Count of Bar, Mr. Sullivan, formerly United States Minister at Madrid, two French colonels, and several ladies, appeared for the prisoners, and, undismayed by the sarcasms of the presiding judge, protested that they really had seen unmistakable portraits of deceased relatives. The eminent council for the defence, M. Lachaud, spoke for two hours, and alluded to Moses, Isaiah, Tertullian, and other authorities on spirits. The Court, however, thought the charge fairly proved, and sentenced Buguet and Leymarie to one year's imprisonment, and Firmann to six months. It is curious that the prosecution was not instituted on the complaint of any customer, but spontaneously by the police for reasons not explained."

A leading in the same journal commenting on the case, remarks that "such photographs are by no means uncommon, either in England or America. In Mr. Alfred Wallace's apology for spiritualism he maintains that it is only rational to expect that the shades of the dead, if present in a room, can be photographed there, and that experience answers to natural expectation. In America an artist of this cephaloid class has been tried and acquitted on evidence which went, on the whole, to prove that he did and not the money of his clients to false premises. M. Buguet has been less fortunate, as he is, perhaps, less honest. His stock-in-trade—a very large number of miscellaneous photographs, and a lay figure, used with intent to deceive"—were displayed in court; but his patrons declined to be undeceived. Buguet, they said, may have been tempted to cheat in moments of failure, but he does not always cheat. The defence is, of course, impregnable, for people capable of trusting a confessed impostor are far beyond argument. The accused and the judge were sceptical; the witnesses, including Madame Kardec, the widow of the modern high priest of French necromancy, were mostly on the side of the dubious angels. The trial is an instructive one, and appears to confirm the remark of the philosopher that 'stories of spiritualism show how very few people can be hoodwinked on their own.' That people should be anxious to go on believing is only natural when they have given two thousand francs and a musical instrument to the deserving photographer of the quick and the dead. But persons who have not yet
HINTS ON RETOUCHING.

[OUR Chicago contemporary continues the excellent remarks on retouching from which we have already quoted.—Ed.]

FACIAL EXPRESSIONS.—Before leaving the consideration of the face in a negative, it becomes necessary to speak of faulty expressions, as many otherwise very good negatives are discarded because of some fault of this nature; and where the fault is not too great, it is quite possible to remedy it in retouching.

1. Too Serious.—In such an expression the corners of the mouth are drawn downward, with dark shadows continuing the expression towards the chin; the lines upon each side of the nose are almost perpendicularly straight; and the shadow just below the lower lip may encroach too far upon the chin. To remedy these defects, every line about the mouth that assists this sombre expression must be curved backward, by working upon their lower edges. If any are found to be so strongly marked as not to succumb to this treatment, they must be gradually shortened, but never entirely obliterated. The partition line between the lips must be curved upward, making it seem lower instead of upper lip that occupies the shadow at the extreme corners.

2. Scowl.—Should a scowl accompany this sombre expression, the eyebrows are drawn too near the eyes and each other, causing too much shadow under and between them; a dark line running horizontally across the forehead contrasts disagreeably with a bright light just above them. In youth, whatever of line or shadow appears between the eyebrows must not be allowed to remain; but in an aged face, leave only that that is habitual to it. The shadow under the brows must be lightened, and the eyebrows themselves shortened at their inner angle, and raised as much as possible. The light just above the eyebrows should soften and contrast it usually appears too bright in these cases. The shadow running across the forehead must be softened into this light, and only so much of it as allowed to remain as will correctly denote the natural curve of the forehead.

3. A Smile—if so great as to be objectionable—requires the exact opposite of the above treatment. Curving every muscle about the mouth downward, by working off the upper edge of the shadows which denote them; shortening the partition line of the lips; making the most of any slight shadow extending from the corners of the mouth toward the chin.

I need scarcely add that these manipulations require great care, and to the inexperienced I would suggest that when an expression is to be corrected, a paper be held, in different positions, over the offending member, to enable them to judge more correctly of the locality and extent of the fault to be corrected.

THE FEATURES.—Besides these facial expressions, and frequently when none of the above faults exist, some other member of the face may need our attention, as:

1. The Eyes.—It occasionally happens, in a three-quarter view of the face, that the eye upon the light side of the face is dark and perfect, while that upon the shaded and further side has a dark, unilluminated shadow upon its innerangle, which, added to a bright reflected light within the opposite side of the iris, gives to the eye a weird and sunken look. It is usually sufficient illumination of the shadow to increase the opacity of the white of the eye, making it brightest where the iris should naturally be shaded back toward the corner nearest the nose; also, to better define the upper and lower lids, allowing quite a bright light where they both join together. The negative will usually suggest the correct location of these points. Should the print not show the direct light of this shaded eye, its brightness may be increased in the negative, but not its size. The reflected light cannot be remedied in the negative, but it can be heightened in a smaller space in the finished print, which is usually all that is required to perfect the expression. A dimness of the pupil of the eye is sometimes met with, usually caused by bad lighting. There is a way to remedy this in the negative, which I scarcely dare give, because of its frequent abuse—that of taking out that portion of the eye with the point of a fine needle. Also in this sometimes used to better denote the shadows about the lids. In no case would I recommend this, unless a facsimile negative can first be experimented upon, and a print of it obtained. Skillfully and properly done, it saves much labour, but a far safer plan is to remedy the defect in the finished print.

2. The Nose.—As a rule, this member will require upon the tip, seemingly the brightest point of light the face contains. Should it be of ugly shape.—either crooked, pug, or lengthy—we are fully justified in softening or removing the defect. As this is quite an inexpressive feature, a change of this kind does not alter the character of the face.

3. The Cheeks.—Every muscle that aids in giving character to the face must be inflexibly preserved. A careless retoucher will invariably forget this in his zeal to produce smoothness. As the cheeks show more of these than any other portion of the face, great care must be used to preserve their exact form. The one least defined, and easiest removed, lies just back from the mouth and below the depression under the cheek bone. In a Rembrandt effect, particularly, does it require care to preserve this.

Hollow cheeks are often made subjacent to a plump, youthful appearance in retouching. It is a mistake, and should never be done. All the changing that a good negative requires is that which would necessarily be done in a careful smoothing up of them. Of course the shadows of a negative may be so dark as to give to the cheeks an unnatural hollowness, in which case only such bringing out of them is admissible as will give their natural look. The face to be turned against the background (which a good operator will usually avoid), the most that we can do is to soften the outline just where this hollow occurs, leaving the upper and lower portion of the cheek as sharp as originally seen.

In each of the above cases it is best to avoid making the light upon the upper portion of the cheek any brighter than in the untouched negative.

4. The Chin.—The less we have to do with the modelling of this feature the better.

5. The Neck.—The same class of work that the face requires will usually be needed upon the neck, with this exception: if it is an adult subject we are considering, most of the wrinkles upon the neck can be dispensed with, only retaining enough to compare favourably with the face. The general form, however, must not be sacrificed in the least. If a long dark shadow is cast upon the neck by an earring, it should be almost entirely worked out.

6. The Ear.—It is rarely the pencil needs to touch this member, and if it becomes a necessity, the light upon it must not be increased if it already contains sufficient, or in all things the ear should be subordinate to the face. However, should the ear appear within a Rembrandt shadow, the light upon it will sometimes need to be increased, to give sufficient detail to that portion of the shadow.
LAMBERTYPE AND CHROMOTYPE.

Sir,—The attention of photographers will probably be arrested, and their curiosity excited, by the advertisements of the above processes, and although you have described one of them, and will probably call attention to the other, yet it may interest some to read the impression produced in the mind of an old professional photographer after seeing the demonstration of both of the processes.

One day last week I visited M. Lambert, in company with Mr. Spencer, of the Autotype Co., Mr. J. T. Taylor, and my son, Mr. Alfred Hughes. After examining a number of prints of the highest excellence, some produced in silver and others in carbon, that varied from carte to nearly life-size, we were shown the most important part of the enlarging process. A carte portrait of a lady, the original negative of which was broken, was lent by Mr. Taylor. From this a small negative was obtained by the ordinary wet process, and showing the usual coarseness by copying the texture of the albumenized paper. An enlarged transparency from this negative was next produced by the usual wet collodion process. The enlarged head was about two-thirds life-size, and it was made on a plate about 18 by 15. From this a carbon negative was made by contact printing. The ordinary carbon tissue was not employed, but a special one devised by M. Lambert. This carbon negative was very thin, and of a bad printing colour, but by a solution of permanganate of potash, to which ammonia and sugar were added, the colour was changed to a rich olive colour. The negative was then covered both back and front with a very fine translucent kind of tracing paper called papier minable. On the back of the negative M. Lambert worked with blacklead powder, using a leather stump, on the face and all the light parts of the negative, thereby increasing the density in all those parts, and also softening the coarse texture. On the front of the negative he worked with blacklead powder using a fine pencil, and a more delicate stomp. Finally, a blacklead pencil was used to give the positive high lights on the face and the white lace. All this work was done in a "touching desk," such as employed for ordinary "touching.

Papier minable is an admirable material for receiving the blacklead. The ultimate effect produced by but very little work was a negative capable of producing prints in which all coarseness of texture was entirely removed. A silver print was next made from this negative, which, without a touch being required upon it, was perfect in delicacy, softness, and vigour, and giving no indication whatever of having been produced from a carte print. I should mention that the plain dark background of the original was considerably extended in the enlarged copy, without any evidence in the final print of any joining of the added parts. The demonstration was declared by the party to be a complete success. Although the method here described was the one adopted in this instance, M. Lambert explained that it is not the one he prefers, and it is only used when it requires duplicate enlarged negatives, as he did in this instance, that it has recourse to it. His ordinary method is to make a carbon transparency by contact printing from the original negative, and from this small carbon transparency he makes an enlarged collodion negative by wet collodion. By this means he says he secures an enlarged negative which requires less work upon it in its final stages.

On the succeeding day, my son and I visited M. Lambert again, and the rest of his ingenious methods were explained and demonstrated. They consisted in further showing how backgrounds may be altered, removed, or fresh ones substituted, without showing any joins, or requiring any work on the final print. He also showed his method of reproducing negatives so that while all the good points of the negative are retained, such as its as over- or under-exposure may be amended, if not entirely removed, also the removal of marks, stains, cracks, or other defects, so that the new negatives should be better than the original ones. Some other ingenious expedients, or "dodges," if you will, were explained and illustrated. Under the term "Lambertype" appears to be comprised all the above methods of changing, enlarging, adding to, or taking from the original negative, so that in the final negative shall be comprised all that is desired, without requiring any work on the ultimate print. "Lambertype" is therefore a general term for a number of useful, and indeed valuable methods, that have been brought together by M. Lambert for increasing the value of negatives; many of them are not new, but they are novel in their application, while others really belong to himself, so far as my knowledge goes.

"Lambertype" may therefore stand for improved negative work, and is quite independent of any method of printing that may be adopted. "Chromotype," on the other hand, has nothing to do with the negative; it is a modified form of carbon printing that cannot be worked without coming into collision with the Autotype Co. The two processes have therefore nothing to do together, so that the special tissue can be obtained from the one, and used in the other.

I have had considerable experience with carbon as a substitute for silver printing, and I am much pleased with M. Lambert's modification of the process, and also with his ingenious printing press and photometer. They will all help to make permanent printing more easy and more popular.

There was also shown to us, in connection with the chromotype, an easy way of colouring these carbon prints, whereby the apparent work of hours is done in as many minutes. The results, though not calculated to compete with good miniature work, are better than the common run of low-priced coloured work, with the further advantage that it is hardly possible to lose the likeness.

M. Lambert is evidently a very able and skilful photographer. He is full of ingenious appliances, and, as his improvements are chiefly based on the common method of working, one is able immediately to appreciate them. But writing and speaking, well enough as they are in their way, when required, I am unable to do for the other member of the party, Mr. Taylor, than think of him as a clever man.—Yours &c.,

JAMES HUGHES.

N.B.—It is right to mention that, excepting the chromotype printing presses and the photometer, no additional apparatus is required than is found in the ordinary photographic studio. The same lens that is used to produce a carte or cabinet portrait may be employed for making the enlargement. Almost every dark-room may be used for the
enlarging camera. If any one is contented with silver printing, there is no need to depart from it; for nearly all the improvements comprised in the term "Lambertype" may be utilised without deserting the old friend silver.

Sir,—It would be both useful and interesting if M. Lambert would be so good as to inform photographers, through your columns, what he claims as novel in his patent for enlarging. But I claim novelty for the application of paper or other material to the back or front of negatives, or the working thereon with crayon, pencil, or pigment. All this has been in daily use for years past.

I find amongst photographers much doubt on the matter, and a desire to have early and complete information. Valuable novelties are readily accepted, never so promptly as now; but strong objection would be made to restrictions by patent of what has hitherto been free. I am respectfully,

SIR,

SAMUEL FAY.

URANIUM IN PHOTOGRAPHY.

Sir,—I have been requested by several correspondents to address you a few remarks on a paper read before the South London Photographic Society by Mr. Werge. It is, however, so full of errors, and so valueless as a guide to work, that I must content myself with pointing out one important error, and one important omission, as to go in detail through the errors and omissions would occupy too much of your space.

But Werge says:—"It is useless to add uranium to the printing bath with the hope of obtaining any beneficial results, and I think that fact has been sufficiently proved by the unenviable sobriquet of worthless type having been bestowed on the Wothlytype process."

I am surprised that in a paper read before a scientific society Mr. Werge should betray his ignorance of the fact that the Wothlytype process, as worked in England, was a method of printing on collodion, and not by means of a printing bath at all. Of what value can statements be founded on such absolute ignorance of what has been done in photographic work?

The omission to which I allude above is, that nitrate of uranium added to the printing bath to a highly sensitive emulsion for negative purposes enables it to be kept indefinitely. I am now using the brand of Collodion of Chittock and Co.'s uranium emulsion five months old, and still in perfect order. The latter quality being due entirely to the addition of nitrate of uranium.

Mr. Werge's paper is merely a record of his own ideas as to uranium, the value of which may be gauged by his apparent ignorance of the way in which that salt was used in the Wothlytype process. Talking of that process, I may say that the most artistic photographic prints I ever saw were produced by it, and that of a very large number of Wothlytype prints I have had since 1864 not one has faded in any degree, which I cannot say of some silver prints of the same age.

I am glad you have also pointed out errors and omissions in Mr. Werge's paper, and have given testimony to the value of Wothlytype by saying, "Certainly some of the finest prints we have ever seen were by that method of printing."—Yours, &c.,

H. STUART WORTLEY.

SOUTH VERSUS NORTH DEVONSHIRE SCENERY, ETC.

Dear Sir,—Your Devonshire correspondent, in recommending the Northern portion of their beautiful county, seem to have utterly ignored the Southern, where I think there is ample work for the photographic tourist. I can speak from experience, having but just returned from there after a three-months' stay in search of health, and having managed to find subjects for close on a hundred negatives, taken with the collodio-bromide emulsion. For variety of scenery I think no place could beat, though it might equal it. Suppose the tourist to take up his quarters for a time at Torquay, which, by the way, although one of the most fashionable, and consequently expensive, places during the non-photographic season, is in the summer (being entirely deserted by its "habitées") perhaps as cheap a watering place as could be found: within a few miles he will find the most romantic and varied of rocky coast scenery, and by going the same distance inland the most charming artistic old cottages and landscapes to add to his desire to plant his camera before. The Dart, from its mouth to Totnes, affords a great variety of scenery, and the old town of Dartmouth itself many quaint specimens of old architecture. The church has one of the finest screened altars to meet with, also a fine pulpit; but although I wrote a polite note to the rector of St. Saviours, asking permission to photograph the same as an illustration to a county guide, he refused, on the grounds that good photographs had already been taken, and that a new set were shortly to be published. I afterwards saw a set of interior views taken by his own photographer, from the sales of which I presume he will derive his commission, having doubtless an eye to business. I doubt much whether his fancied power was legal, especially as the churchwarden said that I should take the hint that he would give me no further permission to add to a strife which I saw was likely to be extended. I let the matter drop, but I mention the circumstance as of interest to photographers generally, and as being the first instance in which I have ever heard of such a refusal. At Brent, Iry-bridge, Lustleigh, Moreton and Chagford, many days may be well filled up, and in proof of the great profusion of bits for the photographer I enumerate a few of the views, all taken without moving the camera, more than a few feet: the old mill at Holy Street (which all photographers must know, from Bedford's celebrated view of the same) forming the centre, the little fall being on the right of the stream on the left. Such a combination does not often present itself.

I have no doubt from the views that I have seen of North Devon—viz., Lismouth, Linton, Ilfracombe, &c.—that it is quite equal in scenery, but if any of your readers are attracted by descriptions of it to spend any time there, I think it is as well that they should know that there is something South to be done as well as North—the one being within a comparatively short distance of the other. The emulsion processes have, from their great simplicity, again waded me to my old favourite pursuit of photography, after a period of idleness. More and more, and I have read with great pleasure the paper of Mr. Warnerke, as anything tending to lessen weight will be a great boon to all landscape photographers. Our cameras (even the best of them) are more than twice or thrice the weight they ought to be, and I think that if our Society can do it, they should offer a prize for a camera and slides, offering the greatest attraction in lightness and portability. There is much to be done in this direction.

It is so long ago that I forget when and where I proposed in one of the photographic journals a camera slide having a roller at each end, and a band of sensitized collodion on a collodion and india-rubber support, with a spring pad at the back to hold the paper tight against the glass during exposure; therefore I am glad to see that Mr. Warnerke has taken up this idea, and put it into practice. A slide could be constructed having an arrangement to admit various pieces of mica of different sizes, which would take a curve suitable to the focus of the particular lens used, and around which the sensitized film could be drawn. WALTER B. WOODBURY.

Talk in the Studio.

CATALOGUE.—Mr. Cooke, of Horton, has forwarded us a copy of his new illustrated catalogue, which appears to be very comprehensive, and will interest all photographers.

PHOTO-LITHOGRAPHIC REPRODUCTION.—We are favoured by Mr. Carbett with an example of photo-lithography in the shape of a reproduction from an old etching of a quaint piece of antique architecture in Chester. We have rarely seen better or finer lines in photo-lithography. The crisp, sharp character of the etched work is reproduced with marvellous fidelity, and, but for the fact that there is no relief or burr, the print might easily be taken for one of the original etchings.

Expression in Children.—We have received from Mr. Hicks (Charles and Hicks, South Shields) a packet of children's portraits which are very charming and interesting. Mr. Hicks remarks, "It is not so much technical excellence as expression I go in for." This is just the secret of success with children, and Mr. Hicks has attained that highest charm in any form of portraiture, and pre-eminently in presentments of children—happy, natural, unconscious expression. The children have evidently not been worried by much posing and arrangement. If they are conscious at all that they are being photographed, they are regarding it somewhat as a good lark in which they are participating, but still keeping "within the limits of becoming mirth." The result is success, which many photographers, struggling unavailingly after the highest technical excellence, generally fail to attain. Here are instructions which Mr. Hicks presents to parents and nurses, which may prove suggestive to some of our readers:—"To secure satisfactory and pleasing portraits of children, never say anything to them as to how they are to stand, sit, look, behave, &c., and on no account impress upon them that they are to keep still. If they like to run about the studio and play, let them do so; it is quite at their service to turn into a nursery, for the time being, in reason. Dress very young ones in white, if possible, and it is advisable that all children should be dressed in light blue. A blue, mauve, or red, dark brown, or black velvet, as a rule, are objectionable, unless relieved with white. If the above suggestions are attended to, and appointments made for children or family groups, a satisfactory picture can always be secured.

Cementing Jet, etc.—Shellac is the best cement for jet articles. Smoking the joint renders it black to match.

Silvering Paper.—Having nowhere anywhere seen a rule given for the length of time paper should be silvered, and having many times seen articles contain instructions which said, "silver the requisition time," and being at a loss to know what a "green hand" would do with such definite instructions, I am constrained to give the following, which, as far as tested, has proved O. K. Paper which, when removed from the solution, and held by one corner curls back, is under-silvered; that which curls front, is over-silvered, and that which stands straight "a jiff" and then curls back, is just right; 'tis better to under-silver than over, for paper which has been silvered too long is very prone to turn yellow.—The Philadelphia Photographer.

To Correspondents.

Ron Roy.—The absolute right to reproduce portions of a newspaper, whether paragraphs, or Births, Marriages, &c., without acknowledgment, is an undetermined point of copyright law. It is generally held that there is no copyright in newspaper articles. We think there is no fear whatever of any objection to the copyright of any newspaper by the photopapar rape, when reserved for private use or for sale. 2. The absolute legality is, as we have said, undetermined. 3. The production of instantaneous views depends on the condition of the light, the character of the subject, and the construction and angular aperture of the lens, and is all factors not less important than the sensitiveness of the plate. The condition of the light, the character of the subject, and the instantaneous views depend on the condition of the light, the character of the subject, and the construction and angular aperture of the lens, and are all factors not less important than the sensitiveness of the plate. With a rapid lens and good light, you can get good results with the smallest possible expense, but without good light and a good lens, you cannot expect good results.

Tom.—Yes: hypno will answer for fixing all kinds of negatives. It may be used very strong—half a pound in a pint of water.

Henry R. Good (Colorado).—We have sent you one or two negatives of the water which will be ready for Calotype Process as worked and described by Dr. Diamond is still the best form of that process. You will find in the copies of the News forwarded, a method which seems good f further.

Recieved for Reclaimer Testimonial Fund.—Five shillings from J. Corser, Ben.

Several Correspondents in our next.
THE PHOTOGRAPHIC NEWS, July 2, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

The Last Eclipse Expedition—Detection and Deception in Photography.

The Last Eclipse Expedition.—It is said to think that the last eclipse expedition sent out to India has been partially, if not wholly unsuccessful. The Royal Society have been at great expense in sending out observers, and these have undertaken a long and dangerous journey to little purpose.

To ascertain the composition and nature of the corona, that is, to see if it is bright or dark, is one matter, and which has several times been photographed, was the problem to be solved, and the spectroscope was to tell us the precise nature of its composition, while a photographer, Dr. Vogel, of Berlin, was to endeavour to get a record of its spectrum on a photographic plate, an attempt which, if successful, would have certainly been the most important result of all. The period of totality was four minutes and three-quarters so short that the operator might have time to proceed with the portrait, but shrewdly guessed, no doubt from a critical inspection of a spirit photograph beforehand, that the plate was faintly impressed with a ghost of an image prior to its being brought into the studio. The supposed unexposed plate, on the developer being poured over it, showed to the detective's eye the "spirit" image of the plate, that seems to have been set from the table of the operator to state that he had not previously exposed the plate. Indeed, having been found out in the fact, there was little good denying it. On searching the house, the detectives found, as they expected, a whole collection of mannikins of all sorts and sizes, suitable for the purpose.

It is very questionable, indeed, whether the "spirit photographs" would have been detected by anyone unacquainted with the nature of photography and the manipulations connected with it. There is nothing so easy, in fact, as for a photographer to deceive a person unacquainted with the art; there are so many ways that occur to him of blinding the sitter, that really the only surprise is, that tricks of one kind or another are not more frequently heard of. We may mention two instances of the sort. Once a photographer, with the connivance of the client, made a portrait of a lady whose face was too sensitive to bear the light of the picture, and yet he afterwards admitted that the shade was but twenty-two inches high, and that he had only taken the portrait and shade, one after the other, on the same plate, receding with his camera for some distance after securing the image of the glass shade, in order that the standing figure might be represented of a size well within that of the glass. The other deception we saw practised in Paris, and which we saw led to some serious consequences. It is that his lady-love went to their friend to be photographed. A good picture was secured of the gentleman, and then came the lady's turn. She sat on a chair, and was posed and photographed in due course. Hardly had the exposure terminated when the lady was called into the next room, and then another gentleman promptly took his stand in a loving attitude beside the chair. The whole plate had been devoted to the lady, the diaphragm was shifted, and on the second half was impressed an image of the standing gentleman. Of course, when the plate came to be developed, there was the lady sitting down, and in friendly proximity, leaning on the rail of the chair, was not the swain, but another. It was no use for the lady to protest that the picture had been taken without her consent, and to make matters straight, and pacify the wrathful lover, the negative had to be broken then and there.
A NEW METHOD OF EMULSION WORK.

By CARY LEA.

Concentrated Collodion.—In equal parts of alcohol and ether, dissolve eight or ten grains of a suitable intense pyroxylin (that made for the purpose by Mr. Peter Parry is what I have found answer best). To each ounce of mixed solvents take:

Ordinary crystallized cadmium bromide ... 7 grains
Ammonium bromide 26
Ammonium iodide 26

Add to each ounce two drops of aqua regia, sensitize with twenty-five grains of fused silver nitrate, and then add for each ounce two grains of cobalt chloride dissolved in alcohol. It will be found best to put the first three salts together into a large test-tube for small quantities, or a flask for large ones; cover with a proper quantity of alcohol, and heat. The ammonium bromide does not dissolve very easily in alcohol, but much more so in the presence of the other salts than alone.

Fused Silver Nitrate.—I have always found an advantage in using the fused nitrate. It can, I believe, be bought fused, or it is easy to fuse is in a small porcelain basin over a good gas flame; the Bunsen’s burner is the best. It should be kept in a vessel of fusion about ten minutes, and then be kept cool in the capsule.

[I may remark, in passing, that the proportions of silver nitrate which I am using at this day, as the best that I can find, are exactly those which I recommended just five years ago, viz., in April, 1870. To three ounces of the concentrated collodion just described. I add seventy-five grains silver nitrate. And this affords four ounces of finished collodion, there are exactly eighteen grains and three-quarters of silver nitrate to the ounce, the only difference being that to avoid unnecessary waste of solvents, the collodion is made at first in a more concentrated form. Again, this quantity of silver gives, after saturating the soluble haloides, between fourteen and fifteen grains excess for the four ounces, or between three and four grains excess for the ounce, both in actual quantity of silver, and in actual excess, I use now, within a fraction of a grain, the same quantities as in 1870. This has not prevented Colonel Wortley, who has been endeavouring for years past to appropriate the results of my labours, from charging me with copying these proportions from him. As his first publication on the subject was in June, 1871, it will be seen how baseless is this allegation. This is the point, in fact, upon which most of my works and my ideas so completely, that I was not to be allowed to use them myself.]

Cobalt Chloride.—As a chloride I recommend cupric chloride, known in commerce as muriate of copper. But the commercial salt varies so much, that I think it best to use cobalt chloride, which resembles cupric chloride in dissolving very easily in alcohol. The silver nitrate is to be ground up dissolved in alcohol by putting it into a test-tube and boiling it with alcohol, shaking well. As soon as the first portion of alcohol is saturated, it is poured off into the collodion, and well shaken up. More alcohol is poured over the silver, and boiled again. Generally three heatings with alcohol will be required.

Aqua regia may be obtained from any druggist by directing him to put into a stopped vial an ounce of muriatic, and half an ounce of nitric acid, both of ordinary strength. The aqua regia should be added to the collodion before the silver; the cobalt chloride half an hour or an hour after adding the silver.

The emulsion should be well shaken up at intervals, and is ready for use by leaving it to stand over night, shaking it as often as convenient. Its preparation seems a little complicated to describe, but is in reality simple enough. The emulsion being made, it is next poured out to set. It must not be too deep in the pan: a 7 by 9 will answer for three or four ounces, and larger ones in proportion. It should be once in awhile moved about, to equalize the drying and prevent the formation of a leathery film on the surface. Or this may be allowed to form, and then be pierced with holes, and the liquid let flow through, and soften it again. The object is to get the whole into a gelatious and not a hard condition. As soon as it no longer moistens the tip of the finger, it is ready (this will take from one to three hours, according to temperature and quantity). The preservative, whatever is preferred, is next to be poured over the film in the pan, and the film itself broken into flakes with a porcelain or bone spatula, Fashing it up and separating it completely from the bottom; then transfer the whole, bath and flakes, to a large deep glass jar, and stir well at intervals. A contact of ten or fifteen minutes will be sufficient, reckoning from the time of pouring the preservative into the pan. The preservative is then poured off, water poured in, and the whole stirred. After several changes of water, the flakes are let to lie and soak for an hour, then several changes, then soak for another hour, several more changes, and then dry, first squeezing out all the water possible. As the flakes dry very slowly, this may be hastened by putting the porcelain pan in which they are spread out to dry, on a stove or other source of heat, taking care that the heat is not made warmer than the hand can conveniently bear. The dried flakes are not white like the emulsion, but grey; still they give a white emulsion again. To emulsify them, put them in a vial with a mixture of equal parts of alcohol, ether, and plain collodion, in such quantity that there shall be four ounces of liquid for each three ounces of original emulsion. The new emulsion should be often and sharply shaken; it should not be used for at least two days, and is much better to keep for four or five.

Preservatives.—A few words are needed as to the preservative to be employed. That which I very much prefer is made as follows:—

Water 12 ounces
Thick gum solution containing about one-quarter as much sugar as gum 1 ounce
Sixty-grain solution of gallic acid in alcohol ... 1 ounce
Sixty-grain solution of tannin in water
managing the details. It is likely, however, to become an
important process.
It bears the same relation to the making of dry plates
with a bath, that the process already described does to
making them with an emulsion. In fact, it may be briefly
characterized as an alteration of the ordinary bath dry-plate
process, in such a way as to perform all the operations once
for all in an ordinary collodion, instead of on each separate
plate. Instead of repeating the process of separate operations
on each one of a thousand dry plates, the collodion with
which they are to be made undergoes the treatment once for
all. Thus, a quantity of any collodion whatever is poured
out into a pan (say half a pound into an 11 by 14 inch pan),
or let set; then a silver bath is poured over, the film broken
up into flakes and laps, and after a sufficient time (say
from twenty to forty minutes, according to the strength of
the bath), the latter is poured off again. Then a preser-

PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HEIGHWAY.
CHAPTER IX.
RETOUCHING THE NEGATIVE.—THE RETOUCHING
FRAME, ETC.
The Scope of Retouching.—Much has been said and
written against retouching, and as it is a subject which
attracting more and more attention of the artistic pho-
tographer, a few words in reply to the objections raised will.
I deem, be in place, especially as a great deal that must
be conceded to the position of the objectors will serve as
warnings in the use of this important and beautifying
operation, especially as most of the hard things said of
retouching apply to the abuse rather than the proper use
of the pencil. To those who hold that a negative should
not be touched at all, I fear no arguments would avail, as
not the most convincing argument will ever move

ART AND TRUTH
that the true objections resolve. Are the artistic and
truthful qualities of a portrait enhanced or not by
retouching?
Too often they are not only not added to, but entirely obli-

...
Varnish which must of course be perfectly dry and hard—and only rubbed on those parts on which you want to work. The negative thus prepared for the reception of the pencil is placed on the

Retouching Frame, of which there are several patterns sold by the stock dealers. In its more elaborate form it consists of two frames and a lid. The bottom frame, resting on the table, holds a movable mirror to reflect the light to the under side of the negative; to the front of this frame (that nearest the retoucher) is hinged another frame of ground glass, on which the negative to be retouched rests, which opens to an angle of about thirty degrees. On the further (and, when open, higher) edge is hinged a light lid of wood opening to nearly a right angle with the frame on which the negative is retouched, which shades the extraneous light from the eyes of the worker. This rising above the head of the retoucher has to be sometimes supplemented by curtains on each side. These frames are very handy, being extremely portable; but I am compelled, except on dark days, to substitute a sheet of white paper for the mirror, as the glare of the reflected light is very trying. Where a window of northern aspect may be commanded, I have used a home-made frame, costing very little, and being much more serviceable. The subjoined sketch will, I think, explain it.

If a reflector is needed, a sheet of white paper is placed on the table, or a mirror when the light is very weak. I have no ground glass under the negative, as I find no use for it, and the eyes of the retoucher are splendidly shaded without the necessity of smothering the head in a dark cloth.

A sheet of brown paper, with a small hole cut out, is placed over the negative and aperture of the frame to shut out the light, except just where you are working, preventing an excessive glare to the eyes, and rendering the illumination of that portion to be worked upon more brilliant.

Retouching Materials.—Pencils, Faber's H, HHH, and B; “stumps,” which can be made by rolling up tightly a piece of unsized paper, for rubbing in large shadows that require softening (the lead may be scraped off a B Faber); India ink mixed with a little gum.

(To be continued.)

PAPER ON ASTRONOMICAL PHOTOGRAPHY.

By G. D. CHAPMAN.*

Astronomical photography may be divided into two classes: one is very much like taking the pictures of children—that is, it requires to be done in the shortest possible space of time, as the object is continually moving; the other is like photographing the interior of buildings and dark objects, where the light is not sufficient to produce the desired result without the effect of blackening the image. The first class is solar and lunar photography. It may be asked, does not the image of the sun and moon stand still, with the exception of a steady motion due to the revolution of the earth on its axis? I will say that they do not, and that there is where one great difficulty lies. The steady motion due to the revolution of the earth is overcome by the driving clock which keeps the telescope moving with the object; but the chief trouble in this class of work arises from the continual vibratory motion of our atmosphere; still, if these movements were only lateral, then an instantaneous exposure, such as we are enabled to give the sun (which is the one-hundredth part of a second), would give us the desired sharpness. But there are atmospheric waves of unequal density passing between the object and telescope, which have the effect of lengthening and shortening its focus, so that the image is continually moving in and out of focus, as well as in every other direction. It is this changing of focus which causes the trouble in solar work, for there is but one chance in many that the object will be in focus when the picture is taken.

In lunar photography we are even less fortunate, for the time of exposure required to make a negative of the moon varies from a few seconds to several minutes according to the partial phases, so there is no such thing as instantaneous exposure in this work. To assist in overcoming these atmospheric difficulties, our only remedy is to wait and watch; and, in the conditions are not favourable, we are not compelled to make a blind sitting for fear of losing the customer, and then say, “Please call and see a proof in a few days,” for she is a regular customer, and if we get two or three good nights in a year in which we can make good moon pictures, we think ourselves very fortunate. But with stellar work the conditions are not the same in all respects, for we do not demand that degree of stillness in the atmosphere, as there is no detail to be obtained, as with the sun and moon; still, we require the maximum amount of sensitiveness in the chemicals, with additional demands on the sensitiveness of the photographic plate, and the care with which it is handled and exposed. It is now necessary that they shall be in such a condition as to admit of the sensitive film being kept from twenty to thirty minutes, and longer if possible, and when developed it shall be free from markings of all descriptions. The stars, not having the same amount of motion either in rate or direction, it is desirable to get as many as possible in each group, for, by so doing, we obtain a greater amount of information with the same labour. Even with the longest exposure which can be given, and the utmost sensitiveness of the chemicals, assisted by a supplementary exposure to light (which increases the sensitiveness about one-third), there still remain vast numbers of stars beyond the reach of photography in its present state. To show the increase of sensitiveness by a supplementary exposure to light, I have made use of the original plate of Mr. Rutherford that fact in March, 1866. A candle was standing over it, and its light fell upon one side of this plate, and you will see a very great difference in the sensitiveness, for the stars which make no trails on the unexposed portion make strong trails on that part which was exposed to the light. These trails are lines made by the stars while the telescope is standing still, the same as the streaks made by bright objects passing in front of the camera when taking views. The advantage derived from this treatment was so decided that it has been in constant use in this class of work ever since. By it we are

* Continued.
enabled to get stars smaller by at least one and one-half magnitude.

As all of our work requires to be done in the shortest possible time, my first experiment was to get a collodion which should combine the greatest amount of sensitiveness with stability, if possible, as it would sometimes be a week or more between the working nights. The advantage of having a collodion in good working order at all times is of great importance. In order to make reliable tests for sensitiveness it is necessary to have some means by which to compare the results with considerable nicety. To do this I constructed a meter, as described in the previous paper, and in a short time I was able to test the results obtained with the collodion used, by placing the paper on the surface of the collodion, covered with the white paper on the top of this piece of wood, so that each succeeding cylinder ranged one inch farther from the light. And as the illumination received by each diminishes in proportion to the square of the distance the cylinders are from the light, the sensitivity is made to vary readily show the relative sensitiveness of the chemicals employed, if the light and time of exposure are so reduced that in no case shall all of the cylinders make an impression on the film.

I have made nearly one hundred trials for sensitiveness, and have kept a record of how each was made, and of its qualities. The most important element for sensitiveness is in all cases the relative proportions and purity of the alcohol and ether of which the collodion is made. That cotton which burns quickest and dissolves rather slowly, leaving a small amount of sediment, and making a rich creamy film, when fully sensitized and salted with about four and a half grains of cotton to the ounce of collodion, is the most sensitive. Cotton which makes tough, horny, and nearly transparent films work slowly, but can be improved by using the excess of alcohol. The ether is of no account; this is also very detrimental to sensitiveness, and has at times given me considerable trouble. I have never had any difficulty with Atwood's alcohol. The albumen should be used as thin as possible where sensitiveness is required, as that also has a retarding influence. With regard to the salts employed I have not found any material difference in sensitiveness, but each has peculiarities of its own in other respects. There is one point in the age of an ammonium collodion where it is equal to any other, but that period is of short duration. A combination of magnesium and cadmium gave good results, but there was not difference enough to make it of any advantage to use. Of all the different kinds of salts there are none better than cadmium for my work; it has sensitiveness equal to any, with stability combined, and may be used as soon as made.

The amount of salting I use is six grains of iodide and two of bromide to the ounce of collodion, with sufficient tincture of iodide to give it an orange colour.

The next question was, whether very sensitive chemicals would stand long exposures. In testing this question I found that it required a little more acid in the bath for long than for short exposures, which diminished the sensitiveness slightly. The chief difficulty I had to contend with in long exposures was "matt silver." I have examined every work on photography within my reach, and do not find one that gives the best process for this trouble. I have been annoyed with it more or less until one summer I had what may be called an epidemic. One set of chemicals was extremely rich in producing it. I did not seek to get rid of it, but rather encouraged it, in order if possible to find its cause. My first experiments were to produce the same effect at will; this I considered would be the key to both cause and cure. It was. The experiment proved that by adding some organic matter, like gelatine, to an acid bath, I could produce beautiful specimens. It proved to be a deposit produced by the action of the atmosphere on the compound of acid, silver, and organic matter.

It requires all four to produce it, and as I was at a loss to see how I could get along without the atmosphere or silver, I was obliged to turn my attention to the organic matter in the transaction. Being obliged, as I am, to use albumenised plates which constantly add organic matter, it is impossible to keep the silver solution free from it for any length of time.

I find also that collodion made from certain kinds of cotton furnishes the bath with organic matter. It appears as the action of the stronger acid. I have tried many kinds, and often the pyroxyline, renders a portion of the collodion soluble in water, which washes out into the silver solution. In precipitating the cotton by water, out of different samples of collodion, I found that some had more in weight than others. I then evaporated some of the water, and found quite a quantity of organic matter had been washed from the collodion. I wish some further experiments might be made in this direction. It is a well-known fact that neutral silver will precipitate the organic matter in strong sunlight; it will also do it in the dark, but not so rapidly. The nearer neutral the silver solution is, the less organic matter it will hold in suspension. I find that a neutral solution works well for short exposures, when the plate has not been allowed to remain in it over three or four minutes, and is used immediately after. But in long exposure the neutral silver will fog, and so will the acid solution, if there is organic matter present, but these two classes of a fog are entirely different character. The first or alkaline fog is entirely under the film, and cannot be wiped off without disturbing it. The other or acid fog is wholly on the surface, and may be wiped off without breaking the film. This acid fog is what makes "matt silver"; it is enough to stick enough to the film during long exposures; the larger the amount of acid in the silver, the greater the capacity for holding organic matter, and the thicker will be the surface fog with long exposures. With an acid solution there is little or no precipitation of organic matter, but if the silver is nearly or quite neutral, then the dipper and sides of the bath will be covered with a dark film of organic matter; if the solution is not overworked it will keep itself clear from the matt silver trouble, if the scum which floats on the top of it is frequently removed. One test I have for acidity, which is a very good one, is to touch the surface of the collodion film with my finger in several places before dipping it in the bath (using a finger which has no chemicals on it), and when the plate is developed, if the places touched show any darkening, show any difference, then there is too much acid present. I then add soda or ammonia to the bath carefully, until there is a slight darkening of the spot touched; sometimes it is a dark ring on the edge of the spot, at other times there are dark spots representing the markings on the cuticle; this depending upon the amount of pressure and quantity of organic matter left on the film (if it is too alkaline the spot touched will be very black all over, or nearly so). This is, as far as I know, a new and very delicate manner of testing the right amount of acid in the bath.

In conclusion, I find the best way to keep clear of the above trouble is to keep the silver solution as near neutral as possible, and steer clear of the alkaline fog; filter often, and do not let the plate remain in the bath over three or four minutes then draw out quickly. By so doing, the scum is prevented from adhering to the film by the solution which is in contact with the plate rising and flowing outward at the surface, leaving nothing but clear solution on the plate; and if this is not surcharged with organic matter there will be no surface deposit. If my film has a fog on the surface which can be wiped off, I add to the bath a dilute solution of ammonium nitrate, about 1:2000, and a number of times this has been added it will work beautifully clear and quick, if there is nothing in it to produce fog but organic matter.
The Photographic News.

Vol. XIX. No. 878.—July 2, 1875.

CONTENTS.

Photography In and Out of the Studio. .. 313
A New Method of Emulsion Work. By Carey Lea ... 314
Practical Instrumentation. By William Leigh ... 315
The Rejlander Memorial Fund ... 318
Paper as a Substitute for Glass .. 318
The English Eclipse Expedition to India .. 319
Print Washing. By Photo. Chemists .. 320
On a New Camera for Daylight Process .. 321
Professor Zenger, of Prague .. 321
Canon of the Holy Alliance with Portrait Photography. By F. H. Davison 322
Correspondence.—Uranium in Photography.—The New Patent Double Transfer Carbon Process—Northamptonshire Photographic Society . 323
Talk in the Studio ... 324
To Correspondents ... 324

THE REJLANDER MEMORIAL FUND.

One of the highest compliments ever paid to photography by an art critic appears in a recent article in a daily contemporary, in a notice of Mr. Armitage's picture in the present exhibition of the Royal Academy. Referring to the recognised and long established modes of pouring the passions, based on the "stately academic canons leds" of the 19th century, they have been finally scattered to the winds by the wonderful photographs of the late O. G. Rejlander; especially noting the illustrations to Dr. Darwin's work on expression, and Ginz's Baby, as examples. Photography may thus become art teacher, as well as pupil. But it is only in the hands of a master like the lamented artist to whom we have just referred that photography can assume such a position; and such men redeem photography from the low status to which, in unscrupulous and incapable hands, it is at times dragged down.

We refer to this especial fact in the character and history of Mr. Rejlander for a special purpose. All photographers are in some sort the heirs of Mr. Rejlander's lessons in art—all in some sort the heirs of the status and prestige he has won for photography. But the portraits by a man who may be completely unknown, and all in some sort owe him a debt. The fund established by a committee of gentlemen interested in the art for the purpose of discharging the obligations which accumulated during a lingering illness—and so guaranteeing to Mrs. Rejlander the undisturbed possession of the art negatives and other effects as a means of income, in accordance with the last expressed desires of the dying artist—still falls somewhat short of the necessary amount. To the committee it seems imperative that the purpose just indicated should be achieved; and it is desirable that some small fund at least should also be placed in the hands of the bereaved lady. It is, moreover, very desirable that these things should be accomplished without further delay. As we are satisfied that many of our readers who will gladly contribute to the fund have failed rather through procrastination than unwillingness, we venture to ask them for prompt aid, and to add the well-worn axiom, bis dat qui cito dat.

PAPER AS A SUBSTITUTE FOR GLASS.

Various singular changes have of late years been taking place in the practice of photography, and one of the most curious is found in the recent reaction in favour of paper as a substitute for glass. Paper formed naturally the earliest basis for photographic images, and, except for Daguerreotypes, continued to be so through all the experimental and practical stages of the art, until a quarter of a century ago. It was not duly appreciated, however, and the use of a film of albumen on glass was regarded as a great improvement. When the collodion process was introduced, almost every one was jubilant over the enormous improvement in the art, paper was deposed from its position in negative work, and glass reigned in its stead. Even for positive prints, collodion and glass, had for a time a hold in photographic practice and public appreciation. For vignetting purposes, glass plates for many years held position, aiding in the production of offensively formal effects. Recently, however, a decided change has set in. Glass vignetting plates have been superseded by Mr. Waymouth's paper vignetting masks. A transparent paper covering for the negative, to receive retouching, was introduced by Mr. Crompton, the idea has been most ingeniously and comprehensively worked out by M. Lambert, and it is probable that the greater part of the retouching and modification negatives will receive in future will be upon such paper rather than on the glass negative itself. The paper read by Mr. Blanchard on producing enlarged paper negatives, and the examples he showed, have given another impulse to the use of paper in preference to glass, which Mr. Brooks' two recent papers on masking and paper negatives will accelerate. And finally, Herr Warnerke's method of using paper instead of glass in dry collodion work will probably effect a revolution in the work, rendering the troublesome carriage of glass plates altogether unnecessary.

In most respects these changes are, we think, beyond question improvements. Retouching upon a sheet of fine paper, like the paper mineral of Mons. Lambert, stretched evenly in immediate contact with the face of a negative, presents a better surface for retouching than the surface of the negative itself, is more easily modified, and is removed in a moment if unsatisfactory; whilst the same paper applied in like manner at the back of a negative admits of many effective touches, modifying the general effect of the picture, in the finished result, without suggesting retouching at all.

The mode of masking recently described by Mr. Brooks, in which both paper prints and paper negatives are employed for modifying defects, or securing artistic improvements, in a print, admits of a much more extended application than could possibly be pointed out in the limits of a paper read before a society. The light and shade of a negative may be completely separated and modified—and the most compressed of contours may be removed, and new material added to secure pictorial effect; and this easily, and without risk of failure, if moderate skill and care be employed. For combination printing such paper negatives and positives present unusual facilities. The one imperfect figure which so commonly spoils a group may be taken separately, and added to the others in the negative without difficulty; and so with other subjects where optical or other causes render the production of a perfect negative of the whole difficult or impossible. The method of printing from two identical negatives, one superposed on the other, proposed some time ago as a means of securing soft, round, and artistic effects, is rendered easy by the use of a paper negative, which, placed at the back of the original glass negative, may be made to modify the result in almost any degree which might be desired.

In many cases the texture of paper well waxed is scarcely perceptible, and in many cases where perceptible it is not a disadvantage; but where it may be desirable to avoid it absolutely and entirely, Herr Warnerke's mode of preparing sensitive films presents a ready facility for obtaining all the advantages of the paper negatives, with the perfect delicacy and freedom from texture of collodion. His mode of building up a transparent film, firm, tough, and easy to handle almost as a piece of parchment, meets every necessity, and gets rid of the possible objection to paper in very fine and delicate subjects. Such a film coated with colloido-chloride of silver would give a first a transparency, and
then a negative by direct printing, not requiring development; or, the film prepared for camera work, would, of course, with development, give the same result. For duplicate negatives, or for masks, or for combination printing, it is manifest that this sensitive tissue will answer all the purposes of paper, without even the trifling objections which some might bring on the score of texture.

THE ENGLISH ECLIPSE EXPEDITION TO INDIA.

[The following interesting letter has been received by the Berlin Society for Advancement of Photography from Dr. Vogel, who, it will be remembered, took part in the expedition at the invitation of the Royal Society, and who has already bitterly complained, in a previous letter published in these columns, of the imperfect manner in which the expedition was fitted out and organized. Our readers are probably aware that by reason of the unaccountable state of the weather, the tedious journey of the party of observers has been undertaken in vain, but they have not yet had any specific account of the expedition.—Ed. P.N.J.]

On the fate of the English Eclipse Expedition to the Nicobar Islands I have unfortunately but few pleasant words to say, and I must touch upon matters upon which I would not care to comment, I do not know how to express it. I have been allowed to have a look at all the troubles of this long journey. It was the first time I had seen the tropical vegetable kingdom in all its glory. Egypt has plenty of palm trees, but it is true, though not in grey and dried -up against those of Ceylon; but it is not palm trees alone, but trees and bushes, grasses, and blossoms of the most luxuriant growth, that gladden and surprise the eye on every hand. The peep at Ceylon which I obtained is to me like a sweet dream or a pleasant souvenir, which will never fade from memory, for it was, so to speak, the first glimpse of sunshine upon my journey.

The expedition divided at Ceylon. Schuster went with Ladd and Bessey, the photographer, to Singapore, while I remained with Meldola and Reynolds at Galle, to await the gunboat "Enterprise." It was to have on board Professor Tachini, the Italian savant, who had been invited, and the Indian members of the expedition. These were, Captain Waterhouse, the chief of the Ordnance Photographic Establishment at Calcutta, and Dr. Pedler, the Professor of Chemistry at Calcutta College, who had left that city to join us on the 11th of March. On the 17th of March the "Enterprise," a small, but swift steamer, arrived, and on the 18th we sailed for the Nicobar Islands.

The news which our friends gave us of the Nicobar Islands were scarcely of a reassuring nature. The islands, we were told, were plagued with fever, and as a preventive against attacks we had a daily dose of quinine. We had no surgeon on board. This omission seemed to me a most important one, as we were in such an unhealthy locality. I was told that exertions had been made in Calcutta to get a surgeon to accompany the expedition, but that he begged off at the last moment; then there was a talk of touching at the Andaman Islands, where there is a military and penal settlement, in order to press a medical man into the service; but this was not done, and very soon we had to repent bitterly of not having taken such a step.

The accommodation on board the "Enterprise" was, to say the least, unsatisfactory. The vessel was a small one, the best cabin had been secured by the gentlemen from Calcutta, and we were given a large space at the stern, which was to serve us as sleeping apartment. Articles of property laid on one side for an instant were shifted and论 about by sailors, pursuing operations of one kind or another. Beds there were none, and we had to sleep on cushions, while the attendance provided left much to be desired. Sometimes we had no water, no towels, no soap, and our boots were seldom brushed. We were told that in India everybody had his own personal servant, and indeed the Indian members had each brought their bag; one might have guessed, however, that we Europeans, who had no experience of India, would have been unprovided with a servant, and indeed we had no opportunity of engaging one during the voyage. On the 23rd March we touched at the Nicobars, and then there arose another unpleasant feature of our journey. Professor Tachini's assistant was attacked with the smallpox. He was ill when we were at Ceylon, and had we had a surgeon on board he would probably have recognised the disease, and sent the patient at once on shore. Now, unfortunately, we had him on board; we were crowded in a small vessel with an infectious disease. On the island of Camorta, where we landed, there was a penal settlement, and here, by good fortune, we found a hospital attendant, who at once succoured our patient, but was unwilling to take him on shore. The position was a perilous one, and would have become more critical if we had not been informed by Roepertoff brought advice and assistance. He had been sent to the Nicobar Islands in advance, to make arrangements for the expedition, and he soon solved the problem. He sent the sick man on board a lightship, and in this way isolated him, both from us and from the colony at the same time.

Roepertoff was a Dane by birth, but in other respects quite a German, and it was a treat for me to be able to speak my mother tongue with him and his amiable wife.

To escape attack from fever we dared not sleep on land, but had to return every night on board ship. Unfortunately our precautions availed us little, for the captain and several of the officers, as also Tachini and myself, were smitten. Our station was upon a hill which had been freed from wood by fire and axe, previously, through the exertions of M. Roepertoff; and several bungalows constructed of bamboo and palm straw, to which a convenient footpath led, completed the arrangements.

It was the idea of the English originator of the expedition that we should divide, one portion of us going to Mergur, on the coast of Burmah, while the other remained at the Nicobar Islands. In this case, if one of the spots unfortunately experienced bad weather, the other might have been favourably situated. Unfortunately this plan was not carried out. All six observers remained at Camorta on one spot, and were placed in a body hors de combat by the same heavy thunder-cloud. Indeed, during our three weeks' sojourn at the Nicobars the weather was fit for anything but our purpose; and in choosing them as one of the stations a most unfortunate selection was made.

As I have already stated, the apparatus with which I was provided from England was very imperfect. The principal portions of it, two lenses, were mislaid in the most unaccountable manner at Ceylon; and so there I was, with my excellent spectroscope, which, whatever else its value, was of no good without a telescope. The hope that the Indian members would bring a spare telescope with them proved vain. One mirror-telescope of Pycyon there was, but that Dr. Pedler required; and I had to console myself with the hope that some of the spare apparatus would fall to my lot when the occasion came. I was, although a guest invited by England, to content myself with the fragments that fell from the table of the rich. In the end I found a rectilinear lens of Dallmayer's of three inches aperture and almost two feet focus. This threw a brilliant image of the sun about ten times in diameter. With the aid of a Chinese carpenter the lens was fitted at the end of a wooden tube, and in this way
a sort of telescope was constructed. At the other end of the tube the spectroscope was fitted so that the sun's image fell exactly upon the slit, and in this way I secured a most dazzling spectrum. The sun's rays were thrown upon a mirror by the aid of a lens, the former being upon a heliostat, and this, on being turned by hand, was made to follow the course of the sun, so that I could retain the sun's picture for a long time upon the same spot. My spectrum apparatus of Schmidt and Haensch, of Berlin, worked in order, and was certainly the best of all those that had been brought.

Melgola had a beautiful telescope of Lookyer's which threw an almost inch-sized solar image. The spectrum apparatus was, however, small, and only gave, with a quartz prism, a spectrum but two centimetres in length. Féder worked with a mirror-telescope with a long spectrum apparatus attached, which did not, however, give particely good images. Tachini confined himself to making ocular observations. Waterhouse wished to secure a picture of the corona itself, not the spectrum of it. He had provided himself with a rectilinear lens of thirty-inch focus fitted to a clockwork arrangement, so that he could follow the course of the sun.

The setting up of the heavy apparatus was a matter of some difficulty. They are not made to be well corrected, and cut together again. Many of the parts had been broken or put out of order during the journey. Then came the testing of the photographic chemicals, the handling of which at a temperature of 26° Reamur was not agreeable. We had, however, no other difficulties besides the heat to combat. I employed gutta-percha corks which kept exceedingly well, and whilst I can recommend especially for warm climates, because they obviate the polishing of the glass, which is rather distressing in hot localities. The plates kept, despite the heat and the damp, a surprisingly long time, and I could expose for fifteen minutes without getting any dry stains.

The collodion I employed this time was the ordinary collodion prepared according to the formula given in my own patent. It is not necessary to have a collodion with a large proportion of alcohol. The dipping bath I acidified rather more than I do at home. I went to work industriously to take some landscape pictures, employing to some extent Wortley plates, and secured many pictures of the luxuriant Indian foliage. The dry plates which I purchased in England proved to be on the whole not bad. Some showed spots and defects, and others had unmarked markings, but the majority yielded serviceable pictures, which were little inferior to wet plates. Of course it is necessary, first of all, to expose a dozen such prepared plates, and to develop them before proper experience of them can be acquired. As regards their price, a shilling a piece for 7 by 4½ plates, they may be recommended, and I repeat, so far as their sensitiveness was concerned, they were little inferior to wet plates.

Everything having thus been made ready for the 6th of April, that eventful day at last came. The day before we saw in the distance several waterspouts which seemed to bode no good. In the morning there were several clouds to be seen, and these increased in the course of the day. Tachini looked out for protuberances on the sun very early, and recognised a few. There are just now but few spots on the sun (the sun spots have a period of eleven years, and very few protuberances are to be seen at this time); we could observe the contact of the moon against the sun's limb, and then came a dense cloud, and put an end to all our hopes.

The darkness at the moment of totality was not very great; it was about as light as at full moon, perhaps a little lighter. The failure of our observations is all the more to be deplored as the eclipse was of so long duration (four minutes twenty-two seconds), and such a good opportunity will not soon occur again, and the apparatus at my disposal led me to the belief that I might have secured a satisfactory result. The apparatus which I had constructed was so powerful that I was enabled to secure, in a quiet of the best kind, a vigorous spectrum image of the sun. As the eclipse lasted four minutes, I could have secured an exposure 1000 times as long (1802 of a second), and this should have been sufficient to have obtained a spectrum even of so pale a phenomenon as the corona. Unfortunately, the best preparations were of no avail. We had undertaken our journey for nothing.

If it had not been for the failure of the apparatus and the misfortunes did not come to an end. Just before the eclipse, the long-expected surgeon from Port Blair arrived, too late to be of much assistance. Our small-pox patient had got better in the interim. The surgeon dismissed him; fourteen days from the commencement of the disease, obviously much too early, and the infection spread to one of the sailors, who was banished to the lightship. A second sailor afterwards showed suspicious symptoms, and we could not, seemingly, shake off the infection.

After the eclipse there remained the disagreeable task of packing up our instruments again; in this we availed ourselves of the aid of the prisoners. Suddenly the governor of the island, Homfray by name, withdrew, for some trifling excuse, a portion of the labourers, and the consequence was that our work was broken up, and to be taken from the fever islands delayed. Finally, he shortened the hours of work of those remaining to us, and took them away altogether one Sunday, although they were all heathens or Mahomedans. No doubt an energetic protest would have done something towards getting the labourers back again, and I recovered my man by these means. But our Anglo-Indian tumults and tempests, with putting up with the inconveniences, threatening to represent matters later to the authorities, when it would little avail us. As a rule, scientific expeditions are treated by civilised nations with honour and respect. Proud England allows one of her minor colonial officials to worry and provoke a body of scientific men sent out from the mother country. As a characteristic of Mr. Homfray, it may be mentioned, that he gave it out that I had brought the funds on the occasion of the eclipse, out of punishment to the astronomers, who were all atheists.

At length, on the 12th of April, we bade farewell to the unfortunate islands, and steered towards the Andaman Islands; we could not go on shore, however, for the sick sailor on board gave rise to suspicions, and we were placed in quarantine. On the 18th we landed at Calcutta.

PRINT WASHING.

BY PHOTO. CHEMICALS.

This subject, like the old man in Sinbad, still attracts the attention, and still exists as the bugbear and incubus, of photography; and the man who finds an effectual remedy to the evils existing will well deserve to have his name recorded as one of the benefactors of the art. The most that can be said of the many suggestions that have been made is, that they in some degree mitigate the evil, but most certainly they do not cure it; and, heterodox as it may appear, we are much inclined to fear that a perfect panacea for the evil is as far distant as ever.

Our reasons for thus thinking are briefly these:- in the present radically lucid condition of the "Sublimed Ammonia for Fixing," the cause of its failure was very correctly explained—namely, that it was practically impossible to completely get rid of the last traces of sulphocyanide of silver. Now, we believe that this is the difficulty with which we have to contend in the use of hypo, and that we are, in a similar manner, unable to eliminate the hypochlorite of silver. Nay, more, we have grave doubts whether the latter is not more difficult of removal than the former, for the reason that the instant it is absorbed by the paper it at once comes in contact with ... decomposing agent, viz.,
the traces of chlorine or acid which have been used in bleaching, and which obstinately remain in its texture.

Now, if this theory be correct, it follows that the instant a print is placed in the fixing bath, a minute portion of the hypo is decomposed by the chlorine, producing a corresponding amount of sulphuric acid, either free or else in combination with silver; in either case the result is the same, viz., the ultimate deterioration of the print by its oxidation.

But although we fear that this cannot be completely remedied, yet we much question whether it cannot be reduced to a minimum by proper precautions and a suitable modification of the system of washing, and we were much pleased with the practical suggestion quoted at page 287 of a recent PHOTOGRAPHIC NEWS, and which entirely coincides with our own experience, "that length of immersion is of little avail, and that frequent changing of the water is everything." We believe that the first immersion, which simply consists in diluting the hypo, aggravates the mischief, and that decomposition occurs after the action has been thus diluted more actively than while it is in a concentrated form. The practical lesson to be learnt, then, is, that the hypo should be washed away as rapidly as possible, the washing water being allowed to remain in contact with the prints scarcely for a single moment. We have tested this by experiment, thus:—A number of prints were placed to two or three inches depth, and after being washed, were put in a large funnel under a tap; the base of the funnel had a piece of india-rubber tubing, fitted with a pinchcock, attached. Water was then run in; a brisk rotary motion kept up in the funnel, and the water allowed to run away every time the funnel was full. This was continued for ten minutes, during which the funnel was filled and contained from two to three inches. At the end of that time the prints were placed in a flat tray, and just covered with water and allowed to stand for two hours; the water was then drained off, and a few drops of weak solution of permanganate of potassa added to it, and the same quantity to an equal measure of water. No difference was perceptible, and not the slightest discoloration took place in the water in which the prints had been digested.

We then took the prints, rinsed them slightly, and then immersed them first for five minutes, next for ten, and so on, finally leaving them all night, and then again pressing and soaking for two hours; but, on testing this last fluid, it gave instant and unmistakable indications of the presence of hypo. We have also found by experiment that if prints are kept in the first washing water for any considerable time, the sulphur compounds are retained with the greatest obstinacy, and it is almost, if not quite, impossible to eliminate them.

The moral is to modify the advice given to American electors, "Vote early, and vote often," and to adopt it in the form of

WASH EARLY, AND WASH OFTEN.

ON A NEW AND ACCURATE PHOTOGRAPHIC ENLARGING PROCESS.

BY PROFESSOR ZEUGNER, OF FRAGUE.*

One of the greatest difficulties that the practical photographer has to contend with is to secure enlargements of photographs with the requisite amount of sharpness. The reason of this lies obviously in the faults which already exist in the original picture, which are not only enlarged, but even rendered comparatively greater, by the shortcomings of the enlarging lens employed. The anastigmatic lens, which has been introduced in recent times, is the only one which is tolerably free from faults of an achromatic nature, &c., and this is not completely so.

The effect of the first source of failure is that a positive lens unites the marginal rays of any object at a nearer point than the central rays. The correction of this defect with a negative lens is only possible in three ways:—1. When the aberration, by reason of the spherical form of the lens, is entirely removed. 2. When the aberration is almost removed, so that a portion of the aberration of the positive lens only remains (in this case the lens is under-corrected). 3. When the aberration of the positive lens is not only removed, but an aberration of the negative lens prevails to some extent (in this case the lens is over-corrected).

The accumulated aberration of the lens brings about a contraction of the picture; in an under-corrected lens, for instance, a straight line (a) is given as a convex line (a'), while an over-corrected lens would render a straight line (b) as a concave line (b') [see fig. 1.]

It might perhaps be possible to find two lenses having opposite errors, but it is very unlikely that such errors in both lenses would be similar. Nevertheless, by employing two such lenses, it is possible to remedy any defects from spherical aberration. It may be shown by mathematics that by properly selecting the degree of enlargement, the two errors may be made to annul one another.

The only way to obtain a faultless enlargement by the aid of two such lenses is to place them so that the first plane, with that lens whose error is greatest, and then to re-photograph with a second lens which has another and smaller error, but of an opposite nature. If, however, the errors of both lenses are to be compensated in the finished picture, an enlarged image must be obtained with the second lens, and of such a size that the second error is pronounced enough to compensate the first.

According to this, the picture of the picture with the second lens would involve an enlargement of the image. In most cases, re-photographing once, or at most twice, will suffice. To choose and find out two lenses with opposite errors, so that it may be known how far to enlarge with the second lens in order to secure a correct picture, is difficult to do by calculation, but it may easily be done by experiment. Firstly, the aberration of different lenses should be ascertained; and secondly, the amount of enlargement, or the proportion in which the opposite errors in the lenses correct one another, while at the same time the picture is enlarged.

The first experiment is very simple. Upon stiff and very smooth white cardboard are marked three or more little points, all of them diamond-shape, like those (fig. 2) drawn with these letters, i, j, k, l, m, n. The points are made up, one, 1, 2, 3, 4, 5, 6, 7, and 8, from the lens. The marks are first placed upright, and the margin of the lens is closed, so that only one third of its diameter is acting, and the middle spot 0 is focussed as sharply as possible.

Then the card is allowed to slant, as shown in fig. 3, so that 0 is still in the same spot, while 1 is nearer, and the two latter marks will appear out of focus, and if they do not appear sufficiently so, the cardboard must be placed more slanting.

If the middle portion of the lens is now covered so that only one-third of its diameter remains free (one-sixth on each side), then 1 or 2 will come into focus, and 0 will become blurred. If the action of the marginal rays is
point 2 comes sharply into focus. On experimenting in this way with the lenses of various makers, two lenses may be found with opposite errors, and it is easily seen which is the better.

To set fast the second point, viz., the amount of enlarging which has to be done with the second and less erratic lens, it is best to employ a test lens, having at one’s disposal a row of fine blue points or lines gradually approaching each other more nearly, and photographing these from a particular distance; the image thus obtained is then compared with the lens of less error until it is found that the points are about as finely and as distinctly separated. If, for instance, a straight line is photographed of one centimetre length, and it is found that all rows of points appear isolated by enlarging x times, this number x is noted, as also the distance of the camera from the rows of points at the time of photographing with the first lens, and the distance, besides, of the photograph from the other lens, and then in every other further enlarging, or re-photographing operations, the same distances should be observed.

When the first re-photographing operation of rows of points has been completed with care and attention, the operator possesses accurate data for the progressive enlargement of photographic clichés into perfectly correct pictures. Hence, proceeding accordingly, it is to be observed, is that the image must be upon good patent plate glass, and the film of a perfectly uniform character, so that no defects may afterwards arise from inequalities of the glass or collodion.

It is of importance that the lenses employed should be fully corrected for chemical focus, as otherwise the focusing may only be undertaken with great difficulty. For this reason the author prefers to employ patent plate-glass and a lens of a comparatively long focus. The following advantages are in this way secured:

1. Absolute achromatism of the picture, the coloured lines disappearing completely.

2. Reduction of the aberration on account of form to a minimum. In landscape pictures, the spherical aberration is, with an aperture of f/16, nearly nine times smaller for a concave mirror as for a lens.

3. Absolute coincidence of the optical and chemical focus.

Certain kinds of flint-glass are found to absorb the actinic rays in the same high degree as the optical rays, and thus lengthen the exposure, a matter of some importance in the case of instantaneous and astronomical photography.

(To be continued.)

SOME OF THE DIFFICULTIES AND PLEASURES OF LANDSCAPE, AS COMPARED WITH PORTRAIT PHOTOGRAPHY.

BY F. HUDSON.

The difficulties of landscape photography are little known in all their intensity and variety, except to those who really experience them. Even portrait photographers, and those who occasionally run out with their camera to take a house or church, can have but a very imperfect appreciation of the worries which beset those who make a thoroughgoing effort to do this, I am convinced that it is not so paying a department as the "studio." It is very seldom, if ever, the case, in the busy season, but that some good results are obtained in the studio—results that please the sitter and the photographer, and have a beneficial permanent result.

Of course, the difficulties are, in every particular, lessened in the case of small (as half and whole) plates, and it is only when large ones are attempted, that they present themselves in all their variety and vigour. For instance, in taking a view in which foliage is in the foreground, a movement in the trees through wind, which in a half-plate would be scarcely perceptible, would immediately condemn a plate by 16. One of my most successul 20 by 16 pictures required the exercise of a patience and perseverance extending over a period of three weeks, waiting day after day, till an absolutely calm morning rewarded the effort.

I think wind, without a single exception, is the landscape photographer's greatest enemy. Of course, to those who photograph houses and structures of architectural beauty, an ordinary breeze is not of much consequence; but to photographers who have cut out the best bit of a garden or a park, or who are waiting to bring in a beautiful tree in the foreground or middle distance, even a slight breeze means destruction to the negative. It is quite useless to attempt to render foliage as it should be, if there is the least wind stirring the leaves.

In space plate-albums, also, another difficulty is, the much longer time required for exposure, for where ten seconds suffice for a half-plate, it will require sixty, or perhaps more, for a much larger size, and we all know that often—especially in gusty weather—fogilage is absolutely still for the shorter period, while you may have to wait for a long time to get a whole minute perfectly calm.

Last spring I had some trying experience in this as well as other particulars. I was anxious to get a large negative of Shanklin Chine, and started with a friend to walk, leaving my "bus" to make us on the road. Another difficulty is, the much longer time required for exposure, for where ten seconds suffice for a half-plate, it will require sixty, or perhaps more, for a much larger size, and we all know that often—especially in gusty weather—fogilage is absolutely still for the shorter period, while you may have to wait for a long time to get a whole minute perfectly calm.

Shanklin Chine has, unless in very dry weather, a very fair waterfall, which, of course, adds much to its beauty; but, owing to unusual dryness, it had shrunk to a mere drizzle; so to secure a good fall of water, one of the extreme forms of exposure for these large plates in the dark Chine required nearly half-an-hour, and to get water enough for that time required the exercise of a good deal of patience. We could not leave the door of the dam (a wooden one) in at night, for fear the boys would let the water off, or run off altogether with the door, so we had every morning to put in the door, fill up the crevices with clay, and wait. The weather being very dry, the stream grew less every day, till we had to wait for hours before water enough gathered to make a sufficient stream to pump into the tank. So one day there was only a very little wind indeed, and that affected only one tree; therefore, the immediate foreground, and of a very sensitive character. Often, however, even this one would be still, and so we determined to try it; so we unshipped the 20 by 16 apparatus, carried it down into the Chine, and having posed it to the exact spot, having waited for the rising of the water to the requisite height, prepared the plate, put the slide into the camera, and having placed a man at the door of the dam up above, gave the signal to "let go." Down came the rushing water, but before a minute was over the breeze came, and the sensitive fogilage began to move. I telegraphed to my friend to pump. So on went the cap of the lens, down went the door of the dam, and the water was stopped. After waiting, perhaps, ten minutes, a small came, signal was given, and the water rushed down again; but this time, perhaps, not ten seconds passed before the leaves were all astir, and the water was again stopped. Well, for three mortal hours I stood by the camera, expiring and stopping, stopping and exposing, till I judged it had been exposed enough, and that my patience had had a pretty good trial. Of course, we lost a lot of the valuable water that could not be stopped in time, but I think this was as little as possible to be expected under the circumstances, and I think this was very well done.

Sometimes the landscape photographer has to venture to dangerous places, requiring a considerable amount of nerve and
THE PHOTOGRAPHIC NEWS.

323

coolness to get what he wants. I remember having to stand on rather a narrow under ledge that overhung a cliff where there was but room for one to operate. You had to get down from the top of the cliff to the under ledge, much as you would step down from one stair to another, about five feet down, with the difference that if you took another step you would be dashed to pieces. I took off my shoes on that occasion (as my stockings gave me a better hold) and getting down, my man from the top handed me the camera, and held by a tallow candle burning I got a picture. This, however, could only be done on a calm day, as any wind with the focussing-cloth over your head made it rather dangerous. As it was you could not get round the camera to expose, but had to peep between the legs of the tripod. While there a London gentleman came along, and called out, "I would not go down there for a hundred pounds!" to which I replied, "I should consider it very easily earned." (To be continued.)

Correspondence.

URANIUM IN PHOTOGRAPHY.

Sir,—Colonel Wortley's characteristic letter in the last issue of the Photographic News reminds me of the derrièreresort of "gentlemen of the bar," who, knowing that their client's case is a bad one, and having no evidence in his favour to bring forward, do their best to damage the evidence against him.

Colonel Wortley assumes that I was ignorant of the fact that nitrate of uranium was employed in collodion in the Wothytype process. It so happens, however, that I was acquainted with Herr Wothyly's process, for I read the specification in the Patent Office before it was published, and undertook the sale of the collodion, paper &c., as soon as they were put into the market by the Company. If the latter fact has slipped out of Colonel Wortley's memory, it still remains in a ledger in my possession.

In the paper read before the South London Photographic Society I did not enter into a description of the Wothytype process because I thought that photographers generally knew all that they could possibly wish to know about it. I had satisfied myself by actual experiment that it was useless to add nitrate of uranium to the printing bath. I knew how much time, patience, and money had already been spent and a good deal of difficulty met with in the Wothytype process, and I coupled, or wished to couple, the expression of my knowledge and experience on both points when I alluded to the worthlessness of the Wothytype process. Perhaps it would have been better and more gratifying to Col. Wortley if I had said, "It is useless to add uranium to any of the photographic printing processes." That is my conviction, and that is the real meaning that I wished my words to convey. That I was justified in making those remarks about the worthlessness of the Wothytype process is, I think, fully borne out by the following facts.

Firstly. The non-success of the Wothytype Company in London.

Secondly. The collapse of the Wothytype establishment in Paris.

Thirdly. The unsatisfactory experiences of Herr Kleflel in Berlin.

Fourthly. The non-acceptance of the process by any eminent photographer in this country.

Fifthly. The non-practice of the process in any part of the world at the present time.

Sixthly. And lastly. The non-use of the process by Herr Wothyly himself in his ordinary business. That, perhaps, is the most curious and remarkable fact of all, and I obtained the information from one who was two years in Herr Wothyly's employ. The process was not practised professionally by Herr Wothyly on account of its uncertainty and vexations behaviour, both in his own hands and those of his employers. Herr Wothyly is dead now, and I should think there is not another man living, excepting Colonel Stuart Wortley, who pretends to believe in the utility of employing nitrate of uranium in any of the photographic printing processes.

Colonel Wortley appears to cavil at my phraseology. He does not grapple with the vital question, but attempts to ignore the fact that my "ideas" were corroborated by experiments; that the results of those experiments were corroborated by a number of disinterested and competent judges; and that the record of my ideas and the results of my experiments were not only unchallenged, but confirmed, by the members of the society who were present when the paper was read and the results exhibited. Had Col. Wortley attended the meeting, he would have seen examples of collodio-uranium prints both on paper and on glass. The results of my experiments are still in existence, and may be seen by anyone who is sufficiently interested in the subject to take the trouble to call at my place of business to examine them.

Controversy, however, on the Wothytype question is neither desirable nor worth entering into. The chief point at issue is this: "Does nitrate of uranium added to the nitrate of silver bath give increased sensitiveness in the wet process?" I say it does not, and have made a series of careful and careful experiments to prove the accuracy of my statement. Col. Wortley had an idea, but instead of giving data to work from, or exhibiting a single evidence of his own success, he simply announced the bare idea to the Photographic Society, and magnanimously wished to saddle the Society with the cost, and the members with the trouble, of investigating the subject. The Society declined to appoint a committee of inquiry. I individually, and without any information from Col. Wortley, undertook the task of investigating the subject. The results of all my experiments were most disappointing. The experiments of others were not more satisfactory. The data of my experiments have all been published, and the results have all been exhibited. When added to the collodion, I found nitrate of uranium the reverse of an accelerator. I said so. That I discovered it to be a serious retardant; and in the developer I ascertained it to be a powerful restrainer in the wet process.

If Colonel Wortley has by any possibility discovered the addition of nitrate of uranium, per se or in combination with anything else, to be an accelerator in the wet process, why does he not publish his modus operandi, and submit his statement by producing evidence of his own success as openly and freely as I have exhibited evidences of my failures? Surely it must be easier for him to prove by demonstration and example that he is right, than, by mere words, to attempt to prove that I am wrong? Colonel Wortley is a gentleman, and the holder of a Government appointment, and cannot be actuated by the motives of a process-monopoly in withholding from the photographic world any of his photographic knowledge and experience. Having mooted the subject before the Photographic Society, the Society having declined to entertain his proposition to appoint a committee of inquiry, and individual experiment having failed to corroborate his statement, I consider that he is in honour bound to publish his formula, or in future maintain a judicious silence.—I remain yours, &c.,

J. WERGE.

Sir,—The letter in your last issue, signed "H. Stuart Wortley," in regard to the use of uranium, containing marked and offensive imputations of ignorance on Mr. Werge, is in a way and manner that no "officer and gentleman" should have indulged in. Mr. Werge is, and has for some years been, well and generally known as one who has given many valuable and useful hints to photographers. If the Wothytype was not commercially worthless, how came it to break down with such a skilled hand as the Colonel as chairman and principal director of the company?—Yours, &c.,

F.
THE NEW PATENT DOUBLE TRANSFER CARBON PROCESS.

Sirs,—By your comments upon my former letter you seem not to have understood me. I should have said that I floated single or double transfer paper on a solution of carbonate of lime in ammonia. Single and double transfer papers are usually understood among carbon printers to mean paper coated with gelatine, differing in the thickness of the coating and quantity of chrome alum they contain. If, then, Mr. Sawyer’s patent is for a “flexible impermeable support with an elastic surface,” what is the difference between the two? In the use of a different alkali to dissolve the lac, as far as I can see. —Yours respectfully,

E. H. D.

Boston, Mass., June 15.

[Our correspondent appears to have done what Mr. Johnson did and described; but we do not find Mr. But for anticipated in his recognition of the special causes of a common defect in carbon prints due to the adhesion between an elastic tissue and an unyielding surface.—Ed.]

NORTHAMPTONSHIRE PHOTOGRAPHIC SOCIETY

Dear Sirs,—Will you allow me a space in your News as regards a photographic society? We all know what a useful thing it is to belong to one, and the nearer the better. I propose starting one in Kettering, and calling it the Northamptonshire Photographic Society. I have elected myself as president. All photographers—professional and amateur—wishing to become members are requested to write as soon as possible to C. R. P. Vernon, Grafton Underwood, Kettering. I remain, dear sir, yours truly,

Grafton Underwood, Kettering.

C. R. P. Vernon.

A NEW DEVELOPING HOLDER.—Mr. W. F. Stanley has just introduced a very simple and convenient developing holder, decidedly the best we have seen of many similar in principle. It consists of a handle, a wire support covered with ebonite, and a spring clamp formed by an india-rubber band. The same elements have been combined before, but not with such simplicity and efficiency.

THE BOUDOIR PORTRAIT.—This effective size of portraiture appears to be generally admired as filling a vacancy in the sizes and styles in existence. A clever writer in one of the chief photographic journals of the day, the Daguerre, has, for, fall foul of it for some odd reason. In a trenchant article on the “Villainy of Novelties,” he says:—“Sometimes, if nothing new is to be had, we are far from being content with something old, altered, and called new. Firth-rate photographers are clever at manufacturing this sort of thing. When they find that their natural skill is not sufficient to attract sitters, or to hold those that a generous chance has thrown in their way, they bring out ‘something new.’ Something of the sort is being tried at the present time. Business is perhaps dull, for we see the latest novelty, the New Boudoir Portrait,” andasserted as something wonderful. We have seen this marvel. It is a photograph two or three inches longer, and about an inch wider, than one of those sizes that are generally accepted as quite good enough—when the quality of them is good enough—by most people. In all respects, except in this slight variation in size, it is exactly like what is called, we believe, the Cabinet Portrait, a kind that has been in use for years. Yet there are people who are silly enough to be taken with “novelties” of this kind; but it is a degradation of art—true art should not condescend to fashion. Possibly photographers ought to be prepared for the recognition of “true art” as a possibility in photographic portraiture; but it is a fact which cannot be ignored, that fashion does especially prevail in all that pertains to human vanity, as portraiture must at all times, in degree at least. It has been the practice, in various kinds of fashion, to introduce the rage for card portraits, for cabinets, and in degree for other styles; and photographic portraitists generally will doubtless be glad if an impetus to business is given by Boudoir portraits becoming fashionable.

PHOTOGRAPHS OF LAKE SCENERY.—We are favoured with a selection of very excellent photographs of English Lake scenery, produced by Mr. Payne Jennings, and published by Messrs. Plarr and Co., who, we suppose, will sign them for the picturesque quality of their "artistic series." The technical photography is excellent, and the art treatment, as evidenced by choice of view, of effect, of light and pictorial treatment generally, very satisfactory indeed.

To Correspondents.

J. W. (Bristol).—As a rule, the collodion best suited for producing positives is not best suited for producing negatives, and that best fitted for yielding good negatives is not equally well suited for positive work; but, at the same time, there is not usually such a specific difference between the two as the names might import. We have often produced good positives with negative collodium, and good negatives with positive collodium. If you had stated what was the nature of the fault in your positives produced with negative collodion we could probably have suggested a remedy. Collodion is a very demarcated substance, and it is possible that by altering the collodium, will give you good results. Give a shorter exposure, and develop with a fifteen-grain solution of iron, and the ions of which two drops of nitric acid have been added, taking care not to continue the development too long. If this fail, write again more fully.

H. C. Godsell.—Each of the pictures possesses some good points, but it seems to us which the other has more. No. 1, is not so well defined, but No. 2, possesses a little more vigour. Probably the choice between them would depend much on personal taste. Both would have been better if the background had been darker. Black Clay.—There is no difficulty in obtaining a looking-glass—or, better still, Mr. Byrne’s “Reception.”—to any camera for aid in focussing. Herr Warnke uses a piece of looking-glass, and connects it with the ground glass by the proper angle at the sides to shut out light. It is a great improvement in focussing.

Hoff.—A large number of the alleged spirit photographs have been proved beyond a question to be gross frauds, produced by tricksters trading on the credulity of foolish persons. We have examined a great many such photographs in which the trickery was most apparent to a technical eye, but which were accepted by spiritualists as undoubtedly genuine. We have rarely seen any in which the spirit image was sufficiently definitely made out to resemble any one. and, yet, in many cases, they have been accepted as likenesses of deceased friends. The card you forward varies in some respects from spirit photographs generally. The features in the phantom image are sufficiently defined to be recognised as a portrait of the lady’s deceased husband; but, as he was a public man, of whom many portraits were published, it would not be difficult to secure such likeness. The fact that the phantom image stands behind the figure of the sitter, with the hands resting on her shoulders, and palpably in front, luridly, and cleverly managed.

H. C. B.—We do not know at present whether Herr Warnke intends to prepare his sensitive tissue for sale or not. It will be a great boon to photographers if he will undertake such a manufacture. We believe that Mr. Solomon supplies tipped paper.

MERCURY.—We have not generally found a tendency in the film to leave the plate when using the iodide of mercury intensifier, with which at one time we had considerable experience, and in consequence do not recommend it. If such a tendency be found, the use of a preliminary coating of dilute albumen would be the proper remedy.

B. A.—The arrangement of ground plan seems to be capital, and fourteen feet of glass in roof and side, facing north, will give good lighting. Frosted glass will, we fear, be too opaque for indoor light; at any rate, it will be easier to keep clean. If, however, it be found imperatively necessary to obscure a portion, you can do that subsequently with starch. Common Belgian sheet glass will answer well. Much depends on the knowledge and experience of an ordinary architect as to whether he will work out your wishes satisfactorily, but we should think you might safely trust to a capable man. Probably a builder who has had some experience of these arrangements, will be the best to settle on. It runs off instead of leaking in. Of course the lap in the roof planes is desirable, and let them be as large as convenient.

W. Buryman.—The letter has been forwarded, and will doubtless come to your notice.

Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Photographs after Death.—Photographic Memorials—iodide of Silver.

Photographs after Death.—In the melancholy task of recognizing the victims of a calamity like that at Toulouse, or the wreck of the Schiller, photographic aid comes in most valuably. In the case of the Toulouse inundation, photographers from far and near were beguiled to lend assistance in taking pictures of the deceased, so that friends might be able afterwards to recognize the remains, and to know the place of their interment. It is perhaps the most horrible task that photographers can be called upon to perform, but unfortunately we cannot always leave alone what we do not like doing. A photographer can scarcely refuse to lend a helping hand on the occasion of such a catastrophe, and the fruits of his work are often the only material consolation which comes to the bereaved friends. It is work not only that cannot be shirked, but must not even be delayed, for it is well known that the faces of deceased persons alter for the worse within a day or two of their death. On the occasion of the railway accident that took place on Christmas day last, several special correspondents remarked upon this circumstance, and narrated how, on a first inspection of the dead bodies, most of the countenances had a serene and even a pleasant expression, which passed away, however, after a little while, giving place to one of pain and suffering. But it is the business of the photographer to do as best he can. The kind of the kind has to be done, it must perform be done quickly, otherwise the object is almost always destroyed. Photographers in this country are unusually loth to undertake the production of portraits of deceased persons, but our Continental brethren are by no means so averse to such work, and in Paris one often sees the announcements advertise photographers taking pictures of the deceased. In that city the wreck of the Schiller, where the drowned were washed ashore on the Scilly Islands, many miles from the mainland, identification could not, of course, be made by friends, many of whom resided in the interior of Germany and America, and for this reason the only reliable means of identification was afforded by photography. There does not appear to have been a professional photographer at St. Mary's, but this is no doubt hard for the Frenchman, who, being a photographer, is an amateur, lent valuable assistance with their cameras, by rapidly depicting the bodies before interment. Instead of a name, the photograph of the deceased was in many instances placed above the grave of the unknown, until the other particulars could be obtained. There is nothing so distressing to friends as uncertainty respecting the death of a relative or acquaintance, and in securing a photograph of the deceased all this doubt and anxiety are cleared up, and proof is afforded, moreover, of the whereabouts of the remains.

Photographic Memorials.—While on this subject, we may remark that the custom of placing portraits of deceased persons over their graves does not seem to have found much favour. At the Cemetery at Shrewbury several pictures of this kind may be seen, as also at the Paris cemeteries of Montmartre and Pere-la-Chaise. In some of the village gravesyards of Germany we have seen black outline pictures, or silhouettes, as they are called, and in Switzerland, at the village of Langen, at the foot of the Brugg Pass, the little churchyard is made gaily by rude painted pictures on the upright boards which serve as tombstones in that spot. To replace the last named sketches, which when first executed by the village artist are no doubt done after a few weeks' snow and rain are simply frightful to behold, photographs would be most welcome, and we have no doubt that are now civilization in this form has already steps in. Indeed, now that photo-enamels are becoming so perfect, and are not the rarities they were a couple of years ago, there is no reason why portraits of this kind, in medallion form, should not be placed upon the stone, or near iron cross, that marks a friend's resting place. A pilgrimage to the cemetery in after days would then call to mind much more vividly a remembrance of the dear friend we have lost, and make us at once realize the fact of his remains being there at our feet. It would be a fitting and happy application of photography, we cannot help thinking, for, however soon wind and weather remove his name and the particulars of his death, they could not rob us of the beauty of our old acquaint as we knew him. A score of years suffice sometimes to obliterate and render illegible any inscription upon a tomb, even when the letters are cut into the stone; but time would have little or no effect upon a photographic enamel.

Iodide of Silver.—Mr. G. F. Bodwell has published the results of some further experiments with iodide of silver, and among other statements he makes which will hardly be accepted, unchallenged, by some photographers. It is to the effect that pure iodide of silver is scarcely affected by light at all, and that metallic silver or nitrate of silver must be present before the light can act upon it. Mr. Bodwell is evidently of opinion that when metallic silver is present—we presume under a film of the iodide—the former contributes to form a sub-iodide, of which the photographic image is composed. Mr. Bodwell recognizes, as our readers may know, three allotropic forms of iodide of silver: firstly, that existing between a temperature of 116° C. and the melting point (450°); in this state it is a plastic, tenacious, and amorphous substance of a reddish colour, and transparent to light. Below 116° it is a brittle, opaque, and crystalline mass of a greenish-grey colour, although it assumes a yellow tint on being reduced to powder. Again, if fused and poured into water it becomes an amorphous yellow opaque substance of a very brittle nature. When iodide of silver is heated, the yellow colour remains unaltered until the temperature of 105° is reached; it then begins to darken, and from 105° to 413° it gradually passes through orange red into dark brick red. About 450° iodide of silver melts to a dark red liquid, and at a red heat it volatilizes and is decomposed. On cooling, the iodide gradually contracts until about 115°, when, curiously enough, it suddenly and violently expands, and passes from the amorphous into the crystalline state. Photographers have so much to do with this compound of silver that Mr. Bodwell's results cannot fail to interest them.

PRACTICAL PORTRAIT PHOTOGRAPHY.

By William Heighway.

Chapter IX.—(Continued.)

Retouching

is a special branch for the artist, and can only be acquired by practice. It calls for the exercise of the most exquisite taste and discrimination, and, of course, a knowledge of the anatomy of the human face. If the operator be an artist, and possess these qualifications, there is no reason why, with practice, he may not excel as a retoucher to a greater extent than the artist who has not acquired the same faculty. It is not necessarily negative; but it is those operators and retouchers who have not the proper qualification that have produced so many libels on photography and art.

It was well to have a print from the untouched negative, that you may the more readily see what is required to be done.

To prepare the pencil, cut quite a long point, then flow the gum in on the emery paper, finishing off on a piece of drawing-paper. This will give a point sharp as a knife, and the most delicate work may be done. To be able to work with this long sharp point proves that you have the mechanical skill requisite for retouching; your
Photography in the South.

By Dr. H. Voelck.*

Our summer at home often makes much work for the photographer, notwithstanding the pleasures of a superabundance of light which that time of the year brings with it; and these inconveniences of hot weather are to be met of a much more pronounced character in the Tropics, when the thermometer registers 30° to 35° (Reamur) in the shade. Under these circumstances the taking of negatives is not an agreeable occupation, for if the plate holds out, it is questionable whether the model will. It is certainly earning one's living by the sweat of the brow in the case of photographers out here, and if his customers' fingers, while mounted behind one's own up in the North, who can complain with any reason?

We have, however, seen photographs produced in the Tropics which reflect the highest honour upon photographers. In this category may be mentioned the productions of M. Schött, of Cairo, in the Vienna Exhibition, and the pictures of Messrs. Shepherd and Bourne, of Calcutta, whose landings in India are not so long ago. Their work show that the difficulties inherent to a hot climate may to a certain extent be overcome. From my own experience of course I know very well that when the temperature of the silver bath amounts to 26° to 30° Reamur, any attempt at work is almost impossible. In Upper Egypt I could only work in the morning and evening hours, for in the middle of the day the plates came out of the bath quite blue, all the iodide of silver being converted into iod-nitrate of silver, the films being quite insensitive. In this case it was only by cooling the bath that any relief came. To effect this, I had at my disposal nothing but wet cloths, and with these I enveloped my bath.

Indian photographers manage better, for they have a supply of ice at their disposal, which is not obtained in European towns, and with this, one need take little heed of the highest temperatures. Ice is made here artificially in large quantities, and there are at Suez, Aden, Bombay, Calcutta, and other cities, ice manufactories to be found. Another supply is imported into Calcutta from America, and even when a ship has half its cargo melted in transit, the owner still makes a good profit out of the transaction.

In general, the photographers of the South may be said to have made no inconceivable amount of progress of late. The landscape pictures now offered to travellers in Egypt are indeed very fine, and when it is remembered that a print unmounted, measuring ten by eight inches, may be purchased for a shilling, it cannot be said that they are some forbidding price.

The circumstance that the photographs are sold unmounted is a great advantage to travellers. Mounted pictures are heavy, are difficult to pack, and are very easily torn or damaged. The photographer, on his side again, spares himself the expense of cardboard, which, after all, might not be to the taste of the purchaser; the shopman, again, reaps an advantage, for many more are sold by his customers' fingers on the mounted pictures, moreover, become sooner yellow when kept in stock.

For these reasons the sale of unmounted prints is a thing to be recommended by us at home. When I was in Aden, seven years ago, with the first German Eclipse Expedition, there was no representative of the photographic fraternity there, but in the interim a photographer has established himself down in the Indian district of Persia, and people of his kin are known in the East for their business capacities; in Aden and Bombay they have much influence upon European trade. The work of this Parsée was not very good in portraiture, but he had some very beautiful landscape pictures of Aden on sale, charging a florin for eight by ten prints. These latter were, however, not his own, but the results of another Parsée, of Calcutta, called Elston by name, who is a skilful amateur photographer, and who has travelled these parts frequently. All these pictures were sold unmounted, and it was the same at Ceylon, where the prices charged were a little higher. At the latter place are already to be found the photographs of Messrs. Shepherd and Bourne, of Calcutta, who have sent assistants thus far to secure some of the natural beauties of the island.

Severely any other land has such magnificent scenery,
such luxuriant vegetation, as Ceylon. Wherever the eye wanders, there are the most charming Arcadian scenes to be met with. It is singular, therefore, that I did not see a single photographer on the island.

THE PRACTICAL PRINTER IN AMERICA.

XXIX.

SILVERING PLAIN SALTED PAPER.

There are two ways of silvering the paper, which are about equally in favour. The first of these, floating, we will heretofore mention. This floating is done in the same way as the floating of plain paper is done in the case with the latter, there is also one side of the paper that is to be floated on the solution. This side is the finest grained side of the two, and to determine which is the one, take the paper over to the light, and by comparing closely the two, it can easily be told. The reason why the finest side is used is because the resulting print will be finer, and then again commercial salted paper is often salted only on one side. The time the paper is to be floated is easily learned by observing the results of differently timed pieces of the same sheet of paper.

It is a good plan for the beginner to cut a sheet of plain salted paper into four equal parts—i.e., quarter it—and mark on the back of one fifteen seconds, and on the others respectively twenty-five seconds, thirty-five seconds, and forty-five seconds, and float them separately for the time designated on the back of each. Commence to time each one of these pieces when the paper has thoroughly become flattened after it was breathed upon, to prevent it from curling over. Dry thoroughly, and fume them all the same length of time, not less than eight or ten minutes. If the ammonio-nitrate bath is used, far less fuming is required.

Print in the same quality of light, under the same negative, and to the same depth. Compare the result, and float the rest of the paper for the time specified on the back of the print which gave the best result of the four pieces.

The above is probably the best way for the beginner to learn, and after he has once learned it, he can in the future teach himself how long the paper should be floated, making allowance for the quality of the negatives, temperature, light, &c., &c.

In judging of the quality of the printed plain paper, so as to decide which is the best, there are a few things which we will mention that will, we think, guide the beginner a little.

That is a fair one (which is about the one you should use in trying the paper), and the resulting print is “mealy”—which mealiness consists in the presence of spots of various sizes, and also of a flat reddish colour—then the time of silvering is evidently not what we desire. These spots show more plainly in the shadows and draperies. If the resulting print is as just described, then the paper has not been floated long enough. This mealiness can be very distinctly seen by holding the print between you and the light. The back of such paper remains as white as it was before it was sensitized, never being discoloured while printing on account of the heat, but only on account of its being improperly exposed to the light.

Then, again, if the paper is silvered or floated for too long a time, it will not have the reddish spots in the shadows, &c., neither will it be white on the back (for the heat of the sun will discolor it), but the paper will have a smutty appearance, as though the back of the prints had been exposed for a few seconds to the strong diffused light, and thus discoloured. Now examine the face of the two prints once more, and you will observe that the long-silvered paper will have a sunken-in appearance. This sunken-in appearance will, in a great measure, disappear in the final operations of the printer, but that is not the object, for the object is to get it so that will be all right when it is just printed, and before it is toned.

We do not mean to say, however, that the above-specified difference of time given for floating different pieces of the same sheet of paper will give all of the above given results for in the case of blind (where something was not marked), he thought that he would use that, after having applied his tongue to the corer, and knowing that it had been salted. There were only two sheets of the paper on hand, and as he wished a full sheet, and being in a hurry, he did not wish to silver it either too long or too short a time, but as he suspected it was some of Clemens's, he thought that he would float it twenty seconds, especially after having asked the employer about how long he thought Mr. S., the former printer, had silvered his plain paper, and, although he could not tell for certain, yet he thought that it was about that time. He floated it twenty seconds, and after having famed it, he placed it out to print, and upon looking at it next time, he found that the print presented a funny motled appearance, similar to the print of long floating, which I thought may not be so. The paper printed in spots, i.e., some parts of it would print, and then again some parts had not shown the least signs of printing. Each of these dark and white spots were about the size of a pea. I floated the other sheet full thirty-five seconds, and I had the satisfaction of knowing that I had as finely printing plain paper as I ever saw.

Plain paper, when floated too long a time, will turn yellow in a short time, as for instance remaining over night, even in the month of October. Paper floated just right will keep two or even three days in excellent condition, even if the month is that of October.

The other way to sensitise plain salted paper is that which is known by the name of "waxing the paper." Paper which is sensitised in this way turns yellow very quickly, so very much so that it is necessary in summer to delay silvering it until you will have time to print it up immediately, i.e., as soon as it is dried and fumed, as letting it remain for two or three hours before use will often discolor it like unto saffron. This can be a measure avoided by placing the dark-box containing the paper as cool as possible. The silver solution is more absorbed by the paper by this mode of treatment, than by floating, and consequently the heat affects it more.

The swab is made as follows:—Obtain a piece of wood about four inches long, one inch wide, and one inch in thickness. Take two or three square pieces of cotton flannel, size four by four inches, and cover this block with it, having the napped side of the flannel out. This will give a soft cushion to rub the paper with. (Examine figs. 1 and 2.) To prevent the stringy fibre from being left on the paper while sensitising it, I am in the habit of anointing well each piece of the flannel before fastening it to the block, to get rid of the loose cotton.

Fig. 3. The fine side of the paper is placed uppermost on a suitable size board; this board is covered with clean white blotting-paper, which presents a clean surface to the back of the paper. This board only needs to be an inch or two longer and wider than the sheet of paper, and when not in use it can be used as a covering for the whole-size
ON A NEW AND ACCURATE PHOTOGRAPHIC ENLARGING PROCESS.

By Professor Zeugmé, of Prague.*

A very simple calculation, supposing the shape of the lens portions have first of all been carefully considered, will give the degree of the error, and its correction follows simply by combining a concave mirror or lens with a convex one. To re-photograph, in order to secure further amplification, it is only necessary to alter the distance of the lenses in the proper degree. The calculation shows that a corrected image is produced without an enlargement through the second lens, and of the size which the concave glass alone would give. The combination of lenses have, moreover, the advantage of producing an enlargement by means of only half the operations. It is therefore excellently well suited for enlarging photographic clichés, and will always give better results than an equivalent lens system.

One of the most important applications of this method of re-photographing would be to produce plans from landscape pictures by means of the Chevalier plane-table. As this faultless enlarging method requires no original cliché, its cost is very little; for a Chevalier rotating camera of large size is an expensive affair.

The application of the method of re-photographing to such purposes is considerably simplified by the following arrangement—Let us suppose that at a suitable distance from the lens, and vertical upon its axis, are two threads crossing at right angles with equi-distant knots, as shown in the sketch at K and K'; these form a rectangular co-ordinate system which permit at once of the most accurate measurement of all horizontal and vertical angles.

* Continued from page 332.
HINTS ON RETOUCHING.*

The Hands.—Thus far we have but lightly considered any portion of the negative but the head and its surroundings. In full-length figures we want necessity retouch the hands, and all previous rules appertaining to the quality of the negatives apply equally to the hands, not forgetting, however, that their light should be more subdued than that of the face. The correct form of the hand and fingers is all that remains then to be considered. We will start with this fact, that no one will object to the appearance of well-formed hands in their pictures, and it is not possible to materially change their outline. Therefore, any improvement in their modelling and texture is quite desirable. As the relentless camera is not so truthful to these members as to the face.

If the hands are darkly shaded, the veins and lines about the knuckles will be very strongly marked, and should be in almost every instance worked entirely smooth. A common error is often seen in the fingers being bent and shadowed so as to seem cut off at the second joint. This offensive shadow should be greatly softened at its edge, and each finger distinctly seen within it. In case of an appearance of blunt fingers, no account must be made of any portion of them except the slender line of light running parallel to them, and this, increased and brought to a point at their tips, will often give the desired effect. If the hand is grooved, making several impressions, the most distinct one must be selected and made of a corresponding density to the face, bringing out each finger accurately, and making its outline more distinct. In the finished print the unnecessary impression must be entirely blotted out.

Drapery.

1. Dark Drapery seldom need our work, save, perhaps, to obliterate a fold that offends the eye, or to bring out more distinctly a pattern upon lace.

2. White Drapery.—It often occurs that the operator, in securing fine detail to white drapery, produces a negative that lacks brilliancy, and will produce a “muddy” print. In this case the retoucher has abundant work to do to produce brilliancy, and if well done he will be rewarded by a pleasing result. The materials to best effect this are these: a piable, finely-pointed camel-hair brush, warmed with carmin or lake. Mix the paint about the consistency of cream, thinly laid upon the palette, but covering a large surface. Allow the brush to absorb this paint to its fullest capacity, then discharge it upon a superfine quantity by drawing it across bibulous paper until the brush seems quite dry and finely painted. The reason of this is manifest: to obtain enough in quantity to allow of using the brush a long time without refilling, and of such quality as to preclude the possibility of paint drops following each stroke of the brush. When the brush is correctly prepared (and this is an important matter for so seemingly trivial a one), the details of embroidery or lace are to be heightened, improving upon what is already there, but never tracing a pattern that the negative does not contain. Make the figures as distinctly as necessary upon or near the bust, but allow both light and detail to lessen in descending.

Tools should never be painted their entire length, but brought out distinctly in the light, allowing the negative to sufficiently render them in the shadow.

After due consideration has been given to this work, the larger folds and brightest lights of the dress must be made more brilliant. This often requires a broad sweep of the brush directly over the previous work, care being used, however, not to touch this a second time until quite dry.

The opposite style of negative from the one we have been considering shows the white drapery to be not only void of detail, but so thick as to be out of proportion to its surroundings. The most practical method I have ever found is this: flow the back of the negative with collodion, to which has been added aniline (dissolved in alcohol) until a deep red colour is obtained. After this is dry, the outline of the dress must be traced, and a dampened cloth will easily remove the collodion from that portion designed to be made darker. Print by diffused light, and the result will, I think, be satisfactory.

Generalities.

1. Never allow the fingers or hand to touch the ground surface of a negative, as it will be very certain to destroy the “tooth.”

2. If from any cause the “tooth” has been destroyed and the work is not completed, the varnish can be renewed by means of the negative by holding it over the flames of heated alcohol. After drying, the surface can be reground and again worked upon. In all cases where it is desirable to make many prints from one negative, or a solar is to be made from a retouched negative, the varnish must first be treated in this manner, as it securely fastens the retouching, and obliterates many scratches.

3. Dark Streaks and spots in the negative, caused from chemical action, must be filled up by retouching.

4. Pinholes. Many of the smaller ones can be touched out with the pencil; but for the larger ones we must use a brush well filled with paint, and quite dry. If too large a spot is thus made, the unnecessary paint can be removed after the work is dry.

5. Never consider a negative finished without first viewing it at a sufficient distance to enable you to judge of the entire effect.

6. Many negatives will admit of retouching without their surface being ground. Try them first, at least.

“Touching-up” the Prints.—Although this does not properly belong to our subject, it is so nearly allied to it that a suggestion will not be out of place here. The best material for the work is either a light brown ink or carmin or lake. Mix the paint upon the palette, but covering a large surface. Allow the brush to absorb this paint to its fullest capacity, then discharge from it the superfluous quantity by passing it across bibulous paper until the brush seems quite dry and finely painted. The reason of this is manifest: to obtain enough in quantity to allow of using the brush a long time without refilling, and of such quality as to preclude the possibility of paint drops following each stroke of the brush. When the brush is correctly prepared (and this is an important matter for so seemingly trivial a one), the details of embroidery or lace are to be heightened, improving upon what is already there, but never tracing a pattern that the negative does not contain. Make the figures as distinctly as necessary upon the dress, but allow both light and detail to lessen in descending.

Tools should never be painted their entire length, but brought out distinctly in the light, allowing the negative to sufficiently render them in the shadow.

After due consideration has been given to this work, the larger folds and brightest lights of the dress must be made more brilliant. This often requires a broad sweep of the brush directly over the previous work, care being used, however, not to touch this a second time until quite dry.
DR. VOGEL AND THE ENGLISH ECLIPSE EXPEDITION.

Few persons could have read Dr. Vogel's communication which appeared in our issue of May 28th without deep mortification, as they must also have read his fuller narrative, which appeared in our last, with deep sympathy. The loss of apparatus and appliances, illness, great hurry and general discomfort, being hindered, worried, and provoked by a minor Colonial official, and final failure in the most important respects, will afford reminiscences to a foreign savant of his invitation to assist England in a scientific expedition not of an enviable nature.

In Dr. Vogel's first communication he says: — "My invitation came from England, and I was informed that instruments would be placed at my disposal and guidance. A machine arrived, therefore, when, on unpacking, I found nothing at my service but mere playthings. In the first place, I have no telescope, but only an ordinary six-inch lens, endowed with an awful focal distance, and without a camera. This lens, which is upon a stand, is to throw an image of the sun by means of a mirror which receives the sun's rays. The image is in motion, therefore, to be able to follow its path, if the image is to remain reflected upon one spot, which is a matter of course in photography. The mirror ought, therefore, to be provided with a clockwork movement; but there is none fitted to it. My assistant is to turn the instrument, it appears, and is to practise so as to do it accurately. Really one hardly knows what to think when one looks at the preparations that have been made. The two members of the expedition from England have, of course, provided themselves better; they have telescopes with clockwork and all kinds of perfection such as are necessary to the successful accomplishment of the difficult task we have in hand. I compare myself to the stork in Aesop's fables, that is invited to dinner by the fox, and finds itself unable to eat the broth set before him in a flat dish with his long beak, while the fox licks away at the repast with undivided pleasure. . . . The stupidity of the whole business is that the Astronomer-Royal in London possesses a suitable telescope, but he would not allow the same to be sent out, as the expedition is undertaken without his sanction."

As one of the surest modes of letting Dr. Vogel and all interested in the question know the facts and the explanation, we print them in our columns, which are regularly read by our friend Dr. Vogel, to whom the explanation can scarcely be satisfactory, as it still leaves the fact that he was invited by England to take part in a scientific expedition, upon conditions which were not fulfilled, untouched, and implies distrust somewhere — distrust which, if it did not find a legitimate claimant before it arrived at Dr. Vogel, must rest injuriously upon him. The story to which the F.R.A.S. alludes circulated freely in scientific circles, and was well known to the British authorities; no one knew who was who, or who had been consulted in the matter; and the British authorities undertook to adjudicate, for the means of performing which they left him in the lurch. England, who sent the invitation, is an indefinite aggregate, and Dr. Vogel should, as the F.R.A.S. suggests, state who in England sent him his invitation and failed in completing the conditions, in order that the national courtesy may not be accredited with the lack of an individual.
FRENCH CORRESPONDENCE.

THE PHOTO-CHROMOGRAPHIC PROCESS IN COMMERCE—ANOTHER ENLARGING APPARATUS—JOHNT’S POCKET CAMERA—
ALGERIAN PHOTOGRAPHERS—BERNoud’s MARINE VIEWS—
JACOB’S PROTOTYPE—LAMBERTON.

At the last meeting of the French Photographic Society, held on Friday, the 2nd inst., M. Leon Vital exhibited the first photo-chromic print that had been produced in the special atelier which has just been fitted up in the office of the Moniteur Universel. The picture is a reproduction which might almost say a fac-simile of a painting by Marchetti, representing a Spanish scene. The painting includes a large number of characters, clothed in the brightest of costumes, with great contrasts of light and shade, which make up a very striking picture. Now, notwithstanding the difficulties which the reproduction of such a picture would involve in monotone, M. Vital has succeeded so admirably in reproducing it in every detail by means of his process, that the print has been produced by a painter with the aid of a brush rather than in any other manner. In exhibiting this fine production to the members of the Society, M. Leon Vital called attention to a very curious fact, which was confirmed by all present. It was that a print in carbon, which he held in his hands, and such as is applied in the case of the paper bearing the different impressions in colour, is absolutely absorbed by these latter in such a way that the finished print shows all the different colours without betraying a trace of the black print in carbon. Other works of a different kind are in course of execution at the Photochrome Atelier which is already in full operation.

Mr. Deroeg exhibited at the same meeting an apparatus destined for securing enlarged prints by means of sunlight or artificial light. In either case, the prints upon paper are produced by the wet process, but clichés upon wet collodion may also be obtained by means of a transparent positive. The maximum dimensions of these clichés are 90 by 60 centimetres, and they may be produced in a few minutes by employing a powerful oil or petroleum lamp. The apparatus to be used for such light is composed of a reflecting mirror of small dimensions (17 by 90 centimetres) of varying light mechanism, and a camera bearing the optical apparatus. The condenser measures 19 centimetres in diameter, and the whole forms an apparatus so very small that it may be easily placed at a window and manipulated with perfect freedom. The artificial light is furnished by condensing electric light and the whole apparatus is designed to be used, and the source of light is enclosed in a lantern. In this condition the instrument may be utilised very well for projecting images upon a screen, as was shown by the results which M. Deroeg was able to produce the other evening before the members of the Society.

Recently a very large number of pocket instruments have been constructed to meet the wants of tourists and excursionists. First came the Scenographie of M. Pluckter, then the Micromegas of M. Hermaga, then the apparatus of Bisson junior, and then that of Geymont. Now it is the turn of M. Jonte, one of our most skilful cabinet-makers. The pocket camera which the latter exhibited on Friday last to the members of the Society comprises a very little case of bellows construction, a simple short-focus lens, a double plate, and a 2½ centimetre plate lead in 12 centimetre, and finally, a frame with ground glass. The whole is contained within a package measuring but 19 centimetres high, 12 broad, and 6 thick, the weight of the sao being 550 grammes, therefore rather more than half a kilogramme, or one pound. The apparatus may be carried in the hand by means of a strap, or over the shoulder like a field glass. A folded stand upon a new system, without bolts, and with a moveable head, also fits up in a canvas case, being 5 centimetres broad and 68 long, and its weight 700 grammes. When open the stand is 1 metre 30 centimetres high. Another package contains four double slides, with eight plates of 9 by 12; each of these frames weighs 25 grammes, making together 100 grammes. M. Jonte does not feel satisfied with his new in the construction of his bijou apparatus, but he has studied to make it as small and light as possible. Thanks to some very ingenious ideas, he has been enabled to produce a camera of this kind which is simple and solid, and which, at the same time, can be made at a moderate cost.

A Polish photographer, whose name I forget for the moment, presented to the Society a number of prints which excited a lively and just admiration. They represented types of the population of Algeria, which the author had collected during a sojourn in various parts of our colony. The portraits, treated in the Adam-Salomon style, form magnificent pictures, and reveal their producer as an artist of the first rank; it is, indeed, difficult to conceive how portraits of this character could have been printed in any studio which had not all the approved contrivances and fittings. And yet, as one may say, the pictures have all of them been produced in the artist’s tent. All of the pictures are of large dimensions, printed magnificently by the silver process, and we could not but express our regret, which was shared in by those present, that the splendid clichés had not been printed in permanent pigment. In reproducing such pictures as these, the process of photochrome offers great advantages.

M. Bernoud, of Lyons, has sent us a large number of marine scapes and reproductions of paintings, which we have placed under the eyes of the members of the Society. They were viewed with much interest, and, beyond the eminent artistic qualities which they possess, they have the advantage of having been very rapidly photographed, so that where vessels are seen, every detail is sharp, and not a rope is out of focus. M. Bernoud has forwarded an album containing two hundred of these instantaneous marine views for exhibition at the Palais de l’Industrie. They will not be the least worth seeing of all the objects there exhibited.

I cannot resist a desire to mention the interesting specimens which I have received from M. Carlos Ravas, the eminent Portuguese amateur, which are the finest results of a process of phototype that he has just purchased from the inventor, M. Jacobi. The specimens I allude to consist of portraits, landscapes, and reproductions, the beauty of which is at least equal to that of the perfect silver and may be printed in permanent pigment. Correspondent affirms that the manipulations are everything that can be desired as regards simplicity of working.

Since I have mentioned some new processes, allow me to add, in support of what I have already said in respect to M. Lambert, that during the last fortnight the greater portion of the letters I have received, and which have been returned from the likeness of the Leomend pe and Chromotyp processes, are all of them full of terms of satisfaction in regard to those methods. My correspondents are surprised at succeeding so well with such simple means, and it may be well asked how it is that the carbon process has been so long making way in many of the studios. It is the same with the enlargements. I have just received from one provincial photographer the most flattering notice of the productions of the most minute process. Before Lambertine came into vogue, he could never succeed to his satisfaction, notwithstanding that he spent large sums in his attempts; but now he produces little else besides enlargements for his customers. It is with much pleasure that I register this success in favour of M. Lambert.

E. LAGAN.

RIDICULOUS INVENTIONS.

BY W. W. WHITAKER.

Among those who will take the trouble to “peruse” (as lawyers say) the book of abridgments of photographic specifica-
tions issued by the Patent Office, cannot fail to be amused by the sheer absurdity of some of these "inventions," or the singular terms in which others are described.

In one, for instance, by a Mr. Power, a substance is made use of which the "inventor" calls nitrate of alcohol, and which he says consists of "spirits of wine, gunpowder, prussic acid, sal ammoniac, and spirits of vitriol" (by improvement of stereoscopes), has for its object the production of a "pleasing and novel optical illusion." One half of the stereogram "shows a person with his hat on," the other "the same with his hat off." The "improvement" consists of a mechanical arrangement by which the "pictures" are viewed alternately, and the "pleasing optical illusion" is produced by the figure appearing to take his hat off.

An invention having more exalted aims, by a Mr. John- son, relates to an entirely new system of photography, by means of which birds-eye views are to be obtained of portions of the earth's surface. A balloon and "suitable windlasses below" are to be employed, and the camera pointed downwards from the car.

In both these cases, the object is to rectify the distortion common in stereo of architectural subjects (the pencilion distortion, for instance?) by inclination of the bottom plate on which the views are placed; and still another to give stereoscopic effect to "real objects" by viewing them with one glass before each eye.

Still harping on the stereoscope, a Mr. Swan gives us an instrument with lenses "of different magnifying powers, which he has succeeded in adapting to different sizes. He mounts both pictures in "suitable positions" on one card (one ought to be some inches in the rear of the other to suit lenses differing much in focus), and by these means he gets his stereoscope in a form "more convenient than that of the instruments hereofore employed."

But perhaps the most absurd invention of the lot (by Messrs. East and Barnes) has for its object an improvement of photographic and other portraits, which is accomplished by cementing "some of the hair of the person" whom the portrait represents "in the position and after the natural manner of his hair." This improvement, it appears, is also applicable "to oil and other painted portraits, to enhance their effect," and produces a better likeness. It seems, also, that the "inventor," does not confine himself to authentic locks, but uses "the hair of any other person or kind" as well.

Ordinary inventors bear in this world "indifferent" well. Let us hope these curious efforts of unusual genius have met with their reward.

SOME OF THE DIFFICULTIES AND PLEASURES OF LANDSCAPE, AS COMPARED WITH PORTRAIT PHOTOGRAPHY.

BY P. HUDSON.

But landscape photographers have perils by flood as well as by field. Some years ago I was anxious to get a view of cliffs at Freshwater Bay, that could only be approached at extremely low tide. You passed through a natural archway of the rocks upon large masses that had fallen, which were partially submerged, leaving little irregular channels about them, with a foot or so of water. Covered with sea-weed, and constantly wet, this pathway (or rockway) was very slippery; but with care, and holding on to the rocks overhead, you can pass through all right. Of course, with the camera on your shoulder, it won't do to be hurried. Well, we got through very well, and placed the cameras, but the tide had already turned, and was coming in quicker than we liked, so we focused, put in the plate, and exposed, which was rather long, owing to dark rocks in shade. Exposure over, we took the cameras off the tripod, man taking the camera and I the tripod. The sea by this time had nearly covered the rocks we had to pass through, and we had to carry our old man-of-war's-man, thinking sound bottom better than the slippery rocks, off with his shoes and stockings, rolled up his trousers as far as possible, and sturdily floundered through it, just missing the little wriggling better than half a dozen tiny fishes all, boty into it. As I myself, it was with the utmost difficulty that I escaped a "ducking," but, by using the tripod as a stick to steady me, and taking it rather slowly, I managed to escape with nothing more than wet feet and—a spilt picture. My man's boat, being a floating garage, was in a condition which leaves nothing to be desired.

These are only a few of the difficulties of an out-door photographer. How many times does he start out at early morning with high hope of bringing—something "good home at night; but the wind gets up, or the rain comes down, or mist arises, or some other hitch derbies his face, and if his luck be very bad, or a weary day of anxiety, he returns home disappointed.

And then there are other innumerable worries incident to the field that never enter the studio. Obliged to pitch your tent by the side of a dusty road, rain comes down on your camera and makes it as wet as well as you are; and then, after a hot and dry day, three ladies in bright colours walk leisurely across your field of view, or a wretched dog stands and barks at you; or, all at once, the screw breaks, and you have to tie your camera on to the tripod; or your focusing-screen gets smashed, and you know not how to put it together again; or you get your tripod, and find it too short—or the water with which you diluted it contained salt, and so you had chloride of silver swimming on your plate. All these, and a thousand others, never visit the studio. There everything is arraigned before you; a chain perhaps, a table, moved to the right or left, the camera (which can be advanced or advanced a few feet), or an alteration in the pose, being all that is required in, perhaps, the majority of cases. Even the light requires very little modification beyond the drawing of a curtain or two; and if there is a suspicion of the sitter's liability about his head, a rest clapped behind his ears effectually fixes him as in "a vice." I know there are a thousand and one whims, especially with the ladies, about this collar or that cuff—or the mouth is either too long or "screwed up" too much—or (which is the superciliously wish to have every part of it to look just as it does in the mirror). And when the sitter is too short—or the eyes are staring—or "the freckles show"—or, in trying to put on a bewitching smile, an idiotic smirk results, and, of course, they "never looked like that." But all these things are by a little tact, conquered, and a step into the camera chamber, (instead of standing in the sun), and a cool and comfortable development, proclaim, with a minimum of both physical and mental effort, a successful result; and it not quite as successful as you wish, there is the very useful "re-toucher," who, by an hour or two of judicious work, banishes all freckles, tones down those horrid wrinkles which are the dread of advancing years, strengthens the high lights, gives softness and beauty to the skin—in short, produces a thing of beauty that often both surprises and pleases the original beyond his fondest expectations. I think it must be admitted that the mental strainless and physical exhaustion sustained by our brothers in the studio cannot bear comparison to that of those who labour in the field. It is the field that trys of what metal a man is formed. Many a man who is quite at home in his studio would be utterly disconcerted and soon used up with out-door work.

Of course there is the other side to this picture, but I have already exceeded my limits, and can only say a word or two of the "pleasures" of the out-door worker. In the work itself, it seems to me there is a delight of which the studio man knows nothing. To be all very well, to think your face up the faces of pretty children and others, but the face of nature is even more beautiful, and yields more pleasure when it "comes out" as it should on the plate, in the tent—the tree, the flower, the lake, or river, and the distant hill all add to its loveliness. And with what intense satisfaction I once, the beauty—compete though the thing was put away in the box—I with what tenderness she is carried home, so that her very self can be almost indefinitely reproduced, to give a widespread and lasting pleasure to others!

To those who love the beautiful, it is no slight compensation.
for all the worries and mishaps they undergo, to pass through lovely scenery, fastening their eyes on the stupendous cliff, the charming landscape, and the lovely summer sea. It is very delightful to wander through country lanes "when the flowers appear on the earth," when the primrose and the buttercup deck the glade, and the white and blue violet and the daisy are thinning broadcast around, when the birds hold concert together. I recollect listening to a concert of the birds once, when I was on a photographic tour, and lodged "in a cottage near a wood." The previous evening, at nine or ten o'clock, a nightingale here and there sent out a few delicious notes, but these were only the prelude to the grand burst of melody that heralded the approach of the glorious orb of day. At earliest dawn the sweet warblers were alert, and woke up the writer, who, obedient to the summons, willingly became an enraptured listener, while stream after stream of delicious melody and increasing volume filled the wood.

PHOTOGRAPHY IN A CANOE.

A CORRESPONDENT of the English Mechanic, who signs himself a "Medical Rover," contemplates a novel photographic excursion. He intends fitting up a canoe with photographic appliances, and so combining pictorial and aquatic pleasures. Here is his description of the outfit:

"It is my intention in a short time to start upon a canoe cruise to Norway and the North and East, and as I am going to do a little in photography at the same time, my equipment may interest your readers. The canoe is of the Nautilus type, and is built so as to take nearly all my apparatus. It is 14ft. long, and has a beam of 28in.; the stem is 1ft. 11in. high, and the stern 1ft. 7in. The well is the peculiar part; it is 6ft. long, and is covered by a hatch in two parts, one half being fixed and the other movable. Fore and aft are two air cases, each 4ft. long; the photographic apparatus is stored forwards, and luggages aft. The well, as I have said, is 6ft. long, and has a combing of strong oak, 14in. above the deck and 11in. below it; and as this is the part on which all the strain lies, it must be strong, and well bound to the well by small carlins with a nail right through, and knees. It is further strengthened by an oak board, which extends from side to side for the ends of the stretcher to rest against. This well is covered over forwards by a wooden hatch 2ft. 6in. long and 1ft. 8in. wide, which is secured at the fore end by two thumb-screws and a catch, and at the other by a lashing; water-tight union is effected by having a piece of india-rubber tube let in and fixed to the top of the combing. The other part is covered by an ordinary mackintosh, the same as the Rob Roy. In this compartment, immediately in front of the stretcher, are two cedar boxes (water-tight); in the right-hand one the camera and plates are stored, and in the left-hand the chemicals and other apparatus. Between them is a space in which the sails and mackintosh lie. My canoe is 2in. higher amidships than the Nautilus.

The camera stand legs stow away below the dock with the sails, and the other luggage is stowed behind the seat in a little cedar locker 1ft. wide. The sails are of the Nautilus type, and so are most of the other fittings. This was the case in its original form, but I have added a tent to it; and as I am somewhat dubious about its suitability, I will not describe it till I return.

The camera is only a very small quarter-plate one, with two dark slides; the bath is ebonite, and has a water-tight cover. All the solutions are in gutta-percha bottles except the collodion. They are as follows:—Developing, fixing, and intensifying, 2oz. each, and solid; soda, iron, and silver, also in gutta-percha bottles; the ether in tubes. The collodion is in four 2oz. bottles. A tin of methylated spirits, a bottle of varnish, &c., complete the bottles.

In the left hand box, along with these (which are all fixed in a rack with round holes), are cloths and leathers, gutta-percha funnels, filter papers, sponges, developing cups of gutta-percha, tray of disho for a sink, india-rubber tubing, plate-holder, and some other sundries. In the right-hand locker is the camera and triangle of stand, plate box and fifty plates, focussing screw and two backs, all fixed by blocks screwed down to the sides of the box; and in a separate compartment are two lenses.

I have had both air-cases divided in the middle, and fixed 4in. apart, so that I can now vary various articles without hindrance thus formed. When all on board, the canoe floats upon nearly an even keel, but, if anything, a little by the stern, as her beam is nearly amidships, and there is a cooking stove in the after locker. I hope, after having tried everything, to write you the result.

SOLAR NEGATIVES RETOUCHE.

BY L. V. MOLDON.*

HAVING met with considerable success in retouching solar negatives, I submit a few suggestions, hoping that others will take the matter in hand, and give us a process that we may produce as fine results as from contact negatives; in which event I see no reason why solar enlargements should not supersede direct work almost entirely.

Those who have had experience with large contact negatives are aware of the difficulty of producing good work, on account of the lengthened exposure, which makes it almost impossible to secure large negatives of children, animals, and moving objects.

Some suppose that solar prints are necessarily coarse, having broad patches of high light, and shadows destitute of detail, being fit only for the artist to work upon. In my opinion, the same care and skill will produce work equal, if not superior, to contact if proper allowances are made in making the negative for the difference in the method of printing. Many do not see that a negative will print nearly or quite three times as dense in the solar camera as by contact; also that the deposit of silver should be much finer, and to that end the developer should be made weaker and used freely, to wash off a portion of the bath solution from the plate.

* Western Photographic News.
I am aware that many understand all this, and might reply that retouching has become a necessary part of printing. The method is simple, and we must now learn to retouch the solar as well as the contact negative, or it will necessarily fail to serve for plain prints, and we must have our solar enlargements finished by the colourist to be presentable. Evidently the usual method of retouching contact negatives will not do, as varnishing is injurious; every little elevation in the surface acts as a lens, and makes a spot on the print. Grinding makes it almost equivalent to ground glass, and is fatal to good results. If not ground, every touch of the pencil will produce a white mark, whether any load is left or not, the roughening of the varnishing being sufficient; therefore the best results can be had only by preserving the matt surface of the silver deposit, and applying some substance in the form of a fine powder. I use graphite and no varnish, but think it would be well to flow the plate with a weak solution of gum or gelatine, which would cause the powder to adhere better in the shadows, and render the negative less liable to be scratched. To apply the graphite, I first take a soft retouching pencil, and rub it upon a piece of paper till a polished black spot is produced; and put some fine graphite, or a soft "velveteen" cork, and put them in the split ends of pencil brush handles, and with them carefully transfer it to the negative.

Correspondence.

REPRODUCING NEGATIVES BY THE POWDER PROCESS.

Sir,—Will any of your readers who have tried Obernesser's plan of reproducing negatives tell me how they coat the plate with the solution to make it flow evenly? I cannot manage it, as the repulsion of the glass is very great, and I cannot make it smooth.—Yours, &c.,

K. B.

URANIUM IN PHOTOGRAPHY.

Sir,—I certainly did assume Mr. Werge to have been ignorant that the Woblytype process was a collodion one, as he spoke of the inutility of adding nitrate of uranium to the printing bath in the Woblytype process. It now appears from your latest notice, that it was an error of statement, and not want of knowledge. It is of no advantage discussing this matter. And with regard to Mr. Werge's statement that, had I attended the meeting, I should have seen unsatisfactory collodio-uranium prints done by him, I must say I fail to see what I should have given, as I already see by his writings that Mr. Werge is ignorant of the correct uses of nitrate of uranium, under which circumstances, of course, his work to bad.

With regard to the addition of nitrate of uranium to the silver bath, the only occasion I mentioned it was casually in my paper; and I am bound to say that I consider it an act of grave discourtesy on Mr. Werge's part to pronounce himself on the matter without asking me for a definite formula, or if I had any recommendations to make. And he would have done well to have addressed the same question to Captain Abney, who, in his instructions to the workers on the transit of Venus expedition, points out the increase of sensitiveness gained by the addition of nitrate of uranium to the negative bath. Had Mr. Werge taken this course he would have avoided the exposure of the singular error he has made.

Mr. Werge alludes in his last letter to the "motives of process-mongers." Would be kindly explain what "process-mongers" are? It is a new word, and requires explanation, which I shall be glad to see from Mr. Werge in your next number.

There is nothing more in Mr. Werge's paper on "Ura..."and its Uses" that I think I need notice. It is merely a record of what he himself has failed to do, and utterly ignores the labours of others, both before and after him, with a paper before a learned society makes one exclaim, after reading it to the end, in the words of a well known poet:

"Parturient montes, nascetur ridiculus mus."

Yours truly,

H. Stuart Worley.

Sir,—Seeing that some doubt has been cast upon the conclusions deduced by Mr. Werge from the very complete series of experiments carried on by him to ascertain whether or no any increase in sensitiveness was obtained by the addition of nitrate of uranium to the silver bath, I send you a brief statement of my experience on the subject.

I made up a bath containing thirty-five grains nitrate of silver, and ten grains nitrate of uranium per ounce, iodised in the usual manner by the addition of iodide of potassium, and to this solution carbonate of soda was added until a permanent precipitate of carbonate of silver remained undisolved after violent shaking. After standing about twelve hours with occasional agitation, the whole was poured into a filter, and the bath allowed to filter through the deposit. Having thus ensured the complete removal of any trace of free nitric acid, I sensitised it with plates coated with Mason's collodion (iodised twelve hours previously). And found it gave clear pictures without the addition of acid, and was even in that condition considerably less rapid than an ordinary slightly acid bath of the same strength, but without uranium, against which it was tested.

Having thus satisfied myself on the only point in Mr. Werge's most conclusive experiments about which any possible uncertainty could exist, I feel that any hope we may have entertained of shortening exposures by the help of nitrate of uranium employed in this manner must be abandoned, and that the less we have of it in our baths the better. —Yours truly,

R. W. Arnott.

AUTOTYPE AND CHROMOTYPE.

Sir,—As there seems to be some little confusion of ideas as to our allowing the use of the Autotype Patents to the licensees of the Lamberttype and Chromotype processes, we are bound to say that we have done no more for the said licensees than we have always done for the profession generally, viz., to allow the free use of our patents (except for the production of works of art) on the sole condition of the purchase of the materials of ourselves. We recognise in Mr. Lambert's processes some improvements, very many ingenious ideas, and a method of printing which may, perhaps, be worked out to commercial and practical purposes: we are anxious to aid these efforts by the production of suitable tissue, by the supply of apparatus, &c., and we shall always strive, as we have hitherto striven, to make the printing of permanent photographs practicable.—Yours very truly,

Sims, Sawyer, Bird, & Co.

THE LAMBERTYPE PATENT.

Sir,—No doubt there are many others like Mr. S. Fry, desirous to know what Mr. Lambert "claims as novel in his patent for enlarging." If they apply to the Great Seal Patent Office, 25, Southampton Buildings, Holborn, as I did, they can get the specifications for fourpence each, by quoting the numbers, which are 1634 and 3633. These will give them not only what Mr. Lambert claims, but a description of "the nature of the invention and the manner of performing the same," though I should think, after Mr. James Hughes' letter in your last issue, this is perfectly clear to any photographer who has learnt the photographic alphabet.—I am, sir, yours faithfully, Graham Knemey.

Ryde, J.W.

The specific type, and will be published in our next—E!
SULPHUR AND NITRE LIGHT.

Sir,—Seeing mention made in the News of what is called Mr. Spiller's discovery of the "Nitre Sulphur Light," puts me in mind of an experiment we used to try when school boys, which was to put some powdered nitre in the bowl of a candle, and place it in a room, and light the candle. When the nitre had melted; then drop into the bowl a small piece of stone brimstone, which instantly gave a most brilliant white light, too dazzling for the eye to rest upon, its light continuing until the piece of sulphur was consumed. Since I have taken up with photography it has often occurred to me whether this light could not be used for exercising purposes, but I could not see a ready means of getting rid of the fumes which gave the light being combusted; but then the same objection might apply to the magnesia light.

Anyone may become convinced of the intense power of the light by trying the above simple experiment, but the nitre must be in a thoroughly melted state before the piece of sulphur is dropped in. Would it not be possible to construct an apparatus for burning the light, with pipe to convey away the fumes, as with the magnesia? Or some method might be used for condensing the fumes as they are evolved. We should then have an artificial light at our command, very little (if any) inferior to the magnesia or lime light, and at a tithe the expense.—Yours, &c.

THEO. S. LATCHMERE.

[Your boyish experiment would give a light of a similar character to that shown by Mr. Spiller, who did not devise a new light, but proposed a new application. The smoke is much less in quantity than that emitted by magnesia for a similar quantity of light.—Ed.]

THE REJLANDER MEMORIAL FUND.

Dear Sir,—It is proposed to wind up affairs connected with this fund on the 17th inst., and I ask permission, therefore, to inform your readers, who have not yet subscribed, but intend doing so, to be good enough to forward their donations to me at once. Between two and three hundred pounds have been received, or promised, and the committee confidently hope that in the end the fund will not fall short of the late-named sum, there being, no doubt, several friends of the late Mr. Rejlander, and admirers of his genius, who are anxious to send a contribution before the list closes.

May the those who have promised, but not yet paid their donations, kindly forward them as soon as possible.—Faithfully yours,

H. BADER PRITCHARD, Treasurer, Rejlander Fund.
Royal Arsenal, Woolwich, July 6th.

Proceedings of Societies.

WEST RIDING OF YORKSHIRE PHOTOGRAPHERS SOCIETY.

The first trip of this Society was such a success, and so many expressions of satisfaction on the day's pleasure were echoed at the last monthly meeting, that a second trip for photographic ramble was agreed upon; and, consequently, arrangements were made for a tour up the Hebden Valley on the 24th ult.

The Hebden Valley is likely to occupy a conspicuous place in the photographer's guide book, should one ever perchance be published. The valley is regarded as the Switzerland of England. It has its range of mountains, its rugged peaks, its mill dams, its waterfalls, its nooks and corners for the stereo camera, its wooded hills and distant effects for the long focus lens—in fact, Hebden Valley is a paradise for the photographer. There he may feast to his heart's content, and drink in every sort of bliss that the "beer and albumen," or a "Howard tent," is capable of affording him. If he be the happy possessor of a tent that "holds everything, and just weighs 100 lbs.," or has a favourite corner close to the home inns, for hotel dining, we suspect the members of highways have not yet smoothed the path for the man or beast of burden that is likely to go in quest of the

grand and beautiful. Hebden Bridge is near Todmorden, on the borders of Lancashire, but in the county of York, and only eight miles from Halifax.

The morning was fine and inviting in every sense but the photographic. The wind disturbed the compose of the foliage to such an extent that the vortices of both wet, dry, moist, and "refreshment" portion of the day's out as the most likely to turn out successful. Yet, notwithstanding the unphotographic aspect, the wet, the tannin, the beer and albumen, and the emulsion processes had each its representative amongst the party. The afternoon became overcast, and a sort of photographic "insolvency" pervaded the whole aspect of the beautiful valley.

The party sat down to tea at the "White Horse," Hebden Bridge, at eight o'clock; and, as many of the gentlemen intimated their intention of doing better with the ham and egg plates than they had with the tannin, a "comfortable" hour was spent in thoroughly testing the capabilities of the former process. After this pleasant repast the company returned home.

LIVERPOOL AMATEUR PHOTOGRAPHIC ASSOCIATION.

The monthly meeting of this Association was held on Tuesday evening, the 29th ult., at the Free Library, William Brown Street, Mr. W. Atkins, Vice-President, in the chair.

The minutes of the previous meeting were read and confirmed. Mr. J. A. Forrester gave a description of several useful photographic apparatus which he had seen during a recent tour. He also strongly advocated the returning of the landscape negatives, instancing some large negatives which had been seen by the Society, but which were now so improved by artistic retouching that he could scarcely believe the new prints were from the old masters.

Mr. Purves mentioned that to touch up small negatives involved a great deal of time, and also artistic skill. Other members thought that retouching would have a tendency to careless manipulation instead of excellence in the original negatives, which they should strive for. When necessary, natural clouds could be got by double printing.

Mr. Forrester exhibited a print by Mr. Pettitt, of the "Setting Sun," as an example of what could be done by double printing. A communication from the Rev. J. D. Ridley (who was unable to be present), relating some of his experiences in making emulsion, was read by the Secretary.

Mr. Trenorth exhibited several 12 by 10 negatives of Buildwys and Much Wenlock Abbeys, taken on the last excursio. He said there was plenty of work for a day there.

The members showed a number of views of horses and cattle taken by him on Kennett's rapid gelatine plates. Both horses and cattle had been perfectly still, showing the capabilities of these plates for such work. He (Mr. Weber) in reply to several questions, said that though taken in dull morning light, the exposure had been almost instantaneous, but being capped and uncapped as quickly as possible. The attention of the horses was attracted by a man behind a bush beating a can with a stick.

A special meeting of this Association will be held on Tuesday, the 19th instant, when a demonstration of autotype process by Mr. H. Taylor will be the attractive feature.

Talk in the Studio.

IDENTIFYING BY PHOTOGRAPHY.—In a case which was tried at the Middlesex Sessions, the jury were asked to decide upon the identity of a prisoner. A print of his photograph was shown. Although it represented him without the moustache which he wore in the dock, the foreman caused him to stand in such a position that the other jurors had no difficulty in recognizing him, and in consequence of previous convictions he was sent to penal servitude for seven years.

HERMAGIS' ENLARGING STEREOSCOPE.—In answer to the inquiry of a correspondent, Mons. Lecan informs us that the stereoscope, with a system of lenses for presenting photographs in truly invented by M. Hermagis, costs 300 francs.

COPYING OIL PAINTINGS.—A "Little Photo" writes: 'I see that one of your correspondents is inquiring how to photograph an oil painting. When every dodge I could think of failed with me, I succeeded by holding a bit of lighted candle close to the lamp shaft; then, again holding the canvas at the varnish to black, and with good exposure got it. If you make a note of this it might be useful to your correspondent.'
Exposure by Electricity.—Sir David Salomon, whose method of signalling on railways we recently noticed, and several of whose inventions in scientific apparatus, &c., were exhibited at the Conversations of the Royal Society, has devised an electrical attachment to a photographic camera, by means of which the photographer, having arranged his apparatus, can retire to a point of vantage, and when a suitable scene is presented, immediately photograph it. There are many situations in which the appliance will be found useful, as the charm of a picture is often lost through the “sitting for it” being too apparent. The details of the method are not yet published.—English Mechanic.

To Correspondents.

Glacial.—The extent to which the intensity of a negative is modified by varnishing varies very much with circumstances. Some varnishes penetrate the film more readily than others; but the chief difference is in the character of the negatives. In some instances the film and deposit are very porous and spongy, readily absorbing a large proportion of the gum resin in the varnish, and in other cases the deposit becomes semi-transparent, materially reducing the intensity of the negative. In other cases, when the film and deposit are firm and unabsorbing, the varnish does not penetrate the coating on the surface, without perceiving a slight loss of substance of the material and changing the intensity not appreciably reduced. As a rule, a spirit varnish with a thick body reduces the intensity of a negative most. A second coat of varnish has the same effect. Painting in the gum with soft prints over an intense negative, the intensity may also be reduced by long continued action of tincture of iodine on the varnished negative.

A.—The blinds best to be kept closed, and those best opened, will vary with circumstances, especially with the class of heads. For instance, with a soft smooth-skinned small-furred person, a corresponding small space of open glass, near the sitter, will give the boldest and most vigorously defined image; whilst with an old wrinkled face, larger space of glass more in advance of the sitter will give the best results. In the latter case the light is required to penetrate the furrows and wrinkles, so as to soften them. As a general rule, with a good light, about six feet of side and top should be kept covered at the sitter’s end of the studio, and then about 10 or 12 feet of clear glass top and side will give good results.

Landscape.—The prints in cabinet photographs generally measure 6 by 4 inches, some photographers preferring to make them 6 by 3 inches. We cannot speak from personal experience of the covering qualities of the lens in question; but as it only professes to cover 5 by 4, it may possibly fail short at margin in cabinet prints. We stopped at the 3. The sharpness of enlargement depends much upon the sharpness of the small negative. If a quarter plate negative be perfectly sharp all over, it will generally yield a 10 by 8 enlarged negative, quite sharp enough for pictorial purposes. The meaning of the illusion to stops is simply that the smaller the stop the more perfectly the lens will define to the edges.

T. S. Hicks.—We suppose that the letter had been sent unsealed by mistake. We strongly deprecated the intrusive habit of writing private communications to gentlemen whose work has been noticed in our columns, or who may have contributed to our pages. To express a photographer to send copies of work so noticed, to every one who may apply, is unfair in the last degree, and we should feel no compunction in not noticing such communications. Thanks.

L. S. C.—We are much interested in and pleased with your views of scenery, which is very familiar to us. The most picturesque is that looking down the river, with the church in the distance. The chief gross fault is the hazy whiteness of water and sky, which is chiefly due to the character of the light in which they were taken. This might be remedied by printing in some delicate clouds from a cloud negative, or by giving a slightly graduated tint to the sky by sunning. Possibly printing slightly deeper might be an improvement, as in some of them there is indication of detail in the water which deeper printing might bring out. In the photographed river view, with a low water bed in the foreground, the camera has been too near to the foreground, and focused on the middle distance, so that foreground objects are less perfectly defined—a thing which should, as a rule, be avoided. We indicate these possibilities for improvement without finding fault with the pictures, which have many good qualities, besides being interesting in subject. In packing photographs on a roller you will find it a good plan always to roll the albumen side outwards, as the pictures can be much more easily made to lie flat after such packing them when relying on the albumen sides inward.

D.—We presume that you will only obtain facheine of a manufacturer of sailing dyes. They can only be purchased half a dozen years ago was, as stated at the time, from a foreign source, and could not be readily verified now.

Recollection.—The reception, or any attached mirror, would necessarily require as it receives from a focusing camera when focused. So far as we can see, no focusing cloth need be used, if the side of the angular space formed by the mirror and ground glass is enclosed. Mr. C. E. Elliot, of Jewin Street, is agent for the recollection. See his advertisement in our last Year-Book.

Several Correspondents in our next.

Meteorological Report for June.

By William Henry Watson.

Observations taken at Braystones, near Whitby, 36 feet above sea level.

<table>
<thead>
<tr>
<th>Date</th>
<th>Morn.</th>
<th>Noon</th>
<th>Night</th>
<th>Morn.</th>
<th>Noon</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>23</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>26</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>28</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
<td>49</td>
<td>51</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Summary.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Maximum temperature observed: 86° 72°
Minimum ditto: 51 65
Mean ditto: 66.5 61.5 55.4
Mean of whole: 78° 70°

<table>
<thead>
<tr>
<th>Number of fair days</th>
<th>Number of days on which rain fell</th>
<th>Fair days, sunny...</th>
<th>Fair days, gloomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Note.—We have had during the past month somewhat showery weather, as above, and if the old proverb—"A showery June puts everything in tune"—is true, we may be quite satisfied. It is, however, to be doubted whether the recent showery weather has not been a result of the out of tune, the grass having kept up for ever a week and not yet under over. The rain fell amount to 35.5 inches, and the evaporation to 34.5 inches, the rain being only 253 of an inch in excess.

Chemical Laboratory, Braystones, Beverley, July 5.

Photographs Registered.

Mr. G. B. Oakley, Burslem, stafford. Photograph of Mr. W. Dickenson, ex-Mayor of Dover.
Mr. T. Harris, Norwich. Seven Photographs of the Duke of Connaught.
Mr. K. Hawke, Newcastle-on-Tyne. Photographic Group, Mr. Frumes and Miss Roser.
Mr. McLean, Birmingham. But Photograph of Captain Boyton.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

ROMANCE AND REALITY.—PHOTOGRAPHERS AND ROYALTY.

Romance and Reality.—It cannot be denied that photography has done away with a good deal of romance, especially in depicting the wonderful scenes of nature. Books of travel, with pictures of mountain peaks rising far up into the heavens, and of cascades falling through infinite space, will be less plentiful now that we can get photographic illustrations to compare with them. Travellers who want us to believe their wonderful stories will in future have to produce something better than a sketch in printer's ink in support of their interesting gossip.

One of the most amusing occupations we know of is to take up an old book, containing engravings of Switzerland or other land of wonders, and compare the exaggerated illustrations with the pictures of the same scenes as preserved in the camera. The comparison is ludicrous in the extreme. Lakes and mountains are made to lose their character entirely by the way in which the foreground is dwarfed or exaggerated, or objects are added or left out. Clouds are cunningly put in far below the summit of a peak to add to its height, and human beings are rendered of microscopic dimensions or vanishingly small. A photograph before us of the Alps would, in order that the latter may be seen at its best, no one has ever seen photographs of such stupendous natural scenes as we here see them, and it would almost seem as if these wonderful phenomena had disappeared from the face of the earth on the advent of photography. Like the odd caricatures of fifty or sixty years ago, these old prints are quite out of date now, and any photographs of them, however, would probably have been worth several hundred pounds. The firm of Ghémar frères, which still flourishes at Brussels, although the brothers who gave their name to the house have since passed away, made a most lucky coup when they secured for themselves the almost exclusive right of producing pictures of the Princess Alexandra at the time of her betrothal to the Prince of Denmark. Two royal tancs were at the palace at Brussels on a visit to the royal family there, and the Ghémar frères, being the court photographers, were fortunate enough to secure a sitting from them. Before the Prince returned to England and his future consort had gone back to Denmark, the Continent and this country were flooded with the pictures, and the demand had to be multiplied several times to keep up with the demand. The prints went on uninterruptedly for many months. Again, at the time of the approaching nuptials, a fresh demand, more inexhaustible than before, set in, and Alderman Mayall, of Brighton, was the fortunate photographer who came in for the slice of luck this time. Mr. Mayall was commanded to attend at Windsor the week of the marriage to take pictures of the nuptial bed, the wedding gown of the Princess and His Royal Highness the bridegroom. Only three days' notice was given by Her Majesty, and Mr. Mayall was aware that in a matter of such importance a glazed studio was simply indispensable. There was nothing to suit his requirements at Windsor, he well knew, so the only way out of the dilemma was to take a glass house down with him. A rough sketch was hastily made, and sent away, and in a couple of days the glass house stood ready in his own yard. It was taken to pieces and carted down bodily to Windsor, where Mr. Mayall was enabled to pick out a suitable spot for its site. We all of us know how well the photographer acquitted himself of his task, but there are few, probably, who are aware of the rich harvest the little negatives brought in for the printer. Not many months after he had completed his work, Mr. Mayall, with his little studio still, and at the present day has it fitted up as a conservatory in his grounds at Brighton. When we add to the receipts realised on these two grand occasions the large sums which a score of other "royal" photographers have made out of the portraits of their Royal Highnesses, we doubt whether the total falls short of the sum we mentioned, but in any case it cannot be gainsaid that the Prince and Princess of Wales have been among the best friends of photographers.
CHAPTER X.

DEFECTS IN THE NEGATIVE (FAILURES IN THE MANIPULATIONS, FROM GLASS CLEANING TO RETOUCHING THE NEGATIVE.)

(a.) Failure is sure to ensue on colloidionizing unclean glass. If the plate has been polished, and not albumenized, the dirty surface may sometimes be detected, when by breathing on it the breath adheres unevenly to its surface. Generally it does not show itself until after development.

1. A slipping off of the film under the jet of water in washing the negative shows that you have flowed the colloidion on the unalbumenized surface, or that the glass is greasy. For greasy glass, place it in the potash dish for a few hours, wash thoroughly under the tap, and albumenize. To guard against colloidionizing the wrong side of the glass, stack them on an uniform plan.

2. Glossy precipitate of a silver tint appearing between the surface of the glass and the colloidion film is another evidence of insufficient cleaning, especially where old glass, which has been in use, has not been left long in the concentrated potash solution. This appearance is especially noticeable from the back of the negative. Return the plate to the potash, or, which is safer, discard it.

3. Spots of moss-like formation, proceeding especially from the lower edge, arise from the dirty state of the plate-holder. The holder should be thoroughly cleaned and coated with shellac or asphaltum, or, if this is not necessary, tallow rubbed round may suffice.

4. Dirty edges, and spots proceeding therefrom, are caused by resting the plate on a dirty substance; perhaps the rack in which they drained after being albumenized, a dirty shelf, or drainage on an old piece of blotting paper after sensitizing, or perhaps in handling the plate with dirty fingers—why?

5. Irregular bright spots and short lines are caused by dust and fibre falling on the plate in the plate-holder.

(b.) Failures in colloidionizing the plate are very numerous, and generally the effect of carelessness.

1. A transparent, insensitive margin, manifesting itself after the plate has been left in the sensitizing bath, evidences that the colloidion film has been allowed to dry too much before immersion in the bath.

2. Rottenness of film is caused by the colloidion not having been allowed sufficient time to "set" before being placed in the bath.

3. Inequality of thickness of the film shows that the manufaction of coating is faulty.

4. Spots emanating from the corner by which the plate was held is the punishment for not having clean fingers.

5. Insensitive spots in the middle of the plate, of round form and answering to the tips of the fingers spread under the plate in flowing it with colloidion, are the natural consequences of an improper method of holding the plate, the warmth of the fingers causing a more rapid evaporation of the film and insensitive mass of the film is then deposited.

6. Diagonal streaks in the direction of the corner whose the colloidion has been flowed back into the bottle prove that the plate has not been properly rocked to secure evensness of film.

7. Air bubbles appear as little holes with thick and thin tails, or as lumps with the same marking of the course they have taken over the film. They are caused very often by holding the colloidion bottle, in pouring, too high above the plate, or from agitation of the colloidion before pouring.

8. Irregular black spots are caused by dirt from the neck of the colloidion bottle.

(9.) Comets sometimes make their appearance when the colloidion is freshly iodized, and has not been allowed to settle.

(10.) White and black lines also are sometimes an evidence that the colloidion is not sufficiently settled, especially in a potassium colloidion. Remedy: filter, or allow the colloidion to settle perfectly.

(11.) Shingle marks are apt to appear in very cold weather, or when there is water in the colloidion.

(12.) Slipping of the film.—Old or bad sample of gun-cotton used in making up the colloidion. (Note.—Be sure, before rejecting the colloidion, that the fault is not of your glass or bath.)

(13.) Veils are caused by an alkaline colloidion, and may be remedied by the addition of a few drops of tincture of iodine.

(14.) A honeycomb structure of the film denotes that the colloidion is too tough.

(15.) Insensitiveness of the film is consequent on using colloidion of too great age. Put it aside to mix with that of new preparation.

Numerous defects are caused by using the pouring bottle for the reception of drainings from the plates.

(c.) Failures in sensitizing the plate.

1. Horizontal lines, known as hesitation marks, show that the dip of the plate has been arrested.

2. Perpendicular lines are sometimes caused by too rapid dip of the plate.

3. Splashes are consequent on too sudden immersion of the plate, causing the solution to splash upwards over the film.

4. Black streaks, springing from the portion of the plate which has been in contact with the dip, arise from dirt on the dipper.

5. Spear, cross, or sword-like markings are caused when the bath contains acetate or sulphate of silver.

6. Pinholes are caused by an over-iodized bath. Dilute, filter, and strengthen.

7. Foggging or a veiling of the plate betokens an alkaline bath, or the presence of organic matter. Make slightly acid by addition of nitric acid.

8. Lack of sensitiveness is met with in sensitizing in an over acid bath, or one containing organic matter. Remedy: neutralize, boil, and filter, and add just sufficient acid to prevent foggging.

9. Grey spots are caused by the scum that rises to the surface of the bath, which may be removed by skimming with blotting-paper, but more effectually by treatment as a disorganized bath, if very bad.

10. The film being partly eaten away indicates that the bath contains little or no iodide.

11. Streaks in the direction of the dip sometimes arise from the plate being withdrawn from the bath before it was sufficiently sensitized.

12. Spots resembling pinholes arise from dust in the bath agitated by the dipping of the plates and settling on the film.

13. Transparent and pale films of indifferent sensitiveness are the effect of the bath solution being at too high or too low a temperature. Remedy: regulate the temperature of the dark room.

14. Weak pictures are not infrequently due to a worn-out bath.

(To be continued.)

THE PRACTICAL PRINTER IN AMERICA.

XXX.

DATING, FUMING, AND CUTTING THE PAPER.

Drying.—The paper, after it is flattened or swabbed, as the case may be, is hung up in a small room, by two of the corners, to dry. This room is generally heated by a
small gas stove, a small jet of gas doing the work in a very short time. To prevent the paper from curling up while drying, a stick having a spring clip nailed at each end is fastened to the two lower corners of the paper. To save a few drops of silver solution which fall from the paper, lay some sheets of bifolious paper on the floor directly under each sheet.

Fuming.—When thoroughly dried, the paper is ready to be fumed. The time of fuming is generally from ten to fifteen minutes. In fuming plain paper, fume it long enough to print blue, and neither red nor brown, as it will print stronger by so doing. In fuming plain paper much less time is required to reach this blue state than is the case with albumen paper.

Cutting.—It is very seldom that any pieces smaller than a 4-4 is cut, as the ordinary 4-4 copy is generally the smallest ink-print that is made. An ordinary ivory paper, cutter can be used for this purpose. In cutting the paper, take the sheet and lay the length before you in the drawer, the width thus running from left to right.

Now bend the paper over to A (Fig 1), and crease it at B, and then out the paper at this crease with the ivory knife. Divide the remaining two-thirds equally, and then the length of each of the three narrow strips is divided into two equal pieces, and then you will have six 4-4's of an equal size, which will be plenty large enough for the desired purpose. When I wish to obtain the next size, 10 by 12, I take a quarter of a whole sheet of the plain paper. To obtain the next size, 11 by 14, I lay the length of the sheet before me, as I do in obtaining 4-4's, and bend over the sheet until the edge of the paper which was nearest to me comes within about three-quarters of an inch of its opposite side (Fig 2).

The largest of these two pieces I use for the 11 by 14, as there will be plenty of room by so doing to guard against the paper being a little too narrow when the mat is placed over it. When I desire 14 by 17 pieces I bend over as in 4-4's, and take the two-thirds of the sheet. For anything larger I use the whole sheet.

Always, when about to cut your paper, be sure that your hands, as well as shears and ivory paper-cutter, are thoroughly free from grease or anything that will discolour the paper.

Keep the paper in a dark and cool place before and after cutting, and while cutting it do not let any white light fall upon it.

TREATMENT OF THE NEGATIVES BEFORE PRINTING.

It is my object here to give the cases in which a day's batch of negatives should be "doctored" before they are ready to have orders printed from them. I have treated of similar things to negatives that are to have albumen prints printed from them, but those negatives are as far superior to those of the copies, as the palace of the rich man is to that of the miserable hut of the painter. I have treated of negatives taken from life, the most of which are vastly superior to the majority of copies that are to be printed, consequently more pains are to be taken with the copies than with the life negatives if the printers desire to have the result as fine as possible.

It is often thought by the printers, even those who have printed for years, that in plain paper printing there is no trouble whatever, as they have got to be worked up by the finisher, and as they are copies the result will be as good as the customers have a right to expect. That person is on the wrong track.

There are a multitude of things to be done in printing copies which are often very troublesome. Unfortunately, in many galleries the photographer is not paid as he should be to obtain the best results from the copies, when the time alone which should be occupied by the printer and ink-worker will come to about what he asks for his work, and then where is the profit to come from for his and his assistant's time? Nothing but better the result obtained from his negatives, the better will the result be when worked up, because then the finisher's work can be better done.

Let us suppose that two printers have each a plain-paper print to print from the same negative, each one not being permitted to see the print of the other until they are ready to be toned. One of the printers has the negative, looks through it, touches out the pinholes if there are any, and prints it; under the negative a piece of paper is placed, without any special notice having been given to it, to see as to whether it is excellent or not; his print is printed and placed away until toning-time. This printer passes the negative to the other printer, who also looks through it, and touches out the pinholes which the former printer had not noticed. The negative removed when he thought with it. But this printer does not stop here; he notices the heavy shadows which will print black without any detail whatever (making it an impossible task for the finisher to finish them up as they should be), and proceeds to remove them in a measure; i. e., he lightens them, so that they will not be so dark as they would be if this was not done, and consequently better results are obtainable by the artist. He notices then that the face, hands, and arms are flat, and the last mentioned limbs are also very dark. He cures this flatness in a measure, and makes the hands and arms white. Besides the above, he notices that other parts of the negatives can be improved, and he proceeds to do it.

Examine the two prints: what a difference there will be between the two! One of the negatives is printed up, but have them toned, &c., and finished up by the same artist, having previously marked the names of the printers on the back of the mounts of their respective prints. Now compare the two. In one print the shadows, especially those under the eyebrows and chin, are very black, without the least signs of detail, looking very much like a smudge of lampblack, and the face, in spite of all the efforts of the finisher, is still flat, the hands and arms are hideously black. The other print is exactly the reverse; the shadows are as they should be, the face is bold (in comparison), the hands and arms look like the hands and arms of a white person rather than those of a darky, as the other print would lead us to take the picture to be; and, in fact, this whole print is very much better than the other. The better the negative is, the better result can be obtained by the finishing artist.

Having given the beginner an idea as to the importance of printing from copy negatives, I will pass on, and tell what is to be "doctored," and how it should be done.

Shadows.—We will first consider the heavy shadows in these negatives.

It is known by all photographers that such shadows, if there are any, are generally very heavy, and they should always be removed in a great measure. (I will here mention that the beginner should always be on his guard in "doctoring" the negatives, so that he will not overdo it). These shadows are found more or less under the eyebrows, and often in the forehead, which latter place will look like a deep depression there. They are also found sometimes under the eyes, in the cheeks, and a whole side of the face often being very black. They are also found very slightly under the nose, and under the chin—the latter place being the place where the heaviest shadows are generally found. Such shadows are also found in the receding ear (the whole ear sometimes being very black),

Fig. 1. Fig. 2.
also on the hands and arms. They may be removed by the use of the "everlasting blue-paint dodge," which has been so very often spoken of.

Heavy Lines.—There are often heavy lines in the forehead, parallel to each other, and parallel to the line of the eye. These are also some few between the eyes, running far into the forehead, and crossing the others.

There are also some found running from both sides of the nose to the corners of the mouth, and in the case of elderly persons from that place (the mouth) to the lower parts of the chin. There are lines in the neck, especially so when the neck is bony, caused by the head being turned away from the box, and then repositioning itself.

The way to get rid of such is to take the negative to the retoucher and get him to remove (or do it yourself) the greater part of them. Be careful not to overdo this, but leave something—in fact, considerable—for the finisher to work at.

The face, and sometimes the hands and arms, have lines in them which have not been mentioned, as in the latter case, dark lines caused by large veins, and consequently other places, besides what I have named above, should be sought after, and attended to.

Flatness.—This is the most difficult of all, and very often the finisher had rather have the printer let it alone than for him to attempt to prevent flatness, and make a botch of it. This flatness is often found in the whole face, and in the hands, and when you have any such, it is best take it to the retouching-frame and work up those places which you desire to be lighter, and place a high-light on the nose to make it stand out from the face.

Often a thin stripe of blue paint along the upper part of and along the length of the arms is excellent. Print such negatives under tissue-paper.

In the case of in which the width of the mouth is desired to be less; then touch out with opaque (or, better still, with a nearly opaque colour, a heavy application of vermilion red answering well), an equal space on each side, unless one side above may be curved, being a one-sided smirk, and if that is the case, only apply the colour on that side. This colour may sometimes be applied to the back, and sometimes to the face of the negative, as may be found best.

If the lips are too thick, take off a portion of them (i.e., if the parties leaving the copies request the photographer to do it); in fact, any of the things that I have above, or shall below name, that depart from the original in respect to likeness should never be done unless orders have been given to that effect. If this is taken off well, then the finisher will find the curves nearer together. The light places left can be worked up to obtain the same tone as the rest of the surrounding flesh.

Sometimes there are cases when a hat or bonnet is to be taken off, and when that is so, you will find heavy shadows in the forehead; look out for them. When there is a hat to be taken off, then print a proof of the negative as it is; cut in exactly close to the figure, and when you have got to the top of the forehead, and where the hat commences, cut right close, but under the hat. Use the cut-out (the outside one) for placing on the back of the negative (so that the thickness of the glass will prevent it from printing a sharp line on the print when it is placed under a diffused light), being careful that you get it on as it should be, which, if you do well, the resulting print will be minus the hat, save the upper part of the face only; but the finisher will supply the deficiency with his brush. It would be a good thing if you were to feather it off gradually.

PHOTO-MECHANICAL PRINTING.

[This following interesting historical sketch of the principal photo-mechanical processes in use, and especially the details of their present applications in the United States, which appears in the Scientific American, will interest many of our readers.—Ed.]

There is perhaps no more inviting and fruitful field for scientific discovery and invention than in the line of photography, and but little attention to the subject is required to convince one that this field is fast yielding up its treasures to patient and successful investigation. Though the sun is as swift and reliable as time itself, it is too slow and too uncertain to command the full confidence of the artists who wish to form permanent impressions of the varied objects that now come within the scope of the photographic art. Instead of the slow method of waiting for the sun to shine, and then for it to transfer from the glass to the paper by one, the present method is usually done by the action of light, this work can now be done by the ordinary printing press, and with durable carbon printer's ink. Yet the results thus speedily reached are not like the cheap woodcuts that issue in almost fabulous numbers from the press, but have more the character of the finely-cut lithographic pictures.

In 1859 Mungo Ponton, the chemist of Bristol, England, announced the fact that sized paper, treated with a bichromate, was subject to an alteration, by the action of light, which rendered insoluble the sizing which the paper contained. In this fact lies the germ of all the processes of which it is our purpose to speak. The following are some of the many which are modifications of this principle:

1. A sheet of gelatine of required thickness, permeated with the colouring matter, and each impression is made by the direct agency of light; photo-lithography, in which the transfer is made on stone by means of gelatine; photo-zincography, which differs from the last by using zinc instead of stone; photo-galvanography, in which a sheet of gelatine with the parts not acted on by light swell, and the image appears on the surface; Woodbury-type, in which a sheet of gelatine—with the parts unacted on by light washed away—is used as a means of obtaining, by hydraulic pressure, a metal mould. This mould is filled for every impression with gelatine containing colouring matter, and the print is really an embossing, so to speak, of coloured gelatine on the paper. From the impression of this metal—which is an alloy of zinc and antimony—these types are printed on the prepared paper by a small hand press resembling the printing press.

In 1855 M. Poitevin, a French engineer, discovered that bichromized gelatine, acted on by light, had the properties of a lithographic stone, and might be used as such. Since the parts on which the light has acted are insoluble to water, they form a perfect stamper, and the parts which will be dry, some wet; and where light partially acted it will be part dry and part wet. Now, as oil and water repel each other, by putting grease upon this plate it will adhere entirely to the dry parts; those which were exposed to light—partially to those under partial light, and not at all where it took up moisture. And now, by rolling over this plate a cylinder of lithographer's ink, the plate is ready to make a lithographic print. This idea, with modifications in its mode of application, has its representatives in various processes now employed. Among these we will briefly notice only two.

Mr. Joseph Albert, court photographer of Munich, has shown great ingenuity in perfecting what is now called the Albertype process. He commenced in 1868; and after some experiments, upon which his idea is spread the film of gelatine from which the pictures are printed, the happy thought occurred to him to use the sensitive qualities of the chrome gelatine itself for a cement. He consequently used a plate of glass, spread upon it a coating of gelatine, then—while the surface was protected by an underlayer—exposed the back of glass surface to light, which rendered it sensitive; and hence adhesive to the plate in presence of water. He hardened the sensitive surface by chrome alum, chlorine
water, and other coagulating solutions; and to make it so tough and hard as possible, he spread several films one upon another, hardening each in its turn, till he had made a sensitive plate so hard and durable that thousands of impressions could be printed from one plate. For printing the impression transferred under a negative, he uses a lithographic press, and the ink commonly made to accompany it. After this, no washing, toning, &c., is necessary, but the picture is complete when it leaves the press. Any kind of paper, and any coloured ink, may be used; titling, inscriptions, dates, &c., can be printed at the same impression; and one negative can be stereotyped ad infinitum. The Photo-Plate Printing Company, of New York, and the Albertype Printing Company, of Boston, are sole proprietors of this patent.

In the heliotype process, some perfectly flat surface is first coated with wax; upon this is then poured a hot solution of gelatine, after which bichromate of potassa is added, then burnt alum or tannin, to make the surface firm and durable, and when it is dried, the sheet is stripped off and set up in an aeronautical chamber to dry. Then the wax is removed, and the sheets are ready for the reception of light under ordinary photographic negative in the ordinary photograph printing frame. The sheet of gelatine is then forced by pressure under water upon a flat plate of metal; and when the water is used out, it is ready for printing on the ordinary printing press. Several thicknesses of ink are used, and for the deepest shades a little oil is added, which will adhere only to the deeper shadows. The plate must be kept moist in printing, and if moistened with coloured water or Indian ink, a picture resembling a Rembrandt or Indian ink picture can be obtained.

These two processes, with that of the Woodburytype briefly mentioned above, have been used with great profit and satisfaction by Mr. Alex. Agassiz and others, for representing natural history specimens in the Illustrations of the Museum of Comparative Zoology, Zoological Results of the Hassler Expedition, &c. The negatives of these plates were all taken by Mr. A. Lowell as they are ordinarily made for silver prints. By each of these negatives are taken as many positive plates as is necessary, and the prints are then made by ordinary methods. The advantage of the Woodburytype is in the economy of time and money, and in the fact that the prints are more expressive and instructive than pages of verbal description. By these methods the cost of a quart plate, including paper, mounting, lettering, &c., and exclusive of the negative, is only ten or fifteen cents per copy; and this is hardly more than the mere cost of lithographic press work, to say nothing of the artist's drawings on stone. The Woodburytype is likewise more expensive and cumbersome than the other two, because, on account of the method of preparing the plate from which the impression is taken, it must be mounted for protection. Notwithstanding this, it will not preclude its use, for its pictures have a remarkable resemblance to good silver prints, with all their brilliancy and sharpness.

Another very important advantage those methods have over lithography is in their greater accuracy. By them the original sketches of investigators can doubtless be reproduced, and "subsequent observers will be better able to judge of what has actually been seen, and not of what has actually been added by the pencil of the artist who copies original drawings on stone." Mr. Agassiz finds it less trouble and expense to employ the carbon processes, even to transfer plates to engraved plates or engravings, than to superintend, in the Museum itself, the lithographic plates. Again, Mr. Agassiz says: "On account of these required to complete a large number of plates, either as engravings or lithographs, it would be utterly impossible to issue so great a number of plates within the period required for permanent photographs." From a lithographic plate only about five hundred good impressions can be taken, but here they can be made by thousands. It will also be of great advantage in copying plates from monographs or valuable pictures of any kind which are out of print or otherwise inaccessible.

OUTLINES IN PORTRAITURE.

A contributor to our Chicago contemporary and nameless gives some advice very similar to that on the same subject given some years ago in our Year-Book by the late O. G. Rejlander. He says:

If young photographers, in arranging positions, would form the habit of looking for outlines of their subjects, just as if they were a crayon sketch on a blank ground; just a mere outline sketch, independent of all interior contents and detail—it would give them much more readiness and certainty in making well poised and well balanced positions. The outline of the head as it is cut against the ground; the outline of the cheek as turned away; the outline of the shoulder, the waist, the bust; the sweep of the dress, as the outline is cut away on either side, for a lady or child. For gentlemen, the outline of the shoulders, arms, and legs, when shown, as well as the contour of the head, and the whole poised and balance of the figure, as it is made up of the outside, as boundary lines; just those lines which separate the figure from the ground against which it is shown. Take no account of those lines which separate the parts within this boundary from each other until all these exterior boundary lines have been brought into order and symmetry. Taking special care about the head to avoid all angles in the dressing or "doing up" of the hair; preserving and arranging the curves that show the oval form of the head, and reducing to order all lines and angles that destroy or conceal that natural contour. Taking care that all these outlines of the figure and its accessories form, as it were, a framework, like the frame of a building, strong and well seated in its base; well sustained and strengthened in every part; appearing to rest in firm, secure repose, within and of itself. Then the picture, like the building, is ready to be covered, filled up, overlaid with ornamen- tation and detail in full. But the figure of the person of the picture is arranged and posed as securely as the framework of the house, no amount of lustrous finish or delicate detail, no shimmer of rich silk caught, or filmy lace detailed, crisp and voluminous folds rendered, can make it satisfactory work. It will be top-heavy, or lop-sided, like the "leaning tower," or angular, ungraceful, and unpleasant, in spite of all the beautiful chemical effects. Therefore look well to the outlines."

CLEANING VARNISHED PLATES.—The Scientific American gives the following as a good method of cleaning off old varnished negatives:—"Dissolve one pound potash in two parts of water; pour it into an earthenware dish or tray. Introduce each glass separately into the liquid, taking care to prevent air-bubbles. The plates are allowed to remain at least twenty-four hours in this solution; they are then taken out one by one, placed under a tap, and well scrubbed with a cocoanut fibre brush until all the old collection and varnish disappear. They are then plunged into another dish containing a solution of three per cent. of hydrochloric acid, well washed under a tap, and wiped dry with cloths. No one must ever be left dry spontaneously, or the glass will become too hot to cause its viscid resins to be detached. Be sure the plates are used these require to be cleaned with a solution of rottenstone into which a few drops of ammonia have been introduced."
CELLULOID.—CAMPHOR IN COLLODION.

A new substance manufactured from pyroxylene, and described as a solidified collodion, has recently been patented in the United States under the name of "Celluloid." It appears to resemble a preparation patented some years ago by Mr. Parkes, of Birmingham, and named, after its inventor, "Parkasine." It resembles ivory in many of its qualities, and may possibly serve instead of ivory for some photographic purposes. But besides possessing this interest for photographers, there is another suggestive fact about its manufacture, which we note. The pyroxylene in the manufacture of this substance is not dissolved by means of ether, alcohol, or the ordinary recognized solvents, but is, as a result of the process, transformed into a "solid solvent." The essential point of the invention consists in the discovery that camphor combines with pyroxylene, softening and rendering it plastic at a certain temperature, the new compound being homogeneous and firm in texture, tough and leathery at first, and eventually hard like ivory. The patentees, J. W. Ilyatt and J. S. Hyatt, N. Y., describe the preparation of the material as follows:

We prepare pyroxylene by grinding it in water to a fine pulp in a machine such as is used in grinding paper pulp. We steam the water as far as practicable, and then subject this pulp to powerful pressure—for example, in a perforated vessel—to further expel the aqueous moisture, and to bring it to an essentially solid and dry state, yet still retaining sufficient moisture to prevent it from burning in the further stages of the process.

We emulsify gum camphor by grinding it in water, or, preferably by pounding or rolling it, and thoroughly incorporate, with the pyroxylene pulp in the condition last above described, this finely comminuted camphor, in the proportion of one part by weight of camphor to one hundred parts of the pyroxylene pulp. These proportions may, however, be somewhat varied with good results. The moisture in the pulp serves to counteract any tendency of the camphor to prematurely develop its converting power under any stimulus incident to its being incorporated with the pulp, or to the further stages of the process.

With the camphor we also thoroughly incorporate, with the pulp, any pigments, coloring matter, or other minerals that may be adapted to the requirements of the articles into which the product is to be manufactured. The camphor, or camphor and other ingredients, having been thus thoroughly mixed with the pulp, are next subjected to a powerful pressure, in order to expel the remaining aqueous moisture, and thereby not only dry the mixture, but force the camphor into more intimate contact with the pyroxylene throughout the mass of the pulp. The camphor is then placed in a condition and place to exert its utmost converting power as developed.

The dried and compressed mass is next placed in a suitable mould or vessel open at the top, and into this open top is fitted a platen or plunger. The vessel is then placed in a hydraulic or other powerful press, and a heavy pressure, applied to the platen or plunger, is brought to bear upon the mixture, which, while thus under pressure is heated up, by steam or other convenient means, to a temperature of from 50° to 300° F., varying according to the quantity of the mixture; and the mixture is kept at this temperature and under this pressure until the converting power of the camphor has passed through the mass, the heat developing the latent converting power of the camphor, and the camphor exerting this converting power actively upon every atom of the pyroxylene, with which it comes in close contact. The process of transformation is rapidly effected, and is completed almost as soon as the mass attains its maximum temperature, the resulting product being a homogeneous and solidified collodion or collodion compound having the qualities or properties herein before specified.

This product, as it comes from the press, is of a consistency resembling that of solid lard, but, upon exposure to the atmosphere, it hardens, by reason of a slight evaporation of the camphor. The ultimate product includes, however, a large proportion of the camphor as a permanent accession to the mass, which renders it not only a great gain over the use of ether, alcohol, or other solutions or volatile solvents, which would be entirely expelled or lost, but by its presence gives the solidified collodion or compound the new capability of being again rendered plastic by heat, and remoulded into any desired form or shape, without requiring the use of solutions or volatile solvents, or the addition of fusible gumes, as heretofore.

The essentially suggestive portion of the description of this novelty is found in the statement that camphorated alcohol is a solvent for pyroxylene. A weak solution of camphor in alcohol (one part of alcohol to eight of spirit) proves to be what the inventors call a "latent liquid solvent" of pyroxylene: that is, its solvent powers are only developed at an elevated temperature. The patentees observe:

In using this latent liquid solvent, we first reduce the pyroxylene to a pulp, and mix therewith such colouring or other matters, if any, as are suitable to the required character of the product. The aqueous moisture is then expelled from the pulp. We then add the dried pyroxylene, or pyroxylene compound, the above-described liquid solvent in about the proportions, by weight, of fifty parts of the solvent to one hundred parts of the pyroxylene. The solvent is stirred into the pulp, and the whole kept in a closed vessel until the solvent becomes evenly diffused throughout the mass, no solvent action taking place to retard or prevent this even diffusion, of which the volatile pyroxylene vents that are active at ordinary temperatures. The compound is then subjected to heat and pressure in a similar manner to that employed when using the solid solvents.

The suggestion to photographers furnished by this description is to the effect that camphor is an aid to the solution of pyroxylene, which may prove of service in the manufacture of collodion. Camphor is well known to us, when added to spirits, in the solution of gum resins in the preparation of varnishes. This early American patent obtained by J. A. Cutting, camphor in the proportion of a grain and a-half to each ounce of collodion was the salient claim made as effecting an enormous improvement in the collodion positives. We tried the proposed improvement at the time—about twenty years ago—and found no especial improvement, but a decided drawback, inasmuch as a solution of camphor, when dry, leaves a powdery, white, opaque film, and this effect was very apparent in the shadows of the collodion positive when dry and unvarnished, as collodion positives were at the time generally left. The effect disappears at once on varnishing, and would not, therefore, be a defect in a negative. The claim made for camphor was vague: it was stated that the invention included pyroxylene and camphor, and a finer and more homogeneous deposit. The fact stated by the inventors of "Celluloid," that camphor aids perfect and homogeneous solution of pyroxylene, renders it probable that, added to collodion, it may assist in securing a homogeneous and textureless film, and may, possibly, also permit of the further reduction of the amount of ether or other solutions in preparing collodion for photographic use. At any rate, the experiment is worth trying, and we commend it to our experimental readers. We conclude by adding another modification of the process for preparing artificial ivory from pyroxylene, camphor, and ivory dust. The inventors say:

We take, say, one hundred parts by weight of ivory dust, one hundred parts of pyroxylene, and fifty parts of powdered gum camphor. The pyroxylene is ground into a pulp while moist, and
it is afterwards deprived of nearly all its moisture, leaving it slightly damp as a protection against its taking fire from any cause. It is thoroughly mixed with the ivory dust and gum camphor in the proportions just named. After being mixed, the mass is deprived of all remaining aqueous moisture, preferably by pressure between absorbing pads. To this compound, deprived of moisture, we then add fifty parts of gum camphor and whole within a closed vessel for several hours, or until the nitric ether has become evenly and thoroughly diffused throughout the mass.

The nitric ether percolates and semi-dissolves the ivory dust, the camphor, and the pyroxylene, and thus properly disposes them for final treatment, which consists in bringing the whole compound together into a solid within a heated cylinder or moulds under heavy pressure, or by pressing it through heated rollers. From 150° to 200° Fahr. heat is required. The result is a compound which, after being dried or seasoned, resembles natural ivory in compactness and homogeneity. It is free from grain, is not affected by moisture, and is with great facility re-moulded into any desired form by heat and pressure in suitable moulds.

The proportions of ingredients above set forth may be considerably varied to suit the coincidence required and the use to which the new compound is to be adapted. To the mixture may be added such pigments as are appropriate to the production of various colours.

BENGAL PHOTOGRAPHIC EXHIBITION.

The Bengal Photographic Society continues to hold its exhibitions, and the new rules, to which we advertised a year or two ago as of questionable propriety and policy, appear to have been approved and sanctioned for renewal for the present year. The programme just issued for the nineteenth annual exhibition to be opened next February. The Society offers many temptations to exhibitors, and ample inducement to English photographers to contribute. Not less than four gold medals are offered, two of which are open to all comers; eight silver medals, four of which are open to all comers; and, oddly enough, but one bronze medal, which appears to be designed as a kind of solutum for some worthy exhibitor who has only just failed of taking several of the other prizes offered, as it is offered to the best six pictures, of no particular description, to be selected by the judges from those to which no other prize has been awarded. Besides all these, the judges are empowered to recommend extra medals in cases where they find merit for which no provision is made. In addition to the chances of medals, a further inducement is offered to foreign exhibitors, inasmuch as photographs may be sent without glazing and framing, and the Society will endeavour to sell the contributions instead of returning them.

The questionable rules to which we have referred, as still in force, are those which require all pictures receiving prizes to become the property of the Society for distribution amongst the members, and further enact that the committee may require that two of the negatives of prize pictures shall be given up to them in order to print presentation pictures for the members. It is not to be supposed, of course, that honourable men would take an unfair advantage of such rules, but they are liable to abuse. For instance, Mr. Robinson or Mr. Earl might send half-a-dozen of their large combination landscapes, or the Autotype Company half-a-dozen of the finest carbon enlargements, in either of the cases the intrinsic value of the prints being, perhaps, from ten to twenty guineas. These, not coming in any special class which other exhibitor can demand a medal, might receive the bronze medal to which we have just adverted, and for this smallest honour, and least valuable medal, such a collection of pictures might be confiscated, and the negatives of two of them might be demanded in addition. We distinctly admit that the issue is not a probable one; but under the rules it is possible, and exhibitors ought, in contributing, to be aware of the possibility. The following is a list of the prizes offered:

"By His Excellency the Vicerooy.

"Prize A—Gold Medal.—For the best single photograph in the room.

"Prize B—Gold Medal.—For the best series of at least six photographic pictures, taken either in or out of India by any member of the Society; or not being a photographer by profession.

"Prize C—Gold Medal.—For the best series of at least six landscapes taken and printed in India by any member of the Society.

"Prize D—Silver Medal.—For the best series of at least six portraits taken and printed in India by any member of the Society.

"Prize E—Silver Medal.—For the best series of at least six photographic pictures, landscapes or portraits, taken either in or out of India by any member of the Society not being a photographer by profession, to be selected by the judges from those for which no other prize shall have been awarded at this Exhibition.

"Prize F—Bronze Medal.—For the best series of at least six photographic pictures taken in India by any member of the Society, to be selected by the judges from those for which no other prize shall have been awarded at this Exhibition.

"Prize G—Silver Medal.—For the best series of at least six photographic pictures of Indian subjects, exclusive of landscapes and antiquities, taken by any member of the Society.

"Prize H—Silver Medal.—For the best series of at least six photographic pictures of Indian antiquities, taken by any member of the Society.

"By the President.

"Prize I—Gold Medal.—For the best series of at least six photographic pictures of any kind taken in Europe, America, or Australia, excepting those, if any, for which the Lieutenant-Governor's prize has been awarded. Open to all comers.

"Prize J—Silver Medal.—For the best series of at least six photographs of young children. Open to all comers.

"By Captain J. Waterhouse.

"Prize K—Silver Medal.—For the best series of at least six landscape views taken out of India, to be selected from those for which no other prize shall have been awarded at this Exhibition. Open to all comers.

"By T. H. Bennett, Esq.

"Prize L—Silver Medal.—For the best series of at least six photographs printed in permanent pigments, by the carbon process or any of the photo-mechanical processes. Open to all comers.

"By the Hon. Secretary.

"Prize M—Silver Medal.—For the best series of at least six photographs, reproductions of works of art, not smaller than 12 by 16. Open to all comers.

The following are the rules for the Exhibition:

1. The exhibition will be open in February 1876, and will remain open for one month.
2. The exhibition will be opened to all good photographs, contributed by members of the society and by photographers resident out of India.
3. Only such photographs as have been taken within two years will be allowed to compete for the prizes now specified. No photographs may compete for prizes at more than one exhibition, and no prizes will be awarded to persons who have not actually taken the pictures which they exhibit.
4. The prizes will be awarded on the recommendation of three gentlemen appointed by the committee of the society, and the judges may in any case consider whether or not pictures attain a proper standard of excellence; the decision of the judges will in all cases be
EMULSIONS.

By H. J. Newton.*

It will be recollected by some of you that I exhibited at one of our meetings some emulsion dry plate negatives. I had at that time just commenced a series of experiments with bromide emulsion, and deemed it advisable not to give any formula until I had completed, or nearly completed, my experiments.

The season of the year has arrived when the excursions of the workers are slowing with more than accustomed interest the photographic journals for something new which is applicable to out-door work. I have, therefore, concluded to give you the result of my experiments up to this time. In making bath dry plates, it is necessary that they should be thoroughly washed, to free the sensitive film from all traces of free nitrate of silver, otherwise they will not keep. To effect this with less washing, saving thereby time and trouble, I had adopted the plan of putting the plates into a weak solution of chlorido of ammonia, after washing them in two or three changes of water. This left a trace of chlorido of silver in excess, the effect of which was beneficial, if any perceptible effect was produced. The substituting, however, of a solution of chlorido for the chlorido made a very marked loss in the sensitiveness of the plate, because the bromide was in excess.

The fact is, that an excess of chlorido of silver in no way injures the dry plate. I have used this fact to advantage in my emulsion experiments. I had tried most of the published formulas that promised advantages over the results obtained by myself. I had washed the emulsion, and also dried it, and obtained in these ways very sensitive plates. There was, however, in all these modes, the serious drawback of much waste material, a large amount of labour, and expenditure of time. I sought to get the same, or equal results, if possible, in a less complicated and more simple way. To accomplish this, I finally adopted the idea of making my emulsion with the silver in excess, and, after the period of time required to wash out the excess, I added a chlorido of silver by the addition of some of the soluble chlorides, adding sufficient to leave an excess of chlorido in solution. In this way I obtained the bromide of silver in a state of equilibrium. I have experimented with various chlorides, but have finally adopted chlorido of cobalt, or chlorido of calcium. If there is any difference in the effect of these two, it is in favour of the cobalt. In the list of my experiments I have obtained some (to me) novel and interesting facts, the most important of which is, that the addition of a chlorido to a bromido emulsion, where the silver is in excess, will redeem it after it has gone beyond the maximum point of sensitiveness, and passed into the land of fog.

I will now give you some of the formula that I have tried, and the results. I make my collodion with about seven grains of cotton to the ounce, ether five ounces, alcohol three. In this series of experiments, I first took collodion one ounce, and dissolved in it fifteen grains of chlorido of cadmium. I then added to this with this amount of cadmium bromide is about eighteen and three-quarter grains; I added twenty-two grains. At the end of thirteen hours it had gone by, and was apparently worthless. I could obtain nothing but fog—not even the trace of a picture; if it had been exposed to the light an hour it could not have been worse. I then added two a-half grains chlorido cobalt, dissolved in one grain of ammonium. Without adding the silver that worked equal to the others in two days, with the exception that it was not quite as sensitive. In my last experiment with this particular formula, I gave only three hours before adding the chlorido; it worked brilliant from the first, but was much less sensitive than any of the others. I then reduced the bromide of cadmium to the silver grains to the ounce, and eighteen grains of silver, fifteen grains being the minimum necessary to take up the bromide. This, after remaining twelve hours, was treated as before, and next day worked satisfactorily. This established the fact that the larger the quantity of bromide and silver in the emulsion, the sooner it came to the condition of fogging, and the more time was required to redeem it. I next tried equal parts of bromide of cadmium and ammonium for salting. Without adding the silver, I dissolved five grains of bromide of ammonium in one ounce of collodion.

To obviate this difficulty, I took one hundred grains each of bromide of cadmium and ammonium, and dissolved them in a small quantity of water, and evaporated it to dryness. I found that this compound salt dissolved quite as readily as the cadmium bromide. Without taking your patience to go through the details of this salting, I will give you one result only.

A longer time elapsed before showing signs of fogging than in any of the other formulas; about fourteen and a half grains of silver would be necessary to convert the bromide. I added seventeen grains, and the chlorido two grains, in eight and a-half hours after, and in five hours it worked satisfactorily. Dry plates made from any of these formulas exhibit great sensitiveness, especially when dry, quite equal, in my estimation, to wet. I have used them for copying engravings while wet, prepared ready for drying with the preservative. From my experience, I think them the most sensitive, however, when dry, although I have not positively settled that point by definite experiments. I have some of these emulsions over two weeks old, and they have not shown any signs of deterioration. If there has any change taken place, it is so far for the better. How long they will continue to improve, or whether their keeping qualities will prove sufficient to make them a commercial article, can only be determined by time.

(To be continued.)
Recent Patents.

THE LAMBERTYPE PATENT.

The following is the text of Mons. Lambert's specification describing his mode of enlarging and retouching:-

This invention relates to a new method of retouching, applicable to photographic negatives of all kinds, whether such are taken from nature, or are enlarged reproductions, and whereby all retouching of the positive print on paper is rendered unnecessary.

In all methods of retouching heretofore practiced it has been usual to operate either on the positive paper print, or on an impression constituting a negative from which the positive prints are obtained. This method is tedious and expensive, especially when operating on a considerably enlarged reproduction, and more particularly when taken from a carte-de-visite portrait, the grain of whose paper is too coarse to admit of the enlargement. Moreover, it can only be performed by experienced artists, whereas by the improved method of this invention this treatment is considerably simplified.

The following is a description of the improved process:-

A negative, either metallic or on paper, and of any kind desirable, is hereafter appearing. The large negative, after having been properly exposed, developed, fixed, and finished, is covered on both sides with a sheet of thin paper specially prepared for the purpose. The large negative, after having been properly exposed, developed, fixed, and finished, is covered on both sides with a sheet of thin paper specially prepared for the purpose.

The large negative may be produced in an ordinary enlarging camera of large dimensions, but I prefer the dark room for the purpose, as it permits of overlooking the picture and making necessary changes before the process is carried on, as hereafter appear.

The large negative, after having been properly exposed, developed, fixed, and finished, is covered on both sides with a sheet of thin paper specially prepared for the purpose. The large negative, after having been properly exposed, developed, fixed, and finished, is covered on both sides with a sheet of thin paper specially prepared for the purpose.

USE OF PIGMENTED TISSUE.

Sir,—As a subscriber and a disinterested amateur photographer, I may perhaps be permitted to describe my plan of treating Lambert's mineral paper. To do this, I will use a stock solution of bichromate of potash of two or three per cent. strength, and by means of a brush I give two or three abundant applications of this to the Lambert paper, only on the side of the gelatine, however. I wait until the gelatine film has become swollen and the paper is soft and flexible. During this time I take a well cleansed glass, and rub it lightly with a little glycerine, and then wipe it well, the concave side of the glass being used.

I place the plate level in a horizontal position upon a table, and pour upon it some solution of bichromate of potash of two per cent. strength, and then apply the gelatine face of the Lambert paper, taking care to prevent the formation of any air-bubbles. This done, I pour off the liquid bichromate, and the paper remains adhering to the plate by atmospheric pressure. I put it to dry in a well-ventilated dark room, and when all the moisture has evaporated, I peel the paper off the glass again. In this way I obtain a sensitive gelatious film, as smooth and as even as a glass plate, and thus secure more perfect contact with the negative, and a much more delicate impression in printing.

At the close of the time required, I do as follows: I contrive by means of white paper floated upon a gelatine bath of fifteen per cent. strength, and a bichromate solution of two per cent., a paper sensitive to light, which I expose in a frame, in the form of little bands upon a cliché, which I always use as a standard.

As soon as I see the image appearing upon the gelatine paper of a pale yellow, I consider that the Lambert paper, which has been exposed to the light at the same time, is sufficiently printed, a little practice being of course necessary in the matter.

On taking it out of the frame, I put the Lambert paper to swell in cold water, and then, having dispersed any air-bubbles which may have been formed, I apply the sheet under water to a clean glass. At the end of five minutes I take off the negative and the paper, without however, separating them, and suspend them in any handy way, the paper underneath, in a warm water bath of a temperature of 40° Centigrade. After a while the paper becomes detached and falls of itself to the bottom of the bath, and the gelatine which has not been acted upon by light also dissolves and falls to the bottom; 6 We print the phrase *Papier Mineral Lambert*, as it appears in our author's letter, but he has evidently written the word incorrectly, meaning Lambert's carbon or chromatotype tissue. The *papier mineral* is the thin transparent paper attached to the negative to receive retouching.—Ed.
there remains only upon the glass the gelatine, which is insoluble in warm water. I allow the print to dry upon the glass in this way. To render the transparent picture more clear, I moisten it with a few drops of benzole.

If interesting to your readers, I can give you the details of a good process evolved by an amateur photographer for printing pictures with fatty inks, with very little material, the impressions being exceedingly fine and delicate.—I am, sir,

ROGER LAURENT, Engineer.

Aux Forces de Basse Indre, Loire Inferieure, July 9th.

[We shall have pleasure in receiving details of the fatty ink printing process, for the benefit of our readers.—Ed.]

THE LAMBERTY PROCESS.

Sir,—If it will be any consolation to your correspondents to know that I have used, and exhibited the use of, paper backings to negatives for stamping in effects, and on the front for softening and retouching separately, it never occurred to me to use paper on both sides at one and the same time, and if it had I should not have thought the idea worthy of a patent.

For a long time past I have made another use of paper at the back of the negatives, and I shall now, out of fact on record, lest some other ingenious individual should also conceive the idea and hustle it into the Patent Office. It is this:—Damp a piece of thin writing paper, run a gum brush round the edges of the back of a negative, and lay the damp paper down. When the paper is dry it will be as light as a drum head. Then with a brushful of wet rouge of the correct shade of the intended vignette, when that is dry soften the inner edge with a stump, and put a rough yellow paper mask outside. By this means a vignetting paper permanently attached to the negative is quickly obtained, and any size, shape, or degree of softness as easily be produced. I have abandoned all other modes of vignetting for this.

When the negatives are treated in this manner printing in sunshine can be practised, and yet the vignettes will be all the same.—I am, yours, &c.,

J. WEDDE.
11a, Berners Street, W, July 8th.

Proceedings of Societies.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The annual holiday and excursion under the auspices of this Society came off on Thursday, the 8th inst. For some days previous the public were being made aware by newspaper advertisements of the intention of photographers generally to close on that day, and so popular has the institution become that every establishment of importance was shut (perhaps with only a single exception).

The excursion was arranged to be by canals barge to “Almond Dell,” a trip which, to judge from the fact that the photographers have been already there several seasons in succession, seems to be a very popular one. The hour fixed for starting was nine o’clock, and half an hour before that time the indefatigable secretary (Mr. Yerbury) was on the ground, and, together with several members of the committee, was busy superintending the decorating of the barge. Bye-and-bye cabs and traps of various kinds were seen to issue from the several streets by which access to the canal is obtained, and by 9:30 nearly the whole party, numbering over seventy, had assembled. It is something of a physiological curiosity that on such occasions there must always be some one too late, and this was no exception to the rule, as, on calling the roll, it was found that there were three defaulters. As, however, they had all to travel a distance of many miles, and one of them had to cross the Union Bridge before starting the decorating of the barge, bye-and-bye cabs and traps of various kinds were seen to issue from the several streets by which access to the canal is obtained, and by 9:30 nearly the whole party, numbering over seventy, had assembled. It is something of a physiological curiosity that on such occasions there must always be some one too late, and this was no exception to the rule, as, on calling the roll, it was found that there were three defaulters. As, however, they had all to travel a distance of many miles, and one of them had to cross the Union Bridge before starting the decorating of the barge, the others were some excuse to be made for them, and therefore they got another ten minutes’ grace, after which, leaving instructions to send them on to Bath by rail, the order to “let go” was given, and the gaily-decorated barge, accompanied by the cheers of the bystanders, floated gently along the stream.

Immediately on getting under weigh, the President addressed the assembly, intimating that programmes of the games, and of the order of proceedings for the day, were in the hands of the committee, and members of which had been deposited with a blue and gold order of—well, he would not say merit, until the close of the day had shown how they discharged their duties, but would designate it the order of service, and had no doubt that the word “merit” would be fairly earned. He further intimated that the various departments of the proceedings had each been entrusted to one or more of the stewards, to whom and to whom alone, all applications for information, &c., ought to be made. As the programme of the games, which had been written by Mr. Dobie in beautiful fancy letters on a large card, was somewhat unique, we give out the Edward.

1. Foot race, 100 yards (gent.).—A gold plated claret jug.
2. Foot race, 60 yards (ladies)—A gold plated opera glass.
3. Foot race, 60 yards, one leg only (gent.)—Casino ornato di cicala.
4. Foot race, 75 yards (ladies)—Una album fotografico.—Cromometre o ornamenti di elegante.
5. The lady who keeps longest up the skipping rope—Una forza di dinamica.
6. Patting the stone (gent.)—Una lanterna magica.
7. Running, hop, step, and jump (gent.)—Una opera di arni.
8. Foot race, 500 yards, running backwards (gent.)—Instrumen
to musicale.

This course caused considerable excitement, especially as to where the prizes had come from; but Mr. Dobie kept his counsel throughout, and no information that could be procured as to what was being led off by the President; and we may say, once for all, that it was kept up with the usual hirr, until, “within a mile o’ Edinburgh Town” on the way home. Luncheon was served at eleven o’clock, and the dancing was varied by music and singing, of which the Misses Murray, Dobhert, and Paul, and Misses Fairbairn, Yerbury, and Muir, &c., contributed a large share; and the time seemed really all too short when the barge was made fast at its destination at 1:30.

On landing, the party broke up into sections, and amused themselves, some on the banks of the Almond, some romping about the Dell, and some visiting the old miller and his older wife, where they got initiated into the mystery of oatmeal making, and were permitted to taste that article of national consumption as produced for the Glasgow market, although those cities are separated by only a ride of an hour and a half, the proclivities in the direction of which their oatmeal is prepared are very different.

By 2:30 all had again assembled at the barge, which in the intervals of their sight-seeing had been driven into a comfortable dining hall, and did full justice to the good things purveyed for them by Mr. Lawson, of Queen Street.

Dinner over, and washed down by a liberal allowance of champagne, &c., kindly contributed by a few friends of the Society, the games were at once proceeded with, and were apparently very much enjoyed by the younger members of the party, while a number of those less fond of rather violent exercise strolled through the Glen in twos and threes, enjoying themselves to the utmost of their capabilities.

The weather being then somewhat overcast, the whole party were assembled on a bank for the purpose of being photographed. Under the direction of Mr. Ross, the President took up a position to the left of the group, and posed as if in the act of addressing the audience, so that a really excellent picture, as well as a good photograph, ought to have been got. It would not do, however: the suddenly assumed gravity seemed to strike the minds of some of the party as something so ludicrous that they burst into a laugh, which in turn became contagious, and the least hand to the left before half the necessary exposure was given. The result, of course, is just sufficient to show that a fine picture has been missed, and to hint that such operations should always be made before dinner.

At six o’clock the barge again got under weigh, and the home
tow journey was carried on quite as enjoyable as the outgoing one. Immediately after starting, tea was served, and the music and
THE PHOTOGRAPHIC NEWS. 347.

July 16, 1875.

Dancing was resumed, with quite as much energy as in the morning. About half the journey had been accomplished, and Mr. Dobie placed a large tank in the centre of the barge, and, assisted by the Secretary, proceeded to call out the names of the successful competitors for the various prizes, the presentation of which was the real feature of the evening, so far as was known, and this was evident from the mere mention of the nature of one or two of the prizes as they were unfolded from the somewhat large quantity of paper in which most of them were enveloped. The "Bromotropen and orenzumis di elegant," for example, turned out to be a penny watch; while the "Dobromon" was nothing more than a lump of silver, "Una nostra di scultura di legno," one of the ever popular jumping Jacks, that give so much pleasure to the rising generation.

Shortly after the distribution of the prizes, the President requested the members to form a circle in the centre of the barge, and intimated that it had been the habit on former occasions to propose a few toasts. He thought the habit should not be departed from, and promised that the business should only occupy a very few minutes. The first toast was, of course, the "Queen," and he observed, not unnecesarily to mention, that the reception. The toast was responded to with acclamation, and after the National Anthem had been sung he proposed the toast of the day, the "Edinburgh Photographic Society," which was also, of course, duly honoured. Mr. Davis then said that he had written, all of which he thought the "Dobromon" was, he really had much pleasure in doing, Mr. Muir, their excellent ex-president, he said, was coupled with the toast, and although he well deserved the very great honour, yet, from motives of policy, he must decline to do it. The fact is that Mr. Muir, as we all know, has made of a fine artist on the edge or back of the plate he had no doubt it would cause fog.

Mr. W. E. Batho was of opinion that to try for a whole day would probably result in the loss of the boon they already possessed.

After several expressions of opinions, pro and con, by Messrs. Holgate, Gough, Rushforth, Wormald, Jenkins, &c.,

The Secretary announced a question from the box, viz., "What effect will albumenized plates have on the negative bath, and will they cause fog?"

Mr. Sachs had used it for a number of years, and had never found any disadvantage.

Mr. Illingworth informed the members that he had used it for more than two years, and was highly pleased with the result; but the advantage of the edge or back of the plate he had no doubt it would cause fog.

Mr. Wormald informed the members that he had successfully used as a substitute a solution of thirty grains of gelatine to a quart of water, using it over and over again until about one ounce, 12 X 10 plates had been coated so that the negatives begin to, and, after a time till we get home, where would the dancing be?

Mr. John McNair, Mr. Stooddart, Mr. Robert Hay, either or all would have done admirably, except for the little fact that they were not present; and as neither the ex-nor the present secretary were available, he had, most reluctantly, to fall back on Mr. Dobie. Mr. D., however, had given his word that he would not speak more than an hour; and as he, by his genius, wit, and humour, combined with his eleven other good qualities, had, in keeping up after the toasts, cut into the toast to the Dobromon, to the rest of the toasts, he was certain, discharged his rather difficult duties to the entire satisfaction of all concerned; and, as so much depends on a good dinner, he was quite sure that in that way he had contributed much to the success of the excursion. The only other toasts were the "President," the "Ladies," and the "Tobacco," which were heartily responded to, and then the dancing was resumed.

In this way the journey and the evening passed very pleasantly until shortly after ten o'clock, when, amid the ever-welcome, yet, as a parting song, somewhat saddening, strains of "Auld Lang Syne," a coach was made fast at the house for the second time, and, amidst much hand-shaking, and many resolutions "to meet again some other day," each looked for the nearest road to his or her habitation, all delighted with the proceedings of the day.

West Riding of Yorkshire Photographic Society.

An ordinary monthly meeting of the above Society was held on Monday evening, the 5th inst., at the Victoria Hotel, Bradford, when there was a numerous attendance, Mr. J. W. Gouzu, President, in the chair.

The question of the minutes of the previous meeting, a somewhat lengthy discussion on the relative merits of wet and dry-plate photography took place. One of Mr. George Hare's automatic changing-boxes was inspected by the members, and greatly admired for its simplicity and working capabilities, and its facility for changing movements.

After numerous expressions of admiration from Messrs. Wormald, Burrows, and others,

Mr. A. Sachs proposed a hearty vote of thank to Mr. Hare, which was seconded by Mr. Whitely, and was cheerfully responded to by the members.

A conversation then ensued respecting the weekly half-holiday which has or is likely to become universally adopted in the Bradford, Halifax, and Leeds districts.

Mr. Sachs, in reply, said they ought to make some sacrifice and try for a whole day, so that member, wishing to take any pictures at a distance would be able to do so, as they could not go far from home during a half-a-day, more especially if they had to give time to others at an hour's exposure.

Mr. Harper, of Leeds, thought it was very nice to be able to go for a whole day, but concurred with Mr. Sachs that it would in all probability be very inconvenient to close their places of business for so long a time, especially where a considera number of hands necessarily involves a consideration of pounds, shillings, and pence.

Mr. Sachs said it could not reasonably be expected of them to close for more than half-a-day; it would not be businesslike to do so, as persons might come to take a long distance earlier so as to sit in the tour.

If the holiday were made into a whole day the result would, doubtless, be a serious loss of business.

Mr. W. E. Batho was of opinion that for a whole day would probably result in the loss of the boon they already possessed.

After several expressions of opinions, pro and con, by Messrs. Holgate, Gough, Rushforth, Wormald, Jenkins, &c.,

The Secretary announced a question from the box, viz., "What effect will albumenized plates have on the negative bath, and will they cause fog?"

Mr. Sachs had used it for a number of years, and had never found any disadvantage.

Mr. Illingworth informed the members that he had used it for more than two years, and was highly pleased with the results; but the advantage of the edge or back of the plate he had no doubt it would cause fog.

Mr. W. E. Batho remarked that unless photographers in this country took a stand unitedly, they would not be able to resist these things, and must, consequently, submit.

On the motion of Mr. Burrows, seconded by Mr. Sachs, a very cordial vote of thanks was tendered to Mr. Batho for his practical paper.

A conversation then ensued respecting the more frequent reading of papers at the Society's meetings. It was considered a somewhat difficult matter to get papers on scientific subjects at this time of the year, as photographers were too busy to have the necessary time for making experiments.

It was then resolved that the next excursion should be to Kirkstall Abbey, near Leeds, on the 21st instant, and the meeting then adjourned.

Liverpool Amateur Photographic Association.

A special meeting of this Association was held on Tuesday evening, the 18th inst., at the Free Library, the President, the Rev. J. D. Riley, in the chair.

The President said that the special meeting had been called to give the members an opportunity of witnessing a demonstration of the Autotype process. He then introduced to the members Mr. H. Taylor (the representative of Messrs. Spencer, Sawyer, Bird, and Co.), Mr. Taylor, after a few remarks explaining the manner of preparing the different papers, &c., used in connexion with the process, then proceeded to give a number of practical illustrations of its working.

Several pictures were developed on the new flexible support, and also on opal glass; and though Mr. Taylor had not had the opportunity of previous printing from the negatives to ascertain the number of tints required, the pictures were perfectly printed, showing that the supposed difficulty of exact exposure was easily overcome after a little practice in judging the density of negatives.

The prints were all transferred to the double transfer paper, and others transferred so that, on being finished, the prints had a beautiful enamelled surface. Other illustrations were given of the double and single transfer processes, all of which were watched with the greatest interest by the members, Mr. Taylor answering meanwhile numerous questions, he being evidently anxious that all possible information should be given.
The President, at the conclusion, said that he, and he was sure the members also, had been exceedingly delighted and interested by the practical illustrations of the working of the autotype carbotype printing which they had just seen. He had, therefore, to express the hope, that the notice of 050, 227 Taylor for the block method in which he had given the demonstration that evening. The process was so simple and easy that no one who desired to have permanent photographs would hesitate to adopt it.

Mr. Tatlock, in reply, said he would only be too glad to give another demonstration of the process, and promised by handing round a number of specimens of what the process was capable of producing. The meeting was shortly afterwards adjourned.

Talk in the Studio.

A New General Antidote for Poison.-M. Jeannel gives the cautery in forcibly forced antimony to a number's agent poisons: Solution of sulphate of iron (D. 146) 100, water 800, calcined magnesia 80, washed animal charcoal 40. In these grudets are kept separate, the solution of sulphate of iron in one vessel, the magnesia and charcoal in another, with some water. When a copy of the sulphate is poured into one of the vials, the mixture is not ignited by any violent agitation. The mixture should be administered promptly in doses of from 1 to 3 to 3 ounces. From experiments M. Jeannel finds that this antidote, employed in proper proportions, renders preparations of arsenic, zinc, and diammonia absolutely insoluble. It is not render only in this absolutely insoluble, however, and leaves in solution notable quantities of arsenious and cyanide. It neither decomposes nor precipitates cyanide of mercury or tartar emetic. It retards the action of sulphate of strychnine, affording sufficient delay to administer emetics. One-third of an ounce is efficacious against digitaline injected to the in the inn time. A large stock of arsenic of soda. It retards the toxic action of sulphate of strychnine, affording sufficient delay to administer emetics. One-third of an ounce is efficacious against digitaline injected to the inn time.

OBSCELENE PHOTOGRAPHS.—The seventy-second Annual Report issued by the Society for the Suppression of Vice states that the Society's operations are regarded as so far satisfactory to the committee that they have for the past year little to record in the way of active work beyond vigilant observation, so completely has the trade in obscene books, pictures, and photographs been paralyzed. A peculiar feature of last year's operations is stated to be the voluntary surrender to the society by dealers, or release of dealers by large stocks of obscene matter, among which figure 5,600 photographs. At the time one offender was arrested there were seized on his premises 91 negatives used in the production of obscene pictures. Seizures were also made in three other cases, respectively of 219 and 219 obscene photographs. One feature noted in the disgraceful trade was the prosessed sale of photographs of noted actresses to cover the sale of indecent pictures. The committee express the opinion that the limited trade in these objectionable pictures is due to the根本不 tread in these objectionable pictures is due to the

ALLOWED PHOTOGRAPHIC PIRACY.—On Saturday last, at Wandsworth Police Court, John Patrick Conroy, described as a picture dealer, living in Stonell Place, Cottenham Road, Wandsworth Common, was brought up on a warrant charged with selling a framed photograph of Mr. George Le, who appeared for the prosecution, said the prisoner and his wife had been charged before. He called Mr. Boydell Graves, son of Mr. Henry Graves, printer to the Queen, Pall Mall, who produced the certificate of register of copyright, in which Mr. George Le was described as the author of the picture. He said the photograph produced was a copy of the design and painting. He never authorized the defendant to copy it. Also John Spencer, a picture-frame maker, of Harrow Road, Paddington, said about the 6th of June he purchased of the said Conroy a framed photograph with 40 others, and the prisoner not to show them in the window, because he thought they were dangerous. Mr. Lewis applied for a remand, to enable him to proceed with other cases. The prisoner objected to the proceedings, and said a summons should have been issued, so to to be prepared for his defence. Mr. Ingham said a warrant was granted because it was stated that the prisoner had disappeared on various occasions after summons had been served, and had not reappeared until six months had elapsed, which was the limit of the magistrate's summary juris-
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PHOTOGRAPHY AS AN IMPERIAL RECORDER—Mr. CRAWFAY.

Photographs of Salmon—The Transit of Venus.

Photography as an Imperial Recorder.—Within the last week photography has stepped in most opportunely, and decided the importance in connection with the defences of the kingdom. Some discussion has been taking place in the House of Commons, as our readers may know, on the subject of the big guns they manufacture at Woolwich, and the degree to which these weapons are capable of penetrating the ironclads of the present day; and to set matters at rest the Secretary of State for War decided upon a trial of the guns at Shoeburyness, to which those members of the House interested in the subject were to be invited. This trial came off last week, and, according to the reports made by the press, one of the heavy guns—the 25-ton gun—made some excellent practice against a newly constructed target made up of two heavy iron plates with six inches of timber between them. It was reported that two projectiles were sent through this target at a range of 70 yards, and Captain Price, who was present at the experiment, denied this, stating that one shot got half-way through, while the second one, either through accident or design, hit the structure on the margin at a weak point, and was thus enabled to pierce the thickness of iron and wood. In answer to this complaint, we are told that the shots were fairly aimed, and the fact that one of them went within the part of the target it was desired to hit. Fortunately the damage can be easily decided, because all practice made at Shoeburyness from time to time is recorded in the most impartial manner by the camera, which cannot in any way be charged with bias. As many of our readers know, the War Office in this country have made great use of photography in many ways, and at Shoeburyness there is a staff-serjeant of the Royal Engineers, who has the duty of securing records of the war that is continually waging between big cannon and iron targets, or, as some call it, between guns and ships. Front and back views are taken of every target that is constructed, both before and after firing, and these photographs not only show the precise damage that has been done by each shot, but also how far out the shot may have gone in the shape of guns, and the reason why our guns are every day growing bigger is simply because the Admiralty authorities of this and other countries are constantly adding to the thickness of the iron-plating. From the very first, the War Office have had photographs prepared of the effects of the various guns on different targets, and it has thus secured an impartial record of the whole subject. In the present instance, it would be only necessary to produce a picture of the back of the targets to prove whether the shot Captain Price alludes to pierced the target or not, and in the same way, if a bull’s-eye was actually painted on the target, and the accuracy of the firing was so perfect as to obliterate it, there is no doubt that the front view of the target would also show some signs of the remains of the whitewash. We have here a capital instance of the value of photography as an impartial record of facts.

Mr. Crawfay’s Photographs of Salmon.—In Land and Water Frank Buckland alludes to some photographs Mr. Crawfay has sent him of remarkable salmon and fish caught upon the Cyfartha estate. Mr. Buckland is delighted with these pictures, and says, “As a lover of fish, I pronounce these photographs to be the most interesting and valuable. A professional photographer, a friend of mine, tells me they show first-class workmanship. I intend, therefore, sending them over to the Paris International Exhibition of Fish Culture, where they will doubtless be much admired.” Mr. Crawfay’s pictures do not merely include photographs of fish of unusual size, which might be expected in reminiscences for a sportsman, but of little use besides; as one who takes great interest in pisciculture, he makes a point of securing a record by photography of any object he thinks worthy of study, or likely to interest those students of natural history who devote themselves more especially to this branch of science. Thus, by means of photographs of half-a-dozen salmon taken late in October, he proves beyond doubt that that time of the year is far too late to continue the season, the fishery ends to the extent of two or three pounds attached to them. One fish he photographed had 2 lb. 10 oz. of ova, and as one ounce contains 327 eggs, there were, consequently, 13,734 eggs lost to the river. Mr. Crawfay’s interesting collection of fish photographs also contains records of some very remarkable things that come under his observation. To give an instance. There is a picture of an eel 1 lb. 1 oz., which had swallowed another eel of 1 lb. 1 oz.; the latter had been taken on a night line, and the bigger one had then seized him, and they had both been pulled out of the water together, without the larger one having been hooked at all. No wonder Mr. Frank Buckland, who is one of Her Majesty’s Inspectors of Fisheries, considers Mr. Crawfay’s collection of piscine portraits of considerable value when the time comes under his observation. To give an instance. There is a picture of an eel 1 lb. 1 oz., which had swallowed another eel of 1 lb. 1 oz.; the latter had been taken on a night line, and the bigger one had then seized him, and they had both been pulled out of the water together, without the larger one having been hooked at all. No wonder Mr. Frank Buckland, who is one of Her Majesty’s Inspectors of Fisheries, considers Mr. Crawfay’s collection of piscine portraits of considerable value when the time comes under his observation. The Transit of Venus.—Captain Turpin, the last of the observer’s sent out from this country to watch the transit of Venus across the sun’s disk, has returned from the Sandwich Islands, and the data he brings with him will complete the information which the Astronomer-Royal is likely to get on the subject, and from which the calculations will have to be made. For some time, mathematicians have been hard at work at the Royal Observatory, and we are told that the reductions of the British observers are actively progressing on a uniform system. Now that the last information on the subject has been received, we may expect to have the result of the observations very shortly; and it will be interesting to see how far the results of different observers coincide with one another. As the observing stations taken up were not at different latitudes we are told that the calculations will be different; and it will be a matter for great rejoicing if, therefore, the distance from the sun to the earth is made the same by the learned men engaged on the calculations in various countries. The working out of the data is a most complicated affair, and Russia has been declared the likeliest country to get through the calculations first, the Russian astronomers, it is said, are being reckoned among the most clear-headed of the fraternity. Had China taken part in the solution of the problem, it is not unlikely that it would have been among the foremost to decide the question. When we have got to know how far our mortals are from the glowing lunarium, it will take other clever people in the world to tell what the information has cost us.

FRENCH CORRESPONDENCE.

Death of M. Toravko.—Whey Dry Plates: Their Employment with Artificial Light—Printing by Development—Porcelain Collodion—Darlot’s Dark Tent.

In the course of last year I had occasion to call the attention of the readers of the Photographic News to a dry collodion process in which serum, or whey, was employed, and which had been worked out by a Russian amateur, M. Pokoraki-Toravko. My correspondent has promised me no further details of his work in this direction, but for some time past I failed to hear anything of him. The reason of his silence I have just learnt. M. Toravko died in June, 1874, but, faithful to his promise...
he had prepared, it seems, a memoir of his last work, and this his relatives have just been good enough to forward to me. M. Toravko's work has for this reason a double interest, and I propose to give a resumé of it, for the benefit of our photographic readers.

The last experiments made by M. Toravko were made with a view of perfecting his process with whey, and with a view of succeeding in nocturnal photography. The collodion employed by M. Toravko contained three per cent. of bromide of calcium, with an excess of alcohol, but in other respects it was the same as that used by the late Mr. Sutton. After coating a plate and waiting some twenty to forty seconds, to allow the film to set, it was plunged into a silver bath of eighteen per cent. strength acidified with nitric acid, where it remained for five minutes. The film was then washed in distilled water, also acidified with a little nitric acid. Having repeated the operation two or three times, the plate was washed thoroughly in ordinary water. To preserve its sensitiveness, the plate was covered with a preservative made of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whey of curdled milk</td>
<td>100</td>
</tr>
<tr>
<td>Potable water</td>
<td>200</td>
</tr>
<tr>
<td>Citric acid</td>
<td>one or two drops</td>
</tr>
</tbody>
</table>

The mixture was warmed, and, after two or three boilings, it was filtered through a piece of linen to separate the whey. To the wash was added a small quantity of an egg added. The vessel was replaced on the fire, and after the mixture had been boiled again, it was further filtered through paper. The clarified whey should be limpid, and of a greenish tint. One hundred grammes are added to 0.20 grammes of pyrogallic acid, and the mixture filtered again. This preservative was applied two or three times to the washed collodion plate, and the last application allowed to remain on the film for the space of a minute. The plate was finally washed, and dried spontaneously by allowing it to remain upon a sheet of filter paper. The preservative gives such adherence to the collodion film that the latter can only be removed from the glass with difficulty. The prepared plates will keep their sensitiveness, which is of a most exalted character, for several months. Five or six seconds' exposure with a portrait lens is sufficient, while with an ordinary landscape lens twenty to twenty-seven seconds are required. The exposed plates are treated with alkaline development, the three solutions given below being prepared first of all.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1. Bromide of potassium</td>
<td>4 parts water</td>
</tr>
<tr>
<td>No. 2. Pyrogallic acid</td>
<td>200</td>
</tr>
<tr>
<td>No. 3. Liquid ammonia</td>
<td>1 part Water</td>
</tr>
<tr>
<td></td>
<td>200 parts</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Ten minutes ought to suffice for the development, and if, after fixing with hyposulphite of soda, it is found that the image is not intense enough, it may be intensified with

<table>
<thead>
<tr>
<th>Solution</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>100</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
<td>0.50</td>
</tr>
<tr>
<td>Citric acid</td>
<td>0.50</td>
</tr>
<tr>
<td>Five per cent. solution of nitrate of silver</td>
<td>a few drops</td>
</tr>
</tbody>
</table>

As M. Toravko found these plates so exquisitely sensitive, he resolved to try them for nocturnal photography, illuminating a landscape by means of artificial light; also to secure a result after an exposure of twelve to fifteen minutes with a portrait lens, and of twenty to thirty minutes with a landscape lens.

In securing direct positives, the exposure required was naturally a shorter one. My late correspondent was enabled to draw up a table in which the necessary exposures are given, according to the progressive development of artificial light, varying from one to two hundred and forty candles. With a light equal to that given by one candle, for instance, it is necessary to give an exposure of two hundred and forty seconds to get a direct positive image, and with two hundred and forty candles, or with twenty-four lamps, representing a total of as many lights, it is possible to get a picture with an instantaneous exposure. I should mention that to obtain the full benefit of the illuminating power, the experimenter has devised an arrangement of magnifying and reflecting mirrors and other substances of the light upon the object to be reproduced. The author of these interesting researches did not confine himself to obtain positives and negatives on glass by means of artificial light, but he prepared a paper also, by means of a process he has described. Ordinary albumenized paper was floated for about thirty seconds on a bath prepared in the manner following: In a large vessel dissolved ten of bromide of potassium and two parts of citric acid. After mixing, the liquid is beaten to a froth, and then allowed to stand, the clearer portion being decanted off, and filtered through cotton wool or sponge. The paper after treatment upon this bath is hung up to dry, and may be preserved for a long time. It is sensitized upon a silver bath of eighteen per cent. strength; the bromized paper is plunged into it for a period of four or five minutes, and is then transferred to a vessel containing water acidified by means of acetic acid, where it is left until a second sheet of paper has been treated in the silver bath. The first sheet is then put into pure water for a few minutes, after which it is turned into the second vessel, containing the same substances as that described above for dry plates. Finally, the paper is rinsed in clear filtered water and dried.

The developer is composed of

<table>
<thead>
<tr>
<th>Solution</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1000</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
<td>1 gramme</td>
</tr>
</tbody>
</table>

And when the latter has been dissolved in the water, one-fifth of a gramme of acetate of lead is added. The liquid is then clarified (for it has assumed a milky appearance) by adding, drop by drop, a saturated solution of citric acid. It is well not to have recourse to nitrate of silver, which makes the image appear more rapidly, it is true, because the finished print is then not so perfect, the silver being oversaturated, and in this case the shadows are lost. As a matter of course, many prints may be developed at the same time and in the same bath.

At the end of these communications, and in the form of an appendix to his memoir, M. Toravko has given us the composition of a particular collodion which he calls porcelain collodion. Its composition is

<table>
<thead>
<tr>
<th>Collodion</th>
<th>Grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 per cent.</td>
<td>80</td>
</tr>
<tr>
<td>Mirba, gum</td>
<td>1-50 gramme</td>
</tr>
</tbody>
</table>

The gum is dissolved gradually in the collodion by shaking the liquid from time to time, and the collodion is then allowed to rest until it becomes clear. The collodion is applied to glass in the ordinary way, and a smooth white film is formed, having the appearance of ivory or fine porcelain. In this way opal glass may be replaced in the production of transparent positives.

This porcelain collodion may be coloured very readily by means of aniline colours, and may thus be made to furnish some very fine effects in this way as transparencies.

I had occasion lately to see a pretty little dark closet constructed by M. Dariot, which will, I hope, shortly be expanded into a room or the apparatus. It is intended for dry plate work, not only for the use of amateurs, but also to fulfill the exigencies of professional photographers, who are, as we know, more hard to please than the former. If the closet and the apparatus connected with it cannot be called pocket affairs exactly, they are, nevertheless, by reason of their
THE PHOTOGRAPHIC NEWS.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM NEIGHWAY.

CHAPTER X.—(continued.)

DEFECTS OF THE NEGATIVE PROCESS.

(6.) Failures in "exposure" of the negative.

(1.) Want of sharpness, caused by faulty focusing or the movement of the sitter out of focus before the exposure of the plate.

(2.) Double outlines, or "blurring."—Movement of the sitter during the exposure. Don't get angry.

(3.) Harshness, and exaggeration of light and shadow, are due to insufficient exposure.

(4.) Flatness, and lack of brilliancy in the shadows, are caused by over-exposure.

(5.) Marbled drying spots are often due to the above cause, or from the plate having stood too long before being exposed.

(6.) Fogy spots are caused by reflection: look to this in copying drawings or paintings; the illumination is at fault.

(7.) Fog is produced by strong light shining into the lens. Remedy: protect it with a hood.

(8.) Double pictures are caused by small holes in the front of the camera.

(9.) Pictures are out of focus in consequence of the ground glass being out of place; especially this likely to happen when the ground glass is hinged and swings back.

(10.) Unequal illumination is sometimes caused by inequality in the thickness of the film; with double lenses, probably, from their unequal power.

(e.) Failures in development.

(1.) Lack of sharpness caused by developer being poured on, and lines shooting through, evidence that the developer has been poured on too violently.

(2.) Curved lines are formed when the developer is not flowed evenly over the entire plate, each stoppage of the flow of the developer over the collodion surface being registered by a mark of the edge of the solution.

(3.) The plate is "crawling," i.e., does not flow evenly over the plate, but is repelled; this would be water on a greasy plate; this is generally caused by an excess of alcohol in the bath, and an insufficient amount in the developer to overcome the tendency to crawl. Too much alcohol in the developer will sometimes cause the same defect.

(4.) Fogs are often caused by too great strength of developer, or an insufficiency of acid in the developer, and also by developer that has not sufficient strength and energy.

(5.) Flatness and lack of contrast is the effect of over-development, and, as conduce to it, the use of too strong a developer.

(6.) Harshness and want of detail follow where the development has been prematurely arrested, or an inactive developer has been used.

(7.) Failure is often attributable to a "swelling" of the plate with a large volume of developer, whereby all the silver floating about in a free state is washed away into the sink and lost to the picture. This fault of development is mainly attributable to nervousness in the operator that he cannot get the plate covered without developing streaks, and as the plate rushes into an equally grave source of failure, until the fault "degenerates into habit."

(8.) Failures in intensification.

(1.) Stains are caused by unequal intensification. If the plate is first flowed with pyrogallic acid before the silver is added, these stains cannot arise.

(2.) Spots, particularly when intensifying with iron and silver, are caused by insufficiency of alcohol—sometimes from an excess.

(3.) A grey granular precipitate is formed when intensifying with iron has been carried on after the solution has become "muddy."

(4.) Bluish precipitate in the shadows is caused by want of action in the intensifier, and where an old pyrogallic solution is used.

(5.) Thick and heavy spots are caused by continued pouring on of the intensifier at one spot.

(g.) Failures in fixing.

(1.) Bluish or greenish colour of plate is due to traces of the developer left on the plate, which, with cyanide of potassium, forms a green or blue precipitate. Wash the plate thoroughly before fixing.

(2.) A greenish deposit in the shadows shows imperfect dissolution of the iodide of silver. Remedy: longer time in the solution, or greater strength of solution.

(3.) Thin spots are caused by cyanide of potassium, where it has been allowed to eat into the film.

(4.) Black streaks are caused by insufficient fixation.

(h.) Failures in varnishing.

(1.) A dull surface is caused by too thin a varnish, or where the plate is not sufficiently warmed.

(2.) Streakiness is due to the plate being too hot when varnished, or unequal rocking during the setting of the varnish film.

(3.) A scratch of the glass is often due to unequal heating or sudden change of temperature.

(4.) Detachment of the film is sometimes caused by too great strength of the alcohol in the varnish.

(5.) The film peels off under the drying process. This is experienced especially when the negative has been much intensified. (Such plates should be flowed with a dilute solution of Gum—office mucilage 25 parts Water 75 " before drying.)

(i.) Failures in retouching.

(1.) Scratches in the film are caused by removing the glass to make a surface for the pencil before the varnish is dry; also by coarse particles in the gum ice powder, or too much handling.

(2.) White spots on the skin are the effect of unskilful stippling.

(3.) Ivory-like texture, and want of character in the face, and numberless grave faults, are the results of retouching, done not wisely, but too well.

Unnatural lights, characteristic lines, and marks worked out, &c. ad lib., too often seen in unskilful work, prove that retouching is the work only of the artist.
I will now proceed to deal with the "Invention for an Improved Method of Retouching Photographic Negatives and Prints," for which letters were granted, dating from the eighth day of May, 1874, and leave the one under date of October 21, 1874, termed "Improvements in Producing Carbon Photographs," on the principle of its being bad generality to attack two armies at once. I will now proceed to read the specification No. 1534, year 1874.

The concluding portion I will re-read: Having described the nature of the invention and the manner of performing the same, I declare that what I claim as the invention, to be protected by the hereinbefore in part recited letters patent, is the method of applying a semi-translucent sheet on each side of a negative or positive, and of quickly and readily retouching by operating on these surfaces, as herein specified."

Here is another extract from a paper read by Mr. G. Crompton, and published in the Photographic News, December 24, 1873, and in the British Journal, December 19, 1873:—"In the past, when the people of the face and texture of the face are too marked in the enlarged negative. This can be much softened and reduced by printing through tracing-paper. Strain the face of the negative, when the passage of a stream of sensitized paper between the sensitized sheet and the negative, I always strain tracing-paper on the reverse side of the negative, as it serves to soften the printing, and is a capital medium for working upon."

Evidently, as Mr. Crompton occasionally used paper on the front of his negatives, and always on the back, and published in 1873, it is clear he published a method in the latter part of 1873 whereby he occasionally used a semi-translucent sheet on each side of his negative.

You have now the material to enable you to judge as to the validity of the said patent. There is something noble about the man who takes out a patent, and has the courage to drop it when he finds he has been forestalled; but they who, under the most clear evidence, take a contrary course—why, one lacks expression for them sufficiently severe.

EMULSIONS.

By H. J. Newton.*

Theoretically, the fact of the soluble chloride remaining in the emulsion would be against their keeping indefinitely. There are some facts in connection with this theory which are, however, favourable. Collodio-chloride has long been made and sold as a commercial article with good keeping qualities. In none of these I think the same principle is involved, as they do contain chloride in excess, at least all that possess good keeping qualities. To all practical purposes, however, these emulsions leave nothing to be desired, either by amateurs or professional photographers, in reference to their keeping qualities or certainty of results. An emulsion that will keep in perfect working condition two months answers all the requirements that can be reasonably asked in reference to keeping. The bromide collodion can be made in quantities, and the amount of emulsion to be used in a few weeks made when desired. The bromide collodion will keep indefinitely, and is better fit for use after it is three or four weeks old. I have so far tried only one preservative, from the fact that I do not think it can be improved upon. It gives, with my developer, great brilliancy, and all the intensity required, not much, if any, more time being necessary. After the developer is on to obtain full strength and detail than in the ordinary development of a wet plate. Several years since I found that a solution of laudanum in winter made an excellent preservative for the ordinary dry plate, enabling me to produce negatives of great brilliancy, lacking sensitiveness, and at the same time, retained the brilliant qualities of the laudanum preserva-

With this compound I have combined the syrup of aqua for making this preservative is as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>13 ounces</td>
</tr>
<tr>
<td>Tannin</td>
<td>80 grains</td>
</tr>
<tr>
<td>Laudanum</td>
<td>3 drachms</td>
</tr>
<tr>
<td>Syrup of aqua</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Alcohol</td>
<td>2 ounces</td>
</tr>
</tbody>
</table>

The tannin is first dissolved in the syrup, and the laudanum added. The adding of the laudanum to the tannin solution precipitates the gummy matter from the tannin, filling the solution with a light-brown flocculent mass. This should be filtered out before adding the syrup and alcohol. By this means you will get a perfectly clear solution of tannin, which cannot be done while it contains the gummy matter which is precipitated by the laudanum; after filtering, add the alcohol and syrup. This preservative will keep perfectly good for at least a year, and can be used at any time, requiring only occasional filtering. The proportions given above are right for the emulsion plates when used wet. When dry, however, they are more sensitive, and to get the same brilliancy double the quantity of laudanum should be used. That is, six drachms—no other change being necessary. The preservative I have used in these experiments is composed of:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Ammonia</td>
<td>5 grains</td>
</tr>
<tr>
<td>Bromide of ammonium</td>
<td>5 grains</td>
</tr>
</tbody>
</table>

This I designate No. 1. No. 2 is pyrogallic acid, from three to six grains to one ounce of water, using it strong enough. As my exposure has been already described, I proceed as follows:—After exposing the plate (we will take one five by eight inches), into a wide-mouth vial I place half-an-ounce of No. 2, and flow the plate after it has been thoroughly washed. If the exposure has been right, the image will soon appear; as soon as the outlines of the picture are visible, I pour off the solution of pyro into another vial, having previously been supplied with four to six drops of solution No. 1, and again flow the plate with the combined solution. The intensity of the negatives comes rapidly up to the required strength.

One inexperienced will be likely to get too much intensity, as the plates obtained by this process are, when fixed, of an olive-green colour, therefore very non-aesthetic. The colour can be checked to that of the plate, by adding them, after fixing, with a weak solution of sulphide of potassium, not more than two or three grains to one ounce of water. This at first will appear to add to the density of the negative, but, if long enough continued, will reduce the negative. Negatives so treated have superior printing qualities. It may not, however, be advisable to treat them with the potassium of sulphide, if the negative appears thin enough when fixed, unless it be allowed to remain a few seconds only. In pursuing these experiments, I have obtained many interesting results of minor importance, the details of which would make this paper too lengthy, and as some of them are incomplete, shall defer, only alluding to some of them until some other occasion. I am inclined to think that a developer of iron properly prepared can be successfully used, also plain colloidion, which latter particularly at the present time. Since writing the above, my attention has been called to Mr. M. Carey Lea's formula for salting collodion for emulsion dry plates, the novel and important feature of which is the adding a small percentage of the iodide of aqua regia to the bromide collodion. Last fall I made a made variety of bromo-iodide emulsions, but in all of them the iodine of the iodide in excess and the idea of making a bromo-iodide emulsion with the bromide in excess struck me favourably, and I immediately gave it a trial, applying my principle of equalising the bromo-iodide of silver with a chloride as before, using only his formula for salting the colloidion, which is as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide of cadmium</td>
<td>8 grains</td>
</tr>
<tr>
<td>Bromide of ammonium</td>
<td>4 grains</td>
</tr>
<tr>
<td>Iodide of ammonium</td>
<td>4 grains</td>
</tr>
</tbody>
</table>
to one ounce of collodion. To sensitize this, I used nineteen grains of silver dissolved in alcohol in the usual way. Five hours after, I added two or three grains of chloride of cobalt. The next day it worked quite brilliant, but the intensity came up very slowly with the alkaline developer. I judged that more bromide salting was necessary. I found with this emulsion increased sensitiveness, but not to the extent indicated by Mr. Lea in his peculiar mode of working it. I adopted tannin and pyrogallic acid, six grains each in one ounce of water. This is boiled over the plate after the plain pyro, without washing it off, and when even action is secured, it is turned off into a phial containing eight or ten drops of a plain twenty-grain solution of nitrate of silver. The picture immediately comes up to the required strength, and gives much more harmonious results. The action in the weak lights being more perceptible, no longer exposure is necessary for this mode of development than for the alkaline.

The preservative which I have recommended is, as you will perceive, quite acid; the tannin has an acid reaction, and the syrup of aquells is decidedly acid with acetic acid. I have not tried the aquells in any other form; the extract is usually obtained by boiling in acetic acid, and the syrup of the drug stores is made by boiling sugar, &c. I find some samples contain much more sugar than others. For this reason I intend trying it in some other form than that usually procured at the stores.

Plates prepared with any of these emulsions need no washing, but should be put into the preservative as soon as the emulsion is sufficiently set.

In conclusion, I would remark, that one formula with which I experimented showed signs of fogging after ten or twelve days. To this I added two grains more of chloride of cobalt. The next day it had recovered its original brilliant properties.

THE PRACTICAL PRINTER IN AMERICA.

XXXI.

PRINTING-IN FALSE BACKGROUNDS.

This is a well-known and valuable dodge among photographic printers. It is worked as follows:—First print a proof of the negative as it is, said proof being printed on a piece of paper full as large as the desired size of the finished print. When printed, lay the proof on a glass, printed side up, and, with a very sharp knife, follow the figure exactly on the margin of both the face and draperies. Not the least possible variation should be made, or the resulting print will surely show it. No carelessness will answer at all here; in fact, every particle of the printer’s attention should be given to this, and the scheme of the cutting until he is through. Follow the nooks and turns of the draperies and hair, cutting out each curl faithfully. Avoid all sharp angles, and let all of the cutting be in curves when corners are turned, and more or less waving when following the line of the hair. Particular attention should be given when cutting in around the hair, as this is especially the part in which cutting out around the cheek bones. If the printer thinks he can improve on the cutting-out if he were to cut another print, then print another one and do so. After a while the beginner will succeed splendidly.

After the background is cut out, the next process is the pasting it on the back of the glass, which process is one of extreme care. Do not in pasting it on apply paste to the whole print, but to the two upper corners of the back part (i.e., the glass side) of the negative. It is often placed on the varnished side of the negative, but this, unless done by a person of considerable experience, is very risky, as failure will be certain for the beginner, for it is often so with the experienced printer. When it is desired to place the cut-out on the varnished side of the negative, then in printing in the background the mask is placed close to the paper, instead of being placed on the outside of an intervening glass, as described below. I have obtained fine results in the above way, but, as it is much more difficult than the way I have partly given, I very seldom do it. When about to paste the background on the back of the negative, turn over the corners of the paper, which are to touch the corners of the negative where the paste is placed, as the neglect of it will occasion some little trouble when adjusting the print to the negative.

When it is desired to adjust it, rest the negative on a window-sill and look through it to the light, and then the printer can more easily and surely do what he wishes. When adjusting, keep the paper smooth, and when properly placed, turn down the corners and press them in close contact with the paste. Dry under pressure, in the sunlight or by the fire, so that the mask will not be in place while drying, which would be likely to do if proper means were not taken to prevent it from doing so. When dry, place it out to print, either plain or in a vignette style, as ordered (after having placed the sensitive paper under the negative), and print in a strong diffused light.

If the print is too long printing, the thickness of the glass and the slowness of the printing will cause the negative to print out too far under the masked background. When in the making of the mask the printer were to think that such will be the result, then make allowance for the thickness of the negative and for the weather, and then, when necessary, cut a triffe inside of the hair and other dark places that will print quickly, and consequently feather or blend out beyond the figure on to the background. Do not touch the face, however.

If the printer were to cut a triffe inside, as written above, then it will feather out softly to just about the right distance, and not print in any of the background.

Now take a suitable size glass, fully as large as the finished print is to be (see fig.) and lay it on the print, and then paste the mask (the figure which was cut out of the background mask) by applying a dot of the paste at one place on the outside of the glass, thus having the thickness of the glass between the glass and the mask and the print.

Place the print on a flat printing-board, and match the cut-out attached to the glass to the print, and then place it out to print in a strongly diffused light if the picture is to be plain; but if it is to be a vignettee, then place the vignette block over the whole, being careful not to move the glass. Place a tissue-paper over the vignette block, and then place frame and all out face to the sunlight.

If the background is to be a plain one, print it either darker or lighter then that of the face from the first cut. If the figure is to have a vignette background, then in the majority of cases have it light, and also have a soft halo to it.

(To be continued.)

OLD ENGRAVINGS.—Woodcuts, or printed matter, that have turned yellow, may be rendered white by first washing carefully in water containing a little hyposulphite of soda, and then dipping for a minute in Javelle water. To prepare the latter, put four pounds bicarbonate of soda in a kettie over a fire; add one gallon of boiling water, let it boil for fifteen minutes. Then add in one pound of chlorured ammonia. When cold, the liquid can be kept in a jug ready for use.
The Photographic News.

Vol. XIX. No. 881.—JULY 23, 1875.

CONTENTS

Photography In and Out of the Studio .. 519
French Correspondence ... 549
Practical Portrait Photography. By William Heighway 531
The Lamberty Process. By W. E. Batte 535
Emulsions. By H. J. Newton ... 553
The Practical Printer in America ... 555
A New Accelerator ... 559
Uranium in the Nitrate Bath ... 554
Modern Process. By Leon Warnerke 560
An Improved Form of Archers' Collodion. By L. Macaulay 557
On Photographic Irradiation. By Captain Abney, R.E. 558
Correspondence—Uranium in the Bath. —Irradiation, etc. 554
Dr. Vogel and the Eclipse Expedition—Profession or Trade—The Lamberty Process—Detroit—Photographs of the Drowned 557
Proceedings of Societies—Amateur Photographic Association 559
Talk in the Studio ... 560
To Correspondents ... 560

A NEW ACCELERATOR.

Some months ago allusions were made in various paragraphs in the photographic journals to a new accelerator employed by a Continental photographer, who found that by its use he was enabled very materially to reduce the exposure in the camera. This acceleration was gained, it was stated, by the addition of methylated-spirit to the iron developer. The statement did not gain much vogue in this country, chiefly from the fact that almost every photographer habitually so added methylated spirit, using it as a matter of economy in preference to pure spirit, without perceiving that it exercises any accelerating influence. Special comparative experiments with pure spirit and methylated spirit failed to show that the latter gave any additional energy or new quality of any kind to the developer. The point was almost an error probably existing in the original paragraph, which referred to "methylated" spirit, insomuch as the compound vended under that name in this country was unknown in Continental Europe, and that methyl alcohol or wood spirit was doubtless meant. Experiment with addition of this substance was made without any material alteration of the developer. Consequently, it was decided to prepare a more precise statement of the formula employed reached us, from which it appeared that it was not simply methyl spirit which was added, but a methyl compound formed by distilling the spirit with sulphuric acid and peroxide of manganese; and for this addition a very definitely accelerating action was claimed.

In the following we give details of a series of experiments by Herr Warnerke with the methyl compound in question. Carefully following the formula of Mons. Alexandre, which we published some weeks ago, and testing the iron developer so prepared with a solution of iron made at the same time, with the addition of acetic acid instead of the methyl compound, he finds a decided action, which, although not to the extent which has been described in Continental journals, the effect of the methyl addition in well exposed plates, judging from examples with which Herr Warnerke has favoured us, is increased delicacy and detail, without any loss of vigour; whilst, in cases where the plate has been insufficiently exposed to give good results on the half developed with the ordinary iron developer, a marked advantage is manifest on the half developed with the addition containing the methyl. Thus much advantage is very certainly gained in early experiments. There may be other possible gains yet to be secured. Herr Warnerke is experimenting with an iron developer containing methylal in dry plate work with much promise of success. The alkaline method of developing, successful with bromide plates, is less suited to those containing iodide of silver, and it is probable that any agent which adds to the energy of the iron developer will best meet the conditions required in iodide plates.

The compound resulting from the distillation of wood spirit with sulphuric acid and peroxide of manganese has been named methylal, and corresponds to acetol in the ethyl series. It has a reducing action on silver salts. The process of manufacture is not difficult, but requires some care. It is probable that should the addition in further examination prove sufficiently useful, it will be prepared by photographic chemists, and supplied ready for use.

URANIUM IN THE NITRATE BATH.

During the recent discussions as to the influence of nitrate of uranium in the negative bath, in the course of which its action as an accelerator was affirmed and denied with quite as much urgency as the courteous regard of each of the disputants for the arguments of the other, it has been suggested that the solution of the difficulty, proferred by the discordant evidence, would probably be found in the existence of some conditions unrecognized in the operations of one or other of the experimentalists. A letter from Capt. Waterhouse, which we publish on another page, offers confirmation of this suggestion. The experiences of Capt. Waterhouse support, in some degree, the conclusions of both disputants. When nitrate of uranium was added to the silver bath for ordinary wet plate operations with the usual bromo-iodized collodion, it was in the hands of Captain Waterhouse, as it had proved in the hands of Mr. Werge, a retarder rather than an accelerator; whilst used in like manner with dry plates, it gave, in the hands of the latter gentleman, as he had with Colonel Worthley and Captain Abney, great rapidity and finer results. Colonel Worthley has also found advantage from its use with wet plates, but the precise conditions have apparently not been noted, as they have not been described. Captain Waterhouse notes the fact that the collodion used in the dry plates contains a larger proportion of bromide than that used in the wet process. So far as we remember, Colonel Worthley and Captain Abney generally used a greater proportion of bromide in his collodion for the wet process than is customary; and it is possible that in this fact may be found the explanation of the contradictory evidence which has been described. At any rate, here is definite independent evidence from an able experimentalist of the value of the uranium salt in dry plate operations, and it is not impossible, whilst allowing for accelerating influence on the uranium salt in dry plate operations, that it may be found equally applicable in the wet process.

METHYLAL AS AN ACCELERATOR.

BY LEON WARNERKE.

In the photographic journals of the last two or three months attention has been called on more than one occasion to the use of a certain addition to the iron negative developer, having for its object shortening of the exposure in the camera. It promised so well when first described, that I considered it my duty to try it for my own satisfaction. At first I met only with failure, in consequence of contradictory and erroneous descriptions of the substance employed; but the last and most detailed formula has afforded the opportunity of forming a more definite opinion, and the result of my experiments I communicate now to the readers of the Photographic News. In my experiments I followed the formula given in these pages, viz.:

- Sulphuric acid .. 3 parts
- Water .. 2
- Wood naphtha .. 2
- Peroxide of manganese .. 3
These were put into a glass retort and distilled over a very slow fire. Distillation was interrupted when distillate amounted to three-fourths of the quantity of the wood naphtha used. A colourless liquid of strong but not unpleasant chemical odours was obtained. I next prepared a solution of

Protosulphate of iron ... 15 grains
Water ... 1 ounce

And one part of it was acidified with fifteen grains per ounce of glacial acetic acid, while to another portion was added five per cent. of the new distillate, which I shall refer to as methylal.

A glass plate prepared in the usual way, after exposure was cut in two; one half developed with acetic iron developer, and the other with the new developer.

After careful examination of several negatives obtained in the way described, I came to the conclusion that the new developer is superior to the old one, in the following points:

1. It shortened exposure, though not to such an extent as was originally described, but still quite visibly on every negative, and more distinctly on those that were under-exposed.

2. The new developer does not require addition of alcohol to avoid greasy lines. It is astonishing how a very small quantity of methylal confers on the developer the property of clearing uniformly the colloidion surface.

3. With the new developer, not only the image appear quicker, but the development can be prolonged much longer without danger of fogging, and by this prolonged development secures more details, whilst preserving perfect clearness.

4. At the end of a month after the preparation of the new developer, it is perfectly colourless, while that simultaneously made with acetic acid is already brown, a fact which speaks strongly in favour of the keeping qualities of the developer with methylal. Up to the present time I am so pleased with this new developer that I am decided not to use any other in my wet process practice.

The formula I now use stands thus:

Protosulphate of iron ... 1 ounce
Water ... 40 grains
Methylal ... 2

Now as to the name and symbol of the new substance. It is known to the chemist by the name of methylal. On the authority of Pelouze and Fremy, methylal has for symbol,

\[
\begin{align*}
C_4H_8O_4 & = 450.00 \\
H_8 & = 100.00 \\
O_4 & = 400.00 \\
\hline
950.00
\end{align*}
\]

It is soluble in water, alcohol, ether, and in wood naphtha. Its boiling point is 42°C. Centigrade = 107.6° Fahn. Density 1.855.

Alcoholic solution of potassa transforms methylal into formiate, and chlorine into the sesquichloride of carbon C.O.Cl.

Methylal may be considered as three equivalents of methyllic ether, in one equivalent of which one equivalent of oxygen replaces one equivalent of hydrogen; or it can be assimilated to acetal, and considered as two equivalents of methyllic ether and one of methylaldehyde.

AN IMPROVED FORM OF ARCHER'S CAMERA.

BY L. MACDONALD.

Doubtless many of your readers have seen the article on Archer's camera in the Year-Book for the present year. On reading it some time ago, it occurred to me that it might be materially improved upon, its only fault being the difficulty of manipulating a plate in so small a space by means of sleeves in the covering, which impedes the full play of the hands, especially when so high (I may say on a level with the face). I myself prefer (as doubtless most do) to have the hands as free and unconstrained as possible, in order to work in comfort and get good pictures. For this reason I here contrived a slight alteration in the above form of camera which fulfils the above conditions, as not having sleeves, nor the equally distressing method of having to look at the plate through a hole in the camera; it enables the operator to develop, &c., in perfect comfort, and with great ease. Having thus made a few remarks on its advantages, I will describe it as well as I can, though this will almost be unnecessary with the rough sketch in which I have drawn. It is simply an ordinary camera about a foot square (this size will do well for half-plates), bellows body. The back is a sort of shallow box set up on its side, to the front of which, inside, an ordinary half-plate carrier (or whole, as the case may be) is fixed, its slide being a little longer than usual, so as to allow of its being drawn up from the outside of the camera. A light roof is hinged to the top of this camera back, measuring also one foot square, in which is cut a window as seen in the figure; this roof is kept up by a couple of small rods each side. The baseboard of camera is hinged so as to fold up. The focusing is done in the usual way; the back being secured by a screw running in a groove in the baseboard when set up, the black twill covering is thrown over the back and roof, and the operator tucks it in to exclude light, and can then manage all the operations in comfort. The camera back, if made rather wide, can be utilized for holding bath and chemicals, the whole packing up into a space (say) 12\(\times\)12\(\times\)8. The above adaptation will be found most convenient in the field, and without the weight and bulk of a developing box or tent and other accoutrements taken on

ON PHOTOGRAPHIC IRRADIATION.

BY CAPTAIN ARBUT, R.E., F.R.A.S., F.G.S.\

The most frequently received notion regarding photographic irradiation (i.e., an increase on development of the apparent size of the image of a luminous object when photographed against a darker body) is, that it is due to simple reflection of the incident rays from the back of the plate. This view is quite untenable, excepting in the case where the incident rays fall at an angle with the perpendicular to the surface of the plate. If a bromide film be sensitized in an ordinary nitrate of silver bath and be examined with a microscope, using a high power, it will be found that it consists of particles of bromo-iodide of silver separated by considerable intervals.

* Philosophical Magazine.
one from the other. The collodion vehicle is illuminated with that peculiar greenish-yellow tint which always marks a film of this description. A few simple experiments will show that this colour is entirely due to the light reflected from the particles, and that it is not due to the collodion itself.

When the construction of the sensitive film is taken into account, the cause of irradiation (or blurring of the image) is not far to seek.

It is these small particles that cause the film to be translucent, and prevent it from being transparent. Where there is transparency there must be a scattering of the incident rays.

These particles are quite measurable; hence we cannot treat the question as if they were small fractions of a wave-length. In fact, they are several times larger in diameter than the greatest wave-length; and as we have to deal with the smaller wave-lengths, we may treat the question as a case of simple geometrical reflection. At any rate, the dispersion caused would not interfere with the general result.

The physical forms which the particles take are not quite apparent. Being in an amorphous state, it will not be unfair to assume that they are generally of the shape of a spheroid. For the sake of calculation, we may also assume that each particle reflects a definite proportion of light. This hypothesis will be found not to affect the aspect of the problem, if the refracted rays be traced after transmission through the sphere, in a similar manner to that in which it is proposed to trace the reflected rays. In any case it is only assumed that an approximate solution can be obtained.

Let us consider the action of one particle, and, for the sake of simplicity, let us take it to be one in contact with the surface of the glass plate on which the film rests. The case where the minimum irradiation will be produced is that in which the incident ray falls perpendicularly on the surface. First, on these hypotheses let us examine the intensity and duration of the light that would fall on the plate.

As the general direction of the light is perpendicular to the surface, it is evident that by far the largest proportion of it must fall in the same direction on the particle under consideration.

![Fig. 1](image)

Let \(r \) = the radius of the particle.

\(\theta \) = the angle of incidence of \(R \), a ray of the pencil falling on it.

Let \(A E \) represent a section of the glass plate.

Let \(D \) = \(x \), and \(r \) = thickness of the plate.

Since \(E (l) = 2r \),

\[x = r \cos \theta + \left(\frac{1}{r} + r \sin \theta \right) \tan 2\theta. \]

From the question before us it is manifest that \(\theta \) cannot

![Fig. 2](image)

For the sake of illustration, the accompanying curve has been constructed showing the general relation between the intensity and angle of incidence on the bottom surface of the plate. The ordinates represent the intensities. For the abscissae the thickness of the plate has been taken as the unit of measure.

The solid of revolution formed by the area rotating about the axis of \(y \) would give the projection of the pencil of rays incident on the particle multiplied by its intensity. Not all these rays will be reflected back; only those which fall at and beyond the visual angle will do so. Calculating according to Fresnel's formula the amount of light that would be reflected for each angle less than the critical angle, we get the curve which bounds the shaded part of the figure. The area between the two curves shows the amount that would pass through. The refractive index has been taken as 1.5.

An examination of the figure shows that if a ray of light fall on the film, on development a ring might be formed round the image at a distance from it equal to \(2y \cot \chi \), where \(\chi \) is the critical angle; on the inside it would be shaded off more abruptly than on the outside. If then a cylindrical pencil of rays strike a film perpendicular to its surface, the light incident on it may be divided by the portion of the curve that passes beyond the limits of the shaded part.

* The refractive index of collodion and the glass may be taken as equal.
surface, a similar detached annulus would result, provided the diameter were \(< \frac{1}{2} \) that of the Sun.

To ascertain if actual results held with the theory, the following tests were made:

(i) A short-focus lens (about 6 inches) was employed to form an image of the Sun on a sensitive plate whose thickness was approximately 1/2 inch. On developing the image a well-defined annulus was obtained, the most intense portion being equal to the Sun's diameter. The shading-off was that described above, and answered to the theory.

(ii) A plate of double the thickness of the foregoing was similarly treated. The mean diameter of this annulus was double that of the last.

(iii) Two plates, similar to that used in (i), were next experimented with. Each one carried a sensitive film. The film of the bottom plate, 1 (fig. 3), was separated from the surface of the top plate, 2, by a strip of thin card to prevent contact. On developing them the ring was obtained on the first plate, and a diffused image on the second.

Throwing the two images on a screen, and taking the intensities by the method described in my paper in the Philosophical Magazine for September 1874, I obtained two curves, and from the same diagram it was taken into account, as also the irradiation due to the cause which I shall presently explain, gave a near coincidence to that obtained by this theory. It should be noted that the image obtained on the bottom film was that due to the light refracted and not reflected. In the films employed, about \(\frac{1}{2} \) of the actinic rays were transmitted through the first plate, and the amount of reflection from the sensitive films taken was nearly 2 of the whole light.

(iv) With dry plates I also made other experiments. I cut small holes and slits in platinum foil. Placing these in contact with the plate, it was exposed to direct sunlight. With the former the rings were obtained as before; with the latter parallel lines joined with semicircles. This gave sufficient evidence that nothing in the lens used in (i), (ii) and (iii) could cause the effects produced.

(To be continued.)

CORRESPONDENCE.

URANIUM IN THE BATH.—IRRADIATION, ETC.

Sir,—I notice in the last News that a discussion is going on as to the advantage or otherwise of the nitrate of uranium in the negative salt bath. Some experience I had last year while preparing for the Transit of Venus may be worth recording.

I made up a bath with about 40 grains of nitrate of silver and 10 grains of nitrate of uranium to the ounce, to be used as suggested by Captain Abney for working his beer-albumen process for sun pictures. With ordinary bromo-iodised collodion, used wet and developed with iron, I found a very great decrease of sensitiveness. Thinking that this might be due to the acidity of the nitrate of uranium, I neutralised the bath with oxide of silver, but still it had the same effect. With dry plates, however, the case was quite different, and I found the plates sensitised in the uranium bath were more sensitive and of generally better quality than those sensitised in the silver bath alone.

The collodion for the dry plates contained more bromide than the ordinary bromo-iodised collodion, which may have had some effect on the result.

I may also mention that I could not succeed at all with Capt. Abney's beer-albumen process, though I tried over and over again, both here and at Rochester, with several different collodions. The plates were always very insensitive, though the instructions were carefully followed.

With Mr. Davies' formula for the beer-albumen mixture, in which nitrate of silver is added to the beer, I obtained greater sensitiveness and better results. I prefer, however, to use some substance of known composition, likely to be always the same, rather than beer, of which almost every sample is different.

I obtained the best results with dry plates for sun pictures with a coffee albumen process. But I also obtained some excellent pictures for ordinary work with laudanum alone, or mixed with starch or gum, and also with tea. For the transit, however, I used the ordinary wet process, though a few coffee albumen dry plates were taken.

In making some experiments on irradiation lately, prepared for the eclipse, I came across a discovery which appears likely to be useful. I was trying the effect of stained films in reducing irradiation, and had prepared some orange collodion by adding a small quantity of Judson's orange dye to the ordinary bromo-iodised collodion. On developing I was surprised to find the picture come out exceedingly dense, both when developed with pyro and with iron. On afterwards trying the stained collodion for a view, I found that although the exposure was slightly increased, there was a great gain in intensity, and the general quality of the negative was much improved, the shadows being particularly bright and clean.

I therefore used the stained collodion for preparing the plates for the corona during the eclipse, though, unfortunately, it turned out it was not used in the correct way. I shall presently explain, gave a near coincidence to that obtained by this theory. It should be noted that the image obtained on the bottom film was that due to the light refracted and not reflected. In the films employed, about \(\frac{1}{2} \) of the actinic rays were transmitted through the first plate, and the amount of reflection from the sensitive films taken was nearly 2 of the whole light.

(To be continued.)

DR. VOGEL AND THE ECLIPSE EXPEDITION.

Dr. B.-I see from the English newspapers that my letter from the Indian Ocean, dated March 13th, where I complained of the lack of instruments, has excited much mortification in England. I am sorry that this letter, which was intended as a private one, was published by mistake in the Mittheilungen. The letter was written under the first impression of helplessness, and I confess that I consider the matter now more calmly. I did not get the instruments I expected, but I found other things which enabled me to construct a substitute for a telescope, and I therefore was not finally so helpless as it seemed at first. But I am a little surprised to read the question as to who invited me to take part in the English eclipse expedition, and who made a promise to deliver me instruments. I expected that this would be known, but I see that is not the case. To remove any distrust, I publish the following fact:

I got a letter from Dr. Schaefer (afterward chief of the Bismarck party), dated January 3rd, asking me whether I would take part in an eclipse expedition to India, pro-
posed to the Royal Society. Schuster adds:—"Upon your answer depends much the acceptance of the proposition;" and requested me to telegraph my answer to Mr. Lockyer, Royal Society, Burlington House.

I answered by telegram in favour of the project. On January 15th I got the following telegram:—"Royal Society invite you; have you telescope with clockwork?—Lockyer: "No, I have only a spectroscope." January 16th I got the following telegram:—"We have a telescope, but you must come here to adjust your spectroscope.—Schuster." I wrote Dr. Schuster that I could not come to London, and sent him my spectroscope, with a drawing to attach it to the telescope. Dr. Schuster promised me, by letter (without date) that he would arrange all the necessary." Very directly.

In the first days of February I got the official invitation from the Royal Society, dated February 5th, written from the Secretary, whose name I cannot read. The letter bore the printed superscription, "Royal Society, Burlington House," and the number A1176.

Some days afterwards I got a letter of the same style from the same writer, wherein he sent me, "at the request of the council", the sum of £230 to pay the travelling expenses from Berlin to Venice and back, and advised me that the P. and O. agent was ordered to send me a ticket for Ceylon and back. The same week I received the ticket.

On February 8th Dr. Schuster wrote me that he had got for me "two pretty lenses" from six inches diameter, and added:—"The best style of fitting them we will discuss on board of the steamer, where we have a clever mechanic." The end of February I met Dr. Schuster in Snes, and during the voyage learned that the "two pretty lenses" were not much more than looking glasses with chromatic and spherical aberration; no telescope, no clockwork, &c.

Anybody will easily understand that I was disappointed at this fact; but, as I mentioned before, I could construe the whole affair from Lord Lindsay, a mirror from Mr. Lockyer, and a stand from Mr. Pedie, an instrument which would work of a telescope, and the lack of such a one could only trouble me personally.

Faithfully yours,
H. Vogel.

DEAR SIR,—In the British Journal of July 16th I find a letter from my colleague, Mr. Meldola, on the late eclipse expedition.

I beg to remark that some of his assertions are already explained in the letter sent you for publication some days ago. Anybody will easily understand from that letter that the perfect Dallmeyer lens Mr. Meldola mentions is quite other than those imperfect "pretty lenses" bought for me especially for expedition purposes from Dr. Schuster, and lost afterwards in Ceylon. Mr. Meldola knows this fact very well, and if he loves the truth, he will be so kind as to confirm it.

As I wrote my private letter in Ceylon complaining of the lack of instruments, I knew nothing at all about a Dallmeyer lens, which was found a fortnight afterwards as the English instruments were unpacked on the Nicobar Islands.

I think it further very curious for my honourable colleague to declare that a driving clockwork is not necessary for taking the coronal spectrum. If so, I beg to ask him why he and other observers took with them heavy instruments with clockwork? If not necessary, he could have left his driving clock home.

The opinion of Mr. Meldola that my spectroscope is totally unsuited for use with a telescope is only his own. The heavy stand could be removed, and the upper part easily attached to a telescope. I had sent my spectroscope to Jeddah to London, as the request of Schuster, to be attached to the promised telescope, but nobody wrote me "that the instrument is totally unsuited for use with a telescope." On the contrary, Mr. Lockyer wrote me, "Your instrument would be splendid attached to an equatorial." The letter is still in my hand.

Finally, Mr. Meldola expresses his amazement that I have charged "Englishmen with having learnt how to photograph a spectrum from my writing."

If I could have known before that my private letter would be published, I would have used other expressions. I beg, however, to point out that I was the first who showed quite a new manner of photographing the yellow and red part of the spectrum.—Faithfully yours,
Berlin, July 1875.
H. Vogel.

PROFESSION OR TRADE.

Sir,—We have just received from a manufacturer of albumenized papers a request which, as it comes in the circular form, has, no doubt, been forwarded to many other photographers: the request is simply that we will send a collection of our best photos to the manufacturer to be exhibited by him at the Philadelphia Exhibition in 1876, not as specimens of our photography, but as samples of his paper! We need hardly say that such a request would meet with no favour in our eyes. But our present object in writing to you is to ask other photographers who may receive similar applications whether they do not think that a very serious degradation of their art would be involved by compliance with this request.

Much has been written of late on the status of photography as a profession. There seems an excellent chance here for the manufacturers to show to the world the dignity of their art, or will, for the sake of a few shillings, contribute to a puffing advertisement which would do more to degrade the art in the eyes of the public than anything we know of. We cannot imagine any greater affront that could be offered to an artist than to suggest that the success of his pictures is due not to his personal skill, but to the excellence of the material with which he worked.

As a parallel case to this, fancy how it would be to announce the Royal Academy catalogue thus:—"No. — This picture was painted on the excellent cream-tinted canvas supplied by Mr. So-and-so. "No. — The sky in this picture was painted with the new double refined cerulean at £15 10s. per ounce." Would the academicians—or, indeed, any painters who have any respect for their art—admit of such a use being made of themselves?—Yours truly,
H. P. Robinson & N. K. Chevill.

THE LAMBERTYPE PROCESS.

Sir,—After several weeks of anxious waiting for information as to what constituted the Lambert patent process, I am pleased to see the specification published in your last number; also to find that its sole claim to originality consists in enclosing the negative within two sheets of transparent tracing-paper, and working thereon both on the face side of the negative, as well as the reverse side, with a pencil, crayon, powder, or an impalpable galvano-plastic powder.

For the benefit of photographers, and for the information of M. Lambert, I find the following appears in a paper read by Mr. G. Croughton before the members of the South London Photographic Society on December 11th, 1873 (Colombo News, December 24th, 1873):—"In elderly people, the lines and texture of the face are far too marked in the enlarged negative. This can be much softened by printing through tracing-paper. Strain the tracing-paper over the face of the negative, so intercepting a thickness of tracing-paper between the sensitised paper and the negative. I always strain tracing-paper on the reverse side of the negative, as it serves to soften the printing, and is a capital method for working upon with the pencil to strengthen the high lights." If this is not the sum and substance of the invention claimed by the Lambert type Patent, perhaps M. Lambert will kindly inform photographers wherein his specification differs from the above.—I am, yours, &c., R. Smyser.
Lincoln, July 20th.
DALLASTINT.

Mr. — I think I can safely say I have solved the problem of how to obtain from photographs of nature or drawings in flat tints blocks printable satisfactorily at the ordinary price. Every now and then, not being able to get it out of my thoughts, I have taken the matter in hand; but it was not till the 14th of this month that I was able to dance and cry "Eureka! Eureka!" Early next month I shall have my specimens out, and will submit them to your criticism.

"Dallastint"—as I propose to call the new block process, as well as my old photoelectric process of which it is an offspring—Justice is almost wholly of a different kind and gradations, from deep black to the most delicate tint printable. Although letterpress printing can never rival copperplate work,—by a suitable modification Dallastint becomes a copperplate process,—yet the new block method will come very near it, while it will, I think, be found much superior to chalk-work in lithography, the grain being taken from hand to hand with care, using a grained stone. The process has the further advantage of being able to reproduce, either same size or otherwise, not only chalk tints, but mezzotint, ordinary aquatint, and drawings in washes of Indian-ink or sepia. It also yields valuable blocks for colour printing.

I should hesitate to make these glowing announcements thus public; but I do not feel now certain from actual results that the process is of no longer value, but is at least as durable and that I have completely mastered the principles on which it is based and the mode of working. In photographic engraving I have never contented myself with results, but have always searched after the reason why, so as to be able, as Bacon phrases it, "to compel Nature." I hope soon to submit proofs of my success with the good I have. I am, yours, &c.,

DUNCAN C. DALLAS.

PHOTOGRAPHS OF THE DROWNED.

Mr. — In your issue of the 9th, page 325, you have a paragraph as follows: "There has been a professional photographer at Scilly, &c., &c. Will you kindly allow me to say, for the information of your readers, that the statement is based on error. I beg to say that neither the clergyman nor the lord of the manor are photographers in any sense of the word. There was not a single body of these recovered from the "Schiller" photographed by anyone, consequently their photographs were not and could not be placed on their graves. The only ones photographed were the chief officer and second officer, whom a friend of theirs brought to me, and these two only of the living were photographed. I confess that on looking at the bodies I felt that it was a case where the aid of photography ought to have been called in, but no one in authority gave any order, and any suggestion coming from the "Schiller" itself would have appeared like soliciting an order, which nothing could be so abhorrent to me.—I remain, sir, very faithfully yours,

JNO. GISSON.

[Our contributor must have been, it would seem, misinformed in some points. The origin of the error we do not know, but remember to have seen similar statements to those of our contributor in the accounts of the wreck. The fact of the correspondent correctly confirm the statement as to the propriety and importance of photographing the bodies under such circumstances.—Ed.]

Proceedings of Societies.

AMATEUR PHOTOGRAPHIC ASSOCIATION.

A COUNCIL of this Society was held on Monday, the 12th inst., LORD DE ROS in the chair. The minutes of the last meeting having been read and confirmed, the following members were elected:—John Adams, Esq., jun.; George Whitley, Esq.; Miss H. H. Lane; Wm. Armstrong, Esq., jun.; F. J. Wills, Esq.; J. B. Monck, Esq., jun.; A. A. Mantell, Esq.; Wm. Vauner, Esq.; Miss Louise S. Cox.

Mr. Glaisher then read his annual report, of which the following is an abstract:—

It has been my agreeable task for fourteen years, with, I think, only one exception, to compliment the members of this Association in my annual report on the excellence of their contributions. This year, however, I am sorry to be compelled to complain that, although one of our members (Mr. J. W. Richardson) has contributed a large number of 16 by 12 pictures, equal, if not superior, to anything previously published, yet the pictures as a whole are below the average. This is owing to some of our best workers not having been present. It is, however, gratifying to see the works of many new members, and note that we have a goodly number of applicants to elect. Mr. Hobson is still as good as ever in his composition, and Captain White has sent a number of splendid studies which, but for some spots and stains, would have been perfect. Captain Smith has contributed a very large number of most interesting Indian views; and Col. Rocke's pictures are still excellent. The Hon. Noel Waldgrave has sent some small pictures which are exceedingly good.

The following prizes were awarded:—

J. W. Richardson, Esq., for Nos. 8a and 10a—First Prize—a silver value 2s. 6d.

J. W. Richardson, Esq., Nos. 2a and 5a—oil painting in frame.

Lord de Ros, for No. 1a—silver goblet.

Col. Rocke, Nos. 37 to 45—all painted in lithography and bound in morocco.

W. Hobson, Esq., for Nos. 116 and 120—a silver goblet.

Dr. Brown, for Nos. 16 and 17—a silver goblet.

J. C. Stenning, Esq., for Nos. 10, 12, and 15—oil painting in frame.

E. O. Milne, Esq., for Nos. 23 and 29—an oil painting in frame.

Col. J. K. Turnbull, for No. 15—a large album elegantly bound in morocco.
Capt. G. F. Smith, for Nos. 103 and 105—an oil painting in gilt frame.
J. McAndrew, Esq., for No. 38—an album elegantly bound in brococo.

R. Murray, Esq., Dry Plate Prize for No. 93—an oil painting in gilt frame.

Certificates of Honorable Mention were awarded to G. W. Brewis, Esq., K. D. P. Roberts, Esq., and the Hon. Noel Waldgrave.

The Earl of Rosse proposed a vote of thanks to Mr. Glaisner for the time he had spent in classifying the pictures and for his able report. This was seconded by Mr. Arthur Farre, and carried unanimously.

A. J. Melhuish, Hon. Sec.

Talk in the Studio.

Mr. Moody's Photographs.—It would appear from the following communications to the _Times_ that it is difficult to prevent the circulation of unauthorized portraits or alleged portraits, however much the original may object to the publicity. Mr. Moody, in his report, states that the number of unauthorized photographs of his has increased circumstantially with the number of his pictures, but it is circulated by the thousands in spite of him or his wishes. Some comments in the _Times_ gave rise to the following in its columns:—"Mr. C. B. Cooper writes to us from Edgbaston, Birmingham:—"Will you permit me to correct two statements in your otherwise excellent article on the American Revivalists? The article says:—"Nor do we reprobate less the scattering about broadcast of the photographs of the Revivalists. It is hard to know on what grounds a man like Mr. Moody can allow this to pass without stern reproof; and, again, more than that, to permit and encourage a growth greater than that of being told to give up all attempts to make a speech. Mr. Moody has overcome the second—the lesser—danger, but when we look at his photographs in the shop windows and hear of his confident assertions we are not at all sure that he is likely to escape the consequence of his greater. In fact, the committee during the visit of the Revivalists to Birmingham, I am in a position to say that it is very much against the wish of Mr. Moody that those so-called photographs are exhibited and sold.

Mr. Moody, in his report, states that during the visit of the Revivalists to Birmingham, he was offered $1,000 for his photographs, which he could not do so.

In conclusion, I may say that the portraits sold in this town (and, I presume, also in London) are not photographs from the person, but from a sketch without the knowledge or consent of Mr. Moody. Mr. Thomas Stokes, a well-known photographer and member of the Committee, writes to us from Mooridge Street Hall:—"Your article of Friday, reviewing the mission so recently closed by the American Evangelists in London, describes the scattering about broadcast of Mr. Moody's photographs. Allow me to reply to assure you that it is due to Mr. Moody's want of common sense that this country he has steadfastly refused to sit for his photographs, though frequently tempted to do so by large monetary offers, and that eight years have elapsed since he consented to have his photographs taken, which was then done only for family uses. Mr. Moody has repeatedly told us that the physical impossibility of his photographs, many of which are rather caricatures than likenesses, and he is still more pained by the publication of books giving account of his life and work, which are every one of them issued without his consent, and contrary to his wishes."

Your Questions must be addressed to M. Lambert, the patentee; we have no knowledge of his business arrangements.

Letters and statements to which you refer as in our last issue are really in the advertisement, written by an error on the part of our printer, which gives us some displeasure, much more so than the whole resembles the literary pages of the _Photographic News._

H. Brownlee.—We have no certain knowledge as to whether Miss Thompson's picture in the present Academy Exhibition has been photographed or not, but it is tolerably certain that photographs have not been published.

W. W.—A rule a lens is sent out by the optician to do its work best, previously tested. You cannot shorten its focus without adding another lens, and this would probably introduce a number of errors and drawbacks which would outweigh any advantage.
A Slice of Luck.—Of all itinerants and pedlars who frequent fair and race, there are few who earn their money so hardly as the travelling photographer. His undertakings, for the most part, are very speculative, for it is from having a chance of getting his fee until the work is done, and then the money is frequently not forthcoming if the plate turns out badly, or the customer happens to be hard to please. It is very seldom, however, that a photographer miscarries with him; and when it is borne in mind the visceri-tudes attending the wet process, and the fickle disposition of the groups and sitters to be dealt with, it may be said that such portraiture is indeed sold on a scanty income. To the itinerant photographer an endless roll of sensitive negative paper, such as M. Warnerke promises us, will be a boon, and there ought, indeed, to be a good market for such a commodity among every class. It is not always that the itinerant photographer comes off so badly as one might imagine, however, for we were witness lately of a very good stroke of business. On the occasion of a popular cricket match the other day, an itinerant photographer managed to get a little positive picture of a party on a drag while at lunch—just such a scene, indeed, as one may see at the Derby, or at other popular gatherings. Having mounted the little photograph neatly in a passe-partout, he brought it back to the company as they were drinking one of their healths in the lounge for the ladies, and the ladies who bore the bromides of the metal also. Any carefully conducted investigation of this nature would be of singular interest to photographers.

Photographs and Rifle Shooting.—One of the requisites to make a good soldier, as every volunteer knows, is to be able to “judge distance” correctly. The rifles, sighted to a thousand yards, must be such as our Our troops are armed with, lose much of their value when wrongly adjusted, and the best shot in the world might fail to hit a mark at a thousand yards if his rifle happened to be sighted for five hundred. Shoots at Wimbledon could tell you how often they have sent bullets wide of the targets from a mal-adjustment of the sight, having forgotten to alter the foresight of their rifle when they moved from one range to another. But at Wimbledon, where all the marks are known and marked, defective shooting can only arise from this cause out of sheer forgetfulness. It is different, however, in the case of troops skirmishing, or formed in line of battle. Then it becomes necessary to use one’s judgment as to the distance of the enemy, in order to render the fire as effective as possible, and one must needs bring every bit of experience to bear in the matter. All recruits are subjected to a course of instruction in “judging distance” before they proceed to musketry instruction, and we cannot help thinking that the camera might be of considerable assistance in here aiding the education of a soldier. What a man has to learn is the comparative size and appearance of men and horses at various distances, from fifty to a thousand yards, and a constant practice in this sort of calculation may be very useful, and it is not at all impossible that a preliminary course of instruction in this line might prove of great benefit in the field.

A long-focus lens should be used to render the images as large as possible, and although to the eye the size of the men and horses might appear different, there is no doubt that the plate would yield an instructive picture as showing comparative distinctness and size at the different ranges. The men would be drawn out to some proportion as the troops, and thus a good idea would be conveyed to the mind of a recruit of the distance of an enemy at any time.

Riflemen and skirmishers would no doubt value a range-picture of this kind, but with artillery, which cannot be concealed very well, the matter is different; artillerymen, as a rule, believe in firing a few telling shells to begin with, which they hold to be the best range-finders in the world.

PRACTICAL PORTRAIT PHOTOGRAPHY.

By William Haywood.

CHAPTER XI.

THE GLASS HOUSE.

Having studied the dark room work, we will step forth into the skylight and study the manipulations which have hitherto been merely alluded to—lighting, posing, exposure of the plate, &c.

Our attention is first directed to the dimensions and build of the glazed roof and side through which the light passes to illuminate our sitters. The build of the skylight is of very great importance, but we are often compelled by circumstances to some modification of our plans by the space at our command and the plan of the house on which we have to build our studio. The skylight must be arranged, strictly, in inverse proportion to the skylight as they find it, with all its defects and imperfections; but here, if a ready ingenuity is brought to bear on the subject, is scope for management that will tend to make even a bad light a passable one, by a judicious arrangement of screens and reflectors.

As it is quite impossible to explain all the plans on which skylights have been built, point out their faults, and suggest remedial alterations and modifications, I shall confine myself to a description of the best and handiest form of skylight.

Our object is to produce light and shade, and the skylight which most readily produces this with all the beautiful gradations between high light and the deepest shadow, it is our aim to secure. If the light is projected on the sitter from one point, the contrasts are too severe, and gradation
is entirely lost, while two lights of equal strength from opposite directions would destroy all contrast, and produce a flat and unnatural effect. The light we require must be soft and diffused.

The direction of the sun must, it is obvious, be avoided, so that our first care is to secure an aspect on which the sun's rays linger least. On a skylight of eastern aspect the sun shines in the morning, and a western light receives the afternoon rays, while into the skylight of southerly aspect the sun streams both before and after noon; the north alone is free from this objection, hence that aspect is preferable to be selected for our skylight.

It is to be borne in mind that one skylight will not suit all classes of work equally well, for, whilst a low light, speaking generally, is better adapted to the illumination of standing figures, giving brilliancy to all parts of the picture, a light of higher build is more adapted to the head and bust style of portraiture, so that it is essential to so construct the light as to adapt it for the production of general work.

The side and top light combined is the favourite form of skylight, though I am of opinion that for portraiture a sloping side light presents more advantages, with fewer disadvantages, especially where the practice is confined to head and bust portraiture.

The gallery should not be less than ten feet long, which will represent the length of the sidelight (more than that is unnecessary), and the height (max) twelve feet. With this altitude a side light sloping inwards from a point three feet from one to another, four feet in the roof, will give ample top light for most purposes of photographic portraiture. The three feet below the light should be boarded up. Moveable spring curtains, that admit of shifting portions of the light, either top or bottom, under the light, particularly manageable for all styles of illumination of the head and bust.

For the combination top and side light, let the side window of the length given above—ten feet—rise to a height of eight feet of the floor, giving feet in height of glass (the lower three feet being boarded up, as described above); from the top of the side light the top light rises at an angle of thirty-five degrees to the ceiling, the rest of which is covered in.

The cut here given will explain the arrangement of the lights:

A, B, C, D, represent the dimensions of the side light, five feet high by ten feet in length; A, B, G, H, being the cheek blind, or Vaugondy structure, the three feet boarded up below the light. E, F, A, B, is the top light, having a "pitch" of thirty-five degrees. This is designed to permit of the rain readily running off. At certain seasons of the year, when the sun attains a high elevation, its rays may intrude through the top light, and to prevent this to a certain extent, the poles E, I, and F, J, are built, on which are moveable resembling Venetian blinds, under control from within the skylight. As a substitute, a canvas may be fitted with rings running on the poles, which canvas may be hoisted or let down at pleasure from within by means of ropes. This canvas has several disadvantages, not the least being that, like a sail, it may be carried away in a high wind, leaving you under "bar poles," or carry away the support with it.

The wood against the frame—for the most carefully built skylight will leak—the sashes of the top light should be fitted inside with narrow gutters from the ridge of the top light into a common gutter running along the top of the side light. A little outlay in this will save you much in carpets, furniture, and instruments.

The glass of the lights should be of good quality, perfectly white, as on that the purity and strength of illumination depends; and the panes should be as large as practicable, that you may not lose light by a multiplication of sashes; and to have as few lappings as possible, these lappings should be about one-sixth or one-fourth of an inch.

Ventilation should be provided for: one or two sashes in the side light may be fitted to open, either on a pivot or on hinges.

Now we have the light, our next care is to be able to cut it off at pleasure. It will be found in portrait photography that the varying types of countenance to be treated by the portraitist demands different illumination as well as arrangement of pose; and to be able to carry out the plan formed in the mind for the illumination of a particular face, we must have the light thoroughly under control.

Some men there are, unfortunately for photography, who have no idea of the effect of light and shade, to whom the best arrangements of blinds are merely obstructive; but to the artist they are as necessary as brushes and colour to his brother of the brush.

The methods of securing and cutting off the light are very various, almost of the individual worker having some plan of his own, either from choice or the necessity forced upon him by the peculiarities in the build of his skylight. I think the very best plan I have known is to provide three shades on spring rollers, whose combined width covers the entire area of the top light. The rollers are fitted to the top ridge of the light (inside, of course), with a little wheel over which the string runs fixed at the top of the side light, governing it. These runners are fitted with a self-acting catch, doing away with the necessity of tying the string communicating with the blind to keep it in place. The blinds of the top light are fitted so as to pull down; those of the side light should pull up, the roller of the blind being fixed to the bottom of the side light, and the string running over the little wheel at the top; so that when both shutters are in use the light is not divided. Too often we see this blunder which a very little consideration would have avoided.

The floor of the skylight should be very even and steady, and, to present a pleasant appearance to the eye, should be covered in some way either with oilcloth, carpet, or matting, unless an inlaid floor is put down. At first sight this appears to be a very expensive proceeding, but, as being very durable, and the very best thing you can have, it is not so in the long run, as it wears many years, and outlasts carpets and oilcloths, and always looks well. Oilcloth is, perhaps, the next best thing, with a carpet for the portion of the gallery on which the sitter is posed. This is a necessity where full-length portraits are made.

The views pleasantly adorn the walls of the skylight, and aid very much to do away with that painful, hopeless feeling sitters appear to experience in our ateliers. A little adornment and brightening would tend to do away with the necessity for our repeated injunction to the sitter to "try and look a little more cheerful."

THE PRACTICAL PRINTER IN AMERICA.

XXXII.

GENERAL PLAIN PAPER PRINTING.

Plain paper prints are generally made so that, by the aid of the finisher, fine results can be obtained from
poor negatives. We seldom make, for the above reason, plain paper prints from life negatives, but from copy negatives,—i.e., negatives taken of other pictures, either from the poor ferrotype or the excellent Daguerreotype, and which, when enlarged from the size of the picture to be copied, all of the roughness and defects on the negative side is enlarged in the same proportion as the portrait itself is; hence, these defects are very ruinous to the fineness of the finished prints, rendering them, in many cases, totally unfit for any kind of printing that cannot be worked up; and although considerable work on albumen paper, in the way of colouring with water-colours, is done, yet by far the greater proportion of the work is done on plain paper, and worked up in India-ink.

It is, however, indispensable with a good copyist to take measures to prevent as far as possible these defects from showing, and the rolling of the prints, the cleansing of them with onecauas paste containing Marseilles soap, placing the print (a photograph in this case) when wet between two pieces of glass and copying it immediately before it dries, and a number of other ways, are adapted to bring about the same result. Sometimes, however, life negatives are printed on plain paper, and worked up. When done nicely the result is splendid, as there are no such defects to contend with as there are in a copy negative.

I give the following formulae, &c., for a ready reference for the beginner. Plain unsalted paper is purchased, and the thin side is floated one to fifteen seconds, or the whole sheet is drawn through the following

Salting Solution.

Pure rain-water... ... 60 ounces
Chloride of ammonium ... 360 grains
Gelatine 120

The Positive Bath for Plain Paper is either a plain bath of thirty to forty grains strong of nitrate of silver to the ounce of pure water, the albumen paper bath (which had better not be used), or another bath known by the name of "ammonio-nitrate bath."

Silvering Plain Paper. This is done either by placing the sheet on a solution called the printing bath, or by swabbing. If floating is preferred, then twenty-five to thirty seconds on a bath of thirty grains strong is about right for summer, and thirty-five to forty seconds on a bath of forty-five grains strong is best for winter. In swabbing the paper, pour on to the fine side of it about half an ounce of the solution, and distribute it equally over the surface by means of the swab.

"Doctoring" the Negatives before Printing. Look out for heavy shadows, heavy lines, and also look to see if you can improve the look of the forehead, cheeks, nose, chin, ears, hand and arms, flat faces, &c., &c. The remedy is generally,—i.e., to myself,—either the blue paint dodge, Irish process, or the retouching pencil. Make it your business to study every negative that falls into your hands for you to print from.

Further Treatment of the Prints after Printing.

The plain paper prints when printed are then to go through the same operations as the albumen prints. In the first place, the edges of the prints are trimmed, so that they will not be so likely to tear in the water.

After the albumen prints are toned, the plain prints are washed by hand—which can be accomplished in three minutes—and then toned immediately. The strength and look of the plain paper prints are hurt considerably if they are permitted to pass through the same treatment for so long a time as the albumen prints are, and for this reason they should never be placed in the acidulated water unless the quantity of the acid in it is very small, as it flattens the prints fearfully.

The prints should not be "washed to death" before they are toned, which would be if they were to be subjected to the same time of washing as the albumen photographs are. The horny surface of the albumen prints is different from the soft and spongy surface of the plain, and whereas it may take fifteen minutes for the washing and acidifying solution to do its work on the hard surface of the albumen paper, three minutes would be ample time for the plain paper.

In the first water for the plain paper prints, about a dozen drops (no more) of acetic acid No. 8 may be placed, but after the prints have been in there two minutes, remove, and rinse them well from the acid water, and then they are ready to be toned.

The prints are toned slowly, so that the action of the gold on them will not be so rapid as to cause them to show weakness, which they will surely do if the toning is rapid and forced. To do this, they are generally toned after the bath has toned the albumen prints, and is well-nigh exhausted.

The albumen paper toning-bath can be used for the plain prints, whether made up every night fresh, or not, without any hurt to either the bath or the prints. They should also be toned face up in the bath, as stronger prints are obtained by so doing than if they were toned with the face down in the solution.

When the prints are toned blue, rinse the toning solution from them, and then they are ready to be fixed in the ordinary fixing-bath. Fix ten minutes, keeping the prints in constant motion during that time, and then weaken the bath three times, thus making it finally like the density of the plain. The plain and albumen prints can all be fixed in the same bath.

The washing of the plain prints can be done in a much shorter time than the albumen ones; and if the printer can, he had better remove them from the bath of fresh water when they have been washed thoroughly—say four or five hours in continually changing water will be plenty of time. The prints are then mounted on good cardboard, and when dry they are rolled once under an ordinary roller, and under slight pressure. Never think of using the burnisher for plain paper prints. The prints are now ready for the India-ink artist.

ON PHOTOGRAPHIC IRRADIATION.

BY CAPTAIN ABNEY, R.E., F.R.A.S., F.C.S.*

If light be scattered from particles, it must also take place in a direction parallel to the surface of the film—that is, in the film itself. Since the thickness of the film

* Continued from page 357.
and the same curve obtains as in the last case, showing that the greatest intensity of light is in the direction parallel to the surface of the film.

When \(\theta \) is not large compared with \(r \), the same result holds, though the plane of maximum reflection will not pass through the centre of the particle. The light reflected horizontally would obey the ordinary laws of absorption, and the intensity be represented by

\[Y = \frac{k}{r} \cdot \mu \]

where \(r \) is the distance along the film measured from the point of incidence.

If the relative effect on the sensitive film could be represented by \(T \), where \(T \) is the length of exposure, then it would be easy to calculate exactly the distance to which the irradiation from this cause would extend. Experiment has shown that this simple relation does not hold good, the practical results having been given in the above quoted paper. There it will be seen that the shorter the exposure the less proportional irradiation there must be. If, however, we take this relation to hold good, the effects of irradiation in any example we may work will be in excess of the truth. In the experiment (i) it was found that the limit of irradiation by reflection with \(\frac{1}{4} \) second's exposure was caused by an intensity of sunlight \(-0.015\), together with the light from the sky. The sky-light would also equally act on the back of the film which would be affected by the light scattered parallel to the plate. The thickness of the film was \(0.01 \) inch; hence \(\mu = 750 \) nearly for each inch.

From other experiments taking images on opaque surfaces, it was found that, with similar exposures and under similar conditions, the extent of developable irradiation was nearly \(0.005 \).

By taking the mean intensity of the light passing through the film, we can find approximately the proportion of light which is scattered parallel to surfaces to that reflected from the plate. Let \(m \) be ratio,

\[\frac{-0.015}{3 \times 750 \times 0.005} \cdot m = 25 \cdot \]

If the sun's image were photographed (say) 4 inches in diameter with an effective aperture of 2 inches, instead of 0.05 and 1 inch respectively, it would be seen, calculating from the above data, that with an exposure of \(\frac{1}{180} \) (supposing the simple relation between \(I \) and \(T \) held good) no developable image could be formed, much less could there be irradiation due to either cause. Now it is well known that the photo-heliograph under these conditions a good image of the clear sun is obtainable. Thence, the connexion between \(I \) and \(T \) is of a more complicated nature.

It will be noticed that a large difference in two intensities of light (giving the same exposure on the same film) will make but a small difference in the extent of irradiation, as the co-efficient of absorption is so large. In the case of the late transit of Venus this has an important bearing, as the actinic intensity of the sun diminishes from the centre to the limb, the highest estimate given for it being from about 1 to \(\frac{1}{4} \). The increase in diameter of the sun and decrease in that of Venus will be measurable the same.

To diminish irradiation due to the first cause pointed out, three methods are open:—First, to coat the back of the plate by some means of statiochrome colour; secondly, to increase the opacity of the film; thirdly, to connect the particles of bromo-iodide of silver with a body of as nearly as possible the same density. The first is the usual method adopted by photographers in dry-plate processes. This diminishes the irradiation from the back of the plate, but does not completely eliminate it, as will be understood when the nature of the resulting reflection is considered. The second method is easily carried out, and is not more effective than the first method. The last is a plate adopted in certain dry-plate processes. With albumen preservative, particularly, the amount of irradiation is reduced materially, even though the film appears nearly transparent. One other method may be noticed, viz., staining the collodion itself with an actinic colour. This does not seem to commend itself, as the sensitiveness of the plate must be reduced in proportion to its efficacy.

To diminish irradiation due to the second cause, Nos. 1, 2, and 3 methods are effective.

Since writing this paper I find that my friend Mr. Cowper Ranyard has noticed, though I believe he has not published, the fact that irradiation is most marked at a distance corresponding to the critical angle of reflection in glass.

MORE ABOUT EMULSIONS.

BY H. J. NEWTON.*

In my former paper I promised to communicate to you the results of further experiments with the bromide emulsion.

Before speaking, however, to the main point, I would like to call your attention for a few moments to the substratum or preparatory coating of the plates, as it is an important element in the successful working of dry plates. It has been found that albumen prepared in the ordinary way would not answer the purpose, as the alkali employed in the development would soften the albumen sufficiently to loosen the film from the glass. I found that albumen heated in water with ammonia was much more readily dissolved, after having been dried, than a plain solution of albumen.

After trying several things to preserve the albumen, I adopted carbolic acid in the following proportions:—In eight ounces of water dissolve the albumen from one egg (if dry albumen is used, take ninety grains); then into this solution containing eight ounces of water put sixteen drops of carbolic acid.

After the albumen is thoroughly dissolved, add the eight ounces containing the carbolic acid. Plates prepared with a substratum of this albumen effectively resist the action of the alkali developer. I have not had the first indication of a blister in all the plates I have made with this substratum.

The formula which I have adopted is twelve grains of bromide of cadmium in colloidion made as I gave it in my former paper, to which eighteen grains of nitrate of silver are added. Eight or ten hours after adding three grains of chloride of cobalt. The chloride can be added dry, if finely pulverized, and the emulsion frequently shaken during the first few hours afterwards.

Since we last met I have been trying bromide of magnesium, expecting, if I succeeded, to obtain a film which would flow more evenly than that salted with a cadmium bromide, especially when new. The first ten days of my trial with the magnesium salt rewarded me with nothing but disappointment and fog. The first lot I made, however, which is now over two weeks old, begins to show very promising results, and I anticipate being able, in a few days, to produce superior negatives with this emulsion.

In my former paper I expressed doubt in being able to compound a preservative which would work more satisfactorily than the one I then gave you; but there was the fact, which I stated, that it was decidedly acid, and I purposed to try the aquilis without the syrup. Some of these were soaked in cold water twenty-four hours, and some I steeped in hot water twice or three times. One ounce of alcohol to every six ounces of the solution. This made a preservative which gave more sensitive plates than my former preservative. The bitter quality of the aquilis, however, suggested nux vomica, the bitterness of the two being the same, so far as the taste could determine. I therefore was induced to try the nux vomica, and compounded a preservative as follows:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>16 ounces</td>
</tr>
<tr>
<td>Tincture of nux vomica</td>
<td>5 drachmes</td>
</tr>
<tr>
<td>Laudanum</td>
<td>3</td>
</tr>
<tr>
<td>Alcohol</td>
<td>2</td>
</tr>
</tbody>
</table>

* Read before the Photographic Section of the American Institute.
This preservative is simple, easily prepared, and will keep. I have adopted it, and shall adhere to it until I find something better.

I am of opinion that ten or fifteen grains to the ounce of pyroxylin wax increases the sentimentness, and shall give it a trial. Some object to gum arabic in the preservative, on account of the tendency of the film to blister in the development. I do not think that this will occur with plates prepared with the substratum as I have given it. If trouble should arise from this cause, the development can be accomplished without the alkali quite as satisfactorily without additional expense. Proceed in this way:—Make a solution of pyroxylin acid and water, any where from six to twelve grains to the ounce. After the plate has been washed, flow it with this pyro solution until the image appears and the detail is all out; then pour the pyro back into the bottle, as it can be used for any number of plates, its developing power not being exhausted by repeated use. Then flow the plate with a solution of tannin and pyroxylin acid, as before, and proceed as with the water; after flowing off and on a few times, or until the action has become even over the plate, pour it off into a bottle containing eight or ten drops of a plain silver solution in water, twenty grains to the ounce (this is for a 5 by 8 plate), and again flow the plate. The intensity will immediately begin, and go on until the silver is exhausted. If sufficient has not been used, wash the plate, and repeat the operation, using, however, one-half the strength of the developing solution and silver. You will not find it necessary to repeat the operation more than twice. I am of opinion that more satisfactory negatives can be obtained in this way than by using an alkali. If after fixing they should be found too weak, they can be readily strengthened by the following solution—Make a solution of iodine in water with iodide of ammonium, and to three ounces of this solution add half an ounce of muriatic acid. Add enough of this stock solution to an ounce of water to give it a good orange colour, and flow the plate with it a few times, and wash off. If the plate has become dry, wet it before flowing with the acid iodide solution; after thoroughly washing, flow it with the pyro and tannin solution, until the image appears on the liquid. Repeat the operation, adding a few drops of the silver solution, and proceed as when developing in the first instance. A little acetic acid should be added to the pyro and tannin solution.

The film which this emulsion gives is very dense, making it thereby unnecessary to use any backing for the plates. If, however, anyone should be using plates which require backing, it is not necessary to employ a backing as follows:—Take two ounces of syrup or molasses, and add four ounces of water; pour this into a dish, and lay into it some sheets of black paper, or any other coloured paper which is opaque; lay them down with a glass rod or triangle; cut them a little smaller than the plate. After the number required is in, place your finger on one corner of them, and pour the syrup solution back into the bottle for future use. Let them drain well, and take the dish containing them into the dark room; and, when your plate is in the holder, lay one of the sheets of paper on the back of it, rub out the air-bubbles, and the backing is complete. There is just adhesive power enough in the paper to make the contact with the glass complete, and to retain it in its position. When the exposure has been made, the paper is readily removed, and can be remounted without any admixture of moisture.

Since writing the above I have succeeded in developing plates prepared with this emulsion with iron and silver, details of which development I will explain at some future time.

SALICYLIC ACID.

Salicylic acid, thanks to the resources of some German savants, has recently sprung into considerable note, and as it promises are long to become more widely known—in fact, to become an article of everyday use—we reproduce the following particulars from the Industrie Blatter, to which magazine they were furnished by a company of manufacturing chemists in Berlin. Salicyl C7 H0 O is found in the volatile oil of Spiraea ulmaria (Meadow sweet), and also in the oil of the partridges berry (Gaultheria procumbens). From the latter it is obtained in the form of salicylic acid, which can be converted into salicylic acid, with hydrazine, hydrochloric acid into salicylic acid. This is a pale yellowish powder formed of small crystals or fine needle-shaped particles. It precipitates in cold water, dissolves readily in hot water, alcohol, or ether, and fuses at 158° C. Under a slow heat it will sublime without decomposition. Heated quickly, it resolves into carboxylic acid and carbonic acid. Observations of Drs. Kolbe, Knop, Neugebauer, Tiersch, and others prove that salicylic acid is a perfectly efficacious substitute for carbolic acid, over which it possesses—a sweetness, and the absence of disagreeable smell. It is excellently adapted for preserving eggs, fresh meat, jams, beverages, medicinal essences, drugs, dye extracts, &c. Professor Neugebauer's experiments show that 100 grammes of salicylic acid sufficed to prevent fermentation in 1,000 litres of must. He recommends its use in wine-making, and in the treatment of the various affections of fermentative origin to which wines are subject.

According to Professor Kolbe, 5 grammes of salicylic acid effectively arrested the fermentation produced by the mixture of 5 grammes of farm with 120 grammes of sugar in 1000 litres of water. He also finds that the method is convenient for the quick fermentation of effervescing wines, export beers, &c. Fresh water on shipboard may be kept sweet by a mixture of the acid in a proportion not exceeding 1 part of acid in 20,000 of water. Or the water may be filtered, as required for use, through cotton-wool dipped in a solution of the acid. Meat may be kept fresh for weeks by rubbing it over with the acid, the latter being washed off before cooking. New milk containing 0.04 per cent. of the acid, when kept uncovered for thirty-six hours, was found in better condition than an equal quantity of the same milk without any admixture which stood beside it. The professor's researches show that this antiseptic action is due to the tree, not to the acid, neutral salts.

Salicylic acid may be used as tooth-powder, or, mixed with water, as a mouth-wash. Sprinkled over the feet, it is an effectual remedy for offensive odours arising from the perspiration. Applied as a powder with tallow, soap, and starch, it renders the feet white and firm, and is a good antidote to sore feet, well adapted for the use of travellers and soldiers on the march. Mixed with powdered starch it may be advantageously applied to sores and ulcers, and kept up in the act of doing it. Mix 1 part of salicylic acid, parts 3 parts phosphate of soda, and 50 of water forms a good wash for promoting the granulation of wounds. In operations involving much loss of blood, Professor Tiersch employs a solution of 1 part of the acid in 300 of water, to sprinkle the injured surfaces and to steep the bandages.

Dr. Fehling states that at Leipsic, salicylic acid is now universally employed as a substitute for carbolic acid in obstetric practice. In disinfecting the hands, clothes, &c., in cases of puerperal disorders, it is used either mixed with water in the proportions 1 to 300 or 1 to 900, or as a powder mixed with any in the proportion 1 to 6.

Salicylic acid is soluble also in fatty oils, and may therefore replace carbofolic acid in the preparation of Listers' bandages. Its internal use in cases of lumbago, sciatica, small-pox, fever, cholera, &c., has yet to form the subject of experiment. Professor Kolbe finds that daily doses of 1 to 1 to 25 grammes of salicylic acid may be taken without affecting the digestive functions or the general health. The internal use of salicylic acid in a crude state is not to be recommended, on account of its irritating effect on the mouth and throat; but Professor Kolbe holds that in a medicinal form, under: 1 grammes salicylic acid, 30 grammes d. amyg. dale., 10 grammes gummi arab., mix, and add 2 grammes syrup of any with 45 grammes aq. flos. aurantii.—English Mechanic.
CERTIFICATES FOR OPERATORS.

A DESIRE seems to exist amongst photographers, which is constantly finding reiterated expression, for some form of certificate of culture or diploma of merit by which distinction should be conferred or capacity guaranteed. From time to time petitions have been addressed to established school, or college, in which photographers might, after graduating, pass examinations and acquire degrees or certificates indicating the degree of proficiency and skill they have attained. Once or twice it has been proposed that the Photographic Society should undertake the function of granting such diplomas. Indeed we have on occasion seen ambitious aspirants for honours describe themselves as members of the Photographic Society as implying professional distinction. A letter in our present issue dwelling on the necessity which, in the writer’s estimation, exists for some trustworthy means of distinguishing between competent and incompetent operators, or between degrees of competency which exist, proposes a very simple arrangement for meeting that necessity. He suggests that a board of three trustworthy gentlemen accomplished in the art should undertake the duty of examining photographers, and giving them certificates according to the degree of proficiency shown during this examination, the remuneration of the members of the examining board to be derived from the fees of the candidates for honours.

The existence of absolutely trustworthy certificates of ability would be of service to employers and employed alike, we cannot doubt. It is true that, so far as we are aware, no precedent for such a system is found in other art industries; but photography is an art or art-science sui generis, demanding a range of culture and accomplishment probably not required in any other skilled industry. And whilst, for occupying a responsible position in a high-class studio, the operator requires this comprehensive culture, time alone will demonstrate to an employer whether it is possessed by the operator or not, and the probation at times is a hazardous one. The existence of absolutely trustworthy certificates would unquestionably be a boon on both sides. But we must confess that at present we do not see any probable mode in which certain petitions for honours may be granted. A little reflection will show our correspondent that his plan is hopeless. The first question which arises in connection with his project is, how, or by whom, is the examining board to be appointed? To possess any absolute value, the certificates must come from an unchallengeable authority; and by what process can a board be secured possessing any authority whatever? If a board could be established by the universal suffrage of the photographic community, it would possess authority; but where is the machinery of obtaining such suffrage? A body like the Photographic Society of London might have appointed examiners if the project had commended itself to the council, and some weight would have attached to the certificate of such examiners; but the antagonisms introduced by the unhappy disruption of a couple of years ago has weakened its prestige, even if such a scheme should now be undertaken by the Society. The possible project whereby a plan of granting certificates can be satisfactorily carried out is yet, we fear, to be discovered. If our correspondent can point out a satisfactory mode of obtaining a board whose diploma shall be accepted by the community as an authoritative test of ability, then the simplicity of the proposal will undoubtedly commend it; but failing this, we fear it falls to the ground.

TOUGHENED GLASS.

The hopes which suddenly sprang into existence on the announcement of M. Bastie’s discovery a few months ago, in enthusiastic minds, in relation to the numberless advantages to be derived from the use of glass rendered tough or malleable, are scarcely likely, it seems, on more careful examination of the facts, to be realized. The Samuelian photographer found glass negatives which would not break, and new leucite was specially exulted as being possible by the use of glass increased density; whilst for the industrial arts generally the new material promised new powers which could scarcely be fully estimated. The wish was probably in great measure father to the thought. The idea of producing malleable or flexible glass has been a dream of the experimental mind for centuries, and vague traditions of such a substance have long been in existence. Hence, incompatible, as general experience has proved, as is the idea of flexibility, toughness, or malleability with the known characteristics of glass, a general tendency was manifested to accept and exaggerate the announcement of a discovery involving some of the desirable but incompatible qualities. On further examination it appears that, important as may be the discovery of M. Bastie, it does not involve the production of any of the qualities in glass which are likely to prove of vital importance to the photographer. Properly speaking, the glass is not toughened, and is certainly not in any sense rendered malleable. It is hardened, and rendered capable of bearing somewhat rougher usage without breaking; but it is not rendered unbreakable, and when it does break, it is not a simple crack which might be remedied; the fracture is complete and irremediable, and the glass is shattered to atoms. For negatives, therefore, its increased resistance to fracture would scarcely be a compensation for the incompleteness and irremediable character of the fracture when it does take place. A further serious drawback is found in the facts that it cannot be cut with a diamond in the usual way—a fatal difficulty so far as negatives are concerned. Neither is it likely to prove of value for optical purposes, as, so far as experience yet goes, glass treated by M. Bastie’s process is not homogeneous in texture, a condition of vital importance in the manufacture of lenses.

It is probable that for glass baths and dishes for photographic use the hardened glass may still prove valuable, and possibly for other unexplored purposes in photography. In the meantime we refer our readers to an interesting communication on another page by Mr. Gaffield, to whom our readers have on former occasions been indebted for valuable information in relation to glass and its qualities in relation to photography.

ARTIFICIAL PHOTOGENIC LIGHTS.

BY PHOTO. CHEMIST.

Your correspondent, Mr. Latchmore, suggests the light obtained by the combustion of nitre and sulphur for use in photography, and very correctly states that “the nitre must
be in a thoroughly melted state before the sulphur is dropped in." But has Mr. Latchmone tried the experiment of thus melting sufficient nitre (and keeping it melted) for the time necessary for taking a picture? Melting (say three or four ounces of nitre) is, to inexperienced hands, rather a ticklish operation, remembering that should organic matter (as, for instance, a piece of paper) come in contact, an amount of desfiguration almost amounting to explosion would instantly occur.

But there is an equal if not superior light to be obtained without this danger, and literally without trouble or risk, by a very simple process: namely, to fill a small vessel of censure half full of “toughened glass” which, with some slight modifications, have appeared in a Boston journal. The interest of the matter to photographers induces Mr. Gaffield to place these details before our readers.

It is time that some one set our newspapers right in regard to the manufacture of tempered or toughened glass by M. de la Bastie, of France. The journals speak of it as “unbreakable glass,” and as “malleable glass,” or “almost malleable.” The inventor and his agents make much of its malleability, but tin and lead are much tougher than ordinary glass. The earliest account ever given of malleable glass is in a fabulous story told of Tiberias, the Roman emperor, that he decapitated the only man who possessed the secret of making it, and, I think, it has never been believed by any practical glassmaker from that day to this. At a more modern date, a similar story was told by a French writer, but no authority for glassmaker ever speaks from personal knowledge on the subject. The story is sometimes repeated by imaginative lecturers on the so-called, and, in my opinion, wrongly called, “Lost Arts.” Malleability and brittleness in glass (I mean in the finished article) are incompatible. In the wonderful discoveries and inventions of modern times, it is not safe to say that anything cannot be done. But after handling glass from my youth, and having mastered the half-century art of making it, I give it as my opinion that we shall see white blackbirds as soon as malleable glass.

Again, the Bastie glass is not “unbreakable,” and does not claim to be. It only claims to be tempered or toughened by being dipped in a heated state in some hot oleaginous mixture. All that can be said of it, and all that is claimed, is that it is much tougher than ordinary glass. It is not annealed in oil, as the papers say. Annealing is done by passing glass through annealing ovens, and reducing it slowly from the temperature of the heated and newly finished article (of glass ware or window glass) to the ordinary temperature of the atmosphere. The Bastie glass is tempered, toughened, or hardened, by being plunged when hot into a mixture of oil and water, when soon withdrawn, and not annealed; just as we plunge a piece of hot glass into a pail of cold water, and, by thus tempering it, form the Rupert’s drop, which so puzzled the scientific people of England and other countries of Europe in former centuries.

As an interesting illustration of the remark that “there is nothing new under the sun,” may I give a few quotations from old magazines and scientific journals?

In the Gentleman’s Magazine for 1819 an article on “Tempering Glass” closes thus: “If the glasses are to be exposed to a higher temperature than that of boiling water, boil them in oil.” In an essay on “Rupert’s Drops,” read at the Royal Society in 1661, mention is made of their being made in oil, instead of water: “In sailes oil, they do not miscarry so frequently as in cold water.” In another sentence, it is said of a drop made in oil, and broken under certain conditions, that it “flies not into so small parts, nor with so smart a force and noise, as those made in water, and the pieces will hold together till they be parted.”

Before the same society, in 1749, in an essay translated from the French, on “Rupert’s Drops and the Tempering thereof,” it is said that “if the drop be ground with fine powder of emery imbibed with oil, it frequently happens that it does not burst, because the sort of oily mastic that results from the mixture stops the pores of the drop,” &c. I do not give these quotations to show any close analogy with Bastie’s experiments, but that your readers may know that experiments with hot glass and oil have been made before our day and generation.

And now, may I ask whether the Bastie glass is anything more than a Rupert’s drop on a large scale? It is much tougher and harder than common glass, because unannealed and tempered in oil; but it is not unbreakable. It only requires a harder blow to break it than common glass. It is wrong, and false to science and truth, to compare it with iron or tin. I witnessed one of the exhibitions of the tests of the strength of this glass. To be sure, mere specimens thrown on the ground did not break, but some did, and were said by the exhibitor to behave badly. All will break if allowed to fall from a greater height; and, if thrown upon a stone step, which has no elasticity, they will sometimes break at a few feet. At least, the only specimen I ever saw in Boston broke on Briggs’s doorstep in that way, although it stood other tests which it passed.

Again, it is said that it can be cut and engraved like other glass. Now, this is not true. You can cut a piece of flint glass on the wheel through its entire thickness without danger of fracture. Grind a Rupert’s drop through a short distance, and it will fly into a thousand fragments; and just so will the Bastie glass fly. I have seen a piece subjected to Tilghman’s sand-blast process which burst into myriads of fragments after penetrating a slight depth into the surface.

Again, many of the specimens exhibited are not transparent, but only translucent, having lost their transparency, I suppose, in going through the transformation; but in this manner at all, and therefore it is a misnomer, and an imposition upon the credulity of the public, to speak of it as being unbreakable as a sheet of metal.

Again, it is said that it can be cut and engraved like other glass. Now, this is not true. You can cut a piece of flint glass on the wheel through its entire thickness without danger of fracture. Grind a Rupert’s drop through a short distance, and it will fly into a thousand fragments; and just so will the Bastie glass fly. I have seen a piece subjected to Tilghman’s sand-blast process which burst into myriads of fragments after penetrating a slight depth into the surface.

Again, many of the specimens exhibited are not transparent, but only translucent, having lost their transparency, I suppose, in going through the transformation; but in this manner at all, and therefore it is a misnomer, and an imposition upon the credulity of the public, to speak of it as being unbreakable as a sheet of metal.

Again, the Bastie glass cannot be cut with a diamond. This also is a serious drawback, especially in the use of glass for photographic negatives, or for window panes, which frequently have to be cut to special sizes. It breaks in this manner at all, and therefore it is a misnomer, and an imposition upon the credulity of the public, to speak of it as being unbreakable as a sheet of metal.

Speaking of window glass leads me to say that the peculiar fracture of the Bastie glass would prejudice its general adoption by glaziers. Although it will stand a much harder blow than common glass, yet I think it would not be proof against the explosion of a neighbouring store, or against the impetus of a stone or brick thrown on purpose, or by accident. I have seen pieces of glass from the large lights cut from the broken pieces, while the Bastie glass is shattered, splinters, and is a total loss.

A baking dish of this glass, if by accident it should be broken and explode its minute fragments in the oven, would make bad work of all its contents, as broken glass is a dangerous article of diet; while a stone-ware dish would be fractured in large pieces, which could be removed without injury to the leaf of bread or cake it might contain.
A SIMPLE METHOD OF PHOTO-MECHANICAL PRINTING.

By M. Roger Laurent,

Civil Engineer, Aux Forces de Base, Indira, Loire Inferieure.

Although I have read many French and English works which treated on helio-engraving, I have not met with the process here described, which may be termed a method of printing with greasy ink from a gelatine paper block. By means of this process it is possible to reproduce pencilled sketches, drawings, engravings, and etchings of a very delicate nature upon paper, wood, stone, metal, porcelain, and glass.

While of a most serviceable character, it is a method within reach of all, and requires but very little material, only care, patience, and skill; and the occupation, moreover, is so light and agreeable that a lady might undertake it.

I will proceed forthwith with my modus operandi, and can assure those who will scrupulously follow the instructions I give that they are certain to obtain most successful results in regard to fineness and delicacy in the details of their prints.

Preparation of the sensitive gelatine paper to serve as printing-block.—1. It is necessary to choose a paper of good quality from a capable manufacturer—that is to say, free from every kind of impurity, supple, even, glazed, and water-resistant. I work with pieces the size of half a sheet of letter paper. 2. The gelatine chosen is that used by pastrycooks, and is of the best quality; it should be pure, white, diaphanous, and solid to the touch. These two conditions are indispensable. To prepare a gelatine bath of 1000 grammes capacity, 120 grammes of gelatine are put into a pitre of pure water to swell for a period of twelve hours, and in this way a thirteen per cent. solution is secured. The solution is brought about upon a water bath, and when the gelatine has all dissolved, the liquid is passed through a bit of fine linen, so that any impurity may be removed such as might work injury heretofore. Thus filtered, the warm liquid gelatine is put into a rectangular dish, either of porcelain or metal, of the size and form of the sheet of paper under treatment.

This dish is placed either upon a warm sand-bath or upon a hot water bath while the paper is faced with gelatine, the solution being maintained at a tepid temperature, so that the gelatine adheres well to the paper. It will not do to put the gelatine solution upon the paper, and I object to holding it, because of forming air-bubbles, which must be avoided altogether upon the gelatine paper. If the solution is too cold the film will be too thick upon the paper, and the prints produced will lack delicacy. The bath is carefully skimmed before use, either by means of a quill feather or a piece of paper, which removes the skin formed upon the gelatine bath.

A sheet of paper about half letter size is, perhaps, the most convenient to use, and this is taken by two of its extremities and laid gently upon the warm solution in such a way that the middle touches the liquid first, and the extremities afterwards. Care is necessary in treating the sheet in this manner, so that no air-bubbles are formed, and none of the gelatine gets above the sheet of paper. The paper is allowed to float upon the gelatine bath for about thirty seconds; it is then seized by one of the corners, and lifted, not roughly, but quickly and without hesitation or pause, at one motion, out of the bath. This is one of the most delicate features of the work. The paper is allowed to drain for an instant into the bath, and then it is suspended vertically from the margin of a large basin, with a couple of fine pieces of gelatine over it. Before floating another sheet upon the gelatine bath, it is always necessary to take the precaution of skimming the solution, to remove any air-bubbles or impurity on the surface. This skimming of the bath should always be done every time a sheet of paper has been gelatinised, as the printing block will be spoilt if any foreign matter adheres to it.

The quality of the gelatine may be tested when it has set upon the paper, and there is formed at the bottom of the sheet a little cushion of gelatine; if this accumulation resists the pressure of the fingers, and feels elastic, and does not dissolve or break up, the gelatine is of good quality, and success may be relied upon. It may be remarked that the film of gelatine is then set upon the sheet when the effect is wanted and a careful operator may make use of this circumstance in reproducing pictures of more or less delicacy. A thick paper, also, has a thicker film of gelatine adhering to it than a thin one, and this fact should also be borne in mind, for the success of the process depends in a great measure upon having a film of gelatine of proper thickness.

As soon as the gelatinised sheets are perfectly dry, they are put carefully between the leaves of a book perfectly flat and even; for any doubling or breaking of the sheet militates, of course, against perfect results. The gelatine paper may be preserved indefinitely in this way, sheltered from damp, and may be sensitised as required in the bichromate of potash bath.

Sensitising the gelatine paper.—The paper is floated upon a three per cent. solution of bichromate of potash for the space of thirty seconds. The sensitising solution must be rigorously maintained at the strength mentioned, being made up by dissolving fifteen grammes of bichromate of potash in five hundred grammes, or half a litre, of water. The sensitising of the gelatine paper is conducted in the same way as the operation of gelatinising above described. If, on lifting the sheet of paper out of the liquid, there are perceived underneath any bubbles, the paper may be lowered again without any inconvenience, a thing that cannot be done when the paper is being gelatinised. The paper is removed from the sensitising bath, and hung up in a dark room to dry for a period of twenty-four hours at least. As long as the sheet is wet it is not sensitive to light; but the moment it dries great care must be taken to keep it from the light. The paper must not be used until it is perfectly dry, as otherwise the gelatine will leave the paper during the work. The sensitive paper cannot be kept long—at the most, for a week. It is best, therefore, to prepare it as wanted, for it deteriorates every day, until about the eighth day it becomes unseparable. Sensitising results are best obtained with freshly dissolved gelatine, sensitised upon a new bichromate of potash bath, and used twenty-four hours after thoroughly drying. It is well never to employ paper until it has become perfectly dry, and I would recommend that the bichromate of potash should be used only two or three times, and should be thrown away after a week.

The exposure of the gelatinised paper to light will be treated of in my next communication.

ON A PECULIAR REFLECTION-PHENOMENON OBSERVED IN PHOTOGRAPHIC PORTRAITS.

By Dr. J. Schmaus.

It is not easy, without being able to show a photograph exhibiting this phenomenon, to give my readers a clear idea of it; but I will try. I will begin by stating its probable cause. It is known that a freshly-prepared and faultless silver bath often gives over-elaborate negatives with a good light—pictures which contain detail in the darkest shadows. If you work long with such a bath, by adding any form of silver ASA for favourable modifications in its chemical constitution, you will find that which is known to us all, and which have a very marked influence upon the negatives prepared in the bath. The blacks become more and more intense, the shadows more transparent, and, in a word, the pictures become
harder. During this period, before the bath produces hard pictures altogether, there are obtained portraits occasionally of a most singular character. The clothing, even when it is dark, is well rendered, but the face exhibits generally a uniformly dark tone, with glaring high lights, which are in no way to be anticipated from the favourably lighted studio. These portraits always appear as if the sitter had a tallow face, with a stiff shiny hat, reflecting like metal; while a freshly-prepared bath would have given a well-modelled portrait. The signs of an exhausted, or rather changing bath, are to be found in the face and hands of a portrait, the outer portions leaving little to be desired.

A very busy photographer I know attributes the phenomenon to another cause, for he told me recently that it happened very often to him that he had to put freshly-prepared baths on one side on this account, and negatives thus exhibited the above-named exaggerated reflections in the face of portraits which were otherwise of a darkish tint. According to him, the phenomenon was due to the distilled water employed. He drew his supply from a chemical laboratory, and, as soon as he changed the source, he produced once more a magnificent silver bath.

Although I have not examined the water complained of, I can easily imagine that some volatile substance may have contaminated it. For this reason I should feel obliged if any gentleman could inform me further on the subject, and explain under what circumstances he has met with the phenomenon, which must not be confounded with those seen upon under-exposed or over-intensified pictures.

Correspondence.

THE LAMBERTYPE PATENT.

Dear Sir,—I decided not to take notice of all the little attacks my patents might be the object of, knowing them to be solid enough to outlive here, as they did on the Continent, all the doubts, threats, and insinuations thrown at them by envy or jealousy; but I am advised to answer, once for all, the articles published in last week's photographic press, so as to counteract the false interpretation which might arise in the minds of your readers by the misapprehension and misstatement contained in them. The first and principal reason is that I know a whole year's discussion on such a subject will be as useless and as tiresome to your readers as the one year's controversy of 1871 about the Johnson's patent, which cost a great deal of ink and bile without changing a whit the situation. This controversy might yet be continuing had you not thought it advisable to close it, so as to prevent it from becoming eternal. All patented processes have their enemies, but with this difference: that if the processes are worthless, they will have none but licensees to attack them; parties not having invested in them would not even think it worth their while to notice them; but if, on the contrary, the processes are all they are represented to be, licensees will be satisfied, whilst the few photographers who do not understand that brain-work ought to be as well remunerated as hand-work will run down those processes, which they would very much like to use, could they but have them for nothing. Hence the rage against patents. Success usually creases jealousy and enmity: failure never does. By looking through this week's advertising, it will be seen that our licensees are satisfied with the process, and the attacks against their novelty come from parties who, never having seen the practical working of our new methods, are not competent to judge of their novelty or superiority. Allow me to answer, in as few words as possible; the various articles of last week, beginning with Mr. Batho's paper in the Photographic News.

Mr. Batho seems to have as much knowledge of patent laws as he has love for our patented process. Every one who claims to have a slight knowledge of patents knows also that a patent taken out as a communication from a person abroad is equally valid as a patent taken out by the original inventor; and if Mr. Batho takes the trouble to read carefully the patent, he will see that my patents are not taken in the joint names of Lambert and Clark, but by Mr. Melville Clark, Patent Agent and Civil Engineer, being a communication from abroad by C. L. Lambert. Mr. Batho continues by saying "the invention must be new; not used before, in a business sense, even by the inventor." Everybody knows as well as Mr. Batho that the invention must be new; but, although I cannot see what relation the last part of his phrase has to my case, I must say that Mr. Batho is completely in error, if a process has been kept secret whilst being perfected, and used and known to none but the inventor, as he will learn by taking advice of Patent authorities, who will also answer his other statement: "If a reiteration claim is made, the diminishing and nothing but new along with something new, it will invalidate the patent." It is so when there are two different and separate claims, one being new and the other not new; but in a single claim you may describe two or more old things to make a new combination, producing something, or results, not produced before, or to produce some known thing or effect, quicker, or more cheaply than previously before. For instance, you may describe different known metals which, by a new combination, would produce a new sample of metallurgy. Bell metal is an example, and it would be a fit subject for a patent.

Let me here quote extract of an article by C. Stewart Drewry, of the Inner Temple, Barrister-at-Law, author of a Treatise on Invention, &c.

There is, in reality, hardly any other test of distinction in a patent than that of superior utility, when inventions run, as they frequently do, so close to each other that the distinction between them, disconnected from their relative results, is with great difficulty appreciable. It must be recollected that superior utility logically involves difference, because process A can have a certain and specific effect, and no more; and if process B does something more than process A, there must be in process B something for which there would be no additional action. It is therefore fair, and, indeed, almost unavoidable reasoning, that if you find process B producing a better effect than process A, there is novelty, however trifling it may appear to the eye. The case of Cravie v. Price may be thought to furnish reason for thinking that superior utility affords a ground for inferring novelty. In that case it was proven that the process of using cold blast in smelting furnaces with ordinary coal was common, so was the use of the hot blast for the same purpose; anthracite coal, or culm, was also known, and the use of cold blast for smelting with anthracite coal had been publicly tried, though unsuccessfully, but the hot blast had not been used with anthracite coal, and Mr. Gray claims as his invention the application of the hot blast to anthracite coal, and the patent was proved to be a valid one. It is quite settled law that a patent may be sustained for a new combination of old materials. A careful consideration of the cases upon patent rights also proves that the question that courts of law look at is this: Is there a difference? If there is, then, though it may be very slight, if utility is shown to be the result of it, judges will not set upon any theoretical views, but turn from their inner consciousness as to the quantity of invention.

I claim an essential difference between Mr. Crompton's process as described December 24th, 1873, and mine; and I can prove, practically, that utility and advantages are the results of that difference. Allow me to compare both processes side by side:
Lambert's Specification.

What I claim as the invention by the hereinafter in part recited Letters Patent is the method of applying a semi-translucent sheet on each side of a negative or positive, and of quickly and rapidly retouching on these surfaces as heretofore employed, will be seen in specification, this—

I: a thin paper specially prepared with a varnish, and subjected to great pressure, and known as mineral paper, or any other semi-translucent materials capable of receiving the colouring matter to be afterwards employed. On these two surfaces I retouch by applying them, either on the colloid side or on reverse side, an impalpable gelatin-plastic powder with stumps, &c.

Now, it will be seen by any fair-minded photographer that Mr. Crompton's process consists simply in retouching with the tracing-paper on the reverse side of the negative, and, for example, the same thing through another sheet of tracing-paper, on which he does not retouch. Our process is as different to this as a negative is different from a positive.

On every negative, or positive, even landscape negatives, where there is no wrinkle or texture of faces, I strain on both sides a sheet of mineral paper, not so much to print that I reduce the image by any lines and light, but it would objectionable wrinkles, as to serve as a vehicle for retouching with impalpable powder applied with stumps; the mineral paper thus employed on both sides of a negative having the effect of neutralising, by its optical combination, the defects due to the materials of which it is composed, and which, when seen separately, exhibits a clear and distinct grain.

In Mr. Crompton's process, all the retouching being done on the sheet of paper strained on the reverse side of the negative, will, being necessarily out of focus, produce muzziness, but not softness; and the application of Canada balsam on the same side will not only annihilate the pencil retouching already made, but will also, in rendering the tracing-paper on the reverse side of the negative translucent, allow the grain of the paper on the colloid side to show, and thus producing coarseness. I claim, furthermore, that it is impossible to produce gradations of densities and lights by the use of Canada balsam, all oily substances spreading on paper. The intensification of a life-size head by the light point of a pencil, as in Mr. Crompton's description, and Mrs. Lock's art is a hard day's work, and will always produce a granular effect. The application of impalpable powder with large stumps will instantly produce intensification, and give prints completely free from grain, provided there is also retouching on the other side of the negative. I claim, furthermore, that the retouching, being done only on one side of the negative, as in Mr. Crompton's description, will never produce but poor results, never to be compared to beauty and work obtained with negatives with our mode of retouching, for this very good reason: that spotting, lines, and details must be in focus, or made on the paper strain on the colloid side, whilst intensification and broad effects of lights and shadows must be out of focus, or on the paper strain on the reverse side of the negative. This is what constitutes our patented process, not under consideration.

In the first place, it is not necessary to go into further details to prove to any fair-minded photographer that effects will be obtained by the Lamberttype process infinitely superior to and in an easier manner than Mr. Crompton's method. Not wishing to tire your readers longer with useless controversy on this subject, I will offer a fair and honest chance to Messrs. Samuel Fry, Slingsby, Brothers, and Batho, to prove by work, instead of by words and insinuations, the truth of their statement that my process is the one described in 1879.

Independently of my standing challenge, and so that the amount risked be no bar to acceptance, I propose that either Mr. Samuel Fry, Mr. Slingsby, Mr. Brothers, Mr. Batho, or any other photographer sharing their opinion, or Mr. Crompton himself, accept the offer I am about to give. Messrs. Fry, Brothers, and Slingsby claim to have worked Mr. Crompton's method six months longer than I have practiced my own, so I doubt not as much as am between us. Now this will be a fair trial of the real merit of the two processes in question, unless they prefer testing the validity of my patents in the competent courts of this land, which I am always prepared to do.

This is the proposal I make to settle this matter definitely. I invite any of these gentlemen, or others claiming my patented process to be the same as that described in my stand-up challenge in advertisement, but with this difference: that if the party accepting my proposal does not succeed in producing as good results by Mr. Crompton's method as those produced by me, he will lose nothing. If, on the contrary, he succeeds in equalling the results of my patented process, I will pay £50, now deposited in the Bank of England, to the County and Session Recorder of the Borough of Dorking, at the sign of the Rose, mid, mosque, or any such trifle, to Mr. Crompton (whose talents have no greater admirer than myself), as suggested by Mr. Slingsby, nor will I pay the money to swell the consistory fund proposed by the same gentleman, as such a fund is illegal; but I will remit the £50 to the London Photographic Society, to be used for benevolent purposes as any may elect.

This being a challenge of £50 against nothing, we shall consider any further attack on our patents from parties not daring to accept our proposal, and thus stop all further useless discussion, as cowardly and not worthy of further notice. This trial will also prove the validity of our Lamberttype patent, as it will show if there is or if there is not a difference in the two methods; as far as a difference, and utility or advantage can be proved to be the result of that difference, it will prove the validity of our patents.

In answer to Mr. Brothers, of Manchester, who says, "How can a novice be able to add high lights?" &c., we shall answer that we do not claim that an unskilled hand will add effects not existing in original; but we claim that a little skill is not necessary to strengthen high lights or shades already existing, by our process; as, instead of drawing, it is simple tracing which is needed, and that the man the most devoid of artistic skill, but possessing a little taste, will produce, in a few minutes, better results with our process than he could in as many hours with any other method.

It should also state that when Mr. Fry asserts that he has seen the practical working of the Lamberttype process, which took several hours, he makes an erroneous statement, as we can prove, by the six photographers who were present, and of whose photographic knowledge Mr. Samuel Fry gives such a flattering opinion in your last issue, that Mr. Fry did not see the working of the Lamberttype. Knowing in what capacity that gentleman came, I showed him the type and allowed him to assist in the printing and developing of chromotype, the same as we always do to visitors not licensees. I notice with pleasure that those gentlemen attacking my patents, hoping they might fall into their hands free of charge, have not yet had the courage to say a word against the great advantages offered by my processes; perhaps they admit it is no use fighting against plain evidence—Yours respectfully, LAMBERT.
LAMBERTYPE—REWARDS FOR INVENTORS.

Dear Sir,—It is interesting and instructive to observe the keen interest which any real improvement in their art excites among photographic artists. The new method recently brought from France, under the names of Lambertype and Chromotype, seem to attract universal attention. The common opinion seems to be that the processes are very good, but doubts seem to prevail as to the validity of the patent, and these doubts can only be cleared up in a court of law, by tedious and costly proceedings. Patent law, if one may judge by the varying opinion of counsel given on the same case, is well understood by patent lawyers, so that the "glorious uncertainty of the law" is made tenfold more uncertain. For my own part, I am in considerable doubt as to whether I shall take a licence, or refrain from using the method in question, or, using it, risk the terror of a Chancery suit.

But if I use the Lambertype process without a licence, I am at some risk; for, which the gentlemen whose attacks upon M. Lambert’s patent appeared in your last seem to overlook. They all say that the discovery belongs to Mr. Croughton, who first published it. Some of them—and if one, perhaps many—have been using it a long time. Mr. Fry says he has used it a year and a half. As it is the legality of the patent, and not the goodness of the method which is in doubt, there is no doubt about patent for the process if the patent had been good, and they had really been indebted to Mr. Croughton for it. This being so, are they not equally bound to pay something in meal or malt to Mr. Croughton? In proposing to abolish patents, it has been urged that the true inventor would generally be rewarded by the voluntary generosity of the community. In this case it is distinctly admitted that Mr. Croughton had published a valuable process which has been adopted by many. Has one of these gentlemen ever sent to Mr. Croughton a letter of thanks or a coin of the realm, or even thought about him until now, when he is useful to play off against M. Lambert? To what extent the use of paper on the negative may interfere with M. Lambert’s patent probably a vice-chancellor will be able to say when it has been argued before him; but if Mr. Croughton’s prior publication be the real origin of the use of this method, I think some tangible expression of gratitude to him is due from every photographer who has adopted it, and especially from those who have already publicly expressed their indebtedness to his paper.—Yours very truly, Sigma.

TESTING VALIDITY OF PATENTS.

Sir,—Will you permit me, in the interest of a large section of your readers—I refer to amateur photographers—to offer a protest and suggestion. My protest is against permitting such a large amount of your space to be occupied by the discussion of the claims of a patent, which, if the letter-writers in your last believe what they say, do not need discussion. Mr. Basho, in a paper read at a society, and Mr. Slugey in letters in your paper, both affirm that the illegality of M. Lambert’s patent is as “plain as way to parish church.” This may be so or not; but if it be, why waste so much space in your paper in saying so? A thing so plain scarcely should need saying at all. Are these gentlemen like a timid schoolboy in the dark, who keeps repeating to himself that there is nothing to fear, to try and assure himself that he is not afraid? I must have venture, however, to insert this protest if I had not also a suggestion to offer. It is simply this: let any of the gentlemen who are so profoundly convinced that this patent is worthless, draw upon himself the fire of the patentee by writing to him saying that he is using the process without a licence, and intends to do so. If the patentee means business by the statements in his prospectus he will at once commence a suit, and a decision in a court of Chancery will at once settle a question which will never be settled by discussions which have so little interest to many like yours truly.

ON THE PRESENT POSITION OF OPERATORS, ETC.

Sir,—After having been very many years in business on my own account, I was, from misfortune, a short time since, obliged to seek employment as an operator, &c. I advertised as usual, and received many letters from first-class houses, but as I had no "testimonials" all treated me with more or less suspicion. Now "testimonials" are not so very reliable, as there are many employers who are not thoroughly proficient in photographic work, and, therefore, not competent to judge of the abilities of another. Under the present system the position of an operator is anything but enviable. A good man will, if he is allowed entire charge and management of his chemicals, produce good work even under difficulties of badly-lighted studios, &c., but he does not get the credit of it, and cannot, therefore, gain a name while in a subordinate position. He is, in fact, entirely at the mercy of his employer; as he has to look to him for a "testimonial," his position is little better than that of a monial servant. I do not wish for a moment to speak disrespectfully of employers generally, but simply express my opinion that, a more equitable system might be adopted, with advantage both to employer and employee.

I propose that two or three gentlemen whose principles and abilities as practical photographers are beyond dispute (yourself for one, for instance) would form a board of examination; there are many studios in London devoted to experimental purposes which might be adapted for the purpose (Bouch’s, for instance). I propose two classes, viz., first and second class certificate; second class certificate proving a man to be competent to operate under supervision; a first-class certificate proving a man to be competent to take entire charge of a business, good retouching to be considered an extra ability. Let the board of examiners charge sufficient for certificates to remunerate them for their trouble, time, &c. (say five guineas for a first-class and three guineas for a second-class certificate). These should be some standards of pay for operators (they at present two guineas for second class, and from three guineas for first-class operators, good retouching to command extra pay in either grade); hours of attendance 9 till 6.

I, for one, would enter my name for a first-class certificate with retouching, and believe almost every competent operator would at once send his name in, as it would put them on a much better footing. They would only require a certificate from their employer for sobriety, honesty, industry, &c. Employers would, I think, heartily join in the scheme; they could then engage an operator with much more confidence than at present, and it would shut out many "duffers" professing to be operators, or consign them to the tender mercies of the gentlemen who do the "frame and all complete for sixpence" business.—Yours, &c.

An Old Photographer.

Talk in the Studio.

Mr. Vanderwende’s New System of Lighting.—Since we announced, some months ago, that a studio of entirely novel and singularly ingenious and efficient construction, affording, so far as we could judge, from examination of a model, beyond all comparison the best system of lighting which had yet been devised, we have received many enquiries on the subject, to which we could give no immediate definite answer. We hope in our next to be able to give full details, as we have just received an invitation to visit and examine the first completed studio upon this principle, which has been erected in Regent Street. Our readers may therefore look for full information in our next.

The Electric News.—A new weekly journal, devoted to
electrical science, entitled, "The Electrical News and Telegraph Reporter," has just been commenced, under the editorship of Mr. W. Crocke. There is undoubtedly room for such a journal, and the great abilities and experience of the Editor promise success for the new venture.

Black and White Plates during Long Exposure.—We have a method of preserving them which is more simple and convenient than anything we have seen in print, and is as follows:—flow the sensitive plate (without washing) with bath solution seven parts, glycerin one part, as you do a redyed plate, smoothly. Now again before developing if the plate has stood long, and the developer will flow a little better than if it is omitted. Plates will keep two or three hours treated in this way.—Philadelphia Photographic.

Blisteres.—Some brands of albumen paper are subject to blisters the instant they come from the bath solution. To prevent this, remove the prints, when fixed, from the hypo into a dish of salt water (a handful of salt to a gallon of water) before the regular washing, and allow them to remain therein for several minutes.

To Correspondents.

G. M. F.—We do not approve of long soaking as a mode of washing prints under any circumstances; but if you prefer to try it, there are two or three imperative conditions to be remembered:—first, the prints must have received a good washing in several rapid changes of water before; and, next, the washes after which the prints are soaked should be in motion and constant change; and, next, the prints must be kept in motion, and kept from standing in any stagnant water.

LANDSCAPE.—It is a difficult thing to state the fair charge for going out to take a negative, as so much depends on your ordinary charges and other circumstances: say a couple of guineas for the sitting, and 6s. each for a dozen or half a dozen 10 by 8 prints. This would be moderate.

COLLOIDION.—You describe the common defects which characterize a horrid, repellant colloidion. The defects are most manifest when the most minute detail is required, and will gradually diminish as it gets older. In the meantime, add a few drops of water to each ounce, a drop at a time, shaking well between each addition.

OXFORD.—If you had stated details of the treatment your developed print had received, giving precise mode of production, we could have advised you with more certainty. It has the appearance of having been toned without having been perfectly washed after fixing. This would cause the discolouration. 2. The lighting of the card portrait enclosed is good. 3. Two parts of ether and one of alcohol. Take care that each is sufficiently highly rectified. The whites of Hill Norris' dry plates are best developed by first applying plain pyro (a solution about three times the ounce), and, after a trace of an image appears, pour off the solution and add to it a few drops of citro-silver solution, and apply again the plate to the dry developer. I do not learn of any citro-silver solution may be made by dissolving thirty grams of citric acid and twenty grams of nitrate of silver in an ounce of water.

HOP.—The general case of prints turning yellow is imperfect fixing or imperfect washing, either case, washing in solution of hypo-sulphite of silver in the print, liberating sulphur and causing the formation of the yellow compound of sulphur and silver. Perfect fixing in fresh neutral hypo-sulphite of soda used in the dark, followed by thorough washing in many rapid changes of water, will generally ensure to the print a tolerably long tenure of existence without change.

B. M.—Nitric acid is of course a much stranger restrainer than acetic; but its use tends to the production of a thin white image, not suited for negatives.

A. L.—We are not familiar with the special sample of paper you mention, but blistering is a defect to which many samples of albumened paper are liable in hot weather. It is most frequently found in very highly albumened samples of Rice, which give great brilliancy. Some difference of opinion prevails as to the causes. So far as we can come to a conclusion, it is due largely to the thick coating of albumen being imperfectly coated through the thickness, and the portions not properly coated, being in contact with this paper, become dissolved during the processes of toning and fixing, allowing the coagulated portions to leave the paper in irregular patches, forming blisters. Many photographers have proposed various remedies. One plan is proposed when the paper has become dissolved, to soak the paper in a sufficient length of time in a salt bath not too strong, to secure coagulation throughout the thickness of the film of albumen. Another plan consists in adding ether or alcohol to the fixer; or could be purified alcohol before the washing, or could be purified alcohol before the washing. Another plan consists in immersing the paper in a solution of albumen immediately after toning and before fixing. You will find the subject much discussed in our Year-Books for the last few years.

THOMAS HUTCHINSON.—Either boiling or sunning will affect a plate. If you have facility, boil for a few minutes in an evaporating dish, over a Bunsen's burner; then filter through pure cotton wool. If you have not facilities for boiling, pour the solution into a flat dish and expose for a few days to the strongest sunlight in which this curious summer weather favors. This will throw down the contaminating matter, and you will doubtless find the bath work all right. It is as well to neutralize by the addition of a little of carbonate of soda.

J. Harrison.—We have already more than once expressed an opinion of the Lambert process. In autumn last we described details of the working which we had seen in Paris, and we exhibited in The Photographic Exhibition last November some charming examples. There can be no question that all, or the greater portion of the parts have been employed before; but as we said nine months ago, they appear to have been combined by M. Lambert into a system which has not been used before. Whether this system is legitimate subject for a patent can only be decided by authorities learned in patent law, and these, we understand, have pronounced in its favour. 2. We cannot profess authoritatively to decide in patents law; but, so far as we understand the matter, the writer of the paper to which you refer is in error on several of the points to which you refer. You may possibly have the thing which you have seen for years, and although a no publication has taken place. If you claim as new that which is proved to be old it may invalidate a patent; but the old method may be re-used in your specification as a necessary part of your new method of use. In such cases give you any property in the old method. For your other queries, you must refer to a patent lawyer, who will probably tell you that the validity of any patent can never be decided until it has been well litigated, and will perhaps quote for your edification the famous protracted cases of the Betts Camera Company. In which, if we remember rightly, the patent was maintained notwithstanding that all the parts were known before, but some slight modification in the combination was introduced which improved the final result. The new Patent Bill has, you have probably seen, been brought in for the present session.

L. W. W.—We cannot possibly answer your question in detail, as it is received just as we are going to press. But in any case you will do well to see the details of Mr. Vanderwyde's new study, which will appear in our next, before you proceed further.

M. L.—Until you have become united with the New York art societies, you will find it difficult to collect all kinds of paper, say quarter sheets, upon the silver bath. You will soon get over the difficulty of the air-bubbles. Take the sheet by opposite corners, lifting them so as to cause the centre of the sheet to curl downwards, lower it in the solution, allowing the curved centre to touch the solution first, then gently lower the corners in such a manner that the paper, gradually coming into contact with the solution from the center, gradually drier as bubbles formed to the edges, and finally away from the sheet. If you fear bubbles have formed under the sheet, gently lift it at one corner and remove them. The time of floating depends on temperature, strength of the solution, on the paper, and may vary with circumstances from one to three minutes.

Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Photography and Stage Management.—Mr. Moody’s Portraits—Photographs of Meteorites—Coating Iron with Copper.

Photography and Stage Management.—In an article upon “Stage Costumes” the Globe recently called attention to the progress that has been made of late years in the manner of dressing and make-up used in the last generation that any attempt has been made to ensure correct costumes in historical or other plays. In the days even of Mrs. Siddons, Mrs. Yates, and Mrs. Pritchard, Roman ladies on the stage wore hoops, and powdered hair and feathers, and the gentleman were nearly as bad, for Garrick and Betterton never studied pictures of the period when they acted. The way photographs have materially assisted the dressers in this respect. In fact, the idea of making exact copies of the pictures of the great masters of the camera is at the present time in vogue. The Globe thinks that this improvement is due to the advent of photography, which has “rendered great portrait painters’ work so familiar to us.” It is only the very first paintings that are engraved and circulated throughout the world, and there are many pictures, most valuable in showing us costumes of the period, which possess, however, little value besides. These pictures it is which photography has been the means of disseminating, and thus we have been placed in a position to know what dresses were employed in Venice, or Verona, or elsewhere, many years ago, and are enabled to mount our pieces at the theatre with more respect to truth. There may be no fixed dates to play like Hamlet, Othello, and Macbeth, but the costumes, headdresses, and the like, are either hamlet, or simply received from the wardrobe department. The dresses in such plays, everybody must admit, have acquired much credit for appearing as Hamlet in a flaxen wig; for a prince of Denmark, Fechter argued, would probably have light brown hair, like most Scandinavians. He forgot, however, that the same rule would apply to the courtiers and all the supernumeraries upon the stage, and that the majority of these should have worn flaxen wigs. In yet another instance, the Globe has materially assisted the designer and that is in the scenery. Stage painters need not have travelled all over the world to get an idea of the varied scenery of different countries, or the architecture and internal fittings of foreign palaces, and the like, where the action of a play is carried on. Photography has stopped in here very aptly, and a street in Milan, or a square in Seville, may be brought upon the stage and given by water saturated with bromine, as Dr. Flight has treated his specimen, or in any other approved manner, there are to be seen markings of a peculiar form, crossing each other in all directions, in pieces of the regular fibre which is developed on etching an ordinary iron surface. These markings may, naturally enough, be photographed, and Dr. Flight has accordingly illustrated a paper which he has written upon the marks, or Wildman-stiitten figures, as they are called. The particular meteor he shows comes from Toluca, in Mexico, and there is no doubt that this simple plan of etching the metal is one of the readiest and most conclusive tests for meteoric iron.

Coating Iron with Copper.—A simple and effective method of coating iron or steel with copper is given in the Polytechnical Journal, the details of which may be of interest to photographers, since the rusting of iron and steel articles is often a vexatious circumstance. Dipping iron into a solution of copper sulphate will sometimes bring about all one may desire; but to ensure a substantial coating, a more complicated method is necessary. A fused mixture consisting of one part of chloride of copper, five to six parts of charcoal, and a little charcoal is broken up and the object to be coated is dipped into it. To hasten the coating process, it is well to bring the dipped object into contact with the negative pole of a battery. Another plan is to dip the iron or steel in a solution of oxalate of copper and bichromate of soda, made up with ten to fifteen times their bulk of water, and slightly acidified by means of tartaric or oxalic acid. Another plan still, described in the Journal, is to coat the object into which the surface of which is covered with a flux of cryolite and phosphoric acid, the iron being first of all heated to the temperature of the fused metal. Gypsum, we may mention, is a native fluoric of soda and aluminium.
PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HEIGHWAY.

CHAPTER XII.

THE GLASS HOUSE FURNITURE AND ACCESSORIES.

As I said in the last chapter, let a little tasteful adornment make the glass house cheerful and pleasant to the eye. It is not always necessary there be any extravagance to accomplish this. The walls and unglazed portion of the roof may be painted in one of the many greys which are so very pretty, avoiding a tint, of course, which casts troublesome reflections. A simple decorative bordering, while adding little to the expense, gives a finish and beauty it should be our object to secure. Many object to painting the walls on account of the sunlight, but supposing it to be an object to keep the studio clean and bright-looking, it is by far cheaper in the long run than paper, as it not only wears better, but may be cleaned, and in itself more elements of beauty than even expensive wall-paper. Pictures for the walls are a great adornment, but, in advising their introduction, there are several objections; they are not absolutely necessary, and if the circle is not to be seen they have but little reach of everybody, and it is so easy to mar the most handsomely room with rubbish. If you have pictures at all, let them be examples of art—it will be edifying to you to study. Engravings of the studies of good masters are perhaps the safest and wisest purchases you can make, and I am of opinion their influence in your gallery will not be thrown away. And, if you have to make your own work in tasteful display, you can do a great deal to relieve the monotony of bare walls.

A frame of specimens of the different styles of pictures made is very useful to assist the sitter in his choice when undecided.

BACKGROUNDS

are of great variety—some in good taste—others, most, quite the reverse. In a portrait, though the head is of first consideration, the background should have some thought bestowed on it, and a plain, uniform background is the worst you can have.

A carefully graduated background is one of the most useful you can select, so that you can secure relief and contrast to the figure.

A background painted to represent the effect of light falling on a grey cone is one of the best forms of ground for head and bust portraiture, the lighted portions of the figure being in contrast with the darker shade of the ground behind, and the shadow side being relieved by the lighter shade of the background. This style of background is a very good substitute for the cone itself (having the advantage, of being lighter), but the cone admits of more variety of illumination. For the benefit of those who have not seen or read any description of the conical background, I will explain its construction.

The Conical Background.—A circular piece of zinc, cardboard, or other material, of five or six feet in diameter, is slit to the centre; by overlapping the edges of the cut, the cone is formed. The circle is then cut in, and the outside of the circle is contracted in size, but retains its circular shape, assuming the conical form. Fixed in this form it is mounted on a head-rest base, in which it may be moved up and down as required.

The effect, when placed behind a sitter, is to produce shadow on the conical background, where the light strikes the sitter, sharpened. The explanation of this may be understood in a moment, the edge of background nearest the light casting a delicate shadow, of more perfect gradation than the most cunning brush can produce, and the opposite side of the background, that farthest from the light, and behind the shaded side of the sitter, is illuminated by the rays of light falling on its surface.

Hats are generally to be avoided as a dangerous experiment, exposed and subject to the work of an artist, and used by an artist. They should always be suggestive, rather than the sharply-defined and thoroughly unnatural backgrounds too often seen in photographs.

For an interior, the effect of light shining through a casement half hidden by a projection, or piece of massive furniture in shadow, may give variety, which will prove agreeable—but be careful that the natural light falls on the sitter in the same direction as that pictured on the background.

ACCESSORIES

In the introduction of accessories there is scope for great artistic taste.

For exteriors, rocks, stumps, shrubbery, gateways, &c., may be introduced with good effect, with a background suggestive of the open air. One of the great dangers of the introduction of accessories is over-doing it, bringing together a lot of incongruous objects, which must be avoided at any risk.

For interiors there is greater variety—and greater dangers of overcrowding chairs; tables, statuettes, pictures, curtains, hassocks, &c., will be found effective if judiciously introduced.

The posing chair, or high-backed chair, for standing figures, is a very useful accessory, but one generally abused, for, as a rule, where it becomes an adjunct of the gallery, it thenceforward enters into all the pictures. In using it let the pose be made that the figure rests on it, not lean, whereby a stoop is introduced, and the lines of the figure are destroyed.

The curtain of silk or repp is also a graceful accessory when not used too often. By it many beautiful lines are introduced into the picture, and it is often of great use in hiding and breaking up ugly lines, and for hiding the lower portion of the rest.

THE POSING PLATFORM

is very valuable, as by it a sitter can be moved to adjust the illumination without being disturbed. It is a structure resting on a table-top and castors on which the sitter's chair is placed, with two upright handles by which the sitter can be wheeled to any part of the gallery without alteration of the pose. Nothing is so annoying to sitter and operator alike than that every trifling change necessitates disturbing the subject. A favourable and easy pose is often lost, because of a change of position is necessary for better illumination, and the trouble and fear of annoying the sitter often excuses the operator seeking to secure a better light, by a movement of the posing chair; whilst the adoption of the platform would obviate all the annoyance, and much of the operator's labour.

SCREENS AND REFLECTORS.

The light may be modified and directed to a very considerable extent by the aid of screens and reflectors, and by their judicious use an awkward light may be converted to a great extent into a fine one. Even the exaggerated effect produced by the top light and the side light may be obviated.

With the top light alone, the effect is to exaggerate the projections of the brows, cheek bones, and nose, and to give the eyes a sunken and deep-set appearance, by the heavy shadows cast by those projections. Here a screen of one or two thicknesses of tissue paper fixed over the head of the sitter tends to cut off the direct beam of light, while reflectors are placed at such an angle as to reflect light into the dark shadows, care being taken not to entirely destroy them or produce false lights.

The side light produces a "hatchet" expression, the face assuming a wedge-shaped appearance, in consequence of the light, strong from one source and lacking diffusion, striking that side of the face nearest it, and causing a sharp shadow on the other side, giving a flat appearance to both. Here a reflector above the sitter, placed at an angle to catch the light, reflects it down on the sitter, and causes the diffusion of rays we get in the combined top and side light. Reflectors on the shadow side aid in the modelling of the face. In these extreme cases I have roughly sketched the best working light they are the work of an artist, and used by an artist. The effect should always be suggestive, rather than the sharply-defined and thoroughly
watched, that too much light is not reflected, whereby the shadows are cut up and destroyed. The best form of reflector is a light frame on which is stretched white calico or paper, set on centre-pivot, an upright movable stand, so that the reflector will move to any required angle.

Screens may be of the same form, tissue paper being substituted for the opaque calico or paper. One of the tissue paper, stretched on a hoop or light frame for shading the top of the head from too strong top light, should also be provided.

THE PRACTICAL PRINTER IN AMERICA.

XXXIII.

CAUSES OF FAILURES IN ALBUMEN AND PLAIN PAPER PRINTING.

In this chapter we shall give the causes and the remedies of the failures that are constantly occurring, both in albumen and plain paper printing.

Albumen Paper.

There is considerable fault found with some of the albumen paper which is in a great measure unnecessary. Now, there is no paper manufactured and successfully worked by a few photographic printers, but that can be worked equally well by anyone if they were to try to work it, and not discard it if the first (trial) sheet should not happen to work as it might be wished by the printer.

There is no necessity for sensitizing, the very first thing, six, eight, or a dozen sheets of paper, the working of which the printer is unfamiliar with, and then, because it is sensitized, to print and tone it all up.

Do not keep on printing day after day when the paper is working badly, but stop off short, even if the best part of a day is wasted, and work constantly in every way and manner until you are through with your difficulty, and then your work will again be excellent.

There are some faults, however, with the albumen papers which rightfully give them the name of poor paper, and such I will here give.

Uneven Albumenizing.

This unevenness in the albumenizing of the paper can readily be seen by examining the paper, and noticing how much thicker the albumen is on one side of the sheet than it is on the other.

This unevenness will sometimes affect the resulting prints of the same negative printed on different parts of the same sheet of paper, some of the paper being much more uniform in albumenize other's, which is accounted for on the ground of the albumen being thicker on the paper on which the more brilliant prints were made.

Paper Repelling the Bath Solution.

The albumen on the paper is too dry and horny. Let it remain in a damp and rather cool place overnight, and be sure and float the paper when it is damp, and not let it remain in a warm room before floating. If it is only for a few minutes, as it will immediately become horny again.

Tear-Drops.

These are caused by the same reason, and, in fact, are often the result of the above. The tear-drops accumulate in spots over the paper, and while the rest of the paper is dry these spots will not be so. To avoid it in future, have your paper damp and the bath not too strong; and to save the paper on which these spots already have appeared, blot the superfluous solution with blotting-paper.

Drawing the paper over a glass rod will often cure it.

Albumen Spots and Streaks.

These are caused by carelessness in albumenizing; the spots by albumen spattering on the paper, the streaks by this albumen running down the sides. If the paper is hung over a line to dry. These streaks are generally in the middle of the sheet, and run either in the direction of its length or width, and very often diagonally.

Metallic Spots.

These are found in almost all of the albumen papers that I have used, and owing to the partiality which the Rives paper has for it, the Saxo paper is very much preferred by many photographers. A当局 there is none found in that particular paper. It is occasioned in various ways: often in the drying of the freshly-albumenized paper. When so caused, it is owing to clouds of iron-dust, which are set in motion by draughts, &c., which settle on the paper, as before said, while drying. The (iron) dust generally originates from the iron rust on the stoves which are used in keeping the rooms hot for the purpose of drying the paper, or from the machinery.

Metallic spots occur also from some local cause in the printing room, probably while drying, after it is sensitized on the printing bath. The gas stove, which has become rusty (varnish it all over when it is so) either from drops of water which have been carelessly spilt on it, or from dampness of the air, detaches some particles of it in the air by the draughts, which are numerous as soon as the stove is lighted, and, settling on the paper while wet with silver, will cause a very decided metallic-looking spot or stain on the paper, and which appears to be more of a stain caused by the iron-rust coming in contact with the silver, than it does like a piece of iron-rust; and, as a very small amount of dust of this kind will cause these metallic spots, we are led to believe that the metallic spots are developed or decomposed on the paper, and thus, if there should only be a small cloud of dust of this kind in the air, it would finally be productive of disastrous results. This kind of dust is easily told from that which occurs in the manufacturing of the plain unalbumenized paper, or in the albumenizing of the plain paper, by picking up one of these metallic spots with a needle, and then, if the spots have accumulated in the manufacture of the plain paper, they will be found deeply imbedded in the paper, and beneath the surface of the albumen. From the appearance of the dust-out place I am led to believe that small particles of machinery, which are at times flying through the air, imbed themselves in the paper, and thus occasion the smutty appearance of the holes which have been left when the metallic spots are dug out. If they occurred in the albumenizing, they will be superficial, and before the paper is silvered will be very faint in appearance; but after it is silvered they will be brought more fully out.

When the dust has got on the paper, when freshly sensitized, it will have bad effect, but which will readily tell the examiner when it got there.

Failures in Preparing Plain Paper for Printing.

Good paper for plain paper printing can be had by using the back of albumen paper, as the salt which is mixed with the albumen in the albumenizing of the paper will, in conjunction with the albumen, make a strong print without any necessity for any more salting. I have obtained fair results by the use of the above, but large paper prepared as given in a former chapter with greater success, but in case of emergency the other way will answer.

Anderson recommends for salting a solution of five grains of chloride of ammonium to the ounce of water. He says nothing about the use of gelatine in the solution, but I find that the prints are much better if a couple of grains or so of the gelatine are added to every ounce of water. An India-ink artist also informs me that the paper works better with it than without it.

If the prints have a sunk-in appearance (and you are certain that it has that appearance), then the salt is used in too large a quantity in the salting. If they are flat and mean-looking prints, then the reverse is the cause. If the plain paper prints are coarse, you have used the wrong side in sensitizing, and if that is not the case, then you used the wrong side in washing the print in the alkaline solution. If the coarseness appeared after the final finishing (i.e., after it has been mounted, and before it has been worked up), then the paper has been subjected to too harsh alkalies,
probably in the toning bath. If you cannot get a print on plain paper—i.e., no signs of decent printing—probably the paper has not been salted. To determine if a paper is salted, taste a corner, and if it taste saline, then it has been; if it does not, then the reverse. If there are transparent spots all over the plain paper, you have probably handled it with greasy fingers. These disappear when finished.

A SIMPLE METHOD OF PHOTO-MECHANICAL PRINTING.

BY M. ROGER LAURENT.*

Exposure of the sensitive gelatine paper under the negative.—This process is based upon the circumstance that bichromated gelatine after exposure to light loses the property of swelling up in cold water, and easily retains the printing ink applied to its surface. If, therefore, we expose to sunlight under a negative a sheet of gelatined paper that has been treated with bichromated solution, those portions of the surface which the light has acted upon will have lost the property of swelling in cold water, and allow of ink adhering; while those parts, again, upon which the light has not been able to act, still retain the power of absorbing swelling fatty inks.

It is useless to employ a mediocre negative, for this would be simply wasting one's time and money; the cliché must be really a good one, sharply focused, clean and transparent, the shadows translucent, and the highlights opaque. This is absolutely indispensable. If it is deemed necessary, I will indicate further on how to secure a cliché well adapted to the paper used but at the present moment I will suppose I am addressing a reader familiar with all the details of photographic manipulation.

A sheet of the sensitive gelatine paper is put under a negative in a printing-frame; a north light is preferable, but if the plate is exposed in the middle of the day to direct light, it is necessary to put over the glass a sheet of tissue or ground glass; the printing must be watched with care, the progress made being checked from time to time, until one sees the picture appear in all its details, and of a fine golden sepia tint. The operation is then at an end, and, if not stopped, the surface of the paper gets burnt, and the ink adheres everywhere. At the same time all the details must show, otherwise the ink will not adhere to them.

If, after a suitable exposure, it is found that the ink does not adhere in certain portions, this is because the gelatine is too thin, and the next impression should be taken on the lower part of the sheet of paper, where the gelatine is thicker. After exposure nothing should be allowed to touch the back of the sensitive paper.

There are other precautions to be taken. As a matter of course, it is necessary that the film of gelatine when in the printing-frame touches the negative film in every part, and has beforehand been very carefully dusted. Unless this is done, the prints will be flat and bad. Round the margin is left a space of half an inch, which is required for purposes hereafter to be described.

The acid will cause the reader to not trouble him with any more remarks upon the exposure of the paper to light, although it is a most important operation, as the quality of the prints depends upon the proper solarisation of the paper. At the present moment we are in want of a good fairy to tell us the favourable moment when the light has acted sufficiently. I repeat, if it is necessary, I shall be happy to give some further details as regards the quality of the cliché, the nature of the exposure, and the production of reversed negatives upon gelatine; for it must be mentioned that only reversed negatives can be employed in this process.

Before inking the block.—After exposure in the printing frame, the gelatine paper may be kept till the morrow in a book carefully screened from light; but it will not do to preserve it beyond four-and-twenty hours in this condition, for, as photographers know, the action of the light continues. It is best if impression is put at once into cold water, to swell the gelatine and to remove the soluble chromate. The paper is left in the cold water, which is changed, and then the rincings are renewed, two or three times. This operation will take ten minutes or a quarter of an hour, the unsalted portions of gelatine swelling with the water they have absorbed. The sketch then appears finely engraved upon the surface of the paper.

As soon as the paper block has lost its yellow colour, it is withdrawn from the water, and applied at once to the glass plate, the picture uppermost. With the palm of the hand the air-bubbles are pressed out that are seen through the back of the glass, the atmospheric pressure causing the paper to adhere closely to the glass plate, which is indispensable in order to ink well. A sheet of filter paper is pressed upon the image, or, if preferred, a very soft rag, to remove the excess of water, it being necessary that the film of gelatine should be moist, but not wet.

In this condition, if the plate is held up to the light horizontally, and the exposure has been well timed, the picture is seen very clearly delineated or engraved, and the careful, patient, and persevering operator will begin to receive his reward, and be encouraged. It is then that he will proceed until the moment of the work has to be undertaken. The inking up of the impression is begun with the finger, and finished off with the lithographic roller.

Inking the block.—The ink employed is ordinary lithographic ink mixed with a little varnish (boiled linseed oil), which is worked up with a glass mixer upon a thin glass plate. The block or print having been washed, then no block of water remains upon it. A little of the ink is rubbed upon the gelatine with the end of the finger; the finger is tapped once or twice upon the ink coated glass, and then applied a little at a time to the block.

To begin by applying a lot of ink is a very great mistake. The finger is pressed lightly over the surface of the block, to apply a little ink all over. The finger is then well wiped, and passed over the block again; the block is rubbed always in the same direction across the lines, and in this way the superfluous ink is removed from the hollow portions of the gelatine, while it still remains adherent to the lines and hollows, if the exposure given above has been sufficient. Then a wet sponge is passed over to clean the whites as much as possible, the sponge being shaped like a Kenting. The ink, if the block refuses to be removed from the whites, it is a sign that the exposure was too long, or the paper employed was too old.

It is necessary to work rather fast in order that the film of gelatine may remain in a moist condition, and if it becomes too dry a wet sponge may be passed over the print again, the latter being afterwards wiped with blotting-paper before the ink is applied. As soon as the sketch appears clean and sharp under a magnifier, and the whites clean, it is ready to be placed in the printing press. I will describe the one I employ, which is a very simple affair. It is composed of two iron cylinders rolling one against another, as in the presses employed by photographers to mount and glass their pictures. The cylinders are ten to twelve centimetres in diameter, and thirty centimetres long, and they are all lined with a film of India-rubber one centimetre thick. This rolling press is placed upon a table with a platform in front and behind of the height of the point of contact between the two cylinders to receive the print on its entry and exit from the press, which is put in motion with a handle turned by hand, as everyone who has used these presses knows very well.

The lithographic rollers that I use for inking the block after the ink has once been applied are of copper, and perfectly smooth and even. They measure eighty centimetres in diameter, and eighty centimetres long, and are made up of several thicknesses of flannel. Such rollers are to be purchased at all lithographic printers, who wil.
show the manner of using them. A good roller is necessary for the production of good work.

Inking and printing.—The inked block is taken from the glass plate on which it has rested, and placed upon a thin sheet of zinc, slightly moistened with water with a damp sponge, the gelatine surface uppermost, and care must be taken that the block does not slip during the rolling.

Above the inked block is placed the white paper to receive the impression, and between the two is adjusted a mask of paper, so that the print shall have a neat margin all round it. Above are put a few thicknesses of paper by way of a pad, and a thin glazed piece of cardboard, and then the two surfaces are carefully pressed together. On its exit from the press the printing block is separated from the impression with care. If the pressure has been sufficient, all the ink will be found to have left the block, and become transferred to the paper.

The block is put into water for an instant to absorb moisture again, and is inked once more. This time, however, the inking may be done with the lithographic roller. The first prints are not, as a rule, very good, and it is only after three or four impressions that the best copies are obtained. Great care is necessary at this stage of the operation in rubbing the whites clean with the finger and the wet sponge, and the latter should always be handled with a circular movement. If the block shows a tendency to lift from the plate during the operation of inking, it must be re-applied after moistening with water, for the inking cannot be well done with air-bubbles present.

The inking is now done with the lithographic roller; and if this is a new one, it is necessary to roll it well in soapy water a day or two days beforehand, to make it supple, and to prevent the ink drying upon its surface. When the roller is thoroughly moistened with the varnish, it is scraped with a knife, with the grain of the leather, to remove any excess. It is rolled over the glass plate upon which the ink is, several times, and is then rolled upon a clean plate to mix the ink and remove the excess. The roller thus lightly charged with ink is passed over the block in every direction without bearing too much upon the gelatine film, which must not be worked too hard. When the block has been well inked in this way, it is cleaned with the finger, or with a damp sponge. Afterwards another roller is passed over, with no ink, which has first been passed over a clean plate, and this roller, on going over the block, receives any ink attached to the lines of the glass, and while it leaves the lines and in the hollows. The effect of this rolling is quite magical, for the print is made clear and sharp. The damp sponge is passed over the block, the latter dried carefully with filter-paper, and then the printing is proceeded with in the press.

Inking with the roller is better than inking with the finger, as the result is more uniform, more regular, and more delicate, and consequently the impression is sharper. The printing may be done either upon sized or unsized paper, but the latter takes the ink better. If the paper is glazed before printing, a better result is secured. With India paper the results are magnificent. A well-inked impression, which is clear in the whites, and which has been stretched on a wood block to dry, is a picture to be seen in a picture gallery framed and stained.

I do not pretend to say that the process which I have here described will rival commercially the heliographic methods which are practised on a large scale, but, at the same time, I may modestly remark that it will be found of great use to amateurs, to engravers, and to artists. It is possible to print neatly not only upon paper, but upon cloth, upon silk, upon crepes and veils, upon paper, engraving, upon lithographic stones for printing, upon metal, upon porcelain, and upon enamel, as I am prepared to show in subsequent communications, which may, I trust, be read with interest by the numerous readers of the Photographic News.
The Photographic News.

Vol. XIX. No. 882.—AUGUST 6, 1875.

CONTENTS.

- Photography In and Out of the Studio .. 373
- Practical Photography. By W. H. Notman .. 373
- The Practical Printer in America .. 374
- A Simple Apparatus for Measuring the Density of Prints, by M. H. 375
- Roger Laurent ... 376
- Photographic Notes. By M. D’Albert-Labarbe 377
- Methylal as an Accelerator .. 377
- The Vienna Photographic Exhibition ... 378
- The Chemical Process. By M. Geymet ... 378
- Wax Matches. By W. A. Nicholas .. 379
- The Last Steps of Progress in Dry-plate Work. By Dr. Vogel 379
- Mechanical Appliances for Governing Light 381
- Correspondence.—The Lambertian Patent—On the Present 381
- Position of Operators, etc. .. 382
- Talk in the Studio .. 384
- To Correspondents .. 384

METHYAL AS AN ACCELERATOR.

Further experiments with the addition of methylal to the iron developer appear to more than confirm the first conclusions as to its value as an accelerator. In remarking that the favourable conclusions are more than confirmed, we mean that the point of acceleration is greater than at first appeared. Methylal appears to possess the peculiar quality of powerfully restraining reduction where light has not acted, without in any degree retarding it where light has acted. It thus permits the use of a very energetic developer without any risk of fog or abnormal reduction. Even a saturated solution of the iron salt may be used without risk, the shadows of the negatives showing no sign of reduction whatever. Energetic development is, as experienced photographers know, one of the surest aids to reduced exposure which can be relied upon. The most sensible impact of light, it is probable, produces a latent image on the sensitive plate, if a developer sufficiently energetic and sufficiently under control were at hand to develop it. The concentrated iron development controlled, but not retarded by methylal, promises to aid the photographer in this direction. We have been favoured by Herr Warnerke with some further details of his continued experiments, which will be read with interest. He says:

"My further experiments with the iron methylal developer for the wet plates have made it still more a favourite with me."

"I lately observed the fact that in the given quantity of methylal and water, any amount of the protosulphate of iron, or iron and ammonium, can be employed, preserving, nevertheless, perfect freedom from fog in the development.

"Using much stronger solution of iron, and comparing the results with the negatives developed with acetic acid iron developer, the shortening of the exposure secured by the methylal developer became much more striking. I range myself now more on the side of the first enthusiastic advocates of the new developer. The last formula I used is:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate</td>
<td>100 grams</td>
</tr>
<tr>
<td>Iron ammonium</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Methylal</td>
<td>25 minims</td>
</tr>
</tbody>
</table>

I estimate the shortening of the exposure as two to three."

We shall be glad to hear the results obtained by any other of our readers.

THE VIENNA PHOTOGRAPHIC EXHIBITION.

We have just received news of the award of medals made by the Violle Photographic Exhibition in Vienna. The objects were five in number, and all of them inhabitants of the capital; and their well-known names are a guarantee that the duty devolving upon them has been discharged efficiently and well. Fritz Luckhardt, Victor Angerer, and Carl Haas are names familiar to photographers in this country, and the two other gentlemen, Julius Gertinger and Dr. Joseph Szekely, are by no means unknown to many of their brethren in Great Britain.

No gold medals were awarded by the jury; sixteen silver medals, forty-five bronze medals, and thirty-three honourable mentions being included in the Report. We are glad to see the names of Messrs. Robinson and Cherrill among those who have been honoured with a silver medal, the award in this case being made "for combination prints of artistic and technical excellence." Messrs. Robinson and Cherrill, we believe, did not compete for the honour, and it was without their knowledge, indeed, that pictures presented by them a year or two back to the Vienna Photographic Society were included in the Exhibition; the silver medal awarded to them, therefore, will be all the more welcome, as it is unexpected. Messrs. Robinson and Cherrill share with M. Carlos Belva, a Portuguese amateur, the honour of being the only non-Germans to whom silver medals are awarded. M. Philip Remele, whose diary of travels in Africa we recently published, has been awarded a silver medal "for landscape and architectural subjects taken in the Libyan Desert."

And among the bronze medals, it is interesting to see the names of "T. Hedgcock, photographer at Lytham, England, for studies of animals," and "T. M. Brownrigg, photographer in Dublin, for landscape pictures." Mr. J. J. Woodward, Assistant-Surgeon to the Army Medical Museum, at Washington, also receives a bronze medal for his micro-photographs.

THE COLLODIO-CHLORIDE PROCESS.

By M. Geymet.

[We extract the following from a new work, which has just been published in Paris, by M. Geymet, under the title of "Elements Complete, Photographic." It will be seen that M. Geymet adheres very closely to our own formula, published some years ago in our Year-Book. The work contains the most recent methods that have been published, and completes the series of volumes which M. Geymet has published relating to different branches of photography.]

The colloidio-chloride process, which has never been treated in any manual with all the completeness it merits, will be found exceedingly pleasing by amateurs as a printing method. The possibility of detaching the pellicle of collodion, and to transfer it to any other basis, allows of the most varied applications of the method.

Formula for the Emulsion:

No. 1. — Alcohol 100 cub. cents.

Nitrate of silver 20 grs.

No. 2. — Alcohol 100 cub. cents.

Chloride of strontium 2 grs.

No. 3. — Alcohol 100 cub. cents.

Citrinic acid 5 grs.

Normal Collodion.

No. 4. — Alcohol 100 cub. cents.

Ether 100

Fyroxiline 4 grs.

The first three solutions are filtered when the products are dissolved.

Into 100 cubic centimetres of normal collodion, prepared according to the formula No. 4, there is poured, after previous agitation, 10 cubic centimetres of solution No. 2, and then 10 cubic centimetres of solution No. 3. The emulsion is completed by adding, drop by drop, and vigorously agitating the while, 5 cubic centimetres of No. 1. In this way a milky liquid is obtained, which should be allowed to settle till the most recent portion is then decanted, which is the only part that can be used. This is spread upon alabaster paper prepared as follows with white of baryta:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
</table>
| Water 900 grs.
| White of baryta 100
| Gelatine 20 grs.
The gelatine is dissolved first of all in warm water by the aid of a water bath, and the baryta diluted with 100 cubic centimetres of water, and filtered through a bit of linen. A sheet of fine white paper is applied to a glass plate, and the baryta preparation is spread with a brush. The sheet of paper to be coated with collodion is placed upon a thin board that is held in the hand. The borders of the paper are bent up for a kind of tray, and the coating is applied in a regular layer, the support being slightly inclined. Only one application of the emulsion must be made, and the paper may be printed upon as soon as it is dry, or can be preserved in good condition for a month or two.

To whatever use the collodionised paper is put, the toning solution given below ought only to be employed if the pellicle is destined for transferring. No doubt very fine tones may be obtained by the employment of other salts, but these products sometimes coagulate the gelatine, and there is then a great difficulty in detaching the collodion film from the paper:—

Water...
Sulphocyanide of ammonium 20 grammes
Chloride of gold and sodium 1 gramme.

Only the quantity of nitrogen and other gas that is necessary for the toning of a batch of pictures should be used. The printing should be done vigorously, for the pictures become much weaker in the toning bath. At first they appear of a straw color, but gradually deepen in tint. There is an insufficiency of chloride of gold in the bath if the prints remain a long time stationary, for they should change colour properly, and the printing gas carrying the nitrogen in a more brilliant than the film of albumen. If required, however, matt prints may be secured, if the collodio-chloride is applied to a non-burnished surface. By printing upon collodion paper the most brilliant whites are obtained, and many of the prints one sees and wonders at at exhibitions are produced upon this paper. People attribute the production of such pictures very often to a special toning process, or to the use of a special albumenized paper, not knowing how else to account for the brilliancy.

The same effects may be obtained by transferring a positive obtained in the camera to porcelain paper, but the operation is a delicate one, and the method, which was worked several years ago, has now been abandoned.

WAX MATCHES.

BY W. A. NICOLAS, AUSTRALIA.

As nearly all children are photographed in white dresses, and in this colony the faces are often a great deal tanned through exposure to the sun, I have found a useful help in a simple wax match. If I have been unable to get full exposure through the restlessness of the little sitter in dull weather, by lighting a match and holding it just under the face only, so as to make that part of the plate hot during development, it is astonishing the increase of detail I get.

As all practical photographers are familiar with dry plates, and with the preparation of dry plates, and for this reason I prefer to purchase them; but I have to prepare them myself, I should prefer to work only by the wet process.

A grave drawback to dry plates is their perishable nature; despite the careful packing, the English dry plates sent over here are generally spoilt to the extent of...
two per cent. and when it is borne in mind that a further percentage of negatives are broken, the loss, of course, becomes higher. It must therefore be regarded as a great advance in dry plate photography that paper has again superseded glass as a basis for the dry film. The inventor of this new dry process without glass is an Austrian, who lives in England, M. Warnerke, and if we are to believe the good news he tells us, dry plate photography will make a giant stride, indeed. M. Warnerke does not prepare a calotype paper as of old, but he covers a glazed paper with alternate layers of leather-collodion, made up of—

- Pyroxilin 2 parts
- Alcohol 50
- Ether 50
- Castor oil 1 part,

and of India-rubber solution prepared by dissolving one part by weight of rubber in a hundred parts of benzole.

The paper prepared in this way is then coated with the dry plate collodion. The operations of sensitizing and washing the film cannot, of course, be undertaken under the circumstances, and to obviate them, a collodion is employed which does not require sensitizing, a so-called emulsion, which is ready for exposure as soon as dry. M. Warnerke recommends that a good bromide collodion be poured into a vessel and allowed to dry in the form of a thin sheet on the bottom of a glass dish, then put in the silver sensitizing bath, which is allowed to act upon the film thoroughly; the film is then washed, and this, containing bromide of silver, may be peeled off and dried. Finally, it is dissolved again in ether and alcohol, and yields the finest emulsion, which it is merely necessary to apply to the prepared paper, when a sensitive dry film is the result.

The manipulation which M. Warnerke has devised is to have a dark slide with a provision of paper film, so that a series of plates can be taken one after another. No changing boxes are necessary in this arrangement, but only two rollers, which are fitted on each side of the slide. Upon one of them the sensitive paper is rolled up, the end being attached to the other roller, and the film is rolled on to one and off the other, as one exposes it, and another. In this way a whole series of negatives may be taken without once changing the slide. The communication of M. Warnerke contains so much that is new, that all who are interested in dry plate photography should repeat his experiments. It may turn out that in practice matters do not go so easily as may appear from the author's memoir, but it is very certain that the path he has pointed out is the right one to follow.

NOTES ON PHOTOMETRY.

BY D. W. WINSTANLEY, F.R.A.S.

The necessity for quantitative photography is becoming felt more and more almost every day. In these circumstances a brief resume of the facts ascertained by Bunsen and Roscoe, and bearing on the question, will be of value to intending experimentalists. The following remarks consist of notes which I have condensed from an elaborate paper by the gentlemen in question, a paper which appears in the 153rd volume of the "Philosophical Transactions."

In the first place "it was found that very slight differences in the degree of shade could be detected so long as the tints are light coloured; but that when deeper tints are employed, the eye loses the power of estimating such differences."
MECHANICAL APPLIANCES FOR GOVERNING LIGHT.

BY C. E. MYERS.*

In the absence of other reliable information, this paper will mainly be confined to such matters relative to the subject as are already on photographic record in our various journals, and for motives of general interest this selection has been made. The most important among such contrivances as have been in some way illustrated, is the light itself. The principle of which is to light the subject and not the camera. Most of the lights in use are modifications of these two designs as the varying condition of the edifice, or faith, or whim of the artist makes expedient. The cry for "more light" having been considered, the next thing is what to do with it; and at this point it is discovered that light, like "fire, is a good servant, but a bad master." In other words, light is obstreperous, and various contrivances, consisting of curtains, shutters, shades, blinds, screens, and reflectors, ingeniously tangled with cords, pulleys, pumps, and balancing weights, are brought into requisition. Passing to those used inside the room, the ordinary window-curtain sliding on rings and wires has first received attention, and for a side-light screen this still continues among the best, as cheap and easily adjusted in sections to cover the whole or part. Next comes the rolling shade, the better form of which is the "spring shade," excellent for top-lights, which can be thrown up and down, and adjust to any position. The ordinary sliding shutters are effective, but much too cumbersome and expensive for general use, or on large lights. One style of swinging curtains is much to be recommended by reason of its cheapness and efficiency, the only objection being that when thrown open, or not in use, the amount of light is considerably less than that of an open light. This style is formed of both frames covered with cloth, and suspended by screw-eye hinges from the rails of the skylight; they are then connected in gags or sections and swung by cords.

Among the important contrivances for modifying the light by reflection, the first receiving much public attention was Kurtz's "Patent Rembrandt Counter Reflector," which was at the Cleveland Convention. It consists of an open frame, nearly square, on wheels, on which the counterreflector hinged to the interior of its four sides. On each outer side of the frame is hinged a frame containing a tilting reflector, the intention being to reflect light variously on the subject.

Next comes Adam-Salomon's "Alcove Background" and its numerous modifications. It consists of a recess background eight to ten feet wide, with one or two doors opening screens hinged to its top, and controlled by cords, to cut off the light. It also has ring screens attached to each side. The entire alcove rests on castors, so as to be movable under the light. This is one of the early forms of skylights, or tents within a skylight, to which the usual curtains or screens are attached.

Next comes Kent's hand-screen, with which I suppose you are all familiar. It consists of a square framework covered with tissue-paper or cloth, and is wielded by a long stick in the hand of the operator. There is no doubt about its efficacy. Among others, Mr. I. B. Webster takes decided grounds against the screen, because it has to be held in the hand or moved during exposure, and, adding twenty-five years' practice against theory, says: "The most perfect; the room is during the sitting proper, the more perfect and satisfactory the expression;" and he claims, very properly, that the principle of the movable screen is not patentable, but common property, though any particular or original pattern of construction may be patentable, leaving it with the manufacturer to buy such pattern or not, or to construct and use any other different pattern. He supposes as the proper method of introducing any good pattern, to manufacture it and place it on sale at a moderate price, instancing Bigelow's background as being well contrasted with the idea of a speculator who invests in a patent-right for a plough, very good in its way, and who then claims the system of ploughing, and that the honest farmer must either buy his plough or quit farming.

Among the various novelties brought to light by the misunderstanding of Mr. Kent's position is Mr. Marvin's. This is so similar to Mr. Kurtz's counter reflector that I may use the same model to illustrate it. It differs mainly in having a screen like Mr. Kent's attached by a bolt to a bar in the middle framework. It was adjusted in position by a brace attached by screw-eyeing. It could be raised or lowered in the frame, and had a motion much the arc of a circle in two frames substantially at right angles to each other, and the screen itself could revolve about the end of its supporting bar. In fact, it was a screen with a restricted universal motion, and was only fast in being cumbersome.

In the same number is Mr. B. F. Hall's illustration and description of a universal screen in use by him over two years. It is made of printing paper pasted over a wire hoop, to which is attached a small tin pipe, fitting snugly upon the end of a jointed bar, the other end of which stands in an ordinary head-rest column. The joint is made fast by a thumb-screw. The arrangement cannot be changed by a paintless hand, jointed by the end of its handle to an upper arm. The arm making a universal joint by which any angle can be gained and retained in the screen end. Up to this date nothing better has been described in any photographic publication.

(To be continued.)
Correspondence.

HOW TO OBTAIN RESULTS LIKE THE LAMBERTYPE.

My Dear Sir,—There appears to be a great deal of speculation, uncertainty, and vexation concerning the validity of M. Lambert's patent, and I purpose, with your kind permission, to describe a very simple method of producing effects and results similar to those obtained by M. Lambert without infringing or harassing the infringement of the patent rights in the slightest degree. The process I am about to describe is not a recent conception. I have used it for strengthening weak negatives for some time past, and have shown it to friends when visiting my studio. It is one of many ways of helping a lame dog over the mud, and it has the advantage of making me a passerby to a miserably thin negative, such as is generally obtained from children and animals on account of under-exposure.

There are two ways of doing it. The first and most mechanical is to apply a strengthening plaster to the back of a weak negative in the following manner:—Take a collodion transparency or a paper print from the weak negative, and dry it in the ordinary way; then apply, which will be a negative, fix and wash it in boiling water, and, while wet, apply it to the back of the negative; adjust it carefully, and with the finger press out all air and water, so as to secure absolute contact. When dry, make it transparent by smearing with castor oil, or by removing the paper by washing and rubbing. The latter plan is the best, but the former is the least troublesome.

The second method is the more artistic one, and mostly resembles M. Lambert's process, and is as follows:—Fix in hypo, without exposing to light, a piece of sensitised albumenised paper, wash it in boiling water, and lay it on the back of the negative while wet; secure absolute contact by rubbing with the finger or sponge; when dry, rub off the paper, leaving the unbroken and unstriated film of albumen on the glass. This has a ground-glass appearance, and a stronger tooth than ground-glass varnish, and can be worked upon with plumbago and a stump, so as to increase density and heighten effects. Attach to the front a piece of tracing or thin paper on which to do the sharp retouching, spotting, &c.

Infringement of M. Lambert's patent is thus avoided, for there is no film on one side and a paper screen on the other, on which the same artistic effects can be produced by working on both sides of the negative.

Now that I have described a method of avoiding all the pains and penalties of patent right infringement, I hope that your discontented readers will rest satisfied, and make the most they can of a process obtained without cost. At the same time I think it is but fair towards M. Lambert to state that it is utterly impossible for me to impart a tithe of the dexterity and ingenuity which that gentleman exhibits in his manipulations. I have seen M. Lambert at work a whole day and more, and I do not hesitate to say that it was absolutely impossible for him to cover in any specification the real strength of his process. The placing of the papers at the back and front of his negatives is that another film of the accomplishment of objects desired, and the finished results obtained by that and the following operations are not, I believe, to be obtained in any other way.

The real value of M. Lambert's patent lies not in its specification, but in the quick and certain manner in which he imparts to his licensees, the sure and never falling method of securing the most satisfactory results in the shortest possible time, and with the minimum expenditure of material.

The certainty with which he reproduces and improves negatives is surprising, and the acquisition of that information alone, to say nothing of the numerous other technical instructions included in his demonstrations, is well worth the money he asks for a license which enables and empowers a licensee to practise with certainty, and without molestation, the Lambertype, the Chromotype, and all the operations of Autotype or carbon printing.

It is scarcely possible for any man to have a greater contempt for petite patentees than I have, but when a stranger who has valuable information to impart, and dexterity of manipulation to exhibit, whether protected by the patent laws or not, comes amongst us, I think we should deal with courtesy and consideration. Knowing that M. Lambert's process and instructions will be valuable to every photographer, I wish him well, and many followers—J. W.

The controversy has been brought to a focus much sooner than I had anticipated. Mons. Lambert, in his specification, says, "What I claim is the method of applying a semi-translucid sheet on each side of a negative or positive, and of quickly and readily retouching by working on these sheets as simple vehicles for retouching." Now, my immediate knowledge of patent law will allow me to say this much. If Mr. Crompton had used paper on both sides, but simply retouched on one—say the back—and others had used paper on both sides, but retouched only on the front, such would not invalidate Mons. Lambert's claim to the use of both surfaces conjointly for retouching (assuming that to be his claim). Yet if it can be clearly shown that the use conjointly of both surfaces for retouching upon with the aid of stump, powders, &c., has been generally used in the past, such would invalidate any claim for the same thing if made at a subsequent date. I know those who have, and do still, retouch on both sides, having been taught, not as a secret, and they can show where it was and is in constant practice, and that at a date prior to May 8th, 1874.

The absurdity of the challenge is obvious. "Messrs. Fry, Batho, Brothers, and Slingeby" would be foolish, indeed, were they to accept it as it is worded, because they would be bound to produce so-called chromotypes, a Mons. Lambert in "all the inches he would be obtained by his patented "processes," and ties the aforesaid to Crompton's alone. Probably Mons. Lambert is a clever manipulator, but skilful use does not establish the right toyotan materials; hence any test where parties would use exactly the same agents could but be a test of their skill, and would fail as a test of the validity of a patent; indeed, it has nothing to do with it. Assuming I took up
he effects desired. I saw his negative so treated, and so did thirty or forty others. I adopted it at once, and to his challenge, I should use exactly the same agents as himself, and thus his boasted test would be one merely of skill, not having any connection with the validity of his patent, which can only be decided by the Court of Chancery. The profession are well aware of this, and know what value to put on a challenge that bears some similarity to that of the man who owned a shilling, and offered to test liability by a fight.

"An amateur" offers some remarks, likening myself, along with others, to timid schoolboys. I can only account for "Amateur's" simplicity in two ways: first, that he is a barrister; and, second, a foreigner, and unacquainted with our laws. That he is a barrister, and advocates his suggested course, having in view retainers, referrers, &c.; that he is a foreigner, and does not know that victory in our courts, oftener than otherwise, is as costly to the victor as to the vanquished. The knowledge of this is the cause of many acts of injustice being sub'minted to.

An amateur, who, I assume, has been delegated to write "in the interest" of all amators in our planetary system, should read the "History of the Bromile Patent in America."

What is Mr. Slingaby's "conspiracy fund," which Mons. Lambert declares is illegal? Do satisfy my curiosity, if you can, Mr. Editor, as I never heard, nor can I imagine, what an "illegal fund" is; but in legal matters I must hold my peace, for here comes "Sir Oracle, and while he speaks, let me stand back."

Halifax, July 31.

W. E. BATHO.

Dear Sir,—For two reasons I did not wish to be drawn into the discussion about the Lambertype patent: 1st, my business engagements take up so much of my time that I have none to spare for such a purpose; 2nd, having published enough to prove, to any disinterested person, that I was before M. Lambert in the use of transparent paper upon both sides of the negative for the purpose of retouching and improving, I did not think it necessary to repeat it. But after the attacks made upon myself, and what M. Lambert pretends to believe is my method, in last week's News, my silence would be open to misconstruction if I did not answer it. I must, therefore, ask you to allow me space to vindicate myself once and for all, as I have neither time nor inclination to be drawn into a long discussion upon it.

M. Lambert puts his specification by the side of a paragraph from a long paper read by me before the South London Photographic Society, upon transparency versus Lambertype pictures. This statement was made among others at the close of the paper, which was intended for discussion, and all the members who were present will doubtless remember that during that discussion I described how I could improve the resulting print by working with the finger and a small tuft of cotton-wool upon both sides, using, not galvano-plastic powder (for in all my communications I prefer to use plain English), but soft crayon mixture, with and without the mixture of cuttle-fish powder, to get an even distribution of the colour, and showed negatives done in that way in illustration. This, then, is the whole sum and substance of the process patented by M. Lambert.

But I can go further. In November, 1873, many photographers who came up to the exhibition of the Photographic Society were surprised by the facility with which other branches of photography. To all who came for lessons in retouching I showed the advantage of the use of tracing paper upon both sides of the negative as a medium for retouching, and in spite of M. Lambert's tribute to my talents, he must have very little opinion of them if he thinks I could have used tracing-paper upon the front and back with greater facility than I did, or other negatives obtained upon them with both stumps and points. If M. Lambert really wishes to be convinced, so as to give up to the profession gracefully what is clearly their right, I can give him the names of photographers who saw the negatives at my studio as early as September, 1873, and the name of one gentleman who came for hints in enlarging who was shown the method which he (M. Lambert) has patented so recently. I should think this should settle, once and for all, my right to claim priority of invention.

M. Lambert must be as imperfectly acquainted with the English character as he says he is of the English language, if he thinks he can make attacks upon gentlemen of known reputation, such as M. Slingaby, F.F. Brothers, &c., without damaging his own case. He accuses these gentlemen and myself of a conspiracy. He may, perhaps, be sorry for his ill-advised letter when I tell him that but for the attack made upon me in it, I was quite content to let things rest. If photographers like, after all that has been published about it, to pay M. Lambert £50 for instructing them in a process which has been freely given them, let them; it is not the first time it has been done, nor will it be the last; and my writing for the photographic profession has (and, I suppose, will always) entail upon me much work and little thanks. The gentlemen he names (with the exception of Mr. Fry) have written entirely upon their own responsibility, without consulting or even writing to me upon the subject. At Mr. Fry I gave my name several years ago, not a money matter, and they had his hearty sympathy, as he, in common with many others who give their experience through the pages of the photographic journals, has had the same experience as I have of what it entails. I have had to write dozens of private letters upon different subjects I have written about, and have rarely had a letter of thanks, or even acknowledgment of receipt of the information asked for. I did, therefore, decide upon keeping out of a discussion for which I had little inclination and less time, and should have done so but for M. Lambert's direct attack.

As for the challenge contained in M. Lambert's letter, it is almost too absurd to be noticed. If I had been selling a rival patent it might be worth my while; but to leave the honest, prosperous, and not my client, and myself, for the sake of giving £50 to some charity which is to be chosen by the Photographic Society, is very reasonable! I should lose as much in time and expense as the amount staked; and even if I win or lose, I only demonstrate the value of a process which I was the first to publish. The last result would be entirely due to the man, not the process. I do not apologize for coming up so much of my time, but I wish to settle the matter once and for all. With the evidence I can and have produced, there can be no doubt that the Lambertype Patent is invalid, and, whatever others may do, I do not intend to give up using a process I have used, and published in 1873, for a patent taken out more than twelve months after.

Chronotype.—I know nothing; but the Lambertype I distinctly claim as my own by priority of invention and publication.—Yours truly, G. CAUROUX.

Louvres, August 2nd.

Sir,—I had hoped I should not have occasion to write again on the Lambertype, but the letter in your last, of almost unprecedented length, from M. Lambert, demands just a few final words.

The proposal to stake or wager £50 I attribute to the complete unacquaintance of M. Lambert with English practice in such matters. Personally, I never enter into such engagements.

I saw just what his pupils saw, and watched the operation with them, and the next day performed the entire operation, complete to the carbon print, at the first attempt. The carbon I relinquished for the simple reason that silver prints are better; this I regret. With regard to the Lambertype enlarging, having since last week met a member of the South London Society before whom Mr. Crompton's paper was read, I find no lack of the strongest evidence that Mr. Crompton did paper both sides of the negatives, and did work both sides as required, to produce
municated it to Mr. Slingaby, who brought it into large commercial use for his Vanderweyde pictures. Since seeing M. Lambert's work, and fully inspecting his enlarged negatives, no change has been made in my working, for the simple reason that I have at command already, in complete working order, just what I want, and all he has to sell; but if any of the public turn up the right side by M. Lambert, there is nothing to prevent it—I am respectfully.

S. FRY.

ON THE PRESENT POSITION OF OPERATORS, ETC.

Sir,—When writing on this subject last week, it occurred to me that there would be considerable difficulty in getting a recognised board of examiners.

I am occupied from morning till night, and have not much time even for reflection; I am, therefore, in a position to write much on the subject. Would it not be possible for each of the principal photographic societies to elect one gentleman, the gentleman elected by the Photographic Society to be president of the board? This would neutralise any feelings of jealousy that might exist. These gentlemen could draw up a proper circular, with their names, and the purpose contemplated. A copy of this might be sent to every photographer in the United Kingdom, and requiring assistants, asking them to recognise the board by signing and returning the circular. The names could be published both in the News and British Journal. Having got the signatures of the leading photographers, the principal difficulty would be surmounted. The great "stumbling block" to any united movement among photographers appears to me to be the almost total want of unity among them.—Yours, &c.,

An Old Photographer.

Talk in the Studio.

PERMANENT SENSITIZED PAPER.—In the course of the discussion on the meeting of the A.S.I. held recently, a paper was read by Mr. W. J. Shortt, M.R.I., in which the subject of permanent sensitized paper was discussed. Mr. Shortt stated that he had been experimenting with this subject for some time, and had arrived at the conclusion that the method of sensitizing paper by the use of chemicals was the best method. He had found that by the use of a solution of silver nitrate and a solution of potassium iodide, he was able to obtain a sensitive paper which would print up to the same extent as a photographic plate.

A SUBSCRIBER.—Your negative is defective every way, being fogged and imperfectly defined. The granular texture, which is very apparent under a moderately powerful lens, may be due to some imperfection in the lens, or to the mottling of the paper. If you wash the print carefully afterwards to remove the cyanide, 2. The pink tint in some Eumenium prints sometimes appears at the time of toning, and sometimes not until after the image has been fixed. I do not see the use of this in washing after toning, the pink tint being due to a reduction of the gold toning solution. There is no reason to remind the, so far as I know. 3. For your best results in containing such excessive contrasts, we should use a strong iron developer—say forty grains of protosulphate of iron, twenty minims of acetic acid, and one ounce of water.

B. A.—We are uncertain of the precise angle, but we believe that, without being what is called a wide-angle lens, it includes a good angle. We have not had any personal experience with the lens, but have heard good reports.

GEORGE DOWNS thinks that the publication of Mr. Crompton's paper forestalls the Lambert patent, and objects to the suggestion that, in any case, the silver printing process is in danger. He says: "Why is 'silver' given so much prominence, and why is the influence of the Lambert processes so far as the influence of the Lambert process goes? What is there to hinder taking silver prints on albumenized paper from a Lambert-type negative?" The plain paper is not mounted on an ammonio-nitrate process? If prints in carbon are wished, why cannot they be produced by any one on the materials supplied by Messrs. Spooner, as heretofore? And if albumen prints are required, they can be had at any photographic supply house. The paper is not produced without any reference to Mr. Lambert.

W. H. JEFFREY cordially endorses the letter of "An Amateur" in last week's number, deprecating the use of "a few minutes" in discussing a question which can only be settled in a court of law.

E. W. will find in various of our Year Books, especially those for 1863, 1864, and 1865, many details on glass houses and their construction, as well as many articles in the News descriptive of different studios. Much information and many hints may be obtained by searching through our back volumes, but we cannot undertake to say which is the best mode of building a studio.

T. T.—The qualities which cause a colloidion to give intensity are produced by the combination of many causes, not by one alone. Intensity depends somewhat upon the quality and quantity of the gum, and as a full quantity as can be used without making the colloidion too thick tends to produce intensity. The quantity and character of the sensitising salts, and the time the colloidion has been in use, also affect the quality. As a rule, those who have been accustomed to intensity, and ripeness in the colloidion tends to intesity. But the strength of the silver bath, the character of the light, the form of the lens, and the quality of the paper all have a material effect on intensity. It is probable that you will be able to obtain Anthony's cotton of Mr. Atkinson, of Liverpool.

B. D. L.—The use of central stops in portrait lenses was not common in the early days of photography. The straight forward focused portrait lenses were intended for use with their fullest aperture. That aperture was not always, however, of the full size of the lenses, as, if you examine, you will find in many there is a fixed aperture, much smaller than the lens, immediately behind the front lens of the combination. The best place for a stop is determined by the focus of the lenses of the combination. Thus, if the central lens has a focus of six inches, and the back lens a focus of twelve inches, and the amount of separation be three inches, the stop should be placed at a distance from each in direct proportion to their respective focus, that is, one third of the distance of the distance of the central lens and one third of the distance of the back lens. In this position distortion is corrected, and the maximum of advantage gained. If the object be to flatten the field for copying purposes you may place the stop nearer to the back lens. The new "Mirror" camera was designed to meet this case. The "Mirror" camera is a double focus camera, which is designed for use with a silvered mirror and with the mirror tilted backward.

F. G.—A plain paper print for an occasional purpose may be obtained by using the plain side of albumenized paper. We have obtained very good results so; but of course they are not equal to the results which may be obtained on carefully prepared plain paper.

J. H. S.—The diffuse quality you describe is very curious. We presume that the new collodion which declines to mix with the usual developer must have been made with other material and in other proportions than that used in preparing the emulsions. Possibly the addition of more other and consistent agitation, may meet the case. It is possible that you have come across some process which yields a very gluttonous solution, and in this case the mixture with a somewhat powdery emulsion would be difficult.

General Correspondents in our next.
Photography in and Out of the Studio.

An Electrograph.—We do not think many of our readers know what an electrograph is, and if we told them it was a scene from nature, impressed in its natural colours upon a sheep’s back, they would be little the wiser, probably. This, however, is what an electrograph appears to be, if we may judge from paragraphs which have recently appeared in the Pictorial World and in Figaro. At present, perhaps, it is too much to say that the electrograph in question is really a bona fide affair, for Sir William Thompson, the well-known electrician, to whom the circumstances have been related, is somewhat sceptical in believing the account which have been given him, and refuses to hold it possible that a sheep’s skin is capable of retaining an impression reflected upon it by electric light. The circumstances of the case appear to be these. During a thunderstorm in the Midland counties, a little while ago, a great many cattle and sheep were struck by lightning, and a lamb which had taken shelter under an oak shared this fate. What was the astonishment of the rustics, when they came to examine this lamb, to find a picture of the tree, sky, and meadow outlined upon its fleece. Even the hedge-row dividing the fields was to be seen, as also a group of huddled sheep, which were not, however, very shapely, and which actually comprised a pair of sheep, the udder of the lamb’s wool, is said, by the vivid lightning that killed the animal, and we are asked to believe that an electrograph can be produced in this simple manner. The Pictorial World, notwithstanding Sir William Thompson’s disbelief—it is fair to say that Sir William has not examined the skin, but has only heard a description of it—thinks the circumstances are by no means incredible; while a correspondent, “E.G. of Kidderminster,” in Figaro, whom the editor of that journal describes as “thoroughly trustworthy,” brings up a great deal of evidence of a personal character. “E.G.” says “that he saw the skin when only partially dry, and holding it up to the light, the picture of the tree could be seen in its natural colours.”

After this, who can say that photography in natural colours has not been discovered, capable of an extension? Though E.G.’s correspondent is not prepared to declare further that the tree had “brown trunk and branches, and green oak-leaves.” We fancy it was the latter that effectually decided Sir William Thompson. No one would have objected to a brown photograph, but green oak-leaves are things which no photographer would readily accede to. “E.G.” continues, that the tree “was clearly outlined against the sky,” but he admits that the hedgerow and the group of huddled sheep were somewhat less distinct. Sir William Thompson believes—and we cannot help thinking that his solution is the correct one—that the natural markings on a sheep’s back, which are frequently of a fantastic character, have been mistaken for twigs and branches of a tree by the imaginative observer; and we have no doubt that the green observed which we are told the lamb could actually account for the same way by an experienced butcher. We are glad to hear from “E.G.” that “this curious electrograph has been carefully preserved,” for some of our friends in the neighbourhood may, perhaps, favour us with an opinion after an inspection of the marvellous production. That the electric fluid may have burnt the skin in some places, and in this way impressed the back of the lamb, is not improbable; but that the skin should contain elements which permit of the fixing of natural colours, is a matter which few photographic chemists would believe. The matter, however, is certainly sufficiently curious to deserve investigation by a scientific man; and as we are assured that the skin “has been carefully preserved,” we hope

some correspondent in the neighbourhood of Kidderminster will take an opportunity of inspecting the “electrograph,” and will give us his opinion on it. Strange to say, the three soldiers who were struck by lightning on Saturday last, while taking shelter under a tree on Woolwich Common, are reported to have pictures of trees impressed on their flesh. The twig-like formations are no doubt due to the spreading of the electric fluid.

Photographic Exhibitions on the Continent.—Both in Brussels and at Vienna there are exhibitions of photographs to be seen just now, the gatherings in each case being under the patronage of royalty. At the Brussels Exhibition the medals have not yet been awarded, but we are informed that besides a médaille d’excellence, which is to be given to the best work in the room, there are to be seven other medals awarded, viz., for heliographic engraving, heliotype, Woodburytype, or similar processes; photo-lithography, carbon photography, silver printing, and photography upon glass or porcelain. The jury for making the awards will not be composed entirely of members of the Belgian Photographic Association, but will include among the eleven foreigners, so that there can be no complaint of partiality. A lottery will take place at the end of the exhibition, on the 18th of September, and 15,000 francs have been contributed to the collection will be paid for by the association. In this way it is hoped that a large number of the best pictures will be sold. The Vienna Exhibition, which is drawing to a close, seems to have been very successful, although the number of foreign exhibitors was limited. As we stated last week, as many as sixteen silver medals and forty-five bronze ones were awarded, all the British exhibitors, we believe, securing one of these awards. The Vienna Society is fortunate in possessing in the person of M. Fritz Luckhardt a very energetic and popular secretary, and to him much of the success of the affair is due. Besides these exhibitions, there are at Paris just now two others, one of Maritime and Fluvial Industry in the Champs Elysées, and the other that of the Geographical Society of Paris at the Invalides. To both of these exhibitions photographs have been admitted in large numbers, for the art serves as a capital means of illustrating many subjects of peculiar interest in both these departments of industry and science. In the Maritime Exhibition there is a gallery set apart entirely for photographs, and among the pictures may be seen some from the best studios of France.

New Books.—Two works on photography have just appeared in French, the one by M. Geymet, the other by Dr. Van Monckhoven. That from the pen of M. Geymet is entitled, "Éléments Complètes de Photographie," and of this we gave an extract in our impression of last week. M. Geymet’s works are well known in France, and are among the best text-books that have appeared in the French language, his last work, which is a supplementary one, bringing up one’s knowledge of the subject to the present day, and including details of all the more modern processes. Dr. Van Monckhoven, who is also well known in photographic literature, has published a book this time solely upon the carbon process, being of opinion that this section of photographic art has become sufficiently important to be treated in a volume by itself. His work is entitled, "Historique de la Photographie au Carbon." Printing in pigments on the Continent lost a warm advocate when M. Marion died, and it requires new friends to advocate its advantages. Unfortunately for our brethren abroad, it is difficult for them to obtain the various kinds of pigment, tissue, such as can be readily purchased, both sensitive and insensitive, in this country. Dr. Van Monckhoven’s new book will doubtless aid in spreading more widely knowledge of this art of printing in permanent pigments throughout France and Belgium.
PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HIGHWAY.

CHAPTER XIII.

THE PHOTOGRAPHER’S TOOLS—COPYING.

In the choice of cameras, lenses, headrests and other requisites of the photographer, the best are always the cheapest. To insist that it is cheap is a great mistake, and sure in the end to lead to needless expense and annoyance.

The Camera.—The body of the camera should be of the best quality procurable, and it will outlast two or three of inferior make, besides being free from the defects of construction, which are a source of anxiety and failure.

A swing back, both vertical and horizontal, should be one of its features; as also a sliding carriage for the plate-holder. The rigid and obsolete old “box” should be banished absolutely. This specimen of antique ingenuity, with its ground glass always in the way of the plate-holder—each endeavour to insert the plate-holder developing into a struggle that shakes the camera out of position, its springs to keep the ground glass in its place groaning lugubriously, unless the focus is always true! surely such a camera should be abandoned as soon as possible, and ought never to be adopted when one of better construction can be obtained.

A camera, superior in every respect, is that with the ground glass fixed on hinges to swing back when the plate-carrier is inserted in the sliding-carriage. The swing back is for the adjustment of the plane of the ground glass (and of consequence, the surface of the plate in the carrier) to that of the image, an arrangement the advantages of which will commend themselves at once to my readers.

The Camera Stand should possess the qualities of steadiness, lightness and “movability,” and ease of adjustment; qualities few really do possess. The stand answering more nearly to this description is, I believe, of American manufacture; in form, like a small oblong kitchen table, the top of which can be adjusted by simple levers to angles that elevate or depress the lens as may be necessary.

This stand presents a solid rest for the camera, admits a top on which to put hard and disagreeable work with screws that are always getting clogged or rusty, and is easily moved about the gallery, being fixed on castors.

Lenses should not be purchased by the inexperienced, and few, even among experienced operators, know enough about lenses to be able to make a wise selection without trial in the camera.

If, on placing the lens on a piece of pure white paper, its colour as seen through the lens appears changed to a yellowish or greenish tint, it is to be borne in mind that in proportion to the depth of tint the lens will lack in the actinic power required in photography, though the lens may be most admirable in every other respect. It will be “slow working,” a property quite fatal to its use in portraiture.

It sometimes happens that the focus on the ground glass is not a true one; to test this, and ascertain whether it is forward or back of the plane of the ground glass, place a piece of printed paper in front of the lens in an inclined position, and, focussing sharply in the centre of the paper, make a negative. The letters focussed should, of course, be “sharpest” in the negative; but should the ground glass be out of position, the letters nearer to or further from the centre are in better focus than those focussed on the ground glass, which must be moved back or forward, as the case may be.

Care must be taken not to scratch the surfaces of the lenses in cleaning them (paper should never be used), as the delicate polish of the surface is easily injured. A piece of soft rag is the best thing for polishing, the breath giving sufficient moisture to remove dirt; after which polishing, a camel’s hair brush may be used to dust off the surface.

In removing the lenses of a portrait combination, there is a risk of reversing them in the REPLACING, and this is an extremely awkward accident in its results. The front lens, or that nearest the sitter, is a cemented achromat, and must be mounted with its convex side outwards. With the back lens, place the cell on the table, and drop in the double convex lens; the ring which separates the lenses is next placed in position, and then the other glass, with its concave side next the lens already in place.

The lens must be chosen the size of picture for which it is required: a card lens will not be suitable for a large head, and one adapted for large work will, for a carte-de-visite figure, require a long distance between it and the figure, possible only in a large gallery.

For groups a lens of long focus is the best, as it thereby gives greater depth of focus—in other words, the line of sharpness is broader; objects both in front and those on which the focus is made appear sharp and distinct; an immense advantage, where it is not always possible or desirable to place all the figures of the group in a line.

Diaphragms or Stops.—The image formed by the portrait lens having a curvature of field, or coming to a focus at unequal distances from the plane of the ground glass, causes those portions of the image farthest from the centre to be out of focus, unless the focus has been set at the point away from the centre, when the other parts are thrown out. This is caused by the form of the lens, though the defect is reduced to a minimum in the portrait combination.

To correct this in a measure, stops, or little slips of sheet metal, with a hole in the centre, are inserted between the lenses, the effect of which is to stop out or prevent the action of certain rays, those farthest from the centre of the lens. The smaller the aperture of the stop, the sharper the entire image becomes, but it is at the expense of light, and consequently rapidity of working.

Head-rests should be firm, but not too heavy to be moved readily about the gallery.

THE COPYING STAND.

In copying pictures, especially prints, plans, &,c., great exactness is necessary, and to secure this a well-made stand is necessary. Too often very makeshift arrangements satisfy the photographer, and consequent many failures result.

The best form for a copying stand is an oblong table, fitted at one end with a stout upright bar, at right angles with the table; on this is fitted a flat square board, which may be moved up and down at pleasure, and fixed with a spring or screw. By this means the picture is always perfectly on the plane of the camera, if it is properly on the table.

To regulate this, two little ridges of wood are fixed to the surface of the table, running its entire length, separated, the distance corresponding to the width of your copying camera, and between these two ridges the camera is kept in position, so that the picture to be copied must come precisely in the centre, and also stand perfectly true as regards the camera. The table may be fitted with castors, that it may be easily moved, and with a long exposure and enlarging light arrangement during the course of the copying, with the observance of great care, possible.

Another useful form of copying stand may be fixed to the camera stand, if of the kind I have described. It is formed of two strong and fine bars of wood running in grooves, one on each side of the camera stand, and joined in front. In the front piece, the upright and board may be fitted in a moment by means of a screw. When not in use, these bars slide to the front under side of the camera stand, and when required for copying they are pushed out to the required distance.

COPYING.

A rather old and reddish collodion is the best for copying; it is slow in working, but shortness of exposure is not so much an object as in portraiture.

Dog-wood or rose stems are best copied under two strong lights,
which may in most cases be cast on it by means of mirrors on opposite sides of the picture; in this way are the shadows caused by scratches in the silver plate destroyed. Sometimes, where the Daguerreotype is stained, it may be found necessary to clean it. This can be done by first dipping it in lukewarm water, to evenly wet the surface. Then place a small piece of cyanide of potassium in water in a graduate. Flow this on and off the plate while the cyanide is dissolving, and until the plate becomes as clean as when new. Wash well in running water, and dry over a spirit lamp. This will not, of course, remove scratches or blemishes of the film.

Photographs also are best copied in diffused light. Fix the negative with cyanide, to keep the lines clear; but be careful that it is not strong enough to have effect on the film. If the image has not sufficient contrast, intensify as before described.

Unmounted and wrinkled pictures should be placed in water and pressed out on a piece of glass, under which they can be best copied.

Oil Paintings require treatment varying according to their character.

ON THE INFLUENCE OF COLOURED RAYS UPON THE TONE OF POSITIVE PRINTS.

BY D. DE CLERCQ.*

The permanent printing processes are every day becoming so general that the experiments which I am about to speak of have lost some of their interest, having been exclusively conducted with chloride of silver paper. At the same time I think the results of my investigation will not prove uninteresting to my brother photographers. I will mention, first of all, how I was led to make the experiments of which I am about to speak. Obtaining sometimes clichés of a very feeble, or rather transparent, nature, which were incapable of furnishing good prints, although their half tones were well marked, I endeavoured to intensify them by means of a coloured varnish, as M. Fritz Luckhardt has recommended. This varnish is composed of

Alcohol 100 cubic cents.
Benzoin 10 grammes.
Aniline red quant. suff.

In 1873 I had prepared a quantity of this varnish as a store for some time. After several days the tint of this varnish completely changed, the red in its composition becoming of a violet-purple. According to my own idea, the effects of this varnish should have been quite different from what usually resulted from intensifying a cliché by its means; I abandoned it on this account, and resolved to employ instead some thin films of coloured gelatine to be placed between the cliché and the glass of the printing frame. At first I could only obtain pellicles of a yellow-citron colour, of a pale green and aniline red. With these I made some experiments. To my surprise, I found that the print which had been exposed to light under a rose-coloured film had assumed a brownish-rose tint; that which had been exposed under the yellow pellicle had a characteristic blue tone; and the third impression, exposed under a green pellicle, was of a greyish-blue tone. I renewed my experiments, this time with some precision, taking the same cliché, and exposing sometimes in sunshine and sometimes in shadow, under similar conditions of light, and always with the same results.

I then tried the sensitive paper of M. Durand. I prepared another silver bath of a stronger nature than I ordinarily used; I toned my prints in an acetate of soda gold, both to evenly wet the surface, to evenly wet the surface, and to fix the various colours appearing, more or less changed, but always visible. The fixing with hypoosphilite of soda did not cause any change in the results obtained.

I reported my results to Mr. Wharton Simpson, and at the same time sent him some prints; together with some of the coloured pellicles, and some samples of sensitive paper. He repeated my experiments, and obtained identical results.

I continued my experiments. Having obtained gelatine plates at Paris of almost every tint, I was enabled to obtain some singular results, which I have tabulated.

<table>
<thead>
<tr>
<th>Colour of the Pellicle</th>
<th>Colour of the Print Before Toning</th>
<th>Colour of Print After Toning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colourless</td>
<td>Warm chocolate brown</td>
<td>Chocolate</td>
</tr>
<tr>
<td>Light rose</td>
<td>Rosy brown</td>
<td>Rosy chocolate</td>
</tr>
<tr>
<td>Dark rose</td>
<td>Rose coloured</td>
<td>Rose brown</td>
</tr>
<tr>
<td>Red</td>
<td>Brownish red</td>
<td>Brown</td>
</tr>
<tr>
<td>Pale yellow</td>
<td>Dark slate-coloured blue</td>
<td>Lavender blue</td>
</tr>
<tr>
<td>Dark yellow</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>Green</td>
<td>Slate-coloured blue</td>
<td>Lavender blue</td>
</tr>
<tr>
<td>Blue</td>
<td>Chocolate brown</td>
<td>Chocolate</td>
</tr>
<tr>
<td>Purple</td>
<td>Violet rose</td>
<td>Purple brown</td>
</tr>
<tr>
<td>Purple</td>
<td>Purple</td>
<td></td>
</tr>
</tbody>
</table>

I also made some experiments by superposing two pellicles of different tints. The results I obtained were as follows:

<table>
<thead>
<tr>
<th>Colour of the Pellicle</th>
<th>Colour of the Print Before Toning</th>
<th>Colour of Print After Toning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose-rose</td>
<td>Brownish rose</td>
<td>Brownish rose</td>
</tr>
<tr>
<td>Rose-red</td>
<td>Brownish rose</td>
<td>Brownish rose</td>
</tr>
<tr>
<td>Rose-yellow</td>
<td>Nothing</td>
<td>Nothing</td>
</tr>
<tr>
<td>Red-yellow</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>Purple-brown</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>Brown-blue</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>Green-blue</td>
<td>Slate-coloured blue</td>
<td>Lavender blue</td>
</tr>
<tr>
<td>Green-yellow</td>
<td>Blue</td>
<td>Blue</td>
</tr>
</tbody>
</table>

In all my experiments I made use of the same cliché, and fragments of the same sheet of sensitive paper. The prints were all printed with the same amount of exposure to light.

To verify the delay which occurred in printing the cliché through these different coloured mediums, I pasted single and double pellicles on a glass plate, and employed the spectrum thus improvised. I obtained in this way an indication of the delay in printing caused by these coloured pellicles, and at the same time I got some notion of the intensifying character of each tint.

The following is the scale I obtained by pushing the printing so as to render that part of the sensitive paper placed under the colourless film of a blackish-bronze:—

1. Colourless film (paper, black bronze).
2. Blue film.
3. Light rose film.
4. Rose film.
5. Purple film.
8. Yellow film.

The blue, therefore, intensifies least, and yellowish-red or orange, the most; the blue retards the operation of printing the least, and the orange the most. In other words, of all tints, the blue is the most antinio—a result it was easy to foresee.

A medium rose-coloured pellicle seems to be the most suitable for intensifying purposes, because while it retards the printing but little, it intensifies the image sufficiently, and does not alter the tone of the positive print. M. Fritz Luckhardt, therefore, indicated a very good mode of intensifying negatives when he recommended the superposing of negatives with a collodion coloured with rosin.

It is well known that the intensifying action is only used locally; that is to say, M. Luckhardt does not entirely cover the cliché with this coloured collodion, but applies it to those parts only which appear to be too transparent.

I also remarked that there is sensible difference in the results obtained, according as the rose-coloured pellicle is placed in contact with the image during printing (between the collodion film and the sensitive paper), or
upon the back of the cliché. In the latter case the intensifying effect is much less accentuated than in the former.

This is easily explained: when the coloured pellicle is placed at the back of the cliché, the light, in traversing the glass to the image and the sensitive paper, becomes uniformly rose-coloured, and experiences the same change throughout. It is different, however, when the tinted pellicle is in immediate contact with the paper.

To resume: the issue of my experiments have led to three principal results: —

1. It is possible, by using coloured gelatine pellicles, to intensify a cliché. Rose-aniline best fulfills the object to be attained, especially if the tinted pellicle is placed between the gelatine image and the paper.

2. By employing pellicles of different colours, and cut in suitable shapes, it is possible to obtain prints differently toned in parts.

3. The tints obtained under the influence of various pellicles are fixed, and do not change, either on toning or fixing. I have in my possession some prints produced in August 1875, which since that period have lost nothing of their pristine colours.

"Have these results any scientific value?" it will be asked. I think so. Although at present far from complete, I have made them known in the hope that others will follow me, and with me, take up the investigation; and I should be pleased, indeed, if any of my colleagues should be fortunate enough to carry the matter further than I have done.

THE PRACTICAL PRINTER IN AMERICA.

XXXIV.

FAILURES WITH THE POSITIVE PRINTING BATH.

These occur both in the making, working, and care of it.

In weighing out the nitrate of silver, or the nitrate of ammonium, &c., &c., always be sure that the scales are clean, and place small pieces of paper on both sides of the scales, of the same size, before weighing out anything, and you will be doubly sure then of perfect cleanliness. Use fresh pieces of paper every time you use the scales.

Never touch your fingers any more than is absolutely necessary by the contents of your bottles, and when about to weigh out silver, &c., place a piece of the paper previously placed in the scales, in your hand, and pour the silver in that.

In weighing out chemicals always be sure that you have reckoned the precise amount of grains, &c., correctly. It would be a good thing to have a table of ounces reduced to grains, and I will here give one for solvents, such as nitrate of soda, &c., and also one for fluid measures.

Solids.

- 20 grains = 1 scruple = 20 grains
- 3 scruples = 1 drachm = 60
- 8 drachms = 1 ounce = 480
- 12 ounces = 1 pound = 5760

Fluids.

- 60 minims = 1 fluid drachm
- 8 drachms ... = 1 ounce
- 16 ounces ... = 1 pint
- 8 pints ... = 1 gallon

When about to make up solutions, always be sure that the bottles are clean.

In the mixing up of solutions, as per formulae, if there is a particular way of mixing them given, always mix them in that order.

In the printing department, when pure water is recommended, and distilled, it is not at hand, then pure filtered rain-water, or clean melted ice, will answer.

In cold weather always warm your silver bath before using, and not float your paper on an ice-cold solution.

Make your bath stronger in cold weather, and also silver longer, than what you do in summer.

In the summer, printers are apt to get their bath too weak in silver; never let it get below thirty grains strong of pure nitrate of silver to the ounce of water, saying nothing of the other ingredients which are sometimes used in the composition of the bath.

Do not let your solution get too low in quantity, so that you will have to place in a large quantity of the stock at one time, as for the next day or two the bath will not work so well. Always have your stock, or adding solution, made up in the same proportion, as to ingredients, as was used in the first composition of your daily bath.

Always keep your printing bath in the dish covered up when not in use.

Pour your bath back into the bottle every night, clean your dish out, and set it away bottom upwards on a shelf covered with clean paper.

Filter your bath before using it the next day.

When the bath in the silverying dish is dirty, always skim it before using again.

When the bath is discoloured, which is due to the impurities which have been washed out from the others, cold water, &c., always clean up with a little kaolin, camphor, or permanganate of potash, &c., as has been explained in a former chapter.

Sun the bath when not in use.

Test your bath every morning before use, to ascertain both the strength of silver and the degree of alkalinity of the solution.

Be sure that your bath is a little alkaline, but never acid, unless you are using the citric acid printing bath, and then have it only a little so; but in the case when you are not using such a bath, never have the solution acid with nitric acid. Better results are obtained with either an alkaline or a neutral bath than with an acid one.

For a weak negative, and one inclined to be flat, a strong bath and a longer time of floating are required than when the opposite is the case.

Better prints are obtained by the addition of alum, or nitrate of ammonium, or both, to the bath solution, than what is obtained without them, as they coagulate the albumen, and keep the solution on the surface, making more brilliant prints, and being more easily washed in the final washing.

Boil your bath down two-thirds every month or so, and make up as before.

Use Pile's test-tube and solution for testing your bath, there is anything in it besides nitrate of silver, as the common hydrometer will mislead you.

When you wish to know the quantity of nitrate of ammonium, or soda, in your bath, and you are sure that the albumen and other impurities are out of it, then test with the hydrometer and with Pile's test which is the only sure test for the silver, subtract the two, and the difference is one-half the number of grains of nitrate of ammonium in the bath. For instance, suppose you were to make up a silver bath of thirty grains strong to the ounce of water, and wished for nitrate of ammonium in the bath, you also put in thirty grains of this to the ounce. Test with hydrometer, and it will stand at 45 grains. Test with Pile's tube, and you will, of course (for you know in this case, for the bath was just made up, and has not been used), find it this time to stand at 30 grains. Subtract the two; 15 grains is left, which is half of the number of grains which you know was added. In the case just cited, the rule may not be required, for you know already the strength of the bath, and just how much nitrate of ammonium there is in it; but when a bath has been used for some time the amount of each is not known, then the above may be handy. Before using the above test, however, the printer should endeavour, as far as lies in his power, to remove all the organic matter from the bath, so that it will not deceive him.
MECHANICAL APPLIANCES FOR GOVERNING LIGHT.

BY C. E. MEYER.

Since the National Photographic Association has presented to its members, through the courtesy of Mr. Kent, his handscreen proper, together with the result of his large experience in its use, the science of lighting has been greatly simplified and practically reversed in the actual theory of controlling light. The idea was to let in the light only when it was wanted, and the effort to reduce this to a system was published by Mr. Wharton Simpson in the World, October, 1871. He writes of a German artist, Mr. Storitz, whose principle was illustrated by a model studio, with shutters numbered, the various effects to be got by opening particular shutters found by experiment to correspond with various lighting effects.

The best illustration of this method is "Bigelow's Album of Lighting and Posing," published May, 1872, in which the attempt to reduce it to an accurate system is only prevented by the varying feature of the subjects themselves, nearly all requiring some individual variations to modify effects, as when a round face substituted for one with overweening cheeks and eyes. As alluded to, the screen system is exactly treated in this manner, and the sister is usually placed at or near the centre of illumination, while the method itself is the barbarous "role of application" whereby a plug may be fitted to a hole by cutting and trying. This gives free scope to the variations in different faces, but it is in a degree useless in the hands of those not possessing also the artist's eyes, as the particularly favourable light has to be detected as the screen moves about. This accounts for the reason why photographers who are not real artists have not soon admitted the merits of the handscreen, and so constantly used it. With natural taste or with practice, this use of the screen becomes intuitive, as any required effect can be got in less time than it takes to adjust a headrest.

In October, 1873, the Philadelphia Photographer published a contribution, illustrating and describing another arrangement of the screen. It consists of two sticks crossed to form a base; from this rises a stick six feet high, with a screw-eye at its top; near the top is a block of wood clamped to the post by a screw-eye. This block hinges to an arm carrying a square frame or screw, to which is attached a cord passing through the screw-eye at the top of the post, and terminating in a balancing weight. This apparatus can be adjusted by any one of slight mechanical skill; the only fault in its plan being that its movements are limited to arcs of circles, in planes, in right angles to each other.

When I became an amateur photographer, I commenced experimenting in the direction of appliances for governing the light, and if I should be found speaking as one having authority, please consider that in pursuing a specialty, I have probably had a larger experience than any other person. I kept a bright look out through the various journals, and I made numerous arrangements for modifying light, and took my pay out in that way. They didn't suit me, but I could no more help trying, than a hen with an egg to lay. What I wanted was a screen weighing less than four ounces. I also wanted it movable by one hand like a fan, and I was foolish enough to want it to remain in the air, suspended, as my hand left it, in position. The wariness of American "chefs d'œuvre" is here. Two sticks four feet long cross to stretch the screen, fastened by four tacks; this third stick, four feet long, has a weighted handle at one end, while the other end is screwed to the crossing of the screen-stretcher. Near the handle the staff passes through a universal joint made spherical for symmetry; this completes the attachment—its weight complete is two and a half pounds. It is wielded by the handle like the common hand-screen, and a socket in the sphere slips over the top of any head-rest shaft. As a preferable support, I use a head-rest base of iron, a column of wood with a metal cap forming a binding screw, to adjust the height of a shaft of hard wood or gas-pipe, making the whole light, cheap, easily carried, and hard to upset, because its weight is its base. The arrangement of the joint is such that it permits complete revolutions of the screen in any plane, by a "twist of the wrist," to occupy any angle or position as freely as a hand-screen not attached, and it is so perfectly poised that it remains firmly fixed when the hand lets go. If you want a hand-screen, here you have it. If a fixed screen, here you have it. If you want a flat reflector, here you have it. If you want a concave reflector to concentrate light on any one spot, the loose screen when inserted sags into a concave surface.

I trust that its perfect simplicity, lightness, and cheapness will not seem objectionable, as by ten minutes' practice with it as screen and reflector, the true science of lighting is better revealed than by days with other methods.

In connection with this simple attachment, I have had a large experience with the character of this light employed. It is natural to always think of the screen as thin enough to transmit considerable light. This is as great a mistake as to put ground-glass on an excellent north light. Translucent screens soften or modify light, but do not govern it; but this is accomplished by an opaque, or nearly opaque, screen. With either, more brilliant effects are got, and softness, also, by a similar screen, or by moving it farther away or out of the camera view. The opaque screen I also use advantageously over the camera itself, producing all the good effects of the tunnel light, without its defects.

As a semi-opaque screen I have always used the various-coloured paper cambres, more or less non-actinic, or approximating to the colour of the blemishes of the face, such as freckles, tan, or scars, thus materially reducing the retouching of negatives, as the face is lighted all one colour.

Some years ago the screen here shown was a fine healthy pink, but the sunlight has had its revenge on it for being controlled, and leaky skylights have convinced me that there are some things which a screen will not do.

I can well believe that there will be some difference of opinion regarding my statements relative to the effects of the opaque, semi-opaque, or coloured screens; but I refer the reader to ask the freckles, tan, or scars, as I believe that an experience considerably less than mine will corroborate my views; the cheapness of the screen-stretcher, attached by a screw-eye, facilitates a change in the character of the screen in use.

It may be asked if my apparatus is patented. Luckily for the fraternity it is, and was not patented to persecute the trade, but in a hurry to foil an attempted piracy. I concluded to pay thirty-five dollars to Uncle Sam for a patent rather than give ten or fifteen dollars to "any other man" for the privilege of using my own invention. It rests on its own merits of simplicity, cheapness, and efficacy; and I do not intend to prosecute individual infringers, and I will give a licence, to make a screen or reflector, to any person who would rather pay for the troubles of merely writing it than for the perfect apparatus itself.

I think I can offer a better article, cheaper than they can afford to tinker one up, and adjust its peculiarities by experiment. I would remark that this is not a "light modifier," but a "light controller," capable of making a properly lighted head in a blinding glare of sunshine, by a common side window, or as the body is in the frame big enough to work it; and I present it to the fraternity to be by them wielded as a painter's brush, applying the light when needed.

*Continued from page 581.
The photographic News.

Vol. XIX. No. 884.—August 13, 1875.

CONTENTS

Photography in and Out of the Studio 583

On the Influence of Coloured Rays upon the Tone of Positive Prints 583

Painting in America 584

Mechanical Appliances for Governing Light 585

Drawing Paper for Photographic Portraiture 585

Progress in Photomechanical Printing 586

Gradation of Tints on Photographic Papers 587

A Simple Method of Photo-Mechanical Printing 588

Landscape Photography by Thaddeus S. T. Lowe 588

Correspondence—Has Mr. Coughlin any Claim to the Lamberty Process! The Lamberty Patent 589

Talk in the Studio 589

To Correspondents 590

DRAWING PAPER FOR PHOTOGRAPHIC PORTRAITS.

Photographers are a singularly conservative community, and pre-eminent is disposed to let well alone. Since the adoption of albumenized paper for printing, nothing has served to loosen the firm hold it has obtained upon the affections of photographers. Artists have declaimed against its "vulgar gloss;" chemists have pointed out that a body like albumen, containing sulphur as a constituent, was inimical to permanency; and the constant reproduction of various objects, in the form of albumen images, has, in the belief, propagated by newspapers and the effect of broken tints to flat tints, and a certain luminous quality is thus produced which is exceedingly valuable, especially for pictures intended for hanging. Photographs especially need aid of this kind. Everyone must have been struck with the fact that a photograph from nature, which appears to be perfect when examined in the least light, is somewhat dull and misty when seen in a wall and examined from a distance, and that this effect is rendered more apparent if an engraving hang near for comparison. This is chiefly due to the fact that the broken gradation of stipple or hatching has a more luminous effect—lets more light into the picture—than any gradation of greys in flat tint. A rough texture paper has a somewhat analogous effect: the tips of the little elevations catch the light, whilst the tops are in soft, pearly grey shadow, giving general softness, and mellowing the keen, uncompromising definition of photography. Should the negative be somewhat hard, yielding a black-and-white picture, the effect of a rough, tinted drawing paper is amazing in removing harshness and giving the effect of texture. Some time ago some American artists, appreciating the effect of which we have been speaking, attempted to produce it on large heads printed in the ordinary manner on albumenized paper, submitting them to pressure in contact with a surface like that of rough drawing paper. We have an example before us at this moment, and the effect is charming in many respects. It would resemble a very clever and effective drawing rather than a photograph, but for one thing: that is, the somewhat odd want of harmony between the albumenized surface and the texture of rough drawing-paper. Printing on the paper itself would be therefore much more satisfactory, and for vignette heads on plates of ten-by-eight and upwards, the effect would in almost every instance be found infinitely superior to that of albumenized paper. A pure white paper, or white with the very delicate tone inclining to cream generally found in drawing papers, is always good. A decided cream tint would often be found effective for prints to be finished in crayon, in which a light might be put into the eye, or on lace or linen, with white chalk. Grey tints, especially if inclining to green, should be avoided for portraiture, as out of all harmony with flesh tints.

As regards formulæ and modes of working, we need not enter into too much detail here. We here produce results which best satisfied ourselves, in vigour and richness by the ammonio-nitrate printing process Turner’s, Whatman’s, or other good English paper was floated on a solution containing eighty grains of chloride of ammonium and fifteen grains of gelatine in a pint of water; dried and sanai-
tized with a sixty-grain ammonio-nitrate bath applied in the usual manner with a glass rod. The paper is sensitive, yet not porous in the least, and readily tones to a rich velvety black in an acetate bath. The toning bath should not be strong, and should be mature, and care should be used not to overdose, and so produce cold black and grey tints.

In our last Year-Book, Mr. Sydney Smyth gave some good hints on printing on drawing-papers, which it may be useful to reproduce here. We may remark that Mr. Smyth has had very extended and successful experience in this delicately-worked art of printing, hence his hints possess especial value. He says:

"I have been often asked by many of the young printers the best method of printing on plain paper. In my usual course of business I have to print many large size portraits on plain paper, both white and tinted—large vignette heads, &c., to be finished in water-colours and crayons. Large vignettes printed on tinted paper, and then finished with black and white crayons, are very effective, and do not require any great amount of artistic ability to make them look very nice.

"As to permanency, I have two prints before me printed fifteen years or more, and I cannot trace the least signs of fading. I wish I could say the same of the albumenized prints. I am of opinion that if albumenized paper had never been introduced for printers, we should not have had the least cause to complain of faded photographs.

"Copies of crayon portraits should always be printed on plain paper; they look even better than the originals when reduced to a small size. Paintings and drawings to be coloured, also large landscapes, are very effective when painted, and are much more easily coloured than albumenized paper. There is a greater difficulty in procuring a good sample of salted paper than there is of albumenized. I have had samples that would not print in eight hours in a strong light, whereas it ought to print quicker than albumenized paper.

"Get a few sheets of Whatman's white and tinted drawing papers; select any suitable colour, or according to how you intend to finish your portrait, either in colours or black and white crayons. For small work, thick Saxe is the best. Salt it as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride of ammonium</td>
<td>240 grains</td>
</tr>
<tr>
<td>Chloride of barium</td>
<td>489</td>
</tr>
<tr>
<td>Glenfield patent starch</td>
<td>1 ounce</td>
</tr>
</tbody>
</table>

Mix the starch in a small quantity of warm water, then add eighty ounces of boiling water; mix it well (this should make a beautiful clear solution); now add the salts (which will be equal to six grains of ammonium to the ounce), and strain through a tuft of cotton-wool. Float the paper until it lies perfectly flat, which will be in about six or eight minutes; hang it up to dry, then keep it perfectly flat until wanted. Float on a forty-grain albumen bath; print rather deep. You will not require a very strong toning bath, as plain paper tones more quickly than albumenized. A good plan is to tone after a batch of ordinary prints; the bath being nearly exhausted, you will tone them with more ease and certainty. Any of the toning baths will answer, and you can get any tone you require. Fix as usual.

GRADUATION OF TINTS ON PHOTOGRAPHIC PAPERS.

BY CAPTAIN W. DE W. ABNEY.

I see in your last issue that Mr. Winstanley is going to explain a method of obtaining a gradation of tint on photographic paper for the last year or two, in which he employed glass neutral tint wedges for the same purpose, which give perfect gradation. The intensity of the light penetrating obeys a well-known law, hence calculations can be made, if necessary, regarding the shades. Another plan (somewhat similar, I imagine, to Dr. Rocoe's, though I have not seen his described) is to cause a wheel, the spokes of which are cut into a leaf form, to revolve in front of sensitized paper. This gives a time gradation, while the last method gives an intensity gradation. Finally, to compare shades, I have adopted a rotating wheel, made as before, the leaves being of dead lampblack, resting on a pure white ground. The comparisons are, of course, made by the eye. These three contrivances give a perfect method of scaling tints. I have been experimenting in this direction for some considerable time, and have found that the three scales give me every possible combination I may require. Any one wishing for an actinometer scale, however, had better use that given by the wedges, and not the time scale; for in the latter the scale is too rapid at the white end, and hence is more difficult of comparison. I need scarcely say the wedges must be very accurately ground, as a diffusion of light correction to the law for intensity, as the thickness of the wedge has to be taken into account, besides the absorption due to the thickness.

A SIMPLE METHOD OF PHOTO-MECHANICAL PRINTING.

BY M. ROGER LAURENT.

Different application of the process.—After three or four inking, as soon as the image has become delicate and clear, so that on regarding it by transmitted light no imperfections are to be seen, you pass to printing off the same upon wood, stone, metal, porcelain, glass, &c.

When printing on wood, similar to that employed by the engravers for typographical blocks, there is no need for the image to be reversed. It is necessary to have a typographical press at one's disposal, or at any rate a powerful letter-copying press, of a vertical character, for the rolling or scraping press will not answer the purpose.

The gelatine block is placed upon the clean surface of wood, care being taken to obviate air-bubbles, which are removed by pricking with a needle without touching the picture. At the back of the block is placed a bit of cloth, of even thickness, and moist, and above, some thicknesses of ordinary paper, to act as a pad. On top is put, moreover, a sheet of India-rubber to regulate the pressure, and a piece of sheet tin or copper.

* Continued from page 377.
The block and the wood are pressed together, and withdrawn immediately. With a sponge you thoroughly moisten the back of the printing-block, and as soon as the gelatine has swollen, it is removed, when there should be no ink remaining on it.

To print upon metal, such as zinc or copper plates, the latter should in the first place be properly cleaned, planished, etc., so as to have a perfectly smooth surface without any defect. The inked gelatine block is applied to the metal under water, and the air-bubbles carefully removed; on coming out of the water, the excess is squeezed out with the palm of the hand, and the two surfaces are allowed to dry, adhering to one another by atmospheric pressure, which is, we know, fifteen pounds on the square inch. When the whole is perfectly dry, at the end of twenty-four hours, the metal and the block are again put into water for an hour or two, to swell the gelatine. The block is removed, and the ink remains in the metal.

In this way the process may be made to serve the purpose of engravers; the plate may be etched or electrotyped, the greasy ink acting as a preservative to those portions of the metal which it covers. The inked plates may also be used for zincography.

For printing upon stone the image must be reversed, and to do this it is necessary to have recourse to transfer ink—that is, fatty ink containing wax—and transfer paper, which is fine Indian paper, sized on one side and bifidous on the other. In working out a photo-lithographic process it is well, moreover, to secure the services of a skilful lithographic printer.

The printing-block is inked with transfer ink diluted with essence of lavender. You print, in the first place, upon transfer paper, on its sized surface; this impression is to be transferred to the stone. The latter having been properly prepared, the impression is laid upon it, air-bubbles being carefully excluded; and the print once laid down must not be shifted afterwards. A wet cloth is applied to the back of the paper, then a sheet of rubber to equalise the pressure, and then a metal plate. It is necessary to work promptly and decisively.

When pressing, a cushion either of rubber or cloth is put under the stone to prevent it breaking; and I prefer to employ a vertical rather than an ordinary lithographic press. After pressing, the back of the transfer paper is wetted with a moist sponge, and in this way removed.

It is necessary, perhaps, to say a few words about photographic manipulation, because it is one thing to produce a negative sufficiently good for silver printing, and another to secure a cliché suitable for heliographic purposes.

In the first place we may say that the glass plates employed must be scrupulously clean. A stock bottle of acellulated water, containing not less than ten per cent. of nitric acid, should be kept ready for use, and of this a few drops must be poured upon the plate, which is then rubbed with a clean rag, rinsed in pure water, and wiped. I recommend the use of this side of the glass which is concave.

For the iron developer I use the following formula:

<table>
<thead>
<tr>
<th>Water</th>
<th>1 litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium ferri sulfate</td>
<td>55 grammes</td>
</tr>
<tr>
<td>Sulphate of copper</td>
<td>55</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>40</td>
</tr>
<tr>
<td>Alcohol</td>
<td>30</td>
</tr>
</tbody>
</table>

The employment of sulphate of copper with ammoniacal sulphate of iron is little known, but nevertheless it gives very clear negatives. The operation of development should be carefully watched, and as soon as all the details of the image have appeared, the developer should be removed, and the plate washed; if any delay occurs, the image becomes velled in the delicate portions, and these cannot then be rendered afterwards in the mechanical printing.

I do not advise the use of hyposulphite of soda, neither that of cyanide of potassium for fixing the negative. Sulphocyanide of ammonium, which fixes the cliché very perfectly, does not eat into it so brutally as cyanide.

Intensifying the cliché by means of pyrogallic acid I cannot recommend, because it has the effect of taking the finer details—a thing that must be prevented at all hazards. Again, it is not a bad thing to have a negative not very dense in the blacks; if only the clear parts of the negative are really transparent, it is well, indeed, if the negative is not too dense. It is best to time the exposure as accurately as possible, not to have recourse to pyrogallic acid for intensifying, but, after fixing and washing, to pour across a solution of one gramme of bichloride of gold in a litre of water, which is applied five or six times to the negative. This is also good for the process of reversing the film—an operation I will now describe.

Reversing the Cliché.—In mechanical printing it is generally the case that a reversed cliché has to be employed. The most simple and shortest way assuredly is to photograph through the glass plate, the bare surface of the same being carefully wiped when it comes out of the developer. To my mind, however, this is not in this way is not worth one reversed on a pellicle, and I advise those who wish to follow my footsteps to proceed as follows:

As soon as the cliché has been finished and dried, there is poured upon it, instead of varnish, a warm solution of gelatine containing twenty per cent. of gelatine, the same having been carefully prepared. The glass plate must be laid perfectly horizontal, and maintained in a level position upon a dish of hot water. By means of a brush the warm liquid is spread over the cliché without injuring the collodion, while preventing the formation of air-bubbles. The cliché is removed from the hot water dish and placed upon a horizontal stand; and at the end of fifteen minutes, when the gelatine has set, it is allowed to dry spontaneously in a current of air. In a clean, well-ventilated apartment. When it is perfectly dry you cut round the margins with a knife, and in this way the film with the collodion image is readily removed, supposing the glass was perfectly clean to begin with. This pellicle of gelatine may be placed in a book; it occupies little room, and may be sent by post without inconvenience.

I employ, as I have stated, sheet gelatine, which is pure and diaphanous, and of the best quality. I take as large a piece as is necessary to cover a cliché, and put it to soak in pure cold water for a couple of hours. In this state I apply the sheet gelatine to the dry, cold cliché, placed in a horizontal position upon a table, preventing the formation of air-bubbles by carefully raising the sheet without touching the collodion, and pressing them with a needle. A sheet, or sheets, of gelatine are laid upon the cliché in this way, the pieces crossing each other if need be, and then the plate is removed to the top of a hot water dish having a temperature of about 100° Cent. The gelatine melts, and with the aid of a soft brush you are enabled to produce a regular surface, and destroy any bubbles that may have formed. Afterwards the plate is removed to a level stand, and when the margins are then cut with a knife, and the film removed.

A third mode of operating may be mentioned. The essence of Eucalyptus possesses the property, when mixed with an equal volume of alcohol, to dissolve pyroxyline. Enough of this latter substance is, therefore, added to make a syrupy mixture, which is applied to a plate of very clean glass placed horizontally. This very thick film is allowed to dry thoroughly, and to remove it from the glass it is only necessary to steep it in water. Upon the cliché is
poured some alcohol in which a little resin has been dissolved, the film above mentioned is placed on top, and the two surfaces are pressed together and allowed to dry. Afterwards the negative is put into water, and the image with gumsonnot film detaches itself from the glass.

Sensitive gelatine paper.—I have told how to prepare gelatine paper, and how to sensitize it. Those who desire to do their work very well should proceed as follows:—The gelatine paper having been placed upon a flat board, a fine piece of linen of suitable size, saturated with a solution of bichromate of potash of three per cent. strength, is laid down once or twice upon the gelatine surface. When the whole surface of gelatine has in this way been made to imbibie the bichromate solution, and has become damp and supple, I lift off the linen, and I apply the gelatine paper against a well-cleaned glass plate, over the surface of which has previously been poured a three per cent. solution of bichromate. Atmospheric pressure causes the gelatine paper to adhere to the glass, and they are then removed to an airy dark room to undergo complete desiccation. The paper when it leaves the plate is as smooth as the glass itself, and must be carefully stored in the dark, when it will keep for two or three days. If the paper will not readily leave the glass, the latter was not properly cleaned in the first place. The best way of cleaning plates with acidulated water I have already described.

LANDSCAPE PHOTOGRAPHY.

BY THOMAS HINE.*

In writing this paper, I will state, to begin, I have nothing to offer you, but the same old story that has been told so often by able men than myself. My formula is the same I have used, with but slight variations, since I first took to viewing, and is as follows:—

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric ether</td>
<td>8 ounces</td>
</tr>
<tr>
<td>Alcohol</td>
<td>8</td>
</tr>
<tr>
<td>Bromide of cadmium</td>
<td>32 grains</td>
</tr>
<tr>
<td>Iodide of cadmium</td>
<td>32</td>
</tr>
<tr>
<td>Iodide of ammonium</td>
<td>32</td>
</tr>
<tr>
<td>Gun-cotton</td>
<td>80</td>
</tr>
</tbody>
</table>

My bath, thirty-five grains of nitrate of silver to the ounce for summer, and forty grains in winter, slightly acidified with c.p. nitric acid; my developer, fifteen to thirty grains of sulphate of iron to the ounce, according to my subject. After development, I flow my plate with just enough to cover it, of water ten ounces, acetic acid No. 8, two ounces; flow it backwards and forwards for a minute or two, and put it in my plate-box and finish it at home, strengthening, if it needs it, with pyro.

I wish I could impress on the minds of my brother photographers, that it is not by this or that process that excellence is attained, but by close and earnest study. Do not think because your chemicals are in perfect order, and your apparatus of the best, that all you have to do is to set up your camera and expose your plate; your negative may be faultless in chemical effect, but will it be an artistic picture? It is only by a thoughtfulness of the means at our command, and not by any secret process, that men like Wilson, Bedford, Good, and others produce the photographs we admire so much. Remember that it is not the colours and brushes that make the artist, but the following in nature, only to be acquired by long study.

Spend some time, on arriving at the locality you are going to photograph, in going over the ground. If you can, go the day before, and having found your subject, view it from different stand-points; let the principal object come nearly in the centre of the picture, a little nearer to the right or left of it, as the subject requires, and nearer the bottom than the top of the picture; study your foreground well, and if blank and uninteresting, place some object in it, such as a mass of foliage, or stump of a tree, to break the monotony, but be careful to so place them that they harmonize with the object. A figure or group, if properly placed, will add life and interest to it.

The next thing to be considered is, have you chosen a good day? for, if you have not, it is useless to waste your plates. What I call a good day is one when the wind is still, for only then can you photograph foliage in all its beauty, or look down into the depths of the quiet lake and see reflected hill and mountain in all their grandeur. The requisite is light. A light cloud in the sky, or when the clouds float lazily across the sky is the best. I find that early morning or late in the afternoon is the best for most subjects; then the shadows are longer, and you will get effects of light and shade, with none of that litteness of effect so often seen in photographs. If possible, expose your plate when a light cloud is passing over the sun; it will lighten up your shadows, and the gleam of sunshine after will give vigour and breadth to your photograph.

Use a sky shade to your lens; by so doing you may get a good cloud effect. Do not be afraid of shadow, for properly managed it is the glory of a picture; give a full exposure, and by careful development your high lights will not be overdone. Then expose your plate, but do not be satisfied with one exposure, for by a second, with a change in time and in the strength of your developer, you may do better. Remember, it is better to go home with one good negative than a score of poor ones.

For architecture, do not let the sun shine square on the building, so that it glances along the shadowed side; let there be cast shadows, for without them you will have a flat, unmeaning effect.

For interiors, your chemicals must be in perfect order; if not, it is useless to try, for it is only under these conditions that I have been able to expose one and a half and two hours, and get negatives free from mat-stains. I never use glycerine, or any other preservatives, to keep my plates moist. My bath and collodion are the same I use every day.

CORRESPONDENCE.

HAS MR. CROUGHTON ANY CLAIM TO THE LAMBERTYPE PROCESS?

Sir,—As it has been confidently stated that Mr. Croughton has, by publishing the above notices, established his right to be considered his author, I think the claim deserves investigation. It is not sufficient to state that Mr. C. has taught it to some pupils, or described it to private friends; this is not publication in the legal sense, so that the public may enjoy the benefit. I have therefore had the curiosity to read the original paper in which this process is said to be described. The paper was read before the South London Photographic Society in December last, and Mr. Croughton describes the steps he takes to make an enlarged negative. He details his method very minutely, but, useful as his plan is, he is careful to say that it is not new. He is right, as his manipulations all through are those of the usual wet collodion process. He first produces a transparency, and from it makes an enlarged negative. He then places tissue paper on the back and front of his negative, and the coincidence occurs on which Mr. Croughton relies; Mr. Lambert also places paper on each side of the enlarged negative. But though they each do this, the important point to notice is, why they do so. The words of M. Lambert in his specification, and of Mr. Crompton in his paper, supply the evidence of judging. It is unnecessary to quote the exact words of the specification, as they are given in your number of July 16th; but the purpose is...
clear: it is two-fold, to take advantage of the special texture of the paper M. Lambert uses—it is not ordinary tracing-paper, but a new material, papier minéral—and to supply a ready means for working upon with blacklead powder.

Mr. Croughton gives his reasons as follow:—"In elderly people the lines and texture of the face is far too marked in the enlarged negative; this can be much softened and reduced by using a heavy tracing-paper, interposed between the thickness of tracing-paper between the sensitive paper and the negative." Nothing can be clearer than this: the tracing paper was placed between the sensitive paper and the negative, not to afford a convenient vehicle for touching upon, but for softening and reducing the lines and texture of the face. No other reason is assigned by Mr. C. why he so placed the tracing paper, but this sufficient one. He describes this when he explains why he puts tissue paper on the back of the negative; it is, not only "to soften the printing," but for an additional reason, "because it is a capital medium for working with the pencil to strengthen the high lights." His words are: "I always strain tracing-paper on the reverse side of the negative, as it serves to soften the printing, and is a capital medium for working upon with the pencil, to strengthen the high lights." Then he describes other details, but not a syllable about using the tracing-paper on the face for working upon.

It is very remarkable that if Mr. C. did use the tracing-paper on the face of the negative for any other purpose than the one he states, that he should not have mentioned it especially, as in giving full details, he appeared to be honestly anxious to make a clean breast of his mode of working. Why did he mention the distinction he makes between the uses of the two papers? Why should he state that he used the front one to soften the printing, and the back one for purpose and also to work upon, if he really worked upon both? That he did not work upon both sides, but only on the back, is confirmed by another part of his communication. Referring to an enlarged negative he exhibited as illustrating his mode of working, he says: "The large negative you will see is untouched, except that the stray locks of hair are more defined, pinholes and dust spots filled up, and the high lights throughout on tracing paper at the back."

I find that the discussion of the paper was postponed to the following meeting, January 1874, when Mr. Edwards penned a paper in which he denied some of the merits of Croughton's method as contrasted with his own. An animated discussion ensued, during which Mr. C. took an active part, giving further details of his process; and although much was said about working on the original and on the enlarged negatives, as well as on the transparencies, yet not one word was said about working on the tracing-paper in front of the negatives. How was it, when he was so anxious to point out all the useful parts of his process, that he did not mention this one, which would have been both novel and useful?

In this journal, February 6, 1874, Mr. Croughton had an article, "More about Enlarging," in which he gives further minute details, that he states are "worth knowing, in order to get good results," but no word is said about the method in question.

I observe that the Editor of this journal had at the time a long and exhaustive article on the subject. In this he commented on and criticised the various expedients to secure and to improve enlarged negatives, yet he never mentions this expedient. Had the subject been mentioned—alive as he always is to all novelties and improvements—the matter could scarcely have escaped his attention, especially seeing that a few months later he so readily noticed it when he saw it in use by M. Lambert in Paris, and his passionate review of Mr. Croughton's papers, the discussion thereon, and the Editorial comments, I think no other conclusion can be come to than that Mr. Croughton and his friends are mistaken in asserting that the method of working on tissue-paper on the face of the enlarged negative was published by Mr. Croughton in December 1873. He is never reported to have said in his paper, or in the discussion, that he worked on the tissue in front, but he distinctly says he puts it there to soften the printing: but he twice in his paper says he worked on the tissue-paper, and in both cases he removes it only by stating that he worked on the back. I conclude, therefore, from the published evidence, that on the occasion cited Mr. Croughton did not publish this important fact, and that he has no claim whatsoever to the Lambertype process.

Yours, &c.,

CRAYON.

THE LAMBERTYPE PATENT.

Sir,—I had been forewarned that I should create a great deal of jealousy amongst a certain class of anti-improvement photographers, always ready to play the prophets, but never willing to learn, if I dared to introduce processes giving better results than their own; but the persistency with which they obtrude new misstatements and misrepresentations as soon as I have disposed of the old ones almost surpasses my expectations, and is becoming rather amusing to me.

Mr. Batho, Croughton, and Samuel Fry (of Surbiton) seem disposed to be prudent. Knowing that works and facts would be more compromising than equivocals and insinuations, they decline accepting any offer of mine to test fairly the new value or similarity of my patent. They state the value of Mr. Croughton. Knowing practically the worth of the two methods, I can sympathise with their caution, which is surely their best policy. Notwithstanding all their evasions and equivocals, I fail to see any reason for their refusing the challenge of the test offered by myself. What use can these gentlemen have nothing to learn from me, they say, with equally good processes, do equally good work: whilst if they have yet something to learn, they ought to be happy to have the opportunity of doing so. For my own part, I have always been happy to learn from others, and to pay for the instruction in anything which may help me to elevate the standard of my professional work. It is easy for them to state that my challenge is too ridiculous for them to accept it; so did the fox declare that the grapes were too sour for him.

Mr. Batho, after taking advice of his patent agent, as I advised him to do, admits that his knowledge of patent law is not so extensive as Mr. Lambert's, but denioes having committed any blunders in his various assertions, saying that I took for granted that any and every legal point mentioned had direct relation to the patent. I have made three different assertions applying to patents in general, as your readers will see by referring to his first article in issue of July 22nd. First, he said that "if a patent be taken in joint names," etc., how not one of my patents is taken in joint names. Secondly, "The invention being new and not obvious in a business manner, even by the inventor." Although this last assertion has no relation to our case, I proved to Mr. Batho that his statement in this case is quite erroneous. Thirdly, he says: "If a specification claim as part of the invention something new, along with something not new, it will invalidate the patent." I proved to Mr. Batho that it is not so; that you can claim (not only describe) a thousand old things to be combined so as to give new results. I even gave a case in which was claimed the use of hot blast and anthracite coal for the production of gas. The hot blast was artificial, the coke coal, and cold blast with anthracite coal; so there was a claim of two old things combined to produce a new result. Now Mr. Batho has been unfortunate, for out of his three assertions on patent laws, one has no relation whatever to either of my three patents, and the two others are erroneous. In capable of maintaining his first assertion, he goes on to say: "Mr. Lambert claims the method of applying the semi-transcussid sheet on each side of a negative, and of quickly colouring by operating on these surfaces (Mr. Batho forgetting the following words, "of the negative") that this may mean method or application; however, continues he, "as the specification does not describe the method, it must mean the application."

Now had Mr. Batho not thought it convenient to omit the three important words "method or application," he would easily have perceived that both the method and application are fully described in my specification. Then follows another incorrect
assertion, Mr. Batho says, "As this has been applied before
Mr. Fry says, the claim to a semi-translucent sheet, and
fails back on the retouching of the two said surfaces." Will
this gentleman please to tell me where I dropped the claim to
the sheets of paper? I have written but one letter on the
Lambertype Patent, and I challenge him to prove that I have ever
claimed such, as I do not pretend. I always claimed the
combination of one sheet on both sides of a negative, and
the retouching on these surfaces. I cannot drop the surfaces
without dropping the retouching thereon, however pleasant this
might be to Mr. Batho. Neither can I in a claim describe a
work on a special surface without describing and claiming
the new combination of both the surfaces, and work to produce
new results.

The words, "and the retouching on these said surfaces,"
don't sound much like my dropping these two surfaces to retouch
on the two bare sides of a negative. I quote from my specifi-
cation: "What I claim as my invention is the method of
applying a semi-translucent sheet on each side of the negative,
and of quickly retouching on these surfaces." I am glad to see
that Mr. Batho at last admits that if Mr. Crompton had used
paper on both sides, but retouched only on the front or only on
the back of the negative, such would not infringe his
Lambertype patent. Now we stand prepared to prove that Mr.
Crompton only commercially used one of the two methods just
described, and only published one of them; we can also prove
that he taught his pupils only one of them, and that before the
Society printed this method Mr. Batho had used the other
methods; and we challenge Mr. Batho to prove that our process,
as described in patent, has been either published or com-
mercially used anterior to my patent.

Mr. Batho's only objection to accept our challenge is
that we bind him in process all three methods of lamer-
typeing as is.

Well, we can afford to be lenient, so we shall only
bind him to obtain all the results covered by the Lambertype
Patent, outside of my two other patents, and I will give him
double the time to produce as good effects, provided he uses none
but the method of negatives, and by that before my patent
reserving the right to prosecute him should he infringe
my patent. I am sure this will put a stop to Mr. Batho's scruples
unless he finds it handler, as I think he does, to fight at a
distance, with useless words instead of facts and proofs.
The usual way of testing the range capacity of competing guns is
to see how far the ball will reach with a certain charge of
powder, and not for the competitors to lay their guns down and
come in a low controversy as to how far their respective
guns have been said to, or might, or ought to reach, or, as Mr. Batho
has, to lay the guns down and have a fight to prove which is the best.

Mr. Samuel Fry (of Surbiton) having in the issue of July 23rd
thought proper to try to injure my process by asserting that he
had seen the operations of the Lambertype, occupying
several hours, I asserted that Mr. Fry had made an erroneous
statement; that knowing in what capacity he came, he only
saw the work obtained, and not the operating of the, Lam-
bertype which took several hundred. I can prove my assertions
by photographs present. I am glad to see that Mr. Fry has now
thought it prudent to alter his statement, by saying it was the
work and negatives of Mr. Lambert he saw, which is almost
different from his original statement as Mr. Crompton's pro-
cess is from mine. Mr. Fry says, "I already had all I wanted,
and all he had to sell." How is it, then, that Mr. Fry remarked
to those present that he had got the Vanderweyde process
he was not giving more than £25 for my process? But "as good
wine needs no bush," we did not take the hint from Mr. Samuel Fry, not thinking his favorable opinion worth the balance of £15. Mr. Fry then, shaking
hands with me, said, in presence of my interpreter and Mr. Cobett, publisher of London Journal, he was not giving more than £25 for
your negatives. I am always ready to repair any mistakes I
might make, and am glad to say the process is quite different
from what I thought it was;" and said further that he would
say no publicly, and that he hoped to see me at his house some
afternoon. But why was he not the subject of December 6th, 1875
as a fraud? As "a good wine needs no bush," we did not avail myself of his invitation, I received a reminder in
the shape of a letter given me by Mr. Cobett, and of which I
have given a verbatim copy. Now notice that although Mr.
Cobett's address was Walsworth Road, London, this letter was
addressed to me at my house, for what purpose I leave it to my
readers to judge. Notice also the date of this letter.

Drum Str.-It is now quite clear that Mr. Lambert's patent has been in
use by the public. In the claim of Mr. Batho for his patent, the method of putting paper on each side of the negative is described in
full by Mr. Crompton. I adopted it at once, and have used it since. Also Mr. Samuel Fry (of Surbiton) in the report of the Society last night said:
"This gentleman says in last week's paper that he preferred silver
printing to chromotype. He has a right to do so, for there is
work that gains by being perishable. But what Mr. Samuel Fry (of Surbiton) has no right to do, is to say that Mr. Crompton
has copied his method of printing negatives, and that he
retouched them as described, whilst he knows that Mr.
Crompton has never described any other method than that of printing through paper (not retouching on) with a sheet of tracing paper strained on the reverse side of the negative to retouch on.

Mr. Crompton must really love to play the martyr if he can
see any direct attacks on him in my last letter; but he makes
a grand mistake when he thinks I will be sorry to have
defended myself against erroneous insinuations, and in so
doing have forced him to answer. Out of six licences here
to-day, three were present when Mr. Crompton explained
the process before the Society; one was his pupil, but the
two others say that it is owing to the attacks on my patent that
they have come to see the process, knowing that if they
were not good, they would not be thought worthy of so much
and so persistent attack from non-licences and so much
praise from the licences.

Let all those who are not willing to pay for the use of
my patent, use the method described by Mr. Werge, or use ground
glass varnish on both sides of negatives to retouch on. Of
course, as Mr. Werge says in his letter, "no other men have
had a good result," but this is no reason why these gentlemen should not use them to
save the sum of £20.

A few more short answers, and I have done. Mr. Batho asks
me what is a conspiracy fund. It is a fund raised by many
men to fight one man; for instance, the fund hinted at by Mr.
Smythe would be a conspiracy fund, and as such illegal.
Mr. Batho also, in stating why he does not go to law about this
matter, says, "the victory in such a case in our courts, often
ter than otherwise, is as costly to the victor as it is to the van-
quished, which is the cause of many acts of injustice being
not the subject of law." But this is not the subject of law.
As a journey through England, I shall visit Halifax
very soon, Mr. B. will have a chance of accepting the test I
propose in his own town, or, at least, of comparing results.

As Mr. Crompton seems to begrudge our giving the £20 to the
Society, I will give it to him if he gains the challenge.

Allow me, Mr. Editor, to thank these gentlemen for the
great honor they have given me. I have been pleased by all my new licences.
My knowledge of their powerlessness will be seen by me raising
the prices of licences on the 15th of this month, and of
doubling them on the 16th of November. I am almost certain to
count these gentlemen amongst my licences when the
words are approved by all my new licences.

Greenwich, August 10th.
MINIATURE PAINTING V. PHOTOGRAPHY.—The following extract from Nagle Bernard's Life of Samuel Lover may possibly interest the mystic adherent of photography in his contest against the misgivings of photography, and protest against any attempt to ameliorate its stern truth:—"I scarcely need remind my reader that miniature painting as a pursuit was anathema by photograph. I confess I am not one of those who are perfectly content with this result. Admitting all the advantages of the latter in respect to cheapness and ease of production, I find it difficult to think that its grim and severe reality, its sudden and unexpected revelation of human ugliness, and its inability to soften it with the finest gleam of mind or feeling, make it preferable to a process which, in able hands at least, was always capable of giving us sufficient truth of feature, combined with some glow of grace and beauty, and some refining light of soul.

KEEPING QUALITIES IN PLATES.—A friend sends us the following extract from a private letter written by Count Noisits, an able amateur photographer in Russia. These years constitute a good test of the keeping qualities of dry plates. The Count says:—"I have made in these days an experiment that has astonished me. If you see Mr. Simpson or Mr. Gordon, tell them that a dry plate prepared in April, 1872, on the system of the Depont of Lorraine, with its preservative (140 water, 0.5 pyro, and 4 burnt sugar), which I exposed 1½ minutes with Dallmayer's large-angle No. 2 diaphragm, gave me a good result. Also an old plate (three years) and which had been kept through a winter of 26° Reamur of cold, and which had been exposed to the worst treatment, had lost not its sensitiveness. The developer was alkaline."

WHY THE LADY FAINTED.—A correspondent of one of our American contemporaries some time ago gave the following:—"I send you the following actual occurrence which happened on my ponger's table. A lady having been presented with a daguerreotype, and requested to keep the position she had been placed in until my return from the dark room. After my return, I found her as still and rigid as a plaster cast. The plate-holder being placed in the camera, and the shutter drawn down, I again requested her to hold her position. After a short time at the piece of paper pasted on the corner of the box; she might wink the eyes, but otherwise keep perfectly quiet. I turned my back upon her, and after fifteen seconds' exposure I heard something drop—my subject had fainted. After restoring her she exclaimed, 'I tried it, Mr.,—but I could not hold my breath any longer; indeed I could not.'"

DETECTION OF ARSENIC.—The detection of arsenic is so simple that any one can perform the experiment in a few moments. We get a lot of pieces of leather, and calico or silk. In a strong ammonia which we had poured into a tumbler; a blue colour at once indicated the presence of copper. A drop of the blue liquid put upon a crystal of nitrate of silver turned immediately canary yellow, which reaction denoted arsenic. This is an experiment that anybody can try. To confirm our suspicion, it is necessary to constitute precede in relation to a patent, the stam, and easily obtain the well-known deposit of metallic arsenic on glass or porcelain. With wall paper a neat and easy way is to put a drop of nitric acid on the green spot, then a drop of ammonium, when the color will turn to, and on saturation of the drop of nitrate of silver, if arsenic be present, yellow stain will spread in a ring to the outer extremity奇特.

SCIENTIFIC AMERICAN.

Be Correspondents.

SUMMERS.—The amount of pure metallic silver in pure chloride of silver is 75% or, in other words, seventy-five per cent. You must be very careful, however, to see that the chloride of silver you buy is pure, for there are some very carelessness in throwing it down in their reside-view, get a good deal of foreign matter mixed with the chloride. Washing and filtering work does a good deal of this. We have repeatedly heard you well understood your claim; if be that you have been in the habit of applying to paper the double coating of insoluble gelatine and lac, and using the paper so prepared for a carte de visite, this may be done in the same way as that described by Mr. Sawyer. Then it seems clear that you would have anticipated Mr. Sawyer's patent, provided that you had ever published the method. Publication, not simply was, is necessary to constitute precedence in relation to a patent.

In relation to your question as to the practice of Mr. Johnson, we believe that he used both gelatine and lac, made insoluble, but not in the combination and for the purpose of Mr. Sawyer.

NILE.—We regret that we have no means of knowing whether photography flourishes in Alexandria in Egypt or not, nor have we any means of ascertaining the names of photographers there, nor of knowing whether any chance of obtaining an engagement there exists.

W. W.—The formula for a toning bath which you quote will probably give good results, but we, although we think fairly mixed neutral, should probably find the two to be mixed eight hours before use; or, if we wished to use osfreely mixed, we should make each of the separate solutions with about one of the proportions. The same is true of mixing acid. The remainder of the water required in a boiling state, and use it when the bath became cold. The use of hot water will bring about maturity in an hour, which, otherwise, might require a couple of days. The two solutions may be kept separately, but printed on the acetate bath will be less permanent than one toned in the carbonate of soda or other toning bath; that is, if the precaution be taken to wash the prints after toning, before placing them in the fixing bath. In a ripe acetate of soda bath there is generally a trace of free acetic acid liberated, hence it is necessary to wash the print to prevent the risk of decomposition of the hypo bath. 3. There is no efficient method of cleaning tarnished Daguerreotypes, that we know of, without the use of cyanide. That is the only purpose in photography for which cyanide is absolutely necessary.

A LONDON TAILOR SAYS:—"Is photography progressing or retrograding? Progressing, in one sense, when we see such beautiful effects worked out nowadays; but retrograding in another. How that photography has run out of proportion, and getting their friends to tout for them, the same as you see the door men in the back parts of London? There are men having a good connection in their own town, trying their utmost to get another connection of no account, and no knowing the people; getting people to send all they can, and get them the whole out to do, and yet these men are living miles away. If it not lowering the profession to see such things?"

Another firm in London gives ten per cent. commission to people to recommend them. Photography has got to give such beautiful results now, it seems a pity that there should be such mean tricks required."

Our correspondent should learn to make a distinction between photography as an art-science, and the persons who may practise it. The real process of photography has really nothing to do with the conduct as a trade of profession. We cannot undertake to deliver in this limited space of commercial enterprises in endeavouring to secure a connection. The honor to use influence of every kind to enlarge a connection is a characteristic of the keen spirit of competition which prevails in the present day, and it is beyond our province to define the legitimate limits of such effort.

C. R.—The stains are, no doubt, due to hypochlorite of soda, the picture having been contaminated, probably after washing. Touching with soiled fingers, or with a damp rag that has soda solution on it, would cause the markings. Read Dr. Vogel on "Hypochlorite in Blackwork." page 314, which describes the best way of testing for traces of hypochlorite. You might easily repeat his experiments on your prints. We will be bound you will find byo present. The prints are not bleached. A correspondent should learn to make a distinction between photography as an art-science, and the persons who may practice it. The real process of photography has really nothing to do with the conduct as a trade of profession. We cannot undertake to deliver in this limited space of commercial enterprises in endeavouring to secure a connection. The effort to use influence of every kind to enlarge a connection is a characteristic of the keen spirit of competition which prevails in the present day, and it is beyond our province to define the legitimate limits of such effort.

IODINE.—You are right, no doubt, in attributing the intensity to imperfection of preparation of the varnish. We should think that the negatives have not been evenly coated with gum in the first place, or the surface has become greasy and sullied. This would account for the uniformity which describes the way by which the varnish will not take properly. Covering up the negative carefully while retouching should prevent this. A weak albumen solution should be employed for a temporary coating of glass plates, and then the bath will not easily if the albumen is properly applied. The back and edges of the plate should be cleaned. Twenty or thirty ounces of distilled water are added to the varnish. A quantity of a mixture, a couple of drops of ammonia being added, and the solution finally filtered.

COAT WITH A good red brush.
The Photographic News, August 20, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO. PHOTOGRAPHING UNDER DIFFICULTIES—LIFE IN PHOTOGRAPHIC PICTURES—PRINTING ON TINTED DRAWING PAPER. PHOTOGRAPHING UNDER DIFFICULTIES.—A cat may look at a king, we have been given to understand, but in Paris a photographer may not look at any public building, it seems, at any church, or in the case of the Eiffel Tower and the Paris Exposition, in which the new science is being given so much prominence, it is necessary in the first place to get a permit to do so from the Prefecture of Police. Although this appears somewhat of an arbitrary proceeding on the part of the Paris authorities, one can scarcely grumble at it just now, seeing that some portions of France are still declared to be in a "state of siege" which is the cause of such pretensions, it would be difficult to point out how the enemy, whoever he is, could be benefited by such proceedings; but they take exception, and very reasonably, we think, to one of the clauses, which specifies that they must only operate on the day and at the hour fixed in the permit, so that if the day happens to be unfavourable, or there should be a shower of rain just at the hour mentioned, there is all the trouble to be gone through again to obtain another permission. Paris photographers ask that at any rate two or three opportunities should be given them, otherwise they have some chance against the fickle sun; for, as every disciple of the camera knows, it is not very often that the first plate is altogether successful. Of course the Prefect of Police knows his own business best, but we should have thought that in times of peace like these, it would be well to relax altogether such unpleasant strictures. It might be very inconvenient, doubtless, to the photographer set about his work in the middle of the day in a crowded thoroughfare, but he would scarcely do this for his own sake, both for fear of being mobbed, and because it would be impossible for him to get a satisfactory picture under the circumstances. It is only at a passably quiet hour in the morning, or evening, that a photographer could hope to be successful in a business thoroughly and to produce a small instantaneous picture of the scene before him.

Life in Photographic Pictures.—While on the subject of photographing scenes in town, we may say a word on the very unsatisfactory results obtained, when a busy street is reproduced in early morning, without a living soul in it. In such a case the photographer, in his anxiety to get a quiet basis, may set upon the southern side of the street a half-a-dozen passers-by, a horse and vehicle of some sort in the foreground, would often be sufficient to people the scene he desires to depict; but so anxious is he not to have a movement, that no human being is represented at all in a thoroughfare which most people see teeming with life. The result is not a true representation of a street, but a bridge in Paris, but a mere representation of what seems to be a city of the dead. Such a picture is as much like the real thing as a dead man is like a living one. It is here that the photographer fails most singularly in reproducing nature, for he magnifies his own special weakness. It was one of R-jlander's oft-repeated maxims, "Get life into your picture!" and in most urban pictures one sees the photographer at his very worst. You may observe photographs of the Strand and Fleet Street without a trace of animal life, as Macaulay's New Zealander may see them one of these days, if the race only lives long enough; quays at Rotterdam, and squares in Paris, are shown as if it were the time of the plague, and the whole of the inhabitants had gone away, not a photograph. We do not know what photographic works of the kind are like this; there are exceptions we could point out, but they are very marked ones. A little picture of Frank Godd's is in our memory as we write, showing the Tower with a group of people at the gates, and the row of cabs on the stand on Tower Hill, one of the Hansom cabs quietly enjoying a newspaper on his perch. Good landscape photography is how to depict that life is in a picture; and how successful you may be in securing it is shown in Russell Manners Gordon's little Welsh study with half-a-dozen sheep grazing, which will be remembered by many in the London Photographic Society's exhibition some years ago. Messrs. Robinson and Cherrill have also shown us what may be done in the way of introducing life into photographs, as also Mr. Bedford and several other photographers of premier rang; and young photographers would do very well to study the pictures of those artists to show what really can be done with a camera. We know it is far easier to take a photograph of nothing more lively than stone or stock, but it will not do to consult your own convenience merely, if you want to secure anything above the general run of photographic productions.

" print on tinted drawing paper. — Very few photographers of recent standing know what pretty effects can be secured by discarding glazed albumenized paper, and employing tinted drawing paper for printing purposes. In the early days of albumenized paper, photographers had far more experience in printing upon different kinds of landscape photography, than they have now; so people merely chose the albumenized paper they like best, while a few, like Mr. Bruce, of Dunse, who do not object to a little extra work in order to give greater excellence to their productions, use collodio-chloride paper. Previously, however, plain salted paper and resinized paper were much in vogue; but beyond the remarks made a few years back by M. Constant-Delessart, there have been no pleas put forward of late for any other silver printing process than that of albumenized paper. We had the pleasure of seeing a collection of M. de Constant's works at the Paris Exhibition four or five years ago, and we are sorry that photographers in this country had not this opportunity of looking at these charming productions. M. de Constant's views were of lake and forest scenery, and printed upon high quality Whatman paper of various kinds—blue, &c. The coarse texture of the surface added materially to the prettiness of the landscapes, and some of them had the appearance of little water-colour sketches. There was nothing secret in the printing of the prints, for M. de Constant explained his mode operandi very clearly in our Year-Book and in the columns of this journal. A negative was printed upon the various kinds of papers, and the tint was most suitable, and the approved colour was adopted. To amateur landscape photographers, who take a personal interest in the scenes they visit and depict in the camera, this method of printing on tinted drawing paper has many recommendations. M. de Constant prefers to employ the plain salting process, but some spread a thin layer of albumen over the coarse texture before sensitizing.

PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HIGHWAY.

CHAPTER XIV.
PHOTOGRAPHIC PHILETICS.
In this branch of my subject, difficulties beset one at every step, because a great majority of photographers are
THE PHOTOGRAPHIC NEWS.

[August 20, 1875.]

898

 ignorant of the principles of art, and many among them quite ridicule any combination of photography and art.

To counteract, so far as is possible, this very erroneous idea, it may be useful to give a few hints on the application of art principles in the daily work of the studio; and here, in the limited space at my command, and the necessity for simplicity of treatment of the subject, are difficulties enough.

Likeness is certainly the first object of importance to the photographer. Scarcely second to it is artistic arrangement; but art culture, by educating the eye to seize salient features, to select the most suitable view, and to arrange the light to the best advantage, to bring out the effects as well as the weaknesses of the sitter, and to introduce natural advantages, and concealing defects, really aids the photographer in securing likeness.

It cannot be denied by any one with experience of the different results obtained by different photographers, that superiority is attendant on the higher knowledge, not only of chemicals and manipulations, but of the principles and application of art; nor is it the cultivated eye alone that demands good composition in a picture, but the ignorant and uneducated experience a sense of fitness and symmetry in the well-balanced work, though they may not be able to define the cause.

Balanced.—With the portrait photographer is the power, to a great extent, of governing the disposition of the lines. He may, if he find several lines running in the same direction under the pose or the drapery to introduce opposing lines to the composition, or even, by means of a curtain or accessories, to supply them. The necessity of lines of balance in a picture cannot fail to strike one with the most limited appreciation of art on looking at a picture devoid of such lines. If the lines run in one direction, diagonally, whether parallel or not, a weak, tumbledown picture is given where none is suggested to the mind of the spectator. It may be judged that it being necessary to supply compensating lines to those of diagonal tendency, it would be safer and more satisfactory not to use them all, but rely on the horizontal and vertical form. The answer to this, that in the last-named there is not sufficient variety, and that the picturesqueness of the pyramidal form is far greater than that of the square.

As an example of the pyramidal form of composition, the reader cannot have a better than Wilkie’s “Blind Beggar,” or read a better little treatise on art than Mr. H. P. Robinson’s remarks therein in his “Pictorial Effect in Photography.”

Simplicity, as a quality of good composition, is of such obvious necessity as to need no lengthy argument for a recognition of its power; its antithesis, monotony, is quite fatal to a picture. In fact, it may be said that composition teaches the proper use of variety. One of the chief sources of beauty and picturesqueness is variety, idealising the real; but, notwithstanding its power as one of the principal characteristics of symmetry and beauty, even of its absolute neces sity in the composition of the picturesque, it may be, and often is, carried to excess.

Simplicity must not be lost, or, like the rhetorician who becomes involved in his argument, be it never so ingenious, producing in the minds of his hearers a helpless feeling of being entangled in a labyrinth of metaphor, and the result is—chaos. Variety should be studied in photography for the sake of simplicity and repose; nothing can be more lost sight of. Nor are uniformity and simplicity in composition antagonistic to variety, but, as in the case of a group, the introduction of repetition in some of the figures, amid their varied and irregular positions, will actually increase rather than diminish the variety, and give motive to the composition.

Simplicity is the necessary quality in portrait photography, and is an effect produced by the illumination, not the chemicals. There is a prevalent and erroneous idea among photographers that the nearer the sitter is placed to the light, the harsher the result; whereas just the opposite is the consequence. The nearer the sitter is placed to the light, the more brilliant, but not of necessity, any the harsher is the effect. Distance from a weak light generally tends to harshness (or that quality known as “hardness” or “negativity”); the nearer, if the sitter is seated a long way from the light, and softness is the required effect, admit more light, rather than cut it off.

Relief.—Do not in this respect attempt too much. As a flat effect, without proper shadow and contrast, is very unpleasing, so is the opposite extreme inartistic. A certain amount of relief is necessary, to give roundness and solidity to the picture, in the same way that a degree of contrast is requisite; but as violent contrasts produce harshness, so too great appearance of relief gives a hard woodyen appearance.

There is great difficulty in treating of these matters within the limits of this chapter, for all the writer can indicate is that there is a certain point beyond which it is vulgar and inartistic to go, without having to define this line of demarcation. The student must study art and the works of the great masters to be able to appreciate the distinction for himself.

It must not be supposed that even on this domain of art that the artist, with only his artistic knowledge to guide him, can walk at once into a photographic atelier and pose and illuminate properly, impossible to photograph in the same way that it is vulgar and inartistic to go; without having to define this line of demarcation. The student must study art and the works of the great masters to be able to appreciate the distinction for himself.

PHOTO-MECHANICAL PRINTING.

BY E. HERBSTADT.*

The art of illustration has become a necessity both for educational purposes and for objects of pleasure; a picture of anything in nature will give a better idea of the object than any word description, and any method by which it can be produced is a subject of interest, especially to photographers.

Photography is unrivalled for absolute truthfulness in its pictures, and had the ancients been acquainted with this art in its present state of perfection they would have given us a clearer knowledge of the past than we can glean from their writings.

We have the art of catching a shadow and examining it at our leisure; let us see to it that we make it so permanent that we may hand it down to posterity unaltered.

How often do we look over our collections of photographs for some well-known face or view, and find that what was once a beautiful picture is scarcely anything more than a piece of yellow paper with a few brownish spots where were once the deepest shadows, all the rest having vanished! No matter how carefully photographs are made, if they are produced chemically, they can be destroyed by chemicals. No one can tell how soon a picture may be exposed to some element that will dissolve it. This fact has been known from the first discovery of the art of photography, and absolute permanence has been sought from the beginning, but found only in the use of pigments.

Pictures in permanent pigments may be safely handed down to posterity with a perfect confidence in the expectation that the shadow may be seen long after the substance has vanished. This permanence is attained by means of some of the photo-mechanical printing processes.

"Photo-Mechanical Printing" is a term that can be applied to so many different methods of producing pictures.

* Read before the Photographic Section of the American Institute.
that is necessary to name a few of them before considering
the one with which I am most familiar.

The "Phototype," or "Active Process," furnishes blocks
which are printed from in the same manner as ordinary
types. The relief is produced by the swelling properties
of gelatine, from which an electrotype or stereotype is made,
or a metal plate is etched with acid.

Photo-lithography comprehends that branch of photo-
mechanical printing which produces impressions from litho-
graphic stones by making transfers by photographic means;
these two methods are rarely used for anything except line
work.

Photo-sinograph is similar to the photo-lithograph;
using a zinc plate instead of a stone.

Heliography is a name given to various processes for
plates which are etched and printed from in the same
manner as ordinary copper plate.

The Woodburytype must also be classed with the photo-
mechanical printing methods, although the ink used is
gelatinous, and not fatty, as in all others named; this
produces pictures in half tone which cannot be distin-
guished from silver prints.

The photo-ollographic printing process is that which
produces pictures printed from a surface of gelatine pre-
pared by photographic agency; this will principally form
the subject of this paper.

Gelatine, which forms the surface from which these
pictures are printed, is made from the skins, sinews, bones,
and cartilage of animals. Chemists tell us very little of
gelatine, except the process for manufacturing it, and
nothing about its photographic properties; but they tell us
that some kinds contain chondrine, particularly that made
from bones and cartilage; and we learn also that the precip-
itate formed by adding a coagulating material to chondrine
is more easily washed when added in excess, which is not the case
with gelatine. There are two methods for manufacturing
gelatine, one by means of boiling the materials under steam
pressure, and the other by treatment with acids; the latter
yields gelatine more soluble than the former. In practice
we find that the most insoluble kind is best for a printing
surface; from this we infer that for this purpose gelatine
should be made without acid, and if we require perfect
coagulation we must use the kind that has the least chon-
drine in it, which is made from skins, parchments, and
sinews.

From my experience with the various kinds of gelatine,
I would expect the best to be made of selected materials,
parried or cleansed before manufacture; as any attempt at
refining or clarifying after manufacture will be sure to
remove some of the qualities which are essential to a good
printing film.

The sensitive material, in all cases where gelatinous
solutions are used, is bichromate of potash, bichromate of
ammonia, or some chromic acid salt, the effect of which, when
mixed with gelatine, dried, and exposed to light, is to render
the latter insoluble, and by a prolonged exposure perfectly
non-absorbent.

It is generally conceded that the first mention made of
bichromate of potash in photography was by Mungo Ponton,
who announced to the Royal Scottish Society of Arts, on
May 29th, 1839, that paper saturated with that salt, then
dried and exposed to the sun's rays through a drawing of
some object, would produce a yellow picture on an orange
ground. All that was required was to immerse it in
water to wash out the bichromate, and a permanent
picture in white on an orange ground was obtained.

In 1840, M. E. Becquerel discovered that sined paper,
when saturated with bichromate of potash, was more
sensitive than unused. In the same year Mr. Joseph
Dixon, an American, astonished the inhabitants of
Massachusetts, where he resided, by exhibiting reproduc-
tions of bank notes, made with such fidelity as to defy
detection, and which, he said, were printed from stone
prepared by photographic agency. The details of his
process were not made public until 1854, when they
appeared in the Scientific American for April 15th, page
312. He used gum-arabic and bichromate of potash spread
direct upon stone, and, after isolation, inked, washed, and
etched as in lithography.

In October, 1852, William Henry Fox Talbot patented a
photo-engraving process. After coating a steel plate with
bichromated gelatine, he impressed it with a photographic
image through a negative by means of a copying frame,
than washed; the washing removed all the bichromate, and
the greater part of the gelatine, from the portions of the
plate upon which the sun's rays had not acted; after
drying, the plate was etched by a solution of bichloride of
plutina, containing a little free acid and water; it was then
printed from in a copper-plate press.

Mr. Paul Pretsch patented his process in November,
1854, which consisted of a surface coated with glue, nitrate
di silver, iodide of potassium, and bichromate of potash;
the subject to be copied was laid on this prepared surface,
and exposed to the light; after exposure the plate was
washed in cold water until sufficiently swelled, and then
electrotyped, or the design was inked with printing ink,
and transferred to zinc or stone, and lithographic im-
pressions obtained.

(To be continued.)

THE PRACTICAL PRINTER IN AMERICA.
XXXV.

FAILURES IN SILVERING THE PAPER.

Paper silvered too long a time.—Result: The paper will
discolour very quickly, according to temperature, and the
prints will have a sunken-in appearance, and with a strong
brush bronzing effect. It may be indicated (even when the
prints are finished) in all of the slight shadows, even those
under the eyebrows, the latter result being more evident in
the case of the albumen paper, the former (sunken-in
appearance) both in plain and albumen paper.

Paper silvered too short a time.—Result: Weak, flat
prints, without any boldness, prints red, and red spots of
various sizes are very noticeable. The bath is either too
weak or the paper is floated too short a time, or both when
the above results appear.

Plain paper, if silvered too short a time, will act similarly
to albumen, and then if it had been swabbed when this
result occurs, the strength of the silver solution is too low,
and should be increased.

Do not lay flat and then prints to the paper being under-
silvering, unless you are sure that the paper has been
thoroughly dried before and after fuming, as the same
results occur by printing upon paper that has not been
dried, as said before.

Bubbles on the paper while silvering.—Blow at them, or
touch them gently with a glass rod.

Paper curling over while silvering.—Breathe gently (don't
blow) on it, and it will flatten at once.

Greasiness to the touch after silvering.—The paper
was either too dry before floating, solution too cold,
or the paper was floated too short a time.

Stains on the paper after silvering, and while drying.—
Caused by the paper coming into contact with dirty places
while you are hanging it up, by dirty hands, and stains
running from the corners where the paper is suspended
either by common pins, tacks, &c. Remedy: Carefulness
in hanging up the paper, and by the use of spring clips.

FAILURES IN DATE THE PAPER.

Swinging and sticking together of the paper while dry-
ing, caused by draught. Curling of the paper while drying can be prevented by
obtaining a piece of stick as long as the lower side of the
suspended paper, and nailing a spring clip at each end of
the stick; fasten it to the paper by means of the nippers when the solution on the paper has stopped dripping.

Place a piece of tissue-paper on the lower corners of the paper while drying.

Failures in Fuming.

Insufficient fuming.—Result: Prints are red, flat, and weak. The ammonia is not strong enough, or the paper was taken from the box before it ought to have been.

Too much fuming.—Result: Prints have a disagreeable blue, and a cold, repelling (and often metallic) look to them.

Remedy: fume less.

Uneven fuming.—Result: Part of the paper prints well, and other parts print flat and weak. Caused either by the curling of the paper while fuming, or by parts of the paper being covered with other sheets.

Cutting the Paper for Painting.

Dirty paper.—Caused by dirty hands, sheets, or by laying the paper in a dirty place.

Paper cut badly.—Caused either by carelessness or ignorance.

Failures in Printing.

Breaking of negatives.—Caused either by carelessness, flaws in glass, curved negatives, bad cutting, printing-frames, &c., &c.

Double images on the prints.—Caused by the prints moving in examining them during printing.

Irregular vignettes.—Caused either by a bad wooden vignette-block, the vignetting papers or cardboard being too near the negative, and if none of the above is the cause, then by the vignette not being blended enough for the strength of the light it was printed in.

Badly shaped vignettes.—Caused by the use of a badly formed vignetting arrangement.

Medallion printing.—Badly printed medallion lines, &c. Caused by poor cut-outs and masks (i.e., background masks), and often by the wrong use of them, even if they are good.

Fancy medallion printing.—Failures in this style of printing are generally caused by not going to work rightly.

Printing in grey.—Failures in this style of printing are harsh edges. Caused by shading the figure poorly.

Broad background.—If the background is too much with moving backgrounds, backgrounds printing in the figures, bad taste in choosing the right style of background, &c., &c.

Blurred prints.—Caused by the paper not being in perfect contact with the negative; and then, again, it is caused by the paper being too large for the place allotted to it in the frame, by its being damp, &c.

White spots on the paper.—Caused by the bubbles being permitted to remain under the paper while it is floating, and by dirt on the negatives.

Uneven printed shadows.—Caused by poor "doctoring" of the negatives, or by printing the negative after it is doctored in too strong a light.

Uneven printing.—Negatives being partly shaded during the printing, and when redress is made to the result of a day's batch of prints, then a great diversity of the shades of prints are seen; some being too light, and others too dark, &c.

Failures in Trimming Prints.

I will not here attempt to tell how the failures may be avoided, but only to notice where these failures generally occur, and then the remedy will be obvious.

Head out too high or too low in the prints, cut too much to one side, prints cut so that the figure appears to be falling either in one direction or another, and when the figure is leaning on a chair or a table, the idea of leaning is not carried out, so that the figure will appear to be sitting up, straight, with the arms lying on the table, merely mechanically, without conveying to the understanding of the tasteful critic any unessential idea that the photographer intended to have carried out.

When a print is cut as last described, a beautiful pose is often completely spoiled, and it looks to be just exactly the opposite, as regards beauty of pose, to what it is in the negative. The young beginner can thus see how he can completely spoil the beauty of a pose by making it a mechanical failure, instead of a natural one.

Besides the above, there are scores and scores of cases in which the prints are a failure when so trimmed.

Failures in Washing.

Imperfectly washed prints.—Caused by the prints lying together in the water; bad results follow such treatment of the prints.

Failures in Acidifying.

Spotted prints.—The acid water has either got on the prints before they were placed in the water, or they were separated imperfectly while being placed in the acid water.

Running to red up.—The water is too cold, the acid too weak, or the paper was fumed too long.

Blistering of the paper.—The water is either too cold or too hot.

On the reproduction by photography of microscopic preparations.

By Prof. Aime Girard.*

I had the honour of presenting to the French Photographic Society, at one of its meetings, an album of micro-photographs showing various phases in the manufacture of paper, and exhibiting fibres of various kinds, which are, now-a-days, often substituted for cotton and linen rags in paper making.

On that occasion many members expressed a desire to know more of the processes by the aid of which those illustrations were obtained, and begged me to make a communication to the Society on the subject. I feel myself highly flattered by such an invitation, but I must at once admit that the method I have employed cannot in any way be considered my own. I have discovered nothing new, neither do I wish to claim priority on any point; but I have simply followed a plan which is within reach of everybody.

As I am called upon, in my quality of teacher, as well as student, to employ the microscope almost daily, I have sought to fix definitely the images revealed to my view; and having at many times rendered services to photographic science, I be thought myself of the latter to help me in return. Photography came to my aid at once, and, thanks to her, I am now able, by means of an enlarging lantern, to place before an audience pictures of any body or material I desire to call their attention to; and I am enabled also to secure images of objects examined for my own private study.

To accomplish this I have taken care not to go out of my way to discover new methods of operating, but I have been content to choose among those already known such as appeared most suitable for my purpose, and to employ them in the manner best suited to my convenience. The apparatus I employ is before you on this table, and it consists of three essential parts: the illuminating portion, the enlarging part, and finally the photographic apparatus itself. It is very compact, as you will observe, and disposed in such a way as to require but a space of 70 centimetres. It is always under the hand of the operator, who can bring into motion any portion without assistance from a second operator.

I will first speak about the lighting arrangements. I
have given up sunlight altogether, and employ artificial illumination in the form of the Drummond light. Sunlight is too capricious in its nature for regular work; frequently at the moment it is required it fails, and an additional instrument is lost. Moreover, by reason of the variation in its intensity, it presents serious difficulties at times. Artificial light, on the other hand, is always ready, and it is an easy matter to obtain it always of the same intensity.

The illuminating apparatus I employ is extremely simple. I did not have it made expressly for my wants, but purchased it in the ordinary way. It is a double one, consisting of the Mercury, M. Monier's apparatus, and lateral tubes, one of which receives ordinary gas taken direct from the pipes or meter, and the other, the oxygen, from an india-rubber bag, which on pressing gives out a proper supply.

The two gases escape at the extremity of a tube with double envelope, and the flame ignited is of a beautiful transparent nature, possessing high calcination powers. The tongue of flame impinges upon a little cylinder of lime mounted upon a metal point, and can be moved on a pivot, or raised or lowered, so that the incandescence does not always take place at the same spot. In front of the lime cylinder is placed a large plano-convex lens for the purpose of concentrating upon the mirror of the apparatus. Indicated by the fact that under the influence of the high temperature to which it is subjected. Nothing can be more simple than this apparatus, nothing more regular than its action.

The enlarging apparatus I employ is an ordinary microscope; there is nothing peculiar about its construction, and it serves for direct observations, as also for operating purposes. I preserve it in its vertical position; other operators prefer the horizontal arrangement. I do not think that this latter is a good disposition of the apparatus, for it obliges one to place the microscopic preparations in a vertical position, and they are then subject to displacement by their gravity if contained in any sort of liquid, or may glide out of the field of observation. With a microscope with a vertical tube, however, the preparations rest in a horizontal position, and, being in perfect repose, allow of their being viewed with ease and security.

To apply the microscope to photographic work, it is sufficient, then, to place the mirror in front of the lens, which concentrates the light emitted by the incandescent lime, and at a short distance from the lens, so that the luminous column may be directed in such a manner as to strike the object placed under the microscope. This done, the eye-piece is removed, and by means of a little supplementary bit of apparatus (a tube formed with soldered ends of different diameters), the microscopic tube is placed in the so-called axis of the photographic apparatus.

The latter is composed of an ordinary camera elevated horizontally, and fitted at the extremity with a ground-glass, which is chosen as fine as possible, and having in front, where the lens usually rests, a copper tube, all centred, of about six inches diameter. The junction between the photographic apparatus and the microscope may be brought about by disposing in a vertical manner the axis itself of the microscope, and the camera and metallic tube at the end of it. But this plan has the inconvenience of distancing the operator, placed near the ground-glass, from the object, which he desires to observe and to reproduce. To overcome this, it entered my mind to give the apparatus a position analogous to that of Arnolé's microscope; the focal line was broken at about a third of its length, and at the bend formed, the constructor of the apparatus, M. Nachat, fitted, with his well-known skill, a little plain mirror in silvered glass, which, placed at a certain distance from it, brings the image without defor-}

Thanks to this arrangement, the apparatus measures scarcely fifty centimetres altogether, although in reality there is a focal length of seventy centimetres. The observer, seated quietly in front of the ground-glass, may therefore move the different parts of the apparatus, modify the light, shift the object under the microscope, move the ground-glass backwards and forwards to increase or lessen the size of the enlargement, or focus the image by raising or lowering the object glass.

The enlarging may be carried to any degree desirable; thus, upon the ground glass, images may be obtained varying from four to eight centimetres in diameter, and it is, moreover, an easy matter to pass, by means of the microscope, to pass from one enlargement of fifteen to twenty diameters to those of 500 to 600 diameters.

In arranging this apparatus, I have tried to free myself from all complications, and to render the thing as simple as possible. And it was for this reason that I resolved more than a year ago to adopt for the processes of sensitizing and development the means of illumination afforded by the complete combustion of ordinary coal gas, mixed in the first place with saline vapour.

It will be remembered that recently, at the end of an interesting communication upon the photographic properties of the vapour of sulphur in combustion, MM. Riche et Bardy laid stress upon the advantages which the employment of this yellow light appeared to present in experiments. At that time I will recall that it was written by two gentlemen, stating that for a year past I had employed no other description of light. I may now add, that at the commencement of 1874 I developed for the first time in the presence of my friend, M. Davanne, an image in this way.

I have thought that you would be glad to see an experimental demonstration of the advantages of this light, and which I found in a little while reproducing a microscopic object, I shall employ this yellow light in the sensitizing and developing operations.

To employ it no special apparatus whatever is necessary, and, indeed, I use a lamp constructed by M. Dubosq for quite another purpose. It is no doubt very imperfect for the purpose of illuminating a studio, but there can be no doubt that the principle once known, our opticians will soon be able to find a better way of making the apparatus. My lamp, as it is, consists of a Bunsen burner on a foot, the flame of which burns completely, and is of a scarcely visible bluish tint; into this flame is plunged a little basket, made of fine platinum wire, in which are put a few fragments of common salt, or chloride of sodium, previously moistened with a solution of the salt in water. The flame incandescent on the platinum, which communicates to objects around a disagreeable tint, but which is scarcely actinic at all. Its photographic properties are not, however, altogether negative. The yellow light thus produced is, indeed, not absolutely pure. It always contains, especially in the case of certain lamps, a small quantity of violet, and for this reason it is imprudent to approach too closely to the flame; by keeping at some distance (say a metre) from the light, there is no need, however, to fear its actinic power. If an operator desires to test its photographic properties, he may do so with a spectroscope, when only the double sodium line should be apparent.

M. Aimé Girard gave an experimental demonstration of the process he described to the Society. A plate was in the first place sensitised by the aid of the sodium flame; a microscopic slide was placed under the microscope, and illuminated by means of the oxyhydrogen lamp, and focussed; then, for the ground glass was substituted the dark slide containing the prepared plate, and an exposure of ten seconds was given. At the end of this time the plate was taken from the microscope, placed in a horizontal position in the ordinary way by the aid again of the sodium flame, when a picture, without fogging, was produced.
HYPOSPULPHITE IN PRINTS.

After so much has been written touching hypospulphite in prints, it is surprising how little the majority of photographers know about the matter. Nine pictures out of ten, that are forwarded to us by correspondents desire to have our opinion on the cause of certain stains and defects in the albumenized paper, we find to be injured simply by the action of hypospulphite of soda. Some take the usual precautions towards reducing the cold and warm water alternately, and afterwards letting the prints wash in running water for a dozen hours, and then finally press them dry in a contaminted blotting-pad, which damages a whole series of photographs, one after another, in a most hopeless way. Others, we fear, from the markings upon the prints that reach us, wash thoroughly enough, but their habit of handling the prints with soiled hands, if they are not themselves guilty of such a practice. Indeed, a want of perfect cleanliness is but too often the reason of stained prints, and too much stress cannot be laid upon the necessity of washing one’s hands thoroughly between every operation. It is comparatively seldom, we think, that the presence of hypospulphite in photographs is due to an imperfect washing of the latter after fixing, for the merest tyro knows that no silver print will endure many months unless it is thoroughly rinsed in several changes of water after it has passed through the various operations of production.

Even in the case of careful printers, it will occasionally happen that a batch of prints are spoilt by hypospulphite; and the remission of hypo contamination are not always the same, it is often a long time before one’s mind is made up as to the real nature of the enemy that has caused the destruction. If photographers would have a little more confidence in themselves, and take the trouble, as we have often advised, to have a corner of their work-room fitted up with a few simple reagents and test-tubes, they might satisfy themselves on this point as well as on many other little matters which trouble them from time to time. We do not expect that every photographer can turn himself into a full-blown analytical chemist at a moment’s notice, but yet we do think that if they would handle a test-tube and spirit lamp now and then, they would be able, after a little while, to conduct most of the simple investigations they stand in need of, instead of relying upon the aid of others in the matter.

The matter of testing hypospulphite of soda in silver prints is at once an example of how much a photographer may do for himself if he will only take the trouble. There are several ways of testing for hypo, but one of the simplest and easiest, as most photographers are aware, is by means of iodine of starch. Half a dozen test-tubes of the varying calibers that the photographer has, and liquids of the same volume may be accurately compared, are pretty well all that is required for the experiment, and so long as the photographer is deliberate and careful in his operations, and, above all, confident in the cleanliness of his apparatus (distilled water being always employed in rinsing for the last time), he is bound to succeed in his chemical investigation.

The best instructions that can be given, probably, are those contained in Dr. Vogel’s article in our Year-Book for 1874, which, although treating of hypospulphite in Bristol boards, holds good quite as much for albumenized paper. In this he plainly shows how very little hypo, when it is contained in the plate or in the silver print, is sufficient to injure the latter; but, minute as the quantity may be, it is easily detected with the blue iodide of starch. According to Davanne, the quantity of silver in a carte-de-visite print is 0.00208 of a grain, and when it is borne in mind that a seventh (or, perhaps, tenth) of this amount of hypospulphite of soda is sufficient to destroy a carte photograph, the dose of hypo contained in the damaged picture is almost infinitesimal. Of course, as Dr. Vogel points out, in testing for hypo in minute quantities it is necessary to employ a very dilute solution of iodide of starch. He dissolves one grain of iodine in twenty-five grains of alcohol to begin with, and of this solution he takes 2.5 cubic centimetres, and dilutes it further with 800 cubic cent and 100 cubic centimetre of solution of starch made by boiling one part of starch in a hundred parts of water. His standard blue solution of iodide of starch contains $r_{x}^{y}=0.001$ grain of iodine.

Having prepared this solution, the operator would take three or four carte-de-visite photographs and soak them for twelve hours in a little warm distilled water, and at the end of this time the water would have absorbed any hypo that might have been in the prints. Two clean test tubes of the same diameter are taken, and into each is poured one cubic centimetre of the standard iodide of starch solution. One of the tubes is then filled up with water in which the prints have been soaked, while a precisely similar quantity of pure distilled water is added to the other tube. The tint of the two tubes is then compared, a bit of what paper being put at the back to facilitate the examination; and if there is but a trace of hypospulphite present, the tint of the liquid in this test tube will be the paler. Such a result is proof positive of the presence of hypo, but we need scarcely recommend a repetition of any experiment of value.

There is no difficulty, we may add, in obtaining of any apparatus dealer in water and chemicals graduated for measuring cubic centimetres, or other minute quantities. As now-a-days, all chemists, whether English or foreign, give their weights and measures in grammes and centimetres, it is well that photographers should be provided with these metrical standards.

FRENCH CORRESPONDENCE.

CAPTAIN ABNEY IN PARIS—PYROXYLINE FROM ELDER PITH
—A NEW COLLODION—OVIAL CUTTER—PRINTING FRAMES
—CARLOS RELVAS MECHANICAL PRINTS—M. DE BASTIE'S HARDENED GLASS—QUIQUEZER'S DRY PROCESS.

I had the pleasure of presenting to the French Photographic Society on the occasion of their last meeting, on the 6th inst., Captain Abney, R.E., whom the Geographical Congress had called to Paris, and who had profited by his stay in this metropolis to visit the principal photographic studios here. I need not say that, both at the Society and elsewhere, Captain Abney, whose works are well known to us, received the most cordial reception. We hope that what he has seen here has not been without interest to him, and, so far as we are concerned, we shall always foster the best souvenirs of his short tour visit.

Several matters of interest took place at the last meeting of the Society, which was held at the premises of L. A. Roger, 43, Rue de la Trinité, before the announcement of the next meeting. In the first place, the meeting was addressed by the late Mr. J. P. G. Brown, who had accomplished the acj
members present some specimens of medulline collodion, which has been manufactured from elder pith. This vegetable substance possesses all the properties of cellulose in such a state of purity that it may be considered, almost, as chemically pure cellulose. When acted upon by a mixture of nitric and sulphuric acids, it acquires all the properties of xyloidine, and M. Schaffner assures us that it is preferable to that obtained from cotton, paper, &c., for the preparation of gelatin; on which account, difficulties met with in the past has long prevented its being employed commercially.

M. Schaffner has been enabled to get over this difficulty, and has mastered the preparation of pyroxxin. The medulline collodion is very limpid and sensitive, and may, according to M. Schaffner, be kept in good condition for an indefinite period. The negative bath recommended by M. Schaffner for employment with plates coated with this collodion is of eight per cent. strength, made up with the addition of two drops of tincture of iodine. He insists that the nitrate of silver shall be dissolved at a low temperature, and the development of the plates is brought about by means of ammoniacal sulphate of iron. The formula he employs is as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtered water</td>
<td>1000 grams</td>
</tr>
<tr>
<td>Methylated alcohol</td>
<td>40 drops</td>
</tr>
<tr>
<td>Alcohol</td>
<td>20 grams</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>30</td>
</tr>
<tr>
<td>Ammoniacal sulphate of iron</td>
<td>40</td>
</tr>
</tbody>
</table>

I will take care to keep the readers of the **Photographic News** acquainted with the results of any experiments which shall be made with this collodion.

M. Hutinet exhibited to the members of the Society a little instrument which is said to be of American origin, but which is unknown here. It is an instrument for cutting out ovals, and is composed of a little revolving cutter placed at the end of a handle; to use it, the paper to be cut is placed on a glass plate, and a metal mask, of the same calibre as the oval required, is past above the paper, then the revolving cutter is run round the inside edge of the metal oval. Two movements permit the cutter to turn properly in the hand. The cutting is very clean, and the instrument is such that it may be employed a long time before it is worn out.

M. Liebert exhibited some new printing-frames for carbon printing in one or more times, such as M. Lambert employs for his chromotype process. I hope to return to these subsequent instructions.

M. Carlos Rivas forward to the Society a magnificent collection of prints obtained by the Jacobi phototype process. These novel productions were much admired, for the eminent Portuguese amateur seems to let nothing hinder him in attaining perfection by means of this new process, which he has purchased, not to work commercially, but to perfect as much as possible.

M. de la Bastie, having announced that he would favour the Society with a demonstration of certain experiments to prove the amount of resistance, both to concussion and to heat, which his hardened glass is capable, redeemed his promise on Friday last. The experiments were most interesting, and demonstrated that if hardened glass is not altogether proof against attack of any kind, it acquires a wonderful solidity which permits its substitution in many instances for earthenware, porcelain, and even metal. It only remains to discover how this glass behaves when submitted for some time to the action of light, and to what degree its physical and chemical properties are modified by the operation of case-hardening to which it has been subjected.

The last noted some days ago from M. Quiquerez, an amateur already well known for his interesting investigations, several very fine views, obtained evidently by means of very rapid exposures. They had been secured, according to the author, by a dry plate process of which he is the inventor. M. Quiquerez has now sent me the details of his method, of which I will give your readers a description. The process is at the outset the same as the albumen-gallic method of M. Constant-Delasserre, and the modifications made by M. Quiquerez have been for the purpose more especially of augmenting the sensitiveness of the plates, and consequently the rapidity of the operations. The preliminary film with which the well-cleaned glass plates are coated, first of all, is composed of:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain-water</td>
<td>1000 grams</td>
</tr>
<tr>
<td>Beaten albumen</td>
<td>25</td>
</tr>
<tr>
<td>Ammonia</td>
<td>10</td>
</tr>
</tbody>
</table>

This mixture, which can be kept a long time, should, by preference, be employed in a state condition. The collodion should also be used under the same conditions, and should contain a large proportion of bromide of potassium. The colloid must be applied slowly, so as to give a thick and uniform film and perfectly cover the whole surface of the glass. The dipping-bath is made up with eight or ten grammes of nitrate of silver to every hundred cubic centimetres of water, with the addition of one gramme or a gramma and a-half of glacial acetic acid. When the bath is new, it is well to add, also, a little iodide of potassium. After the plate has remained four or five minutes in the bath, it is withdrawn and washed in rain-water, and then in ordinary filtered water, and afterwards covered with a preservative prepared in the manner following. A solution is made up of:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling rain-water</td>
<td>150 cub. cents</td>
</tr>
<tr>
<td>Roasted and ground coffee</td>
<td>15 grammes</td>
</tr>
<tr>
<td>Caramel</td>
<td>6</td>
</tr>
</tbody>
</table>

When this solution is cold, it is filtered, and another liquid is added, made up of:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold rain-water</td>
<td>100 cub. cents</td>
</tr>
<tr>
<td>Gum-arabic</td>
<td>4 grammes</td>
</tr>
<tr>
<td>Beaten and decanted albumen</td>
<td>4 cub. cents</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
<td>1 gramme</td>
</tr>
</tbody>
</table>

It is to this proportion of pyrogallic acid that M. Quiquerez attributes the rapidity of his plates. As to the albumen, it appears to him indispensable by reason of the solidity which it imparts to the film. The gum and the caramel increase the keeping qualities of the coffee, and they render, moreover, the film more permissible to the developer. The preservative is applied to the plates in the same manner; that is to say, several applications of it are made, and the film is subsequently washed and drained.

The amount of exposure to be given to these plates cannot be stated very definitely, for it varies from seconds to hours, according to the nature of the object to be reproduced and the lens used, and a number of other circumstances, as the operator knows very well, and upon these depend in great measure the beauty of the results obtained.

After exposure, the plate, without being previously washed, is plunged into a bath containing 100 cubic centimetres of rain-water and five cub. cents. of a ten per cent. solution of carbonate of ammonia. If the exposure has been well-timed, the sky and the high lights of the moon are visible at once, and after a few minutes the picture appears in all its details. The plate is then withdrawn from the bath, and is carefully washed, and the development continued with pyrogallic acid solution to which a few drops of a three per cent. solution of nitrate of silver, in water, has been added.

In case the negative should not come up very well in the ammonia bath, it is placed upon a stand, and the development continued with the following solution.

Solution No. 1.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain-water</td>
<td>100 cub. cents</td>
</tr>
<tr>
<td>Carbonate of ammonia</td>
<td>20 grammes</td>
</tr>
</tbody>
</table>

Solution No. 2.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>100 cub. cents</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
<td>20 grains</td>
</tr>
</tbody>
</table>

Into a developing cup is poured forty cub. cents. of rain-water, to which is added, and thoroughly mixed—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do.</td>
<td>20 to 30 drops</td>
</tr>
</tbody>
</table>

Do. No. 2. ... 20 to 30
This mixture is poured upon the plate, and is allowed to flow to and fro over the film until the image is thoroughly developed. If necessary, the negative may be intensified by the aid of pyrogallic acid. Finally, M. Quiqueres fixes his image with sulphodyne of ammonium, using for the purpose an eighty per cent. solution of the salt.

Ernest Lacan.

HOW TO DEFECT WOOD-SPIRIT IN ALCOHOL AND ALCOHOL IN WOOD-SPIRIT.

By MM. A. Rica, C. Bardy, and M. Berthelot.

The duty upon alcohol is so heavy, that many attempts are made to evade it. It seems that at the present moment it is difficult to procure alcohol which does not contain a certain amount of wood-spirit, and for this reason it is well to have an easy and certain method of analysis to show how much of the latter is really present; this MM. Rica and Bardy have furnish us with in a note addressed to the Academy of Sciences. These gentlemen say:

We thought of obtaining a solution of the problem by means of colouring-matters differing in their tints and stability, producing ethylalnine and methylalnine by their oxidation, and this idea has ensured us perfect success. Our plan of operating, which must be carefully followed, will proceed to describe.

Into a small flask is put ten cubic centimetres of alcohol, with fifteen grammes of iodine and two grammes of red phosphorus; this is immediately distilled, and the product secured in thirty to forty cubic centimetres of water. The alcoholic iodide, precipitated at the bottom of the liquid, is separated with the aid of a funnel, which is stopped with the finger, and received into a flask containing six cubic centims. of aniline. The mixture is heated; the receiver is distilled by means of the vessel for some minutes in warm water, the temperature being moderated by dipping into cold water if any lively ebullition takes place.

At the end of an hour, some very hot water is poured into the flask to dissolve the crystals formed, and the liquid is boiled for the space of some minutes, until the vessel contains nothing but cold liquid. An alkaline solution is added to the liquid, which sets the alkaloid liberty in the form of an oil, which is forced into the neck of the flask by adding sufficient water.

The oxidation of the alkaloid may be realized by means of dichromate of tin, by iodine, and by chlorate of potash, or, better still, by a mixture suggested by M. Hofmann, which is formed of 100 grammes of quartz sand, 2 grammes of chlorate of sodium, and 3 grammes of nitrate of copper. Ten grammes of the mixture are taken, and one cubic centimetre of the oil is allowed to flow upon it, the same being mixed by means of a glass stirring rod; this mixture is put into a test-tube of two centimetres diameter, and maintained at a temperature of 90° Cent. for eight or ten hours by means of a water bath. This operation we carry out in a complete manner by placing the test-tube bright night into the water-bath, covered with paraffin, the temperature of which remains perfectly constant by employing the regulator of M. Scholesing. The next morning the matter is exhausted by three treatments with warm alcohol, which is thrown upon a filter and raised to a volume of 100 cubic centimetres.

Pure alcohol yields a liquid presenting a reddish tint. Alcohol containing one per cent. of methylalnine gives, on the other hand, a magnificent violet solution beside the former. With 2-5 per cent. of methylene the hue is of a very marked violet; the tint becoming deeper and deeper where there is five or ten per cent. of wood spirit in the alcohol.

By comparing, in tubes of the same diameter, these liquids with others obtained by synthetic mixtures of known strength, which are carefully preserved as standards in stoppered vessels, it is easily determined not only whether wood spirit is present or not in a sample of alcohol, but also the precise amount of the former. This we have proved in many samples which we have begged from different persons, and particularly from M. Peligot, requesting mixtures which contained less than ten per cent. of methylated alcohol. By means of calorimetric apparatus, such as are used for industrial purposes to test the blacks in a refinery, it is possible to arrive at the same result; but it may also be attained in a most trustworthy manner by making use of coloured solutions, such as are employed for tinting and printing woollen goods.

The tinting is done by adding to five cubic centimetres of the solution ninety-five cubic centimetres of water. Five centimetres of this new liquid are poured into a porcelain cup containing four hundred cubic cents. of water, placed on a warm water bath. A piece of white merino, not treated with brimstone, measuring one decimetre square, is dipped; at the end of five minutes five centimetres more are added, and, after the lapse of half-an-hour, the stuff is withdrawn, washed, and dried.

The merino remains white if there is nothing but alcohol present, and presents violet tones very unequally marked. There is 1, 2-5, 5, or 10 per cent. of methylalnine, which may be compared to results obtained by dipping in synthetic mixtures prepared as standards.

The simplest way of operating for anyone who has to make frequent experiments would be to prepare a standard alcohol, with ten per cent. of wood spirit, and to add gradually more and more alcohol, until the same tint has been secured.

By taking an impression of the tints, one can succeed very well. To do this five cubic centimetres of the liquid, five centimetres of water, and ten grammes of gum-water are mixed, the latter containing 500 grammes of gum in a litre of water. This mixture is applied by means of a brush to a wood block, and the colour is then printed off upon muslin by pressure. The colour is allowed to dry, and is then exposed to the action of steam for twenty minutes; placed in filter paper; finally, it is washed and dried.

At the same time that MM. Rica and Bardy brought forward this method of testing the amount of wood spirit in alcohol, M. Berthelot made known a plan for making an inverse examination, for the purpose of discovering how much pure alcohol there may be in methylated spirit. This method may be employed, either for the examination of the methylated spirit of commerce, or for testing alcoholic preparations mixed with veritable wood spirit, such as may be presented to the Customs under the name of wood spirit.

The process is founded upon the reactions of methyl alcohol which have been made known by MM. Dumas et Peligot. It consists in heating the suspected liquid with twice its volume of concentrated sulphuric acid. Under these conditions, methyl alcohol furnishes gaseous methyllic ether, capable of being entirely absorbed by the water, or the concentrated sulphuric acid; whilst ordinary wood alcohol produces ethylene, a gas insoluble in alcohol and in concentrated sulphuric acid—at least, so an experiment of short duration proves. Ethylene may be detected and estimated by absorbing it by bromine.

By operating with ordinary precautions, as in the analysis of gases, it is possible in this way to detect the presence of ordinary alcohol in wood spirit, even when the proportion of the former only amounts to $\frac{1}{200}$ or $\frac{1}{100}$. The acetone and the normal impurities of veritable wood spirit may furnish, in these circumstances, carbonic acid and carbonic oxide, but not ethylene.
PREPARATION AND TESTING OF CYANIDE OF POTASSIUM.

By Dr. I. H. E. Loeblin.*

The preparation of cyanide of potassium for laboratory use is well worthy of special attention. A very good quality of cyanide is made by the following process:

1. Purification of the carbonate of potassium. Ordinary salt of tartar ranges from 72 to 98 per cent. carbonate of potassium, the remainder being chloride of potassium and sulphate of potassium. The latter salt is very objectionable in the preparation of cyanide, because of its insoluble nature, as it is very difficult to separate it from the cyanide. Hence, the most object is to take the carbonate of potassium, and, by means of a special process, to separate the chloride of potassium from the cyanide, by means of a solution of sodium hydroxide. The chloride is precipitated from the solution, and the cyanide is purified by means of a salt of potassium, which is added to the solution, and the chloride of potassium is precipitated from the solution. The purified cyanide is then evaporated to a dry residue, and the residue is then allowed to settle, and the supernatant liquid is then removed, and the residue is then evaporated to a dry residue.

2. Recrystallisation of the ferrocyanide of potassium, and drying it completely by exposure to a gentle heat, until the colour of the cyanide is a very good yellow. The residue is then allowed to cool in a desiccator, and the dry residue is then weighed, and the weight of the cyanide is then determined. The weight of the cyanide is determined by means of a solution of potassium hydroxide, and the weight of the cyanide is then determined by means of a solution of potassium chloride.

3. Preparation of the cyanide of potassium. I use an iron crucible of half-litre capacity. Place it in a furnace, and heat it to a bright-red heat. The mixture of equal weights of dried ferrocyanide of potassium and carbonate of potassium is then introduced into the crucible, heated to a red heat, and allowed to cool. The mass is then allowed to settle, and the supernatant liquid is then removed, and the residue is then allowed to cool in a desiccator, and the dry residue is then weighed, and the weight of the cyanide is then determined. The weight of the cyanide is determined by means of a solution of potassium hydroxide, and the weight of the cyanide is then determined by means of a solution of potassium chloride.

This process is fully described in Fresenius’s Quantitative Analysis, pp. 328, 329. Fifteen specimens of each were examined, the grammes being the quantity operated on. These results were further confirmed by mixing the solution of potassium hydroxide with an excess of nitrate of silver solution, then nitric acid in slight excess, allowing to stand without warming, and determining the cyanide of silver by collecting the precipitate upon a previously weighed filter, and drying at 100°C. until the precipitate ceased to lose weight. The names of the manufacturers are not given, for the reason that the samples of each party were sufficiently strong to be considered good commercial articles; the range was from 56 to 88 per cent. A sample of pure French cyanide assayed 91.2 per cent. There are several reasons for the great variations in the respective amounts of cyanide of potassium in commercial specimens.

1. I have found that perfect drying of the salt of tartar and ferrocyanide necessitates a product of much higher percentage than the salt of tartar and ferrocyanide, both, were not perfectly dry. The ferrocyanide of potassium is not added in a dry condition, a loss of at least five per cent. KCy is produced. Addition of the salt of tartar in a slightly moist state produces a loss of three per cent. KCy; and the two materials, added, in an undried condition, a loss amounting to at least twelve per cent. KCy.

2. The quicker cyanide of potassium is made, the better the product (higher the p. r. cent. KCy); the less salt of tartar used up to a certain point, the quicker the operation is effected, the higher the per cent. KCy produced. We cannot with safety add salt of tartar beyond a certain point, or we will obtain a mixture that fuses with great difficulty, and which cannot be poured. If the salt of tartar or ferrocyanide contains sulphate of potash, the resulting cyanide will be coloured from a delicate pink up to a reddish brown, according to the amount of the sulphate of potassium present. Refusion with one-third its weight of dried ferrocyanide of potassium, and one-fiftieth its weight of clean iron filings, produces a fine white product of high percentage KCy. I have obtained very good results by heating the salt of potassium in the pot to a red heat, and by adding the dried ferrocyanide of potassium. The plate of first heating the ferrocyanide to fusion, and adding the salt of tartar, does not succeed so well. I cannot too strongly comment on the advantages of heating the pot to a red heat before the addition of the materials, or upon the drying of the materials, and thorough mixing before their projection into the pot.

THE HISTORY OF CARBON PRINTING: A PROTEST.

Dear Sir,—By virtue of your and others’ kind appreciation of my labours, my name has hitherto occupied an honourable position among those of the numerous persons who have contributed to make carbon printing successful. Having joined in the purchase of Swan’s English Palæst, and worked it extensively, we found considerable difficulty in the manipulation of large proofs, the wax paper tending under its own weight. I ultimately succeeded in mounting such proofs upon plates of metal and glass, and thus obtained, with ease, prints up to four by three feet.

I found that the isolated gelatine paper, when immersed in water until it had assumed its greatest extension, but had not become saturated, would adhere to such plates without the use of camouchine, shellac, or any cementing surface, and this with such tenacity, that it was necessary to

* American Chemist."
interpose some repellent substance, stearine or wax, to prevent ultimate adhesion.

I took out a patent for the use of this and some other modifications of existing processes; but not before submitting the specification to you for revival and approbation. Patents were granted to me in several European countries, and in America, after a most crucial examination of my pretensions. The process has been successfully practised, not only by the Autotype Company, but by Mr. Sarony, M. Moulin, Paris; Capt. Abney, Col. Crawford, &c. It has been adopted in Belgium, and some extent in other countries. In France, M. Vidal, of Marseilles, has used the invention exclusively. In 1870 he published a little work calling attention to my process and the results as obtained by him and M. Teseire; and in February, 1874, on my way to Algeria, he asked for and obtained my permission to use it for the publication of his work on photopolychrome, for which he had prepared many thousand prints.

In a pamphlet just published, purporting to be a history of carbon printing, Dr. Monckhoven takes upon himself to erase my name from the list of persons who have contributed by their labours to the progress of carbon printing; and thus, at one blow, attempts to deprive me of the reputation and honourable position which your suffrages had accorded me.

Dr. W. Monckhoven’s qualifications for the task he has voluntarily undertaken would appear to be, that among his many unfortunate photographic speculations, always announced to the photographic public with much sound of trumpet and beating of big drum, he has never tried a single experiment or discovered a single fact worth recording on the subject in question. On the other hand, he has announced that he had the apparatus to construct a manufacture of pigment and paper, and articles for the use of carbon printers in Belgium, and, as the existence of my patent there may seriously affect his commercial operations, it is obvious that he is at present more directly and personally interested in annulling that patent than probably any other man in Europe. I know this, because he applied to me through a common friend, a few weeks ago, to know if I would communicate to him the formulas and apparatus (moyens) for manufacturing the autotype papers! I received an intimation about the same time that Dr. Monckhoven’s means were very limited. Now, was this demand, and appeal ad misericordiam, made to a man whose reputation and property he was about to attack; or is the attack the consequence of my refusal?

Doctor Monckhoven as an historian is as unfortunate as he has always been in his photographic speculations. I venture to say that a more incomplete, garbled, and transparently unfair history, was never concocted. I might treat this pretended history with the contempt it deservedly received (as I am told) from the Société Française, who refused to receive it, treating it very properly as a trade circular; but our old proverb says, that “of mud thrown some is sure to stick,” and as this is one of the dirtiest handfuls of mud ever thrown at a man’s good name, I will give one specimen of Doctor Monckhoven’s manner of writing history, in the hope of neutralising some of this dirt.

Dr. Monckhoven states correctly (p. 18) that Mr. Swan, when he mounted his prints upon a permanent support, used albumen or starch; and when the former, he rendered it insoluble by means of alcohol. He then proceeded to attribute to Mr. Davies (who published an article on carbon printing in 1864—“Bull. Soc. Franc.” p. 273—in which reference is specially made to Swan’s process) a serious and capital discovery! It is, that before mounting his exposed print upon uncoagulated, albumenised paper, he dipped the print for one minute in water, and then applied it to the albumenised surface, which he afterwards rendered insoluble by means of alcohol. Now, to carry out this theory Mr. Swan, what else could he do, but wet either paper or print, without which the colloid body would not adhere?

Had Mr. Davies known the fact I discovered subsequently, viz., that the print would adhere to the albumen even after it had been coagulated, he would have saved his alcohol—which is tolerably expensive, even when methylated—and would have rendered his albumen insoluble by means of steam.

Dr. Monckhoven then proceeds to garble Mr. Davies’ paper in a manner which I will leave your readers to qualify. I place the quotations side by side.

MORCHOVEN.

Pour le double transport, Mons. Davies, a lieu de papier albuminé, prend un papier révéré de gomme laque dissolus dans le méthyle. Il y fait adhérer le papier insulé. Le transfert est alors une image sur papier, l’image est ainsi redressée. Auquel support pré- tente il tiens par adhérence atmosphérique, désevrete encore récitée par M. Johnson.

DAVIES.

Si l'épreuve a été prise après un délai ordinaire, elle est renversée. Si on désir qu'elle n'en soit pas salisée, il faut attendre que la première face soit bien sec, et l'apprêter au pinceau. On prend alors, en lieu de papier albuminé, de l'albumine dissoute dans le méthyle, et on la fait adhérer sur le support. L'effet est assez lisse pour une épreuve de premier ordre.

It is evident that Dr. Monckhoven leaves his readers to infer that the paper serving as a temporary support had been previously rendered impermeable by a stratum of gum laco, and that the exposed gelatin print was applied by water in the case of the albuminised paper. But Mr. Davies says that the same effect was applied by a liquid between the surfaces, which were then pressed together; and if so, we know that the gelatine print had not been wetted, or it would not have adhered, the water precipitating the resin in solution as an insoluble, in- adhesive mass.

Again, if Mr. Davies knew that the sheets would adhere by atmospheric pressure, why use the liquid coadmil between the surfaces?

Mr. Davies’ communication was made originally to the Photographic Society of Edinburgh, 6th July, 1864. I quote the French version, to show that Dr. Monckhoven’s perverted history is not due to his misunderstanding the language of the original communication.

I have not the pleasure of knowing Dr. Davies, but I am sure that he will bear me out when I say that his process was a modification of Swan’s, and that at that time he was unacquainted with the fact that no gum was required to hold the print upon an impermeable surface during development. I put aside by side the three processes for obtaining non-inverted prints.

S W A N ’ s.
1st. After exposure, layer of caoutchouc between print and temporary support to effect adhesion.
2nd. Passage through bath.
3rd. Development, drying, and application of second transfer paper.
4th. Application of bismuthine to separate print from temporary support.

D A V I E S’.
1st. After exposure, layer of solution of gum laco and Venetian tur- pentine between print and temporary support.
2nd. Passage through bath.
3rd. Development, drying, and application of second transfer paper.
4th. Application of blotting-paper soaked in alcohol to separate print from temporary support.

J O N S O N ’ s.
1st. After exposure, no cementing compound to effect adhesion. Thin stratum of stearine or wax to prevent ultimate adhesion.
2nd. No passage through bath.
3rd. Development, drying, and application of second transfer paper.
4th. No solvent required. Print falls off when dry.

Your readers will judge by this specimen of Dr. Monckhoven’s qualifications as an impartial historian. And when I tell him that I have a lawsuit pending which was expected to be tried a few weeks ago, and that this work was prepared and published in France, intended to be sprung upon me and produced in court, as the report of a disinterested expert, the process of Mr. Davies having been carefully omitted from the conclusions of that in the matters to be produced by my adversaries,
they will see that Dr. Monckhoven is evidently acting in concert with, or has more probably lent his name to, the clique with which I am contending here, and with whose proceedings I will, on some future day, amuse your readers, unless the proceedings before a well-known court, threatened by their dupes, should have forestalled me.—I am, dear sir, yours faithfully.

J. R. JOHNSON.

39, Rue Borchave, Neully-sur-Seine, August 16.

DRAWING PAPER FOR PHOTOGRAPHIC PORTRAITURE.

Dear Sir,—As a subscriber to your valuable journal, perhaps you will allow me to supplement the remarks contained in your able article on the above, in your issue of the 13th of August, by calling the attention of photographers to the following, that use of drawing paper for photographic enlargements is specially adapted for stippled black chalk portraits. The paper should recommend for this purpose is Whatman's hand-made white crayon paper, stippled, and not stumped, the latter not being allowed in these competitions. Any one who has ever had the opportunity of inspecting these works will readily admit that in some instances equally good results are obtained by paper of inferior quality, by possessing great depth of light and shade, beauty of half-tones, with brilliancy and roundness. I would therefore suggest to photographers that, by adopting the use of drawing paper for enlargements, they could introduce a comparatively new branch in photography, namely, highly effective portraits in black chalk, in lieu of the old pictures in oil. As for work of this nature, however, they are not as yet readily available, the paper being made especially for the purpose, and the process of production being necessarily laborious.

With regard to the antique drawing in chalk on white paper. Now if, after a negative has been taken, it is printed on a black or white ground, the effect is not greatly inferior to the original. The artist could produce exactly the same results as in the heads and figures referred to above.

There is a great deal more trouble in the production of a lithographic portrait than in the one that is first printed, and then worked up in chalk on drawing paper.

Of course, as it is remarked in your article, the use of drawing paper in place of that now generally used would be of immense advantage to artists when working in water colour, and all those who have attempted to work in oil are now obliged to resort, to make the colour adhere evenly on the albumenised surface, and to prevent the colour sinking in the salted paper, would be done away with, and highly finished drawings in water colour could be produced on all occasions, when customers desired them, with much greater facility and ease, and at the same time retaining greater credit on the artist employed. I enclose my card, and am yours faithfully.

GEORGE CEOL HAM.

LAMBERTYPE EFFECTS.

Dear Sir,—Much has been said, pro and con, on the Lambert type patent, therefore I shall not occupy any of your valuable space in discussing it, but shall merely describe (to my thinking) one of the most simple and effectual means to the same effect, and, at the same time, to avoid any danger of infringement, which I have had in use for some time.

...[Continued from a previous article]... [From top of the next column]... Varnish the negative with any good retouching varnish (I use Hubillard's) which will take the pencil sufficiently for all that is needful. Gum round the edges of the negative, that is, some of Marie's paper vegetable, damp it, and strain over the back; when dry, it will not work upon with the plumbage and a stump, or cotton-wool, as need be. There is, then, everything that can be wished for or required, and, with taste and skill, most artistic effects can be produced, which I prefer to those by M. Lambert's method with paper on the front, which is, I think, needlessly fine or short for any size under twelve by ten.

Mr. Werge's method, no doubt, is a good one, but I do not think so good nor so simple as this.—Yours truly,

[Signature]

AN OLD PHOTOGRAPHER.

Talk in the Studio.

CAPTAIN ABNEY, R.E.—Captain Abney was delegated to attend the Congres Geographique at Paris, as a representative of the photographic corps to which he belongs, the Royal Engineers. He has now returned to Chatham, and arrived himself of his sojourn in Paris to make himself acquainted with the progress recently made in that capital in photographic printing processes, and more especially those relating to mechanical prints. Captain Abney proceeds to Salford to talk upon some of the fine series of photographs on which our habits have already had his hands.

What are Obscene Photographs?—At the Guildhall to-day, before Mr. Alderman Owden, Levi Cohen, a foreigner, was charged with selling obscene photographs in the public streets. Mr. Baird, solicitor to the police, called Mr. Alderman Owden, who was the prisoner. Police constable 741 said he saw the defendant in Sandy's Row, Whitechapel, where he had a stall on which were a large number of photographs, and he was surrounded by a crowd of boys, girls, and men. The photographs on the stall consisted principally of views of public buildings, but noticing that he had a quantity in his hand he asked to be allowed to look at them, and then saw that they were of an obscene character, consisting chiefly of photographs of nude women. Mr. Baird said the same sort of figures were exhibited at the festival and Alexandra Palace, and in most of the public galleries. Mr. Alderman Owden asked what the prisoner was charging for them? The constable said he appeared to be charging any price that he could get. He heard one man say that he had paid a shilling for one. Mr. Owden then asked Mr. Baird if it was an extremely difficult matter to detect in these cases. Mr. Baird called the attention of the magistrate to the fact that the photographs were all copies from paintings and engravings. The prisoner, promising to desist from selling similar photographs, was discharged.

Electric Photometer.—We learn from Dingler's Polytechnisches Journal that Dr. Siemens has utilised some recently discovered properties of selenium in making an electric photometer. Crystalline selenium, as Lieutenant Sato has shown, conducts electricity better when illuminated than when in darkness. The selenium, as Siemens prepares it, conducts much better than previous forms, is more influenced by light, not much affected by heat rays, and its properties remain pretty constant. Its conductivity decreases on heating; that of the varieties increased by filling the small flat spiral wires with selenium between two leaves of mica, a photometric apparatus is produced by which very weak intensities of light can be accurately compared.

English Mechanic.

Recent Researches in Artificial Light for Photography.—We recently advertised that a new and brilliant light, said to be utilizable for photographic purposes, and based on the employment of bixoxide of nitrogen and sulphide of carbon. M. Rich and Bardy have recently conducted a series of experiments upon this and other modes of illumination, with a view of determining whether it was the carbon or the sulphur which gave to the light its photogenic properties, and as to whether it were possible to construct a lamp simpler in form and free from the danger of explosion incident to the use of the gases above named. The result of their investigations shows the following comparative statement of photogenic...
power: oxyhydrion and Drummond light, 1; zinc burning in oxygen, 4; magnesium lamp, 5; bioxide of nitrogen without sulphide of carbon, 6; and a jet of oxygen delivered upon sulphur, 7. It is clear that the mixture of gases of oxygen and sulphide of carbon is useless, since the simpler light last mentioned is more advantageous. The flames of sulphurous acid arising from the latter are easily conducted and made to ascend above the flame, communicating with the chimney of the apparatus, and so producing an upward draft.—*Scientific American*.

To Correspondents.

C. A.—It opens on the 23rd, it is true, at Fall Mall East.

W. W.—We do not know whence you have taken the cutting. The chloride of gold is evidently to be added at the time of toning, as the author says, "Then add chloride of gold sufficient for the occasion." One grain of chloride is usually deemed sufficient to tone a sheet of paper 22 by 17; and we should suppose, if this proportion were added to the solution, the latter would be adequate for toning with this formula. As much so liquid solution would be taken as would be required to float the prints.

G. Routledge.—The specimen of retouching you send is very good. Of without seeing the original it would be impossible to say how faithfully the retouching has been performed, but the result is pleasing, and free from any suspicion of harshness.

S. Hickton.—You want to know the faults of your pictures. There is no need to find them with them. If the picture is larger, and had greater diffusion of focus, the detail of the pictures would be a little improved, no doubt. That the horse wanted a little more exposure, but it is a very fair photograph as it is; and if you had shaded the top of your lens, and used a smaller stop, the "house" picture would have been improved also.

Ignoramus.—The blue stains on your collodion positives after fixing are doubtless due to imperfect washing after developing and before fixing, the action of the cyanide upon the iron producing Prussian blue. Some samples of collodion require more washing than others to secure the complete removal of the solution before being applied on the glass. You must wash more thoroughly before applying the cyanide.

Dr. A. A. Mantell.—Your letter reaches us some hundreds of miles from books of reference, so that we are unable to give precise formulas of the process in question. It was first published in the *Photographic News* about a dozen years ago by Mr. Blanchard, and we have since repeated it more than once in our *Year-Book*. Very oddly, it has several times since its first publication run up, worked on, and described with no recognition whatever, or at most a very slight one, to the original worker. As a moist process it is admirable; but the progress of development has a tendency to cause excessive superlatives to preserved-plates. The preservative in question consists of a mixture of glycerine, honey, and albumen, with a little nitrate of silver solution added. After intimate mixture, the solution is poured into, or for a long time, after passing through kaolin, it is ready for use. The precise proportions we do not remember, but hope to give them in our next. So far as we remember, the preservative is applied to the sensitised plate without washing; the first portion being poured away, and a second portion applied, the plate being left to drain in the dark, and is then ready for use.

J. R.—You cannot do better than follow these directions in cutting and mounting your stereo-prints. Having first marked which should be the right and which the left hand picture, cut the double print in halves, and superimpose one on the other with the thin end of theereo-print, the same side being held up to the light, whereby one picture can be adjusted to the other with perfect accuracy; they are then cut with the usual glass shape. The prints should be transposed when mounted; you are not.

B. B.—The use of iodine for decomposing and getting rich traces of hypo in prints has already been proposed. Some time ago Dr. Vogel used it. He says: "I content myself by changing the water in the dishes four times. After this I colour the water with iodine to a wine-red tinge, and pour it over the prints. The first portion of the water is rapidly discoulored, because the hypo absorbs the iodine; a second and third portion of the iodine water is applied, until it is no longer discoloured; when this takes place, all the sodas has been decomposed, that is, it has been converted into harmless hypo-sulphite of soda (Na OS; Oa.).

E. Williams.—Methylal is a product of the oxidation of methyl alcohol. It is limpid, smelling like acetic acid. It rarely met with in commerce, but we should think that Hopkins and Williams, Cross Street, Hatton Garden, would supply you.

J. Watkins.—What you forward is evidently bromide of ammonium, although we have not tested it. You were right in preferring adding cyanide to your collodion. As, however, you are in the dark in regard to the nature of the "idizer" already in the collodion, it is almost hopeless to remedy matters. It would be best to work with a fresh sample altogether. Read up the collodion frequently, and the collodion frequent mixed, and, therefore, colour proves nothing in respect to inferiority of quality.

B. L. B.—There are no such tools or institutions as you mention. The only way to be able to give your services gratuitously in some studio to begin with, and learn meanwhile. There are many simple manuals which you might study with profit, one of the best being Mr. Hardwick's; but without practical working this would avail you little. If you have any friends in the profession they might assist you in the matter.

L. L. W.—On the letters on this subject are necessarily excided by the pressure on our space.

Several Correspondents in our next.

The absence of the Editor from home may possibly delay answers to some queries, for which the indulgence of correspondents is asked.

METEOROLOGICAL REPORT FOR JULY.

BY WILLIAM HENRY WATSON.

Observations taken at Braystones, near Whitehaven, 38 feet above sea level.

Table:

<table>
<thead>
<tr>
<th>Barometer</th>
<th>Thermometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>Morning</th>
<th>Noon</th>
<th>Night</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-30</td>
<td>29-30</td>
<td>29-30</td>
<td>29-30</td>
<td>29-30</td>
</tr>
</tbody>
</table>

Summary:

Minimum temperature observed... | 59... | 44... | 58...

Minimum ditto | 37... | 44... | 37...

Mean ditto | 37... | 44... | 37...

Mean temperature of July 1875, in degrees warmer than corresponding month last year. The differences are as follows: Mornings. Noons. Nights.

Mean temperature of July 1875, in degrees warmer than corresponding month last year. The differences are as follows: Mornings. Noons. Nights.

Notes.—By a reference to the Meteorological Table for July 1875, given in the *Photographic News*, it will be seen that the month of July, 1875, has been very much cooler than the corresponding month last year. The differences are as follows:

Chemical Laboratory, Braystones, June 28th.

Several farmers in the neighbourhood have commenced cutting their wheat to-day. The crops are generally very fair.
ON AN ELECTRO-PHOTOMETER.
BY E. T. ROLLS, A.S.T.C.

Among the numerous plans ventilated in the pages of this "Vade Mecum for determining the power of light, attention does not appear to have been directed to what I believe will prove the ne plus ultra of actinometers: I refer to the peculiar behaviour of selenium under the influence of light.

Selenium, most of our friends are aware, is a substance scarcely to be termed metal or metalloid; it may be claimed by either or both classes. We need not discuss their relative rights. What concerns us, as photographers, is that selenium—quickly cooled, amorphous selenium—after being again heated for some time nearly to melting point, becomes crystalline, and conducts electricity; whereas, in its amorphous state, it will not. Further, it possesses the remarkable property of increasing its capacity of conducting electricity with the intensity of the light shining upon it, and this to such an extent that transition from darkness to the light of a common candle manifests an energetic action.

The means of determining this action and its relative force is a very simple matter indeed to electricians, and I hope may be made equally simple to those who are not. If the electric current from a galvanic battery be sent through a galvanometer, or measurer of electricity, by connecting the two with pieces of wire, the indicator needle of the galvanometer will be deflected from its zero point, the amount of deflection on a proper instrument being approximately proportional to the strength of the current.

In the above diagram, B represents a battery of a single pair of plates, zinc and copper; W the wires connecting it with the galvanometer, G. Let us suppose the needle of G, under the influence of the electric current from B, to move from its zero to 60°—that is, 60° of electricity passing through G. If we interpose a substance, such as selenium, partly resisting the passage of electricity, the deflection of the galvanometer needle will decrease in proportion to the amount of opposition offered by the selenium. The next question is how to introduce the selenium. Partly fill a short glass tube with selenium, at the same time inserting in the substance, and as far apart as possible, two thin strips of clean metal sufficiently long to protrude from the tube; then provide any form of case that will exclude light, but permit the metal strips to come through. Now join in the tube of selenium, with the battery wired, and galvanometer as here shown; and let us imagine that with light excluded from the selenium the deflection is 10°. If we remove the case, and expose to the light of a candle, gas flame, or sunlight, the needle will, in each case, proportionately deflect. By experiment we may determine a maximum and minimum deflection produced by sunlight and candle-light; and, possessing this data, we shall thenceforth, by observing the position of the needle, be able at any moment to judge the strength of the existing light, and, therefore, the time required to expose. In fact, so accurate does this method promise to be, that it will be possible, by experiment, to graduate the galvanometer with time seconds, and so reduce the effectiveness of exposure to a mechanical certainty, in spite of the most deceptive atmospheric conditions.

HOW TO MAKE EMULSIONS.
BY H. J. NEWTON.*

Having published the result of my experiments with bromide emulsions, I am receiving numerous applications for a definite description of my mode of working the formula which I have adopted. Those who are familiar with emulsion work would require nothing more than has been published; but there are many who have never tried an emulsion, and yet are desirous of being in possession of a simple and reliable dry-plate process. This class have heretofore been deterred from making dry plates by the apparent amount of labour necessary, the complex formulas, and uncertainty of results. A number of this class have indicated a purpose to give my emulsion a trial, mainly on account of the facility with which it is prepared and used. For the benefit, therefore, of such I will give, as briefly as possible, all I deem necessary to enable any one so disposed to use it.

The first thing to be done is to make a suitable collodium. For ten ounces of collodium, use alcohol four ounces, ether six ounces; dissolve in the alcohol one hundred and twenty grains of bromide of cadmium (I have found no bromide equal to cadmium for this purpose); then put into the salted alcohol ninety grains of papyryx. This is much superior to any of the cotonans which I have used, flowing more evenly, without having to give a long time to ripen.

After the cotton has become thoroughly saturated with the alcohol, add the ether, and shake well. To prepare the bromide, I take an ounce, place it in a small evaporating dish over a slow fire, and add half an ounce of alcohol, stir well with a glass rod until it is reduced to a white spirit lamp until it is saturated with the silver; then pour into the collodium, and shake violently for fifteen or twenty seconds; then add half the remaining alcohol to the silver in the tube, and proceed as before; and continue this process until the silver is all dissolved and added. The one ounce of alcohol will be sufficient. Adding the silver to the collodium should be done in the dark room, and should be protected from the light, from the spirit lamp

Eight or ten hours after (shaking frequently in the meantime), add twelve grains of chloride of cobalt dissolved in half an ounce of alcohol; shake well, and in two days it will be ready for use. If chloride of cobalt is not convenient, use chloride of calcium. It is not necessary to add the alcohol containing the silver a little at a time, as is usually recommended; pour in all in the test tube without stopping.

If the emulsion curdles, the curd soon dissolves, never remaining more than two hours, usually not more than fifteen minutes. The plates are prepared with a substratum of albumen. The white of one egg (or if dried albumen is used, take ninety grains) should be dissolved in eight ounces of water; then into another eight ounces of water put sixteen drops of carbolic acid. When the albumen is

*Photographic Times.
dissolved, add the water containing the carabolic acid, and shake well. Albumen so prepared will keep indefinitely, and answers a much better purpose than when dissolved with ammonia; in fact, albumen with ammonia cannot be successfully used for an emulsion plate which is to be developed with alkali and pyro.

When your emulsion and plates are ready, flow the plates with the emulsion, and when set, the same as required by a collodion plate for the nitrate bath, place it into a dish containing the preservative, which is compounded as follows:—

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>20 ounces</td>
</tr>
<tr>
<td>Tannin</td>
<td>20 grains</td>
</tr>
</tbody>
</table>

Or the following, which gives a more sensitive plate:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>16 ounces</td>
</tr>
<tr>
<td>Tinct. nux vomica</td>
<td>5 drachms</td>
</tr>
<tr>
<td>Laudanum</td>
<td>3</td>
</tr>
<tr>
<td>Alcohol</td>
<td>2 ounces</td>
</tr>
</tbody>
</table>

When the tannin is dissolved, add three-fourths of an ounce of laudanum, shake well, and let stand half-an-hour, then filter out the flocculent mass, and it is ready for use. This preservative will keep indefinitely, occasional filtering only being necessary. As soon as the greasy lines are off, the plate can be removed, the back wiped with a sponge or damp cloth to facilitate the drying, and then stood on a corner on blotting-paper. It should not be set square down on the end, as the accumulation of the preservative there will keep it wet for a long time, and in that part of the plate prepared in this way, they can be used before drying if required, although they are not quite as sensitive as when dry. To develop, I prepare two bottles of ammonia and water in this way: water three-fourths of an ounce, ammonia four-fourth of an ounce; into one vial I put five grains, and into the other fifteen grains bromide ammonium. If the exposure has been too long, I use from the bottle containing the fifteen grains of bromide, or mix, as occasion requires. Second. Make a six-grain solution of pyro in water. To develop an eight by ten plate, place in a wide-mouth vial half an ounce of the pyro solution and half an ounce of water. After the plate has been well washed, flow with this solution. If the picture comes on, immediately, the solution is of the proper strength. If, however, it does not come out, increase the strength of the pyro solution. When the details of the picture are visible, which should result in about a minute and one-half, pour off the solution into a vial containing six drops of the ammonium solution, and again flow the plate. The intensity commences immediately, and goes on rapidly until sufficient strength is obtained. Wash, and fix in hypo or cyanide. If, after fixing, the negative should prove too thin, any degree of strength can be obtained as follows: Make a strong solution of iodide in water containing iodide of ammonium; into three ounces of this put half an ounce of hydrochloric acid. Into a vial containing sufficient water to flow the plate well, put enough of the iodine solution to give it a good orange colour; flow the plate with this solution for (say) one minute and one-half, or until a slight veil appears by reflected light, then wash and flow with a solution of pyro and tannin six grains each, acidified with acetic acid. Then pour off into a vial containing ten drops of a plain twenty-grain silver solution, and again flow the plate. The proportions of pyro and silver can be varied as the case may require. If the picture lacks detail, use less silver and a stronger pyro solution, and the reverse where there has been over-exposure.

There seems much in the above which has already been published, and therefore superfluous, the fact that I have had repeated applications for a process in this form, and have in several instances been compelled to write it out. And further, in my published, and have in several instances been compelled to write it out. And further, in my
the duty of the photographer to make the best of his sitter; the best in every way, especially of his face. Some persons have the gift in their intercourse with the world of being able to bring out the best qualities of those with whom they come in contact, exercising an influence over others subtle and beneficial; this rare quality is not necessary in its moral sense to the photographer, but he should have at least the ease which produces ease in others.

It is unnecessary here to speak of the rough and unmanageable specimen of humanity sometimes to be found in photographic galleries, whose every word, gesture, and action produces a discordant and worrying effect on the unfortunate sitter who has submitted himself to the tender mercies of such a boor; but even among the operators who do not come under this category are those whose unsympathetic nature does not ally, if it does not excite, a feeling of unrest which is so harmful to the picture in the expression called up by disquieting influences.

Ease of manner is not at the command of every photographer, but he can feel and express an interest and consideration in the sitter which will in most cases call forth a corresponding feeling.

There is no formula for making "expression," as there is for baths, collodion, or developer; but by observing the manner of kindred sitters, and even your own, very much may be done to set people who visit photographic galleries at their ease, and to lighten, to a considerable extent, your own trials.

With children, a great deal of tact is necessary, and the experience of patience, which it is the author's misfortune (perhaps) never to have had, may be very useful. I do not know that I should advise any one to launch into matrimony with this object only. With children, you must possess childish sympathies; assuming it, is seldom successful; disguise your earnest intention of taking that child's portrait, and be prepared to devote a good deal of your time, if necessary. If the baby will appear to be set against your own, it is always possible to humour it into acquiescence, or, under the semblance of play, to accomplish your end up looked-for results. Children are our most picturesque models, and often our best friends, for through their hearts their elders are gained.

Posing.

Of the multitude who sit for photographs, only few individuals are naturally easy and graceful. There is an uncomfortable feeling in the minds of most that now they are in the posing chair they have some expression to assume. By your manner you must endeavour to make them abandon this feeling. As you converse with them, study their natural poses and facial character. Having selected in your mind the position best suited for a satisfactory picture, begin the pose. Look to the general effect, first to see that the outline is good, and in accordance with the rules of art. The head should be of easy pose and well balanced by the shoulders, not on one side (I speak of outline), giving an unstable appearance; the shoulders, bust, waist, and the dress in turn. Preserve and restore all the curves that give the oval form to the head, and destroy all the lines and angles in the dressing of the hair which have the effect of marring the natural contour. Take care that this outline stands well; that the figure and its accessories, well sustained and strengthened in every part, rest in firm and secure repose at the base, that no appearance of weakness may spoil the effect.

This secured, the rest is generally only a matter of detail—lines to be altered, balanced, or destroyed. As a broad rule, the head should turn in a different direction to the body; this gives force and character. With the three-quarter view, or approaching thereto, the head may lean a trifle on one side _towards the camera_ (not the reverse), where force and strength are characteristic. Where the outline can be preserved it is generally well to pose the body not quite full to the camera. The line of the arms should be curved, not angular, and where it is possible to do so, _without appearing to intend it_, the hands should be hidden. Never permit the hands and arms to obtrude themselves as objects of interest, as in a photograph they are generally quite the reverse. It must be borne in mind that the head is the principal feature, and anything distracting from its interest is an artistic fault.

Effections of the Face.—Every face has, artistically speaking, two sides and several views. To select the best side for a portrait, we must judge of the natural features, and give a balance between them. The following is, with the exceptions that govern all rules, safe to follow:—

The Hair.

Most gentlemen, and some ladies, part the hair at the side, and, there being no reason against it, that side is generally selected, except where the head is beginning to grow bald, when the other side is to be preferred.

Red hair should be powdered for ladies, as also in some cases very light hair, and relieved by a dark background. With very black hair, also, it is sometimes necessary, to prevent total loss of detail.

The Forehead.

In the case of a very high forehead, fore-shorten by depression of the head.

The Eyes.

Blue and light eyes should be turned from the light, as a rule. A defective eye should of course be more careful to avoid this, especially if the camera is directly in line with the light. The eyes must be made. Where the eyes are unequal in size or height, take the larger and higher respectively, no objection offering. Small and partially closed eyes should be made to look up, or, in a full face, depress the chin slightly, the eyes looking into the camera. Large and staring eyes should be a little lowered. Deep-set and sunken eyes require considerable front light, and very little top light. In a full face the eyes should look into the lensing if an object fixed near it, the body being turned away more or less; never should both body and head be presented perfectly full to the camera.

Never allow the eyes to be turned in a different direction to the head. The effect is very unpleasant. The head turning to the right, the eyes must also take that direction, and vice versa.

It is well to have a set of frames of different patterns, to be worn by persons in the habit of wearing glasses. Where it is necessary to photograph them with their glasses, be careful to guard against false reflections on the eyes, and refraction on the side of the cheek, seen through the glass.

The Nose is rarely perfectly straight, and often materially alters the character of the two sides of the face. The nose being twisted has the effect of shortening it on one side, and lengthening it on the other. In the case of a _nasal_ head should be slightly depressed, or the camera raised and pointed down. Round and flat noses should be taken in profile.

The Cheeks.

High cheek bones and sunken cheeks should be lighted from the front, and top light avoided, or taken in profile. Wrinkles should also be lighted from the front. A swollen cheek should be avoided, or hidden by the hand.

The Mouth.

Small mouths should be taken full view, large mouths as much in profile as possible. Open mouths generally have a tightened and painful appearance when closed, but may be judiciously hidden by the hand, fan, or a flower.

The Hands.

When introduced are always troublesome, and should be kept back in position and tone as much as possible. When it is impossible to avoid their introduction, turn the edges to the camera, and carefully guard against leaving the arms too heavily against anything to distort the outline into unnatural lines or fastened unshapeliness. It is impossible to give any very definite rules for posing, as it is an art of itself, requiring study, feeling, and a perception of the beautiful.

Lighting the Sitter.

The photographer has at his command three kinds of light: _direct, diffused, and reflected_. Diffused light plays
the principal part in the lighting of the photographic model, but diffusion of light over the whole face would render it weak and flat, and, destroying contrast, the result would lack vigour. Opening a small portion of the side light well in front of the sitter, and perhaps a little from the top, direct light is admitted, giving roundness, boldness, and vigour to the lighting, and supplying the high lights. See that the extreme point of the nose is the lightest part of the face, a light resting on the edge of the bridge of the nose nearest the light, and that the little streak moving in the eyes is in the same position in each. The shadow side of the face, while it is darker than the side to the light, should be full of detail, soft, and transparent. Against this light and shadow the graduated background should be placed in harmonious contrast. Reflectors of white calico are sometimes useful in lighting up heavy shadows.

THE PRACTICAL PRINTER IN AMERICA.

XXXVI.

FAILURES IN TONING.

Toning baths.—The failures in the toning bath are in the composition of it, being made up wrongly, or having got some foreign substance in it that spoils the fine working of it.

Acid toning baths.—These baths will tone if only a little acid, but not so nicely as alkaline toning baths, owing to the acidity of the solution, which bleaches the prints considerably before they are toned, and thus destroys the strength and beauty of them. They also tone very much slower, as the gold is not thrown down on the prints only very slowly, as the acidity of the solution holds it in suspension. That is why we make our stock solution of gold acid, and only neutralise a part of it whenever we commence to tone, for if we were not to do this, the gold of the solution in the stock-bottle would be thrown down, and the solution would then be useless. Toning baths should always be made alkaline before use.

FAILURES IN TONING PRINTS.

* When the bath is too strong (i.e., contains too much chloride of gold), the prints tone so rapidly that you cannot stop the toning quickly enough to prevent them from getting over-toned.

Uneven toning is caused by the bath being too strong, print tiring or less, or less together while the bath, insufficient moving while toning, and then again by the prints not being washed sufficiently before toning, strengthening the bath while the prints are in it, &c.

Prints showing weakness in the toning bath is owing partly to the bath being too strong, and the prints being more or less weak before they were placed in the bath; and if the latter is the case, then a quick-working bath will increase this weakness.

Prints refusing to tone is due to the solution being too cold, too acid, or not being enough gold in the solution.

Mechanical toning.—This is the name given to toning when all prints are toned alike, whether they are portraits, landscapes, machinery, drawings, &c., &c., when certain tones are best suited for each of them.

FAILURES IN FIXING PRINTS.

If the fixing-bath should be at all acid, sulphur will be liberated from the hyposulphite of soda, which will unite with the silver in the prints, which is in the solution, forming; sulphide of silver, which will eventually be the means of spoiling the prints. To be sure that the bath will never be acid, add bicarbonate of soda to every batch of soda solution you make; and never use a bath twice, as it will cause the prints to fade, for the very reason that has been spoken of above, and the whites of the prints will discolor and be a white-yellow in colour rather than the virgin white.

Uneven fixing.—This is caused by the prints not being separated thoroughly while in the bath, and the silver consequently not being thoroughly removed.

Air-bubbles in fixing.—The bubbles continuing unbroken in the fixing bath often get between the prints, and if they are not kept in constant motion while in the bath these bubbles will cause minute spots of imperfect fixing. These spots are yellow.

If the prints are constantly kept in motion while in the bath, about all of the evil effects that have been named above will be avoided.

FAILURES IN WASHING.

Insufficient washing is a source of fading of the prints making them turn yellow in a short time. Keep the prints separated from each other while washing.

FAILURES AFTER THE FINAL WASHING.

Cards a source of fading.—It has been discussed considerably, as to whether the cards upon which the prints are mounted are a source of fading. It has been satisfactorily proved by many of our leading first-class photographers, both at home and abroad, that it is very seldom indeed that there is anything in the cards that will affect the prints.

Lately (i.e., within a year or so) the manufacturers of the card mounts have taken more pains to utterly exclude, as far as possible, all such ingredients in the manufacture of the cards that will in any way help to destroy the prints.

Owing to the blame being laid to the card-mounts as a cause of the prints fading, an eminent firm of Paris, France (M. B. B. & H. R., manufacturers of card mounts), made a far and impartial trial, and laid the result of their experiments and researches before the French Photographic Society, which society was beyond a doubt that the card mounts are not a source of fading of the prints, but that when fading does occur it is from other causes, probably improper manipulation of the prints, &c. If the members of this society, who were in the first place prejudiced against the card mounts, all of whom are excellent photographers, are satisfied with the investigations, we also should be, and for one am.

Now when we take into consideration that the prints, which we know are properly manipulated, do not fade for months (see experiments, page 126) under severe tests, we cannot help being satisfied that those prints were excellently made, and properly manipulated; and we do not think of such a thing as the card mounts making them fade, because they do not.

It is only when the prints fade that the mounts are said to be a source of their fading.

I know of a photographer who to my certain knowledge changed his mind no less than six times in as many months about the mounts making the prints fade, at one time saying that they did not, because the prints were “all right,” and another that those better than those were all wrong; another that wason’t peculiarity in his regard, and that we, and the prints themselves never were the cause of fading, but that it was always the mounts. The reason why, was because the photographer himself did the printing, or at least I think that was the reason.

Once upon a time the printers of a certain photographic establishment were to be let off at two p.m. (it was a holiday) promising that they got their work done, and, as usual, one o’clock came before they were aware of it, and so, of course, they had to “rush things” to get done at two o’clock; and when printers decide on rushing things you may depend upon it that they can do it. They got off at two p.m., of course. A few days afterwards these very prints were spotted, str: “of course “the” “ed to know how “condition, an “or “man-pri “quired as “b
of prints that were toned on the last holiday had the usual amount of care and attention given to them that he was in the habit of giving the prints.

The printer of course said that they had, and suddenly exclaimed, as though the thought had just entered his head:—

"Come to think of it, I was very particular about that batch, because, as I started quite early, I had plenty of time to tone them, and as I had a splendid light to tone by, I liked to see how nice I could make them come out! But why do you ask?" he innocently inquired.

The photographer then told him about the prints, and while telling him about it, he happened to think that those prints were mounted upon some new card mounts which he had received on that day, and being mortified about it, he at once laid it to the mounts, and immediately sent them back to the bewildered parties of whom he had purchased them, and as he had no more trouble with his prints he probably thinks to this day that the card mounts were poor, and most likely he is a strong advocate of the idea that card-mounts are a source of fading.

FAILURES IN FINISHING.

Colour mixed badly, absence of gum-arabic in the colour, prints rolled badly.

Encrustative paste made wrong, daubed up card mounts, ridges on the surface of the prints.

PHOTO-MECHANICAL PRINTING.

BY E. BIERFRADE.†

We now come to the invention of Alphonse Louis Poitevin, which was patented in England, December 13th, 1855. This inventor claims to have been the discoverer of the fact that a chrome-geleatine film, impressed with a picture and dampened, would receive greasy inks on the parts affected by lights, and also that the fact must have been known to Paul Pretsch more than a year before, for he distinctly says, in his patent of 1854, that the chrome-geleatine "design was inked with printing ink," and transferred to sino or stone. In Poitevin’s process, after inking, the film was retained with the picture on it, or impressions were taken in the lithographic manner. These impressions were probably the first successful attempts at producing half-tone of which we have any record, as the half-tone in the prints were fine, and as very little was done with the process more than experimenting, it is presumed that perfection was not yet reached. Excepting the repetitions of the experiments of Poitevin, and a few others, in the direction of photo-lithography, and the well-known carbon processes in which his pigments were mixed with the gelatine, we hear nothing further of any photo-mechanical half-tones in half-tone until 1865, when Tessie du Motay, and Marchal, of Mts, in France, made an advance which was then considered wonderful. Their method was to coat metallic plates with gelatine, and bichromate or trichromate of potash, or ammonia, and bichloride of mercury, then again coated with soaps of silver, exposed to light through a negative, then washed, inked, and printed from in a lithographic manner.

In the above the Journal Photographic, No. 10, published in May, 1867, Tessie du Motay says:—"A mixture of ina-glass, gelatine, and gum, evenly spread upon a well-polished metallic surface, and previously treated with an acid chromate, has been found to give the most satisfactory results.

"The ordinary chromate and bichromate salts are not suited to the purpose, as they do not impart sufficient sensiveness to a mass of organic matter if the latter happens to be of a notable thickness, the photographic image being insufficiently developed, and therefore imperfect; the alkaline trichromates, when used alone, are likewise incapable of producing perfect impressions, and it is only by adding a certain proportion of acid, or some body possessing a strong affinity for oxygen—as formic, gallic, pyrogallol acid, or even certain reducing salts, as hyposulphite, sulphite, bisulphite, hypophosphite, &c., to the trichromates—that a suitable compound is obtained."

"Trichromates of potash, in conjunction with bichloride of mercury, may likewise be used, as also chrome-mercurial salts; but by these means an image is obtained which produces negative prints, so that the photograph must be inverted if it is desired to obtain positive impressions."

"When treated with a reducing salt, the trichromate, as also the chrome-mercurial salts, have the property of acting upon the composition of isinglass, gelatine, and gum, when in contact with a surface of copper, rendering that portion of the compound which comes in contact with the metal perfectly insoluble, a result which is accelerated and more complete when brought about by warming the film previously to its being flown upon the metal plate."

"After coating, the plate is exposed for several hours in an oven or store to a temperature of 50° Centigrade; this operation is indispensable to the stability of the film, which otherwise is very liable to be injured by the scraper when the plate is passed through the lithographic press. After hosting, it is ready for exposure under a negative. Plates prepared in this manner are capable of furnishing about seventy good impressions."

Tessie du Motay tells us here that his geleatine and chrome-mercurial salt solution becomes "perfectly insoluble" on the surface in contact with the metal plate. But in his patent specification he says that by long washing of these plates the action of light is reversed, so that the parts exposed to light become soluble, the non-etching parts remaining insoluble, the plates must be kept moist, which amounts to a "long washing," and of course the gelatine eventually becomes soluble. This may account for the small number of impressions he made from each plate.

Tessie du Motay exceeded all his predecessors in the quality and quantity of pictures produced from one plate, but the trouble in preparing them was too great to make the process a commercial success, yet it was tried, and several works illustrated with it, in which the half-tints were very good.

Mr. Albert had been experimenting for several years, to discover a method of making durable films upon metal and stone, and saw that it was difficult to prevent moisture, which is indispensable in printing, from penetrating through a gelatine film. The addition of a coagulating material, such as resinous gums, alum, tannin, &c., to the solutions had been tried; but it became evident that perfect insolubility was not to be attained in this manner, for long before sufficient quantity is added, the whole mass will coagulate and cease to be a fluid, and becomes unmanageable. He therefore abandoned the pursuit in this direction, and experimented on the plan of forming the film first, and hardening it afterwards, and found that by immersing a plate covered with a film of gelatine in a solution containing a coagulating material the hardening was much more perfect than before; but not yet satisfied, he desired the under side of the film to be perfectly impervious to moisture. At last it occurred to him, that if the action of light made chrome gelatine insoluble, why not expose the under side of the film to the light, and thus secure the desired end? This, of course, required a transparent base upon which to spread the film, but as metallic plates and lithographic stones were considered the only things strong enough to sustain the required pressure for printing, it was some time before he could avail himself of this idea. He at length prepared a film upon glass, and found the liability to breakage much less than was anticipated, and, instead of seventy impressions, he made twelve hundred from one plate.

The most perfect and durable printing plates should be perfectly non-absorbent on the under side, besides the insolubility throughout the entire film produced by coagulation.

(To be continued.)
THE BRITISH ASSOCIATION.

The British Association for the Advancement of Science opened its proceedings this year on Wednesday at Bristol, under the presidency of Sir John Hawkshaw. Sectional meetings will be held daily until the last day of the month, and the gathering will come to an end on September 2. This is the second time that the British Association has met at Bristol, where it was thirty-five years ago in the infancy of the Association, or at any rate when the latter was but six years old. We can scarcely expect now—a days to have such important scientific matters brought before the Association as was the case in those times, for not only was the cultivation of science then only just beginning to find favour with the masses, and therefore rare discoveries in chemistry and the natural sciences were rare, but there are to-day other tribunals existing before which novelties in science can more easily be brought.

In the early days of the Association there existed but comparatively few scientific societies, such bodies as the Chemical Society and several others which find a permanent home at Burlington House not being then in existence. It is due to the latter circumstance more especially, we think, that the British Association has of late years shown little animation, at any rate so far as the experimental sciences are concerned. That there have been sound papers read in the sections, and interesting discourses delivered recently, we do not wish to deny—there is a lecture on polarized light announced, by Mr. William Spottiswoode, on the present occasion, which will be most worth listening to, but, for all that, we think that the prestige of the British Association as a scientific congress is fading away. We see nothing to regret in this, because this grand institution has done a vast amount of work, and may be said to have completed the task for which it was designed. In its early days it fostered the different sciences, and its members in the various sections discussed such subjects as were brought before them. Gradually, however, its disciples became more numerous, and it was found that a meeting once a year in the sectional rooms of the British Association was insufficient for discussional purposes, and, one after another, learned societies arose. The British Association may fairly claim to be the parent of several of these societies, which have now grown into maturity, and to some extent rival the more scientific of them. If a man discovers a fact connected with chemistry, astronomy, botany, or the like, he does not now—a days wait for the British Association to assemble in the autumn, but he goes off at once to the Royal, the Chemical, the Astronomical, or other suitable body, and reads his paper there. Were it otherwise, the British Association could not get through its work in six months, instead of six days, and the number of sections would, moreover, require to be multiplied.

The explanation of this apparent paradoxical circumstance is easy on second consideration. The filtered fluid has to get through the folds of the filter, where it is doubled crosswise, and move along the walls of the glass.
vessel, in order to reach the outlet tube, and it finds great resistance if the filter is thin, and when, therefore, the circular filter-canal is too narrow. The thicker the filter is, the wider is the canal through which the filtered liquid passes on its way to the outlet.

In confirmation of my statement I may give the following results. Of three precisely similar glass filters, one was fitted with a single Swedish paper, the second with a Swedish paper and underneath a piece of ordinary filter paper, and the third had also a Swedish paper, together with a thickness of ordinary filter paper. Through these three filters the same fluid was passed, viz., dilute chloride of iron solutions precipitated by ammonia, in such a way that the filters were kept full for the space of an hour. After this interval the liquids that had run through the filters was measured separately with the following result. The first filter during the hour had passed liquid to the amount of 375 cubic centimetres; through the second (double) filter 560 cubic centimetres had passed, and through the third (treble) as much as 612 cubic centimetres.

The advantageous character of a double filter over a single one is more marked still, as is easily explained, in the case of such precipitates which to a certain extent stop up the pores of the filter. The results I have quoted obtained with an ordinary solution and precipitate will, however, suffice to prove what I have advanced.

METALLIC MIRRORS FOR REVERSING NEGATIVES.

BY CAPT. W. DE W. ABNEY, R.E., F.C.S., ETC.

In some photographic operations—such as taking reversed negatives—it may be convenient to use a mirror which is silvered on the face. There is a great difficulty often experienced in a tyro effecting the ordinary silvering, as so much depends on little dodges in the manipulation. A simpler plan than that usually employed is as follows:—Take a dry plate which has had an albumen subtratum and preservative, expose it to light, and develop with the alkaline developer, then stop. This specially thickens the plate uniformly. Density is now given with pyro and silver till it is perfectly opaque. Fix as usual, and dry. Take a small piece of cotton wool, and rub the film till it is half polished. Next take an electro-plating solution made up as follows:—Take nitrate of silver 400 grains, and dissolve in one ounce of water. Prepare the silver with cyanide of potassium, adding just sufficient to cause no further precipitation, when nitric acid is added. The KCy solution is added. Wash well with pure water. (This gets rid of the potassium, nitrate, and other salts.) Next dissolve the precipitate in strong cyanide of potassium solution, make up to eighty ounces, and filter, when it is ready for use.

Place the semi-polished plate in a jar containing this solution, making a connection with the zinc end of a Grove's or Bunsen's cell by a copper wire, and a metal clip screwed across the end of the plate. To the platinum carbon pole of the battery attach a similar wire with a piece of metallic silver at the end (practically I have found a sixpence answer all purposes), and immerse this in the electro-plating solution, taking care it does not touch the plate. Leave the plate in twenty minutes, when a strong deposit of silver will be formed on the surface of the film. If it be well washed, dried, and washed with putty powder, precipitated chalk, and a piece of fine chamois leather. Mirrors so made on patent plates give capital images. I have by adopting similar methods been able to produce gold and copper mirrors which for certain experiments will prove of use. It will be found that the semi-polishing of the mirror previous to immersing it in the electro-plating bath causes a better conductivity in the film than would otherwise be the case with an auro-cyanide bath. Pretty designs in silver and gold can be made by this method. If a plate be silvered, and then a design be drawn on or transferred to it in greasy ink, and immersed in the electro-plating bath, only the portion not covered will be found in silver on a gilt ground. A variety of pleasing combinations can be made in this way with almost any metal.

PARTIAL REPRODUCTIONS OF GROUP PICTURES.

BY E. BIELER.*

When it is desired to reproduce from a group of persons the portrait of one only, a difficulty arises, unless the photograph of the person in question happens to be surrounded by an even background. In most cases this is not the case; but besides the portrait to be excepted there is, perhaps, another head, or a bit of furniture, or a curtain, or something quite as difficult to reproduce. In that case nothing else remains to be done but to cover up the unlovely thing in the negative, and to take refuge in a chemical background. Every photographer knows what a miserable result is the consequence, unless the work is skillfully performed, for in most cases a picture is produced with two definite markings round it, a dark one and a light one, which renders it quite unsightly. The chemical background, moreover, harmonises very badly with the coarse grain of the copy, especially when an enlargement is attempted, and for this reason, again, the result is but an indifferent one.

I manage the matter in this comparatively simple manner. After I have made as accurate a tracing of the head as possible, I cut with a sharp knife, out of a sheet of alumnumed paper, tinted to a suitable degree, an opening of the size of this tracing; the tint of this paper should harmonise with that of the picture, and must not come out too dark. This mask is then stuck with thin paste over the group picture, and pressed in a half moist condition.

In reproducing the picture in the camera, it is necessary that the former should be placed in direct light, so that there are no shadows from shadowed parts on the original, which is placed in a bath of water, and the mask again removed. By pressing the original in a moist state, and touching it where necessary, it may be returned to its former state.

It is well to tint several backgrounds, and choose that most appropriate to your purpose. The reproduction is vigneted in the end.

THE ELIMINATION OF ETHER AND ALCOHOL FROM THE SILVER BATH.

BY D. WINSSTANLEY.

When a nitrate of silver bath becomes charged with ether and alcohol, its rectification is generally effected either by evaporating the volatile substances, or by precipitating the silver as carbonate, and subsequently re-dissolving in dilute nitric acid. Another method, however, suggests itself—a method which should have the advantage of convenience and rapidity, and that is the absorption of the materials whose removal is desired. In the rectification of alcohol, quicklime is used as an absorbent of water which cannot be removed by distillation, and the alcohol are to a considerable extent separated from each other by aqueous washing. It appears to me that the ether and alcohol with which a bath solution becomes contaminated might be removed by the introduction of substances soluble in these menstruums, but insoluble in water, and of such substances we have an abundance. Oily and fatty substances generally, phosphorus, certain saline compounds, and camphor, are soluble in ether, but not in water. Alcohol, again, dissolves the vege-to-alkalies, resins, essential oils, and various other bodies, whilst gun-cotton is dissolved by a mixture of the two. The addition of these substances, it is but reasonable to suppose, would absorb the ether and

* Photographische Correspondenz.
alcohol of the bath, leaving the solution in a rectified condition upon simple filtration. A few months ago I procured some gum-cotton with a view of using it as an absorbent. Decomposition has, however, unfortunately set in, and my experiments are in consequence for a time delayed.

Correspondence.

RETOUCHING NEGATIVES ON TRANSPARENT PAPER.

Sirs,—Having read with much interest the correspondence which has recently appeared in your journal in connection with the Lambertype Patent, and the right which that gentleman claims to the use of two sheets of semi-transparent paper, one on each side of the negative, I beg to state that I was present, in company with many others, on the occasion of Mr. Crompton's paper being read at the meeting of the South London Photographic Society, when we were shown some charming specimens produced by his system, and the great control it gives to the photographer over these negatives, in reducing or increasing intensity at will by means of powdered chalks rubbed on the paper with the finger, or for finer work by the pencil.

Much discussion followed at the time about the propriety of retouching at all. This argument may be all very well with good negatives, but I fear that many of the negatives from which Mr. Crompton was instructed to produce flawless enlargements were far below the average standard, and hence he was compelled to employ some artistic method to make up for the deficiency in many cases, the semi-transparent paper which I saw used on both sides of his negatives, affording him the very means of producing those beautiful results which all admired, and were then so freely and generously given to the profession, though I doubt not that many among his audience would have gladly given five or ten guineas to have seen Mr. Crompton at work, if he had introduced it patented, or as a secret process.

I now suggest that the present time would be most opportune for those who have benefited by his varied and instructive papers, and witnessed the beautiful results which his labours have produced, to testify substantially their appreciation of his exertion in the profession by contributing towards a fund for a testimonial to Mr. Crompton. If some gentlema\nwell known in the profession will undertake the duty of treasurer, I shall be happy to forward a cheque for two guineas, and feel certain that many others who have benefited by the process, and publicly acknowledged its value, will follow. If you would kindly aid them in the work, and then it will not be said we will not give our money except for licences, which but too often prove a will-o' the-wisp.

[Signature]

The Lambertype Process.

Sirs,—I am rather amused at the letters which have appeared lately relative to the methods of making and working up negatives as used by Mr. Crompton and by Mr. Lambert. I happened to be a visitor at the South London Society's meeting when Mr. Crompton exhibited his method of producing enlargements in November, 1873, and I must say that I was far from being prepossessed by either the picture he showed or the method he adopted. Mr. Edwards' method, and was satisfied that it was by far the best plan then used. I have since then worked out a method of my own and used it ever since, but always open to improvements, I called to see Mr. pictures, and, after a careful scrutiny, I was obliged to confess that he had a power of producing artistic effects not hitherto shown in the work of any of your correspondents, all of whose work I am well acquainted with.

If Mr. Crompton and the other admirers of his method of working with his papers and soft crayons, as he says, are satisfied with their method, I for one should not desire to stop them from using it. But, as I have seen Mr. Crompton's and also witnessed Mr. Lambert work the whole negative up, I think I may be allowed to pass my humble opinion, and that is, Mr. Lambert's work and system is as different as possible from Mr. Crompton's, and yet both of them use paper to cover their negatives, and both use pencils and stamps; possibly both get their materials from the same shop. My advice, as a brother in the art, is, don't waste time in grumbling and snarling over a bit of paper, but go and see the speciments Mr. Lambert shows, and let those who do not know the work of the various correspondents who have attacked Mr. Lambert just take the trouble to see their work and compare results; then in common fairness declare it.

I have practised the carbon process, and gave it up because I could not get results equal to silver prints, but I defy any one to produce in silver anything equal to Mr. Lambert's chromotypes. Mr. Fry in his letter owns he has failed similarly with the carbon process, and has returned to silver printing, so of course he will not wish to deprive Mr. Lambert of his process for making permanent printing a commercial success. Mr. Fry also says he has everything that Mr. Lambert sells. This I must say I doubt; but if it be so, I shall be pleased to buy of Mr. Fry all he has to sell of Mr. Lambert's materials at a good profit.

There is no doubt that the chromotype process is alone worth all Mr. Lambert asks for it, even if he gave the Lambertype into the bargain, and those who were too mean to pay Mr. Crompton for his ideas might invest their money in many less profitable ways than paying Mr. Lambert to show them the way to produce his chromotypes, which I am convinced will be the process of the future.—I am, air, yours faithfully.

Arthur Addison.

Huntingdon, August 7.

Dear Sir,—Your readers can form their own opinion of the statements in M. Lambert's letter, from the following parallel columns:--

I have seen every one of Mr. Fry's negatives anterior to your 50th. I must say that not one of them has paper on both sides, with retouching on both sides.
Perceiving Mr. Fry's object is coming, we only showed him, &c.

St. Pancras Court Road.

My correspondent encloses a cheque, and we cannot doubt that some of the gentlemen who have profited by many of Mr. Crompton's suggestions will willingly undertake the charge of a fund that proposed.—[Ed.]

The best final answer I can make to Mr. Samuel Fry, of Surbiton, as diamond cuts diamond, is to refer him to his own opinion on the honesty and novelty of the Lamertype process. On your arrival.—P.S.—If you have read, of "Mr. La Finis his of finish!"
scribed in our article on Lambotype, and finds it admirable in results, and very easy of application." Now, is it logically possible that Mr. Fry having worked with success Mr. Crounthal's method since November, 1873, and only tried thirteen months later, December, 1874, the Lambotype, would only find out (after having been refused a license at redwood price) in July, 1875, that the two methods are one and the same?

The claim of Mr. Crounthal to own the invention of covering negatives, with paper (which I never claimed) is contradicted by Messrs. Southwell, Brou, of London, who taught him to whom he was in their employ.

LAMBERT.

Dear Sir,—It is a very poor case that requires such a cloud of words to cover its weakness. I have a very simple answer to Mons. Lambert and his friend Crounthal's "private law.

I am prepared to prove by many witnesses that I have published, and have worked commercially (in the production of my mezzotint enlargements), from Sept. 1873, the process which he patented in 1874; that I am using it at the present time; and it is for him to prove the contrary, and stop me if I can, as he wishes it to be understood, infringing his patent. This he knows he cannot do, so he tries to confuse his position by cloudy arguments and abuse.—Yours truly,

G. CROUNGTHAL.
Lowestoft, August 16th.

Sir Andrew Ague-cheek.—Here's the challenge, read it; I warrant there's vinegar and pepper in it.

I have the twelfth, Act iv. Scene 4.

Sir,—M. Lambert, after honouring me with nearly fifty per cent. of his criticism, thanks me for my help. I feel truly grateful for this pat on the back, and I promise not to run from him when he comes in my way, as though he were a ghoul; indeed, should it suit him, I shall have pleasure in introducing him to the members of our Society.

M. Lambert may take what comfort he likes in reference to my assignment of possible ignorance of "private law;" but before he airs himself therein he should ask his interpreter to give him some illustrations of English idioms. I may add that my ignorance is shared by members of the bar, and I have given, to the satisfaction of the Society under whose notice I first brought the Lambotype, quotations from authorities affirming the views M. Lambert declares erroneous. For his especial benefit, I repeat, there is a difference between the patent and the invention of paper may be, the parts may not be original, but the combination may. In his favourite illustration, "the use of the hot blast" was not original, nor yet the anathema coal; the originality consisted in the combination of the two. Had the parts been claimed the patent would have been invalid; and now M. Lambert will pardon me saying the use of a "semi-translucid sheet on each side of a negative" is not original on his part, and hence he cannot substantiate any claim therein. A well-known general, before entering into a war, boasted that everything was ready, even to the last button of the gaiter. Now that M. Lambert has proof (see Photographic News, page 385, 1876) that a certain gentleman uses his process (or, rather, that which M. Lambert terms his), we will see what order his (M. L. e.'s) work is in—whether it be real, or only paper. He bristles with challenges; I will see if he takes up the gamut threw down. M. Lambert must pardon me again saying, the question at issue is the validity of his patent (I'll treat of the chromotype in due course), and I maintain such challenges as he offers have nothing to do with this question.

In reference to the conspiracy fund M. Lambert is also in error. A fund never is illegal, any more than a sovereign is; the object for which it is to be expended may be, the fund cannot be. In reference to the instance with which he couples Mr. Slingaby, allow me to say, that so far as M. Lambert informs (and he is my informant) such an object is not necessarily illegal.

Will M. Lambert do me the favour to say where in his specification in 1874 "the method of applying a semi-translucid sheet on each side of a negative" is described? I say it is not specified therein; M. Lambert says it is. The profession can read and judge.

To show M. Lambert I did him well, I venture to remind him in this circumstance he appears to have overlooked, viz., that Mr. Werge's material (see News, Aug, 8th) comes under the definition of a semi-translucid material.

M. Lambert says I have taken the advice of my patent agent. He appears to know more of my doings than I know myself. I am quite unacquainted with the circumstances, however. I would advise him to get his patent sifted, and if he is in any better authority to retract his advertisement that first appeared July 16th, as it certainly implies that the process cannot be worked without certain "private formulas." I now say, he has no "private formulas" necessary for the working of his (so-called) patent. Will he contradict me?

While firmly believing in the ultimate fraternity of nations, I also believe that national characteristics will long exist amongst them. I will point out to M. Lambert one of them.

An Englishman is a man of deeds and few words. A Frenchman a man of deeds and many words. An Englishman marches to Delhi, not crying "To Delhi! to Delhi!" and never getting there. I won't draw any parallel; I love France too much. I should not have said this much had not M. Lambert said, "If Mr. Batho dare not." So, now, let M. Lambert contrast Mr. Crounthal's admission of the use of the Lambotype with his (M. Lambert's) reply thereeto, and, henceforth, cease to boast or threaten proceedings being taken.—Sincerely yours,

W. E. BATHO.

Sir,—While so many fresh things are being introduced into the discussion, I am afraid that the real question, whether M. Lambert has really made any improvements, is likely to be forgotten. Instead of forming my own impressions by what was being written and said, I went and examined for myself; I was pleased with the specimen that I saw, and with the statements that were made, and I became a licensee. I have gone through the course of instruction, and I am very well satisfied with what has been done in my presence. I have already put some of the information into practice, and shall shortly have still more in operation. I feel, therefore, in a better position to make remarks on M. Lambert's claims than on those who know them only by reading and writing about them.

I wish to say, however, that, while I am willing to pay for information that I can make useful in my business, I am as unwilling as anyone to be imposed upon by having information made use of as new which is not new. After reading the communication, and comparing it with the knowledge that I have of the Lambotype process, I think it is only charity to suppose that Mr. Crounthal did not know what he was saying when he stated that his process and M. Lambert's were the same. I do not make this remark in an offensive sense, for I am convinced that if Mr. Crounthal had had the opportunity, as I have had, of seeing M. Lambert makes an enlargement, and had had explained to him the reasons for each step in the progress, that he would confess, as an honourable man, that the two methods were not only the same, but that the principles on which they were based were as different as the manipulations were. Nothing can show this better than by comparing, step by step, the means they each take to make an enlarged negative.

To begin with, Mr. Crounthal makes a transparency from this original negative, using wet collodion, for reasons that he explains, in preference to carbon. M. Lambert makes a transparency from the original negatives on carbon, for reasons which he explains; those reasons are very novel—they amount to a new discovery—he says that all the glasses used by M. Crounthal use the enlarging camera; M. Lambert uses the printing-frame. Mr. Crounthal makes his transparency much larger than the original negative; M. Lambert makes his the
same size as the original negative. Mr. Crounchton makes a dense enlarged silver transparency, by intensifying with bicloride of mercury; M. Lambert makes a very thin carbon transparency, which he does not intensity; to do this he has invented a special tissue which is not only thin, but, in intensity, has but little acetic colour. In this respect he has some faults to make to the natural way in which I do it, giving a great contrast of colour in the transparency. Mr. Crounchton varnishes his enlarged, intensified, silver transparency with mast varnish; M. Lambert does not varnish his thin, un-enlarged carbon transparency. Mr. Crounchton works on both sides that gives the vigour to M. Lambert’s prints. With him the original negative serves for little else than a sketch to work up. He always relies on at least three films to produce the final print, and I have seen so many as five papers used, all working, and each one intensifying his film for his final enlargement by one step only. Mr. Crounchton, from his dense, worked-up, enlarged, silver transparency, makes a still further enlarged negative, having strong printing power, and that, if possible, shall require no retouching; M. Lambert makes, from his thin, small, untouched, carbon transparency, a third weak, under-exposed negative, that is utterly useless until it is worked-up. He uses a special collodion and developer in order to secure an ultimate enlarged negative of this thin character, which alone is suitable for his process.

Mr. Crounchton's work has hardly commenced. Mr. Crounchton uses the wet collodion and enlarging camera in both operations; M. Lambert only in one. Sometimes he reverses the method, and makes a collodion transparency of the ultimate size of his enlargements; in that case he intensifies his negative by contact printing. In such a case he puts no work on his large transparency, and he adheres always to the method of securing finally, either in silver or in carbon, an exceptionally thin enlarged negative, that is, intentionally, deficient of printing power.

But Mr. Crounchton further explains that he has to resort to "expedients;" for example, he says that "in elderly people the lines and texture of the face is far too marked in the enlarged negative; this can be much softened and reduced by printing through a bridge paper," for "elderly people," stains tracing paper on the face of the negative to soften and reduce "the lines and texture of the face;" M. Lambert also places translucent paper on the face of his negatives, not only on those of "elderly people," but on those of all; but he does not do it to soften the printing (for which, in consequence of its fineness, it would be utterly useless), but for quite another purpose. Mr. Crounchton also puts tracing paper on the back, both to soften the printing and to "strengthen the high lights." M. Lambert puts the tracing paper on the back of his negative, but neither to soften the printing—the negatives being too soft already—nor to strengthen the high lights. The high lights are always strengthened by M. Lambert on the front. The real reason M. Lambert puts the tracing paper on the back is to reduce the green infinity to his negative, which in its present state it requires to give it printing power. These papers—papier minare—are of a new material. They have a delicate grain, and a fine tooth, very different to ordinary tracing paper. The filtering paper works with blackened powder and stumps chiefly. Instead of gaining intensity in his negative by precipitated silver or mercury, as M. Crounchton and the rest of the world does, he uses blacklead, and instead of getting the requisite intensity by chemical means, he does it by mechanical and artistic methods. He can thus get the intensity just where he chooses. Hence the reason why he makes his negative without intensity. Instead of intensifying with silver, which in an enlarged negative would be coarse, he uses the fine blacklead powder, which prints soft and delicate. The doing away with the small negatives and M. Lambert’s method depends on this principle. Mr. Crounchton relies for the goodness of his negative on the work he puts on his transparency; on his ultimate negative he does not count to be required to work, except the use of the small expediens alluded to. M. Lambert relies exclusively on working his thin negative, which, while it supplies the drawing, gives little else of printing value. Mr. Crounchton uses a varnish at the back, to render transparent his tracing paper, so as to get increased depth to his shadows. M. Lambert uses no varnish, as he needs no much aid; he starts with almost bare glass for his shadows, and his translucent paper offers scarcely any obstruction to the light. Such a negative as Mr. Crounchton produces would be useless for M. Lambert to work up, being too dense; in the same way such a negative as M. Lambert produces would be useless to Mr. Crounchton. In M. Lambert’s case it is not retouching at all, it is building up, it is not merely modifying the negative, it is actually building a new negative on the same plate of silver. With Mr. Crounchton’s way a fair print could be got from his negative, without his tracing paper, a print vigorous, delicate, and with good modelling; but from M. Lambert’s scarcely anything worth looking at could be obtained. It is the body of his blacklead printing on both sides that gives the vigour to M. Lambert’s prints. With him the original negative serves for little else than a sketch to work up. He always relies on at least three films to produce the final print, and I have seen so many as five papers used, all working, and each one intensifying his film for his final enlargement by one step only. Mr. Crounchton, from his dense, worked-up, enlarged, silver transparency, makes a still further enlarged negative, having strong printing power, and that, if possible, shall require no retouching; M. Lambert makes, from his thin, small, untouched, carbon transparency, a third weak, under-exposed negative, that is utterly useless until it is worked-up. He uses a special collodion and developer in order to secure an ultimate enlarged negative of this thin character, which alone is suitable for his process.

All this refers to the Lambertype, and I should not have said so much if I had not felt that an injustice had been done to a foreigner, through not understanding the vital difference in principle between his method and that of Mr. Crounchton’s. I am not going to argue what is right or wrong; I am going to state to other things that M. Lambert has introduced, than to even his clever way of enlarging. I am delighted with the chromotype method of permanent printing. I hope almost immediately to get rid of albumenised paper, hypo, and fading prints. The quality and appearance of prints so produced are very ingenious; by these one can not only print the portrait with a tinted margin all round—which is a great improvement—but also one’s name and address or any other device all at the same time, by a simple means of mechanical registering. Negatives may also be reproduced, omitting the facsimile of the originals by a fresh method. But there are so many clever things that are taught that I cannot name them all. It is a mistake to suppose that there are only one or two things that M. Lambert has to communicate. To appreciate him you must see him work; no description is sufficient. There is something to learn in all directions. Besides the information, there are certain privileges that only the licencees obtain, particularly the patented printing and tinting process, the special tisses for chromotypes, for transparencies, and couturetypes, as well as the two kinds of mineral paper. There is nothing like this latter article in the market; ordinary tracing paper is not to be compared with it.

I treat the whole affair not so much as the obtaining the exclusive use of patented privileges, but as a course of instruction for those who wish to do better work, and to learn special things to use, and being taught how to use them. I smile at the bother made about the patents; there is no fear of anyone doing Lambertype or Chronotype unless he goes to half-nquarters to learn how.

Couturetype has always been good for large work, but I enclose a few of my first prints in Chronotype to show the kind of small work that can now be turned out as permanent portraits. —Your, &c.,

A LICENCEE.

[The prints enclosed by our correspondent, who is a portraitist of great skill, are exceedingly fine, and in every way show that the artist has already occupied too much space, should cease. After reading the careful analysis and comparison of the methods used by Mr. Crounchton and M. Lambert, it will be seen by every one that they are in many respects essentially different. Some parts of Mr. Crounchton’s method, occasionally used, for a special purpose, in some parts resemble M. Lambert’s method, but are clearly not the same. We fully endorse the remarks of "A Licencee" as to the value of a day, spent under the tuition of M. Lambert. —Ed.]
In the first place, Mr. Johnson makes me out to be a sort of merchant or dealer, citing my unfortunate photographic speculations, &c. Now the only speculations I have made in my life I have been 1. The publication of my "Traité Général de Photographie," a work which has passed into its sixth edition since 1855, each edition numbering three thousand copies, and which has been translated into five languages; 2. The invention in 1864 of my enlarging apparatus, which is to be found in the principal studios of the world, and which has brought me in the sum of 450,000 francs; 3. I have besides prepared collodion for photographic purposes. Beyond these, I have done nothing but published scientific papers, and made investigations with astronomical and physical apparatus.

As to the allegation of Mr. Johnson that I am possessed of slight means, that is an assertion altogether gratuitous, which should not have emanated from a writer who respects himself. I trust Mr. Johnson may have as ample means as myself.

As to the statement, moreover, that I announced myself as a manufacturer of carbon tissue, it is perfectly untrue. Mr. Johnson says there is not another man in Europe who has so much interest as I in seeing his patent fall to the ground. But every man whose eyes are not blinded with passion must see that nobody in the world can interdict a man from making carbon material, which is manufactured in France by M. Marius, Brown, &c., and the propagation of which has been in the hands of the public ever since the Poirot patent lapse in 1870.

It is true that I have the intention of occupying myself with the manufacture of pigment paper, and I hope to succeed better at it than Mr. Johnson did, when he was one of the directors of the Autotype Company in London. I shall give it the more attention from the circumstance that it will be my own capital that I shall use, and not anybody else.

As regards M. Vidal, it was that particular friend of mine who a few months ago prompted me to prepare carbon tissue. He said to me, "I have a friend, Mr. Johnson, who has been much engaged in the manufacture of carbon tissue, and if you like I will ask him to give you some of his experiences, so that you will not have so much to learn." Upon my reply in the affirmative, he wrote to Mr. Johnson, who replied that a month afterwards I had an interview with the directors of the Autotype Company, M. Sawyer and Bird, for the purpose of making arrangements for the establishment of a manufactory of carbon tissue on the Continent, and it was those gentlemen who gave me precise information upon the subject of the patents of Messrs. Swan, Johnson, &c.

Up to the present moment I have not made a single sheet of carbon tissue, otherwise than experimentally in the laboratory, and I have not made such announcement as that referred to by Mr. Johnson.

It was at the invitation of several Belgian photographers that I resolved to examine the history of carbon printing. What was my astonishment to find, on reading the Johnson patent, which was of enormous length, a lot of things well known to him. Now the law is very precise: if one of the points in a patent is void, the whole of the patent is void.

In May I had finished my history of carbon printing, and I went to Paris to have a chat with M.M. Vidal, Franck, Davanne, Rousselot, Liebert, &c. M. Franck and M. Vidal, both friends of Mr. Johnson, can affirm that I had then all the authentic materials for this history. M. Franck conducted me to Liebert at Paris, and he has assured me that there was a case pending in the law courts between himself and Mr. Johnson. But my history of carbon printing was finished, and this dismisses the allegation of Mr. Johnson that my work was written with a certain object.

Finally, every honest reader will recognise Mr. Johnson's attempt to mutilate the text of my pamphlet, upon which, I may state in parenthesis, encomiums have been passed by many who do not regard it as a commercial puff.

Mr. Johnson, in the two columns, one headed Davies and the other Monckhoven, has so mutilated or perverted my words, that no one will object to my adding the lines which were omitted. This is what I say of the Davies process, if you will be good enough, Mr. Editor, to translate it into English.

"Mr. Davies' Process.

"This process, published the 5th of August, 1864, contains a serious and capital discovery, to which attention has not been sufficiently called. Mr. Davies prepares the pigment, paper, solutions, and processes according to the known modes. But what is remarkable in his manner of developing is, that on its exit from the printing-frame he plunges the pigmented and exposed tissue into water for the space of one minute only, presset it to remove the excess of water, then makes it adhere to a sheet of albumanized paper, presses the whole by means of a roller, preventing the formation of the smallest air bubble between the surfaces. Then the back of the albumanized paper is moistened with alcohol, which renders the albumen insoluble; it is dried and plunged into warm water, when the development is easily brought about. The paper detaches itself from the gelatinous mixture, and the image remains attached to the albuminized paper.

"For double transfer, Mr. Davies takes, in lieu of albumen material, paper coated with shellac, dissolved in methylated spirit. (We underlie the word shellac because this substance was patented several years after by Mr. Johnson.) He makes the exposed tissue adhere, and develops and transfers the image to paper. The image is thus re-dressed.

"It will be seen that the process of M. Davies (not patented) is much simpler than Swan's method. But what makes the characteristics of this process is the plunging of the pigment paper but for a minute only in water, and attaching it to the albuminized paper, to which it adheres by atmospheric pressure, a discovery also claimed by Mr. Johnson. In fact, the tissue plunged but for a few minutes in water is not saturated with it, however much liquid there may be. It continues to absorb under the film above, and thus causes suction and a vacuum, which makes it adhere to the insoluble albumen film. This fact is of great practical importance."

I may add that this history of carbon printing has received the approbation of all those who have read it, and I have in my hands a series of letters from the principal photographic authorities on this subject.

I will here terminate my answer to the irascible Mr. Johnson by saying that, as he knows, I have the honour to number among my friends all whom the photographic world acknowledges to be of eminence, and till now I have enjoyed universal esteem. His impassioned attacks will not take from me one atom of that regard.

I regret, on Mr. Johnson's account, that he has so far forgotten himself as to fill his protest with a series of personalities with which the public have nothing to do, a style in which I have not myself. My history of carbon printing is written, I believe, with dignity, and is based upon a series of authentic facts.

If I am in error on a few points, I am willing to admit it; it would have been better for Mr. Johnson to have corrected me quietly.

I may remark that I shall not trouble to make any other answer to Mr. Johnson, whatever may be the nature of his attack. If he was wise, and perhaps of my own country the law will see that I have justice done me; unfortunately I have not this protection in England, and this circumstance renders Mr. Johnson's attack upon me unworthy of a gentleman. I count upon the honour of the English journals to publish this reply, as they did Mr. Johnson's protest. — I am, sir, &c.,

August 22nd

Dr. D. Van Monckhoven.
and then they are plunged into the bath to harden them. If the glass is too hot before its immersion in the oil, the shape of the object is injured; and if not heated enough, the object breaks. The case-hardening or immersion in oil is a mechanical action. The greatest difference in temperature which exists between the furnace and a bath brings about a different closing together of the molecules to that existing in ordinary glass. M. de la Bastie made known several of the difficulties which it was necessary to combat to solve the problem before him. They were numerous, and required much perseverance and ingenuity on his part and mechanical action. The lecturer then took two plates of glass of the same thickness (about five centimetres), the one of case-hardened glass, and the other of the ordinary material, and these were placed upon a kind of frame, which raised them from the floor; then a metal weight of a hundred grammes was allowed to fall upon them. One of ordinary glass broke into fragments at the shock of the metal, that of thirty-five centimetres, while the hardened material failed to break, even when the weight fell through a distance of four metres or more.

A dish of hardened glass, placed above a spirit lamp and filled with water, was thrown upon the floor the moment the water began to boil, and did not suffer in the least. A dish of the same kind, but empty, may be left over a great length of time without breaking. Such results deserve serious attention, especially on the part of photographers, whose laboratories include much perishable apparatus; and they will therefore await with anxiety the action of manufacturers in the matter.

From want of space, I did not mention in my last letter the interesting communication which M. J. Rodrigues made to the Society. M. Rodrigues is Professor of Chemistry at the Lisbon Polytechnic School, and member of the Academy of Sciences of Portugal, by which government he is charged with the development of geological and geographical knowledge. Already he has been able to reproduce by printing in green ink a vast number of plans and maps of great scientific interest. Specimens of his work have been exhibited at the Photographic Section of last year, but since then the eminently profuse photographer has modified and perfected his processes in such a way that he is enabled to reproduce half-tone photographs, as well as those in black and white only. It is the old method of the two Niepces that Professor Rodrigues employs, which involves the use of bitumen of Judea dissolved in essence of lavender and benzole. After isolation, the image is developed by means of essence of turpentine, which dissolves all the unaltered parts. Finally, by means of acid, he etches upon zinc in a very perfect manner. When it is a question of reproducing half tints (say in photographs from nature) M. Rodrigues mixes with his film of bitumen a glutinous body—such as sugar, or milk, for instance—which coagulates in the film, gives the necessary grain. If tints without breaking mechanical action in the photo-mechanical printing establishment at Lisbon, showing what importance is attached to photography by the Portuguese government, and the assistance it can render in many ways.

In an excursion which I recently made upon the coast of Normandy, I visited a little out-of-the-way village called Vleules. Here I met a steep street shaded by big trees towards the quay, I met a gentleman bearing in his hands a tripod which I immediately recognised as photographic apparatus: and what was my astonishment at finding that the bearer of them was my old friend M. Franck de Villecholles, the well-known and able photographer, who was travelling with his new addition. M. Franck satisfied him on his walk, and had the pleasure of seeing him use M. Jonte's ingenious dry plate apparatus, of which I have already given your readers a description.

The dry plates used by M. Franck were prepared before his departure from Paris by a process which I have already mentioned, and which is one of his own. I can bear testimony to the fact that more than the visual effect varies from five to fifteen seconds, the light, which had been very fine to begin with, becoming dull towards evening. It is certain that with such plates and such an instrument photography is no more than a pastime, and may be practised by all the world. Ernest Lacan.

ON THE RATIO OF THE ACTINIC POWER TO THE ILLUMINATING POWER OF MAGNETO-ELECTRIC MACHINES. By Captain Arnet, R.E., F.I.A.S., Etc.

Having been called upon by the War Office to undertake the photometric measurements of certain magneto-electric lights, I determined to carry out actinometric measurements of the same at the same time, that my ob- observations would be closely checked by such a independent method. In the first comparison of the results obtained by both kinds of measurement, I found a considerable discrepancy occurred in the values given to the different lights. The photographic records could not err, unless through gross carelessness in the chemical preparations, and against this every precaution has been taken. I was therefore inclined to throw blame on the eye observations. A more critical examination convinced me, however, that both were correct; though the curves obtained for the value of the lights did not coincide, yet that they did act as a check upon the other. In all there were six different machines to examine. Each one was driven by a ten-horse power engine. Several were driven at varying speeds, that the difference in the light caused by the variation might be tested. It was thus valuable data were acquired which I hope may prove of further scientific use.

The eye observations were made with a little instrument which I have called a diaphanometric, described in the Journal for April of June of this year. The principle of the instrument is the employment of moveable black glass wedges to reduce the power of the light to be measured, which light passes through the bottom half of a slit. Through the top half of a slip the light of comparison is thrown by means of a prism of total reflection. This light can also be reduced by means of similar dark glass wedges. The results obtained by this instrument have been uniform, and I had the greatest confidence in its accuracy.

The method adopted of registering the actinic power of the light was by exposing uniformly sensitive chlorides of silver paper to the action of its rays. Two registrations were carried out with each light: 1st, paper was exposed to the naked light at a fixed distance from the carbon for three minutes; 2nd, a sheet of the same paper was exposed beneath black wedges of slight taper for sixteen minutes. The eye observations were carried on simultaneously, with the latter exposure of the sensitive paper, in both cases obtaining an integration, as it were, of the light during that period. Between ten to twenty eye observations were taken for each light, which began after the first registration. Some very interesting details about his
produced. They were also taken in many cases when the machines were what we may call short circuited. The data were thus obtained for calculating the power necessary to produce a light of a certain value. As various machines which are in the market were under consideration, I am precluded from giving the results of any particular form.

The upper diagram gives the mean of the results of a series of experiments with one instrument: the top curve, deduced from eighty readings, gives what I may call the optical value; the lower curve, taken from four hundred and fifty readings, gives the actinic value; whilst the bottom diagram shows the ratio of the actinic to the optic value. In both diagrams the abscissae are measures of the horse-power. The weakest part of the curve is about A, where it seems to be slightly deficient in convexity. The curves are instructive, showing the rapid decrease of the optical value, and still more of the actinic value, of the light when worked with low motive power. They also show that each machine has a point beyond which the increase in motive power is not compensated for by increase in light, the curves apparently becoming asymptotic.

I was not at all prepared for the great diminution of the value of actinic power in the lights, though I expected it in a smaller degree. The early experiments of Draper and others have shown that with increase of temperature the more refrangible portions of the spectrum appear after the less refrangible, but I know of no measurements which would have been applicable to the present set of experiments. The curves must evidently be some junction of the wave-lengths, and I hope to carry out other experiments in fixed portions of the spectrum, in order to ascertain if the formula which I think should hold good can be employed.

ON NITRITE OF SILVER.

BY J. W. GATEHOUSE.*

The following experiments were undertaken in consequence of having been, during this last season, applied to several times by photographers to investigate for them the reason of a certain deteriorating action, termed by them "woolliness," to which they found their nitrate of silver sensitizing baths exposed. Having noticed in several of these cases the presence of nitrite of silver in the bath, it appeared advisable to investigate the properties and mode of production of this silver salt more fully than it yet appears to have been done.

As regards its formation, this may be accomplished in various ways, by many reducing agents from nitrate of silver:

1. By precipitation with the nitrite of an alkali.
2. By the long-continued action of certain organic salts, such as are found in the nitrate of silver photographic baths.
3. By fusion of nitrate of silver with organic matters.
4. During the electrolysis of nitrate of silver solutions.

By the precipitation of silver from neutral solutions of the nitrate by means of hydrochloric acid, I propose to investigate these various methods seriatim, noticing under each head any peculiarities which may present themselves.

First.—When nitrite of potash is added to a neutral solution of nitrate of silver, a dense, yellowish-white precipitate soon settles down, which, viewed under the microscope, is seen to consist of aggregations of needle-shaped crystals, slowly changing colour on exposure to light, and ultimately becoming black. This precipitate is soluble both in nitric acid and ammonia, in the former of which it suffers decomposition, being reconverted into nitrate of silver. The ammoniacal solution deposits crystals of a beautiful fern-like form. The precipitate is slightly soluble in cold and largely soluble in boiling water, the solution depositing as it cools long, rectangular, needle-shaped crystals of a beautiful golden-yellow colour.

Second.—Nitrite of silver appears to be produced under certain circumstances such as those found during the sensitization of collodionised plates in photographic printing booths, the amount actually produced being always very trifling; but by the evaporation of the bath to dryness the organic matters present frequently reduced large quantities of the nitrate of silver to the state of nitrite. Whether the nitrite of silver is the cause of the deterioration of the bath has not yet been determined.

Third.—When pure nitrate of silver is fused, and the temperature raised much above the point of fusion, this salt is converted into metallic silver without formation of nitrite; but should organic matter be present, nitrite of silver is invariably produced. One hundred grains of nitrate of silver having been carefully fused, and 2-28 grains of starch cautiously added, 4-4 grains of metallic silver were produced, together with 2-11 grains of nitrite of silver, the latter being estimated from the nitrous acid found after precipitation of the silver with ammonium chloride, and estimation with permanganate of potash. This estimation was effected by adding a large quantity of water to the precipitated solution, which was then decanted, rendered slightly acid with pure sulphuric acid, free from the oxides of nitrogen, and then titrated with a solution of permanganate of potash containing nine grains per litre of each cubic centimetre of which corresponded to 0.475 grains of N₂O₅.

Fourth.—During the electrolysis of concentrated solutions of nitrate of silver, using platinum electrodes, metallic silver is deposited on the negative, whilst a black crystalline deposit adheres to the positive pole. After the action has proceeded for some time, these crystals become surrounded with a yellowish-brown solution, and as this increases the formation of the crystals diminishes, they becoming ultimately replaced by a black powder, which falls to the bottom of the vessel. These crystals—stated by Fownes (tenth edition) to consist of silver dioxide, and by Boettger to be peroxide of silver—are decomposed at a temperature of 50° C., yield oxygen when treated with concentrated sulphuric acid, and chlorine with hydrochloric acid. After being dried at 100° C., they consist of silver dioxide 8:75; grains of the crystals dried at 100° C. yielded 7:58 grains of silver, leaving 1:15 grains to be accounted for. Considering the whole of this to be oxygen, these numbers agree well with the formula Ag₂O₃; but as the crystals suffer decomposition at temperatures above 50° C., this cannot be considered to be their composition at the time of formation. When dried at a temperature below 50° C. yielded 1:98 grains of metallic silver, leaving .44 grains to be accounted for; and if we consider the whole of the gas...
evolved to pure oxygen, this approximates very closely to the formula Ag₃O₂ or a true peroxide of silver.

It is thus easy to conceive that if this represents the true constitution of these crystals they would be readily decomposed, even at moderate temperatures, evolving pure oxygen and silver. The decay of the gas may be inferred from the fact that the crystals are decomposed by heat. When the temperature reached 45°C, the crystals were decomposed to be decomposed; at 50°C the gas having been discharged, the apparatus was allowed to cool, after which 9.9 cubic centimeters of gas were found in the graduated tube, which by endiometric analysis was found to consist of 8.76 cubic centimeters of O, and 1.14 cubic centimeters of N, giving 88.48 per cent of oxygen and 11.52 of nitrogen. Another determination of the gas from a fresh crop of crystals gave 86.1 per cent of O.

These crystals, when heated in a hard glass tube, evolved the higher oxides of nitrogen. A direct experiment, made by heating 1.645 grains of crystals, and passing the evolved gas into water in which the amount of nitrous acid was estimated, gave—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1.825</td>
</tr>
<tr>
<td>N₂O₅</td>
<td>0.845</td>
</tr>
<tr>
<td>Oxygen by loss</td>
<td>2.855</td>
</tr>
</tbody>
</table>

which would give an approximate formula of (Ag₃O₂) No₅. These crystals, therefore, appear always to contain the higher oxides of nitrogen, and as their form is similar to that of nitrite of silver it appears not improbable that during the electrolysis of nitrate of silver the nitrite is first formed on the positive pole, and this being decomposed is changed into peroxide of silver, which, however, preserves the form of the nitrite, and is always contaminated therewith. The relative amounts of silver and peroxide produced vary with the state of the solution.

Two experiments gave—

<table>
<thead>
<tr>
<th>Expt</th>
<th>Silver</th>
<th>Peroxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>18.4</td>
<td>10.7</td>
</tr>
<tr>
<td>II</td>
<td>17.7</td>
<td>12.27</td>
</tr>
</tbody>
</table>

The fifth method of producing nitrite of silver is by means of metals and other reducing agents placed in neutral solutions of the nitrate. The solution used contained ten per cent. of nitrate silver. The metal having been placed in this the action was allowed to proceed till a fair sample of the metal had been deposited. In the case of zinc and silver, the unreduced silver salts precipitated with ammonium chloride, and after decanting from the argentic chloride formed, the presence of nitrous acid was detected by means of a slightly acid solution of a mixture of potassium, iodide, and starch. Where nitrous acid had been produced it was rendered manifest by the immediate production of a deep blue colour, but where no nitrous acid had been formed the mixture remained perfectly colourless.

Experimenting in this manner it appeared that of the metals which produced a reducing action K, Na, Bi, Hg, Ag, and Th did not produce nitrites, whilst nitrous acid was found in greater or less quantity by the action of Fe, Ni, Co, Mg, Cu, Zn, and Sn. Now these metals divide themselves into two great groups of peroxidases and artizals—the latter metals so decomposing nitrate of silver as to produce nitrite; the former not doing so, but at once producing metallic silver without the intervention of any intermediate reducing action, thus indicating a radical difference in the action of these two classes of metals. The only metals whose action it is particularly desirable to notice, and which apparently do not group themselves from the true mode of action which might be expected from their atomicity, are mercury and antimony. The action of mercury, however, was such that a mercurous salt was produced, and therefore it actually took the place of a monotonous instead of a diatomic element.

With respect to antimony, it is possible that the nitrite was formed by means of the trace of iron the antimony contained, but this is scarcely admissible on account of the very minute quantity present; or it may be that antimony, although apparently pentatomic or inatomic, is in reality either tetrahedral or hexazom, following in this respect the example of iron. The two metals which produced the smallest amount of nitrite were nickel and tin.

The formation of nitrous acid was, however, unmistakable. In the case of tin it was also performed, producing a large quantity of a deep brownish-black powder.

With respect to the action of other reducing agents, gallic acid and phosphorus reduced the silver without production of nitrite, whilst suboxide of copper produced a decided amount.

It has been shown by Dr. Gladstone, in 1872, that this latter substance reduces nitrate of silver in a peculiar physical manner, the silver being deposited in long filamentos threads; and it was also shown by the same chemist, in 1871, that the strength of the nitrate of silver solution modified to some extent the physical appearance of the reduced silver, when accomplished by means of copper, the weaker the solution, the more thread-like being the silver.

With respect to the physical appearance of the silver deposit as seen through the microscope under powers varying from fifty to two hundred and fifty diameters, nickel and antimony produce threads of silver having a very near approach to the true filamentosous condition; indeed, in the decomposition of a few cubic centimeters of solution by means of nickel in a tube, where the action takes some days to effect its result, the threads undertook to grow up from the bottom of the tube extending gradually to the surface, and there spreading out in beautiful fern-like forms. Bismuth, on the other hand, reduced the silver in decidedly nodular crystals.

If, now, instead of using nitrate of silver for these reductions, the nitrite be taken, then, with those substances which before reduced the silver in a filamentosous form, the character becomes still more apparent; whereas before we had only thick threads and numerous branching spicules approaching the filamentosous character, we have now true filaments, and even, as in the case of bismuth, where, before, all was nodular and decidedly crystalline. Some filaments appear ending in tufts or spicules, and mixed with these there are longer shooting across the field of view. Indeed, by examining the whole series of reductions from the case in which only black or nodular masses of silver are produced, to that in which the metal is deposited in a truly filamentosous form, it is impossible to draw a line between the one state and the other, the change being so gradual that no decided break occurs in the gradation. It thus becomes evident that nitrite of silver has some share in the formation of this fine argentous crystal of silver being first formed, then these elongate by addition of other crystals, and are, at the same time, changed into thread-like forms of pure silver. Nitrate of silver itself can, indeed, by careful heating, be reduced to long threads of metallic silver.

With respect to the solubility of nitrite of silver in water, 103.79 grains of a saturated solution being taken, and evaporated to dryness at 100°C, 1 gram of solid nitrite of silver remained, showing it to be soluble in about 1058 times its own weight of cold water. The case can be purified with which, from this solution, it would be possible to prepare very dilute solutions of sodium or potassium nitrite of known strength, which would suggest the use of these solutions of nitrite of silver in the comparative studies to be used in the estimation of nitrates in potable waters. The salt may readily be dried at 100°C.
but should be kept from the light. To test the action of heat upon it a tube with nitrite of silver, weighing together 106-98 grains, was heated for two hours at 108° C. without loss of weight. During four hours more, the tube being gradually increased to 115° C, it also suffered no decomposition; the temperature was then kept at 145° C. for one hour, and now decomposition commenced, the tube and contents ultimately weighing 106-86 grains, having lost altogether 0-7 grains, there having been 0-3 grains in the tube originally! The nitric acid lost was thus 37-2 per cent. of the total amount present.

BUILDING A GLASS-HOUSE WITHOUT PERMIS-
SION OF TOWN AUTHORITIES.

A case of considerable interest to photographers was recently tried at Canterbury. We reproduce the details from a local paper with which we have been favoured. It seems that the Town Council entered proceedings against Mr. E. W. Nicholls, a photographer, for having erected a new building, the external and side walls of which were not constructed of brick, stone, or other hard and incombustible substances, and without the permission of the Urban Sanitary Authority of the city, contrary to the bye-laws.

Mr. Flint, Town Clerk, in prosecuting, proceeded to say that the defendant, a well-known photographer, who recently took up his residence in Canterbury, and had commenced the erection of a wooden building without the knowledge of the Sanitary Authority, stated that the defendant’s objection to the Surveyor’s statement had been called to the fact that the building was being constructed of combustible materials, and, therefore, in contravention of the bye-laws. Mr. Hall went up to the defendant’s house, and told him that he was having one on him about the building, and Mr. Flint sent in an application to the Surveyor, asking the General Purposes Committee to allow him to erect a temporary platform studio at the back of his house, but the Committee decided that they could not sanction it. Immediately after that a letter was written from the Town Clerk’s office, calling on the defendant not to proceed further with the building. There were two bye-laws, by which Mr. Flint said, which the defendant had broken—the first, that he had neglected to send in plans to the Surveyor, and in his letter he had called the defendant’s attention to the fact that he had neglected to do so. Again, that he had not in ignorance of the Council’s decision had not to take proceedings upon that bye-law. At a later meeting the Council decided that the defendant must enter into an agreement to remove the building, and the Council could not. He had also reported to the Council, and proceedings were ordered to be taken if the defendant did not remove the building, or undertake to remove it before October. The bye-law under which these proceedings were taken was that the external walls of any building should not be constructed of combustible material, unless the Urban Sanitary Authority should otherwise allow. He had a report from the Surveyor to the effect that the whole building was distinctly illegal. The agreement was prepared, and was read over to the defendant. That the defendant had agreed to remove the building, and to remove any wood etc., as the bye-law of the Sanitary Authority, by not sending in a notice a fortnight previous to the commencement of building, nor any plans of the proposed building. The defendant had been warned about this defence—that the building in question did not come within the meaning of the Act, because it did not belong and was not fixed in the building, and it was undoubtedly true that the building had been placed on wheels, but these wheels were of no use for moving the building, as it was surrounded by four walls, and could not be removed without breaking some of these down. The Magistrates sought rather to consider the intention, which the defendant had in erecting it; for there was no doubt that in these days the largest buildings could be removed on wheels by mechanical contrivances. To put it more clearly before the Bench, Mr. Flint quoted the case heard in the Court of Common Pleas of Stevens v. Gowry.

This was an action brought under the 12th section of the Metropolitan Building Act, which provided against the erection of compulsory buildings of that kind, but there was no case before the present proceedings were brought. The house or shop which it was sought to remove was built entirely of wood, and rested on timber foundations laid upon the surface of the ground. In giving a judgment for the plaintiff, Chief Justice Kirkpatrick said:—"As to the argument that had been raised as to whether this was a building within the meaning of the Act, the building was to be constructed on wheels, with the building until the shop was made. He was of opinion that a house consisted of wood, although it might not be resting on masonry legs. He was more impressed by way of building of combustible materials of which it was formed, within the mischief provided against by that Act. It had been argued," the Chief Justice continued, "that because that structure was not the nature of a box or small article, and could not with any propriety of language be considered a house. But the answer to that was, that by the application of the word ‘building’ it might be removed in its entirety, that did not prevent it from being a building under the Act." In this decision Judges Williams and Crowder concurred. Judge Hylkes also agreed, remarking that with one difficulty in defining the word ‘building’; "he thought it was usually understood to be some structure or erection of considerable size, intended to be permanent, or, at least, to last for some time, was put into the ground. The building under consideration was, in his opinion, clearly a building in the ordinary sense of the word. Then what was the object of that Act of Parliament? One of the objects was to prevent the erection of combustible structures, and therefore, looking at the ordinary meaning of the word and the object of the Act, there could not, he thought, be a doubt but that that was a building within the meaning of the Act." These opinions of the judges, Mr. Flint argued, went to show that the word "building" intended to include structures that rested on the land, and was not confined to those whose foundations were built into the ground. Mr. Flint then put in a printed copy of the by-laws which were laid before the Local Council.

The evidence or Mr. Hall, the City Surveyor, was then read. He said he had examined the building which was the subject of these proceedings; it was built entirely of wood. He considered it a great misfortune when he last saw it, and he had received several complaints about it.

Examined by Mr. Flint.—The size of the yard was 20ft. 7in. by 19ft. 10in., and the size of the building 21ft. 2in. by 11ft. 8in.

The building was enclosed by walls, and there was no means of getting the building out of the premises, not even if the boundary walls of the premises were pulled down. The joists or sleepers on which it was built were laid flat upon the ground. When he first saw it, there were no wheels upon the building, but since then wheels had been attached. He considered they were of very little use indeed for the removal of the building. The building was 16 inches in diameter. They were new, but the body of the building was of old material.

The building was examined by the defendant, who defended. The building had no connection with the walls of the premises on any side. He would undertake to say certainly that the building was not a carriage. It was built of weatherboarding. He knew what other boards were, and these were a sort of weatherboarding. The building was fastened together by ordinary cast iron buttons, and in other parts by hinges. It could not be taken down, in his opinion, in an hour and a half. One of the movable panels of the building was shown to the witness, and he said it was made of weatherboarding.

Mr. Flint.—Do you mean to say, as architect of this city, you require places to be sent in of such a structure as this? Mr. Flint.—We must abide by the law.

In reply to Mr. Drury, Mr. Hall said the roof was partly of wood and partly of glass.

This was the case for the prosecution.

Mr. Minter, in reply, argued that this was not a building within the meaning of the Act of Parliament. He should like the Bench themselves to have gone and seen the structure in question, and that course would have been more satisfactory than to take the evidence of the Surveyor. The structure in question was merely one of the ordinary travelling photographic carriages which might have been said, and he would come from place to place. If they were wrong in saying that it was a building within the meaning of the Act, they would then have to proceed against all the coach-builders of the country; for he did not know where it was for it was made by building. He was perfectly true that the first time the Surveyor saw the structure it was not on wheels, but that was because the old ones were worn out, and the defendant had ordered a new undercarriage to be made. He should be the defendant.

Henry Solly, a coach-builder of Canterbury, who stated that he should consider the structure in question a carriage, and he could take it to pieces in an hour and a half.

This was the complete case, and the Magistrates immediately decided in favour of the defendant, the Chairman saying "they had given great consideration to the case, and from what appeared to the Magistrates the defendant was not such a 'new building' as to come within the by-laws of the Urban Sanitary Authority."

Mr. Flint.—I shall then have to ask the Magistrates for a case of that law.

Mr. Aitken, Chairman of the Bench.—It is a question of fact, and not of law.

Mr. Flint.—It is a broad question, and I shall advise the Council to appeal against the decision.
The results arrived at by the committee are as follows:—1. The intensity of light on the eye of normal, brightly colored fishes, and crustaceans, produces a variation amounting to from 3 to 10 per cent. of the normal electro-motive force existing between the surface of the cornea and the transverse section of the optic nerve. (4) The electrical variation may be due to the following causes:—

those rays that are regarded as most luminous produce the largest variation. (4) The electrical alteration is due to the action of light on the corneal structure in its total portion, eliminating therefore the natural supposition that the contraction of the iris might produce a similar result. It is possible by experiment to discover the physical expression of what is called "pathological language," and rely on language apparatus: but no explanation was then offered to the cause of this apparent anomaly. It has now, however, been demonstrated by a large number of experiments that the variation is related to the direction of the current. If the electric current be positive to the skin the initial effect of light is an increase; if, on the other hand, some portion of the body be positive to the cornea the direction of the current is reversed, thus showing that the current superimposed by the action of light is always in the same direction, only in one case it is added to, and in the other subtracted from, the natural current. The above experiments have also examined the action of all the various colored rays of the spectrum, with the result of showing that in all cases the yellow rays produce the greatest effect. It has also been found that the blue rays are the least. Green rays produce no alteration. The committee then attempted to measure accurately the electro-motive force of the living eye. This they did by means of Mr. Latimer Clarke's method of comparison of electro-motive forces. From a large number of observations it has been found that the electro-motive force of the nerve currents deal with in these experiments on the eye of the frog amounts to about 1-500th part of a Daniel's cell. This was compared with the electro-motive force of the muscle and nerve of the frog: the muscle gave about 1-35th, while the nerve gave 1-480th part of a Daniel's cell. Lastly, the committee have recently made a series of elaborate experiments for the means of an instrument called a chronophotograph, which Sir Benjamin Beaufort, as to the time required for the action of light upon the eye of the frog. It has been found to occupy about 1-10th of a second. The committee, therefore, agree with Sir William Rose and Continental physiologists as to the time occupied by the action of light upon the human eye. The result of this investigation shows that the electrical variation observed in the action of light is what occurs to the eyes of all vertebrates.

In the section devoted to physiology, Mr. H. B. Brady exhibited a series of micro-photographs, chiefly from physiological and pathological preparations, produced by a method devised by Mr. Bowman, of Newcastle-on-Tyne. The apparatus was also shown, and described to consist of a simple mirror of spectrum metal placed at an angle of forty-five degrees in place of the eye-piece of the microscope, and directed downwards. The image was then, upon a small plate in the plate of an ordinary photographic camera, and photographs taken in the usual way. About eleven seconds was stated to be sufficient exposure for the purpose. Professor McDougal suggested that these photographs might be made on transparent screens, which would afford a beautiful way of illustrating certain objects. Mr. Brady said it would be just as easy to produce a photograph, he was aware, could never replace a drawing, but it answered its purpose, and was by degrees being perfected. In answer to questions asked, he added, that though the apparatus was not now to be obtained of any optimist, it had been shown to a well-known optimist, who would probably make a camera of this sort. He repeated that he had not brought these as perfect speci-
The subject of toughened glass was, of course, discussed being introduced in a paper by Mr. J. D. Christie, one of the earliest devotees of photographic science in the country, and now associated with the Royal Society of Edinburgh, and Scientific Institution, Bath. His remarks were furthered by additional light on the subject, and the principle of toughening glass, which he showed to be the most obvious and simple of all the processes of photography, and suggested that the usefulness of this process in toughening glass would possess considerable advantages.

In answer to various questions, Mr. Christie said that large pieces had been tried, and the only difficulty encountered was that of making the pieces of toughened glass would possess considerable advantages.

A paper read by Mr. H. G. Turner, F.R.S.E., Solvent for the Silver Platinum, in which some of the so-called metallic silver was dissolved in solution, showed that hydrogen was not dissipated upon water, and that the method described was the best way to dissolve silver, and platinum. He also gave an interesting account of the theory of the theory of the compound nature of the elements.

M. Jannsen described his revolving apparatus in photographing the Transit of Venus, which have already appeared in our pages.

The next meeting of the Association for the promotion of science in the Glasgow, opening on the 6th of July, was attended by Dr. Christie, whose special work on the theory of science.

Noteworthy.

MESSRS. ROBINSON AN
AT TUNBIE.

Probably one of the most remarkable photographs could be made, as the studios scattered throughout the country, if time permitted, would be found in many of the noble homes and recognition for the reason that would be found in respect from that of the artist and residence of the masters, the rooms each a century. Throughout, from be from the exterior, a perfect arrangement, the presence of everything, e.g., rooms, dressing rooms, plate rooms, printing rooms, washing rooms, etc. There are means of transporting the plate to the plane thereof. And my disposing the panes in two sets facing one another, for instance, facing the sitter, at one end of the plane of light passing to the said point at right angles, and intermediate panes to face in like manner the other end of the studio, the photographs may be placed at the studio according to the most
THE PHOTOGRAPHIC NEWS.

September 3, 1875.

room. This display of pictures is very attractive, and comprehends, besides every style and size of portraiture, a number of landscapes and the chief ornaments of the photographic exhibitions held for many years past. Some of these have been converted into paintings, and pleasantly vary the display of effective coloured work to which one side of the room is devoted.

We now pass into the studio, which is on the same floor, and, as arranged that an invalid's chair may easily be wheeled into it. It is a spacious room, thirty-six feet long by fourteen feet wide, the caves are low and the ridge high, the former being five feet six inches and the latter fourteen feet from the ground. There is glass at one side only, which faces north; the side-lights, which are continued to within two feet of the ground, are obscured, the principal or upper glass, obtained from the manufacturers of the skylight, which is made longer by the ridge being out of the middle, so that the glass extends over considerably more than half the room. The south side, and the south roof, which is flat, are opaque. Each end is of coarse glass, as is also a space at each end of south and top-light. A very complete system of blinds governs the light, which, however, rarely requires the co-operation of its friends, each being separate and in two parts, the upper one white. There are a number of blacks in the centre, and at each side of these two white blinds. They are arranged to rollers placed at the ridge, and are worked by cords passing over a pulley, and held in position by sash weights. Each pane of glass is two feet wide, so that as little obstruction as possible is offered to the view.

The walls of the studio are of green-gray with a small diaper pattern. The floor is covered with linoleum with a maltese cross pattern. Hot water pipes maintain the whole establishment at a comfortable temperature. At each end of the room is a series of backgrounds with canopy overhead, and a stand formed of the base of a head-resist, with cross-piece at the top, to which is attached a curtain for ready arrangement, either to screen shadow, or enter into the picture. A large collection of chairs of varied design and great comfort, cabinets, tables, footstools, sofas, &c., give an air of elegance and comfort, and afford as well great variety of effect in the pictures. In the studio and in the dressing-room we find an interesting and curious collection of children's toys of all kinds likely to arrest and hold our interest. Here was seen one of the combinations, at least, of the number of unusually successful and charming portraits of children which has attracted our attention in the reception room.

Still on the ground floor, we come to various other rooms. We need not dwell upon the dark room, beyond remarking that it is not dark, but well illuminated with yellow light: that it is arranged with gallon boxes, from which a small lamp is used to light the work. The walls are of green-gray with a small diaper pattern. The floor is covered with linoleum with a maltese cross pattern. Hot water pipes maintain the whole establishment at a comfortable temperature. At each end of the room is a series of backgrounds with canopy overhead, and a stand formed of the base of a head-resist, with cross-piece at the top, to which is attached a curtain for ready arrangement, either to screen shadow, or enter into the picture. A large collection of chairs of varied design and great comfort, cabinets, tables, footstools, sofas, &c., give an air of elegance and comfort, and afford as well great variety of effect in the pictures. In the studio and in the dressing-room we find an interesting and curious collection of children's toys of all kinds likely to arrest and hold our interest. Here was seen one of the combinations, at least, of the number of unusually successful and charming portraits of children which has attracted our attention in the reception room.

Still on the ground floor, we come to various other rooms. We need not dwell upon the dark room, beyond remarking that it is not dark, but well illuminated with yellow light: that it is arranged with gallon boxes, from which a small lamp is used to light the work. The walls are of green-gray with a small diaper pattern. The floor is covered with linoleum with a maltese cross pattern. Hot water pipes maintain the whole establishment at a comfortable temperature. At each end of the room is a series of backgrounds with canopy overhead, and a stand formed of the base of a head-resist, with cross-piece at the top, to which is attached a curtain for ready arrangement, either to screen shadow, or enter into the picture. A large collection of chairs of varied design and great comfort, cabinets, tables, footstools, sofas, &c., give an air of elegance and comfort, and afford as well great variety of effect in the pictures. In the studio and in the dressing-room we find an interesting and curious collection of children's toys of all kinds likely to arrest and hold our interest. Here was seen one of the combinations, at least, of the number of unusually successful and charming portraits of children which has attracted our attention in the reception room.
traiture and in landscape as in purely pictorial work. Ten years ago the over-exercise of this unaccusing energy produced a degree of debility which rendered rest imperative, and having acquired a competency, Mr. Robinson retired from business for a time, and, after a rest of two or three years, recommenced professional life in Tunbridge Wells.

A life like that which we have briefly indicated cannot fail to have an important influence on the young art to which it is devoted. The example both of the works and the man are stimulating, and we cannot but regard it as fortunate that photography rather than any of the branches of art to which his proclivities leaned, secured the young artist. Some of the early lives still occasionally make good their claim. Our readers are very familiar with his facile and vigorous pen in our columns, and the readers of his book in "Pictorial Effects in Photography" have seen his effective etchings; and very many of those photographers who have visited his home at Tunbridge Wells have seen examples of his sculpture and painting. Fortunately for photography, a habit of unwavering decision has kept him true to the art in which he cast in his professional lot, and this has secured for him the success which ever attends well directed energy and ability.

In recommencing business at Tunbridge Wells it was Mr. Robinson's good fortune to become associated with a gentleman who, having just completed his articles as a civil engineer, had resolved to commence professional life as a photographer. Mr. Nelson K. Cerrill had rendered his name familiar to our readers by able contributions to the LIGHT PHOTOGRAPHIC NEWS, and also by his contributions of some fine landscapes admirably printed in carbon to one of the exhibitions, before he became associated with Mr. Robinson; and his personal work has assured medals at various exhibitions since. His career is, however, still before him, and photographers will yet hear more of him.

Correspondence.

PHOTOMETRY.

DEAREST SIR,—I should be glad to hear more of Captain Abbey's method of preparing graduated strips, and also of his means of reading off. The information would, I have no doubt, be of both interest and use to other readers besides myself. Photometry is a difficult subject, and at present in a very unsatisfactory state. "Many miles from many minds" will be needed to make it what it ought to be. Yours truly,

The Doctor's Cottage, Blackpool, August 18th.

D. WINTHSTALY.

FASHIONS AND PHOTOGRAPHY.

DEAR SIR,—In your issue of the 8th of August, under the head of "Photography and Stage Management," you made some excellent remarks on an article which had recently appeared in the Globe in reference to "Stage Costumes." Will you kindly allow me to make a suggestion, through the medium of your valuable journal, in respect to costumes and photography? What I would venture to propose is this, that some London enterprising publishing firm should issue a monthly periodical containing the usual letterpress relating to the fashions of the times; but that, instead of the old style of coloured engravings and wood-cuts, to replace them with photographs from the life. If any one will take the trouble to look at any ordinary coloured fashion plate, he will see that the figures are nearly always out of proportion, whereas a photograph from life would not only be a figure in proportion, but also an exact representation of the costume. Besides the larger coloured picture, containing in turn different styles of dress, there could be smaller ones used up also to suit and dress for coats, hats, bonnets, boots, shoes, gloves, &c. I would advise the firm that undertakes the publication of such a work on the fashions to enter into communication with M. Worth, of Paris, and the other leading modistes of London, Berlin, Vienna, New York, &c., and arrange for the obtaining of negatives, photographed from life, of young ladies wearing the latest fashions of dress that have been invented, together with other negatives of all such articles pertaining to dress and fashion that would be considered advisable for publication. These negatives from abroad could be reproduced by any photo-mechanical printing company, and such prints could then be carboned, as the negatives required could be coloured in either oil (large) or water colour.

I have but little doubt that if the book is well appointed in the matter of paper, good type, with a neat and attractive outside cover, it would meet with a good demand; and it would possibly take the lead among the periodicals devoted to the fashions of female dress, from the very fact that its plates are true to the latest fashions of the day, and are of the means of giving employment, as well as remuneration, to a great number of persons connected with photographic art; and it would also enable the fair sex to judge of the exact appearance of a certain style of costume with the greatest facility and ease. Having had some professional experience in the designing and colouring of fancy costumes, I should be very pleased to render any assistance that I could to any one publishing such a "book of fashion," as I have named it.

I am yours faithfully,

GEORGE CRISP HANCE.

MR. VANDERWEYDE'S NEW STUDIO WINDOW.

SIR,—As in your absence from town, I am deprived at this moment of your presence and report as Editor, may I ask the insertion of the following details in your correspondence columns, which may serve to give your readers some idea of my new mode of lighting, upon which you will doubtless ultimately report. As all improvements tending to produce better modelling and shorter exposure in portrait negatives are welcome to the photographic world, I submit the accompanying diagram, illustrations, and explanations of my recent invention and perfected improvements in the construction of photographic studio windows.

My invention relates to the arrangement or disposition of the glass through which light is admitted to a photographic studio, and the invention consists in so placing each pane of glass that the direct rays of light passing through it to the point occupied by the sitter or object to be photographed shall traverse the glass as nearly as possible at right angles to the plane thereof. And my invention further consists in disposing the panes in two sets facing opposite positions, making alternate panes, for instance, face towards the point to be occupied by the sitter, at one end of the studio (so that the direct rays of light passing through the said point shall traverse the glass as nearly as possible at right angles thereto above mentioned), and the intermediate panes to face in like manner towards a similar point at the other end of the studio, so that the sitter or object to be photographed may be placed at the one or the other end of the studio according to the most
favourable direction of the light. Each set may be provided with blinds or shutters to exclude the light from that end of the studio at which the camera is placed for the time being, and where it is not required.

In arranging the glass as last described I have regard not only to so dispose it that the rays of light passing to the point to be illuminated shall traverse the glass as nearly as may be at right angles as above mentioned, but, which is of greater importance, if the operator is to work from either end of the studio, I take care that those panes of glass through which the light is not admitted for the time being shall be edgewise towards the point occupied by the sitter; that is to say, shall be in planes converging towards the said point, so that the said panes and the sashes, and the blinds or shades in which they are fixed, shall obstruct the least possible amount of light.

In photographic studios as at present constructed the greater part of the light passing in the direction of the sitter traverses the glass more or less obliquely, the angle varying with the distance of the glass from the sitter. It is thus obvious that the light must traverse more than the actual thickness of the glass, and must, therefore, be obstructed by absorption and by reflection to a greater extent than if it passed through the glass at a right angle. The light is further obstructed owing to the depth and position of the ordinary sashes and frames in which the glass is fixed, whereas according to my invention the glass is placed in the most favourable position for the passage of the light, which is but slightly obstructed by the sashes and frames, as I am enabled to combine greater lightness of construction with the necessary strength.

The advantage of my invention is to reduce the time necessary for exposure, and to give to the image obtained greater roundness, vigour, delicacy of modelling, and point.

Description of Drawings.

The object of fig. 1 is to prove that light passing through glass is more or less obstructed in proportion to the angle which the glass bears in relation to the point to be illuminated. This drawing represents a metal box containing four partitions, and painted black inside. It has no top or bottom. No. 1 represents a piece of glass placed inside at right angles; 2, 3, and 4 are other glasses placed at different angles; and the shadow cast underneath the box shows the amount of obstruction caused by the increasing angles of the glass.

Figure 2 is a horizontal section of a photographic studio. A A is the side wall of the studio, and B C are two points near each end of the studio at any convenient point in its width, at either of which the sitter may be placed. In constructing the window, I place at equal distances apart a number of vertical sashes, D. The distance between these sashes will depend upon the width of the panes of glass to be used. I find it convenient to place them about two feet apart. The glass is fixed between the inner row of sash-bars D, and an outer row of bars E, the position of the glass being shown by the lines E G. A convenient way of finding the position for the outer row of sash-bars E is by drawing radial lines from the points B C respectively through and beyond the points occupied by the sash-bars D, and at the points E, where the lines first intersect each other beyond the row of sashes (D), I place the outer row of sash-bars, E.

The panes of glass are thus divided into two sets facing in opposite directions, all the panes of the one set (F) facing as nearly as possible the point B, at the same time that they are edgewise or radial to the point C; while, on the other hand, all the panes of the other set (G) face as nearly as possible to the point C, and
are edgewise or radial to the point B. Thus arranged, the double row of saash-bares does not obscure any more light than a single row, and it will be seen that if the glass G can be darkened by blinds or shutters, the light only being admitted through glass F, so that without obscuring any of the light passing in the direction of the sitter the light is cut off from the remainder of the studio, which is not required to be illuminated.

Similarly, the glass F may be darkened, and light only admitted through G. As before stated, with this arrangement the light which illuminates the sitter traverses the glass as nearly as possible at right angles thereto, which is the most favourable direction, as the light is less obstructed by reflection and absorption than when it passes through the glass obliquely. Each series, F and G, are provided with independent roller blinds or sliding shutters to regulate the admission of light as required. The window in the roof is constructed on precisely the same principle as that above described. Owing to the greater strength of the window-frame obtained by the double row of vertical saash-bares, I am enabled to dispense with the heavy horizontal beam at the eaves of the roof which forms part of the framework in the ordinary construction of photographic glass houses, and which divides the light into a top light and side light, thereby producing two distinct high lights in the subject photographed. This defect is avoided by my invention.

In lighting a head we should aim at quality and direction, and not merely at intensity of light. My design secures this in the highest degree, and also admits of the most novel and perfect ventilation; the light can be made to assume almost any shape; there is no obstruction; and the beauty of the design renders this glass house the most attractive and interesting part of a photographer's establishment. —Your truly,

August 1874
H. Vander Wyke.

Proceedings of Societies.

WEST RIDING OF YORKSHIRE PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of the above Society was held on Monday, the 2nd instant, at the Victoria Hotel, Bradford, the President, Mr. J. W. Gough, occupying the chair.

The minutes of the last meeting having been read and confirmed, Mr. Berry, of Gomersal, was elected a member.

The Secretary laid on the table five numbers of the Journal de Photographie which had been forwarded for the Society's use. He was instructed to post in return the British Journal of Photography monthly in acknowledgment of the compliment.

The conversation then turned on the discussion of the validity of the Lambertype patent which was being carried on through the medium of the journals.

Mr. W. E. Batto, in alluding to M. Lambert's reply to his protests, read the following quotations from the law regarding patents:—"Occasionally a patent is taken out jointly in the names of two or more persons; but if it be found that one or more of such persons had no part in the discovery, the patent is void. The invention must be new — 'nothing can be used by the inventor or others.' "

"The specification is null if any part claimed be not original."

After several remarks by Messrs. Mori, Wormald, and others, the subject was dropped.

Mr. Wormald said that if any member could tell him the best method of measuring autotype prints, he had a large number to mount, and had met with much difficulty in inducing them to fit flat.

Mr. Batto remarked that, when wetted, the two films of autotype paper would curl, and then begin to curl the opposite way. The time to mount them was when both films were equally expanded.

Mr. Wormald said the manner in which he had overcome the difficulty was by placing both print and mounting-boards between flat boards of black paper.

Mr. Sachs inquired if any one had noticed any symptoms of fading in autotype prints. He had had a large autotype on drawing-paper for about six months, part of which time it had been exposed in his window, and it displayed unmistakable signs of deterioration.

Mr. Chestnut remarked that the deterioration in colour of drawing-paper was a well-known and acknowledged fact. He himself, only a short time before, had occasion to remove a water-colour drawing from a frame where it had hung for some months, and found that where it had been exposed to light it had turn to a yellow tint, but under the mount it retained its original whiteness. He thought it possible that the paper on which Mr. Batto's picture was taken had been exposed to light for a longer time, and thus reduced the apparent brilliancy of the picture, though there might be no real deterioration in the blacks of the picture.

Mr. Sachs was of opinion that the blacks were decidedly reduced, and some of the half-tones gone.

Mr. Gough also remarked that as entirely a relative term; nothing was really permanent. He was of opinion that an autotype picture was as permanent as an engraving, and most certainly much more so than a silver print. The paper, he said, would not keep permanently white; but, seeing that the picture consisted of a permanent pigment, bichromate in our case, we have to consider the process was really as good as anything they could expect.

Mr. Sachs said he had in his possession a silver print some forty-five years old which was now as good in colour as when it was printed; and he thought that, with proper treatment, a silver print might be made as permanent as a carbon picture.

Mr. Gough said it was probable that one of the causes of the present failing of prints was to be found in the inferior quality of the albuminized paper now in use. It was nothing like the paper in the market some ten years ago. There seemed to be a general falling-off in quality.

Mr. Batto remarked it was often said that paper prepared with blood albumen was much more liable to fade than when prepared with gelatin.

Mr. Clark kindly volunteered to exhibit and explain the difference in the constitution and qualities of the two albums at the next meeting.

After some further conversation, the Secretaries were instructed to prepare a portfolio for contributions for the members' use, and an album to which all the members might contribute their portraits.

The meeting was then adjourned.

To Correspondents.

PROTRACTED CONTROVERSY.—We feel it is an imperative duty to our readers generally to close controversies when they are protracted beyond the bounds of public interest, and when they degenerate, as they so frequently do, into purely personal disputes. We have received several letters on controversial questions which would fill nearly half of the present number; whilst we have received, on the other hand, several protests from readers who from anxiety to find the truth of each controversy in our pages, instead of discussions between individuals on subjects of comparatively little interest to the photographic community generally. Whilst we are anxious to oblige all our correspondents, even when feuds and personal animosities may be the cause of these communications, we are compelled to confess that the controversy has been given to our columns for the interest of the photographic community, and if we were to publish, we are compelled to condense or suppress the controversial letters we have received, that they may not entirely take up the whole of the space of the subject of which our pages are legitimately devoted.

THE LAMBERTYPE.—As we intimated in our last, this controversy on this subject was then closed. If we re-opened it to one or two words, we must do it for reasons of economy, ad nauseam. To avoid risk of unfairness or discourtesy, we briefly condense the communications of one or two correspondents in this column. First of all, we have a temperate letter from Mr. Batto, who expresses regret if any of the language in his former communications has been more forcible than journalistic practice and courtesy would warrant. Referring to Mr. Lambert's disavowal of a claim to the use of paper on both sides of the negative, he thinks that the specification makes such a claim in mentioning the method, and not disavowing a claim therein; and proceeds to quote:—"In confirmation of this view, the witness of Chief Justice Jervis, re Talbot e, larnock..." Where Mr. Talbot did not claim the whole of the invention he ought to have said so, as he had said with reference to other things in his specification that were well known, for a man might state what was new and what was old, with these exceptions: that when he patented a combination of old things, and you could so understand that by the specification, it was sufficient to describe it. If he said he had got a new system, and in the middle of it he took in an old system without saying that that part was old, the specification would be bad; for it must be stated distinctly what was old and what was new."

Mr. Batto then refers to the letter of "A Licensor," and remarks, "It would be well to see if the specification claims the points of difference named therein; if it does not, such letter has no bearing on the real question. Is the patent valid?" He concludes by remarking that as Mr. Batto is using the method at the present time, it only remains for M. Lambert to "cry havoc, and let slip the dogs of war." We may observe on this point that as M. Lambert affirms that the
process. Mr. Croungham is using is not the patent process, it is
hard to see why they should quarrel. We have next a letter from
Mr. Croungham, saying that he knows that his correspondent will
not be under Editoria supervision. Mr. Croungham denies that he
was taught the application of paper to the negative by Messrs.
Southwell Bros., and enters into details of his engagement with
that house, and how, in the course of the last year, he has not
sent a single claim & make in their favour has been refuted. I think
"A Licences's" letter in last week's issue, endorsed by you, suffi-
ces to prove the legitimacy of my process and the validity of my
patent. In future, all discussion on the subject must be conducted in
our advertising pages.

Mr. A. BROTHERS writes in relation to his controversy with Mr.
Winstanley on the sale of secret processes, or rather in relation
with Mr. Winstanley's statement referred to in our last, to the effect
that Mr. Brothers had sold him a secret process. Mr. Brothers
states that having reason to believe afterwards that the process
was not secret, he authorized Mr. Winstanley to deduct the
amount from an account due from him to Mr. Brothers, and that
he considers equal to the sale not having been effected. Most
readers will say, "scarcely equivalent." However, he adds that
the facts had escaped his recollection when he wrote that he had
sold the process. The matter is unimportant, and we have no
space for its further discussion.

Mr. JOHN WRIGHT writes to say, in reply to Dr. van Monck-
ho ven, that he points out that if his first letter was forcibly expressed,
it was because he felt strongly indignant that Dr. van Monck-
ho ven, knowing that he had a suit pending in France, should take
the opportunity to publish a letter in this country, in an attempt,
unfairly and untruthfully, to undermine the worth and
originality of his patented discoveries, such a working, as he
considers, intended to act as a disinterested witness. Mr. Johnson
enters into some detail in support of the conviction he held, which
would occupy more space than we can afford; and concludes by
accepting Dr. van Monckho ven's correction as to his means and the
receiption of his publication at the French Photographic Society,
but enclosing his authority for such statement. In regard to the points in dispute
Mr. Johnson's claim to the use of antichrome, a better nitric
acid, we shall devote a few words to the subject next week.

WANT TO KNOW.—The proximate cause of the spots of mildew
are damp; but it is probable that if a carbolic acid or salicylic
acid is added to the mounting paste, the tendency to mildew
will be checked.

A. W. G.—We have not space to repeat formula and full details
of the mode of preparing durable sensitive paper in this column;
but our correspondent will find full information in each of our
YAR-BOOKS for the last three or four years.

A NUT.—We have seen bad cases of opaque spots and streaks,
none so bad as this. It might possibly be the result of turbid
water. It is a well-known fact that the chemist, in the colloidal
state, finds it more difficult to judge the optical density, and
probable that the streaks arise from floating particles of contamina-
tion in the shape of soot on the surface of the bath. The indica-
ions on the top of vulcanized paper.

PILOM IN THE EAST.—It is a misfortune that you have not the
back numbers of the News, as you will see that it is impossible
to reprint extended articles for the benefit of a single reader, how-

to do so, and to give the best account of the article in question, instead of giving a formula, expressly con-

PILORIM IN THE EAST.—It is a misfortune that you have not the
back numbers of the News, as you will see that it is impossible
to reprint extended articles for the benefit of a single reader, how-

to do so, and to give the best account of the article in question, instead of giving a formula, expressly con-

A NUT.—We have seen bad cases of opaque spots and streaks,
none so bad as this. It might possibly be the result of turbid
water. It is a well-known fact that the chemist, in the colloidal
state, finds it more difficult to judge the optical density, and
probable that the streaks arise from floating particles of contamina-
tion in the shape of soot on the surface of the bath. The indica-
ions on the top of vulcanized paper.

PILORIM IN THE EAST.—It is a misfortune that you have not the
back numbers of the News, as you will see that it is impossible
to reprint extended articles for the benefit of a single reader, how-

to do so, and to give the best account of the article in question, instead of giving a formula, expressly con-

A NUT.—We have seen bad cases of opaque spots and streaks,
none so bad as this. It might possibly be the result of turbid
water. It is a well-known fact that the chemist, in the colloidal
state, finds it more difficult to judge the optical density, and
probable that the streaks arise from floating particles of contamina-
tion in the shape of soot on the surface of the bath. The indica-
ions on the top of vulcanized paper.

PILORIM IN THE EAST.—It is a misfortune that you have not the
back numbers of the News, as you will see that it is impossible
to reprint extended articles for the benefit of a single reader, how-

References:
- The use of antichrome and end the hot blast for smelting purposes, whilst I
 claim the use of paper on each side of a negative and the retouching
 on these two surfaces for photographic purposes.
- Referring to the use of old materials for a new combination
 is another subject for a good patent, and quoting Mr. Batho's reference
to Mr. Crane's use of the hot blast for smelting purposes.
- The use of antichrome and end the hot blast for smelting purposes, whilst I
 claim the use of paper on each side of a negative and the retouching
 on these two surfaces for photographic purposes.

Mr. Croungham's claims, Mr. Lambert expresses his contentment with the conclusion of our article which appears in the News of November 1874. Referring to Mr. Batho's admission that the use of old materials for a new combination
 is another subject for a good patent, and quoting Mr. Batho's reference
to Mr. Crane's use of the hot blast for smelting purposes.
- The use of antichrome and end the hot blast for smelting purposes, whilst I
 claim the use of paper on each side of a negative and the retouching
 on these two surfaces for photographic purposes.

A NUT.—We have seen bad cases of opaque spots and streaks,
none so bad as this. It might possibly be the result of turbid
water. It is a well-known fact that the chemist, in the colloidal
state, finds it more difficult to judge the optical density, and
probable that the streaks arise from floating particles of contamina-
tion in the shape of soot on the surface of the bath. The indica-
ions on the top of vulcanized paper.

PILORIM IN THE EAST.—It is a misfortune that you have not the
back numbers of the News, as you will see that it is impossible
to reprint extended articles for the benefit of a single reader, how-

References:
- The use of antichrome and end the hot blast for smelting purposes, whilst I
 claim the use of paper on each side of a negative and the retouching
 on these two surfaces for photographic purposes.
- Referring to the use of old materials for a new combination
 is another subject for a good patent, and quoting Mr. Batho's reference
to Mr. Crane's use of the hot blast for smelting purposes.
- The use of antichrome and end the hot blast for smelting purposes, whilst I
 claim the use of paper on each side of a negative and the retouching
 on these two surfaces for photographic purposes.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PHOTOGRAPHY AND THE ARCTIC EXPEDITION—UNMOUNTED PHOTOGRAPHS IN COMMERCE—A PHOTOGRAPH FROM THE QUEEN—A NEW PUBLICATION—SWISS LANDSCAPE PHOTOGRAPHERS.

Photography and the Arctic Expedition.—It is gratifying to learn that the Arctic Expedition, which has been sent out at so much expense to the country, is thoroughly provided with scientific apparatus of all kinds, and officers well fitted to use them. As we already stated at the time of the outfit being prepared, the attention was given to photographic matters, and the aid and advice both of Captain Abney, R.E., the Instructor of Photography at Chatham, and of Mr. Baden Pritchard, who has charge of the War Department Photographic Establishment, were sought and obtained. Materials for practising both the dry and wet processes have been taken out in the Alert and Discovery, as also by Captain A. L. Young, who has set out, on an independent expedition to the Arctic regions. On the Alert, the photographic duties are entrusted to Mr. White and Mr. Mitchell, and, as we have been informed, both these gentlemen got to work as soon as they reached Disco, and were successful in obtaining a dozen excellent negatives. So far, therefore, we may be quite satisfied with the work done by the Alert; but his interest in the Expedition was given up by the expedition. It may be argued that, after all, the Polar scenes will be very much alike, and that when a few landscapes (if they may be so termed) have been secured, all other photographs will be simply repetitions. This is, no doubt, true to a certain extent; but it must be remembered that if we are shown, on the return of the expedition, pictures bearing upon the history of the ice and snow in every phase, they will convey more than anything else a most vivid idea of the cold, desolate nature of the scenes in the vicinity of the North Pole. The photographs obtained will not, however, be less interesting than the pictures which Lieutenant Chermide, R.E., brought home with him after his return with Leigh Smith’s expedition two years ago; and these, it will be remembered, were for the most part very fine. Those showing the wild coast of Nova Zembla were especially good; and if the expedition can only bring us back representations of the wonderful ices masses with which they are sure to be surrounded at times, the expense and trouble connected with the photographic apparatus will be amply repaid.

As there are not many at-homes will the pictures be of interest, but they will form part of the pleasant souvenirs of those who undertook all the hardships, and be treasured up as reminiscences of scenes which may never again be revisited.

Unmounted Photographs in Commerce.—On his return from the East this summer, Dr. Vogel called attention to the almost universal custom that exists in Egypt and India of vending photographs in an unmounted state; and the loss to the photographers in the advantages of such a system, gave it as his opinion that there are many reasons why it is preferable to sell photographs unmounted. We see that the custom is growing in this country, and especially in tourist districts, where travellers are invited to purchase views of the natural beauties they visit. One of the advantages of this novel plan is, the photograph has to be mounted for, whereas a mounted carte picture is charged a shilling for (or, at any rate, sixpence), an unmounted picture cabinet size may now be had unmounted for sixpence; and we doubt not that the photographer gets quite as much profit out of the transaction as before, while it is very certain that the public purchase a far larger number at this reduced rate. The unmounted prints can be rolled up, or put between the leaves of a book without inconvenience, and may then be mounted in any way that is desired. It is rarely that a photographic album, now-a-days, suffices for the reception of pictures, and many people have a scrap-album in which pictures of all sizes are mounted according to the owner’s taste. An ordinary album will only allow for the reception of cartes and cabinets, and, in no other part can the prints of these particular sizes. A scrap album, on the other hand, will admit pictures of all kinds, and unmounted pictures are, therefore, more welcome than mounted ones, the boards of which have simply to be thrown away, while much trouble also is required to separate the print from the mount. On the side both of the producer and the retailer, the traffic in unmounted prints is increasing. The producer would far rather sell his pictures in the rough, rather than go to the expense of purchasing boards and mounting; and if any photographs turn out bad, there is only the albumenized paper lost, and the photographer saves both his mount and his pains. Besides, as the photographer rarely gets a profit on anything besides his picture, it is to his interest, that as much of the product from the public should be laid out entirely in the purchase of his work, and should not be given for labour which a bookbinder could have supplied just as well; for of two similar amounts realised in the sale of mounted and unmounted photographs, a far larger share would flow into his pockets in the latter case. Finally, as regards the retailer, he is not less interested in the transaction. He is, in the first place, to please his customers, and if he can afford to give a photograph of double the size for half the price he would charge for a mounted picture, he will certainly do more business. In the next place, the mounts of photographs very soon get soiled from handling or remaining in stock, and this is scarcely ever likely to be the case. Objects such as mounted photographs in most cases simply upon Bristol boards, and in the event of bad mounts having been used—such, for instance, as contain hypo-sulphite of soda, as is not unfrequently the case—the dealer runs one risk the less. It may be said that unmounted pictures never produce so good an effect as mounted ones; but it would be easy to have a specimen picture of each kind mounted to sell from. On the whole, therefore, we think that the custom of selling photographs unmounted, if it becomes more popular in this country, will be to the advantage of the photographer as well as to the purchaser.

A Photograph from the Queen.—Her Majesty the Queen has presented Mrs. Tredwell, of Mincola, in the United States, with a half-length portrait of herself, in recognition of the return of a family letter which had come into Mrs. Tredwell’s possession. The Athenaum actually announces this gift of a photograph, and, more wonderful still, further condescends to speak about it to the length of a quarter of a column. Our contemporary even says how the picture was framed, informing us that the photograph was “enclosed in a bronze frame, with finely-wrought bronze doors.” The Athenaum does not go so far as to describe the photograph, nor does it discuss the artistic merits of the picture, but one of these days we will hope to find details of this kind also in the columns of our literary contemporary; the matter, however, necessarily takes time.

A New Publication.—“Studies from Nature” is the title of a new work announced by Sampson, Low, Son, and Marston; it is to be edited by Stephen Thompson, and contain in each monthly number four photographs printed by a permanent process. The publication of something similar has several times been attempted, and the present work will have to be of a very-high class nature to be successful.

Swiss Landscape Photographers.—Mr. William England has proved a good master to Swiss landscape photographers. Ten years ago by far the majority of paper
prints of any value that one met with in Switzerland were the production of Mr. England, whose soft, clear productions were a marked contrast to the hard, black-and-white pictures of native photographers. We are glad to see that recently the Swiss photographers have made considerable progress in this branch of their art, and good photographs are now prepared at nearly all the Swiss towns visited by tourists and travellers. At Zurich and Lausanne, and especially at Geneva—those of Charnaux, for instance—pictures of Swiss scenery may now be obtained which reflect much credit on Swiss photographers, who have been rather a long time learning to turn the beautiful scenes near their homes to account in this way.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HILDEWAY.

CHAPTER XVI.

THE PRINTING, SENSITIZING, AND TONING ROOMS.

Even in galleries well fitted in every other respect, the printing department is one too often not properly considered, the general opinion being that almost any place is good enough. Why this should be so I cannot quite understand, unless it is that in general the department understood and practised by the proprietor is that of the skylight and dark room, and of consequence ranking first of importance in his estimation. It is needless to say, that although fine work is undoubtedly done in printing under tremendously disadvantageous circumstances, it might easily be surpassed under better conditions. The position of a printer in some establishments is no enviable one; frozen in the winter, and roasted in the summer, and at all times labouring under the disadvantage of performing all kinds of manipulations in one cramped room. I do not intend to raise a plea for the "poor printer." The work is not a being to be studied, pray, is he not paid? But the quality of the work, and the reward for any rise in the standard, is, I am sure, an argument that will be recognised by all. To the photographer who desires to take a front place in his business, completeness in all his arrangements is entirely necessary. Of course, much depends on this, but it is certainly a point that deserves consideration in your business to be successfully established.

The manipulations should be kept apart to ensure success, and though, as I before indicated, much very good work is done in the worst and most inconvenient printing rooms, I maintain that three separate rooms should be exclusively set aside for printing, to the use of sensitizing and drying the paper, the printing of the negatives, and for toning, &c.

THE SENSITIZING AND DRYING ROOM

is a dark chamber, lighted with gas. It should be fitted on one side with a convenient shelf or table on which to rest the silver sensitising dish. On the opposite wall should be fixed an open rack, fitted with clips for holding the sensitized paper. This rack is merely a light frame with bars running across at a distance apart of about six inches, and to these bars the paper clips are affixed, so that when the sheets of paper are hung for drying there is little danger of their being blown together and sticking to each other, under the influence of any slight draught. The rack is suspended about four feet from the floor, so as to be easily got at. Under it may be affixed a row of gas jets to dry the sheets, or more economically, but more slowly, the drying may be effected by means of a stove.

In the room where filtering of the bath may be done—not the boiling, as that may be more suitably done in the toning room when in disuse, or in some convenient place that may be found for renovating the baths, both negative and positive; but the ordinary filtering and strengthening of the baths may very properly be carried on in the silvery room without hurt. Provide large white bottles to hold the bath, funnels for filtering, filtering paper, a graduate and hydrometer for purposes of testing the strength of the solution, litmus paper, and a paper knife. For these there should be found convenient places in which they may be kept and found.

THE ROOM USED FOR TONING, ETC., is more extensive in its fitting, and should be so designed that while being quite convenient for working, dangerous agents should be as far apart as possible—as for example, the fixing solution, hypo-sulphite of soda—from the toning bath and unfixed prints. In the design given this has been done, it will be found. A is the dish in which the washed prints are in place near the toning dish B. The solutions are stored at back of the room in dark shades, S, and (S) to regulate the light, which must be weak and diffused, to save the prints from discoloration. Toned, the prints are placed in a dish at C, thence they are placed in the hypo dish D, which is quite distant from all other dishes, as splashes from it are quite fatal to the prints. When properly fixed they may be washed in the trough marked E, and placed in the tub F, and thoroughly washed. This tub is fitted with a perforated false bottom, so that the prints may be perfectly washed in all parts. The tap and waste pipe are so arranged that a certain quantity of water may always be retained in the tub, although there is constant change of washing water, it being necessary to thoroughly eliminate the hypo from the prints. The arrangement of water and waste pipes can be understood from the sketch; G, supplying the washing water; the waste pipe carrying away the washing of the prints before and after toning, runs into a tank and is preserved; those of E and F running to waste as being hardly worth preserving for reduction for the silver, the per centage being very small. The toning room may also be used for various purposes. Baths may be boiled here, but not if a convenient place elsewhere may be found, the noxious and acid dishes for removing collodion films from old used negative glass, and for other operations.

THE PRINTING ROOM.

This room should be so designed as to allow of the printing to be carried on within the apartment in stormy and cold weather. A shelf fitted from a large window, and the shut built out to cover it as a protection for the negatives against frost, snow, and rain, will save much time that would otherwise be wasted in unpropitious weather, paper wasted in the advent of an unlooked-for storm, and many negatives broken by exposure to the changes of temperature.

Outside, on a roof or ledge, are built stands for the reception of the printing frames, both of sunshine and shaded aspects, to suit the varying character of the printing clichés.

The stands are built with sides sloping at an angle of (say) forty-five degrees, with ledges, so that several rows of card printing frames may rise one above the other.
Adjacent to the roof used for printing, on which the stands are placed, is the printing room, fitted with the window for indoor printing, described above. It should be furnished with convenient drawers for sensitized paper for printing, and the prints themselves. These drawers should be so arranged as to admit of light as little possible when they are opened for the purpose of extracting paper, in order to obviate dirt and damage to the prints, or placing a finished print therein, as discoloration of the paper or of the prints ensues on the entry of light. To further prevent this, the drawers might be fitted with sectional lids inside, so that even when drawn out the light cannot penetrate. Drawers, also, for sensitized paper, plain and albumenized. Shelves running round the apartment to hold the stacks of negatives in use, catalogued either under lettering, number, or both. Of course, is to be preferred, there not being the necessity for constant change, as in the case of numbered negatives, which are always progressing. On point, however, there may be prejudice in some minds against the name of the sitter being attached to the negative.

The Fuming Box may be kept in this room. I shall not occasion the reader any trouble of this troublesome question of fuming. Certainly, in many cases it is very advantageous, and, I believe, generally, the paper prints richer, more brilliantly and rapidly, and tones more easily and with better results.

The box is constructed to hold several sheets at a few inches apart. A false bottom about six inches from the bottom, to perform the function for the negative, and beneath it is a drawer in which the ammonias dish is placed. The utility of the drawer is that the dish can be placed in the centre of the box, on its being shut up, whereby even fuming can be continued.

The Temperature of the Printing Room is a matter that should be looked to. A stove in the winter and ventilation in the summer should keep the apartment at an even and comfortable temperature all the year round.

General Remarks.—The printing room should be kept scrupulously clean, and as free from dust as possible. A bench will be found useful for many purposes, as filling the printing frames, making printing openings for the negatives, stopping out, cutting prints, &c. A box or basket should be kept for the reception of silver paper cuttings, as they are preserved, burnt, and reduced for the extraction of silver.

PHOTO-MECHANICAL PRINTING.

BY R. BIERSTADT.*

As Mr. Albert's process has thus far produced the most durable plates of all, it may be interesting to explain how this durability is best attained.

The action of light on a chrome gelatine film is by far the most effective means of hardening it, but if it is subjected to the light long enough to make it perfectly non-absorbent, the hardening will penetrate to a depth that will interfere with the qualities desired for the other side. To avoid this difficulty the film is composed of two layers. A plate of glass is coated with a mixture of gelatine, albumen, and bichromate of potash, then dried and laid face down on a dark cloth and exposed to the light. Then the hardening begins, the black cloth absorbs the penetrating rays of light, and prevents the hardening from going too far. At the proper moment the plate is removed and washed, to prevent any further action; the outer surface is still sufficiently adhesive to unite with another layer of sensitive material, which is now flowed over it in the same manner as the first; when this becomes dry it is placed in contact with a negative and exposed to light in the same manner as an albumen print.

The action is watched from the back, and is finished when all the details are just visible; if the solution has not had the coagulating material mixed with it, it can now be immersed in a solution of alum, chrome alum, tannin, or their equivalent, after which it is washed for a short time in clear water, and is then ready for the press, or it can be set aside for future use.

To print from such plates, after bedding in plaster of Paris in a press, the surface is sponged over with water for a minute, then wiped with a clean cloth, and a roller charged with thick printing ink passed over it in all directions until the deepest shadows are sufficiently inked (but little or none should be seen on the middle tints); then a second roller with a thinner ink, black or tinted, is rolled over in the same manner, which deposits on the half tints. After the inking is completed, a piece of brown paper is placed on the plate to preserve a clean margin, and the impression is taken.

Notwithstanding the rough usage to which it is subjected by leather rollers, with stiff ink, the scraper of the lithographic press, or the iron roller of the copper-plate press, continued sponging and wiping, washing with turpentine, &c., a single plate has been known to yield over four thousand impressions.

As soon as the Albertype became known, other experimenters came forward with what they called improvements, but so far have made neither better prints, nor more durable plates.

In 1869 Mr. Max Gemoser announced a method of making improved printing plates, and joined in the firm of Ohm and Grossman in Berlin. His formula was kept secret, but in 1870 it was published in a pamphlet, and proved to be a method which was in part communicated to him by Mr. Albert; it was to add a resin to the chrome gelatine, and heating the plate in an oven to melt the resin on the surface in contact with the plate, whilst the upper surface was protected with a layer of flour; instead of using the simple bichromated gelatine he added seventeen other substances. After the process had been carried out for a number of months, Messrs. Ohm and Grossman sent a circular to their pupils describing the Albert process of hardening the under side of the film by light, and recommending the adoption of this plan as being the best. As it may interest the curious, I will give the Gemoser or Ohm and Grossman formula in full, which is as follows, viz.:

| Solution No. 1 |
| Gelatine | 1 part
| Distilled water | 8 parts

| Solution No. 2 |
| Gum myrrh | 30 grains
| Gum ammoniac | 20
| Liquorice root | 38
| Mann | 20
| Best sugar | 10
| Milk sugar | 10
| Water | 2 ounces

Mix and set aside for twelve hours.

| Solution No. 3 |
| Bichromate of potash | 1 drachm
| Bichromate of ammonia | 1
| Water | 2 ounces

| Solution No. 4 |
| Liquor ammoniac |

| Solution No. 5 |
| Lupulin | 1 drachm
| Gum myrrh | 1
| Gum benzoin | 36 grains
| Tolu balsam | 24
| Spirits of wine 90 per cent. | 3 ounces

| Solution No. 6 |
| Nitrate of silver | 5 grains
| Water | 1 ounce

* Continued from page 418.
THE PHOTOGRAPHIC NEWS.

[September 10, 1875.

Solution No. 7.

Iodide of cadmium ... 4 grains
Iodide of zinc ... 4
Bromide of potassium ... 4
Distilled water ... 1 ounce
Gold solution, 1 to 10 ... 3 drops

Solution No. 8.

The white of one egg ... 1 ounce
Water ... 1 ounce

The solution for coating the plates is composed of 16 drachms of No. 1; 1 drachm of No. 2; 80 grains of No. 3; 2 drops of No. 4; 30 grains of No. 5 after shaking; 5 grains of No. 6; 10 grains of No. 7; 28 drachms of No. 8. Mix well until warm to 40° Beunoir, filter through funnel, and flow over the plate previously warmed. After the plate has been dried by a moderate heat, it is impressed with a picture through a negative, and then washed in water and dried; it is then covered with a layer of flour, and heated in a muffle for one or two minutes to a temperature of 80° Beunoir. This operation is for the purpose of coating the albumen, while the covering of flour protects the plate from injury by the heat. The plate is then allowed to cool in the muffle.

The pamphlet containing this, and also the Albertype process, was published in Prague, and was considered by Messrs. Ohm and Grosman to be an infringement of their copyright. This resulted in a lawsuit against the publisher, and an injunction against the sale of the pamphlet, but the judgment in favor of the defendant, Mr. Steinheuer, and condemned the plaintiff to pay the costs, and removed the injunction on the pamphlet.

In this trial an attempt was made to prove that Genoer was the inventor of the "Lichtdruck," a name given to photographs in printing ink in half-tone; but it was shown that Mr. Albert had made them in a much simpler manner two years earlier than any record he could bring.

(To be continued.)

THE PRACTICAL PRINTER IN AMERICA.

XXXVII.

SELECTION OF THE PORCELAIN PLATES.

Porcelain printing is the most difficult of the three parts described in this book, both to the inexperienced to the inexperienced printer. I think that if the advice which I give in the following pages be faithfully carried out the difficulty will entirely disappear.

The foundation of porcelain printing depends upon obtaining fine porcelain plates, which is by no means an easy thing to do. A little attention to the kind of glass the beginner should select will perhaps be of value.

Do not accept, in the hopes of making a great bargain, porcelain glass which may be offered to you at a great discount.

There are various sizes of plates which the beginner should provide himself with, and all of these sizes are either ground or polished. The ground plates are intended to be used when the porcelain is to be worked up either in water colours or in oil; the polished plates more for uncoloured work.

In selecting your plates, see that they are flat, and if there is a side that is convex, then if the surface of the glass is smooth, for that is the side of the two which is to be used to print on. If the convex side of the plate is rough, as it is in the polished variety, then select the side if you wish to print on it. To determine whether the glass is flat or not, hold it up before you, and look along the edges of both its length and width. If the plate is a little uneven, and you think that by a little care you can so arrange it on the printing-board that perfect contact will come between the negative and plate, then save it.

Another thing in selecting the plates is to see if they are some of the thickest, which is very important, especially for anything larger than a half-size, for thin porcelain plates often break from their own weight alone; in fact, always use the best plates that you can obtain, and one good step towards success will be taken.

CLEANING OF THE PORCELAIN PLATES.

Cleaning New Plates.—Wash the plates thoroughly on both sides under a tap of water, and place them for the time being in a rack.

The object of washing them first is to remove all of the dirt which may happen to be on them.

Now, to get the plates "chemically clean," they are placed in a suitable size tray of photographic ware, which contains a solution made of commercial nitric acid one ounce, water four ounces. Let them remain in this acid bath for a day or so, and then they are ready to be removed and washed for albumenizing.

Cleaning Old Plates.—For the purpose of cleaning old dirty plates which have been used before, whether varnished or not, they should first be placed in a bath made of concentrated lye one pound, water one gallon. Let them remain in this bath until the film may be easily removed by running water, which will probably be in a day or so. When this time has arrived, then wash well under the tap until all of the varnish and film is removed, and then place them one by one in the acid bath as described above. Keep the old plates in the lye until all of the film is removed, and never place them in the acid until that time arrives.

In placing the plates in either the lye or acid, always place them in, one by one, so as to allow the solution to pass over one plate before another one is placed on it.

Never place large and small plates in the same solution at the same time, unless all of the large plates are at the bottom; for if they are mixed up, first large and then small ones, the weight of the upper plates will cause the unevenly supported plates below to break, and it is a very difficult thing for the beginner to take them out, when so mixed up, without breaking a number of them.

It would be a good thing to lap the edges of one plate over another in the solution, as the solution will pass between the plates better.

Both the strength of the lye and acid will need to be renewed every month or so.

Before placing the plates in either the lye or acid solutions, scrape the edges of them together, and in the future treatment of them you will most probably derive a benefit, as the colloido-chlorides will be more likely to keep on the plate during the toning, fixing, &c.

Ground plates are generally very difficult to clean, even if the above advice is strictly followed out, and I very often clean them after they are removed from the lye and washed and while still wet, by sprinkling a little powdered emery on that side which is to be used for printing, and grinding the surface evenly by means of a flat side of a cork.

Ground plates which have been purchased and are unevenly ground, can thus be made excellent by a very little trouble.

When the grinding is finished, wash them well under the tap, and place them for a day or so in the acid bath.

ALBUMENIZING THE PORCELAIN PLATES.

The porcelain plates are now to be albumenized, and for this purpose procure three large fresh country eggs, which you are to crack and carefully let the albumen (the white part) into a large clean china bowl, being careful not to let any of the yolk (the yellow part) of the eggs into it, and if by accident a trifle of it should get in, then remove all traces of it by the use of a spoon.

Pour the albumen into a clean graduate and note the number of ounces of albumen, and add one-eighth more of pure Tp. average an ounce 7 ch.
Pour the diluted albumen back into the bowl, and then place in it a dozen drops of strong aqua-ammonia, and with an ordinary egg-beater beat the whole up to as stiff a froth as possible. This should be well and carefully done. Let settle overnight, covering the bowl over with a glass. In the morning you will find the solution clearing the frothy bowl—into a clean bottle, or another bowl, and filter what you need into a thoroughly clean four-ounce vial, or, better still, into a tiny tea-urn, which has a nose leading to the bottom part of the ware, for then in pouring the solution out there will be no bubbles, for they are at the surface if there are any at all.

A good plan, whether you may have the tea-urn or not, is to tip the lower part of the funnel rest against the inside of the vial, thus permitting the albumen to run down the side, breaking the fall of the filtered solution, and thus preventing bubbles from being formed.

Filter through one or two thicknesses of good filtering paper, and if the albumen is not clear, then filter until it is.

Always keep enough ammonia in the solution for it to continually form a froth. I have recommended the albumen solution to be used quite thick, as the film on the plate will not be near so likely to be removed in the subsequent operations of the porcelain print, which is so very troublesome both to the beginner and to the "old hand."

The plates are now to be removed, one at a time as they are to be fixed, and held up to the light, and the edges of them looked at to determine the convex side of them, if there is any; but if there is not, then choose the best of the two sides, and proceed to wash thoroughly under the tap, rubbing the sides and edges of the glass well with a mat, so that the fingers, which are often a little greasy in spite of your precautions to the contrary, may not come into contact with the face of the porcelain.

Hold the glass while it is washing by the edges of extreme corners, and when it is sufficiently washed take it out of the dark-room (where you albuminise the plates) to see as to whether it is fit to be albuminised, and if it is, then give it a final rinse with filtered rain-water (filtered as it comes from the tap), and then carefully pour the albumen solution on the upper part of the plate, midway between the two forks that let it flow over the plate, first to the upper left-hand corner, then to the upper right, next to the lower left (which is the corner by which the plate should be held), and finally carefully pour off at the lower right-hand corner into another bottle.

Do not pour out but a little more albumen than what will cover the plate, and before using again the small quantity of albumen left after you are through albuminising, it should be filtered.

Now place the plate which you have albuminised, still holding on at the same corner, either in a rack, or upon two nails, to dry, letting the drops fall upon blotting-paper, so that their fall will not raise a cloud of dust. Permit the plate to dry spontaneously.

SUGGESTIONS FOR THE SEASONS.

By R. J. Crouse*

The time is fast coming when the occupation of the lazy, indolent, dirty, careless, cheap-picture-maker will be gone; and may the days fly swiftly on, till, photographically, he shall be numbered with the past. But to him who has an earnest love for nature and the beautiful, whose whole soul is filled with enthusiasm that impels him to strive for the highest and best, who spares no pains, no omission, whether in the gallery or in the field, to secure the best possible impression of the subject before him—to this man the field of progress wherein he is sure to expand his powers, and rise to the highest attainments of his art. Young men in photography, of these two pictures, which will you choose?

Too strict an adherence to rules and formula is an evil from which every operator should seek to emancipate himself. The conditions are constantly varying. The subject, the light, the different sizes of plates used, the temperature—all these call for variations in the several departments of the work; and he who studies these changes, and endeavours to accommodate himself to them, will soon find his capabilities expanding, and learn that success is not so much due to the excellent formula his friend gave him, which was good as a formula, but to his own intelligent use of it.

As the warm weather comes on, photographers must look to their solutions. Not only must they not be made so strong in cold weather as they will require in summer to keep them from becoming too strong by evaporation. This is very apt to occur with the printing silver bath; the bulk is reduced by evaporation faster than the strength is by use, and evils arise in the paper from over-silvering, or the excessive strength of the bath. A bath that may be used at 60 grains in winter will not require to be more than 35 or 40 in summer. The printing bath should also be kept cool. A good plan is to use it in a cool place or in a tank of water, and to keep the bottles in cold water till again wanted. The paper turning brown after silvering is often a result of the bath being heated, and is at the same time too strong. All solutions are more energetic when warm, and when heat and strength are combined, they are very likely to become unmanageable.

A negative bath is a positive solution of silver nitrate by a high temperature, such as may be communicated by the weather, provided the strength is kept down to not over 30 grains to the ounce.

The collodion is the most readily affected unfavourably by heat of any of the dark-room chemicals. It is not advisable to change the strength of the collodion, but it must be kept cool. The most effectual way to keep it is to keep the bottles in cold water. Without these precautions and modifications, as warm weather approaches the unthinking photographer will be pestered with over-exposure, fog, streaks, network in his films, unmanageable development, &c., besides the train of evils that will follow in the printing department from the same cause; but they are all quickly remedied when once his eyes are open to keep cool.

When a photographer finds his work deficient in any respect, let him not think he requires some new formula or new apparatus to set him right; the deficiency is probably in himself; and if he will but set about improving his own stock of knowledge, enlarging his own capabilities in the direction that he sees it necessary to improve, he will, no doubt, be surprised at the change that will come over him in a short time. Every talent is developed by use, and the more the powers of mind or body are exercised within reasonable limits, the stronger they become. It is then self-culture and self-culture alone that will enable a man with but little effort to overcome difficulties that before appeared insurmountable.

Every photographer should be careful of his health. The dark-room is the most trying department of the business; this room should therefore be large, high-studded, and well ventilated. All fumes should be avoided as much as possible, and every bottle should be kept closed; and no volatile or poisonous chemicals allowed in the dark room that are not absolutely necessary. Health is better than wealth.
Mr. Johnson's Discoveries in the Carbon Process.

In the course of a correspondence appearing in our pages during the last two weeks, a question of historical fact has arisen in relation to the origin of certain distinctly progressive steps in carbon printing. A pamphlet has recently been issued by Dr. Van Monckhoven on the history of carbon printing, the essential aim of which, as avowed in the opening sentence of the preface, is to inform professional photographers as to the real value of certain patents which have been pronounced in this historic realm the contributions of Mr. J. R. Johnson are treated, on the one hand as of doubtful value, or, on the other, as of less than doubtful originality. In this country, where the improvements were first announced, and demonstrated to the keen delight and intense interest of many admiring audiences at photographic societies, the name of Mr. Johnson stands in honourable conjunction with that of Mr. Swan, as the names of two men who made carbon printing practicable and commercially possible; and Mr. Johnson not unnaturally protested against the position assigned him in a pamphlet published in the language of the country of which he has become a resident, and where, as we regret to learn, he finds it necessary to resort to litigation to maintain his property in his discoveries and inventions.

With the personal elements of the controversy between Mr. Johnson and Dr. Van Monckhoven we have nothing to do. In all discussions it is a dangerous thing to wander from the fact or the statement to search for or attribute motives. Mr. Johnson believes that Dr. Van Monckhoven has special motives for underrating his claims, and the latter disclaims all motives but historic truth, and expresses his willingness to be corrected in any point in which he may have been led into error; and it is on this ground, having a high personal regard for both gentlemen, as well as for historic truth, that we feel it desirable to say a few words on the facts; and we may add that as we have been the weekly historian of carbon printing in all its phases from the dawn of the art, and not only historian, but experimentalist, having tried, probably, every modification and improvement which has been proposed, with all due modesty we claim some right to speak on the subject.

Into the general estimate and examination of Mr. Johnson's claims, as published by Dr. Van Monckhoven we shall not enter. As we understand, the whole is an expression of the scientific and experimental criticism of one to the work of another, and we are seriously misappreciated. But it is as to the originality of certain of these claims, upon which Dr. Van Monckhoven casts doubt in the extract from his pamphlet which he gave in his recent letter we feel bound to offer a few comments.

Dr. Van Monckhoven has not had access to original documents, but derives his information from a translation, not improbable an abridged text of the original, from which he came to the conclusion that it is unnecessary to consider; but this principle of adhesion by atmospheric pressure or suction was the cardinal novelty which arrested the delighted attention of every one interested in carbon printing. Such an idea had never been even remotely hinted before. For five years, since Mr. Swan's great improvement, carbon printing had been ceaseless, and nothing—the extensive work done in the establishments of Mr. Swan and others; but the troublesome and unhealthy plan of covering large sheets of paper with a solution of india-rubber in benzine to provide a temporary mount upon which to develop the print—using a costly machine to give enormous pressures, to effect the mounting—had been universally employed. Mr. Johnson discovered that when the carbon tissue were partially saturated with water and gently pressed into contact by the aid of a squeeze, with an impermeable smooth surface like that of glass or a plate of metal, perfect adhesion was secured. The principle was so new that when first announced, that considerable iteration and practical demonstration were necessary before the mass of photographers actually received and considered the idea. Then was seen at once the simplicity translated into the working; breathing the unpleasant and unhealthy fumes of benzine was no longer a necessary contingent of carbon printing; a rigid support removed the risks of tearing attendant upon the production of large pictures. All the difficulties of applying a new principle had to be met by Mr. Johnson, who, fortunately, added to a high chemical and chemist, practical, and mechanical, a singular inventive capacity. The precise amount of immersion of the tissue was determined by its mode of curling: the "safe edge" had to be devised; the properly prepared zinc plates had to be secured; the precise treatment of the surface with a fatty or resinous body, to prevent adhesion of the tissue to the surface upon which it was developed; and the necessary treatment of minor points in preserving the preparation of a new principle, in a direction where so much experience had to be acquired. Mr. Johnson effected this, and his principle, with but slight modifications, has been universally adopted ever since. The startling character of the innovations—the delight with which it was received when once understood—the readiness with which it was adopted, wherever it was tried, wherever the impulse to extended application of carbon printing which the discovery gave, were facts transpiring in this country, and perpetually under our eyes, and our observation of the facts impressed us, doubtless, much more emphatically than the mere echo or record could impress a foreigner in Continental Europe reading the details, either in the English journals or translation.

Dr. Van Monckhoven has met with some account in a French journal of a paper read by Mr. Davies to the Edinburgh Society in 1864, and in the experiments there described he thinks he sees the germ of Mr. Johnson's great improvement, as well as another claim in his patent. It is true that the principle was not claimed by Mr. Davies, and that it is not in fact named in his paper; but Dr. Van Monckhoven thinks it is involved in it. A few in our view of the original paper, which is before us, will show that it is not only not involved in it, but could not have been. We may remark, as pleasant, that soon after we had published details of Mr. Swan's process, in the spring of 1875, experimentalists...
THE PHOTOGRAPHIC NEWS.

September 10, 1875.

THE PHOTOGRAPHIC NEWS.

439

themselves to trying various novelties in the same direction. Mr. Davies, an ingenious experimentalist, read a paper before the Edinburgh Society on the sixth of July, describing carbon experiments he had made some time before. These were published in the Edinburgh Journal of Science and were interesting, and we remember trying them as soon as the details were published; but they in no sense involved Mr. Johnson's principle, and had no real analogy therewith. We will quote the necessary details from the original paper, and show the difference between the method of Mr. Davies. The latter makes his tissue upon paper, using albumen. The former we will assume, for argument's sake, that he uses an ordinary tissue, similar to that used by Mr. Johnson. He exposes, and then develops, and it is here the question of similarity arises. He says,—

After exposure—which I generally time by exposing a bit of clean bromoform paper till it is well coloured, then expose a second bit, and then expose the third. Mr. Davies takes a fully developed,—I now remove the frame into the dark room; remove the print; soak it in water for a minute; give it a shake to remove superfluous water; then rapidly pass a rather larger bit of albumenized paper through the solution of the albumen in water, and roll on plate glass; with a thickness of two of blotting-paper above and below. It is essential to the success of the transfer that not a single air-bubble, however minute, be left, otherwise it will make a hole in the resulting proof.

The back of the damp albumenized paper is now wetted with spirit of wine, and again rolled and hung up for a few minutes before the first print is placed upon it; it is placed upon water, and the first paper comes off in a few minutes; and immediately, if the exposure has been right, the picture begins to develop.

In these operations, Dr. Van Monckhoven sees the idea of adhesive atmospheric pressure. A moment's careful examination will show that was not only not contemplated, but is not, in the least, in Mr. Davies' experiments. Albumenized paper, with the surface wetted, and brought into contact with the wetted tissue, and pressed them together. This piece of wet albumenized paper is not an impermeable or air-tight surface, such as is absolutely necessary in securing atmospheric adhesion; it is simply a sticky surface which adheres in virtue of its glutinous character. Dr. Van Monckhoven refers to the solution of the gelatine ensuring a "vacuum which makes it adhere to the insoluble film." But the albumenized film is not insoluble; it is perfectly permeable by air, and adheres in virtue of its stickiness solely. Afterwards, it is true, the back of the albumenized paper is moistened with alcohol to render the albumen insoluble, but the object of this is to prevent the paper from becoming too albuminous and keep it away of the image during development; not to secure a vacuum, as the adhesion has been secured by other means. And it is very doubtful indeed, if the idea has been entertained, whether albumenized paper treated with alcohol would give a surface so impermeable to air as to secure anything like atmospheric pressure.

The process was a single transfer process; but Mr. Davies had another for double transfer. Here it is as described in the original paper:—

The picture, if taken from an ordinary negative, is reversed, and if it be not desired that it remain so I proceed a little differently. I take, instead of the albumenized paper, a thick solution of shellac and Venice turpentine in spirits of wine (methylated) in about equal parts, and attach the printed surface to a bit of common paper by rolling the two together with the lac paste between, allowing to dry, and, after development, is as above stated for the albumenized paper; and, after development, I use a bit of blotting-paper of the same size as the print with methylated spirit, and place it in contact with the second paper (having previously gone through the albumenized process), and leave it heaped up until the surfaces of glass for a quarter of an hour or more, when the cemented surfaces will easily leave the picture, and a slight wash with a sponge dipped in spirits will make it clear.

Here it will be seen we are just as far as ever from atmospheric adhesion. The tissue and the paper upon which it has been transferred are kept for development, are united together with "lac paste," and after development is completed the cement is dissolved by means of methylated spirit. Here is a close analogy between Mr. Davies' method and Mr. Swan's method of cementing with India-rubber paste, and dissolving with benzine; but no analogy whatever with the method of Mr. Johnson, as we are satisfied our friend Dr. Van Monckhoven will see now that the original text is before him.

The fact that Mr. Davies used a paste of shellac and Venice turpentine in methylated spirit has so little in common with the use of lac dissolved in an aqueous solution of an alkaline salt in preparing a transfer paper with a surface insoluble in water, that it is unnecessary to comment on the matter. In aiming to secure perspicuity our remarks have extended further than we intended; but we have adhered closely to the argument, carefully avoiding epithet, or anything which can savour of personality or give pain. We feel sure that Dr. Van Monckhoven will readily accept the correction offered in a frank fair spirit. We have felt the duty of making such correction incumbent upon ourselves, as possibly there are few to whom opportunity and choice have afforded such perfect means of knowing the history with such detail and precision.

OLD DIAMONDS FOR MODERN SETTING.

By W. E. BATHO.

WHATLEY very aptly compares discovery to the labour of the man who digs blocks from the quarry, and he who uses such discoveries to the builder who with such blocks raises a flight of steps, to enable his fellows to reach a greater elevation.

That there are many such blocks (rough hewn they may be), lying scattered on the field of photography, awaiting the hand of the builder, cannot be doubted. It needs but little reflection to call to mind a multitude of facts which form no part in any modern process, and lie locked up in the records of the past, probably forgotten by many, certainly unknown by a greater number. I propose naming a few of them in the course of a little time, figuratively performing the office of the Carter who shoots a load of new stones at your door for building purposes, in the way of a commencement, I venture to bring before your notice an unused method of carbon printing, pointing out wherein I conceive failure has been caused, and further indicating a new application of the same process.

In the latter portion of 1859 Mr. Poitevin published a process, based upon the reaction taking place between gelatine and perchloride of iron, with the consequent formation of an insoluble part of 1862 the same gentleman made this modification:—Gelatine, with sufficient colouring matter, was impregnated on both sides with

Perchloride of iron ... 3 parts
Tartaric acid ... 1 part
Water 30 parts.

Such tissue is then insoluble, and becomes again soluble on exposure to the action of daylight.

In the middle of 1864 Mr. F. Eliot suggested the use of this process for direct carbon printing, a white pigment being used on a black paper. From this to the present time I think I shall be correct in saying no further use was made thereof, save and except it be a suggestion for its use in the reproduction of negatives without the use of a transparency.

It is my intention to enter into the chemistry of the process at present, but to name the mechanical difficulties that I believe have operated unfavourably, and produced unsatisfactory proofs. That all difficulties of transferring would be got rid of in this process is obvious, and it does seem strange that so valuable an invention should be unused. As much as those portions of the tissue upon which the light acts are the parts dissolved away in the process, development, and we clearly see that the parts not dissolved are those that form the picture; but it remains for me to point out, if success is to be obtained, the necessity

OLD DIAMONDS FOR MODERN SETTING.

By W. E. BATHO.

WHATLEY very aptly compares discovery to the labour of the man who digs blocks from the quarry, and he who uses such discoveries to the builder who with such blocks raises a flight of steps, to enable his fellows to reach a greater elevation.

That there are many such blocks (rough hewn they may be), lying scattered on the field of photography, awaiting the hand of the builder, cannot be doubted. It needs but little reflection to call to mind a multitude of facts which form no part in any modern process, and lie locked up in the records of the past, probably forgotten by many, certainly unknown by a greater number. I propose naming a few of them in the course of a little time, figuratively performing the office of the Carter who shoots a load of new stones at your door for building purposes, in the way of a commencement, I venture to bring before your notice an unused method of carbon printing, pointing out wherein I conceive failure has been caused, and further indicating a new application of the same process.

In the latter portion of 1859 Mr. Poitevin published a process, based upon the reaction taking place between gelatine and perchloride of iron, with the consequent formation of an insoluble part of 1862 the same gentleman made this modification:—Gelatine, with sufficient colouring matter, was impregnated on both sides with

Perchloride of iron ... 3 parts
Tartaric acid ... 1 part
Water 30 parts.

Such tissue is then insoluble, and becomes again soluble on exposure to the action of daylight.

In the middle of 1864 Mr. F. Eliot suggested the use of this process for direct carbon printing, a white pigment being used on a black paper. From this to the present time I think I shall be correct in saying no further use was made thereof, save and except it be a suggestion for its use in the reproduction of negatives without the use of a transparency.

It is my intention to enter into the chemistry of the process at present, but to name the mechanical difficulties that I believe have operated unfavourably, and produced unsatisfactory proofs. That all difficulties of transferring would be got rid of in this process is obvious, and it does seem strange that so valuable an invention should be unused. As much as those portions of the tissue upon which the light acts are the parts dissolved away in the process, development, and we clearly see that the parts not dissolved are those that form the picture; but it remains for me to point out, if success is to be obtained, the necessity
THE PHOTOGRAPHIC NEWS.

A PHOTOGRAPHIC TRIP TO ARRAN AND THE HIGHLANDS OF SCOTLAND.

BY REUBEN MITCHELL.

Being fully equipped with camera and sketching materials for a tour in Scotland, I left Bolton on 12th of July, and arrived in Glasgow in the evening, resting for the night at the Windsor Hotel. Next morning I started by train for Ardrossan, and crossed the Channel by steamer to Arran, where I arrived after a very pleasant sail of about an hour, and landed at Brodick. On the way there was considerable delay in sending baggage, which in some cases on the conveyance, and I started for Corrie, where a kind friend had made arrangements for me beforehand. The distance from Brodick to Corrie is about seven miles, along a broken and picturesque coast—trees, scrub, and mountain on one side of the road, with old red sandstone rocks, washed into all sorts of curious forms along the shore, with large numbers of granite boulders, some of immense size, scattered all along, and patially covered with beautifully coloured seaweed, which forms innumerable pictures for the camera and pencil of the artist. The hotel at Corrie is small, but comfortable, and situated on the shore, with a good view of the sea, the hostess, an excellent business woman, attending promptly to the requirements of her visitors. I left Corrie the next morning for Glen Sannox, very beautiful and varied in character, with a rugged burn or stream winding its way through rocks and boulders to the sea. Here I found my friend sketching the beautiful and rugged rocks of Sannox. I returned to the hotel, and made ready for commencing operations on the following morning, with camera and water-colour boxes, and the idea of seeing as much as possible for camera work. The stillness for so long a time was most remarkable, scarcely a breath of wind for weeks together. It enabled me to take a large number of photographs of some of the most beautiful scenery in the island in North Glen Sannox. Commencing at the bridge, I made a large sketch of the burn and glen in water-colours, together with a number of photographs of what I considered the choicest bits in the glen. This glen supplied me with subjects for several days. Myself and two artist friends made a trip to Lochranza through Glen Sannox, and descending through Glen Chalmedal, very steep and romantic, with a mountain burn tumbling through its rocky bed, and gliding into the loch. The sides of the mountain are studded with a few primitive houses, and some nests of eremites, and looking up the glen from the coast, the dark towering peaks of the mountains have a very imposing appearance—on the left is a singular conical peak called the "Maiden's Pap." The lower portion of the glen and burn sides is thickly wooded with scrub and graceful birch trees. The burn is charming and wild in the extreme; the water tumbles over large rocks. Looking up the glen from the coast, the dark towering peaks of the mountains have a very imposing appearance—on the left is a singular conical peak called the "Maiden's Pap." The lower portion of the glen and burn sides is thickly wooded with scrub and graceful birch trees. The burn is charming and wild in the extreme; the water tumbles over large rocks. Looking up the glen from the coast, the dark towering peaks of the mountains have a very imposing appearance—on the left is a singular conical peak called the "Maiden's Pap." The lower portion of the glen and burn sides is thickly wooded with scrub and graceful birch trees. The burn is charming and wild in the extreme; the water tumbles over large rocks. Looking up the glen from the coast, the dark towering peaks of the mountains have a very imposing appearance—on the left is a singular conical peak called the "Maiden's Pap." The lower portion of the glen and burn sides is thickly wooded with scrub and graceful birch trees. The burn is charming and wild in the extreme; the water tumbles over large rocks.
most enchanting views I ever beheld was before us. Glenorich is a sight that must be seen to be fully appreciated—a lovely valley, surrounded with dark, towering mountains, and the River Argyll flowing through the valley into Loch Aine, from thence to the sea. The valley is well wooded with stately trees overhanging the roads, and forming innumerable pictures at every turn, and shelter from the sun. The weather being very hot, we drove to the Dalnally Hotel, a plain building. The host, Mr. Fraser, is very attentive to visitors, doing all he can to make them comfortable during their stay at the hotel. Having refreshed the inner man, we at once commenced operations on some very rustic cottages on an eminence near the hotel, the cottars eyeing us very suspiciously. Returning with my camera to the hotel, my friend amused himself with fishing. I called on my friend, who had arrived in advance of our party several days, and found him sketching some very picturesque cottages, several of which I afterwards made camera pictures of. These cottages are of the most primitive character. The people, as a rule, seem comfortable and well to do, and very kind and obliging to strangers. My next day was spent among the cottages entirely, several of them make very pleasing pictures. The fall of the Orich was then higher, with a very pretty scenery, so arranged, a trip above seven miles from the hotel through the glen. The fall is a tumbling stream through a large mass of broken rocks, portions of which have lately been blasted to enable the salmon to get up the river more easily. There is excellent fishing at this place. Leaving my friends at the falls, I pushed up the side of the river till I came to the open falls, one of nature’s grandest subjects. A large still pool, reflecting the mountains, and the rocks along the way, with a lofty fall on one side, and a second tumbling stream on the other, all in picturesque confusion. My friends, coming up, were much struck with the beauty of the place. We decided to return there the next morning, and commence operations at once, but, the following morning proving wet, we hesitated for a time, but at last decided to start. On arranging it cleared, and we had a most successful day. Several of these pictures were among the best I took, and we returned exceedingly well pleased with our day’s work. Our next day’s operations were at Loch Aire and Chilchurn Castle. This castle is built on a rock surrounded by sand banks, formed by the river and lake, with scrub and weeds in profusion. It appears to have been inhabited between 1400 and 1450. It is a large pile of picturesque ruins, the interior overgrown with scrub and weeds; the castle standing a monument of solemn grandeur of bygone ages, and no doubt many bold warriors have there licked the dust. There are several large mounds planted with trees, which we may infer are tumulus, where numbers of brave spirits, whose bones are here at rest. The loch is an inland lake about twenty miles long, and varying in width from half a mile. The castle, lake, and surroundings are most beautiful, and afford numbers of charming subjects for the camera and pencil. We secured several, of the castle and lake; also a second day’s work in the neighbourhood. To do justice to this locality would require a large volume. Having only one day more at my disposal, I made a sketch of the valley in water colour, with the castle and lake in the distance, in company with my artist friend. On the following morning I exposed my last plate on a charming bit at the bridge near the hotel, my friend making a sketch at the time. I had now filled my plates and paper, so at 11 a.m., Friday morning, we left this most charming place. If I had had time and materials, I could have taken hundreds of fine photographs. The lovers of the beautiful in nature will be well rewarded by a trip to Dalnally. Taking leave of our kind friends, we returned by Tindrum to Glasgow, and then by the night train I arrived in Bolton about 8 a.m. on Saturday morning. I have since developed all my plates successfully, having about seventy good photographic negatives and several water colour sketches. I hope to give my exhibition as early as possible, when the Gallery of the Fine Arts in Bolton may judge for themselves of the pictures I have taken.

A SIMPLE METHOD OF PHOTO-MECHANICAL PRINTING.

BY ROGER LAURENT.*

When speaking of the method of printing upon lithographic stones, I omitted to say that one may dispense with transfer ink and transfer paper, and thus prevent risking any damage from squeezing the stones.

You may print direct upon lithographic stone, by applying the inked gelatine block at once to the stone.

The ink is applied carefully, lithographic or dilute transfer ink being employed, essence of lavender being mixed with the transfer ink to thin it. The block is applied to the stone under water, the two surfaces being pressed together without the formation of air-bubbles. You dry spontaneously in a current of air, and not in the sunshine.

In this case it is atmospheric pressure which acts. When the whole is absolutely dry, the back of the block is moistened with a sponge, and you wait half an hour or an hour until the gelatine has become swollen, and then it can be removed from the stone.

As the process I have described may be of great use to the wood engraver, I will give a mixture that moulds exceedingly well, and which may be employed to secure an impression for electrolytmg. It is as follows:—

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow wax</td>
<td>500 grammes</td>
</tr>
<tr>
<td>Stearine</td>
<td>500 grammes</td>
</tr>
<tr>
<td>Pure resin</td>
<td>1 kilogramme</td>
</tr>
<tr>
<td>Talc, finely powdered</td>
<td>2 kilogrammes</td>
</tr>
</tbody>
</table>

The wax and the stearine are in the first place melted together; the resin is then melted, and the powdered talc gradually incorporated. This composition may be remelted and employed for an indefinite period for obtaining impressions of bas reliefs in copper, &c. It is melted over a mild fire, without obblition, being stirred well with an iron spoon or spatula, and is poured, moderately warm, upon the well cleaned and prepared matrix. If the mixture is poured upon a wood block, the same should be rubbed with glycerine, with the greatest care first of all. It is useless, of course, to try to mould from a relief in which the hollows are under-cut.

The composition is allowed to cool in a fresh locality for a period of eight or ten hours, and the mould is then carefully separated. The impression is freed from any oil or glycerine attached to it, and is then rubbed with plumbero. The suspension of the impression in the electrolyte bath is very easy. Little suspenders of copper of this form are heated in a candle flame, and then pressed obliquely into the composition, in which they stick very tenaciously when cold. This composition is better than gutta-percha, which floats upon the bath. Besides, to take perfect impressions, gutta-percha of the best quality is necessary, and amateurs can rarely obtain it.

THE SKYLIGHT.

By H. M. ADEWYK.†

The construction of the skylight should have the photographer’s careful study. We are very apt to leave the form of our light too much to the nature of the building we occupy, instead of making the size, shape, and position for proper effects a study. The glass roof is our source of light. If it is "away off," we lose its effects to a greater or less degree, as the light travels through so much space before it reaches that we wish illuminated, and we have shadows with little or no half-tones. I admit there are...

* Continued from page 376.
† Read before the Eastern Ohio Photographic Association.
fine negatives made under high-lights. I have made fine
negatives under such, but circumstances were most favour-
able. There is no form of light but under which, at certain
times, good results can be produced. We should, however,
aim to have our light so constructed that it will not be
necessary to wait for these "favourable circumstances."
Have it so arranged that you can produce just the result
which we want at all times. To secure this we must have our
light down where we can manage it, that we may work just
what we are doing. I have worked under one of these
high-lights when I was sure all the light and shadow on
my subject was just right; exposed my plate, and a light
cloud, so light as hardly to be noticed in the room,
changed the effect entirely. Here is my plan for a light.
You will observe that you have not got an ace of glass to
keep in repair, and the angle is such that it can be kept
"water-tight." Begin your side-light about one foot from
the floor, make it ten feet wide and seven feet high, the
upper edge slanting in about ten inches. Your upper, or
skylight, have ten by twelve feet, the lower edge resting
upon the upper edge of side-light in as light such as
possible, and secure proper strength. Let the highest
point of your skylight be twelve feet from the floor. Have
the light facing the north, and furnish with two sets of
curtains, one of white muslin, the other blue opaque.
With such a light we should secure good results. Why?
Because our source of light is close to the subject and easily
managed. It faces the north, and the light from that
direction is more even, hence easy to manage. The white
curtain will soften the light, and the blue will give you
shadows. The time of exposure is lessened, and everything
right at all times to properly and effectually light your
sitter.

RESTORING OLD EMULSIONS.

Mr. S. Singer, of Milwauk ee, finds that by converting
the excess of nitrate of silver in an emulsion by a liberal
addition of cyanide of potassium, he can restore old,
foogy emulsions. Having recently read Mr. Newton's
paper on emulsions, he sends to Anthony’s Bulletin details
of some experiments. He says:

I took some old emulsion made by various pro-
cesses whose usefulness was already destroyed, added
one ounce of freshly-prepared emulsion, converted
the excess of nitrate of silver, after some hours, in an
excess of chloride, and the whole worked clear and
brilliant, and very beautiful. I have tried many times,
find that an emulsion prepared that way, with an
excess of chloride, needs no extra washing, a simple
immersion in the preservative being enough. The
preservative is not spoiled by this repeated immersion,
but remains clear, and is, if changed at all, improved.
This suggested to me the idea of substituting and
alcoholic preservative instead of one of water, and I
succeeded beyond any expectation. The one I have tried
is only a modification of Mr. Newton's, and works well.

Alcohol 6 ounces
Tannin 30 grains
Laudanum 2 drachms
Tincture of violets 1 drachm

This solution throws down a precipitate, and after filtra-
tion through filter paper will remain clear. With this
alcoholic solution the whole labour of manufacturing dry
plates is reduced to a minimum. "Coat the plate with
emulsion." After it has set, which it does in a few
seconds, flow over the alcoholic preservative the same way
as you do collodion; let the solution set a few seconds on
the film, and pour back the surplus into the bottle. The
plate is then ready for exposure; or you can let it dry,
which it will do in a few minutes to a bright, clean
surface. In my experiments I have not noticed any ten-
dency to blurring in these plates, but should that be the
case, the alcoholic preservative can be easily tinted by an
alcohol solution of

alkanet root, which assists in organizing the film, and is
again dissolved by the alcoholic developer.

A second modification I propose in developing. By
first flowing the film with a strong alcoholic solution, the
whole negative can be finished with from one to three
drops of an alcoholic sixty-grain solution of pyrogallic acid.
Prepare, for instance, the following developer:

No. 1.

Stronger aqua-ammonia ... 2 drachms
Water 6 ounces
Bromide ammonium 6 grains.

No. 2.

Alcohol 1 ounce
Pyrogallic acid 80 grains.

After exposure, wash the film; then flow over enough of
No. 1 to cover the film with one sweep; let it sit a few
seconds on the film. Now drop into the developing cup
one drop of pyro.; pour back the ammonia solution, and
reapply, when all detail will appear, and one or two drops
of pyro., by correct exposure, will finish the negative.
Instead of the above developer, Col. Stuart Wortley's can
be used, to wit:

Carbamide ammonium 80 grains
Water 1 ounce
Brom potassium 6 grains;
or a combination of both, half and half. If you are not
satisfied with the contrast, but want brilliant pictures, as
in case of engravings, add half a grain more of bromide to
each ounce developer.

Correspondence.

ON THE FADING OF SILVER PRINTS.

Dear Sir,—Will you please allow me space for a few
words as regards the fading of silver prints? I obtained
this plan from a very old photographer, who had prints kept
for ten years that did not show the slightest degree of fading.
It is this: a large box made of japanned tin, six feet long
by 4 feet high, with one false bottom about six inches from
the bottom, and another six inches from the top, also false
bottoms at every six inches, making in all twelve false
bottoms. These have little partitions, namely, Cabinet,
O.D.V., &c., as wanted, so that none of the prints can get
covered up, and thus not securing sufficient washing. As
a great number can be put in this machine the prints can
be done in about two hours. (The box, I forgot to say, is
put in a running stream or under a tap; I use the tap.) Of
course it can be made on a smaller scale, and not so large as
mine; but I have given you an idea of the size and shape,
which, I hope, may be useful to the readers of the Photog-
ographic News. Asking pardon for taking up so much
space,—I remain, yours truly,

O. R. VERNOCK.

Grafton Underwood, Kettering.

METHYLLAL IN THE DEVELOPER.

Dear Sir.—In the last issue of the Photographic News,
Mr. E. T. Rolls gives an account of his unsuccessful experi-
ments with the methyllal developer, and invites me to point
out where, in this process, an error is most likely to happen.
Simultaneously, G. Watsengh Webster, in a contemporary
journal, describes his unsuccessful experiments. These un-
favourable opinions on the substance that gave me much
caution and doubt, indeed was the cause of my first obser-
vation. The result I obtained was just as favourable as
previously to the new developer. The process I adopted
differs, in some details, with that of your correspondents,
and that may be the cause of the different results. Supposing
that the comparison of the details may be of some utility
to the experimenters with the methyllal, I give here some
observations from my laboratory notes.

All derivatives of alcohol are extremely complicated, and
the slightest change of conditions in the manufacture may
introduce new substances. But let us not, for this reason,
reject the name of methylal, that Messrs. R. Kane and McAligulit first gave to the product of distillation under the low temperature of the methylal alcohol, in the presence of peroxide of manganese and diluted sulphuric acid (objection of Mr. Watmough Webster).

I had not made analysis of the methylal prepared by myself, to ascertain whether it is pure product, or mixed with a dozen or two of different substances, so easily formed in similar conditions, but its characteristics being very nearly the same given by Messrs. Pequen and Frevy, permits me to take it for methylal. I shall not add puris, but at all events I am very glad that the new substance will not increase the number of bottles on the shelves of my laboratory, labelled X, Y, Z, or ?.

To make methylal I got some rectified wood naphtha from the distiller; it was of light golden tint; tested for sp. gravity, it give 0.850, the temperature of the room being 78° Fahrenheit.

In the glass retort, of the capacity of more than one gallon, I introduced first some broken glass (to prevent excessive bumping observed in my first experiments); then, on the suggestion of the Editor of the British Journal, I diminished the quantity of peroxide of manganese.

Wood naphtha 20 ounces
Peroxide of manganese 15 "
were mixed and introduced into the retort.

Water 20 "
Sulphuric acid sp. gr. 1.800 30 "
mixed in a separate glass flask, after cooling, were mixed with the first content; and the retort was inserted in the water bath, connected in the usual way with the condenser.

A thermometer was introduced into the retort for the observation of the temperature.

At 186° Fahn. first bubble made its appearance; at 190° all the mass was in froth, occupying nearly three-quarters of the retort. Supply of the gas under the water bath was so regulated that a temperature of 190° was constantly kept.

After two hours 7 ounces of the methylal collected. This had specific gravity 0.856, gave an acid reaction, and boiled at 142°.

Night interrupted operations. Next morning distillation resumed, and after six hours distillate amounted together to only 124 ounces, of the specific gravity 0.900. It was perfectly colourless, very mobile, and of strong odour. Tested with nitrate of baryta, did not show the slightest trace of the sulphuric acid. To secure that result, the temperature of distillation was purposely kept below the water boiling point. Next, it was ignited, and a very pale blue flame satisfied me of the absence of the methyal ether with its burning with a bright flame.

But formation of the ether could scarcely be expected, remembering that other producing temperature is between 260° and 310°. At this stage I consider the methylal ready for photographic use. I do not rectify it over the carbonate of lime.

I see Mason's bromo-iiodised collodion. My nitrate bath was prepared some ten or twelve months ago, but not much used, my experiments of late being directed more on the emulsion side.

The developer prepared on this occasion was—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of iron and ammonium</td>
<td>½ ounce</td>
</tr>
<tr>
<td>Water</td>
<td>10 ounces</td>
</tr>
<tr>
<td>Methylal</td>
<td>½ ounce</td>
</tr>
</tbody>
</table>

Acetic iron developer of the corresponding strength was prepared, and tried on one half of the same plate cut in two, exposure being equal, but so conducted that when it was too short for the acetic iron power, to be correct for methylal developer. That satisfied me again of the possibility of shortening the exposure when methylal is substituted for acetic acid.

Notwithstanding the very unfavourable opinion of Mr. C. Watmough Webster on the new developer, he nevertheless admits the shortening of the exposure by one-half. He says:—

"Plate 1, exposed 30 seconds, developed with C (acetic iron).

<table>
<thead>
<tr>
<th>Time</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A (methylal)</td>
</tr>
</tbody>
</table>

Results: plate 2 developed almost as quickly as plate 1, and, at first glance, seemed almost as well exposed; but a slight examination showed that the negative was very thin in comparison with the other, and so, to the casual observer, an impression of equal exposure would be conveyed." (Mr. J. T. Roll's opinion when he says:—)

To me results were at first almost wonderful. Short exposure, the image flashed out instantly the developer was applied, it remained, after intensifying, very thin and weak.

Mr. Watmough Webster evidently confounds sensitiveness with intensity. I certainly, in comparing his No. 1 with No. 2, should look for the amount of details to form my opinion of the shortening of the exposure. The failure of those two gentlemen is in the difficulty of obtaining necessary intensity. This was not the case with me. My negatives are not only perfectly clear, but so intense after first application of the developer that redevelopment was not resorted to. Mr. G. W. W. also complains of the general fog. In my experiments I found that the methylal had such a powerful restraining action that with the same proportion of methylal in the water any quantity of the iron salt could be used, and that is very important, remembering that the stronger the developer is, the shorter may be the exposure.

I must observe here that I prolong the development generally more than is possible with the acetic iron. Some shining silver patches make their appearance on the surface of the liquid, but no metallic deposit is formed on the collodion film, while the solarised parts are gradually gaining in intensity.

I enclose last taken negative for the inspection of the Editor.

L. Wartenbe.

PS. I have been told that Mr. Alexander, who first advised the use of methylal in the developer, has inserted his declaration in the Moniteur de la Photographie, explaining his reasons of offence against me for publishing my experiments. Having no occasion to read the Moniteur, I cannot guess in what really I can displease Mr. Alexander; but if he will communicate to me his grievance, I shall be most willing to rectify my fault, if there really was any committed.

The negative forwarded by Herr Wartenbe is in every way excellent; at once delicate, detailed, and brilliant.—Br.

PROPOSED TESTIMONIAL TO MR. CROUGHTON.

Dear Sir,—My attention has been called to the concluding portion of Mr. Brittlebank's letter, wherein he proposes a testimonial to me for publishing from time to time my experience and methods of working. Will you allow me, through your pages, to thank him and many others who have written me letters of sympathy; and, while I confess to being flattered at such a proposal, I must add the honour, as against the principle which has actuated me in my contributions. To the societies and the photographic press I have given (and I hope I always shall) my experience freely, and without wishing for any return. Our art has attained the high position it holds by the free and generous publication of formula, processes, &c., which has been the characteristic of all the best and greatest men, and I think the least any one can do who profest by the freely giving discoveries of Archer, Talbot, and the host of names which have been associated with the advancement of photography, is to add his mite, however small, freely and openly to all. I hope, therefore, Mr. Brittlebank will not be offended if I decline to profit by his suggestion and contribution, and ask you kindly to return him the cheques forwarded to you, with many thanks for his kind intentions and good wishes.—Yours truly,

G. C. CLAYTON.
Talk in the Studio.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.—The annual outdoor meeting of this Society took place on Saturday, August 28th, at Kingston, but, owing to the unfavourable weather, very little work was done. The members met at the residence of Mr. Samuel Fry, Surbiton, who had again this year most kindly offered to entertain them. Having parted with a sumptuous repast in a tent especially erected in his garden studio, the rest of the evening was spent in music and conversation, and another annual reunion of the South London Society was brought to a close.

CHARGE OF STEALING PHOTOGRAPHIC GOODS.—An operator was charged at Sunderland with stealing a quantity of portraits, printing-frames, transparencies, &c., from his employer. The goods being given up, the charge was withdrawn, and the complainant acquitted.

PAPER FOR PHOTOGRAPHY.—In the list of prizes offered for inventions and improvements by the French Society for the Encouragement of Industry, is one for the production of an improved paper for photographic purposes.

OXY-CARBON LIGHT.—Edgerton's new oxy-carbon light was recently exhibited at a meeting of the Franklin Institute, and described in the Journal of the Institute:—"It consists of a small copper vessel suspended immediately over the flame of a jet arranged on the ordinary oxy-hydrogen plan, and connected with a reservoir for keeping up a supply of the oil. The heat of the flame converts the hydrocarbon into a vapour of high tension, which is conveyed to a chamber at the base of the jet of about half a cubic inch in capacity, where it mingles with oxygen and is supplied in the usual way to the flame by a silicon pipe. It is necessary, in order to start the lamp, to heat the copper vessel containing the oil with a spirit lamp, and as soon as vapour is produced the oxygen is turned on and the lamp is lit.

By—Mr. H. J. Powell, of the Whitefriars Glass Works, describing in the English Mechanic some experiments carried out at the works with De la Basie's method of hardening glass, thus sums up the results:—"Hardened glass is not 'unbreakable,' it is only harder than ordinary glass, and then, though it undoubtedly stands rough usage better, it has the disadvantage of being utterly disintegrated as soon as it receives the slightest fracture; and, up to the present, until broken, of being undistinguishable from ordinary glass, unless a certain pink tone noticeable in hardened flat glass can be taken as an indication. This glass is known as 'toughened' glass, and we have seen the terms 'malleable' and 'annealed' applied to it. Nothing can be more misleading than these unfortunate epithets. The glass is hard, and not tough or malleable, and is the very opposite to annealed glass. Annealed glass, on the contrary, is a very soft and brittle material, which if it is heated above its annealing temperature, will become vitreous and solid, and will never again melt, and the stretching to which it is subjected does not develop its mechanical properties. The molecules of hardened glass have been tortured into their position, and until the glass is broken are subject to an extreme tension. It is the sudden change of temperature that 'hardens'; glass heated up together with the oil may be annealed, but decidedly is not hardened. A piece of hardened glass is only a modified Rupert's drop—i.e., it is case-hardened: the fracture of both is identical, both resist the diamond, and both can be annealed. Moreover, in the middle of imperfectly hardened glass a line is plainly visible, which serves to mark the extent of the case-hardening. This line receives itself, under the microscope, into a mass of bubbles and strie; it seems to be the nucleus of breakage, and, consequently, as soon as the cutting wheel approaches it, utter destruction ensues.

PREPARED BY PORTRAITS, AND NON-SUPPLY OF PRINTS.

The Daily Telegraph states that at Great Marlow, George French, John French, and Chas. French, described as resident at 4, Durham Place, Datchet, photographic artistes, were brought up before the court on this charge; they were charged with having on divers days in the month of August at Great Marlow, and at other places, unlawfully and by false pretences obtained several sums of money from certain persons, contrary to the statutes. The prisoners, who were travelling photographers, visited Great Marlow about three weeks ago, took photographs of several persons there, and, after receiving the money, promised to send the cartes in a few days. The photographs, however, never arrived, and information was given to the police, who succeeded in apprehending the prisoners on the 28th of August. Evidence was given showing that the negatives taken by the prisoners were worthless. They were committed for trial at the Bucks Quarter Sessions. It transpired during the hearing of the case that the prisoners are wanted for similar offence committed in Herts, Beds, Bucks, Dorsetshire, and other parts of England.

TO CORRESPONDENTS.

B. R. G.—The pictures must be delivered at the gallery before the 23rd instant. You will obtain all particulars by writing to Mr. Friwell, the honorary secretary.

E. C. F.—The old colliion is still in demand for cleaning plates; but it is very unpleasant to use, because of the fumes, which are often very painful to the eye. On the whole, we should prefer to throw the old colliion away.

S. E.—The setting preparation in the shellac process stands as follows:—Water, 12 ounces; bleached shellac, 6 drachms; phosphate of soda, 2 drachms; borax, 14 drachms. Dissolve the phosphate and borax in warm water, then add the lac in a sufficient quantity of powder, and place the whole over the fire, stirring until the lac is dissolved. Finally, after cooling, add 30 grains of chlorate of sodium. Filter, and if the solution be intended for keeping, add a piece of capsicum paper. A piece of paper is then floated on a 60-grain silver solution for five minutes. A fine artistic tone is produced by fixing in hypo alone; but for a black tone a golding solution may be used. The common lac may be used, but would give a yellow tint to the lights.

D. W. S.—Winstanley agrees with us on the impurity of ventilating personal grievances in journals, but thinks that when imputations affecting the commerce are created individually, or made, they (the persons implicated) have a claim to be heard. This may be doubtful; but it should be in the pages in which such denunciations are made. To open our columns for the communicating of allegations made elsewhere, would be simply to transfer to our columns, without reason, a discussion having no public interest. For the rest we may simply state that Mr. Winstanley gives a categorical contradiction to the statements of Mr. Brookes referred to in our last.

A. M. G.—We have published many formulae for the preparation of second paper which can be used with any success; we cannot undertake the experiment of the year in each of our last three or four Year Books. We do not know of any one who will sell a formula for preparing such paper.

G. S. S. E..—An experienced carbon printer, writes to say that reading with interest all that transpires in connection with carbon, he is struck with the fact that in everything published recent justice is done to Mr. Swan. He points out that, notwithstanding the alleged defects in Swan's process, which subsequent patentees—Johnson, Lambert, and Sawyer—are supposed to have improved, some of the finest work of late is still done by Swan's process.

If many years was now is the time to be considered, the commercialised by Mr. Swan's process, that uses paper coated with india-rubber as the provision support—carbon prints, too, equal to silver prints. Nearly all carbon printers are now using this paper, and the products are a great credit to the printer and to the silversmith, as the paper does not change the tone of the picture, and when sold, it will be an advantage to the printer, as it is a long time before this paper is out of use. The process of the new paper is simple, and the results are excellent. The pictures are very fine, and the printer can be confident that they will be well received.

Dr. A. A. Manteau.—The details of the wet preserving process in question are, briefly, as follows:—Take of old English honey, four ounces; Prices's pipes, three ounces; vinegar, two ounces; wine, one ounce; bath, six ounces; mix, and then add half an ounce of soap, and shake occasionally for an hour. Place the mixture in a daylight for two days, then filter for use. Keep an ordinary equable plate; but for the modern medium; it is different; but, so far as we can know, no improvements have been adopted.

D. E. G.—The spots are due to the particles of bronze in which the paper is immersed before it is placed in contact with the print, as we have often explained. The bronze consists of sulphure of tin, and produces a sulphur spot on the silver print.

Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO

A TOUR IN THE ENGLISH LAKE DISTRICT—BITS OF OLD LONDON.

A Tour in the English Lake District.—It sometimes happens that one desires a quiet holiday, free from the exertion and excitement which travelling daily from place to place involves. Frequently you are in the mood for a rattle through a strange country, for a trip to surprise crowds of visitors and exorbitant prices. And yet people far north into Scotland across the moorlands by Braemar, or beside the Caledonian Canal; or the charms of foreign city life may allure you, and Paris, Vienna, or Berlin entice you over the water; while again there are such places as Baden-Baden, Ema, Schwalbach, Wiesbaden, and other spas too numerous to mention, which appear especially inviting to those in want of a change. Sometimes, however, we repeat, one seems to long for a very quiet tour—a holiday of holidays, as it were—and if you will only keep away from places of seaside resort, such a holiday is best spent without leaving the country. We don’t know how it is, but lately it seems as if everybody goes for his autumn holiday to the sea-shore, and the consequence is that everywhere exorbitant charges and scarcity of lodging. Holiday-makers for the most part, we suppose, are gregarious, and where one goes the other must follow. Take the case of Switzerland, for instance; there are certain routes which have been sketched out, certain valleys that have become popular, and certain villages that have a reputation. All who go to Switzerland go to these places, and find at this season of the year crowds of visitors and exorbitant prices. And yet people would be content with travelling less in company there would be no need of complaint. As an instance of this, we may mention that last week we saw a bill of a party just returned from Switzerland, who had been travelling, therefore, in the very height of the season. These ladies and gentlemen had stopped a week in a retired valley many thousand feet high, at the east end of the Lake of Geneva, under shadow of the snowy Dent Du Midi and the lofty Diablerets. They had been living in pension, as it is termed, and the charge per diem for each person was three francs fifty cents, for board, and one franc for bedroom and service. They did not dine in a magnificent salle-a-manger, it is true, off a dozen dishes, but the table, although some- where about the barachet, was none the less palatable. Fancy living a week in Switzerland, at the end of August, within sight almost of the Lake of Geneva, for twenty-five shillings a week! Such a thing would appear incredible to most people; yet this was the amount which each and every one of the guests in the hotel—amounting to between thirty and forty, hailed from Lyons, Genoa, and Leghorn—paid for the board and lodging. This is, then, a good instance of what may still be obtained by tourists who take the trouble to look out for themselves, and rely upon their own individual exertions in choosing their playground. In the lake district, where we have spent a few weeks very pleasantly, located in one central spot from which the longest may enjoy a variety of excursions, we have had an opportunity of observing how many have come the same way that we have, to enjoy the district for change of scene and air, and it was with much surprise that we found their numbers so limited. Scurvily a dozen foot travellers have we met, while the inns and lodgings—the latter especially—were far from full. At Windermere there were rows of lodging houses standing empty, and an agent informed us that he had sixteen homely pictures in stock. It is true that it is a long journey to Westmoreland from London, but in these days of excursion tickets, travelling is not so expensive as it used to be. The district abounds in good second-class inns, and to those used to the high prices charged in Scotland and elsewhere the charges appear exceptionally moderate. And as to the weather, when it does not rain, the varied changes you see in this kind of weather, are positively pleasing. One day with what has been a fair settled weather, as in the case where mountains are higher, to enjoy the scenery, for, truth to tell, big fleecy clouds, resting on hill tops here, add to their beauty. For the three weeks that we were in the district there was not a cloudless day; but, nevertheless, the weather could scarcely have been more favourable. The mist and blueness utinays gave a distinctive effect to the landscape; the mist and blueness gave a distinctive effect to the instance, and in practising a little dry-plate photography, with which we amused ourselves from time to time, the cloud effects have been of especial value. The lakes, too, lie so embosomed in the hills, that their surface is, often as not, like a mirror, the reeds and stones at their margin showing clearly in the foreground of a picture. Woodland paths we have secured time after time, with not a breath of air to stir the pretty ferns and undergrowth; and as the still lakes are nearly all of them fringed with foliage, this absence of wind is at times exceedingly welcome. A clever landscape photographer would have made some rare pictures, had he enjoyed the opportunities we have had, for every one knows the cloud effects that are secured when entirely open and sunny, and when the sky is broken by irregular sunshine and shadow, such as we have been enjoying nearly every day. Sometimes the wind would spring up in gusts of regular intervals, and in this case it is necessary, of course, to cap the lens two or three times during exposure, watching carefully for the still moments, so that the sensitive plate shall only be acted upon during the most favourable periods. This is a laborious process. And yet people who have dry plates to deal with, for we have not hesitated to keep a plate in the slide for half-an-hour on a hot day, without the least compunction. It will be a good thing, however, when we get M. Warnerke’s improved method in working order, and thus successfully get over the difficulty of changing plates and storing them up from the light, which are the chief solicitudes of the dry plate work now a-days. When we have paper films, instead of glass, to deal with, it will do away with much of our anxieties, for not until the glass plates are back again in one’s own dark room, and the developer is applied, does one know how far they have been properly preserved. We think that a good stock of adhesive paper for sealing packets, and a plentiful supply of tin-foil (not the thin kind, but the caddy tin, which bends and does not break), form the best means of packing, after the yellow and black papers have been used; for not only is the caddy tin impervious to light and moisture, but it renders the packet far less breakable and liable to accident in transit.

Bits of Old London.—Have any photographers occupied themselves especially with “Old London?” A very taking series of prints, we think, might be obtained of bits of old London by any one who will take the trouble to look up such remnants of the city as are still left to us. Every day these relics become more and more rare, for modern improvements are the inveterate enemies of picturesque-ness in London streets. Some time ago we called attention to the writings of Walter Thornbury and Thomas Archer, two genial authors who have made old London their special study, and whose books, we think, might be of use as a sort of guide for any photographer who wishes to make up a portfolio of old-fashioned sketches of this character. We firmly believe that if such a series were now published, either printed in silver, or, better, by a permanent process, like the portraits of actors and other people brought out now and then, there would be a good demand for them. It is true that it might be taken to serve as illustrations to the writings of the popular authors we have mentioned. The subjects would have to be treated with care, so as to prevent the antique effect being marred by objects of modern
life. Some of the scenes—as, for instance, bits of Holborn, which here and there still exist—would have to be vignetted, probably, in order to keep out new shops or houses on either side; but in Wych Street, in the Borough, and at the East End, by the Thames, there are still models to be found which might be photographed bodily. There are old river-side taverns in the locality of Wapping which would afford most picturesque studies, especially if they could be taken from a causeway or landing in the river; and the old coaching inns on the Surrey side of the water, several of which are still in existence, with their roomy yards and quaint balustrades, would be equally interesting. Accompanied by suitable letterpress, such pictures would find a ready welcome with the reading public.

GERMAN CORRESPONDENCE.

[AFTER SOME REMARKS ON THE LATE VIENNA EXPOSITION, AND ON PORTRAITURE IN BERLIN, DR. VOGEL PROCEEDS:—]

It appears that the reproducers of oil paintings have not had any account of the size of plate any more. The photographic processes of this place are promptly taken in the Dresden Gallery, in the original size up to thirty-six inches; soon plates of four feet will be issued. Photography will be mammoth, and mammoth must be the business if the enormous expense of the plates should be made to pay. Photography of oil paintings is, in fact, a great industry; she has conquered the world, notwithstanding the hue and cry of art critics, who bewailed that the copper-plate engraver would be without bread through it, a laughable prediction, for a good copper plate will constantly find a purchaser, while a poor one, of course, must draw in its sails aside of a photograph.

There is here an art dealer, of some importance, who has published long articles in the newspapers of the pernicious influence of photography on art, and who, several years ago, solemnly stated that he had no photograph works in store on the principle, only genuine works of art, such as copper-plate engravings, steel engravings, lithographs, &c. The man continued his opposition for ten years, but it availed him as much as the opposition of the stage-drivers to the railroad thirty years ago. To-day I visited the establishment, and, to my surprise, I found there not only the latest photographs, but one of the most clever new ateliers, which had been rented by a photographer.

On my journey I have made, as I wrote to you previously, many exposures with dry plates. I partly made use of simple washed brome-silver collodium films, which were prepared in the bath, and partly Stuart Wortley plates. The brome-silver plates, which were, bear in mind, without a covering preservative, worked very well on the wet plates. In landscapes, therefore, the dry plates showed a very dense sky and background, but a perceptibly weaker foreground than the wet plates. If I exposed the Wortley plates until the foreground was equal to the wet plates, the distance (background) in the dry plates appeared considerably over-exposed, while a wet plate produced a more harmonious picture, and the tones in the fore and background were in proper relation. I am convinced that with a suitable change in sensitive mixture, by adding iodide or bromide, this fault can be obviated. For the present the wet process is for all cases where it depends on true artistic effect far ahead of the dry process. I see in the journals which were issued during my absence, various gentlemen have taken great pains to doubt my discovery that the sensitiveness of the plates could be increased by the addition of an absorbing substance, is perceptibly increased. Such doubts only excite my humour. I have on my journey again exposed about one hundred coloured bromide plates before a number of witnesses, and developed many of the plates in the presence of witnesses. I have photographed the spectral lines in the yellow and orange, and in and around the lines, and tried without any result, the fault is certainly not mine, but with the gentlemen themselves. Without overrating myself, I believe I have sufficiently proven that I do not suffer from hallucination any more than Captain Waterhouse, Professor Tachini, Professor Pedler, Mr. Meldola, Professor Schützer, in whose presence I exposed and developed my plates, as well as M. Berneuil, M. Berneuil, Paris, who has repeated, with the greatest success. Facts which I have tried daily with the greatest certainty, and which I have shown numerous men of science by trial, cannot be removed by such phrasingology. Whoever does not want to believe me can leave it alone. I am not at all anxious to teach persons who are versed who do not want to be taught, and who stubbornly persist in their prejudices. I have not.

Mr. C. A. Lea has opened an article against my theory, in the British Journal of 21st of May, in which I only deplore the remarkable superficiality he betrays in optical matters. Such sentences as Mr. Lea publishes—i.e., corallin transmits strong red light, and consequently the sum of its absorption spectrum must be green; a sentence which, in reference to napthalin-red, with which he has not made a single trial perhaps, is repeated, with the greatest success. Facts which I have tried daily with the greatest certainty, and which I have shown numerous men of science by trial, cannot be removed by such phrasingology. Whoever does not want to believe me can leave it alone. I am not at all anxious to teach persons who are versed who do not want to be taught, and who stubbornly persist in their prejudices. I have not.

Mr. C. A. Lea has opened an article against my theory, in the British Journal of 21st of May, in which I only deplore the remarkable superficiality he betrays in optical matters. Such sentences as Mr. Lea publishes—i.e., corallin transmits strong red light, and consequently the sum of its absorption spectrum must be green; a sentence which, in reference to napthalin-red, with which he has not made a single trial perhaps, is repeated, with the greatest success. Facts which I have tried daily with the greatest certainty, and which I have shown numerous men of science by trial, cannot be removed by such phrasingology. Whoever does not want to believe me can leave it alone. I am not at all anxious to teach persons who are versed who do not want to be taught, and who stubbornly persist in their prejudices. I have not.

Mr. C. A. Lea has opened an article against my theory, in the British Journal of 21st of May, in which I only deplore the remarkable superficiality he betrays in optical matters. Such sentences as Mr. Lea publishes—i.e., corallin transmits strong red light, and consequently the sum of its absorption spectrum must be green; a sentence which, in reference to napthalin-red, with which he has not made a single trial perhaps, is repeated, with the greatest success. Facts which I have tried daily with the greatest certainty, and which I have shown numerous men of science by trial, cannot be removed by such phrasingology. Whoever does not want to believe me can leave it alone. I am not at all anxious to teach persons who are versed who do not want to be taught, and who stubbornly persist in their prejudices. I have not.
PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER XVII.

THE PRINTING OR "POSITIVE" BATH.

As the success of the photographic picture is judged from the resulting prints, a great responsibility rests with the operator in this branch of the work, and it should be his aim to get the very finest results. To do this he must studiously observe the effect of every change of condition in paper, bath, fuming, toning, fixing, &c., and acquire the power of producing any required effect. To do this work well he must become an expert in the art of printing; failing this, though he may occasionally produce good work, being the result of accident, it is of little worth. To attain perfection the printer must have a thorough knowledge of the printing qualities of the negatives entrusted to him, and have complete control over his chemicals. His first study is the effect produced by the different brands of commercial albumenized paper, and the particular kind of work for which they are most suitable. I shall not enlarge on this subject, as it is a matter for individual experiment, and one which is continually being modified and altered as new brands are introduced.

THE PRINTING BATH.

The bath used for sensitizing the paper to be used in printing is, however, a branch of photography which has received so much attention and study, that certain safe rules have been formed. Of the strength of the bath—one of the first considerations—there is, as with our negative bath, a difference of opinion, some authorities maintaining that a strong solution produces the best prints, and others giving preference to a weak solution. As in the case of the ordinary bath, in this case there is an unfavourable and a favourable side. In my experience the negatives in favour of the comparatively weak bath, or perhaps, more strictly speaking, one of medium strength; the mistake being, I think, in the two extremes. It might be supposed that the weak bath would require an extended floating of the paper on its surface, and the strong a short floating, but this is not so; and further, it might be expected that the paper floated on a weak bath takes up less silver than from a strong bath; this also is an error, for the salt in the albumen will take up the amount of silver it requires, whether the bath is strong or weak; chloride of silver being formed.

From the fact that the effect of the strong solution is to coagulate the albumenized surface of the paper, and it is some time before the albumen commences to absorb the solid matter, I have been unable to get any evidence as to the effect of strong solutions. But if we have an answer about it, it is that the strong solution being coagulated, more readily takes up the silver, we learn that a strong bath requires a long time of floating, and that a weak bath takes but a short time; the bath of medium strength being between these two extremes in the time required for floating the paper.

This, then, would tend to prove that the gain in time would establish the weak bath as superior to the other, but there are awkward consequences in floating the paper for a short time on a weak bath, as in the long floating on the strong bath. The paper floated on a strong bath certainly prints brilliantly and with bold effect, but the bronzing of the shadows is a great defect, and the weak bath has the effect of producing weak prints, or, if the time of floating be lengthened, the print has a sunk-in appearance.

The objections, then, seem to indicate that there is a happy medium, and this appears to be in the bath from 40 to 50 grains to the ounce of water, for ordinary work in portraiture.

For the positive bath nitrate of silver and pure water are required. Dissolve the silver thoroughly in the water, add the hypo and the requisite quantity of albumen and alum a good thing for the printing bath, its effect being to harden the albumen, and thus keep the silver more on the surface. The best way of adding the alum is to place a small lump in the neck of the funnel through which the bath is filtered, and it thus takes up the required amount.

The loss in strength of the bath after sensitizing paper should be made good by the addition of a stock bottle of six-grain solution, so that the bath may be kept as nearly as possible of an uniform strength.

Citric acid is added to the bath where it is wished to preserve the paper beyond the ordinary time for general use, to preserve it against discolouration.

Nitrate of ammonia is also sometimes added to the printing bath—nitrate of ammonia 25 grains, and nitrate of silver 40 grains to the ounce of water, slightly alkaline with liquor ammonia. This bath should be placed in the sun until all impurities are thrown down, and then filtered before use.

RECTIFICATION OF THE PRINTING BATH.

The causes of disorder in the printing bath are from albumen dissolved from the paper, dirt and organic matter and dust which gain access to it, and from imperfect filtration, causing the bath to discolour. If only showing a slight colour, or evidencing but trifling irregularities, a few drops of a solution of permanganate of potash, ten grains to one ounce of water, may again and again prove sufficient to restore it. Add the permanganate solution until a slight rose colour appears, since the bath is then in a clear state, when it will further discolour and eventually grow clear as crystal, the impurities depositing at the bottom of the bottle. Filter clear. It is advisable to keep the bath exposed to the purifying influence of light when it is in use.

Kasell is also a good purifier. Place a little in the bottle holding the bath solution, and stir with a glass rod; when this is settled, filter the solution (or pour off without disturbing the deposit of kaolin), and filter. The kaolin may thus be used again and again.

Boiling the Bath.—The printing bath will require more energetic treatment, in time, than those advocated above, and, though it is not a bad plan to boil at stated intervals, whereby certainty is ensured, yet it is not absolutely necessary to remove the impurities we know must exist in the
bath, until their deleterious effects manifest themselves. The bath is first made slightly alkaline (if not so) with ammonia, and then placed in an evaporating dish on a small gas stove, and submitted to heat until it has evaporated about one-half or two-thirds of its bulk. By this time the impurities which have made it black and thick during the boiling should have settled. Now turn off the gas and allow the solution to cool, add pure water to reduce it to the proper strength, and add the nitrate in the original making up of the bath, and test its alkalinity; filter perfectly clear, and the bath is ready for use.

To Fuse the Bath.

Place the bath solution in the evaporating dish over the gas stove, and boil down to dryness, as advised with the negative bath (see Chapter IV.), using the same precautions against the formation of the explosive fulminate of silver. It may be necessary for this to add acid. Stir the mass at the bottom of the evaporating dish, and, when cool, add pure water and filter. The organic matter, which has been carbonized by the heat, will filter out, leaving the solution quite pure and clear. Now make up your bath according to the formula of the original.

General Hints on the Care of the Bath.

Care will do away with the necessity of constant doctoring of the bath in a great measure. Guard against the admission of dirt and foreign chemical substances. Keep a separate graduate and hydrometer for testing the strength of the solutions. Be sure that there are ware scrupulously clean before using them—much trouble and uncertainty may in this way be spared. The sensitizing dish, when the solution is poured back into the bottle, is stood on one corner, to allow it to drain; it may then be rinsed with clean water, the rinsing being preserved, and the dish put away in a clean cupboard resting on pure blotting paper. The bottle holding the solution is then placed in the sun, the top of the bottle being covered, to screen it from dust.

The Practical Printer in America.

XXXVIII.

Making the Porcelain Collodion.

I will give a formula for the making of the collodio-chloride which I know to be good, having used it for more than two years, and I can truly say that I never knew a batch of this collodion to fail any one who has ever used it, providing it was properly mixed in the making of it.

If the porcelain collodion is not carefully mixed and made, it is the most sickle of all collodions.

The presence of chemicals and great care are required, both in the mixing together of the different solutions, and in always keeping the collodion when it is made in absolute darkness, else it will be worthless, for if it is exposed to the light it will become discoloured, and a chemical action is commenced which will in a short time render it worthless as so much dirty water.

For this reason photographers, to guard against the actinic light getting the contents of the bottle, should not only keep it in a dark place, but wrap printed and unprinted paper around it, so that every part of the bottle will be covered, and only a little of the neck will show; and no more of that than what is required for the purpose of pouring the contents out, so as not to have the collodion to touch the paper. The writer generally uses a couple of the edges of yellow envelope paper.

Another thing for the beginner to bear in mind is, that he should always mix the different solutions, in the making of the collodio-chloride, a drop or two at a time, and no more, for then the solutions will be more likely to get mixed together than if you were to pour them in quicker. As a rule, always bear in mind that the slower the solutions are mixed together the longer time will the collodion keep in a good condition.

Then, again, always handle the bottle of collodion as gently as possible, so as not to shake the contents any more than is really necessary.

Mix the solutions in the order given below, and never otherwise.

When ready to make the collodion, first proceed to make up four solutions, which will be stock, and which will at some future time enable you to make up more collodion in a short time, as you will only have to take a certain quantity of each of the stock solutions and mix them together.

A. Plain Collodion.

Alcohol, 95° 7 ounces
Ether 9 ounces
Gun-cotton 112 grains

B. Silver Solution.

Nitrates of silver 480 grains
Distilled water 1 ounce

C. Calcium Solution.

Chloride of calcium 128 grains
Alcohol, 95° 4 ounces

D. Citric Acid Solution.

Citric acid 128 grains
Alcohol, 95° 4 ounces

Label each of these bottles, and state plainly what the contents of each bottle consists of, and exactly how it was made; in fact, write the whole formula on each label.

Obtain a ten-ounce collodion bottle which is thoroughly clean, and rinse it out with a little water. Carefully decant 8 ounces of A, after it has been standing for a few days, into this bottle, and next add 64 drops of B, adding but two or three drops at a time, shaking well between each addition to prevent the silver from precipitating.

Now add in the same way 4 drachms of C, adding two drops at a time. This last addition is the most important of all, for a moment's drop of this is added, it will commence to turn milky, and chlorides of silver is formed. This last addition should be done in the dark, and it would be well for the beginner to heed it, for from this time until the collodion is used up, the bottle should always be kept in the dark.

Finally, there should be 4 drachms of D added in the same manner as the calcium.

The beginner must bear in mind that chloride of silver is far more sensitive to the light than nitrates of silver, besides giving a softer, finer, and more delicate print than the latter.

It is on this account that the paper which is used in the positive process is salted generally with chloride of ammonium, although chloride of barium is sometimes used, so that we have a paper prepared which, when first I open a bath of nitrate of silver, the chloride in the paper will take up from the bath the silver which it needs, and form chloride of silver, which will print, as before said, much better than nitrate. Now the same thing is the case in the making of the collodio-chloride, with the exception that we cannot prepare the porcelain plate with a chloride, as in the case of the paper, should we try to do so successfully. To overcome this, we make a collodio-chloride which will in its composition combine all of the nature of the albumen or the plain salted paper and the nitrate bath. The chloride of calcium, in conjunction with the nitrate of silver in the collodion, will form a chloride of silver, which is just what we wish. The plain collodion in the above collodio(a)-chloride is to give a tough body (when viewed in one direction) to the solution, which body is increased or diminished according to the number of grains of cotton there may be to the ounce of collodion, and to prevent it from getting thicker than it is already; then keep this plain collodion, as well as the collodio-chloride bottle, tightly corked.

The nitrate of silver in the above solution answers the place of the positive nitrate of silver bath, and the chloride
of calcium, which is the chloride I always use, takes the place of the chloride of ammonium in the paper, and the chloride of silver (which is formed by the nitrate of silver and the chloride of calcium uniting) in the collodion is the same as the chloride of silver which is formed in the paper when floated upon the nitrate bath.

To get a richer tone to the freshly silvered paper, as well as to coagulate the albumen and prevent the solution from penetrating too far into the paper, alum, nitrate of ammonium (especially the former), are generally used; and to get a richer tone in the collodio-chloride, citric acid is used in the quantity recommended above.

The chloride of the chloride of calcium, many photographers use the chloride of lithium or strontium, but I have always liked the calcium best, although I cannot say that I have given either of the above (i.e., lithium or strontium) a very fair trial. The chloride of calcium, however, is the most used of the above named chlorides.

When the collodion is well made, it will have a most delicate pearly whitishness to it, which is the most beautiful colour of that kind that I ever saw.

It can be worked with good results in a day after it is made, but it is in fine working order in about a week. I have used it when it has been four months old, and with the exception, in hot weather, of a very slight tinge of yellowness, it has been all right.

The position of collodion is made to keep for a long time, the greatest part would be given in adding the silver and calcium to the collodion, so as to have it properly mixed. It should be made more sensitive in winter than in summer, and for the beautiful imitation, the "photo-porcelain," it would be better if the proportion of chloride of silver were six grains instead of eight, as the shadows in the making of this style of picture are more given to bronzing than in the real porcelain; but for the porcelain itself eight grains is the best.

PHOTO-MECHANICAL PRINTING.

BY E. BISHOP.*

Another modification of the Albotype is known as the Heliotype, patented in England and in the United States by Ernest Edwards. This process adopts the same materials used by Mr. Albert, the only difference being that the chrome gelatine is made thick enough to sustain itself after being detached from the plate on which it is made, and is transferred to a 100 plate to be printed from. The advantage claimed by this patentee is that there is no fear of breaking the plate while printing. This fragility of glass plates in the Albotype has been so greatly magnified, that it might be well to notice for a moment the treatment to which the glass plates are subjected in comparison with the method adopted by the Heliotype. The latter uses only a vertical pressure, whilst the Albotype uses all kinds of pressure known in printing. The glass plate is bedded in plaster of Paris on a stone, and becomes as solid as the stone itself, and in practice each press will not break on an average more than two or three plates in a year by constant printing, although both the lithographic scraper and the copper-plate or roller presses are used as well as the vertical, and either of them are more trying to both plate and film than the typographical pressure.

In relation to the respective merits of the Albotype and the Heliotype processes, it may be well to compare the two methods more fully.

1. The same materials are used in both; viz., gelatine and bichromate of potash; and, according to the specifications, both are hardened on the back by exposure to light, and hardened furtherly by exposure of the coagulating material, generally chrome alum. There can be no difference here.

2. The thickness of the layer of gelatine in the Albotype is, when dry, about a two-thousandth part of an inch. In the Heliotype it is more than five times as thick; five times as much material must of course be used, but, as the cost is only a fraction of a cent to a square foot, this is a small item; still it is slightly in favour of the Albotype. Another advantage is, that in moistening the film it does not swell as much; and as the roller must touch all parts in order to deposit the ink, it is plain that the less relief there is, the better will a roller come in contact with the deepest parts.

3rd. Concerning the treatment of the respective films: the Albotype is retained upon its original base, while the Heliotype is detached from it, so as to be transferred to another.

The advantage claimed by the former is the entire freedom from contraction and expansion, so that maps and plans can be made exactly to a scale; this is impossible with a detached film.

The latter claims a more perfect surface than the Albotype, because the picture is made upon that side of the film which was in contact with the glass, and was protected from dust. In four years' practice I have never seen a plate that was damaged by dust; I must, therefore, decline to allow this claim.

4th. The ink, and the methods of applying it. It is said that thick or stiff ink contains more colouring matter than thin, and in the Heliotype specification it is recommended to reduce the thickness of the ink with tallow or olive oil, and not with lithographic varnish, because the adhesive properties of a stiff ink and a leather roller are too trying to the detached film; the oily ink is therefore applied only with composition rollers.

With the Albotype, adhesive or otherwise ink may be applied with any kind of roller. Where it is desired to print a picture full of half-tone, and as brilliant as an ordinary photograph, the stiffest ink is applied with a leather roller; the result is that two or more different grades or thicknesses of ink can be applied one over the other; without the fear of dissolving the stiff ink by repeatedly passing a roller over it charged with thin or oily ink. The Albotype method is acknowledged to have produced the most brilliant pictures in half-tone, such as portraits, landscapes, and views, taken directly from objects. In line engravings there is very little difference between the two processes; that there should be a difference of any kind is accounted for only in the toughness of the films, and in the permanency with which they are attached to their supports.

Where a well hardened film of good gelatine, firmly attached to its base or support, pictures can be made with all the brilliancy of albumen photographs, and, being printed in permanent inks, they must endure as long as the surface on which they are printed. Each one can judge for himself which of the processes comes nearest to perfection. Improvements will undoubtedly be made; even now steam presses are being used to print the Albotype.

With the facilities we now have, and which are fast developing themselves in collographic printing, there seems to be nothing in the way of making photography the most perfect medium through which to secure illustrations for books, or for any purpose for which pictures are required. The printing-ink gives us permanency, and the unerring eye of the camera will record what it sees with a fidelity unapproached by art, and in a universal language.

The time is not far distant when every city or town of any importance will have its photo-mechanical printing establishment, and photographers will avail themselves of its facilities for doing all their printing; this it can do now cheaper than is possible by the silver or chemical method. This is not mere conjecture. The actual time required to produce a dozen pictures after the negative is made is no more than is necessary for the same number of silver prints, and the cost of material is much less.

Much more might be said on this subject, but seeing is better than hearing, and as the Albotype process is in practical operation in our midst, all may see it who will, and judge of its merits for themselves.

* Continued from page 480.
MR. VANDERWEYDE'S NEW FORM OF STUDIO.

The efficient lighting of the model is probably the most important part of the duty of a portraitist: true likeness, pictorial effect, and rapidity of exposure—so important in securing natural expression—alike depending upon such efficient lighting. All other aids and appliances are comparatively worthless without it: the most perfect lenses, chemicals in the finest condition, the highest attainable degree of method in posing, are thrown away unless the facility for securing judicious light and shade exists. Various forms of studio and modes of lighting have been proposed and tried, with varied degrees of success; from a structure built entirely of glass, with blinds and curtains to every part of it, to the dark tunnel with small portion of top and side light at one end. But until now, no definite attempt has been made to reduce the mode of lighting to a science, and to construct the studio on scientific principles.

As our readers are aware, Mr. Vanderweyde, an American artist, whose recent avocations have afforded him facilities for seeing many hundreds of photographic studios in America, England, and continental Europe, has devised a new mode of lighting the studio. Struck with what he saw a defect current in the studio he visited, he sought to remedy this defect. In all the studios he met with, he found more or less of useless or mischievous light—that is, light not reaching the sitter or helping to produce the picture; whilst in many instances this light, by causing injurious reflections, destroyed relief in the picture. Mr. Vanderweyde felt the desirability of devising a studio which should permit of the concentration of light on the sitter, or the objects forming the picture, of every ray of light entering the studio, and of acquiring such control over the light as would permit the artist to produce any effect, proportion, and relation of light and shade in the photograph which he might conceive to be desirable for pictorial purposes. The general principles underlying the theory which Mr. Vanderweyde arrived at, from observation and reflection, coincide in a curiously precise manner with those which we laid down when describing the theory of lighting about a dozen years ago; and as the statement of conditions we then made accurately expresses the fundamental idea upon which Mr. Vanderweyde's theory is based, we will quote our former article to aid the reader in understanding what Mr. Vanderweyde means by his studio.

"We commence by reiterating two or three propositions which will not be disputed.

"First—All light, direct or reflected, entering the studio, ought to illuminate the sitter, the background, or the accessories; in short, all the objects to be delineated in the picture, and nothing else.

"Second—that no light, direct or reflected, should enter the camera except that proceeding from the illuminated objects which are required to form the picture.

"Third—that the rays of light must be in straight lines, and only those which reach the glass at right angles pass directly through, all others being more or less thrown off by reflection, it follows that the greater portion of the light entering these studios does not reach the sitter, but, passing through the glass to the portion of the room opposite to it, is thence reflected in a variety of useless directions.

"The amount of mischief effected by the presence of unnecessary direct or diffused light on the shadows is not easily estimated, especially with a surface so delicately sensitive as that obtained where bromo-iodized collodion and iron development are used, by which every radiation of every kind is at once rendered apparent. In this class of negatives, moreover, clean transparent shades are of utmost consequence.

"There are other difficulties caused by this unnecessary light. The uncertainty and uncontrolled character of the minor reflections falling upon the sitter are a source of difficulty which is, perhaps, little noticed, but, nevertheless, injurious. Another serious disadvantage, especially in large towns, is that produced by the blank night sky which reflects the light of the street, passing on a dissipated form, the moon, stars, or lighted window, to the face of the sitter, as he sits in the dark.

"The method by which Mr. Vanderweyde aims to secure the concentration of all light on the sitter, and the exclusion from the studio of all light not employed in producing the picture, is very ingenious. Instead of an ordinary flat window, he gives the window a zigzag form, so that the light reaches the sitter through a series of planes of glass, of (say) from twelve to eighteen inches broad, each set at a different angle, so that the rays, striking it at right angles, pass straight through to the sitter. This series of planes, standing at angles varying with their distances from the sitter, so that they may all actually face him, are connected with another series placed at angles varying slightly, and so to all the planes of glass to the other end of the room. The sitter, at whichever end of the room he may be placed, sees simply the planes of glass which face him, and the light which they admit; the corresponding series, facing the end not in use, are covered with blue opaque blinds, excluding all the light which would otherwise pass in and reach the camera and other objects without illuminating the sitter. The result is a greater concentration of light on the sitter, with actually less light entering the studio. One of the primary results of this arrangement is a sense of coolness and of moderate light, which is comfortable and refreshing, and very unlike the blinding glare of light too often seen in an ordinary photographic studio. The next result which should theoretically follow is greater rapidity from the concentration of light and the shorter time occupied by the shutter at all light permitted to enter. On this point it will only be possible to speak after a careful series of comparative trials, yet to be made. In the one studio of this kind already erected, we have had opportunity, through the courtesy of Messrs. Fradelle and Marshall, who have been the first to try this novel system of lighting, of seeing the result produced at short notice.
Benjamin Wyles, for studies of sunset, and E. P. Lee and Co., for some exquisite coloured photo-enamels, each receive first bronze medals. The Judges also named A. and J. Bool, Reuben Mitchel, and W. J. A. Grant, but these exhibitors having had awards in the two past exhibitions, none of the Society barred from taking prizes in the succeeding year.

A more detailed notice will probably appear in our next.

We append the Official Report of the Judges.

REPORT OF THE JUDGES IN THE PHOTOGRAPHIC DEPARTMENT OF THE ROYAL CORNWALL POLYTECHNIC SOCIETY'S EXHIBITION, NOW OPEN AT FALMOUTH. BY THOMAS HART.

(Read before the Society, Tuesday, Sept. 14th, 1876.)

GENTLEMEN,—It is with feelings of great pleasure that the Judges in this department report on the magnificent collection of photographs now exhibited, and to many of which they have had the honour of awarding medals; and regret that they could not, by the rules of the Society, extend the prizes. They would recommend the Committee to revise the prize list for competitors before next year, in order more fully to meet the requirements of the subjects developing of the art, as, in so far as it is essentially a chemical science, but a real fine art, requiring the highest artistic culture, as evidenced in such works as those exhibited by Col. Stuart Wortley, Geo. Nisbet, Messrs. Chaffin and Sons, Geo. Butterworth, A. and W. Bool, David Hedges, W. Nicholson, W. Brooks, Robert Crawford, Garrett Cocking, and many others whose works are in the Exhibition.

The First Silver Medal is awarded to Messrs. Chaffin and Sons, of York, for No. 749, "The heron and the stork, with flowers"; show, technically and in artistic qualities, and is the largest direct photograph (of figures) from one negative ever exhibited here. Messrs. Chaffin exhibit other works showing the same careful manipulation and good results.

The Second Silver Medal is awarded to George Butterworth, of Bournemouth, for his portrait of a young lady, No. 687. Mr. Nisbet exhibits ten photo. pictures, all showing that he possesses talents of a high order, and that he has used them well. His picture No. 682, "She will Recover," reminds one of the late Dean G. Bellasis in its artistic quality. A Special First Silver Medal is also awarded to Col. Stuart Wortley, for his collection of large studies of figures, which are very beautiful. They are powerful in light and shade, well graduated, and remind us of the works of Rembrandt, Rembrand's. He exhibits a splendid collection of large instantaneous views ("What are the wild waves saying?"") is particularly successful; also the largest and best specimens of dry-plate photography we have ever seen.

The First Class Silver Medal is awarded to David Hedges, of Lytham, for his fine studies of animals (a most difficult branch of the art) most successfully treated, particularly the horses in case No. 601.

The First Class Silver Medal is awarded to W. Nicholson, of York, for his "Bonchurch," taken direct; it is a view well selected, broad in treatment, and shows that Mr. Nicholson has an eye for the beautiful.

The Second Class Silver Medal is awarded to Messrs. Robinson and Cherrill for their "Gleaner," No. 728, showing all the characteristics of their work (for which they are so justly famous), but scarcely equal to former productions exhibited by them—"Bringing home the May," for instance, of which we have lively and pleasant recollection.

The First Bronze Medal is awarded to W. Brooks, of London, for his collection of beautiful landscapes which are all well selected and cleverly manipulated. "Kenilworth" (No. 768) is very fine.

A Special First Bronze Medal is awarded to E. P. Lee and Co., of Castlefield, for their case of coloured ceramic photographs, which are excellent.

A first Bronze Medal is awarded to J. M. Young, of Llandudno, for his well lighted and beautifully modelled portrait studies. A First Bronze Medal (special) is awarded to B. Wyles, of Seabrook, for his instantaneous studies entitled "Clondiland," which are exceedingly artistic productions.

Others exhibiting, and whose works deserve special notice, are those of La Fose, who sends some very fine portraits (see No. 702); Garrett Cocking, who is a thorough artist in feeling, and a very clever manipulator (see No. 727, "Cellole Bernina," and No. 709, "The Knight of the Bath," &c. &c. We hope to see more of Mr. Cocking's works.

Messrs. A. and J. Bool, of London, send some very fine landscapes—their "Hampshire Lane," No. 679, and No. 676, "The Bridge," particularly nice. The Bool brothers, in effect, well rendered. Both are taken direct from nature. Mr. R. Mitchell, of Bolton, sends four excellent landscapes.

The Amateur Department is also well represented; first, by the splendid collection (of about thirty works, including landscape and portraits) by Robert Crawford, Esq., to whom is awarded a First Silver Medal for his large study of "Daisy," No. 828; No. 801, portrait of the Right Hon. Marquis of Bute, is also very fine, as are several others; secondly, by W. J. A. Grant, who sends some splendid bits from Scotland and Ireland (see frame No. 831, many of which were taken at midnight).

BACKGROUNDS AND THEIR USES.

BY L. W. SEAVER.

In studying the effect produced by the background of a painting, engraving, or photograph, a good and general practice is to cover light or dark portions, prominent lines, or accessories, either with one's hand or a piece of neutral-tint paper, and noting carefully the result. One portion may be too light, another too dark; a perpendicular line, too decided or too near the subject, may intercept the outline of the figure or object, and in either case it seems to grow from it; acute angles be formed which lead the eye away from the principal object, and give a kind of cut-out effect.

Occasionally, flowers, vases, or other accessories used in photography, from their surfaces being reflective, appear too light, and consequently too prominent. Faults of this kind are easily detected by covering those parts with the thumb or finger, and observing the change produced by their absence.

There was a picture at the Buffalo Convention which was much admired for the impression of refinement and purity which it conveyed. The contrasts were not strong, there were no large masses of shadow. The subject was that of a lady, head and bust—the background slightly inclined, so that the light was one on the cheek, and the other relieved. The hair was not very dark in its shadows, and the dress might have been a grey. The shape of the picture was circular, and about three inches in diameter. A few moments of study, examining the principles on which the picture was constructed, revealed a little patch of shadow, about the size of a pea, darker than any other part of the picture, at the left and lower part of the background. A test of the value of this morsel of shadow by the plan suggested discovered that what was before a well-balanced picture, delicate without being weak, became flat and uninteresting. The foregoing illustrates the fact that many times a weak picture, photograph, or painting lacks only a little touch of deep good shadow. In fact, we have, within the last week, applied the above principle, having painted a photographic background representing the sea-shore, we observed that it lacked strength. A few vigorous touches of shadow in the foreground, without increasing the lights, not only supplied it, but put the whole into better aerial perspective.

One of the best effects we have seen in a three-quarter figure was where the back of the subject, in black or brown, was turned to the light, the hair was made into a profile, arm folded, the background behind the head and in front of the figure nearly plain; at the side from which fell the light, a shadow (painted) was cast at an angle of forty-five degrees, filling the entire lower corner of the card, somewhat darker toward the bottom, and intersecting the out-
line of the subject at, or slightly below, the shoulder-blade. This shadow supported the figure; against it the subject seemed to lean.

The above arrangement of shadow should be used only in side views, as in a front figure it throws the picture out of balance. As there are many galleries supplied with interior backgrounds which have a shadow falling as described, we would respectfully suggest a trial of this style of side-view.

The most appropriate background for the head of a child seems to be a vignette, probably because the softly-blended shadows of the face and their rounded form would lose somewhat their interest by the introduction of other objects, and the fact of its being impossible to introduce more than a small portion of any accessory. Cloud effects, when represented, should be very delicate—barely suggestive, and not, as we have seen them, too stormy. They should be avoided when the focus of the lens will not reach the background, as the dull, heavy atmosphere which seems to surround the figure is not in accord with the spirit of childhood. A comparison of two imperial cards of a child, where a landscape background with rustic accessories have been used, the one plain, the other vignette, will be found to differ principally in the following points: in the plain picture the background, however well painted, will lack force; then there may be too large an expanse of flat tint around the head, and the heaviness already spoken of will be present; another cause of which is the customary short exposure, and the consequent lack of detail.

In the vignette the effect will be more aerial and delicate, and the interest will be centred solely in the figure, bearing scrutiny, and pleasing the imagination by the suggestive surroundings.

METEOROLOGICAL REPORT OF THE CHEMICAL INTENSITY OF DAYLIGHT, TAKEN AT BLACKPOOL, LANCASHIRE.

BY D. WINSTANLEY, F.R.A.S.

So far as I am aware, no meteorological reports of the aggregate chemical intensity of daylight have thus far appeared, though manifestly this is of much more importance than a series of isolated observations of the chemical intensity of light prevailing at certain particular moments of the day. For instance, in estimating the amount of rainfall it is more desirable to know how many inches or what fraction of an inch fell in twenty-four hours, than how many inches or what fraction of an inch would have fallen had the rain continued during the entire day at the same rate as that prevailing during some particular hour or some particular moment of the day. The truth is, even a large number of isolated observations of the chemical intensity of daylight furnish but an indifferent means of arriving at the aggregate intensity of the total light of day.

I have now in daily use an instrument which I have devised for taking a record of the aggregate chemical intensity of the total light of day, and by the employment of which, therefore, a really reliable estimate of the total amount of chemical force available for work may be arrived at. Unfortunately I have not at present the advantage of a station commanding an uninterrupted view of the entire celestial hemisphere, and my reports must therefore for the present be confined to an observation of the southern sky. The plane of my instrument is vertical, and its aspect to the meridian. The sensitive material is silver chloride, and the daylight estimated confined to such portions of the spectrum as affect the haloid named. The figures used, though reliable amongst themselves, refer to a purely arbitrary standard, not yet correlated with the standards now in use. The following are the figures for the week ending September 4, 1875:

I may remark that I do not intend any long continuance of these reports, but I have reason to believe that another and a distinguished member of our craft will shortly take the matter up, giving more detailed reports, and in a more attractive form than mine.

ROZSNYAY'S EXPERIMENTS IN HYALO-PHOTOGRAPHY.*

To prepare hyalo-photographs, or pictures upon glass, M. Rozsnay uses finely polished soda glass plates, which withstand the operations of the process far better.
than potash glass plates. The plate is coated in the ordinary way with bromo-iodised collodion, and the picture
is developed with a solution of iron, and intensified with
chloride of gold solution of 1:2000 strength. In this way
the film of silver is converted into a film of gold—a change
that is necessary in order to protect the plate where covered
by the image when it is afterwards submitted to fuming
with fluoric acid. Silver only impartially protects the
plate, and then the impression is not so sharp and clear.

As the fluoric acid cannot get to the glass through the
film of collodion, this must be first of all decomposed and
removed in such a manner, however, that the picture does
not suffer in any way. This is the most difficult part of
the operation, and only succeeds with care and experi-
ence. The glass plate is very apt to break by submission
to unequal heat, and yet it is necessary to heat it to
redness, so that the collodion may be completely removed,
and the gold-silver image may be, to a certain extent, fused
into the glass. At a high temperature like this, a potash
glass plate melts a little, and becomes uneven; and for
this reason it is that soda glass must be employed.

The plate is allowed to cool slowly, and is sufficiently
cleaned, after which it is submitted to the action of fluoric
acid vapour; if this be generated in a uniform manner the
etching will act very evenly. After etching, the plate is
frosted with a film of gold by means of a solution of a
acid which is then ready for further treatment. If it is rubbed
over with powdered graphite, which is well removed after-
wards, we have a dia-positive, in which all the finer detail
can be seen, and after this process the image may be
electrotyped. This electrotypes should serve as a printing
block for mechanical printing.

Mr. Rountey, who is an amateur, has not prosecuted his
experiments beyond the etching, for the reason that he
had no proper muffle-furnace, and could not, therefore,
produce his images on glass properly. The furnace he
employed was a rough one, and the heat so badly regulated
that his plates always broke during this process; but such
an accident, he argues, should not happen in a properly
constructed apparatus. His fractured plates he was
enabled to etch very perfectly by means of fluoric acid
vapour in the way mentioned, and although it was not
worth his while to carry the matter further with broken
plates, he believes perfect success might be obtained by
following the path he has pointed out. If suitable glass
plates were obtained, and proper apparatus, he thinks that
printing blocks might be secured in this way without much
difficulty.

THE PRINTING DEPARTMENT.

BY ALFRED HALL.*

Or all the departments in photography, that of printing
requires the most care, the most skill, and the best judg-
ment; and by far the most constant application—all of
which is essential to success.

The printer must be at his post early and late, he must
be constantly on the alert, ever watching that no enemy
creeps in to disturb his solution, to see that the albumen
paper is in condition to absorb the silver properly, after
which it requires constant observation that the printing
may be carried to just the right point; for if over or
under printed, no matter how good the negative may be,
the result is inferior.

A printer may produce a very poor print from a good
negative, or a very good one from an inferior negative,
after which it requires constant watching to see it safely
through the washing, toning, and fixing.

It requires judgment and taste to decide just how a
photograph should be printed to give it the best effects;
the artistic appearance of a photograph depends as much,
and perhaps more, upon the printer, than it does
upon the operator.

A printer should be to photography what the three
great pillars "which are denominated wisdom, strength
and beauty" are to the Masonic Lodge. He should have
wisdom to contrive ways to print different negatives, so as
to bring out the best points and hide the base; he must
strength to support him through the long hours of mental
and physical labours incumbent upon the successful
printer; and then he must have beauty, "not of person,
necessarily," but an eye for the beautiful, that he may
determine when he has produced the finest and most plea-
ing effects possible to produce from the negative, both in
quality and tone.

How few there are in charge of this important branch
of photography who possess these qualifications! If the
reader is one of the fortunate few, he will not be benefited
by anything I can say, but to the thousands of inexpe-
rienced persons who are employed to carry on this im-
portant branch of our beautiful art I will speak. It is to
this class I shall dedicate this article. It is useless to give
definite rules for managing the printing department, even
that it can be run by rule. In such case skill and judgment
would be useless, a knowledge of the rules would be all
that would be necessary. I will try to give some general
ideas that will aid good taste and judgment.

In the first place, almost all nitrate of silver is in a
condition to be printed at any temperature; to an extent,
all the acid must be washed out with ammonia, and kept in
this condition to make brilliant prints. Some contend that
if the solution is acid the fuming of the paper remedies the
evil, or produces the same effect as adding ammonia to the solution. This is a
mistake—practice proves to the contrary. The strength of
the silver solution depends upon the intensity of the
negative, and the strength of the salting of the albumen
paper.

The time for floating depends upon the tempera-
ture of the room and solution. It varies from thirty
seconds to a minute. Thirty seconds in a warm summer
day, if the albumen is not too dry, is sufficient. The
paper should be kept for twenty-four hours before using
in a damp place; it will absorb the silver more evenly,
and prevent the likely possibility of silver being
decomposed slightly and falls into the silver bath, decomposes there,
and produces an acid reaction, which makes it necessary
to test the solution often with litmus paper, that you may
be sure to keep it slightly alkaline by adding a drop or
two of ammonia as required.

Fume from five to ten minutes in warm weather—
longer in cold.

If the print when taken from the printing frame has a
cold, greyish look, shorten the fuming; it should have a
dark cherry-red colour. If your prints bronze in the
shade, shorten the time of fuming; if that does not
remedy it, reduce the strength of the silver solution. If
the prints look weak and flat on coming from the printing
frame, I deduce this article. It is useless to give
definite rules for managing the printing department, even
that it can be run by rule. A weak negative should be printed
in the shade, or under ground glass or tissue paper. The
slower, to a certain extent, the reduction of the chloride,
the stronger will be the print. Wash the prints well in
several changes of water to remove the free nitrate, then
redissolve with very dilute sulphuric acid, wash the acid
well out in several changes of water. Tone in an alkaline bath,
morelight by adding ammonia, washing and fixing.

The toning bath should be tested every time before
using, to see that it is alkaline. I always keep a piece of
litmus paper in my bath while toning, that I may observe
its condition. Carry the toning just far enough to get rid
of the unpleasant red colour when fixed. The brilliancy
of prints is often destroyed by carrying the toning too far,
before which gives them a sickly look. Your ex-
pertised eye must direct you in this.

After fixing, remove the prints directly to a strong
stream, let them remain from half an hour to an hour,
wash in a three or four hour—unt before dry.

* Western Photographic News.
THE PHOTOGRAPHIC NEWS.

Correspondence.

THE FORTHCOMING EXHIBITION.

Dear Sir,—Permit me to call the attention of your readers to the advertisement, which appeared for the third time in your issue of the 10th inst., relating to the Exhibition of the Photographic Society. The Assistant Secretary will be prepared to receive pictures, addressed to him at the Gallery, 5, Pall Mall East, from Monday the 20th, to Thursday the 23rd inst., both days inclusive.

The Exhibition will be opened with a conversation of members and their friends, on Tuesday evening, September 28th, and will remain open till the 20th November.

It is requested that all communications may be addressed to Mr. Edwin Cocking, Assistant Secretary, at the Gallery.

I am, sir, yours truly, R. J. Fairfull, F.P.S., Hon. Sec. 9, Conduit Street, W., September 15th.

CARD PORTRAITS IN EXHIBITIONS.

Dear Sir,—For a long time past I have been going to ask you to allow me, through the medium of your valuable paper, to make a suggestion, but have waited, thinking I should like to read it coming from a more able pen than mine; but as no one seems to broach the subject, I feel I cannot allow it to remain unnoticed any longer.

I know that of all our great and wealthy admirers of our beautiful art none of them think it worth their while to endeavour to raise the standard of our C.D.V. portrait by offering prizes for the best productions. Now I think a great mistake has always been made at our exhibitions by entirely ignoring the existence of the C.D.V. by not giving a few medals or other suitable awards for this size picture, in fact, and (I venture to predict) will be, the photograph of the day.

No matter how perfect are our enlarging processes, or how well they can produce large work, the public will not have them, except in exceptional cases. Why, then, has this branch been so long overlooked or forgotten, and preference and encouragement given to that of the smallest demand? I am quite sure that nineteen out of twenty photographers have never been able to show what they can do, or compete with others at exhibitions, simply because they have not the lenses to do the size work required. How many have lenses to take a 16 by 12 portrait, a 12 by 10, or even a whole plate? If they have the lens, have they the glass room suitable for these portraits? Or if they have both, how many can afford to spare the time necessary to do them properly?

You, or some of your readers, may urge that medals or prizes have been given for enlarging, and, of course, the best carte negatives would, in most cases, produce the best enlargement, so that indirectly they have been encouraged. This I admit; but then photographers who have their living to get by their profession cannot spare the time to make experiments in enlarging, though they may have excellent facilities and abilities for doing so.

Then what I would suggest is this: that a special exhibition be held for carte and cabinet size portraits, and an entrance fee of (say) five or ten shillings for each case of portraits exhibited be charged; the cases not to exceed a given size, and the entrance fee to form prizes for the successful operators.

I would also like to see the operator's ability recognized in some form or other. To meet this, then, I would suggest that bronze medals, or even certificates, be awarded to the operators of the successful pictures, and, of course, something of more value to the employer. 'This, I think, would induce all to do their very best, and improve the quality of our pictures. I do not think I am alone in wishing to see the standard of the operator raised; I am sure there are hundreds like myself who would like to know who are the best photographers in the United Kingdom, and who would try and imitate their work, improve upon, and beat them. Trusting you will find room for this, and that in your next issue a few others will give their opinions on this subject.

I am, dear sir, faithfully yours,

N.

[There cannot be a doubt that the general tendency of the projector and managers of exhibitions has been to encourage the production of large pictures; possibly with the view of making a more effective display; possibly to reward some of the large-crammed pictures. It cannot be said that any of the ordinary staples, of each portraitist's work, it has not been thought necessary to stimulate improvement by any inducement beyond trade competition. We, nevertheless, quite agree with our correspondent, that it would be wise to encourage the highest excellence in that style which must inevitably be most largely produced. Some mode of recognizing the skill of the operator is also desirable.—Ed.]

METHYLLAL IN THE DEVELOPER.

Dear Sir,—The remarks in Mr. Warnerke's letter in your issue of the 11th inst., referring to my experiments with the methyllum developer, misrepresent my published results. His statements would lead your readers to suppose I lent my name to support his view of the power of the new agent. I beg to refer any one interested to the original account in the British Journal for Sept. 3rd, from which I quote the following:—"It will thus be seen that, so far as my experience goes, it is dead against the new developer, which in no way surpasses what we have had in daily use for so many years."—I am, sir, yours truly,

G. Watmough Webster.

Talk in the Studio.

PHOTOGRAPlNIC EXHIBITION.—Photographers intending to compete in the forthcoming exhibition should remember that Thursday next, the 23rd inst., is the last day for sending in pictures.

ARE ALL RAYS OF EQUAL VELOCITY?—A premium of one thousand dollars has been placed in the Franklin Institute, in the name of Mr. Uriah French, of Centre Park, for the discovery of a premium to any resident in North America who shall determine, by experiment, whether all rays of light and other physical rays are, or are not, transmitted with the same velocity. Memoirs describing the experiments, to be sent to the Institute before January next.

POISONING WITH CYANIDE.—An inquest was held a week ago at Yovil to enquire into the case of death of a gentleman who appeared to have been poisoned. The medical man in attendance gave his opinion that the cause of death was caused by the proceeding from the stomach itself, he had attempted to poison himself. In the course of his evidence the doctor said:—"I noticed a white fluid dribbling over his lower lip, and he immediately vomited a crystal, which was dissolved. I ran off for remedies, as I felt sure deceased had taken poison. While I was at Mr. Maggs' shop, Mr. Maggs came in with another crystal, which he said deceased had vomited. I went back to the dying man, and administered an emetic consisting of fifty grains of sulphate of zinc. Deceased swallowed the zinc, but vomited immediately afterwards. I saw no more crystals, and with the exception of the mouth being burned, deceased seemed no worse for the poison. Deceased had swallowed cyanide of potassium, and after he had recovered a little I gave him a potion of chloroform, sufficient to deprive him of all sense. We kept him asleep in ten minutes, and slept for ten or fifteen minutes, but when he awoke he seemed in the same excited condition, only not quite sensible. I gave him half a grain of morphia in a solution, but he would not drink the medicine. He looked about two-thirds of the dose, but it did not have the least effect." More chloroform and more morphia were administered, and death took place the following day. In cross-examination the medical man stated that he administered the sulphate of zinc to clear the stomach of cyanide. He believed that very little of it had entered the stomach; but he prescribed sulphate of zinc because he had read that it was a proper remedy for cyanide. The jury found that death resulted from the deceased having, while in an unconscious state of mind, taken cyanide of potassium, thereby incalculable previous excitement, which result cannot be too well known and remembered that a mixture of perchloric and sulphate of iron, in proportions we have often
THE PHOTOGRAPHIC NEWS.

[September 17, 1875.]

Litho.—There is clearly an insincerity in the statement of the formula, as the quantity of water in which any gramme of sulphate of ammonium is to be dissolved is not stated. We have no means of verifying the formula, which appeared years ago, and is probably the error in the original publication.

D. Wystanley and A. Brothers.—We were not invited to both these gentlemen. Each thinks that the other has been allowed to say too much, and himself too little. We regret the necessity to disagree either, but we cannot discuss the question between them in these columns.

A constant reader wishes to know the nearest National School of Cookery to Baker Street, London, and the cost of tuition there. Can any reader inform our correspondent? We should think South Kensington to be the most available.

Frank Stuble finds an example of a defect with which he has been recently troubled, which has only now, half the room being used, has not troubled him. It consists in red spots, or circular patches about a quarter of an inch in diameter, having the appearance of the measles of a well-toned print. There is a general gradation from the centre to the edges. We have seen similar patches where the paper has been touched with something greasy, which caused it to repel the toning solution. We have not met with any thing definitely like this. Has any of our readers done so? We have not seen the backgrounds to which our correspondent refers, but have heard something of them.

Several Correspondents in our next.

METHOROGICAL REPORT FOR AUGUST.

By William Henry Watson.

Observations taken at Brecon, and near Whitehaven, 38 feet above sea level.

<table>
<thead>
<tr>
<th>Date</th>
<th>Thermometer</th>
<th>Barometer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>1</td>
<td>58°</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>30</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>30</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>30</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>30</td>
<td>58</td>
<td>59</td>
</tr>
</tbody>
</table>

Summary.

Morning: 59° to 63°. Minimum: 55° to 61°. Mean: 58° to 60°.

Mean of whole: 58.5°. Number of fair days: 10. Number of days on which rain fell: 10. Fair days, sunny: 8. Rain this morning.

Note.—The thunder-storm which passed over here in the afternoon of the 10th inst. was of extreme violence, and was accompanied by a complete interruption of work for many hours. The rainfall during the storm, which was of about an hour and a half's duration, was about 1-8 inch, which, when spread out, amounts to 2-1 inches; hence rather more than half the total rainfall of the month fell in about one hour and a half on the 10th. From the observations as the temperature of the month of August, it has been slightly higher than that of the corresponding month last year. So far the harvest has been very successful; crops are unusually large, and have been grown under cover without much rain.

Old photo.—Mr. Cathy Ponting has been dead many years, and his business was, so far as we know, discontinued. Almost any fancy stationer will be able to supply or procure for you white enamelled paper. We prefer plain paper, such as Turner's Calotype, or any similar sample in the market, and stout paper answers well. It may be used without preliminary treatment, but we prefer a sizing with arrowroot. Baryta white is sulphate of baryta. 3. There is no work on colloidio-chloride printing. We have many articles on this subject in our correspondence, but there is no work devoted to the subject. It is practiced commercially in America much more extensively than in this country. Mr. Bruce, of Dunce, and some others, use it solely in their correspondence.

W. Campbell.—Your projected studio seems in every way, both in proportions and arrangement, very excellent. We should hope one day to see your plant in the peacocks or apparently about one foot wide; they would have been better nearly twice as wide, and so have escaped the interruption to the light caused by many such bars. The ground plan, also, seems very well adapted and judiciously arranged.

Captain Pixley.—The catalogues of photographic apparatus issued by Morley, of Islington Green, and Lawley and Sons, of Foundation Street, will most likely furnish the information desired.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Copyright in Photographs.—Photography and the Illustrated Press.—Photography in the Garden.

Copyright in Photographs.—Photographers do not know how far they are of assistance to the painter and draughtsman, nor are they likely to. Occasionally one may hear a grateful painter acknowledging the aid he has received from the camera of a skilful and experienced photographer, but this is only a passing incident. The photographs are direct from a sun picture that the ability and work of the photographer himself are obvious and undeniable. Sometimes the photographer’s picture is a bit altered, to hide as much as possible of his work, the outline and idea only being retained; and there is scarcely a photographer of note who has occupied himself in the task of picture-making who has not improved work of his own that has been absorbed by the engraver without leave or license.

Mr. Robinson, Mr. Blanchard, and, especially, the late Mr. Rejlander, each could have cited a score of instances in which his photographs had been copied by the engraver, and reproduced in illustrated periodicals which never paid the original artist a farthing. Studios of individuals are even represented, and, as we remember, a year or two back, on turning over the pages of a German illustrated journal, the Gartenauf, seeing a number of portraits of Mr. and Mrs. Rejlander, which had been taken to illustrate certain expressions of countenance. When we mentioned the circumstance to Mr. Rejlander, that gentleman was quite as surprised at the discovery as we were ourselves. There is another way of stealing copyright from a photographer which is even more odious, for in this instance the piracy is so obvious that no one would think of denying it: we allude to the practice of one photographer pirating another’s idea. Registration may prevent one from setting up a picture before the camera and reproducing it in this way, but it does not prevent a photographer who has worked out an idea from having such idea imitated, with more or less success, by several photographers; and this was the case with “Little Red Riding Hood,” and a dozen other pictures which found favour with the public, and had a name. The copy is generally very inferior to the original, and if the pictures were placed side by side for the public to choose from, those by the original artist would be the best done; but still, these piracies are usually pressed upon the retail dealers at a less price than the original pictures, and hence they get freely circulated. If pictorial photographs were produced and sold in larger numbers, it might be worth while, perhaps, for photographers to combine for the purpose of protecting their works more substantially; but at present such a course is, no doubt, hardly worth while.

Photography and the Illustrated Press.—The value of photography to such journals as the Illustrated London News, the Graphic, and the Pictorial World, is well known, and we have already in these columns pointed out to what a large extent our art is employed in the New York Daily Graphic, whose illustrations are very often indeed executed from photographs. The latter paper even employs a photographic process in the production of some of its illustrations, and, as our Paris Correspondent has lately informed us, at the office of the Moniteur Universel, which is one of the most extensive printing and publishing establishments in France, arrangements are being made for large photographic works, as well as for producing coloured pictures by M. Leon Vidal’s photo-chromic process. In this country, although we do not employ a pure photo-mechanical process—except in the case, we believe, of Funny Folks, in which foreign wood-cuts are reproduced from the comic journals of the Continent—photography is used to aid the artist in sketching to a great extent. We can give a good illustration of this. Last week, the big 81-ton gun, the largest and most powerful cannon in the world, was proved for the first time, and the occasion was naturally one of considerable moment. The representatives of the three principal illustrated papers were present during the firing of the monster weapon, in order to reproduce the scene in their papers, but beyond sketching a few outlines of the effect of smoke, &c., very little was done, for a photograph of the gun on its carriage being placed in their hands, their task on the spot was reduced to a minimum. The whole appearance of the immense i. gun was admirably given in these photographs, and so, having taken a comprehensive view of the scene around, the artists had little else to do but transcribe the picture to wood, and finish off the picture in any way that fancy might dictate. One of these days, no doubt, we shall have our papers illustrated by photographs pur et simple, but even now, as we have shown, photography has far more to do with the execution of the illustrations in our journals than most people may be aware of.

Photography in the Garden.—We were witness the other day of a very pretty application of light made by a gardener. Everybody knows that the ripening and colouring of fruit are due for the most part to light and heat, and that the rose upon an apple is influenced by the manner in which the sun strikes it. On looking at some fine wall fruits in a Kestish garden, the propriety of an illumination to the manner in which he allowed his peaches to be partially covered by a leaf or two, in places—namely, where he wished them to remain green—and thus heighten by contrast the purple bloom on other portions of the fruit. There were many examples of a leaf being very sharply photographed upon the fruit, and the grower, by exercising this cut in the course of the season, the extension of his beauty of his fruit, and also their value, as in the case of a peach it is not only its flavour, but its appearance, which governs the price at Covent Garden.

FRENCH CORRESPONDENCE.

A Dictionary of Health—Remedies against Poisoning by Acids or Ammonia—Captain Waterhouse’s Communication to the Paris Geographical Congress—Paprotte.

One of the most eminent professors of the faculty of medicine at Montpellier, Doctor Foussaglives, has undertaken the production of a work of the highest interest, which will very soon be seen in all the libraries. It is called the “Dictionary of Health,” and it will form a repertoire of practical hygiene for the use of all. I have already seen the first portion of the work, and it contains many things which will greatly interest photographers.

In the first place I may refer to the subject of mineral acids. Sulphuric acid, hydrochloric acid, and nitric acid, which are to be met with in all laboratories, as everybody knows, are so far dangerous that they are capable of producing both burning and poisoning. They must, therefore, be handled with the greatest care, and, for fear of accidents, it is well to know how to combat their injurious effects. If the acid has spread over the face or hands, these must be washed with abundance of water; throwing the latter upon the wounded portions with some force; for the corrosive action of the acid is very rapid.

In the event of the acid having been taken internally, the patient should swallow, in the first place, a large quantity of water mixed with white soap, to the extent of half an ounce of soap to every litre of water; then, as
soon as some lime-water has been obtained, or some calcined magnesia, this is taken also. The lime-water is administered mixed with water, four to ten tablespoonfuls of lime-water to a litre of water or milk; twenty to fifty grammes of calcined magnesia is mixed in the same quantity of water.

In place of lime-water, white magnesia may be employed, or chalk, or French chalk; but these carbones have the inconvenience of decomposing on contact with acid, and thus vast quantities of carbonic acid are generated, which have the effect of distending the patient's stomach, and causing further pain.

This treatment has the effect of getting rid of the poison, or of annihilating its bad effects; but the patient will still need the attention of a medical man.

Alum is employed in carbon photography, and as the process is every day becoming more widespread, there is some reason for photographers knowing the dangerous character of this product. The double sulphate of alumina and potash, without being considered a poison, may nevertheless produce very serious results, and as alum is frequently used in garum and emulsions, such as paper preparations for affections of the throat, it is well to know how to neutralise the bad effects of this apparently innocent compound when swallowed.

Ammonia taken internally may occasion death. Ammonia vapour breathed in quantity brings about very serious symptoms, and may also place one's life in jeopardy. In its effects it is not unlike arsenic.

M. Foussagives recommends his readers to be very careful about breathing ammonia gas, even when a patient is in a fainting fit; and he advises, in support of his opinion, the following fact:—A lady to whom ammonia vapour was administered to breathe during an epileptic fit, and who absorbed about four grammes of ammonia, very soon succumbed to fainting, and the unconscious patient the best means to employ in a case of poisoning with ammonia is vinegar and water, which is drunk, if fluid ammonia has been taken; if the patient has merely breathed ammoniacal gas, then he should be permitted to inhale the fumes of vinegar. It is needless to mention that the assistance of medical men is quite necessary in all these cases.

These are some of the points in M. Foussagives' work of importance to photographers. As Dr. Napias has remarked in his little pamphlet on the subject of the health of photographers—a pamphlet, by the way, which has been most favourably received in England, I hear—it is necessary that a photographer who has to handle daily so many different products should know something of their effects on the human system, and how to combat or render them harmless.

Captain Waterhouse, of the Surveyor-General's Office in Calcutta, whose name is well known to the readers of the PHOTOGRAPHIC NEWS, has addressed a very exhaustive and interesting communication to the Geographical Congress at Paris upon the subject of the application of photography to the reproduction of maps and plans. The task undertaken by the learned officer was one of considerable magnitude, for it embraced not only the history of the question, but also a detailed description of all the processes employed till now in the practice of this important branch of the new art. It was necessary for the author, therefore, to study minutely all that has been published since the first, and also for him to possess sound practical experience of the methods brought out from time to time. Not only does Captain Waterhouse possess in a high degree the indispensable qualifications, but he has been able, on account of his position, to get at the true value of the processes which he has described. His memoir is, indeed, a veritable practical treatise, in which specialists will find the most precise instructions; and to give some idea of the work, I may quote the following:

“I will now give a résumé of the operation which constitutes the ordinary photo-zincographic process as it is now practised both at Southampton and in India. Although modifications have been made in it for the purpose of preventing the lines from being injured on being transferred to stone or zinc, this very good and simple method may be considered as a type; and if one only takes care to secure perfect negatives from the original plan or map, the results furnished can scarcely be surpassed by any other process.

“The most important of these modifications has been elaborated by Captain Abney, of the School of Military Engineering, Chatham, under the name of papryrote. In this process a small quantity of chrome alum is added to the mixture of gelatin and bichromate of potassium which forms the film upon the transfer paper. This addition is for the purpose of rendering the whole surface of the gelatine insoluble, but without entirely withdrawing from it the property of absorbing water. After exposure to light under a negative, instead of being completely covered with a film of ink, the print is plunged into water for a few moments, and then applied to a metal plate. The excess of moisture is absorbed from the surface, and the ink is spread by the aid of a soft gelatine roller. The ink only takes in those parts which have been acted upon by light, and which have become insorberent of water, and capable, therefore, of retaining the greasy compound; while the other parts (where the gelatine has remained undamaged) are not attacked by the ink, and remain clean. When the image has been inked all over, it is dried, and exposed to light to harden the gelatine; the action of the light upon the chromium salt effects this, and then the impression is ready for transfer to zinc or stone.

“The advantage of this process is, that all the gelatine remains in contact with the paper, and the finest lines are not liable to be removed by washing; moreover, the ink lines, being supported to some extent by two walls of gelatine, are not subject to injury.”

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HIGHERWAY.

CHAPTER XVIII.

SENSITIZING THE PAPER—THE PRINTING FRAMES.

A CONSIDERABLE amount of mechanical skill is necessary to properly silver the paper for photographic printing; and on the success of the operation depends the subsequent result and the economy of the darkroom. On cutting up a sheet of paper, most of the pieces spoilt by white insensitive spots caused by air-bubbles between the paper and the solution, is mortifying to the pride, when it is remembered that they are evidences of want of skill or care; and to the same lack of carefulness and skill are attributable other failures.

In a very small darkroom, it is advisable to silver whole sheets at a time, there being less waste of time and material with sheets than with halves or quarters. The porcelain flat dish is the best kind of dish for holding the sensitizing solution, and the depth of solution should not be less than one inch.

The sensitizing room should not have any inlet for actinic light, or in drying the paper it is liable to get discoloured and spoiled. For this purpose it is advisable by a window, shade it with a yellow blind or paper.

In preparing to lay the paper on the bath, first turn up the four corners at about an eighth of an inch from the edge of the paper; this stops you the necessity of inquiring the finger to take the sheet from the bath. The paper, previous to sensitizing, should have been kept for a day in a cellar or darkroom, especially in dry weather, when the albumen is hard, and not only repels the bath
solution, but is apt to crack. It is sometimes well to bend back the edges of the paper by drawing the thumb nail lightly along the sides of the back of the paper at about a quarter of an inch from the edges, care being taken not to crack the albumen, that the paper may not have any angles to sink below the surface of the solution, and cause it to flow over the back and spoil it. Place the dish before you, its length being from right to left.

Take the diagonal corners of the sheet in your hands, holding them between finger and thumb, the length of the paper to correspond with the position of the bath, and let the sheet assume a curved position, the left-hand corner being the lower. Place the sheet at this point on the solution, about the centre of the dish, taking care not to touch the solution with your fingers or submerge the paper. Still holding the right hand high, but lowering it gradually, gently draw the paper across the paper in contact towards the corner it will occupy when the entire sheet is on the solution; by the time it has been drawn to this spot (the paper being gradually lowered by the right hand) the entire sheet should rest on the surface of the bath. By drawing the paper over the solution in this manner, air bubbles are driven before the paper, and if there are any under the paper they will be driven round the edge when a tap of the finger-nail will be sufficient to liberate them. Frequently, the edges of the paper will curl when first placed on the bath, but gently brushing on them will immediately flatten them. Should there be any drops of solution on the back of the paper, they should be blotted up dry with white blotting-paper.

The paper is now gently lit at one corner to be examined, and carefully replaced if quite right, and another corner raised; by this means we can detect and rectify any little defect in the original placing of the sheet. Having silvered the proper time, take hold of the left-hand corner of the paper nearest you with the right hand finger and thumb, and slowly raise the paper until you can take the other corner of the left hand; draw the paper across a glass rod fixed on the left-hand edge of the bath, or if the edge itself is quite even it may be used, so that the superfusible solution is taken from the surface of the paper. The sheet is now placed in clips fixed over the bath, so that any drippings may fall therein. It should be so arranged that any falling drops may run down the side of the bath, and not on to the surface of the solution in the clips, or the back of the sheet. The sheet is kept here until another is placed on the solution, when it can be removed to the drying plate over the gas jets or stove.

The time of sensitizing the paper, exactly like that of the collodionized glass for the negative, though to a greater extent, is dependent on circumstances, and to state any time is on to misleading; temperature of bath and weather, the strength of the bath, the brand of paper, and the character of the negatives, all have their influence on the judgment of the proper time. It is a matter for personal study. With the plain nitrate of silver bath of the strength given in the last chapter, from forty-five to sixty seconds, under ordinary circumstances, will be about the time in the summer, and sixty to one hundred seconds in the winter.

The Drying of the Paper
should not be too slow. The sheets are placed in the rack over the gas jets, a piece of thin metal being interposed between them and the gas. The lower corners of the paper may be prevented from curling by attaching to the lower edge a stick placed against the back during the process of drying. In the summer it will not be necessary to apply more heat for the drying than just enough to banish the slight trace of dampness in the air, so that the gas need not be lighted until the paper is all nearly dry; but on cold damp days the air of the sensitizing room should be warmed to a gentle temperature an hour or so before commencing the silvering. The economy of allowing the paper to dry spontaneously is very questionable, as so much is spoilt by the dead surface resulting, the paper dried quickly and thoroughly giving much finer results on the brilliant and glossy surface of the paper so dried. The paper, thoroughly dry, is ready for

Fuming.

Although fuming may not be advantageous for all classes of negatives, there is no doubt it adds to the beauty of the print in most cases, giving richness, vigour, and brilliancy, as well as rapidity of working in the printing, makes the toning stronger, and gives in the finished print a result pleasing and satisfactory. The box for fuming has been already described; into this the paper is placed, and left under the influence of the fumes of aqua ammonia for fifteen minutes, a little less time being given in very hot than in cold weather. The fumes of the ammonia impart a slight dampness to the paper, which is an advantage in dry weather, but when the atmosphere is moist it may be well to dry the paper after fuming. Should the ammonia have the tendency of slightly discolouring the paper, the addition of a little chloride of lime will remedy it, pouring a few drops in the ammoniacal saucer. The paper is then cut, and is now ready to be placed in the

Printing Frames.

Printing Frames are made of all sizes, to suit the different styles of pictures made. They should be of hard, well-seasoned wood, capable of resisting the influence of all the changes of temperature. For vignettes the bevel in front of the negative should be thinner than in the ordinary frames, to allow the vignetting paper to print, and thus more effectually diffuse the light, and secure finer results in the gradation of tone. If placed near the negative, the opaque portions of the vignetting paper will print sharply, unless almost impossible skill and care are exercised. The thickness of bevel necessary in vignetting frames is not only unnecessary in the ordinary plain frame, but a positive disadvantage, as, with an oblique light, a shadow will be cast which may spoil the print. The back of the frame is hinged at the centre, and is kept in place by a spring over each section of the back, to allow of examination of the progress of the print; but the entire back should fit perfectly into the sides of the frame, with no room for shifting, or there is great danger, in partially closing the frame, that the print may be moved, and thus a double impression be printed. The examination of the prints should be done in the subdued light of the printing-room; but, as experience is gained, and with it the power of seeing rapidly the state of the print, it may be done in the light, but the operator should in all cases turn his back to the sun, and thus expose the print in shadow. I do not think this examination of prints in atonic light is wise, but in the hurry of a large amount of work it may be thought necessary, and I therefore suggest the precaution as absolutely necessary. The inexperienced printer, at all events, should in all cases take the frames to be looked at into the printing-room. The back-board of the printing frame is covered with cloth, or green baize, and pads of either material interposed between it and the paper in contact with the negative secure even pressure, and, of consequence, sharpness of the print, as well as permitting greater pressure on the negative without danger of its breaking.

Taking Account of the Prints.

This may either be done by neatly marking the corner of each print, advancing the number each time; thus 12.9 being the last mark, on placing the next print in the frame the record 12.10 is made, indicating that is the tenth of a series of 12; or in each frame a little slate tablet may be inserted, on which the record of prints may be kept.
sketch it will be seen that the eighth print is in the frame.

This is one of the best methods of keeping reckoning, especially when the printing of an order extends over several days.

THE PRACTICAL PRINTER IN AMERICA.

XXXIX.

COATING, FUMING, AND DRYING THE PLATES.

Coating.—The plate, when albumenised, is then to be coated with the colloido-chloride. For this purpose, take the plate to a room where there is not too much white light—for instance, in the dark room—when the door is slightly opened. Brush away the dried collodion film and whatever dust there may be around the cork, being careful not to shake the contents of the bottle while doing so. Hold the plate with the left hand, level to the floor, having hold of the lower left-hand corner, and take up the bottle of collodion in the right, and remove the cork with the teeth, if you have previously neglected to do so. Pour the collodion at the centre of the upper part of the plate until that half is covered, and then discontinue. Let the collodion flow over to the corners of the plate as I have recommended in albumenising the plate, and when the collodion is ready to be poured from the plate, take up another collodion bottle (which should be kept expressly for this particular purpose) and let the collodion flow into that. There is a knack in doing this, which consists in letting the plate lie almost level to the floor until the greater part of the collodion has flowed into the bottle; then the plate is raised more perpendicular, and gently rocked sideways, so as to prevent parallel lines forming in the direction of the corner from which it was flowed, which it would do if prolonged. If the collodion is flowed from the plate too quickly, it will be too thick on the bottom of the plate; and if the rocking of the plate is not commenced before the collodion has begun to set, the parallel lines will show in spite of all the subsequent rocking. In drying, however, it will about all disappear.

If the plate is properly coated, it will have an even layer of collodion all over the surface, and will not be at all streaky, but, on the contrary, very smooth. Flow close to the edges and corners of the plate, being careful that it does not run over the sides. Do not remove the collodion which may be a little thick along the sides nearest the corner at which it was poured off, as it will be a great aid in keeping the collodion from peeling off. Keep gently rocking the plate until the collodion is thoroughly set, which is easily determined by placing the finger gently at the corner from which it was poured off, and if the collodion does not adhere, but leaves a mark of the impression of the finger, then you may know that the film is set.

Fuming.—The plate, while still moist, is to be fumed. This can be done in the ordinary fuming-box. Hang up the plate by one of its corners to a spring nipped, and place three or four drops of the strongest aqua ammonia in a saucer, which saucer is placed under the plate, on the bottom of the box. Fume from two to three minutes, and no more, and then the plate is ready to be removed.

Drying.—This should be done by gentle heat. The plate should be stood up, by support of a side of the negative oven, on one of its corners, and the door is closed. This oven should be heated with a tiny jet of gas, which is capital for the purpose.

When the plate is dry, which it will be in a very few minutes, then remove it immediately, and set it away in a cool place until it cools. If the plate is permitted to get too hot, then the heat will cook the albumen, also collodion, and it will cause the film to be ruined before you have even commenced to print on it, turning it to a very yellow colour. Watch the plate while it is in the oven, so that you will not forget it and have the above-mentioned ruinous results occur. It would perhaps be better for the beginner to hold the back of the plate for a minute or so in front of the door of a hot stove, if he cannot dry it in the oven without forgetting and thus baking it. Baking may be a good thing for "the staff of life," but it is not particularly so for collodionised porcelain plates. Do not take hold of the plate, if it should happen to be very hot, either with wet, damp, or very cold fingers, as the plate will be liable to break.

Porcelain Painting Frames.

For the purpose of printing the porcelain successfully, different printing boxes have been invented, which are constructed in a different style from the ordinary negative frames. Those which are now generally used are known by the name of "Jacoby's Porcelain Printing Frames." Use them, viz.:—First it is necessary that a good sharp negative is had, then loosen the thumb-screw on the hinged clamp at the bottom of the frame, place the negative in the clamp so as to rest on the wood at the sides of the padded bed, then fasten the thumb-screw firmly, and in all cases so as not to move out of position. The strips that rest on the edge of the negative at the sides are for vignetting the picture. Cut a piece of cardboard the size that will slip in the small grooves, with a hole in the size you want.

After placing the negative as above, take a piece of strong paper and put it in the clamp as before, then put some mucilage or wax in the centre, lay your porcelain plate in the position you want it, then throw the wire loops toward each other. This will make room for the plate between the bed and the negative. If it does not fill up the space, the four set-screws at the back of the frame will make it vary just to fit; then print as in any other way.

In printing the porcelain photograph, care should be used not to print too long when taken to print it, for the porcelain should not be too much. For heads one inch in size, the space should be about one-twelfth or one-sixteenth inch, and less for small ones. Three-inch heads should be three and one-sixteenth or one-quarter inch, and in all cases the negative must rest on the wood at the sides of the frame; for when you would separate the negative, the negative would follow the bed, and not give any space, and, of course, spoil the picture. Printing should always be done in the shade or under a frame paper.

The "Jacoby Frames" are excellent in all of their parts, being so made as to secure perfect contact between the negative and porcelain, however uneven they both may be.

Placing the Sensitive Plate on the Frame for Painting.

I will only describe how the plate and negative are arranged for printing on one kind of board, viz., "Jacoby's Porcelain Printing Frame." First darken the room by pulling down the curtains, and take the printing-board to the darkest part of the room, away from the window, but
not in such a dark place that you will experience any
difficulty in seeing. Loosen the glass which closes the
narrow gap of the box (as seen in the printing-frame,
fig.). Place the edge of the porcelain plate under this strip
of wood, being sure that the collodioned side is upper-
most, and fasten the wood to it by the same screw. The
porcelain plate will then be held firmly.
If the plate is a smaller one than is really intended
for the size frame which you may have, as a half-size plate,
and you may not have put this one 8 by 10 board, you
cannot place the edge of one of the sides of the porcelain
under the bar, because then you cannot manage the nega-
tive so that the porcelain can be advantageously printed.
In that case fasten the negative to the frame, as will
presently be shown, and place the porcelain plate at the
place you wish it, i.e., as near as you can at present tell,
and hold the negative over the plate by means of the wood-
work, at about a half-inch from it, and move the porcelain
so that it will occupy the exact place you wish it to, and
then lay back the negative carefully, so as not to move the
porcelain in doing so. Now obtain some beeswax, and place
a bit on the board close to all of the sides of, but pressed
against, the porcelain. Hold the porcelain firmly by the
opposed bar and the wax. Should you place your plate in
such a position that the wax will catch water, you will
prevent it from being moved. In placing this wax there,
be sure that you get none of it on the face of the
porcelain, nor should you allow the wax to remain above
the level of the surface of the plate, but considerably below
it, for you must remember that the face of the negative is
coming into close contact with the porcelain, and if the
above is not strictly followed out the porcelain will not
only move when you raise the negative, but the negative
will be spoiled.
The negative is then fastened in a slit made in the bar
provided in the printing-frame. This bar is easily turned
back when it is required by means of a hinge, and the
level of it is raised higher or let down lower, as you may
require for the purpose of bringing the negative and porce-
lain plate in contact. This is made so that it can be held in position by thumb-screws whenever it is finally
fixed in its proper position.
When you are ready to place the negative in the frame,
first loosen the screws, place the negative in the place in-
tended for it in the bar, tighten the screws, and lay it on
to the porcelain, and it will then assume its proper place,
which will be in contact. Now make the same face for
the screws, and be sure that they are tightened during all
the printing. The springs are then placed on the negative,
and the porcelain is ready for printing. To
examine the print move the clamp springs, and raise the
negative by the bar, and not by taking, hold of the
negative itself.

MAKING LANTERN SLIDES.

BY E. J. CHUTE.

As the season will soon be here when the lantern will be
called for, every photographer who has a lantern will do
well to make up a good collection of slides of local scenery,
and portraits from some of his popular negatives, for the
purpose of giving variety to his exhibitions.
To those who may wish to do so by the wet process a few
suggestions may not be out of place. Some recent practice
in making slides only confirms what I have heretofore
recommended as to the best methods of working, so that I
have but little that is new to add.
It may be hardly necessary to remark that the wet process
is the most feasible when slides are to be made from negatives of various sizes.

The first point is to place the negative in such a position
that the light from the sky, or from a large sheet of white
paper or cardboard, placed alongside, may be transmitted
through it. This may be done by working
through the window, or any opening in a darkened room,
or by using two cameras. In either case it is well to exclude
all extraneous light that may enter around the negative.
This is easily done by making a mask, or cut-out, of any
opaque paper, and placing it over the negative. If the slide
is only wanted from a part of the negative, it is best to
exclude all the rest in the manner suggested.
A half-size portrait less with central stops is suitable for
this work. Focus with the open lens, and then use the first
or second stop, according to the intensity of the light; ordi-
narily the No. 2 stop will answer best. The time of exposure
will vary with the density of the negative and strength
of light. With a negative of good quality, and a good light,
such as may be had during the best part of the day, an
exposure of from thirty to forty seconds will be required.
A little practice, however, will teach this better than it can be
told.
The collodion for this purpose should be ripe, but not old.
I have found a sample of Hanoe's double iodised collodion
to be all that could be desired. I mixed samples of old and
new, which produced a collodion that was very superior.
This should be done with a very small portion of "Coll.
The peculiar qualities to be desired are, a fine, structureless
film, and freedom from deposit in the transparent parts of
the slide. This last depends somewhat on the condition of
the bath.
The bath should not be over thirty-five grains strong, free
from ether and alcohol, and sufficiently acid to work without
any veil or deposit. The plates should not be allowed
to remain in the bath too long, not over five minutes, as a longer
time, or any more than sufficient to cost the plates, has a
tendency to flatten the image. This might be of little con-
sequence in a negative, but in a lantern positive it may
affect it very materially.
For developing, I use the double sulphate of iron and
ammonia, from twenty to twenty-five grains to the ounce,
with sufficient acetic acid to cause it to flow well. A strong
developer is unmanageable, and the slide may be over-
developed before it can be stopped. When the exposure
is right the development proceeds steadily, and its progress
may be watched without difficulty. As soon as the details
appear to be all out, and while the lights yet seem perfectly
clear, the development should be stopped. I have found a
saturated solution of hypo more desirable as a fixing agent
than cyanide. It clears the slide equally well, and has
none of the poisonous qualities of the other.
After fixing and washing, the slide is toned with
sulphuret of potash. This is an important point, and its
success depends in a measure upon the proper condition of
the collodion, to which I have already referred. I choose the
yellowest crystals of the sulphuret, and dissolve about
twenty-four hours before it is wanted for use. It is then
settled perfectly clear, and should be kept corked as a stock
solution. To tone, take a three or four ounce vial or
paper microtome, fill two-thirds full of water, and to this
add sufficient of the sulphuret solution to make it of a
deep straw colour. Float this on the plate, being careful
to flow it over the whole, so that it may all tone alike.
The film will immediately assume a brown tint, growing
darker and darker, till in the middle tints it soon assumes
a bluish tinge; at this point the image will seem to develop
in the dark, and is toned by reflected light; it is then
time to stop. The plate is well washed, and when dried
presents a beautiful clear positive of a warm tone, and may
be mounted without varnishing. The sulphuret gives a
surface that is peculiarly firm, and not liable to injury
unless brought in contact with some very hard substance.
Should a slide be done, or too dense, it may be
improved by varnishing.
PICTORIAL BACKGROUNDS TO PORTRAITS.

There is a prevalent taste amongst many artists, and more of the public, for some kind of pictorial representation in the background of a portrait. We have heard a sitter, protesting against a plain background, exclaim "I don't want to be taken standing against a wall!" For a simple bust, probably nothing is so really effective as a plain background, duly relieved with light and shadow. A full-length or three-quarter figure, which inevitably leaves a large space of background, does at times look bare and empty if unresolved by accessories of any kind. But in no case should the background have the effect of closing in the figure like a wall, recalling Hood's lines, suggestive of the desolation of the needle woman's garret,

"With a wall so blank,
That my shadow I thank
For sometimes falling there!"

The shadow relieved the garret wall of the drear sensation of lonely desolation; and the due use of light and shadow in a plain background relieves it of the flat, empty sense of art-poverty. The due play of light and shadow in such a background removes the effect of the wall altogether, and gives, in its place the effect of space. But however perfectly managed the plain background may be, there are many persons for whom the idea that there is manifest that if the pictorial effect is obtained by the use of a painted background screen, the variety, whether of landscape or interior scenes, must be very limited, even if—as rarely happens—they are really natural and effective. To secure excellence and variety, it is clear that a method of combination printing must be employed; and it is our aim here briefly to glance at the various methods which are available to the photographic portraitist.

About twelve months ago considerable discussion arose in our columns on the various modes by which landscape backgrounds could be added to ordinary portraits with plain backgrounds, arising out of Mr. Tilley's announcement of a new and simple mode of effecting this addition. None of those entering upon the discussion disputed Mr. Tilley's method, which, having been subsequently patented, will doubtless be offered to the public on specific terms. The specification is not yet published, but is accessible for perusal on the payment of a small fee. Until Mr. Tilley is prepared to make public his arrangements, it is, perhaps, scarcely desirable to lay before our readers the details which are at present unpublished; but we may briefly indicate its character, that it may bear comparison with the other available methods of effecting the same object.

In Mr. Tilley's method the portrait and the background are produced on one negative by two exposures. No pictorial background screen is used, but a landscape taken from nature and selected as suitable for the purpose. The sitter is first taken with a black background screen directly behind him, so that the whole negative is taken in the background space unimpressed. A positive image or transparency of the pictorial scene to be used is then placed in a frame provided immediately in front of the plate bearing the portrait, so that, impressed upon the sensitive film, it may produce a negative of the scene. To secure the passage of light through the transparency, it is necessary to impress or enhance the density of the negative, and protect the portrait from being impressed by it, Mr. Tilley has devised an ingenious arrangement, which practically constitutes the novelty in his patent method. The sitter remains in position, the black background is removed, and a white background substituted, whilst, by an arrangement of curtains, the light from the sitter is cut off. Thus the light from the white background, passing through the transparency, impresses the design on the sensitive plate, the shaded figure acting as the mask to protect the portrait image on the sensitive plate from further action. The latter, duly impressed with portrait and background, is developed in the usual way, and, of course, no further trouble in masking is needed. The portrait with landscape background, which may be easily varied at each sitting by the use of a fresh transparency. The process, as will be seen, is both novel and ingenious. How far it can be efficiently worked can only be ascertained, probably, by trial, or by inspection of the curtain and other appliances, which, although minutely described and figured in the specifications, cannot be safely judged by mere superficial examination. In the results we have seen, the pictorial background is introduced without producing line or junction of any kind to suggest combination of two negatives; but in each case that we have seen, the landscape has been too pronounced in definition and general effect; it has lacked the retiring atmospheric character necessary to make the scene essentially a background subsidiary to the portrait. This could, of course, be easily avoided, and must not be regarded as a necessary condition of the process; the full possibilities of which remain to be worked out.

The discussion of this past year was the occasion of the suggestion and recalling of various other processes. The various means by double printing and by register masks are well-known, and need not be described here. Mr. Werge, Mr. Burgess, and Mr. Dunlop, have all advocated a combination of the former method in which—the portrait having been printed—a transparent paper negative was to be used for the landscape, the portrait being blocked out on such negative to form a mask. Mr. Werge proposed and illustrated an ingenious plan, in which the portrait, having been produced with a plain transparent ground, was, after finishing, coated with a sensitive bichromate preparation, exposed under a landscape negative, and developed in the usual way with powdered plumbage, taking care, in applying the powder, to avoid touching the portrait itself. This ingenious method, in skilful hands, gave very good effects. A method which we have applied with great advantage was first suggested by the late Mr. Burgess, of Norwich. It consists in coating the paper which had been taken with a dark background, with collodio-chloride of silver; painting over the portrait with Indian ink, and then exposing under a transparency of any required design which may have been selected for the background. During the fixing and washing the Indian ink was removed, and the portrait negative and pictorial background were obtusely protected from the direct action of the wash. Another very ingenious method was the invention, if we remember rightly, of Mr. Johnston, of Wick, by whom it was sold to subscribers as a secret process several years ago. As it is a long time has elapsed, and the sale has
long since ceased, we need not hesitate briefly to indicate the character of the method here. The portrait was here again produced against a dark background, and the desired pictorial background having been obtained on another plate, the film was loosened, floated off, and transferred to the portrait negative in proper position. The image itself, as well as the dark background, was, of course, covered with the landscape or pictorial design. The portion of background covering the image was easily removed by means of a camel's hair or sable pencil and a solution of iodine and hypo sulphite of soda, which at once dissolved the silver material forming the image. Some exceedingly clever examples of combined negatives were produced by this method.

There still remain one or two other methods involving combination printing, but presenting especial facilities for effecting this satisfactorily. By the use of background negatives, prepared expressly for the work like those issued by Mr. Bendann in the United States two or three years ago, combination printing is made very simple, the characters of the background—some ordinary interiors, some allegories, &c.—being contrived so that the mask shall be easy, little risk of lines round the figure being involved. The use of paper negatives for enlargements, or transferred films like those proposed by Herr Warnerke, also present ready facilities for combination printing in a manner we need not indicate in detail here.

In all systems by which pictorial backgrounds can be secured, however, two or three principles should be borne in mind. It is scarcely necessary to say there should be congruity and keeping. A lady in evening costume should not be placed in an open landscape which suggests remoteness from habituation or shelter, nor would a workman in fustian appear at home in a highly decorated interior. The lighting of the background should be harmonious with the lighting of the figure. There is nothing more obvious to need enforcing, and yet we have often seen the law violated. Finally, a background should always be subsidiary to the figure, and, instead of challenging attention by its vigour equal to that of the portrait. As a rule, the destination should not be too crisp, and the light and shadow not too pronounced. The lights should be less obtrusive than the principal lights in the portrait, the shadows less intense than the brightest shade in the figure. Distance always tends to reduce the contrast of light and shadow, and a background is more effective for appearing distant. The exquisite little gems by Mr. Edge, of Preston, which excited much attention a few years ago, perhaps carried this principle a little too far; still, we can commend them for a study if not for absolute emulation.

EXHIBITION OF THE ROYAL CORNWALL POLYTECHNIC SOCIETY.

The Photographic department of this Exhibition, as was noticed last week, was numerically stronger than usual, two exhibitors alone sending forty-eight pictures between them. Colonel Stuart Wortley's collection of life-size studies and instantaneous sea and cloud scenes, for which a first silver medal was awarded, are familiar to the public, rendering description of them here unnecessary. Chaffin and Sons' single figures and groups on plates twenty-four by eighteen inches have fine qualities, although somewhat low in tone. Their "Chess Players," a group of three young ladies standing around a chess table, shows the difficulty of securing all the elements of a picture by photography. Here the technical qualities are admirable, but the expression in the models of concentration and interest involved in the game is scarcely secured. David Hedges must have some speciality by which to secure the attention of his animal clients, and induce such charming and unconscious quietness. Surely he must practise animal magnetism; his pictures certainly well deserved the first silver medal awarded. Mr. W. Nicholson's "Bow Church," and two others, are clean, quiet, and sharp pictures. Messrs. Robinson and Cherrill have possibly sent in previous years finer pictures than "The Little Bridesmaid," or "Flowers," or "The Passing Stranger," and "The Gleaner;" but being skied in the hand it was difficult, if not impossible, to form a correct estimate of their merits. Mr. Nesbitt, an exhibitor for the first time, obtained a second silver medal, the special picture being a ten by twelve portrait of a young lady, full length, sitting, and in a light dress, which is certainly effectively composed.

This exhibitor has also several attempts at genre, the best in which, perhaps, the story is best told is "She will recover," a mother intently watching over her sick child. Some others, meant for open air subjects, have, perhaps, too much suggestion of studio work, the painted background in some degree marred otherwise good intentions. Mr. Benjamin Wyles' "Studies of a Sunset," and "Cloudland," are very fine, and the judges must have thought something considerable of them, as they do not usually award first bronze medals to such small pictures. Mr. W. Brookes' only exhibit was certainly well worthy of the first bronze medal ticket attached to it, for a more magnificent "Study of Trees" is rarely seen. Mr. Drew's fine collection of Warwickshire scenes, for which he received a first bronze medal, suffer somewhat from the mounts, but are certainly above reproach. Mr. J. M. Young obtains his first bronze medal for some very good twelve by fourteen portraits in the style which photographers have agreed to name "Rembrandts." The only other professional exhibitor to receive award is E. F. Lee, of Cardiff, a first medal for some very pretty "Ceramic photo enamels, coloured." Attention is next called to mention of F. H. Trollope's collection; his "Tired of Waiting"—a young lady at a stile, from whose pose it is evident she is anxiously waiting for the appearance of some one else, and the little boy-brother probably, fast asleep at the hedge-foot, tells how the time has passed away, and made the watcher tired of waiting. It is certainly one of the most effective story-telling pictures ever exhibited here; and the same may be said of "Fish," a large and full-length figure of a coo gazing intently at a basket of fish on the house door-step. His "Like pine trees dark and high, Subdue the light of noon," was also exceedingly rich and effective. Nothing can be finer than A. and J. Boot's "A Hampshire Lane," a much finer photograph than their last year's silver medal picture, "On the River Way." The judges awarded him a bronze medal this year, which, we understand, the rule precluding the award of prizes to the same person two years running, will prevent his receiving. Of Mr. H. Garrett's collection of seven, "Sam Weller" is decidedly the best, and may be deemed a success. John Terras' subjects are ideas well carried out, but they are too small to receive much notice. Mr. Hugh Mitchell, having taken a first medal, cannot, we understand, any more than A. and J. Boot, receive the second bronze, which the judges this year very naturally thought due to his "Kilchute Castle, on Loch Awe." In both these cases, whether the rule be enforced or not, there is at least the satisfaction of meriting the award.

In the amateur collection Mr. Crawshay's large collection of thirty was very diversified—life-size head and bust, ten by twelve portraits and views. His prize (first silver medal) picture was certainly the most effective and artistic of all the life-size studies in the room, while his ten by ten"
the peculiar property of conducting electricity better when lighted than in the dark. Sale further found that the conducting property is increased with the intensity of the light; that the results of his experiments can be reproduced by an eye—i.e., yellow, green, and red—also have the strongest effect on the soda plates. It is singular that the soda is not materially affected by the warm rays. Siemens has applied this property to the construction of an electrical photometer. He incloses crystalline soda between two microplates, and places it at the bottom of a tube. The latter is placed between a sheet of silver mirror connected with a galvanometer, and the other with a thermo-electrical battery. The latter generates electricity by warming, which the needle of the galvanometer diverts. As soon as the tube is opened, the diversion immediately becomes greater, even if the flame of a gas jet shines in the tube, for the diversion increases with the intensity of the light. Siemens has already used the apparatus repeatedly, and its sensitiveness is quite astounding. I am satisfied that this invention will yet be of some significance to photography. It would only depend here, that the soda should be exposed to the blue rays. This could be done in a manner suitable for practice by covering the tube with a cobalt glass. It is then only necessary to place the tube in some remote place now and then. A person to be photographed is standing; the other parts, battery and galvanometer, can readily be placed somewhere else, from whence they can be placed in connection with the tube with wires. If the tube is opened a short time before a sitting, and notice is taken of the galvanometer, you have immediate information of the state and intensity of the light, and can regulate your exposure accordingly. It is, moreover, highly probable that other elements besides soda contain similar properties.

In your May issue I wrote you about my spectro-photometrical observations in the Red and Indian Oceans, and about the extraordinary changes of the light-intensity of the single colors. I have pursued these phenomena, and have proven repeatedly that which is in direct opposition to the hitherto general opinion. It is universally conceded by photographers that the light in the morning is better than that in the afternoon. On the ocean I observed repeatedly just the opposite—i.e., the chemical intensity of the light was greater at 5 p.m. than at 7 a.m. The reason for this can be found in the atmosphere of the ocean being clearer. On shore, and, especially in large cities, the transparency of the atmosphere is diminished as the day advances. Smoke is now a prominent feature, which colours the atmosphere yellow; dust arises from the streets, which also has a yellow colour; and at noon the atmosphere is filled in such a degree that the effective photographic rays are absorbed, to a certain extent, more than in the morning. According to the ordinary perception, the chemical intensity increases with the rising of the sun. This is correct in the atmosphere retains the same transparency. In fact, however, the atmosphere changes quite perceptibly, through the vapour bubbles floating in the air. These are present even on clear days, and cause the so-called air procession. They weaken the effect of the direct rays of the sun very perceptibly, and sometimes the blue ray is weakened more than the yellow. On the 5th of March I observed that a vessel on the Red Sea, that the yellow acted more energetically than the blue and violet rays. It must here, however, be remarked that when the chemical action of the direct rays of the sun are weakened by vapour bubbles and delicate foggy clouds, the light of the blue sky, on the contrary, receives a strengthening. It is, of course, known that scattered white clouds on the sky have a more energetic effect than the clear sun.

For some time past a new printing process has been the source of some talk, which is evidently produced by the aid of photography, of the particulars of which, however, very little is known. The process was invented by Aubeil, of

BY D. WINSTANLEY, F.R.A.S.

The appended report is for the week ending Saturday, September 18th. The figures given, though reliable amongst themselves, refer to a purely arbitrary standard not yet correlated with any. The observation plane of the instrument is vertical, and its aspect to the meridian of the place. The sensitive material used is silver chloride, and the daylight whose power is measured confined to such portions of the spectrum as affect the haloid named.

![Graph](image)

GERMAN CORRESPONDENCE.

BY DR. VOELK.

VIENNA MEDALS—NEW ELECTRICAL PHOTOMETER—ON THE VARIATION OF THE TRANSPARENT OF THE ATMOSPHERE—AUSBURG—CURIOS THINGS IN AUSTRIA.

The list of medals awarded at the late Vienna Photographic Exhibition has recently been published. Of the one hundred and seven photographic exhibitors, just one hundred have received awards, and only seven were left without any. There were sixteen silver medals awarded, of which not one was for portraits; only Robinson received such, for combination prints. Forty-five bronze medals, among which is Dr. Woodward's, of Washington, D.C., for micro-photographs. The remainder received bronze medals.

Lately there has been constructed by Herr Siemens, of this city, the celebrated electrical and telegraphic manufacturer, an interesting photometer. Lieutenant Sale discovered several years ago that crystalline soda possessed
THE NEW EMULSION PROCESS, WITH NEW IMPROVEMENTS.

BY SIGMUND SINGER. *

In my opinion there is no process, not even the wet one, so simple and so uniform in its results as the one I am about to describe. The negatives are of a great delicacy and of a wondreful non-settling color. If my colleague of developing is adopted, the process of development is shorter than in the wet process, and the negatives develop to the full intensity with the ammonia solution alone, and one to three drops of a sixty-grain pyro solution added.

Mr. Newton has made the great discovery that an everlasting bromide emulsion can be prepared by using an excess of nitrate of silver at first, which is permitted to ripen until it turns creamy; the excess of silver is then turned by adding a chloride, so as to have an excess of chloride.

Such an emulsion is very sensitive, and works clear from fog. Another advantage of this emulsion is, as no free nitrate exists, the plates do not need any extra washing, a simple transferring to the preservative bath being all that is necessary.

I have discovered still a new feature and improvement in connection with an emulsion of this nature, by which the whole process is still more simplified and more certain, and superior results are obtained. It consists in adopting an alcoholic organiser (preserver) instead of an aqueous solution of the article being prepared, it is still in a convenient vial, and, after the film has set, flow it over the same, as collodion, allowing it to remain a few seconds on the film, which can be used right off, or allowed to dry, which it does in a short time. No stains or marks will appear. The plates are more sensitive, and the development actually beautiful, and more especially so if my mode of development is adopted.

I will now give my formula. In the first place, an emulsion is prepared according to Mr. Newton’s process, whose excellent paper on emulsions everybody ought to read:—

1. Bromized Collodion.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute alcohol</td>
<td>3 ounces</td>
</tr>
<tr>
<td>Ether</td>
<td>5</td>
</tr>
<tr>
<td>Cyn. alcohol</td>
<td>36 grains</td>
</tr>
<tr>
<td>Double bromide of cadmium and ammonium</td>
<td>80</td>
</tr>
</tbody>
</table>

2. Emulsion.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromized collodion</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Nitrate of silver</td>
<td>17 grains</td>
</tr>
</tbody>
</table>

(Dissolve in two drachms of hot alcohol)

The emulsion is formed in the usual way. This emulsion will have now an excess of free nitrate of silver of from two to three grains per ounce. It is set away to ripen, for about ten or twelve hours, then it will get creamy and reach its maximum of sensitiveness. After this time one and a half grains of powdered chloride of calcium is added, shaken up, and the emulsion set aside for about six hours longer. It is then filtered as usual, and fit to use.

1. Alcoholic Organiser.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>3 fluid ounces</td>
</tr>
<tr>
<td>Tannin</td>
<td>13 grains</td>
</tr>
<tr>
<td>Stelline</td>
<td>14</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>5</td>
</tr>
</tbody>
</table>

After the solution add a piece of caramel sugar, and leave in the liquid until the same assumes an orange colour, then pour off and filter.

MANIPULATORY DETAILS.

Cost the plates evenly with the emulsion as usual; the film sets almost instantly. Have the alcoholic organiser in a convenient vial, and flow over the solution the same way as collodion. Leave the solution in contact with the film a few seconds, to let it absorb some, and drain off the surplus in the same vial. The organiser does not get spoiled by this; on the contrary, it keeps improving all the while. The plate can be used right off; or, what is in my opinion better, it can be kept dry, when kept away from the emulsion, and the plates will be ready for developing when required.

THE DEVELOPMENT.

1. Ammonia Solution.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>12 ounces</td>
</tr>
<tr>
<td>Concent. aqua ammonia</td>
<td>½ fluid ounce</td>
</tr>
<tr>
<td>Bromide of ammonium</td>
<td>12 grains</td>
</tr>
</tbody>
</table>

2. Pyro Solution.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogallic acid</td>
<td>60 grains</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1 ounce</td>
</tr>
</tbody>
</table>

My development differs entirely from the modes of alkaline development I have seen described. It is as follows:— After having wetted the film with water and drained again, I pour a sufficient quantity of the ammonia solution (1) in the developing cup (say, for instance, half an ounce) and apply to the film, and keep it on the film a few seconds to insure uniformity of action. I now drop a single drop of pyro solution in the cup, pour back the ammonia solution from the plate to the cup, and re-apply. If the exposure has been full, the picture appears with vigour in all its details, and one or two drops of pyro applied as before will furnish the density of the negative. In fact, by the gradual addition of pyro you can make it so dense that you cannot see through it without danger of fogging; but it is recommended to stop when the picture is vigorous, and get off the yellow semi-transparent tint, as it dries up to a beautiful non-acetic colour, and the deepest shades will then be represented by clear glass, with all the delicate modulations of the middle tints.

Fixing Solution.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypo</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Water</td>
<td>8 ounces</td>
</tr>
</tbody>
</table>

I have given this alcohol organiser, which, with my system of working, has given me beautiful results, but almost any other alcoholic extracts will give good results. I have tried alcoholic extract of coffee; also of tobacco. One ounce of alcohol with two grains acetic acid is a simple preparation, and gives good results. I have also tried Mr. Newton’s preserving substances, laudanum and nux vomica, put up in alcohol, with good results. I have not had the least trace of blurring with these plates, which I ascribe to the colouring properties of the caramel sugar. But should an inconvenience with some emulsions take

* Philadelphia Photographer.
place, the alcoholic organiser can be tinted to any intensity required by an alcoholic solution of sandalwood, alkanet root, or perhaps by aniline colours. This will also prove an easy way to tint the film for the purpose of Dr. Vogel's spectrum experiments in various colours, without spoiling the emulsion itself, by adding this colouring substance to the same, as proposed by him.

With care no substratum is needed, more especially if these plates should be exposed in the semi-moist state; otherwise albumenized plates can be used, but the albumen solution must not contain any ammonia, as this strong ammonia developer re-dissolves the substratum preparation. Use one quart of water and one egg albumen, to which add one-half drachm acetic acid No. 8, or one-half drachm carabolic acid; both preparations will keep in a cool place a long while, and will stand my mode of development. A one-grain gelatine solution with a little alcohol added can be used, though I prefer the albumen.

I believe that with the adoption of the alcoholic organiser, as proposed by me, and an emulsion of such composition as described, there will be no need of the expensive and laborious pellicle process; the plates being finished just as fast, and are a great deal more sensitive than the pellicle. But even to the pellicle process an alcoholic organiser can be applied with advantage, which certainly will be safer and less tedious, as to add the organic substance to the emulsion, which deteriorates the latter, and is the cause of stains.

How far an alcoholic organiser can be used with emulsions prepared with excess of nitrate or bromide I have not tried yet, as the process described has given me the highest satisfaction; but I have no doubt it can be modified so as to answer for these emulsions.

In the whole process I have not met with a single failure, and had not the least trace of fog on the plates with the most careless manipulation. In fact, the coated plates, before being flowed by the organiser, can even stand a little white light without great injury. It is the organic substance which gives to these plates their high sensitivity, and I am confident that we will find, in connection with our alcoholic organiser, some alkalioloyd yet which will give those plates such an exalted sensitivity as to enable them to compete successfully with the wet process in this respect, as it does already excel it in simplicity of manipulations and uniformity of results.

I can also recommend every worker to try my system of small development, as the results are better, and certainly cheaper, than when the development is commenced with a three or even a six-grain pyro solution. I have also tried this system of development for gelatine-emulsion plates with good results.

How long these dry plates will last I have had no chance to test. I think they will last as long as any, but this is of minor importance, as by the simplicity of the process a great many plates can be finished in an hour. A vial with emulsion and a vial with the preserver are all the paraphernalia necessary, and it is therefore useless to produce a large stock of plates for future use.

To make Caramel Sugar.

Sugar 3 ounce
Water 1 drachm

Heat in an evaporating dish until it attains a brownish-black colour, and exhalts an empyreumatic odour. Let it cool, when it will harden up to a black mass. I add this to the alcohol, for the double purpose of colouring the solution to prevent blurring, and on account of the bitter principle contained in it.

To Prepare Double Bromide of Cadmium and Ammonium, used in my Formula.

Ammonium bromide 196 grains
Cadmium bromide 276 "

Dissolve in smallest quantity of water possible, and evaporate to dryness in a dish, by a moderate heat, stirring with a glass rod at the end to granulate the salt.

Finally, I think I will confer a boon on all emulsion workers, who are not aware of it, that the stains of the alkaline developer can be effectually removed by a saturated solution of oxalic acid. This solution will also remove most of the other stains which are met in photographic practice, such as iron stains, bichromate solution, &c.

SILVERING GLASS FOR MIRRORS.

By Dr. Henry Draper.*

The following is the process for silvering I most frequently use. The quantities given are those necessary for a 28-inch mirror, and will make a bath of 160 ounces. In silvering smaller pieces you can estimate the amount necessary by supporting the glass half an inch from the bottom of the vessel in which you are going to silver, and measuring the fluid that is required to reach the face, but not overflow the back.

There are three solutions: A, B, C.

A.—Nitrate of silver 337 grains
Water 10 ounces
B.—Potassa pure by alcohol 14 ounces
Water 25 "
C.—Milk-sugar in powder 14 ounces
Water 10 "

Pour nearly all of A into a vessel that will hold 160 ounces; add ammonia, drop by drop, till the grey precipitate clears; add 20 ounces of B, and just re-dissolve the brown precipitate that forms with ammonia. Make up to 75 ounces with water, then add some of A till a grey precipitate that does not redissolve in three minutes is left. Then make up to 160 ounces with water. Let it settle, and pour off. When ready to immerse the mirror, add all of C; pour quickly, after stirring into the silvering vessel, and immerse the mirror face downwards.

The glass must be thoroughly cleaned with nitric acid, and then rubbed with pure alcohol.

When the silvering is complete, wash it thoroughly, and set it on edge to dry. When perfectly dry, rub it with a piece of the softest buckskin, and finally polish with soft buckskin and the finest rouge.

ALBUMEN AS A SUBSTRATUM.

A correspondent of the Photographic Times (U.S.) says:

"I albumenise every glass I use, and for the last year and a half have not seen a spot, speck, or particle of fog in any work traceable to the albumen. It does not get my bath out of order, and out of the last two thousand negatives I have made, there is not the slightest veil of fog in any one of them from any cause.

"When I first commenced using albumen as a substratum I experienced considerable difficulty with foggy baths and various other annoyances, but as I never was a good hand at cleaning glass by manual means, and never had an assistant who could 'be be,' and was by no means certain, when I got a clean plate and a good negative, that the film would stay on the plate until it was washed, I made up my mind to use albumenised plate, if I had to doctor my bath every night, never doubting but I should make a success of it in the end. I read every article I could find upon the subject, quizzed every operator I met with, experimented in every way I could think of, and I found it, no matter how nor where, but here it is. Take a five-pint bottle, put into it a handful or more of broken glass, the white of one egg, six or eight ounces of water (not distilled), 30 grains of iodide of potassium, 15 grains bromide of potassium, an ounce and a half of liquid ammonia, shake

* Photographic Times.
well, then fill the bottle within two inches of the neck with water (not distilled), give it a few more shakes, and it is done, and will work just right every time. Now filter through paper what you require for immediate use, cork up the balance, and set it away for future use; if you should not live to use up the whole amount, your children may have use for it, and it will keep.

"Now I will tell you how I clean my glass. For cleaning off old resins, or any glass that has previously been albumenised: leave them over night in a solution of concentrated lye (one box of the lye to a pint of water), wash them under the tap with a sponge, then run them through nitric acid 1 part, water 10 parts. Do not put new glass in the lye solution; simply leave them over night in the acid. Now take a soft piece of linen, wash the glass well on both sides and all the edges, rinse under the tap, and flow (while wet) twice with the filtered albumen; throw the residue in the sink; do not try to save it; it is no good, besides, it is cheap. Set the glass up in a drying rack, and be careful that the corner you let go of is not the upper one; the less dust you have flying around, the better the ultimate result. Follow these directions to the letter, and you will not have trouble in using albumenised plates. Make any variations, and I will use various bases, but observe that the 1:10 dilution of the solution is correct.

"In speaking of water, I have said 'not distilled,' and were I writing a book on photography, I think I should have for a sub-title, 'no distilled water.'"

"Two years ago I washed out my sink with five gallons of that article, allowing it to quietly run down the waste-pipe, and that is the last and best use I have made of distilled water during my more than twenty years of shadow chasing."

ON GLASS-PAPER, EMBERY-PAPER, ETC.

The English Mechanic gives an abstract of a memoir which has been presented by M. L. A. Chaton to the members of the National Academy of Paris, on the production of glass-paper and similar substances for cleaning or polishing purposes, which may interest our readers. After showing that the Egyptians and other ancient peoples possessed the knowledge of polishing stones, &c., and that this process was almost universally affected by means of the friction of two similar bodies, the writer proceeds to point out the gradual steps by which, from employing loose powders, adhering to a stick by means of a little moisture, arose the Swiss "cabras" (peculiar kinds of buff-sticks loaded with fine emery, and now used by the watchmakers), and lastly, that from these sprang the idea of a pliable yet sharp-faced material, such as emery-paper.

The powders which are usually sold as polishes are diamond-dust or bort, which is prepared by rubbing the sharp edges of black diamonds, fixed in wooden handles, against one another. The present value of bort is something like 48,250 francs the kilo, equal to about $273 6s. per lb. avoid dupoius.

"Tripoli is the general name given to all silicious powders, of a reddish colour, and harsh to the touch. Sometimes it consists of the detritus of stones worn off by the waves of the sea; at other times it is composed of the innumerable silicious coverings of fossil diatomacese. Venice tripoli is the most esteemed. Sand is really nothing more than finely-divided flints.

"Sandstone is a rock consisting of a sandy basis intimately mixed with a calcareous paste. Some specimens are very hard, and such are used as grindstones.

"Pumice-powder is an oxide of alumina, principally employed for the final polishing of glass.*

"Colostrum, a sesquioxide of iron, is also largely used as a polishing agent.

"Emery, an impure, but crystallised form of alumina, is the agent most generally used for cleaning and polishing metals. Its great hardness recommends it for this purpose, being nearly equal in that quality to the diamond. The hardest varieties come from Greece.

"It has been found that much of the powder lately sold as emery was a sophistication consisting really of the powdered slag from the iron furnaces. As this powder does not touch steel, it may cause considerable annoyance and loss of time.

"Glass.—Of all the varieties usually employed, it would appear that green bottle-glass is the best. This is doubtless the result of the consequence of the unchangeable in the composition of the iron which it contains, and its consequent greater hardness. Experiments have not been tried in this direction, but analogy would lead us to infer that the crystallised forms of lime and alumina glasses, known as "devitrified glasses," or Beausan's porcelain, would be particularly serviceable in the preparation of the sandpapers. In the preparation of the above materials for this special purpose, great care is necessary in their pulverisation. It is evident that, besides the due selection of the size of the particles constituting the powder, which must vary with the peculiar use to which the paper or cloth is destined, the shape of these particles must form an important element in the question. For this reason, M. Chaton strongly deprecates the use of horizontal millstones, or cylinders, in crushing the various substances used for making the powdered bodies, and states that the breaking of the resulting fragments, but gives the preference to stamping mills, in which the fragments are separated in the form of minute splinters, with the cutting edges intact. A paper prepared with a powder possessing this latter form will do considerably more work than one covered with rounded grains, or flat shivers. There are, however, cases in which it is sought to give a polishing, and not a scratch- ing or cutting, surface to the paper; in these cases, the powders must be brought to a state of impalpable fineness, by rotary grinding and repeated elutriation. M. Chaton called the attention of the members of the Academy to a special paper prepared by him, which, though prepared with emery, had so exquisitely fine a surface as to produce a perfect polish on metals by rubbing the friction of the powder, without being perceptible, being in its effects equal to the finest colostrum or pumice-powder. The quality of the paper on which the powders are mounted is also worthy of attention. For large and heavy metal work, paper made from oakum seems, by virtue of its fibrous structure, to be the most adapted. Tough, without being brittle, it takes well to the glaze employed to fix the powders to the surface of the paper.

"For finishing off the fine steel work and brass work of philosophical instruments (instrumenta de precisione), a fine paper, made of chosen materials, is preferable. M. Chaton gives the preference to the stout blue paper found in the French market, as it has neither humps nor roughnesses on its surface.

It was long customary, and is actually a frequent practice now, to roll the surface of the paper after the application of the cutting powder, but this custom is very injurious to the good qualities of the paper. True, it serves to drive into the texture of the paper those large particles which, through careless sifting, may exceed the general level of the surface; but by either crushing or laying down in one direction the splattered particles, it completely takes off the polish already acquired by the paper. Sifting the prepared powders over the surface of the glued papers appears to give the best results for the coarser, or cleaning papers; for the finer varieties the introduction of the glazed papers into a chamber in which a "dust" of the fine powders has been created, seems to be the most equable distribution, and satisfactory result. Attention has also been paid to paying the paper upon this latter, and at times it is liable to detach and split off from the paper. Several trials have been made in this direction; solutions of esoumone, of gum, resins, &c., had been tried, but they were..."
found to soften when rubbed briskly, rolling up, and making a disgusting mess.

"Probably the addition of a very small quantity of some hygroscopic body, such as sugar, salt, &c., would confer on ordinary glue sufficient flexibility to render it the best substance for the purpose." The expression made use of by Mr. Rice in the preamble, "I have sought to modify the glue" tends to strengthen our belief that the basis of his elastic coating is glue."

Correspondence.

ROYAL CORNWALL POLYTECHNIC SOCIETY.

Dear Sir,—As one of the Judges in the Photographic department, will you kindly allow me, through the medium of your paper, to correct an error which appeared in your last issue, otherwise, as it stands, it may mislead competitors in future.

After mentioning the names of those who won medals at the present Exhibition, it states, "The Judges also named A. J. Boul, Reuben Mitchell, and W. J. A. Grant, but these exhibits were rejected," whereas the magic lanterns of the two preceding Exhibitions are by a rule of the Society barred from taking prizes in the succeeding year."

The reason they were barred is, not because they had awards before, but because they won medals of a higher value, (at one of the two preceding Exhibitions) than those awarded to them this year. Consequently, by the rules of the Society, they could not receive any. It would not have been so bad the awards had been higher than those received previously. For instance, one of the gentleman named, won a second silver medal last year, consequently, he must have a first silver medal this year (or at future exhibitions), or none.

—I remain, yours truly,

Thomas Hart.

Polzean, Lizard, Sept. 21st.

Talk in the Studio.

CORNWALL POLYTECHNIC EXHIBITION.—We are requested by Mr. Edward Kitt, secretary to the Royal Cornwall Polytechnic Society, to mention that in the official report of the awards in the Photographic Department, which appeared in one of the weekly issues of The Photographic World, were mistakes made amongst those of professional competitors, instead of amongst those of amateurs, to which class they belonged.

AUTOTYPY OF HOUSE OF COMMONS.—We learn from a daily contemporary that Autotypy has been employed to reproduce a historical picture of the House of Commons of 1874, just completed by Mr. F. L. Sargent, who had one of the committee rooms allotted to him as a studio, to facilitate sittings from honourable members. The Daily News says: — "Honourable members lent themselves with alacrity to the carrying out of the same, and, almost without exception, sittings were obtained from every member, not excluding the Speaker. The picture was finished in the closing days of the session, and was placed by Messrs. Henry Graves and Company, of Pall Mall, in the hands of the autotype. The process of reproduction has been singularly successful, and the result is a handsome autotype, which presents what is, perhaps, one of the most artistic and faithful representations of the assembled House of Commons ever published. There are nearly 400 portraits in the picture, and by skilful grouping, whilst each face is fully shown, the picture is free from that stilted, "wooden" look which frequently mars artistic enterprises of this kind. The scene is taken at a moment when Mr. Disraeli is addressing the House, and the right hon. gentleman is, perhaps, the only exception to the general excellence of the portraits, a mischance which doubtless arises from the fact that the Premier has a rooted objection to sitting for his likeness, and could not be induced to overcome it in favour of Mr. Sargent. Mr. Gladstone, on the other hand, is sketched with the faithfulness of a photograph, and the likeness of the Marquis of Hertford is scarcely less successful. Among members on the Liberal side whose likenesses stand out with great distinctness are Major O'Gorman, Sir Wilfrid Lawson, Mr. Whalley, Mr. Plimsoll, and Mr. Horne.,

The Ministerial side has rather an advantage, the sketching being taken from a point behind the chair of the Speaker. As the picture is on the right of the engraved plate, it consequently comes into fuller view. This remark particularly applies to the Treasury bench, as compared with the front Opposition bench, and Mr. Oros, Sir R. Selwyn-ibetson, Mr. W. H. Smith, and Lord Henry Lennox specially benefit by the accen

To Correspondents.

A. A. Crookes,—Messrs. Anthony have no house in London, but their goods can always be obtained of Mr. Atkinson, of Liverpool, who keeps a large stock of American photographic material. The representative of Messrs. Anthony in London is Mr. Badesden; his address is, care of Messrs. Srarr and Co., 32, Moorgate Street.

Industrial.—It will be better to have the sentences written in black on white cardboard, in a bold large size, and take a reduced proof, and the size required. The magic lanterns are practically the same thing, the sciopticon being an improved lantern which yields a very well illuminated image with a parallel lumen. The question, is one into which we do not feel disposed to enter in this column. The sciopticon is the most costly. You can obtain a magic lantern for from ten shillings to more than many pounds. Our correspondent will find the addresses of various manufacturers of the kind, from whom he will learn, upon application, prices, &c., of a lantern suited to his purposes.

Camera.—Your principle difficulties are manifestly due to the use of over-iodized collodion, as indicated both by the superficial character of the image and by the opaque streaks at the bottom of the plate. A portion of plain collodion to the sample you have in use. It is very probable that a commercial sample of collodion requires, or will bear, the addition of more iodide. A warm tone without a toning process, by reflected light, is very difficult to secure in developing collodion prints. Full exposure, and the free use of aspic acid in the developer, aids the production of warm tones. But the use of a toning process is the only trustworthy means of securing a warm colour that we know. A weak solution of sulphide of potassium or ammonium, either alone, or following a slight immersion in a weak solution of bichloride of mercury, will give a warm black. The use of Sello's intensifier will give a brown tone. Short exposure and prolonged development tends to the production of cold black tones, and this tendency is increased by the free use of citric acid.

M. R.—We believe that several of the photo-mechanical processes are employed in Paris. The work of Mr. Woodbury is worked extensively by Messrs. Goupil and Co. We do not remember their address, but a letter addressed to them at Art Printers, Paris, will probably reach them, as we know that the process is in regular operation in this country. The address is 178, Regent Street.

A. W. T.—Your glass plate, from an accurate protection against the strengthening process in the post office, arrived in fragments, which render a careful examination impossible. We have repeatedly met with minute reticulation of the carbon film, but not often so fine as that in your film, so far as we can judge from the fragments. The chief cause of this we have found to be the use, in development, of water at too high a temperature, especially if the film has been kept sensitive a little time and has been approached a state of insolvency. Drying the plate in an atmosphere where gas is burnt will at times cause a tendency to this defect. We are assuming that the reticulation or crappiness of which you complain is similar to that in our glass, the small pieces of the plate not affording us absolute certainty.

Learner.—We are familiar with the troublesome signs markings on the negative. They generally arise in a somewhat old, over-washed plate, both, but which is not so common. It is a very good thing, and careful filtration through cotton-wool, taking care that there is no floating scum on the top of the bath, will often effect a cure. When the plate is not too far gone, the solution in an open dish, wash out the bath very thoroughly. We have sometimes known similar markings disappear on removing the solution from a gutta-percha bath to one of glass. 2. We do not know of any better set of account books for a photographer than those issued by Mr. Hooper.

Captain Tuckton.—The best plan will be to write to the Secretary pointing out the necessity of the request would doubtless receive attention. We will do what we can. We shall look with interest for the examples you mention.

W. B. Woodbury.—The letter was duly forwarded.

Several Correspondences in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Passports and Photography.—Dry Plate Manipulations.

Passports and Photography.—It is strange that those countries which still believe in the efficacy of passports should not have adopted photography in later years as a means of identification. When camera portraits first became general, it was pragmatically on all hands that they would be largely employed in this way, but beyond the case of our own being used on the occasion of the last Paris International Exhibition, when each ticket holder was compelled to have a copy of his own portrait pasted across his credentials—which portrait, by the way, was first of all compared and stamped by the officials—there has, we believe, been no special employment of portraiture in this way. In this country we have long cease to believe in the value of passports, or such like documents, opining, with some truth, that they do the same much harm as good. If a rogue wants to escape the country, he is pretty sure to pass free, provided he has a passport, and whether the same is forged or stolen, is to him, of course, quite immaterial. It is true that on the Continent they enter a little more into detail of the person to whom the document belongs, and do not merely, as in the case of our Foreign Officials, simply fill up the bearer’s name upon a printed sheet, the greater portion of which is devoted to the names and titles of the Foreign Secretary himself. This English custom of ours often misleads, and gives rise sometimes to amusing mistakes on the part of foreign officials whose duty it is to examine these. We remember an instance of this some years ago, before Savoy was added to French territory when a good many of smuggling went on with contraband goods, which were first imported, duty free, into Switzerland, and then passed surreptitiously into Savoy and afterwards into France, there being no very strict frontier line between these two countries. Walking over an unguarded pass into Chamolz (which was then Italian, or Savoy, territory), we met two gene farmers, who immediately asked for passports. These were produced, and our interrogators looked everywhere for the "means of identification," which, as we have said, is usual in import foreign documents of the kind. One warrior stood ready with note-book and pencil, while the other searched the passports over and over again for the desired information. In default of the representatives of the kingdom we were invading, without consulting us to explain matters for one moment, began to copy down the names from the written type at the head of the document, and, finally, they permitted us to depart, the pocket-book bearing a record to the effect that "We, Earl of Clarendon, Baron Hyde, of Hindon, one of Her Majesty’s principal Secretaries of State, &c., had passed this way, going on foot to Chamolz." Having been thus entrusted with the inspection of documents, the use of photography would be very welcome, as it would be a means of identification, that could be appreciated even by those who cannot write or read. We are not discussing, of course, whether passports are of any use or not, just now, but showing how, if there are to be passports at all, they may become more effective by being illustrated with the bearer’s portrait. We personally, have no faith in passports, but that is not the point. If you do carry a passport, you wish, naturally, that no one who puts a visa upon it, should harbour any doubt that it does not belong to you. And passports, although generally speaking, but one more vexation to the traveller, are, it must be admitted, of value sometimes, especially those issued by our own Foreign Office. As we have shown, they are not too inquisitorial in their nature, and they sometimes lead officials, unacquainted with their grand appearance, to think the traveller a man of extraordinary importance. Thus we know of the case of an English gentleman having been admitted to one of the Paris forts, just at the close of the war, by the Prussian commandant for the time being, who had the Englishman’s big passport brought before him, handing upon the top the Royal Arms, and enjoining all those whom it may concern to permit the bearer to pass "without let or hindrance." In this country we recognise in the passport the only document of a personal character common among us, but abroad, and especially in Austria and some parts of Germany, personal documents, giving minute description of age, height, colour, and marks are very minute. All apprentices, servants, and government officials are provided with such documents; and it is here that a photographic portrait would come in most aptly. Such documents as these only find a parallel with us in the ticket-of-leave, for in this country we do not care to register British subjects, unless they come within the reach of the law; to us, therefore, photographic portraits would be of little benefit, but if it is the desire of other countries on the Continent to continue the practice of verifying the person of every stranger that passes, it would be well surely to have recourse to photography as one of the best aids in their power. That a camera picture does not always afford undeniable proof we are perfectly aware, but it gives undoubtedly the best assistance possible under the circumstances. We do not recommend the matter to the consideration of our neighbours.

Dry Plate Manipulations.—Everybody knows that the development of collodio-bromide dry plates may be effectively controlled by increasing or diminishing the amount of ammonia employed in treating them, and in this way plates which have been very much exposed indeed, may be prevented from fogging. Again, most photographers know that while over-exposure may be thus counteracted, plates which have received but a very brief exposure by light, and have been exposed for a much less period than should have been the case, never become good negatives, no matter how skilfully they are treated with the developer. Hence, we have learnt always to expose beyond the mark, when dealing with dry plates. In the case of some plates we have recently exposed, we went still further, and took none that gave them three times the period that was necessary to produce a sufficiently exposed plate under ordinary circumstances. In this way we succeeded in securing visible images upon our plates in almost every instance (we were employing films according to Stuart Wortley’s formula), and this result served as a very good guide for development. With a solution of the strength ordinarily used, these plates of course flashed out with unparalleled rapidity, and it needed a rapid action to wash and save the film; but we found that by employing a modified and weaker solution, this acted with the most uniform results, in the case of all plates upon which an image could be seen first of all by reflected light, and before even it had been touched by alcohol. By thus sparingly over-exposing the plates that were to be getting favourable results, and we were able to work in all cases with much certainty. The intensity of the film of these plates is a matter also that it is necessary to have some experience of, for it is far greater than one at first sight might imagine to be the case. So deceptive is the film at times, that it is wiser, we hold, always to undertake the operation of intensifying after fixing. When the plates have dried, a truer estimate of their character may be formed. What to the operator in the dark room appears to be a thin weak film, turns out very often on printing quite intense enough for one’s purpose. This is only one more proof that the practice of dry plate photography is a matter not to be learnt in a day.
PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HEIGHWAY.

Chapter IX.

PRINTING—MEDALLIONS AND FANCY PRINTING.

There is rather more in printing than the mere placing of negative and sensitised paper in the printing frames, and seeing how many prints you can "knock off" in a day. Study, thought, and no little ingenuity must aid experience, because the qualities of the negatives made necessarily vary very much, and to treat these all alike would result in a plentiful crop of bad prints at the end. It is often necessary for the printer to "doctor the negative," even after it has been retouched, one of the gravest faults of retouchers—after their falsification of art—being, that they very often do not understand the printing qualities of the negative. The printer should study each negative before printing it.

In the background often there are streaks and stains that would mar the picture very much if printed out to the size of the card. Sometimes the pencil is powerless to remove these marks, and even the application of Prussian blue fails to blot them out. In such cases work up as nicely as possible the portion of the background adjacent to the figure, and vignette. Sometimes, smoking the front or glass of the print over a fire and recoating it, will deposit from the face, hands, and the deeper stains on the background, &c., may improve the negative; but this method requires considerable care and skill. It is needless to advise you not to print from such a negative if you can get a better with another setting.

The shadows in photography are generally too strong, and too dark, and even when the printer has passed the retoucher's hands, the printer has to resort to his dark pencil and Prussian blue. A frowning expression should generally be considerably modified, especially as the scowl is often not habitual to the sitter, but the effect of too strong light, particularly when the mode of lighting which photographers are pleased to call the "Rembrandt" is adopted. Frequently, in the case of full print without much detail on the light side. The glaring white may be subdued by being exposed to diffused light through a form cut to the shape of the white portion; or the paper may, with many negatives of this class, be first slightly discoloured by exposure to light before printing; but this shading must be done with judgment, or flatness will result. In direct sunlight there is a watery bloom on the paper which is not removed by the rapid printing. The paper should be silvered to be less sensitive than for the ordinary work, and thus in a measure reduce the contrast. A short floating on a weak bath should be resorted to, and this paper set aside for your intense negatives. Pink tinted paper is also useful, the delicate flesh colour being preferable to the glaring white.

For weak negatives almost the reverse measures advised in the case of intense negatives are resorted to. A lengthened floating of white paper on a strong bath, and an extended time of fuming, and slow printing, are the general rules to be borne in mind. Of this class of negative we may have many only "weak," but otherwise perfect in gradation of light and shadow, and all we have to do is to reduce the rapidity of printing. This is done by using the "crown" in deep shade, and under several thicknesses of tissue paper. Coloured glasses may often be interposed between the negative and the light with good effect. A yellow varnish of one part iodine to one thousand parts of negative varnish is to be recommended for thin negatives. But there is another order of weak negatives, utterly flat and indistinguishable, save by the vocal and mental terms with the operator whose work it is. For such negatives there is required a good deal of skill and patience. Coating the face and hands and lights with Prussian blue, or, in some cases, Naples yellow, retards the printing of these portions. I have also covered negatives with tissue paper, and worked upon it with pencil and colour—but I believe this is now a patent process, though I did it long before Her Majesty's Commissioners covered it by granting letters patent—and, in some cases, by making little masks of tissue paper, and pasting them on the unvarnished side of the negative, over the face, hands, &c.; this I believe you may still do without fear of consequences.

Draperies very often require some dodging—a wrinkle in a dress often costing a lady as much trouble as one in the face—and many excellent pictures are destroyed by customers, on account of a fold marred the appearance of the dress. Folds may be softened, or obliterated by the retoucher. Face can be improved by a few judiciously worked-in lights. The appearance of beads and jewellery also may be improved by the same means. A lady's white drapery may, in many cases, be much enriched by a light artistically worked-in along the top and some portion of the sides of the folds, to supply contrast in what might otherwise be a very monotonous effect. Dark drapery should sometimes be printed beyond the time allowed for the whites, those portions being shaded.

The hair should be carefully examined to see that no ugly tufts project beyond the head to spoil the outline; and should such exist they should be carefully worked out, as also straggling hair, &c.

The face.—See that the retoucher has done his work properly, heavy lines softened, proper gradation of light and shade secured, everything as it should be; and having seen that the negative is in proper condition for printing, it is ours to secure the best results, that the prints are bold and brilliant, and yet soft and full of detail.

FILLING THE PRINTING FRAME.

As it is one of the easiest things in the world to break a negative in the operation of preparing for printing, care is necessary, not in this alone, but in all the manipulations, not only of printing, but of photography. The glasses should all be of the proper size; but should one be too large, never attempt to force it into a frame; or should it be in any way small, prepare a bed for it of another plain glass placed first in the frame. Dust should be brushed from the surfaces of the back of the camera's hair brush before putting it into the frame, and before each piece of paper is placed in contact. When the paper is in position, hold it up to the light and see that it is properly adjusted, not too high nor too low. Should there be any flaw in the paper, place it so that it will come in the drapery or shaded part of the picture, and exercise the same thoughtfulness. The whole paper should be dusted, for every piece should never be used for vignettes, for which the very best pieces should be laid aside. Adjust the pads carefully, taking care not to move the paper. Keep the pads free from dust.

VIGNETTING.

requires considerable care, and calls for a little taste. The vignetting board or opaque paper in which is cut the frame, is adjusted to the frame by holding it and the negative in the frame up to the light to see that it is properly placed, and moving the vignetter to its proper position. The proper shape for the opening is oval, but this must in some cases be modified to suit the negative. As the light, in printing under the vignette opening, diffuses, it will be found necessary to cut the little circle that is reserved in the vignetting picture. The opening is covered with the paper, and the frame must be placed so that the sun's rays fall perpendicularly on the frame, or, creeping in too much on one side or the other, the print will be uneven. In some cases, Naples yellow, retards the printing of these portions. I have also covered negatives with tissue paper, and worked upon it with pencil and colour—but I believe this is now a patent process, though I did it long before Her Majesty's Commissioners covered it by granting letters patent—and, in some cases, by making little masks of tissue paper, and pasting them on the unvarnished side of the negative, over the face, hands, &c.; this I believe you may still do without fear of consequences.
A very beautiful and truly artistic effect is produced by shading the white background of the vignette to a grey tint. The author has seen very few specimens of it, so that it may commend itself as a novelty, too often an unworthy quality, but not so in this case. The vignette made, it is placed between two clean glasses. Resting on the left hand the print is exposed to light, the figure and shading of the vignette being the porcelain outside, the glass a trifle smaller than the picture. The glasses are kept gently turning on the left hand, while the forefinger of the right keeps the cardboard oval in motion, so that sharp lines are prevented. The rotary motion of the print is necessary to prevent the shadow cast by the hand having an influence on the print, and the gentle motion of the cardboard precludes the possibility of the sharp lines. These simultaneous motions will prove difficult at first, but by beginning practice in very subdued light, sufficient ease and certainty will be acquired to successfully shade in strong sunlight, and the result will fully repay a rather difficult lesson. The grey background should never be darker than the shading behind the figure of the original vignette. The same shading may be produced (but not perfectly) by exposing the print protected by cotton wool over the printed portion in subdued and diffused light.

Printing in Oval or Medallion.

The oval forms and cut-outs may be procured at the stockdealers of much better shape than the printer can himself make. This is a very popular form of printing, and by it many pretty effects may be produced. The negative is first printed with the oval shape opening, to the proper depth of tone; the print is then placed on a sheet of glass, face upwards, and the oval cut-out placed in position over the print. It is in my idea better to adjust it a little on one side, whereby a little edge of the print is exposed. A clean glass is now placed over print and oval cut-out, protecting it, and the white margin is slightly discoloured to a grey tint. By this means a fine line of white margin on the side covered by the oval, and a dark line on the other side where the oval of the print has been exposed a second time, an effect seen in many old oval steel and copper line engravings.

Fancy borders may be made with negatives of fine lines, curves, coarse drawing paper, marbled paper, fancy figuring, &c., in place of the plain glass under which the oval is placed, to give the second time. The *vignette oval* is a combination of the vignette and oval—the oval stopping the delicate diffusion of tone to the shape of the opaque form, it may then be delicately shaded as described for ovals.

Arch-top Forms.

These are cut out by the printer to suit special negatives, or may be procured at the stockdealers. There is scope for a great deal of variety, and they are printed in the same way as the oval forms. Though this fancy printing often adds to the beauty of the picture when taste is exercised, it is very dangerous to the printer to whom taste and propriety are strangers. The designs should never be so glaring as to distract the eye and senses and take the attention from the portrait, nor should they be so complicated as to give the idea of a troublesome Chinese puzzle. Do not strive after a striking effect. Care should be exercised to preserve the paper and prints from stains and finger marks that are so likely to be communicated to them by a dirty and heedless manipulation. The fingers should be kept free from dust and frequently washed. A coarse towel should be kept handy on which to wipe the hands in warm weather.

THE PRACTICAL Printer in America.

X.

Painting Vignette Porcelains.

For the purpose of printing a vignette porcelain a block is made similar to those which have been described in Part I. The block should have a pasteboard fastened to it, upon which the clamping springs of the porcelain board can be fastened, which will then, besides keeping the porcelain and the negative in close contact, also hold the vignette-block in its place.

The same attention is required in vignetting porcelains as is necessary in printing positives on paper; so choose a suitable vignette-block, and cover it with tissue-paper before placing the porcelain out to print. In one the background is a poor one it should be taken out, as has been explained, the only difference between the two being, in one the print is on paper, whereas here it is on porcelain. I have very often taken out faulty backgrounds, and have printed in fine ones, and the result has often been very satisfactory to me, for they looked very fine, and also as if it was the original block I had used.

When the high-lights of the face of the printed porcelain are too blankly they should be toned down by exposure to the light for a couple of seconds, or so, which is best done by obtaining a suitable piece of a dark or opaque paper, and tearing a piece out of it, leaving a hole which should be full as large as the place to be tinted. Hold it out in the light, and keep the paper in constant motion while there, so that there will not be any hard edges.

Painting Medallion Porcelains.

Perhaps some of my readers will say that this style of porcelain picture is not printed; I allow me to say to the contrary, for I have very often seen very good results obtained with this style of printing, and which, on account of their novelty, was very pleasing.

When you have an old negative, and there is a porcelain wanted from it, then it can sometimes be printed in a medallion very nicely, especially when the draperies are very black, and the background is also very dark, both of which are very troublesome in vignetting to obtain fine feathering to the halos. These medallion porcelain prints look very pretty when the porcelain to be printed is to be of a small size, as a 4-line plate, but for anything larger than that size, we do not like them at all.

When the medallion style of porcelain printing is made it should be put up in a square opening, either in the new fashionable gilt case, or in the more sober-looking passe-partout.

To print these porcelains in the medallion style you should follow out all of the particulars that have been fully explained in a chapter devoted to that in Part I. vis., medallion and arch-top printing. Place the right side of the mask (background) at its proper place on the face of the plate, and then place the porcelain out to the diffused rays of the sunlight to print. Now print the crescent line on it, as you would do with a paper print. Do not tint the outside very dark, a neutral shade between the background and the shaded crescent line being about right. In placing the mask on the porcelain to shade the line be very careful that you do not scratch the film, for it is very tender.

Washing the Porcelains.

The porcelain when printed, and the high-lights tinted a tripe (if they need it), is then ready to be washed and toned, which had better be done as soon as printed.

Take the porcelain and go into the toning-room and arrange the light so that it will not be too strong, and whatever further operations you make to the porcelain, before you are through with it, should be done away from the window, especially in the toning of it, as will be presently shown. Now take a four-ounce vial, partly filled with good alcohol (not necessarily 95 per cent.), and before you wash the porcelain a particle with water you should pour the contents of this vial over the prints, say half a dozen times, or until the print has turned a beautiful red colour, which it will do in a very few minutes.

In pouring the alcohol on the plate, do not pour it always on one place, but at a different one each time, and wash all parts of the porcelain plate at the first flow, or else a harsh edge will be the result which sometimes does not disappear in the final washings.
either with the alcohol or the water, although it may be said that this occurs very seldom. Do not keep pouring on the alcohol until the porcelain has turned a yellowish-red colour, for this is very objectionable, and you may not use it in this condition when this colour appears, then the strength of the print is fast disappearing.

When the print has turned a rich and warm colour, which, if it has not been fumed too long, it will do in fifteen to twenty-five seconds, the plate is ready to be washed tolerably well under a tap of rain water.

At first the film will repel the water, owing to its being sensitive, but in a couple of minutes or so the water will run smoothly over it. In the winter the plate had better be washed with lukewarm (no warmer) water, and never think of such a thing (much less acting upon it) as washing the porcelain with ice-cold water. In placing the plate under the tap to wash, do not permit too large a stream of water to flow on it, for you must remember that the film is spongy, and it should therefore be made as if the water should manage to get a little under a corner with a large and heavy stream than it would with a small one. Do not let the water fall all of the time at one place on the plate, but move it so that it will fall at different parts of the plate, and as this washing does not require more than four or five minutes at the most, the bath will be dry before his hand does the whole time of washing, as the result will probably be better.

A good way to tell when the plate is sufficiently washed is to taste a drop or two of the water which has drained last from the plate, after it is removed from the flow of the pipe, and also after the plate has washed awhile, and if you do not taste any of the silver, you can conclude that the plate is washed plenty.

To clean, for the porcelain, is not a very good thing compared with alcohol, as a trial of the two will prove.

Toning the Porcelain.

Make up, while your porcelain is printing, a toning solution as recommended below, so that it will have a chance to ripen before it is required. The toning solution for porcelain, as well as for prints, should have a chance to get ripe before it is used, and it should therefore be ready at least fifteen or twenty minutes before it is wanted. Take a clean six-inch wide-mouth vial and let fall about fifteen drops of a stock solution of chloride of gold into it, said stock solution being one grain of gold to the ounce of water. Place in it a piece of lithograph paper, which will turn red, and add drop by drop of a saturated solution of bromide of potassium to it until you have a solution which will turn a purplish blue, shaking the bottle in the meantime. Now add about four ounces of filtered rain-water, and shake well.

Cover it up with a piece of glass, and let it stand for about five minutes in the sunlight, and then place it in the toning-room until ready for use. In winter, and often in the summer, it is an excellent plan to slightly warm the toning solution, and allow it to cool to a lukewarm state. The object of this is to make it tone more quickly, and also better than it would with a cold toning solution. I have advised to make the toning solution in a bottle for the purpose of "toning by hand," but I should advise the beginner to make up the solution in a dish, for instance, a quarter size, and tone in that.

If you tone by hand never pour the solution twice on the same place, but at different places, the places should be in the shadows, and not in the face; for uneven toning will often be the result, the high-lights and half-tints toning a little quicker where it is poured on a number of times than it does elsewhere; on the whole, it is better not to pour it on the printed picture at all, but on various parts of the margin of the porcelain, providing it can be so done.

Toning the porcelain in a jar, keep it constantly under the surface of the solution, and keep a slight motion to the toning solution constantly. The light for toning is a matter of considerable importance, for this, and this alone is in by far the majority of cases the sole cause of over-toning, because we tone our porcelains to what we think to be the right tint, toning in a strong light, and consequently when the porcelain is fixed we find that "it is over-toned."

You should tone in a weak light, and only until the high-lights and half-tints of the face commence to look a trifle blue, at which time the porcelain is toned, and the solution is to be washed immediately off.

If you were to examine a porcelain, as toned in a weak light, in a very much stronger one, it will appear to be undertoned, but it is not, and the beginner will do well to remember that a porcelain cannot be toned as much as you would a paper print, for it would be very much over-toned. Considerable experience is required to tone them properly, and "to keep your hand in" you should make them frequently.

PHOTOGRAPHS OF THE ELECTRIC SPARK* BY DR. J. SCHNAUSS.

During last winter there happened to be, by accident, a powerful frictional electric machine in my laboratory, while I was engaged of an evening in the preparation of dry plates. By way of experiment, in order to learn the action of a positive spark upon a sensitive plate, I allowed the positive spark to fall upon a plate which had been dipped in the bath and not washed. The metal point from which the stream of electricity emanated was rather blunt, and was at a very short distance from the surface of the plate, held in an upright position. It happened, therefore, that beside the electric current a few finer sparks leapt upon the plate, and on development of the film there was to be seen, besides any action from the current which had proportionately the greatest amount of light, while each of the little imperfect sparks (of reddish-yellow colour) was depicted very beautifully and sharply, like a radiating star. These phenomena interested me very much indeed, and without knowing that I had a predecessor in the experiments, in the person of Prof. Rood, of Troy, New York, who gave an account of a similar investigation in Stillman's Journal, I continued my experiments in various directions, and communicated the results to various physicists of my acquaintance, to whom the subject was new. We were all of one mind respecting the analogy of these phenomena with the known Lichtenberg electric figures. The latter are produced by printing a strong electric spark from a Leyden jar fall upon a resin (or, better still, a moulded rubber plate), the rubber plate being at the same time sprinkled with fine powder, such as earth, moss weeds, which then renders the form visible, the latter varying according as a positive or negative electric discharge has taken place.

The powder, in my case, was replaced by the fine particles of silver upon the plate, and it is apparent that the result is less the effect of chemical decomposition than of electric attraction, or, perhaps, even mechanical action, as I hope to prove in the sequel.

I am so far at variance with my predecessor, who sought to show that the result was due to the action of the light of the spark, and it is for this reason that I have been led to publish these remarks. The paper of Prof. Rood I found, after searching many volumes of physical papers, in Poggendorff's Annalen, vol. 87, p. 320. In the German photographic literature there seems to have been nothing said on the subject. Prof. Rood employed in his experiments very complicated apparatus, while I made use of a little plate in the form of a strip of glass, simply holding it in my hand, previously wetted, in the vicinity of the point of the conductor, and in this way secured just as perfect pictures, which were so far analogous to Lichtenberg's that the negative pole gave different pictures.

The accompanying illustrations show the positive and negative photo-electric figures on a considerably enlarged scale. The plate around the figures is perfectly clear and transparent, which is already a proof that the markings

* Photographische Archive.
are not due to the action of light. Prof. Rood seeks to explain this by saying that the very rapid nature of the spark prevents any action beyond the place where the spark has actually touched the film. Hence, however, lies the proof that the figures are only produced by the immediate contact of the electric spark with the photographic film.

In fig. 1, a and b, which are pictures of the positive spark,

\[\text{Fig. 1.} \]

it is seen that there has been a simultaneous throwing out of the silver solution from the centre, and this accounts for the radiating form produced. In the case of the negative spark, fig. 2, this peculiarity is not seen, or, at any rate, it is but slightly shown in c and a, while a is of ring-like shape, with a black centre, and a dark cloudy corona.

In the negative figures one particular spark must have acted with exceptional power, therefore. The negative pictures also develop much more faintly than the positive ones.

If, before the development, the exposed plate is examined with a magnifier by transmitted light, holding them against orange-coloured paper, at the back of which a candle burns, there are to be seen small microscopic black points, which have probably been produced on the spark striking the plate, and which appear to form the centre of every picture. If the plate is by accident struck by a current from a positive conductor, a fogging of the plate is seen after development.

Upon ferrotype plates the result from the positive conductor is very beautiful and fine, as the metallic base favours the attraction of the electric current. The natural size of all the figures obtained by me was 0.001 metre in diameter, a dimension which, in comparison to the almost unmeasurable minute thickness of the fine electric spark, appears considerable.

Starting with the assumption that only a mechanical action, or spitting out of the silver solution, is the cause of the whole phenomenon, I was of opinion that the silver solution alone would be sufficient to bring out the figures. To test this, I took a strip of glass covered with uniodized collodion, and, having dipped it into the silver bath, proceeded as before. After development there appeared a mass of black, which, if somewhat paler, were of the same character as when iodide was present. The same result, I found later, Prof. Rood had also secured, and it is to me, therefore, inexplicable, how he could imagine that the phenomena were due solely to the action of light.

In order to clear up more perfectly the cause of these figures, I tried in the first place to ascertain the notion of frictional electricity (without emitting sparks) upon iodide and nitrates of silver. I employed a mixture of these substances with the ordinary developer, and discovered that a hundred seconds, in a dark room, was insufficient to bring about decomposition. The mixture was put into a thin dish glass, and the latter placed upon a brass plate in connection with earth, and, by means further connected for more than a minute with the positive pole of the machine. No decomposition was, however, brought about, and the result was the same when a spark was allowed to leap over the fluid. The iodide of silver remained perfectly unchanged, there being only separated from time to time glistering metal particles of silver produced by means of iron vitriol.

In perfect union with my theory did sensitive dry plates behave. I employed for the purpose very sensitive bromide of silver plates, as also morphine and albumen plates. Little sparks produced no result at all, and only powerful sparks from a Leyden jar gave rise to a bronzing of the plate where contact was made. In the same way behaved a moist iodide of silver, as also morphine, from the double decomposition. After exposure to the electric current, the developer brought out the same beautiful figures as they appeared on a bromo-iodide film, a further proof, therefore, that it is not a question of the action of light at all. The plates produced with sulphate of lead could be fixed in the ordinary way with hyposulphite of soda.

It appears from this, therefore, that we have here the essence of the spark acting in a mechanical manner and producing upon a film saturated with a solution of silver (or bromo-iodide of silver, we have seen, is altogether unnecessary, and, at the most, blackens the image) exactly the same effect as a short exposure to light, the result being a so-called latent image, made visible on development. Is it possible that this phenomenon is an important indication as to what the explanation of the theory of the latent image may be?

The following control experiments which I made may be mentioned. A sheet of paper saturated, as in the case of the calotype process, was placed upon a metallic plate, and powerful electric currents were then allowed to pass from a Leyden jar to certain portions of it. Fine holes were in this way produced, but it was only when put into a gallic bath that any visible result was produced, and this was certainly the result of light. A round dark patch was produced, becoming lighter from the centre, but in no way resembling the figures here given.

I have very frequently photographed the electric spark, of course only in profile. The spark from a Leyden jar only gives a vague, though somewhat broad picture; an image being an image of the conductor. Electric figures have been observed and described by Priestley and Lichtenberg, and more lately by Grove and Bliss, as also by Pezold and Blits. In the three-volume, and very complete, work of Ries upon Frictional Electricity, continued to the year 1868, there is, however, nothing about photo-electric figures. Professor Rood's experiments, which were undertaken merely with wet plates, took place in 1862.

The statement of Prof. Rood (and the principal proof he adduces, that the phenomena are due to the action of light), to the effect that a photographic film covered with thin glass or mica, if exposed to the action of an electric spark, still shows pictures of this star-like character, was not borne out by the experiments I instituted.
The Photographic News.

Vol. XIX. No. 591.—October 1, 1875.

CONTENTS.

Page
Photography In and Out of the Studio 469
Practical Portrait Photography. By William Heaghey 470
The Practical Printer in America 470
Photographs of the Electric Spark. By Dr. J. Schmaes 472
The Photographic Exhibition 474
Review of some recent publications in the Art of Photography 475
Pho-Block Printing 474
Matrices for the Photographic Intensity of Damply 474
Taken at Blackpool, Lancashire. By J. W. Passmore 474
The Spectrograph. By Prof. H. Vogel 476
Contributions to Medical Photography. By Dr. S. T. Steen 477
"Photograms" 477
"Photograms."—"Etruscan Dresses," at the Opening of the Exhibition—Pictorial Backgrounds 478
Talk in the Studio 479
To Correspondents 480

THE PHOTOGRAPHIC EXHIBITION.

The Annual Exhibition of the Photographic Society was opened in the Gallery of the Society of Painters in Water Colours, in Pall Mall East, on the evening of Tuesday, the 28th ultimo. The room is an admirable one, and the hanging is very effectively, and, so far as we have seen, very judiciously, managed. The background of the maroon cloth with which this gallery is provided is marvellously beneficial to the subjects in the enlargements, and, what is equally important, the general effect, and there is sufficient design and compactness in the general arrangement of the frames to give the walls a furnished appearance in place of the scattered, irregular, and repelling effect we have seen where the pictures were hung, almost at random, against a bare wall. There are some very fine pictures at the present exhibition, and the general effect is one of beauty, comfort, and harmony. The picture brought out the design, by applying a carbon, powder, he can produce an image exactly adapted to the production of a picture, which can, by judicious finish, be made a work of fine art. The two examples to which we refer admirably illustrate the position. They are two studies of a pretty little girl in the quaint, old-fashioned costume with which many readers will be familiar, in the most charming child pictures ever painted—those by Sir Joshua Reynolds. One of these is entitled "Simplicity," in humble imitation of the picture with that title painted by Sir Joshua. Apart from the winsome, unconscious simplicity of the little model, the treatment here is in every way delightful. Of course, pose, expression, and composition, are carefully followed, to the nearest possible, but the management of light and shade, the tender gradations of flesh and draperies are singularly beautiful. The companion-picture, a portrait of "Dorothy Morrison," the same little sitter, is scarcely less charming. A frame of flowers (129) produced by the same process, but left more in the state of sketches than finished pictures, are in every way delightful, the young models of full of baby beauty, and the treatment admirable. A frame of enamels by Mr. Faulkner, the only examples of this kind of portraiture, we believe, in the room, contains some specimens simply perfect.

The landscape contributions include many fine pictures. For delicacy and a sense of high finish, Mr. William Bedford remains unsurpassed. Messrs. A. and J. Wall send large landscapes of the Egyptian scenes possess a curious charm with which we have rarely met in eastern pictures: they suggest all the brilliant glare of light, but are, at the same time, exquisitely soft and gentle, full of a profound beauty in the shadows, instead of the black patches which have been usual in the photographic representation of shadow in such pictures. The staff of Engineer photographers under the general charge at Chatham, send some magnificent landscapes. The studies of old English houses, by Mr. Stephen Thompson, are capital. Mr. William Brooks has some
very delightful landscapes; as have also Mr. W. G. Hunter, Mr. G. W. Wilson, Mr. Keuben Mitchell, and others to whose names we return to return them our most sincere thanks.

There is not much special pictorial work about; although many of the contributions possess high pictorial qualities. Mr. Frank Sutcliffe's work takes high rank in this direction, and Mr. Hollyer sends good work of the same kind. Captain Turton, Mr. J. M. Young, Mr. H. G. Cocking, Mr. Neilston, and some others send studies to which we shall return. There is still a deal in the way of illustrations, and we doubt whether any other process is equal to it.

Carbon prints of great excellence are shown, as we have said, by the Autotype Company, by Mons. Lambert, by the Woodbury Printing Company, and by some others, and some admirable examples of photo-mechanical printing are shown by the latter. Pictures from emulsion negatives are plentiful; but, in the majority of instances, fail to do the method justice. Mr. H. W. Black shows some most charming examples, it is true; but the examples sent by Mr. Mawdley scarcely do him or his process justice, as we have seen better examples of his work. The same remark is true of Mr. Stillman's contributions. The example of gelatine emulsion are few, but, on the whole satisfactory, some enlargements from gelatine pellicle negatives sent by Mr. Haxby are very good. Some large pictures, apparently collodion enlargements, sent by Mr. McIish, are very fine. Captain Turton sends some excellent ferrotype portraits. Some applications of photography applied to the decoration of porcelain, sent in by Copeland and Son, containing photographic portraits burnt in, of a bright manta tints, are interesting; but the tint is certainly suitable for the work.

We propose to enter into detailed criticism of any of the contributions at present, but simply place before our readers a general impression gained during our first visit. More detailed criticism of the most noticeable work in subsequent numbers.

RENDERING BROMIDE OF SILVER SENSITIVE TO THE NON-ACTINIC RAYS.

A further communication from Captain Waterhouse informs us that he is continuing his experiments with stained bromide of silver films, and hopes to verify the correctness of Dr. Vogel's theory, and also to ascertain how far it can be turned to practical account. In the meantime he is anxious to avoid arriving at a hasty conclusion; no note without it, but his former remarks by re-emphasising the facts, but guarding against the positive acceptance as yet of any definite theory deduced from them. That the dyes have an effect in rendering the bromide film more sensitive to the red rays, he says, there cannot be a doubt; but he does not find the absorptive action of different dyes so distinct as Dr. Vogel has described—plates, for instance, stained with blue and with orange having given him almost identical spectra. Much further experiment it is probable will be necessary to ascertain all the conditions affecting the results. We now append an extract from Captain Waterhouse's letter:

"Since writing to you on the 17th, it has occurred to me that in the hurry of writing to catch the mail I expressed myself rather more positively than I intended when I stated that I was not in a position to speak with absolute correctness. I therefore, think, be no doubt of the action of the dye, and that Dr. Vogel is correct in his theory. Of the action of the dye I have no doubt, but I cannot pretend to have proved the truth of Dr. Vogel's theory from a single trial. Later experiments appear to show that, although several of the saline dyes undoubtedly have an influence in increasing the adhesiveness of the film, there are many others of which the action is too uncertain to be relied upon. The most refrangible rays of the spectrum, the absorptive effects of different dyes are not so distinctly marked as the results obtained by Dr. Vogel. Had I led me to expect. I must, therefore, reserve any opinion as to the correctness of Dr. Vogel's theory till further experiments have given me a fuller insight into the subject.—Yours truly,

"J. WATERHOUSE."

PHOTO-BLOCK PRINTING.

We have repeatedly expressed surprise and regret that the production of photo-engraved blocks for use in conjunction with ordinary letterpress or type printing, had not been introduced in this country to any important extent, or on a commercial scale. Such an application of photo-engraving to supply the place of wood blocks produced by the wood engraver would, if it proved efficient, be a triumph for the photo-engraving man, and would probably find a larger field of usefulness than any other process of photomechanical printing. Many such processes have been devised; some have been freely published; some have been patented, and others have been preserved secret. We have seen many admirable results; but, from causes, some of which are not easy to explain, none, as yet, has been able to take its place in regular print shops. In America, we have reason to believe, as we have on a former occasion intimated, a method of producing such blocks is in successful commercial operation; the company engaged in working it has at the present time, as we learn from the Scientific American, sixty persons constantly employed, and these are, it is stated, preparing an amount of work which will require for its accomplishment a thousand skillful wood engravers. Reproduce from the pages of our contemporary a few details of the method, and of the early struggles of its introducer, Mr. J. C. Moss, which will interest our readers. After a brief glance of the history of photo engraving, our contemporary says:

"Among various inventors in this field, John C. Moss, superintendent of the Photo-Engraving Company, of this city, seems to have achieved the highest success. Being both a practical photographer and a printer, his experience gave him great advantage in his endeavours to prepare plates, by means of photography, to be used on the ordinary type press. He commenced his experiments with great enthusiasm in the spring of 1856; but it was not till ten years later that he had so far succeeded as to get his process into practice, and attracted so much attention that he was induced to unite with others in the organization of a company for the purpose of carrying on the work upon a large scale. Accordingly, the Actidie Engraving Company was formed. But this did not prove a financial success; and after a year and a half it was abandoned. There were some inventors, however, who immediately took hold of Moss' process, and by slow and winning their way to public favour. This proved to be one of them. There existed in the minds of many publishers a strong prejudice against process engraving, due to the fact that several processes had been introduced, of which they had made trial with very unsatisfactory results. Time was required to prove that Moss' process was not like the others."

"Another and perhaps greater obstacle was met in the reluctance of artists to adapt their style of drawing to the requirements of this new art. They had been accustomed to make their drawings with pencil and brush, often hastily, leaving the work to be perfected and finished by the slow and tedious toll of the wood engraver. Now they were asked to furnish pen and ink drawings, executed with the greatest care and exactness, to be used for the purpose of securing the desired result. Their first attempts were generally failures, increasing the indisposition to change.

"But Mr. Moss had pursued his invention too long to be disheartened by these obstacles and delays. A new organization—the Photo Engraving Company—was formed, something more than three years ago. Expensive equipment and machinery have been supplied, and parts of which have been invented and constructed expressly for this use; workmen have been carefully trained to perform their respective parts; a corps of artists, patiently instructed, have become skilful in the style of drawing required by this method of engraving, and the process itself has, in several respects, been essentially changed and improved."
THE PHOTOGRAPHIC NEWS.

October 1, 1875.

"One of the methods devised by Mr. Moss to save labour in the production of pen drawings is this: the copy from which a drawing is to be made is photographed double the size of the plate required, on arrowroot paper, and then fixed and well washed, but not toned. Directly upon this print the drawing is made with a pen and India ink. When the outlines and all the important parts of the drawing are complete, a saturated solution of corrosive sublimate in alcohol is flowed over the drawing, which bleaches away the photographic colour without at all injuring the lines in ink. The finishing touches are then added, when the drawing is ready to be reduced and engraved. Thus the tedious operations of sketching and tracing are obviated, and a degree of accuracy is secured which it would be difficult to obtain by any other means."

"It should be observed here, however, that drawings are not required for all the engraving done by this company, since a large part of their work consists in the direct reproduction of woodcut, lithographic, and steel plate prints, either of the same size as the originals, or of reduced or enlarged sizes."

"Up to the present time this company has engraved over 50,000 relief plates, measuring over 500,000 square inches; and it is estimated that, with about sixty employees, they are annually performing an amount of work that would require, on its accomplishment at least 1,000 skillful wood engravers."

BY D. WINSTANLEY, F.R.A.S.

The appended report is for the week ending Saturday, September 25th. It will be seen that the lightest day of the week was Monday, when the aggregate of chemical light reached 8,400 units. The darkest day was Thursday, when it fell to 300, an amount lower than any I have recorded during the past four weeks. The daily average of the week was 1,922 units, or 1,713 units less than the daily average of the preceding week. For further information the reader is referred to preceding numbers of the PHOTOGRAPHIC NEWS.

THE SPECTROGRAPH:

A NEW AND EXCEEDINGLY SIMPLE APPARATUS FOR SPECTRUM PHOTOGRAPHY.

BY PROF. H. VOGLER.*

In the spectrum experiments which I have conducted during the last two years, and by means of which I have secured several not uninteresting results, I employed a somewhat complicated and costly kind of apparatus. In the first place, there was a heliostat to throw the sun's rays always upon the same spot; then a spectrum apparatus; and, further, a camera with stand and everything relating thereto. This rather costly trinity of instruments is only at the disposal of a few, and I myself had to borrow to complete my apparatus. For this reason it is impossible for many who take an interest in the matter to conduct experiments of the nature I refer to.

Recently I have constructed an apparatus which can scarcely be imagined in any simpler form, and which renders the expensive heliostat altogether unnecessary. The spectrum apparatus required is that of the cheapest and simplest form: namely, a pocket spectroscope of Browning (mine being constructed by Schmidt and Haensch, of Berlin), and there is, finally, a small camera necessary.

In case one has the latter already in one's possession, it is only necessary to obtain a pocket spectroscope, and fix this, in a light-proof manner, by means of a perforated cork, into the front of the camera. The spectrum lines are then sharply focussed on the ground glass, no lens being necessary in the camera. In order to admit of the entrance of the tube into the cork, the front part of the instrument (the slit tube) is removed, and the back part having been pushed through, the former portion is again adjusted. I have here a sketch of such a camera with the pocket spectroscope properly fixed (see fig. 1).

Fig. 1.

The focussing sharply is not an easy matter; to do it, the ground glass must be thoroughly rubbed with oil, and then the seven coloured bands are adopted. These appear at their best when sunlight is thrown upon the slit by means of a mirror; but care must be taken that the light falls exactly in the direction of the tube. To effect this, the camera is so placed that the spectroscope tube does not throw any shadow, or does so equally in all directions. The front part of the spectrum is pushed backwards and forwards, whilst the sunlight falls upon the slit, until the margins of the colour lines appear perfectly sharp (see fig. 2). Afterwards some of the lines are easily

Fig. 2.

recognised—as, for instance, F in light blue, and G in dark blue; with a magnetiser, also, E and B in green may be seen, if only the slit is narrow enough; for the latter may be enlarged or diminished by simply turning the head of the spectroscope.

The point is next sought, by moving the slit-tube to and fro, where E and B appear sharpest (G is then seen double); having been done at the right time. When the sharpest point has been secured, the length to which the instrument has been drawn out is marked upon the tube as a guide hereafter for focussing the spectrum.* If one is at all in

* I may here remark that manipulating the camera will not help in focussing; the farther it is pulled out, the bigger does the spectrum become, without its sharpness being materially altered.
doubt about the sharpness of focus, a trial plate should be taken.

Exposing a plate in the camera, the former, in the dark slide, is pushed into the camera, and this is then taken on one’s lap into the sunshine, and held in such a way that the tube is directly in the path of the sun’s rays, and does not throw a shadow in any direction. In from ten to sixty seconds a spectrum image may thus be obtained showing all the lines. The latter may not be quite so sharp as those rendered with more complicated instruments, but it is quite suitable for experiments of this kind. In my wet plates are exposed in the apparatus, a very beautiful picture is obtained of lines F and G in blue, and H in violet, and of the ultra-violet; with a long exposure, the lines E and green are also rendered.

This simple arrangement, which only necessitates an outfit of about two guineas for a spectroscope, I have found amenable during the past few weeks, that I can recommend it to all who are under the mistaken impression that spectrum experiments do not need a spectroscope but may be undertaken with the aid of coloured glass.

When I decided upon my recent journey to India, I resolved to perfect this instrument somewhat, so that it could be used whilst travelling; and I employed it on board the ship, and was enabled to secure several spectrum pictures on one plate. To do this, a movable slide was provided, and, besides, it rendered the camera more bulky. So I used a camera made for me on purpose by M. Stegemann, which took up very little room indeed. It has no movable slide, but a simple stationary one for plates eleven by eight centimetres. As may be seen from the dressing out of the movable shutters a and n which serve to shift the spectroscope, measurements being marked above at n.

The shutters are shifted so that the spectroscope corresponds with the marks one after the other, and in this way five spectrum pictures may be secured one after another upon the plate, each image measuring 4 by 5 centimetres in length, and 2-9 centimetres in breadth.

The camera is eighteen centimetres long, ten centimetres high, and thirteen broad. By means of tinted dry plates I took, at different times in the day, but giving the same amount of exposure, several images of the spectrum in the Red Sea and Indian Ocean, and obtained some astonishing results of the chemical action upon the various coloured films. In a little box beside the camera and dry plates contained the necessary chemicals, a phosphorescent powder, and the films, together with four dark slides. The development of the plates was undertaken at an evening in the cabin. I may mention that this little apparatus stood me in very good stead, and withstood perfectly the effects of the tropics. To those, therefore, who do not mind the expense of a second camera, I can warmly recommend this apparatus.

The slit of the ordinary spectroscope has parallel margins. I have, nevertheless, employed a wedge-shaped slit with great advantage. Such an opening yields a spectrum which has one edge dark, and on the other light, and when such a spectrum impinges on the plate, the lighter portion acts at first, and then the darker portion, according to the chemical intensity of the particular colours. From the continuation of the action in the direction of the spectrum lines, a conclusion may be drawn as to the chemical intensity of the colours.

I have called this apparatus little Spectrograph, in contradistinction to the big spectrograph, which I will describe by-and-bye, and which is far more complicated. The latter is for the depiction of larger spectrum images.

CONTRIBUTIONS TO MEDICO-PHOTOGRAPHY

BY DR. S. T. STEIN, OF FRANKPORT-ON-MAINE.*

I.—PHOTOGRAPHING THE BEATING OF THE PULSE.

In the same way as photography has secured to us many pictures of anatomical interest from dead subjects, so I have made use of the art in photographing things of physiological interest from living beings, securing certain ions in life and holding them fast in clearer. The streams of earth magnetism and the variations of the barometer and thermometer have been fixed by means of light curves, and we are similarly in a position to depict by means of photography, the action of the heart and the beating of the pulse.

The pulse, which serves medical men generally as a talisman of health or sickness, can be observed either by seeing, feeling, or viewing. The audible pulse is produced simply by a repetition, or carrying forward of the heart-tones; and its existence farthest from the heart, inaudible, except in the case of certain sickly patients, while it is well known that the action of the heart itself may be heard perfectly through a stethoscope properly adjusted. By means of the hand, pulsations may be felt in many parts of the body, the throbbing of the arteries being very marked. As regards the eye, too, a very simple experiment shows how well pulse action can be seen.

When any one allows the hollow of one knee to rest upon the other, the upturned ear shows very visibly, by its movements, the action of the pulse; in this way the rapidity of one pulse may be compared by the eye.

In the different intervals between the repeated blood-raves in the elastic tube of the artery, the walls of the latter are, to a certain extent, stretched and contracted with every beat of the pulse. The shaking thus engendered, which we term the beating of the pulse, may, by means of a specially constructed apparatus called a sphygmmograph, be registered in the form of a curve. The first who essayed in this way to write down the beating of the pulse was the physiologist, Carl Vierordt, of Tübingen. He also constructed a registering apparatus for showing the rapidity with which blood moves through the body, and thus he called a Hämato chronometer.

A very ingenious apparatus for registering the beating of the pulse was afterwards constructed by Marey, of Paris, the invention being based upon that of Vierordt. The Marey Sphygmmograph (of which we give a sketch), consists of a feel-lever in connection with a marker, which registers the pulse curve upon a moving strip of paper.

Marey’s Sphygmmograph.

The spring, a, lies upon the pulse at h, and is lifted in the slightest degree at every motion of the pulse. A screw, i k, is in connection with the spring k, and goes through the lever, which finds a resting-point at c, and through a screw socket at h, by means of which the screw k can be raised or lowered at will. This lever carries a d, a knife-edge, bent upwards, and touches a second lever, e f, which has its resting-point at c, and which moves with great ease up and down. The screw k is close beside this second lever. If, now, there is the slightest movement at h, this is imparted at once to the double lever c d e f, and is increased very much at the end of the lever at f. The disk which carries the strip of paper in the Marey instrument is set in motion by clockwork, and travels from right to left. When the fine writing apparatus at the end of the lever e f rests upon the paper, and the spring a is not in contact with the pulse, the result is a long line on the strip of paper; as soon, however, as a h is brought into contact with the pulse, and the levers are set in action, there is formed at a curved line, or, rather, series
of curves. Here are two examples of pulse curves as shown by the Marey instrument.

Normal Curve of the Pulse.

Double Fever Bouncing Pulse.

The unavoidable friction which, of necessity, accompanies the pen or other writing instrument robs the curves obtained in this way of a great portion of their scientific value, and for this reason, too, the curves obtained by different instruments vary from one another. No definite conclusion can therefore be derived from the results obtained. Absolute certainty could only be ensured in the presence of an imponderable feeler, which could register without friction, and be without action upon the pulsating artery. Czernak believed that he had found a solution to the problem by employing light rays in lieu of the feeler. Rays of light are, of course, imponderable; they write instantaneously and without friction by the aid of photography, and they are, to Czernak's thinking, also as applicable as the feeler, without in any way altering the natural character of the pulsations. Czernak proposes to focus the light rays by means of a convex lens, and the light rays passing over a knob or button placed upon the artery. The shadows which the button would throw upon an enlarged scale on a wall opposite, due to the divergence of the light rays, would give, by reason of the rising and falling of the button, a marked curve upon a moving sensitive photographic plate. Czernak worked out this idea, and elaborated a so-called pulse-mirror.

This pulse-mirror is a small thin plane mirror, which is so fitted to the artery that the movements of the latter follow each other with much precision. Concentrated rays of the sun, or beams of artificial light, if strong enough, reflected at a certain angle upon this instrument on the pulse, project a picture on a wall, or screen, that may be seen by an observer or secured by means of a photographic apparatus. Every motion of the artery wall is reflected by the plane-mirror, and is repeated upon an enlarged scale. In order to secure analogous pulse-curves to those of the Villors-Marey instrument, by this simple motion of a vertical line, Czernak has caught up the light image coming from the pulse-mirror upon a second mirror, which turns upon a vertical axis with uniform rapidity, and this second mirror is in turn reflected by a third mirror and is repeated on a wall opposite. A light image of this nature moves from one end of the wall to the other in a horizontal direction at every pulsation or curve. Although Czernak believes it to be the best plan to press the pulse-mirror against the artery with the finger, he has contrived a special appliance for the purpose.

The arrangements permit the exhibition in a lecture-room, or elsewhere, to a large audience, of the action of the pulse-wave, as the image may be thrown upon a wall in full sight of the spectators. For photographic purposes, however, the mode operandi seems to us scarcely practicable, as on the one hand the reflected movements have far too large dimensions, and on the other the mechanical anism of the pulse-mirror, or the use of the finger, must have some injurious influence upon the formation of the curves. Moreover, Czernak, to our knowledge, has not worked out the matter from a photographic point of view, and has not made full application of the imponderable character of the light rays employed.

(To be concluded.)

"PHOTORAMA."

Mr. Edward Y. Poole communicates the following interesting remarks on the value of different modes of illumination for the magic lantern to the English Mechanic.

"Now that the long winter evenings are coming, it may be of some interest to discuss a 'recreative science' which has contributed, and by the aid of advancing science will continue to contribute, a great deal of pleasure, information, and instruction to persons of every age and distinction. I once thought whether or not the word 'photorama' would apply to the entertainment produced by the instrument now so popular, but the terms 'magic lantern' and 'disolving views' seem to hold their place with many for the present.

"Photography is doing a great thing for the lantern, and the painter's art, in artistic hands, will do much to give reality to the effect, providing a pleasing study of light and shade is made by the photographer, and heavy black masses of shadow and high lights, free from half tones, are avoided. But to give effect and do justice to the pictures, in addition to perfect lenses giving a sharp field, we require a brilliant light. For public entertainments on a large scale, of course the oxyhydrogen jet is given to the stage, but for the private or the home and for the small objects, the blow-through jet and oxycalcium spirit lamp may answer the purpose; but for private and many other entertainments, and class lectures, the preparation and cost is too much for the oxygen gas. Ordinary gas can seldom be got to burn above 17-candle power, unless any improvement can be made in burners and gas. The ordinary blow-through jet, which blows the oxygen and pure carbon dioxide from its nozzle, gives, with sperm oil, a 20-candle-power light, or thereabouts, burning about a half-pint in two hours. But, for brilliancy and economy, there is not the slightest doubt that best petroleum will carry the palm with good burners. I have used a tablespoonful of petroleum with sperm oil, in place of camphor, in the ordinary solar lamp, with some striking results. The winter night light to some put on, and sperm and colza oil are disagreeably greasy liquids to deal with; therefore I think petroleum, alone of the oils, should be studied as a means of illumination, but, from its rapid vapourising properties, the cistern should be placed at the back of the lantern, to prevent the burning being overcharged with gas from heating. The liquid will also have to be kept lower in the wick-case than in the lamp, and, i.e., in the wick-case, to be carried, i.e. fixed, upon a tray with a brass pipe leading from the cistern (which is placed at the back like an oxycalcium spirit lamp and of similar fountain form), the pipe also protected by tin above, forming an air channel round it and the lower part of the wick-case, to prevent heating. The oil would then be only vapourised at the burner. The wind must always prevent the burner being too dry, but it is not necessary to have an airtight lamp. The gases can be dried by a copper tube with sulphuric acid to give the principle—to give intense illuminative brightness and whiteness to the light. Several flat burners with air currents between them burning parallel and as near together as requisite, would do this, but not with their edges to the condensers, or bars of shade will be the result. The 'Silbier' light, no doubt, gives good illumination, but we must have the gas and the wick-case for twenty-five candle power. The 18 burner is said to give a light of fifty candles, but whether it is brought into use or not I don't know. My impression is, that in place of the deflecting tube in the middle, a second wick may take its place, and thereby, without increasing the size of flame, we may have increased candle power, probably eighty to one hundred.

Many think that the disc may be increased to any size with the same light, and are disappointed at the rapid decrease of brightness and definition in the picture; but the square set area of the disc will soon explain this. Many opticians deceive in this respect, stating that with the solar lamp a disc of ten to twelve feet in diameter may be produced; but the fact is, that, to get a bright picture, six feet is the limit. A Birmingham firm has been very much in the habit of stating the latter. I have a twenty feet disc, with a twenty candle lamp, will be as bright as a twenty feet disc with oxyhydrogen light; and, starting upon that
basis, I append a diagram showing the illuminative power required for different size discs. It is shown by the square of the sheet for better calculation.

It will thus be seen that for only twice the distance or twice the diameter we require four times the power of light, for three times nine times the power of light, for four
times sixteen times the power of light, and so on in proportion.

Correspondence.

"EVENING DRESS" AT THE OPENING OF THE EXHIBITION.

Dear Sir,—This evening the exhibition of the Photographic Society of Great Britain opens with what is misnamed a conversation, and the "president and council request that all will appear in evening dress." I, for one—and I know that many others—will not attend, because I, and they 'cope' to descend to the donning of swallow-tailed coats for gentlemen, and semi-dress dresses for ladies, and ape the follies of those who consider themselves the upper classes. I think that I may safely state that every member of the Society, as well as his wife, possesses the good sense and taste to dress decently and becomingly, without being dictated to by the "president and council," to attend what is nothing more than the private view of the Photographic Exhibition, and the "president and council," should have trusted to that, and not have printed on the face of their cards of invitation what will be to many a prohibitory condition. As it is, many members—and probably exhibitors—will certainly absent themselves from the private view of their own exhibition, solely on account of the evening dress fiasco; and I beg to put on record my personal protest against the repetition of such a request being issued by the "president and council" of the Photographic Society of Great Britain. I remain yours truly,
J. W. W...
11a, Berners Street, W., September 28th.

[Unhappily, the protest comes too late; this was inevitable, as the intimation that "evening dress" was required, was not made public until the cards were issued a few days before the exhibition, and being an innovation no one could have anticipated the change. We think with our correspondent it is a mistake. When the present series of exhibitions was commenced, the opening night was styled an exhibition meeting, to which members could invite their friends to see the pictures. The first experiment was such a success that it was resolved to repeat it, and an informal reunion of members and their friends became the established inauguration of each year's exhibition. More than once, in the earlier years, the idea of converting this informal reunion into the recognised formal conversations, in which "evening dress" is de rigueur has been mooted; but, on due consideration, has been abandoned as inconvenient and undesirable. To many operators, printers, and other assistants, who have every claim to be present at the opening of the exhibition, the condition of attendance in evening dress is, practically, prohibitory; whilst, to many more it is inconvenient. When the conditions were left open in this matter those members and their friends who, by habit or accident, found in conventional evening attire on the opening night, were not precluded from attending in such attire; whilst those whose convenience found them in walking dress were not barred from being present. Success has attended the practice hitherto, and, we cannot but regret that a deviation, which had the effect of keeping many visitors away, was adopted on the present occasion. The fact that the attendance was smaller than on any previous occasion will probably prevent a repetition of this error another year.—Ed.]

PICTORIAL BACKGROUND.

Sir,—your brief but lucid description of Mr. Tilley's patent method of producing "pictorial backgrounds," in last week's News, would suggest that the process is not without its difficulties and failures. It would appear that the "arrangement of curtains," etc., in the second exposure, would be rather troublesome, even if the best results can be secured. I have invented a method somewhat analogous, in the use of a transparency, to that of Mr. Tilley's, but without the apparent difficulties and complications suggested by the "curtains." If I do not feel infected with the general contagion of "patent" now prevailing, I will give a full description of my simple and effective method in the next coming Year-Book of Photography. In the meantime any person can pay for and use Mr. Tilley's ingenious patented method, for which he deserves credit.—I remain, sir, yours respectfully,
T. E. THOMAS.

Talk in the Studio.

Mr. Tilley's Mode of Combination.—We have been favoured by Mr. Tilley with some examples of the pictorial backgrounds introduced by his method recently patented. They illustrate the admirable variety of effect which can be produced, some representing close scenes, and others distant and open landscapes. Some of the latter especially please us, the results being charming little pictures.

SAM WALLER AT FALMOUTH.—Mr. H. Garrett cooked calls our attention to the fact that the notice in our last of the exhibition of photographs at the Royal Cornwall Polytechnic Society describes his contribution "Sam Waller," but attributes it to Mr. H. Garrett, without the addition of the surname. Mr. H. G. Cooking, as many of our readers know, is son of Mr. Edwin Cooking, now assistant secretary of the parent society, as well as secretary for many years of the South London Society. "Sam Waller" will be found in Fall Mall by those interested in his photographic presentation.

MEDALS AT BELGIUM EXHIBITION.—The following medals have been awarded to English exhibitors at the International Photographic Exhibition, held by the Belgian Photographic
Association. Silver medal offered by the president of the Association, Messrs. Spenner Sawyer and Bird; silver medal offered by the President of the Photographers of America. Mr. Woodbury; bronze medal offered by the general secretary of the Association, Mr. Ogier of Jersey, for reproductions and enlargements in carbon; bronze medal offered by M. Cout de Kerchove, M. Montifoi Levy, and M. Ney, for engravings, by Mr. De la Rue, Mr. J. F. York of Nottingham, for his stereoscopic studies of animals; silver medal offered by Mr. Gantsy, Mr. Henderson for engravings; bronze medal, Captain Abney for Transit of Venus photographs.

A "Speaking likeness." A curious illustration of the occasional danger of using figurative language in the ordinary transactions of business is afforded by a letter we find in the Bristol Times and Mirror. Mr. T. Thatcher, of College Green, Bristol, having advertised in that journal a likeness of the hero of the altered, Captain Wobb, incurred an unforeseen trouble, which he describes in the following letter to the editor:

"Will you please omit the word 'speaking' from my advertisement 'Speaking likenesses of Captain Wobb,' as on Saturday last a well-dressed middle-aged female, apparently the wife of a well-to-do yeoman, entered my shop, and said to my assistant, 'I want one o' them speaking likenesses o' Captain Wobb which I see in the paper.' She was immediately produced a copy of the portrait in question. We were much puzzled at the manner in which she minutely examined the picture: first, the face as closely as possible, and last of all the back, feeling it all over in a most mysterious manner. She at length exclaimed, 'How they make 'em talk, master, I wants to hear 'em speak!' Observing her misunderstanding and embarrassment, I explained to her as closely as possible that the word 'speaking' in the advertisement was not intended to be taken in its literal sense, but was a term frequently applied to portraits and pictures, denoting the life-like accuracy of the representation. She, however, appeared anything but satisfied at the explanation, and throwing the "Captain Wobb" again upon the counter, walked out of the shop muttering the words 'Twee a regular take in.' I am, etc.,

T. THATCHER.

Restoring Engravings.—To restore the whiteness of yellow and discoloured engravings, first wash carefully in water containing a little hypo of sodium, and then dip for a minute in Javelle water. To prepare the latter, put four pounds of bicarbonate of soda in a kettle over a fire; add one gallon of boiling water, and let boil for fifteen minutes. Then stir in a pound of pulverised chloride of lime. When cold, the liquid can be kept in a jug ready for use.—Scientific American.

To Correspondents.

W. M.—You cannot by any simple and efficient process remove the iodide from iodised solution so as to make it suitable for enamelling. It would be possible to precipitate the bulk of the iodine as an insoluble salt, but the cost and trouble would be in excess of the value of the result. You may remove the greater portion of the iodide from each film, as you coat the glass, by soaking it in two or three waters before allowing the collodion film to dry.

Burrows.—The enlargement is a good one, sharp and well defined; but the original negative appears to be a little hazy, which would render necessary retouching in the enlarged print. Thanks, in advance, for promised Year-Book contribution.

Postmaster.—It should not be a difficult thing to step out the holes perfectly in the sense of the negative. Take a little copper, tin, lead, Indian ink, or any opaque colour without too much water, and apply with a sponge to the holes in the negative, so as to quite cover them. You have all the means of doing this in your workshop. The only care necessary is to avoid spreading the colour beyond the hole, and so render it necessary to touch the print.

R. Mitchell.—We have no information as to the how or when of sending contributions to India, for the Exhibition, beyond that promised to the News a short time ago, in conjunction with the list of prizes and conditions of exhibiting. If we can get any information, we will let you know. We have an impression that Fox, of Little Britain, undertakes packing and despatching photographs for that occasion.

T. P.—No announcement has yet been made in relation to the South London Technical Meeting. The first ordinary meeting of the Association is held on the first Monday in each month. As the Exhibition of the Photographic Society will continue open for nearly two months, there is plenty of time yet for the South London Meeting. We have every reason to believe that it will be held in due time.

Card Portraits at Exhibitions.—Several correspondents write to express confidence with the remarks of 'N' in relation to the exhibition of card portraits. "Operator" suggests that the Council of the Photographic Society should take the matter into special consideration, and make known its views on card portraits at the next exhibition of the society, offering medals for the best collection of twelve or twenty cards and cabinets. He also suggests that all operators who would like to attend such an exhibition, might easily be done if they commenced to save a weekly sum for expenses as soon as the announcement is made of the time and conditions of the exhibition. He thinks that employers would be glad to aid assistants in obtaining the economical influences of such an exhibition. "A Country Operator" says:—"Your correspondent N. has made some really good remarks in the News for September 17th, in reference to improving the standard of card work. Often, like him, I have wondered why so much attention was directed to large work, which, I think I may safely say, is not the best. Also, if more encouragement was given to operators than simply "salary and commission." Some such plan as 'N' proposes, we could see greatly improved assistants in this line, as I think that even at present adorns our profession. It also would not save much, that there are, comparatively speaking. few facilities for country operators to see and study the best work now being done by those assistants. In the remotest parts of the country, a gentleman of thorough intelligent assistants have never had a chance to see an exhibition; and who have not even been to the 'great city' where they are to be seen so much. It is true that a specimen of all branches of photography."

Another correspondent, "S.S." says:—"It was with no little interest that I read the article on the subject issue of the 17th. The idea of which is no new one, but our brother of black art, in his eagerness to reach the public, in my opinion, miss'd a lower but very important step, a step, calculated to raise the status of photography in no small degree. There are many operators who have not the chance of seeing high-class work as turned out at other studios, in like manner many of them would not have the opportunity to see such an exhibition, these therefore would remain in comparative ignorance; it is evident then some system is required to educate our country operators. Both "G.C." and "Country Operator" think that a system of publishing fine examples of photography, which would be accessible to a large number of subscribes, and that should follow the example of an American contemporary in issuing such examples. We fear that there are many obstacles in the way with which we are familiar, which are not well understood by our correspondents. In the first place, the plan is no means an easy one. Country assistants, with their qualifications, and by no means give universal satisfaction where it is adopted. It is very difficult to obtain a sequence of photographs of such high quality that the public would be convinced of the value, and the project involves much uncomfortable responsibility when the pictures issued come short of excellence, and fail to give satisfaction. In the next place, the American Journal in question, each number containing a few plates, costs two shillings. Any attempt to make a periodic issue of pictures at such an increased price as would guarantee excellence in the examples, would probably be objectionable to a large number of subscribers, and could not be corrous be attempted for part of our readers only. We cannot help thinking that a much simpler mode is available to country photographers. There are scores of hundreds of admirable examples of portraiture, English, French, German, American, both cards and cabinets, published at reasonable prices. A selection of these is easily procurable, at a price not much exceeding cost of issuing them with a journal. We commend, also, attention to the remarks of "Operator."

Portrait Club.—A correspondent asks for information as to the mode of establishing portrait clubs. Can any of our readers supply information?

V. L. J. (Oldham). We regret that our engagements do not leave us leisure to write private answers to questions from readers.

A. O.—The greater the separation of the lenses in a stereoscopic camera the greater the effect of relief; but, for truth of effect this arrangement should be from 0.1 to 0.125, as it is necessary to cut the prints, and transpose them because they have been practically reversed in the process of production. It is necessary to bring the lower plate to the eye, and to transpose the right eye, and so with the left, which can only be done by transposing the prints.

Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

MEDICO-PHOTOGRAPHY—RECOVERING SILVER FROM HYPO BATHS—CRIMINAL PHOTOGRAPHY.

Medico-photography.—We are glad to see that the application of photography to medical science is once more attracting attention, and has found, in the person of Dr. Stein, of Frankfort-on-Maine, one competent of working out the subject. Last week we published the first portion of Dr. Stein’s paper showing how matters stood before he took up the investigation, and his next contribution will describe, no doubt, what he himself has accomplished in the matter of registering the beating of the pulse and the action of the heart. As these two important functions are regarded by physicians as the main tell-tales of the human system, and medical men in forming a judgment or diagnosis of a case rely, to a great degree, upon the results they observe in respect to the heart and pulse, it is naturally of the utmost importance that they should be as in truth and correctly as possible. In this respect the photographer really do mean much to the physician to enable him to form an opinion; and Dr. Stein tells us that the instrument now employed by medical men to register pulsations leaves much to be desired, the delicate ebbing of the blood through the arteries being insufficient to move the naked eye. The action of the sphygmograph employed, the friction and loss of power involved interfering materially with the accuracy of the result. Dr. Stein has decided upon using a pencil of light as being an imponderable register, and aims at employing photography to depict the wave-lines of human pulsations. We have succeeded, says Dr. Stein, in the matter of registering the pulsations; the term is used for the periodical rise and fall of the terrestrial magnetism, the variations of the barometer and thermometer, and the changes that take place in the atmosphere of the sun, and all this by the aid of photography; we might surely learn something of the human system with the aid of light to help us. Dr. Stein, as many of our readers know, is not the first who has undertaken the praiseworthy task of cultivating medical science by the aid of photography. Indeed, in the very matter of photographing the action of the pulse, Dr. Stein has had a predecessor in the person of Dr. Ozanam, who made some very interesting experiments on the subject some seven or eight years ago. And these experiments, if they served no other purpose, proved one important fact, that double exposures, with or without the aid of a dark room, did not only exist, but what was unknown, all the mechanical secrets of photography, the heat was sometimes treble or quadruple in its action. Dr. Ozanam’s mode of procedure was a simple one. The patient rested on a sofa, and a small reservoir of mercury, contained in a flexible vessel, was placed in the vicinity of the heart. In connection with the reservoir was a glass tube, and the mercury almost filled this in the manner of a barometer. With every pulse a fall was observed in the tube, and a sensitized strip of glass moving behind the tube at a certain uniform speed became impressed with a wave-line, the result of the mercury moving up and down. By magnifying this photographic image, Dr. Ozanam found that the action of the pulse was not represented by a straight line, as would be the case if the vegetable form of this organ, but it was observed that there were two or three rising movements in succession before the maximum height of the wave was attained, and the wave fell again by a double movement, and not in one continued ebb. This result alone was a valuable one to have obtained by the assistance of photography, but we have no record of Dr. Ozanam having followed up his investigation with the prospect of going any further. Dr. Stein, we trust, will make a still further application of photography in this direction, and we shall look with interest to his further contributions to medico-photography.

Recovering Silver from Hypo Baths.—Good news comes to us from Berlin, that Dr. Vogel has been successful in discovering a simple and ready means of precipitating the silver contained in hypo sulphite, or fixing, solutions. The expense of recovering a pound of silver is said to be but one shilling by this new method, and the metal, as we are told, is obtained in the form of tolerably pure metallic silver. If this really turns out to be the case, Dr. Vogel will be rendering photographers a very great service indeed, for, as everybody knows, the recovery of silver from the hypo sulphite bath is always a troublesome matter. Many photographers, indeed, do not think it worth their while to treat old hypo baths at all (notwithstanding the obvious fact that they contain both gold and silver in solution), by reason of the time and trouble involved, holding that the latter are scarcely repaid by the profit of the operation. The amount of silver contained in the hypo bath must vary, of course, with the way in which the prints have previously been manipulated, and no one can say at what time the residue of silver can be found in the bath amounting to thirty-three and one-third per cent., or one-third of that used, others believe that ten or fifteen per cent. of the silver employed is the outside existing in the bath. But this amount would, if it could be removed with facility, pay for working in most studios, although, under present circumstances, it is always the constant charge, in the usual practice, of the dilution of hypo-sulphite, or hydrochloric acid, will not precipitate the silver, as in the case of the rinsing waters, and the mode of precipitation by means of metal is a slow and tedious one. The recovery of the precious metal by hepser sulphurizes is also laborious and disagreeable undertaking, and for this reason we shall be glad to have the details of the process which has been successfully accomplished by Dr. Vogel. The solution used by the photographer in his operations is to be found in the finished print, that we know to a fraction, almost, what amount must be actually contained in the washings and waste of the studio. It will be a happy day for the photographer when he can see his way to recovering the silver he uses within a small percentage of its quantity.

Criminal Photography.—Great latitude exists, unfortunately in the depiction of our criminals by photography. We do not recognise such an official as photographer in our police, or criminal staff, and consequently there is no definite system adopted in the posing of the sitter, or in the style in which the photograph is executed. As our Paris correspondent mentioned some time since, there are in the French police service photographers, who are employed for the purposes connected with all duties connected with photography, and these are no light ones, we are told, in Paris. It was mainly, if not wholly, due to the special knowledge possessed by one of these inspectors that the spirit photographers recently convicted in Paris were discovered and exposed, for it would have been altogether impossible for any one not possessed of a acquaintance with photography to have detected and followed up the fraud. In this country, the photographing of criminals, (for we do not avail ourselves of the art in any other way) is entrusted sometimes to warders of the prison, sometimes to professional photographers and sometimes to an amateur directly or indirectly connected with the gaol. The consequence is, that the criminals are not all of them photographed in the same manner, but by men of the same point of view, and with instruments of a similar kind. Two portraits were recently placed before us by the police authorities, to decide whether they had been taken from the same original or not. Both pictures had been executed at county gaols, but in a different manner, and the police were anxious to know whether the two pictures related to the same man. In the one in question, which was taken some feet in front of the camera, in the other a few inches
below, and this alone was sufficient to alter the aspect of the eyes and the lines of the mouth. One image, too, was a little in profile, while the other was full face, and, although the heads were pretty much of the same size, the circumstance that different lenses had evidently been used made the sitter appear much nearer in one case than the other. We decided in the end that the two pictures did really represent the same man, as a duple under the chin and prominent cheek bone settled the question, but the matter would have been far more easy to solve if all criminals were photographed according to a few simple and definite rules.

FRENCH CORRESPONDENCE.

DUOOS DU HAURON’S POLYCHROMIC PROCESS—REDUCTION OF THE EXPOSURE WITH THE ORANGE AND GREEN SCREENS—THE COLLODION EMPLOYED—PREPARATION OF CHLOROPHYLL—COLOURED FILMS FOR PRINTING OPERATIONS.

In a recent communication which M. Ducos du Hauron has addressed from Agen, his place of residence, to the local Society of Agriculture, Science, and Arts, that gentleman describes the improvements which he has lately added to his method of Heliochrome, and which, so he assures us, permit the reduction of exposure, either with the green or orange screen, to the ordinary period necessary for taking a negative in the usual manner. This is a very important point, for, till now, the lengthened exposure required made the process quite impracticable.

Whatever may be considered their value, we propose to enumerate the principal points in the memoir, of which M. Ducos du Hauron has been good enough to forward us a copy. To produce the three clichés which are necessary for the elaboration of a polychromic print, M. Ducos employs a pure bromide collodion containing three per cent. of bromide of cadmium, and a silver bath of twenty per cent. strength. He develops by the alkaline process, following the formulae indicated by our late collaborator, Mr. Thomas Sutton.

In order to render sensitive to the light transmitted by the orange glass that plate of the three to which it corresponds, he plunges it for a short time in an alcoholic infusion of chlorophyll, after having energetically washed it in the first instance. The film is then drained for a few seconds, and afterwards bathed in distilled water long enough to permit the alcohol to pass away, in the first place, and the water. After a final draining, the plate is ready for operating.

The solution of chlorophyll is obtained by filling a bottle with ivy leaves that have been freshly gathered and cut into small fragments. Rectified alcohol of 40° is poured in until the whole of the Ivy is covered, and the infusion is allowed to remain four-and-twenty hours. It is then filtered through paper, and a liquid of a beautiful green is obtained, which, viewed by transparence, has a reddish tint.

With this preparation, and by means of alkaline development, the exposure is not more than fifteen to thirty seconds in the sun with a doublet lens without diaphragm.

For the negative corresponding to the green glass M. Ducos du Hauron employs the same kind of collodion, but he puts into it four desgregarmes of aurine to every hundred cubic centimetres of collodion. After washing in distilled water, the plate is plunged into a bath composed of—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>200 cub. cts.</td>
</tr>
<tr>
<td>Carbonate of soda</td>
<td>1 gramme</td>
</tr>
<tr>
<td>Neutral gelatine</td>
<td>1 gramme</td>
</tr>
<tr>
<td>Aurine</td>
<td>a few fragments</td>
</tr>
</tbody>
</table>

This is, it will be observed, Sutton’s preservative with the addition of aurine. The exposure is rather less in this case than with the orange glass, and the development is undertaken with an alkaline liquid.

Finally, the cliché of the violet glass is obtained without any addition of colouring matter; nevertheless, the aurine collodion may be employed without inconvenience.

Plates prepared in this manner are tinted with chlorophyll and aurine respectively; they are afterwards freed from the colouring-matter by one or two treatments with alcohol. The three clichés developed separately have nearly the same intensity; they are equalized, after fixing by treatment with pyrogallic acid and silver in full daylight. To prevent any tendency of the film to rise, M. Ducos du Hauron recommends the application of a preliminary film of albumen (three per cent. in water).

Besides this method of operating with wet plates, in all such cases when rapidity is of importance, M. Ducos du Hauron has a plan of working to enable him to reproduce portraits, landscapes, or architectural subjects. This process does not differ much from that just described, only the collodion which is used is prepared with a pulverulent pyroxiline. The silver bath should be but slightly acid, that is to say, about two to four drops of nitric acid is added to every hundred cubic centimetres of collodion.

Finally, when once prepared, the plates should be permitted to dry in a perfectly dark locale. It is also advantageous to use a slightly-acid bath in the wet process.

A dry plate, prepared in the manner just described, and washed in distilled water, gives, with the red glass, a negative in five or six minutes at the most, operating in the sun, and with a double lens without a diaphragm.

One of the greatest difficulties that M. Ducos du Hauron has met with in his investigation was the impossibility to obtain any coloured plates suitable for the printing operations, and this difficulty becomes greater when it comes to a question of applying the process in a practical manner. He has succeeded in surmounting the difficulty by simply employing colourless plates, upon which he applied varnish pellicles coloured alternately with films of gelatine, and thus dispensed with the use of coloured glass altogether.

To obtain a uniform film of varnish, the plate is gently heated before applying the liquid; after the glass has been drained, and before the film has had time to set, the plate is held at some distance above a heating arrangement, being kept the whole time in a horizontal position, and in this way a uniform and perfectly transparent film is obtained.

If it is desired to intensify the tint, or to modify it in any way by the superposition of another film of varnish, the plate is placed with the face downwards in a warm ten per cent. solution of gelatine. By allowing the plate to drain in a vertical position, there remains but a very thin film of gelatine, which dries exceedingly quick, and upon which it is possible to apply, without the slightest difficulty, a second film of varnish. By proceeding in this way you may superpose as many films as may be deemed necessary.

If it is desired to suppress the plate altogether, it is necessary then to rub it, in the first instance, with some ox-gall; then a film of gelatine is applied, which is first treated with a solution of alum, and then with water. Afterwards you proceed in exactly the same way as before, applying alternate films, and it is then only necessary to cut round the margins with a knife to separate the whole from the plate which has served as a provisional support.

The last experiments of M. Ducos du Hauron proved that in making use of chlorophyll there was great latitude permissible in the tint of the orange glass: it might vary between red and yellow without the corresponding cliché being materially modified. At the same time it must be borne in mind that the longer the time that the tint is, the shorter is the exposure; and the nearer it approaches, the more accurate will be the reproduction. The orange-coloured varnish may be made more red, if necessary, by the addition of red coraline dissolved in alcohol.

For the green-tinted pellicle, a mixture of maize-yellow with a little Metternich green is employed. Lastly,
M. Ducos du Hauron makes his violet varnish by dissolving a little red fuchsin in blue varnish.

There are two things which it is well to note. Chlorophyll is a reducer of silver salts, and if in contact with a sensitizing bath, only fogged images are obtained; nevertheless, M. Ducos du Hauron thinks this defect may be avoided by acidifying sufficiently the silver bath. The chlorophyll may then be mixed without risk with the colloidin, instead of being used afterwards for sensitizing plates. It is essential that only distilled water should be employed in the washing of the sensitive films.

Unfortunately we ourselves were absent from Paris when M. Ducos du Hauron passed through the capital some days ago; we were, therefore, unable to see the specimens which he was so good as to bring for our inspection, to illustrate, in a manner, his memoir. At the same time, I trust very soon to be able to report upon the practical results he has obtained, as M. Ducos has promised to pay another visit shortly.

Ernest Lacan.

METEOROLOGICAL REPORT OF THE AGGREGATE CHEMICAL INTENSITY OF THE DAY LIGHT OF THE SOUTHERN SKY, FROM OBSERVATIONS MADE AT BLACKPOOL, LANCASHIRE.

BY D. Wm. STANLEY, F.R.A.S.

The daily average of light for the past week has been very slightly higher than that for the preceding week—i.e., as 1555 chemical units to 1542. The variations, however, have been less; the maximum not so high, the minimum not so low. The general aspect of the diagrams markedly indicates the waning vitality of the year. In the earlier days of September, a daily fluctuation of 3000 units was quite common, whilst, during the past two weeks, a variation of 2000 units has only been twice attained.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER XX.

TONING, WASHING, AND MOUNTING.

Washing the prints.—There is a large percentage of silver in the print to which the light has not gained access, and is therefore not reduced, which would be wholly lost were we not to take measures to prevent this waste. It is for this reason that we preserve the changes of water in which the prints are washed. It is better to have two dishes, which must be kept to this use alone; these we partially fill with water. Into the first, the prints are placed one by one, care being taken that they are not stained by the water before being thoroughly and evenly immersed. To accomplish this properly, take the dry prints in the right hand, and drop them one by one into the surface of the water, and with the left hand immerse them; this is safer than picking each print off with the wet fingers, as water spots are likely to drop on the others and stain them, the water causing red spots which are not got rid of without difficulty. After the prints have been turned and moved about in this water for a few minutes they are placed in the second dish; the water of the first poured into a tub for reduction, and the dish filled up with clean water. The prints are thus washed in four or five changes of water, all of which are preserved. To the last change of water enough salt is added to make it taste saltish. This will give the prints a cherry-red hue. They may then be washed in clear water, and are ready for toning.

When the prints are all washed, a handful of salt is thrown into the tub in which the washings have been preserved, and thoroughly stirred, the effect being that the free nitrate dissolved in the water will combine with the chloride of sodium (or common salt), and precipitate as chloride of silver by the morning. Too great addition of chloride of sodium will cause it to settle very slowly. When the water is clear, to test which, draw off a tumbler full, and add a little salt; if no milkiness can be detected, the silver has all been thrown down, and the water may be carefully drawn off, leaving the precipitate undisturbed at the bottom.

THE TONING BATH.

Toning is a reduction of metallic gold on the prints; the chloride previously in combination with the gold, uniting with the silver in the print, produces protochloride of silver (this bleaches the print, and therefore allowance is made for this as for the effect of the fixing towards reducing the tone of the print, it is printed about one third darker than we desire in the resulting picture) and the metallic gold being set free deposits itself on the silver.

If a solution of chloride of gold is made alkaline by the addition of bicarbonate of soda, decomposition sets in, it being no longer restrained by the acid, and for this reason the stock solution of gold is kept slightly acid.

The substances used to accelerate the reduction of gold in the toning bath are various, such as, the acetate, carbonate, chloride, phosphate, etc., of soda; but their influence is on the reduction of the gold, not on the tone of the print, they being added to accelerate the action of the gold only, as in its acid state it would precipitate too slowly.

There are a great number of good formulae for toning baths, almost every printer having a favourite preparation, but the subjoined is a thoroughly reliable one:

- Pure water... 64 ounces
- Acetate of soda... 120 grains
- Gold (neutral)... 15

This bath may be used again and again, being simply strengthened before each toning with the chloride of gold solution kept in stock.

- Pure water... 15 ounces
- Chloride of gold... 10 grains

The quantity varying according to the number of prints to be toned—say half a grain of gold (or half ounce of solution) to each sheet of paper toned. The bath should be thus strengthened in the morning ready for use at the day's end, that the gold may precipitate the more readily. The toning bath, having been used, may be...
poured back into a bottle, and allowed to settle, the clear bath being decanted when set out for use, and the precipitate put aside.

Toning.

The prints, after being thoroughly washed, are placed one by one in the toning bath. To do this without staining them (as would result if they are touched with fingers on which are traces of the toning solution), take them separately from the dish of clean water in which they lie, after washing, with the right hand, and drop them upon the toning bath; and, with the left hand, gently and quickly submerge them, to prevent unequal action of the toning bath. They must be kept in constant motion, to insure even toning. The light by which you tone should be shaded, that it falls on the prints, and not in your eyes.

To treat this manipulation exhaustively would require much more space than I can command here; for though a safe rule to follow is, that toning should be conducted till the prints have the appearance you desire them to have when finished, it would be necessary still to explain what that appearance should be in the different prints. All pictures do not require the same tone. For instance, to tone the portrait of a blonde to a black tint would be hardly satisfactory; nor would a brunette be suitably represented by the red, however fond you might be of that tone.

I do not wish you to have the idea that I suggest it is possible to reproduce nature in this respect, but that I only desire to point out two extremes to prove that modification of tone is necessary. Thought must be exercised in this.

Weak prints should be toned face upwards in a weak toning bath; and hard, intense prints in a strong bath, face downwards. The effect of toning the prints face upwards is to make the operation slower, and turning them face downwards to accelerate the action of the bath.

The chocolate tone is produced by toning a little longer than for the red; a decided brown by toning beyond the chocolate; and a purple tone is produced between the chocolate and the brown, continuing the toning until the print shows the slightest possible sign of the tone, when it should be removed.

The blue tone is not generally admired, a pleasant tint of that colour not being easy to produce unless the negatives have very excellent printing and toning qualities. The black is produced by toning full strong. The prints, as they are toned, are placed in a dish containing clean water, which stops the toning, and all being toned, the bath is put away and the prints are placed in the

FIXING BATH

Great caution must be exercised that the prints, in being placed in the fixing bath, are not spotted with the solution, or imperfectly immersed. The same precautions should be taken as those already advised against staining with water, but, if possible, to a greater degree.

The fixing bath is composed of:

<table>
<thead>
<tr>
<th>Water</th>
<th>10 ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyposulphite of soda</td>
<td>2 "</td>
</tr>
</tbody>
</table>

With about one grain of bicarbonate of soda to the ounce of solution to neutralize any free acid that may exist, acidity having the tendency to decompose the hyposulphite and liberate sulphur, which, as sulphide of silver, is thrown down on the prints as a black deposit, and materially affects the tone. The fixing solution should be fresh every day, and the dish used for this purpose alone. In the winter this solution may be made lukewarm, the action of the cold bath being very slow in constant motion, and take care that they do not adhere to one another, or imperfect fixation is the result. Ten minutes will be about the proper time for fixing, but if, on holding the prints up to the light, they present a mottled appearance in the shadows, they are not sufficiently fixed.

Properly fixed, the prints are clear and transparent in the shadows. It is well to place them in water containing half the proportion of a handful to the gallon of water. This displaces the hyposulphite to a great extent, and is a preventive of blistering.

THE WASHING OF THE PRINTS

should be very thorough, several changes being made, and, finally placed in the washing apparatus, they may be allowed to wash all night.

CUTTING AND MOUNTING.

When thoroughly washed, they must be dried if they have not been cut previous to the toning. This is, I think, the best plan, but by many it is objected to on the grounds that the toning and washing frays the edges of the prints. I have seen thousands of prints treated in this way, that were perfect when finished, and with not so many torn and spoiled prints as when toned in the rough. If they are to be cut afterwards, they must be dried in a blotting book. The print is placed on a piece of glass under a glass form of the size required, and cut round with a knife.

The prints should be placed in their different sizes in heaps, and pasted over evenly and cleanly with starch, which is made by moistening pure starch with water, and mixing it until it becomes a thick paste; boiling water is then poured rapidly and steadily upon it, the starch being stirred all the while, until after thinning, it gets thin again. The result, if it has been properly made, is a smooth, soft paste. The best white starch should be used.

Pasting.—Care must be taken, in pasting and mounting, that none of the starch is smeared over the prints or mounts. Placing the print on the mount in its proper position it is rubbed down by the hand, a clean piece of paper being placed between the print and the hand.

Mounting.—See that there are no hairs or lumps under the print before you fix it in position, and guard against dust contaminating the mounts. A great deal of difference in the effect of the picture may be made in the position of the head in the cut picture, too great margin being left at the top of the head giving a stunted appearance to the figure, and vice versa. So too, in unequal cutting of the sides, the picture being cut with the figure forward gives its the appearance of a person desirous of walking off the card, or with too much margin in front, the idea of your customer being anxious to gracefully (?) back out of it. When dry, the prints may be burnished, spotted out, and finished.

RELATION OF THE SILVERING TO THE TONING BATH.

BY CHARLES W. HARRN.

There are a great many photographic printers and toners who are daily in the habit of silvering and toning photographic paper, both plain and albumen, who do not, nor never have, paid the least particle of attention to several matters, viz.:

1st. The relation of the silver to that of the toning bath.
2nd. The relation of the silvered paper to the toning bath.
3rd. The different effects caused by the preparation of the toning bath.

Taking up these three topics in their order, I will endeavour to show, in the first place, why these two baths

Photographer.
ought to be worked in harmony, and also what disastrous results follow their discordance.

To a careful observer of the results of a peculiarly made nitrate of silver printing bath, there is always much valuable information derived, and which, from inference, has often led the party to adopt or discard particular chemical, as the case may be; and, when wisely done, is very instructive, because being strongly indicative of a sound judgment. This is the reason why I am experimentating with differently compounded negative collodions.

Now, seemingly the fact, whether our silver printing bath is alkaline, in a greater or less degree, does not seem worthy of contemplation as long as it is alkaline, for as long as it is so it will be "all right," by which is meant that the paper will not "smoke" and distasteful, but as is often said, of a "rich colour" when it is of a decidedly "dingy blue." To suit another class of printers, I will soften the above expressed opinion, and say "the paper bath is "all right" as long as it prints neither "red nor flat," nor "blue or dingy."

Now, without regard at present as to how the paper printer will be dealt of hereafter, let us notice the action of a properly made toning bath upon the silvered paper.

We will suppose the print placed in the toning bath has a rich red colour; you watch the action of the gold bath upon it, and admire its beauty as this colour commences to disappear and assume a richness and delicacy of tone, which is the real thrill of pleasure to run through your entire being.

If your nature is a sensitive one to the admiration of the beautiful bordering on the delicate, you will at this time behold new beauties in the art that will stimulate you to greater and loftier attainments in your calling, and for the time being you will be utterly oblivious to sight else but what is seen by you and the processes engaged. (All! that such concentration of the mind can at all times and command is a fact for us all to deplore.) Visions of the future, all of which will flatter your vanity immensely, will continually be passing through your mind as you contemplate the beautiful appearance of the print in the bath.

Why will not such thoughts come to our assistance when the body is more or less prostrated, and the brain gives indications of approaching exhaustion through over-exertion, toil, and seemingly with so little accomplished, that we are "far below par" in our own, and long ago in others' opinion? If like thoughts were to come to our aid at such times, with what greater rapidity would we get all things righted again, and everything would then run as smoothly as oil upon the troubled waters.

Now the time has come when the print, placed in the gold bath, is ready to be removed to a tank of running water until ready for the soda bath. In the meantime you proceed to tone the rest with a hopeful heart, congratulating yourself while the prints on the following morning, will be "splendid."

They are toned; they are fixed; you are disgusted; you are mad; and what for? Simply because your prints are "on the edge of what you call "the boy," the boy, probably, had not taken interest enough to have anything to do with them (strange to relate). Is it not rather a surprising fact to note what credence is always to the blame attached to "the boy," if anything happens to go wrong with any of the "skilled workmen"? So do not blame that much-to-be-pitted assistant, but attach the blame to yourself. "Well," you may ask, "how can that be? For I toned them just exactly as red as I did last night, and there they are as blue as an indigo-bag. No, the fault is not with me, for the reason I have just stated, but with the chemicals, and most probably with that toning bath." Poor soul, you do not think that the trouble is not with your toning bath, and were in great trouble until time changed it for the better, and ever afterwards it remained a fact, that this was only one illustration of the much-quoted remark about the "sickness of chemicals."

"Now, why did you over-tone? Was it because you were mistaken about letting the prints remain in so long and until they reached the same tone, as they did the preceding evening, or not? No, you did right there; the trouble was nothing else than that the silver bath was more alkaline than it was the preceding afternoon."

Probably you had either thought that the bath for sensitizing was not alkaline enough, and had placed some more in, or had made up a new one, which was, when ready for working, more alkaline than the one used on the day previous, and was either the result of ignorance or intention; if the latter was the case, then ignorance was displayed at the toning bath by the party operating upon it.

There is another way in which the desired alkalinity of the silver bath may be changed, and, coming as it does, from an unsuspected source, has often made the solution sometimes rapidly but more generally gradually, alkaline, and the bewildered toner finds he is continually over-toning, and that he is at times very uncertain about the fate of his labours. The addition of an organic solution—or, as it is sometimes called, "adding solution"—which is nothing else than a fresh bath of silver and water, of a greater strength than the one in use. If care is not exercised in the preparation of this solution, it is very likely to be made right alkaline, and, being a new and pure bath also, it will gradually change the regular solution-state that will very often mislead the parties working with it. For this reason, and others too numerous to mention here, it is always advisable to test the bath every morning before use, to see how the strength is, as well as the alkalinity of it.

Now, why does the alkalinity of the silver bath affect the tone of the prints? you may ask. It is a well-known fact, and not a fault, that the bath will not print red also, the nearer the baths approach to alkalinity the quicker will be the action of light, &c., upon it. This is seen in the case of the negative bath. The nearer this bath approaches to an alkaline state the quicker will it work as regards exposure, and the more acid it is the slower. When we desire to keep our stock gold solution from "throwing down" we do not make it alkaline, but acid, because in the latter state the acid holds it in suspension. When we desire to sun our bath, whether negative or positive, we first make it alkaline, so that the organic matter will be precipitated. When we boil our bath we also make it alkaline. When we tone prints we make our gold solution alkaline, so that it will tone both speedily and easily, and also become more delicate. So it is readily seen that alkalinity hastens operations, and hence the conclusion that the more alkaline the solution may be the quicker the deposit.

Now this is evident in the case of the silver bath. When it is only slightly alkaline, and the toning bath is likewise, then the harmony between the two will result in excellent work. When the silver bath is quite alkaline, and the toning bath is slightly so, there is then no perfect harmony between the two. The action of the toning bath on prints printed upon paper floated on a very alkaline silver bath, is as follows, viz.: The gold in the toning bath commences of course to precipitate on the print, and if the bath is not too strong, why it is done in a gentle and delicate way to all perceptible appearances, and at this state of affairs, it is then done in a way that calls forth very frequently admiration from the workman.

Now, the way the print was prepared, previous to its entering the toning bath, has rendered it so that it is in a state to take up the gold much more rapidly than what is perceived by the eye, or supposed by the judgment, owing to our knowledge of the strength and alkalinity of the toning bath, and the result is simply an over-toned print.
MR. JOHNSON'S DISCOVERIES IN THE CARBON PROCESS.

A communication from Dr. Van Monckhoven on this subject which we print on another page reduces the question to well defined limits, and happily enables us to prove conclusively the indisputable claim of Mr. Johnson to those discoveries which through misapprehension have been called in question, and which in a recent article we felt called upon to vindicate. Dr. Van Monckhoven states the case of the cement in the most favorable light—certainly less so than we were led to suppose by the reports which reached us, but still in a very much moderated way. He says that when he had the papers before him, he found the same difficulty which we have experienced, in satisfying himself of the source of the error into which he has fallen. The position he assumes is, that the adhesion between the carbon tissue and the albumenized paper in Mr. Johnson's process was not due to the stickiness of the albumen, but to atmospheric pressure, and that, therefore, Mr. Johnson was not the discoverer of the principle of mounting the exposed tissue by atmospheric pressure.

Dr. Van Monckhoven will readily see, we apprehend, that it is quite possible to accept his premises without admitting his conclusion. It is quite possible that thousands of the carbon prints which were mounted on albumenized and other surfaces were really united by atmospheric pressure, without any one recognizing the fact or discovering the principle. The phenomena upon which all discoveries are based exist ages before the discovery is made. Almost all great discoveries depend upon the intelligent recognition of the principle underlying some well-known fact, and the perception of the use and power vested in such a principle, which such principle is capable. But we shall go further, and prove not only the fact of atmospheric pressure in mounting carbon prints was not known, nor the existence of the principle even suspected, but that in all cases, prior to the publication of Mr. Johnson's discovery (no matter what the matter of mounting adopted) the idea of adhesion in virtue of the existence of a sticky surface was the only principle recognized.

Dr. Van Monckhoven says that the carbon tissue in Mr. Davies' process was not made to adhere to the mounting paper by means of the stickiness of the albumen, but by atmospheric pressure, and in proof of his position he sends us some examples of carbon tissue made to adhere to plain paper, and also to blotting-paper. It is not necessary to allude to the character of the carbon paper which adhesion in the cases in question was secured. The theory of the matter contained in Dr. Van Monckhoven's letter does not cover the facts. In the examples he has sent us, it was certainly not to atmospheric pressure—or, at least, to that alone—that adhesion was due. To this we shall refer by-and-bye. In the meantime, as we affirm that the idea of atmospheric pressure entered into the minds of experimenters before Mr. Johnson's discovery, let us proceed to justify our statement. It may be well to
stickey, and permits of the adhesion of the carbon tissue, and M. Jeanrenaud, describing a process of the kind, attributes the adhesion not to atmospheric pressure, but to "the very great adhesive power possessed by albumen coagulated with alcohol." It is quite possible, in this case, that the albumen paper plays an important part in the adhesion, but the manipulator knew nothing of this; the principle had not been discovered.

But we proceed still further in disproof of the atmospheric pressure theory having any existence until announced by Mr. Johnson. And we must mention here the examples of carbon tissue with which Dr. Van Monckhoven has been good enough to favour us, in support of his new theory. The atmospheres seem to unite the carbon tissue to other surfaces without the aid of albumen. He sends us examples on plain paper, and on the back of albumenised paper, which, as he states, are perfectly adherent. But this is not adhesion by atmospheric pressure. These are simply pieces of carbon tissue without bichromate or exposure, wetted and attached to paper. They are simply held by the stickiness of the gelatine, and are really glued together. When placed in tepid water they separate at once, not leaving the carbon and gelatine upon the mounting paper, as they would be required for development, but the mounting paper being apparently the most penetrable of the two, the gelatine in contact with it softens first, and leaves the tissue nearly intact. But this is carbon printing done purely by atmospheric pressure, development is possible, and has been practised. Early in 1869, Dr. Vogel published the results of some experiments in this direction. He found that the exposed tissue, brought into close contact by pressure with moistened paper, adhered so closely that no separation took place when the print so mounted was placed in the water for development. The occurrences, such as peeling off the film at the edges, and other uncertainties were encountered, and the plan was not generally adopted.

But there is another point of some importance to be noticed. In the process of Mr. Davies, it is manifest that the coagulated albumen acted as a cementing medium, and that adhesion by atmospheric pressure had no place in the process. The developed print in his albumen process was cemented fast to the paper, and cannot be removed, which could easily have been done if atmospheric pressure alone had attached it to the paper. But where double transfer was required, a different method had to be employed with a cementing medium which could be dissolved or softened by means of a suitable solvent; whilst in the subsequently discovered process in which adhesion by atmospheric pressure was employed, no such aid to a double transfer was required.

That Mr. Johnson was the first to discover, the first to announce, the principle of adhesion by atmospheric pressure, and the first to work out and utilize all the possibilities of such a mode of working, we think there cannot be a reasonable doubt. His claims were never challenged when they were first put forward, but were hailed far and wide as legitimate, and for a most important and ingenious novelty. The bare discovery of the principle was not all. For instance, Mons. Andrea announced in Paris the discovery of a method of mounting by atmospheric pressure, a few months after Mr. Johnson had made his discovery public; but admitted, at the same time, that after the tissue had been properly transferred, the carbon tissue was so firm he had found no means of transferring it from thereon. Hence, as Dr. Vogel had found, that the gelatine film of the carbon print had a sufficiently adhesive or stickey surface to adhere tenaciously to a surface with which it was brought into close contact. In Mr. Johnson method is included not merely the discovery of a principle, but a system of working; not merely the discovery of a method of mounting the tissue for development upon an impervious surface, but the adhesive pressure, but a means of preparing that surface so that the developed print may be easily detached. It is no part of our purpose here, however, to point out the variety of advantages involved in the system of working, we simply refer to them as naturally following the application of the new principle, and impossible before its recognition. In this country we have no wish to detract from the credit due to the general reader uninterested, on the various other items, in Mr. Johnson's patent. Nothing is decided by such discussions of the variety of the systems of working, of which Mr. Johnson was the author. We are satisfied that if it had been Dr. Van Monckhoven's duty, as it has been ours, to watch every step of progress, examine every claim, in connection with carbon printing, especially since the period when Mr. Swan made it a practicable process, he would have been one of the first to pronounce Mr. Johnson's discovery was not genuine and original, but that the idea upon which it was based had not even been claimed by any earlier experimentalist.

THE PRESS AND THE EXHIBITION.

In accordance with our usual custom, we reprint the criticisms of the lay press on the Exhibition of the Photographic Society.

(From the Observer.)

This annual exhibition of the Photographic Society, which for many years has been one of the few displays open in the autumn, is this year held in the conveniently new-built water colour galleries in Pall Mall East, an improvement in every way upon the locality which it formerly occupied in Conduit Street. The collection numbers more than 400 frames, and is, as might, perhaps, be expected, very miscellaneous. It differs to some extent—but not to a great extent—from the exhibitions of former years in method, and it maintains all the new ideas which have been reached. It is, however, somewhat disappointing that after so many years of work in so attractive a field our photographic artists should not have been more uniformly able to reach a high level of excellence. There are in the present exhibition individual works of which very much that is seen is new and valuable. The climatic disadvantages, can be carried to absolute perfection in this country. Why is it, we are disposed to ask, that so many who practice it are content to remain so far below this point? and why are so large a majority of the views and portraits of each year not more than fairly good photographs? These are questions even more exciting than answered; and were we to press them far, we might be in danger of persuading our readers that there is hardly enough in the present exhibition to reward them for visiting the gallery. This is very far from being our wish; the exhibition will well repay a visit, and it includes some few photographs so good that they would be almost worth visiting were they displayed alone. Conspicuous on the walls are numerous enlargements of portraits and groups. A few of these, especially those exhibited by the Roxbury Printing Company, are very good, but many of the defects have been quite as obviously magnified as merits. The most interesting enlargements, as far as subject is concerned, are, however, Mr. Dixon's (110-118) groups of portraits of the officers on H.M. ships Discovery and Alert, forming the Arctic Exploration Expedition. These portraits are also exhibited on a smaller scale, and they fill to the utmost the best office of photography; they make familiar to us the aspect of men in whose fate the nation takes the deepest interest, with their surroundings, for the photographs include portion of the ships themselves, so that the adhesion is very good, harmonious, and quiet power which can be traced in these portraits augurs well for the success of the exhibition.

Messrs. Faulkner and Co. exhibit a most interesting frame of children's portraits, in all varieties of dress and moods, and in nearly
every instance a degree of unconscious grace, and an absence of con-
straint has been secured which must be the envy of photographers whositters are of more mature age, and, consequently, apt to resent the propounding and prating about process to which the unhappy subject of a photographic portrait is usually subject, and to show it accordingly. One of the best (if not the best) pictorial attempts displayed is one made by the same photographers, who, with admirable foresight, have arranged their set out - if one may call it so — from life, of a picture by Reynolds. Two frames of portraits of strongly-marked and, in many cases, grotesque, heads exhibited by Mr. Payne, of Aylesbury, demand a word of notice; they show the infinite variety of which the human countenance is capable, and the manner can express all that the caricaturist attempts, however facile be his pencil.

Turning to the landscapes — for which, from the first, our English school of photography has been deservedly celebrated — we find many interesting examples on the walls, and some still finer ones shut up in folders on the table. The most conspicuous exhibitors in this branch of the art are Viles, Crawshay, Bedford, the School of Photography of the Royal Engineers at Chatham, and Watkins, of San Francisco. Mr. Bedford contributes a series of views of Chatham, taken by command of the Prince of Wales, which, for delicacy, for good composition, and, above all, for artistic composition of the subject, have never been surpassed. Mr. Crawshay's contributions rank these very close, and, indeed, resemble them in all these points to a large extent. Nor would it be possible to take note of every single photographic portrait which approach the same level, but for uniform excellence through a series of similar views these two contributers stand alone. The execution of many of the contributions by the Royal Engineers is singularly good. They have accomplishments in all the enlargements, and exhibit this year a number of views, for example, as the "Coloum at Ramees" (295), and have attained great success in dealing with light and shade. Indeed, no better example of what may be called photographic chiaroscuro caught our eye than the fine view of oaks in Knole Park (353). Mr. Viles has enriched the exhibition by some views of good size and generally excellent execution, though, perhaps, inclined to heaviness in the shadows, representing subjects but little known. Such, for example, are his views of Moret in Crozet Castle and Fife, and Newton's Nook. None of these names are familiar to the searcher after the picturesque, yet they are all of them well worth seeing, and the visitor will thank Mr. Viles for an introduction to these English antiquities.

Interest of subject probably culminates in the photography by Mr. W. T. Muntz of New Zealand, of scenes including hot springs, geysers, and other natural objects of the wildest and most striking appearance. It is, however, unfortunate that the quality of these photographs is not so good technically, as might have been wished, and though we cannot feel surprised that in such work there might have been some accidental or under goodwill, still some of the views have suffered. Excellence of workmanship and thrilling interest of subject are, however, combined in the folio of views contributed by Mr. Watkins of San Francisco, and we regret extremely that these, which are the most interesting objects in the collection, are not displayed to better advantage.

Views of Utah and the Mormon country, of the far-famed Yosemite Valley, and some of the lonely islands of the Pacific, form Mr. Watkins's contribution, and we never remember to have seen better photographs — certainly never photographs of more magnificent scenery.

(The Times, October 4.)

The opening of the Photographic Society's Exhibition in the Water-Coulor Society's Gallery was unusually excellent, collection of examples of recent photographic work, principally English, though with a few specimens from Germany and California, presents an opportunity for calling attention to some remarkable applications of photography, in which Germanry has, of late, very decidedly taken the lead of England. We cannot indicate any superiority in the work of German photographers over English, either in the taking of portraits or views from nature. Judging by the remarkably elaborate full-length portraits (18-20) contributed to this Exhibition from Dresden by Hugo Thiele, and the Viennese men's heads so familiar to all of us in the shop windows, we see in German photographic portraiture, along with a great deal that is showy and effective, no little that is objectionable in taste, and exaggerated in light and shade. We have never seen any German portrait photographs comparable with the best examples of our own best men, as, for example, to confine ourselves for the present to the Photographic Society's Exhibition, Mr. Blanchard's portrait of Salvin (98), the only one of the innumerable photographic pictures of the famous scene of Helena, by which, to our mind, gives the head its real dignity and impressiveness, without any melodramatic exaggeration; or Mr. R. Paulkner's exquisite studies of children on porcelain, and one frame of enamels by him (70, 823, 896-7), which, by the good fortune of their arrangement, make us feel the charm and grace of childhood, recall the pictures of Sir Joshua. That Mr. Paulkner occasionally confesses to an intuitional imitation of our great portrait painter does not detract from the beauty and attractiveness of his work.

As if to enforce by contrast the beauty and innocence of his art of Mr. Paulkner's charming frame of studies of children (396), has been hung opposite to two of the most remarkable collections of villainous physiognomies we have ever seen recorded by the unfeathering pencil of the sun (407-408), being physiognomical studies of criminal men, women, and children, contributed by S. G. Payns, of Aylesbury. This is an employment of photography certainly not contemplated by its inventors, but by none one of its least practical uses. The practice of photographing prisoners is now common, and serves a doubly useful purpose, helping identification and recording imprisonment in the story where there is a story. For the study of physiognomy in its more repulsive aspects these Aylesbury frames will have a painful attraction. Though still enough and to spare, there are this year fewer life-size portrait photographs than usual, which, precisely which we much expect, at least of the duration of the exhibition, and fewer than we have been accustomed to look for of attempts to make pictures by means of the camera. In one instance we were struck by (as near an approach to a picture, in a composition of photographic portraits, as is compatible with conditions of photographing. This was in an exceptional well arranged group (197) of two female full-lengths, by R. Slingaby, Lincoln, in which the composition of the figures and the arrangement of the furniture are alike happy and tasteful, and all the objects introduced seemed to fall into the picture without forcing. But there are not a few of the many examples of photographic groups as bad as this particular one was good. Indeed, to succeed in such groups requires in the photographer a rare amount of artistic knowledge, the immense value of which is very strikingly shown in the work of Mr. Paulkner and Mr. Slingaby to which we have referred.

We do not purpose any detailed review of the landscape photography in the exhibition, but we must congratulate the Society on its high average quality, both in the choice of subjects and the perfection of the photographic work. Of especial interest, as illustrating the value of photography for record of nature and archaeology, are the admirable views in Egypt and in Knole Park from the Royal Engineers' School of Photography, conducted to such excellent purpose by Captain Abney at Rochester, and the portrait photograph of D. L. Mundy, during a toilsome three years' traverse of the islands with his photographic apparatus on pack-horses. Mr. J. S. Stoddart's cloud studies (381) should also be noticed, as likely to be more useful to the botanist and forester, and the wonderful foliage and trees which photography has placed at his command, and which the painter now-a-days loves, not wisely but too well. The fine study of a huge greenstone boulder on the beach at Hokianga, from Mr. Mundy's series, and two frames of engravings of microscopic objects are among the few examples of photography put to philosophic uses, as the two frames of reproductions of lace are of its application to an industrial art. The society's exhibition this year is, indeed, rather interesting for its many illustrations of methods of printing and finishing, as the usual method is the Woodbury process, and not for the usual principles of the new applications of photography.

Strange to say, besides a few indifferent reproductions of foreign pictures from the International Exhibition, by W. England (184-185), there is only one indication of any superiority in the work of German photographers over English, either in the taking of portraits or views from nature. Judging by the remarkably elaborate full-length portraits (18-20) contributed to this Exhibition from Dresden by Hugo Thiele, and the Viennese men's heads so familiar to all of us in the shop windows, we see in German photographic portraiture, along with a great deal that is showy and effective, no little that is objectionable in taste, and exaggerated in light and shade. We have never seen any German portrait photographs comparable with the best examples of our own best men, as, for example, to...
on two scales, of the most important works in the Salon of Paris. Partly from the esprit du corps which reigns among the French artists of all kinds, and partly from the smaller market value of copyrights there, they are enabled to command, with very rare exceptions, every work of most interest for their photographic album. The whole is insignificant in comparison with the prodigious record of the Salons that unqualified for interest and completeness, enabling the stranger to follow the movement of modern French art at small cost, and forming the prettiest and most interesting of all drawing-rooms. No less fine is the first impression of the Berlin Photographic Company. They have produced an album of fifty-two photographs from this year’s Academy. As a first year’s essay the volume is highly creditable.

Artists in no way fails short of French in its work of reproducing and popularising contemporary Teutonic art. Every picture that attains attention in a German exhibition is speedily and admirably photographed, and disseminated, not only over Germany, but through France, England, and America, as a prize which puts it within the reach of all, in several sizes suited for the album, the portfolio, or the picture-frame. The Berlin Photographic Company is at the head of this good work, and their agent in London, Mr. Cresson, of Rathbone Place, has a vast and constantly-growing collection of photographs from Germany, and really a rule, more attractive than the originals, for they give us all the artists’ best qualities of subject, expression, and generally well-studied composition and arrangement, while they mask the weak points in the manner of the painters of the schools.

We are unable to say whether the smaller beauty and singularly harmonious effect of both the French and German photographs from modern pictures are due to an understanding between painter and photographer, by which the painter makes picture for his picture for which the photographic negatives can be taken without sacrifice of the colouring. In some cases we know this is done, and it may go some way to account for the rare excellence of the photographs from French modern pictures put up by the Durand-Ruel company, as well as from German, and brought out by the German Company. Something else may be due to the lower key of colour usually adopted both by French and German painters. But this reproduction of contemporary pictures is not the chief nor the most remarkable work undertaken by this enterprising German association. They have published, or are now publishing, photographs in various sizes directly taken from the masterpieces of the principle galleries of Europe. We have before us a portfolio containing their photographs on the largest and most interesting of these masterpieces of Raffael, Holbein, Velasquez, Vanderkuy, Rembrandt, and other famous masters kept in the Dresden Gallery. They have done a similar work for the most famous pictures of the Pitti and Uffizi, the Louvre and the Berlin Museum, and our own National Gallery.

This is partly by what means those enormous negatives are taken and printed from. They are evidently made direct from the picture, and in some cases seem of the same dimensions, or but little less. But a still greater wonder is with what a small sacrifice of colour the photographic copy has been taken. One part of the secret, we believe, is the high artistic skill of those who superintend the work, the patience and leisureliness with which the copying is conducted, and the facilities wisely given for it by the Directors of the Galleries. Whatever may be the means employed, the result is such as our readers can judge of from these pictures that have been printed. We imagine that this picture would be quite unsatiable by any application of photography to the works of the old masters. What engraving of the beautiful Madonna di San Sisto—though we have the masterpieces of men and women like Rubens, Steen, and others to choose from—can stand comparison for a moment with that picture of which gives us, in one sheet, the head of the Madonna with the Child, in another the Angels who wait upon the threshold, in others the Pope and the Santa Barbara, of the same size as the others, and not doing an inch of barging back, the overpowering dignity and beauty of that masterpiece of its painter? So with Holbein’s wonderful bust portrait, which bears the name of Hubert Moret, in the same gallery, and these most characteristic heads by Velasquez, Rembrandt, Rubens and Vandley, include his finest portraits of the beautiful Henrietta Maria. Here is the very touch of the master—may, the grain of his canvas, reproduced for us, with a fidelity that helps to recall, till it almost seems to replace the colour. Here are his lines, given with a precision that mucks the hand of the most skilful and laborious engraver. Moreover, whereas the work of the latter reminds us, first of all, and only afterwards, of the master whose work he translates, here we are carried at once and irresistibly back to the picture, with no thought of the agency which so transports us. Some sacrifice of colour there may be, but as far as we can judge from this unique reproduction, to the marvellous exactness and direct suggestion. But how, it may be asked, about the durability of these photographs? We are assured that it may be depended on; and we know that in the Autoyope process there is assurance against fading.

That the Berlin Company have done for the gallery pictures of the old masters, the Chief German patentee of the Autoyope process, Herr Braun, of Dornach, on the Rhine, has done for their drawings and frescoes, particularly for the great mural decorations of Michael Angelo, but these we have no space at present to describe.

(Stander, September 20th.)

Last night, in the Gallery of the Society of Painters in Watercolours, in Pall-mall East, the Photographic Society of Great Britain, which has for its president Mr. James Glaisher, held its annual exhibition. This year an experiment has been introduced that will do much to add to the general interest of the proceedings, as it will be seen what more in accordance with the subject and the style of picture, instead of all the subjects by one artist being hung together. The first picture taken the eyes on entering the room is a life-size portrait of a lady, enlarged by the camera process by the Woodbury Company, who have been most successful in this branch of the art of photography has been brought out amongst the enlargements are also many by Messrs. Spencer, Sawyer, Bird, and Co., by the Autoyope process. There are numerous portraits that will excite attention, prominent amongst which are those of the Prince of Wales in Madame de Gis’s costume (No. 30) by Marion and Co., and Madame Patti (No. 115) by J. E. Mayall. Photographs that will doubtless be viewed with much interest as those of the officers and crew of her Majesty’s ships of the recent visit of the Royal Yacht to the South Atlantic (the Discovery), the Northumberland, and the Benbow, brought out by the Berlin Company. There are also amongst the names of exhibitors those of Mr. Crawshay, Capt. Horatio Ross, and other amateurs; but prominent above everything for careful execution and attention to minor detail are the landscapes by the Royal Engineers who, under the able tuition of Captain Anson, have attained a rare excellence in this art. Two groups of heads of criminals taken from life will doubtless be a source of attraction to those who care to study the facial characteristics of that class. Taking the exhibition as a whole there is the wherewithal to satisfy all classes, as it includes examples of every style and every process that the art of photography has yet developed. It may fairly be characterized as the most successful that the society has yet promoted.

(Daily News, Sept. 24.)

This exhibition commenced yesterday evening with a conversations, at the Rooms of the Society of Painters in Water Colours, at which most of the prominent photographers in London, with many from the provinces, were present. It is unnecessary to say that the exhibition is a good one. For years past one has expected to find here the best work of the season, and the latest improvements in manipulation. Some very fine copies from pictures are brought here. The most elaborate exhibit may be distributed into two classes, portraits and landscapes. Among the former very beautiful works are shown, Mr. Hawke, of Plymouth, sends four really excellent cabinet portraits, which, for delicate shading and perfect management of tones, are as good as anything in the room. Mr. Valentine Blanchard sends an enlarged portrait of Signor Balvini, in which the expression of the great actor is very successfully retained. Messrs. Chaffin, of Yeovil; Messrs. W. and D. Downey, Mr. H. G. Cocking, and Mr. W. Booth; Mr. J. M. M. Theile, of Dresden, also contribute some charming photography. But it is in landscapes that the exhibition is strongest. Here, first amongst the first, is Mr. Wilson, of Aberdeen, with landscapes which it is impossible too highly to praise. One, a sea-piece of Calais, with the weather clad sail behind, is the gem of the exhibition. But although his work deserves such high praise, there are other artists who are his equals. A group of tree sketches by the Royal Engineers; “A Way-side Bridge in Surrey,” and “A Surrey Lane,” by Messrs. A. and J. Boo; “A
Group of Tress, Leyton," by Mr. W. Brooks; a series of views at
and near Cyatarhia, by Mr. B. T. Crawshay; "The Head of the
Lake," by Mr. F. R. Turner; "An Oak" by Mr. E. Fox; and
"Chicwick House," by Mr. W. Bedford, are a few among the
many admirable photographs, certainly almost perfect in their
beauty, which attract attention in walking round the room.
Mr. H. Faulkner, of Quinton Gardens, sends a number of
advertisements of the Messrs. Messrs. Spencer, Sawyer, Bird, and Co., and
the Woodbury Printing Company, show what beautiful pictures may be made
by enlargement from an ordinary negative. The exhibition is
well worth a visit from all who are interested in photography, or
who care to see what the most assiduous students of the art have
been able to produce by dint of the most careful and painstaking
study.

Correspondence.

Mr. Johnson's Discoveries in Carbon Printing.

Dear Sir,—I have read with attention your article of
the 10th inst., and find it written in a spirit of conciliation
for which I thank you. Putting aside all subjects
foreign to the matter in hand, I intend to prove to you that
in the operation as described by Mr. Davies, the adherence
between the albumen paper and the carbon tissue is due to
atmospheric pressure, and not to the stickiness of the
albumen.

Let us resume, in a few words, the process of Mr. Davies.
The insolated carbon tissue is immersed in water for one
minute, and brought in contact with a piece of albumen
paper, which has previously been made wet, and laid on a
glass plate, the gelatine being in contact with the albumen.
The back of the paper is then rubbed or rolled so as to
expel the air from between the two surfaces. The albumen
paper is then dried by applying alcohol to the back of the
paper. After drying by the fire, or otherwise, the
development is proceeded with. Now, you say that the
adherence is caused by the sticky surface of the albumen
paper, and not by atmospheric pressure, the piece of albumen
paper not being an air-tight or impermeable surface, and
that such a surface is necessary to secure atmospheric
adhesion.

But it may happen that in immersing the albumen paper
in water, all of the albumen will dissolve, and still the two
papers will stick together, for the same reason that a piece
of wet paper will stick to a glass; that is, atmospheric
pressure. An evident proof is, that a piece of carbon tissue
can be made to adhere to a sheet of ordinary, or even blotting
paper, by passing it through the operation described by
Mr. Davies. I enclose you samples which I defy you to
detach.

The explanation is easy. Wet paper, whether it be
ordinary or blotting-paper, is impermeable to the air. On
the other hand, the gelatinised carbon tissue, which has
been immersed in water for one minute only, has not
absorbed more than one twentieth part of the water which it
can absorb, and that quantity is only taken up by the
surface. Brought in contact with a piece of wet paper, it
continues to absorb water, produces a vacuum, and adheres.
What proves this is, that the carbon tissue which has been
immersed in water for a brief time becomes like covered
with grease, the water being absorbed by the inner layers.
If, on the contrary, the carbon tissue is left in the water
(over one hour), the surface becomes sticky, the surface remains
wet, and it is impossible to cause it to adhere to paper,
glass, or any other surface, by merely bringing it in contact
with it. To cause adherence, it is necessary to keep the two
surfaces in close contact under strong pressure until the
gelatine surface is partially dry, when it will be in the
same condition as paper immersed for a short time.

If the experiment proving this can be repeated by any one. A
piece of carbon tissue immersed in water for one minute
will adhere to ordinary paper, to wood as well as glass, or
to an impermeable surface. And it is not necessary that
the tissue be sensitised and insolated, for the conditions are
identical whether the tissue be prepared or not.

In regard to the second period of the Davies process (the
drying and insolation) it can be carried out in different ways.
The difficulty is in avoiding the air-bubbles, which, under
the influence of the warm water, are expelled from the paper
to which the tissue adheres, and in parts detach it. For
this reason an impermeable surface is necessary between the
paper and the tissue in order to prevent the air-bubbles
from reaching the gelatine film. Mr. Davies obtained this
effect by wiping the albumen paper clean but moist, and
applying a little alcohol to the back of the paper. When ordinary
paper is used as a support, some kind of varnish is applied to
the back. This varnish penetrates the paper, expelling the
air, and, when dry, the image can be developed. The
enclosed paper has been prepared that way. Mr. Despaquias
had also understood the necessity for an impervious surface
to develop upon, for speaking of the Marion process,
which only differs from the Davies process in that the tissue is
left in the water one hour, and then applied to coagulated
albumen paper without pressure, the following are the observa-
tions he made:—"In submitting to the action of steam or
hot water the ordinary albumen paper used by M. Marion,
this paper loses its sizing, and is apt to become impreg-
nated with ink and colours in the parts of the proof which
is afterwards to remain white, and which, as the drying
process is carried on, will get rid of that colour, which stains the
proof and causes it to be defective. It is necessary, then, to overcome
this inconvenience to use an impermeable albuminised surface,
such as tinfoil, porcelain, glass, mica, &c.

As I have remarked before, the insolated carbon tissue can
also be immersed in water for a minute attached to ordi-
nary paper, and bunched, and then dried. This is the form of the paper, which is used as the temporary support, is
impregnated with dammar, or other varnish, and dried,
after which the image is developed in the ordinary way.

Of all this results that all these processes are very
similar. I have attempted to prove to you, that in
suppressing the adherence of the tissue to the albumen paper
you were in error, for the same thing takes place with ordinary paper
made wet. Mr. Johnson has not discovered the process by
atmospheric pressure, for Mr. Davis used it before him.

I am willing to admit that Mr. Johnson has contributed
to the progress of the carbon process by his publications;
that he has made practical many things which were not so;
but this is far from recognising him as the inventor of all
the improvements to which I have referred, and from this opinion
is shared by most of the competent authorities.

I have just received an authentic copy of another one
of Mr. Johnson's patents, dated February 1874. In this patent
Mr. Johnson claims as an invention the process which
consists in recovering the carbon tissue before, or after
insolation with a film of collodion. Now, Fargier already
did that in 1861, thirteen years before, and many others
have done it since.

One would really think that Mr. Johnson had no know-
ledge of what has been done before him, for his patents
which are exceedingly long, lay claim to a multitude of

Bulletin de la Société Française de Photographie, 1882, page 222.
2. This is the original text of the Johnson patent:—"This improvement
consists in the observation, that if the support is insensitive to water
and the tissue be properly exposed, no adhesive substance is needed to
secure the necessary adherence to attach the tissue to its support during
the development. It is only necessary in this case to expel the air from
the moistened surface and from the tissue which has been unremoved by light.
These processes, however, whether the water is reduced to a minimal
amount, to set in contact the two surfaces, sponging it, and rubbing the back so as to expel the
air. It is the same which Mr. Davies does. His albuminised paper is impermeable to
the water, the water does not reach the tissue; but, the dry tissue, lays it on the albumen paper, and rubs the back so as to expel the
air. These two processes are only different in this, that Mr. Davies
causes the tissue to stick to the paper, as the same thing takes
place when ordinary paper is used. All those who have come before
him, even some of the great masters, did the same thing. Mr. Davies
first and Mr. Johnson after him, have done away with the press"
THE PHOTOGRAPHIC NEWS.

Edinburgh Photographic Society.

An out-door meeting of this Society took place on Friday, October 1st, the scene of operation, being the mansion and grounds of Bonally, the residence of the late Lord Cockburn, and occupied by Professor Hodgson, of the Edinburgh University. Bonally, the outcome of the genius of Lord Cockburn, is situated at the foot of the Pentland hills, within an easy distance from Edinburgh, and is, from a photographer's point of view, one of the finest places in the country. The house, Bonally Tower, as it is called, originally a simple farmhouse, was added to from time to time by Lord Cockburn as the exigencies of an increasing family required, the result being an imposing pile of Scottish baronial architecture of exquisite beauty, in perfect preservation, and surrounded with all that goes to make a perfect picture. The grounds, which extend a considerable way up the face of the hill, are laid out with great taste, and contain some fine specimen of pines, large and small, pines, which are not in a state of nature, and sculptured vases are found here and there in sufficient number to adorn, without detracting from the natural beauties of the scene. Nor is the charm of running water wanting: A stream comes down from the hills, and has been utilised with much taste, and has been made to flow through the grounds in various directions; here widening into a tiny lake, there crossed by an artistic bridge, and in various places the levels have been so adjusted as to form pretty cascades, the whole forming, as we have already said, one of the most charming spots for the camera that is to be found in almost any part of the country.

The party left for Colinton Station, at 10.5, and walked from thence to Bonally, which they reached a little before eleven o'clock. The road from the station is bleak enough, and gives but little indication of the beauty of the place, but almost immediately on passing the entrance gate it bursts like a vision on the eye, and the spectator can hardly realise the fact that he has not been transported to fairy-land, so great is the contrast, here at least, between nature left to herself, and nature helped by the handwork of an educated and cultivated taste. The party were at once unpacked, and all turned towards the perfect picture, which consisted of the main tower with its ivy covering in the centre, a foreground of well-kept and picturesque arrangement of flower-beds, and to right and left some fine specimens of pines and other trees, and in front the Professor was from home, but in response to the cards of the deputation, Mrs. Hodgson appeared, and gave the party a hearty welcome to roam about at will, and photograph whatever might attract their fancy, a permission which was taken advantage of to the full, the result being the production of numbers of excellent negatives, which, we have no doubt, will be turned to account in some of the popular evening's which form so interesting a feature in the work of this Society.

SOUTH LONDON TECHNICAL MEETING.

Dear Sir,—In answer to enquirers will you kindly permit me to state that the Technical Exhibition Meeting of the South London Photographic Society will take place at its usual monthly meeting, Thursday, November 11th., at seven o'clock.

Further particulars in due course; meantime communications may be addressed to me.—Yours faithfully,

Edwin Cocking, Hon. Sec.

27, Queen's Road, Peckham

Procedures of Societies.

Liverpool Amateur Photographic Association.

The monthly meeting of this Association was held on Tuesday evening, the 28th ult., at the Free Library,—the Rev. J. D. Riley, President, in the chair.

The minutes of the previous meeting were read and passed.

Mr. J. A. Forrest feelingly alluded to the loss the Society had sustained owing to the death of one of their oldest members, Mr. Robert Cooke.

Prints and negatives were exhibited by the Rev. H. J. Palmer, Mr. Forrest, Mr. Castellain, and the Secretary. Those of Mr. Palmer were views of the interior of St. George's Hall, Liverpool, taken on gelatino-pellicle plates with an exposure of about seven minutes, giving the most perfect detail even in the deepest shades.

The Secretary strongly recommended the use of these plates for taking figures or groups in a landscape, as it was much more pleasing to return home with some views in which we depicted the likenesses of friends and companions. The short exposure required making only a few exposures, and the plates were both whites and albums and emulsion, and as long exposures were to be the order of the day, after the removal of the caps, a deputation was despatched to interview Professor Hodgson, and to seek permission, which, so far, had been taken for granted. Unfortunately the Professor was at home, but in response to the cards of the deputation, Mrs. Hodgson appeared, and gave the party a hearty welcome to roam about at will, and photograph whatever might attract their fancy, a permission which was taken advantage of to the full, the result being the production of numbers of excellent negatives, which, we have no doubt, will be turned to account in some of the popular evening's which form so interesting a feature in the work of this Society.

It was arranged that a sub-committee, consisting of the officers of the Society, with Messrs. Forrest and Philips, should decide on the choice of a presentation print for 1876.

It was proposed and carried that at the next November meeting each member would be expected to produce specimens of his work during the past season.

A subscription was announced for the benefit of the widow of the late John Glover. Mr. J. A. Forrest, who is treasurer to the
to have a suit of clothes better than those worn on working days, I will leave you to judge whether it is likely I can afford to keep a suit of what is termed in society evening dress; and if I could afford it, what possible use could I have for it? When could I wear it? I have never any proper occasion for such wear. It is the opening of the exhibition. I had taken great pride in attending it. I had promised my wife she should go to the exhibition, as a good wife, she is interested in her husband's occupation. It may be said that we could have gone in such clothes as we had. Whether we should have been admitted or not I do not know, but if we had known that we should have felt humiliated. If we had not gone without our wedding garments, and have been singled out by our attentive behavior to a lower grade of society. A protest from a gentleman like Mr. Werge, whose name is known, is a very good thing, and I hope, have some weight in preventing a recurrence of the same error. J. B. R. First asks, "What is evening dress?" and then proceeds to make merry with what he terms "dull, hammer clothes" and "shifty black chokers." Having skilfully done what right the censure is. The council endeavored to dictate to the members how they should dress when going to the opening of one of their exhibitions. "Old Amateur" suggests that Mr. Werge must have obtained his ideas of the evening dress of English ladies and gentlemen from some burlesque writer, and not from actual observation of the practice of dress. He says, "The learned society of London may be unquestionably said to consist of or in, in the last decade, the most earnest pioneers of science, and the most learned exponents of art, and these gentlemen who conform to the custom which is made a common theme of conversation as an example of ceremonial occasions like the soirees, are practically included in the stigmata of sanctioning folly in men and semi-eclecticism in women." Some letters refer to the subject, which is not mentioned to quote. We can only say what we have already said, that, on due consideration, we think it will be seen that the opening of the photographic exhibition is, in many respects, essentially different from the recognized conceptions, and that an informal friendly reunion, without any sectional conditions beyond those permitted by the good taste and right feeling of visitors, best meets the requirements of the case. Such a plan will, we doubt, be adopted in future.

A. NOEL.—There are several modes of photographing on wood for engraving. Much depends upon the process with which you are familiar, as to which will best suit your purpose. Assuming that you are familiar with the process known as "wet collodion" or "wet collodion" and "wet calotype," you will be able to produce an image in chromatic gelatin, and ink it up precisely as if it were to be used for producing a lithographic transfer. The image in greasy ink is to be transferred to the surface of the wood. This is the best method, because it requires no fixing, no wetting of the wood, and interposes no film on its surface. Another plan consists in producing a collodion transparency, toning it with platinum, transferring the film to the wood, face downwards, and then dissolving the collodion so as to leave only the black platinum image. Another plan consists in using collodio-chlorides, or the whole process, in essence using the same method, costing the surface of the wood, printing deep, and dissolving off the collodion, a sufficient image being generally found impressed on the surface in relief.

HOPE.—The appearance of a deposit of metallic silver in the shadows of the negative generally indicates two or three things—namely, that the plates are imperfectly cleaned, or that they are developing too long, or there is too much collodion on the surface. If the light is not too strong, the atmosphere often gets saturated with moisture, which condenses on the plate, and is a very important cause of the trouble in general.

G. L. M.—Members, and visitors introduced by members, are admitted free. The charge to the public for admission is one shilling per person.

JUVENIS.—Codium for enamelling prints should, when dry, leave a perfectly transparent film, without any opaqueness or opalescence. You can test it by allowing a film to dry on a plate of glass. If it is in any way affected by the light, the body of the glass, it will in an equal degree lower the tone of the print.

D. L.—You may reproduce statinary perfectly well with a single leaf. The ordinary typewriter is far below the mark. Several Correspondents in our next

PHOTOGRAPHERS REGISTERED.

MR. T. GRIFFIN, West Hartlepool, Photographer, Fine Painting, of Robin Hood's Bay.

MR. J. GALLOW, Ballysaggard, Photographic Group of Orange Bandsmen, called "Bally-killing-busy."

Two Photographs of Rev. George Smith.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

YELLOWNESS IN SILVER PRINTS—PHOTOGRAPHIC ENLARGEMENTS.

Yellowness in Silver Prints.—At the West End, in the vicinity of Pall Mall, there is to be found a House Agency where photography is largely employed for the purpose of "eligibles residences to be let or sold," and the pictures which are exhibited in the windows to public gaze bear melancholy witness to the uterworthingness of silver prints. There are possibly a hundred exhibited in all, and of those, fully one-half—we might almost say two-thirds—show ravages of that deadly disease, "yellow fever." Truly, photographers have no worse enemy than this sickness which gradually overspreads their works, and against which there is no remedy when once it makes its appearance. There is no reason to suppose that the photographs we allude to have been more carelessly produced than the majority of silver prints, for many of them prove that some skill has been displayed in the way in which the camera has been placed and focused, and the exposure and development; but it has been chosen. If they have been produced by a photographer in the ordinary course of business, as is most probably the case, he would have no reason for presuming the fixing and washing of these prints, any more than that of others under his hands, and they represent, therefore, we do not doubt, specimens of ordinary work, in which no special or extra- ordinary care has been taken to free them from the last traces of soluble compounds that may be contained in them. But the change that has come over the prints has been more rapid, and much more marked, from the circumstances that they have been exposed to full sunlight for days and months together, subject to the glaring action of the sun for hours and hours. It is impossible to look upon this condition without feeling that photographers can never regard their works to be safe until they are printed upon a more permanent process, or until some decided modification is made in the silver printing method as at present practised.

Dr. Vogel has recently recurzed to the subject, and has once more urged photographers to test their pictures, after coming out of the final washing bath, for hypophosphate. The washing of photographs, after fixing, he avers, is very unsatisfactory in many respects, and that, even when the pictures are put into the bath separately, they are allowed to clog and stick together afterwards, during the whole period of the printing process. To separate them now and then is but a form of the washing process beyond the usual period. But fading or yellowness in silver prints is not alone due, as every practical photographer knows, to the imperfect washing of prints; for many have proved that a most carefully washed print will fade at times. That imperfect washing is one of the causes, and possibly the most frequent one, we will not deny, but there can scarcely be a doubt in most minds that fading is frequently caused by the existence of an insoluble compound formed in the albumen, which subsequently changes colour. If all photographers will set themselves right forward, and, as time ago, our readers remember, a method to obviate the formation of such a compound, his modus operandi being to employ a fixing solution of very great strength, and only treating one or two prints in the same bath, the photographs being fixed in the dark. Any compounds then formed were, he stated, perfectly soluble, and could be dissolved out afterwards, so that the record was subsequently to a perfect washing of the prints, no fear need be entertained of the photographs fading. We do not know whether Dr. Gayer has found any number of disciples to follow him in his rather expensive and laborious method; but if such prints could invariably be secured by it as those exhibited, and which had been subjected continually to the effects of an Indian sun for ten or a dozen years, there should be no hesitation whatever in taking up his suggestion. The idea of separating the sulphur from the white of egg employed in albumenising paper, which was mooted a few years ago, remains but an idea still, unfortunately, for here was another chance of getting rid of one of the defects of silver printing seemingly inherent to the process. That something must be done, and that quickly, if we are not to abandon silver photographs to the detriment, must be admitted; there are many who pledge their belief in the stability of silver pictures when properly prepared; it would puzzle most of us to say what is the plan to adopt to secure infallible albumenised prints. It will never do to give up altogether so beautiful and delicate a process as silver printing, and it is simply nonsense to talk about its rapid demise during the last few years, for therein lies a mistake. No, it is not that the process in this country—nor, we believe, in any other—who has discontinued the process entirely. The public are, however, getting more and more alive to the instability of silver photographs, and have of late grown very chary about investing their money in large albumenised prints, especially which are given to fading; and people who do not mind giving five guineas for an engraving hesitate about disbursing as many shillings for a photograph, which may turn yellow after being framed a twelvemonth.

Photographic Enlargement.—With the public it is a general belief that a photograph should always be inspected at very close quarters, and, if possible, with a magnifier. Now, although there can be on the least objection to such critical scrutiny in the case of small and finely printed photographs, it is rather hard to have one's work thus sharply inspected when on a large scale. Many people object to the large direct portraits for the Crawshay competition, some of which were really very fine pictures, because you saw too much of the wrinkles and of the imperfections in the skin; the same objections being loudly uttered against enlargements. People are often so particular in the way they choose their pictures, either they find fault with enlargements which fulfill their object at a few paces distance, and which are only found to be defective in detail when critically examined de près? It is only the most exquisite little painting that can bear close inspection; and similarly, it is only photographs on a small scale that should be viewed. This is especially apparent in the case of the enlargements of some of Benjamin's portraits, now exhibited at the present Exhibition in Pall Mall. We allude to "At the Play" and "Coming from the Fair," both of which are charming pictures seen in a subdued light, and at a little distance off; but, hung as at present, in the brightest portion of the room, and on the line, too, so that the spectator, in making the round of the room, keeping constantly close to the walls to see the small pictures on either side, looks at them at close quarters, they must inevitably be pronounced coarse and blochly in execution. Even if the visitor goes out of his way in his round, and steps back some yards, justice is scarcely done to the pictures, for, we repeat, there is far too much light for them. As they are at present placed, they will, unfortunately, only go to confirm the popular idea that photographers' enlargements are always coarse and ill-executed, and that a large amount of painting and covering up of defects is absolutely necessary before pictures of the kind are in any way presentable.

PHOTOGRAPHIC ETCHING ON GLASS.

BY W. H. DAVIS.

This was the subject of a paragraph, and not a short one, in the columns of the Daily Scotsman a few weeks ago, in
which paragraph certain claims were made which require examination. The paragraph was as follows:

"Etching on Glass.—We have just had an opportunity of inspecting some views of old Edinburgh, produced by Messrs. J. Malloch and Co., Lawmarket, by means of a method of etching on glass which the firm may, we believe, claim the credit of contriving. The object of this simple but ingenious process is to provide the draughtsman with a surface which shall at once admit of the utmost freedom of hand, and receive and retain the slightest and sharpest touches of the etching-point. A sheet of perfectly smooth plate glass is covered with a preparation which, when dried, has all the appearance of a coat of yellowish oil paint, only that it possesses considerable transluency. The pigment seems to adhere firmly to the glass, but, at the same time, is capable of being easily removed by a needle point, so as to leave the glass exposed in perfectly clean cut lines. Working on the surface thus he would do on the wax coating of the copper-plate, but with the additional advantage that he can readily judge of the effect of his touches by ever and anon placing the glass against a light. Thus, the draughtsman makes his drawings. This having been completed, a process of photo-lithography is resorted to for the purpose of reproducing it on paper; and, from specimens before us, we can testify to the transference being effected with remarkable sharpness and precision. The prints, in fact, might very easily be mistaken for impressions of etching on copper, reproducing as nearly as the utmost degree of definition is feasible, the line and dot of the original drawing. The advantage to artists of such a medium as the pigment-covered glass seems too obvious to call for remark. Without the necessity of mastering a difficult technical process, he has here a means of expressing himself with perfect ease and freedom; and that, too, it would seem, with the certainty of obtaining reproducing reproductions of exact duplication. This method seems also well worthy of the attention of amateur draughtsmen, who may not care to face the practical difficulties of copper-plate etching or wood engraving."

You will see from this that the claim is made by the writer for Messrs. Malloch and Co. of inventing or contriving the method of etching on glass, which is expressly brought forward as new. Now, the narrative of the facts in the case is something like this.

Our esteemed fellow-member, Norman Macbeth, A.R.S.A., brought before the Society a method different in detail, but not in practice, from that which had been in use for many years and by many persons (originated I know not how, but never put to much use), of etching or drawing on glass with the utmost degree of definition and the assistance of silver intensifying with silver till it had become quite opaque. After use, it would lose its beauty and lose its brightness, according to the intensity of the silver. Intensifying with silver till it had become quite opaque and black, when worked, it was by etching through this ground, and having a white surface below, the artist was enabled to produce, by the use of an etching needle, a hard steel pen, or other instrument, an etching on the plate, which was in this way transformed into a negative or plate similar to a copper or steel plate, but capable of being printed from as a photograph.

One of the drawbacks in the process was the dark colour of the etching ground, which prevented the progress of the work being easily seen. On this being made known, I suggested that it would be possible to work with a white ground by taking an ordinary dry plate, prepared with a substance of albumen, without the addition of exposure to light and intensification with silver. After the etching had been completed on the dry plate, it was then to be treated with Schlippe's salt, in a weak solution, which at once would convert the etching into a strong printing negative, fit for any purpose, and after a few trials, perfect examples were got and exhibited before this meeting. We then repeated the process that the gentleman mentioned in the paragraph was present at these meetings, and at them showed some very rude sketches with the point on smoked glass, believing he had in that made a great discovery; and when informed that Dr. Strehlott Wright had made many of his most perfect microscopic drawings in this way, he seemed not only much annoyed, but actually to doubt or disbelieve his informants, although those drawings, as at least of slides, and other prints given to him, are shown to be done by this method; several of them, the Vovolat Globator and others, being of the highest order of merit. Such being the case, I cannot allow this claim to be made without entering my protest against it. It may be said that in all that has been advanced, nothing has been said of photo-lithography; but this is precisely one of the applications which the idea or method, when published, was stated to be applicable to. Every one who has experimented in the direction knows—and it has been stated here, and published from here, probably as early as from any other source—that the sine qua non of a good photo-lithographic negative was absolute clearness of the transparent parts, with the nearest approach to absolute opacity in the dark, when reversed on the lithographic stone, gives pure blacks and whites. The method of etching or drawing on a dried plate gives this in the highest degree, and so makes the best negative fitted for photo-lithography. The necessary work of making transfers and putting to press being only part of many previously published methods of doing this, which no one can now claim, especially after the works of Ramus and Osborn, Sir H. Davy, and others of a dozen years ago, and the explicit formulae which have been published in such profusion; not to mention the practical exemplification of the whole art, which I brought before this Society in this very room a dozen years ago at least, are not such as any one can now claim, or allow to be claimed for them, without at least some credit for the idea due to those who have gone before.

I do not wish to determine who first etched on a dried collodium plate, but I can state that Mr. Charles Edward Johnson, now of London, did a sketch of an old seventy-four war ship in my presence, while he was resident in this city more than twelve years ago, and where he has not resided since. Whoever was the originator of etching on glass, I know it was not the persons named in the paragraph I have quoted. At the same time, I have no doubt the perfecting and bringing this little method before the public is due to either Mr. Norman Macbeth, or his equally clever son Mr. Robert Macbeth, specimens of whose works, as shown first at this Society, I now again show after an interval of some years.

One more word and I have done. Artists have singularly neglected this admirable method of transmitting their thoughts and ideas to others, and if Messrs. Malloch will be content with the credit of again calling attention to this really cheap, facile, and handy mode of reproducing the direct work of the artist's hand, the penny-a-liner's work will not have been misplaced; but if they allow the invention, or invention, or conception of the idea to be attributed to them, then we must adopt this or some stronger method of stating that it is not so.

One more suggestion, and I have done. Schlippe's salt is, for this purpose, useful enough, if used weak and newly made up, or reduced sufficiently with water; but a much more effectual intensifier is to be found in a solution of tannin used in this way, or these days—either. Prepare the compound for a dry plate as above, and wash away the adhered silver completely, but leave just sufficient to become colored by the application of the tannin. After the etching is complete, then wash thoroughly, and give a wash with a six-grain solution of tannin, and wash. Or take this other method. After washing thoroughly, then drying, then etching, then wetting again, allow over this etched plate a twelve-grain solution of the above compound. Then wash and treat with the above solution of tannin, and you have a surpass for opacity in the dark, and clear it.
PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HEIGHWAY.
CHAPTER XXI.
DEFECTS IN THE PRINT-Causes of Failure in the Printing or Positive Process.
(a) Sometimes there is cause for complaint, though not so often as photographers would wish to believe, in the commercial albumenized paper. These faults may generally be detected on examination of the paper.
(1) Unequal albumenizing will be seen by the print made on different parts of the same sheets exposed under one negative, some being brilliant, where the albumen is thickened, and others, from the thinner albumen surface, being dull and lustreless.
(2) Dry and hory paper should be kept in a cool, damp place, and not exposed to warmth before sensitizing.
(3) Tear drops are often the evidences of above fault. To save the paper on which they appear, blot them off. Drawing the paper over the glass rod fixed to the sensitizing dish will, in a measure, remedy it.
(4) Albumen spots and streaks are caused by carelessness in albumening the paper, the spots being splottered on the sheet while drying, and the streaks marking the course of little rills running down the paper in drying.
(5) Metallic spots are sometimes caused in the drying-room of the albumenizer, and as often in that of the printer, from the rust of the stove, &c., a slight speck of iron rust spreading considerably.
(b) Failures in the bath and in sensitizing the paper.
(1) White spots on the paper indicate the presence of air-bubbles on the bath under the paper. Lift up the corners of the paper when on the bath, and break the bubbles with a glass rod.
(2) The solution adheres in drops—the "tear drops" mentioned above. These should be blotted up with clean blotting-paper. Keep the albumenized paper in a cool place.
(3) The paper repels the bath because the albumen is too dry—perhaps the effect of hot weather, and not the fault of the paper. Keep it in a cool room.
(4) Grayish scum on the paper is taken up from the bath. It may be seen on the surface of the bath before silverying, and should be removed by drawing blotting paper over its surface, or by filtration.
(5) Rapid discolouration of the paper; generally caused by too long floating on the bath.
(6) Sun-tan, dull appearance of prints, from the same cause.
(7) Bronzing of the shadows; also the effect of too long silverying.
(8) Weak, flat pictures, without boldness and relief—the effect of too short silverying, or impoverished bath.
(9) Red spots and red printing, often from the same causes. Sometimes, however, this, and the previous failure of weakness, may be caused by not properly drying before and after silverying.
(10) "Greaseiness" of paper after silverying: either from being too dry before floating, or not sensitized long enough. Perhaps the bath is too cold.
(11) Paper on the bath curls back because it is too dry. Gently breathe on it until it flattens, and see that the other sheets are kept in a cool place before silverying.
(12) Large prints are caused by uneven silverying.
(13) Stains on the paper after silverying, and during the drying, come from dirty places against which the damp paper has been brushed.
(14) Dark stains to the back of the paper show where the solution has run over the paper.
(15) The bath turns brown. This may be remedied by the addition of permanganate of potash, exposure to light, and filtration. It is caused by the dissolution of the albumen from the surface of the paper. Test your bath, and you will probably find it very weak. Strengthen it.
(c) Failures in drying the paper.
(1) The paper curls. Weight it down as described in chapter xvii.
(2) Tear drops show in the drying. Blot them up with bibulous paper.
(3) Stains, similar to No. 14, above, are caused by the sheets swinging together under the influence of draught.
(4) Numerous failures are caused by imperfect drying, weakness and inequality in printing, and, when the paper is damp, danger of its sticking to the negative.
(d) Failures in fusing.
(1) Insufficient fusing, either from weakness of the ammonia, or short time of fusing. Red, flat, and weak prints are the result.
(2) Over fusing produces prints blue and cold, and sometimes with a metallic appearance.
(3) Unequal fusing and unequal prints go together.
(e) Failures in cutting the paper for printing.
(1) Waste and bad cutting, the result of carelessness or ignorance.
(2) Stains and dirty paper. Caused by dirty fingers, paper knife, or shears; or from laying the paper on a dirty plate, table, drawer, frames, &c.
(f) Failures in printing.
(1) Breakage of the negative. Generally carelessness. Sometimes from warped frames (discard such), flaws in the glass, bad cutting, curvature in the negative, &c., &c.
(2) Little white spots in the print are caused by dust between the negative and the paper. Brush the negative on putting into the frame each piece of paper.
(3) Blurred prints are caused by unequal contact; perhaps in using too large a piece of paper for the frame, or generally, by insufficient pressure.
(4) Double outline. Carelessness in opening the frame for examination of the print, and in closing it after, causing the shifting of the print. Perhaps the frame is not firm, or imperfectly closed.
(5) Unequal sharpness of the print is the result of not placing the back of the frame in position, or from the inequality of the pad.
(6) Unevenly-pressed shadows. Generally caused by printing negatives much retouched in the shadows, in too strong light.
(7) Harsh vignetting. From inexperienced cutting of the form, or fixing it too near the negative. Too strong light in which it is printed often causes the defect.
(8) Ill-shaped vignettes. From ill-shaped forms, or from the light creeping in on one side.
(9) Bally-shaped medallions. Perhaps the cut-outs and masks are badly cut, or, most likely, improperly used. Carelessness in handling the forms; they are often torn and worn out of shape.
(10) Ugly fancy printing. The result of want of taste. Keep to plain printing.
(11) Failure is greater in vignette. Too strong light and want of skill or judgment. The grey should never be darker than the vignetted background of the original print. Do not attempt the "in memoriam" effect of getting a black background with a light halo round the head. Nothing can be worse—even as a novelty.
(12) With printed-in backgrounds the dangers are numerous, and failure easy. Moving the background out of position, the injudiciousness of choice, too great sharpness, and printing over the figure, are a few of the faults in a manipulation that requires great care, skill, and taste.
(13) Finger-marks on the print. From touching it with soiled fingers.
(14) Weak lights are often caused by examining the prints too often during printing, or in too strong light.
(g) Failures in washing the prints before toning.
(1) Stains from water splashes while placing them in the washing dish.
(2) Imperfect washing, in allowing them to stick together, and not keeping them in motion.

(h) Failures in toning.
(1) Too rapid action of the toning bath is caused by too great addition of chloride of gold. To this may be laid several faults, as—
(2) Over-toning, the action of the bath being so rapid that the toning cannot be checked at the right time. This fault may also, of course, be due to inexperience or unwisdom.
(3) Uneven toning is another result of using too strong a bath. Generally, however, it is caused by the prints being allowed to stick together while in the toning bath—the prints should be kept in constant motion, to allow of the solution gaining access equally to all parts of the prints—and, not unfrequently, from a bad habit indulged in by some printers of strengthening the bath during the operation of toning.
(4) Weakness of tone may also arise from the bath being too strong, or the prints being originally weak, the strength of the toning bath increasing the defect.

(5) Mechanical or artificial toning evidences a want of care or thought on the part of the operator. A batch of prints diverse in style and quality, some requiring special treatment, are all toned alike, and therefore fail, however good and even the tone may be.
(6) The prints refuse to tone. Several causes lead to this result. The paper sensitized on a bath manufactured from an old negative bath in which there is much iodide of silver, acid, or foreign substances, will often quite fail in the toning.

(7) The water of the toning bath is contaminated with sulphur, or perhaps the dish is not clean.
(8) Gold solution is wanting.
(9) The solution is too cold.

(i) Failures in fixing.
(1) Stains and streaks in the prints are formed when they are not immersed equally in the solution.
(2) Spots and splashes of hypo and finger stains, in placing them in the fixing bath, should be guarded against. If you cannot fairly accomplish it alone, an assistant should drop the prints on the dish while you place them under the solution, and keep them in motion.

(3) Yellow spots, which may not appear until the prints are finished, are from air-bubbles, which prevented the action of the hypo-sulphite of soda. Constant agitation of the prints in the bath will effectually break up these bubbles.

(4) The prints turn yellow. Cause: an old fixing bath.
(5) Cloudiness of the prints, markings which afterwards turn yellow: caused by imperfect fixation. The prints were in the bath too short a time, or not enough solution was used.

(k) Failures in washing after fixing.
(1) The prints spot and blister on being placed in water. To avoid this, gradually reduce the strength of the hypo solution—when the prints are all fixed—until it is almost free from soda, that the change to the prints may not be so rapid; then wash in water, and so on, as directed for washing the prints.

(2) The prints turn yellow in consequence of traces of hypo being left in them, either because they stick together in washing, or from the difference in washing, the cause of fading in photographs. Keep the prints separated.

(l) Failures in finishing.
(1) Yellow spots are sometimes caused by using old blotting pads in which are traces of hypo-sulphite of soda.
(2) Spots are also caused by using mounts containing traces of soda or sulphur.

(3) Stains appear when old, sour starch has been used for mounting.

(4) printing and stains often result from placing together a number of damp mounted pictures.

(5) Ridges in rolling the prints, scratches from dust in the roller, breaking the edges of the card, marks of stoppage, &c., may all be avoided by care.

(6) Numerous defects in spotting out the prints are to be avoided.

THE PRACTICAL PRINTER IN AMERICA.

XLI.

FIXING THE PORCELAIN.

The porcelain, when toned, and the toning washed off the plate, is then to be fixed as you would do with a paper print, viz., with a weak solution of hypo-sulphite of soda.

The strength of the hypo is generally weaker than is used for fixing paper prints, and a little thinking by the beginner will enable him at once to see that it is not required to be as strong.

In the case of the paper print, the silver often sinks far into the albumen, and when the paper has been flushed too long a time, say four or five minutes, as has been recommended by some, the silver often sinks through and into the bibulous paper beneath the albumen.

When a paper print is placed in the fixing bath, a stronger solution is required than what would suffice for the fixing of a porcelain, because it has got to penetrate through the mere surface of the albumen, and far into it on one side; and through the back of the paper to the albumen, and also a little into that on the other, and there do its work, which it will thoroughly do if the prints are moved about sufficiently, and are permitted to remain in the bath long enough. It is not an easy thing for the hypo solution to penetrate into the albumen anyhow, but it is done much better with a weak solution and a longer time of fixing, than it is with a strong solution and a shorter time for fixing. The albumen is a substance that is not the easiest thing in the world to wet with water, yet if the temperature of the water is blood-warm it will, in a short time, penetrate quite a way into the paper, at least as far as the silver solution penetrated during the sensitising of it.

Now, in the case of the porcelain print, all of the penetrating of the solution is done on one side of the porcelain plate through and into the albumen, and that penetrates through than what albumen is, and a considerably weaker solution is used in this case, as has been before said; and as regards the tone, it is much better than it would be if a stronger solution than what is recommended below were to be used.

You might say that we can use a stronger solution and fix quicker, but as sure as you do it, the tone will be spoiled, and bleaching will be the result. Make up the bath as follows:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat. sol. hypo-sulphite of soda</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Clean rain-water</td>
<td>12 ounces</td>
</tr>
<tr>
<td>Sat. sol. bicarbonate of soda</td>
<td>½ ounce</td>
</tr>
</tbody>
</table>

Fix in a weak light, but not quite so weak as was recommended in the toning; fix five minutes, or until the face of the porcelain turns clear in tone, after the hypo has once turned it cloudy, which it will do the moment the print is placed in the bath.

The porcelain print undergoes a variety of changes in the fixing bath, often immediately turning a peculiar green, as disagreeable in looks as it is peculiar, and the longer the plate is kept in the bath, the worse it seems to look.

Then, again, it turns yellow, and stays so too, which is often a sure sign of under-toning, and if it be blue, or a forced brown colour, then this is of over-toning.
To tell when a porcelain is fixed you should permit it to remain in the fixing bath until the tone to which you have toned it returns, and then, if, on close examination, the face is seen to be clear, the plate is fixed; if it is not clear, let it remain in the bath until it is.

Final Washing of the Porcelain.

The porcelain when fixed is then to receive the final washing, which will render the plate free from any destroying agent that will cause the print to fade, at least so far as anything besides the plate itself is concerned. For the first few minutes the plate is carefully washed on both sides under the tap. Rub the back of the plate with one hand, holding it with the other, and permitting the water from the tap to fall not too heavily on the face of it.

Set the plate under the tap (say, for instance, on one end of an empty salt box), and let a steady stream of water fall upon it, moving it at times, so that the water will fall at a different place every five minutes. After the plate has washed half an hour or so, then soaking the plate in a salt-water bath, made as below given, is an excellent thing:

- **Lukewarm water** 1 gallon
- **Chloride of sodium (table salt)** in weight... 2 ounces

This warm salt-water bath will enter right into the film, and displace within five minutes all of the hypo that is left in the film after the washing just described.

Let the plate remain in this bath five or ten minutes, and then soak it in two more lukewarm water baths, but let these baths be of fresh water. Give the plate a quick final washing under the tap, and rinse well.

During the first washing of the plate, the tone of the print often changes, which will be fully entered into subsequently.

Drying and Tinting the Porcelain.

Drying.—The plate can either be dried spontaneously, or by artificial heat, as the printer chooses. Each of those is best at times, as any one who has ever printed porcelain pictures knows.

Drying by heat makes the tone bluer than it would be if it were allowed to dry without. Then, again, if the porcelain is to be dried by heat, place it in the negative oven, permitting it to dry gently. Before placing it in, however, wipe out the oven with a damp cloth; and in drying spontaneously, hang up the plate upon two nails away from draughts, which may cause dust to settle upon it.

Tinting.—In tinting the cheeks and lips, you can either do it with a flesh wash, or by dry colour. The latter is sometimes applied to the cheeks and lips of the porcelain print after the plate is varnished, because in varnishing the plate, after the dry colour is applied to it, it sometime comes off during the flowing of the varnish back into the bottle.

If the plate is not warmed before you flow the varnish on it, and is dried up quickly, the colour will not disappear, but if it is warmed before varnishing, it will surely disappear.

Proof: Experience in varnishing by both methods.

The object in first warming the plate before varnishing is to prevent it from getting chilled in drying, but unless it is very cold indeed, the varnishing and drying quickly in a hot oven will place a splendid gloss on the plate. In spotting, mix the colour to the proper tone, being sure that you also have gum-arabic in it in abundance.

A most excellent hit is to colour the hair of the porcelain print, if the print is that of a blonde—either before or after varnishing, as may suit the printer—with a little dry yellow colour, and the effect will be splendid.

Spots on Varnished Lantern Slides.

By John M. Blake.

I recently had occasion to look into the cause of certain spots that had made their appearance on a lot of lantern slides, and found two varieties.

To erase the difficulty it came of allowing the glass cover to touch the varnished film. The two glasses were of plate, and the contraction of the binding-paper on drying may be supposed to have drawn them in close contact. The trouble only made its appearance after a considerable time, and some slides of the same make were affected worse than others. Then peculiar spots, resembling bubbles, then the air appeared to be varnished, and when one of these came in a shadow, it showed as a round puncture, having a diameter not exceeding one thirty-second of an inch. There might be a hundred or more of these spots pretty evenly distributed over a slide; besides which there would occasionally be a portion of the surface containing them closely packed and in large number. In the case of a slide in which the adhesion of the two glasses was but slight, it was found, on opening the binding-paper, that the cover was smeared with varnish, which required alcohol for its removal; and it was noticed that specks of dust and small filaments were closely adherent to this surface, and these were exactly opposite to the spots on the film. It is probable that the moisture in the atmosphere, which constantly varies, had acted unequally on the binding-paper according to the position of the slide, the dust, the cover, and to currents of air, and this had produced contractions and expansions which had caused these adherent particles to exavate the peculiar round pits in the varnish opposite to them, in the same manner that the finger would make a cavity in a surface of clay, if moved a short distance in every direction.

It would seem that change of temperature, so far as affecting the glass itself, would not be sufficient to account for the amount of motion that had evidently taken place, particularly as both glasses would be likely to expand at the same time.

In the second instance the precaution had been taken to separate the cover from the film by an outline square of paper; but there came another trouble—there was a volatile substance in the cover, or in the adjacent object, or to currents of air, and this had produced contractions and expansions which had caused these adherent particles to excavate the peculiar round pits in the varnish opposite to them, in the same manner that the finger would make a cavity in a surface of clay, if moved a short distance in every direction.

In the last case the slides were not ruined; it was only necessary to remove and clean the covers, to restore them to their original state; but the peculiar behaviour of the resins contained in varnish, as first mentioned, when it is closely pressed between two hard rubbing surfaces, as a lantern slide and its cover, have proved themselves to be, will ultimately cause the destruction of a slide, when this condition of things is allowed to occur.

It is possible that some varnish may stand this treatment, and again some slides may escape from the curving of the glass not allowing contact of the surfaces.

Solvent Power of Glycerine.—The solvent power of glycerine upon several substances commonly used in medicine and the arts is as follows: 1 part of sulphur requires 2,000 parts of glycerine; iodine, 100 parts; red iodide of mercury, 340 parts; corrosive sublimate, 14 parts; sulphate of quinine, 48 parts; saltpetre, 6 parts; vertreic, 96 parts; atropia, 30 parts; hydrochlorate of morphia, 19 parts; tartar emetic, 60 parts; iodide of sulphur, 60 parts; iodide of potassium, 4 parts; sulphide of potassium, 10 parts.

The Magic Lantern.
The Photographic News.

Vol. XIX. No. 893.—October 15, 1875.

CONTENTS.

Photography In and Out of the Studio .. 498
Photographic Etching on Glass. By W. H. Davies 499
Practical Portrait Photography. By William Higginbotham 499
The Penycoet Process, and more ... 500
Spots on Varnished Lantern Slides. By John M. Blake 500
Photographic Photographs from the Great Exhibition in America 500
The Photographic Exhibition .. 500
Photography in Siam and Japan ... 500
On Preserving Sensitized Silver Paper 500
A New Application of Collodion .. 500
The Correvax Picture .. 501
How to Calculate the Distance from the Lens, and from the Focus ... 501
How to Focus the Glass to the Model, in order to Obtain an Image of a Particular Size. By A. De Blochshae 501
A Silver Bath from Ditch Water. By F. J. K. 503
Proceedings of Societies—Philadelphia Photographic Society 503
Talk in the Studio .. 503
To Correspondents .. 504

PHOTOGRAPHY AT THE INTERNATIONAL EXHIBITION OF 1876 IN AMERICA.

The International Exhibition to be held in Philadelphia next year will be conducted, if we may judge from preliminary announcements and arrangements, on a very grand scale, and American photographers—or, at least, the representative men amongst them—are anxious that photography shall occupy a position worthy of the art and work of the occasion. Besides the main building to be devoted to the purposes of the exhibition, a Memorial Hall will be erected, to be devoted entirely to a display of fine art, and it was the original intention of the Commission to give photography a position in this hall amongst the fine arts. But it appears that the extended claims of the other representatives of the art sisterhood—painting and sculpture—absorb the space, and photography can find no resting place there. To prevent the risk of the photographic contributions of the world being scattered over different departments of the main building, possibly spoiled by bad light, and losing all special interest by burial amongst a mass of distracting things, the National Photographic Association of the States have published an appeal to photographers to aid them in securing for photography a distinct hall in which the contributions of photographers throughout the world can be displayed together. The authorities of the International Exhibition entertain the proposition favourably, and have agreed that if photographers will subscribe for shares to the extent of $50,000 in the general stock, which has been created for the management of the enterprise, a handsome building for that amount shall be erected, and devoted solely to photography. We are uncertain at present whether the amount will be raised, but, from our observation of the pluck and enterprise of American photographers, we have no doubt that before these lines are published the project has become as fait accompli as the assurance of an English pound, money, about £2 each, and the project, it is anticipated, will be a financial success, so the scheme is promising as an investment. Apart from the prospect of commercial returns, the idea appears to be enthusiastically taken up by some of the best men in the States. The president-elect of the next Convention of the National Photographic Association, Dr. Rulofson, is reported to have subscribed a thousand dollars, or more, if any photographic firm contribute more. A project taken up in such a manner is not very well fail.

Our principal object in briefly detailing these inter

facts is to secure a preliminary interest in the forthcoming exhibition. It would be a mortifying disappointment to our American brethren, and a deep discredit to the photographers of the world, if no suitable hall for the satisfactory display of photography as it exists everywhere, if the contributions were inadequate to the occasion. The photographers of America are not simply looking to the exhibition of their own work; they are anxious, as the published manifesto appealing to the photographic community states, to offer to their co-workers abroad an opportunity, exclusive of such exhibitions as no other occasion has brought together. The building will be a noble one, admirably lighted, and admirably arranged for photographs and "all articles pertaining to their production." We should like all our readers in this country, and in Continental Europe, to resolve to send some worthy contribution to aid in securing an exhibition of photographs befitting the occasion. Of course many of our readers may not see the display, but surely they will have enough esprit de corps amongst photographers to feel interest in the success of a great enterprise in which the prestige of their art is concerned. Details of the conditions and arrangements of exhibiting have not yet been published, but it will be before our readers receive all the information for their guidance which may be issued.

THE PHOTOGRAPHIC EXHIBITION.

PORTRAITURE.

The proportion of portraiture in the present Exhibition, if we except the examples of enlargement, is less that usual, but includes some very good work. A few examples which is hung somewhat below the line, and which may, therefore, escape the attention of some, will be carefully examined and well remembered when once seen: we refer to "No. 117, Imperial Portraits," exhibited by Mr. E. Greaves, of Halifax, who is, so far as we remember, an exhibitor for the first time. The size termed Imperial is the usual whole plate, the finished print being about eight by six inches. The portraits in question are busts and three-quarter lengths, all vignetted into grey grounds with unusual skill. The lighting is concentrated, giving fine vigourous modelling, without any sacrifice of softness and delicacy; the chiaroscuro, whilst forcible and effective, is not exccentric, nor does it trench upon the bizarre effects often exhibited as Reambrandtseque. There is remarkable sureness and naturalness in the pose and expressions, giving a sober grace and dignity of style. The light and shade in the grey vignetted backgrounds is admirably managed, giving great value to the figures. The tone of the prints is singularly rich, warm, and sunny. Altogether, the frame of portraits is one which all photographers may find it instructive to study.

Pfreebroth shows two frames of cabinet portrait (5 and 33) possessing much technical excellence, seriously marred in some cases by the injudicious use of accessories. The white globe of a table lamp, for instance, forms by far the most prominent object in one or two instances, and is seen afar off before the portrait itself has caught the eye. The lighting on the face is intense, but not sufficiently softened to come from the light. There is no canon of art more imperative than that which insists on the most important part of a picture being treated so as to secure attention first: the head should be at once the focus of light, of definition, and of interest: other details of the accessories, especi各自 the eyes, should be present so that they are of second importance. For instance, one of the Lord Young's portraits was as follows: the face illuminated by the light from the table lamp, the eyes and hair in shadow. How easily the details are riveted on the reader, and how strongly the subject is laid upon the mind! Aosaic and certain forms of cabinet portrait are very effective when well handled, and should be carefully studied by all who wish to master the art.
THE PHOTOGRAPHIC NEWS.

October 15, 1875.

Ground accessories, without detracting from the full interest of the figure. The portrait is that of a beautiful woman, whose fine face and exquisitely modelled arms are rendered admirably, the flesh texture being singularly fine. The rendering of textures is, indeed, a special feature of the picture: besides the skill with which flesh, hair, and dress are treated, the texture of the massive folds of drapery forming the background, which is kept subdued and low in tone, is very perfectly rendered. Altogether the picture is very fine. Mr. Young, who exhibits some of the finest portraits in the room, has several other examples, No. 130, perhaps, pleasing us least, the face being low in tone, and too nearly alike in texture to the head above. No. 28 is a fine large costume portrait by R. Wyley and Co., and is apparently taken direct in the camera. It is well posed, well modelled, and of unusually rich tone. Messrs. Chaffin and Sons send a number of large direct portraits, about twenty-two inches by eighteen in size. These are chiefly full length standing figures, and possess for the most part somewhat more pictorial character than is aimed at in the photographic excellence. A lady, equipped for army (124), entitled "Belle and Bow," pleases us best. A full length figure on a nearly square canvas presents considerable difficulty as regards background, and in those cases the ordinary proportion of a whole sheet of paper unnecessarily taxes the portraitist: a better proportion would have given less trouble, and have been more effective. Some portraits of the same size by Cooper and Morphy, of Hull, are very excellent; they are chiefly seated figures of three-quarter length, and better fitted for the proportion in question than the full length standing figures. We may congratulate Mr. Cooper on an advance in his work; his contributions of this year possess a quiet harmony which is better than the pronounced light and shadow of some of his earlier contributions. Mr. Crawford's dimensions of half a meter full of life, full of some details of the observing station in più as physiological studies, and they present truly a curious problem for the student of human nature, who hopes to read the mind's construction in the face. In a photographic sense the work is good throughout, better, than under the various difficulties in such cases generally prevailing, might have been anticipated. In some cases a certain smoothness is felt, some details being distorted as to form identity; but in the greater majority it is simply vacuous and stolid, indifferent or hopeless. The fixed lines of the faces do not in the majority of cases suggest vice, malignity, or cunning; in very few cases is the "forehead villainous low," the eye malignant, or the jaw and mouth coarse and heavy. They are simply common-place, somewhat sad-looking faces; the forehead and cranium generally do not indicate special lack of brain power; but the expression does suggest lack of culture and absence of happiness. Of course there is nothing bright or winsome in any face in this rogues' gallery, and few traces of the capacity of humour. They excite feelings of pity and sadness rather than repulsion, and a wistful wonder as to how the "paragon of animals" could have fallen to such a low estate.

PHOTOGRAPHY IN SIAM AND JAPAN.

It will be remembered by some of our readers that Mr. F. Beasley, a skilful landscape photographer, whose excellent work on Fothergill plates has often appeared at photographic exhibitions, went out with the scientific party who, in accordance with the invitation of the King of Siam, journeyed up the East to observe the solar eclipse. An interesting letter to Mr. Frank Howard gives graphic notes of travel, occasionally entering into photographic details which may interest our readers. After an account of the voyage, and the various points of call, and a brief description of Bangkok, the port in the gulf of Siam, a town in which all the houses are built upon floating rafts of bamboo, we have some details of the observation at Chulai, about forty miles along the coast. Some idea of the efficiency of the help in arrangement afforded by the feeble and lazy natives may be formed from the fact that it took forty of them to carry one case of apparatus weighing eleven hundredweight. Regarding the photographic arrangements, we give a brief extract in Mr. Beasley's own words:

"We found that preparations were well made, the place..."
THE PHOTOGRAPHIC NEWS.

[October 15, 1875.]

being previously nothing but a jungle; there were now three houses, one for the Prince Regent, one for Professor Janssen the French astronomer, and one for ourselves. Observatories, dark rooms, &c., nearly everything was formed of bamboo and palm. The expedition is indebted to Captain Loftus, who carried out these arrangements so admirably. Our provisions were equally well-managed, and the excellence of the food was so far very acceptable; the weather being very hot, and our time being so very short (only about five days), we were obliged to work during the heat of the day. Our photographic outfit was of the usual kind, including two tents made by Collins, St. John's Wood, something like Smart's tent, but much stronger; Blanchard's collision; the chemicals supplied by Thomas, and I think only a small funnel was broken. The collision was packed in tin cases, which were put in the ground to keep cool. We had the assistance of several officers and men of H.M.'s "Lapwing," who rendered great service in counting time, &c. The Hon. — Shave took a capital sketch of the corons. Mr. Eskev rendered good assistance in the photographic work. As to the amount of success we obtained, you have no doubt seen in the papers, as the Hon. — Shave and Mr. Lott have. I believe we published an account, and although we did not succeed with the siderostat, on account of the shortness of time to get so delicate an instrument in working order, I believe the success with the prismatic camera is considered well worth the time and expense; and I believe with a shorter focus lens, or more powerful one than was attached to the siderostat, that the results of the coming dark period will be of great value to us. The light, I believe, is very white and actinic. The next day was employed in copying, &c.; I also took a few views before leaving, but they were taken in a great hurry. We were also assisted by the local photographer of Bankok, who was sent to us by the king. We left Chula Point April 11th, and after spending two days at a pretty place called Chincang, at the invitation of the Governor of the island, returned to Bankok on the 14th. On the 16th we had an interview with the king in the blue drawing-room, a room most elegantly furnished in quite European fashion. We also went into his private temple, which is very gorgeously decorated. On the 21st we went to a garden party given by the king. A very large umbrella was held over the king's head all the time he was in the garden. In the evening there were fireworks. Cremation is generally practised by the Siamese. On the 28th we went to the burning of a princess and two princes. The coffins were gilt and suspended over a pile of scented wood, and were lighted by the king. Limps containing money were afterwards thrown to the people, and followed by music and fireworks. Most of the Siamese use the betel nut, from the highest to the lowest. Their teeth are jet black. The natives wear very little clothing, but are a very peaceable race. We left on the 9th of May, and arrived at Singapore on the 14th. Dr. Schuster intended going to India, and waited for the steamer; Mr. Lott returned to England, Mr. Eskev to Germany, and I thought that being in the East I should like to see a little of China and Japan.

After varied experiences in China, in which photography took an important part, Dr. Schuster and Mr. Lott returned to England, and there met with various matters of photographic interest, from which we make brief extract. He says, having travelled for a few weeks in Japan, and returned to Yokohama:

"I hope now to devote a little more time to my camera. I only brought with me three dozen Liverpool seven-and-a-half by eight plates, and some of Kennet's, but I have found here a very enthusiastic dry plate photographer (professional), and this evening we intend preparing some trial plates, both Harrow and Fothergill. I obtained a few stereo cards of the temple at Bangkok, which I developed in the dark room of the local photographer; he was Siamese, and a very good worker, and was using the English collodions and a Booth's tent (rather an old one), and English lenses. He frequently added a dilute gold solution to his pyro and silver developer when intensifying. I have taken a few views here of the Sheba Temple. The photograher here, M. James, a Frenchman, works the tannin process, with gallic acid and pyro developer, and uses a dish. He likes the following substratum for his plates,—

- Gelatine … … … 2 grammes
- Distilled water, which we found very acceptable … 500 cc.
- Alcohol (absolute) … … 500 cc.

The gelatine is first dissolved in twenty-five grammes of water, and four grammes of pure glacial acid are added, which will turn the solution white; after twenty-four hours the remainder of the water is added, filtered, and then the alcohol is put with it (they will keep for years), and he pour it on the glass like collodion. We have been comparing Fothergill with tannin, but our old friend Fothergill proved the best. We prepared a few last night, washing away silver, and giving a final coating of gallic. I do not know how they will succeed, the weather being now very hot. I have also tried some gelatine plates, but at present have not hit the right exposure. I exposed one for two seconds, view lens, four-and-a-half inches focus, and smallest by one stop, and it was much overexpose. It is necessary to see everything when developing. I often think of the Field Club. I hope it is flourishing."

ON PRESERVING SENSITIZED SILVER PAPER.

A little while ago M. Carrier, whose durable sensitive paper is well known in this country, although we believe, it has ceased to be a commercial article in England, brought before the French Photographic Society a product to be employed for preserving albumenized paper of any description after it has been sensitized. M. Carrier's remarks upon this new product were as follows:

"This preparation will keep good for an indefinite period, and for purposes of commerce it will be made up in the shape of tablets. It contains no sulphurous compound, not that element in any form, but its preparation is based upon the properties of certain chemical agents, which play the rôle of reducing agents to chloride of silver under the influence of light only, while they are quite inert upon the paper in the dark. In February, 1868, I presented to the Society, and I remember that at that time, following a commission reported that they had kept perfectly good without having been the subject of any special precautions. If these specimens still exist in the archives of the Society, it would be easy to examine their state now, and report the result. Some of my paper has made a voyage to India, and has come back after the lapse of two years perfectly well preserved, without any particular precautions having been taken to keep it in shape. I did not indicate the mode of preparing the paper in 1868, but it is as follows:

"The preservative compound is dissolved in water (each tablet is enough for one litre), and, after having added two per cent. of chloride of sodium, the sensitive albumenized paper is immersed dry in the solution. Five or six minutes is sufficient for its immersion, and it is then kept dry and carried away. The paper may also be treated by washing it on its exit from the silver bath; but in that case, instead of immersing the paper, it is preferable to impregnate it on both sides with the solution, by means of a large soft brush, in such a way that all the sheets piled upon one another receive the solution fresh."

The method has the following advantages: there is only one drying operation; and if the sensitizing has been properly conducted, all the sheets will be of the same vigour in printing, provided that all of them have been treated with fresh solution, the latter being capable of use to the last drop.

"By this method all the nitrate of silver is converted into chloride, and this is replaced on printing by the preservative,
which acts upon the chloride of silver as a reducing agent. The printing should be vigorous, and after careful washing, to remove from the prints all unnecessary products, the toning operation is carried on with a liquid made up of

Water 1000 grammes
Chloride of zinc 10
Sulphocyanide of ammonium ... 80 to 100 gr.
Chloride of gold 1

Chloride of zinc, or cadmium, is necessary for regulating and clearing the bath; the fixing and washing afterwards are conducted in the ordinary way.

Some years ago I made some very successful experiments on the replacement of gelatine in these papers. This is how I proceeded: I first dissolved the preservative, and then gelatine, in sufficient quantity to form a beautiful brilliant surface after desiccation; I then added, at a temperature of 50° Cent., some chloride of silver obtained by precipitation, and washed, in quantity sufficient to give, with the gelatine, a white cream. I spread this upon an endless band of paper, or upon cardboard, and allowed it to dry, the surface thus prepared being as permanent as that of albumen. The prints produced are treated in the same way as ordinary ones, only that I pass them through a solution of nut-galls after fixing, and finish by washing in the ordinary manner. The prints are very fine, by reason of their depth and the beauty of the tone. The printing goes on rapidly, even in the shade.

"This last method is a truly practical one, by reason of its simplicity and regularity of its products. Albumen is dispensed with, together with the sulphur which it may contain, and the sensitive film not being in the paper itself, any description of material will serve, even some kind of cardboard. I have obtained some very good results without employing papers specially prepared for photographic printing."

M. Carrier accompanied his communication to the French Photographic Society with a specimen of his preservative material, but we are not aware whether the same is as yet to be obtained in commerce, or under what name it is to be brought under the attention of photographers.

A NEW APPLICATION OF COLLIODION. Although collodion has done much for the scientific world in depicting the most minute stars and the constant changes upon the sun’s disk, as also in recording other phenomena connected with the light there has been, says Dr. Schwanus, in the Photographisches Archiv, no record of any physical application of the material in the laboratory. Dr. Schwanus informs us that for some years past he has, however, employed collodion films for physical experiments, and has constructed a vessel or bag of collodion, for use in analytical and endosmotic investigations; while recently we heard that M. E. Grippon recommended collodion films stripped from glass plates for experiments with polarized light and heat rays.

Collodion films polarized both reflect and as transmitted light, and—so we are told—a film which accurately measured under a microscope was found to be 0.0081 to 0.0088 millimetre, in thickness gave the angle of greatest polarisation, viz., 83°55'; its index of refrangibility being = 1.5108.

The film allows heat rays from an illuminated heat source to pass to the extent 0.91, while with a blackened vessel of boiling water only 0.70 passes. If the temperature of the heated water only amounts to 50° (Reaumur) only 0.60 goes through. Two films laid upon one another do not allow so much heat to pass, and from a source having 00° Reaumur of heat only 0.296 passed through.

For polarisation experiments, collodion films are to be preferred to mica plates, from the circumstance that they are more transparent; and if they are somewhat more fragile, this disadvantage is compensated for by the circumstance that the films are easily prepared. For heat experiments, as we have seen, collodion is particularly suitable.

THE CONVEX PICTURE. A correspondent of the Western Photographic News describes a novelty under the above name. To produce them he gives the following directions:

Make the print very dark—so dark that the lines all run together; then tone the very life out of it. Cut the print a little smaller than the convex glass used. Have glass perfectly clean. Wet the print, and blot off the surplus water; paste the face of the print with thin starch paste, and cover the concave or inner surface of glass with the same paste, using great care to work the paste smooth on both print and glass. Lay the print on the concave side of glass, the starch or face side down, and proceed to work out air-bubbles with the finger. Then take two thicknesses of fine ribbed filter paper (or any soft, tough paper will answer), and put next to print; then, with a common ivory paper-cutter or flat stick with curve about the same as the glass, work out the air—working from centre of glass to the edges. This work has to be done very quickly, as the print dries fast. When thoroughly dry, take a good quality of castor oil, saturate the print. Let stand twenty-four hours, or long enough to clear up, after which drain off the surplus oil and wipe with soft paper. Back up the picture with pink cardboard—light or dark, as suits your taste. I find the greatest trouble occurs in getting my paste to the right thickness, so that the air-bubbles can be worked out easily.

HOW TO CALCULATE THE DISTANCE FROM THE LENS, AND FROM THE FOCUSSED GLASS TO THE MODEL, IN ORDER TO OBTAIN AN IMAGE OF A PARTICULAR SIZE.

BY A. DE BLOCHEUR.

It frequently happens that the photographer has to produce an image of a particular size, either in an approximate way, when it is a question of taking an object or monument from nature, or when the result is to be a particular fraction of the model, supposing the latter to be a map, plan, or picture.

In the first case you may make use of the formula well known in optics—

$D = \frac{(M + 1)F}{I}$

in which D represents the distance of the lens from the model, M and I the respective sizes of the model and the image, and F the focus of the lens.

In the second case, if the image is to be a particular fraction of the model—for instance, $\frac{1}{a}$ —the value M may be replaced by a, I, and the reduction of the formula will then give:

$D = \frac{(a + 1)F}{a}$

that is to say, the number of times the focus equal to the denominator a of the fraction, plus one unit; or, in other words: to reduce to half, it is necessary to place the model at a distance from the lens equal to three times the focus; to reduce to a third, at a distance of four times the focus; to reduce to a fourth, to five times the focus, &c.

I shall do well, perhaps, to give here other formulae indicating the relations which exist between the focus of the lens, its distance from the model, the size of this and of the image. The use of these formulae in practice cannot be too much insisted upon. I will state the formulae side by side with the questions to which they correspond."

I = \frac{MF}{D - F}

What will be the size of the image you will obtain from a model whose dimensions are known, the distance being known and the lens also?

* Bulletin de l’Association Belge.
\[F = \frac{1}{M+1} \]
\[M = \frac{I(D-F)}{F} \]

What lens should be employed to obtain an image of a particular size when the dimensions of the model are known, and the distance is a limited one?

What is the size of a model which, at a known distance, gives an image of known size with a known lens?

It is interesting to know, moreover, whether the camera employed is long enough to adapt itself to a certain lens. To give us this we use another formula, also well known in optics:

\[d = \frac{F}{M} \]

or the distance \(d \) of the lens to the ground glass. By replacing \(M \) by \(a \), it becomes:

\[d = \frac{F}{a} \]

signifying that the drawing-out of the camera is equal to the focus, plus a fraction of the equivalent focus, in the ratio of the image to the model; or, in other words: to obtain an image equal to the half of the model, the drawing out of the camera should be equal to one and a-half times the focus, and an image of one-third, one and one-third of the focus.

I do not know if the results deduced from these formulas have been previously published; but I think, at any rate, it is useful that they should be brought forward. To make use of them it is necessary, of course, in the first place, to commence by determining the focal length of the lens at one's disposal, which is a much more important matter than to indicate the size of the lenses, which can serve very little purpose. Many photographic treatises show how this can be done, but I will save trouble by mentioning the method here.

Upon a screen of a darkish tint is pasted a band of paper of some clear colour covered with fine lines. These lines are located in the same way as is reproduction of them is to be attempted, and the model is moved to and fro towards the camera until the image upon the ground glass is exactly the same size as the model. Of course, it is necessary that the plane of the screen should be parallel to that of the ground glass. In this position the lens is screwed off the apparatus, and you measure the exact distance from the ground glass to the screen. The quotient of this distance gives you the focal length of the lens. If the lens is then replaced in the camera, and, following its axis, you measure from the screen an interval of twice that of the focal length, you determine at once the starting point whence you must calculate the sizes of \(D \) and of \(d \) when making use of the formulas I have given. The same formulas also give these results by calculation; for as \(1 = M \), the values of \(D \) and \(d \) become respectively:

\[D = \frac{2F}{d} \quad \text{focal length} \]
\[d = 2F \]

and, therefore,

\[D + d = 4F \]

METEOROLOGICAL REPORT OF THE DIURNAL VARIATIONS IN THE CHEMICAL POWER OF THE DAYLIGHT OF THE SOUTHERN SKY.

From Observations made at Blackpool, Lancashire.

By D. Winstanley, F.R.A.S.

The past week has been less light than any of the five immediately preceding it; in fact, it has been a dark week, the daily average being only 942 chemical units, or nearly 50 per cent. of the day's value. The aggregate amount of chemical force during the week has not exceeded by ten per cent. that of a single day in September, viz., the 11th. In other words, as much printing could be executed by the photographer on that day, as during the whole of the week which has just passed—a circumstance which some amongst your readers will doubtless be able to verify from an inspection of their books.

Those whose businesses lie in towns, and who depend upon a resident rather than a migratory population for their trade, will probably find the number of negatives they take to rise and fall with the rising and falling in the aggregate of light.

A SILVER BATH FROM DITCH-WATER.

By F. J. K.*

All our formulae tell us to use pure water in making up our silver solutions. I was led into a discussion, a short time since, with a brother photographer on this one point of our manipulation, and it finally led to a small wager that I could not make a bath with such water as he might furnish, the first plate exposed in the bath to give a good negative.

The water came; it was evidently such as he had dipped up from some bog-puddle—muddy, greasy, and in every way filthy; and from this stuff I was to make a half gallon of silver bath which would work from the start. I commenced my labours, and had one week to finish the undertaking. First, I let the mud settle in the bucket in which I received the water, skimming off the green moss and the grease which floated on the surface. After leaving it a few hours to settle, I carefully decanted the liquid into a tall glass candy jar, and found I had about one gallon of stagnant water, anything but inviting for the purposes intended. I let it stand over night, and, for a result, had about half an inch of settled mud in the bottom of the jar. I again decanted into another clean jar the liquid from the mud, and I had a little less than three quarts of water. I now added half an ounce of nitrate of silver, which turned the liquid brown before it was half dissolved. I placed the jar in the sun for one day, and in an hour it was black as ink; by next morning it showed signs of clearing up, and I again decanted the clear solution. I filtered it carefully, and made my bath by adding nitrate of silver sufficient to bring it up to forty grains strength, adding one and a-half grains of iodide potassium for each ounce of silver used, shaking thoroughly. I put the bath in the sun, and left it for two days, when the solution was perfectly clear. I filtered through prepared cotton, and, finally, added a p. nitric acid until blue litmus paper turned slightly red. Placing the solution in my bath tub, I coated a plate with collodion, and left it in the bath over night. The result was that the first plate dipped in the bath and exposed in the camera gave a fine negative.

Western Photographic News.
EDINBURGH PHOTOGRAPHIC SOCIETY.

The first ordinary meeting after the summer recess was held in St. Andrew Square, on the evening of Wednesday, the 9th instant, President Mr. Davies in the chair.

The minutes of the previous ordinary and five out-door meetings were read and approved, and a large number of pictures, the work of some of the members during the season, were laid on the table for examination.

Some observations on the processes and methods of manipulations by which the pictures were produced were made by several of the exhibitors, but on the suggestion of Dr. Nicoll it was resolved that a portion of the time of each of the forthcoming ordinary meetings should be given by an exhibition of a detailed account of the work of one of members; and as it was understood that failures, as well as successful pictures, should be shown, it is hoped that much general information may in that way be elicited.

The President then gave an interesting account of the several out-door meetings that he had attended, and said that he was very well pleased with the beer and autumnal process, which he had almost exclusively wrought, and that he considered the addition of gallic pyrogallic acid, or some one or other, absolutely necessary for the successful working of that or any other dry process. He further added, that as to the question of how long the preservative might safely be kept, he might say he made up as much as would last during the season, and that the addition of a small quantity of gallic acid solution of pyrogallic acid entirely prevented decomposition. He was, he said, decidedly in favour of rather long exposure, and he generally removed the trace of fog, which was produced during development, by a wash of a weak solution of iodine in potassium iodide, followed by the application of a wash of potassium cyanide, when the required density and brilliancy would be found to be easily produced by pyrogallic acid and silver.

Mr. W. H. Davies then read a paper on "Photographic Etching" (see page 438), and showed some specimens of work done in that way.

The Chairman was much interested in Mr. Davies' paper, but thought that he was somewhat mistaken in supposing that the Messrs. Malloch claimed anything more than the mere varnish or coating which they applied to the glass, and which was of such a nature that a pencil drawing could be readily transferred in the ordinary way, and then traced or etched with any fine point, giving lines of perfect sharpness. So far as the method of etching was concerned, it was useless for any one to lay claim to it—"in recent years," he said, "it had been done by Fox Talbot more than a quarter of a century ago, and both Bingham and Hunt described an exactly similar method as proposed by Mr. Havell.

Mr. Norman Macbeth wished to corroborate all that Mr. Davies had said in his connection with the matter. His attention had been attracted to it in consequence of his son scratching, with a graving tool, the films of some negatives he was washing off the glass, and exposing some sensitized paper under them. The result suggested to him an easy way of multiplying sketches, the only drawback being the difficulty of properly judging as to the progress of the work on the darkened collodium film, and the apparent rottenness of the lines. Acting on the suggestion of Mr. Davies, he obviated the former by using a simple iodised plate, which was subsequently blackened as explained by Mr. Davies, and the latter by a substratum of albumen. On plates so prepared, his son had done a great many things, and, so far as he could see, there was nothing in Malloch's preparation that was in any sense an improvement on what had been described before the Society in 1838.

Specimens of etchings on Malloch's plates, and lithographic copies made from them, were handed round for inspection, and were very much admired.

Mr. Turnbull said that he had seen some of Mr. Malloch's work a year ago, and thought they were admirably adapted for the purpose intended. The varnish seemed to be a mixture of wax and a yellow pigment, combined with a drying oil of such a nature that it got dry without becoming hard.

Mr. Dower thought that there was possibly some misconception between Mr. Davies and Mr. Malloch. So far as he could understand, Mr. Macbeth had confined himself to printing on sensitised paper from the etchings that he made, while Mr. Malloch reproduced them by photo-lithography. Now, if that was original with him, he deserved all the credit of the idea.

Mr. Neilson thought it was quite possible that Mr. Malloch never thought of making any claim in the matter, but that the whole was wholly the work of the reporter, who, in knowing much of photography himself, and admiring the undoubtedly fine results that had been produced, had thought the whole thing was new, and written accordingly.

Dr. Nicoll said the matter lay in a nutshell. Whether Mr. Malloch did or did not make a claim of the whole process was not exactly the question; but was the claim made for him in the paragraph from the Societan, which Mr. Davies had read? He thought it was, and that Mr. Malloch by his silence had accepted it. He then it was in their duty to set the matter right, and give credit only where it was fairly due.

The public generally know very little technically about photography, but looked to the societies and to the journalists for their information, reeving it pretty much as too many look to their local newspapers for sound politics; and therefore, he thought, one should always be careful to send out no uncertain sound on any question that fairly comes before them.

Mr. Matheson then proceeded to show on the screen a series of very fine transparencies of animals, which he had made from negatives kindly lent by Mr. Foster of Coldstream. They consisted of horses and men apparently engaged on the ordinary work of the farm, such as ploughing, carting, cow-milking, &c., and were very much finer than anything of the kind ever shown before the Society.

He also showed some fine transparencies from his own negatives of Edinburgh, Melrose, Dryburgh, &c. The lantern was illuminated by Turnbull's triple-wick lamp, which has recently been much improved, and which, under his own management, gave such a brilliant disc that on several occasions the effect of the picture was enhanced by slightly lowering its intensity.

At the close of the exhibition, votes of thanks were given to Mr. Foster, Mr. Matheson, and Mr. Davies, and the meeting was adjourned till Wednesday, November 3rd, when the annual meeting for the election of office-bearers, &c., will be held.

Talk in the Studio.

AUTOTYPE WORKS.—We have just been favoured with one of the best perfect examples of photo-lithographic printing we have seen for a long time, in the shape of a fine view of the extensive works of Messrs. Spencer, Sawyer, and Bird, at Ealing. The picture is about 16 inches by 8 inches, and gives a most accurate as well as imposing view of the extensive premises. Nothing could exceed the delicate gradation of half-tone, whilst there is all the depth and richness of a fine silver photograph, from which, indeed, it is difficult at first glance to distinguish this photograph. We recommend a letter interested in this branch of our art to obtain a copy of the print before us as an example of what the process is capable of producing.

MAGIC LANTERNS: HOW MADE AND USED.—A capital little lantern manual, by A. A. Wood, F.C.S., has just been issued by Mr. Wood, of Cheapside. It is full of information, simply and clearly conveyed, on the construction of various lanterns, the different kinds of lights, and the varied method of sliding, with the modes of preparing and using them. We commend it to all interested in the lantern.

STUDIES FROM NATURE.—Messrs. Sampson Low, Marston, and Co. are issuing a series of photographs by Mr. Stephen Thompson under this title. Each monthly part, which is printed in folio, contains four fine photographs of landscape, sea-piece, groups of cattle, or other gleanings from nature, with descriptive text. The subjects in the two numbers issued, a well-cited, and photographed, with the greatest care, as well as technical skill. The prints are described as printed by R. and G. Taylor's photo-mechanical process, which appears to be similar to the photo-relief process, and the prints are fine examples of this method.

SIR WALTER SCOTT: THE PICTURE OF THE QUEEN.—A very noticeable element in the influence of photography on art is found in the various published portraits in the present day. A very noble portrait of the Queen has just been issued by Messrs. Cassell, Petter, and Galpin, with Part I. of their new illustrated History of England, which, although produced by lithography, has all the literal truthfulness of effect of photography, with a dignity which all photographic portraits have failed to give Her Majesty.

PHOTO-RAISED SURFACE BLOCKS.—The Stationer, referring to this subject, describes the success of Mr. J. H. Banks, of
THE PHOTOGRAPHIC NEWS.

[October 15, 1875.]

Battersea, who, it is stated, about two years ago completed and patented his system, which had cost him upwards of twenty years' hard study and experiment. The Pictorial World and Illustrated Sporting and Dramatic News patronizes this process, the chief claim to superiority over other systems being that all blocks are supplied in the electrolyte. It is contended by the Banks advocates that no zinc process will in the end satisfy public expectations, for the metal is always liable to oxidation, and blocks can never be stored without the taking of precautions which are nearly impracticable if not impossible. Unprotected from the air, zinc becomes rotten on the surface, and the lines, therefore, break when under the platens or cylinder. The drawing of which a block is to be made need only be done in pen and ink on smooth cream-wove white paper, free from wire or so-called "water" marks. A drawing with crayon on prepared paper, or any impression of an engraving, may be reproduced. The blocks can be cleaned and the negative obtained, which is printed on a gelatinized plate. The expense of these blocks is said to be about one-half of that of wood engraving.

JAVELLE WATER.—The Scientific American gives the following as a simple method of preparing a solution of hypochlorite of wood for soda, known as Javelle water. It is used in the bleaching processes, and has been recommended for removing hypo from prints. It is composed of bicarbonate of soda four pounds, chlorate of lime one pound. Put the soda into a kettle over the fire, add one gallon of boiling water, let it boil for ten minutes, then stir in the chlorate of lime, avoiding lamps. Use when cool. This is good for removing fruit stains from white underwear.

TALCO AND THE COLLODION FILM.—In a recent discussion before the Photographic Society of France, on the subject of blistersing, Mr. Francois, in the course of his paper, M. Dumas referred to the report of M. Fortier and Chardon on the use of powdered talc for the purpose of preventing such defects. The method employed is, after clearing the glass in the usual way, to pass it through a piece of plate and other defects free of finely powdered talc. After such treatment the adhesion of the colloid to the glass is perfect, and neither slipping nor blistering of the film is to be feared. Curiously enough, the same treatment facilitates the removal of collodium films from glass, as in many cases the negatives.

ARRANGING GROUPS.—In arranging a group, care should be taken to have the line correspond with the circle of the focus of the lens. Arrange a number of chairs in a semicircle, then focus on those in the centre, after which more those on the wings first, then forward or backward till the best focus is secured the whole; this will show the curve of the field of the lens, and indicate the form that a group should be, so that, with a little practice, the members of a group can be placed in position at once, and require very little after-adjustment.—Photographic Times.

WM. GREEN wishes to know the present address of Mr. Robinson, who ceases two years ago to deal in the manufacture and supply for spotting photographs. We do not remember the address at present. Can any of our readers supply it?

B. W.—We do not know of any such combination to send to India, but if you know of such a firm they will be noticed in due course. Thanks in advance for article. We shall be glad to receive as soon as convenient.

C. M. K.—Exposure to oxidation by the film in the development of the collodium to which the frame is due to the bronze powder, into the preparation of which sulphide of tin enters, used in printing on the mounting cards. You should not include questions to the Editor and communications for the Publishers in one letter. It causes trouble, and introduces risk of error and delay.

W. L. D.—The magnesium light affords the best artificial illuminations for photographers, in object with a focus of light and the depth of field is of getting rid of the white vapour emitted if much time is expected. The best plan is to focus by the light of a lamp or candle held near the object, lighting the magnesium ribbon at the test moment, which will be used for some time, until the light is no longer visible.

M. F.—So far as we know, the use of carbon printing is extending, very slowly amongst ordinary portraitists, but it is very much in progress more than we knew. It is in many cases used for the most perfect pictures in the present exhibition, the charming artistic studies of Mr. Paulkner, are printed in carbon, and that by far the greater proportion of the enlargements, all admirable in quality, are in carbon.

J. F.—Tinfoil may be used for masks; but it has occasionally minute holes, which require to be looked for. Black enamelled paper is old silver paper, the cheap inferior kind, used for this purpose.

T. H. L.—Tea drops generally result from a dry, dirty condition of the albumen, and may be avoided by keeping the paper for a few hours in a moderately damp place before sensitizing. Sometimes the use of a strong solution of hypo too strong will produce this defect. When they appear on the sheet it is necessary to wash the droplets of nitrate of silver with a piece of blotting paper.

D. B.—The Albertype process is not patented in this country, and you are quite at liberty to use it as described in our pages. The method is in no wise interfered with in the process of the plate, and the patentee is asking for no more than protection against the making and selling of the process.

A. B.—The proportions and general arrangement of your proposed studio are good, and under your circumstances a lean-to form is better than the span roof. Belgian sheet glass will stand admirably. A small room will give you better advice as to the strength of the various parts than we can. If possible, partition off part of the printing-room for fixing and washing, so that the two processes do not mix. For portraits, a person is usually in the room of 30, and this would give good results. We are obliged for the suggestion of the addition of the year to each page. It shall receive attention. Your letter was mislaid, and hence a delay occurred in answering.

PHOTO.—The intensity of negatives, or the want of it, depends upon a great number of causes. A common cause of lack of intensity is the use of a newly prepared collodion. Another cause is weak light. Another very common cause is with a beginner: the developer with the force, and driving off the plate all the free nitrate of silver, upon which intensity greatly depends. Many other conditions will affect the matter, such as exposure of the plate before it is developed, the exposure of the plate before it is developed, and over-exposing the developer. It is not a good practice to use a mix of sugar-candy to each ounce of developer. The acetic acid bath may be renewed as you describe, or you may renew it with freshly-made solution as at the beginning, and when it begins to turn yellow. This solution should be made fresh for every batch of prints, and never used twice over. The nitrate bath must not be filtered except when necessary, and certainly not every day. If carefully treated, keep in order for months. Answer to your queries was delayed from cause mentioned above.

Several Correspondents in our next.
Photography in and Out of the Studio. — Death from Washing with Cyanide.—Government Photographic Instruction in France.—The Royal Academy Photographers.

Death from Washing with Cyanide. — Although deaths from the effects of cyanide of potassium are unfortunately of not unfrequent occurrence, it is an altogether extraordinary circumstance to meet with a case of fatal poisoning with the salt by mere contact. Such an event has, however, but recently happened, according to the Journal de Medicine de Brussels, under circumstances that might befall any photographer. That the custom of washing one’s hands, after operating, with cyanide of potassium is dangerous, everybody will admit; but, nevertheless, photographers do it every day, and can, therefore, hardly know the extent of the risk they run. In the case we allude to a photographer, having apparently no wounds on his hands, proceeded after his daily work to remove the traces of silver upon his skin in the ready way of rubbing a bit of cyanide over it. During the operation a little piece chipped off, and this lodged underneath one of the nails of his fingers, where there happened to be a little tear in the skin. Immediately a violent pain was perceptible at this particular point, which was rapidly followed by a sensation of cold. To get rid of the poison, he betook himself of several agents, but unfortunately chose vinegar as a means of giving him relief. The vinegar, however, only made matters worse, and, decomposing the cyanide, liberated prussic acid. The giddiness increased rapidly, feverishness came over the system, his face became pallid, and he was unable to utter a word. Conditions so sudden and unexpected, he was brought to the assistance of a doctor; but although the patient was revived sufficiently to explain matters, he rapidly became worse, and died in a few hours. Such cases as these are, fortunately for us, very rare, but there cannot be a doubt of the extreme danger one runs under the circumstances. Many operators, we know, think nothing of rubbing their hands after work with a sharp fragment of cyanide, and regard the risk as being too small for consideration; but here we have a distinct case of fatal poisoning due to mere local action of cyanide. Dr. Alfred Swaine Taylor, whose work on poison is well known to every chemist, cites several cases of local poisoning from cyanide, and tells us that the workmen employed in electroplating who have come into contact to dip their hands into large baths of cyanide of silver, are constant sufferers. Their hands, he tells us, are almost always covered with ulcers, and there are fissures about the joints through which the blood oozes. Exquisite pain and broken rest are the subjects of frequent complaint among these men. Any photographer who has washed in cyanide solution — and there are very few who have not done so — knows the slimy feeling of the fingers due to the dissolution of the cuticle, thus leaving the true skin exposed, and then contact with cyanide has all the effects of chronic poisoning by prussic acid. There seems to be very little help in such matters, cold effusions, or the dashing of cold water over the spine, being apparently the best relief to be taken. Of course, when it is a case of swallowing the poison, an emetic or a dose of solution of sulphate of iron may be administered if one happens to be handy, for the patient after a few seconds loses consciousness, and his jaws become set and rigid; but in the case of local poisoning such a course is of no avail as it is because there is no effective mode of combating its bad effects. Photographers should be exceedingly careful in handling the deadly agent, and principals ought not to omit to caution assistants, and apprentices especially, who are usually very apt to have recourse to this ready means of removing stains, of the terrible and rapid action of cyanide.

Government Photographic Instruction in France. — The French Government have decided to foster the study of astronomy in connection with the Bureau des Longitudes, and they have given it to give a course of instruction in celestial photography, spectroscopy, and other kindred matters. With this view they have founded an Astronomical School at Montsouris, which will be under the superintendence of Captain Mouches, the chief of the Bureau des Longitudes. The students will be exclusively officers of the French navy, half a dozen lieutenants forming the class at one time, and the course of instruction will be limited to six months. In this way a sound knowledge of photography, among other things, will be acquired by the officers of the navy, such as cannot fail to be of value to those who are continually visiting new and strange scenes, of which they will be in a position to secure some record by means of the camera.

The Royal Academy Photographed. — We are glad to see that a course we have urged for some time past has at length been taken in connection with the Royal Academy. We have continually called attention to the circumstance that in Paris the custom of copying pictures exhibited annually in the Salon has long prevailed, and visitors could secure a memento of the exhibition in the shape of copies of the pictures of those which at the time were on show. In Paris the sale of such photographs is very great, and, we believe, a notable source of profit both to the artists and the photographic publishers. For the first time this experiment has been made in England this year, and a publication called the Royal Academy Album has been issued in a tentative spirit. The album contains thirty of the pictures which we were told would be taken at the Academy, but the publication will at any rate be a test as to future steps to be taken. We quite agree with the Daily News, when it says, that “the difficulty, however, of inducing owners of new pictures to allow photographic reproductions to be multiplied indefinitely is so notorious, that persons experienced in such matters will perhaps be inclined to wonder both at the number and importance of the pictures which have been produced;” but we think, that now such a publication has been brought out, painters will be offended rather than otherwise, if they do not henceforth see their pictures reproduced in the annual album. It is very certain that of the number of pictures which will not pay to be engraved there is a large number which would aid the artist a profitable career if he could have them to be photographed, and the copies thus spread about the country would not only increase the value of the original, but also the fame of the artist, by making his name more widely known. Of the hundreds of thousands of visitors who annually visit the Royal Academy, a very large proportion indeed would be only too glad if they could obtain for a guinea or two a small portfolio or album of some of the pictures they like best; and if it was further in their power to make a selection, so that every visitor might carry home just those works which pleased him most, the sale of photographs under the circumstances would infallibly prove a most lucrative proceeding. Apart, too, from their value to ordinary visitors, photographic copies of such paintings would be of especial worth to the student, who could thus inexpensively obtain sketches of the work of different masters. There is no reason, as we have previously pointed out, why every one of us, under these circumstances, should not possess our own inexpensive picture gallery, and have collections of the works of our favourite artists, in the same way as we already possess those of our favourite authors.

French Correspondence.

Portrait and Framework at One Printing—How to Produce Pellicle Negatives—Portraits of Two Tones—Photochromy at the Moniteur Office in Paris. — A practised experimentalist, M. Quesnay, attached to one of the most important provincial establishments (that of
M. Le Blondel, of Lille), has communicated to me the process he employs to make pellicle clichés, such are of use either for carbon printing, or use for carbon or for silver printing, when it is desired to print portrait and framework at the same time. He has also forwarded me some specimens of his work, which are certainly very pretty. In the matter of printing portraits with a framework, nearly every operator has his own particular method, which is more or less simple and perfect; but for my own part I can affirm, from having seen the specimens M. Quesnay sends me, that his process is a most successful one, while, as my readers will see, it is a very practical one also. To obtain the result he aims at, my correspondent makes use of two clichés: the one in the form of a pellicle, and the other upon glass; and it is by superposing these two that he dispenses with one of the printing operations. To produce the first of these negatives, M. Quesnay begins by pouring upon a well-cleaned glass a solution of—

Virgin wax
Ether at 55°
Which has been filtered through a tuft of cotton-wool. Placed to drain, the plate dries very quickly, the evaporation, caused partly in summer, being very rapid. In a short time a mild yellow may be on the glass, the drying. When perfectly dry, the film is rubbed gently with a tuft of dry cotton-wool, any dampness having the effect of detaching some of the wax. The rubbing is continued until the plate has become perfectly transparent again. Of course, several plates may be prepared at one time while the operator is at this stage. The plate is then collodionized and sensitized in the ordinary manner, but before placing the plate in the camera, an oval is traced on the ground glass, within which, focusing care must be taken that the portrait falls. Then, between the slide of the dark box and the sensitized plate, is placed a paper screen in which an oval has been cut corresponding to this upon the ground glass. In this way the margin of the plate is preserved from the light while the portrait is taken.

When the cliché is finished there is poured upon it, before being varnished, a fifteen per cent. solution of gelatine, care being taken to avoid the formation of bubbles. The thickness of this film should be about a millimetre. When the plate has set, it is allowed to dry in a room sheltered from dust, and then some methylol is added, to facilitate subsequent retouching with the crayon; and upon the prepared surface of the collodion is afterwards poured—

Ether at 45°
Alcohol at 45°
Pyroxylene
The alcohol must always be in excess, so that the film of wax is not dissolved by the collodion. After treating the plate in this manner, four strips of paper are pasted upon it, crossing each other so as not to touch the image; then, with a few strokes of the penknife, the film is cut through, and comes away from the glass.

To produce the cliché with the framework, there is put upon the object which it is desired should serve as groundwork a screen of the size of the portrait existing in the first cliché; then when this second negative is dry and varnished, it is placed above the pellicle cliché and attached at the corners with a little gum, and the printing is conducted in the usual manner. If two tints are required in the portrait printed in silver, you proceed as follows:—

The two printings are washed from them first all excess of silver, and then they are put between filter paper, which serves only for this purpose. A brush is dipped into hypochlorite solution of twenty per cent. strength, with which all portions within the oval are treated. The picture is then washed in plenty of water, and put into the toning bath. The two tints are obtained in this way, the framework being of a sepia tint, and the portrait of a violet tone. With two clichés produced in this manner it is very easy, says our correspondent, to obtain portraits in carbon without transfer, the paper which receives the carbon tissme serving as the final support, and the portrait being in its proper sense printed through the pellicle cliché.

There is a second method in which the cliché may be produced without an oval in the slide or in the camera. In this case, when the cliché is produced as in the case of the first cliché, there is placed upon it a sheet of paper for the purpose of preventing creases, and that with the faintest oval cutter the pellicle is cut out and placed to a sheet of mica, to which it is fastened with gum. The same is done for the frame, and in this way the two ovals are produced.

M. Quesnay thinks that these two tours de main may be useful to photographers who produce cartes-de-visites by the carbon process, as it is very difficult to make the ovals by means of guiding points, there being nearly always a line of white between the frame and the portrait, unless one employs the printing-frames of M. Lambert and his colleagues.

Photochromy is progressing with giant's strides. It commenced in a little workroom some months ago above the offices of the Moniteur, and from hence the Moniteur has been altered and sensitized, and a whole house which has been allotted to it by the directors of the Moniteur, who have purchased the sole right to work the process. Machines and apparatus of all kinds have been set up, for the invention has been largely modified and improved since the first, and a large staff of workmen are employed on the work. Orders have already been received from the Messrs. Buffier, and from telegraph and other persons who have seen the first examples of the process in the hands of the inventor, M. Leon Vital. I shall be giving a good idea of the revolution which photochromy has produced when I say that twenty thousand impressions may be struck off at the Moniteur office daily, and that their price does not surpass that of the most modest little black print. In a little while the photochromogenic machines will be in full working order.

PRACTICAL PORTRAIT PHOTOGRAPHY.
BY WILLIAM HEIGHWAY.
CHAPTER XXII.
PRINTING ON PLAIN PAPER.—THE FERROTYPE.—TRANSPARENT POSITIVES.
Part II.
Prints on plain paper surpass in artistic qualities those on the albumenized surface—indeed, there is, and ever will be, no doubt, fault found with the highly-polished surface of the albumen print, as being fatal to an artistic production. It will, perhaps, hardly repay us to enter into the discussion, either as protestants against hyper-criticim on the part of artists, or as advocates of it on the part of the public, as beauty of which all must admit, and one, moreover, which has obtained such universal admiration and patronage. Prints on plain paper have their special use, however, as mediums for the reception of colour, chalk, and India-ink.

To make plain paper.—In a large wide-mouth bottle dissolve 300 grains of chloride of ammonium in 50 ounces of water, to which is added 200 grains of gallic acid, previously dissolved in a little water by means of heat. This should be thoroughly mixed and filtered, when it is ready for use.

The paper may either be floated on or drawn through this solution. If floated, select the side of the paper having the finest grain, and proceed as in sensitizing albumenized paper, floating ten seconds. The paper should be marked with the pencil on the reverse side, as a guide through the subsequent manipulations.

To draw the paper through the solution, take the paper by two corners and let the sheet hang over the edge of the bath farthest from you (outside), the bath being placed on a high stool or small table. Now draw the edge of the sheet held by the thumb and forefinger to and fro, slowly and evenly, being taken that all parts are wetted thoroughly. When the sheet is all through, hold the sheet over the bath, to allow and then
hang it up in a warm room to dry. Guard against the formation of air-bubbles.

Do not use the same clips to hang it by as those which hold the sensitized sheets.

The bath should be filtered after use, and kept in a clean bottle ready for the next salting.

The sensitizing bath is similar to that for silvering albumenized paper, the plain nitrate of silver bath 40 or 50 grains strong giving the best results; but it is advised that a separate one be kept for plain paper. The paper has been marked with pencil on the unsalted side, and this side is upwards, the other—the salted side—in contact with the sensitizing solution. Float about the same time as in the case of albumen paper. Dry thoroughly, and finally press between two sheets of paper. Then proceed to chemical printing.

Plain paper prints, being generally large, should be treated very gently in the washings, and, to ensure good results, it is well to treat them separately.

The Ferrotype.

This style of picture has its admirers, and, from the fact that it may be finished and delivered to the customer within the time of sitting, it has advantages in art.

The picture is a collodion positive made on a black or chocolate varnished iron plate, the colour of the plate giving the gradation of shadow as seen through the transparent parts of the collodion film, the opaque portions of which makes the lights.

Collodion.—Most of the ordinary portrait collodions will serve the purpose, except one in which potassium enters, that iodide giving too much transparency. A good collodion for ferrotypes may be made up as follows:

- Iodide of ammonium ... 33 grains
- Iodide of cadmium ... 23 "
- Bromide of cadmium ... 23 "
- Alcohol and ether (each) ... 5 ounces
- Gun-cotton ... 6 to 8 grains

This may be used as soon as it is settled sufficiently clear.

The bath should be forty or forty-five grains of nitrate of silver to the ounce of pure water, slightly acid and iodized as the negative bath. No practice can be more productive of bad results than promiscuously using this or the negative bath for iron and glass plates. They should always be kept to their proper uses. The ferrotype bath can be rectified in the same manner as advised in the case of the disordered negative bath.

Coating the ferrotype plate is an operation exactly similar to flowing a glass with collodion, though a little difficulty may at first be experienced in holding the limb and yielding iron plate; but with practice this is soon overcome. When the film is set it is placed on the dipper, and after being washed, the time of drying being judged in the same way as with the negative. It is then placed in the carrier (of somewhat different construction to the negative holder), a sheet of glass placed at the back to keep it firmly in its place, and then taken to the camera, and the exposure or exposures made.

The ferrotype camera is generally constructed with a movable back, by means of which four, eight, or sixteen exposures are made on one plate.

Exposure.—This is much quicker than for a negative; speaking roughly, one half the time only being requisite.

The development.—This manipulation requires considerable skill in determining the proper moment at which to stop the development. When this knowledge is acquired it is really easy, with the backing of varnish, its progress is easily watched than is the negative as several uncertain varying conditions of transmitted light. The development of the ferrotype is not continued after the first appearance of detail; it is, judging by the standard of the negative, only half developed.

Developer.

- Potassium of iron ... 1 ounce
- Acetic acid 1 "
- Water 16 ounces
- Alcohol (if required).

It is well to develop over a large filter and funnel, to catch and preserve the silver; or an old felt hat may be found useful for catching this rich waste.

Fixing.—After being thoroughly washed, to remove all traces of the iron, it is placed in a dipping bath of cyanide of potassium, it being carefully watched to see that the cyanide does not eat away the lights of the developed film, the perfect clearing of the shadows being all that is required. It is now washed thoroughly. The ferrotype should present purity of lights, with a good gradation of half tones and shadow to the deepest shadows, which should be clear and bright, any veiling or fogging showing that the exposure was too long—of which you can judge by the rapidity of development—or too extended action of the developing action. It can now be dried and tinted.

Drying, tinting, and varnishing.—The ferrotype is now placed on a drying stove, and, when perfectly dry, the cheeks and lips of the picture are tinted with a dry flesh colour lightly brushed on with a soft camel's hair pencil, and dusted off with a blender. Great care must be taken, or the delicate collodion film will be scratched. The picture is now varnished with a clear alcohol varnish, dried and to a glossy surface. Trimmed round the edges, it is placed in a ferrotype envelope, finished.

Ferrotypes may be coloured in water colour if, before drying, they are flowed with a weak solution of gum water, and on this protective film the tinting can be done.

Vignette ferrotype can be made by interposing a white oval form with serrated edges between the plate and the lens at such a distance from the lens that it is entirely out of focus, the toothed edges giving additional softness. In a sheet of white cardboard, about the width of a man's shoulders, cut out a section of a circle and notch it. This is placed in a frame, which allows of its being fixed at any required angle, the frame being placed in a head-rest base, in which it may be moved up and down as occasion requires.

If a vignette is made on a dark background, the vignette board must be so arranged as to be in shade, to correspond with the depth of tint of the background.

This may be done by turning the vignette board away from the light, if it does not interfere with the shape of the vignetting, to make it uneven; or, by turning the serrated edges of the board towards the camera, the usual position...
THE PRACTICAL PRINTER IN AMERICA.

XLI.

VARNISHING THE PORCELAIN.

The porcelain, when tinted, spotted, and the high-lights placed in the eyes if necessary, is then to receive a coat of varnish, which will in a great measure protect the film from injury.

White shellac varnish is necessary for this, because the common yellow lac will spoil the pure white of the porcelain.

To make this varnish, first obtain three-quarters of a pint of good white shellac, and place it in a large wide-mouth bottle, in which there has been placed two quarts of the best alcohol. If you are in a hurry for this varnish, you should, previous to placing it in the bottle, break up the shellac in small pieces, placing it (say) in a clean rag, and pounding it with a hammer, or break it in a mortar with a pestle. Shake the bottle until the shellac is dissolved, and if you should see a sediment on the bottom that will not dissolve, you need not be apprehensive of bad results because it does not all dissolve, for this is only the impurities in the shellac, and can be filtered out.

As the beginner can probably flow better from a small bottle than he can from a large one, I should advise the use of a common collodion vial, which will hold about six ounces, and which should be cleaned thoroughly, both on the outside and inside. Into this vial, filter through a couple of filtering papers sufficient of the varnish to fill it up, and you will find the liquid to be of a pale golden colour.

In selecting the bottle, choose one that has a good lip to it, so that when you varnish the plate you can do so without dabbing up the bottle. Keep your bottle perfectly free from varnish, and try to keep your varnish-bottle clean, so that it will look well, and always keep it covered when not in use, by laying a piece of glass over it, or, better still, a ground-glass stopper if the bottle has a neck made for it; but do not stop up the bottle with a cork, as it will in a short time leave bits of it in the varnish. Use a colorless collodion vial if you can.

When about to varnish, hold the plate for a second or so near the fire, for no other purpose than to take the chill from the plate, which you can do without really warming it, if for you were to do that, the varnishing, as before said, would remove the tinting of the porcelain; but if it were only kept near enough to the stove to prevent the plate from being so cold as to chill the varnish the moment it is put on, it will not do the tiniest bit of injury.

Avoid getting the plate hot before you varnish it, for you will almost inevitably make a "bottle" of it, unless you have had years of experience in varnishing. The varnish, at this time, will also totally remove the tinting and colouring of the hair, although it will not affect the spotting, &c.

Before you commence to varnish, shut the oven door and turn up the gas flame, thus allowing the oven to heat up while you are flowing the plate, so that you can place the plate in it, and dry it quickly, which will prevent the varnish from chilling on the plate before you have obtained heat enough to dry it. Pour the varnish on the plate in the same manner as I have twice before described, once in the albumenizing, and the other in the collodionizing. Pour the varnish back from the plate into another bottle, and before using it again always filter it.

Pour on the varnish so that you can permit it to run off that corner which is furthest away from the print, because the varnish forms a slight ridge on the two sides, whose vertex is that corner from which your varnish was poured from the plate.

Place the freshly varnished plate in the hot oven, resting it on one corner, and that corner invariably the one at which the varnish was poured off.

Too much varnish on the plate will cause a much larger ridge on the sides than if there was only about the right quantity poured on it in the first place, unless you are very careful in pouring it from the plate.

Wipe out the oven every time you are about ready to varnish a plate, and just as soon as the plate is dry remove it, and place it in a cool (not too cool) place, which place should be perfectly free from all traces of dust.

CAUSES OF FAILURES IN PORCELAIN PRINTING.

Manipulation.—Proper manipulation is the great secret of success in photography, and without it we cannot hope to succeed.

What is it that lies at the foundation of successful manipulation? It is care; and as we are proportionately careful in manipulating, so shall our success be.

The beginner is very often led astray by not only the guard, to get careless in his manipulation, and, in hopes to benefit such a one, I will here give a brief notice, wherein the careful man succeeds far better than a careless one.

I have known a careless toner, when toning a porcelain, to drop a couple of drops or so of the chlorid of gold solution into the dish where the porcelain was toning, and instead of placing it in a corner of the dish away from any part of the plate, what worse thing could he do than to drop it in the middle of the dish, where, before he could stop it toning more rapidly at that place by repeated shakings of the dish, it had toned a space full as inch in diameter before it had got so mixed with the rest of the solution that it would not tone so rapidly, and the bright toner would have a chance to shake the contents of his dish well? But it was too late; the toning of the porcelain print needs to be carried no further.

A careful man would have taken the porcelain print out of the dish before he added the gold, and when it was well mixed, he would have placed it back again.

A careless man would not have taken measures to prevent dust from settling on his plate; either during the albumenizing, collodionizing, or the varnishing of the porcelain plate, which a careful one would certainly have done.

THE NEW STUDIO WINDOW.

BY HENRY VAN DER WYDEDE.

WHEREVER I have visited the studios of photographers, I have generally been placed in the centre of the room, and challenged to admire the quantity of light there thrown upon me; but when I placed myself at either end—in front of the background and the position of the siders—it has always struck me how little of the light entering the window fell upon me, or illuminated the background, and that the light was actually wasted throughout the length and breadth of the room. Consequently, when I was asked my opinion in regard to the best form of studio, I was quite at a loss; for, though I have seen great variety of construction while visiting the studios in the North, Far West, and South of America, in Turkey, the heart of Russia, or the rest of the Continent, and even here in the centre of civilization, I had nowhere met with one which showed a thorough understanding of the proper direction of light, and how to obtain it.

In looking over what had been done I found there had
been suggested a very ingenious plan which threw the light towards one end of the room by placing the glasses at different angles facing the sitter; but it has never been adopted, for the very good reason that it confined the sitter to one end of the room, and interfered with the space necessary for the operator and the camera, besides introducing many other disadvantages, not the least of which being that there was no reflected light possible in the room. I hold that a perfect studio should enable the photographer to have both ends of the room illuminated at once, or, not, as he pleases, in order that he has the highest possible opportunity for experimenting with every variety and direction of reflected light, as well as to be able to shut off that part or all of the light which does not assist in directly illuminating the sitter, and which he may consider injurious.

Another photographer introduced swinging blinds which would cut all light off from the camera end of the room. This plan was not adopted, because merely cutting off light from one end is not gaining light at the other, and when general illumination of the room was desired, the blinds would have to be taken down.

It is found that by causing the sitter to recede toward one end of the studio a better direction of light and most room to work the camera is obtained. Unfortunately, in proportion as the direction of light thus obtained in reaching him is improved, so does its quality deteriorate, on account of the reflection and absorption it suffers in passing through the glass at angles of incidence more and more acute.

In Brewster's treatise on "Optics" a table of reflection is given by H. Frenzel. According to this the amount of light transmitted by a glass at the angle of incidence of 40° is 49.10 out of 1,000; at an angle of 56°.45' it is 79.5 out of 1,000; at 70° it is 162.67 out of 1,000; at 80° it is 391.7 out of 1,000; at 85° it is 616.28 out of 1,000—thus demonstrating that over half the glass is absolutely useless in transmitting light direct to the sitter.

Another great obstruction is observed by the sitter in the increasing width or side view of the ashes as they recede from him, and, as in this climate we have less good light than in any other, we cannot afford to lose the least amount. I have observed that in England there are many days which must be very aggravating to photographers, for the light is just good enough to make a good picture out of doors or without any window, but in even the best glass house it was impossible. Some photographers have so constructed their window that they can swing a section of the glass when the weather is unfavorable. The objections to this are very evident. Dull weather is too often accompanied with rain, wind, or cold, while soot, smoke, or fog are decidedly objectionable in the room.

I construct a window which will concentrate and throw the purest and clearest rays of light obliquely towards the two ends of the room, and which will avoid all the inconvenience referred to, has been my aim; and, after explaining to you my invention, I shall be pleased to answer any questions or discuss any point with you.

Since the first studio was built on my new plan, several important improvements have been introduced, which will be found in the last one built—viz., at Signor Lombardi's London establishment, 19, Pall Mall East. By arrangement with the proprietors of the establishment, I have been permitted to make the following inspections of the profession between the hours of half-past eight to ten o'clock each morning, and from four to six o'clock each evening.[Mr. Vander Weyde then gave a concise explanation of his new system of construction, details of which have already appeared.]

I particularly wish to dissipate a misunderstanding which I believe to exist, namely, that I do not depend upon blinds or shades for concentration of direct rays of light, and that when all the blind cords are let loose, and each spring roller blind rolls up and out of the way, both ends of the room receive direct, unobstructed light throughout the entire breadth of the window, the quality of the light thus thrown on the sitter being practically the same as that obtained when opening or taking away the entire window. The new construction introduces numerous other advantages never before obtained. By glazing alternately with glass of a yellow tint, one end of the room receives a pure warm light, the other end a comparatively cool light—a great advantage to painters, who can place their object or figure in warm light, while their canvas and paints are always in a cool light, the light in the middle of the room being neutral.

Perfect ventilation, the most singularly complete control, and its novel and symmetrical appearance, make this studio an object of comfort, interest, and pleasure to the public as well as to the artist.

ALBUMEN AND THE NITRATE BATH.

By SAMUEL FAY,*

Our first thought goes to the South London Photographic Society, which takes such special cognizance of the art claims of photography, for bringing before it matters simply of technical or scientific detail; but my excuse must be as before—that perfection in the more material parts of the work leaves the mind free to devote full attention to the artistic claims of the picture.

Probably it may be assumed that a majority—I had almost said a large majority—of photographers give a preliminary coating of albumen to their plates, for reasons which have been frequently given, and various ways have been adopted of applying the substrate. Some use a kind of brush of Canton flannel over a piece of glass; others pour it on whilst the plates are wet; and, again, others pour it on dry and guide it over. Thus we have seen to the traditions of the times so often inculcated upon us by a certain politician. But whichever of these three methods may have been selected, a common agreement seems to have been arrived at, that it is a sine qua non that no albumen shall under any circumstances be allowed on the back of the plate, because it will fog the bath.

I remember reading in one of the journals the experience of an operator who inadvertently put some plates in his bath after coating with collodion on the albumen side. He described his bath as entirely out of order next day, although working well for a few hours after the mishap.

Finding the labour of wiping the superfluous albumen from the backs of plates very onerous, I thought I should like to know just what would be the effect of albumen in the bath, and I therefore set aside one bath, and six dozen plates prepared by pouring on albumen whilst the plate was wet, and in all of which I was sure the albumen went over the back. I had a theory as to what the result would be, and it turned out just as I expected, and contrary to what we have always been told—the albumen has no effect whatever.

Three weeks have elapsed, and about nine dozen half plates prepared as stated have been through the bath of about eighty ounces, and it works just as well as ever, perfectly clear in the shadows and full of harmony and half tone. The rationale is obvious: the bath is a strong one—forty grains—and at once coagulates the albumen, which becomes immediately innocuous. I can imagine that if a stack were used the results might be different, solution of the albumen occurring, and organic disturbance being created.

It is, of course, possible that a simpler cause may exist for the non-effect of the albumen in the film being quite desiccated, and requiring longer for its solution than the time occupied in the bath by the collodionised plate.

* Read before the South London Photographic Society.
THE PHOTOGRAPHIC NEWS.

Vol. XIX. No. 894.—October 22, 1875.

CONTENTS.

Photography In and Out of the Studio .. 505
French Correspondence ... 506
Practical Portrait Photography. By William Hoggeay .. 506
The Practical Printer in America .. 508
The NIC by H. J. G. Anderson .. 510
Albums and the Nitrate Bath. By Samuel Fry 510
The Press of Carbon Printing .. 512
A Trap for Portraitists ... 511
The Photographic Exhibition ... 511
Portraits with Cloned Margins .. 512
Note on Development. By Roger Laurent 513
A Rolling Stone’s Visit to Pekin. By D. K. Griffiths 512
Correspondence.—Yellowness in Silver Prints .. 513
Proceedings of the Manchester Photographic Society 514
Talk in the Studio ... 515
To Correspondents .. 515
Photographical Registered .. 518

THE PROGRESS OF CARBON PRINTING.

In another column we print a letter of unusual interest and significance, recording certain very definite steps in the progress of carbon printing. A gentleman on the staff of the PHOTOGRAPHIC NEWS, in a recent article deploring the prevalence, in every direction, of silver prints which were “sickled over with the pale cast” of sulphur, which is too often but the premonitory symptom of total fading, expressed his opinion that probably the photographer of note had as yet discontinued the use of silver printing entirely. Our contributor admitted, at the same time, that whilst he would puzzle most photographers to say how photographers might secure permanent albumenized prints, the public were growing so distrustful of photography, that whilst they would readily give five guineas for an engraved picture, they would hesitate to give five shillings for the same thing in the shape of an albumenized print which might turn yellow in twelve months. A more dauntless opinion in regard to silver printing could scarcely be expressed, and much too nearly true. Recognizing this as a fact, it is inexplicable beyond measure that the adoption of carbon printing has been so slow among photographers generally. There is no doubt that a photographer in the world who can conscientiously say that he has never seen one of his own silver prints turn yellow, and scarcely one who will undertake to say that the fading was a mere accident which shall not happen again; or would venture to guarantee the permanency of any batch of silver prints he sends out. Yet such is the prevalent conservatism of photographers that, notwithstanding that permanent printing in carbon has been a practicable process for ten years, and for the last five years facile as well as practicable, until very recently there appeared to be but little prospect of its general adoption.

Our correspondent points out some facts of a very reassuring character, and indicates several photographers of position who have given up silver and adopted carbon, and this not in small establishments, where a limited amount of work is done, but on a large scale. Mr. Hughes, as many photographers know, has one of the largest and best appointed studios in the kingdom, where, besides an exceedingly busy season, an extensive business in portraiture is done throughout the year; and during the busy season he has ventured to give up silver and adopt carbon. A gentleman of the work recommended in his establishment certainly lacked nothing of the beauty, either in delicacy or brilliancy, of silver prints. Besides those establishments in Belgium and France,* mentioned by our correspondent as having adopted carbon printing, we may mention the establishment of M. Braun, of Dornach, from whence has issued for years those magnificent large reproductions of works of art. There the photographic department of the Royal Arsenal at Woolwich, where, we believe, carbon printing has been solely used for some years. At Chatham, the Engineer photographers under the charge of Captain Abney use carbon, we believe, extensively. Mr. Sarony, of Scarborough, we believe, uses carbon to a considerable extent. How many photographers there are who, like Mr. Paulkner, do their best work on carbon, we are unable to say. Finally, the great pioneer carbon establishment of the world, the Autotype Company, is doing the work which pioneers have ever had to accomplish. They are working steadily to show the way to photographers. That the community and the art will benefit, there cannot be a doubt; and we hope and believe that the pioneers themselves will reap a great commercial success. The admirable display of permanent prints, equal in all respects to silver prints, at the present Exhibition, will aid, we hope, to call public attention to the subject, and create a demand for photographs produced in permanent pigments, to which photographers, in spite of their habitual conservancy, will readily and gladly respond.

A TRAP FOR PORTRAITISTS.

A COMMUNICATION sent to the Photographic Section of the American Institute describes a trap for portraitists which, it seems, has been tried in America with, we hope, but little success. Few respectable photographers would deliberately undertake indecent portraiture, but the snare described here is one into which many might innocently step. The writer, who signs himself “Amateur Detective” and “Tight-Fitting Corset” applied to photographers, he says:—

"This is a new confidence game requiring four or more persons to play the same. First person: a dare-devil or saint, as the occasion may require. He engages his mistress to visit galleries and obtain immodest, nude, or indecent pictures, first by asking for decent ones. Then she says she is agent for the "Patent Tight-Fitting Corset," and wishes to show it practically. Then a half-nude is wanted, to illustrate the difference, only to show to the customers. She sometimes gets one to sell her beau, without the above laboured plot. The first man, when he has got a collection of the pictures, requires the kind help of a partner, or third person. He visits the photographer, and accuses him of indecency. There is no doubt that the photographer, in pure kindness, that he accidentally overheard the threat of an old pious man who has a wayward boy, with whom he has found the said pictures, to prosecute those who made them, and has got the girl as a witness. This third person advises the photographer to call and see the said old gent, and try and beg off. It is an unpleasant matter to be up for crime, perhaps long delay in coming to a trial, ruin to business. Then the third person, by name or place of business to give you, don’t want to be mixed up in the affair, don’t ask any remuneration, but will take money to defray expenses. The old gentleman is a myth,—is number one. The fourth person in this little game is the photographer, whose dollars are wanted, if he can be scared by old blackmailers, who manufacture clever and compound all to the photographer’s distress."

"The President remarked that if there is any game like this being played on photographers it should be known to the profession, so that when persons come to their galleries to have pictures taken with the ‘Tight-fitting Corset’ they can be dealt with accordingly. Photographers are an innocent class of men, and would not readily suspect anything of that kind."

* See Dr. Vogel’s letter in our last, mentioning the public demand for carbon prints in Brussels.
THE PHOTOGRAPHIC EXHIBITION.

LANDSCAPES.

Landscape photographs constitute a very important feature of the present exhibition, nearly half of the contributions belonging to this department of the art. Whilst in portraiture the wet collodion process alone appears to have been employed, we have in the landscape examples of various processes, wet, dry, and emulsion, and excellence, even the highest excellence, is not confined to any of them. The oldest dry process,—the Talbot's, and nowest,—the new emulsion, may be seen to neck and neck with wet collodion. The question of convenience can therefore present the only determining motive in making selection, and from the prevalent use of the wet process amongst professional photographers, at present it seems to possess the balance of advantages.

There are not many new exhibitors in this department challenging public attention for their work. Amongst these few, however, Mr. Crawshay most prominently attracts attention. He has once before exhibited one or two views, but to the present exhibition he has sent several landscapes of a degree of excellence which fairly competes with that of his fine portraiture. Probably there is nothing in the room finer than his "Waterfalls at Torpanton," No. 83, which is in every way—selection, lighting, and general treatment—exceedingly striking, and the "Cathedral of Limestone," No. 82, are also admirable, so are several other of his landscape contributions. Amongst comparatively recent landscape contributors, we find Mr. E. Viles, who last year for the first time contributed some, but this year has made considerable advance and added some good works to his list. His pictures are large, about twenty inches by fifteen, all technically good, and some possessing considerable picturesque excellence. There are different views of Moreton Corbet Castle, and Tong Church, in Salop, which are very fine indeed.

We have especial pleasure in seeing the photographs of Mona Davanne at the present exhibition. His name is one of those which are so closely associated with photography, and his contributions to photographic chemistry, varied and extended, stand amongst the solid possessions of the art. Photographers in this country are familiar with his labours in building up photography as a science, but until now have had no opportunity of seeing his pictorial work, and they will be delighted to find that the production of this veteran do not disappoint their expectations. Mr. Davanne's pictures are on twelve by ten plates, and produced by the Taunton process. They admirably show that this oldest of dry processes is no whit behind the most modern. Singularly delicate, very brilliant, and full of gradation, spotlessly perfect in every way, they are admirable examples of technical photography; and besides that, the selection, lighting, and treatment, are all dictated by artistic feeling. It is not a little complimentary that the vice-president of the French Photographic Society, in contributing to an English exhibition, points out that his work is produced by the lens of an English optician, the front combination of the No. 1 rectilinear lens having been used in producing these large pictures.

Also from dry-plate negatives—the beer and albumen process, these pictures are of a very pleasing and interesting kind. Fine Egyptian photographs of Captain Abney. We have referred before to a special peculiarity of these pictures: their singularly luminous character; the sense of brilliant light, and the absence of black shadows; the sense of life and movement in the rushing waters of the First Cataract on the Nile; the feeling of colossal grandeur in the Rameses at Thebes, statuesque, solid, solitary and silent, but very picturesque. Near to these are examples of another dry process, in the prints from emulsion plates by Mr. Henry Cooper, a series of cabinet gems. Presumably by an emulsion are the Isle of Wight views by Mr. Stillman, which are somewhat grey and flat, and not equal to some former work he has exhibited. Mr. Mawdesley, in his examples of photographic work, does himself less than justice. In the three large frames full of cabinet views there is much admirable work, and many of the single pictures are excellent; but the whole in each frame leaves an unsatisfactory impression. This is mainly due to two causes: the prevalence of white skies, and the large amount of margin of intense buff mounting-board, which kills the photograph with light, and gives a quality of worldliness to prints which, better treated, would look well. The pupils and assistans of Captains Abney, amongst the Royal Engineers at Chatham, contribute as a body, and send some of the finest landscapes in the exhibition, presumably by the ears and albumen dry plate process.

Rarely equalled, and probably never surpassed alike in technical and art qualities, are the landscapes of Mr. Bedford—and, let it be noted, it is Mr. William Bedford, son of Mr. E. Viles, who, in the most perfect of the paintings of the son possesses all the traditional excellence of that of the father, which is the highest praise that can be awarded. There is a singular perfection of finish in all his landscapes at the present exhibition, which is suggestive of the minute care seen in a fine miniature painting, but this is attained without any sacrifice of breadth, or space, or atmosphere. The "Coquet Head," No. 67, is an example of the very suggestion of cutting hardness. The sky effects, in all these works are admirable when separately examined, never obtrude themselves, but are simply a part of the picture. The prints of this year are of an unusually fine black tone, closely resembling an engraving. Possessing much of the same uniformity and excellence are the views of Scottish country seat of the present representatives by Mr. G. H. P. His contributions of this year are somewhat larger than those he has heretofore exhibited, and the proportions are very effective, being about ten or eleven inches by seven inches. Mr. Stephen Thompson sends a number of fine interiors illustrating old English homes, and the landscapes he is issuing under the title of Studies of Nature. They are well chosen and well treated. A peculiarity of these interiors is the extent of angle included, so as to give a really pictorial presentation of a room, and not merely a fragment of one. Mr. Thompson says his aim was to give such a view of the rooms as Nash would draw—a high and difficult aim for photography—but Mr. Thompson has not come far short of his aim. The negatives are produced, we are told, not by a double or triple combination, but by the wide-angle landscape lens, "Flodingham," No. 58. Amongst the most pleasing and artistic landscapes are two or three small pictures by Mr. William Brooks, whose contributions, it is to be regretted, are not more extensive. Mr. Mundy's New Zealand landscapes have been noticed before: they are full of interest, and possess high excellence.

There is an unusually fine show of cloud pictures at the present exhibitions. Messrs. H. Wythewood Co. send two large frames entitled "Cloudland," with a variety of sky effect: clouds heaped in grand cumulous masses; clouds driving before a swift wind; clouds heavy, sombre, and still; clouds twisted in fantastic wreathes, and clouds with gilded edges behind which the sun goes down; all full of suggestion and full of poetry. Mr. Stoddart, of Margate, also sends some capital cloud scenes and sunsets with not less poetry and suggestiveness, and some of them on large plates, very impressive and fine.

Mr. F. M. Sutcliffe's contributions come for the most part under the head of art studies rather than simple landscapes; but we may mention his Beech Trees (307) as an unusually fine rendering of foliage. His Pine Trees (318) are rather too heavy even for the gloomy depth of pine foliage. Captain Turton sends some views on Ouse, and some groups of cattle, possessing high artistic merit. They are, we believe, carbon prints from 12 by 10 nega-
THE PHOTOGRAPHIC NEWS. [October 22, 1875.

tives enlarged from small negatives on Col. Wortley's plates. Mr. R. Mitchell sends some views in Arran which admirably render the grand and glowing scenery of this wild Scottish isle, and some other studies all characterized by the picturesque spirit which distinguishes his work.
Mr. F. Salis Schwabe sends some very fine views of scenery in the West Highlands and Skye. The photography is almost too delicate and perfect to render full justice to the abrupt wildness of these desolately grand scenes, but the grand and glowing scenery of this wild Scotch isle, and some other studies all characterized by the picturesque spirit which distinguishes his work.
Mr. Brownrigg, of Dublin, contributes several of his capital landscapes; those of Wicklow scenery are especially beautiful. Mr. W. G. Hunter contributes a number of charmingly delicate and picturesque renderings of Welsh and English scenery. His mode of mounting the prints in optical contact with the glass is very effective. Mr. H. Whifield sends some small landscapes of singular delicacy and much artistic feeling.
To some other landscapes worthy of notice we must refer in our next.

PORTRAITS WITH CLOUDED MARGINS.

Among the novelties in the United States are vignette portraits with clouded margins. The cloud negatives are prepared by M. Bigelow, and sold through the Sowell Manufacturing Company. Here are Mr. Bigelow's instructions for producing the portraits, as given in the Times, which may interest some of our readers:

"First construct a light frame 14 x 17 inches square; then take a piece of dark green window-shade paper (or any dark paper nearly black), dampen it by floating on a dish of water, and glue to the frame. When dry it will shrink so as to be perfectly flat, and even if you work with a 4-4 tube, take a matt with oval opening six inches the long way, and mark the oval on the paper you have just laid on the frame; then lay it on a piece of glass, and cut out the opening with a sharp knife, cutting it in half-inch notches resembling saw teeth. With this screen placed about two feet from the camera, between the camera and sitter, adjusted so as to show the sitter through it, proceed to take the negative, which will come out with a dark margin or dark vignette. Now place the cloud negative in the printing-frame; then lay the vignettet negative you have made upon it, place the sensitive paper as usual, and close the frame. This brings the cloud negative upon the outside. Print as usual. If you wish the clouds sharp, print with the varnished side of the cloud negative next to the portrait negative, and face directly towards the sun. If the cloud effect is desired softer, print in the shade, or by turning the film side of the cloud negative out.

"If you use a half-size lens, use a smaller opening in the vignetting screen. Support the screen by a light frame around the vignetting screen. I find it quicker and easier to adjust the screen by the reversed image of the sitter seen upon the front lens of the camera. It will take but a moment's time to adjust everything after a little practice.

"If the clouds print too light, use a darker screen; if too dark, use a lighter one. Use any background from medium to dark shade."

NOTE ON DEVELOPMENT.

BY ROGER LAURENT.

(Aus Rege des Beaux Arts, Loire Inferieure).

In the hope that it may be interesting to your readers, I send you my method of developing the photographic image, the plan being one which certainly gives a cleaner, clearer, and finer cliche than can be obtained with iron. My formula is:

- Filtered water 100 grammes
- Pyrogallic acid 2 grammes
- Acetic acid 4 grammes
- Alcohol 15

As every photographer knows, solutions of pyrogallic acid will not keep very long. Into a bottle I put half a gramme of pyrogallic acid, with 50 grammes of water into another I put also 50 grammes of water, with 15 grammes of alcohol and 4 grammes of acetic acid. These are the two solutions that I use.

I expose at least double the time which would be required to give me a good result with an iron developer, and on withdrawing the plate from the camera I set it down upon filter paper. I pour into a glass a little of the alcohol-acetic acid solution, and this I throw upon the plate exactly in the same way as I should an iron solution, the liquid being applied two or three times. The solution is then returned into the developing cup, and to it is added an equal quantity of pyrogallic solution from the other bottle; and the development of the image is then proceeded with, with this mixture, until the negative is properly finished.

I to intensify the cliche, if it is necessary, I put into the developing cup some fresh solution, together with a few drops of a three per cent. solution of silver. As the plate is longer than usual, cliches upon dry plates are still better.

A ROLLING STONE'S VISIT TO PEKIN.

BY D. K. GRIFFITHS, SHANGHAI.

On my way from Shanghai to Pekin I broke my journey at Chfoo, a delightful watering-place in the province of Shantung, the classic grounds of China, and remained one week to strengthen myself for the fatigue of Northern travel, and then finished my sea journey to Tientsin.

The weather was wet, and I was too anxious to proceed to break my journey at the mouth of the river Peho, so
as to get a view of the Ta-foo forts, neither was their appearance such as to decoy one into the trouble of unloading the horse and apparatus for a photographic shot at them; their low, but very imposing, frontage, and make an indifferent view even under a more favourable condition of the weather. We anchored opposite for some time, waiting high tide to get across the bar, which was effected after an hour's detention, and succeeded in getting up the river as far as the "double bridge" when the vessel's bow went fast in the mud projecting well over the river. Pekin and the Customs Allavied myself of an offer from the Custom's official to get
into his boat for a pull to the town, which we reached by nightfall.

Tientsin is a poor-looking mud-built place, the foreign bongos (houses) of the Bund its only attraction; and the country being inundated at the time of my visit added to its desolate appearance. I put up at the only foreign hotel in the place, a mud one-storied shanty, but what I found wanting in bricks and mortar was well compensated for by the genial hospitality of the residents.

After taking a view of the "Treaty Temple," and the scene of the massacre, these being the only points of interest, I got my passport from the British Consul, hired a boat, and started in the services of a Pekin boy to act as interpreter, who, with my Shanghai boy, cook, and chair coolies, completed my party.

The boat, a large one, was worked by six sturdy coolies in a state of perfect nudity, and starting with the tide in our favour, we were soon past the Bridge of Boats, and on the way to the Capital.

I joined the Tung-chow by the canal, where I was obliged to change my mode of travel, hiring ponies and mules for myself and the interpreter Ahee, with wheelbarrows for the provisions, photographic stores, and apparatus. While these being engaged, I entered a native inn, to get out of the crowd attracted by a sight of the "yang-quitza" (foreign devil), but many of them followed me to the room provided for travellers, and as they were very quiet, I submitted to the offensiveness of the proximity, indulging their curiosity to examine my brough-loader and the various other foreign articles and stores. One old lady ventured to taste some bitter beer, mistaking it for brandy, that some previous traveller considerately made her acquainted with, and deeply revered them when I corrected the error.

When everything was in readiness, I started the wheelbarrows on the paved road, preferred that sort of to the carts, as more easy to be guided by the deep ruts, and so save the apparatus and photographic material from certain destruction. Leaving them in charge of my Shanghai boy and coolies to proceed leisurely, I started with Ahee as guide across the more pleasant cotton fields; two hours' quiet riding brought me in view of the walls of Pekin, and from their fine proportions I was led to expect a vast labyrinth of wealth and greatness within. Riding across the bridge over the moat, through deep ruts in the pavement of its time-worn gates, amidst clouds of dust, heat, and stench, I entered Pekin, and rode through the streets keenly criticised by the crowd, who kept up a cross-fire of questions with Ahee. The wide streets offered no shelter from the scorching sun. I was very thankful for some, so it was with great relief of mind and gratitude of heart I reached the hotel, and for the first time for four days I was able to sit down to a comfortable dinner, and enjoy the luxury of a bed.

I now called upon Mr. Wade, H.M. Minister, who kindly interested himself in my plans, and obtained for me an audience at the British Legation, one from a high Chinese functionary; indeed all the ministers in Pekin representing the several nationalities offered every assistance and valuable suggestions, so as to leave my excursions in the surrounding country as free from danger as possible, for it is very apparent to the most superficial observer that a strong anti-foreign feeling pervades the masses, more especially the inhabitants of cities; and Pekin is no exception to this rule.

In this fatiguing capital, wherever you turn the mind reverts to the past; the only thing that recalls you to the Pekin of the present day is the passing crowd, the bustle of its busy thorough, and the dull rattling noise of its springless carts, as they pass you by in the lazy hundrum of Chinese life. The streets are wide, with a high raised road in the centre for carts; in dry weather this road consists of dust, and in the wet weather of mud, the heavy carts sinking well up to their axles, and making deep tramways of their route. In most places the streets are narrowed by temporary bamboo shanties, erected for the convenience of old clothes dealers, or cook shops, the proprietors of which, by raffles, or the more primitive efforts of the lunge, call the vain or the hungry to a knowledge of their wares.

I spent a month and a half in this centre of China as it is and China as it was, and wherever I went was disappointed in not meeting with any of those scenes so indulgently bestowed upon it by artists of the past, whose pencils have delineated lofty domes and minarets, with convenient river foregrounds, where massive and picturesque shanties rest upon the water, and at the same time its beauty and sublimity by their shadows it's light serenity. Alas! for the photographer, who must be satisfied with the sober reality, and cannot fling in an odd fancy or two, so as to add a charm to views so uninteresting, for excepting the most round the walls, and a stagnant pond the olfactory nerves could well dispense with, my master-of-fact vision rested not upon those dearly cherished scenes we wear. Such as it is, not as it might be, Pekin was there, a dull vaucity of any such fancies—a dusty, dirty hive of animated littleness, the few temples in it, which are only to be found by indefatigable industry, its only pleasing features; these temples, from their unique style, will naturally arrest the attention of a European traveller diverting his mind from what is to what was, and while in Pekin this is his most happy state.

The chief places of interest are to be found in the Tartar city, from the walls of which I made negatives of the imperial or "prohibited city." I had many besides photographic difficulties to overcome in getting a collection of views; I had to contend with the superstition of the people, and their ingenuity in "squeezing" me in every possible way. Very often hours were lost getting coolies courageous enough to carry the apparatus and necessaries, and when they were started a sudden fear would sometimes seize them, and they would try to shirk the journey altogether by pretending ignorance of the road, the boy often being an accomplice; great firmness, and sometimes even a display of force, must be resorted to before they act on the modd'ordre.

(To be continued.)

Correspondence.

YELLOWNESS IN SILVER PRINTS.

Sir,—In an article on the above subject in your last week's issue occurs this sentence:—"It will never do to give up altogether so beautiful and delicate a process as silver print, and it is simply nonsense to talk about its rapid decline during the last few years, for there is not a single photographer of note in this country—nor, we believe, in any other—who has discontinued the process entirely."

This is not far from the truth; but allow me to give the commentary of some recent experiments which seem to betoken a coming change.

Some few months ago I had the pleasure of making the acquaintance of MM. Gérson et Frères, of Brussels, and was with much courtesy shown by the brothers over the whole of
their establishment. The premises are in the central part of the town; the entrance, with handsome plate-glass front, is modern, but the reception room, workshops, and interior generally are in a fine large old-fashioned style, commodious in the highest degree. The studio is a vast apartment, well lighted, fitted with antique furniture and tasteful accessories, and suited to a work and atmosphere so radical in its character as to have been arrived at by a process of long experiment and refinement.

The maison Gérust is quite in the front rank of Belgian photographers, and for more than twelve months has totally discontinued silver printing in favour of carbon. I saw the arrangements for sensitizing the tissue, witnessed the exposure, development, and mounting of the prints, and observed a Helmet example among much that was excellent. The stellers of M.M. Gérust are fitted with appliances to produce negatives up to thirty-six by twenty-eight inches, and from this size to the smallest miniature every picture is printed in carbon. As far as my information extends, to these gentlemen is due the honour of being the first photographers in Europe to issue nothing but permanent photographs.

I made again, during the last days of the "Exposition Belge de Photographie," a flying visit to Brussels, and found M.M. Gérust very well satisfied with the commercial results of the steps they had taken. It may be noted here that out of the twenty-three Belgian exhibitors, eleven showed examples in carbon: one frame of whole-plate portraits without glass, by Z-yon Liege, was a most noteworthy example among much that was excellent.

Before quitting Belgium I made a call on M. Joost Hoes, of Antwerp, who is a noted carbon worker, and possesses a fine collection of negatives from the paintings of the Dutch and Flemish schools. As a matter of choice, M. Hoes issues only permanent prints; but, as a question of commerce, fears, until public opinion is more pronounced, to discard silver entirely. Prints from the same negatives are obtained by both processes, and may be bound in the less side by side, the carbon prints being sold at a higher price.

Last month I was shown over the dwelling and the stellers of M. Liébert of Paris; the whole premises—built specially for photography—and furnished with an elegant magnificence: dining and drawing-rooms, handsome entrance and staircase, courtyard and offices on the ground-floor; two splendid reception rooms, bureau, billiard room, terraced garden, and a studio on the first floor. The arrangements were most complete, and may be judged from the large doing business, without the aid of silver, save for the negative bath and the sodometer paper. In the development room was an English operator at work. He had tanks for hot and cold water, alum bath, &c., and before him a pile of pieces of plate-glass, each holding nine leaves, four cabinet or larger prints, that after exposure had been applied in the waxed and collodionized plate, and now waited development. After a little soaking in warm water, the paper backing of the tissue was peeled off, and the latent image speedily washed up to the required vigour, the exact point being a matter of judgment, and determined by examining the transparency while held over a sheet of white paper. In the next room I observed a strong race of fruit of the headed glass plates, with the developed pictures, waiting to be spotted and touched before application of the transfer paper and removal from the glass. The negatives produced by M. Liébert are of a high order, and printing seemed to proceed steadily and without a hitch.

For a more recent instance, one nearer home and of a rather more striking nature: Messrs. James Hughes, of Ryde, showed me, within the last few days, specimens of cabinet prints in carbon, that for brilliancy, purity of tint, and delicate gradation, left nothing to be desired. He assured me, with a look of modest triumph, and a sweet calm of conscientious photography in his face, that for two months he had discarded silver printing, and issued only work in carbon. Mr. Hughes has been so convinced on this revolutionary procedure in the very height of the season, and although this had thrown his work into arrear, saw nothing to regret. To be the first photographer in England able to guarantee the permanence of all his work may possibly be an achievement not without result in both honour and reward. It remains to be said that in Mr. Hughes's opinion it is only by the recent ingenious developments of carbon printing by Muns. Lamy and others that the work at Ryde has become safe, or, perhaps, possible. Processes thus adopted into commercial, everyday use are not without distinct significance to the profession.

W.

Proceedings of Societies.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The opening meeting of the present session of this Society was held on the 11th inst., the Rev. F. F. Staton, M.A., President, in the chair.

The Chairman said that it would be desirable if in future members would come forward with brief papers. He wished it to be understood that long and formal papers were unnecessary, and that the Society was very often forming a theme on which to hang an interesting discussion.

Mr. Vanderwyde read a paper on "The New Studio Window" (see page 503.)

After some remarks by the Chairman, who thanked Mr. Vanderwyde for his paper,

Mr. Atten suggested that if groups as well as single sitters could be taken in a studio lighted by the system advocated, because it seemed to him that owing to the light being strongest in the centre, those of a group situated at the side would be imperfectly lighted.

Mr. Vanderwyde said that there was no difference in the strength of the light within two or three feet of the sitter.

A general conversation ensued, in which Mr. James Hughes, Mr. Spiller, Mr. Fry, Mr. Wilkinson, and others took part.

Mr. Vanderwyde replied to several questions, asking explanations, by making drawings on the black board.

Mr. Samuel Fry then read a paper on "Organic Matter in the Nitrated Bath" (see page 503.)

Mr. Spiller enquired of Mr. Fry if his nitrated silver bath never became discoloured by the presence of albumen.

Mr. Fry replied that it remained colourless.

Mr. Taylor said that in the albumen process on glass the bath became of a deep brown colour, and enquired if Mr. Fry could explain the cause of his bath being free from such discoloration.

Mr. Foxlee observed that in the albumen process there were not always a deep discoloration, but it arose when working with a very strong bath.

Mr. Fry was well aware of the fact, but he was unable to offer an explanation of it.

Mr. Wilkinson found that when plates coated with albumen were damp they frequently fogged; but if the albumen were rendered quite dry no fogging occurred.

Mr. Hughes said that the fogging was caused by the action of the nitric acid on the albumen. Soon after the introduction of the Tanpezot process he tried albumen in the bath, under extreme conditions. Delighted with the fine rich tones obtained by that process, he gave his plates a coating of albumen, followed afterwards by one of collodion; but, after a few days, fogging resulted, which caused him to prepare a new bath every week, which, owing to the beauty of the results obtained with albumen, he willingly did for a time; but, eventually, discontinued that practice.

Mr. Fry said that, in his own case, the albumen film was very attenuated, and quite dry: the proportion of acid in the bath, too, was considerable. At occasional intervals he boiled his bath.

After a vote of thanks to Mr. Fry, and the transaction of some routine business, the meeting adjourned.

MANCHESTER PHOTOGRAPHIC SOCIETY.

The annual meeting was held at the Memorial Hall on Thursday evening, the 14th inst.; W. T. M. M'kney, Esq., President, in the chair. The minutes were read and confirmed, and the Secretary read the Annual Report.

The session of 1875 closes the twentieth year of the existence
of the Manchester Photographic Society, and your council hope, and have reason to believe, that during the twenty years of its active life it has been instrumental in forming many lasting friendships, and productive of some photographic benefit to its members generally.

The past year has not been distinguished by any special feature, and the Society may be said to be in about its normal state. While a slight improvement has manifested itself in one direction, a little falling-off has been apparent in another. But so it must ever be, and the council can only make the best of the circumstances in which they may find themselves placed. There are at present seventy-seven members on the register, and two nominated for election, against seventy-six members at the last annual meeting; but the general attendance during the year has been only twenty-eight against thirty-one in the year just completed.

Although the papers contributed during the session have been but few, the meetings have been far from uninteresting or uninstructive, and this is, no doubt, a matter of congratulation.

The President read a new paper on a good old subject, "Printing by Development," illustrated by an exhibition of the process.

Mr. John Brier, jun., read a paper on "The Production of Enlarged Landscape Negatives," with illustrations.

Mr. A. Brothers, F.R.A.S., explained in what way the photographic methods had been utilised during the transit of Venus, illustrated by numerous diagrams.

Mr. Noton read a paper "On the Manufacture of Nitro-Glucose following by a supplementary statement and experiment at a subsequent meeting; and the active session closed with a lantern exhibition of choice pictures kindly lent by Mr. F. York, of London.

Your council, in thanking those gentlemen who did their best for the Society last year, beg to express a hope that they will renew their efforts in the year to come, and that many other members will follow their very good example.

The annual report was accepted, and Messrs. Jas. Young and Wm. Clancy were elected members of the Society.

Mr. J. B. Forster read an interesting and instructive paper on "Art in Photography, and the late O. G. Rejlander" (which will appear in our next), illustrated by some of the works of the deceased artist.

The Secretary laid the Bulletin of the Belgian Association of Photography on the table, and collected the sum of £6 12s., which he hoped to make up to £7 12s., towards the fund in aid of Mrs. Rejlander.

The meeting was then adjourned.

Talk in the Studio.

Impromptu, on seeing the picture in the Photographic Exhibition No. 124, "Belle and Bow," by Chaffins and Sons:

"This fair Toxophilite has so much an eye,
No need has she to sport with archery;
With bow and quiver, she apparelled in arms,
In every contest she could win a bow.

"Her well fletched arrows, sure, would hit the mark,
And fly so swiftly as electric spark!
Such eyes as hers the sharpest darts can throw:
I am not Chaffin, but she needs no bow"

J. H. JEWELL.

Evanoff and Goddard.—In the notice of the Photographic Exhibition in our last, the excellent portraits of Messrs. Evanoff and Goddard were, by a printer's error, mentioned as by Goddard and Goddard.

Trade Marks.—One of the most important Acts of last session, in its bearings on commercial interests, is the "Trade Marks Registration Act," which comes into operation on 1st January, 1876, by which compels the registering of all existing and future Trade Marks (or the rights of their proprietors cannot be preserved against infringement), at a

Register Office to be established in London. Mr. Goulten, Offices for Registration of Trade Marks, 271, High Holborn, London, has forwarded us a synopsis of the Act, which it would be well for all interested in

Photography in Winter.—The season is approaching when some may be troubled with a want of sensitiveness in their bath or collodion, as they suppose, which they may find it difficult to account for. To such I would say, look to the temperature of your dark-room. When you find the air, or becoming chilly to yourself, you need not be surprised if your chemicals begin to work slow. The best remedy is to keep your apartments warm, so that they shall not be below 70°. Should this not be done conveniently, it may be sufficient to warm them before you enter; or the plan adopted of holding your hand slightly warmed by laying it a few moments on a heated soapstone, which may be kept at a proper temperature by placing it on a couple of brackets over a gas-burner or lamp. Or, it is often sufficient to draw the bath off in the morning, and warm it well before commencing the day's work; this removes the chill it receives during the night, and it will continue to work well throughout the day. A warm bath and warm developer are always favourable to rapidity. — R. J. CHUTE, in Times.

My Part or Sis. CHARLES WARBURTON.—We regret to announce the death of Sir Charles Wheatstone, which took place in Paris on Tuesday. Sir Charles, who was the scientific inventor of the electric telegraph, and professor of experimental philosophy in King's College, was born at Gloucester in 1802. His claims to celebrity have been long and well known to photographers. At the Photographic Exhibition of 1873 he exhibited a photographic application of the "Wheel of Life." For many years he was a member of the council of the Photographic Society. Nearly forty years ago he introduced the practical system of telegraphing, and with the realization of that object his name will be inseparably associated. In 1868 he received the honour of knighthood, and in the following year he was awarded the distinction of L.L.D. from the University of Edinburgh.

A Wooden Dipper.—At the last Convention of the N. P. A. of America, Mr. Lee Knight described his wooden dipper as follows:—"I make it out of one solid piece of well-seasoned hickory. If the bottom of the bath be constructed a little too thin the dipper will not go down. I had one, and I sharpened the end so that it would go down. I found that by making it in that way, an inch and a half longer, it would go down in the bath, and there was no difficulty arising from the stirring up of any particles of film that might be in the bath. If the dipper go down without creating a current, or the slightest approach to a current; that is taken away from the plate, so that no particles shall be deposited on the plate. The others are particles in suspension, and the trouble is simply the amount of the dipper. The apparatus is simple and complete. It is merely a blade of well-seasoned hickory, without any other preparation whatever. It can be made by any one, and does not cost anything scarcely; don't get out of order. Having it pretty wide at this point the capillary attraction will hold the plate securely without the necessity of any springs or slats, or anything to hold the plate. Nothing more than the capillary attraction is necessary. That is, in my experience, sufficient. Occasionally I used to lose a plate in my bath. That is not possible with my dipper. This is the way I kept the bath. I have had some dippers said to be absolutely proof against the action of any of the photographic chemicals, but by leaving them in the bath two or three days the silver would be precipitated in very fine spangles from the points where the dipper rested. This, you will observe, is just shaped from one single piece of wood."

To Correspondents.

A. A.—As the first three years of the patent have expired, we do not think it likely that the patent was renewed, which would have involved the further payment to the Patent Office of £50. The patents are not absolutely free, but we have no doubt that the process is now free to every one.
NAILER.—The address is Mr. E. G. Wood, Chesham, London.

You will doubtless be able to obtain condensers from him; but we cannot tell you what they will cost. You will be able to obtain from the firm who supplied you with carbon tinate the March 25th, the day following, working it on the 18th, as well as what steps you take, and at what points you find special difficulties, we shall have pleasure in giving you instruction as to the best method of overcoming the difficulties.

J ohn Terrac.—We are obliged by your suggestion, and will consult with our gentleman you refer to, who is chiefly distinet for his large work, and has no special pre-emience in cabinets. We doubt much whether the mass of readers would be willing to pay an increased price.

LYONS'SUBSCRIBE.—There are various modes of producing blue paper for this purpose, and the one most in use for copying such as you describe, by Sir John Herschel, the discoverer of the cyanotype processes. Take of ammoniacal-acid of iron 120 grains, and of ferric-sulphate of potassium (red prussiate of potash), 140 grains, and dissolve in two ounces of water, and keep the solution in a dark place. Apply with a Blanchard brush to the paper, and allow to dry in the dark. Expose under the subject, and then wash in clean water, which develops and fixes the picture at the same time. 2. One cause of the defect you name is the adhesion of the metal to the paper. If it has been kept too long: if, after the washing up, the t twice becomes more slowly soluble, and manifests the defect in question.

REFLECTION.—That which you call reflection on the background is really what is termed a "cast shadow," that is, it is a definite shadow cast by the object upon which the light falls. In the group you refer to, the shadow of the glass box on the ground, and the shadows of the feet of the boy on the carpet. They are doubtless due to the strong reflected light from the white wall on which the sunshine falls. Such a cast shadow, in fact, will generally affect, but gives an effect of solidity and relief to the figures. The sitters are not well lighted; however, there is too much generally diffused light, and a lack of concentrated light on the figures. The images are imperfectly defined, either from being badly focused, or from the lens being a bad one.

SOUTHERN HEMISPHERE.—Of course general rules are laid down as to the position of the glass house for the majority of the readers who are natives of this part of the world. Those who reside in far different latitudes must inevitably make such modifications as their position demands. In every such case the photographer himself must determine the modifications required in his special case. The article to which you refer was quoted from an American journal, and we gave it precisely as it stood. The statement of the case was no doubt true; but a somewhat exaggerated estimate of the facts was given.

F. S. C.—For copying maps and printed matter an old rive sample of cotton cord is the most suitable. A weak iron developer; any eight grains of iron and twenty minims of acetic acid to an ounce of water. If the collodion be not old, add a few drops of tincture of iodine to the mounts of the collodion, until it is a dark colour. In copying oil paintings somewhat different conditions are needed. The collodion should contain a good proportion of bromide; say not less than two grains to each ounce. The collodion should be fresh, from the picture can be placed in a good light in the open air it will be best. A fifteen-grain iron solution with fifteen minims of acetic acid will serve.

HENRY DUNNING.—With such a studio as you intend building, about six feet opaque at each end of north side and roof, and the remainder glass, will answer. Each will and otherwise be opaque; and the greater portion of side and roof. A few feet of light in south side, or roof, or both, to be kept usually covered, might give all the necessary of occasional effects of lighting. The pitch of roof should not be less than 45°, and somewhat steeper if you like. There are certain advantages in having the ridge out of the centre, giving the largest half to the members of the family. You would then be able to give six feet light on north side, and four at the other, having the ridge about sixteen feet high, and the eaves about six feet high, you would secure a noble exposure of north top and north side, lighted. There is altogether unnecessary, and even troublesome. 2. Our publishers, doubtless, can supply the journal in question. We will pass on your request to them.

B. L. F.—The sample of carbon tinate you enclose is quite insoluble, as you state. If it were so, as you describe, as soon as it was dry, it must have been many hours drying; which, if being in a damp place, during the present weather, might easily happen. Do not soak the tinate too much in sensitising; and hang in a warm dark place; it is possible, we are at a current of air. In allowing the tinate, the issue often becomes insoluble.

Several Correspondents in our next.

METEOROLOGICAL REPORT FOR SEPTEMBER.

BY WILLIAM HENRY WATSON.

Observations taken at Braystones, near Whitehaven, 36 feet above sea level.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Barometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>Noo. Night</td>
</tr>
<tr>
<td>Rain a.m.</td>
<td>Rain p.m.</td>
</tr>
<tr>
<td>Rain p.m.</td>
<td>Rain a.m.</td>
</tr>
<tr>
<td>N.W.</td>
<td>N.W.</td>
</tr>
<tr>
<td>S.W.</td>
<td>S.W.</td>
</tr>
<tr>
<td>W.</td>
<td>W.</td>
</tr>
</tbody>
</table>

REMARKS.

<table>
<thead>
<tr>
<th>Date</th>
<th>Morning</th>
<th>Noon</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>61</td>
<td>62</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>78</td>
<td>78</td>
<td>66</td>
</tr>
<tr>
<td>20</td>
<td>76</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>22</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>23</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>24</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>25</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>26</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>27</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>28</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>29</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Morning</th>
<th>Noon</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>31</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
</tbody>
</table>

Summary.

<table>
<thead>
<tr>
<th>Maximum temperature observed</th>
<th>Minimum temperature observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>66° C.</td>
<td>56° C.</td>
</tr>
</tbody>
</table>

Photographs registered.

Mr. Wheeler, Brighton.

Two Photographs of Mr. John Hodgkin.

Captain Avery, Rochester.

Thirty Photographs, Views and Scenes in Egypt.

Mr. A. Fothergill, Southamps.

Two Photographs of the late A. O. Stevens.

Mr. T. W. Hart, Birmingham.

Three Photographs of Mr. Charles Lewis.

Mr. J. T. Case, M. T. Lewis.

Photograph of an Old House in St. Ives.

Mr. J. Barsby, Brompton.

Four Views of "Earl's Court House."
with him. Some pictures which Nadar, the great Paris photographer and second is, showed a year or two back, he was good enough to show us, and he promised to use his endeavours to get Nadar to publish his mode of procedure, which that gentleman did, in some measure, in our columns, through the medium of M. Ernest Lecan. Sir Charles was often a visitor at Nadar’s in Paris, as also at many of the clever opticians of that city, in whose experiments he continually interested himself. As a proof, indeed, of his keeping abreast of the times, we may mention that the last time we visited him at Park Crescent, two years ago, he was studying Duces du Hauron’s pamphlet on photo-chromy, and called our attention to several shortcomings which had still to be surmounted. But he was very enthusiastic in the matter of doing something in this direction, and we saw in his hands a photograph in colours (possibly one of M. Leon Vital) which he had dissected for purposes of examination. But photography, although it occupied much of Sir Charles Wheatstone’s attention, was, as we know, only one of the many applied sciences with which he busied himself. His name will be longest remembered as having in conjunction with Fothergill Cooke, introduced practical telegraphy by means of electrical instruments. It was for this reason that he was, as a mark of honour of knighthood in 1868, the supplement to a substantial reward which his valuable telegraph patents must have brought him. One of the most successful of his inventions after the first practical introduction of electric telegraphy was his A B C instrument, in which he dispensed altogether with the cumbersome and troublesome batteries, employ many other electric machines. The development of electricity. This A B C, or dial instrument, is possibly the simplest telegraph apparatus yet devised, a needle pointing out each letter of the alphabet as it is telegraphed, so that any unskilled person may read or transmit a despatch. It is an instrument employed more than any other in places of business and in offices, where the skilled electrician is to be found, in science, acoustics, and in every branch of physical science. Wheatstone was an adept, and when he was not engaged in working out some problem of applied science, he busied himself in elaborating little scientific toys and knicknacks, in the construction of which he was always happy. Many of the interesting playthings we have seen in Sir Charles Wheatstone’s library would at once become popular were they brought before the public; and we trust that even these minor results of a great man’s work will not be put on one side and forgotten. Sir Charles was for some time Professor of Experimental Sciences at King’s College, and was a Fellow of the Royal Society of London and of the Academie Francaise of Paris. The first electric telegraph opened to the public, under the name of the Electric Wheatstone, was in 1838, on the Blackwall Railway, the same year that Wheatstone was received into the Royal Society.

Small Portraits in Carbon.—Those who are occupying themselves with portrait printing by the carbon process—and there are many, we believe, who are doing so at the present moment—may like to know of a plan which we saw practised a year or two back at the War Department Photographic Establishment. It is beyond the very simple plan, and by its means carte-de-visite portraits were produced as bright and soft as by silver printing. An opal plate is coated with collodion containing a little castor oil, and the film, when dry, is covered with India-rubber solution, after which a narrow safe edge is made by rubbing a little varnish round the edges. Carbon prints developed on this support lose none of their delicacy. The faintest stain of pigment adhering to the glazed surface, and when transferred to a highly glazed paper they have all the appearance of an albumenized print. The coating of the plates is easily and rapidly done, and if a dozen are coated with collodion at one time, the first treated is ready to be treated in the same way with the rubber.
solution as soon as the twelfth has been covered with colloidion. The making of the safe edge afterwards is managed with a paint brush, and as all the solvents employed—ether, benzole, and spirit—rapidly evaporate, a quarter of an hour suffices, in a dry warm room, to get the plates ready. A preliminary coating of the plate with paraffin dissolved in alcohol can be used to facilitate the final separation of the image from the glass. The rubber may be applied to the plate, not as near the edge of the varnish; and if the latter is applied all over the colloidion surface, a suddled, yet glazed image, is produced.

PRACTICAL PORTRAIT PHOTOGRAPHY.

BY WILLIAM HEIGHWAY.

CHAPTER XXII—(continued).

TRANSPARENT POSITIVES.

Transparent positives can be made (1) by the copying camera, (2) by printing on dry plates, and (3) by the colloidio-chloride process; but as, by the second and third processes, we are restricted to reproductions of the same size, the first proves most useful, enlargement and reduction being possible.

To make transparent positives in the camera.—Our first requirement is a camera which will give great length for focusing. I have used an arrangement that will, I think, commend itself to all as simple and efficacious:—A long tunnel box, blackened inside, and fitted with grooves for the reception of the camera. At one end the camera is inserted in the grooves, and across the other end of the box a board with an opening for the negative is fixed. The focus can be adjusted, first, by the movement of the camera in the box towards or from the negative from which the positive is to be made; and secondly, and with proper exactness, by means of the focusing arrangement of the camera inside the box.

This box can be adjusted to any angle at an open window, by means of movable legs fitted underneath the box, and will rest on a table or camera stand.

The negatives from which it is intended to make transparent positives should be specially prepared for that object, thin, full of detail, very sharp, and without trace of fog, and should not be varnished.

The exposure of the transparency should be double the time ordinarily given, and the developer made up with an excess of acetic acid. Fix with cyanide.

THE REDUCTION OF GOLD AND SILVER RESIDUES.

The recovery of gold from the toning bath waste.—The water having been drawn off from the solution dry the purplish black deposit (which consists of metallic gold and iron), and expose it in an iron vessel to a bright red heat, whereby the iron of the deposit is changed to the sesquioxide. When cold the powder will appear dark red. This is placed in an evaporating dish, and hydrochloric acid is added. Care must be taken that the acid contains no free chlorine, to test which, place in it a piece of pure leaf gold, which should be unaffected. If it dissolves, the acid must not be used for our purpose.

The mixture is now gently heated, being stirred the while. The iron will immediately commence to dissolve, and when the seething has ceased, dilute the mixture with water, and filter. Wash the remaining black powder in ten or twelve changes of water, and the result is pure metallic gold.

Extraction of chloride of silver.—The flux, a mixture of carbonate of potash 8 parts, and resin 1 part, is added to double its weight of the chloride of silver in the finely-powdered state, and packed into a Russian crucible until it is about three parts full; upon the surface strew a thin layer of salt. The crucible is now set in a very hot furnace, and kept at a white heat for hours; then quench out cold. The mass which has frothed violently,

calm. Allow the crucible to cool, when it may be broken, and the silver will be found at the bottom in a lump.

Reduction of paper wastes.—The flux, composed of carbonate of soda 12 parts, carbonate of soda 3 parts, and salt 1 part, is mixed with the ashes of the paper cuttings, and fused as described for chloride of silver. If the flux becomes stiff and thick during the operation, throw into the crucible a lump of nitrate of potash about the size of a marble. By so doing some of the impurities are burned out.

Reduction of sulphide of silver.—First "roast" in an open iron pan over a fire, until it reaches a red heat, and is fused into a smooth even mass; now mix 14 parts of the sulphide to 16 parts of a flux composed of carbonate of potash 5 parts, and carbonate of soda 2 parts. Half fill the crucible with the sulphide and flux finely powdered, and expose to a red heat.

The reduction of developer wastes.—The black mass is mixed with flux made as follos: carbonate of potash 5 parts, nitrate of potash 1 part; and treated as for sulphide.

THE PRACTICAL PRINTER IN AMERICA.

XLIII.

THE PLATES.

It is sometimes a most difficult thing to obtain good plates, on account of the unevenness of the glass, it often being so wavy as to render it useless for good work.

Then, again, the plates sometimes have a rough surface, and are so frail that you are continually expecting them to break.

CLEANING OF THE PLATES.

There will be no difficulty at all in getting the plates thoroughly cleaned, if the advice is followed strictly out which has been previously given. (See porcelain plates.)

ALBUMENISING.

The film peeling off during the subsequent operations of the plate after it is printed is due to the albumen solution being too thin, or the plate not being wholly covered by the albumen during the albumenising. Roughen the edges of the plates, before albumenising, by scraping them together, and flow with thick albumen.

Dirty plates are caused, either by using plates before they are thoroughly clean, or by dirt in the albumen solution caused by imperfect filtration, or by dust settling on them before they had dried, all of which will cause plates to be more or less dirty.

COLLOIDIO-CHLORIDE.

This is a very delicate collodion, and it should always be made and kept in the dark-room.

If the prints are blue and slaty in colour, and you are sure that it is not caused by overfuming, doubtless it is caused by the collodion, and in that case it is because there is not enough citric acid in the solution, for this is what gives the tone to the printing porcelain.

If the collodion prints flat, the chloride of silver in it is too weak, and you should make up another batch, containing a grain or so more of silver to each ounce of solution than what there may have been in the cast-away collodion.

Chloride of calcium in the proportion of 3.75 minims of the calcium solution is added to every grain of nitrate of silver there may have been placed in the collodion.

The beginner must remember that a minim is the same as an ordinary size drop, and in a solution of nitrate of silver 840 grains, and pure water 480 minims (one ounce), the silver is one grain strong to every minim of solution.

For the purpose of measuring out drops, there is the tiny graduate, which contains one drachm. Take the scale mark out of 60, and there, if you count 50, all that
we would have to do is to fill the graduate up to the place marked 60 minims (which is one drachm), and besides being more sure in obtaining the exact quantity we wished, it is not near so tedious as it would be to drop the required number one by one from the bottle.

Suppose we were to make up a bottle of collodio-chloride which should just contain four ounces of plain collodion, and then drop to each of the droppers of the silver solution named above. There would then be 32 grains of silver in the 4 ounces of plain collodion, which, by the way, is equal to 8 grains of nitrate of silver to each separate ounce of collodion. Now, when we are about to add the chloride of calcium solution to the rest of it, we should add 3.75 minims to every grain of silver there was added to the collodion, which, in this case, was 32 grains, and 3.75 minims to the 32 grains = 120 minims, which is one-quarter of an ounce.

As a rule, add of the citric acid in the same quantity as you do the chloride of calcium, and the proportion would then be the same, providing the solutions are each 32 grains to the ounce of 99 per cent. alcohol.

If you were to make up a batch of six ounces of collodion, and, as in the above case, you would wish to make it 8 grains strong of silver to the ounce of collodion, you would then fill up the tiny graduate to the place which should indicate 48 drops.

In adding the chloride of calcium and the citric acid to the collodion, you should add of both 3.75 minims × 48 grains, which is 180 minims.

It would be a good plan to make up differently sensitised batches of collodion, each of which should be plainly labelled as to the exact number of grains there is to each ounce of solution at the time of making it, so that when you are about to print a harsh or a flat negative, you can flow your plate with that collodion which is best fit for that particular negative, and the results will be better.

Final Washing.

Insufficient washing will cause the plate to turn yellow in a short time after it is dried, and the picture will gradually bleach and fade, and within a year's time the tone will be most disagreeable.

If the porcelain changes colour during this washing, then the collodion is too new, and sometimes the water is impure; and to determine as to whether the latter is the cause, use a little distilled water for the first washing.

Facing the Porcelains.

This is in the majority of cases due to the porcelain plate itself, and is owing to the substance which is used in the bleaching of the colouring matter in the plate being left in the plate, and which thus affects the print, destroying it in many cases as completely as it would be destroyed if the hypo was not well and thoroughly washed from it.

It is for this reason that some photographers will never make porcelains for their customers without first telling them that they will not warrant them to last longer than a given specified time.

There are good plates, however, as well as poor ones, and I know of very often known ones which have kept for two or three years in good condition, and look then as though they were good for full as many more.

The fading is not wholly in the plate, however, for it is often in the fixing and final washing of it that they sometimes fade on account of poor manipulation, besides various local causes which are impossible things to mention here, as there are different causes in every gallery. Always do your work as well as possible, and in ninety cases out of a hundred the porcelain will keep in excellent condition for many years.

GERMAN CORRESPONDENCE.

THE VIENNA EXHIBITION—THE BERLIN SOCIETY—PIGMENT PAINTING—LICHTDRUCK PROCEEDINGS—WOODS IN PHOTOGRAPHY—AUSBILDUNG.

BY DR. VOGEI.

Whoever has crawled around in the thousands of corners of the Vienna Exhibition, with trouble and difficulty, to gather together everything appertaining to photography and then, after much waste of time, overlooked important things, will fully know the significance of a photographic exhibition. The American project opens a new era for the arrangement of photography at international exhibitions. Further exhibitions will follow the example.

The Berlin Society for the Advancement of Photography has a collective exhibition in view, and applied for 100 square meters, equal to 1,000 square feet.

I do not know what end this exhibition will be served, but we have seen here a host of things which has been received from England, France, and Belgium. It is, however, probable that the establishments in pigment printing will make a particularly grand display. In Vienna we had, besides Braun, in Dornach, several Belgian firms which distinguished themselves in this printing process. Lately, however, various photographic firms have given this process some attention. Spencer, Sawyer and Co. have exhibited, as at the late Brussels Exhibition, enlargements in pigment (carbon) of great brilliancy. I have heard that the above-mentioned firm intends the erection of a large establishment for pigment printing in Paris. The real Eldorado for pigment printing seems to be Brussels; there it has found such favour among the public that large demands are made of their pictures by the universities and learned societies put to the photographer, "Do you make pigment prints?" and orders are witheld if the answer is in the negative. Not only dark pictures, but tinted portraits on porcelain glass, are made in pigment prints; and, in fact, the process is now so simple that every printer who has a little ingenuity can practise it. As I have heard that Spencer and Sawyer intend introducing the process into Berlin, I am anxious in regard to the success of the undertaking.

The Lichtdruck is now making just as sure progress here as the pigment print. Rihettho Munich was the emporium of it, and in the imperial city there was not a single "Lichtdrucker;" there are now, however, large establishments in Dresden, Hamburg, and on the Rhine. Attention Spencer, Sawyer and Co. have exhibited, as there are also two others in France here.
THE PHOTOGRAPHIC NEWS. [October 29, 1875.

the most popular "Lichtdruckers" is Jacobi, in Neunendorf. He has simplified the process to such a degree that he offers to teach any silver printer to become a practical "Lichtdruck" printer.

The Woodburytype has not been found to spread much in Germany as yet. The firm of Bruckemann has published large genre works in this; they are the only firm practising the Woodburytype in Germany.

A new printing process has very lately produced a very great sensation, and is called, after the inventor, Anbeldruck. It is executed by Aubel and Kaiser, Lindenböhne, near Cologne on the Rhine, and has for its purpose the reproduction of drawings, engravings, and lithographs, in enlarged and diminished scale. One year ago I received from the firm a reproduction of an illustrated newspaper reduced one-twelfth, showing all the woodcuts, the printing being distinct and legible. Lately, this establishment has furnished numerous reproductions of woodcuts. The prints are printed part in the lithographic and part in the type press, and it appears to be a fact that the great problem of the easy production of a type-plate by photography is solved. Aubel furnishes not only finished prints, but also press scribe, or stone. I saw, lately, several of these plates on which Aubel, by his process, produced a print in fatty ink. This was then etched by the parties ordering it, and furnished a stone printing plate in lithographic manner, and a zinc plate, for type-press printing. Aubel and Kaiser have already large orders from illustrated newspapers.

ON ART IN PHOTOGRAPHY, AND THE LATE O. G. REJLANDER.

By J. B. Forster.*

In the year 1865, soon after I commenced taking photographs, I met Mr. O. G. Rejlander, who was on a visit to Bowdon, and was introduced to him. I offered him the use of my gallery and dark-room, and a photograph I have brought with me will show you how to use the former. In that corner, which I covered for him in the way you see, he took as good pictures as any I have seen of his. He remained at Bowdon about a fortnight, and I had thus the coveted opportunity of becoming acquainted with him, and of seeing by what means he obtained the pictures which at that time had made his name well-known to lovers of photographic art.

No doubt some of those present will recollect some of his pictures at the Art Treasures' Exhibition. One of them—a large composition picture, called "The Two Ways of Life"—I present to your notice. It was, I think, taken at the suggestion of the late Prince Consort, who, at that time and until his decease, maintained friendly relations with Mr. Rejlander. The last portrait taken of the Prince was by Mr. Rejlander, prior to the development of the fever which ended his life. He left on Mr. Rejlander's mind a pleasant recollection. He always spoke of the Prince Consort with respect, and told many anecdotes of his photographic intercourse with him illustrative of his genuine princely character.

Mr. Rejlander was an artist before he became a photographer, and was both a painter and modeler. He had studied anatomy carefully, and was master of all it can tell, an artist of human form and action. He had also travelled in Spain and Italy, and had carefully educated himself from attentive study of the great masters, whose works are the classics of European art.

Not many years ago a very delicately painted child's head by Mr. Rejlander enjoyed a good place in one of the Royal Academy exhibitions, and bore comparison favourably with all that was best about it. A well-known artist assured me that Mr. Rejlander could never have been an artist, or he would never have been a photographer; but artists as able to whom I have shown his pictures have recognized at once the true artist's work. How a man like Mr. Rejlander came to be a photographer I cannot say; for it was not only that he could paint well, that is, with exquisite intensity of form in line and colour, but there were more than these qualifications for the artist in his nature. He had a keen sympathy with human life, and a genuine love of nature. No mood of either escaped his observation. He had himself felt the vicissitudes and the conflicts of life. He had tasted both its joys and its sorrows; but, though he had difficulty in earning his bread, yet he persevered, and unsoured, and nothing could destroy till the last the childlike simplicity of his spirit. He was young, even when disease had reduced him to a skeleton, and life was only suffering to the body. Wherever he was known he was loved, and whatever he took in hand he did well. His volunteer comrades raised him to authority in the ranks, and he won distinction amongst them as a marksman. His funeral was conducted with military honours.

The true artist, whether of the brush or pen, belongs to no sect or clique, and Mr. Rejlander belonged to none; you could not have enticed him into any wrangle or gossip, and his name never figured in any party strife. He felt those touches of nature which make the "whole world kin," because we are all human alike. He had the capacity and the heart to sympathize with all, and this, united to the power of making it vocal in pictures, or poetry, or prose, is one of the marks of genius.

Such, and much more, was the man I have undertaken to speak about to-night. I am only sorry I am not more competent to do justice to his memory; for here I must say that I am not an art-critic so much as one who has always felt the true and beautiful without analysis. I am convinced the misfortune of the world is the hopeless helplessness amongst reds and greens; yet, for all this, a picture which is not true in colour-offsends my eye, without my being able to say why it does so. I can more readily find out wherein drawing offends; but criticism, like everything else, is an acquisition only attained by study and analysis. I know I shall be badly at fault in pointing out the excellence or defects of the pictures I have brought here to-night. They are not my selection, and I do not think they do full justice to Mr. Rejlander, as there are many I know of which are not here; but I have had to take what has been sent to me.

The first picture I will allude to is "Young Photographer Handing the Artist a Brush." Any photographer will at once wonder at the colour and tone of this picture, produced by means of the camera. No part of it is neglected. Hands, feet, form—every portion is studied with the greatest care and delicacy of feeling. It also expresses an idea of Mr. Rejlander's, for he felt how defective a photograph must be as a work of art when compared with the work of a painter or sculptor.

The hand of the artist holds many brushes; young photography—only one; and he is wise to use them here. This idea is conveyed in a picture well calculated to show that as photography grows, the brush may be used with power. Paganini could play upon one string, but no man knew better than he the value of four; and so with any man who has tried to make a picture by means of the camera alone. If he has any sense of what a picture should be, he will feel that he can only use one brush, the defects of his means for attaining the highest results. A great picture cannot be produced by the camera alone. Mr. Rejlander knew this very well, and with him the camera was but one brush, and a very inadequate one, for expressing what he wished to convey. But still, though it is not everything, photography has done good service to art, and it has affected much in the way of artistic education.

* Read before the Edinburgh Photographic Society.
to be used, and its productions to become familiar to us all. That they should be good, therefore, was always of the first importance; and if all artistic feeling had been withdrawn from it, and all artists had despised it, the world would have been poorer than it is. It has made us all familiar with countries and with life we could not otherwise have known so well as we do. The lineaments of great men are shown to us at the faces of friends and pictures. The real delineations of the features of those who are dear to us, and of many whom we shall never see again, have made the discovery of photography one of the great blessings of modern times.

No doubt it was in some respects a pity that a genius like Rejlander should have devoted himself to photography almost exclusively; but the new art needed such devotion, and it would be ungenerous not to recognize the service rendered to it by the man whose love of art induced him to dedicate his life, not to making money by it, but to showing how it could be raised to a worthy place, made to awaken sympathy with beauty or with suffering, and to serve as an educator of national taste.

Mr. Rejlander took a portrait of me, and coloured it on the spot, and I have no other specimen of his work in colour to show, but have brought this, as it gives some notion of his work as a painter. Mr. Rejlander was, I believe, the first to produce in a photograph those effects of light which are now so common in what are called "Rembrandt" photographs, some of which are so devoid of natural beauty, and are mere tricks of the camera, that it is ought to be unlawful to use them. "I could not prevent the thought of Rembrandt," and in all his pictures where this effect has been produced, you will notice that he is careful "not to overstep the modesty of nature." I have seen a great many of Mr. Rejlander's photographs, but I never, save in one instance, saw a picture repeated. However successful he might be, he seemed to possess such endless fertility of resources that he was unacquainted with the idea of repeating any of them, and was therefore without a "repertoire," nature afforded him variety. This was the result of an eye that saw beauty everywhere and in all manner of places. This quality in Rejlander was another mark of his genius.

In painting or in sculpture the artist can produce a perfect result. Sculptors and painters present us with forms more perfect and beautiful than any which exist in nature. Every part of a figure can be made perfect by skill, but this is not the case with photography, which can only be made to yield the best of that which is. A photograph, therefore, must be criticised under different canons to those by which we judge of a painting. It is seldom, if ever, that a photograph can be perfect, and the more the parts it has, the less is it possible that it should be so. It is more likely to be perfect just in proportion to the simplicity of the character of the subject. A face may be beautiful, but is seldom perfect; but an eye, a forehead, a nose, or an ear alone may often be faultless in form, and so throughout the figure. When we come, however, to grouping more figures than one or two, or deal with the nude form in photography, the chances of failure are very much increased. In "The Two Ways of Life," Mr. Rejlander was perhaps too timid as a painter, and as a picture it is full of the gravest defects. It is not within the province of photography to realize such a conception.

Still, in most of Mr. Rejlander's pictures it is remarkable how many perfect parts there are in each. Sometimes he would keep a photograph in almost all respects bad for some one excellence. A photographer can hide defects by careful posing, and of one face make many different pictures. Note "The Sweep's Wife," and a large sleeping head. Both are from the same model, and the tall form in one called "Hope" is also from the same. Observe not only the whole picture, but also the parts, for Mr. Rejlander saw all. You will generally be able to discover what is good in something that, as a whole, does not please. Many photographs please as a whole, but will not bear analysis—more especially photographs of figures. But what beautifully drawn hands and feet you may meet with constantly in Mr. Rejlander's photographs! Mr. Rejlander was full of humour. "Mother Goose"—"Remarkable! I Have Lost My Pen, and Now My Spectacles are gone!"—"She's Looking at Me, the Dear Creature!" are perfect in their way. The last is a wonderful picture, as is also "The Blind Boy To-Day," and "The London Street Boys" in which the photographer claims kindly sympathy for the victims of misfortune and neglect. Notice "A Street Arab." Why photograph those features and rags? Not certainly because they are beautiful. "Adding Insult to Injury," and "Jim, is it a Good Un?" are full of life. The "Song Without Words" is not improbably said. All these pictures appeal to us to pity and help, and not to pass by on the other side. I do not know of anything in photography that approaches so nearly to what we call a picture as some of these photographs. I know of cleaner and sharper photographs, and more momentarily striking, but of none which will bear thinking of so well from many points of view.

To produce pictures by means of photography is a slow process. A slow process means expenditure of time and, in England, time is money. Mr. Rejlander knew how to take a sharp and clean photograph as well as any one; and I have heard him say that he knew what would pay best, but that he could not do it, as he felt it would be degradation and a dereliction of duty to pand to what he had fancied he should prefer. But he could not manage to do anything else than copy what he had, and this was thought to be an irremediable evil. All these pictures appeal to us to pity and help, and not to pass by on the other side. I do not know of anything in photography that approaches so nearly to what we call a picture as some of these photographs. I know of cleaner and sharper photographs, and more momentarily striking, but of none which will bear thinking of so well from many points of view.

Some may think that in all this Mr. Rejlander was Quixotical, but we may very safely say that he had not been so, though his pocket would have been enriched, it would have been worse for art and for us. Men who rank Rejlander's view of duty as not pleasant, but they are the great ones of the earth, however lowly may be the vocation in which they work.

A long and painful illness confined Mr. Rejlander to his room almost entirely for many months before he died. His literally starved to death. He could not earn money, and the expenses of his illness were such that he wrote that he could not do anything for himself. The dying hours were a few days before his death. Considering this, Mr. Rejlander did not die owing much—not as much as he must have lost during this distressing period. When he died, his widow was left unprovided for, and a fund has been started by some of his friends in London in order to assist her to begin and work for herself.

It is now done now that I have told you what I know to have been true of a brother of our art,—of one whose genius and excellence shed some lustre on the profession.

If, out of love for what was worthy and great, and gratitude for a well-spent life, any of you incline to send something to the fund for helping Mrs. Rejlander, you will do that which would have pleased him most, and what he would bless you for could he know of and understand his greatness for your approval.

* * * * * * * * * * * * * * *

Sympathizing, as we do deeply, with Mr. Foster's paper and its aims, we feel justified in the name of many of Mr. Rejlander's friends in London, to take exception to this sentence. Mr. Rejlander died of a painful illness, in which such food as a failing appetite could take afforded but little nutrition, and hence he wanted to a mere skeleton. But he did not die of starvation. Whilst he could not earn money for some months, before his death he felt some remissions from his trouble under such conditions, yet he was not forgotten by friends, of many of whom we were the personal agents in aiding him. We saw him on his last sickbed, and some of his last words were expressive of deep gratitude for the kindness of friends.—Mr.
THE PHOTOGRAPHIC NEWS.

Vol. XIX. No. 395.—October 29, 1875.

CONTENTS.
Photography In and Out of the Studio.................. 528
Practical Portrait Photography. By William Heighway 518
The Practical Printer in America...................... 519
German Correspondence. By Dr. Vogel.................. 519
The Technical Exhibition of the South London Society...... 522
The Photographic Exhibition......................... 523
Mathematical Photography............................. 524
Photo-Mechanical Printing in Portugal. By M. Rodrigues.... 533
Meteorological Report of the Agregace of Chemical Fires in the Daylight of the Southern Sky, from Observations made at Blackpool, Lancashire, by D. Winstanley. 524
A Rolling Stone’s Visit to Paris. By D. M. Griffiths........ 524
Photograph Worship.................................. 533
Perfect Washing and Testing for Hypotheses. By Prof. H. Vogel...... 536
Correspondence.—Working Photo-Collophy—South London........ 537
To Correspondents................................. 528
Photographs Registered.............................. 538

THE TECHNICAL EXHIBITION OF THE SOUTH LONDON SOCIETY.

The technical exhibition held by the South London Society has become an annual institution eagerly anticipated by many. Thursday was a very busy day, and the credit is due to Mr. William Brooks. Example or practical demonstration must always possess advantages over every other form of teaching. Novelties of any kind, whether apparatus or process, are best understood when seen. The working of some handy contrivance may be shown and explained in five minutes more satisfactorily than by an hour’s written description. And so this annual technical exhibition photographers generally are invited to bring forward novelties of every kind, from the simplest contrivance to the most elaborate piece of apparatus; from the most trivial modification in manipulation to the most important process. Not merely novelties are welcome, but any practical demonstration which can make more dear and interesting processes and things already known. Neither contributions to the exhibition nor attendance at the meeting is confined to members of the Society. All photographers, metropolitan and provincial, are invited to contribute: all are invited to attend.

At the commencement of this annual technical meeting two things have presented themselves, and threatened to destroy the project: one was a tendency on the part of some to bring forward secret processes, or patented articles, availing themselves of the meeting as a good opportunity of advertisement; the other was a tendency to run into lengthy discussions, which ran away with time, and did not permit opportunity for giving due attention to important matters still to be brought forward. By the adoption of a few prudent regulations these difficulties and their consequences have been averted. Everything novel or interesting in the way of process or appliance is permitted to be introduced, because a knowledge of the existence of such things, and a sight of some of them, may be useful to photographers; but secrets or patents belonging essentially to commerce can only be briefly introduced, and not discussed. Discussions, indeed, on any subject, are not permitted. The great aim of this one meeting in the year is to be practical, and to avoid running into talk. Brief written papers describing a process or thing are invited, and questions which may elicit fuller information on any obscure point are permitted; but expression of opinion, or discussion of any kind which might either waste valuable time or introduce matters, by the most reticent of photographers, is prohibited. It will be seen that such a meeting must be interesting, and free from any of the disturbing elements which slightly jarred at the first meeting of the kind held.

RULES OF THE TECHNICAL EXHIBITION.

To secure a satisfactory issue, the following rules have been drawn up by the Committee:
1. That papers be allowed to be read (which must be as short as possible, and as much to the purpose as can be written). Such papers to be sent to the Hon. Sec. on or before November 10th.
2. That opportunity be granted for practically working a process or making an experiment, consistently with the time at the disposal of the Committee.
3. That secret processes or patented articles, with the names of inventors and their objects, be only briefly stated by the Hon. Sec., or by a member of Committee.
4. That explanations be allowed, but only absolutely in reference to the practical uses of the articles shown.
5. That questions may be asked of exhibitors referring only to a clearer understanding of the subject, but that no dictum be allowed respecting objections or differences of opinion on any matter.
6. That all packages be delivered (free of charge) by five o’clock on the evening of meeting.

THE PHOTOGRAPHIC EXHIBITION.

LANDSCAPES AND REPRODUCTIONS.

The hanging of the pictures in the present Exhibition is, for the most part, judiciously managed; but it is inevitable, perhaps, that some frames must be hung too high, and some too low, for satisfactory examination. In the Exhibition now open in Pall Mall, it is a misfortune that some good pictures are so placed, and some to which, had not the exigencies of space, size, and other conditions prevailed, we were induced to pass as present without preference; or to give a place of more honour and prominence; Mons. Davanne’s “Bridge of St. Louis, Menton,” we may mention as a special instance. Several of those we now proceed to notice are in positions not favourable to examination.

Amongst the elevated pictures in No. 1 in the catalogue, entitled “The Nest,” by Mr. B. Wyles. Whether it is a direct picture or an enlargement, and whether a composition or a bit of nature—selected, not arranged—we cannot tell; but it is very charming in general pictorial effect.

“Thawing,” by Mr. F. M. Sutcliffe, a clever winter scene, is in a similar position. Captain Turton’s pictures 74 and 75, being hung somewhat low, are apt to miss the attention they deserve; a little higher, and the group of figures being most artistically and effectually placed. Four twelve by ten studies of ferns, or masses of growing ferns, by Mr. E. Fox, are very fine; and a frame of various subjects, of which we like “Sand Carta” the best (55), by the same artist, is also good. Mr. T. S. Catford sends a frame of views in Devonshire, with some excellent qualities; a “Rough Sea” being most effective. Mr. W. Collie’s frame of Hot Springs in New Zealand are good as pictures, as well as interesting from the subjects.

Mr. G. Manfield has several good landscapes, but they lose something of their legitimate effect, and look cold and naked, from the broad margin of cold, grey board on which they are mounted. A finishing line round the prints, or a mount placed over, with bevelled edge, even if the same colour had been used, would have increased the effect. The Rev. W. A. C. Atkins, a new contributor, sends several landscapes to the present Exhibition, all distinguished by peculiar delicacy and artistic feeling. Mr. G. F. Dew sends several landscapes, of which we like the “Old Ruined Bridge” and “Plane Trees” (222-3) best; some of the others have a slight tendency to look a little too heavy, chiefly from deep printing.
Mr. A. Ford Smith are distinguished by artistic feeling. Mr. F. T. Palmer sends some charming little pictures, of which 331, a "Hedge Sparrow's Nest," pleases us best. A variety of studies by Mr. J. C. Stening contains some pleasing pictures. Mr. Law's views of Didcot display great care, and are interesting. Messrs. J. Burton and H. H. Stedman are an upland Yorkshire subjects, of which the views of Strathard upon-Avon Church are best. Mr. J. W. Lunnley, Mr. H. Mousfield, and others also send some landscapes with good qualities. Mr. Woodbury sends a portfolio of very charming little landscapes produced upon plates prepared with the emulsion of the Liverpool Dry Plate Company; and other portfolios contain some capital California views, on a large scale, by Mr. W. M. Allen, a very excellent and interesting Chinese subjects by Mr. D. K. Griffiths, late of Shanghai.

The present exhibition is not rich in reproductions, but there are some very good examples. Mr. H. Dixon sends some very good copies of water-colour drawings. A marine portrait of the Vangard is not the ironclad which now lies deep in Dublin waters, but a ship of war of the same period, and dated 1588. The same photographer's fine print of the Galatea is a portrait of the present well-known ship of the Duke of Edinburgh, and these, and some other copies of pictures by the same artist, are very excellent work. Mr. England sends some very admirable reproductions from painting and sculpture; the excellence of his work caused the copies of the lithograph to be sold, and in many cases so poor. Mr. Hollery is fortunate in the class of work which falls to his hands for reproduction; and whilst many of the subjects tax all the photographer's skill to do them justice, they are worth of the effort; 194, a copy of a figure by—if our memory of the painting serves us aright—Mr. Albert Moore, is an admirable example.

Mr. Charles F. Smith sends an excellent copy of a picture, by Miss Inlay, sent in by the Fine Art Publishing Company, entitled "Stitch, Stitch, Stitch," illustrating Hood's Song of the Shirt. Some examples of the photography of gold and other lace, by Mr. W. Bates, are very interesting. Some reproductions for book illustrations, by the Woodburytype process, are excellent, and there is nothing finer of the kind exhibited than a ship of war reproduction of a print, entitled "The Bazaar," sent in by the Royal Engineers from Chatham.

A volume on the table, entitled "The Royal Academy Album," is a very good example of work, for which photography should be especially valuable, and has on the Continent already proved so; but in this country it has hitherto estranged strangely. This album contains a large selection of copies of the pictures exhibited at the recent exhibition of the Royal Academy. If the interests of painters, buyers, and art publishers could be brought into due harmony, such a volume, issued as early as possible after the opening of each year's Academy, as we have before intimated, would prove most valuable and interesting, a boon to the public, and an important source of profit to the painter, or owner of the copyright.

Mr. Alderman Nottage.

Although photography is but six-and-thirty years old as an art, and still younger as a field of industrial enterprise, it is old enough to have permitted some fortunes and many reputations to have been made in its practice, and it is with interest photographers to know that a gentleman well known in connection with their art has just achieved a civic honour which is generally a step to the first position in the first city in the world. Mr. G. Swan Nottage, of the Stereoscopic Company, has, in a warmly-contested election, been made an Alderman of the Ward of Cordwainer, by which title he is called to the impomptu position of a magistrate of the city of London. Mr. Nottage's competitor was Sir John Bennett, a recent sheriff of London, and a gentleman of indefatigable energy and considerable influence and popularity—circumstances which give the greater value to Mr. Nottage's success. The City Press gives the following biographical details in relation to the new alderman, which will interest our readers:

The new alderman is descended from the family of the Nottages, of Nottage, in Glamorgan, which is seated in Essex, in which county he spent his early youth. He was born within sound of Bow Bells. He is fifty years of age, and was married in 1851 to the eldest daughter of Mr. James Warner, belonging to an old Cheshire family. His residence is at Tulsehill, and his family consists of a son and daughter. He was afterwards for many years engaged in the large iron business of Mr. Robert William Kennard, of Rotherhithe, where Mr. Nottage is well known. Mr. Alderman Chaliss, who for many years represented the Borough of Finsbury in Parliament, and, strange to say, to Mr. Kennard and Mr. Alderman Chaliss served the office of Sheriff of London and Middlesex during the same year. The Alderman-Elect was, a few years since, a candidate for a seat at the Board of the Union Bank of London, which he lost only by a few votes, gaining, however, a moral victory by securing the support of a majority of 10% of the propoters. Mr. Nottage having from his earliest years evinced a great taste for the fine arts, and the stereo-scope having then been invented, he saw this instrument in connection with photography, and to try it, if brought out on commercial principles, a large and lucrative business might be established, and he at once threw the whole of his energies into the new enterprise, under the title of the London Stereoscopic Company, which was incorporated in the same year. The Great International Exhibition, purchasing from the Royal Commissioners, for a large sum, the exclusive rights of producing and selling the stereographs has developed the business into the largest and most modern sculpture, "The Sleep of Sorrow and Dream of Joy," by Monti, and Magni's celebrated "Reveling Girl," there exhibited, being secured by him from those eminent artists. Mr. Nottage is the only man in connection with this enterprise, has been published, under the mon de plume of "Periwig Junior," a series of amusing and trenchant sketches of character, and also having produced "The Shakespearean Diary," under the initials of "G. S. N."

PHOTO-MECHANICAL PRINTING IN PORTUGAL.

BY M. RODRIGUEZ, OF LISBON.

The specimens of photo-lithographs and photo-engraving which I have the honour to present to the Society are not all of them produced by the aid of bichromated gelatine. I employ just now, for making reproductions of medium size, bitumen of Judea dissolved in ordinary benzole to which essence of lavender has been added, so that the evaporation goes on less rapidly, and does not produce any inequality in the thickness of the film. It is indispensable that the film should be perfectly smooth and even. I employ for the purpose plates of sheet zinc, thin and well polishes, and as soon as the solution has been spread upon the surface of these, I warm them to a rather high temperature, until the odour of the lavender disappears almost entirely. I expose it in the sunshine in the ordinary way, only I rub the cliché first of all, as also the photographic film, with a little talcum powder, so as to prevent adherence. The development of the image is brought about by means of essence of turpentine, after the plate, which may have been hosted in the sunshine, is perfectly cool again. I plunge the plate rapidly into the essence, which is contained in a suitable bath, having a contracted bottom, to retain the impurities which may become deposited there. In some cases only a few seconds are necessary to develop a plate. The development should not be pressed to the farthest limits; it is completed in the time which elapses between the moment when the plate is withdrawn from the bath and that when the washing begins. The

* Read before the French Photographic Society.
operation of washing should be conducted as rapidly as possible by means of a strong and plentiful jet of water directed through a rose, so that the water covers at once the whole surface of the plate. After development the image is treated with very weak nitric acid, and then gummed and inked. If the plate is very thin, I make a transfer to 'stone', and then another upon a thicker plate. If a photo-engraving is desired, a metal plate of sufficient thickness is taken and engraved immediately.

This bitumen process, employed in the photographic establishment of the Portuguese government, is remarkable for the ease of the manipulations involved, and the uniformity and beauty of the results. Nevertheless, I ought to say that for pictures of large dimensions I always prefer the process of bichromated gelatine upon tin plates, the details of which I made known some time ago.

Among the specimens of photo-engraving which I have the honour to submit to the French Photographic Society there are some obtained by the aid of a new process which will, I hope, serve to produce, in an easy manner, typographic blocks with all the half-tones of the originals. The specimens which I have forwarded are incomplete, and my first experiments were only undertaken a few weeks ago; it is only natural, therefore, that by improvements, manipulations, and modifying the quantities of the material used, prints of a far superior character will be obtainable than those at present.

I mix some sugar of milk, a substance soluble in water or nitric acid—starch, carbonate of lime, or carbonate of lead, answering the same purpose—with essence of lavender and a little gum of judas, and brushe the same in a mortar until a perfectly homogeneous mixture has been obtained. I then mix a sufficient quantity of this paste to the solution of bitumen in turpentine, so as to have a sensitive compound of a convenient consistency. I cover my plate in the ordinary way, having a care not to produce too thick a film upon the surface. I then dry it in the ordinary way with essence, and then put the plate into the engraving basin containing weak nitric acid, similar to that employed in etching for the first time. The acid penetrates the resinous film by degrees, dissolving the substances destined to form a grain, and it acts upon the preparation more or less according to the thickness of bitumen, and this reproduces the half tones of the original. I have reason to be confident that the experiments have proceeded too far, and that the parts accidentally left bare, and which nevertheless form part of the picture, are protected by means of varnish or lithographic ink. The ink is then applied, and the engraving is treated in the ordinary way.

Before concluding, permit me to exhibit some reproductions made by photography of the cartoons of Sequeira, a Portuguese painter of note. These cartoons are of considerable value, emanating from an artist whose loss is deplored by all who appreciate works of artistic genius. The cartoons represent the Adoration of the Magi, the Descent from the Cross, the Assumption of Jesus Christ, and the Last Judgment. The negatives were taken by the government photographic establishment, and we shall now proceed to reproduce the pictures by a phototype process.

METEOROLOGICAL REPORT OF THE AGGREGATE OF CHEMICAL FORCE IN THE DAYLIGHT OF THE SOUTHERN SKY, FROM OBSERVATIONS MADE AT BLACKPOOL, IN LANCASHIRE.

By D. Winstanley, F.R.A.S.

The past week has been a dark one, torrents of rain having poured on several days almost without intermission. The daily average has sunk to 505 units, a lower average than I have previously recorded, and on one day (Wednesday) the aggregate of light descended to the exceedingly small amount of 72 units, than which in Blackpool I should apprehend we shall very seldom have a lower. In all probability the comparatively brighter weather will soon set in, when the daily average will, very possibly, exceed 1,200 units.

A ROLLING STONE'S VISIT TO PEKIN.

By D. K. Griffiths, Shanghai*

I found the natives of Pekin not so shy of the camera as the more docile southerners, and, no matter how retired the corner I selected for my dark chair, thousands of dirty, perspiring, and half naked natives would find me out, pressing around it and peeping into the window, quite obscuring the light by their fat, unmeaning faces. Expostulating was waste of time, and it would not do to display perplexity, so I became very indulgent, smiled benignly upon them, and even patted the head of a dirty atom of creation shaped like a baby—and, in short, took a general interest in the staring multitude; but it was of no avail. Time with them was of little importance—indeed, many lit their pipes, and seemed determined to pass the remainder of the day in the company of such a very entertaining foreigner.

The crowd, having satisfied its curiosity, got less pacific, and resorted to the playful pastime of pelting me with stones behind my back; and yells of "Yang-qulta!" amidst jeering calls, sounded on all sides of me, until the grand tableau was completed by a huge missile passing my head while in the act of focussing, smashing the glass to atoms. I then had resorted to a mild expedient which I have invariably found sufficient to disperse a Chinese crowd. I told the boy to fetch me a glass and a soda-water bottle, which were handed to me, the crowd instantly gazng upon every movement. Leisurely I removed the wire from the neck of the bottle, and with a loud report the cork flew away, and so did the crowd. This very harmless ruse had the desired effect, and I secured the sympathy of the laughter-loving portion of the crowd, while I in no way departed from the distinct display necessary to secure safety in a Chinese mob. The action on my part was usual, while their own ludicrous fear for the moment put them in a good humour with the mild and calmly indifferent occasion of it; so I afterwards sat and smoked a cigar without the slightest inuendo being offered, while my cooilies packed up for my return.

The next day I directed my efforts to the "Temple of Heaven," and dispatched my cooilies before me, riding quietly after them as the day was excessively hot; but when I arrived at the place of my operations I found my chair and cooilies were waiting outside, the gates being closed against them, and a multitude of idle Celestials collected to get a sight of the "barbarian of the western

* Continued from page 518.
October 29, 1875. | THE PHOTOGRAPHIC NEWS. | 253

I had to pay the gate-men two dollars to get the gates opened, and then felt satisfied that there was an end to my trouble; but—

"God in the nature of each being found
Its proper bliss, and sets its proper bounds."

And so in the nature of all things Chinese limits are set to our enjoyment of them; and I found my troubles but begun. There was another gate inside, and when the gate-men saw me advance, their naturally slow movements were stirred up to alacrity by thoughts of yang-teaen (foreign money), and rushing to the gates they succeeded in closing them in my face, the men, of course, stopping inside to levy another "squeeze," as exorbitant as the first. They would not abate anything under two dollars. A London tradesman could not be more firm in the principle of "no second price." I held out for some time, but thought it best to submit to the extortion, much against Ahao's inclination. I had to pay the same fee, or Osama would more aptly term it, "squeezing"—before I arrived at last in the enclosure containing the grand dome which was the object of my visit. It was two o'clock then, so I had enough to do to get the views I wanted and be back to the Tartar city before the closing of the gates at sun-down, and was only in time by hard riding to effect an entrance. Having completed my series of views illustrating the most magnificent part of my task was completed, and I now gave my attention to the surrounding country; and starting from the Sun-sha-men—one of the city gates—first taking a view of Pa-li-chwang Pagoda, en route, proceeded to the Temple of Pi-yuen-azure, where I put up for the night in a pavilion kept apart for visitors. It is enclosed in a courtyard which is tastefully laid out in Chinese style, and, in the midst of which is a temple, with a stone wall skirted with artificial rocks, through which dark, cool paths are cut, leading out at intervals to projecting crags or quiet nooks.

While the boy was getting ready my mid-day meal, I lit a cigar and wandered through those paths and clustering bamboo-groves; it was a quiet, romantic-looking little place, and those who laid it out well understood the picturesque. Rugged points of artificial rocks were brought prominently out by the clear azure of the sky, and a group of bamboo, or a thuy temple, here and there broke the sameness, and relieved their barrenness. Undisturbed, I here enjoyed the quiet until my boy announced that "Tiffin have got."

The inside of the pavilion was as inviting as the outside, and consisted of a large and handsome room with polished floors of a dark wood; there were windows of horn back and front, the walls were covered with a light paper, and the dais upon which they had placed my bed was covered with red cloth; a chair was placed ready for me by a small table, upon which a very inviting breakfast was placed; everything in and about the place was surprisingly (as it was unusually) clean, so I sat down with a hearty relish for what the boy served me to, and soon felt sufficiently well developed and fixed to commence work. There was no difficulty in getting the views I desired, the priests were very courteous, and there was no mob to obstruct my operations.

I remained three days in this quiet hermitage before returning by the temple of Woa-azure, where I stayed to get a negative of the "Sleeping Buddha;" then made a slight detour to get the ruins of Yuen-ming-Yuen, the Emperor's summer palace, and then put up for the night in a native inn situated in a hamlet close by, and early in the morning returned to Pekin, taking a view of Ta-cheng (the Great Bell) on my way. Great preparations were being made for the approaching marriage of the present Emperor, which has been graphically described by Mr. Simpson in the pages of the Illustrated London News, and to whom I had the pleasure of an introduction. It is unnecessary for me, therefore, to say anything of this peculiar ceremony, and I only refer to it as presenting another difficulty to my operations. Indeed, I believe most of the determined hostility I met with in the northern capital resulted from the jealous care of keeping the "barbarian" from practising his black art to the possible detriment of the "Son of Heaven." And it is just possible that many of the sons of Ham will attribute his early death to a secret influence exerted upon him by the subtle witchcraft of the professor of the dark secrets.

Dr. Dundee, of Pekin, has since published a work in Chinese, giving a concise account of the entire manipulations of the photographic art; and as Prince Kung has written its preface, great good may result by its distribution; but amongst the vast millions of the ignorant their primitive distrust of the wonderful art and its mysterious working must remain a serious obstacle to the safety of the manipulator. Travelling in China is at present dangerous under any circumstances, but is increased considerably to a worker in our art science.

PHOTOGRAPH WORSHIP.*

Who would not be a Queen, a Princess, an Archbishop, or an actress, to be in the picture—having been photographed—to draw crowds, even in this dead out-of-season time, to gaze upon and buy your picture? What infinite charm the gay-loving eye appears to gain in the contemplation of those photographs of pretty women which so beautify the most prosaic and monotonous of rural or town, or even of the west, or in the workaday city—which can produce any possible or impossible reason for having them there. And that huge emporium in Regent Street which mixes up, in such delicious confusion, the pictures of the spiritual and the temporal, what hosts of itinerant crowds pass at its windows, and gaze enraptured on the coloured realism of the best fancied actresses and photographs of men, it is true, but the demand for seeing them is like the proverbial angels' visit, nor, indeed, as a fancy piece of living work, does a man colour up well enough. A male dancer in a ballet is never charming; his face is always rough and worldly, his hands are always coarse and red. Women, in a theatre, scarce ever criticise the form and feature of a man; but the bosom or hair of a love-sick comedy heroine, or the leg and arm of an extravagant extravagans princess, have always a potent charm for the remarks of their sisters among the audience. So women loiter, most of all, before this photographic shrine. So motley, yet so picturesque; its very multitude of mixed subjects gives a zest to the onlooker, for when the eye wearsied for even the vision of human grace and beauty in all its impassions, it will quickly jump to thelegends of that happy old shop, a bishop jumps on the same panorama of faces, and he is succeeded by a Clara Morris whose shadow upon the background of her cartes looks more like a Scotch terrier sitting up and begging, than the shadow of an excellently formed piece of female humanity. Then if the uninterrupted view of pink stockings, yoleep tights, lifts the eye and mind into the fairy region of roooping, soaring barouque; if a Nelly Moon, or Kate Sankley, figure at full length; or a Mrs. Roushby, or an Ellen Terry, show only intellectual faces, you can wander to the more domestic scene of a duchess watching over a sleeping baby! There is food, in these tinted pictures of female beauty and extravagance, for every frame of mind. We conjoin with our minds, as we gaze, if, in real life on the real stage, the eyes of our mortal fancies is as smooth and mellow in its colour, and we try to recall if the costume we seem to recognise is half as bright and well-looking as it appears now. Or, haunted by the beauty of this photographic ideal, we resolve to rush off and see the real, and see it, too, not in the meagre pretty view as shown on a card, but in real size. All things are lovely in this lovely stage world! Where had these come in the great mystery of all—do passions, and royal children, and countesses (or is there

* The Mogapple.
only one countess who figures in the shop windows, rare type of English beauty?) and actresses find time to sit in innumerable positions, in innumerable dresses, and be photographed? With ordinary members of the human families, a visit to the dentist or to a photographer’s studio is held as being almost synonymous, the tooth-drawing, perhaps, being quicker and less irritating to the temper. It is profoundly wonderful, all this. Then, who buys these? Ah! the bachelor has his rooms, while yet they are bachelor’s rooms, hung with them; and the lover of the drama selects the picture of her who, to him, interprets best the true poetry of her art. Nor do they live alone at home: in far Japan, these painted studies of the draped and nude occupy their honoured row in the wares of the shop where young jinns, as performers, might be purchased. There, nature earns her name. A great sport is excited at the numerous mistakes of the operator, or the overflow of the gilded trough. Now suffer the penal servitude of these non-paying mercantile El Dorados. You will find them in the basaars in the cities of India. Such is the love for them, such is the worship of them, that every trade dips into them, and the chemist, who does not see his way to sell them themselves, sells his or his sister’s cosmetic! But the human eagles, whose prey is a long gase at beauty—and beauty unadorned is adorned the most—are always to be found gathered where their treasure is, and it is the proper study of man, which is man, or of woman, which is woman, the casual strayer down Regent Street copies a knot of people at a shop window, he or she will be safe to conjecture that the attraction is a display of photographs of actresses, to be possessed, as the announcement runs—plain, one shilling; coloured, two shillings each!

But, in this worship of the photograph, is there not concealed the germ of a taste after art? Laying aside the meretricious element which undoubtedly pervades this worship, still it is the artistic rendering of photographic art. The camera blinks, it blurs, it blends, and has colour, which attract and fascinate the eye. It is the nearest approach, in the absence of the actual reality, to the realisation of the beauty of human beings. It is high art, unquestionably, the manner in which these photographs are produced, albeit that in perhaps too many cases they tell “a flattering tale.”

PERFECT WASHING AND TESTING FOR HYPOSULPHITE.

BY PROFESSOR H. VOGEL.*

A short time ago I paid a visit to a dealer’s where I am in the habit of seeing a grand display of photographs. To my astonishment, the show was very small, and the owner explained to me that he had been compelled to reduce his stock of pictures very materially, only keeping a supply, indeed, of pictures greatly in demand, and supplying others when they were ordered; for he had suffered, he assured me, great loss from keeping photographs in stock. He then showed me a number of large pictures, coming from different firms, all of which had been more or less attacked with “yellow fever.” I suggested that perhaps his warehouse was not very dry, and he then told me that he had found pictures in packets some of which were attacked in the way I have mentioned, while others were quite free from any such defects; and this happened, he stated, continually, although, when he had paid sufficient attention to the operation of washing their prints.

More surprising experiences came to my notice when I recently paid a visit to Copenhagen. One of the very first dealers in the city, whose pictures were, for the most part, views from the neighbourhood, showed me hundreds of pictures which had been attacked with yellowness. They seemed to have less samples in Copenhagen than in Berlin, for I was informed that these yellow photos would all of them be sold—indeed, there were none others for sale.

I have myself seen pictures coming from studios of the most trustworthy character afflicted with yellowness, and under circumstances where the fault could not be attributed either to the card mount or anything else. I have been called the attention of the photographer to this defect, but nevertheless it has not ceased to make its appearance.

“I have a most excellent washing apparatus,” a photographer once wrote me in reply, somewhat brusquely, to my well-meant remark; and, indeed, there are very many who believe that with a “good apparatus” nothing else need be thought of. A great many mistakes are in this, and it is the constant flow of water. Two hundred pictures—say they are permitted once to remain in my work-room during the night in flowing water, and this happens. I found, hyposulphite afterwards; a similar number were carefully separated by half every hour for the space of a couple of hours, and these proved to be free from hypo. Large pictures, full-sheet size, I have been able to wash free of hypo in an hour.

Some readers may, no doubt, ask how it is possible to know if the prints are properly washed or not. The test is made by running cold water through the paper, and if the water runs clear, the print is washed. The test is a very simple one, and as it is not generally known, apparently, I will describe it once again. A solution is prepared of one part of iodine in twenty-five cubic centimetres of water; this is taken, for the purpose of making a test, half a cubic centimetre of this is made to be immersed in the same being diluted with one hundred and sixty cubic centimetres of water, and forty cubic centimetres of a very thin solution of starch.

The starch is made by taking a test-tube and putting into it a pinch of starch powder, and about fifty cubic centimetres of water. The starch is shaken up with the water until a very thin milky fluid is prepared, and this is brought almost to boiling point. By mixing together the starch and iodine solution, a blue starch liquid is made, which to every cubic centimetre there contains forty of iodine. The solution, if kept well corked in dark bottles and treated with twenty grammes of iodide of potassium, will keep good nearly a month.

If, now, it is desired to test whether pictures have been properly washed, the prints are carefully taken out of the last rinsing water with scrupulously clean hands; two clean test-tubes are taken, and into each is put one cubic centimetre of blue iodide of starch, and one of the test-tubes is then filled up with the rinsing water to be examined. If the latter still contains hyposulphite of soda in appreciable quantity the iodide of starch is perfectly blue, while if the prints have been washed, then the iodide of starch in the tube containing the water under examination has become paler.

* Photographische Notizen.
This description which I have given sounds far more complicated than the affair really is. I have always a couple of test-tubes handy, which I use for no other purpose than for testing; these have two marks upon them, the lower one indicating the height of the starch solution, the upper the amount of wash-water to be examined. Both test-tubes should be as nearly as possible of the same calibre.

Water which contains but one millionth part of soda has a perfectly visible bleaching action upon iodide of starch—a good proof of the accuracy of this test, which every photographer should repeat with regularity, in order to know whether his assistants have washed their prints properly or not. No one should neglect to make such a test.

The iodine starch may be used also for the examination of other materials, such as the presence of hyposulphite in mounts and cardboard. Three carte-de-visite prints are cut up small, and put to soak in a vessel of pure distilled water for about half-an-hour; the water is then examined in the same way as I have indicated above. If the blue starch solution is bleached in any way it is a proof that hyposulphite of soda is present in the cardboard. As the test is a most delicate one, it is obviously very necessary that the hands and the glasses employed should be scrupulously clean.

I may remark, moreover, that even with careful washing of the prints, and the employment of pure cardboard, pictures do become yellow at times in the event of their having been imperfectly fixed. Such a contingency may seem quite impossible, and yet I know the case of a careless printer who used to set several hundred carte-de-visite into a small bath of hypo to fix, the capacity of which sufficed for but five prints at a time. The first batch of prints fixed were perfectly good, but the last were yellow in four weeks, notwithstanding the thorough washing to which they had been subjected. A picture of full-sheet size requires, to fix it properly, four to five grammes of hyposulphite of soda.

Correspondence.

WORKING PHOTO-COLLOGRAPHY.

*Sr.—I have lately been trying my hand at Captain Waterhouse's photo-mechanical printing, but have met with very poor success, and I come to you thinking you may help me out of my difficulty.

I believe I have followed the directions given in Captain Abney's book, but I found it impossible to add the bichromate to the gelatine and tannin solution without making a mess, as I have since found explained by Capt. Waterhouse in the *News* (Vol. XVIII. p. 428); and I have since contented myself with the double operation. I made an actinometer as recommended by Captain Abney, only, not being able to procure the yellow oil silk, I used the green, and exposed until a figure printed on ten thicknesses was well defined on a piece of sensitive albumenised paper (not fumed). This will give some idea of the exposure. The back of the plate was then exposed on a piece of black velvet for fifteen minutes on a dull day.

Upon immersing the plate—a half tone view—in water, the image was distinctly visible, even in the most minute details, and the relief was quite perceptible to the touch. Everything that thus appeared quite successful, but upon applying the dabbler with the litho-ink I could get no trace of a picture. I then removed all surface moisture with blotting paper, and tried again. The ink now adhered to the whole of the plate, blacking it all over. Thinking perhaps over-exposure was the cause, I tried again, and stopped at the eighth thickness of silk, and only exposed the back for two minutes, but with no better result. The gelatine I used was Nelson's opaque. Is this suitable for the purpose? Was the exposure possibly too short? I can scarcely think so, as the print was so beautifully sharp and raised (or, more correctly, sunk) in the film. What length of soaking is required to eliminate all the bichromate; and if this is not thoroughly done, what effect would it have in the after processes?

I am sorry to trouble you with this long story, but I should be very glad of any information you can give, or refer me to any printed particulars in the *News* or *Year-Books*. I have looked through all I have.—Yours truly,

Teignmouth, Oct. 25th.

W. R. P.

We print our correspondent's letter for the purpose of eliciting information from any of our readers who may have had experience in this direction. The difficulties encountered by our correspondent are similar to those which beset almost all beginners in this direction, and can only be overcome by experience. The experimentalist must remember that he is engaging in a new branch of technics for the pursuit of which his previously-obtained photographic knowledge and skill are scarcely of the slightest use, and patience and repeated effort are necessary—with, possibly, repeated failure—before success can be anticipated. So far as we can judge from our correspondent's description, he gives over-exposure rather than under-exposure. One of the most troublesome tasks to the novice is "inking up" the printing surface. It is very important to gain an opportunity, if possible, of seeing this done by an expert. When a properly exposed film has been obtained, the inking requires great care, and so great some manipulations and applications of the ink are required to get the surface in a working condition. The object of washing away the unabsorbed bichromate is obvious. If this were not done, it would all become insoluble together under the gradual action of light. When the washing water is no longer yellow, the bichromate is removed.—Ed.

SOUTH LONDON PHOTOGRAPHIC SOCIETY TECHNICAL EXHIBITION.

*Dear Sir,—Will you kindly permit me to announce that the Annual Technical Exhibition Meeting of the South London Photographic Society will take place on Thursday evening, November 11th, at seven o'clock, in the large room of the Society of Arts, John Street, Adelphi.

Any one who has anything new and useful for photographic purposes is invited to exhibit and explain the same.

This would facilitate the business if intending exhibitors would communicate with me previously, and that all articles be sent to the place of meeting before five o'clock on the evening of November 11th.

Admission being free on this occasion, all photographers and others interested are invited to attend.—Yours faithfully,

Edwin Cocking, Hon. Sec.

57, Queen's Road, Peckham.

Talk in the Studio.

TRADE PATTERNS BY PHOTOGRAPHY.—Mr. J. W. King, an amateur photographer, has conceived the happy idea of rendering photography available in his own business as a jeweller, by sending out photographic patterns, which are most admirable fac-similes of the original, in design, texture, and general effect. He contemplates issuing a monthly series of such patterns of jewellery, such as lockets, brooches, bracelets, &c., which may be given to photographers, to select for portraits, and dispose of in their ordinary course of business. The project seems to be a good one, and will probably succeed. Mr. King's photographic patterns are admirably executed.

Trees by Photogravure.—At the Surrey Sessions, Morris Gouldbergs, aged 39, a dealer, was indicted for that he did on the 21st August expose a large number of indecent photographs for sale in the Lower Marsh, Lambeth, and with attempting to corrupt the morals of youth. Mr. Baggallay, instructed by Mr. B. B. Pollard, jun., appeared to prosecute on behalf of the Treasury; and Mr. Lilley appeared for the defence. The jury found the prisoner guilty. Mr. Lilley said as this was an in-
W. B. R.—We are not familiar with the parlable studio in question, and cannot, therefore, give an opinion on its special fitness; but there need be no difficulty in constructing such an arrangement. It depends upon the construction of the place in the open where it will be most convenient to you to place your sitters. If you can secure a wall shelving the sitter from the south, then a backboard with canopy extending about five or six feet, will enable you to obtain very good results. If you find any special difficulty, describe the conditions to us, and we will try to help you.

Robert E. Sprout.—There is no pamphlet on the Albertype process published in the English language, but many articles on the subject have appeared in our pages, and in our Year-Books for 1871, 1872, 1874. The latter contains the text of M. Albert's French specification. The details would require too much space for repetition in this column.

S. G.—Mons. Daguerre, of Paris, is the chief producer of the microphotographs to which you refer. There is no work devoted to the subject that we know of. Various articles have appeared in our pages from time to time on the subject. In our seven volumes you will find several articles on the subject, and a description of a camera for producing them. We believe that some photographers in England produce them, but we are uncertain.

Mr. A. Reeves, of 17, Bolford Street, Plymouth, did at one time produce them; whether he does so now or not, we do not know.

J. W. (Rotbury).—The stains on your prints are produced by imperfect fixation. The hypo solution is too old or too weak, or the prints are permitted to remain still in the fixing bath, and so stick together due to cohesion. Most probably, however, you use your fixing bath over and over. The prints have all the appearance of having been fixed in an old acid, exhausted solution. The result is imperfect fixation; unstable; insoluble hypo-sulphite of silver is left on the print, which decomposes under the action of moisture and light, and causes the brown and yellow stains in question. When you blot the print, or allow it to dry, the insoluble remaining hypo-sulphite of silver acts as a protecting agent against mildew, which is in reality a fungoid growth. The precise proportion is not important; a small quantity, much smaller than you have used, should suffice. It is probable, after treatment with carbolic acid, that the prints will not suffer again. But, prints had a tendency to over the three years, and probably hung on a damp wall, should not have been returned because of mildew, which is not in any sense a specially photographic defect.

Atmelkvans Burell.—There is no work devoted to the powder carbon process. It has been repeatedly described in our pages. A process used by A. Palffey is that patented by Mr. Window, and described in his specification. Full details on page 243 of the fourteenth volume of the Photographic News. We regret that we have not time to write private letters in answer to questions from our readers.

B. L. D.—It is not necessary, in increasing the proportion of acetic acid in the same ratio as the iron salt, in making a strong developer. A 50-grain developer need not have more than twenty minims of acetic acid. A weak developer, on the contrary, requires an extra proportion of acid. A 12-grain developer generally requires about twenty minims of acetic acid.

Several Correspondents in our next.

PHOTOGRAPHS REGISTERED.

Mr. J. Cawley, Streatham. Five Views of 'Earl's Court House.'

Mr. J. Laing, Stockbridge. Two Photographs of Sir Walkin W. Wyne.

Mr. F. Schmetzer, Ipswich. Photograph of Mr. Joseph Arch.

Mr. L. Wykes, Dover. Two Photographs of Captain Matthew Webb.

Mr. Robert, Bristol. Two Photographs of Model Schools at Bristol.

Mr. O. Stomps, Portsmouth. Photograph of the Royal photographic Group of Officers of H.M.S. 'Sapling.'

Mr. C. Krans, Ryde. Photograph of the two Denzalls at Carisbrooke Castle.
POPHOTOGRAPHIC NEWS, November 5, 1875.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PRODUCTION AND PRICE OF DRY ALBUMEN.—AN EBONY DYE FOR WOOD.—SEPARATION OF SULPHUR FROM ALBUMEN.

Production and Price of Dry Albumen.—Our readers may remember that a little while since we called attention to the difficulties which often made the production of dry albumen or eggs in a dried condition. So promising were the results obtained, that essays were at once made to produce the material for commercial purposes, and at the present moment there are, we find, several large producers of this desicated albumen. One of the most important of these is the Effer Factory, in Passau, on the Danube, where we are told to expect large quantities of the new material now obtained. The contents of eggs are to be had in commerce in powders of three kinds, one of which is the result of drying the egg-matter as it comes out of the shell, the second consisting quite pure white of egg, and the third a powder representing the yolk alone. Egg-powder of the first description may be employed in the pastrycookery exactly as the cream of milk is used in soups and the like, whence it comes to be divided into very small powders, and employed in the mixed with flour or sugar, to produce a more or less dry cake. The powders are well received, and good for the purpose intended, and not at all of the egg-powder price. The powders have the additional advantage that in taste and smell and material resembling freshly-broken eggs. The only noticeable difference is, that on being beaten not so much froth, nor is it so lasting as that from fresh eggs. If, therefore, the egg-powder is to be employed for purposes in which a stiff froth is required, a little fresh egg-white must be added. The powders, as we have said, is quite equal to that prepared straightforward from eggs, only it is a little whiter in colour.

In mixing the yolk-powder, too much water is added; but in the case of the white of egg, with which the photographer is the more interested, three teaspoonsfuls of cold water must be added to every half-spoonful of albumen powder. This forms the normal strength of egg albumen, and photographers would then dilute it to any degree they desired. For most of their wants the albumen is required in the form of a clear, transparent solution, and for this reason distilled water should be employed for mixing with the powder, and afterwards diluting the solution. For albumenizing paper this preserved white of egg is, according to the Deutsche Industrie Zeitung, perfectly suitable, as well as for industrial purposes. The white of egg-powder is, apparently, in demand, as is said of the other two descriptions of powder, for the price charged for it by the manufacturers is considerably higher. The white of egg powder is sold at one mark (one shilling) per 100 grammes, while the other powders may be had at the rate of eight pence. In respect to the comparison of these prices with the cost of eggs, it may be mentioned that Messrs. Goedel and Proust have determined that the yolk from a fresh egg weighs in all about fifteen grammes, of which 52-65 is water; while the white of egg in one shell weighs on an average 25 grammes, and contains as much as 87½ per cent of water. The 100 grammes of white of egg powder, which costs a shilling, may, therefore, be said to equal the albumen from at least an acre of eggs, so that it is a profitable transaction, in any rate, at any rate, by which we mean to say that the albumen in this form under most circumstances. As our readers are aware, Dr. J. Schauss, of Jena, has already borne testimony to the value of the dried albumen in the preparation of dry plates; and as it can be employed in small quantities at a time, there cannot be a doubt as to its being economical to use. The photographer employing the powder might be sure that he has in his hands a material which does not vary in quality or composition; and when prepared in solution it keeps good quite as long as the ordinary white of egg solution.

EBONY WOOD DYE.—We think that many photographers will be thankful for the recipe for dying wood a deep black which M. E. Lauber publishes in Dingler’s Polytechnisches Journal. Photographs mounted in a dark frame always look well, but it is sometimes to know how a plain wood frame can be turned into an ebony one. Moreover, the dye which M. Lauber recommends for wood staining has the great advantage that it may be applied cold, and, therefore, there is little fear of the wood warping from an application of the liquid, supposing the material has been well seasoned to begin with. The following is a solution of logwood in hot water: to the first liter of the first place, and to every five liters of it is added two and a half liters of a solution of crude acetate of iron and half a liter of acetic acid. The whole is then warmed up for a quarter of an hour. For light woods the solution should be slightly diluted with water, and as the mixture is applied cold, no special precautions or appliances are necessary.

Separation of Sulphur from Albumen.—Some years ago, the separation of sulphur from albumen was raised by several photographers, and Captain Abney among the number, as to the possibility of separating the sulphur from the albumen with a view of getting rid of many of the evils inherent to albuminized pictures at the present day. There is not a doubt, of course, that the traces of sulphur which exist in all egg albumen has an injurious influence upon silver prints, and, therefore, it is the general idea that if it could be got out of the prints has been produced for years; for most photographers agree that the hypo-sulphite employed in fixing prints may be, and is, totally removed by careful washing. The question is, whether the sulphur is absolutely inherent to egg albumen, and forms an integral part of its composition, and whether, if this element were removed, the properties of albumen would suffer? Efforts have already been made by chemists to separate the sulphur from albumen, and Captain Abney himself has, as we know, undertaken a series of chemical experiments to this end; but, as yet, we believe, no success has attended the efforts of investigators in this direction. That the separation of the sulphur seems really possible, in some degree, at any rate, is to be inferred, however, from some interesting experiments made recently with albumen by M. Schützenberger. This chemist has ascertained that pure albumen, when coagulated by heat, always leaves a small soluble residue amounting to from five to seven per cent of the albumen in the first instance. This residue, he tells us, is of a yellow colour, has a bitter taste, and what is most important to us photographers, contains no sulphur. Whether, however, on coagulation in this way the whole of the sulphur is separated, we are not informed; but it is something to know that, under certain circumstances, sulphur may be isolated from albumen. Of course it would never do to have one's albumen coagulated, but Schützenberger's experiments, nevertheless, warn us plainly that we need not give up all hope of solving the problem in a favourable manner one of these days. We shall be in a position before long, we trust, to purchase our albumen not only in the form of a dry powder, but free from sulphur also.

FRENCH CORRESPONDENCE.

KLAHY'S MODE OF LIGHTING IN THE STUDIO.—A BOOK ON RETOUCHING—HOW TO MAKE RETOUCHING VARNISH—RETOWCHING THE REVERSE OF A CLICHE—PROTECTING A RETOCHE Cliche.

A few days ago I received from a photographer of Alger (M. Klary) a note in which he advised a copy of a book that he has just published upon a new system of lighting, and he asked for my opinion on the subject of his scheme. The pamphlet was accompanied by several specimens taken under circumstances that he described.
I was, in the first place, much struck by the beauty of these specimens, and it was with considerable pleasure that I opened the little work, entitled "Application of a System of Illumination to Photographic Portraits by Means of an Apparatus for Regulating the Light." I found that both the system and apparatus described were of the simplest character, although, as a matter of time, they were based upon a profound knowledge of light, evidently the result of long and persevering studies. I am not surprised to see that, in publishing the fruits of his works, M. Klärty extracts from his brother photographers a small, but at the same time well-merited, recompense to recoup him for his pains. The book is intended for the use of licencieux, and therefore, I do not regret the expounding of the small fee they are called upon to contribute. If I express so powerful an opinion on the work, it is only because the same is shared by the most competent, who are in positions to judge well of its merits. MM. Leon Vidal, Francck de Villecholle, and M. Liebert all agree in rendering this homage to the work, and have publicly expressed their favourable opinion of it. For myself, I bear the testimony all the more sincerely, as the object which I hold in my hands are truly admirable in every way, while the manner in which the light is made to do its part gives them quite a special aspect. I will forward you a specimen, so that you may see that I have not exaggerated in singing the praises of M. Klärty's system.

Another book which will not fail to be well received, because it responds to a want which has been general for some time past, is "Photographic Retouching, by a Specialist." The editor of this little work is M. Carette, and he gives two illustrations from one and the same negative by M. Luckhardt, of Vienna. One of the pictures is a print from the negative as it is fixed and varnished, the other the same cliché treated according to the method described in the work. In the second case there is neither a secret in question, and there is no need, therefore, to suppress any of the contents, and I will, for this reason, quote a few of the useful hints which the book contains.

The author advises that the clichés should not be retouched until varnished. The best plan is to obtain a brilliant and solid surface of varnish in the ordinary manner by heating. In no case does he recommend employing a varnish applied cold, which gives a matt surface, and which has the fault of becoming stained, and showing a grain more or less pronounced, while, at the same time, the film is not so hard. He recommends the use of a varnish thus composed:

A.—Absolute alcohol 80 cub. cents.
Powdered sandarac 16 grammes
Turpentine 5 cub. cents.
Essential oil of lavender 2

B.—Absolute alcohol 22 cub. cents.
Ether 2
Powdered camphor 5 grammes
Distilled water 10 cub. cents.

The two solutions are mixed together, and allowed to remain for a few hours; the mixture is then filtered through paper before being used. The dissolution of the gum sandarac takes place very easily in absolute alcohol, and the addition of water to the alcohol in the second formula has the effect of rendering the varnish less thick and less opaque. As it gets older the varnish becomes harder, and it is necessary that the hardness of the crayon should correspond to that of the varnish. In those parts where the crayon does not take very well the film is rubbed with a little finely powdered pumice, or sulphate of baryta.

Very excellent results may also be obtained by varnishing the reverse of the cliché, and then lightly rubbing the cliché with pumice, which are afterwards retouched by stumping them with crayon pencil, or with fine pumice powder, the same being applied either with a stump or a tuft of cotton wool. In the case of a vigorous negative treated with pyrogallic acid, the pencil is not always sufficient, especially in the very transparent parts. In this case the specialist recommends the employment of Indian ink diluted with water and gum arabic to which a little glycerine has been added. By adding more or less gum you may increase or diminish the intensity of the colour, which is applied by means of a brush, taking care that it will take upon the paper slowly, and add thereto a little oil of turpentine; this is filtered well, and applied to the negative either in a warm or a cold state. The film is allowed to dry away from the dust, and then you proceed to retouch with the pencil, or the brush, after a day or two has elapsed. When the retouching is finished, you varnish the negative a second time with ordinary varnish, heating the cliché slightly. This second film of varnish completes the protecting of the specimen against the wear and tear of much printing. A natural treated in this manner may be aponged without fear of injury.

The author thus passes in review all the details of the important operation of retouching, and describes with clearness and precision the practical manipulations involved. The chapters are well arranged, and are devoted to retouching negatives by means of collodion tinted with aniline according to the plan practised by M. Fritz Luckhardt, of Vienna.

In conclusion, I may say, that such a book as this ought of necessity to form part of the library of every photographer. — Ernest Lacan.
years, and comparing them with the photograph. The result of this investigation was that unless the portrait were that of Sir Michael Costa or Lord Macaulay, I must give the matter up for a bad job. Meanwhile, my nephew, who is an amateur photographer, volunteered to remove all my doubts by applying a test only known to adepts in his art. I assented with reluctance, fearing that he would find something to object to in the portrait which might injure its likeness to the original. So it proved; for here was another action of some strong chemist, and all that turned it to me in a few days fainter and more colourless than ever, even more so than before, but with the confident assurance that he had established, beyond all question, the fact of the portrait being that of Charles Oman. But by this time I had lost all my confidence in human judgment, and there was nothing to be done but to cut the candle at both ends and have an argument of the subject between the two, and at present I am divided between Mr. Frith, the painter, and the late Sir James Brooke, Rajah of Sarawak. Oh, sir! I do—do tell me what course to pursue in this distressing dilemma. Upon your infallibility, as Editor of Fanny Folks, I rely as a last resource. I cannot come to London just now, and the portrait is too valuable to trust out of my own hands. I shall, therefore, greatly obliged if you will come down to Ennismore, and spend a few days in trying to elucidate the mystery. Your travelling expenses need not be more than five pounds, and there are some central hotels in our neighbourhood. Come—come! and by your wisdom restore peace to the distracted mind of your most attached

QUENTIN QUANDARY.

"We fear we must decline our correspondent's hospitable offer. We must transfer him to the Editor of the Photographic News, a courteous gentleman, with a venomous love for his art, and a versatile style of dealing with it. He would, no doubt, go any lengths to solve so interesting a problem, and be glad of the opportunity. If not, we can only advise our correspondent to reduce the number of his candidates to two, and then settle their claims by Metallic Arbitration; in other words, 'toss for it.'—'En. F. F.'"

[Of course we appreciate deeply the estimate formed by the Editor of our contemporary of our devotion to our art, and are duly grateful; but we must, in fear, decline to go to the extremes he suggests.—Ed. Phot. News.]

PORCELAIN COLLODION.

By N. D. POKHORNY JORAVA.*

Try this collodion, to which I have myself given the name of porcelain collodion, is prepared by mixing together Collodion, with 1⁄4 per cent pyroxolin 80 gr.

Gum myrrh 100

I allow the gum to dissolve, shaking it from time to time, and then let the mixture clarify by standing. By spreading the paint upon glass, as in the case of ordinary collodion, a uniform white film is obtained, having the appearance of ivory or fine porcelain. Transparent positives upon glass have a most charming effect with this collodion, and gain much in harmony and detail, whatever examined by daylight, or by means of a lamp.

The porcelain collodion may be used for several purposes; if, for instance, it is covered with two or three applications of varnish, the film becomes very firm and stable. A glass plate covered in this way with a film of the collodion may be substituted for the ground in the camera, and answer very well for focussing with.

The collodion may also be coloured with the aid of aniline, dyes, and, so tinted, may serve as a basis for transparent positives, to which it gives a slight and charming effect. Upon the subject of colouring the film in this way it is impossible to give much information; but, as the aniline pigments dissolve readily in spirits of wine, it is easy to obtain an alcoholic solution of any of the tints. This solution is then added, drop by drop, to the collodion until the desired depth of colour has been attained

PRACTICAL PORTRAIT PHOTOGRAPHY.

By WILLIAM HENSEY.

CHAPTER XXIII.

THE RECEPTION ROOM—HINTS TO SITTERS.

Although it is necessary to attract customers to our gallery, it is of greater importance that we retain them when we have secured their attention to our work; therefore our great care should be to satisfy them in the quality of the picture, rather than to gain a transient victory over their senses by a display of elegance in the fittings of the "reception room." I do not at all hold with a slovenly, or even room for this purpose; but if the house be furnished at the expense of the skylight and its apparatus, nor be bedecked with money that would have been wiser spent in making complete the working departments of the business. The attraction should lie in the quality of the pictures produced, and success will be lasting.

The reception room.—Let this apartment be thoroughly cleaned and under the scheme of a lively, cheerful, and business-like direction. A large store of "expression" may be always secured. From a business point of view, I am decidedly in favour of a gentleman having control of this department—one who thoroughly understands what can be done, and what cannot, so that rash promises are never made. A man, too, has more influence over the wavering mind of the sitter, and can often induce a larger order than was originally intended.

Judicious choice of furniture and fittings, and the exercise of taste in arrangement, will often produce a most charming effect with comparatively little expenditure.

Let your furniture be good of its kind, avoiding tumbledown gorgeousness and treacherous "elegance" of upholstering. If you have the artistic feeling a photo-studio should have, you will purchase what is most suited to the carpet, wall decoration, pictures, curtains, furniture, and surroundings. The harmonious and tasteful effect.

Specimens of the work of the gallery should be hung in frames on the wall, and especially should be prepared one of the different styles from which customers can make a choice. This specimen frame may be numbered and correspond with a duplicate copy in the sky-light, so that a number on the sitter's order will indicate what is required. Here the artistic knowledge of the reception room attendant is brought into play, to suggest a suitable style, or to urge against the selection of an unsuitable.

A glass show-case is necessary for the preservation of coloured work, frames, mounts, passepartouts, &c., and a table for specimens, books, newspapers, magazines, and albums, for the beguilement of customers waiting their turn for sitting.

Little accessories—as, for instance, a fountain, flowers, or a case of ferns, a singing bird, &c.—may be introduced to form a very pleasant feature, and tend to do away with a great deal of the business-like character of the room. Bedrooms and dressing rooms and looking-rooms should be nicely fitted, and kept scrupulously clean and well tended. These necessary rooms are in so many galleries not only very imperfect in arrangement and thoroughly inconvenient, but in such out-of-the-way places as to be almost a protest against the necessity for their existence; whereas they should really be as well furnished in every respect as is possible.

BUSINESS HINTS.

In photography much depends on the impression produced on the minds of sitters by the manner in which they are received, and the surroundings of the gallery. The first and most lasting impression is made in the reception room, therefore it will be only necessary here to remind you of the importance of cleanliness, neatness, politeness, and of the manner alluded to elsewhere as tending so much towards setting sitters at their ease, and charming "expression" (that bane of the photographer's existence) into sweetest serenity.

Appointments should be encouraged; and in the order, regularity, and absence of hurry attending them, when strictly kept, the old adage, "time is money," will be more than ever true. With the undoubted uncertainty attending, will pass away. The convenience and benefit to sitter and artist alike will surely be recognised by all who try it.

A sitter's order book should be kept. The handiest form is a book with pages perforated down the centre, the out-

* Moniteur de la Photographie.
side half of each page (numbered consecutively) forming a receipt to the sitter, and containing the number of pictures required, style, and the date and time of appointment—"the counterfoil" being retained in the book for reference.

Re-sittings.—This is a question on which there is a great difference of opinion, and one on which a great deal may be said on the side of the public and the photographer—especially the latter. If the picture is a bad one, of course give another sitting; if a good, but unsatisfactory, I think it is better to give the demanded second, or third, or—sitting. You see we are on the horns of a dilemma: the customer says, "Another trial, or you lose my favour and custom;" and it goes hard with us to decide whether it is better to lose our time or his love.

SUGGESTIONS TO SITTERS.

When the sitter comes to secure an appointment, the reception of an attendant is often questioned as to the suitability of a certain article of dress for the purposes of photographic portraiture, or it may be noticed at the time of the first interview, that certain points in the attire of the customer may be happy, or unsuitable, and suggestions made thereon. To do this successfully some artistic taste and knowledge of photographic requirements are necessary.

Sitters are generally willing to allow the photographer to be master in his own skylight, if that position is maintained with dignity and firmness; and it is only where self-reliance is wanting in the photographer that customers will think of airing their crotches. There is of course a class of sitters who have decided opinions on art, and it must be the photographer's art to have as much of the own way as possible, even when appearing to give in to the ideas of the sitter. Other persons there are who, having seen and admired the photograph of a friend, must have one exactly similar, without giving a thought as to the suitability of the treatment in their case. This is one of the photographer's thorns: for satisfaction seldom results either in copying another picture, or in the modification sanctioned unwillingly by the sitter. Remember, "be as that complies against his will, is of the same opinion still." Then there are those who rush into a gallery, hot, tired and fussy, declaring they have only a few minutes to spare—either there is a train to be caught, or an appointment to be kept. Under these circumstances success is extremely rare, and the sitting merely a waste of time.

The photographer should strive to impress on his patrons the fact that much depends on them, in their willingness to submit implicitly to him in all matters of detail of the portrait, and not a little on the temper in which sitters enter the gallery: if worried, or in a hurry, the anxiety will tell in the expression stamped on the picture.

A bright day is not necessary or always desirable, the light on many cloudy days having more actinic power than the yellow glare of the beautiful sunny day.

Dress.—The real secret of success in this respect, so far as the photographer is concerned, is that the sitter is "dressed for the occasion." Even in the event of the alteration of costume being for the better (as a matter of taste), the identity of the sitter is lost. Some sitters enjoy a comic misery in the choice of jewellery in which they bedeck themselves, and generally put on too much. Never is this vice monopolised by those vulgar beings on whom we look down with the pitying scorn of superiority.

Remember always that the face makes the picture, and the dress, at best, is merely an aid to picturesqueness.

Some of the finest photographic portraits have been made where the shoulders of the sitter have been draped with a shawl, lace, cloak, or not unfrequently a photographer's curtain. I would advise every photographer to have ready several pieces of drapery in different shades, of material which will fall in good folds. For this purpose nothing can be better than thin flannel or cloth.

Of ladies' dresses, reposs, poplins, silks, and satins, naturally fold or drape well. Materials with too much gloss should be avoided, the contrast in light and shade being harsh and inartistic. Striped and boldly spotted dresses, and those with large patterns, should never be permitted, the effect in a photograph being too bewildering. Harmony between the complexion and dress should be studied, and, in regarding this rule, extremes of complexion are not exaggerated.

Of the colours, scarlet, claret, light orange, slate, magenta, crimson, buff, pea green, plum, dark purple, navy and maroon blues, dove, ashes of rose, china and rose pinks are excellent in photography, being reproduced as light and medium greys.

Snuff brown and dark Bismarck generally appear darker than a black silk or satin, and detail is almost always entirely lost.

Lavender, lilac, sky blue, and French blue are also to be avoided, as they are more troublesome in their white blankness than even pure white drapery.

In the dressing of the hair, avoid change from the ordinary style worn. A long face is considerably lengthened by the arrangement of the hair piled up on top of the head, and a broad face will appear much more so if the hair is brought down over the forehead.

The painful straight lines of a long neck may be considerably improved, in the case of a lady, by the adjustment of curls to break the line. Sometimes it is advisable to drape a lace shawl over the head, and supply compensating lines by its folds.

Powder is useful, but must be carefully used, on red, very black, and sometimes on very light hair, where, but for its use, detail would be wanting; but do not give the sitter's head a frosted appearance.

General remarks to the operator.—Do not make of the head-rest an instrument of torture.

Be firmly, but gently, master of the situation. Quietly combat unreasonable whims. Try to keep the sitter's mind from dwelling on the fact that he or she is sitting for a portrait, and don't permit any unnecessary delay to arise between the completion of the pose and the exposure of the plate.

Do not allow the interference of fussy friends—indeed, forbid their presence in the stelier.

Remember the confidence of your sitters by a masterly treatment of your work.

And above everything, and through every provocation, KEEP YOUR TEMPER.

CONTRIBUTIONS TO MEDICO-PHOTOGRAPHY.

BY DR. S. T. STEIN, OF FRANKFORT-ON-MAYNE."

* One of the principal defects in the Marcy aphygroscope is the friction of the pen against the paper. I have endeavored to substitute for the pen rays of light. I have given a sketch of an instrument constructed to this
little screen of cardboard (B) which has a tiny perforation in the centre. I have given a sketch of this screen also (fig. 2), which is here shown twice its real size. At C there is a magnesium lamp with clockwork arrangement, whose rays are made to fall by means of a lens upon the screen where the little perforations exists. By moving the lamp and the lens, a concentrated circle of light is produced two centimeters in diameter. In the day-time sunlight may be substituted for that of the magnesium lamp. At D there is a little photographic apparatus, and at E a simple clockwork arrangement. In the little square camera is fitted a lens which receives the picture of the light falling through the perforation of the screen, reflecting it upon the ground-glass at the back of the camera, which is left out in our sketch. By pulling out the camera, and approaching the lens to the screen, the perforation appears comparatively larger upon the groundglass, and the light spot is diminished in size by a contrary operation. The dark slide running in a groove is seen at F, and this is pulled gradually forward by the cord attached to the clockwork at E, which is capable of indicating the speed at which the slide is drawn along. The magnesium light is quite capable of impressing the sensitive plate instantaneously, and the action of the photophygmograph is as follows:—When the instrument has been placed in position upon the pulse, it is screwed to the arm, and the working arrangement thrown out of gear. The point of light from the magnesium lamp is sharply focused upon the ground-glass by means of a good magnifier. Under a good focusing glass the light must appear in the shape of a sharply-outlined, illuminated circle. The clockwork arrangement at E is then set in motion, until the darkslide, F, is drawn into the place vacated by the groundglass. The slide is then drawn to expose the plate, whilst the pendulum is stopped for an instant, and the lens is capped. The pulse is then allowed to act against the lever, and the screen B at the end moves up and down. Everything being ready, the clockwork is set going, the lens is uncapped, and the curve made by the light falls upon the moving sensitive plate in the camera. The image is then developed and treated in the ordinary way.

I have further improved the apparatus of late by saving the slide, and thus reducing to a minimum I place the perforated screen B direct upon the pulse, as shown in fig. 3, and enlarge the curve, as was done by the lever, with the aid of a little lens. The clockwork pushes the slide fifteen centimetres in fifteen seconds. If the plate moves faster, the curve elevations are rendered narrower; when it goes slower, these elevations are broader. In fig. 4 we have an accurate reproduction of an image obtained in a photophygmograph, the pulse beating seventy-two to the minute; in the middle of the exposure, the Arteria Brachialis was compressed for a few seconds, and hence the line produced. The breadth of the curve gives the force of the pulse, the height of the curve the vigour of the blood-waves.

Two other pictures, figs. 5 and 6, show, respectively, a heated pulse and a slow pulse, both pictures being taken with the same patient. Fig. 5 represents the more excited pulse. The form of the curve shows that there is a truble in each pulsation, a phenomenon which cannot be without its scientific value. Light is, we see, more sensitive, therefore, than our fingers.

In the same way as the action of the pulse is photographed; but every motion of the human body can be recorded also, and such records have been made upon various animals. If the artery of a living animal is opened, and placed in contact with a mercury reservoir contained in a rubber bag, the mercury in the tube of the reservoir rises and falls with the action of the blood in the animal's system. A cork floated in the tube on the top of the mercury column, having a wire leading to the top, with a little cardboard screen at the extremity similar to that shown in fig. 2, allows of records being secured of the up-and-down motions, orebb and flow power of the blood. In this case, the screen with the perforation is arranged for photographing with apparatus similar to that shown in fig. 1, and curves of a like nature are received upon the sensitive plate.

Photographic registration of temperature.—As is well known, the temperature of the human body is continually rising and falling, in the case of fever patients to a marked degree, and the careful observation of temperature with sick persons is a matter of great importance. Now-a-days, the glass thermometer is usually employed for taking the temperature of patients, the records being taken to a tenth degree; but as the temperature is continually changing, implicit reliance cannot be placed upon the observations made. An instrument has therefore been constructed which is capable of telegraphing the temperature of a patient to a distance, and to photograph the results automatically. The apparatus is based upon the principle of the thermo-electric pile.

A known fact is that two metals be sodered together, and the temperature of the junction is different to that of the extremities, an electric current is generated of a force proportional to the heat at the place of junction. If now a composite bar consisting of a number of wires soldered together be placed under the arm of a patient, and the other end maintained at an even temperature—say in boiling water, or in melting ice—the extremities being the point at which a stream of light is allowed to fall; and as the needle is set in motion the light ray moves also. A sensitive plate is arranged so as to receive the moving ray of light, and a curve is formed which corresponds in height and depth to the strength of the electric current, and the warmth generated by the patient. Instead of a sensitive plate, a cylinder with anodized paper may be employed, which makes one revolution in twenty-four hours, and in this way a daily register of the patient's condition is secured, which contains a record of every quarter of an hour.
Mr. Bartlett appeared for the complainant, and Mr. Wright for the defendant.

From the evidence it appeared that the complainant and defendant had been in partnership in Regent Street as photographers. Disagreements took place between them, and a dissolution of partnership followed. Subsequently the complainant had a belief that the defendant was in the habit of retaining letters sent to the house in Regent Street from old customers, discussing them in his own absence, and forwarding them to the defendant on the subject, and also gave notice to the Post Office. With a view to obtain proof positive, a letter was prepared and sent to Regent Street, asking on what terms certain photographs could be supplied, specifically named M’Nair, who had been in the service of the firm, and was then in the complainant’s employ, called on the defendant and saw this letter lying on the table opened. M’Nair had seen the letter before it was sent to defendant directed to complainant, and knew it again. The answer to the letter was received by the young lady who was supposed to have sent the letter.

A witness named Corrie said she received letters for the defendant, and sometimes for the complainant, but she could not assert that she forwarded the letter in question to the complainant. A copy of the letter in question was put in, and the case was adjourned for the attendance of the young lady who wrote it.

When the case was resumed, Mr. Bartlett stated that an agent agreement had been arrived at between the parties which, if carried out properly, was all the complainant required. He had, with the magistrate’s permission, to ask for the summons to be withdrawn, and it was understood the defendant was no longer to make use of the complainant’s name in connection with the business. Mr. Tindal said the defendant opened the letter under the impression he had a right to do so.

Mr. Knox, in permitting the summons to be withdrawn, said the complainant was quite justified in bringing the matter forward. After what had been stated he would not send the case for trial, as he considered a conviction doubtful, but he must say he thought the defendant’s conduct very wrong.

THE PHOTOGRAPHIC EXHIBITION.

ENLARGEMENTS.

There is nothing in the present exhibition in which definite progress is so fully illustrated as the examples of enlargement. In much of the work in the regular grooves of photography—such, for instance, as the ordinary samples of portraiture and landscape—the benefit of the contributions of the photographic transcend in the variety of the forms used and the sumptuousness of the treatment, whilst in subject pictures and pictorial compositions this year’s examples, with two or three exceptions, fall far short of the work which has been exhibited for years past, some of the attempts being absolutely depressing in their lack of every art quality. In enlargement, on the contrary, the last few years have seen the most marked advances, and this year fully equals, if it does not surpass, the high standard of excellence attained in the last two or three exhibitions. There is also an important lesson suggested by this year’s contributions. It is shown tolerably clearly that to attain success in a special branch like enlargement, special experience, if not special appliance, is necessary. Here, in almost every instance, the successful work has been executed by some firm which devotes itself especially to the work of enlargement, and so becomes master of the conditions necessary to success, in a degree almost impossible to the photographer undertaking the work occasionally at more or less distant intervals. It is further significant, and worthy of note, that by far the greater part of the enlargements exhibited are in the stability and the excellence being worthy companions.

Claiming priority on many grounds, not the least of which is that of pionership in a most important method of enlargement, are the numerous contributions of the Auto type Company, or, rather, Messrs. Spencer, Sawyer, and Bird. These are, of course, all in carbon, and many of them are of magnified proportions, falling little short of four feet in length by three feet, or nearly, in breadth.
They include landscapes and portraits, and it is difficult to say which impress us as the most perfect. Amongst the landscapes are a couple of admirable views on the Thame, the negatives by Marsh Brothers, of Henley, in which no element of excellence in a small direct picture is here wanting in the enlargement: foreground and foliage, river scenery, hills, and sky, are all treated by the camera with brushes, sky with perfect aerial effect, all tending to produce fine pictures as well as good photographs: and these may be fairly taken as typical of the landscape enlargements. A couple of these possess points of especial interest: they are enlargements from calotype negatives by Mr. B. B. Turner, whose pictures in the early days of the art were acknowledged amongst the best. The enlargements of the head and arm reproduced and exhibited show how justly. No. 811, "The Head of the Lake of Loosely Park," a print from the original negative of which was hung at the Society's Exhibition in 1854, is an admirable picture: delicate, vigorous, harmonious, and full of atmosphere, the latter quality being enhanced by the texture of the paper inevitable in a Calotype negative. Another example, "Scotch Firs of Hawkhurst," an original of which was hung at the first photographic exhibition, held in the rooms of the Society of Arts in 1855, is also very excellent. Amongst the many noble examples of enlarged portraiture exhibited by the same firm, it is difficult to make selection where all are so good. No. 206, from a negative by Mr. Wm. Locke, secures attention in the same firm, and is a perfect picture as a perfect enlargement. In this picture we are reminded of a noteworthy fact in relation to the majority of the examples sent by this firm: they are, in contradistinction to many other of the enlargements, chiefly untouched, or very little retouched. Those interested in estimating the effect of retouching may see an enlargement from the same negative of which the above is a duplicate, already retouched for publication at Regent Street, very fully and admirably retouched, whilst the example in the Exhibition has received but little assistance from the hand of the artist, but is, notwithstanding, in every way a charming picture: a beautiful face, which in pose, expression, and arrangement of drapery, all add to the picturesque effect; admirable in light and shade and gradation of tones, it is perfect as a picture as well as an enlargement. No. 8 is a singularly fine example of portrait enlargement by the same firm, as is No. 195, a singularly delicate enlargement of a little boy, somewhat spoiled in effect, however, by the gorgeousness of the frame.

Similar in general style of enlargement, and also printed in carbon, is a fine series contributed by the Woodbury Printing Company. Many of these are very large and very beautiful, having the effect of the best of the negative from some of the choice negatives of Messrs. Locke and Whitfield, to which the amplification does the fullest justice. No. 14 is a very fine specimen of the work of this firm, perfect in modelling, delicacy, and finish. All the contributions of this company are portraits, and they possess a singular uniformity of excellence, which might be described by the paradoxical phrase, that whilst some are better than the others, there are none which are weak. Messrs. Marion and Co. also send some very fine carbon enlargements, of which No. 2 (Sir Bartle Frere, K.C.B.), and No. 36, a portrait of the Prince of Wales, secure the most attention and admiration. Messrs. Robinson and Thompson, of Liverpool, send a couple of very fine carbon enlargements of distinguished portraits, one of Miss Rose Horsley, and the other of Sir Charles Roe, both of capital work. A number of very fine carbon enlargements are sent in by Captain Horatio Ross, comprising studies of rocks, landscapes, and deer, all picturesque and effective, and fine enlargements. Lombardi and Co., of Brighton, send examples in carbon and silver, both excellent; a fine portrait of the Marchioness of Huntley, and one of the present Speaker of the House of Commons, Mr. Brand, in carbon; and an exceedingly effective picture of the Viscountess Dupplin, in silver. Missela. W. and D. Downey also send fine carbon enlargements, groups of the Duchess of Teck and her children being in every way satisfactory. Messrs. Murray and Heath send a very good enlarged portrait of Miss Poule, of the Alhoni, which is hung too high for careful examination, and a number of excellent enlargements, which probably are the only examples of solar camera work in the exhibition.

Mons. Lambert sends several examples of enlargements presenting marvellous results, and illustrating the curious facilities which his mode of working permits. In No. 8 we have a capital portrait of a pretty Norman fish-woman, in her holiday dress; this is enlarged from a minute copy, forming one in a case, and the enlargement is reproduced and exhibited show how justly. No. 811, "The Head of the Lake of Loosely Park," a print from the original negative of which was hung at the Society's Exhibition in 1854, is an admirable picture: delicate, vigorous, harmonious, and full of atmosphere, the latter quality being enhanced by the texture of the paper inevitable in a Calotype negative. Another example, "Scotch Firs" of Hawkhurst, an original of which was hung at the first photographic exhibition, held in the rooms of the Society of Arts in 1855, is also very excellent. Amongst the many noble examples of enlarged portraiture exhibited by the same firm, it is difficult to make selection where all are so good. No. 206, from a negative by Mr. Wm. Locke, secures attention in the same firm, and is a perfect picture as a perfect enlargement. In this picture we are reminded of a noteworthy fact in relation to the majority of the examples sent by this firm: they are, in contradistinction to many other of the enlargements, chiefly untouched, or very little retouched. Those interested in estimating the effect of retouching may see an enlargement from the same negative of which the above is a duplicate, already retouched for publication at Regent Street, very fully and admirably retouched, whilst the example in the Exhibition has received but little assistance from the hand of the artist, but is, notwithstanding, in every way a charming picture: a beautiful face, which in pose, expression, and arrangement of drapery, all add to the picturesque effect; admirable in light and shade and gradation of tones, it is perfect as a picture as well as an enlargement. No. 8 is a singularly fine example of portrait enlargement by the same firm, as is No. 195, a singularly delicate enlargement of a little boy, somewhat spoiled in effect, however, by the gorgeousness of the frame.

In general style of enlargement, and also printed in carbon, is a fine series contributed by the Woodbury Printing Company. Many of these are very large and very beautiful, having the effect of the best of the negative from some of the choice negatives of Messrs. Locke and Whitfield, to which the amplification does the fullest justice. No. 14 is a very fine specimen of the work of this firm, perfect in modelling, delicacy, and finish. All the contributions of this company are portraits, and they possess a singular uniformity of excellence, which might be described by the paradoxical phrase, that whilst some are better than the others, there are none which are weak. Messrs. Marion and Co. also send some very fine carbon enlargements, of which No. 2 (Sir Bartle Frere, K.C.B.), and No. 36, a portrait of the Prince of Wales, secure the most attention and admiration. Messrs. Robinson and Thompson, of Liverpool, send a couple of very fine carbon enlargements of distinguished portraits, one of Miss Rose Horsley, and the other of Sir Charles Roe, both of capital work. A number of very fine carbon enlargements are sent in by Captain Horatio Ross, comprising studies of rocks, landscapes, and deer, all picturesque and effective, and fine enlargements. Lombardi and Co., of Brighton, send examples in carbon and silver, both excellent; a fine portrait of the Marchioness of Huntley, and one of the present Speaker of the House of Commons, Mr. Brand, in carbon; and an exceedingly effective picture of the Viscountess Dupplin, in silver. Missela. W. and D. Downey also send fine carbon enlargements, groups of the Duchess of Teck and her children being in every way satisfactory. Messrs. Murray and Heath send a very good enlarged portrait of Miss Poule, of the Alhoni, which is hung too high for careful examination, and a number of excellent enlargements, which probably are the only examples of solar camera work in the exhibition.

Mons. Lambert sends several examples of enlargements presenting marvellous results, and illustrating the curious facilities which his mode of working permits. In No. 8 we have a capital portrait of a pretty Norman fish-woman, in her holiday dress; this is enlarged from a minute copy, forming one in a case, and the enlargement is reproduced and exhibited show how justly. No. 811, "The Head of the Lake of Loosely Park," a print from the original negative of which was hung at the Society's Exhibition in 1854, is an admirable picture: delicate, vigorous, harmonious, and full of atmosphere, the latter quality being enhanced by the texture of the paper inevitable in a Calotype negative. Another example, "Scotch Firs" of Hawkhurst, an original of which was hung at the first photographic exhibition, held in the rooms of the Society of Arts in 1855, is also very excellent. Amongst the many noble examples of enlarged portraiture exhibited by the same firm, it is difficult to make selection where all are so good. No. 206, from a negative by Mr. Wm. Locke, secures attention in the same firm, and is a perfect picture as a perfect enlargement. In this picture we are reminded of a noteworthy fact in relation to the majority of the examples sent by this firm: they are, in contradistinction to many other of the enlargements, chiefly untouched, or very little retouched. Those interested in estimating the effect of retouching may see an enlargement from the same negative of which the above is a duplicate, already retouched for publication at Regent Street, very fully and admirably retouched, whilst the example in the Exhibition has received but little assistance from the hand of the artist, but is, notwithstanding, in every way a charming picture: a beautiful face, which in pose, expression, and arrangement of drapery, all add to the picturesque effect; admirable in light and shade and gradation of tones, it is perfect as a picture as well as an enlargement. No. 8 is a singularly fine example of portrait enlargement by the same firm, as is No. 195, a singularly delicate enlargement of a little boy, somewhat spoiled in effect, however, by the gorgeousness of the frame.

Similar in general style of enlargement, and also printed in carbon, is a fine series contributed by the Woodbury Printing Company. Many of these are very large and very beautiful, having the effect of the best of the negative from some of the choice negatives of Messrs. Locke and Whitfield, to which the amplification does the fullest justice. No. 14 is a very fine specimen of the work of this firm, perfect in modelling, delicacy, and finish. All the contributions of this company are portraits, and they possess a singular uniformity of excellence, which might be described by the paradoxical phrase, that whilst some are better than the others, there are none which are weak. Messrs. Marion and Co. also send some very fine carbon enlargements, of which No. 2 (Sir Bartle Frere, K.C.B.), and No. 36, a portrait of the Prince of Wales, secure the most attention and admiration. Messrs. Robinson and Thompson, of Liverpool, send a couple of very fine carbon enlargements of distinguished portraits, one of Miss Rose Horsley, and the other of Sir Charles Roe, both of capital work. A number of very fine carbon enlargements are sent in by Captain Horatio Ross, comprising studies of rocks, landscapes, and deer, all picturesque and effective, and fine enlargements. Lombardi and Co., of Brighton, send examples in carbon and silver, both excellent; a fine portrait of the Marchioness of Huntley, and one of the present Speaker of the House of Commons, Mr. Brand, in carbon; and an exceedingly effective picture of

SIR CHARLES WHEATSTONE AND THE STEREOSCOPE.

Those members of the Photographic Society who, coming into contact with Sir Charles Wheatstone in the council, remember him as a somewhat shy and retiring man, of sensitive nervous temperament, might probably be apt to forget that this unobtrusive gentleman had a principal share in two of the most revolutionary discoveries in the science of vision, certainly, in practical importance, the greatest discovery of the age; and the stereoscope, in a purely scientific point of view, not less interesting. The Times has some good remarks on the history of the latter discovery. It says:

"The resemblance between the waves of light and those of sound seems very early to have attracted Wheatstone's attention; and in 1838 he communicated to the Royal Society and to the British Association an account of some remarkable and hitherto unobserved phenomena of binau-
lar vision, and a description of the stereoscope, an instrument for illustrating these phenomena. As a matter of pure science, apart from its practical value, this was undoubtedly the first of its kind. The original conception that the notion of solidity is due to the mental union of the two dissimilar perspectives undoubtedly belongs to him, and Sir David Brewster, at several successive meetings of the British Association, spoke of this as the greatest discovery ever made in binocular vision. Wheatstone verified his discovery, not only by the original reflecting stereoscope, but by the reversing one. The two instruments, with prisms, to which convex lenses were afterwards added to enhance the pictures, Brewster did nothing more than suggest the substitution of two semi-lenses turned back to back, which are practically the same as prisms, and can be made much more cheaply; and Duboscq, taking advantage of this suggestion, produced the form of stereoscope now in universal use, and popularized it by the application of phantasmagoria, the exhibition of which was shown at the Exhibition of 1851; and the general public then for the first time heard of the instrument; although Dr. Carpenter (and possibly others also) had for some years previously exhibited the relief obtained by a combination of dissimilar photographs to the students attending his lectures on physiology, in 1851, and subsequently, an attempt was made to maintain the claim of invention of the invention of the stereoscope for Brewster, on the double ground that he had rescued from oblivion a contrivance which would otherwise have been forgotten, and that the principle itself was not new. This latter contention had, however, been sufficiently disposed of by Brewster himself, who, writing in "Lardner's Cyclopaedia" before Wheatstone's first paper had appeared, spoke of the similarity of the two perspectives as a difficulty to be overcome.

In 1852 Wheatstone presented a second memoir on binocular vision to the Royal Society, in which he described the results obtained by a new instrument, the pseudoscope, by which exactly the same effect is produced upon the images received by the two eyes from an actual object as would be produced in the stereoscope by the reversal of its pictures; but it is a contrivance on which neither eye being that which would naturally be formed by the other. By this contrivance he was able to prove, what he had previously maintained, that the stereoscopic result is the effect of a mental process, not of the merely optical relations of the two pictures, for in the pseudoscope, which makes convex objects appear concave, and vice versa, we have optical interference by which the mind will not accept. An interesting article on the subject appeared in the Edinburgh Review for October, 1858, and from this we extract the following passage:

When an observer looks with the pseudoscope at the interior of a cup or basin, he not infrequently sees it at first in its real form; but by prolonging his gaze he will perceive the conversion within a few minutes, and it is a process not, while this seems to take place quite suddenly with some individuals, as if the basin were flexible, and were suddenly turned inside out, it occurs more gradually with others, the concavity slowly giving place to flatness, and the flatness progressively rising into convexity. Not infrequently the conversion has taken place, the natural object intrudes itself, sometimes suddenly, sometimes gradually, and for a longer or shorter interval, when the converse will again succeed—as if the new visual impression could not at once counteract the previous results of recent experience. At last, however, the mind seems to accept the conversion without further hesitation; and, after this process has once been completely gone through, the observer, on recurring to the same object, will not find it possible to see it in any other than its converted form, unless the interval should be long enough to have allowed him to forget its former appearance. Varies, however, such phenomena occur in these experiments of which it is difficult to give any certain explanation, but which would be probably found referable to the same general principle, if we were acquainted with all the conditions of its operation. It would seem as if, in cases of this kind, time becomes an element, by allowing a restoration of the new impressions upon the nervous organisation, so that they at last become sufficiently powerful to overbear those which have been left there by previous habits of action; and when these latter have once been overcome, they seem, like an army defeated by failure, to be put to the rest by a mere alarm in future.

In the second memoir the idea of the mental character of the results of binocular vision was still further supported by experimental evidence, how completely the appreciation of size is governed by other conditions than the size of the visual pictures. In fact, the whole of these investigations were experiments upon mental states, and, when thus regarded, they had even a higher interest than that which arose from their great value as contributions to the science of physiological optics.

METEOROLOGICAL REPORT OF THE DIURNAL VARIATIONS IN THE AGGREGATE DAYLIGHT OF THE SOUTHERN SKY FROM OBSERVATIONS MADE AT BLACKPOOL.

BY D. WINTANLEY, F.R.A.S.

The past week has been so very dark, that I have found it impossible to make an adequate diagram on the scale I have hitherto adopted; I have accordingly utilized the space previously given to 5,000 units only. In order that the comparison may, as far as possible, be carried out continuously, I have drawn, as well as I am able, a dotted line upon the same scale as that hitherto employed.

The aggregate of light during the entire week has only reached the very small amount of 1,974 units, giving a daily average of 293 units only. My fondest dark days have already been surpassed, and my darkest week has been outdone in darkness.

The regular decadence of the line in my diagram-book, and its regular rise during the period of seven days ending October 29th (I can draw a circular curve right through each of the seven indices), indicates the regular operation of some definite and permanent influence of observation; a law which may be of considerable importance to the science of meteorology, and which it will certainly be a matter of absorbing interest to hunt down to its sources, whilst the similarity of the present diagram (on the enlarged scale) to that of the seven days ending September 25th indicates the probable operation of the same law at a time when the arbitrary scale of representation seemed to show a merely capricious variation. The whole matter is one worthy, in my opinion, of the most studious investigation. The day is invaluably dawning when prolonged weather casts will have become an accomplished fact.

BLISTERS IN ALBUMENIZED PAPER PRINTS; THEIR CAUSE AND REMEDY.

BY SELMO BOTTON.

Nothing, perhaps, is so aggravating to the photograph (be he professional or amateur) as the appearance of blister...
on the surface of his prints, just at the last stage of the operations. His negative may have been excellent, his light good, his paper apparently of most satisfactory description, the toning has proceeded well, and he is just on the point of congratulating himself on having turned out a beautiful print, when lo! on plunging into the water for washing away the hypo (or very soon after) he is disgusted to find his pictures break out into eruptions, some of which grow to a large size, while others remain comparatively small. If he has not done so before, he refers to all the photographic books he possesses in order to seek a remedy for the evil; and he learns that little or nothing can be done to cure blisters which have already appeared. However, he(trials) with various recipes to prevent the formation of blisters, such as, for instance, the addition of alum to the silver bath, the maintenance of the bath strong, while the hypo is kept weak, &c. He consoles himself, therefore, with the hope that by following one or other of these directions he will be able to avoid this new plague of spots.

Having made the requisite alterations in his formula, he again proceeds to print, and probably turns out a batch quite as blistered as the first. He then frequently lays the blame on the paper, and consequently procures a fresh sample, which, in all probability, will give just about the same results as his former stock. The final result is, that he has spent all of being able to prevent entirely the formation of blisters; but he has noticed, much to his surprise, that sometimes (although circumstances have apparently not changed in the least) the prints will be perfectly free from blisters, while at others, no matter what paper he may use, he will have a plentiful crop of these very unbecoming pustules.

I am not aware that any one has yet found a trustworthy method of preventing these pests, and therefore, if I repeat anything already suggested, my readers will kindly set it down to my ignorance of the fact, and not to a desire to deck myself with feathers belonging to others.

While mounting some conifera in fluid cells, for the microscope, last winter, I, like many others, was much troubled with the difficulty of getting the delicate tissues to retain their natural forms when immersed in the preservative fluids used in the cells. The change of form which takes place varies according to the nature of the preservative fluid used; but a general result is, that the tissues swell up and burst. On reference to works specially treating on microscopic mounting, I learned that this effect is due in some cases to exosmosis, and in others to endosmosis, and that the way to avoid this is to expose the tissues which shall have as nearly as possible the same density as the fluid in the cells, and which shall gradually, by evaporation or otherwise, acquire the desired density. In fact, I found this to be perfectly correct; and, acting on this principle, I succeeded in mounting several delicate algea, such as Batrachospernum Moniliforme, Velour Globator, &c.

It immediately struck me that osmose lay at the bottom of the "blister plague" in albumenized prints, and the result of a series of experiments I have undertaken this summer has proved that my conviction was grounded on fact.

Without dragging my readers through a detailed account of all my experiments, I will at once give them a process which will enable them to produce at will prints entirely free from blisters. Saturate, print, and tone exactly as usual; but, before fixing, take the following density or gravity of your hypo bath. Now take a sufficient quantity of water to cover abundantly the whole batch of pictures you have fixed, and which you desire to work, and dissolve in it as much common salt as will bring it up to the same specific gravity as your hypo bath. Place the fixed prints therein, and stand the containing vessel in a sink or bath of cold water. In the course of an hour or two, the water into the briny solution, so that its specific gravity shall be lowered very gradually only. When all the salt taste has disappeared, wash as usual in plain water. No blisters ever have appeared with this treatment in any of my pictures, no matter what paper I may have used.

It may be of interest to some to know that small blisters will entirely disappear if the prints be pressed until quite dry between two cloths, and then rolled with a hard cylindrical roller; the large ones, also, may be sometimes coaxed away by prickling the back of the paper behind them with a fine needle, and then rolling.

PHOTOGRAPHY IN PARIS.
(From a German point of view.)

The well-known Berlin portraitist, M. Schaarwächter, who was chosen as one of the jury at the recent Brussels Exhibition, has just returned from a visit to Paris, and gives an interesting account of the studios in that city, and of photographic matters in general.

He begins by stating that carbon photography has certainly taken a mighty step of progress during the last year or two, and that it has been adopted by the Brussels firm of de Beer Frères, as well as by the famous firm of De Koonen et Leymerie, who exhibit a gigantic show-case of spirit photographs; for, notwithstanding the resistance put to the sale of spirit photographs, and the punishing of them by imprisonment, the trade in these productions prospers as much as ever. The proprietors of the establishment must be doing a splendid business, since the charge made for these supernatural productions is very high, the spirits declining to assist in the business unless paid a heavy fee; twenty-five lire and seventy francs is the charge made per dozen for spirit photographs.

Reutlinger's and Dider's studios are upon the Boulevard Montmartre, almost opposite each other. The Reutinger establishment is five storeys high, and is but small. His pictures are well known, and his enlargements very fine. The Dider studio is little visited just now.

The magnificent glass stereoscopic slides of Lachmann, Faury, and Co. attract much attention. The firm can only work, it appears, in the Paris streets on Sunday mornings, as the traffic on week-days interferes with the taking of pictures. This firm lays great stress on the employment of a very pure white glass for their tracery, and it is only one house, it appears, that can supply this of purity.

The fashionable photographers of Paris are M. Valery and Liebert, who live opposite one another. Valery's show-case is of marble, and cost, it is said, five thousand francs. The pictures of both these gentlemen are, the writer thinks, inferior to the productions of good Berlin photographers, a verdict in which the French themselves concur, as they admit that they cannot get their negatives so finely printed in Paris as in Germany. Not one thing need not be said. Valery has four studios, which are almost always full of visitors. The reception rooms are in the highest degree luxurious, as is likewise the case with the Liebert establishment.

Nadar's establishment is but little visited just now, apparently. In the reception room is to be seen a gigantic oil lamp which represents Nadar, in the car of a balloon. His activity as an aeronaut at the time of the Paris siege is well known.

The renowned studio of Adam-Salomon is in the vicinity of the Bois de Boulogne. M. Salomon, it is well known, is a sculptor as well as a photographer. The present studio, instead of being low, is, on the contrary, very lofty. It is divided into several rooms on the second floor of the building, no small cylinder, glaring yellow painted background, a description of which has already
appeared in print. Salomon makes it a rule never to take more than four plates every day, but his present results do not seem to show such high qualities as his former works. It is well known that the striking effects of his pictures is obtained in the manner of printing adopted, and his plates have nothing extraordinary about them.

His streets visited the Imprimerie Nationale, where he found the Woodbury process in operation, on a photo-printing press being employed in that establishment for the production of facsimiles of old coins. This method is also in operation at Goupil's. At the establishment of the latter, who sells nothing but mounted photographs, there are a number of presses now at work. Silver printing is employed by Goupil only to a very limited degree, and by far the greater portion of their work is produced by a combination of Woodbury-type and photo-engraving. Ten Woodbury presses are in general use, the whole of which are worked by two men, and four steam presses are employed for the photo-engraving. One copper plate yields as many as 20,000 prints.

A somewhat singular advertisement is employed in the Paris streets by M. Manry, one of the Parisian photographers. It is a little equipage with a black man as coachman, drawn by four little ponies, the whole of the carriage being covered with portraits.

Franck de Villecholles's establishment is worthy of note for the production of fine enlargements in permanent pigments. He employs the Sawyer method (the Autotype process) and is able to make prints thirty-four inches in length. The enlargements are produced by aid of a carbon dispositive.

Correspondence.

PHOTOGRAPHY IN DEVONSHIRE.

Dear Sir,—I have spent the greater part of the past summer in the South of Devon. The season has been, as regards weather, of an extraordinary character. For two days in the month of June a fire was requisite; then came excessive heat, during which the heated air poured into my room through the open window like gas direct from the retorts of a gas works, being every now and then interspersed with violent storms of thunder and lightning and heavy rain, also burst making out-door practice of anything but impossible.

According to my usual custom, I have made some enquiries for the purpose of obtaining information about the progress of photography generally. The report is by no means encouraging. Establishments long flourishing are in many cases non est. Watering places seem to be overrun with professionals, but the demand appears to be greatly on the decrease; this may be somewhat attributable to the process of the necessities of life. More than one railway accident occurred near my residence, and in one instance I observed a female photographer busily engaged in taking a picture of a damaged bridge, and the remains of an engine which a gang of workmen were engaged in removing. You will, I am sure, agree with me that it must have been a brainless woman to execute such a purpose, undaunted by the confusion and danger concurrent with such a catastrophe.

There is no lack of the picturesque in all parts of this beautiful county, and of so varied a character that no photographer need despair of finding subjects suited to his taste. I wrote an article in continuation of the guide, which I find did not reach you, and is at present useless, as the season is closed, and indoor amusements are now beginning to be thought of.

I was much gratified to notice in the News, some time since, the idea of using a vapour lamp requiring no wick, in aid of the oxy-calzium light, thus reducing the impediments of the magic lantern by one-half, increasing the brilliancy of the light, and doing away with its greatest drawback, which is the formation of soot on the wick of the spirit lamp. I should think this experiment might be tried by using what is called a sponge lamp (obtainable for a few pence) in place of the spirit lamp. The stream of oxygen should not be thrown out with too much force: a bent nozzle could easily be fitted to the lamp if required, and render it more safe in use.—I am, dear sir, yours truly,

JAMES MARTIN. 5, Clarence Place, Ilfracombe, Oct. 19th.

WARMING THE DARK ROOM.

Sir,—Allow me to call the attention of the profession to a petroleum stove for regulating the heat of the dark-room. I have one, and can recommend the same. Having raised the temperature of my operating room 30° Fahr. in a little more than half an hour, I keep the temperature at 70°, at a cost of about two pence per day. Amongst many other advantages which are possessed by this stove, are the following:—It is free from dust, can be lighted at any time, and the heat can be regulated to a nicety. The first cost of the stove is only twenty-four shillings. The manufacturer of that I am using are Messrs Wright and Butler, of Birmingham.

I feel sure this little apparatus will be a great boon to many who are at a loss for a means of efficiently heating their dark-rooms.—I am, sir, yours, &c.,

J. D. HANNAH. Jillingston, Shrewsbury, October 2nd.

[A small “greenhouse stove,” burning rock-oil, is kept by many lamp manufacturers, which will probably answer a similar purpose.—Ed.]

WORKING PHOTO-COLLOGRAPHY.

Sir,—With reference to your correspondent “W. B. P.” and the difficulties he has met with in photo-collography, I must sympathise, and, therefore, throw in a word or two of encouragement.

To commence, he must banish the idea that the mechanical processes are simple, and require little time and attention to ensure success, for that is erroneous; in fact, in my experience in photography, demands more patience and perseverance, and requires more of that indomitable “go ahead” which is the surest means of overcoming failure, than the mechanical process; but, without failure, success would lose half its value; consequently, a person starting these processes should not hear of such a word as “fail,” or even be disheartened, but try again and again, till the hand in rolling, which is simply manipulation, and the eye, which means observation, are thoroughly educated; in fact, the roller should, in producing or reproducing a print, be to the worker to what the artist is to the artist, and both are the means used to impart the colour to the resulting print, artistically and well, or vice-versa.

“W. B. P.” states that he has tried twice and failed, then gives it up and asks queries, to which I reply. 1st. Nelson’s gelatine is thoroughly suitable. The exposure, in my opinion, was too short, and the printing on the back of the plate too much. To eliminate the bichromate, place the plate in a bath or dish for half an hour, changing the water six times. The effect of the bichromate being allowed to remain in the skin would be, that when dry the chromated gelatine would simply be sensitive to light. Having thus answered the queries, may I kindly suggest that “W. B. P.” will take a good half-tone view, expose in a good light till it receives twelve times, then run the back of the plate till half this is observed, carefully roll with ink a proper consistency, mixed well with “don’t-fail,” and there will be little fear of a repetition of his first results.

W. B. D.

WAXING PLATES FOR DEVELOPING CARBON PRINTS.

Sir,—Will you allow me to point out to Mr. Lambert’s licenees, and to all others who develop carbon prints on glass, that the nuisance of having to rub the glass with a waxing compound, then polishing, &c., with a result...
by no means certain, may be easily avoided by using a solution, and proceeding as follows:—Make a mixture of methylated ether twenty ounces, beeswax sixty grains; scrape the beeswax to assist its solution, let it remain a day or two, occasionally shaking the mixture; then allow it to settle, and pour off the supernatant liquid; to five parts of benzol add one part of this clear fluid, and it is ready for use. Coat the plate as with collodium. It will dry in two or three minutes, and can then be coated with the collodion. Pictures developed on plates so prepared never fail to strip most perfectly. This solution can be had from my firm if photographers do not choose to prepare it themselves. I am yours truly, Autotype Work, Ealing Denes. J. R. SAYTER.

Proceedings of Societies.

WEST RIDING OF YORKSHIRE PHOTOGRAPHIC SOCIETY.

The ordinary meeting of this Society was held on Monday evening, the 4th instant, at the Victoria Hotel, Bradford,—the President, Mr. J. W. Gough, in the chair. In consequence of the lateness of the hour, the meeting was called to order, and adjourned to the next meeting.

Mr. WORMALL, after complimenting M. Lambert on the excellent pictures exhibited by him, said it made photographers long for the day when all their work would be executed in permanent pigments, and silver printing he entirely discarded.

Mr. GRAVES (Halifax) laid on the table a number of cartes printed in carbon by a method of his own, and invited criticism. The pictures were much admired by all present.

M. LAMBERT said they were the finest carbon prints he had ever seen. In conclusion, Mr. Graves of being the most successful carbon manipulator he had met with; but he considered them inferior to chromotypy in gradation, the whites not being so pure. He explained that it was a peculiarity of the old method of manipulating.

Mr. GRAVES, in replying, promised to take an early opportunity of reading a paper on his method of carbon printing.

Mr. BROWN (Bradford) handed round several fine 12x10 negatives produced by the Liverpool Dry Plate Company's emulsion, and said that he had secured by its use some of the finest negatives he possessed.

After some further conversation, the meeting was adjourned.

LIVERPOOL AMATEUR PHOTOGRAPHIC ASSOCIATION.

The usual monthly meeting of this Association was held on Tuesday evening, the 7th ult., at the Free Library, William Brown Street, the Vice-President, Mr. W. ATKINSON, occupying the chair.

The minutes of the previous meeting were read and passed.

It was proposed by Mr. W. H. WALKER, and carried, "That each member shall be expected to present yearly to the Society's album at least one photograph. The photographs to be submitted to the Council, who may reject any they do not think worthy of a place there."

Some diagrams, illustrating the diurnal variations in the aggregate chemical force of the daylight of the southern sky, prepared by Mr. D. Winstanley, of Blackpool, were passed round for inspection.

In reference to the preparing of gelatine-emulsion plates, the Rev. H. J. PALMER recommended the members to follow the instructions given in an article on "Wet-plate Employment for Amateurs," which appeared in The British Journal.

Some exceedingly fine views of Scottish scenery kindly lent by Mr. W. Harding Warner, then engaged the attention of the members, and afterwards the meeting relaxed into conversation, adjourning until November, when the annual meeting will take place.

TALK IN THE STUDIO.

THE PHOTOGRAPHIC EXHIBITION.—The photographic exhibition will close a few days earlier than was originally contemplated. The last day will be Friday, November 19th, when the Exhibition will finally close at four o'clock.

PHOTOGRAPHIC SOCIETY SHOW.—Instead of the usual meeting of the still-room group, the Society will meet on November 9th with a special, to be held in the Exhibition Room in Pall Mall.

LANDSCAPES AT THE EXHIBITION.—In our notice of the photographic exhibition last week, the pretty little examples of landscape photography exhibited by Mr. H. Mansfield were by a printer's error attributed to H. Munafied.

PHOTOGRAPHY DOWN WEST.—Here is an old story, familiar to most of our readers, which, after floating about for years in various journals, has just been promoted to a place in the leading daily journal, having appeared a few days ago in the Cornishman. An American photographer, says the statement, takes very decided measures for turning out a good picture. A sitting being in his place, the artist produced a navy revolver, cocked it, levelled it at the sitter's head, and said, 'Now just sit perfectly still and don't move a hair; put on a calm, pleasant expression of countenance and look right into the muzzle of this revolver, or I'll blow the top of your head off. My reputation as an artist is at stake, and I don't want no nonsense about this picture.'
J. T. T. asks where powdered tale can be obtained, and about what cost. Can any of our readers supply the information? Unless it can be easily procured, probably the best plan would be to procure pieces of waste tale, and pound in a mortar.

C. G. We shall have to look in the library. The tone of that enclosed is good, the black being rich and warm.

F. E. Smith. As there are five varied modes of intensifying under the heading to which you refer, we cannot tell which of them have been used, as there are many. All of the methods of intensifying which depend on the piling-up of silver are not well suited for intensifying negatives of fine grades containing a large proportion of albumen; only in the deposit is apt to fill up lines and produce coarseness. Any of the processes which depend on colour are best. The use of Schlichte's salt gives an intense scintillating effect. The use of the Säke's intensifying gives a warm yellowish brown pessure. We refer to the above-mentioned method, under the heading you mention in the Year-Book for 1886, is good. We refer to the application of a five-grain mercury solution, followed by a one-grain iodide solution, and this followed by a dilute solution of hydroxylamine of ammonia. This gives an intense negative without much piling-up.

T. J. Dixon. You do not state by what process you wish to produce lantern transparencies upon experience. That is not produced either by the wet process, or on dry plates. With what process are you most familiar? We have published instructions repeatedly, both in the News and in our Year-Book, for producing transparencies, both by this, and wet processes. Many of an appriss should be sufficient to produce the necessary amount of this process on the A.S.F., etc. We have seen the Chromotrophy method, a valuable aid to carbon printing. As you have likely seen the stated recently in our columns, Mr. Hughes has abandoned silver printing for all kinds of work, and adopted this method in its tester. We cannot give you any precise instructions on the subject.

J. W. Successes in photo-collotrographic printing depends really upon a great many small things, which can only be gained by slow steps, piling up experience. Upon experience. A sight of the operations of a successful worker is of immense value. But it must every where be borne in mind that the process requires at least as much skill as lithographic printing, and that there is the business to which it is usually applied. Many of the amateurs in such work may, it is true, succeed by perseverance without apprenticeship, but it is skill and perseverance which can lead to success without being introduced into the work, which, as you rightly understand, is a point of vital importance. They may do wisely to attempt the work with an ordinary printer's roller of glue and treacle composition. Such a roller may be used in experienced hands for collotrographic work, but there is very great risk of its adhering to the gelatine film and tearing it up. An India-rubber is best suited for the work.

B. L. F. The term Ambrotype was used in America to denote the old glass positive, which is now all but obsolete. It is technically used still, we believe, by the periaptastic photographer who frequents races, fairs, and other public places; but now chiefly use the ferrotype plates, which of course possess many advantages over glass. A good developer for the positives consists of twenty grains of protosulphate of iron, twenty minims of acetic acid, and two minims of nitric acid in an ounce of water, with a little chloral, if necessary, to make it dissolve freely. Either a benzole varnish or a spirit varnish may be used.

F. S. As we have repeatedly stated, we do not approve of long soaking as an aid to perfect washing. Rapid changes, with draining of each individual print between each change, or subjection to heavy pressure, will be found more a service mode of getting rid of hypo than any amount of long soaking.

R. J. T. With the exception of carbon enlargement, we think the collodion transfer is the most satisfactory mode of securing a permanent enlarged image from a canvas for painting. We have repeatedly described the method in our News and Year-Book. There is considerable direct on the canvas, as it is perfect washing.

The name was e - Manxfield.

It should have - undertone in our
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

A NEW APPLICATION OF GUNCOTTON—HOW TO PREPARE ORANGE-CROME—COLOURING METALS BY MEANS OF HYPOSULPHITE OF SODA.

Of the detonation of guncotton.—Photographers are so much interested in guncotton and its applications that they will be pleased to learn something of a very important use to which the valuable agent has recently been put in warfare. That pyroxyline has, of late years, become a most formidable military agent is well known to most of our readers, and, since the improvements made by the Artillery Inspectorate of the British government, it has to-day in many instances superseded gunpowder, which for the past half-dozen centuries alone played the role of explosive in military and naval matters. For torpedoes and military mines, as also for blasting and other industrial purposes, guncotton, which gives the surgeon and photographer their collobion, has been adopted very extensively; and although its "explosive" pyroxyline is slightly different in composition, yet there can be no doubt that the wider the manufacture of the material spreads, the more cheaply may the photographer hope to obtain his supply of guncotton. Some months ago, our readers may remember, experiments were made to ascertain the velocity with which guncotton detonates, and, to make trial of the matter, a line of gun-cotton cakes or slabs was placed on a forty-five feet high tower in London by detonating the first of these cakes, the whole line, one after the other, was consumed with a terrible noise; and the time taken for the detonation to travel from the first cake to the last was calculated by means of Capt. Noble's chronograph. It was then found that the rapidity with which guncotton detonates, or the detonation travels, is greater than that of any other agent except the exception of light and electricity. The rate at which the electric spark travels is a little uncertain, but Wheatstone gives it at 200,000 miles per second; the detonation of guncotton cannot, of course, be compared with this, but it is far superior to the speed of any material agent. Thus, the velocity of a cannon ball at the time of its highest speed is only about 18,000 to 16,000 feet per second, and the transmission of sound is scarcely above being about 11,000 feet per second. Gun-cotton detonates with a speed equal to three miles or three miles and a quarter per second, and it is this very rapid explosive property which has led to its utilization in the so-called water-shell. Of this water-shell, whose doing at Okehampton last summer attracted so much attention, a good deal has been written in the contemporary press, but in many cases its properties have been entirely misunderstood. It has been described as an incendiary or fire-shell, as if it emitted flames and smoke on bursting, whereas the truth is that there is an entire absence of any visible combustion, and the terrible missile bursts into fragments without emitting even a spark or a flash. There is no time for fire, the spark of the shell is the flint of the antaeus, and it is used to be an old lecture experiment, doubtless familiar to our readers, which consisted in putting a few grains of gunpowder in the palm of the hand, and above them a little tuft of gun-cotton; the latter was then ignited with a spark or flame, and disappeared so rapidly that the gunpowder had not time to burn. In the case we talk of, the pyroxyline detonates more rapidly still. The waterbombs are "informed thai it is "infused, and the "informed that it is "infused; notwithstanding its offensive name—will, in future, be an important consideration in artillery practice, and it will be one of the most terrible weapons yet devised. It is an ordinary shell, or hollow casting of iron, nearly filled with water, and into it is put through the fuse-hole a little waterproof bag containing not more than an ounce or two of gun-cotton, and a fulminate fume. Water is known to be one of the most incompressible of substances, and, therefore, transmits the detonation of the gun-cotton, when this takes place, very rapidly and completely. For this reason, when the small charge does take effect, the explosive force is taken up with all its velocity by the water, and the walls of the shell being acted upon uniformly and instantly at every point, the iron shivers into the smallest fragments, and scatters destruction in every direction. Gunpowder explodes so leisurely in comparison, that the shell gives way in its weak parts, and breaks up into a score of pieces slowly, while with gun-cotton the detonation is so rapid that it is communicated at the same time to every portion of the casing and the latter is almost pulverised, the number of fragments being infinite. In this way it is that the last discovered property of gun-cotton has been made use of.

How to prepare orange-crome.—Chrome-yellow, or orange-orange, such as photographers employ in their dark rooms, can be easily prepared, according to the Polytechnisches Journal, and, where any quantities of such compounds are required, it would pay the photographer to make it for himself. The pigments may be either applied to glass, or, better still, used for staining paper, which would be useful in screening light or packing dry plates. Ten parts by weight of acetate of lead are dissolved in ten parts of hot water, and diluted with ten parts of cold water, and then two parts of bichromate of potash are dissolved in ten parts of hot water, and to the whole two parts of acetic acid are added, together with ten parts more of water. On cooling, these two solutions are gradually mixed, briskly stirring the while. A beautiful light yellow precipitate is in this way formed, the tint of which is deepened by the addition of chloride of zinc or chloride of calcium. The liquid part is decanted off, and replaced by fresh water. Take care to a yellowish turbidity is not formed. This solution is of most service to the photographer, and which resists the action of alum and acids, as also heat, two solutions are made, of ten parts of acetate of lead in ten parts of hot water, and 3-8 parts of bichromate of potash in ten parts of hot water, the latter solution having added to it 3-6 parts of crystallized carbonate of soda. The mixture is boiled for half an hour, and its shade may be varied by modifying the ingredients.

Colouring metals by means of hyposulphite of soda.—A novel use of hyposulphite of soda has recently been made in Germany which deserves mention. It is that of colouring metals by its aid, their surface being covered with a thin layer of sulphurous acid solution. In this way objects of brass, or gun-metal, or iron, or zinc, can be made to represent the impression of the press, by being marked with various shades of brown, black, chestnut brown, bright amine blue, pale blue, &c., according to the thickness of the layer and the duration of the action of the solution. The colours, it is said, have a beautiful lustre, and, if the metal objects have first of all been treated with acid and alkali, the tints adhere so firmly as to admit of polishing. Of hyposulphite of soda there are taken 4-5 grammes, which is dissolved in 450 grammes of water, and, after the solution has been made, another, consisting of 45-5 grammes of acetate of lead dissolved in 225 grammes of water, is added to it. The mixture is warmed to 90° F ah, and then decomposition ensues, and sulphide of lead is precipitated. The metal object having first been treated with acid or alkali, and warmed, is put into the mixture, and the position of the top of the lead, and the above-named colours appear according to the thickness of the deposited layer. Instead of acetate of lead, the same amount of sulphuric acid may be put in, and gun-metal introduced into the mixture assumes a fine greenish-red colour. The temperature in this case must, however, be a little higher.

PICTURE-MAKING AND PICTURE-SELLING.

Many valuable hints have appeared in your esteemed journal on the subject of picture-making, but till now you have not...
uttered a syllable upon the question of picture-selling. Of what use are the finest pictures to us, if they remain upon our shelves? A bad picture which finds a purchaser is, after all, of more value, for then we can do business, and that is what we all of us want to do.

Some years ago I read a notice somewhere respecting an American photographer—it had been in the very papers—"This is to give notice that hereafter I shall not sell any cheap pictures. I shall endeavour to produce the best work possible by means of photography, and shall only supply pictures of the very first-class. For this reason, in future, a charge of six dollars for a dozen of carte-de-visite will be made." And this notice struck me very much at the time, and I have often wondered whether manufacturers would give him a fair example. It seemed to me a very foolish experiment to make to charge twelve florins for a dozen carte. Let he who has courage enough ask such a price, and the public will like it. Recently I heard from a friend, just returned from America, that the photographer in question was not successful, and I was shown some of his pictures. I found out then that he understood how to make pictures, but not to sell them.

Those who wish to ask extraordinary prices must have an extraordinary name. If this has been done, then a picture of very moderate pretensions may be passed over at a high rate. I once paid a visit to a noted colleague, Hanfstaengel, the court photographer of Dresden, who has now retired, and who at that time took the first rank in Dresden. Till then I had not seen any of Hanfstaengel's photos works, and I hope that if this gentleman will forgive me when I say that they did not please me so very much when I did behold them for the first time. It seemed me as if they produced pictures, at any rate, quite as good as at Vienna. I was therefore all the more surprised at the prices charged for them. Six shillings (eighteen shillings) for a dozen cartes, for cabinets were not in fashion then, and at a time too when studios grew up like mushrooms, and prices dropped in consequence. It did not lessen my astonishment with my host, who drily remarked, in reply, "I certainly shall not decrease my prices; rather raise them, if anything."

How long the renowned artist was enabled to go on in the same way I know not. There are, at any rate, very few of his disciples now in the same enviable position as he was, and further, there are those who charge but a fifth or sixth of his prices, who still manage to do very good business now-a-days.

The young photographer who establishes himself must be guided by the particular public that he serves. The modest customer requires to be served cheaply, and is satisfied with little. It would be ludicrous for a young photographer having a studio in a poor neighbourhood to finish his clichés with fine and fastidious retouching, and to acquire a stock of handsomely carved furniture, banisters, couches, balconies, &c. His customers would not even know how to appreciate such fine things. His public would be far more grateful for the loan of a sham gold chain, or a chimney top hat, during the pose, and such accessories are, indeed, to be found in some studios.

There was a very talented photographer of my acquaintance who was in a position to take pictures of the first quality, but who, by reason of the locality of his studio, failed to obtain customers. He, however, soon began to appreciate his neighbours, and by modifying his prices and making pictures more suited to a humble public, soon began to do a good business. His customers—who were for the most part artisans—came mostly upon Sundays and fete days. On weak days he had nothing to do. On Sundays, however, he had sometimes to take fifty portraits, frequently obtaining three pictures on one plate, in which case three persons one after another put their heads into the rest, without the same being in any way altered.

Lately, my friend has been compelled to arrange his printing room as a studio, also for Sunday work, to cope with the many customers who visited him; and his charge of two or three florins per dozen pictures pays him, I know, better than others of my colleagues, who demand nine florins, and who are often kept waiting for their money by their greedy customers.

Then, therefore, people tell us that the photographer should always exert himself to produce pictures artistically beautiful, such advice must only be taken within certain limits. According to my idea, a photographer who has to earn his bread should strive to produce salable pictures to meet the taste of the public for which he works.

I know a photographer of some standing, as an artist in a university town, who absolutely refused to take a group of students in negro attire, posed in their shirt sleeves, with pipes in their mouths, their sailor-like caps on their heads, with mugs of beer in hand, and a cask in the background. Our artist endeavoured to prove to the students how ugly and how inartist such a combination would appear; but these simply went away to another photographer who was less scrupulous in the matter of art. The latter is now doing a successful business with university men, taking numbers pictures, which, if they are not beautiful, are, at any rate, well paid for.

Similar cases are to be met with in landscape photography. A renowned photographer, at a fashionable spa, was advised to prepare some pictures of the place for sale. He did so, looking out for the most favourable and artistic points of view about the neighbourhood, and taking a series of negatives in this way; but he declined to photograph some ugly hotels and lodging-houses about the place. As, however, the guests were interested, especially in the buildings in which they lived for some weeks, it was but natural that they should desire pictures of them, and the photographer who subsequently secured representations of the buildings usually got very good prices out of the inarticulate guests. Indeed, there were far more purchasers to be found for the latter prints than for the artistic landscapes, about which the people were but little interested.

Such instances as these prove, beyond measure, that the selling of photographs is an art which photographers should understand, and quite as well as the making of them.

PRACTICAL NOTES ON VARIOUS SUBJECTS.

BY CHARLES WALDACK.

DIPPING AND FLOWING BATHS.—HARDNESS AND SOFTNESS, INTENSITY AND DETAIL.—BLISTERS.—DEFINITION IN CARBON PRINTS.

Dipping and Flowing Baths.—In Great Britain and in the United States vertical or dipping silver baths are in general use. On the Continent hardly any but horizontal or flowing baths are employed by photographers. An old practitioner with the dipping bath, I have given the flowing bath a trial of several months, and I now intend to give the results of my experience with it. For the benefit of those who may not be acquainted with the modus operandi of the Continental photographers in silvering their plates, I will state that the flowing baths generally in use are flat dishes made of porcelain or of glass plates cemented to a wooden frame, by means of marial glue or pitch. One end of it—that which stands away from the operator—is covered over to a distance of several inches, so that the dish can be tilted up without spilling the silver solution. To sensitize a plate, the operator tilts the dish with one hand, and with the other lays the colloidionised plate at the bottom, then bringing it back to an horizontal position causes the solution to flow over the plate. The plate now must be left for two or three minutes until the salt have mixed with the solution, heated. The practice of photographer's to cause the plate to sit in a plate in
about a minute. In this, their practice is different from that of vertical bath workers, for although some of these do sometimes move their plates up or down to insure more rapid sensitizing or freedom from streaks, it is always at a danger of dropping it, and of stirring up the sediment which remains at the bottom of the bath. It is the possibility of sensitizing in too long a period that is an advantage of the flowing bath, for a rapidly sensitized plate conduces to cleanliness. A solution which in a vertical bath will cause on the plate streaks in the direction of the dip will yield a perfectly clean plate in a flowing bath, when operating as described above; and, what is more, a solution which causes a fog owing to the presence of such a fogging time passes off when the plate is dry—will yield a negative quite free from it if the sensitizing is rapidly done, and the development not pushed to its extreme limits.

Many a photographer in a small way of business, and who cannot always have several spare solutions on hand, is sometimes stuck in a fog from which the use of a flowing bath would relieve him until the proper sunny, or boiling, or tinnering can be done through. In the establishment, where gallons of solution can be used, the advantages are all on the side of the vertical bath. A solution of gallons is not apt to change from day to day as is a solution of a pint or a quart, and then the plate requires no handling; it is dropped and withdrawn when ready, always provided the solution is in tip-top condition. In an ordinary establishment of a photographer, such as, for example, in America (I am not acquainted with dark room practice in England) there is room for several plates at one time, which, where a large business is done, is quite an advantage. There is another advantage of the flowing bath, however, to which I wish to call attention. During the winter the time for working may have arrived before the solution in the vertical bath have taken to the temperature, and if this be a large one it is not always convenient to empty it and warm the contents. Now a quart of solution is easily warmed, and this is enough for an horizontal bath of eleven by fourteen size.

Hardness and Softness, Intensity and Detail.—The time is not passed so very long when all of us were striving after intensity. We wanted intense collodion, silver solutions which give intensity; sulphate of iron was not in use because it gave such queer effects, and if the acid was the developer. All printing had to be done in the sun on strongly salted paper. This was the period of what a humorous transatlantic friend called cast-iron negatives. Intensity then was the great desideratum, and if we could not get it by regular development, we used to pile on the silver by redeveloping, or produce it with bichloride and iodide of mercury and sulphide of potash. Our education and the change in our tastes have been slow and gradual. Now softness is what we are striving for. In portrait photography strengthening with sulphide, mercury, &c., and even redeveloping to a great extent, have been abandoned. We want to develop a negative in one operation, so that it yields prints full of detail in lights and shadows, and of sufficient vigour, without yellow, white or blue, and without an unnecessary amount of haze. This result is pursued by some photographers with as much zeal, and sometimes as little success, as they did intensity a few years ago. I intend on this point to give the results of my experience, without presuming to tell anything new. The first point to consider is the lighting of the model. If the contrasts in your model are not too strong, if your subject is of a medium nature, and your shadows transparent, it will be comparatively easy to produce a negative possessing the required qualities. How to light a sitter is a subject on which a great deal might be written. It is a matter of disposition of studio, position of the sitter in the studio, use of screen and reflectors, &c. But on this we will not enter now. The second point is the collodion. The thicker the collodion, the more intense the negative. My experience with most of the collodions in the market is that they give too much intensity if used as recommended on the labels. A remedy is to thin with alcohol and ether; but if it possesses good flowing qualities, better not tint with it, but obtain softness and gradation by increasing the quantity of nitric acid in your bath. A silver solution containing a much larger quantity of acid without loss of sensitiveness than is generally used, principally when a good creamy collodion and an energetic developer are used. I do not recommend to add acid by the ounce, as does Mr. Black, of Boston, although I am not prepared to say that he is not right in his assertions; but I know that ten or fifteen drops C. P. to a quart of solution will cause a great improvement in your prints. A developer which contains alcohol also gives a weaker image than one which does not. I have for years made negatives for enlarging by the solar camera with the same materials used in ordinary work, simply by adding alcohol freely to the developer. Softness, finally, depends on the exposure in the camera. Under-exposure always gives hard negatives. Over-exposure, on the contrary, reduces possibilities of a photographic subject, such as, for instance, in America (I am not acquainted with dark room practice in England) there is room for several plates at one time, which, where a large business is done, is quite an advantage. There is another advantage of the flowing bath, however, to which I wish to call attention. During the winter the time for working may have arrived before the solution in the vertical bath have taken to the temperature, and if this be a large one it is not always convenient to empty it and warm the contents. Now a quart of solution is easily warmed, and this is enough for an horizontal bath of eleven by fourteen size.

Blistering.—As an old photographer who began operations shortly after the discovery of the collodion process, I have necessarily passed through most all accidents and failures that can befell us, and of which the practice of photography in our days, owing to a better understanding of the processes used, is quite free. It happens often that the experience acquired in former times proves a great help in the cases which, in the same manner, have happened. After that, many photographic materials, have made their appearance in later times. One of these accidents which make the despair of a great many of our craft is the blistering of the prints in the hypo or in the first washing waters. This blistering was quite unheard of before the use of double or strongly albumenized papers. The malap that befell me happened at the time when it was found that our printing baths were unnecessarily strong. As generally happens, the reaction against strong baths went beyond what prudence would dictate, so that twenty and twenty-five-grain solutions began to be used instead of the sixty or eighty-grain which were used formerly. We were in the habit then of laying the prints the one on the top of the other on a glass to allow them to drain. One day the prints were allowed to become dry and cracked, which, I wound, together—a thing which had never happened when I used strong solutions. This proves that the weaker the solution the softer and stickier is the surface of albumen. The blistering, in my opinion, is owing to too hard and too honey a surface, and if those who are troubled with it will reduce the strength of their solution, they will find that the accidents are immediately gone. I would, however, only recommend this remedy in case the blistering takes place in the hypo or takes place in the washing in spite of the use of a strong salt solution immediately after the hypo. When a batch of prints has been made on strongly-alumined paper, and the first ones begin to blister, the remaining can be saved by the addition of a small quantity of ammonia, or carbonate of ammonia, to
the fixing bath. The ammonia will take out the size of the paper, and the prints will become transparent, but they will dry up all right. I make these statements with confidence, and I would be glad to have those who try the remedies given to report their experience.

Definition in Carbon Prints.—Carbon printers in these regions have been in despair during the hot summer period. In spite of all they could do, they could get no definition. With the lowering of the temperature the evil disappeared. Can the difficulty be overcome, or have we to remain idle as soon as the dog days arrive; and what are those in warm climates to do? If the failure to obtain sharp prints in hot weather is owing to manipulation, it would be well if those interested peculiarly in the progress of carbon printing would give us the remedy. There is one kind of tissue, however, which gives sharp prints in spite of the hot weather: that specially made for transparencies. Could not a tissue like this be made of a colour as to be serviceable for prints on paper?

THE FIRST STEPS IN NOCTURNAL PHOTOGRAPHY.*

Working with my dry serum collodion, and struck with its great sensibility, I have undertaken a series of experiments for making positives by the means of ordinary artificial light, and I have had the satisfaction to see my experiments succeed beyond my expectation. I now send you a number of prints (with negatives and positives) made by the light of my two kerosene lamps, each one having the value of four candles; I also send you a short and truthful account of the processes by which these negatives and positives were obtained.

This process is rich in practical applications, and can be used in making positives and negatives on glass and paper at night as well as during the day, and can be used in the production of transparent pictures, glass stereo, copies, designs on glass or on paper, of scenes and other scenes, copies of ordinary manuscripts and alibettes, plans, maps, &c., &c.

In microscopical photography this process can be used with great advantage, as the destructive action of concentrated heat is avoided.

Our method of operation is quite simple, and requires only an addition to the photographer's outfit, which he can easily make with a few pieces of pasteboard. This consists of a screen composed of seven pieces of pasteboard joined together by strips of muslin.

a, a, are the pieces of pasteboard; b, the muslin joints.

The object is placed at a, the lamps at b, and the camera developer with additional ammonia is poured upon it. If the pose is good, the image commences to appear by the deep blacks, and is formed progressively and without interruption in from two to three minutes.

For glass positives, made by contact and direct exposure with two lamps (of an approximate power together of from eight to ten candles), thirty seconds' exposure is more than sufficient; negatives with the double portrait objective require from twelve to fifteen minutes, and with the landscape objective from twenty to thirty minutes. The following table shows the time of exposure for different intensities of light.

<table>
<thead>
<tr>
<th>Candles</th>
<th>Seconds</th>
<th>Candles</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>7</td>
<td>74</td>
</tr>
</tbody>
</table>

Instantness (twenty four lamps, each having the intensity of ten candles).

The formula of the collodion is that used by Mr. S'too, viz.:

Collodion at 1 per cent. ... 100 parts
Bromide of cadmium ... 3

The collodion should have a slight excess of alcohol.

It should remain on the plate from twenty to forty seconds, after which the plate is plunged in a silver bath composed of:

Water 100 parts
Nitrated silver dissolved ... 80
Nitratic acid 1 drop

After an immersion of five minutes the plate is withdrawn, and washed in the following manner:

Take a vessel filled with distilled water acidulated with acetic acid. Cover the sensitised plate with this water, and agitate for about half a minute, then pour the water off into another vessel, so as not to lose the silver. Repeat this two or three times, and then wash gently for a minute under a tap. It is easy to verify that the surface of the plate contains no more nitrate of silver. We use for this purpose a well-cleaned sheet of brass. As soon as a drop falling from the plate leaves no black marks on the brass, the application of the preserver may be safely commenced.

The preserver is thus prepared; take

Skimmed milk 100 grammes
Water 200
Citric acid 1 to 2 drops

and place the whole on the fire. After two or three boilings the cassein is formed, and the liquid is passed through a cloth to separate the cassein. After having been allowed to cool slightly, add to the liquid the white of an egg. Place the vessel on the fire, and, after three or four boilings, filter through paper. The liquid, which is clarified serum, should be slightly green and clear. Now take

Olarised serum 100-00
Pyrogallic acid 0-20

and again filter. This is our preserver.

The preserver, after the washing, is poured on the sensitised plate, moved to and fro, and then thrown off. The plate is covered again with another coating of the preserver, which should remain on from fifty to sixty seconds, and after this is coated with a second preserver, which is also allowed to remain on from fifty to sixty seconds, and so on, the last preserver being that which is placed on and on the plate on and on the plate on and on the plate on and on...
After an hour the glass is perfectly dry, and the collodion is so strongly held by the preserver that it is only with effort that it can be removed with the nail. Plates thus prepared may be kept several months without losing their very great sensibility.

The exposure with portrait objectives is from five to ten seconds, and with landscape objectives from twenty to twenty-seven seconds. After exposure, I develop the image by the alkali process. I prepare three solutions:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>100</td>
</tr>
<tr>
<td>Bromide of potassium</td>
<td>2</td>
</tr>
</tbody>
</table>

No. 2	
Water	100
Pyrogallic acid	0·5

No. 3	
Water	50
Ammonia, liquid	50

I pour into the developing dish three cubic centimetres of the solution No. 1, to which I add thirty cubic centimetres of solution No. 2. I wash the impression plate under the tap for a few seconds, and, after draining, cover it two or three times with the prepared mixture for the space of a minute. I then add from five to eight drops of the ammoniacal solution No. 3, and allow it to cover the glass, where the image is slow to appear. I again add from four to five drops of the same solution, and the image commences slowly to develop itself. I wait for a few seconds, and add again a few drops of solution No. 3. In four, five, or at farthest ten minutes, the development is ended, and it can be brought to the required intensity by the ammoniacal developer alone, or by stopping, washing, fixing with a saturated solution of hypo-sulphite of soda; again washing and drying. If it is found that the image has not the required degree of intensity, it can be taken up the next day, or the same day, and exposed to diffused light with the ordinary strengtheners, composed of:

<table>
<thead>
<tr>
<th>Strengtheners</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>100</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
<td>0·5</td>
</tr>
<tr>
<td>Citric acid</td>
<td>0·5</td>
</tr>
</tbody>
</table>

and a few drops of nitrate of silver at 5 per cent.

The image finished, it is covered with the solution of hypo-sulphite of soda, carefully washed, and dried. The collodion holds very strongly to the glass, but, when many prints are required, the plate may be varnished, the varnish covering well the coating of dry serum.

In my preparations by this method, I make use of a special bromide of paper, prepared in the following manner:

I take ordinary albumenised paper, and I float it for thirty seconds at the farthest on the following solution:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumen</td>
<td>100</td>
</tr>
<tr>
<td>Serum</td>
<td>60</td>
</tr>
<tr>
<td>Bromide of potassium</td>
<td>2</td>
</tr>
<tr>
<td>Citric acid</td>
<td>2</td>
</tr>
</tbody>
</table>

In which I have dissolved:

After having mixed these ingredients, I beat them to a froth, and then allow the liquid to settle; then I filter through cotton or sponge. This dried paper keeps for a long time, and the sensitising is done in the following manner:

The silver bath is composed as the negative bath of:

<table>
<thead>
<tr>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Nitrate of silver</td>
</tr>
</tbody>
</table>

The albumino-bromide paper is plunged into this bath for four or five minutes; it is then placed in a dish filled with water, acidulated with acetic acid, and is allowed to remain until another sheet is prepared in the silver bath. It is then placed in a bath of water, in which it is allowed to disgorge for the same space of time, and is carried to a flat dish, in which has been poured a coating of our preserver. It is allowed to float thirty seconds, and finally carefully washed in filtered water and dried. Paper thus prepared preserves its brilliant aspect, and gives prints as fine as ordinary albumenised paper. The dry sensitised paper keeps very well for a month; I have not kept it longer. The positive, with the light of two lamps, is sufficiently impressed when the image shows itself faintly in the deep shadows. Fifteen minutes amply suffice with the light of two lamps, and even after an exposure of ten minutes the development is satisfactory, and in a half-hour the operation is completed. I make the developer in the following manner:

<table>
<thead>
<tr>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Pyrogallic acid</td>
</tr>
</tbody>
</table>

After solution I add:

<table>
<thead>
<tr>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetate of lead</td>
</tr>
</tbody>
</table>

and I clarify the liquid, which has become milky by the addition, drop by drop, of a saturated solution of nitric acid. It is necessary to avoid the addition of the solution of nitrate of silver, which causes the image to appear more quickly, but at the same time injures its quality, as the image is liable to be covered with a precipitate of silver, which produces objectionable shadows, and shows dark in the whites. Several prints may be developed at the same time on the same dish.

A FEW WORDS ON CLEANING THE DAGUERREOTYPE.

BY M. P. SIMONS.*

As Daguerreotypes are frequently brought to photographers to be copied into photographs, it is well, both for them and their patrons, that they should know the best and safest mode of cleaning them, which should be done, if required, before copying, that the best results may be had in the copy. In cleaning Daguerreotypes, first commence on the back, and get that free of all foreign matter, such as wax, glue, sealing-paper, &c. This can be done best by scraping it with a knife, being careful not to bear hard enough to indent the plate. Some brands of plates—and the best pictures will be found on them—are very soft and easily marred. No water should be used at this stage of the operation, but, if it should be thought necessary, see to it that it does not run on the under side and dry on the picture. This will sometimes occur, and leave a "damned spot" that will not "out," do what you will. I have seen some valuable Daguerreotypes very much disfigured, and not a few irrecoverably ruined, by carelessness in this respect alone. Whatever is smeared or coated with any soluble matter, then you may venture with care to clean the picture. This can be very effectually accomplished by simply washing with clean water as long as you do a negative, and, while wet, flowing on the picture as much as it will hold of liquid ammonia, full strength; keep on for a few moments, wash well after this, and set up dry; use no heat. This you will find to dissolve and remove anything that is likely to be on the picture much better than cyanide, and without the risk of spoiling it, which money can’t replace. Cyanide, in my opinion, should never come in contact with a Daguerreotype except in extreme cases. For instance, when a Daguerreotype from bad usage is in the last stages of decay, and the picture would be worthless unless cleaned, then it may be expedient to use cyanide, or anything else, as powerful medicines are sometimes administered to the sick when there is but little hope of recovery. Very frequently the trouble is only with the glass. In fact, if the picture has been properly made and well gilded, the dirt that seems to be on the picture, obscuring it like a dark cloud, can in most cases be lifted off with the glass. Several instances of this kind have occurred with me, when the mother of Daguerreotypes of their deceased children, to be copied off "before entirely faded out," and I have found, more often than otherwise, on removing the glass, that the pictures were intact and as bright as when made, needing only dusting with a soft brush to prepare them for copying.

* Anthony’s Photographic Bulletin.
woman, replied, "Well, madame, you had really better have
that, and call it your portrait, as that is the only mode
I can suggest in which you can secure a picture like that."
An attempt has recently been made in America to obtain
a legal decision as to the respective rights of the photo-
graher and sitter. The Daily News briefly records the
details so far as they have transpired. After some reflec-
tions on the new influences developed by new arts, our
conversatory proceeds.

"The useful and comparatively harmless process of
photography seemed hitherto to have developed no
particular forms of iniquity beyond the reach of the civil
or criminal law; but a special photographic case has
recently been brought before an American Court of Justice,
and, under the circumstances, it is not clear whether
that after a single hearing, it was found impossible to
arrive at any decision as to the points in dispute. A young
lady, entering the studio or operating room of a Brooklyn
photographer, requested to have her portrait taken, and
was thereupon seated in the fatal chair, and subjected to
the usual process. It has been suggested that perhaps the
photographer smiled too soon, as thereupon a series of cries
of distress and complaints, or that she may "suddenly have
thought of a hated rival," and have thus been betrayed into
an unintentional wriggle, whereby the negative was made
to bear the image of a broad but nebulous maiden, with features drawn out into
horizontal lines, with expansive hands furnished with
dozens of faint and fat fingers." The photographer, less
than most contemptible, lost his head, and the negative,
which was disapproved of. He tried a second, which also failed to give satisfaction. He then went
on taking impression after impression, until at last he had
no fewer than seventeen rejected negatives in hand. The
young lady recommended the discomfited artist to "try again!" But he had made experiments enough, and
not only refused to attempt fresh portraits, but also refused
for loss of time and expenses already incurred. The young lady resisted the demand on
the ground that no "adequate likeness of her had yet been executed, and the report of the first hearing of the case
seems to show that no judicial solution of this new and
interesting difficulty is likely to be arrived at."

AN IMAGE DEVELOPED WITHOUT PREVIOUS
EXPOSURE.

An interesting result has just been obtained by Dr. Liege-
ghaung which ought not to be passed over. It is the forma-
tion and development of a picture without any exposure to light. A carbon was permitted to rest over a suaner, for a long time, containing
hydrofluoric acid and fluoride of sodium. In this way a
delicate etching was produced upon the glass, not alone in
the high lights, but in all the half tones as well.
The gelatine image was hereupon entirely removed, and
after being carefully rubbed with soft paper, the etched plate
was coated with iodized collodium, sensitized, and the
image developed at once, in the ordinary fashion. This
was then gradually developed an exact negative picture of
the etching; but this picture, consisting of bright met-
tallie silver, was not upon, or in, the collodium film, but
between the film and the glass, so that after washing off
the collodium film altogether with a mixture of ether and
alcohol, it remained unchanged upon the surface of the
glass. The reduction of the silver had therefore commenced in
the rough portions of the glass. The stains and spots which result in the ordinary way from the use of
imperfectly cleansed plates are also due to (in the same
way) precipitates of silver between the film and the glass,
and it is for this reason why they are seen so much better
from the glass side. Whether this plan of depositing a
silver image upon glass can be utilized in any manner
remains to be seen, but the experiment is one which
deserves to be chronicled.
THE PHOTOGRAPHIC EXHIBITION.

Pictorial Subjects.

We have before remarked that the exhibition of this year is poorer in essentially pictorial subjects than any we remember for many years past. The opponents of the art claims of photography, those who affirm that at best the products of the camera are but mechanical transcripts of the subjects, will doubtless hail the result as a satisfactory proof that photographers are abandoning the notion that works of true art can be produced by sun painting. This notion is, however, negated by the fact that amongst the few pictorial subjects contributed there are some which substantiate those art claims in a manner beyond cavil or question. The varied contributions of Mr. Faulkner alone, if no other pictorial work had ever been attempted by photography, would satisfactorily demonstrate that, in the hands of a true artist, photography is scarcely less plastic than painting, whilst in its subtle truth to nature, it snatches "a grace beyond the reach of art." We have already briefly noticed the charming series of baby sketches enlarged by the powder carbon process from instances of the signatures, as well as the miniature sculptures of children. The finished carbon enlargements of "Dorothy Morrison," and "Simplicity," have continued to rivet the attention, and secure the attention of all visitors—unfortunately, in some instances, with a result not intended. Many visitors, whilst they have warmly admired, have believed they were examining reproductions from Sir Joshua Reynolds' portraits, but mechanical transcripts of his manner. Recently Mr. Faulkner has made another charming addition to the exhibition, in a full-length enlargement of "Dorothy Morrison," on a plate twenty by fifteen, also produced by the powder carbon process. The admirable pose and treatment do the fullest justice to the sweet simplicity of the charming child: the picture is in every way delightful, and true to a work of art as any pencil sketch, or even a tint of the face of the Roman "Graecica," is in this position. "Tired of Waiting" (167) is probably his best, as it is his most important contribution. The subject here is simple, and in treatment as well as subject it somewhat resembles more than one picture which has appeared in the exhibition in former years. A village maiden is leaning against a rustic rail-fence, manifestly wearily with keeping the tryst which somebody has disregarded or forgotten. The figure is good, is well placed, and tells its tale. The landscape is very admirably chosen, and finely rendered. "Tandem" (164) is a capital bit of nature. A rustic cart, with a couple of cart horses yoked tandem fashion, are caught in picturesque position, and very successfully photographed. Mr. Sutcliffe has some other contributions all possessing excellent qualities.

Mr. A. Ford Smith sends one of the most ambitious, and, at the same time, one of the most effective, of the pictorial compositions at the present exhibition. "Olden Times" (111) is a large photograph (about 22×15) consisting of figures and a singularly fine interior. The figures in costumes—apparently of a period about three hundred years ago—consist of a seated cavalier and a lady advancing towards him. There is no especial story told, or sentiment illustrated. The aim appears to be rather to depict an ordinary scene of the period, the interest centreing more in the still life of the subject than in figures. These are quiet, easy, and graceful, admirably photographed, full justice being done to the gorgeous costume. The interior and its antique accessories are singularly fine; the retiring quality of the landscape seen through the window is very effective. We have rarely seen an interior rendered more finely by photography. This part of the picture is, we understand, produced from an enlarged negative on waxed paper, and it is probable that something in the texture which is here very satisfactory must be obtained by the use of this kind of negative, better than it could have been by means of a direct collodion negative. We may remark, en passant, that a cabinet portrait not in the exhibition, but before us at this moment, illustrates the capacity and effect of these waxed paper background negatives very efficiently; the landscape background to a figure consisting of a girl gathering ferns is singularly atmospheric and retiring, and exhibits no traces of the making process.

Mr. F. Hollery, who has been chiefly known at photographic exhibitions as a successful reproducer of modern paintings, sends some very successful studies of animals, valuable in themselves for their pictorial qualities, and almost beyond value to many artists as aids to painting. His "Sleeping Beauty" (145) is a capital portrait of a small animal, and ridiculously natural to meet every canon of beauty laid down by "the Fancy" in relation to "their" "dawgs." "Shoeing" is one of the most perfect examples of foreshortening we have ever seen. A splendid dapple-grey horse is in the hands of a smith, who, with the near fore-leg of the animal lifted, is engaged in shoeing him. The hind quarters and a little of one side of the horse nature together are fine in drawing and relief. The picture and photograph are alike admirable. A calf led—or, rather, declining to be led—by a little girl (154) is another effective bit of nature. Mr. Walter Noel Hartley sends two or three clever little sketches. No. 99—"In an orchard"—is hung beyond the reach of examination. No. 224, catalogued, "A Cross Boy," is a most effective bit of nature tended to by "a Cross Boy." "A Cross Boy and a Cross Girl," "Waiting for the Master" (248), are capital studies of a rustic urchin in smock frock. A number of examples of the work of the late O. G. Rejlander have been sent, all possessing the unimitatable stamp of the master upon them; but several of the enlargements which are hung, being faded and bad in colour, do not render full justice to the rare powers of the great artist. Photographs of the late Mr. J. D. L. Constable, on the table will well repay an hour's study.

There are few examples of combination printing in the present exhibition. One of the finest and largest pictorial effects, a portrait group and interior by Mr. Slingsby, which we have before noticed, is produced from one negative. Some of the pictures to which we have referred are produced from more than one negative, and there are, both amongst landscapes and portraits, skies or backgrounds printed in from second negatives. In almost all the best landscapes the skies are printed in, and in many cases with admirable effect. As an exceedingly successful example, we may mention Mr. Crawshay's picture, a scene on the river Usk (82), in which, although the landscape itself is good, its conversion into an exceedingly fine picture is effected by the admirably fine poetic sky, judiciously printed in. A good back-ground effect from a separate negative is secured in "Le Vivandiere," by Mr. H. Garret Cocking, whose pictorial studies we have already noticed. There are two or three more attempts at pictorial effects which we refrain from criticising.

As we have before observed, there are very few examples of special processes, but such as are exhibited are very interesting. The only examples of enamel portraiture we noticed were conceptions of a frame of very fine examples of the powder process sent by Mr. Faulkner. A series of photographic enamel decorations to porcelain cups and saucers are sent by Copeland and Sons. The results are good, but the colour chosen, a bright magenta, is for portrait subjects somewhat unsatisfactory. A series of very fine
 stereoscopic slides of American scenery, and a Holmes' stereoscope, are sent by Messrs. Anthony and Co. Some good lantern slides of subjects connected with the Arctic expedition are sent by Mr. H. Dixon, and some very fine enlargements of microscopic objects by Mr. C. Viale.

METEOROLOGICAL REPORT SHOWING THE VARIATIONS IN THE DAILY AGGREGATE OF CHEMICAL FORCE IN THE DAYLIGHT OF THE SOUTHERN SKY,

FROM OBSERVATIONS MADE AT BLACKPOOL, IN LANCASHIRE,

BY D. W. WINTON, F.R.A.S.

The past week has been another dark one, though the daily average is somewhat higher than that of the preceding week, being as 341 chemical units to 282. The total amount of light, however, during the whole week (2288 units) is not much more than the daily average for September, and its daily average is less than one-half the daily average for October.

PHOTOGRAPHING THE INVISIBLE.

BY DR. J. SCHRADER.

It is not to be wondered at that a process so mysterious as photography should present some phenomena that are inexplicable to the man of science. The mere idea that one could have a portrait taken by the aid of the sun was alone the means of attracting the public in the early days of photography; but custom has long ago worn off all curiosity. Nowadays, everybody allows themselves to be photographed with the greatest equanimity, without troubling themselves for an instant as to how the matter is managed. It is found necessary, therefore, to shake up the curiosity of that creature of habit, man, once more, to get him to take further interest in such a matter as portrait photography; and thus it comes about that we hear of spirit photographs and ghostly wonders, and of inexplicable and surprising effects of light which result in the camera. The accepted assertion, that there are things between earth and heaven of which man does not know, was at all events attempted to be demonstrated by means of photography in that land of humbug, America, from whence come to us the first spirit photographs. We Germans had no demand for such kind of pictures, and had gone no further than to produce so-called magic pictures, the only thing magical about which was the name; and these prints did not profess to have anything to do with the unearthly and the unnameable. We were not, however, altogether free from the influence of spiritualism, for in 1862 there were produced in this country spirit photographs also, in the very capital of intellect, too, as Berlin has with truth been called. The discoverer of these was the late Baron von Reichenbach, a well-known savant in technical chemistry, and it is to be deplored that through the influence of certain sensitive persons, whose sentiments he did not in any way share, he should have led people upon erroneous paths, imparting to believing their spirit photographs were really bona fide productions.

Several bodies appear luminous to people after their eyes have become accustomed to darkness—as, for instance, large steel magnets, and big crystals; water shaken up in a bottle will emit phosphorescence, and luminous waves may at times be seen coming from the fingers, extending greenish or reddish to the sides of the body. But these phenomena are visible only by very sensitive or delicately constituted people, and it was with the object of proving their actual existence to others that Reichenbach made use of photography. He took it for granted that the sensitive photographic plate was also delicately sensitive, or that the reddish or greenish light exerted an action upon the film without being visible, in the same way as the ultra-violet of the solar spectrum. Reichenbach set to work with this notion, not, however, in proximate Vienna, but in sceptical Berlin, so that he might convince the unbelievers, and secure the services of a photographer there, whose experiments in this direction had been already successful. Even a large number of scientific men assisted in the research; we are told, and it has always seemed to us strange, supposing the experiments to have been successful, as was stated to be the case, that none of these gentlemen said a word on the subject afterwards in the public prints.

In the exhaustive manual of Professor Vogel one looks in vain for the record of experiments made to secure impressions of phosphorescent phenomena, and those, if they had really taken place, would scarcely have escaped the learned author, for they would have been too curious to have evaded the attention of learned constituents. In the pages of the Gartenlaube, one of the most popular German magazines, the experiments of Reichenbach were nevertheless reported as perfectly successful; and in the scientific periodical called Leopoldina, the organ of a German Academy of Natural Sciences, there is published in Vol. III., 1862, a report by the contemporary president, Kiedler, concerning these experiments, in which there is the following: "From Berlin we have received from our honoured member, Baron Reichenbach, of Castle Reifenberg, four small printed communications upon the experiments undertaken by him in connection with the photographic power of phosphorescence emanating from the nervous human system and from crystals, and these experiments are represented as being successful." These researches of Reichenbach have from the very first been a source of considerable interest to ourselves, and we have read his pamphlets with the more attention as we have seen similar luminous phenomena in the persons of somnambulists, and have made a study of such nervous appearances, although still now with a negative result. For this reason we have lately felt impelled to institute further researches, at any rate with crystals—for sensitive persons or somnambulists were not at our disposal—in our chemical laboratory at Jena, that we might give the matter completely at rest. These experiments have been carried out with great care and attention at the photo-chemical laboratory of Jena, so that implicit reliance may be placed upon the results. Our verdict is that at present we are not of the same opinion as Reichenbach, viz., that luminosity emanating from one's finger ends or from the poles of a magnet, or the arcs of crystals, which is seen by very sensitive persons, is identical with solar rays or daylight. It would lead us too far to relate the control photographic experiments undertaken with this phase of phosphorescence. The experiments described in the third volume of Leopoldina, above alluded to, were repeated, and, we may add, with a negative result. There can be no doubt, however, that the results which Reichenbach desired himself into obtaining

Photographiehren Archiv
proved the first steps in spirit photography, and hence we now get all sorts of ghostly photographs.

In the production of the so-called spirit photographs of the present day, it is only a question as to how the public can be most surely and easily deceived by the aid of photography. Many plans may be pursued by the photographer, so that it is a simple matter for each to produce his pictures after his own manner. The main thing to be attended to is the perfect stillness of the person photographed, and as the sitter cannot see what is going on behind his back during the exposure, if there is no noise made, and sufficient space exists between him and the background, he is easily deceived. A ghostly form may be sketched on the white background by means of sulphate of quinine solution, and this sketch, although invisible to the eyes, produces an effect upon the negative. Dodges of different kinds in manipulation may be resorted to, such as the exposure of the portion of a plate at one time only, as in the case of the "double" portraits introduced some time ago. An impression may first be laid upon one half of the plate in another studio, and then brought in for a second exposure.

If the sitter is himself in league with the photographer, then the most ghostly effects are easily managed, and, by opening and shutting the lens at opportune moments, the deception of spiritual apparition is rendered very easy.

Correspondence.

INSTRUCTION AT EXHIBITIONS.

Sir,—May I suggest that the next photographic exhibition be made a means of conveying instruction as well as pleasure, by each exhibitor affixing to his pictures the date of the negative, name of lens used, and time of exposure? —I remain, dear sir, yours truly,

S. R. M.

Chartham, Canterbury, November 8th.

[There might, possibly, be a legitimate objection to encumbering the mount of a picture with inscriptions or memoranda, they may, of course, be done after the picture is in the catalogue, where it would remain for reference.—Ed.]

WARMING DARK ROOMS.

Sir,—I notice in last week’s issue of the News that Mr. J. D. Hannah recommends a lamp stove as an efficient means of warming the dark-room. My experiments, extending over many years, have convinced me that no means which allows of the products of combustion being disseminated in the room is good, but positively injurious, to most, if not all, chemical effects. Dry plates, for instance, are great tell-tales if the atmosphere is impure, which dry plate workers have often found out to their cost.

Mr. Gough, in pointing out the particulars of his drying-box, explained to me that the products of combustion, whether from gas, coal, oil, or any other substance that betrayed its presence by the smell, would act as a retarder, and render dry plates insensitive: this is my own view and experience; I would therefore suggest that the oil stove, or whatever is employed, should have a small pipe leading the products of combustion away from the dark-room.

I am, sir, yours respectfully,

John Howarth.

111, Thornton Road, Bradford, Nov. 9th.

PHOTOGRAPHERS’ BENEVOLENT ASSOCIATION.

Dear Sir,—Will you kindly allow me to announce, through your valuable columns, that the Council of the Photographic Society has granted the exhibition on Thursday evening, November 18th (open at 7), for the benefit of the funds of the Photographers’ Benevolent Association? Tickets of admission (sixpence each) to be had from me, or at the door of the exhibition, 5, Pall Mall, East, on the evening of the 18th.—I remain, yours truly,

18, Kirchen Road, Eating Dean, W. W. T. WILKINSON.

URANIUM DRY PLATES.

Sir,—Uranium dry plates have found frequent and favourable mention in your columns of late; but it does not yet seem to be understood that a rapid dry plate has better keeping qualities than a slow one. This being the case, they are much more desirable to work with, as we are enabled to get "life" into our landscapes.

The following letter from the chief photographer on board the Challenger is important, as confirming the statement I make above, and I shall be glad if you will publish it:—

H.M.S. Challenger, Yokohama, 15th June, 1875.

Sir,—It gives me great pleasure to acquaint you that the dry plates supplied to this ship three years ago are working well, being fully sensitive, notwithstanding the great trial that they have been subjected to—those that are held and used on some plates of a round lamp spot on the film which stains the picture, and hence I discard them; but on selecting plates I travelled up 2,500 feet where the wet process seemed impossible and obtained perfect negatives. I would suggest that more substance be placed between the plates, as I have found them sticking together, and hence the same spots on each plate. I am using your new developer, which works well.—I remain, yours obediently,

(Signed) J. J. EAY, Photographer.

To Col. Stuart Wortley.

The spots spoken of are due to the pieces of packing-paper slipping, and the faces of the plates coming in contact.—I am, &c.,

H. STUART WORTLEY.

Proceedings of Societies.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The sixteenth annual general meeting of this Society was held in the Hall, 6, St. Andrew Square, on the evening of Wednesday, the 3rd inst., in the chair, Mr. Thomas. The minutes of last general meeting were read and approved, and Messrs. James Gordon, —Hunter, and Lieutenant Gilbert were admitted ordinary members.

The Secretary then read the report of the council for the past year, which was as follows:

The council has much pleasure in submitting the annual report. The year now closed has been one of unbroken prosperity, and the Society continues to occupy its prominent position amongst the scientific and literary institutions of the country.

During the session there have been held eighteen meetings, nine of which were ordinary, three popular, and six out-door, including the annual excursion. The attendance generally at all these has been even greater than during former years; and, at the ordinary meetings, the following communications were brought before the Society:—"On the spirit of the journals," by W. T. Bashford; "On an unsuspected cause of spots on carte-de-visite and cabinet photographs," by T. W. Bashford; "The photometric value of the different lights used for lantern purposes," by John M. Turnbull; "The progressive results of the past session," by Dr. John Nicoll; "Extracts from a letter to a young photographer," by Alexander B. Mackay; "On the various styles in portraiture," by John M. Turnbull; "Art criticism," by W. Nelson; "On the use of permanganate of potash as an intensifying agent," by W. H. Davies; "The aid the fine arts have derived from photography," by Dr. Hunter; "On the colouration of statuary," by R. Bow; "A substitute for ground glass in the camera," by the use of the actinometer in landscape photography," and "An improved form of spirit lamp," by J. M. Turnbull.

There were exhibited at these meetings the following apparatus
and pictures: A collection of photographs of the late Oscar G. Rejlander, by Mr. Constable and Mr. Elliott; a large collection of photographs of works of the great masters, by Mr. Black; an improved camera in which dry plates could be charged without slides, by D. Aird; an improved drying box, by W. Dallas; copies of works by the Italian masters, by Dr. Hunter.

Four distributions of photographs took place during the session; the photographs were kindly contributed by the following gentlemen: Messrs. W. H. Davie, E. R. Yerbury, G. A. Panton, Colin Sinclair, Alexander Mathieson, Alexander Nicol, and Dr. John Nicol. The council has reason to believe that these distributions have tended materially to induce a more general interest in the Society's operations, and as there is a strong possibility that some who have hitherto not been called upon, they hope this important feature will be continued.

The popular meetings were, as usual, largely attended; the subjects of discussion and illustration were: "Egypt and the Nile," by Dr. John Nicol; "The North and West Highland," by W. H. Davie; "Sketches of English life and character," by Dr. John Nicol.

The out-door meetings were held at Colinton, New Battle, St. Monance, Almond Dell (annual excursion), Preston Grange, and Bonally.

The following donations were received during the year, viz.: A very fine photographic portrait of the late W. D. Clarke, Esq., from Mr. W. H. Davie; two photographs from Mr. W. T. Beattie; Mr. W. T. Beattie; Mr. W. T. Beattie.

It will be seen that the Society has shown its usual amount of activity, and accomplished a fair share of practical work.

During the session the membership has not materially changed; thirty-six members have been added to the roll, seven have resigned, and nine have died.

The Society now numbers three hundred and nine.

From the treasurer's report it will be seen that the financial position of the Society is encouraging and satisfactory.

The report was adopted, and the treasurer submitted an account of his intromissions, showing that the financial position of the Society was in every respect satisfactory.

The council proceeded to the appointment of office-bearers for the ensuing year, when Dr. Thomson (president), E. R. Yerbury (hon. secretary), Dr. John Nicol (corresponding secretary and lecturer), and T. A. Niven (auditor), were unanimously re-elected to the various offices; Dr. J. A. Sidey was appointed junior vice-president; and Colin Sinclair, John Lilles, and Alexander Asher, councillors in room of those retiring by rotation.

Dr. Thomson said he begged to thank the members of the Society for the honour that had been again conferred on him by their return to the office of president. What he said last year he could not avoid saying again, that he had grave doubts as to the wisdom of their choice. He, however, assured them that, so far as lay in his power, everything should be done to advance the interests of the Society, and that with the co-operation of the officers, and the support of the council he felt assured that the session now begun would be as successful as that just brought to a close. For some months the interest of the Society would be mainly in its ordinary meetings, and the principal efforts of the council would be to secure the reading of suitable and interesting papers for those meetings. This, he said, was a matter in which the members generally could materially assist the council, and he hoped that whenever a member had anything worth bringing before a meeting, he would not wait till asked, but at once communicate with the council on the subject.

Mr. William Nelson then proposed that the thanks of the meeting be given to the office-bearers under whose management so great a measure of success had been attained. No doubt the best expression of thanks that could be given was their unanimous re-election; but still the usual formal vote must be omitted. He also moved the motion of thanks to the retiring councillors. They had the satisfaction of knowing that they had contributed largely to the success of one of the Society's most successful sessions, and while he sympathised with them in their re-election to the ranks, he had no doubt that, as long as they continued to do so all in the power for the interests of the Society. Both votes were carried by acclamation.

The Corresponding Secretary then read a communication from Mr. D. Winstanley, of Blackpool, enclosing a diagram showing the daily variation in the aggregate chemical power of the daylight of the northern sky that in that locality, which elicited some discussion, the outcome of which seemed to be the advantage of some standard used in exhibiting, which would be understood and generally accepted. Until this was attained, little benefit could be expected from such a course of observation.

The thanks of the Society were given to Mr. Winstanley, and the meeting adjourned.

Photographic Section of the American Institute. At the June meeting Mr. H. J. Newton presided. The minutes of the last meeting were read and approved.

Binocular Microscope. Mr. Charles B. Boyle exhibited his binocular microscope with a photographic attachment. The eye-piece is taken off, and a plate-holder put on in its place. Over the object glass is placed a photographic lens of short focus. Behind the insect to be photographed is a background, and there are two mirrors, one of which should illuminate the insect brightly, and the other sufficiently to soften the shadows.

Mr. Mason said that in his experience, in working with the microscope, he had found that there was an illumination inside the microscope. There was a greenish tint which he got rid of by the ghost. He had tried various experiments but finally lined the tube with black cotton velvet, with little or no gloss and a long nap, which entirely removed the difficulty.

Mr. Boyle remarked that in every telescope there are several ghosts, caused by the return of the light. The surfaces of the lenses, but they are at different distances from the focus, and the only difficulty from a ghost is when it is very near the focus.

Emulsion. The President exhibited specimens of negatives and prints, illustrating his experiments with the dry plate emulsion process, and read the paper on that subject published in our June number.

Mr. J. B. Gardner said that when Mr. Newton first announced this process, he had been very much interested in it, thinking it would be a great acquisition if a photographer could take a portrait without taking his bath with it. This morning he had gone with the President to Central Park, where they had taken six plates with an exposure of from five to thirty seconds, showing that there was very great latitude in the time that may be given, and that it may be regulated very readily by the manner in which the pictures are developed. Starting cautiously with a weak developer, if a stronger one is required it may be used without injury to the plate. He had been much pleased with the method, and he had never known any process coming up to his expectations before.

He moved a vote of thanks to Mr. Newton, which was carried.

A Longitudinal Diaphragm. Mr. Alexander Bouchers.

Many years ago, when I was engaged in making stereoscopic pictures, I tried the effect of using the camera, not with a round opening, but with a slit. When the slit was perpendicular, the effect would be that the perpendicular lines would be more strongly marked than the horizonal ones, and so when the slit was horizontal, the effect upon the picture would be that the horizontal lines would be more strongly marked. I would suggest, in galleries especially with a narrow skylight, the use of the horizontal diaphragm; it would give a better effect. I found that it would produce a better effect in taking stereoscopic pictures. Animals of prey have an eye that contracts in that form, and it gives the measure of distances better than a round pupil. A cat, for instance, will open the pupil fully to be an object, and then contract it to judge the distance in order to bound for it. The eye of the chamois has the slit the other way, and consequently they see the horizontal prominences better, and can make their bounds with greater safety. The distance of the eyes from each other determines the measure of the object. When stereoscopic views were taken some years ago, with the lenses wide apart, the objects appeared very small. Stereoscopic views can reach only a certain distance. Beyond that distance the effect is the same as if looked upon with a single eye, because the angle between the lines of sight of the two eyes would be the same as if the two objects of a size in proportion to the distance between its eyes; so that in the eyes of the elephant, fourteen inches apart, objects appear much smaller than to us.

Mr. Boyle remarked that all herbivorous animals have the
Sit of the eye horizontal, and all carnivorous animals have it the other way. It was not the distance between the eyes which determined the apparent size of an object, but the angle of the convergence. In separating the lenses, the angle produced was the same which would be produced by bringing the object towards us; and consequently the object appeared near and smaller. To the elephant an object does not appear smaller because his eyes are further apart, and the slit of the eye is of no assistance in measuring distances.

Dr. Parke remarks that lines standing vertically appear longer than in a horizontal position.

Mr. Becket remarks that the aperture of a circular lens in the stereoscope could not exceed the distance of the eyes, but by extending it vertically we can get more light.

Talk in the Studio.

Some of the Photographic Society.—On Tuesday evening last the Photographic Society of Great Britain held a soirée in place of the usual meeting opening the session. The handsome room in which the exhibition is held in Fall Mall was crowded with the utmost satisfaction, the audience being not large, and the evening was a successful and pleasant one.

The Ferranti Mode of Finishing Enlargements.—It will interest some of our readers to know that the patent of this successful method has been secured by the due payment of the stamp fees for a further period of four years.

The Autotype Company.—It will also interest photographers to learn that Messrs. Spencer, Sawyer, and Bird are extending their business arrangements. Some years ago they acquired the patents, plant, and premises, of all the working and productive operations of the Autotype Company. The Company subsequently confining its operations to the publication of works of fine art, produced in carbon. Messrs. Spencer, Sawyer, and Bird have now made arrangements to take over the whole of the business and the premises which remained in the hands of the Company, uniting fine art publication to their other branches.

Photographic Fashions.—We have been favoured by Messrs. Jackson, Brothers, of Oldham, with a sheet of photographic fashions of gentlemen's hats, which we understand they have for twenty years past been in the habit of producing regularly. The hats are admirably photographed, forming a circular design in the sheet, which is altogether effective. It is somewhat surprising that hitherto comparatively little has been done in photographing designs, patterns, and fashions; but it is probable the practice will extend as its value becomes better known.

Landscape Enlargements.—Referring to our notice of enlargements at the Photographic Exhibition, the Woodbury Permanent Printing Company write to point out that their contributions are not all portraits, as we had intimated, four of their contributions being enlarged landscapes, Nos. 280, 289, 290, and 305 in the catalogue.

Art and Nature.—Wife (looking at husband's photo): 'How beautifully your hair comes out, Robert.' Husband (rapidly balding): 'Yeas, 'tis, in comballs!'—Pun Aimonce.

Photography as a Moral Teacher.—In a volume of sermons preached in the Memorial Church, Baltimore, by the Rev. Octavius Perinich, occur the following passages:—"Our enemies are not always blind. The worst thing about them sometimes is their unpleasant way of telling the truth; and then it is not always that they are unpleasant so much as the truth they tell. . . . They take your photograph, and I think that photographs are generally very unsatisfactory and disappointing things. But the moral effect of a photograph is good. It makes us feel humble. We cannot quarrel with it. There it is, there is no disputing it—it is ours. It is true we never get two alike. We cannot appear always all we are. There is always a crushing possibility left us that we have something to tell the truth about—something we cannot be taken at anything thing that nobody ever sees. But our enemies are often only so many camera-obscuras, to show us how, at least, it is possible for others to see us." In another part of the same volume the author thus gives his opinion of the art status of photography:—"Art was once a name with which all photographers who have used the sulphocyanide toning bath will be familiar. He says:—'Studying the action of sulphocyanates on some double salts of gold, I have found a remarkably delicate test for gold; experiments proves that even less than 0.001 grammae of gold may be easily detected by using my reagent. The gold of the sample under analysis is first separated from foreign metals, and next converted, by means of sodium chloride, into sodio-gold chloride (NaAUCl); the solution is then concentrated by evaporation. In order to obtain the gold, an aqueous solution of potassium sulphocyanide (KCyS) is used, containing about one part of the salt about fifteen to twenty parts of water. About six grammes of this solution are poured into a test-tube, and some drops of the concentrated solution, obtained by treating the reagent as described above, are added. If gold is present, a red-orange turbidity is immediately obtained, which falls in the form of a precipitate. On gently heating the contents of the test-tube the precipitate dissolves, and the solution turns colourless. The reagent is so delicate that one drop of a solution of sodium-gold chloride (one gramme of the salt dissolved in forty grammes of water) gives a very clear reaction. This reaction showed the existence of a very interesting double sulphocyanides of gold. Researches in this direction are being continued, and, when finished, the results of the experiments will be communicated."

Celluloid.—Celluloid is a manufacturer's name given to a species of collodion, or dissolved and dried gun-cotton. Common cotton, the refuse of cotton mills, and other vegetable fibre, is dipped in a liquid composed of nitric acid and sulphuric acid, then drained, washed in water, and dried, when it is found to possess highly inflammable and explosive qualities, and is termed gun-cotton, as it may be used as a substitute for gunpowder. It has twice the power of the latter. This prepared cotton may be dissolved in ether and alcohol, when it forms a thick transparent liquid known as collodion. This is the material photographed by photographers who, in taking a portrait, spread a thin film of collodion liquid on the plate. The ether and alcohol soon evaporate, leaving the dissolved cotton to dry upon the glass in the form of a thin membrane or skin, which receives the silver compounds used in taking pictures. Collodion, when dried in any considerable mass, forms a tenacious, transparent substance somewhat resembling horn. If whiting, zinc oxide, and other colouring substances are added to it while in the liquid state, and then dried, substances resembling ivory, hard rubber, bone, &c., result. All such forms are, however, very inflammable. The use of such and ether is expensive as a solvent, and to commercial photographers substitue camphor, the use of which forms the basis of their patent. By peculiar manipulation, including the combined employment of heat and pressure, they are enabled to produce plates and blocks of dried collodion of beautiful structure and colour, possessing a certain degree of elasticity, with great strength and toughness, and little weight. From these plates and blocks a great variety of merchantable articles are made, such as harness trimmings, jewellery, dental work, artificial teeth, &c.

They are a complete substitute for hard rubber and ivory for many purposes, and considerably cheaper. But not only is the manufacture of the crudecelluloid dangerous, but even the most finished articles made from it will readily inflame. As a protest experiment, any metal ring—such as an clasp to a brass or silver ring of celluloid, which the strength of a home could hardly break, apply to its surface a lighted match, and it will quickly ignite like a torch.—Scientific American.
To Correspondents.

W. W. M. asks if we, or any of our readers, can, through the medium of the News, give useful information as to the best kind of conveyance (velocipede) suitable for going distances, say ten or twelve miles, capable of carrying eighty pounds in weight of apparatus (portable)? Can any of our readers help our correspondent?

GRAIN.—If you get a grain in one kind of tissue and not in another, it is more likely that the grain is due to the tissue than to the substratum; nevertheless, many samples of collision would give a grain such as you describe, with pyrolyxinae made at a high temperature, giving a powdery flux, would be free from texture. Allumen would also be quite free from texture; but if your grain is in substrate no such method should be needed. If you take care to secure a good safe edge, or if you coat a margin of the plate with varnish or colloidion, no washing up ought to occur.

J. T. T.—Neither of the preparations you mention is suitable for preparing direct enlargements; both would require a long exposure. How far the prints are produced would be of satisfactory quality, or how far permanent, can only be ascertained by trial. In our experience colloidio-chloride prints on drawing paper are amongst the most permanent forms of silver prints. We have examples which we printed eleven years ago, still quite unchanged.

A. Y.—Your question, “Can negatives be taken by moonlight?” is somewhat too indefinite for a decided answer. We should ask you, what kind of water? Nougat, which is the moon itself, have the negatives taken; and we have seen negatives of the moon and the lighted edges of the surrounding clouds. We have a photograph of a white statue taken by the late Mr. Breeze, which he stated was caused by moonlight; but you could not secure any moonlight landscape, for instance, nor, indeed, of objects generally. 2. The spots in your print may be due to minute air-bubbles formed on the surface of the paper during fixation, or to some defect in the albumenized paper.

B.—We do not remember the luting to which you refer. Did the reference to it occur incidentally in an article, or was it a recipe in a distinct paragraph?

NORTH RIDING.—The only mode of determining with certainty the kind of pinholes is to adopt a series of exhaustive experiments. They are not the kind of pinholes which occur from the use of a bath super-saturated with iodide, but have the irregular size and shape, although all are minute, which characterises the results of unicity in the bath of collision. Of course you have filtered the bath carefully, so that floating particles in the solution cannot have caused it. Have you tried different samples of colloidion? The newly iodised sample was not a good test, as newly iodised colloidion, even after sanning a few days, is not always perfectly clean. Are you sure the glass is good and clean? We have met with samples of glass, one side of which had a smoky dirty surface, which produced similar results. The use of old glasses, which have had varnished pictures on them, will at times, even after very careful cleaning, give such results. You should now have used with success bichromate, but pump water is not always precisely the same, especially if surface drainage has access to the well. Sometimes traces of sulphate of silver in the nitrate will cause pinholes; and for this the addition of a little nitrate of baryta to the bath is the best remedy.

J. T. M.—Shellos is the basis of the best spirit varnishes for negatives; but of course in commercial varnishes there is a combination of the two resins. Gum-sandaraco, which is used in some cases, gives a safe varnish for negatives, as it lacks toughness. The white lac which is bleached by chlorine loses much of its hardness, and gives a worse varnish than the orange lac. The tint of colour is of course a slight objection. Some of the lac varnishes in commerce, which are free from colour, are made from the orange lac bleached by a secret method.

D. H.—Many of the old prints toned and fixed in the old hypo bath have stood remarkably well. Many of them acquired a slightly yellow tint in the toning and fixing bath, but never changed afterwards. Nevertheless a great many more faded, and it would not be safe to return to the old method. It is quite true that, from some of the most magnificent prints of the present day fade very rapidly. Whether it is due to lack of care in producing large commercial orders, or to some imperfection in the paper, we cannot say. 2. So far as we know, there is no difference in the permanence of the print produced by varying the formula of the alkaline gold baths; any of them carefully used, and the prints washed well before toning, should produce good results.

B. L. F.—You can obtain all details of the Autotype Company, at their office in Rathborne Place.

A. F.—Fogging and discoloration in developing paper prints arise from many causes. It may be that the sensitized paper has been kept too long, or that the paper has not been kept sufficiently carefully from all trace of light. The addition of a little common salt to the gallic acid developer is a capital restrainer.

G. M. D.—It is impossible to give you any certain idea of the length of exposure which an interior will require, as too much depends on the amount of light admitted by the windows, the color of the interior, the kind of day, and of the season. You can only judge by the appearance of the image on the ground glass. A landscape lens may be used; but it will be wise to bring the stops full on the lens than usual. A wide plate is desirable. Use a ripe colloidion freely bromised, and not immersed in the nitrate bath more than about half the usual time. Place wet blotting paper at the back of the plate to be in some room in your establishment first, making the light as nearly as possible like that in the interior you are about to photograph.

R. M.—An alkaline toning bath, if kept in the light, is apt to become purple by the precipitation of gold. It may probably be quite inert, but you had better try. Add a few drops of hydrochloric acid, and put it aside for a few days; then neutralise with chalk and try.

Several Correspondents in our next.

METEOROLOGICAL REPORT FOR OCTOBER.

BY WILLIAM HENRY WATSON.

Observations taken at Breslau, and Whithaven, 36 feet above sea level.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean Temperature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>12° C.</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>13° C.</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>14° C.</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>15° C.</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>16° C.</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>17° C.</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>18° C.</td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>19° C.</td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>20° C.</td>
<td></td>
</tr>
<tr>
<td>10th</td>
<td>21° C.</td>
<td></td>
</tr>
<tr>
<td>11th</td>
<td>22° C.</td>
<td></td>
</tr>
<tr>
<td>12th</td>
<td>23° C.</td>
<td></td>
</tr>
<tr>
<td>13th</td>
<td>24° C.</td>
<td></td>
</tr>
<tr>
<td>14th</td>
<td>25° C.</td>
<td></td>
</tr>
<tr>
<td>15th</td>
<td>26° C.</td>
<td></td>
</tr>
<tr>
<td>16th</td>
<td>27° C.</td>
<td></td>
</tr>
<tr>
<td>17th</td>
<td>28° C.</td>
<td></td>
</tr>
<tr>
<td>18th</td>
<td>29° C.</td>
<td></td>
</tr>
<tr>
<td>19th</td>
<td>30° C.</td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>31° C.</td>
<td></td>
</tr>
<tr>
<td>21st</td>
<td>32° C.</td>
<td></td>
</tr>
<tr>
<td>22nd</td>
<td>33° C.</td>
<td></td>
</tr>
<tr>
<td>23rd</td>
<td>34° C.</td>
<td></td>
</tr>
<tr>
<td>24th</td>
<td>35° C.</td>
<td></td>
</tr>
<tr>
<td>25th</td>
<td>36° C.</td>
<td></td>
</tr>
<tr>
<td>26th</td>
<td>37° C.</td>
<td></td>
</tr>
<tr>
<td>27th</td>
<td>38° C.</td>
<td></td>
</tr>
<tr>
<td>28th</td>
<td>39° C.</td>
<td></td>
</tr>
<tr>
<td>29th</td>
<td>40° C.</td>
<td></td>
</tr>
<tr>
<td>30th</td>
<td>41° C.</td>
<td></td>
</tr>
<tr>
<td>31st</td>
<td>42° C.</td>
<td></td>
</tr>
</tbody>
</table>

Summary.

Maximum temperature observed... 39° C.
Minimum... 26° C.
Mean... 32° C.

Mean of whole month... 32° C.

Phenomena.

Number of days on which rain fell... 12
Number of fair days... 18
Fair days, cloudy... 10
Fair days, sunny... 8

Photographs registered.

Mr. Gibson, Bolton, Lancs.
Mr. Lock, Manchester.
Two Photographs of Mr. J. Cattermole's Act.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

PHOTOGRAPHIC TRANSPARENCIES IN PUBLIC ENTERTAINMENTS.

Seeing that photographs are viewed to the greatest advantage as transparencies, it seems strange that there should be so few exhibitions of pictures of this kind. It is true, the production of lantern transparencies is every day becoming more widespread, and, with the introduction of carbon printing into the studios, their preparation will be further increased; but very little is popularly known of them as present, for the ordinary reader, that they are really seen in public. Sometimes the Polytachinick substitutes a few photographic pictures for the painted dissolving views one usually sees at that institution, but it is rare indeed to see such photographs elsewhere. We remember once witnessing a very fine display of lantern transparencies in Paris, at the French Photographic Exhibition there, and it is the only point to be made of that exposition; no mention whatever of such a collection might be made, if only properly managed. Photographic slides passed through the lantern or sciccipent at home are exceedingly pleasant to look at, and, when the places or pictures reproduced are such as the spectators feel an interest in, few entertainments can be made so enjoyable as a home exhibition of this sort. If, then, pictures were to be selected, as is the custom in such shows, from the productions of Strasbourg by entertainments from the mere passing of photographs in review, how popular would the public exhibition of the same kind prove, if well conducted on a large scale, with the accompaniment of music and a spirited dialogue! Imagine, for a moment, Albert Smith again before us, telling us his amusing story of the ascent of Mont Blanc, and showing us in succession his pictures—enabled, by the excellence of the pictures, to look at them by himself, it must be remembered, but by artists, who never saw the scenes they depicted—he were to accompany his spirited lecture with photographs of grand dimensions, taken on the spot—such, for instance, as William England, and Braun, of Dornach, have produced, with icy pinnacles and crystal glaciers, so bold and life-like that you could almost step upon the glass and feel the wind of the mountains. Imagine Albert Smith telling us again of his evening's sojourn in the hut at the Grande Mulets, and then showing us the hovel as it appeared to him—the little wooden shanty wedged between the dark granite rocks, in the middle of eternal snow. We should then have been able to realize in some degree his position, and to understand more vividly the account he had to tell. Or again, fancy that, instead of the sugar-loaf picture he used to show, for instance, of the table of the Mur de la Cote, he had been able to place before us a sun-picture of the scene, such as has, indeed, recently been produced by Biaison, the well-known French photographer, who has since made two ascents of Mont Blanc. We have only seen this last picture in the stereoscope, mounted upon glass, but we feel sure it would have made something of a turn in the exhibition of the mounains by Albert Smith in his entertainment. But photography was only a new art when the versatile lecturer undertook the ascent in 1851, although we doubt not, that had any one made the suggestion, Albert Smith would certainly have carried out the idea. As it was, however, the only photograph which Albert Smith used to allude to, in the course of his lecture, was that well-known picture of the hut at night; which showed, as he pointed out, no more than could be seen of the city on a dark night without the lamps alight. But there is no reason why photographic enlargements should not form the piece de resistance at a London entertainment, and should there ever arise a follower of Albert Smith, we earnestly recommend him to produce the illustrations of his travels and adventures in this way. Of course, any picture thus shown must be productions of a first class order, and displayed in the most brilliant manner by the oxyhydrogen lamp, or some such vivid mode of illumination. Few people who have not seen photographic enlargements projected upon a screen know the full charm of such pictures, which, besides being pleasant and agreeable things to look upon, carry with them the true stamp of reality. Gazing upon photographs of this kind, you need no longer doubt that a man of genuine and honest and conscientious; we see everything exactly as it appears in nature. Thus, on the occasion we speak of, in Paris, there was, we remember, a photograph of a street in Pompeii, showing the whole extent pretty well of the excavations which have been going on in that wonderful place. It was one of the Leon et Levy series; there were the columns and courtyards before you, the ancient edifices, and everything upon the scale of nature. There was no need for examining the picture minutely; everything was bold and defined, so that one felt like one of a group of visitors standing before the ruins in the foreground of the picture. The scene changed, and we found ourselves looking from the jetty of Brest harbour at a man-of-war being tugged out to sea; there were the hulks from the saddles as vivid as reality; one could almost see the two vessels moving, as life-like was the scene. Another change, and we had before us the Square at Rouen, with the statue of Joan of Arc, we ourselves, as it were, being one of the many spectators looking up at the pedestal bearing the Maid of Orleans. In no other form can photography be appreciated as it is here, where we have nature reproduced, seemingly, in its original condition, and brought before our eyes in all its truth and clearness. Coloured panoramas and painted scenery are all very well in theatres and galleries, but they must necessarily have a lot of romance—or, in other words, untruth—mixed up with them; they serve their purpose, of course, but such things can never be regarded as a perfectly true and natural reproduction of nature. In the case of photographs, however, we do have the truth, and whatever the pictures lack in respect to brilliancy and prettiness, is fully made up by the circumstance that one is looking at facts, not fancies. And there is an inherent love for facts in everybody, from the child who always asks whether it is true, after the decease of a hero, to the recreant from Coomasie, I.e., could have been shown in a ball in this metropolis: would not all London have flocked to see them, disregarding at once the wood-cuts and other pictorial illustrations that might exist? Should we not all of us have been eager to see such an exhibition, supposing, of course, that the photographs were well executed and interestingly described by a competent lecturer, who would, moreover, have to adopt a light, entertaining manner to render the entertainment lively and interesting? A heavy, lugubrious style would, of course, spoil anything of a popular nature, and the photographs themselves would furnish quite enough of the serious element without the importation of more by a dry, pedantic, though well-meaning lecturer. We hope, therefore, next time that a traveller comes for the purpose of delivering a public lecture or entertainment, he will avail himself of the wonderful assistance which photography can give him in the matter. We believe that a lecture such as Sir Samuel Baker or Captain Burton could deliver, illustrated by lantern photographs, would at once become one of the most popular entertainments in London.
FRENCH CORRESPONDENCE.

FRENCH PHOTOGRAPHIC SOCIETY—MEDALS FOR THE BEST DAY PROCESS AND MOST BART Developer.—PERMANENT PROTECTIVE COLLODION WORKING IN THE OPEN AIR.—THE BENEVOLENT SOCIETY—CARDIER'S HANDBOOK OF PHOTOGRAPHY.

The French Photographic Society has recommenced its sittings after the vacation; and, to judge from the communications brought forward, it seems that carbon printing and printing in greasy ink has, during the last few months, completely absorbed the attention of Paris photographers. The proceedings contained a proposition from M. Davanne to establish a competition for the best dry process, one, namely, which should possess at least the same rapidity as wet collodion, and give as good and sure results, with facility and easy manipulation. A medal of five hundred francs was proposed to be given to the inventor of the method which fulfills the most of these conditions. Not industrial, but propositional, was the talk; for having pointed out the advantages which portraitists would derive from a means of accelerating their work, M. Liebert stated that he had himself resolved to offer, on his own part, a prize of the same value to any investigator who should succeed in solving the problem in development which should admit of giving instantaneous exposures. It has been announced that the offer made by M. Liebert was warmly accepted.

A numerous collection of prints produced by the aid of fatty ink was presented to the Society by MM. Benedict Roze et Cheffdeville-Derozier; they were reproductions of sketches, engravings, and manuscripts, obtained by the process of these gentlemen, which they do not claim to have invented, but as having been simplified and rendered practical by themselves. So that prints may be produced by its means at a very cheap rate. They employ bitumen of Judea upon metallic plates, and transfer their impressions to lithographic stones. The prints produced by the method are of a very varied character, and exceedingly successful. There are at Paris just now three large establishments actively working the same kind of process for industrial purposes, and the prices they offer being far below the cost of producing the same results by ordinary methods, they will no doubt be found serviceable in many ways. The Society, in its second session, was informed that MM. Eys et Baret, Lefranan et Lourdel, Roze et Cheffdeville-Derozier, without counting the firm of Gillot, who adds this application of photography to his other special work. Again, there is the firm of MM. Thiel and Geynot, who have been working out the phototype process of their own; the firm of Giraud and Lemeray, who execute work and illustrations for illustrated journals and books by the photoglyptic process of Woodbury; finally, there are several photo-engraving processes in full working order, to wit, those of MM. Rousselet, Amand Durand, Baldus, Dujardin, &c. It may be said, therefore, that all the processes connected with the art of photography, and which we reviewed a few months ago, are to-day in full operation at Paris. To come back to the last meeting of the Photographic Society of France, we find the carbon processes of MM. Audra et Alfred Chardon represented by some interesting examples, by the side of which a few prints forwarded by the London Autotype Company hold a worthy place.

Photography may be regarded in some degree as an addendum and perfection of all the processes, was also represented in this exhibition of novelties. Those who doubted, a few months ago, the future of photography, must to-day acknowledge that it is no longer an uncertainty. M. Leon Vidal exhibited pictures of all kinds: reproductions of paintings, flowers, enamels, and other works of art, added, as is ordinary, to the powers of nature. In all of these the perfection of the process, and the admirable manner in which the form and colour were brought out, were at once apparent. What, however, was more surprising still, was the facility and certainty with which these results are obtained. The method is so prac-

tical, and the daily production at the Moniteur office is so considerable, that the administration of that establishment has been entered into a treaty of collaboration with several Paris photographers to aid in the work, and similar engagements are being entered into with provincial photographers. Beyond their own publications, the Moniteur office also produces pictures for other publishers and for the public.

M. Van Tenen exhibited to the Society his instrument for operating in the open air by means of wet collodion, which, while having many points of resemblance with the apparatus usually offered to amateurs, differs, nevertheless, from any other. The invention consists in putting a box with a double back, and the hinder part, enclosing the vertical baths, slides in such a way that the collodionized plate may be plunged successively in each of the baths; the latter fill and empty themselves in the simplest manner, and this circumstance constitutes the innovation of which we speak. The bottles, or reservoirs, containing the necessary solutions are placed under the camera, and communicate with the baths by osmotic tubules; when it is desired to fill one of the baths, one of the bottles is taken and lifted to a higher position than the bath; you open a little stopcock, and the liquid descends into the bath; you close the tap, and replace the bottle in its frame. After the operation has been performed, the stopcock is opened, and the plate is taken out and air-dried as a wet plate for another day. In this way no accident can happen to the baths.

The Photographic Syndicate has also resumed its labours. As to the Photographic Benevolent Society of France, it has not ceased to carry on its labours most actively. Finally, it may be mentioned that a Photographic Society has been formed at Toulouse. That at Lyons still seems to be in an inceptive state. The camera is in its founder and secretary, M. Leon Vidal, who is still kept in Paris to organize the practical working of his photochromic process, of which we have spoken above.

There has just been published, by Gauthier Villars, a little volume entitled "Failures in the Practice of Photography—their Cause and Remedy." The work is from the pen of M. V. Cardier, and has already reached its third edition,—good proof of the interest it has created. The author has not only touched upon all the subjects which come within the scope of the photographer, but he has treated them with most remarkable clearness. I can give you the best idea of the value of the work by citing at random a few passages from his book. I quote from a recent letter to me devoted to the testing of chemicals to ascertain their purity.

"Pyroxyline, being divided, should not clog together in tufts, nor break into powder. It should be slightly yellow in colour, and should dissolve almost entirely in a mixture of ether and alcohol in equal parts, forming a limpid solution. Moistened with a little water it should neither turn blue, or red, litmus paper placed in contact with it. However, any tint of this kind should be produced, the material should be washed in a large quantity of water, and dried once more. It should be kept in a dark place, packed in paper, or in a cardboard box, and not in a stoppered bottle.

"Gum-cotton prepared with acids heated to 50° Cent. furnishes the best results. Prepared with cold liquids it may enter into a treaty with the principal Paris long fibres. In this state it is explosive, and little soluble in ether and alcohol. It furnishes a glutinous collodion of thick consistency, yielding a collodion with waves, and gives rapid images with little intensity. Prepared at 70° Cent. it becomes yellow, pulvulent, and has very short fibres. It dissolves in alcohol to which but little ether is added, as is ordinary, at powdering; it has a very firm consistency, that gives a powder film, which is particularly well suited for the dry plate process.

"Nitrate of silver furnishes a colourless solution, neutral, or but slightly acid, in character when tested with litmus paper, and not turning red paper blue until a few drops
of ammonia have been added. The solution precipitated by
a slight acid of hydrochloric acid, and then filtered
and allowed to evaporate slowly, should not give a
residue of any foreign salts. Fused nitrate of silver is to
be preferred for use dissolved in a little distilled water,
evaporated to dryness again, and then dissolved once
more at the coolest temperature possible. In this state it
is, according to Mr. Hardwick, the most photogenic.

A SIMPLE METHOD OF PRINTING ORNAMENTAL
BORDERS, ETC., TO CARBON PICTURES.

BY H. W. FOXXER.

Within the last few months M. Lambert has brought
prominently before the photographical world a process which
he has named the "chromotype." This process consists of
developing a carbon or autotype print on a washed colloid-
ion plate, and, after attaching the transfer paper and dry-
ing, stripping it from the glass as described by Mr. J. A.
Spencer some years ago. M. Lambert has also introduced
a novelty in the process by masking the picture and printing in
the frame and removing the negative after the second opera-
tion.

Now, double printing in silver is a very simple affair, as
the image being visible it is easy to adjust the masks in
their proper position; but in the case of carbon, where the
image is invisible, special means must be taken to secure
perfect registration. To secure this M. Lambert has devised
a very ingenious pair of printing-frames, or, more correctly
speaking, a printing and a tinting-frame, which answers
the purpose admirably; but they are cumbersome, compli-
cated, difficult to fit up, and necessarily expensive. They
also necessitate the name or design being lithographed on a
thin film of gelatine—somewhat of a costly affair.

The plan I am about to describe is exceedingly simple,
and requires no special appliances beyond the ordinary
pressure-frame, and what the photographer can do for him-
self. In the first place, the writer of design wished for as
a border is made on a large—say a "royal"—size sheet of
cardboard; then a piece of black paper the shape of the
picture is mounted with india-rubber solution upon it in
the proper position, and a negative taken of it the size
required. The object of using india-rubber solution for
the mounting is that by moistening the paper with benzole
it may be removed and another shape substituted, so that
the same design will do for many different shapes.

Having got a negative, the next thing is to make a
transparency of it; and perhaps the best means of doing
this is by printing it on a piece of autotype transparency or
dense black tissue, and developing it on glass. Should the
transparency not be developed, it may be intensified by a
solution of permanganate of potash, as described by
J. W. Swan some years ago. Now, having obtained our
transparency (or, as we shall call it, a "tinter") we shall
require a mask for the portrait negative. This may be
made by printing the outline of the negative of the design
on silvered paper, and cutting out the centre with a pen-
nknife. By this means the exact size of the opening will
be secured.

This mask should be secured to the negative by a few
touches of india-rubber solution, which does not injure the
varnish, and allows of its being removed and used on other
negatives. To adjust the tinter, place it on the negative,
film upwards, and hold it up to the light, when its position
is easily seen. It should be so arranged as to slightly
overlap the opening of the mask, negative being taken, press
the light and dark line or shadow according to taste.
When adjusted, draw a pencil line on the mask along two
of the edges of the tinter—say the top and the left side.
All that is now necessary in printing is to place two edges
of the tissue against the pencile lines, and in tinting to see
that the same two edges of the tissue coincide with the
edges of the tinter. To do this, first clip off the corners of the
picture and press the tinter into an angle of the frame, and then to push
the tissue close up to the corner of the frame also. By
this means perfect registration will be secured.

Should it be desired to have a dark design on a light
ground—the reverse of that adopted by M. Lambert—it is
only necessary to use the original negative of the design,
that, of course, is not the point. We print through the
process was too cumbersome and complicated, so that as to
the roughness of the mount, and also to produce a
strong shadow of the edges of the opening.

HOT WATER FOR CARBON PRINTING, AND A
READY MEANS OF OBTAINING IT.

BY WILLIAM NEWTON.

Carbon printing appears now to be entering that interest-
ing period when, by the contributions of practical minds,
itself the writer, after having prepared a type of negative
which has been described as a "tinter," and then applied it to
the portrait negative, there will be a strong shadow of the
design, which is montaged on the picture, and then the
carbon paper is pressed evenly over it. As to the
principle of hot water, the author has worked it out
for many years, but has always been unable to obtain
due results. This is not because the water is not hot
for many hours, but because the water is not hot for
many days. The water must be kept at a constant
temperature, and the best water is obtained by
keeping the water in a hot water tank.

This is a very important point to remember, as it is
necessary to keep the water at a constant temperature.
Carbon printing is a delicate process, and the slightest
variation in temperature will affect the result.

It is not at all difficult to arrange a system whereby a
self-acting cold water cylinder can be attached to a boiler

* Read before the Technical Meeting of the South London Photographic
Society.
Satisfaction in likenesses.

A true case of great concern to photographers, and of considerable interest to the public, is before a Brooklyn court. For seventeen successive times a young lady faced the camera. Daily after each successful visit of the photographer sent the evidences of his labour to criticism and possible acceptance. None of the pictures suited. At last the lady declined to sit again, and the gentleman who had originally made the contract—if it can be so called—declined to take any of the pictures, or to pay for anything done. The photographer has brought before the court his seventeen disappointed sitters, and contended that he is now upon this picture and on this... "His labour in preparing them amounts to a certain sum of money, to recover which he has sued. There were the front face, and the side face, and the half-averted gaze; the chin a little more up; the sad look; the faint smile; the expression of being very much pleased—more, in fact, than the lady herself, who is usually the most beautiful picture. There were also the standing portrait, and the one with hand up to the head in a position of reflection; the one with the hair drawn back, and the one with it left down; the one with the necklace, the one with the fancy, and the one that seemed as if it might have suited with the last new thing of a bonnet. All these the lady, and the gentleman, and all their friends, and now the jury, have contemplated. As Beau Brummell's valet of the morning's bundle of tried and rejected nockities, "These are our failures."

The defendant repels to all this array of testimony that his agreement "with a tall young man in the rooms" was simply that a portrait would be obtained that should give pleasure; that failing, nothing was to be paid. The antecost of the breakable plate was so extravagant a requisite of "satisfaction" tortured him with anxiety when the juror specified it as a condition of his lectures. To promise satisfaction in this part of the country is almost as serious a matter as to demand it further north. So far as photographers are concerned, they have put themselves in the vanguard, where they have adopted such a method of doing business as is in each. The usual experience is, when a photograph does not suit, another and another attempt is made, till all parties to the transaction are weary beyond endurance; and at last the sitter, grown desperate, takes what does not really give the coveted satisfaction—takes any of the lot, and usually the worst; on the principle that people who go all through the woods to look for what is usually put up with a crooked stick. Most persons get into this position of desperation, and settle themselves for the seventeenth time to gaze at the black cloth, to be asked to throw up the chin and to look smiling. Were human nature not so constituted, the business of photographing likenesses would have to be reorganised, or it could scarcely last a fortnight.

For all that appears in the Brooklyn case, which probably offers a fair specimen of the whole, an agreement, if the sitter had been willing to go on with the attempts at getting a likeness, they might have continued indefinitely, till the golden tresses of youth were whitened with the snow of age.
But camera sittings are like the infinite denominators of mathematics; with every new figure obtained, they grow more clumsy. The suit under consideration suggests, however, a new feature in the problem. Suppose a gentleman has made this bargain respecting a lady’s portrait. Suppose, also, that the lady becomes tired of the experiment, and putting the seal of her number three days on the ground, declares that she will not present herself before the camera again. Photographers, probably, have some rights as well as wrongs. Can they compel the gentleman to find a substitute?

MR. H. G. NEWTON’S EMULSION.

At the October meeting of the Photographic Section of the American Institute, the president, Mr. Newton, gave some further hints on emulsions. He said:

“At our September meeting one or two members complained of fog in the bromide emulsion plates prepared by my formula. As this is not a necessary accompaniment to the process, I was perplexed to account for some of the results said to have been obtained. In my experience I never have foggy plates unless I depart from my regular mode or formula, which, of course, is necessary in experimenting. It is not absolutely necessary that the emulsion should remain until it fogs before adding the chloride. The object in view is to have the emulsion reach the maximum point of sensitivity before adding the chloride. My first experiments led me to suppose that the emulsion remained in the condition as to sensitiveness in which it was when the action of the free nitrate of silver was arrested.

“If, however, the point of time can be determined when the free nitrate has performed its mission, and the condition of fogging has not been reached, that would be the best time to add the chloride. I have, therefore, given you a formula which will work in twelve hours after adding the chloride, and without fogging: 3 ounces of a 12-grain bromide colloid, fused nitrate of silver 51 grains, finely pulverized and dissolved as before given, in boiling alcohol, and added; after standing six hours, add 6 grains of chloride cobalt dissolved in a small quantity of alcohol. This will be found a very soft and brilliant state in the time stated after adding the chloride. If desired, the sensitiveness of this emulsion may be increased by adding 5 grains of nitrate of silver to the 3 ounces, forty-eight hours after making it. This reduced the amount of free chloride to about ½ grains.

“Whether this emulsion, with such a small quantity of free chloride, will keep as long as it would if the silver were not added until immediately before the plate is exposed, I am not so well and because in this department very thoroughly. A little variation of even the quantity of ingredients will destroy the plate; nevertheless, when the proper ingredients and proportions are once determined, there is no process more sure or uniform in results. The best preservative which I have used is composed of water 12 ounces; tincture of nux vomica, 1 drachm; syrup of aquile, 1 drachm; laudanum, 1 drachm. This, for either wet or dry, will keep the sensitized plate, and brilliant negative.

“The secretary said, ‘that speaking of fogging recalled some experiments which he had made since the last meeting. His chemical room is a very large one, and in his window he had orange and green glasses. In making some alterations in the room, he concluded to change the glass in the window. The yellow glass he had relied upon did not obstruct the actinic light; he therefore used ruby and green, which proved perfectly non-actinic, but the sensitized plates required a longer exposure in the camera. He would, therefore, suggest the use of green outside of the ruby.’

METEOROLOGICAL REPORT SHOWING THE VARIATIONS IN THE DAILY AGGREGATE OF CHEMICAL FORCE IN THE DAYLIGHT OF THE SOUTHERN SKY,
FROM OBSERVATIONS MADE AT BLACKPOOL, IN LANCAashire,
BY D. WINTERNIT, F.R.A.S.

The very dark season is now in all probability drawing to a close, although the last day of the past week has been astonishingly dark, being far lower than I should have conceived possible here, the aggregate amount of light during the day in question having been only 23 chemical units. The total amount of light during the week has been 4189 units, and the daily average 596, or 267 more than the daily average of the preceding week. Four days of the past week give again the peculiar linear conformation which, being drawn on a wider scale (the present X 5) yields a line through whose fiducial points a portion of a circular curve will pass. I do not say definitely that the circumstance proves anything, although it certainly is suggestive of the operation of some precise and definite law. I have made a series of ‘chance’ diagrams extending over a larger set of numbers than the whole of my chemical reports, but without once arriving at that curious line which has several times occurred in the chemical reports—a circumstance strongly indicating the nonfortuitous origin of the line. The ‘chance’ diagrams, indeed, differ altogether in their general appearance from the diagrams of the light, a sort of a distorted letter W being a frequent characteristic of the former, and the almost absent figure from the latter; nor is this a matter for surprise, as in the ‘chance’ diagram, when a number is obtained decidedly below the average line, the probability is in favour of the next one being above it, or at any rate above the one already marked, which circumstance, recurring twice, gives us a sort of letter W, the characteristic of the diagram made by chance. The abnormal darkness of the present season of the year is suggestive of the following explanation. In the summer season the northern hemisphere receives a larger share of solar heat than is that which falls upon its southern neighbour, an excess which gradually sinks down to nought on the approach of the autumnal equinox, when the maximum slowly changes to the southern side. If we assume—no to be the wise probable—that the cooling of the earth by radiation occupies a few weeks of time, the vesicular condensation taking place by night will at its normal rate exceed the solar dissipation taking place by day, and fog and clouds would form the normal state of things. On this theory, the spring time of the year should as much exceed the mean between the summer and the winter brightness as the autumn falls below it. Whether this is so or not, time will let us know.

![Graph showing variations in chemical force](image-url)
example or two: Mr. W. T. Wilkinson, in exhibiting Mr. Burton's admirable swing bath of wood, when asked how the wood was coated to protect it from the silver solution, avoided the name of substances which might be used, but replied tersely, "Bates' black varnish, applied thin and often." Mr. Foxlee, in showing an admirably simple and efficient substitute for a cameo embossing press, held in his hand three trivial things: a piece of plate glass, a nickele sheet with oval aperture, and the glass stopper of a bottle. Placing the zinc shape on the last-mentioned card portrait on the shape, he rubbed down the back of the card into the aperture of the shape, and in a few seconds passed round to the audience the card with a perfectly embossed cameo relief, remarking that a piece of paper placed at the back of the card prevented any appearance of marks of the glass stopper burinisher. The demonstration and explanation did not occupy three minutes, and forwarded a valuable aid to practice which any photographer himself could always readily improvise.

Some few subjects might have afforded subjects for legitimate discussion had time permitted, but the temptation was fortunately avoided. Col. Stuart Wortley exhibited a series of very fine, large, and apparently spontaneous subjects which were a revelation of technical devices, new and old, for aiding their daily work, every one of which required for its full appreciation some personal examination rather than a written description such as could be given in journalistic reports or trade advertisements. Every photographer knows how much more perfect an understanding can be obtained of many contrivances by a glance at a few moments, accompanied by the freedom of colloquial comments, than can be derived from the most careful and accurately written description. The tendency to undue discussion was on this occasion kept under. Nothing is more natural than the tendency, when a questionable novelty is introduced, especially if protected by patent or other restrictive clauses, to question the soundness of the claims altogether. When a burinisher with new claims was introduced, the enquiry of Mr. Hart, in the interests of photographers at large, as to the real basis of the patent rights in this or other existing burinishers, was natural and legitimate enough; but it is clear that the answer of the President, that such enquiries were beyond the province of the meeting, and should be referred to a patent lawyer, was the one answer which could with propriety be pursued, as such an enquiry might have occupied half the time devoted to the meeting, without settling anything; whilst it must inevitably have shaved, for lack of time, half the interesting matters before the meeting. The trade element was most judiciously kept under. It is manifest that many interesting novelties, even when exhibited manifestly in trade interests, pass into general interest not less important to photographers who are anxious to see the practical operation of appliances of value which such an occasion alone can efficiently afford; and on this occasion it was the interest of the worker, and not that of the trader, which was obviously kept under attention. The "Gypsy" appliance, for rapidly and economically obtaining hot water, introduced, on behalf of the inventor for the advantage of photographers, by Mr. Hughes, afforded a notable example. And an admirable element in the success of the meeting was this time found in the apt questions of an intelligent interrogator in the person of Mr. Preston, of Pemanso, who, by terse queries not involving discussion, repeatedly elicited fuller information on points which were of essential value to the meeting.

ININDIVIDUALITY AND TRUTH IN PORTRAITURE

The sitter, or rather sitters—for the intended picture was a group of two—aluded to in our last as having raised the question as to the right of photographers to demand payment for unsatisfactory portraits, were probably the most unreasonable of the (happily) small and select class, with whom every portraitist is familiar, who are dissatisfied with everything,—with the arrangements of the operator, with the picture produced, and, most of all, with the necessity of paying for work done. The couple forming the group in question, sitting to Mr. Frank E. Peersall, of Brooklyn, a portraitist of good reputation, having had seventeen negatives taken, and expressed dissatisfaction with all, declined to sit any more, declined to accept any of the portraits produced, and declined to pay for the work done. An appeal to a court of law was the only resource; and judgment being reserved, photographers in the United States await it with some interest.

A little reflection on the conditions of photographic portraiture will suggest the wonder rather that the photograph is so frequently a successful and satisfactory likeness, than that it occasionally fails. The sitter is placed in...
series of conditions all new and strange. The glass-room, with its flood of light and surroundings; the arrangement and manipulation which are generally thought necessary; the self-consciousness and anxiety which fill the mind at this moment—'all that is not a true self and its unnatural expression.' Despite these inevitable difficulties, often made greater than is necessary by the fussy want of tact in some portraitists, photographic portraits are, as a rule, wonderfully faithful in general likeness, and possess when not spoiled by excessive retouching, a singular individuality.

"There is," says Nathaniel Hawthorne, "a wonderful insight in heaven's broad and simple sunshine. While an electric light will not at once reveal the character of the subject, it actually brings out the secret character with a truth no painter ever would venture upon, even could he detect it." A recent article in the Saturday Review, on the "Art of Appearing Like a Fool with Propriety," has some excellent and appreciative remarks on this subject. The writer conceives that there is "no undertaking more trying to the average dignity and self-respect, at least, the whole part of the human race, and of no process more calculated to puzzle those who like to trace some connection between results and the means employed to produce them, than that of going in cool blood to have one's photographic portrait taken. Certainly photographic portraits, as now taken by skilful operators, are a very pleasing thing; and many very pleasing things are often attained on account of the obvious delicacy and fidelity of the workmanship, and the evidences they afford of the manipulation of trained hands. But their attractiveness is by no means of this kind only. They are often very complete expressions of the character of the subject, which they present with simplicity and refinement. We have before us an artist whose whole face is given over to the contemplation of the beautiful and the pursuit of a difficult and lofty art; the strength of an enthusiastic spirit; the animation flowing from a native shrewdness, keen sense of humour, a lively sympathy with human feeling, and a spirit of vigorous but controlled combative energy. All these are in the portrait, as well as the minute markings in the case of an old age, the beauty of a snow-white beard, and the dignified carriage of a form broken with years and suffering, but sustained by a firm will. The gallery of the gentleman who produced this portrait is full of pictures of equal interest, and very varied in character.

What inspires with wonder the observer who ascends to the operator's room is, how at this area, of vivacity and expressive faces was turned out by the apparently barren and incongruous machinery of that illuminated den. The torn and rickety reflecting screens, the dingy velvet chairs, the woods of rock and paper worn by the stream of human forms ('a continual dropping that weareth away a real stone'), the abominable racks and grips of iron,—all these inspire one with a horrible sense of artificiality and absurdity incomparable with freshness and grace. This feeling is intensified when the observer is fairly 'posed,' his head twisted as it was never twisted before, unless by the photographer's merciless hands, and as it would never remain were it not for the iron griffin that holds him in its unfeeling grasp, his eyes directed to a fixed point, and his whole system rebelling against the silent, rigid, despotic disposition of himself to which he has submitted. The skilful artist, with an occult purpose which one feels is doomed to disappointment, bids you to give your countenance a 'little more animation.' You grin in a ghastly way at the suggestion, when your sense of mortification at the figure you know you are making is broken in upon by your tendency to severe and unnatural expression.

'That's precisely! Now let that dissipate into a genial smile, and I'll give you a good one.' Mentally you remark that if he does give you a 'good one' it will wear an expression of mingled idiocy and rage.

"Yet the chances are nine in ten, if your photographer is amongst the best, that he will produce for you a portrait that will do honor to your friends and your character. His experienced eye perceives the means of reaching the effect he is in pursuit of in arrangements that your uneasy consciousness condemns, and against which your pride rebels. Perhaps a rational man ought to be a little rebuked, a little touched with humiliation, at the reflection that he knows so very little about how he presents himself to others. The constant effort is by art to effect as much dignity and grace as were natural to him, when he felt that he was looking constrained and silly, suggests the awful possibility that when one appears to his inward eye all that he desires, he may be the very reverse to the impartial observer."

SENSITIVE NEGATIVE TISSUE.

BY L. WARBURG.

Sensitively negative tissue has for object to offer a substitute for glass in the production of negatives, presenting the advantage of facilitating all operations out of the studio, by lightening the weight, diminishing the volume, facilitating transport. All these advantages, coupled with the safety against breakage, abrasion, and atmospheric influences, augur unlimited keeping properties of the tissue.

The tissue is prepared on a sheet of paper, possessing a very fine texture, through the application of nine consecutive coatings of collodion and India-rubber. The transparent film thus formed can be dissolved with the greatest ease from the paper, which is used only as a temporary support. The sensitive surface is formed with bromo-iodised collodion or gelatine emulsion.

The sensitive tissues thus prepared on the sheet of paper (16in. by 10in.) is cut in the smaller sizes to fit the various photographic apparatus. Twelve sheets of a certain size, interleaved with orange tissue paper, are formed into a block, protected on both sides with metallic plates, while the edges are secured with paper or india-rubber. In this condition the tissue inserted in the block is perfectly protected from the action of light and moisture (it can be with impunity dipped in the water). The thickness of the block of twelve sheets does not exceed the thickness of the ordinary glass plate. It can be carried without any protection in the pocket, or be sent by post like an ordinary letter.

For exposure, the front metallic plate is removed, orange paper torn away, and the block, with first sensitive sheet uncovered, is inserted in the dark slide like an ordinary glass plate.

Yet in the shape of blocks the advantages of the sensitive tissue are not utilised to their full extent. To change the sheet after exposure, the dark tent, or some other arrangement, is necessary, but that implies considerable inconvenience. The roller dark slide overcomes this last difficulty. The sensitive tissue, with supporting paper or without it, is wound on the roller, and changing is effected by turning the brass button. Means to secure the flat surface corresponding with the ground focusing glass, in the position of each portion of the sensitive band, are provided.

Exposure.—The exposure of the sensitive film is at present equal to the best dry plates existing. I have to make a very important observation, applicable, more or less, to all dry collodion, viz. : increase of exposure, necessitated by decrease of actinic intensity of light, does not for the same reasons apply to sensitised plates. If actinic intensity, decreasing toward the evening, necessitates for wet plates an exposure of one, two, three, &c., seconds, for dry plates it will be necessary to give, perhaps,

* Read before the South London Technical Meeting.
one, three, six, twelve, &c., seconds. It follows that the very same dry plate can be of equal sensitiveness with wet on a bright day or in June, while a different story will be told in November, or on a foggy day.

Complaints, comparatively general, of want of detail in the foliage, with solarization of brightly illuminated objects, are supports of my opinion. Based on this consideration, on a gloomy day in November I must recommend a long exposure, and, as a reward, I promise a result superior to the glass plate, because when, by long exposure, sufficient details in the dark part are secured, brightly illuminated objects will not suffer—reflecting surface being absent. The negative I developed before this audience is a very good illustration of the correctness of my promise. It was taken yesterday during continual rain, and represented the interior of my drying-room, which is comparatively dark. Exposure of forty-five minutes overcomes the difficulty of the dark; but there is in front a window with open sky, that requires less seconds for exposure than was given minutes, and, nevertheless, no trace of blurring or solarization is observable. But while in the summer I praised the sensitiveness of the tissue, I dare not compare it now to the wet collodion.

After exposure in the camera in the case of the block, the exposed sheet is detached, the next uncovered, and similarly treated. The exposed sheet, preserved from light, can be developed any time after exposure; in fact, I could not observe any difference between the negative developed immediately after exposure, and another after several months before the development.

Development.—Development can be executed in two different ways:

1. The film is separated from the supporting paper. To effect this, a pin is inserted between the film and the paper, at one of the corners, and passed round the edges; then, taking it by one of the detached corners, the film is carefully peeled off. A glass plate same size as the film, with a thin water-dropped on it, is now required, on which the film is laid, and slightly pressed with blotting-paper to make it perfectly smooth and flat. A moderate amount of pressure may be used with safety, and there is no danger of injuring the negative in handling it before, during, or after developing, provided the hands are perfectly free from grease, chemicals, and perspiration.

2. The sensitive tissue can be developed while still attached to the paper supporting it. In this case the edges are bent to form a shallow dish, and development proceeded with as will be described; but before the film (after fixing) is detached it must be perfectly dry, otherwise the paper will not leave the film clean.

In order to make the process of development still more easy, and almost possible to execute in white gloves, I designed a little spring dish formed of a light frame in ebonite, which, when applied to the glass plate and fixed by means of brass clamps, form a perfectly watertight dish. It is evident that if a sheet of tissue is laid on the glass plate, the ebonite frame put on it and clamped, it will form the bottom of the dish. All the developing and washing solutions can be applied without the danger of spilling a single drop outside, on the hands, or at the back of the negative. (I imagine that the use of this dish for fixing the photograph on the albumenized paper would add to its stability, preventing sinking of the dangerous compound in the body of the paper by uselessy applying hyposulphite of soda solution to both sides of the paper, from which it cannot be easily eliminated.)

I cannot offer a universal formula for development. Every sample of sensitive emulsion requires a different formula. As a developer, or as a stabilizer, I must not omit the present imperfect knowledge of the chemical reactions attending the manufacture of the sensitive emulsion, no operator can produce two samples of emulsion exactly equal. But when the strictest observation of certain rules cannot secure uniformity in the quality of the emulsion, there is some possibility of re-adjusting, to a certain point, the difference by using a suitable developer. I adopted in turn the strong and weak alkaline, iron, and acid pyrogallic acid developer; but with the sample I developed before this audience the developer differs from the formula adopted by dry plate workers, and is there described.

Before proceeding to develop the exposed sheet of tissue, a solution of—

| Alcohol (methylated) | ... | 10 parts |
| Benzine (pure) | ... | 1 part |

is applied, and returned to the bottle for future use. The tissue is next washed with water till all greasiness disappears; then—

| Carbonate of potash | ... | 1 ounce |
| Water | ... | 10 ounces |

is applied, and also returned to the bottle; then a solution of—

60-grain pyrogallic acid in alcohol	...	10 minims
30-grain bromide of potassium	...	20
Water	...	2 drachms

is applied, and will bring out the image. A few drops more of pyrogallic acid are added, if necessary, to increase intensity, or bromide to regulate too rapid development.

On the points on the borders of the spots the use of iodine in alcohol is intended to render the collodion film accessible to the aqueous solutions forming the developer. With dry plates alcohol alone is sufficient to perform that duty; but in the case of tissue, where the thick india-rubbers is underlying the sensitive collodion, very often spots make their appearance in the development. While investigating the cause of these spots, I came to the conclusion that they were occasioned by the india-rubber. Several correspondents in our excellent photographic journals on more than one occasion have complained of these spots. Captain Abney, in his last book, likewise observes that india-rubber substratum occasions spots visible in the development.

My theory of the cause of spots is the following:—I suppose that india-rubber, like albumen, or like honeycomb, is formed from cells containing some liquid inside. In the usual process of preparing india-rubber solution the component parts of cells are not separated from the liquid portions; what we call india-rubber solution is, in reality, an emulsion in which some cells are floating unbroken. After the application of collodion to the India-rubbers, India-rubber powders, or India-rubbers in the process of contracting squeezes the unbroken cells, the liquid rubber comes out, penetrates the collodion film, and makes in that place a perfect mackintosh, inaccessible to the action of aqueous developing solutions. It is evident that this will make a round transparent spot in the negative, and, in reality, this is the characteristic aspect of the spots.

I verified my theory by actual experiment. On the ordinary dry collodion plate india-rubber was applied, the film transferred, and developer applied from the glass side; but it resisted the action of the developer where it was penetrated by india-rubber. Since my theory became an axiom, the remedy was self-evident, and is twofold: (1) the use of rubber solution free from cells, and (2) the absorption of india-rubber in substantial manner, in order to liberate the collodion film from the grasp of rubber, and thus render it accessible to the developing solution. Further investigation proved that application of the benzine-alcohol solution has a still wider field of beneficial action—it remarkably facilitates the development, and aids in obtaining intonality. I am almost inclined to say, that so far as India-rubber is concerned, in order to absorb the iodine liberated by the action of light from iodide of silver, benzine performs the duty of iodine absorber.

Solution free from cells I prepare in the following manner:—A fresh piece of india-rubber, white in colour,
is separated into thin sheets, and immersed in benzole, where it has to remain for two or three days undisturbed. After this time a considerable portion will be dissolved in benzole. The thick liquid is carefully decanted, and preserved for use. It is perfectly transparent and colourless. The remaining pieces of rubber are swollen to almost twenty times the original size, and can be, with a fresh portion of benzole, aided by heat and agitation, transformed into an excellent emulsion, suitable for mounting or other purposes. I employ it for the formation of the tissue, but I am careful to use for the last subdivision only the first decanted portion.

India-rubber has often been condemned for its property of transforming into a brittle, powdery gum by exposure to air and light. But who knows whether the disturbing element is not confined to the cell-composing part only? In my comparatively short experiments I have already observed that cell-emulsion becomes brown by keeping, while the first-decanted solution is still free from colour.

Fixing is executed with a solution of—

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium cyanide</td>
<td>0.1 ounce</td>
</tr>
<tr>
<td>Water</td>
<td>10 ounces</td>
</tr>
<tr>
<td>Soda hyposulphite</td>
<td>1 ounce</td>
</tr>
<tr>
<td>Water</td>
<td>8 ounces</td>
</tr>
</tbody>
</table>

In cases where intensification is needful, it can be done either before or after fixing. The following, after Colonel Wortley's formula, is advisable:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.—Citric acid</td>
<td>4 grains</td>
</tr>
<tr>
<td>Water</td>
<td>1 ounce</td>
</tr>
<tr>
<td>S.—Nitrate of silver</td>
<td>15 grains</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>6 minims</td>
</tr>
<tr>
<td>Water</td>
<td>1 ounce</td>
</tr>
<tr>
<td>P.—Pyrogallic acid</td>
<td>96 grains</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1 ounce</td>
</tr>
</tbody>
</table>

After fixing and washing, cover the plate with sufficient of C, and pour on and off two or three times; then add ten minims each of S and P to each drachm of C, which will quickly intensify the plate. All traces of the pyrogallic acid must be carefully washed from the plate (both sides); acetic acid diluted with water is recommended for this purpose. When the negative is finished, it can be dried on the glass that has been used as temporary support during development, or inserted between sheets of blotting-paper, and dried under pressure. For printing, the film is attached to a glass plate by means of friction from a squeegee, but if this does not give sufficient adhesion, a few drops of water between the glass and the negative will help everything.

The varnish can be executed with chloroform-amber or dammar-benzene varnish, but this is not absolutely necessary. If varnish is applied on the paper side of the film it will render it transparent; while otherwise, from the impression of paper texture, it is like finest ground glass, which is not, however, objectionable, but rather the reverse.

HOW TO AVOID SOME TROUBLES.

BY A.M. DE GETA.

I have tried every method prescribed—the moderate, the fancy, the desperate—for the curing of a disorganised bath, but I have found the following the simplest and surest of them all, and by far the most economical. I do not neutralise my baths previous to boiling; I simply evaporate them to dryness, thus getting rid of the acid. Dissolve the product in a little water, and then pour that into about as much water as you think will reduce the strength of your original bath by half; filter out the precipitate; set it in the sun. After it has been served this way twice, turn it over to the printer, or, better, the refiner; a much be-doctored bath is a very unreliable compassion. Never add anything to the bath which you can possibly avoid, for, although it might prove beneficial at the moment, it will afterward often prove very troublesome. Were some of our experimenters to carefully analyse an old bath, the result of their experiments would startle not a few.

Those streaks! But why have them? Make this a rule, and see how very much trouble and vexation of spirit it will save you: as soon as you get through, of an evening, take out the dipper from your bath and wash it (as I presume every tidy operator does) covered with specks of ether and alcohol, and, at the same time, keep out the dust. In the morning, on looking at your bath, you will observe the surface covered with—well, in order to be simple and avoid chemical terms, I will call it a "scum," which requires to be taken off. Do not plunge your dipper in, and think that, by "mixing it up," you are going to "make it all right," but first take a piece of clean paper and gently skim it off; then take another piece, and perform the same operation; finally, take a plate coated with collodion, and, holding it in your hand, gently work that all over the surface of your bath until the floating matter has adhered to the collodion film. Now you may place your clean dipper in the bath and continue your work without any fear of streaks in the plates, for all the specks will work off after a few plates, from the fact that you have removed the cause, this "scum" being gradually taken up by the films as the plates enter the bath. The operation is performed in five minutes.

Buy your collodion; you will find it more economical in the end. Manufacturers of collodion possess advantages which the individual has not. They have many samples in the market that you cannot well go wrong. The bath is often blamed when the collodion is at fault.

Carefully wipe out your plate-holder after every plate—many think glass corners a preventive of dirty markings, and not only drain your plates, but wipe the backs before putting them into your dark slide; it saves silver. Also occasionally wipe out your camera with a damp rag; do not "disturb the clean," (as "Fanny For" happily has it) with a dusting brush, thus avoiding "mechanical" pinholes. Keep all things clean and tidy, not forgetting your hands, your floor, and shelves, and you will save yourself many disappointments. One good, clean negative is worth a host of poor ones. Snipping out occupies much time.

How to be right; then reserve to yourself some opinion about your work. Make it a rule that, if not all, be paid in advance; and if sitters are capricious (and you are right), let them pay for their peculiarities—they will think more of you in the long run.

Last, but by no means least, politeness goes a long way—it overrules the rough, is appreciated by the polite, and, while it costs nothing, it gives an indefinite amount of pleasure to one's self and everybody else.

I am indebted to Mr. Henry Anthony for a very valuable "wrinkle"; the addition of two—but I have used from three to four—drops of glacial acetic acid to the ounce of collodion in hot weather. To those photographers (landscape especially) who are troubled in hot weather with their pictures flashing out, I would most strongly suggest this addition. It is a very excellent controller. Mr. Anthony advises the addition to be made but to sufficient collodion for the day's work.

Correspondence.

PHOTO-COLLOGRAPHIC PRINTING.

Sir,—I read in two recent numbers of the Photographic News that a gentleman had essayed photo-mechanical printing without success. As far as I can understand:

1. He employed Nelson's gelatine, which may be very

Readings of Societies

SOUTH LONDON TECHNICAL EXHIBITION.

The annual meeting devoted by the South London Society to the exhibition and discussion of subjects and processes essentially connected with the practice of photography was held in the large hall of the Society of Arts on the evening of Thursday, the 11th inst., under the presidency of W. M. Lucas, Esq., Mayor of Southwark. The business of the meeting was introduced by Mr. J. Hetherington, who expressed the hope that the meeting would be as successful as the one held the previous year, and Mr. Hetherington was followed by Mr. M. W. Lucas, who referred to the progress of photography and the late developments in the field. The meeting was then opened by Mr. W. T. Wilkinson, who exhibited an ingenious contrivance for regulating the speed of a camera, which he claimed to be much superior to any other apparatus in use. The apparatus consisted of a series of small wheels, each of which was driven by a separate motor, and the speed of the camera could be varied by adjusting the speed of the individual motors. Mr. Wilkinson also exhibited a model of a camera, which he claimed to be the most perfect camera ever constructed. The picture exhibited was of an even intensity, black and quite opaque.

Mr. W. L. Powell exhibited a simple and ingenious frame for holding the negative in the camera. He also exhibited a new method of developing the negative, which he claimed to be much more efficient than any previously used. He also exhibited a new method of developing the negative, which he claimed to be much more efficient than any previously used.

Mr. E. B. Smith exhibited a modification of the French camera, which was found useful for taking photographs in darkening, as the dark room was practically made into the camera. He also exhibited a new type of focusing apparatus, which he claimed to be much superior to any previously used.

Mr. E. B. Smith described a new method of securing a steady support for the camera, which he claimed to be much more effective than any previously used. He also exhibited a new type of focusing apparatus, which he claimed to be much superior to any previously used.

The President concluded the meeting by expressing his appreciation of the interest shown by the members and by encouraging them to continue their efforts in the advancement of photography.
Mr. Hughes had employed a similar plan many years ago; but he put the mark at the point where exposure commenced, and measured from there. Having by some chance got a watchcase that fitted tight, and did not move, and had got out of the habit of using it, although he had found it very useful.

Mr. Hughes exhibited and explained the use of Manghan’s Geyser, for supplying hot water in a few minutes, which in carbon burning was of great importance (see p. 365). In answer to a question, he said Mr. Wadge would supply the arrangements to photographers.

Herr Warncke explained his sensitive colloid tissue to the meeting, and gave a demonstration of the mode of development (see p. 367). Mr. Farr described a plan of saving silver, based upon the American dodge of using an old felt hat. He used seed pans such as were employed in gardening operations. A bag of felt carpeting was made to fit the pan, and this was filled with sawdust. In developing, the waste solutions were permitted to run into the pan where the silver was thrown down, and the water filtered away. He used a box with sawdust for hypo, and he thought in filtering through he got all the silver left in the sawdust.

Mr. Perton said a jelly-bag answered admirably; and Mr. Hart added that jelly bags could be had of any size, an excellent one for photographic use costing 7a. 6d.

A Member said that he used an old felt hat, and some sawdust, at the bottom of the waste pipe.

Mr. Baymak Jones exhibited an ingenious camera, in which the dark slide had a movement equivalent to a spring back.

The Chairman read a communication from Mr. Winstanley, describing the principle of the scintilograph records which were appearing weekly in the Photographic News.

Mr. Brittlebank showed a small printing press, by which photographers could do their own letter-press printing.

Various other matters were exhibited without explanation, such as examples of Dallastint, Weymouth’s vignetting paper, &c.

The meeting was continued with interest until a late hour, and finally concluded without the usual votes of thanks to chairman and contributors, the absorbing interest of the proceedings causing oblivion of the usual formalities.

A special photographic Society.

A council meeting of this Society was held on the 11th inst. at 12, York Place, Portman Square, Sir Antonio Beatty in the chair. The minutes of the last meeting having been read and confirmed, the following members were elected:—James Groenwood, Esq., B.D.; Charles H. Cosens, Esq.; William Muller, Esq.

The Secretary stated that he was engaged in preparing the prizes for the prize competition, and that an announcement would be made at the last meeting, which were as follows:—To J. W. Richardson, Esq., first prize, a large silver goblet, value 23 s.; J. W. Richardson, Esq., an oil painting in frame; Lord de Ros, a silver goblet; Col. Rocke, an oil painting in frame; W. S. Hobson, Esq., a silver plate, a silver watch, and a silver plate; J. C. Broek, a silver plate, and an oil painting in frame; R. O. Milne, Esq., an oil painting in frame; Col. J. B. Turnbull, a large album elegantly bound in morocco; Captain G. F. Smith, an oil painting in frame; J. McAndrew, Esq., an album elegantly bound in morocco; R. Murray, Esq., dry plate prize, an oil painting in frame.

It was proposed by Mr. Glasson, and decided by the meeting, that the prizes and pictures should remain on view at 12, York Place, for the ensuing fortnight.

Manchester Photographic Society.

This Society met at the Memorial Hall on Thursday evening, the 11th inst., Mr. T. Marsley, Esq., president, in the chair.

After the routine business, Messrs. C. Burton and I. Ambler were elected members of the Society.

Mr. Chapman exhibited one of Turnbull’s triple-wick lamps, which was tested against the scintilcop lamps, and pronounced inferior to it. The Turnbull flame was larger and less pure in quality, and not equal to the scintilcop lamps in illuminating power. Mr. Coventry exhibited a camera front carrying seven lenses, three pairs of different focs for stereo work, and a central one for larger views, and so arranged to revolve that any pair, or the centre one, could be used, excluding the others in focusing. Mr. Coventry also exhibited some emulsion negatives, and a collodion—albumen one.

The Secretary laid the Bulletin of the Belgian Photographic Association on the table.

Mr. Coote exhibited some choice specimens of colloid-albumen negatives, part of his summer’s work.

During the evening the Rev. Canon Breckley, M.A., ex-president, unexpectedly entered the room, and was received with a burst of cheers. The Rev. Canon spoke of his new mode of preparing emulsion plates. The customary notes were taken, and the meeting adjourned. C. AIN, Hon. Sec.

Talk in the Studio.

After Exposure.—We have been favoured by Mr. Wadge with an admirable example of the beneficial results of submitting an under-exposed negative to the action for a few moments of diffused light. Two portraits of a little girl on one plate are produced at one exposure with a twin lens of precisely the same focal length, photo, quality, the plate receiving intentional under-exposure, two seconds only having been given. One side of the plate was then covered, and the other exposed to diffused light passing through two thicknesses of white blotting-paper placed between. A few seconds were necessary, during which the under-exposed picture is simply useless, whilst the other, whilst not so perfect in all respects as a thoroughly exposed picture, is such a picture as many parents would gladly receive of their little pet, and a long sitting is an impossibility. Mr. Wadge’s inside shutter is excellently valuable in aiding the successful application in this mode of working.

Dallastint.—We have been favoured by Mr. Dallas with an example of his new printing process, in which he endeavours to superpose a photographic image in a similar manner to calligraphy. The subject is Hornsey Church, involving architecture, foliage, and figures. The result is probably the best approach we have seen to half-tone gradations in block printing; but it is still far from perfect, and we shall look with interest for further developments in this process.

"Preparing" Cartes-de-Visite.—A case came on a few days ago before the Court for the consideration of Crown cases reserved, in which a conviction was confirmed against a man named Cooper. The prisoner was convicted at the Northampton Quarter Sessions, of obtaining under false pretences, subject to the question reserved and raised by this case, whether 231 letters which were put in by the prosecution were admissible. Mr. Jacques argued for the prisoner; Mr. Mewes was for the prosecution. The prisoner was charged with having used as cartes-de-voisite the following:

"Two and sixpence per hour easily earned by beginners (either sex) by preparing cartes-de-voisite at their own homes at 6d. per dozen. Employment permanent. Instructed and instructed in Paris, Brothers, Hardinge, Northampton." On the trial it was proved that the prisoner inserted the said advertisement, that there was no such firm as Davis, Brothers, at Hardinge, and that the prisoner was not in a position to give permanent employment. Six envelopes, mutilated as above, were produced; the signature of the prisoner and twelve poststamps, were found in the possession of the prisoner on his being apprehended. 238 other letters were produced by the chief clerk of the post-office at Northampton in a sealed bag. The letters had also been addressed to the prisoner under the title of Davis, Brothers, Hardinge, in reply to the said advertisement, and had been received at the office in like manner as those before mentioned, but, having been stopped by the Post Office authorities before they had been delivered, none of the 238 letters had ever been in the possession or control of the prisoner. The letters were written by the persons from whom they purported to come; but each letter had been opened by the Post Office before production at the trial, and each contained twelve stamps. The question for the Court was whether these letters ought to have been admitted as evidence. As evidence of fraud a postmark is insufficient. Chief Justice Coleridge delivered the judgment of the majority of the Court that they were so admissible, and that the conviction must, therefore, be affirmed.

Blistering of Albuminized Paper.—At the Boston (U.S.) Photographic Society, Mr. Holton spoke of the trouble he had had with his prints blistering in the hypo, on drying, which would leave a bluish stain on the surface of the blisters, and after experimenting, found that the trouble in his case was the hypo being too weak hypochlorite. To 10 or 15 grains by hydrometer. He increased the strength to 40 grains, which stopped the blistering.
in the hypo, but they blister in the salt water. To remedy
that, after the prints are fixed, gradually reduce the strength of
the hypo to 30 grains by the addition of water, and then
transfer the prints to the salt water. In this way he has no
blister; uses double ammonised Berlin paper.

COLOIDION PORCELAIN.—D. Pokorny Dorovko says, in the
Moniteur de la Photographie: "I will give you a composition
which I have been tempted to call colloidion porcelain. Colo-
dion at 1½ per cent., 80 grains; gum mbrh, 150-graumes.
The gum is dissolved by occasionally agitating, and the solu-
tion is allowed to rest until it becomes clear. Placing this
composition on the plate, as is done with ordinary colloidion,
we obtain, after desiccation, a smooth, white surface, resembling
ivory or fine porcelain. Glass transparent positives present a
charming effect, and, seen by transparency, gain a brilliancy
deserved by their delicacy of detail, which is further intensi-
fied by deep blue of dark sun, or lamplight. If, after complete
desiccation, the colloidion-porcelain is covered two or three times with
photographic varnish, the costing becomes very tough. A glass covered
with this colloidion would well serve instead of the round glass
of the dark room. The colloidion-porcelain may be coloured
with aniline colours, and as a subject for glass transparencies
give charming and varied effects; the quantity of colour can-
not be accurately defined. To procure a certain colour, take
aniline solution and develop it in order to lose all ac-
saturation is nearly reached; this solution is added drop by
drop to the colloidion-porcelain until the desired tint is
obtained."

REMINISCENCES OF HENRI-FRANCEIS.—Iternant Photog-
ographer (under the cloth): "Will you keep quiet? How do
you suppose—? Subject (who is evading the focus): "Be
Jabers, man! will I sit still to be shot at?"—French.

To Correspondents.

A. B. C.—There are various modes of ascertaining the angle
included by the lens, the mathematics for which we have
previously given in previous volumes; but they would occupy too much space
for repetition in this column. If you have access to our seventh
volume, you will find several articles devoted to the subject.
If you have access to a table of tangents, you may easily make the
calculation. First ascertain the equivalent focus of the lens,
the angle formed by this and the base line of the picture. The
angle included is twice the tangent of half that angle. Or possibly
a simpler method is to proceed as follows:—Ascertain the
equivalent focus of the lens; then measure the base line of
the picture, and upon this line let fall a perpendicular, the length of
which will give you the measure of the angle. Then calculate the
computing angle, and this will give you with sufficient accuracy the
amount of subject included.

YOUR COLUMN.—The pictures by Mr. Faulkner in the exhibition are made from large transparencies produced from small negatives. 2. The powder to be employed depends on the colour required. Any fine pigment is powder; but permanency in the colour of the pigment is, of course, an important condition. 3. In producing enamels by the same process, vitreous powders—that is, powders of some substance which is not attacked by the enamels—are employed. Various dealers supply both the powders and the tablets. We believe you can obtain both of Mr. Solomon. 4. Different kinds of tablets are used by different manipulators. We believe the hard are preferred for the powder because they were caused by uneven flowing of the developments: that is the
cause their appearance suggests; but it is a cause so simple and
obvious, that you could have scarcely failed to see it in the course of
the efforts you have made. Nevertheless, carefully look to
that, and note if the developer flow freely over the plate in an
even wave, instead of being repelled, and flowing in greedy lines.
We see you will get your colored baryta well on the sulphate of
were grayed. In this case the remedy is simple: a little more
alcohol in the developer, and a little more care in manipulation.
If this is not the case, note carefully if the film show any stains
either reflected or transferred, and let us know. The quality of your prints unaided is very good.

C. ElricRug AND C. W. Love.—Many thanks.

E. B. M. B.—We shall not need your assistance, for our error occurred
the velocity of a cannon ball should have been set down as between
1,900 ft. to 1,900 ft., and the transmission of sound as 1,100 ft.
per second.

Books.—Letter Readings and Catalogues from F. York, and
Photography in New Zealand, by Herbert Derrill.

Several Correspondents in our next.
Photography in and out of the studio.

Photography from the Sitter's Point of View.

Half the defaults which sitters complain of in their portraits arise from their own nervousness and awkwardness. But the fault is as much that of the photographer as of his customer. Indeed it has often seemed to us, when we pass from the grand reception room, and through the elegantly fitted up boudoir into the studio, that the photographer rather takes a delight in over-awing his patron. Instead of more as much as possible to make the surroundings, the poor sitter at once feels ill at ease on entering the elaborately furnished drawing room to wait his turn, and as he sits down, he can hear his palpitating heat beating faster and faster as the dreaded moment of his being wanted upsets approaches. He twitches his hat, cranes his head to catch a glimpse of his cravat in a tall mirror above him, he has a long flight of nozzles to blow, and these do not add to his sang-froid, but, on the contrary, trouble him as much as if he were about to see the medical officer about a life assurance. Unfortunately, too, there is but little time to calm down, for in busy studios fifteen minutes is much as can be devoted to any one sitter. There is little time for conversation, and the whole affair being strange to him, the sitter is ill at ease, and takes up the stock in his offhand, that he is in the studio and is but an awkwardness quite foreign to his nature. "There is nothing to be frightened at!" most photographers may be ready to observe; but this does not mend matters, and it is only after the sitter has well accustomed himself to the studio, to the surroundings, and to the photographer himself, that the latter can expect to make a good picture. It is for this reason that any gentlemen—Adam Solomon, for instance, who will take but four portraits a day, and others, scarcely less distinguished in this country, whom we could mention—make it a rule to give half an hour, and, in some cases, an hour, of their time to every sitter, and in this way, secure a quiet happy expression, free from all traces of awkwardness or agitation. Many of us, who feel stiff and constrained at our first appearance in a new locale, are easy and more natural with extreme caution. At the same time, take courage from the fact that, if worthy of the companion-ship, he will not cut you altogether, and I can answer for myself never having lost an inch. So make your lowest salaam with respect and confidence. And now what say you to our visit?

"My too much like go along you and look see how fast you made that face England side."

"Well, Afong. I will ask you to change your handsome costume for an English suit."
Who is it that has not heard this expression? nor associated it with an old gentleman of godly development and kindly beaming eye; in an attitude adumbrating his hearers that the whole matter of their debate is "contained in a nut-shell"?—and who, having thus tauntingly concentrated the argument into that convenient space, flounders on in a would-be elucidation of the discourse, until, hopelessly, he drifts into chaos, flourishes his arms, looks sagacious, then collapses into the retirement of a back seat. Even now he has just concluded a learned dissertation on chivalry for the benefit of Sweeney's acknowledged genius, and will go away perfectly convinced that he has benefited by his sage counsel.

Next to him, we have the gentleman who has swallowed the nut. Behold him microscopically examining the portrait of a celebrated physician; the gentleman writes three distinguishing initials big in science after his name; he is of the dreamy type, and at present is compiling a work on "Psychic Forces," to which he associates "Spiritualistic". It is that, gentlest reader, which takes him here to test the truth of the assertion made by a spirit at a recent seance, who averred that the collodion used by photographers had such a widespread influence upon the atmosphere, and was each day getting so extended, that it fully accounted for the modern phenomena of spiritualism. Such is the proud birthright of a Briton, which associates the humblest of us with the honour of the Imperial State; and this ennobling influence, with another I cannot enter into the present of England's greatness. But we have been keeping the reader waiting, and, as I have the honour of being on terms of close intimacy with Messrs. Smudge, we will visit their rooms.

"Who man he? Have got very large place?"

"Well, Aflon, you will not find the rooms as large as those in the East, space in London being so very precious; but it is the best in the best fashionable street, and little better than the Court Guide is required for their official directory; but you will sometimes see the followers and imitators of nobility there as well, who adopt a bearing of condescending patronage that the high tone of the house will not suffer, and so their visits are 'few and far between.'"

As we turn the handle of the door, the plate-glass portion of which bears the name of that distinguished firm, it swings back, and we pass through a half-way of sombre aspect, and from thence ascend a winding staircase. We are here met by a page boy, who throws open a door, and we enter a spacious suite of rooms carpeted with a soft Turkey fabric; the walls are hung with paintings representing in their brilliant colours so many of the distinguished of rank and fashion; tables dispersed about are loaded with exquisite little gums of art, consisting of ivory miniatures, medallion photographs, and all the other etteners of art which are formed to delight the eye of taste. Several persons are its occupants. Mr. Trustworthy, the clerk, is comfortably located behind a desk, engaged in the intricacy of multiplication, and whose indigo-tinted vigour is in contrast to the jolly rubicund appearance of an elderly gentleman in close confab with my friend Smudge. It is impossible to mistake the gentleman as he stands there in an attitude of honest heartiness, the ideal of an English country squire, and is now suggesting to the amiable Smudge improvements of colour in the portrait of the lady Florence Garceful.

"It all lays in a nut shell?" we overhear him say, as we enter.

And if we had any doubt before, this would have confirmed the identity.

* Robbery, a common
Gentle reader, Mr. Smudge; Mr. Smudge, gentle reader."
"Glad to see you and your friend, old fellow; always delighted to find that I am not forgotten. Been to the exhibition?"
"Yes; spent an hour there, and, assisted by the remarks in the newspapers, enjoyed it immensely."
"The pictures this year in carbon are particularly fine."
"We are all but a little more to be desired; but I have no faith in those produced by that process on ivory.
"I am astonished to hear you say so. What is your reason?"
"Just this: I believe every bit of it will peel off. If I am wrong, correct me; but it seems to me the only practice at present to prevent their doing so is by applying a coating of normal colloidion. Now, I will venture to predict that many a clever artist, whether he be held a warrant of ability from those probably less competent than himself. Let us be satisfied to—"
"Shuffle off this mortal coil..."

As photographers, you cannot make anything less nor anything more of it—unless it occurs to the mind of Imperial Majesty to take greater cognizance of an art associated in its birth with the history of her reign, and begin by conferring honours upon some of us. But, in the absence of those honours, I am satisfied high-class photography will never disgrace us if we never digrate us!

We now ascend to the atelier. After passing Smudge's painting room, of northern aspect, and two dressing rooms on the floor above, and, before our breath is quite exhausted, we approach the horrors of the operating room.

But stay! we must not enter; for to listen to the sounds so familiar to domestic joys! It is an infantile warning.

The latest addition to an ancient and noble house is undergoing the tortures of the operation.

There stands Mug, the daemon of the hour, strutting from instrument to sitter. Now, leaving his head to one side to get a general view of his little victim's pose, observe the sombre cast of his countenance, and the shade of agonizing study on his intellectual brow. Suddenly the eye brightens with a flash of happy thought, and, as if fearful that its benefit would be lost to the sitter, he springs forward, and, with a graceful flourish of his hands, gently adjusts the head. But his desire for pictorial beauty makes his little victim cry out lustily. Mug assumes the tone of the nursery, and gets the baby into proper range of his camera. The little victim then kicks into space in the most gentlemanly manner; next tries to swallow its shoes; and, getting red in the face from the emotion caused by the effort, indulges in the predilection apologizes for her little darling, and the maternal solicitude in the pleading eyes reconciles him to the interruption.

And now, gentle reader, I must leave you. My light hasty sketch is before you, and my supper is before me. So good night, and you, most worthy Afong, "chien chien."

PANICONOGRAPHY.

ED. DR. RONING.

For some years past, the firm of Gilgot et Fils, of Paris, have been working a process under this name, which consists in producing blocks in relief by etching upon zinc. The process is one which yields such excellent results that we feel it a duty to describe it to our readers; the more so as photography now plays a very important role in the matter. A recent visit to the establishment of MM. Gilgot et Fils has afforded us an opportunity of witnessing the operations of the process, which finds valuable application in connection with photography.

The paper employed in the process may be purchased in commerce, or may be prepared by covering Indian paper with a film of starch paste, the paper being dried and pressed with much care, and kept as cleanly as possible. A particularly good autographic paper may be obtained by applying one or two films of solution, so that only a very thin and uniform coating is produced, which does not run on the paper being hung up dry. When dry a coating of cold paste, made some days previously, is applied, and afterwards an application of gamboge dissolved in water. The paper is subsequently well rolled, so that no fatty matter shall come into contact with it.

The zinc plates employed must be soft, and be rendered more favourable to the application of a greasy image by washing in potash or soda solution. Oxidised or moist plates will not take the colour; warm ones allow it to run.

The image produced in fatty ink upon the paper, however may it be furnished, is placed upon the zinc plate face downwards; a sheet of paper moistened with the plate hydrochloric acid is placed upon it, and above this are put sheets of dry paper, and the whole passed two or three times through a lithographic press. If a non-prepared paper is employed, the plate should only be passed once through the press, as the paper will not cling to the metal, but, being spread out by the pressure, causes a double image to be formed. A too powerful pressure and the lines of the image will be blurred.

The back of the paper, with the image, is now well moistened with water, and then the paper-backing may be removed from the zinc, upon which remains the fatty image, as also the preparation, if any, which was in the first place applied to the paper. A soft sponge is now employed to wipe the plate, and then it is washed over with warm water to which a little hydrated lime has been added. The latter is allowed to dry upon the metal, which is slightly warmed on purpose. The acidified gum solution must first of all be tested upon a zinc surface, and should not attack the metal with much energy. Solution of nut-galls may be employed in place of it, if preferred, as in the case of photo-zincography and lithography.

The plate must be allowed to stand in this dry condition as long as possible. The gum is then removed from the surface by washing, and the image is rubbed with a roller in the same way as in lithography. The first ink applied by Gilgot is a composition of ordinary lithographic ink, white wax, resin, and lithographic varnish. The plate is again permitted to dry, and then over the whole surface is worked by means of the iron (if not be too finely powdered resin, which at once attaches to the greasy particles, and imparts to the colour a consistency sufficient to shelter the covered parts from the action of the sun.

* Photographische Correspondenz.
The powdered resin upon the other portions of the plate, between the lines and the letters, is removed by means of a second tuft of wool, and then the borders and back of the plate are covered with shellac varnish.

The Coat.-A trough made from a mixture of gutta-percha and asphalt is made of proper dimensions, and of such a nature that it will rock. This rocking trough must be kept in motion the whole time that the etching operation is proceeding, so that the liquid moves to and fro over the plate, and washes away any salts which may become formed by the acid acting upon the shellac varnish. To do this, there are two apparatus, each having four of these troughs, which are moved by a small steam engine. Each trough takes up an area of one and a-half square feet. The concentration of the acid governs the depth of the etching, and therefore it is considered desirable to have the acid mixture always of the same strength, the liquid falling from a dropping-bottle fixed above the trough.

The first etching must be very weak, and should be confined to the white parts, which are the darkest portions. As soon as this is sufficiently accomplished, so that certain parts are placed in slight relief, the plate is taken out of the trough, washed, and dried, and brought into an oven mildly heated, when the resin fuses and runs down the wall of the plate and to the bottom. It is a question of not producing a relief sufficient for printing in the printing-press, but to protect every separate etching, which gives the tones of the picture, from the subsequent action of the acid. A series of operations are necessary to do this, which necessarily require practical experience to carry out, and are not to be fulfilled by one who possesses mere theoretical knowledge.

As soon as the fused resin has formed a sufficient protective coating, the plate is taken from the oven and allowed to dry in the open air; it is then rolled up again with the re-transfer ink, together with two parts of fatty and resinous substance, and as much litho varnish as will permit the composition to run evenly over the lines or letters of the image. The plate is strongly rolled, so that the black parts become pasty, and then powdered resin is applied, bringing the plate a second time into the trough.

The second etching, which is required to attack the less dark parts, requires to be a more vigorous one. The plate must also be more highly warmed, so that the fused resin is more fluid, spreads over and protects the parts graved in the last operation.

For six or nine times the operation repeated in the same manner, by continued rolling of the plate and fusing of the powdered resin applied, the image is completely etched by succeeding steps, the final etching being most powerful, in order to hollow out all the white portions. When there are large surfaces of white in the image, these must in the first place be protected with a solution of shellac, so as not to weaken the etching liquid too much at first, and to supply a point of vantage for the roller.

After the etching operations have come to an end, the plate is washed with great care, in the first place with caustic potash, and afterwards with benzole, to remove the resin and ink. The white portions which have not been acted upon are cut out with a narrow saw, and the graved plate is then fixed into a press.

By M. M. Gillot has testified, and as I myself can also bear witness, the results of the process which I have here briefly sketched yields most excellent results, but some amount of practice and artistic skill are required on the part of those who carry on the operations. The etching of the plates must be carefully watched, so that the fine lines and delicate portions of the work may not suffer. The beginner is liable to etch some portions and too vigorously others, too much, but with an intelligent operator successful and certain results are obtained in a very short time.

The process of paniconography, which is known in Paris under the name of "Gillotage," has rapidly spread, and is employed in that metropolis for illustrating newspapers and other publications. Employed in conjunction with lithography—it will be well if photo-lithography—it permits of obtaining a prototype plate for the printing-press of any drawing or design in a very short time, the reproduction being either on a larger or a smaller scale than the original. It would be desirable that every printing establishment of importance should possess a lithographic press and a workman skilled in this particular kind of work—photography—or, rather, photo-lithography—it permits more accurately of the chrome-gelatine photographic process and photo-lithography, so that they might become more consonant with the photo-mechanical printing processes of the day.

AN EXCELLENT LIGHTDRUCK PROCESS.

BY PROFESSOR J. HUSSEY, OF TAHOR.

Basis.—As a basis I employ a polished glass plate, three lines in thickness, or may be thicker. These plates are polished matt on one side by rubbing them with finely lustrated emery paper moistened with a little water, and applied to the glass surface, the emery being uniformly moistened by rubbing with the finger. This is very necessary, for should any dry emery come in contact with the glass, deep scratches are at once produced. Another glass plate is placed upon the one covered with moist emery, and the former is rubbed by a circular movement, and with very little pressure; I conceive that the noise from the breaking up of the large particles ceases, and then more pressure and freer and quicker manipulation may ensue. For about ten minutes the task should be continued, the grains of emery becoming smaller as the work proceeds, and the matt surface of a finer character. If, after the plate has been washed, it turns out that the glass surface has not been evenly rubbed, or that by reason of the inequality of the plates certain portions have not been touched, the grinding must be proceeded with, a fresh supply of emery being obtained. The action must be continued in order to reduce the size of the grains as much as possible. In this way two matt plates are produced at one and the same time.

If it is a question of employing plates a second time, the same order to be followed, the plates are put into a lead or zinc vessel containing an alkali solution formed of slaked lime or soda. This alkaline liquid may be preserved in good condition for more than two months, and may, by the addition of a further quantity of lime, be invigorated when necessary. In a bath of this kind the hard gelatine film becomes softened in a period of twelve hours, and the glass may then be cleared with sand, or the same material, and washed. The plates are then ground with emery powder in the manner just described in order to free the pores of the glass from any gelatine remaining in them. Finally, the plates are rubbed with a rag, and rinsed in several waters, and then dried.

First preparation of the plates.—I take 25 parts of white of egg, 45 parts of distilled water, and 3 parts of solution of soda water glass, such as can be obtained in commerce. The white of egg must be perfectly free from the yolks. The three constituents are mixed together, beat a little froth, and then allowed to stand. Next day, or at any rate after an interval of six or eight hours, the clear portion is decanted off, and filtered through a clean cloth. This will render subsequent filtration through paper much easier. The operation is precisely the same as if a glass funnel is put into it, so that the tube of the latter reaches nearly to the bottom; the filter is then fitted with soft and thick filter paper, and the mixture poured in. The pores of the paper are very speedily stopped, and the process

*Photographiche Correspondenz.
of filtering is suspended; for this reason the solution is poured from the funnel back again into the glass vessel, the filter paper is replaced by new, and the solution again passed through it. This operation will have to be repeated several times before all the liquid in the vesel has gone through the filter. When the liquid has been once filtered, it is then poured into a second vessel. When the second filtration is repeated, the filter paper being changed. For this reason the filtered liquid is poured into another glass and filtered a second time. As the first filtrate always contains a few hairs or fibres, the liquid that passes through first of all should always be poured back to go through the filter again, and in this way a perfectly clean liquid free from bubbles is obtained.

To prepare the plates a sheet of glass of large size is laid down horizontally, and on it is placed one of the matt plates, which has, first of all, been dusted with a brush. Upon its surface, and near the edge, is poured some of the solution above described, and this is spread over the plate by gently inclining it. Those parts which are not wetted in this way are afterwards covered with the liquid by spreading it with a strip of paper. A few of the plate should be draining, allowed to flow quickly, but gently in a line downwards. Another vessel is brought to one corner of the plate, and the glass is quickly turned on end, so that the superficial matter runs off. The quick withdrawal of the liquid carries away any air-bubbles which may have been formed when the fluid was spread with the paper; but, if any should yet remain, one or two of the solution may be added in a small stream, and then again rapidly drained into the second vessel. The plate is permitted to drain, and is set up against the wall to dry. The fluid which has been poured off the plate must be filtered again before use. In this way a large number of plates may be prepared, and, in this condition, may be kept for six months. They must never be used immediately, but should be kept in a dry state without being exposed to too high a temperature. The longer they are allowed to remain, the better they are.

Second preparation.—To coat the plates with gelatine, they must first of all be thoroughly rinsed with cold water, best under a tap, but without the prepared side being touched. They are then dried, and ready to be treated with gelatine. This is done in the following manner: a box having a sheet iron bottom, and a cover of dark linen or cloth, is provided; inside the box above the bottom is spanned with linen exactly the size of the interior, and this is covered with filter paper, loosen laid upon it. This frame should equalise perfectly the unequal temperature of the iron below, for under the box is fitted a gas or spirit flame. Three inches under the lid are iron rods from one side of the box to the other, placed horizontally, each rod being furnished with two or three holes into which screws are fitted, upon the heads of which the glass plates rest. By turning those screws so that the heads are raised or depressed, the plates are easily brought into a horizontal position. A thermometer suitably fitted in the side of the box indicates the temperature. Two, three, or more glass plates are laid horizontally upon the screws, the box is closed, and the temperature raised to 30°. In the meantime a quick mixture of a solution of gelatine (7 g. grammes) of the finest French gelatine is taken; five ounces (150 grammes) of distilled water is poured upon it, and the gelatine allowed to swell for an hour. After this the gelatine is dissolved upon a water-bath, and when it has reached a high temperature (say 70° R.), fourteen grains (0.875 grammes) of bichromate of ammonium, and ten grains (0.625 grammes) of potassium dichromate are added. After the solution has dissolved, an ounce (30 grammes) of ordinary spirits of wine is added, and the mixture filtered.

The filtered solution is poured upon the warmed glass plate, and spread over the surface by means of a strip of paper. Not too much, nor too little, liquid must be applied, but only so much that, when the plate is inclined, only a little of it betrays a tendency to run off. When the operation has been carried out several times, the proper amount to be applied is easily guessed. Too thick a film does not last in printing, as the scraper abrades the surface; and too thin a film, on the other hand, permits the fine grains of the glass to appear as little black spots, the force employed in the process being the greater. When coated, the plates are put into the box and allowed to dry at a temperature of 65°. Placed prepared in this way were kept out of doors and in summer for the space of a week, and in winter time for a month, becoming better after keeping a little while.

The Exposure.—This may be estimated at three-quarters of an hour in the shade, in the case of a good negative, or a quarter of an hour in the sun. Diffused light gives the best half tones. After exposure the chrome salts, which has been acted upon by light, are washed out in water, and the plate well wiped and put to dry. After three hours the plate may be employed for printing purposes.

Printing.—The plate is fixed by means of plaster of Paris to a lithographic stone, and printed by the aid of a lithographic press. The stone is moistened and treated with two different inks or colours, one thick, one to blacken the image, and one thinner, to render it a half tone. After every printing the plate is again wetted and wiped with a rag, when the inking is proceeded with once more. If the plate gives but little half tone in the shadows, a blind proof is taken off, which takes off the last remnant of the colour, and then the plate is wiped once more and printed. A plate of this kind should further be printed in orange or green, or some other colour, depending upon due attention being given to their preparation, upon having gelatine that swells but little, and employing little force in printing.

Concluding Remarks.—This method, according to my experience, is the best of the kind yet brought forward. It yields more certain results, and appears also to be pretty certain of inferior quality, and is very dear; the bleached material is perfectly valueless, and the only quality to be recommended is the Russian.

The choice of colours is important. If a brown tone is desired, then Munich varnish must be added to the black ink. This has the defect of colouring the plate, so that in the end it is not white, but brown. This varnish has the effect also of tanning the gelatine, and the print then appear flat. A good brown mixture is afforded by the finest printer's black of the thickest kind mixed with red oxide of iron and a little Cesar varnish.

To preserve the margins perfectly white, the negative is covered up to the image or design. On printing, the tissue paper is cut into bands of two or three inches breadth, and these are put on the edges of the plate, which are to remain in the frame. When the printing is over, the paper is removed, after everything has dissolved, an ounce (30 grammes) of ordinary spirits of wine is added, and the mixture filtered.
The Photographic News.

Vol. XIX. No. 599.—November 23, 1875

CONTENTS

Photography In and Out of the Studio 565
Prints-Jack Sketch of a London Studio. By D. London-Smith 565
Panochromy. By Dr. Horning ... 567
An Excellent Lichtdruck Process. By Professor J. Humlik 568
Photography of Star Trails. By Charles Walker 570
A Photographer's Adventures in the South Seas 570
Metre-Measurements: Variations in the Quantity of Light Radiated from the Southern Sky. By D. Wintensteyn 572
Practical Notes—Part 1. By Charles Walbeck 572
Bust Pictures with Grey Backgrounds. By J. Unger 573
Technical Notes .. 578
The Press and the Exhibition .. 574
Correspondence.—Error in Exhibition Catalogue—Velocitopes for Photographers—Simple Mode of Embossing Cameos 575
Proceedings of Societies.—Edinburgh Photographic Society 576
Talk in the Studio ... 577
To Correspondents ... 579

NITRATE OF BARYTA IN THE SILVER BATH.

Several correspondents have recently asked for an explanation of the precise operation of nitrate of baryta in the negative bath. A Provincial Amateur complains also that the expense of fixing is not the only thing that it disappears on vanishing, very perplexing during development, and renders it difficult to determine when the proper degree of intensity is obtained, the issue being that he frequently finds his finished negative more intense than he intended. He has found, however, that its addition to his bath has effectually removed a tendency to pinholes when the ordinary treatment for getting rid of excess of iodide of silver had become ineffective in the slightest degree. It is probable, from the results recorded, that the presence of nitrate of baryta in the silver bath may have some action which is not well understood; but its beneficial action in the case of our correspondent appears to have been simply that for which it was originally proposed. Its use was first suggested and tried by Dr. Vogel for the removal of sulphate of silver from the nitrate bath. At the time, there was a prevalent outcry from many photographers as to the presence of pinholes in their negatives, manifestly not arising from iodide, as they appeared in a new bath, a lack of sensitiveness and poorness of image being, in many cases, a concomitant of the pinholes. Enquiry and research led to a suspicion as to the presence of sulphate of silver, and the theory, propounded by Dr. Vogel, proved satisfactory. On the addition of nitrate of baryta, precipitate of sulphate of baryta was formed, and the working conditions of the bath were at once improved. The chief drawback that remained was a tendency to excessive intensity, or even hardness, in the negatives. The grey veil of sulphate of baryta precipitated on the film on the application of the iron developer was another minor drawback, which probably, as our correspondent imagines, contributes to the first drawback by misleading the eye of the operator as to the degree of intensity obtained. A little experience and care in manipulation will serve, however, to obviate both difficulties.

When the subject was revived at the South London Society about a couple of years ago, a variety of virtues were claimed for the baryta salt; but no theory was put forward as to its action. The majority of those who have tried it, however, speak favourably of its action. A corresponding one of our Philadelphia contemporaries points out an interesting case of the purification of silver by its aid. It is probable that this theory will have been present. He says:

"I had occasion a few days since to dissolve a lot of silver coin, which I sometimes do for the purpose of making a bath; but amongst this particular lot was a lot of scrap silver also, which was guaranteed to be pure silver; but I found after dissolving it that it contained quite an amount of either lead or solder used by jewellers and it was a good deal of trouble to cleanse this out; and when I got the solution ready for work and coated a plate, I could not get a full-sized image under twenty or thirty seconds, and I enclosed you a card made with it to show you how it works. Not that this card has any particular merit except the time in which it was made, which was half a second as near as I could calculate, by exposing as rapidly as it was possible to uncover and cover the lens; you will perceive that from the subject, and the position itself shows the work had to be done quickly."

A PHOTOGRAPHER'S ADVENTURES IN THE SOUTH SEAS.

Our readers may remember that, among others who took part in the transit of Venus expeditions despatched to all corners of the globe, was Dr. Hermann Krone, the president of the Dresden Photographic Society, and editor of the organ of that body, Helios. Dr. Krone's reputation as a scientific photographer very naturally attracted the attention of his countrymen on the occasion of the preparations to be made to observe the transit of Venus which is to occur over the sun's disc, and the Berlin Academy invited the learned doctor to aid in securing records of the rare event in question. In response, Dr. Krone at once expressed his readiness to proceed to any station where he could be of assistance, and the distant Auckland Islands was ultimately fixed upon as his destination. Talther he proceeded, and his departure and the mission on which he was to be a blank among photographers of note, that not only had the issue of Helios to be altogether suspended, but the Dresden Society likewise postponed its meetings until the return of its president.

Dr. Krone has now returned, after being absent from his fatherland upwards of twelve months; and his experiences as a photographer in that distant corner of the earth to which his duty called him, notwithstanding the lapse of time that has intervened, we do not hesitate to give them to our readers. His report is embodied in a letter to Professor Vogel, of Berlin, and we may confidently affirm that, since M. Reméle described his journey through the Libyan Desert, we have read no more interesting communication from the pen of a photographer.

To do their remote destination, Dr. Krone and his friends came to England and embarked for Melbourne. It was supposed that from this part a passage might be secured in some ship proceeding in the direction of the Auckland Islands, but ultimately it was found necessary to charter a vessel on purpose. Finally the French bark Alexandria, Captain Vanoujoye (with a crew of ten men) was engaged, and the party, consisting of two officers in the German marine, Dr. Schir, Dr. Wolfram, Dr. Krone, and his son, embarked for their destination.

"The ship was quickly provisioned, the cases of instruments and necessaries taken on board, a carpenter, a cook, and steward were hired, and on the 3rd October, early, the vessel sailed."

"It was a stormy voyage, and experiencing for four days a dreadful hurricane, during which a terrible sea broke over the ship continually, the water dashing through the cabin, we came in twelve days, on the afternoon of the 16th October, to Port Ross in the Auckland Islands, and in the evening, at eight o'clock, anchored at a mile from shore near Terror Cave, in the little Shoe Island. An attempt on the following day to get nearer the shore was unsuccessful, and therefore the labour..."
of unloading and landing our heavy cases was rendered very great indeed. To add to our troubles, the sea ran very high; but, let the weather be what it might, we had to row on shore every morning early, and back again at night to sleep, completing our arrangements as quickly as possible. We worked as carriers, packers, and builders, turning our hands to all kinds of work. We discovered the place where Ross made his observations in 1840, and chose the same spot for our own observatory. Here the dense bushes and reeds which cover the island had been cleared away thirty-four years ago, but, of course, the brushwood and shrubs had grown again since then, and many days' hard work with axe and shovel were necessary before we could even make a beginning of clearing the place for our dwelling house. At last we succeeded in levelling the ground properly, so that we could commence building. A carpenter made one of the party, and the walls of the house soon began to rise; and it was not until we had the roof on that we possessed any shelter at all from the rain and hail, which at times became exceedingly Aucklandish.

"If any of our friends engaged in neighbouring expeditions could have seen us they would have wondered much at the speed with which the development of our work proceeded. We did not imagine ourselves possessed of. All of us, the two naval officers included, had to clear, chop, and build for weeks together, while the work of the ship's labours was going on. We discovered the truth of the saying that one cannot succeed when he has not the heart to do his work. We were all keen, and the work seemed to fly by. We had two Chinese cooks besides the German, from whom we obtained the assistance of the Gazzelle war- vessel, and our brethren at Tschuft, who were aided by the Ancona gunboat, and a body of Chinese besides! The German government had sent nothing with us to render assistance; on the contrary, the German officers had even been so kind as to establish a military garrison on the island. Our work proceeded so hard and incessant. A medicine chest which we had with us, and which contained a few printed instructions, had to serve as surgeon. Dr. Seeliger, in clearing the bushes with an axe, had the misfortune to deal himself a severe cut on the foot, the blood streaming out from the hole in his boot; fortunately we found a supply of strapping in the chest, and so we were able to tend our wounded friend pretty well. Then Dr. Schur caught a violent cold, and suffered from a raging toothache, which kept him away from work more than a week. In this case we could only hope that our patient would get better.

"We had a large supply of quinine with us, to enable us to tolerate the fever-breeding swamps of the Auckland Islands; but, fortunately, we did not stand in need of this tonic. Many of the medicines mentioned in the printed instructions were not, however, to be found in the chest; but as we were fortunately free from any grave sickness, this did not matter so much; otherwise we should have been in the same strait as yourself when on the Nicobar Islands. It should be imperative, I think, that a scientific expedition should be accompanied by a medical man, to afford assistance and advice in case of need.

"After we had completed our house, we proceeded, with the help of the sailors, to build up the iron moveable towers, from which the storm often tore the canvas roofing. In building up the pillars, our carpenter had more practice than we, and so we acted as labourers to fetch material, while he put it together. On the 20th November we unpacked our chemicals in the dark room; and the next day took the first landscape photograph. Our time of the 22nd—23rd November an extraordinarily high tide washed two of our photographic cases into the sea, overturned our water-gauge, and washed the tide-observer, turning our self-registering clock inside out, between the lath blocks and the bench, whence they were, however, soon recovered and set up again. Some months afterwards we found our chests several miles away, high and dry on the beach of Ocean Island.

"Nine days only remained to us for the setting up of our photo-heliograph, and to make all preparations; six days for preparing and working up the dry plates. Fifty plates prepared were put on one side as untrustworthy, as on the morning after their preparation it was found that the brown, swampy, and ferrous spring water could not be employed, as it occasioned stains and precipitates. For this reason we began zealously to collect the rain-water, which came down in surprising quantities, and, moreover, distilled day and night the spring water of the place. As there was little time for working, on, the affair had to be done, and for modifying and testing our collodion, the latter had to be used fresh—a circumstance of little importance, probably, in the wet process, but unfavourable to the preparation of dry collodio-albumen plates. The collodion, moreover, on account of the very moist condition of the atmosphere, betrayed an extraordinary tendency to lift off the glass, and to form wrinkled, liminary bladders, which were brought about by staining, because it kept in the damp. The employment of this material had, therefore, to be abandoned, although among the glass plates were found some which had already been made use of.

"I now took my own chemicals in hand, my own collodion, and my old silver bath, which had served already for the preparation of dry plates, which I had brought with me for private work, and also in case of difficulty, should the other unlimited, and so to speak, unripe chemicals be found wanting. A new silver bath which I prepared gave beautiful wet plates, but was no good whatever, as I have said before, for the preservation of dry films, which all of them fogged on treatment therein. On the other hand, my private chemicals gave good clear plates. In the same way, the collodion brought with the new preparation was all very clear, but the old albumen worked more rapidly than mine; with dry plates, however, the new collodion always yielded dirty films, while mine gave clear ones.

As we employed distilled or rain water, both at the beginning and end of the operations, but could not employ such water throughout, I dipped the plates after sensitizing in a bath of distilled or rain water, and covered them with albumen solution without further ado. The film still contained silver, but this did not matter, as the albumen solution also contained silver, and the latter was then washed by pouring over it the brownish spring water. The silver albuminate in the excess of albumen was in this way simply washed off the plate without in any way injuring it or covering it with spots, and finally a rinsing with rain water sufficed, after which I also washed them.

"So far as time and the few glimpses of the sun permitted, we tested our plates, and prepared a series of one hundred films, for the depiction of Venus on the sun disc; these were for the most part produced with the chemicals I had brought with me from Dresden, the middle washing operation being omitted, and each plate labelled so that I might distinguish it again. Some dry albumen, which I took with me, and which had been prepared by Dr. Wolfrom and M. Bobzin, of Schwerin, proved to be in excellent condition; on the other hand, the fluid albumen treated with ammonia arrived in a decomposed state. The results I obtained with the dry albumen were equal to those secured with fresh white of egg.

"The drying of the plates in an atmosphere saturated
with moisture, like that of the Auckland Islands, was of course a very long business. In order to dry the last batch of fifty, ready for work at the proper time, I myself tended the fire in our little stove from one o'clock in the morning until ten. The well packed dry-box, furnished with a fresh supply of chloride of calcium, had to be placed in the vicinity of the stove, to let the films become properly dry, and if this was not done, three days did not suffice to drive off the moisture. The collodium-albumen dry plates dry more slowly than any other films, and the longer the collodion is in drying, the worse are the results obtained, its keeping and sensitive properties both suffering.

"I must not here forget to state, in the interest of any future expeditions in which photography is to play a part, that whatever may be the advantages of a dry process over the ordinary wet process—and these advantages are marked—such advantages become illusory under certain circumstances, to wit:

"1. When the photographer entrusted with the operations is not so familiar with the particular dry method as he is with the wet.

"2. When the chemicals to be employed have not been a sufficiently long time in the photographer's possession to allow him to work and become familiarly acquainted with them.

"3. When the technical superintendence and arrangement of the photographic section of the expedition are not delegated to one skilled person.

"Finally, it is impossible to prepare at once, from chemicals newly come to hand, trustworthy dry plates. For many purposes, and especially for spectroscopic work, the use of wet plates is always to be recommended, because these are more easily acted upon in the first place by the rays of light. In securing photographic pictures of the sun's disc, on the other hand, dry plates are preferable, and in this case it is always well to make a few test experiments with wet plate from time to time to prevent accident."

(To be continued.)

METEOROLOGICAL REPORT SHOWING THE DAILY VARIATIONS IN THE QUANTITY OF LIGHT RADIATED FROM THE SOUTHERN SKY OF BLACKPOOL.

BY D. WISSMANTLEY, F.R.A.S.

The daily average of light has risen, being for the past week as 662 units to 598 for the week preceding, and the curious line to which I have called attention more than once again appears.

I notice in last week's issue one of the figures has been dropped, the amount of light on Nov. 7th being given as 74, instead of 974, as was the case.

PRACTICAL NOTES ON VARIOUS SUBJECTS.

BY CHARLES WALDACK.

CARBON AGAIN—HALATION—PRINTING ON CANVAS.

Carbon Again.—The Ghent Section of the Belgian Photographic Association had a meeting last Tuesday afternoon at the laboratory of Dr. Van Monckhoven to witness the operations of printing in carbon. The meeting was the largest yet held, and great interest was also shown present. The main feature was the development on a collodionized glass. As this mode of operating is one of great certainty, and little liable to accident, as it has not, to my knowledge, been published, I will give a short description of it. In order to shorten operations, the doctor develops as many prints at a time as can be transferred on a glass plate 20 by 24. This is rubbed with a solution of wax in benzoin, so as to leave a very small quantity of wax on the surface; or it can be flowed with a very thin solution of the same kind as described by Mr. Sawyer in a late number of the NEWS. After drying, the plate is flowed with plain collodion, allowed to set, and washed in a dish of water, to disbar the of the alcohol and ether. The collodion used by the doctor is thinner than negative collodion, is slightly colored with yellowish tint of the transfer paper. After washing, the plate is laid down flat, and covered with the insolated carbon tissue, which has been previously imbered in water for about a minute. All these operations are done in full daylight, taking care, however, to keep the gelatine surface shielded from the light while transferring the print. The box to be used is laid down on the back, and the water is expelled by means of a squeegee, working at first from the centre to the edges. The plate is then set up, and allowed to stand for some time before developing. The developing is done in water at about 100° Fahrenheit, which is caused to flow forward and back over it, until the paper serving as a support to the glass becomes detached. When the glass has been removed, the plate is rinsed with a stream of cold water, and put in the alum solution. The alum solution is a strong one, and a few drops of sulphuric acid are added to it, in case the washing waters should contain carbonate of lime, to prevent the decomposition of the alum, and the precipitation of aluminia on the film. After this the film is generally allowed to dry, before transferring to paper. The developer, however, has dried the gelatine of the water by which it is permeated, and thus bringing the relief in a few minutes. When this process, which will be published shortly, and which we do not feel at liberty to divulge, is used, the transfer paper can be applied immediately. The transfer paper is soaked for a minute or two in hot water, laid down on the cold plate, and the excess of water removed by means of the squeegee. When this is strictly observed, the image will detach easily when dry. The prints on being detached from the glass have a glass appearance, which, however, disappears when they are mounted on cardboard. In case it is desired to retain the glass appearance, several thicknesses of transfer paper can be put on the back, thus forming a double sheet of sufficient thickness, for this cardboard can be pasted on with gelatine. The bichromate solution used is 1½ per cent., or 7 grains to the ounce. It should be renewed frequently, an old solution giving flat pictures. This, however, when hard negatives are used, may be an advantage. In a short time Dr. Van Monckhoven will publish a pamphlet, giving a detailed account of his experience in carbon printing. The immediate result of this process has been that principal establishments are prepared to adopt the process.

The Fringe or Halo.—This is a thicker deposit of silver on the edge of the high-lights, where they border on a dark part of the negative. Short exposure conduces to it, but prolonged exposure does not always remedy it. It is sometimes met with in portraits,
a light fringe, lighter than the background, next to black coat or dress. It makes its appearance in landscapes, where the sky line is formed of dark foliage. It is particularly annoying in transparencies made in the camera, either in holotype or from transparencies. I have not met with a satisfactory explanation of this occurrence. To be informed that it is owing to too much light, or to the lens, or to the action of the light spread through the particles of the film, leaves me as much in the dark as before. My opinion is that it is one of the defects inherent to the wet collodion process, and not introduced into the process itself but in development, and we develop a plate in which a light outline contrasts on a dark ground. The parts of the latent image which have been strongly acted upon by the light will attract the particles of silver with great energy, and when they are next to a dark background, where the attraction is very small, there will be a tendency to take up not only what ought properly to be deposited there, but also some of the silver which ought to have gone to the neighboring dark parts. If I am right in my supposition, the remedy ought to be in the adoption of a process in which the image is formed by the decomposition of the haloid silver compound present in the film, and not by the nitrate of silver which permeates it. Such process is the bromide process, employed in the bath for wet or dry, with alkaline development. The matter is one of great interest, principally to those making enlargements.

A simple process on painter's canvas.—The process I intend to give is one I have used with great success for many years. It is principally adapted to print from enlarged negatives in the printing frame. For some camera printing I prefer a process by development, which I will give at some future time. The canvas always used is Winsor and Newton's smooth. No doubt it would be successful with other kinds. Rub the canvas smartly with the half of a lemon, without squeezing it, until the juice takes everywhere. Then remove the fibrous parts which may adhere with a stiff brush or a piece of canton flannel, and let dry. Next cause to flow over it, by means of a bent glass rod, a satiny solution from 2 to 10 grains strong (the weaker the negative, the weaker the salt), and dry again. The silvering is done in the same manner with a 40-grain silver solution. After drying, fumigate with ammonia, and print as soon as possible, as the surface is apt to become yellow. The print should be less overdone than on albumen paper. This is covered by placing a glowing gas lamp over it; or, if one is indifferent, but the colour, the toning can be dispensed with. The fixing is done by flowing hypo over it. Wash well under a tap, and hang up to dry.

BUST PICTURES WITH GREY BACKGROUNDS

By J. UNGAR.

Despite the competition of other printing processes, albumenised paper still maintains its supremacy in photography for the printing of portraits. It cannot be denied, too, that there is no process which is so practical, and at the same time so charming in its results, as the albumenised paper printing method. But if we are rather kind to its faults—which are, by the way, many in number—it is not so much by reason of our love for the process itself, as that we have no other to help us.

One of its main defects—that of growing yellow in the places of the picture—it has been sought to annihilate by mounting the picture upon a card yet more yellow in tint, as also by employing a rosy-bred paper. But, notwithstanding especially in the case of vignette bust pictures, where there is a large surface of white, the yellow tone soon becomes disagreeably visible, for even in the case of tinted paper the aniline fades in time.

For this reason some efforts have recently been made to have a grey background instead of a white one in vignette bust pictures, the effect being not only more artistic and agreeable, but also more plastic, as there are then no other whites but those in the high lights of the face. The impression conveyed by these prints is that of an old engraving, for the tone of the paper reminds one of that upon which crayon sketches are made, in which the high lights are put in with white chalks.

It is true that a graduating tint of grey may be put in by hand, but when a large number of pictures are to be treated in this way, the process is both laborious and tedious. For this reason a method was looked for which should furnish a background at the same time as the photograph was taken, and it was at last suggested that an oval mask should be placed between the model and the lens, made of white cardboard. This arrangement fulfilled its object so far that a graduated picture in grey is really produced, but only if everything is very precisely arranged and fixed. The preparation necessarily takes too long a time, however, and the least pushing of the oval out of position, or the slightest movement of the lens to the right or left, is enough to militate against the result. The method has, too, another drawback. The reflecting rays from the white paper fall almost vertically upon the lens and sensitive plate, and might in certain extent cause a fogging of the picture. If the first half of a double plate is exposed in this way, and the second half after the cardboard has been removed, this is at once apparent. Another simpler and more certain method, and one which is far more easy to carry out, may be mentioned, and it is one, too, which permits the middle field occupied by the bust to remain as clear as possible. A cylinder is constructed of sheet iron which is varnished internally, and this fits on to the brass tube in front of the lens, and forms a continuation of it. A tube made out of white cardboard will, of course, answer the same purpose. The cylinder should have a length of about a third more than the focal length of the lens, measured from the front lens, which may be easily determined by focussing upon a model. This is the sole of the preliminary arrangement necessary for the first and every succeeding picture, as, in case of need, all that requires to be done is to push the cylinder a little forward. The object, having been properly focussed, is then depicted in the camera in the ordinary way, and the development conducted as uniformly as possible. The result is a picture which runs very gradually to the edge into a grey, while, in the middle of the picture, if everything has been done as it should be, there will not be found the trace of any fogging. If it is desired that there should be at the border a tint of a lighter character than that produced, then a vignette mask of very transparent paper is placed in front during the operation of copying.

The process, as will be seen, therefore, is easy and simple to work, and its results are pleasing and artistic.

TECHNICAL NOTES.

Retouching varnish.—A varnish made up as follows, applied to the negative after it has received a coating of gum-water, materially facilitates the action of the retouching pencil:

<table>
<thead>
<tr>
<th>Ether</th>
<th>...</th>
<th>100 cub. cents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shellac</td>
<td>...</td>
<td>1 gramme</td>
</tr>
<tr>
<td>Sandarac</td>
<td>...</td>
<td>6 grammes</td>
</tr>
<tr>
<td>Mastic (in drops)</td>
<td>...</td>
<td>6</td>
</tr>
</tbody>
</table>

After the above substances have been made into a solution, there is added ten cubic centimetres of benzole. A drop is spread upon a plate, the varnish yields a matt film. If the grin is too dry, a addition of a few grams of mastic is added. Glass treated with a film of this varnish may be used as a focussing screen, or in the preparation of transparent pictures.

Photographische Correspondenz.

Bulletin de la Société Photographique de Toulouse.
Removing silver stains from clothing.—This process succeeds particularly well upon starch which has been washed several times. A saturated solution of chloride of copper is prepared, and the soiled material is put into it for a few minutes, according to the depth of the stain. Afterwards the stain is removed by rubbing it with a crystal of hypophosphite of soda dipped in a mixture of water and ammonia. If chloride of copper of a neutral character is employed, the colour of the material is not altered in any way. The process from beginning to end may be repeated if the stain does not disappear the first time.

Clearing a solution of tannin.—The kaolin earth is washed with a mixture of one part of sulphuric acid and nine parts of water, and after soaking in distilled water for a quarter of an hour, it is permitted to dry. The most concentrated solution of tannin is, by means of this purified kaolin, very much clarified and bleached.

Developing holder.—The practice of holding a plate in the hand during the operation of development not only causes stains upon one's hands, but leads also to unequal development of the image. Many systems have been proposed from time to time to get over the difficulties in the operation, but none of them have seemed free from fault. The French practice of using a shaped holder and much of the developer to escape that it is necessary to apply three or four doses of the liquid. The pneumatic instrument has the objection in warm weather of creating a transparent circle in the middle of the plate.

A better and more simple plan may be adopted. A tube of cardboard is made some eight centimetres in diameter and twelve centimetres long, and this is rendered waterproof by the application of marine glue or shellac varnish. The plate to be developed is put upon this tube, and then it can be conveniently held in the hand. As the tube is open, there is no circular stain formed upon the plate; and as, moreover, the margins of the plate are quite free, no more developer need be applied than if the plate were held in the hand. The developer flows quite freely under these circumstances, and the liquid makes the plate adhere firmly to the holder.

THE PRESS AND THE EXHIBITION.* (Morning Advertiser).

The finely-lighted room of the Society of Painters in Water Colours, 6, Pall Mall East, is again used by the Photographic Society of Great Britain for their annual exhibition. Although some of the leading photographers, whose works have been greatly admired in previous years, are absent on this occasion, still there is no lack of exhibitors, and the exhibition may, on the whole, fairly take rank with any that have preceded it. There has been no startling photographic discovery during the year; at least, there is no evidence of anything of the kind here—but in every part of the room there are gratifying proofs that the art has neither retrograded nor remained stationary. Positive progress may be traced in the excellence and perfection of most of the works. The different processes with which the scientific photographer has made us familiar have been further developed, and are now better understood than formerly, when, as new discoveries, they were rather experimental than definite and fixed. Take, for instance, the development of the process of autotype and of carbon enlargement, and it is hardly conceivable that we could have made in such a comparatively brief interval of time. It may not be that any new chemical applications of moment have conduced greatly to this result. The confidence which the operator acquires by experience, and his superior technical advantages, do much to improve the finished outcome of his art. Bleaches of one kind and another are steadily but resolutely conquered until, by degrees almost imperceptible, that quasi-perfection of which the present exhibition is the admirable exponent is attained. Amongst the most noticeable specimens, both on account of their largeness and the completeness of their details, are those exhibited by the Woodbury Permanent Photographic Company. These are carbon enlargements from small negatives, and are most successful reproductions.

Messrs. Spencer, Sawyer, Bird, and Co. are equally au fait at the autotype enlargement process, and exhibit several charming examples. From the Royal Engineer School of Photography, Chatham, there are many excellent specimens, marked by much tenderness in the gradations, and free from inviduity. One of the finest photographs in the collection is by Mr. B. B. Turner, Tulse Hill. It is entitled "The Head of the Lake," a scene in Lo-ely Park, and is as perfect a piece of woody landscape mirroring as could possibly be desired. The work is enlarged by the autotype process from five to twelve inches, which was shown in the first exhibition of the Society, in 1856. Messrs. A. and J. Bool are also clever photographers of natural scenery, and their "Wayside Bridge"—a large work taken direct from nature, and not enlarged—has all the charm of a polychrome. Nothing can be more surprising than the almost complete tints which range between the highest light and the deepest shadow, when gathered up, as it were, by the magic of the photographer's lens, and printed on paper, present to the eye so vivid a representation of the scene. The photographer places his instrument. Yet so it is, and from this fact the artist-painter may learn that colour, although indispensable in a work of realism or of high imaginativeness, is not necessary to a complete reproduction of an object of still life, or of nature. Nothing can be more striking than the monochrome rendering of natural phenomena contributed to this effect. The studies of "Cloudland"—charming sky effects by Messrs. E Wyles and Co., of Southport—might doubtless be more intelligibly interpreted by the polychromatic technique of the artist's pencil, which would tone down some passages from black to white. Although the views—taken direct from nature, it is presumed—are highly creditable specimens of the art, they are less satisfactory as pictures than the more ordinary landscape effects. In the intensity of shadow-tints and the relief of the high lights, the observer will find the art of the daguerreotypist on the monochrome being still more pronounced. The artist has employed the most vivid range of tints, the eye is required to fill in the featureless aspect of the exposure to cadmium, madder, and vermilion; and it wants a skilful artist to distribute these about. The larger part of the collection of landscape and outdoor study photographs is of high-class examples of portraiture which call for a few words of notice. Those by Messrs. Cooper and Moorsby, of Hull (three-quarter lengths), are very exquisite, and cannot fail to command attention. Messrs. Robinson and Thompson, of Liverpool, though working in a different way, are equally happily happy results in their larger, well-lit photographs of Miss Roser Hersee and Carl Ross, in which the chiaroscuro is highly successful. For softness and effectual distribution of light and shade there is nothing finer than the full-length portrait exhibited by Mr. A. T. Thistle, of Dorking, in which the lighting is as good as that of the wet collodion process. The mezzotint enlargements by Mr. G. Croughton, Lowestoft, are also good examples. There are some fine life-like photos in the Lambertype process, permanent unretouched enlargements from cabinets, by Mr. Leon Lambert, of Manchester, which will rival all. Photographs of Keppel Gardens Square, Kensington Gardens, are a frame of instantaneous photographs, chiefly of children in different attitudes, and wearing various different expressions, together with some highly finished and masterly enamelled portraits, the softness and repose of which are better judged than described. The advice of Mr. Richard Reynolds to the students of the Academy was to take care of the shadows, and leave the lights to take care of themselves. Photography seems to have reversed that rule. Lights first; shadows are the necessary and natural corollary of this. It is owing to some silly prejudices, that the apparent cleverness which practice begets—Mr. Blanchard, while securing the lights, and distributing them with well-balanced judgment, takes care that the shadows also shall not become their own nurses. The tenderest half-tones melt away as under the hand of the most conscientious and skilful artist, and the lightest, best looking bit of picture of the less accomplished style of art is that exhibited in the two frames of heads, phrenological and physiognomical, by Mr. S. G. Payne, Aylesbury. These are taken from the inmates of a county gaol, and are interesting, but not inviting specimens of humanity. Mr. H. Garrett Cocking, of Peckham, the Stacy Marks of photographers, sends two humorous subjects, of which preference is given to "The Knight of the Bath," in which there is a double entendre that the boy's attitude clearly and cleverly enforces. "Sam
Weller, "the companion picture, is not so successful. There are many other works that deserve notice, especially those by Mr. Crawshay, Cytheria Castle; Messrs. W. and D. Downey, Pinheiro; Messrs. Lombardi and Co., Pall Mall East; the late Mr. Rejlander; Captain Ross, Portmarnock; Mr. J. S. Stoddart, Margate, who contributes some vivid coast and sky effects; Mr. Stothoff, Tavistock Wells; and, in fact, it is difficult to know upon whom not to bestow praise.

Correspondence.

ERROR IN EXHIBITION CATALOGUE.

Sir,—I shall be obliged if you kindly allow me, through the medium of your journal, to set the public right with respect to a picture in the late Photographic Exhibition, 5, Pall Mall East.

No. 180, portrait of Mr. Paul Turner, photographer, Chesterfield, with the Autotype Company's contributions, was not an autotype, neither was it a contribution of the Company at all. The portrait was an enlargement worked up in crayons by me, but was, through inadvertence, hung and catalogued with their works. The picture, I am told at the Exhibition, was favourably received by the profession, and whatever advantages may accrue from its being hung ought to go into the right channel. The fact of my picture being hung at all only came to my knowledge when I went to the Exhibition to see about its removal, or I should have endeavoured to rectify the matter earlier.

I trust you will allow me to reply myself with the public, I have the honour to be, Sir, your most obedient servant,

E. W. ANDREWS.

8, Sussex Place, Osnaburgh Square, South Kensington, Nov. 22nd.

VELOCIPDEE FOR PHOTOGRAPHERS.

Sir,—Allow me to inform "W. W. M.," in reply to his question in your journal for last week, that he would find either a bicycle or a tricycle very useful for the purpose he was thinking of; if the articles he wishes to convey are only weighty and not bulky. I should recommend the Paragon Bicyclette, 44 or 46 inches (makers, Wyatt and Roberts, of Coventry). I have one of their make, a 60-inch, and I find it invaluable. If what he wishes to carry is of any greater length than 2 ft. 6 in., I should recommend a tricycle, which he can obtain from the same firm.

I beg to enclose you a photograph which I have taken of my own machine.

As I am an amateur of some months' standing only, I should be pleased to receive your opinion upon it.

Covington.

[The photograph is a very good one, of a light elegant looking bicycle, but from its height and lightness almost alarming looking to the non-expert as must have been the chasseur horse upon which George Augustus Sala was asked to join a military reconnaissance during the American war, and which, to his startled imagination, appeared to be blood red, and at least fifteen feet high! — Ed.]

SIMPLE MODE OF EMBOSSSING CAMEOS.

Sir,—I read an article in the last number of the Photographic News, that Mr. Foxlee had exhibited a single contrivance for embossing cameos vignettes, which I think a very ingenious idea; but at the same time I think an improvement upon it is by making a small box the exact size of your cartomount, and about half an inch in height; you then substitute for the glass plate a bed of india-rubber not more than three-eighths of an inch thick, which is to be laid at the bottom of box; then lay on your Cameo, and then your cartomount, and then, instead of using the glass stopper, to make the impression, you use a teaspoon; you then get a raised surface equal to any procured with the best embossing press. If you use the stopper you do not get such an even surface as you do with the spoon.—I am, sir, yours respectfully,

BERMONDSLEY, Nov. 22nd.

STEPHEN BORN.

Proceedings at Societies.

EDINBURGH PHOTOGRAPHIC SOCIETY.

The annual dinner took place in the Peacock Hotel, Newhaven, on the evening of Friday, the 19th inst. Dr. Thompson, the president, occupied the chair, and Dr. Sidey, one of the vice-presidents, acted as proposer.

The dinner was served in Mrs. Main's best style, and this is saying a good deal, as there are few things in connection with Edinburgh more enjoyable than a first-class Newhaven fish dinner.

The toast of Fall justice had been done to the good things provided, and due honour had been given to the loyal and patriotic toast.

The President rose to propose the toast of the evening—the Edinburgh Photographic Society. He said, as there were none but members present, any encomium that he might pass upon the society, he would seem something like hiding their own praise and as "blowing his own trumpet" was a somewhat distasteful operation, he should content himself with much less than under other circumstances he would have thought it his duty to say. Those who regularly attended the meetings of the Society, and who read the reports which from time to time appeared in the photographic journals, could not fail to understand that it held a high position amongst the kindred institutions of the country, and would see that it had done, and was still doing, much good work in connection with the photographic art. The Society, he said, was never in a more flourishing condition, but there was yet much more to be done. It would therefore impress upon all present, and through them on the whole body of the members, the duty of continued action, not only that the present position might be maintained, but that still greater things might be achieved. This could only be done by each putting his shoulder to the wheel, and acting as if that success depended on himself alone.

The toast was enthusiastically responded to, and was followed by "To the Improved Institutions Everywhere," "To the London Photographic Literature," "Absent Members," Former Office-bearers," &c., the toasts and replies being interspersed with songs and recitations. A rather amusing incident occurred in connection with the toast of "Absent Members," proposed by Mr. Dobson. Just as he sat down, a waiter entered the room, and handed a telegram to the president, which, on being opened, was found to be from Mr. W. Neilson, regretting his inability to be present, and begging to be allowed to reply to the toast.

Mr. W. B. Davies, while speaking to a toast, said that it might not be generally known that the members of the council had been for some days considering the desirability of getting up a photographic exhibition. He was sorry to say that while all agreed as to the advantages which would flow from such an exhibition, they had been reluctantly compelled to abandon the idea for the present; but they had resolved to hold a meeting in December, in scale not hitherto attempted in Edinburgh. For this purpose a guarantee fund was absolutely necessary, and he was glad to say that from the first two gentlemen who had been called upon to subscribe, he knew the knowledge, and that he had no doubt that an ample fund would be readily guaranteed.

Photographers from every part of the country would be invited to bring in exhibits, and he hoped that the members of the Society, both professional and amateur, would begin early in the season, determined to show that Edinburgh should hold her own against all comers.

The proceedings were brought to a close with "Auld Lang Syne," at ten o'clock.

Talk in the Studio.

OSIQUIA.—The Late O. B. Vignoles.—We record with much regret the death of Charles Blacker Vignoles, F.R.S., &c., one of the vice-presidents of the Engineers, or Civil Engineers, was one of the originators of the Photographic Society, and was for many years on its council and one of the vice-presidents. The first suggestion for the establishment of a photographic society originated with Mr. Vignoles, and the first meetings were held at his rooms in Trafalgar Square. Early in life he was in active service as an officer in the army, but eventually devoted himself to engineering, and obtained a distinguished position. He early perceived the varied possi-
bilities of photography, especially recognizing its value as a recorder of the weekly progress of building and engineering work in the absence of the engineers, and Mr. Roger Fenton produced the first progressive photographs of a bridge in course of erection, which were tested to Mr. Vigues, who was absent. He died at Hythe on the 17th inst.

OBITUARY.—We announce with regret the death of a gentleman well known as a skilful portraitist in Brighton, Mr. H. Boucher, who died a few days ago after a very short but behind it this pleasure was of the highest value to our exhibitor of fine examples of portraiture at the Photographic Society's exhibitions.

URANIUM IN THE NITRATE BATH.—A correspondent calls our attention to the fact that the large scale preparation of photograph's exhibited by Col. Stuart Wilson at the South London Technical Meeting were from dry plate negatives prepared with a bath containing uranium, and not from wet plates, as our recent notice implied. We certainly understand from the announcement made, that the negatives were prepared in a bath containing the uranium salt, that wet plates were meant, as no allusion to dry plates was made. The results for dry plates were certainly very striking and excellent.

BENEFIT OF THE PHOTOGRAPHER's BENEFICENT ASSOCIATION.—With regret we record the following: The Photographic Exhibition was open for the benefit of this Association. A number of visitors attended, and the profits will make an addition to the funds of the Association. The following evening the Exhibition closed finally.

To Correspondents.

THE YEAR-BOOK OF PHOTOGRAPHY FOR 1876.—This annual is now in active circulation. As our readers know, it has the large esteem it now possesses throughout the world to the fact that it is a practical resume of the observations of many minds, the experience of many workers, and thus becomes a reector of the actual position of photography in its latest state of practical progress. For this reason we are indebted to the contributions of all the able workers and shrewd observers, both in the ranks of professional and amateur photography, and we now appeal to each and all of our readers for communications of hints and suggestions, however brief, resulting from their practice and observation. The early receipt of copy from our friends will be esteemed a favour.

BELMONT asks, "Why does a brown-toned photograph copy so much clearer than a grey-toned print?" In answer we should ask, "Does it do so?" Assuming that each print is of equal force and development, that one tint and gradation will set a record in surface, we should expect one to copy as well as the other. It may possibly, or even probably, happen that the grey-toned print is more harmonious in tint, being more thoroughly toned throughout. It generally happens that, the half-tones in the image, consisting of thinner deposit of metal, are toned first and assume a greyish tint, whilst the deeper tones remain brown. In this case the general tone of the print is a brown, the more delicate half-tones are grey, and so less acetic value, so that, in copying, the reproduced image will possess less graduation than it would have done if the original had been uniform and harmonious in tint. 2. The reasons for making portions of a studio at the side and top near the background opaque are very simple. In order to secure relief and modelling in portrait, shadow is necessary as well as light; and the screen is most effective, as a general rule, in the retiring portions of the figure. If the side light were, instead of being kept a little in front of the figure, allowed to fall full on the side of the figure and the background, the shadow on the retiring portions would be lost; and the shadow on the opposite side or shaded side would be harsh and abrupt. If the top light were continued, right over the head of the figure, the top of the face would be too much illuminated, giving the effect of a whitish patch, whilst black shadow would be thrown under the eyes, under the nose, and under the chin. J. D.—Without knowing anything more of the history of the print, the observer is satisfied with the impression received from the spots. A. J. B.—The prolonged exposure of all commercial collodions are, as a rule, preserved trade secrets; the most that we can say with certainty in relation to the two you mention is, that they are bromo-iodized collodions.

A CONSTANT READER.—Two or three variations in the mode of working are described in the article in question, and you do not state which you used. Transparent spots may arise from various causes, from turbidity of the albumen solution, which in albumen processes is very difficult to avoid; and sometimes from imperfect beating up of the albumen solution.

A.—One of the chief defects in the prints you forward is under-exposure—that is the print is too light. This is not good. There is no roundness or modelling. You do not shut out the light sufficiently on the shadowed side. Give a little more light on the shadow side, but well in advance of the sitter; shade the other side a little more, and give a little longer exposure.

H. R.—The Manual of Carbon Printing issued by the Autotype Company is an excellent work on carbon printing, in English, now in print. Our own work on the subject is out of print. The agent for Maughan's "Glycer," is Mr. W. T. Verge. You will find both addresses in our advertising columns.

J. M. N.—The cards you enclose are very excellent indeed for open-air portraiture. The style of vignetting, graduating into a dark instead of a light margin, has not been much used, but it is very nice. It has been occasionally used in this country, and was made a speciality by Mons. Bergamasca, a distinguished portraitist in St. Petersburg, who sent out many fine cabinet portraits vignetted in this fashion.

STONE.—We do not think that you have any reason to fear injury to the photograph from treatment with a solution of albumin, but we doubt if it will be dark enough to permit a print so finished to be sent out safely without a glass over it. Its preservative action on fresco painting depends on continuing together absent on a pastel painting on paper. We should regard it as an injurious condition of oil painting that it must be sent out under glass, even if only bound at the edges with gummed paper.

ROB.—Skies in landscapes are produced in various ways. Sometimes the clouds are painted in the negative. Sometimes they are painted on tracing-paper and placed over the negative. But the best method—indeed, the only method—of obtaining really successful effects, is by a second printing from a second negative. A series of sky negatives with clouds of different kinds must be secured whenever good skies with fine clouds are available. The main advantage of the landscape negative, if not dense enough, must be made so by a mask, or by black varnish. This will make the sky space print white. The foreground is then covered by a mask, and a cloudy negative selected and printed into the white space. A little care is necessary in joining the horizon, which in making is generally skilfully vignetted into the sky. Care also is necessary to select a sky negative which harmonises in character and lighting with the landscape.

W. A. C. A.—We had had no personal experience in winter photography on the Mediterranean; but we should think a thirty-six days' exposure would be sufficient for using a stronger one in winter in the low temperature of our winters. You will generally find us at home in the forenoon and after dinner.

H. M. M.—India-rubber varnish will make the bags gas tight; but you will be able to purchase them more easily than make them. Bags of 32 by 34 inches are of five ounce paper capacity, and cost only 9d.

G. G. B.—We fear that you will not do much good with the material upon which you have been experimenting, but had better throw it away. It is probable that considerable traces of iron remained about your first precipitate, and vitiated the outcome of subsequent operations. In your second attempt wash the precipitated gold with a fresh part of sulphuric acid and water to remove all traces of iron. Then rinse in two or three waters, and add the aqua regia. When all is dissolved you can evaporate carefully, or dilute to the proper strength, and neutralize with chalk or ammonia, as required for use.

J. WALLIS.—The two landscapes forwarded are charming; the management of the clouds and sky most effective. Many thanks.

B. L. B.—The burnishers produce a flat surface than is it usually obtained by the use of burnishers. The burnisher is a piece of fine wool, or a piece of black velvet. We cannot give a very definite opinion of the comparative merits of the various burnishers. We have used West's burnisher, and find its action exceedingly perfect, leaving nothing, indeed, to desire. Of the others we have used only the imported Swedish burnisher. B. M. F.—In copying a Daguerreotype it is desirable to throw a piece of black velvet or black cloth over the front of the camera and to avoid the use of all actions, which are sometimes troublesome. We have at times found it an advantage to tape a little forward, adjusting the camera so as to be parallel. A little trial and dodging are sometimes necessary.

Several Correspondents in our next.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

Book Printing and Photography.—The Return to Paper Negatives.

Book Printing and Photography.—The progress recently made in photo-type processes—that is to say, processes which furnish prints which can be produced automatically from an ordinary printing press with type—represents a new era in the publishing trade. As soon as we possess a cheap and effective method of reproducing black and white in this way, of copying type and wood-cuts, there will be little need of publishers setting up the type for a fresh edition of a work as soon as copies of it become scarce. For some years past we have, of course, been acquainted with methods which went a good deal towards what is wanted, and proved that we shall not be kept waiting for such a desideratum, for, judging from the doings of pioneers in this country, as also in France and Germany there seems a possibility of having what we require ere long. Dallas's process, as also that of Banks, both furnish very fine results of photo-type printing, and both these methods might perhaps be worked up to expertly by experienced hands. If publishers had at their disposal a ready and perfect method of reproducing works in type, we are quite sure that they would find much for the camera to do. Something has already been done in this way, we know, in Fleet Street, but the modus operandi is scarcely sufficiently elaborated. If books are to be reproduced in the future, we reason, it must be by the type, although perhaps smaller, must be in every respect as legible as in the original, otherwise the process is as good as useless, for no one would buy blurred and imperfectly printed books. The advantages of printing smaller editions in this way would be very great, for besides the saving in expense in securing stereotype blocks by means of photography, there would be considerable economy effected by the omission of reading and correcting the proofs. We might be quite sure that if the reprinting has been done with the camera, no errors could possibly have crept in. Book-sellers already make use of the camera in reproducing scores; it is not, however, a photo-type process, but some photo-lithographic method that they employ, which would scarcely answer in book printing. It is the custom at the photographic publishing house, of full editions of dictionaries and works of reference, to abridge them considerably, and thus the work is often much reduced in value. With photography, however, a good clear edition could be reduced to half or a quarter its size, and be still distinctly legible with good eyes. In fact, what lithography did to cheapen the copying of manuscripts, photography ought to do in regard to book printing. If a lawyer wants five or six copies of a legal document of any length, the last stationer finds it worth his while to put the writing on stone, and pull off the requisite number of examples, and in the same way the printer, when he stands in need of two or three hundred additional copies of a work, should be able to resort with advantage to the camera for furnishing them. There is no knowing yet as to what extent photography will be able to assist the ordinary printer, and it is only a wonder to us that the assistance has not been rendered before.

The Return to Paper Negatives.—Those who study the history of photography may see in the Warnerke process a return step in the direction of the old Talbotype or paper process. For some years after the use of glass was suggested for carrying the sensitive pelliole, Fox Talbot and his pioneer disciples refused to give up their supplies and unbreakable support, and comforts themselves with the notion that paper, if it had some serious drawbacks, was, after all, the right thing to use. We remember having seen an old-fashioned amateur still practicing Talbotype, or a modi-

A PHOTOGRAPHER'S ADVENTURES IN THE SOUTH SEAS.*

At midnight, on the 8th and 9th December, we held a conference together, and came to the conclusion that everything was in order, expecting the weather, for the sun had been in tornados until five in the morning. Then a big cloud rested over the Auckland Islands, which later came down in the shape of a fine rain. Every body was at his post anxiously waiting the result of our labours, now buoyed up with hope, now filled with fears. There was still a fine rain falling as but one minute failed to the time of the first contact. Then it became light, but not too visible for the unprepared. Dr. Schurmann advised, by means of his large refractor, the first inner contact of Venus upon the phantom-like disk of the sun, for the latter was only visible at times between the clouds. Making use of these glimpses, I was successful in putting my photo-heli-
graphic instrument in position, and having once secured the sun, I never let it out of the instrument again. I succeeded in focusing the image during the rain, and keeping it in the field of the instrument, for the latter was not in motion with clockwork, and in this way I was enabled to secure photographic impressions of the first inner contact of Venus. It was possible to see with the naked eye the little dark point of the planet upon the mast and shining sun disk. A few minutes later the clouds dissolved, and then the sun shone out clearly for about four hours and ten minutes, during which period everybody worked with a will. At one end of the ship the Cox's Mate and Mr. Anson were attending the instrument, while the other we were engaged rather more energetically, every now and then the word "Attention" being whispered, followed by an instantaneous exposure. We exposed ninety-five dry plates, twenty wet ones, so that in all one hundred and fifteen pictures were taken of the sun's disk and Venus. No multiplexing system, such as James's, had been provided, and even my proposition to secure two images upon one plate had not been attended to. But a few minutes after the exit of Venus the weather again became dull, and we had a period of a week of bad weather—one unbroken spell of storm and rain.

On the very same evening I developed the first and last of the dry plates, and the developing operation was continued on the following days. Of every serviceable plate we made a copy by contact printing on dry plates, and in this way obtained two perfect sets of results, which were packed separately, each package containing, however, one original and one copy alternately. The two series were then furnished with duplicate tabular statements of the times and details which had been noted, and were finally despatched home by different routes, and at three different places of call, to the west. Our friends will be glad to hear that both packages have arrived safely at their destination without injury.

Our ship (the Alexandria) we had determined to send to New Zealand for the purpose of comparing chronometers. This took place on the 12th December, and early on the 24th of the same month it made its appearance again at sea. In the meantime some grave rumours had sprung up in Australia as to our fate, and our friends feared for our welfare. Captain Chandler, commanding the American corvette Sevastopol, who had Professor Harkness on board, had determined, after calling at Chatham Island and Dunedin, to proceed to our assistance at the Auckland Islands, should we be in need of the same. We were delighted at these proofs of American greatness and humanity, and great was the joy of us when the fine American man-of-war steamed in sight and dropped her anchor off the island. We could scarcely believe our eyes. As soon as we saw the stars and stripes we saluted it with the German flag, and soon after Captain Chandler, Professor Harkness, and the officers of the ship and members of the expedition landed, and we celebrated such a Christmas as will never be forgotten by any of us. We were by turns in our dwelling, and could scarcely contain our guests—and on board the Sevastopol, where we were most amicably received and hospitably treated. A mutual comparison of chronometers was, of course, speedily made, and on the 26th of December the Sevastopol steamed out of Port Ross, carrying with her four of our crew. We remained on the island, however, until the 5th of March, as we had still a lot of astronomical work to undertake.

On the morning of the 6th of March our anchor was weighed, and we had nearly suffered shipwreck in port; for the vessel, being under no control at the time, drifted back towards the rocky Shoe Island; and it was only at a peril that any way could be got upon the vessel. What between wind and sea, we were continually tossing, and advanced but little on our course. During the last few days, however, matters mended, and we had beautiful weather on our arrival at Melbourne on the 22nd day, although favourable winds failed us throughout. On the Emperor's birthday, the 22nd of March, we ran up the German flag to the mast head, and celebrated the day by as good a feast as our fast-disappearing provisions would permit.

On the 28th of March, on Easter Monday, we arrived at Melbourne. The mail had sailed just three days before, so that, despite our efforts, we arrived too late. Our old ship, the Darkham, had just arrived from London, having taken a turn round the world since she left us at Melbourne before. In this we sent back our stereopticon to London under care of two of our party, whence they were shipped on board a Hamburg packet for Germany. The rest of us embarked on board the P. and O. steamer China for India.

Our reception at Melbourne was most enthusiastic. Not only did the German Consul and Vice-Consul and the German societies afford us a most hearty welcome, but the Mayor, the photo-zoographists to London, and the University welcomed and fitted us. We made excursions into the interior of Australia, visited the natural beauties and wonders, the gold fields about Coalseat Mine, Kangaroo Flat, and saw the deepest gold quartz mines, which are six hundred and twenty feet deep. On our return voyage we had an opportunity, too, of seeing Adelaide. In the King George's Sound, at Albany, we met the steamer Clare, and saw a war-dance executed by the aborigines. At Ceylon I parted from my friends, who went direct home. I proceeded in the China to Bombay, and thence went by rail to Calcutta, where I spent an enjoyable fortnight.

Captain Waterhouse, of the Ordnance Survey Office, received me in the most amiable manner, and I had an opportunity of seeing the photo-zoographs to photography, as also the Lithotropt, work done at his establishment. I had an opportunity of seeing the Venus pictures produced by Captain Waterhouse at Rosseck, and these, as also those taken at Hobart Town and Melbourne, showed that there existed an atmosphere around Venus, similar to the earth atmosphere. Altogether I had a very pleasant time of it at Calcutta, and with friends and Government. Returning through Ceylon, we arrived in the Island of Elephanta, took passage on board the P. and O. steamer Bothara, and returned via Aden, Brindisi, and Venice—home.

COPYING AND ENLARGING.

BY W. A. WHEELER.*

Thinking that a few hints on copying and enlarging from old pictures might interest the readers of the News, I offer my methods of managing this, as I think, the most difficult branch of photography, and requiring more study and practice to make perfect and every way satisfactory work. To enter into details would take too much of your valuable space, so I offer the following hints, which I trust will be of service.

Collodium.—That which gives the best general results I prepare as follows:

Alcohol and ether	equal parts.
Iodide ammonium	3/4 grains to the ounce
Cadmium	1
Bromide	2
Cotton	5

Prepare in the usual way.

Developer.—Saturated solution of protosulphate of iron and double sulphate iron and ammonia, half and half. Prepare as follows:—Take of the above in equal parts (say three ounces), and add enough water to make it twenty ounces in all. Add two to three ounces of this strength of solution and a half to two ounces of stannic acid No. 8. Fix with cyanide of potassium. In

* Western Photographic Times.
This varnish dries without heat, and requires no grinding for retouching surfaces. Photographers, if they wish to make their portraits as lifelike as possible, should use this varnish. It is easy to apply, and gives a smooth, glossy surface.

SKYLIGHT AND DARK ROOM.

BY W. A. ROBINSON.*

I ask space in the News to offer those who have asked me at different times for my formulas, the following, which I think will be found good, if they are not new.

Negative Bath.

Ice water 12 ounces
Nitrate of silver crystal 1 ounce
Dissolve, and add 2 grains iodide potassium, shake thoroughly, let stand a few minutes, and filter; then add 1 drop a. p. nitro acid.

Collodion.

Sulph. ether conc. and alcohol ... equal parts
Add
Iodide potassium 2 grains
Bromide calcium 2 gr.
Iodide 4 gr.
Gun-cotton 4 grains to each ounce alcohol and other used.
To prepare the collodion, take the quantity of alcohol to be used, and grinding the iodide of potassium with a little water in a clean mortar, add to the alcohol and shake thoroughly, then grind in the iodide of calcium, and lastly the bromide of calcium, using the alcohol; shake thoroughly, put in the gun-cotton, and add the ether slowly, shaking after each addition. Let stand a few days before using.

Developer.

Soft water 20 ounces
Potassium sulphate iron 1 ounce
Acetoic acid No. 8. 3 ounces

Redeveloper.

I prepare and keep always ready for use the following:—
Pyrogallic acid 24 grains
Citric 10 gr.
Water 10 gr.
To use, take 2 draughts of this solution, and add 6 or 8 drops of a 20-grain plain silver solution.

Fixing Bath.

Hyposulphite of soda.

Varnish.
The best and most economical negative varnish I ever used is made as follows:—

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>32 ounces</td>
</tr>
<tr>
<td>Venice turpentine</td>
<td>3 gr.</td>
</tr>
<tr>
<td>Sandarose gum</td>
<td>3 gr.</td>
</tr>
<tr>
<td>Camphor</td>
<td>1/2 ounce</td>
</tr>
</tbody>
</table>

* Western Photographic News.

ON ABSORPTION OF LIGHT BY MIXTURES.*

The intimate connection between absorption and dispersion of light has been variously demonstrated, and the investigations of Arago and Biot, and more recent experiments, have shown that the specific refractive power of a mixture may be calculated from the refractive power of its constituent parts. In a recent paper to *Poggendorff's Annalen*, M. August Kundt has further estimated the relation of the absorptive power of a mixture to that of its component parts. In the case in which non-absorbent media were mixed with an absorbent substance, he found that an absorption band in the region of two rays in the spectrum was displaced towards the red end, the further the greater the dispersion of the added non-absorbent medium. This result was compared with the results of an experimental enquiry as follows:—

First, with reference to M. Kraus's assertion that the absorption band is displaced more towards the red end, the greater the specific gravity of the solvent medium; to equal quantities of an alcoholic extract M. Kundt added equal quantities of the following substances:—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ether</td>
<td>0.718</td>
</tr>
<tr>
<td>Alcohol (0.793)</td>
<td>1.000</td>
</tr>
<tr>
<td>Benzol (0.886)</td>
<td>1.056</td>
</tr>
<tr>
<td>Sulphide of carbon (1.293)</td>
<td>1.293</td>
</tr>
</tbody>
</table>

With each of the mixtures the positions of the absorption band of methyl nitrate was noted, and the middle of the red end of the spectrum was noted. It now appeared that the band was displaced differently towards the red end by each of the solvents, and the displacement was according to the order just given; with each substance greater than with the preceding one. Thus, contrary to M. Kraus's assertion, the position of the absorption band stands in no relation to the density, and the other hand, if we consider the dispersion of the solvents used for the red end of the spectrum, we find that this increases in the several bodies in the above order.

Further, equal quantities of cyanine were dissolved in different solvents, or a concentrated solution of cyanine in chloroform mixed with equal quantities of other solvent
media. The substances used were alcohol, ether, olive oil, benzol, sulphide of carbon. The densities were as above; olive oil had a sp. gr. of 0-917. Here, too, the absorption band of cyanine was displaced towards the red by each solvent more than the preceding one, in the series just given. The absorption at a given density was again not recognisable. That ether here displaces more towards the red than alcohol, while with chlorophyll the reverse is the case, is probably due to the fact that for red and blue rays, with alcohol, the dispersion appears to be greater than with ether; for rays in the neighbourhood of D, on the other hand, smaller; but further experiments are required on this point. From various other observations the author’s rule was confirmed.

"With reference to gases," proceeds M. Kundt, "which show absorption bands the above rule will do no doubt hold without exception, since with them the specific refractive power of a mixture can be exactly calculated from that of the constituent parts. Only the question remains whether if we substitute here transparent substances with various other transparent gases, the displacement of the absorption bands is so considerable as to be observable. If, if that were the case we must infer, it seems to me, that also the bright lines which a glowing gas emits can be displaced in narrow limits by the mixture with them of another non-luminous vapour, or one giving a continuous spectrum. This would give us much more evidence of the author's rule than we have at present.

In the foregoing it has been supposed that both substances, the absorbent and the non-absorbent, simply mix, without acting chemically on one another. We know of cases, however, in which a chemical combination of one absorbent substance with various others taking place, similar small displacements are observed.

The author of Dicyanine has already shown that for various oxides and uranic oxide salts, and others, show characteristic absorption phenomena, and the position and arrangement of the absorption band alters more or less with the acid of the absorbing salt. Bunsen showed, in the case of three salts of Didymium, that the bands are displaced more towards the red end of the more the atomic weight of the salt. We may suppose that here also the constitution characterises, as with various other transparent substances, the position of the bands (though not perhaps in a very simple way). It would not doubt repay trouble to examine whether it is not those salts in which the absorption bands lie furthest towards the red end of the spectrum that present at the same time the greatest displacement.

From the mixture of an absorbent and a non-absorbent substance we may pass to the mixture of two absorbent media. If to a liquid absorbent substance we add another absorbent medium, it is possible, at least approximately, to construct the absorption curve (the curve whose ordinates are wave-lengths, and whose abscissas the exponents of refraction) of the mixture from the dispersion curve of the two substances, and so obtain an idea of the absorption spectrum of the mixture.

Experiments on the absorption of mixed coloured media have been made by Melde, who has been led to some important results. To compare these with our mode of view, the dispersion curves of the substances used by him must be given as accurately as possible, which has not been done. He was able, by combination of dispersion curves, in general correlation to the characteristic of the media employed, to verify a portion of Melde’s results. It appears, on combining the dispersion curves in question, that, with mixture of two substances which have an absorption band near the same part of the spectrum, there do not appear two bands in the mixture, but one only, the position of which is midway between the best curves.

From the displacement of the absorption bands in mixtures, which, as has been shown, stands in intimate relation to the dispersion of the mixed substances, M. Kundt deduces also an explanation of the dichroism of doubly-refracting substances. In such a medium generally the dispersion for the two portions of rays into which an incident bundle is decomposed will not be the same, and herewith the absorption for the two bundles of rays must be in them not unlike.

Lenarmont has shown that one may transform a previously colourless crystal into a dichroic one, if one lets it crystallise out from a coloured solution, so that it takes some of the colouring matter into itself. We may, then, regard the crystal as a mixture of the colouring matter with the colourless substance of the crystal. Seeing, now, that the colourless crystal has in every direction (apart from the direction of the optic axis), two dispersions, the colouring substance has evidently been mixed with two substances of different dispersion. In these two mixtures the absorption bands can no longer be situated exactly alike; they must, according to the above results, be more displaced towards the red end of the spectrum, the greater the dispersion.

I conclude, therefore, that in Lenarmont’s artificially dichroic crystals, the absorption band in the bundle of rays, for which the uncoloured crystal has the greatest dispersion, must be displaced towards the red end of the spectrum, as compared with that in the other bundle of rays.

Now, a very large number of the naturally dichroic minerals equally owe their dichroism merely to a colouring substance, and not to an accidental combination with the substance. For these dichroic crystals the above rule must still hold.

It is, further, natural to suppose that the rule will apply also to those substances whose dichroism is not conditioned by a mere physically inclosed colouring substance. And thus, generally, in place of the rule which Balain has enunciated for the various dichroic substances, viz., that there remains that ray is most strongly absorbed which is most strongly refracted — a rule which several physiologists have shown not to be generally accurate — we should substitute the following: — In dichroic substances the absorption bands in that bundle of rays for which the substance has the greatest dispersion lie nearer the red end of the spectrum than in the other bundle.

The evidence of how far the above views are actually in accordance with nature, as also the further working out of them, must be the task of special investigations.

CHEMICAL NOTES FOR YOUNG PHOTOGRAPHERS.

Our Chicago namesake, the Western Photographic News, adopts the useful plan of giving occasional notes on the chemical constitution of various substances and processes in photography. It is true the information may be found in all comprehensive chemical books of reference; but as these may not always be accessible to many of our readers, occasional extracts may be found useful to beginners. We append a brief résumé of the nature, origin, and properties of nitric acid.

Nitric Acid (Voldum Nitricum). Formula, NO₃=54, sp. gr. 1:42.—Nitric acid, or aqua fortis, is prepared as follows: — To nitrate of potass in coarse powder, contained in a retort, an equal weight of strong sulphuric acid is added, being poured in by means of a tube or funnel so as not to soil the neck. The materials should not occupy more than two-thirds the capacity of the retort. A reflux condenser is applied, heat is supplied by means of a spirit lamp, the naked flame, or a sand bath, moderately at first, but afterwards more strongly, when the materials begin to thicken, in order to bring the whole into a state of perfect fusion. Red vapours will at first arise, and afterwards disappear in the course of distillation. Towards its close they will be reproduced, and their re-appearance will indicate that the process is completed.

General Properties of Nitric Acid.—Nitric acid, so called from nitrates, is a liquid extremely sour and corrosive. It was discovered by Lullay in the thirteenth century, and its use by Cavendish in 1784.
When perfectly pure it is colourless; but as usually obtained, it has a straw colour, owing to the presence of hypnocratic acid. The concentrated acid, when exposed to the air, emits white fumes, resembling a disinfectant, and acquiring a greyish colour. By the action of light it undergoes a slight decomposition, and becomes yellow. It acts powerfully on animal matter, causing its decomposition. On the living fibre it operates as a strong caustic. It stains the skin and most animal substances of an indelible yellow colour. Vegetable fibre it acts peculiarly, abstracting hydrogen or water from the various elements. The general character of its action is to impart oxygen to other bodies, which it is enabled to do in consequence of the large quantity of this element, which it contains in a state of loose combination. It oxidizes sulphur and phosphorus, and oxidizes all atomics, except chromium, tungsten, columbium, cerium, titanium, columbium, gold, platinum, and iridium. A trace of nitric acid has been detected in atmospheric air.

Anhydrous nitric acid is a solid substance, white and crystalline, but it cannot be prepared except by an expensive and complicated process.

The strongest liquid nitric acid contains one atom of water, and has a sp. gr. of about 1.5. If perfectly pure it is colorless. The principal impurities in commercial nitric acid are chlorine and sulphuric acid; also peroxide of nitrogen, which tinges the yellow color. Chlorine is detected by diluting the liquid with an equal bulk of distilled water, and adding a few drops of nitrate of silver—a milkiness, which is chloride of silver in suspension, indicates the presence of chlorine. In testing for sulphuric acid, dilute the nitric acid as before, and drop in a single drop of nitrate of silver; if sulphuric acid be present, an insoluble precipitate of sulphate of barytes will be found.

Photographic Uses.—Nitric acid, c.p., or chemically pure, is used largely for acidifying the silver bath for both negatives and positives, and also, added to silver solution, used for printing. Combined with muriatic acid it is called photographic acid for dissolving gold in the preparation of chloride of gold. Nitric acid, commercial, is used for cleaning the glass plates for negative purposes, also in preparing pyroxyline. It is an active poison taken internally, the antidote being repeated doses of magnesium, and mucilaginous drinks in large quantities.

The following resume in relation to sulphate of iron is from the Journal of Applied Chemistry.

Proto-Sulphate of Iron (Ferrous Sulphate). (Copperas, green vitriol, protosulphate of iron) FeSO₄·7H₂O.

This salt was probably already known to the ancients in an impure condition, and it is supposed to have been one of the ingredients of the astringumum surtortum mentioned by the late Roman writers as being used in medicine and in dyeing leather black. Its property of yielding a black colour with a decoction of nut galls was also known to them at a very early age.

It was formerly prepared to a large extent by allowing iron pyrites (a compound of sulphur and iron, FeS₂, which occurs plentifully in nature) to lie in heaps, exposed to the action of air and moisture. In this way the iron sulphide was oxidized to iron sulphate, FeS·O₂ = FeSO₄, which, when leached over with water, and the liquid thus obtained concentrated, allowed to crystallize, and in Europe this method is still largely used. In this country it is generally manufactured by dissolving old iron scraps in dilute sulphuric acid, the acid used being frequently that which has already been used in the refining of petroleum and other oils. When the acid is saturated it is filtered, slightly acidulated, and concentrated till it is covered with a pellicle. It is obtained in greenish crystal, which contain

| Ferrous sulphate | 54-67 |
| Water | 45-38 |

100-90

If a concentrated aqueous solution of ferrous sulphate is precipitated by alcohol, the salt has a white colour. Ferrous sulphate has an inky, astringent taste, and the crystals, when exposed to the air, lose water, and are gradually converted into a yellowish powder—basic ferric sulphate. Solutions of ferric sulphate which are in contact with the air are also gradually oxidized, and precipitates of basic ferric sulphate form in them.

The following table shows its solubility in water. It is noticeable that its solubility does not increase uniformly, That is, it reaches its limit below the boiling point of water at 87.5° C.

<table>
<thead>
<tr>
<th>100 parts of</th>
<th>Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>water at 10° C.</td>
<td>60-8 parts of FeSO₄·7H₂O.</td>
</tr>
<tr>
<td>15°</td>
<td>69-8</td>
</tr>
<tr>
<td>25°</td>
<td>115-1</td>
</tr>
<tr>
<td>32-5°</td>
<td>182-2</td>
</tr>
<tr>
<td>45-25°</td>
<td>227-1</td>
</tr>
<tr>
<td>60°</td>
<td>259-9</td>
</tr>
<tr>
<td>70°</td>
<td>259-4</td>
</tr>
<tr>
<td>80°</td>
<td>289-8</td>
</tr>
<tr>
<td>90°</td>
<td>370-8</td>
</tr>
<tr>
<td>100°</td>
<td>382-9</td>
</tr>
</tbody>
</table>

As prepared in this country, copperas is generally quite pure. Many dyers, however, entertain curious prejudices, and prefer copperas which shows somewhat brown, taking tints of appearances as the signing copper, and complete saturation. The manufacturer, however, can produce this appearance in a very simple manner, even in very recently prepared copperas, by sprinkling a little lime over it. Good copperas should be dry, rather of a dark than light green colour, and free from copper, alumina, and other impurities. If a bright piece of iron is introduced into a solution of copperas containing copper, the latter is precipitated on the iron, staining it red. Copperas may be tested for alumina by oxidizing the solution with nitric acid; it is then precipitated with pure caustic potash or soda, and filtered. To the filtrate add solution of sal ammoniac, and boil for some time. The appearance of a white gelatinous precipitate indicates the presence of alumina.

Copperas is used as a disinfectant in the manufacture of ink, in dyeing black, grey, madder purple, in the cold vat, in the manufacture of Prussian blue, &c.

Hydriodic Acid (Acidum Hydriodicum).—Formula, HI = 128, sp. gr. 4-443.

Preparation.—Place in a small retort ten parts of iodide of potassium with five parts of water, and twenty of iodine; then drop in, cautiously, one part of phosphorus cut into small fragments, and apply a gentle heat. Hydriodic gas will be extracted abundantly, and may be collected, by displacement, in dry bottles. It is reduced, under strong pressure, to a yellowish liquid, which freezes at 60° C. Another method of preparation is as follows:—Iodine, in fine powder, a troy ounce; distilled water, a sufficient quantity; mix thirty grains of the iodine with five fluid ounces of the distilled water in a small glass-stoppered bottle, having the capacity of half a pint, and pass into the mixture hydro-sulphuric acid gas until the colour of the iodine entirely disappears and a turbid liquid remains. Detach the bottle from the apparatus employed for introducing the gas, and gradually add the remainder of the iodine, stirring at the same time. Then re-attach the bottle, and again pass the gas until the liquid becomes colourless. Decant the liquid into a small matras which is nearly sufficient to fill, boil it until it coalesces to emit the pungent smell of hydro-sulphuric acid, and filter through paper. Keep the liquid in a well-stoppered bottle.

Properties.—The solution is colourless at first, but soon becomes brown from liberation of free iodine. It has a sour taste.
EXPLOSIONS IN THE OPERATING ROOM.

At the last Convention of the American Photographic Association a discussion arose on certain contingent dangers arising in the practice of photography. Every photographer is aware that containing certain chemicals, if carelessly used, might involve considerable risk. The ether in his collodion is very volatile, and the vapour is very inflammable, so that if a bottle of collodion be broken, and a flame brought near the volume of ether vapour rapidly formed, an explosion is inevitable. The gun-cotton kept by some photographers on the premises is highly inflammable. A certain amount of nitrate of silver, hydrochloric acid are corrosive, and destroy all organic matter with which they come into contact. Almost every chemical the photographer uses is poisonous if taken inwardly, and many of them dangerous to handle unnecessarily or carelessly. But whilst danger may be incurred from carelessness or misuse of the various agents, it is not a danger which is in any sense imminent, or one which need awake apprehension: it should simply form an additional incentive to the precision and care necessary to success in every photographic operation. The dangers discussed at Chicago were of a kind not necessarily arising out of the practice of photography, and need only be incurred voluntarily; and although some uncertainty as to the extent of the risk existed, the cases mentioned were sufficiently numerous to make the question a real one. The dangers to which we refer arise, under certain conditions, in boiling down a silver bath. That explosive compounds of silver are formed by boiling together nitrate of silver and alcohol, and by the combination of oxide of silver and ammonia, is, of course, not to be denied; but there is little risk of the necessary conditions for forming fulminate arising in the boiling down of a nitrate bath, in which the requisite proportion of alcohol or ammonia could scarcely, by any possibility, be present. The danger encountered by some of our American brethren arose from boiling down printing baths to which glycerine had been added. Some time ago the addition of glycerine to the printing bath was recommended as a certain protection, and then used, when boiled down, had it, was alleged, nitroglycerine, an explosive of a frightfully uncontrollable and dangerous kind. Nitro-glycerine is certainly formed when nitric acid and glycerine are heated together, and it is possible that when a nitrate bath containing glycerine is evaporated, the heat carried to the point of fusion of the silver nitrate portion of the dangerous compound may be formed: the possibility of this is therefore, quite sufficient to be avoided. At the Chicago Convention the sub-

ject was somewhat discursively discussed. Mr. St. Clair earnestly warned the members against the use of glycerine in their baths, and mentioned cases in confirmation of his statement of the risks; whereas Mr. Southworth, a veteran photographer, had sworn in constant use in a gallery where the average number of sitters was seventy daily, without any evil results. Mr. Thomas had, however, lost thirty dollars' worth of nitrate of silver by evaporating a bath containing glycerine. Here is his statement:—"My silver solution not working well, I finally put it on a large fuming dish out at the back door, and set it to evaporating, and kept adding to it. Perhaps I had nearly two gallons of solution, when some of it came on, and called my attention away from it, so that I did not go out to look at it as soon as I ought to. When I went out I found everything was burning. I turned the light off, took a cloth and set the evaporating dish to one side of the stove I had, and it kept growing worse. Finally, it just burned everything up, and burned my dish." Another member, Mr. Uhlnan, who heard the glycerine addition recommended at the St. Louis Convention, said:—"The same thing happened to me when I came back to St. Louis. I tried it. Whether I fused it or not, I do not know. Mr. Clemons told us not to do that, but at the point it was about completing to fuse I had a perfect volcano on my stove, and if I had not had presence of mind enough to take it off quickly, I should have been in a fixed." Another member, Mr. Strong, gave similar testimony. He said:—"I lost a bath in the same way. Did not think there was any danger in using the glycerine in the bath, and I undertook to evaporate it. I did not burn my fingers; I got out of the way,—let it go. I lost the bath. There was no explosion at all; just burned, and went up." It will be seen that in each instance the solution appears to have been evaporated to dryness, and, at the point of fusion, deflagration ensued. The danger of nitro-glycerine consists in its terribly explosive character under percussion, the smallest particle, when struck by a hammer, producing an explosion frightful in its consequences. The facts stated are sufficient, not simply to suggest caution, but to induce photographers to avoid, at any time, evaporating to dryness a bath containing glycerine.

THE LATE F. W. WINDOW.

We announce, with very deep regret, the death of Mr. F. W. Window, who died, after a protracted illness, on Monday morning last. Mr. Window was a man of high personal and varied accomplishments, a gentleman, and an engineer—a profession to which he devoted many years of his life, both at home and in South America—he finally gave himself up to photography, which he had long practised as an amateur, entering the ranks of professional photography, and assuming at once a high position by the excellence of his work. His name has long been familiar to our readers as an able occasional contributor to photography literature, a series of articles on the mechanical appliances of photography, which appeared in our pages something more than a dozen years ago, abounding with valuable suggestions. Mr. Window has left a definite impression on the progress of the art, although, from his unobtrusive habits, he was not personally familiar to the photographic public. The powder carbon, especially as adapted to enlargements, which he worked out, the patent of which was acquired by the Autotype Company, with whom he was for some time associated, is a valuable addition to the art, its high capabilities having been admirably illustrated by Mr. Faulkner in his pictures in the recent Exhibition. In his personal character, Mr. Window was a highly cultured gentleman, his bearing being distinguished by a winning courtesy, and modest, gentle dignity.
One of the great charms of the work is its charming literary style, which, in the historic portions, is of especial value. Its chief defects are absence of precision, and tendency to generalization in giving technical details. A little more detail and exactness in regard to actual working might give to the work a practical value equal to its historical interest, and in a future edition we shall hope to see improvement in this respect. The work is admirably compiled, and got up with the care which distinguishes works from the same publishers; it is profusely illustrated—possibly too profusely, as diagrams of plate-boxes and similar matters cannot be supposed to interest or instruct any of the readers. The frontispiece is a pretty illustration of the work of a new photo collographic process worked out by Mr. B. J. Edwards, and entitled the "photo-tint process." The illustration possesses both force and delicacy. Notwithstanding the minor drawbacks to which we have referred, the book is one we most cordially recommend to our readers.

This devil-fish of romance, as imagined by Victor Hugo in his "Toilers of the Sea," at once enthralls and repels the reader. The minute and apparently exact array of details at first sight gives the effect of a description by a careful naturalist; and a second reading, whilst it makes evident the vague mysticism of the description, in no wise deprives it of its horror. It seems to surpass the "Abominable, unutterable, and worse Than fables yet have feigned, or fear conceived, Gorgons, and Hydras, and Chimeras dire."

In Mr. Henry Lee's admirable monograph he fairly competes with the great romancists in investing his幻想-creature of this monster, the corbeille, with an interest as absorbing as that of the _poissons_ of Hugo's romance. Mr. Lee is, as most readers of the daily press know, the accomplished naturalist of the Brighton Aquarium, which presents perpetual material for the "Aquarium Notes" of an ardent naturalist wielding a facile pen; and we have here a most complete history of the whole family of octopods—squids, cuttle-fish, and other ramifications of this little known, but extensive, fraternity, the habits and characteristics of the whole class having been the subject of careful observation, whilst the personal history of individuals is made admirably illustrative of all their congener. This little book shows that the romance of science exactly stated may be as interesting, if not quite so marvellous, as the wildest conceptions of the fabulist.

THE PRACTICAL CARVER AND GILDER'S GUIDE, and Picture-Frame Maker's Companion. (London: Kent and Co.)

Here is a singularly comprehensive little book. It contains a mass of the most varied information on making, gilding, and re-gilding frames; describes various mouldings and their manufacture; gives valuable hints for cleaning and repairing engraving, making mounts and mounting pictures; varnishing, French polishing, and an infinity of things of a similar kind. The author simply describes himself as a "Practical Hand;" and, from the essential, simple, straightforward character of the instructions, there can be little doubt that he is what he describes himself. This book ought to be in every photographic studio. We shall recur to it again when space permits.

THE SCOIPTICON MANUAL. (Cliff House, Green Hythes.)

This is a third and improved edition of Mr. Woodbury's Sciopticon Manual, describing this improved form of lantern, and affording full instructions for using it to secure a variety of desirable effects.

It is unnecessary to do more than announce that this new edition of the Manual of Carbon Printing is now ready, and contains complete instructions for working all the operations to which carbon printing is applicable. A capital photo-collograph of the Company's work serves as a frontispiece.

YORK'S LANTERN READINGS. By Various Authors. (London: F. York.)

LANTERN READINGS, ORIGINAL AND SELECTED. Vols. I. and II. (Birmingham: Alfred Pumphrey.)

The value of brief, clear, descriptive and historical readings or lectures, for delivery in connection with various series of lantern exhibitions, needs no affirming. In Mr. York's series we have lectures by various known authors; a Walk in the Zoo, for instance, is conducted by Mr. H. Gore, C.E., who also accompanies them from London to the Falls of Niagara; in a trip through the Arctic Regions the audience is accompanied by Commander Cheyne, R.N.; Col. Dixon acts as cicerone through Mysore; whilst Mr. Nye relates the life of Sir John de la Giant Slayer, an allegorical temperance tale. There are some other temperance teachings illustrated by the lantern, and some very useful details to accompany the admirable series of London views which Mr. York accompanies for the lantern.

In Mr. Pumphrey's series of readings, original and selected, we have two volumes of similar valuable adjuncts to the interest and value of lantern exhibitions extending over a very wide range of subjects; brief, pithy, and interesting. All interested in evenings with the lantern should make themselves acquainted with the whole of these lantern readings without delay.

JACK IN THE BOX. The Christmas Number of "Once-a-Week." By G. MANVILLE FEARN. (London: 19, Tavistock Street, W.C.)

The practice, which for years past has grown into a pleasant custom, of issuing a special number of a serial publication especially fitted to interest, enthrall, or horrify, its readers in the Christmas season of holiday rest and holiday enjoyment, has acquired a high success in connection with "Once-a-Week." Mr. Manville Penn has long been recognized as one of our most successful tale-writers—especially the class of tale which incidentally points a moral, or exposes a social blot, without in the slightest degree obstructing a purpose. This year's annual is a tale of railway life told in twenty-five signals. The graphic style, the perfect maintenance of a growing interest in a thrilling story, are admirably perfect. We commend it to all our readers. It is not a photographic subject, but it is human, and even photographers are men.

PHOTO-LITHOGRAPHY IN NEW ZEALAND.

The value of photo-lithography as an accurate, rapid, and economical method of multiplying maps, plans, and other official documents and designs, is rapidly gaining the attention of government departments in all parts of the world. We have before us a report by Mr. Herbert Deverill, of the results of his application in the Government Establishment, Wellington, New Zealand. In 1872 it was decided that in future the plans of patents, &c., should be reproduced by photo-lithography, and Mr. Deverill was entrusted with the charge of the department in the spring of 1873, and in the course of the next twelve months, nearly seven hundred sheets or sections had been reproduced, some of them as large as four feet by three feet. As the result is successful and satisfactory, the resumption of the operations given in the report may be expected. The author gives a brief description of the purpose and principles of the process, and then gives the mode of working adopted.

The object of photo-lithography is, he says, to reproduce in fac-simile, or on a reduced scale, maps, plans, manuscript, &c.; and before proceeding to describe the manner in which photography is used in the process, it would be as well, perhaps, to first refer to the method of ordinary lithographic printing from transfers.

Lithographic stones are limestone of a porous nature, and readily absorb water. They are cut to a suitable size, about two or three inches thick, and are ground flat, polished with pumice and snake-stone, and, being thoroughly dried at the fire, are laid upon the bed of the lithographic press ready for the transfer. As an instance of the use of the Devonshire lithographic process, the following will take an ordinary departmental circular. This is written upon transfer paper with transfer ink. The transfer paper is paper coated with a certain composition in which lead glass figures as the chief item. The peculiarity of the ink consists in the fact of its containing grease.

Now the stone being ready, as stated above, the back of the transfer is damped with a wet sponge; the damp being readily absorbed by the stone, and in this condition the transfer is laid face downward on the stone, backed with a few sheets of paper, and passed several times through the lithographic press. The immediate result of this is that the stone, from its peculiar nature, retains the grease from the ink with which the transfer is written. Water is next poured on the stone, which absorbs it freely, except in those parts or spots holding the grease from the transfer ink. The process of printing may now be easily understood, at least its theory, by considering the natural antipathy to each other existing between water and grease. A roller charged with ink containing grease is rolled over the wet stone, the ink taking readily to those portions which have previously received the grease from the transfer; but being repelled by the water in the other portions of the stone. Sufficient ink being rolled on, a sheet of paper is placed over it and the proof pulled.

Photo-lithographic transfers are treated in precisely the same manner, being, in effect, photographs in greasy ink upon a substance that will stick sufficiently to the stone in transferring.

THE PRODUCTION OF THE PHOTOGRAPHIC NEGATIVE.

The map or plan to be reproduced is pinned on the wall at one end of the operating room, and the camera, which mounted on a heavy stand runs on a tramway carefully adjusted as right angles to the plane of the wall, is brought to the position, and focused according to the size of the reproduction required. The lens generally used is Dallmeyer's rapid rectilinear, but for certain classes of work his triplet is substituted. The glass mostly used are 16in. square patent plate.

The ordinary process of photography as practised now for portraits, views, &c., with the bromo-iodide of silver, is not suitable for the production of negatives for photo-lithography, which should be absolutely clear and free from fog in the shadows or lines, and as intense and non-acetic in the lights as possible. Operators work differently to secure this desideratum. The following is the method practised in this office:

The collodion is made as follows, and is never used until at least a week after iodizing:

Recitul sulphuric ether (a.g. 780) 6 pints
Alcohol (a.g. 960) 8
Pyroxyline* 1540 grains

* Made according to Hartwell's formula. Sulphuric acid, a.g. 1.444, 2 fluid ounces; nitric acid, a.g. 1.41, 1 fluid ounce; water, 1 fluid ounce; cotton, 36 grains. Temperature, 17 Deg. Fahr. Time of immersion, five minutes.
Iodized with the following:

- Alcohol...
- Iodide of potassium...
- Iodide of ammonium...
- Iodide of calcium...
- The nitrate bath is prepared with...
- Distilled water...
- Nitrate of silver...

To this is added, before filtering, a few drops of iodinating solution.

After exposure in the camera the plate is developed with:

- Water...
- Proto-sulphate of iron...
- Glacial acetic acid...
- Spirits of wine...

The development must not be prolonged, nor must it be forced on under-exposed plates. A rather stronger solution of cyanide of potassium than is generally used is employed to dissolve the unaltered iodide of silver, and the plate should now show as a fully exposed positive with perfectly clear shadows. A few drops of a strong aqueous solution of iodine in iodide of potassium is next diluted with water to the colour of brown sherry, and the plate flooded with this liquid. After which is applied a dose of ordinary re-developing solution composed of pyrogallic and citric acids with a little dripping silver. This stage requires especial care that the intensifying be not carried too far, for if the silver be piled on to any great extent it will overlap and injure the sharpness of the fine lines, or may destroy them altogether. The negative is now, after careful washing, plunged into a saturated solution of bichloride of mercury, the first effect of which is to turn the film black, but after a short time it becomes quite white. It is immaterial what time the plate remains in the bath of corrosive sublimate, provided it is long enough to convert the whole of the metallic silver into the white salt of mercury and silver. When taken out it is well washed, and a weak solution of iodide of potassium in water is poured on it until the film is yellow right through to the glass.

As a rule, the negative is now flooded with a solution of gum-arabic, and stood on a rack to dry; but if considered advisable, a weak solution of chloride of gold is poured over, which increases the density. If there appears a tendency on the part of any of the fine lines to fill up, or fog over, more solution may be poured on. After the treatment with the iodide of potassium. It is found in practice that the gum-arabic affords sufficient protection in printing, and enables the glasses to be used over and over again without the difficulties in cleaning which would occur were the negative varnished.

The Production of the Photographic Transfer.

Various ways are practised to obtain from the negative, produced as above, a positive in reverse upon the lithographic stone; but one of two methods is mostly used, the chemical theory of both being alike while in their mechanical effects they are quite different. In one the white parts of the subject are transferred to the stone, leaving the lines open to absorb the greasy ink poured on them; in the other and more frequently used method the lines in greasy ink are transferred to stone. The latter is the method practised in this office, and the theory of its working may be easily understood.

Gelatine and many other organic substances readily soluble in water, if mixed when in solution with bichromate of potassium, acquire the property, when dry, of becoming insoluble after exposure for a short time to white light.

If paper coated with gelatine and bichromate of potassium, and dried, is placed in contact with a negative and exposed to the sun's rays, the action of the light through the transparent portions of the negative, which represent the lines of the subject, renders those parts insoluble; whereas the remainder, which has been protected from the light by the opaque portions of the negative, is in no way altered. If, therefore, the whole surface of the plate be coated with a greasy transfer ink, and afterwards the print itself placed in warm water, the gelatine in the parts unaffected by light readily dissolves, and carry with them the ink, leaving the lines only upon the clear paper. This method is that practised at the Ordnance Survey Office at Southampton, but is not adopted by me for two reasons: first, that from the face of the earth being no gelatine left on the paper, but that covered by ink, it is impossible to pass the stone more than once through the press, for fear of the transfer shifting and the lines doubling; and secondly, in washing away the unaltered gelatine, that which is left on the lines is apt to be ragged and broken.

Osborne's process, as practised in Melbourne, obviates these difficulties in an ingenious manner. There the gelatine is sensitized with albumin and after the paper has been sensitized with transfer ink, it is floated for a few minutes on boiling water, which coagulates the albumen, and holds it and the gelatine, or the greater portion of it, fast to the paper, the ink washing away with the aid of a sponge. This method was practised here at the commencement of work, but is now discarded. It was found that the ink, softened by boiling, adhered to the bole, and transferred gelatine to the stone. A fair extent upon the lines, rendering them liable to "smash" in transferring, especially when used fresh; and also that soluble gelatine was present in the transfers, and required more boiling water to dissolve and clear it away than could be conveniently used, considering the amount of work to be performed. After a number of experiments I succeeded in working out a modification of the process, which works satisfactorily, and the following is the method in detail:

Gelatine is soaked, and afterwards dissolved in water over a gas stove, and heated to a temperature of 110° Fahr., when a solution of chrome alum is added, well stirred, and the whole strained. Paper is coated with this, at a temperature of about 90°, and hung up to dry, when in a short time it will become insoluble, and all that is required to make it receptive is boiling water. This operation is conducted in daylight, and any quantity of paper may be prepared at a time, as it appears to keep for any length of time. Paper prepared thus has been sent by me to England, and there yielded excellent transfers. It is sensitized by floating for a few minutes on a saturated solution of bichromate of potash, and hung up to dry in a dark room. On turning dry, this sensitized paper will keep for a greater length of time without deterioration than that prepared by any other process with which I am acquainted. Tannin may be used in lieu of chrome alum, but the paper, when the latter is employed, seems to keep longer after sensitizing. A sun print is taken on this paper in the ordinary manner from the positive, and is then coated, laid on a lithographic stone coated with greasy transfer ink, and passed through the press. The surface becomes by this treatment coated with a thin coating of ink. It is next floated for a minute or two, face upwards, on a dish of cold water, and then laid upon a sheet of zinc. The water having been absorbed, through the back of the paper, by those portions of the gelatine not acted upon by light, the ink is readily adhered with a wet sponge, and in a few minutes' soaking in a dish of clean cold water removes but if organic substances are also present, the chromic acid is reduced to the condition of a lower oxide of chromium, and the liberated oxygen unites with the organic body. Some kinds of organic matter set more decidedly than others, and especially gels, which reduces the bichromate in presence of sunlight, the gelatine itself being oxidized into a reddish substance which remains in union with oxide of chromium. —_Harari._

The proportion varies with the quality of the material, but have found different samples of chrome alum affect the gelatine differently.
If a case arise in which it is desired that portions of a negative should be rendered more intense locally (the face, hands, or any other parts), collodion of a sufficiently thick consistency is chosen, and is poured over the portion of the plate. In this way a more or less transparent and very uniform film is produced, which is permitted to dry as much as necessary. In this condition the negative is brought to the retouching desk, and the outlines which it is desired to protect with the coloured collodion are traced over with a needle, placed, for convenience sake, in a wet towel. This done, by means of a piece of wood tapered in a suitable manner, the superfusious coloured collodion is gently removed from those parts which are not required to be covered up, and, to facilitate the operation, the wooden tool is moistened with a little water.

To render the picture more dark, the face, hands, and garments are left covered; if, on the contrary, the background, the hair, &c., are required clearer, then the contrary is done.

At the expiration of a few hours, the collodionized parts become very hard, so that there is no need to fear that they will be injured by contact in the printing frame. At the same time, if one desires to be assured that the tinted parts of the print are firmly fixed and firmly fixed, a coating of negative varnish may be applied, although this operation is not always to be recommended, as the removal of any or the whole of the tinted collodion subsequently is thereby rendered extremely difficult. Only, therefore, in extreme cases is the application of varnish to the tinted film to be advised.

The necessary in this retouching method to trace the outlines very carefully by the aid of the needle instruments we have mentioned; the masking being at the back, the thickness of glass which intervenes between the image and the coloured screen permits the production of double outlines in the print, and softens down the sharp markings made by the needle.

The photographer will understand at once that with the aid of collodion tinted much or little in the manner described, he can modify in any way he pleases the printing qualities of a cliché, and it is done, too, in the simplest and most rapid manner. Work executed by a brush or pencil would be far more tedious and time-taking, and it would also interfere to a greater extent with the original characteristics of the negative.

Not only is this method of M. Fritz Luckhardt available for treating portrait and group negatives, but it may also be employed, and with the same excellent results, to landscape pictures of all kinds, as also in reproductions of paintings, where certain colours in the originals either do not come out so forcibly in the copies, or are far too glaring. In such instances as these the partial covering up of the negative with tinted collodion is obvious, in order to produce more perfect prints. The intelligent artist will, in fact, at once see the great aid he may derive from the method, as the tinted collodion acts mechanically upon the plate pretty well in the same way as an intensifier does chemically upon the silver film.

METEOROLOGICAL REPORT SHOWING THE DIURNAL VARIATIONS IN THE CHEMICAL POWER OF THE SOUTHERN SKY.

FROM OBSERVATIONS MADE AT BLACKPOOL, IN LANCASHIRE.

By D. WISTANSTALL, F.R.A.S.

The daily average of light again has risen, having during the past week been as 728 chemical units up to 688 for the week preceding.

I shall, in all probability, issue shortly lithographed diagrams showing the hourly variations in the aggregate of light. In doing this, however, it does not seem to me that the form of diagram I now adopt will exhibit in its truest form the hourly variations in the obscuriorient of the atmosphere, which, after all, are in effect the objects of my
NEW METHOD OF ESTIMATING SILVER IN PHOTOGRAPHIC SOLUTIONS.

In Dingler’s Polytechnisches Journal, M. J. Volkard suggests a method of determining the quantity of silver in solutions, the principle on which it is based being that soluble cyanide compounds form a curdy precipitate of cyanide of silver when mixed with acid silver solutions. The same kind of precipitate of cyanide of silver is also given on mixing silver solutions with the blood-red solution of sulphocyanide of iron, the colour of the latter instantly disappearing. If, therefore, a solution of cyanide of potassium, or cyanide of ammonium, is mixed with an acid silver solution to which a little sulphate of iron has been added, every drop of the cyanogen solution brings about a blood-red cloud, which disappears, however, on the solution being stirred, the latter becoming white as milk. Only when all the silver has been precipitated as cyanide of silver does the colour of the sulphocyanide of iron remain.

If it is known how much of the cyanogen salts is necessary to precipitate a particular amount of silver, it is, obviously, possible by this means to ascertain quantitatively the amount of silver in every solution of that metal.

The method, too, is capable of employment under the most general circumstances, for it permits of quickly and surely determining such bodies as may be precipitated from acid silver solutions—such as chlorine, bromine, and iodine—by precipitating them with silver solutions of known strength, and titrating back the superfluous silver added with a solution of cyanide. Especially in the case of the above elements being in organic combination, the new method of Volckard will be especially applicable.

Far superior, too, to the chromate of potash method of Mohr must this one of Volkard be considered, for it possesses the following particular advantages:

1. It is carried out with an acid solution, while the Mohr method necessitates a neutral liquid, which renders its use very limited.

2. The combination with its indicating colour is soluble, and the reaction is therefore easily recognised.

3. The sulphate of iron solution employed is itself colourless, and may, therefore, be added in larger quantities.

The fluid titrated by Volkard is cyanide of ammonium. As this salt is too hygroscopic to permit of its being weighed, the solution is used with a silver solution; this is produced by dissolving 10 grammes of pure silver in sulphuric acid, and diluting the liquid to 10,000 cubic centimetres. A larger quantity of cyanide of ammonium is dissolved in water, so that about 8 grammes are contained in 1 litre of solution.

Ten cubic centimetres of the silver solution are put into a beaker, together with 5 c.c. of a pure solution of sulphate of iron (containing 50 grammes of oxide of iron per litre), and 150 to 200 c.c. of water. The cyanide solution is constantly added, in gradually increasing dilutions until the liquid has assumed a slight reddish tone. Since there has been used for every 10 c.c. of silver solution 96 c.c. of cyanide solution, 960 c.c. of the latter is diluted to 1000 c.c. One c.c. has then for every 10,198 milligrams. Before use, this solution is tested once more. To this end, 1 gramme of pure silver is weighed, and this is dissolved in 8 to 10 c.c. of sulphuric acid, and the solution then evaporated in a sand-bath until not a trace more of acid is given off; and subsequently 5 c.c. of iron solution is added, and diluted with 200 c.c. of water. When cold, the cyanide solution is gradually added, and with the last drop of the hundred cubic centimetres, the reddish tint should perforce set in.

Correspondence.

URANIUM IN THE NITRATE BATH.

Dear Sir,—Seeing a remark in last week’s News, I write to say that my negatives of this summer’s work were some wet, and some dry. Both ways of working have given me satisfactory results.—I remain, yours truly,

H. Stuart Worthy.

WASHING PRINTS.

Dear Sir,—In your issue of September 10th, a correspondent recommends a tin box, with a series of false bottoms, having partitions in them, for different sized prints for washing. Fifteen years ago, when the quarter, one-third, one-half, and whole sizes were in demand, I had a number of trays, made of perforated zinc, with partitions for different sized pictures. Six or eight of these trays filled with prints were tied together, and suspended in a cistern with constantly running water. I keep this during the night through being attached to a meat-join, one made with a stronger spring than requisite for turning a joint. I do not believe in long washing my self, but the use of the meat join might be adopted by some who do.—I remain, sir, yours truly,

O. T. Newcomb.

Talk in the Studio.

IMPROVED EXTENDING LIPID LEGS.—Mr. Kennett has just favoured us with a sight of a set of tripod legs with an improvement of a singularly ingenious and simple character. The normal height of the legs is about three feet, extending to nearly double that height. The great improvement consists in the absence of screws, either fixed or loose, for clamping the extending portion of the leg in any position required. This is effected by an oval sliding ring, which holds the outer portions of the leg and the sliding centre portion with a firm grip. It is difficult in a few words to explain how this ring, sliding on the inclined plane formed by the legs, grips firmly; but it does so. It is exceedingly light, rigid, and efficient, and free from the projection of fixed screws, or the risk of loss of loose screws.

CAUTION AS TO SALE OF MINTY LAMB.—Recently, at Wandsworth Police Court, Mr. W. H. Kempen, a surgeon of Battersea, was summoned by the Excise authorities for selling methylated spirit without a licence. The defendant said he was not in the habit of selling the spirit. It was a case of A inducing B to commit a crime, and C being called upon to answer it. He called Charles Spencer Aitken, his
dispenser, who said the officer asked him if he sold methylated spirit. He said "No." The officer pressed him to sell him some, and said if the doctor was there he would let him have it. He then told him he would oblige him with some lamp spirit, and he sold it to him. He never sold any there before. Mr. Nelson, that the officer had asked him for the lamp spirit, and dismissed the summons. Another surgeon of Battersea was also summoned for a similar offence. This defendant also denied being in the habit of selling the spirit, and complained of the persecution to which he had been exposed. He said he sold the officer he was not sure whether a licence was necessary, and that if he was an Excise man he had better go away without it. It would have been more manly, he contended, if the officer had cautioned him instead of taking the spirit. Mr. Ingham imposed a penalty of £21 10s., and suggested that the Board of Trade would probably reduce it to the nominal sum of £21. Other persons were summoned, and the mitigated penalty of £12 10s. was imposed in each case.

HALF-SIVERING.—M. Leon Fournaud has devised a method by which the half-silvering is given, which has been applied to glasses for solar observation. The exterior face of a glass thus prepared reflects the greater portion of the caloric rays without impeding the passage of the luminous rays, thus rendering the intervention of coloured glass unnecessary. Instead of polishing the outside of the silvered glass, as soon as the silver begins to show upon the glass. The latter is removed, washed in distilled water, and dried. It must not be rubbed afterwards. Experience will show the right moment to remove the glass so as to obtain the amount of silver; it is requisite for the exclusion of a definite amount of light. —Les Mondes.

US CORRESPONDENTS.

D. V. M.—Very many thanks. As soon as possible; but within a week will do.

W. W.—All the formule for the use of washing soda in the toning bath are necessarily indefinite, because, in using soda, observation rather than precise figures must be depended on. The action of the soda salt is, first, to neutralize any free acid in the chlorides of gold, and next to aid in decomposing the chlorides of gold. A very small proportion will do this slowly, and a large proportion will do it rapidly. One grain or less of the soda salt to each grain of chloride of gold will do this effectually, and the bath would be ready for use probably in half an hour after the addition of the soda. It should be continued good for an hour or two, or even more; whilst if ten or twenty grains of soda be used, the same end only will be secured, but much more rapidly. Probably the bath would be ready for use almost immediately, and be in use in an hour or perhaps less.

The great disadvantage of the gold bath with carbonate of soda is first uncertainty, and second instability. No law can be given as to how soon it should be used, and no law as to mixing; it can only be learned by observation and experiment. If used too soon, the print is bleached and mealy; if too late, it is inactive, and never keeps in working order more than a few hours. If you neutralize with chalk there is no need to add soda. If you use soda there is no neutral to neutralize with chalk. They both perform the same office, chalk having the advantage that, being insoluble, you cannot use excess. If you wish to use soda, try for two or three grains to each grain of chloride of gold.

J. NELSON.—We regret that the space available in this column for answers to correspondents is insufficient to permit us to reply to the whole. We have only reserve for answering our friends here; but you will find, all you require in our Year-Book, which will be ready this month. We may have briefly indicate the mode of proceeding. A plate of clean plate-plate is coated with a tough plate-colloidal, and allowed to dry. This is then coated with a warm solution of galateen, which is allowed to set. A print is then immersed in water, and laid face down on the galateen, and rubbed down with a sponge, then placed under a weight to dry, when it will leave the glass of its own accord, presenting an enamelled surface. We are glad to learn that you have found the News so useful to you.

NAILOR.—The Autotype Manual is now ready. Study it carefully, and then submit to us any questions you may have or otheraye; and should you require the use of our plate-colloid, we will supply you with it, and the small price that will be charged, of which you will find a statement in our Year-Book. Your letter is still insufficiently clear as to the precise operations you adopt, and the special points where difficulty arises.

E. W.—We have not as yet received any information as to when and how English contributions of photographers are to be sent to Philadelphia. We shall, doubtless, shortly receive official instructions, which we shall publish at once.
PHOTOGRAPHY IN AND OUT OF THE STUDIO.

ABOUT ENLARGEMENTS—MR. CROOKES' RADIATION EXPERIMENTS—CHRISTMAS CARDS.

About enlargements.—Those who do not make enlarging their special study find that success in this branch of photography is by no means easily attained. The best results are obtained, or, at any rate, that which gives the best results under ordinary circumstances—is, in all probability, the copying camera, which bears the transparency at one end, and the lens behind it. With a large camera of this kind, which need not be such a very expensive structure, good enlargements may be produced after very little experience, and that is more than can be said of other methods of enlargements. We have tried converting the dark room into a camera with some success; but it is better to have a camera specially adapted to one's wants. One important aid, we may mention, in this mode of enlarging is, a sheet of ground glass. The great thing to be attended to, after a clear, thin transparency has been obtained, is to light it up thoroughly well; and if you have a holowase at your disposal, such as may be found in one or two studios we know of, there will be no difficulty in securing a full flood of light upon the image during the exposure. The next best thing is a hand mirror, to concentrate the rays upon the transparency; but in both cases something more is wanted to make the thing perfect. Let any one stand looking at the image on the focusing glass, and observe the difference of the half of the transparency when the mirror is and is not employed, and he will be at once convinced of its usefulness. He may then go on a step farther. Having adjusted the mirror, let him again watch the image, and get an assistant to interpose between the transparency and the mirror a sheet of ground glass. This diffuses the light, as he may have guessed; but it does much more besides—it increases the brightness of the image again, so that the exposure can be reduced by fully one-third, it may be a little difficult to explain why this should be, but that it is so is patent to any one who has tried the experiment. It is not, however, so much upon the question of manipulation, and the art of producing clear, vigorous enlargements, that we desire to speak just now, so much as upon the power of the subject itself. It is very difficult to enlarge a landscape of small size, for instance, so that it appears true to nature. We have seen enlargements from negatives of our own which we could scarcely recognize as pictures of the spot where they were taken; and not only this, but they perverted the truth in a manner that was quite incredible. The pictures to which we allude were taken, in the first instance, with a small wide-angle lens, and then copied by an ordinary portrait instrument, the result being a very unsatisfactory one. In one photograph two figures were shown upon a glacier; in reality, these persons were upon plains of ice extending for miles in front, while the nearest wall of rock was certainly half a mile distant. This may be gathered, to a certain extent, from the original picture taken with the wide-angle lens; but the ordinary lens, it is true, depressed the tall mountain in front to half its height, and exaggerated the foreground so much that a hundred yards of ice seem to lie between the point of view and the figures, which were really but a dozen yards off at the most. In the enlargement everything is changed; the snow mountain in front looks the shape of Primrose Hill, and appears to be about the same height, while the mountaineers seem to be actually rubbing against the dark rocks on their right, which in nature were so far distant. Such a production at once shows how very necessary it is to choose suitable lenses for copying and enlarging purposes. As a rule, we hold it best always to employ the same lens for enlarging that was used for taking the picture in the first instance; but a better plan than this is the one adopted by Mr. Zeugner, of Prague, lately pointed out in these columns. He showed very clearly why enlargements are generally so coarse and exaggerated, and why no amount of care in focusing, or skill in manipulating the negative, will furnish sharp clear pictures. His explanation was that lenses were either under or over corrected; or, in other words, when you photograph three points, 1, 2, 3—No. 1 being in focus, No. 2 clear, but the camera sharp on No. 2, some lenses will render No. 1 sharper than No. 3, while others again will render No. 3 sharper than No. 1, which is thrown considerably out of focus. Herr Zeugner argues, with very good reason, that if you want to enlarge accurately, you must employ two lenses, one being used to compensate for the faults of the other. You take the first image with a lens that has the defect of being under-corrected, and then proceed to make a second enlargement with one that is over-corrected. In this way only can an enlargement approaching to truth be secured. Unfortunately, photographers have not generally a very wide choice of lenses; but it would be well, nevertheless, for them to ascertain whether the instrument they possess is under or over corrected. This is easily done, as we have shown, by placing three points at different distances from the camera, focussing on the middle one, and then observing whether it is the nearer or farther point which is the more sharply rendered. Mr. Crookes' radiation experiments.—We are glad to hear that a royal gold medal has been bestowed upon Mr. William Crookes, F.R.S., by the Royal Society this year, for various discoveries and researches, and especially for his recent study of light. His discovery of repulsion referable to radiation, which we mentioned some time back in these columns, seems to have called the particular attention of the Council of the Royal Society to Mr. Crookes' claims as an original investigator, and to have decided them to offer him the honour in question. Our readers will remember that Mr. Crookes made his discovery in his last physical investigations, which may lead to the development of our knowledge of light in a very considerable degree. He has shown us that radiation has a mechanical property, and that it is capable of setting objects in motion. To demonstrate this in the most forcible manner, Mr. Crookes, at the last soirée of the Royal Society, exhibited a little instrument which carried away the most cynical of disinbelievers. He had put together, inside a vacuum, a wheel which by the simple action of radiation was set a spinning. The wheel was not a very large one, it is true, and therefore we must not jump at the conclusion that in a short time we shall be able to apply the sun's rays as a motive power for our machinery, and set water-wheels and engines going by the action of the heat of the sun. But the time is not distant when some captain with little pitch balls at the end of the spokes, was shown to move merrily round on bringing into the neighbourhood a strong artificial light, the rays exerting a repellent action upon the blackened spheres as one by one they came under the action of the light. We see that Mr. Crookes is once again in the front of the scientific world early next year, so that we may anticipate further interesting data in regard to this novel property of light.

Christmas cards.—It is very strange that photography has not been brought in to aid in the production of these...
little pictorial productions, which are scattered in all
directions at this time of the year under the name of
Christmas cards. Photography might surely be made
available for things of this kind, and the demand for
novelties is such that it would be worth anyone's while to
consider the subject. We are now introducing pho-
tography for many little purposes of an analogous kind, as
in the preparation of ball programmes, menus, and the like;
but there are probably a thousand Christmas cards sold for
every one of these. Pretty snow landscapes, or suitable
genre pictures, would be welcomed by the public, and, if
nicely mounted and finished, they would fetch a good price;
for in many cases, when exchanging good wishes with a
friend, one would much prefer enclosing a nicely finished
picture, costing, perhaps, a shilling, more or less, than the
conventional red-bread card, to be obtained, as the
recipient knows, at sixpence or eightpence per dozen.

FRENCH CORRESPONDENCE.

HOW TO PRESERVE SENSITIVE ALBUMENIZED PAPER—
AGUADO'S TOURIST APPARATUS—A PRISM PHOTOMETER—
LE TALLE'S MODE OF REDUCING CLICHES—CORDIER'S
ADVICE TO PHOTOGRAPHERS.

M. FLEURY HERMAGIS, a laborious experimenter, whose
industry never wanes, communicated on Friday last
several interesting communications to the Society of
France. The first one was a reference to a method of preserving
papers and prints in silver, which had not been fixed, by
the aid of essential oils.

As M. Hermagis very justly says, the lack of light, and the
slowness of printing by means of salts of silver, render a
plan for preserving the whites of an unfixed print, and the
purity of sensitive paper, very opportune just now, when
we are troubled with dark, wintry days. A process, the
discovery of which is due to American society, M. Davey,
has served as the point of departure for M. Hermagis' interesting experiments. Very valuable
results have been secured by this American discovery, and many persons who have tried the process have expressed
much satisfaction in regard to it.

It is only necessary to provide one's self with a box
capable of being hermetically sealed; into this is thrown
some cotton wool impregnated with citric acid, and the
prints may then be placed in the box, not rolled up, being
separated from the acid by means of a light frame-work.
The prints are moved from time to time, so that the
vapours can act uniformly over the sensitive surfaces;
and in an atmosphere thus impregnated, the whites will be
found to be perfectly pure and white. It is the same
with ordinary albumenized paper, which may thus be kept
good for a week or fortnight, and even a month, if it
contain traces of citric acid; and if the paper contain as
much as three per cent. of this acid, then it will keep good
for four months without the surface becoming yellow.

M. Fleury Hermagis observed that this process of
preserving sensitized paper will be welcomed by amateurs,
because, it gives a soft, and, at the same time, vigorous,
print—advantages not possessed by prints which are toned
as soon as printed. The drawbacks to the process are, that
the toning takes some time to perform if the paper contain
citric acid, and the tint is not always an agreeable one.

For this reason M. Hermagis employs, by preference,
ordinary albumenized paper for portraits.

Many photographers who employ the process of preser-
vation have mentioned the inconvenience of having the fumes of citric acid in the laboratory, as it has
tendency to diminish the sensitiveness of dry plates, and
to fog wet ones. To these complaints M. Fleury
Hermagis replies, with truth, that if precautions are neces-
sary, they should be taken, rather than that we should be
defeated in the value.

At the same meeting, M. Hermagis exhibited to the
members of the society a new tourist apparatus, which
was little else than a larger design of the primitive model
which he exhibited in the spring, having certain improve-
ments in the details of its construction. The camera is of
wood, capable of being employed upright or sideways,
being constructed entirely of wood, is very light; the
design of the instrument is that of the Comte d'Aguado.
The lens is run forward by a screw movement, which
renders the bellows unnecessary, and can be focussed at
any object from two metres upwards; the mounting is
of nickel, so that it cannot rust. The lens is plani,
circular, covering a plate 13 x 10 centimeters.

It is very certain that the apparatus is constructed in
a very ingenious manner, and would render excellent
service to tourists and amateurs. It is especially con-
strued to work with the dry plates of M. Bisson, jeune.

Finally, M. Hermagis presented to the French Photogra-
phic Society a new photometer, which no one will
telephone too complicated in character. It is a simple prism
of yellow glass, carrying with it, yellow lines, which
transmit light. This impresses itself in white upon the black ground of
a paper sensitized with salts of silver, upon being exposed
to light. The prism is of small dimensions, and may be
mounted so as to form a charm or trinket to be hung on
one's watch-chain.

A French photographer established in Birmingham for
some years, M. Lelatte, being in Paris for a few days,
spoke to us of a process which he employs for reducing
the intensity of hard negatives. At our request, this
skilful photographer, to whom we are already indebted for
several interesting communications, was good enough to show us his plan of proceeding. He took some clichés
with very opaque whites, which had been produced either
by reason of great contents in these objects, or from the
model being too much illuminated, and treated them with a
dilute solution of permanganate of potash in water, wash-
ing and fixing the negative subsequently. If one treat-
ment, which should last about a minute, does not suffice
to clear the negative, the operation is repeated until the
desired reduction has been secured. A two per cent.
solution of permanganate of potash in water, under the
circumstances, followed by a fixing solution of cyanide of
potassium, also of two per cent strength, but in the case
of negatives intensified with pyrogallic acid, solutions of
double strength must be employed.

This treatment of the negative, M. Lelatte assures us,
does not in any way injure the half-tone and delicate
portions of the negative.

Among the recommendations addressed to photo-
graphers by M. V. Cordier, in respect to avoiding failures
in their manipulations, there are some that specially
concern the laboratory, and which, notwithstanding all
the attention that they merit, are often neglected. Thus
M. Cordier insists upon the necessity of maintaining a
uniform temperature in the dark room and in the studio,
which does not coincide with the temperature of the
translucent, and moisture covers the film. In winter, it is well to warm
the plates gently before applying the collodion. It is
necessary also to warm slightly the different materials
before making use of them. In summer, on the contrary,
the solutions should be placed to stand in cold water before
being used. The laboratory, we are told, must be well
lighted by two windows, one admitting light, and the other
without light, one admitting fresh, and the other allowing
the foul atmosphere to escape. The dark room should
be painted with oil, and the floor-cloth should cover the
boards. The alcohol, varnish, collodion, and especially
the ether, whose fumes, lighter than the air, are inflammable, should be kept far from lamp or fire. The stopper of the ether bottle should be provided with a rubber cap to prevent its being forced out during the hot weather. The bath and vessels containing solutions of cyanide of potassium and hyposulphite of soda should be kept outside the dark room.

When solutions give good results, M. Cordier tells us to refrain from doctoring them; and when they change, he strongly recommends their being thrown into the receptacle for residues, and to prepare them anew. He thinks too much attention cannot be paid to lighting the dark room, and is of opinion that no illumination should be admitted, except through the medium of a double thickness of yellow and red glass; or if the space is to be illuminated by artificial means, then a single candle should be employed, surrounded with orange paper. A uniform mild orange light penetrating the corners of the dark room, even in dull weather, is quite sufficient for working with properly, under ordinary circumstances. If the light comes from the south, a blind of yellow stuff may be placed before the coloured window, so as to be raised and lowered at will. In this way one has always a uniform light at one's disposal, and the sunlight may be prevented from coming through the yellow glass and injuring the negative at the moment of development. If the light comes from the north, it is well to fix a pattern cliche as a guide for working up the intensity of other negatives.

ERNEST LACAN.

EXHIBITIONS, A STIMULUS TO ADVANCE TRUE PROGRESS IN ART PHOTOGRAPHY.

By Alex. Ayer.*

Permit me to explain, at the outset, that my connection with the matter for consideration and discussion to-night has been brought about in consequence of a motion I made at a recent meeting of council, to the effect that, as several years had elapsed since an exhibition of photographs was held under the auspices of this society, it would be very desirable that some effort should now be made in that direction, and suggested that we might endeavour to secure, as a nucleus to start with, some of the best pictures from the London Society's exhibition before they were returned to the exhibitors. I was then informed that a suggestion had already been privately expressed the world of the exhibition to this society, but that, with the expense of the undertaking being found to be too great, and it had, therefore, to be declined. My object was not so much to have this wholesale transfer, but rather that a judicious selection should be made, and our own members and others invited to contribute, so that we might calculate on a fairly good average collection of pictures. Most of the members of council, however, were of opinion that it would take members of the society generally rather at a disadvantage, and that they could not exhibit on favourable terms if longer time for preparation were not allowed. It was, therefore, agreed to postpone the intended exhibition until the end of next year, in order that sufficient intimation might be given to all parties concerned in the matter, and that we would then be better able to secure a larger number of contributions from all available sources; and in order that the society's funds might not be burdened with any very heavy pecuniary responsibility in the matter, it was resolved to form a guarantee fund for the necessary expenses connected with the undertaking; and you will be glad to learn that a good amount of encouragement has been already obtained, and the large amount of members' interest shows an interest in the movement that augurs well for its ultimate success.

Former exhibitions of photographic art held in this city, if my recollection serves me right, were not eminently successful in any point of view, and this might be accounted for by the fact that they were rather too local in character; and it is scarcely to be expected that the outside public will care to patronize an exhibition of mere ordinary photographic portraits that can have no possible interest for any one beyond the mere circle of friends or acquaintances of the subjects. Therefore, such an exhibition as we are now having, next year, if it is to be made successful in its advancement of art progress, and of more than ordinary interest to all, must be largely made up of contributions from the works of the foremost men in our ranks, both amateurs and professionals, at home and abroad; and it is to be hoped that these exhibits will not merely be a collection of the ordinary sort of daguerreotypes or other kind of portraits, but will include some pictures that will show the capabilities of photography. But now that there exists a demand for a larger and better class of picture, it is quite apparent that the artistic skill required for these small pictures will be quite inadequate when taxed to produce the necessary amount of artistic excellence required to make the larger pictures thoroughly successful; and if it is admitted that more art knowledge and energy are required for the production of the larger class of photographic portraits, it will also be agreed that this society could not do less than give its name, influence, and support to the proposed exhibition as a certain means of fostering and encouraging our art progress and education in this praiseworthy direction.

The followers of the older arts (painting and sculpture) are upheld and advanced in their progress by the facilities given them by their schools, their schools being endowments that are stimulated to greater efforts in their future labours by the comparisons they are there enabled to make of the works of their brethren, and by the appreciation and encouragement bestowed by a discriminating public on their exhibitions; and if these exhibitions are still considered a necessity for the advancement of progress in relation to art at its most antique, how can it be expected that our photographic art can make telling progress if year after year goes on without any special inducement being offered to assist us out of the rut of a contented or non-progressive art practice?

We have a striking illustration of the increased impetus that can be given by these exhibitions, in promoting art progress in connection with photography, in the United States, where, until within the last few years, there was no special organisation for such a purpose. Now they have a very flourishing national photographic association holding an annual congress and exhibition by rotation in the various cities of the Union; and it is said that to our Western brethren, who thought their work left nothing to be desired, their exhibitions came like a new revelation; they found that their most valued productions looked tame, commonplace, and comparatively worthless when placed beside the works
of masters in the art, the result being that many of them began at once to aim at higher efforts, and every year's successive exhibitions have shown that great progress and success have been achieved through their aid. To come nearer home, it will be remembered that a very great stimulus was given to the artistic abilities of the photographic profession by the Exhibition portraits of M. Adam-Salomon at the Paris International Exhibition of 1867; and certainly nothing up to that time had ever been exhibited that could be at all compared with these pictures—they were simply perfect. It is not within the province of this paper to treat of the technical difficulties that stand in the way of the artistic photographer being able to give due embodiment to his pictorial fancies or compositions, on account of the non-photographic nature of the materials with which he has to deal, but we need not be discouraged—their optical, chemical, and mechanical difficulties can all be overcome. "Nil desperandum!" must be our motto, feeling assured that the more attempts we may make to secure more artistic feeling and sentiment in our work will be most valuable to us as a means of art education, and will, at the same time, serve to unite in a large measure the higher qualities of art and the truth of photographic science. Without being invidious in quoting names, we have only to look at the works of the late O. G. Rejlander to learn what has been done in this direction. We can see at a glance what a field is open for cultivation—the production of such a class of subject or genre picture. In these pictures we see that variety of true expression and feeling, natural ease of presentation of quantity of material that can be secured by photographic agencies; and what has already been so well done is within the reach of all who will make studious efforts to obtain like results.

Now and again it is the practice of some critics, who are jealous of the rapid advances made by photography since its early days, to seek to decry its capabilities, and say it cannot rival the fine arts. But this is purely an imaginative or creative art. But it surely will not be denied that the artistic photographer can stamp his individuality upon his work, and, by the aid of his art, give impressions of the conceptions of beauty (whether of forms or sentiment) existing in his mind; and if the ability to do that much is granted, we, have, at all events, reason and justice on our side in claiming a position among the fine arts. We can take courage, however, be this as it may, in the knowledge that our art enables us to do more than give merely imaginative effects. The evanescent beauties of rolling clouds and breaking waves have been successfully fixed; joy and sorrow, and all the varying emotions of the mind acting on the human countenance, have been faithfully portrayed, and the beauties and grandeur of natural scenery can be rendered in the most truthful manner; and even photographic portraiture, in the hands of men of artistic culture and taste, can be graceful in arrangement, expressive and truthful in character, and the tout ensemble of the picture will be found thoroughly in accordance with all the rules that guide in art; and the rapidity with which our manipulations are conducted often enable us to "snatch a glimpse of life's fleeting scene."

The appeal that will now emanate from this society to our art brotherhood for their assistance to form our exhibition illustrative of the artistic capabilities and development of the art will, it is to be hoped, call out a host of contributors whose works will show that they are fully competent to sustain and advance the art progress of our much-loved photographic art.

UTILIZING THE SUN'S HEAT FOR INDUSTRIAL PURPOSES.

Photography, it appears, is no longer to be the only art which directly utilizes the solar rays for industrial purposes. Mons. M. A. Monchot, in a recent paper before the Academy of Sciences, reported in the *Comptes Rendus*, proposes to utilise the heat of the sun's rays, and describes the apparatus whereby he has already worked outsuccessful experiments. *The English Mechanic*, in a good résumé of his paper, says:

"The solar generator, as he now has it made, consists of three distinct parts—a metallic mirror with linear focus; a blackened boiler, the axis of which coincides with this focus; and a double envelope of glass and iron, or rather one continuous boiler, but preventing their escape after they are transformed into obscure rays. He has convinced himself (he says) that the proportion of the heat utilised to the extent of the surface of the sun's rays insolation increases with this extent, or, in other words, the productive power of a large generator is better than that of a small.

"He describes the large generator which has been in work at Tours for some time past. The mirror has the form of a truncated cone with parallel bases. The generating surface of this cone makes with the axis an angle of 45 deg.; this, as Dupuis showed last century, is the best form for that kind of mirror, because the incident rays parallel to the axis are reflected normally to the axis, and give a form of maximum intensity for the same aperture of mirror. The reflecting surface is composed of twelve sections of silver plate, supported by a framework of iron, in which they can slide. This arrangement allows of removing each section in order to clean it, or to substitute for the silver plate polished brass, which produces the required effect. The diameter of the aperture of the mirror is 2.50 metres; that of the bottom is 1 metre; whence it follows that the surface of normal insolation of the apparatus is about 4 square metres.

"The bottom of the mirror is a disc of cast iron, added to diminish the force of the falling rays. At the focus of this disc passes the tube, the height of which is that of the mirror. It is of copper, blackened exteriorly, and consists of two concentric envelopes of bell-form, connected at their base by an iron bridge. The larger envelope is 80 centimetres in height, and 40 centimetres in the respective diameters of the respective envelopes, and 22 centimetres. The water is interposed between these two envelopes, forming an annular cylinder 8 centimetres in thickness. The volume of liquid should not exceed 20 litres; so as to leave about 10 litres for the steam chamber. The internal envelope remains empty; it is terminated by a copper tube, which opens on the one hand into the steam chamber, and communicates on the other by a flexible tube, either with the motor or with the fire-place of an alembic. A second flexible tube, connected with the bottom of the boiler, serves to convey steam to the latter. Lastly, on the steam pipe are fixed safety valves.

"As for the envelope of glass, it is a bell 85 centimetres high, 40 centimetres diameter, and 5 millimetres thickness. It allows, then, a constant interval of 5 centimetres between its upper surface and those of the bottom and of the sides of the bottom of the mirror. Thus arranged, the generator should turn about 50 deg. in the hour, about an arbour parallel to the axis of the earth, and incline gradually of the sun. M. Monchot describes how this is provided for.

"The apparatus acts, of course, only in the sun. The following are some of the results obtained with it:—On 8th May, in ordinary good weather, 20 litres of water at 20° C. introduced into the boiler at 8.30 a.m., took, after expulsion of air, 40 minutes to boil; the steam then rose in pressure to 20 atmospheres. This steam was then raised rapidly to the pressure of 5 atmospheres, a limit it would have been dangerous to exceed, notwithstanding the regularity of the heating, the sides of the boiler being only 3 millimetres in thickness, and the total steam supported by these sides being thus about 40,000 kilogrammes. Towards mid-day, with 15 litres of water in the boiler, the steam at 100° C. rose in less than 15 minutes to the pressure of 5 atmospheres, or, in other words, to the temperature of 165° C.

"On 23rd July, about 1 p.m., when there was unusual heat, the apparatus vapourised 20 litres of water, corresponding to a production of 140 litres of steam per minute.

"In default of a motor adapted to the apparatus, M. Monchot used at first a large experimental engine, without expansion or condenser, the capacity of the pump being one-third of a litre. This machine made, in good weather, 80 strokes in the minute, under constant pressure of one effective atmosphere;
it also went when the sun was slightly clouded. Quite recently M. Mouchot has substituted a Berlin's small rotary engine; this has worked wonderfully, and driven at a high velocity a small elevator-pump, which has proved too weak for the generator, and is dislocated.

"Lastly, M. Mouchot has brought the steam from the apparatus under an alicolic, and has thus distilled 5 litres of water in a quarter of an hour. The steam could also be made to rapidly cook vegetables, food for cattle, &c.

"From the results he concludes that the apparatus utilizes, on an average, in that region, about 8 to 10 calories per minute and per square metre. This is, however, only an approximation, because the intensity of the reflected heat constantly increasing from the base to the summit of the boiler, the temperature of the latter is not uniform. The plates of the reflector being only a quarter of a millimetre in thickness, are considered to send to the boiler too small a portion of the incident heat."

METEOROLOGICAL REPORT SHOWING THE DAILY VARIATIONS IN THE QUANTITY OF DAYLIGHT RADIATED FROM THE SOUTHERN SKY AT BLACKPOOL IN LANCASHIRE.

BY D. WINSTANLEY, F.R.A.S.

The aggregate of light during the past week has fallen, the daily average being 596 units, as compared with 728 units during the preceding week. The daily average of light during the month of November has been 562 units, during October 767, and during September 2092.

At a recent meeting of the Edinburgh Photographic Society (on Nov. 3) one of my diagrams was exhibited by the corresponding secretary. Some discussion on the subject, as I gather from the report, ensued, "the outcome of which seemed to be the desirability of some standard unit of illumination which would be understood and generally accepted." "Until that has been attained," say the Edinburgh photographers, "little benefit could be expected from such a course of observation" as I had, in which I have been, and am still engaged. It does not appear to me that so long as observations of the aggregate of daylight are made only by myself, there is any great need for a standard unit which would be generally accepted, as anyone of the days whose light I have measured with the standard can be measured exactly as an equal standard by myself. I have, however, pleasure in stating in exact terms what my unit of measurement really is. Let a piece of standard paper be prepared (see an article by myself in Photographic News, August 6th.) Expose to light until it has assumed the standard tint, and the quantity of light which has been employed is to the unit I have thus far used as '88 to 1.

CHARGE OF DAMAGING NEGATIVES.

M. MAURICE BATISTE, photographer, of Bath, was summoned before the Bath magistrates last week for doing wilful damage to the amount of £1 10s. to two photograph negatives, the property of John Mordaunt, J.P., of Axed Burton, near Bristol.

Mr. O'Donoghue, of Bristol, represented the plaintiff, and Mr. J. H. Dyer, of Bath, the defendant.

The case for the prosecution was, that some time since the defendant called at complainant's residence, and asked permission to take photographs of his house, family, &c. Permission was granted. The photographs were taken, and afterwards having been inspected, an order was given for a certain number, which were supplied. A dispute arose in regard to the defendant's remuneration, and County Court proceedings ensued. The matter was then placed in Mr. O'Donoghue's hands, and he sent one of his clerks (named Bowcher) to Bath to settle the defendant's account. Bowcher visited the defendant at his private house, and offered him money on the condition that he should at once give up the negatives. At first he said he would not do so, but, after some more conversation, consented. He then brought them into the room, and they were six, and he said he would only give them to the two top ones and found them in good order. He proceeded to pack them up, when the defendant said he would do it himself, and left the room with the glasses in his possession, returning some five minutes after with them wrapped up in paper and tied round with string. The theft was afterwards discovered, and Mr. Bowcher returned to Bristol. He placed the parcel in his desk, and two days after Mr. Mordaunt, jun., called at the office. The parcel was produced, and it was then seen that every one of the negatives was in a manner as to be useless. The negatives had, it was said, been paid for by the complainant, but this was denied by the defendant.

In cross-examination Mr. Dyer, the clerk Bowcher adduced, he said that his book was not kept locked, but there were other clerks who could get access to the parcel, although they had no right to. M. Batiste, when he claimed the negatives, told him that the words "including negative" in the bill meant "taking negative." Mr. Dugdale, a photographer, of the Corridor, Bath, examined the negatives, and gave it as his opinion that the injury to them was decidedly maliciously inflicted.

Mr. Dugdale was severely cross-examined by Mr. Dyer, and said that in case of views, the negative, unless there was a special arrangement, was retained by the photographer. He did not think the injuries could have been inflicted either with the finger-nail or a broken piece of glass.

For the defence, Mr. Dyer argued that the evidence produced was insufficient to prove his client's liability even in a civil court, much less in a criminal one. He should endeavour to prove three things—first, that the negatives were the property of M. Batiste; secondly, that no damage was proved to have been done by defendant; and, thirdly, there was no evidence, assuming such damage, to show that the defendant was guilty. M. Batiste had at first claimed the negative as his property, but feeling certain that the complainant would not again employ him, had consented to give it up, and he sent his assistant for him, whilst he (himself) never left the room till he went to pack them up. Be not about to leave the room more than five minutes, and during that short time the prosecution said he had scratched each of the negatives. He (Mr. Dyer) would prove to the Bench that he never took the glasses out of the paper in which Bowcher had put them, but simply put on a second wrapper and tied them up. It was not at all improbable that Bowcher might have accidentally scratched them himself whilst on his way to Bristol. In addition, it might have been done at his friend's office. It had been admitted that Mr. Bowcher placed them in a desk where a child could get at them. One of the pieces of paper in which would see, bad had the corner broken, and it was very likely that some sharp pieces of glass had got between them and done the injury. Mr. G. Saunders, assistant to defendant, proved that his master did not touch the negatives out of paper and, in cross-examination, said he was certain that the broken corner had been caused since the negatives left his master's house.

Mr. Dyer would have called further evidence, but the Bench expressed their opinion that the case was not made out, and dismissed it.

DIAMOND CEMENT, for glass or china, is nothing more than glassless boiled in water to the consistence of cream, with a small proportion of rectified spirit added. It must be warmed when used.
OWNERSHIP OF THE NEGATIVE.

A curious case has recently been heard before the Bath magistrates, in which the old disputed question of the ownership of the negative again recurs. It does not, however, form the primary element in the case as presented before the Bench, nor does the decision in any way assist in solving the old problem. In this case it seems that Mr. Mordaunt, a photographer, at Bath, had printed negatives of the residence at Flax Bourton, of Mr. John Mordaunt, a person of consideration in the district, as we glean from the fact that he is one of Her Majesty's Justices of the Peace; some members of his family being also in the negatives. The negatives were presumably satisfactory, for it appears that, having seen proofs, Mr. Mordaunt ordered a number of prints. Up to this time all is pleasant. The permission to photograph is courteously accorded in response to courteous request, and a number of the pleasant souvenirs of the family mansion, and some of its inmates, ordered and supplied. Then comes the reckoning, often a sad disturber of friendly relations. A dispute arises, the precise details of which we do not know. The stern arbitration of a county court is involved, and so far as we can glean from the necessarily condensed account forwarded by a resident reporter, the claim for remuneration is supported by the judge. The legal representative of Mr. Mordaunt sends a clerk to Monsieur Batiste to pay the account, and to demand, at the same time, the surrender of the negatives. To this Monsieur Maurice Batiste naturally demurred, for, so far as we can see, they were indubitably his own. They had not even been produced by the order of Mr. Mordaunt, who had given permission, not commission, for their production. Finally, he appears to have thought that the possession of the negatives after this rupture would not be a possession worth disputing about, and he consented to give them up, and the attorney's clerk departed with the parcel, doubtless well satisfied that he had been able to settle the transaction satisfactorily. When, however, the parcel was opened by Mr. Mordaunt, he found every one of the negatives scratched, and he arrived at the conclusion that this had been done of malice aforesight, and he charged the photographer with having damaged his property by this act of defacement.

Of course the gravamen of this charge depended mainly on the real ownership of the negatives; for if the negatives belonged to the photographer, no charge could be sustained for damage done to his own property. It was necessary, therefore, to establish the ownership as vesting in Mr. Mordaunt, the customer, before the consideration of the charge of malicious damage could practically commence. The abstract question of ownership does not appear, however, to have been definitely raised. The dispute seems to have been, rather, as to the terms of the contract, or of the bill presented, which contained the word 'negatives' without specification. These words were intended to mean, in the photographer's contention, "including taking the negative," whilst the customer insisted that they implied the surrender of the negative or negatives; but which view of the case was accepted by the Bench is not stated. The decision appears to have been based rather on the general uncertainty of the evidence upon which the charge of malicious damage was based. It was not certain that the scratches were intentionally done by any one, as they might have been the result of a broken fragment of glass in the parcel. It was not certain that the damage, if done intentionally, was done by the photographer, as the negatives were accessible to others between the time of leaving the photographer's possession and the discovery of the scratches. And on this point the defence to be completed, the magistrates dismissed the charge as not made out by the prosecution.

At some time, there can be no doubt, the question of ownership of the negative will be settled legally. When the contemplated revision of the whole law of copyright takes place, it is tolerably certain that when dealing with negatives, some such case will be made as a test of the abstract question of ownership of the negative, as well as the ownership of the copyright therein. Whether photographers can in the mean time come to some common understanding of the proper position to maintain on the subject, is a point worthy of very grave consideration. Possibly the assumption of a bold position, by the use of a receipt form with a line to the effect that in all cases the negatives and copyright therein remained the property of the artist, unless a specific contract were made to the contrary, might be judicious. One difficulty at the present moment is the want of some mode of taking concerted action amongst professional photographers. The Photographic Society takes no cognisance of trade or professional considerations, and there is no organization which provides facilities for the prosecution of such interests, or for concerted action if necessary. We have no scheme to propose, but the subject is, beyond a question, worthy of consideration.

BENGAL PHOTOGRAPHIC EXHIBITION.

Various enquiries have recently reached us as to the best mode of sending contributions to the next exhibition held under the auspices of the Bengal Photographic Society, no especial instructions having been given in the announcements already made, as have been in some former years. Capt. Waterhouse writes to us as follows on the subject:—

"I notice in the News that inquiries are made regarding the best way of sending pictures from England for the Bengal Photographic Society's Exhibition. No special instructions have been given. The Society is an agency in England, but packages can readily be sent by the Indian Overland Parcel Post, through the P. and O. Company, at a cost of about one shilling per pound; or by the Ocean Express, Wheatley's Globe Foreign Express, or by lines of steamers and parcel agencies working between England and Calcutta. Packages should be addressed to Calcutta, addressed to the Secretary of the Bengal Photographic Society, and shall arrive by the 15th January at latest."

DR. VOGEL'S DISCOVERIES FOR EXTENDING SENSITIVENESS OF BRONNICT PLATES.

In the fall results one can see a number of advertisements for extending sensitiveness of bronnic plates. Dr. Vogel's Discoveries have been in use for a considerable time, and are now well known. They consist of a solution of potassium ferricyanide and potassium chloride, which when applied to the plates, renders them more sensitive to light. The solution is applied by incising the plate with a fine instrument and blowing the solution through the incision with a small jet of air. The exposed parts of the plate are then developed with a solution of silver nitrate, and the unexposed parts are washed with water. The process is repeated several times, until the desired degree of sensitiveness is obtained. The plates are then baked in an oven at a low temperature, and are ready for use. Dr. Vogel's Discoveries have been found to be very useful in the taking of photographs, particularly in the case of subdued or dimly lighted scenes.
actic rays is materially extended by the application of colouring matters to the films. In a recent letter he says:—

Since last writing I have continued my experiments in photographing the spectrum on stained dry bromide plates; and though I have not yet finished the investigation sufficiently to arrive at any result conclusively proving the correctness or otherwise of Dr. Vogel's theory, and must, therefore, defer the full account of my experiments, the following is a resume of some results I have obtained, which may be interesting.

In these experiments I have used plates prepared with bromide collodion, without any preservative, well washed and dried. The dyes have been added in some cases to the collodion, and in others applied in a watery solution after washing; the superfluous colour being removed by further washing.

A dry collodion film containing plain, uncoloured bromide of silver is as sensitive to the red rays as any of the coloured films so far as regards the extent of the action, but not its intensity. Wet bromide developed with iron has nothing like the sensitiveness of the dry plate, nor has a moist plate developed with the alkaline developer. This has been observed by Dr. Vogel.

Naphthalene red heightens the action of the yellow rays, decreasing that of the green and red. Rosein largely heightens the action of the yellow rays, decreases that of the green, and appears to have the same action as regards the red rays as naphthalene red; but on plates slightly fogged I have observed reversed action, extending beyond the visible red. The action of the ultra-violet rays, also, seems to be increased by this dye.

A red dye prepared by Judson, called simply red, smelling strongly of turmeric, increases the action of the yellow rays considerably, and, in a less degree, of the red rays, but decreases the action of the green.

The action of annatto is something similar to the last. I have not quite determined the action of coralline, but it appears to increase the action in the green more than the dye already noticed. With long exposures, faint action is continued to the end of the visible spectrum, and the blue region is strongly reversed, showing the lines from below H nearly to F with great distinctness, dark on a clear ground.

Judson's orange heightens the action in the blue and green; below E the action gradually grows fainter, and may just be traced to the end of the visible spectrum. On some plates slightly fogged I have obtained a faint image of the A line reversed.

Phosphin (Judson's) produces an effect somewhat similar to the orange as regards the blue and green, but all action ceases at D on an unfogged plate.

Naphthalene yellow seems to weaken the action of the spectrum generally; the strongest action is in the blue, below F; faint action continues to about B.

Picric acid yellow acts in a very similar way to the last.

I have not been able to determine the action of green dyes satisfactorily. The mixed greens do not work well in collodion, and when applied in a watery solution do not stain the film a good green. I am expecting some suitable samples from Europe.

Chlorophyll heightens the sensitiveness in the red, with a marked band of increased action about B, as noticed by Becquerel.

The action of blue dyes is nearly always identical with that of the yellows; strong action is confined to the blue, and gradually decreases through the green and yellow to about B. I have never had a trace of increased action in the orange with several blue dyes I have tried. On slightly fogged plates reversed action has been distinctly visible on the red above and below A.

Purple shows strong action between H and F, weak action between F and D, strong action again between D and C, followed by gradually decreasing action to A; these boundaries of actions being very distinctly marked.

Viola acts in a similar way to the last.

In nearly all cases of long exposure of stained and unstained bromide plates the spectrum is reversed in the blue and violet region; but in some cases the lines commut with great distinctness reversed, i.e., dark on a clear ground instead of clear on a dark ground. This effect seems also partly due to the action of the alkaline developer, and is more marked on plates of certain colours than on others.

I have already mentioned a reversed action of the red rays noticed on plates prepared with rosein and slightly fogged. This effect has also been observed on plates stained with other colours, orange, green, and blue, but I have found it most marked on plates stained with aniline blue dye obtained in the market here. In alcohol the solution is of a very deep blue, but the watery solution is a rich violet or purple. On plates stained with this dye of a light lavender tinge when dry, and which were slightly fogged after development, I obtained very distinct images of the A and other lines in the red reversed, and also three or four groups of lines in the extreme red below A.

On plates stained with the same dye, but perfectly free from fog, this reversed action was not perceptible, and direct action with long exposures only extended as far as A. I had not obtained any lines in the red, or plates prepared with bromide of silver alone unstained, I had attributed it to the action of the dyes, but now it appeared to be evidently connected with the fogging. Recollecting that in the early days of the Daguerreotype, thirty years ago, Sir J. Herschel, Draper, Fizeau, and Claudet had observed a similar reversing action of the red rays on plates that had been exposed to a preliminary exposure to white light, I tried the effect of a similar preliminary exposure of one of the stained dry plates, before subjecting it to the action of the spectrum, and, as I anticipated, a strong bleaching action manifested itself in the red part of the spectrum, and after development the plate showed a reversal of the whole spectrum, from above H to below A, with a minimum of action about F.

This action of the red rays has not, so far as I have been able to ascertain, been noticed before on collodion plates, and is certainly a most interesting extension of Dr. Vogel's valuable and important discovery of the effect of dyes in modifying the action of the spectrum upon dry bromide plates. I need not mention the practical advantages likely to accrue from the application of this method in photoscopic photography.

I have not yet had time to ascertain the action of the red rays on plates stained with other dyes than the particular blue I have mentioned, and subjected to a preliminary exposure to white light, but I know that the reversing action may be expected on many others, and I have reason for believing that under some circumstances it may also be obtained on wet plates with iron development.

I shall investigate the subject further as I have opportunity—now, unfortunately, very scanty—and hope to make known the results more fully on a future occasion.

EMPLOYMENT OF PERMANGANATE OF POTASH TO REDUCE THE INTENSITY OF NEGATIVES.

BY M. LETALLE.*

To modify any portions of a negative which, from some reason or another, have been rendered too hard, the use of permanganate of potash will be found useful, as by its means the dense portions of the film are rendered less opaque, while the half tones are not altered in any way. The method of proceeding is the following:—

* Moniteur de la Photographie.
1. In the case of negatives whose high lights are too opaque, either by reason of the contrast of light on the model, or on account of the opposite photogenic colours of the subject, or in the case of negatives which have been too much intensified with iron and silver, you proceed, after fixing, thus:—Into a beaker or other suitable vessel is poured sufficient permanganate solution to cover the plate, the solution being made up of,—

Water 1000 cub. cents.
Permanganate of potash.... 2 grammes.

The liquid is poured over the film and allowed to act for about a minute; the plate is then tilted, washed with plenty of water, and fixed once more with,—

Water 100 cub. cents.
Cyanide of potassium 2 grammes.

You wash again, and if the cliché is still too hard, the operation is repeated until the desired harmony has been secured.

2. In the case of negatives intensified with pyrogallic acid, the employment of more concentrated solutions must be had recourse to, either before or after the film has been fixed. Solutions of the undermentioned strength may be employed,—

a.—Water 1000 cub. cents.
Permanganate of potash.... 5 grammes.

b.—Water 1000 cub. cents.
Cyanide of potassium 4 grammes.

This simple method of modifying negatives will doubtless be welcome to photographers, for it has the advantage of not altering any of the delicate half-tones of a negative.

SOME REMARKS ON ENLARGEMENTS.

BY J. C. LEAKE.

At the present moment the question of direct versus enlarged pictures possesses the highest interest to all photographers; and it is only to be expected that men who, as a rule, are so much interested in their work, and bring so much careful study as well as ability to bear upon it, will hold opinions of the most adverse character. Nor is this a fact which need be regretted. It is said that "unity is strength," but it should also be remembered that uniformity is often weakness. There is, happily, a perfect unity among photographers as to one important matter, inasmuch as they are all aiming at producing works of the highest order, and of this the very diversity of the processes employed is proof positive. For ourselves, we have no hesitation in declaring that we are in favour of enlargements, and we hope to be able to show in this paper that we have right on our side; if not, we only hope that our photographic brethren will at once set to work, with good will, and make converts of us as speedily as possible.

But it would be of small service to merely state that we are in favour of this or that process, unless we could give some reasons for our preference, and in this case reasons seem to be "as plentiful as blackberries." One meets us at the very outset,—the difficulty of obtaining and working with large lenses. We will suppose that we wish to produce pictures upon the whole sheet of paper—that is to say, twenty-two inches by seventeen, as in any of our studios, in London at any rate, shall we find the necessary lenses and cameras? while if these be forthcoming, upon how many days in the year can they be employed? It is true that our Dallmeyers and Voghtlanders have brought all their skill to bear upon the construction of large lenses, but yet there is the obstinate fact staring us in the face that, in such instruments, excellent though they are, do not give such perfect definition; and, more important still, do not work so rapidly as those of smaller size.

Besides this, however, there is another matter of nearly equal importance—namely, the expense of working on plates of large dimensions.

One cannot always succeed, sitters will move, and the formula, "Fix your eyes upon that spot, and put on a pleasing expression," does not always work, or at least is not always to be trusted. Another point of consideration is this: no photographer of standing would wish a sitter to keep a picture with which he was not satisfied, and, unfortunately, our sitters are not always easily pleased. Now in this case there would be nothing for it but to keep taking the discontented man over and over again, a proceeding not likely to be pleasant, or profitable either, to the artist or his client. On the other hand, if only small negatives were taken, two or three would be made at once and submitted for approval; while even if these failed, the cost and trouble of a resitting would be infinitely less than in the former case.

There is, however, no need to multiply cases. Every practical photographer will admit those facts, namely, that large lenses are more costly, more troublesome to work, do not give such perfect definition, and are slower in action than those of smaller size, and that, consequently, the cost and difficulty of working are greatly increased.

If, then, we are willing to admit that these serious difficulties are inevitable when working with large lenses, and taking large pictures direct in the camera, the practical question at once arises, How are we to make enlargements which, shall, at any rate, be equal to direct work in the camera?

This is a large question indeed, and one which requires much consideration before a satisfactory answer can be given. Very much will depend upon the circumstances of the case. One thing, however, is certain, namely, that it is a matter of vital importance to secure a tolerably permanent result. It is useless to go on making pictures which, some day or other, must fade. And as we believe the most important branch of the photographer's work will be that of making large portraits, so we are convinced that the utmost care must be taken to ensure permanence, if the art is not to be allowed to fall into utter decay. Whatever process, therefore, be employed, it must be one which gives promise of stability in the finished picture.

Bearing this in mind, we have to consider which process out of the many now known will produce the best results, being, at the same time, workable at a moderate cost, and tolerably well available for various classes of portraits.

There are two great classes into which enlargements may be divided,—namely, those by the direct method, such as the ordinary solar camera pictures and collodion transfers, and those by the double, or, perhaps, rather treble process of making first a transparency; then an enlarged negative; and, finally, a print by any of the known methods. Of these we have to choose. The solar camera prints are the best, that is, in how many of our studios, in London at any rate, shall we find the necessary lenses and cameras? while if these be forthcoming, upon how many days in the year can they be employed? It is true that our Dallmeyers and Voghtlanders have brought all their skill to bear upon the construction of large lenses, but yet there is the obstinate fact staring us in the face that, in such instruments, excellent though they are, do not give such perfect definition; and, more important still, do not work so rapidly as those of smaller size.

Besides this, however, there is another matter of nearly equal importance—namely, the expense of working on plates of large dimensions.

One cannot always succeed, sitters will move, and the formula, "Fix your eyes upon that spot, and put on a pleasing expression," does not always work, or at least is not always to be trusted. Another point of consideration is this: no photographer of standing would wish a sitter to keep a picture with which he was not satisfied, and, unfortunately, our sitters are not always easily pleased. Now in this case there would be nothing for it but to keep taking the discontented man over and over again, a proceeding not likely to be pleasant, or profitable either, to the artist or his client. On the other hand, if only small negatives were taken, two or three would be made at once and submitted for approval; while even if these failed, the cost and trouble of a resitting would be infinitely less than in the former case.

There is, however, no need to multiply cases. Every practical photographer will admit those facts, namely, that large lenses are more costly, more troublesome to work, do not give such perfect definition, and are slower in action than those of smaller size, and that, consequently, the cost and difficulty of working are greatly increased.

If, then, we are willing to admit that these serious difficulties are inevitable when working with large lenses, and taking large pictures direct in the camera, the practical question at once arises, How are we to make enlargements which, shall, at any rate, be equal to direct work in the camera?

This is a large question indeed, and one which requires much consideration before a satisfactory answer can be given. Very much will depend upon the circumstances of the case. One thing, however, is certain, namely, that it is a matter of vital importance to secure a tolerably permanent result. It is useless to go on making pictures which, some day or other, must fade. And as we believe the most important branch of the photographer's work will be that of making large portraits, so we are convinced that the utmost care must be taken to ensure permanence, if the art is not to be allowed to fall into utter decay. Whatever process, therefore, be employed, it must be one which gives promise of stability in the finished picture.

Bearing this in mind, we have to consider which process out of the many now known will produce the best results, being, at the same time, workable at a moderate cost, and tolerably well available for various classes of portraits.

There are two great classes into which enlargements may be divided,—namely, those by the direct method, such as the ordinary solar camera pictures and collodion transfers, and those by the double, or, perhaps, rather treble process of making first a transparency; then an enlarged negative; and, finally, a print by any of the known methods. Of these we have to choose. The solar camera pictures are the best, that is, in how many of our studios, in London at any rate, shall we find the necessary lenses and cameras? while if these be forthcoming, upon how many days in the year can they be employed? It is true that our Dallmeyers and Voghtlanders have brought all their skill to bear upon the construction of large lenses, but yet there is the obstinate fact staring us in the face that, in such instruments, excellent though they are, do not give such perfect definition; and, more important still, do not work so rapidly as those of smaller size.

Besides this, however, there is another matter of nearly equal importance—namely, the expense of working on plates of large dimensions.
they are simply worked, and, doubtless, permanent in a high degree.

The now generally adopted process—that of making an enlarged negative—is, in many respects, excellent, as it allows of a final printing of the proof in permanent pigment. This process is, however, of necessity more troublesome, and consequently more costly, than the direct methods of enlarging processes. Any one, of course, the three operations to be performed of making a transparency, a negative, and a print. Moreover, there can be no doubt that in nearly every case the enlarged negative will require considerable work before a presentable picture can be produced from it—a fact which must be taken into account when processes are varied from a commercial standpoint.

It would appear, then, that there are two courses open to the photographer—either to take an enlarged negative or a transfer—the question being which is the best method to adopt. In all probability, both will eventually be extensively employed. The chief difficulty in the way of the negative process arises from the fact that in most cases but one or two negatives are required, and that the cost of production is thereby materially higher than if these could be made by the direct method. On the other hand, the collodion transfers hitherto produced have not been altogether successful, on account of their cold and unpleasant tone. Whether these defects can be overcome remains to be proved. We think they can, when this will at least become one of the most important of all photographic enlarging processes, being at once simple, cheap, and easily available by every photographer. Besides this, our experience has been that a direct enlargement from a negative is, in many respects, superior to one or two or three times removed, inasmuch as all defects, either in the transparency or the second negative, must of necessity be reproduced in the final result.

We will make these observations on account of the remarks frequently made as to the best process of enlargement by many photographers; and because we consider that there really is no test, but that each of the two mentioned in this paper possess some qualities which will render them useful.

Correspondence.

COLOURED COLLODION ON THE BACK OF THE NEGATIVE.

Dear Sir,—In your issue of December 3rd I see that M. Fritz Luckhardt has invented a method of retouching which gives good results. By putting an alcoholic solution of aniline red into normal collodion, and applying it to the back of the negative, I have done a similar thing two or three years ago, not thinking so simple a thing worth publishing. Instead of using aniline red I use Judson's dyes, any one of which I think the best for the subject in hand. I drop a few drops of the dye into the colloidion, and scrape off with a knife what I don't want covered; I find it a very good plan.—I remain, dear sir, yours truly, N. Pepper.

RAPIDITY OF MR. KENNETT'S GELATINE-GELATINO PLATES.

Dear Sir,—I find in the notice in your pages of Mr. Warnerke's clever arrangement of roller dark slide and filter, your contributor there gives his opinion that with present light, and in a well-lighted studio, a tolerably good negative may be secured in from forty to fifty seconds' exposure; but with dry plates, let the exposure be what it may, never will a negative be secured worth talking about; or, in other words, he looks upon the thing as an impossibility to secure a tolerably good negative with a dry plate at this time of the year. He also cites Mr. Warnerke's opinion to the same effect. Mr. Warnerke, I think, spoke only of his own plates when he admitted they were not so rapid as he at first thought them. If he spoke for himself, he ought to know best if he was right or wrong; if he spoke generally, then I say both he and your contributor are wrong. It is at all times hard to bring our minds to disbelieve in what we have been taught all our lives to believe in; in this case, photographic lives I mean. And here I am prepared to show that dry plates can and are made that will not only do the work as well in a dull light as a wet plate, but will do it in even a shorter time than the wet plate.

Certainly have been known in the photographic world but a short time, although for amusement I have followed photography for more than a quarter of a century; and I don't expect for a moment that my opinion would stand for much with photographers generally, against that of a gentleman writing under editorial sanction in the Photographic News; but in this matter of dry plates I am so convinced that he is wrong that unless he has made up your mind not to be convinced, I will even convince him and you of the error of the belief stated. I herewith enclose you a print, the negative of which was taken in the middle of last December, the time of exposure twelve seconds, with Dallmeyer's No. 2a, time of day half past twelve. The plate was coated in the May previous, or six months before exposure.

Now this is not a picked plate out of hundreds exposed, but simply a plate taken at random, from others put aside to try their keeping qualities; the exposure was made by Mr. Havill, of Bond Street, and in his studio.

Now, after this publicly expressed opinion on the capabilities—or, rather, the incapabilities—of dry plates, and your examination of the print (the negative you shall also see), I think you will give a candid and unbiased opinion as to the inferiority of it to a wet plate taken under the same conditions of a December light? As to the time I will say nothing, as that, you will observe, is just about one-fourth that, in your pages, it is said a tolerably good negative with a wet plate might be taken. I believe you have seen the interior of that room. Mr. Miner, taken by me, is all wet plate. They certainly cannot be said to be taken in a good light, yet one was taken in one minute and ten seconds; the other in one minute. I think you will have to withdraw your implied indorsement of the expression that, with a bad light, dry plates will not answer under any circumstances. Yours truly,

R. Kennett.

[The opinion of the gentleman of our staff, writing under the heading "Photography In and Out of the Studio," is, beyond a question, true of the majority of, but not all of dry plates, and his experience of that of dry plate workers. In regard to some of the rapid dry plates issued commercially, the manufacturers definitely announce that they are unsuitable for exposure in a bad light. But our correspondent should remember that in general photographic terminology the term "dry plates" without other qualification is always understood as meaning "instantaneous plates." Calotype and albumen plates are designated by their special names; and so with Mr. Kennett's gelatine plates. So far as we know, the rapidity of his plates is not doubted, and the examples, which are excellent—one a perfect portrait, the other a fine interior—confirm all he says on the subject.—Ed.]

FROST IN THE STUDIO.

Dear Sir,—The following hints of advice may, perhaps, save some of your readers both £ s. d., and inconvenience. In frosty weather empty all the water out of the syphon of your washing trough, or you may find it broken and filled with ice.—I remain, yours truly, Frank M. Surcliffe.
in all parts of the world know that they were invited to send pictures to Edin burgh, it would stimulate the members of the Society to give more care in the work of the coming season, as they would always feel that their work was more or less being developed might be worthy of a place in the exhibition. There was one portion of Mr. Asher's paper, however, to which he must take exception, namely, that in which M. Salomon's pictures were spoken of. He thought, could hardly let that go forth as the opinion of the members, without some qualification. It seemed to him necessary to distinguish between a perfect photograph, and a picture that had been made what it was by other photographic art. The subject should be removed from this discussion, and when the word photograph was pronounced, one should think of a really beautiful picture first made their appearance in England there was much diversity of opinion as to whether they were purely the result of photography, or whether they did not owe much of their beauty to skilful touching up, and that, with a view to set the question at rest so far as the point was concerned, a fine copy was brought to one of the meetings, and, in presence of the members, removed from its mount, and washed with a sponge, the result being the removal of such a quantity of colour as to leave the print in a very different state from that in which it originally was. No one, he continued, could admire the pictures of M. Salomon more than he did, but he held that a picture that depended for much of its beauty on the skilful application of the artist's brush was not correctly described by the title of a perfect photograph.

It was a position to which the autochrome Kammerdinner fell short of his sentiments, as he believed that an exhibition properly managed could not fail to benefit all concerned. He had no sympathy with the views held by Mr. Nelson, and that the exhibition would not be the worse for the absence of his name. The autochrome Kammerdinner was finished by an artist of sufficient skill to supply the deficiencies of an imperfect instrument, which the camera undoubtedly was. He admired the works of M. Salomon very much, and although they might in some cases be largely wrought up by the autochrome Kammerdinner, and in others by nature, it could not be denied that the public would continue to insist on the necessity for the restoration by the artist of that which the camera takes away.

Mr. Davis said that the question under discussion was no question of trade; it was simply, What can photography do for art? And the exhibition was intended to answer that. It will show, not that photography is indebted to art, but that art is indebted to photography; and the two should come together as twin sisters. He thought that the subject would be better attained by throwing their energies into the work of getting up the proposed exhibition.

Mr. Asher then read a paper on "Exhibitions, a Stimulus to Advance True Progress in Art Photography" (see page 681). This seemed to be an attempt to give the Society a quiet, peaceful, and friendly advice, and he was indebted to Mr. Asher for the lucid manner in which he had brought the claims of the exhibition before them. One great object of photographic societies was the furthering of true progress in art, and of the value of the work that the tendency of exhibitions was to show what was doing in all parts of the country, and, by drawing out the best work of the best men, they would be enabled to see exactly how far they were behind.

Mr. Nadar said that he was highly approved of the President's suggestion to apply some of the Society's surplus cash in the purchase of first-class photographs. He held the belief, which was now widely entertained, that exhibitions, instead of elevating the public taste, rather trained artists down to suit the popular demand. He would not support the proposed exhibition, as, instead of being a collection of bona-fide photographs, it would consist, to a large extent at least, of retouched productions. No doubt prints of that school sometimes showed that the negatives had been painted with much skill, but in a general way, in spite of their being improperly stated as "higher art," he could not help regarding them with extreme disfavour. An exhibition of untouched photographs would, he thought, be of much benefit, and it would receive his hearty co-operation; but such an exhibition as that now proposed he could not support. Mr. Asher, he said, had not made the point in his paper, which he considered to be the fact that a large and imposing exhibition would, if it became popular, set the public a-talking, and, by increasing the interest in photographs, give a much needed stimulus to photography as a true art.

Dr. John Nicol agreed with almost all that Mr. Asher had said, and had no doubt that from the zeal which he had infused into the council, the proposed exhibition would prove a triumphant success. He was glad that the question had been raised in such good time, as, while it would let photographers...
exhibition of photographs. He held that the Photographic Society would be fully justified in organising such exhibitions, and inviting all the people in the country to come and be educated. It was a well-known fact that numbers of the best workers were in the habit of going to London on purpose to see the annual display there, and they generally come back full of praise of what they had seen, and were always better for having done so. It was highly important that the first-fruits of such an exhibition were the higher education of the photographer himself, and, through him, his customers also became educated in their tastes. By attempting a high-class exhibition, they would be trying to raise the standard of photography, and, in the long run, he thought the sympathy of the meeting should be with Mr. Asher, and hoped the Society would go heartily into the undertaking.

Mr. Asher, in reply, said that he remembered something of the School of Saloman's picture, mentioned by Dr. Nicol, and he thought at the time, and still thought, that it was subjected to cruel treatment. He had twice visited M. Saloman in Paris, and had been permitted to examine his negatives and method of working, and could assure the members that nothing more was done to increase the possibility of the plate slipping off. The dipper my also be used as a holder for coating or developing plates. It is made of hard wood, and in form like the letter U, with the lower leg elongated. On the two upper legs, which form the lower end of the dipper, are two paper-covered plates, laid on the plate rests, and along the piece which forms the handle, cut a groove. A strip of wood is dovetailed into this groove, and slides easily up and down. The plate is placed on the two pins, and the sliding piece pushed down, and as it has a notch on the end which fits on to the roller, the latter is turned, and the plate is pushed up again. Mr. Nicol states that he sonic the dipper for some hours in an old bath, after which it may be used without fear of injuring the silver solution; and that he has had one in constant use for fifteen years. The dipper was examined with much interest, and the design was much admired.

Mr. Davies said that Mr. John Thomson, when in China, had broken his only dipper, and made one by tying together three pieces of bamboo in the form of a triangle with two long sides, and that he had it satisfactorily through his whole campaign. Sometimes at sea he (Mr. Davies) had made one in a similar way, but it had thoroughly bamboozled him, as it had so injured the bath that no amount of potash permanganate was sufficient to remove the organic impurities which it had acquired.

Mr. Batchford suggested ebonite as a suitable material for its construction, and had no doubt that it would be found a very popular tool. In the absence of ebonite, he recommended that the wood should be strongly heated, and then dipped in melted paraffin, which he knew from experience would be perfectly effective. Dr. Nicol thought the dipper the best that he had seen, and should get one made at once, as he had often felt the annoyance of a plate slipping off, and of the glass dipper getting broken under circumstances where it was not easily replaced.

Mr. Nicol then laid out the numbers of the photographs—a portion of his work during the season—and said that at last meeting, when, in consequence of an invitation in the billot, a number of the members had brought their summer's work for inspection, he felt that the time at their disposal did not admit of anything like a proper examination, or of any discussion on the merits of their productions. He then suggested that, instead of all the members' work being shown in one evening, one only should exhibit his pictures, and invite criticism, each evening. In this way ten minutes at the end of each evening might be profitably employed, as if the more experienced of the members would only speak freely, pointing out the faults and suggesting improvements, much valuable information would be elicited. He then handed the pictures round the table; but although many were ready with praise of several, considerable difficulty was experienced in getting up the kind of criticism courted.

Votes of thanks were given to Mr. Asher, Mr. Smith, and Dr. Nicol, and the meeting adjourned.

Liverpool Amateur Photographic Association.

The annual meeting of this Association was held on Tuesday, the 30th ult., at the Free Library, William Brown Street; the President, the Rev. J. D. Riley, in the chair.

The minutes of the previous evening were read and passed.

The Secretary then read the following:

Annual Report.

In bringing before you the twelfth annual report of this Association I am still able to say there is no falling off in its prosperity. By death and resignations we have lost five old members, but new ones are taking their places, and I do not doubt that our numbers will steadily increase.—Proceedings.

A few papers have been read this session, but the meetings have been well provided with interesting objects and specimens of the different processes, thus supplying plenty of material for discussion.

Mr. W. Atkins read a paper on "The Keeping Qualities of Felts Emulsion," and Mr. T. Clarke one on "The Beer and Albumen Process." Mr. Ellerbeck gave an exhibition of chemical experiments with the aid of the solocion. A popular lecture was given which was largely attended, and gave much pleasure to both members and their friends.

A special meeting was held, at which Mr. Taylor gave a practical demonstration of the working of the autotype process. The gelatine process and the colloido-bromide photographic processes have been prominently brought before the members during the past year.

The excursions have been to Lynm, Hardwys and Much Wenlock Abbeys, and to Llangollen; but the attendance, owing chiefly to the unfavourable state of the weather, was very small.

The balance in the hands of the Treasurer is satisfactory, being £25 3s. 5d.; out of which, however, will have to be taken the cost of the presentation print for the past year.

The members then proceeded to the election of officers for the ensuing year, which was duly carried out. Mr. W. Atkins; Vice-President—Rev. H. J. Palmer and A. Tyser; Treasurer—Dr. Nicol; Hon. Secretary—Wm. Murray, 68, Dale Street; Council—Rev. J. D. Riley, Thomas Clarke, W. M. Houlgrave, W. B. Roberts, and L. W. Weber take the place of those retiring.

The usual votes of thanks to the retiring officers were carried.

The Rev. W. E. Batty was elected a member of the Association.

Many large numbers of photographs were exhibited, being the year's work of the Rev. J. H. Palmer, the Rev. J. D. Riley, H. Houlgrave, W. H. Kirkby, and others.

Mr. J. H. T. Ellerbeck exhibited some of the flexible glass plates taken by Mr. Warner's process. He (Mr. Ellerbeck) said that to use the process advantageously necessitated the use of the roller slides. This was expensive, but he had found no difficulty in attaching the tissue to glasses by means of India-rubber solution. These were put into the usual dark slide, and when exposed the films were detached from the plate, which was readily developed to the desired stage, and other sensitive tissue replaced on the same glasses. By this means half-a-dozen glasses only were required for a lengthy tour, the weight of a large number of tissues being unnecessary. He found them as sensitive, if not quicker, than the Liverpool plates.

In reply to a question how he was able to get his gelatine negatives so much denser than formerly, the Rev. H. J. Palmer replied that he had used the plan recommended some time back in the journals for intensifying
colloidal-bromide negatives, viz., by immersing the negative in a solution of two ounces of chloride of copper to ten ounces of water. This caused the picture to disappear; but after washing and redeveloping with a drachm of solution A to one ounce of solution B the picture could be brought out with any desirable intensity.

A.—One ounce of ammonia to eight ounces of water.
B.—Three parts of pyrogallic acid to one ounce of water.

A trial then took place as to which was the better lantern lamp—a slide projector or the Turnbull. Mr. Atkins exhibited the slide projector, and Mr. T. Clarke the Turnbull lamp. After a trial in various ways, showing transparencies, and also with and without reflectors and curtains, the verdict was pronounced in favour of the slide projector.

The Secretary then gave a practical demonstration, showing that with the simplest apparatus toching was easier than to prepare transparencies with the Autotype tissue. The meeting was afterwards adjourned until the end of January, 1876.

Talk in the Studio.

The Photographic Society.—The next meeting of this Society will be held at 9, Conduit Street, Regent Street, on Tuesday next, the 14th inst., at 8 o'clock, p.m., when Mr. Viles will read a paper on "Duplicating of large plates in the field." On January 11th, 1876, Col. H. Stuart Wortley will read a paper, the title of which will be announced in due course.

Annual Dinner of the South London Photographic Society.—The annual dinner of this Society will this year take place on Friday, December 1st, at Anderson's Hotel, Fleet Street. Carrying out its essentially fraternal character, the Society does not confine the invitation to members only: photographers and friends generally, who wish to be present, can obtain admission, by communicating with the Hon. Sec., Mr. E. C. Cooke, 70, Queens's Road, Peckham.

Tilly's Natural Backgrounds in Portraits.—Mr. Tilly has sent us some examples of his mode of introducing natural backgrounds, which admirably illustrate that from the same transparency it is possible to produce either soft, distant, atmospheric effects, or the most sharply defined effects of close studio.

Ornamental Engraving for Portraits.—We have been favoured by Mr. S. G. Payne, of AYLESBURY, with some examples of very pretty ornamental engravings in portraits: a graceful combination of ferns, flowers, grasses, and ribbon tastefully wreathed around a neat oval frame, into the centre of which the figure is vignetted, on a light ground; the framework being produced on a dark ground. The effect is very pretty, and would add much to the interest of portraits intended for presentation or for presentments. Remains are produced by the ordinary engraving process, and admirably photographed, and will serve capital for drawing copies, for which they are intended.

The Photo-engraving Co., New York, has issued some very creditable specimens of printing blocks prepared for photographic purposes, the process used being invented by Mr. J. C. Moss. A negative is first taken of the subject, which must consist of black and white dots or lines, that after acquaintance with a secret department, appears as a plaster mould from which a stereo is obtained. The "proof" taken, the plate is passed to the finisher, an expert wood-engraver who supplies deficiencies. Speaking from results, the process resembles Dallas's. The copy must consist of sharp black lines on white paper—Stationery.

A new process for manufacturing acetic acid has been taken up by the Tyne Acetic Acid Company. It consists essentially in taking advantage of the property of chloride of calcium and acetate of lime to form crystals of the double salt, to eliminate the tarry and other objectionable matters. By this new process a pure acid, well adapted for pickling purposes, is cheaply produced.

Correspondence.

CHROMO.—The production of a "du" yellow" or "sirine" print used to be at one time a matter common enough, and more photogenicists were anxious to know than could be effectual. As a rule, long immersion of an untuned print in a somewhat weak acid solution of hypophosphite of soda will produce the result you desire. Or, if you immerse an untuned print in an ordinarily good and fresh fixing bath, and then place in water, soda very, very weak, and remain some time, you will probably obtain the result you require.

J. B. BILLING.—Soda water glass is simply silicate of soda, and may be obtained without difficulty of most chemists.

IODIUM.—The production of pure white if some blacks is always difficult in developed prints. It is not very difficult to get intense blacks if you prolong development, and, if necessary, add all the development liquid to the white. We cannot give you better formulas than you will find in the work in question. Care and skill in manipulation alone will help you, as the formulas in question are excellent. In the first place, it is important to have good papers, and the subject of keeping the paper from light in every stage of the process; and in the next place, the amount of exposure is very important. If these are kept up you mention used, very good prints may be secured. Personally, however, we prefer producing an enlarged negative, and printing from it.

The Damage to Negatives at Bath.—Since our article on this subject was in print, a "Western Photographic" sends a newspaper paragraph containing the same details, and adds a few comments which are to the purpose. Be yours: "I know nothing more of the case than what is here reported, but I may perhaps be allowed to say that I think it a pity that Mr. Bastie should have so far recognised the plaintiff's demands as to have given up the negatives. Photographers have always been known for their writing or executing orders, never to admit that the negatives belong to their customers; and should it ever happen for this to be tried in a court of justice, I hope the witness will be able to resist such a demand, by supporting the unfortunate one who has to fight the battle."

CONFESSIONS OF A TRAVELLER.—Your troubles being one with which we have all been associated, it is somewhat natural for you to be met by an exhaustive process, trial after trial. We should always change the developer entirely, and try one of a simpler character. Try the following:—Water 1 ounce, potassium ferric nitrate 1 grain, acetic acid 15 minims, spirits of wine quinacrine 5. Glycerine is at times difficult to obtain pure, and it may possibly be a source of trouble. Thanks for the newspaper cuttings, which are most interesting, and showed in a most satisfying manner how a good man may maintain the status of his profession by himself being worthy of respect.

G. P. J.—Your negatives sent for examination certainly present a variety and complication of symptoms which seem to defy diagnosis. Collodion and bath seem alike out of order, and we should be strongly disposed to discard both, and begin de novo.

The collodion is either old and rotten, or it has been made from bad pyroxylone and weak solvents (that is, solvents containing too much water). The silver bath, we should judge, had been made from impure distilled water. With such a complication of bad conditions, pinholes, crappiness, varied stains and size marks, and a general rotten granular condition of film, you should have given us some details of history and treatment. On an examination of your negatives, we should perhaps suggest a new silver bath, and another sample of collodion.

Several Correspondents in our next.

B. D.—Much dependence must be placed on seeing by themselves, and demonstration of the whole. One must have a glass of 0°, 50°, and 60° Fah. A steady temperature of 50° feels, by comparison with the outer atmosphere, tolerably comfortable; but that is the lowest temperature at which the chemicals should be kept. A 35-grain bath is, on the whole, better for winter than the usual 30-grain solution. A hot iron developer is sometimes useful in a bad light; but it requires working with care and judgment, or fog will be the result.

M. R. D.—During the frosty weather it is often absolutely necessary to warm hypophosphite solution, as, at a low temperature, it loses its fixing capacity. It is a good plan to mix it with warm water, and use it at about 65°. See answer above to B. L. D.

Z.—The reason, we presume, why, in the majority of photographic portraits, the shadow is on the Retiring side of the face is, that it is easier to work on to that side, in the majority of cases, it is most effective so. In some portraits by great painters the retiring side is lighted, and the nearer portion kept in moonlight. This, when well managed, and with suitable faces, is very effective. Occasionally it is with advantage in what are termed the "Rambaud" portraits.

BOOKS RECEIVED.—"Old English Homes," by Stephen Thompson. Read, with the thanks of the house.

Photography in and out of the studio.

Reconnoitring from Balloons.—A New Sensitive Photometer—Successful Photographers.

Reconnoitring from Balloons.—The study of balloon photography, and more especially reconnoitring from balloons, will receive a serious check from the recent accident in Paris. A balloonist has been killed in carrying out military service, and in the wars of the first Napoleon a balloon corps existed for the purpose of reconnoitring the enemy. In this country, as well, considerable attention has been given to the subject, and about fifteen years ago Mr. James Glaisher, F.R.S., the President of the Photographic Society, gave his assistance in making some ascents at Woolwich. In this instance the matter was not carried very far, and indeed, beyond the marching about of a few thousand men in the neighbourhood of the balloon with a view of ascertaining how much could be seen of the troops from above, the authorities would not consent to carry on experiments. Nadar, the well-known photographer and aeronaut of Paris, gave considerable assistance to the French Government in carrying out the peculiar service, par ballon monte during the siege, brought the subject of balloon reconnaissance once more forward in France a few years ago, and this clever inventor succeeded in devising a simple apparatus for taking instantaneous photographs from the car, such as would be extremely useful to an advancing general, or one unacquainted with the country in the neighbourhood of his forces. Nadar experienced great difficulties in testing a picture machine; but it is true that M. Siemens informs us, that when absolute darkness again intervenes, a little time elapses before the selenium returns again to its normal condition, but this, to photographers at any rate, would be of little consequence, since it is rare indeed that they have to work in perfect obscurity.

Successful Photographers.—Although, perhaps, it is too much to say that the surest way to become Lord Mayor now-a-days is to take up the profession of photography, still it cannot be denied that by so doing there is at any rate a chance one day of becoming Alderman, as witness two very recent instances, those of Mr. Alderman Mayall, of Brighton, and Mr. Alderman Nottage, of London. Last week Mr. Alderman Nottage celebrated his installation as one of the magistrates and chief officers of the City of London by a grand banquet, and we were glad to see among the guests several gentlemen who were engaged in the photographic art and science. On an occasion like this, when there must have been friends and public men innumerable to be invited, it was a pleasing reflection to think that Mr. Nottage had not forgotten, in the days of his prosperity, to welcome some of those who had laboured with him in the field where he has reaped so rich a harvest. It is the custom, we know, for most photographers to cry out about the unprofitable character of their profession; but, somehow or other, when one comes to inquire into circumstances, there are few first-class men, either in this country or abroad, who have not done well in their way. Some years ago we remember a gentleman remarked to us on the bad prospects of the art, and said that it was impossible to point to half a dozen men who had made ten thousand pounds by photography; and on our return a short time later to another friend, this latter assured me at once that the former had undoubtedly amassed that sum, or more, himself. And it is certainly true, as many will bear out, that there are at present in this country good many gentlemen who have followed photography as a profession with very good results to themselves, and we, personally, could, without hesitation, name a dozen such gentlemen who have earned fortunes, big by means of the cameras. On the Continent it is the same. Firms like those of Reutlinger, Walery, and Liebert, of Paris; Loeschner and Petoeh, and Hanfstängel, different times of the day and from different sources, and it will be in controlling experiments connected with this subject that M. Siemens' instrument may be of value to the photographer in his art. Light, it appears, seems to influence selenium in such a manner that it interferes more or less with its power of conducting electricity. This circumstance, which was first pointed out by Willoughby Smith and Sale, M. Siemens makes use of in the construction of his photometer. A new crystalline form of selenium, which is obtained by heating the substance continuously to a temperature of 170° Cen., is used. Light, it appears, impedes the conductivity of selenium, and, moreover, greatly affected by light; so much so, in fact, that if two wires, one millimetre apart, are fused between two leaves of mica into this crystalline selenium, the most marked results are obtained, according to the intensity of the light at the time of the experiment. M. Siemens tells us that dark heat rays do not in any way influence the conductivity of the material. Diffuse daylight, allowed to act upon the selenium, at once doubles its conductivity, so that the needle of a galvanometer would indicate in a very marked degree the accession of light, while, if sunlight is admitted to act upon the selenium photometer, the conductivity is increased to ten times the amount. Photographers will see at once, therefore, the value of an instrument so delicate as this: If, for instance, we set down by a moment, the conductivity of this selenium in darkness as represented by the number 100, on the admission of sunlight we should find a galvanometer specially graduated for the purpose marking as much as 1000. On shutting off the light the conductivity diminishes apparently at once, so that on the illumination waning to any extent, the experimenter would be informed of the circumstance in a moment. It is true that M. Siemens informs us, that when absolute darkness again intervenes, a little time elapses before the selenium returns again to its normal condition, but this, to photographers at any rate, would be of little consequence, since it is rare indeed that they have to work in perfect obscurity.

A New Sensitive Photometer.—A communication which cannot fail to be of interest to photographers has just been made to the Berlin Academy of Sciences by M. W. Siemens, on the subject of a new and very sensitive photometer. Great difficulty prevails, as every experimental photographer knows, in instituting comparison between the light at
THE PHOTOGRAPHIC NEWS. [December 17, 1875.

A NEW METHOD OF IMPARTING ARTISTIC FINISH TO PHOTOGRAPHS.

BY EDWARD DUNMORE.*

The subject I have selected to bring before you this evening, I believe, is somewhat new. But so as to any absolute novelty in the photographic world, is there such a thing? I doubt it. Any way, the plan I now have the pleasure of submitting for your approval possesses the qualifications of simplicity and inexpensiveness, combined with the power of imparting an artistic appearance to certain classes of photographs, and, to the best of my belief, has, to the present time, escaped general observation. It consists in the recommendation to sandpaper your mounted and enamelled proofs, not for the purpose to which sandpaper is generally applied, but to produce roughness. The materials are few, and their application easy; they consist of sandpaper of various degrees of fineness—cardboard and glue, that is all. Use them after this fashion. Cut a piece of cardboard somewhat larger than the mount, and on the back of the sandpaper, face up, and when dry, cut out an aperture corresponding exactly in shape and size with the picture to be operated upon; make the edges of the aperture smooth and even. This constitutes the mask or die. Suppose it is a medallion portrait of the usual C.D.V. size you wish to finish; fit the sandpaper mask, face down, on the enamelled side of the portrait, adjusting it so that the oval part corresponds with the aperture of the mask. Place a piece of smooth paper outside for the purpose of printing, scratch on the polished parts, and the whole to be passed through an ordinary rolling press, face down. On removal it will be found roughened on those parts that have been in contact with the sandpaper, and the polish and relief of the smooth portions greatly enhanced by this process. Various degrees of relief may be obtained by slightly shifting the position of the mask, and putting through the press after each alteration. This is the novelty. Other substances than sandpaper can be used. Probably an engraved metal plate would be better; in fact, almost any textile fabric, such as net, gauze, lace, &c., are applicable. For my own part, I prefer the effect of sandpaper to a more ornamental design; a flat smooth one being good enough, if not better, for giving value to the polished part.

My plan was published in the British Journal of last week. Possibly some gentleman present has given it a trial. If not, I should advise him to do so.

DEVELOPER FOR FIELD USE.

BY DR. G. W. BINGIET†

Prepare a quantity of a saturated solution of protosulphate of iron; to each pint of the solution add a drachm of sulphate of iron; from this stock solution filter out what you may require when going out. This solution will contain about 160 grains to the ounce of the proto. To dilute this to any degree of strength, take out a solution of acetic acid containing 12 ounces of the acid to 18 ounces of water. Also take a 2-ounce nitrate of silver bottle (which, by the way, makes an excellent developing cup to pour the developer over your negative), gum a narrow slip of paper up the side of the bottle, and with a pair of compasses and a scale divide it into eight equal parts, and with a file mark out he divisions on the glass. You thus obtain a graduated developing cup, ready at hand to dilute and prepare your developer—each division corresponding to 1 fluid drachm of 60 minims or drops—though the exact quantity each division may contain is immaterial so long as the relative portion of each is maintained.

One measure of the iron solution with the bottle filled to the eighth division makes a developer of 20 grains to the ounce of iron; filled to 60, a 30-grain solution; and to the eighth, with two divisions of the stock solution, a 40-grain solution.

Of course, if alcohol, glycerine, &c., is desired to be added, it can be done by adding it to the diluting solution.

ACTION OF COLOURED SUBSTANCES UPON THE SENSITIVITY TO LIGHT OF BRONZE OF SILVER.

BY PROF. H. VOGEL.*

Two years have now elapsed since I proved that it was possible to render chloride and bromide of silver sensitive to the red and yellow portions of the spectrum, and to heighten the action of these colours upon a sensitive film. Very shortly after the publication of my remarks, Mr. Carey Lea stood forward to combat my theory, seeking to strengthen his remarks by detailing some unsuccessful attempts, which he had undertaken. To him subsequently were joined Dr. Van Monckhoven and Mr. Spiller; and only M. Becquerel, of Paris, secured results favourable to my theory and confirmed my statements. Nevertheless, Mr. Lea, Mr. Stillman, and several others maintained an opposite view to mine, and were pleased to enter into many arguments upon the subject. It is with much pleasure that I am enabled to announce a letter just received from my comrade in the recent expedition to the Nicobar Islands, Captain Waterhouse, who has repeated my experiments in a most exhaustive manner, and has employed in his investigations a very large number of colouring matters, so that we have now a goodly mass of data in hand. Waterhouse worked under much more favourable circumstances than I. Under a tropical sun, and in the clear atmosphere of India, such experiments can be conducted far better than in our dull northern climate.

Captain Waterhouse writes:—"There cannot be a doubt that colour exerts a powerful influence upon the sensitiveness of bronze of silver, and that different colours give different results in regard to the sensitiveness of different portions of the spectrum. I shall publish my investigations at length, but in the meantime I may mention the following results as having been obtained."

"A pure bromide of silver collodion film is at least as sensitive to red rays as any other colour, at any rate in respect to the extension of its action toward red, although not in its intensity."

"Naphtholine red increases the sensitiveness for yellow, but diminishes the sensitiveness for green and red."

"Violet and purple increases the sensitiveness for yellow and orange, but diminishes it for green."

"Chlorophyll increases the sensitiveness for red, and gives a marked band, which appears deeper in the spectrum than between B C, as mentioned by Becquerel."

"A red dye of Judson's, which smells very strong of tannin, gives great sensitiveness for yellow, less for green, and increases in a material degree the sensitiveness for red. Roseine (aniline red) gives material sensitiveness for yellow, is slightly sensitive for green, and insensitive as regards red. I have, however, obtained an opposite action in red, at least as far as it is concerned."

"Curalline appears to make red sensitive, but this requires fresh proof."

"Blue gives sensitiveness for blue, but very little in green and orange."

"In nearly every case the spectrum becomes reversed in the

* Read before the South London Photographic Society.

† Western Photographic News.

* Photographische Mittheilungen.
blue portion—that is, instead of light lines in the negative, dark ones appear on development, the same beginning at G, and stretching as far as H and I; they appear, with different preparations of a different character, sometimes lighter, sometimes darker, but this seems to be only the result of over-exposure."

These results confirm, except as regards the doubtful action of blue and coraline, in the highest degree my previous investigations.

I also observed in the case of naphthaline red and rose, the diminution of sensitiveness in the green, and that the sensitiveness brought about by the colours rose and full with the refraction index. Moreover, I found that the maximum of photographic action did not tally exactly with the spot of absorption band of the added colour, but extended towards the red. In this Captain Waterhouse confirms me completely in the case of chlorophyll. Positive lines, instead of negative ones, I have also obtained frequently.

Captain Waterhouse has not tested the absorption spectra of the different colours. It would be well worth while to do so, as, generally speaking, the colouring matter exerts its photographic action at that point. That auline blue is an exception to this rule I have already pointed out in the beginning of the present communication in the Transactions of the German Chemical Society; also the circumstances that several colouring substances increase the sensitiveness of the photographic film at one point, and diminish at another, I have had occasion to point out.

ENLARGEMENTS WITHOUT APPARATUS.

BY DR. LEMBOLO.*

In the studios of Paris and Brussels there are to be found enlarged portraits executed in black chalk, in a most careful manner, which are remarkable for their clearness and artistic value. For the most part, these portraits are said to be enlargements from cartes-de-visite. Their beauty and excellence caused me to make enquiry about their producers, in order to obtain some knowledge of the manner in which the pictures were obtained; but I could find nobody who could, or would, give me the information I desired, until at last, by chance, I made the acquaintance of the gentleman himself whose productions they were.

His studio was at the top of a high house in one of the narrow unfrequented streets of Paris. In his atelier were all sorts of things to be found: rare plants, foreign birds in cages, pictures of all kinds, and a large collection of pictures, but not a single stick of photographic apparatus. The secret was out, however, as soon as I saw the artist at work. Upon his easel stood a picture which he had just commenced, and I was in a position to follow the progress of the work, as the vivacious little gentleman was in no way disturbed by my entrance and conversation. Before him stood a carte-de-visite fixed upright, and this he examined through a magnifier with the left eye, while with the right he sketched the outlines of the portrait upon a sheet of cardboard. I had therefore, as was apparent, to do with no photographic process at all, but simply with an artist who sketched from a carte as he saw it enlarged before him. Most interesting was the way in which he applied a little black chalk to his sketch, and rubbing it with his fingers introduced a light half tone, corresponding to that in the print. The finished result was so much like a photograph that experienced operators were exceedingly astonished when I explained to them the actual manner of production.

We have therefore got so far, apparently, as to dispense altogether with photographic apparatus, and to do the work by means of the pencil. That the public is satisfied with the pictures may be deduced from the high prices charged by the artist, who asks 250 to 300 francs for his productions in Paris, and 450 to 500 francs from foreigners.

The work, too, is rapidly got through, for in two or three days a picture is finished, or sooner, even, under some circumstances.

Enlarged sketches of similar character we have seen produced by M. E. Suibach of Antwerp, who does not, however, ask such high prices for his enlargements. This gentleman also employs a means of retouching his negatives that is worthy of note. His clichés are not varnished, but covered with gum-solution, and those parts which it is desired to make more opaque are evenly polished with diagonally cut pieces of wood. By thus pressing upon the precipitated silver, the latter becomes denser and more opaque. Retouching in this way is said to be a much quicker operation than with graphite. So far as our experiments have gone, we have not been able to secure any good results in this way; perhaps, however, in the case of intensified negatives it would have been different, for our trials were confined to clichés which had simply been developed.

TRANSPARENCIES BY THE COFFEE PROCESS.

BY THOMAS SMITH.*

Arriva cleaning the plates, the preliminary coating is applied. One part of alum a well beaten, and then allowed to stand, is, after decanting, mixed with twenty-five or thirty parts of water, a few drops of ammonia being subsequently added.

The plate, having been coated with collodion, is immersed in an eight per cent. silver bath freely acidified with pure nitric acid, and allowed to remain therein for four or five minutes. It is then removed, and, having been well drained, is placed in a bath of pure water, while a second plate is put into the sensitizing solution. The first is then carefully washed under a tap covered up with a small linen bag to serve as filter; when the plate is freed from all appearance of grossness the washing operation may be considered to have gone far enough, and it is placed in a second bath containing water, where it can remain until the time arrives to drain it and apply the preservative solution to its surface.

The preservative solution consists of a combination of coffee and gum:—

<table>
<thead>
<tr>
<th>Boiling distilled water...</th>
<th>No. 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mocha coffee...</td>
<td>56 ounces</td>
</tr>
<tr>
<td>White sugar...</td>
<td>4 ounce</td>
</tr>
<tr>
<td>Distilled water...</td>
<td>No. 2.</td>
</tr>
<tr>
<td>Gum-arabie...</td>
<td>54 ounces</td>
</tr>
<tr>
<td>Sugar-candy...</td>
<td>90 grains</td>
</tr>
<tr>
<td></td>
<td>20 grains</td>
</tr>
</tbody>
</table>

The coffee extract is allowed to cool in a well corked bottle, and both liquids are then filtered and mixed, forming together a clear brown liquid, which will remain in good condition for several days. The quantity destined for each plate should be filtered and poured on like collodion; a second application of the liquid is made to the same plate, care being taken to prevent the formation of bubbles, and the solution should not then be further used. The coated plate is placed on end upon a sheet of filter paper to drain before being put into the drying closet.

Dry plates prepared by the coffee gum method require an exposure of but three times that necessary for the wet process, with the same lens and the same light.

The exposed plate, having been covered with water, or immersed for three or four minutes in a bath of that liquid, is drained, and placed in a horizontal position; over it is then poured sufficient distilled water to cover the plate, to which six to ten drops of a saturated solution of carbonate of ammonia have been added. This liquid commences development; for, if sufficiently exposed, the sky and high lights begin forth to appear. As soon as the solution
of ammonia ceases to act, it is poured back into the developing glass, and a few drops of pyrogallic acid dissolved in alcohol are added. This pyrogallic solution is prepared by simply dissolving ninety grains of pyrogallic acid in one ounce of alcohol.

The image now fully appears, but it is seen only by reflected light, and is scarcely visible when the plate is viewed as a transparency. Nevertheless, the action of the solution continues until every possible detail in the shadows has been brought out. Wash, and apply the following solution:

- Water 4 ounces.
- Ammonia-sulphate of iron 45 grains.
- Sulphate of copper 45 grains.
- Citric acid 45 grains.

This is poured upon the well-washed plate, and sometimes produces by itself sufficient action. Generally, however, it is necessary to complete its action by adding a little silver, when details will at once appear, which otherwise would never have been brought to light; and it is, indeed, but very rarely that with the aid of this solution a satisfactory result it not attained, even in very unpromising instances. If necessary, intensify further with pyro and silver. Fix with hypo.

SILVERING GLASS.

Mr. U. C. Chapman, writing to the Scientific American, says:

"Having had occasion to silver some small plates of glass, I tried several formulas. In some I found the silver solution so weak that it required repeated applications to give an opaque deposit. In others the silver was so strong that there appeared to be a waste. After trying several modifications I found that the following works very finely, giving a heavy deposit by a single application:

1. Baking solution: In twelve ounces of water dissolve twelve grains Rochelle salts and boil. Add, while boiling, sixteen grains nitrate of silver dissolved in one ounce water, and continue the boiling for ten minutes more, then add water to make twelve ounces.

2. Silvering solution: Dissolve one ounce nitrate of silver in ten ounces water; then add liquor ammonium until the brown precipitate is nearly but not quite all dissolved; then add one ounce alcohol and sufficient water to make twelve ounces.

To silver: Take equal parts of Nos. 1 and 2, mix thoroughly, and lay the glass face down, on the top of the mixture while wet; after it has been carefully cleaned with soda and well rinsed with clean water.

Distilled water should be used for making the solutions. About two drachms of each will silver a plate two inches square. The dish in which the silvering is done should be only a little larger than the plate. The solutions should stand and settle for two or three days before being used, and will keep good a long time."

HOW MANY SITTINGS SHALL THE PHOTOGRAPHER GIVE?

Regarding the Brooklyn case of refusal to accept portraits, pay for them, or sit again, the judge's decision with regard to which is not yet reported, the New York Times says:

"A Brooklyn photographer lately appeared in court bearing with him seventeen separate negatives, each purporting to be the portrait of one and the same young lady. She had come to his operating room and desired to be photographed. The photographer applauded her design, and promised to do full justice to her charming features. He placed her in his best box among an assembly of his friends, and rested her in his back hair; requested her to contemplate with rapturous admiration the optical bait which photographers pin upon the wall to catch the eyes of their patients, and then uncerk his camera. Whether the young lady smiled too soon, and thus impressed upon her negative a series of concentric but entirely useless months, or whether she suddenly thought of a hated rival, and was thus betrayed into an unintentional wrinkle, only the negative made a record of the image of a beautiful and nebulous maiden with features drawn out into horizontal lines, and with expansive hands furnished with dozens of faint and fat fingers, we are not told. When, however, the photographer emerged from the dark closet wherein he had poured out libations of nitrate of silver to the sun-god, he brought with him a picture which was found 'unsatisfactory,' and was compelled to take a new one which should bear less like the sitter, and less like a view of the nebula in Orion. Seventeen successive attempts did this patient photographer make to fix the features of his fair visitor upon the sensitive plate. Each time the result was alleged to be a failure. There was too little nose in one picture. In another an excess of nose belittled the other features by contrast. In this one the eyes were lacking in expression; in another the mouth was out of drawing. Many of the pictures failed to do justice to the lady's chin, while others wore an air of hopeless resignation to the photographer's experiments which would have drawn a smile of derision from the severest of Cheshire cats.

At least we may suppose that such were the complaints made by the young lady as she rejected each successive picture. When the session had been exhausted, the long-suffering photographer declined to spend the rest of his life and chemicals upon so difficult a subject, and went to law to obtain some compensation for his wasted time and capital.

"The decision in this case will be of much interest to persons about to be photographed. That process at present not unreasonably remuneraive, inasmuch as a satisfactory likeness is not obtained after two or three trials, the sufferer, uncertain of the law, and unwilling to incur the further scorn of the photographer as a person wholly devoid both of good taste and ordinary eyesight, consents to accept the least objectionable negative, and thus becomes the possessor of a collection of photographs capable of giving pleasure to the owner's bitterest enemy, and utterly useless for any purpose except for an exhibition in the Royal Photographic Society in the Brooklyn case that a photographer who has once undertaken to produce a satisfactory portrait can be compelled to make good his promise, even if it takes a hundred sittings, the path of his patrons will be plain. No man or woman will henceforth be compelled to hide in secret drawers, or to commit to midnight ash-barrels, photographs that are a source of agony for the person from whom they are taken. Such a decision will save many a man from going away, except with a view of insulting the recipient. But, on the other hand, the decision which should thus protect the public might work serious injury to the photographers. A malicious photographer might ruin a rival by perpetually sitting for his picture, and perpetually rejecting the negative with sarcastic comments. To take thousands of photographs for one man, and receive in payment nothing but gibes and insults, would break the spirit and exhaust the pocket of any 'artist.' The law can hardly be so negligent as to leave room for such a possibility; and yet to fix upon a definite number of sittings as a limit to which the unskilful photographer can be compelled to go would be arbitrary and unsatisfactory to all parties. Of course, we need not apprehend that the court will decide that the art is wholly incapable of compensation. It is not impossible that it is entitled to but one negative for its money. In that case he who should enter a photography gallery would leave all hope behind. For him the staring eyeballs, the excessive nose, and the agonised mouth which the unskilful operator so invariably produces, would be served up in place of a truthful portrait, and the money would be remorselessly taken from him, while the visit, on the other hand, would be made by the photographer to the premises with, perhaps, the sarcastic advice to send them to his wife's relations. No court, however, will lend itself to such an outrage, and we can await the decision.
of the Brooklyn court with reasonable confidence that it will promote the cause of justice by doing away with the uncertainty which now characterizes the relations between the photographer and the public."

HOW TO LAY WATER-COLOURS ON GLASS.

BY DR. C. W. BINGLEY.

MAKES A THIN SIZE WITH LIGHT-COLOURED GLUE, STRAIN THROUGH MUSLIN, AND WITH THIS THE WATER-COLOURS ON A PLATE, AND LAY ON AS WARM AS POSSIBLE WITH A CAMEL-HAIR PENCIL. IF THE WHOLE OF THE BACK OF A NAIL TO BE COLOURED—AS, FOR INSTANCE, TO IMPROVE A WEAK AND FLAT NEGATIVE BY THE "BLUE PAINT DODGE"—THE SIZE COLOURED CAN BE BEST EVENLY APPLIED WITH A FLAT CAMEL-HAIR BRUSH. IF CARE BE TAKEN NOT TO GET THE SIZE TOO THICK, AND TO LAY THE COLOUR ON, A PERFECTLY SMOOTH AND EVEN SURFACE IS OBTAINED ON DRYING, NOT LIABLE TO BE RUBBED OFF ON PRINTING, OR SUBJECT TO CRACKING, AS IS THE CASE IF GUM-ARABIC IS USED.

By making the glue in a clean white jar with a lid on rather thicker than required for use, and adding about a drachm of carbolic acid to it before it sets, on cooling a stock solution may be kept on hand for any length of time, only requiring then to take out a small portion to dilute with hot water for use as required.

THE RELATION BETWEEN SPECTRAL LINES AND ATOMIC WEIGHTS.

Mr. E. VOGEL, writing to the *Scientific American* from San Francisco, draws attention to some curious relations between the absorption lines in the solar spectrum and the atomic weights of bodies the light from the combustion of which gives analogous lines. He says:

The following facts, disclosing an intimate connection between the Fraunhofer lines of the solar spectrum and the atomic weights of the substances whose glowing vapours they represent, will, if confirmed, prove the highest importance and interest. Being desirous, on this account, of bringing them at once to general knowledge, I send you the following condensed statement, which I hope you will publish.

The Fraunhofer lines of hydrogen gas are, according to Angström's wonderfully accurate measurements (given in millimeters, a millimeter being 0.3937 of an inch):—

<table>
<thead>
<tr>
<th>Atomic weight</th>
<th>Wave length</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1,00</td>
</tr>
<tr>
<td>H</td>
<td>1.00</td>
</tr>
<tr>
<td>Ne</td>
<td>2.00</td>
</tr>
<tr>
<td>Ng</td>
<td>3.00</td>
</tr>
<tr>
<td>O</td>
<td>4.00</td>
</tr>
<tr>
<td>N</td>
<td>5.00</td>
</tr>
<tr>
<td>P</td>
<td>6.00</td>
</tr>
<tr>
<td>S</td>
<td>7.00</td>
</tr>
<tr>
<td>Cl</td>
<td>8.00</td>
</tr>
<tr>
<td>Ar</td>
<td>9.00</td>
</tr>
</tbody>
</table>

The distances from the shortest wave lengths are consequently:

- He: 0.00041012 mm.
- H: 0.00043460 mm.
- Ne: 0.00048606 mm.
- O: 0.00056518 mm.

Referring these distances to 0.00041012, the shortest wave length, as a common standard of value, the figures obtained are:

<table>
<thead>
<tr>
<th>Figure Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00041012</td>
</tr>
<tr>
<td>0.00038888</td>
</tr>
<tr>
<td>0.00035749</td>
</tr>
<tr>
<td>0.00032606</td>
</tr>
</tbody>
</table>

being to each other as 1—3—9. Supposing the quantity expressed by 1.0058 mm. to represent three units of a certain measure of length, the distances of the H lines increase as the squares of 3:3—9—27.

The H molecules of the solar atmosphere which give rise to these lines consist of ponderable matter; and (the mechanical forces of the luminous impulses having been so recently demonstrated by Professor Stokes) the inference is that refraction, the angles of which are measured and expressed by the wave lengths, is in the function of the energy proper to the different constituent particles of the luminous molecules: that these particles are held together by attraction, the common property of matter, decreasing inversely as the squares of distances.

On this supposition, the attractive forces of the H molecule proceed from a centre where they are at their maximum; and the distances between the different constituents being known, the value of their attractive energy can be calculated from the constant relation between attraction and distance. To the distances 3—9—27 correspond the respective forces 1—3—9; and a unit of force, by which the values of attraction of all solar substances can be measured and compared, is represented by the length of shortest wave.

In dividing the atomic weights of the substances whose spectral lines are known by the length of their shortest waves, and converting the result into chemical weight by taking the quotient obtained for H—1, the values are as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Atomic weight</th>
<th>Wave length</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.00</td>
<td>2438</td>
</tr>
<tr>
<td>Ca</td>
<td>40</td>
<td>0.00093830</td>
</tr>
<tr>
<td>Fe</td>
<td>56</td>
<td>0.00393850</td>
</tr>
<tr>
<td>Al</td>
<td>273</td>
<td>0.00942963</td>
</tr>
<tr>
<td>Mn</td>
<td>55</td>
<td>0.00989889</td>
</tr>
<tr>
<td>Ti</td>
<td>480</td>
<td>0.01132996</td>
</tr>
<tr>
<td>Cr</td>
<td>52</td>
<td>0.01025583</td>
</tr>
<tr>
<td>Ni</td>
<td>63</td>
<td>0.01046426</td>
</tr>
<tr>
<td>Mg</td>
<td>24</td>
<td>0.00044905</td>
</tr>
<tr>
<td>Zn</td>
<td>65</td>
<td>0.00075234</td>
</tr>
<tr>
<td>Na</td>
<td>23</td>
<td>0.00049526</td>
</tr>
</tbody>
</table>

Notwithstanding the differences, the figures of the last column so closely correspond to the atomic weights that the inference of a near relationship between the spectral lines and atomic weights seems irresistible. When the extreme faintness of the lines in the portion of the spectrum of the greatest refraction is taken into account, some of the differences may not unreasonably be attributed to the existence of shorter waves than those quoted. The definite proportions between differences and atomic weights point to this. Thus 189 is nearly 3/20; the line corresponding to the atomic weight of 23 is 0.00045090; if this line, which really exists, should be properly regarded, it would be the best would be decisive. The importance of the conclusions to be derived from the existence of such relations is apparent. The evidence of atomic molecules, when brought within the reach of scientific investigation, and their dependence on the general law of gravitation, would disclose the inner constitution of matter, the nature of chemical affinity and valency, and the nature of electricity and magnetism; and it would be instrumental in the solution of many problems.

ELECTROPLATING WITH NICKEL.—In Plasen's process a bath is used of 87 parts sulphate of nickel, 20 sulphate of ammonia, 17 citrate of lead, and 1,800 of water. A bath much used in France is formed of a solution of 4 parts of nitrate of nickel in 4 of liquid ammonia, and 100 water in which 50 parts of sulphate of soda have been dissolved. Using a moderate current the operation is at an end in a few minutes. There is no need to interrupt it by taking the objects out and brushing them. When the film of nickel is of sufficient thickness, the objects are withdrawn from the bath, and dried with sawdust."

SCIENTIFIC AMERICAN.

PARASVING PLATES MOIST.—Mr. St. Clair says:—"Coat your plate in the usual way, and then take one drachm of glycercine to nine drachms of the nitrate of silver bath solution, or whatever strength you use it. Of the nitrate bath solution nine drachms of that and one drachm of glycercine. Mix the two intimately together, and put the plate comes from the bath, coat it with this; pour it off; give it a second coating, so that it runs perfectly clear with all the lines. Your plate will keep for twenty months."
The Photographic News.

Vol. XIX. No. 902.—DECEMBER 17, 1875.

CONTENTS.

Photography In and Out of the Studio 601
A New Method of Importing Artistic Finish to Photographs. By Edward Dunmore 602

Decapitated Use, By Dr. C. W. Slingley 603
Action of Coloured Substances upon the Sensitiveness to Light of Bromide of Silver. By Professor Vogel 606

Enlarging Without Apparatus. By Dr. Longmore 603
Transparencies by the Coffee Process. By Thomas Hine 608
Silvered Glass. By Dr. C. W. Slingley 609
How Many Sittings Shall the Photographer Give? 610
How to Lay Water-colours on Glass. By Dr. C. W. Slingley 605

The Relation Between Spectral Lines and Atomic Weights 606
Working an Alkaline Negative Bath 608
A Matt Margin to Enamelled Medallion Photographs 609
Precipitating Silver from Old Fixing Baths 607
Practical Notes on Various Subjects. By Charles Waldock 607

Pyroxyline for Emulsions 608
Correspondence. Believing Distressed Photographers Have Trade Societies?—An "Unsafe." Correspondence. Reducing Negative Permanganate 608

Proceedings of Societies.—Photographic Society of Great Britain—South London Photographic Society—French Photographic Benevolent Association 609

Talk in the Studio 611
To the Correspondence 612

WORKING AN ALKALINE NEGATIVE BATH.

All the native ills to which the negative bath is subject seem to become intensified in winter, especially in the earliest weeks of cold weather, and, added to these, are generally many more belonging to other causes, which are attributed to the bath. The plates are imperfectly cleaned, or are coated whilst they are damp, and the negative is stained, has markings of various abnormal kinds, is fogged in parts, the film splits in drying, and forthwith the conclusion is obtained that the bath is out of order. We might go on multiplying the list of evils of which the bath is the scapegoat, but, as the actual evils are serious enough in the present state of the weather, we will confine ourselves to calling attention to one perpetually recurring trouble, and a somewhat novel remedy.

Mr. E. H. Bank Elliot, one of the most experienced and observant of living collodion workers, called the attention of photographers in our last Year-Book to certain advantages to be derived from working the negative bath, not in a neutral condition as recommended by some, nor in an acid condition as approved by others, but in an absolutely alkaline condition. Before the minds of most workers visions of fog are at once conjured up, and a variety of other horrors, as the inevitable sequel of such a bath. But to remove these visions of horror, it is to be remembered that, whilst the bath was to be acid, the excited film was not so. A collodion containing sufficient free iodine was to be used, the result of which was the liberation of a sufficient trace of nitric acid on and in the film to prevent fog. And in the next place it was to be remembered that this announcement contained not simply a theoretical proposition, but a record of successful practice from an eminent practical man. To the record then given we have now added the results of another year's experience, with many more interesting details. Mr. Elliot has favoured us, for our forthcoming Year-Book, with the further record of the past year's working, which has fully confirmed his conviction of the advantages of this novel bath. It is to the best interests of science that we think it desirable to call the attention of our readers at once, referring them to the Year-Book itself, which will shortly be ready, for fuller particulars.

One especial point of importance in connection with this nitrate bath is the fact that it contains no iodide of silver and hence there is perfect immunity from the pinho le which are the frequent result of supersaturation with iodide of silver, or the double salt it forms. There is no iodide added to the bath, and in Mr. Elliot's experience there is none formed. This latter proposition, which at first sight seems startling, is accounted for by the fact that the nitrate solution is kept saturated with carbamate of silver to preserve the alkaline condition, and, thus saturated, it is no longer capable of dissolving any iodide of silver. Either iodide of silver or carbamate of silver is soluble to a limited degree in a solution of nitrate of silver, but in Mr. Elliot's experience not both together; and if as much carbamate of silver is added as the nitrate solution will take up, it no longer possesses any capacity for the expansion of silver. Hence, a serious train of troubles is eliminated from the bath at one fell swoop. Some other valuable advantages are gained, amongst which increased sensitiveness is of no mean importance. And there are other interesting details into which we cannot enter at present.

The use of an alkaline bath has been suggested, before, but never, so far as we can remember, with such a clear and logical statement of the rationale of its working as Mr. Elliot now presents to photographers. Mr. McLachlan, some time ago, in a paper read before the Photographic Society, recommended the use of alkaline conditions, and narrated some interesting details of the advantages he had found in his own practice. Unfortunately, his theory was mixed up with some notions of an occult influence exercised by light on dry nitrates of silver, and in consequence to this influence being necessary to prepare the silver salt for use in the alkaline bath. From this and some other causes the method indicated did not receive the amount of attention it probably deserved, and which, at any rate, the enthusiastic earnestness of its propagator might have demanded, and the matter passed out of notice. Mr. Elliot's simple statement of facts will probably command attention and interested readers, and bring forth fruit.

A MATT MARGIN TO ENAMELLED MEDALLION PHOTOGRAPHS.

Every form of novelty in connection with his art is of interest, and may prove of profit, to the professional portraitist. In a business point of view, it is insufficient to be ready to supply what the public absolutely requires or asks for. It is often as important to be able to create new wants as to be able to supply those which exist and are felt. There is nothing beneath the dignity of art in this. 'The greatest of the masters of this art,' says an engraver, who sends his work to the Royal Academy and other exhibitions, embarks on this enterprise. He produces a fine picture, a fine piece of statuary, a fine proof, and he exhibits to create a want, if possible, and to sell his work to the customer in whom this want is created. We make this remark in passing because we have heard some, with a keen desire to uphold the status of the photographic profession, express a notion that it was beneath the dignity of art to endeavour to reduce the public into giving additional orders by the display of new styles and varied attractions, having a notion that the true artist should be content to execute, in the most artistic fashion in which he is able, the absolute requirements of the public, without offering attractions like a fainth negator with an enamel painted medallion.

This much by way of prelude to a notice of an interesting little novelty recently brought by Mr. Duamore before the South London Photographic Society. The idea admits of varied modification and extension, but the form in which it was presented consisted of a card oval-medallion portrait, enameled with collodion and gelatine in the manner familiar to portraitists, but made up so that the oval gradient or roughened in surface, which gave an effect of increased delicacy and finish to the portrait and its oval medallion. The mode in which this effect is produced is very simple. In the examples exhibited the effect was produced by pressure in contact with a card covered with sand at a small aperture.
once that these shapes or marks could be of grained metal, or polished bearing dies or other patterns, or of sheepskin or rough cardboard or canvas, or a variety of materials, which by contrast might give delicacy to the medallion bearing the portrait.

Some years ago a fashion was introduced in America of giving a frame of rough drawing-paper or canvas to the whole picture, and we have seen some good effects so produced; but there were in some cases disadvantages which prevented the plan becoming common. Many persons objecting to the coarse obliteration of definition that occasionally occurred in an important part of the picture. In Mr. Dunmore's method this objection, of course, has no weight, as the gradation of the picture is preserved in all its actual delicacy, and enhanced by the contrast of a granular, although not perfectly matt, margin.

PRECIPITATING SILVER FROM OLD FIXING BATHS.

There is no task which, as a rule, the photographer undertakes with greater repugnance than the precipitation, by means of iodide of potassium, of the silver contained in his old fixing baths of hypo-sulphite of soda. The unpleasantness of the stench, the injurious effects of the fumes in the operating-room, and a degree of uncertainty to the non-expert, all tend to render the task an irksome one, which many small photographers shirk, throwing away the silver rather than encounter all its offensive possibilities, and thus, according to the calculation of some, an average of 30 per cent. of the silver employed in the printing bath is deliberately thrown into the gutter.

Referring to our recent remarks on Dr. Vogel's promised discovery for simplying this matter, the editor of Anthony's Bulletin says:—

"A great deal has been written upon the above subject, and it is surprising that photographers continue to throw away their hypo. solutions when the recovery of the silver is so easy and the return so valuable. We use our hypo. about 1 in 8, run off the solution into barrels, and treat it with sulphur of potassium. When the solution of sulphur is added to the hypo. solution, the sulphuretted hydrogen, which smells so badly, combines immediately with the silver, and sulphide of silver is precipitated. So long as the combination is in process, the solution has no smell will proceed from it; and it is the easiest thing in the world to tell when enough sulphur has been added, as the moment all the silver has been converted into sulphide the smell of the sulphur will be found proceeding from the hypo. solution. To stop this, all that is necessary is to have a very small quantity of the hypo. solution reserved, which should now be poured back and stirred through the solution. This will arrest the escape of the sulphuretted hydrogen. Thus all smell will be avoided, except that which comes from the sulphuretted solution in pouring it into the hypo., and even this could be avoided by using a properly-prepared vessel for holding the sulphuretted solution. Have a vessel made open at both ends; cork one end, and at the other introduce the water and the sulphuretted. When the solution is effected uncork one end and invert the vessel, and plunge the end into the hypo. solution; then pull out the cork of the upper end, and the sulphuretted solution will descend into the other without a trace of smell."

PRACTICAL NOTES ON VARIOUS SUBJECTS.

BY CHARLES WALDACK.

Gent, December 10th, 1875.

The Silver Solution for the Collodion Process.—So much has been written on this subject that it ought to be exhausted, and I feel almost like apologising to the reader referring to it again. What I have to say about it is certainly not new, although I think it has some value. The glass on which the negative is made is kept very seldom chemically clean, and a proof of it lies in the deposit which, with certain collodions, and under certain circumstances, is formed between the film and glass during development, also in the deposit formed on the back of the plate. This is a permanent cause of the introduction of organic matter into the bath. Another cause lies in the use of non-tempered glass. A third one resides in the colloid itself. A fourth is when an organic matter is introduced and another, organic matter is introduced, and, after a certain time, the bath works foggy. The remedies are simple enough—neutralising and sunning, or boiling. But this latter takes time which the photographer has not always to lose, for his solution may begin to look foggy in the midst of the day's work. The remedy I now propose to give acts constantly, and no time is lost save that of the silver solution, and this, in the case of a flowing bath being used, which requires but a relatively small quantity of fluid, is the work of a few minutes. The remedy is based on the property of a precipitate to absorb and carry down organic matter. Any photographer may have observed that when a bath is made with water of doubtful purity, the precipitate produced in forming the silver iodide of potassium, instead of being of a fine yellow, is greyish. This is owing to the presence of organic matter. For this purpose, however, I do not propose to use iodide of silver for obvious reasons, but chloride, precipitated by means of salt or chloride of ammonia. A quantity of chloride in solution is added, sufficient to produce an easy precipitation. When the silver has been added to make up for the loss. The liquid is well shaken, and then the larger part of the chloride of silver is allowed to deposit, which takes but a very short time; after which the clear part is filtered. The solution can be added every night to the precipitate, and every morning the clear bath can be drawn off. After a time, the chloride of silver will have absorbed as much organic matter as it can, when it is filtered out and added to the waste. This is about the simplest way I know of to keep a bath in good working order, and one I can safely recommend, having given it a trial of several months. Of course, the alcohol which accumulates in the bath is to be removed, in the ordinary way, by boiling.

Some years ago it was recommended to doctor a foggy bath by adding cyanide of potassium, and in the hands of many this addition proved very effectual; but it has the disadvantage of depriving the oath of its acid, whereas the addition of chloride leaves it as it is.

Stains Between the Film and Glass.—Above I referred to the almost impossibility of getting a plate chemically clean. In developing a properly exposed negative, the metallic silver is carried with such energy to the insolated parts that none is deposited between the film and glass, even if the plate is not clean. An under-exposed negative, however, is very apt to have such a deposit in the shadows, and on drying the film will split and peel off. The same effect is produced when collodion is used containing cadmium salts, although a full exposure may be given. Such collodion should be allowed to ripen, and this takes more or less long, according to the greater or less quantity of the cadmium compound used. Sufficent time of ripening can also be added to give a lemon colour to the collodion, in which case it can be used immediately; and this addition can be made without any fear of interfering with the sensitiveness.

The Use of the Burnisher.—One of the great objections against the use of hot burnishers to give an extra gloss to prints on albumen paper is that the retouching, if done in ink, is liable to come off. This is especially when double or strongly albumenised paper is used, and when the retouching is done with gum mixed with the ink. A simple remedy is to add a small quantity of wax to the alcohol solution of soap with which the photographs are rubbed before being burnished. The quality, I suppose,
is immaterial. I added some of the wax solution used in the carbon process. Most of the failures I have come across in using the burnisher, or in seeing it used by others, resulted from the failure of keeping every part where there is any friction well oiled. In the Entdeck burnisher, the most important part is the oscillating plate to which the burnishing tool is fastened. This, being subjected to considerably more heat than the rest of the machine, soon gets dry by decomposition of the oil.

The Cutting of Masks for Medallions.—Medallions are generally printed with a white edge on one side of the oval, because photographers generally do not know how to make the oval which covers the picture while the border is being printed smaller than the opening of the mask which covers the border. A very simple way is to cut the mask for the border out of dry paper, and that which covers the picture out of damp paper. The damp paper, on shrinking, will give you an oval which fits loosely in the outside mask. Damp paper is easily cut by means of the Robinson trimmer, a little tool which every photographer ought to have.

METEOROLOGICAL REPORT SHOWING THE DAILY VARIATIONS IN THE AGGREGATE CHEMICAL FORCE OF THE DAYLIGHT OF THE SOUTHERN SKY. FROM OBSERVATIONS MADE AT BLACKPOOL IN LANCASHIRE,

by D. Winstanley, F.R.A.S.

The daily average has again descended, being, for the past week, as 310 units to 305 for the preceding week, or within 28 units of the daily average of the last week in October, which is the darkest I have thus far recorded.

PYROXYLINE FOR EMULSIONS.*

It is not sufficient that the pyroxyline should be prepared at a high temperature in order to be fit and proper for the manufacture of an emulsion; it is also necessary that the product should be in the presence of an organic body capable of combining with nitrate of silver.

The importance of this has been pointed out by several operators. M. Plucker, in recommending the employment of shellac in the collodio-bromide process, puts himself in the same position as he who resorts to the employment of guncotton manufactured at a high temperature; nevertheless, the emulsion, admirably modified at the time of its preparation, is not long before it undergoes modification.

This method, it is true, permits of the employment of pyroxyline made at a low temperature; but the little stability of the product thus obtained led to its speedy abandonment. Mr. Cooper, Mr. Dawson, and several other skilful theoretical and practical photographers, have also specified from time to time different substances, which, although they often give good results, were, nevertheless, abandoned by reason of the lack of uniformity in the results. One of the most favourable conditions—or, we might even say, indispensable conditions—to the preservation of collodio-bromide, is a collodion containing, by the circumstance of the decomposition of the pyroxyline, an organic matter capable of combining with nitrate of silver.

How is it possible to recognize this particular state in the pyroxyline? it will be asked. Nothing is more simple, if one will only profit by the researches which have already been made upon the subject of collodion. The pyroxyline is dissolved in a mixture of alcohol and water in such a proportion that it can be used as collodion. The solution having been clarified, a few drops of a solution of nitrate of silver in alcohol are added. If the conditions proper to an emulsion have been fulfilled, there is produced a whitish precipitate, which will blacken in daylight. If this reaction is apparent, you may prepare, without hesitation, an emulsion which will answer perfectly. In a contrary case, the collodion is poured into a bottle double as large as is required for the purpose, when the liquid will find itself in contact with a certain volume of air. In this condition the collodion is exposed to the action of direct daylight at a distance from them with 200° Centigrade for two weeks or months, according to the quality of the pyroxyline, the necessary change will have been brought about, and the collodion treated with the solution of nitrate of silver will yield the characteristic precipitate of a good emulsion. This plan of analysing the collodion has been indicated by Dr. Van Monckhoven in his researches on the decomposition of collodion.

Relieving Distressed Photographers.

DEAR SIR,—Will you kindly allow me to ask photographers not to give money to men that call upon them in distress, but to refer them to me?

I am induced to do this on account of the doings of a pretended photographer who I have had tidings of for nearly six weeks in different parts of the country, and always with different tales. He is an impostor, and has no more idea of working than of flying.

All cases of distress that are brought before this association are thoroughly investigated, and, where genuine, are relieved in a proper manner. Photographers, therefore, may send up their loose cash to H. B. Pritchard, Esq., the Hon. Treasurer, with a clear conviction that they are doing more
good than by relieving every impostor calling himself a photographer who likes to honour them with a call.

I am glad to say one thing in connection with the Benevolent Association, that we have not had a case brought before the Board yet that had any signs of imposture about it, all having been unmistakable cases of distress which were relieved thoroughly.—I remain, yours obediently, 174, Fleet Street, E.C., Dec. 13.

W. T. WILKINSON.

SHALL PHOTOGRAPHERS HAVE TRADE SOCIETIES?

DEAR SIR,—The dispute on the "Ownership of the Negative" which you published last week in the News is not by any means the first of its kind which has occurred recently between photographer and sitter, and is not likely to be the last. It has again called my attention to an object which appears to me most desirable, viz., that of a trade union amongst photographers. I believe that sooner or later such a union will be found not only desirable, but necessary to the welfare of our profession. We have many societies for the development of the art, but none in which trade subjects can be discussed, as you justly remarked in your leader of last week.

What I have to suggest is this: that to every photographic society there be attached a section devoted to purely technical subjects; a section which shall hold special meetings of its own a given number of times in a year, to discuss trade subjects only, such, for instance, as copyrights in photographs, ownership of negatives, the allowing photographer's assistants a half-holiday once a week, &c.; and that at these meetings resolutions shall be passed which all members shall be bound to support and carry out, each in their respective businesses. The trade sections might, if found desirable, eventually be joined into one society. By this means photographers will be able to combine and support one another in any disputes which might arise, and I believe the thing would be a success. —I am, sir, yours, &c.,

GROVEHOR.

AN "UNFAIR" CORRESPONDENT.

MOUNTAIN FORM AND FRONT.

MR. EDITOR,—Allow me to ask the writer of the paper, "Photography in and Out of the Studio," to improve a statement of his own about the size of a mountain. He says that his wide-angle lens "depressed the tall mountain in front to half its height." This is a delusion with all those who use such lenses. It is due to a defect in form of the lens. Look out, Mr. Editor! for in this same News you exhibit another sinner, suffering from an iota of fog on the brain. My darling Editor! Have you already commenced to keep your Christmas? I would be glad to join you, but I must wait.—Your humble servant till HANSEL MONDAY.

[Surely our correspondent cannot be familiar with the effects of false perspective given by the misuse of lenses of short focus, by which a mole-hill in the foreground is exaggerated to a towering mountain, and the mountain in the middle distance reduced to a mere haystack. Our fair correspondent—she must be a lady by the tenderness of her words of address, and the lack of logic in her style—must get some examples of this kind of work and look and see.—Ed.]

REDUCING NEGATIVES BY PERMANGANATE.

DEAR SIR,—With reference to the article in your esteemed paper of the 10th inst. respecting the employment of permanganate of potash to reduce the intensity of negatives reinforced by protophtalum of iron and silver, I beg to inform you that there exists the following error, and request that it may be rectified. The said error is this: Allowing the permanganate to act upon the film for one minute would be rather too much, whilst mostly five seconds are quite sufficient. I may, however, mention at the same time that a line cannot be drawn, this being a matter of appreciation on the part of the operator, and a careful remark of the effects thereto, according to the opacity of the negative, would be the only guide. —I am, dear sir, yours very faithfully,

A. L. ETIENNE.

Birmingham, 14th December.

Procedures of Societies.

PHOTOGRAPHIC SOCIETY OF GREAT BRITAIN.

The first meeting of the session of this Society was held on Tuesday, the 14th instant, Mr. J. GLASHEEN, F.R.S., in the chair. The minutes of a previous meeting having been read and confirmed, the following large plates having been duly bollotted for, were announced:—Messrs. Dale Knap, McIlhac, War nerke, W. G. Hunter, S. B. Payne, Mrs. S. B. Payne, Messrs. F. W. Mills, R. Kennedy, T. Boul, E. Mansfield, W. Bates, B. C. H. E. B. Palof, B. Wyles, F. W. Radul, and Miss Harriet Paget.

After a few words on the exhibition which has recently closed, which, the President said, had been both a financial and social success, Mr. VILES read an interesting paper on working large wet plates in the field. This paper will appear in our next. He exhibited a convenient appliance in connection with field work in the shape of a spirit level, which, having the indicating tube and spirit at the end, as well as at the side, permitted the operator to be sure of both vertical and horizontal accuracy of position, a thing he had found especially useful in using a swing-back to secure the accuracy of the plane of the ground glass. It was called a plumber's spirit level.

Mr. WILKINSON, referring to a case of the film splitting mentioned in the paper, said that he was accustomed to the manipulation of very large plates, and found the application of powdered French chalk to the plate a specific against splitting film, even if the plates were imperfectly cleaned. He suggested also that if the cell placed in the mouth of a little which Mr. Viles used, to rest large plates in whilst developing, were covered with American cloth, the plate would be hold still more easily without risk of slipping.

After some conversation, Mr. G. BATES said he thought that a dish for developing had many advantages. It permitted the developer to be used without alcohol, and without risk of stain.

Mr. VILES found it inconvenient, in working large plates the field, to have to wash out a dish. In fact, he used no water whatever, and finished intensification, &c, at home. He found no difficulty in covering large plates without the aid of a dish.

After some further conversation, Mr. HOWARD asked if the films which split were allowed to deteriorate intensification: as, that he thought, would tend towards splitting.

Mr. VILES said the films did not dry; they kept moist quite sufficient time to allow him to finish them at leisure. He should be glad to know if anyone had found any subsequent ill effects from the use or application of dilute alunina to films having a tendency to split, which he had found preventive.

Mr. HOWARD thought there was no danger. He had found no evil effects from the use of guma.

Mr. VILES had once tried guma, and he remembered that after the film was varnished, it became cracked, assuring the well-known honeycomb like reticulation.

Mr. SPILLER remembered that something more than a dozen years ago he had been called upon, in conjunction with Mr. Wharton Simpson, to examine and report upon the causes of cracking in a series of valuable negatives which had been taken in India. They found then that gum had been applied previous to varnishing, and arrived at the conviction that it had been conducive to cracking. They were from dry plates also, a tannin preservative having been used, and the action of the tannin had, he had no doubt, been detrimental. The use of albumen he should think safe.

Mr. ENGLAND said that in regard to cracking after varnishing, he fancied the varnish was often to blame. He had been for some time using a whale's oil varnish, and found it stand perfectly.
Mr. Howard thought that a cause of cracking after varnish- ing was neglect to dry off every particle of moisture from the film by heat before applying the varnish.

After some further conversation and a vote of thanks to Mr. Viles, the subject dropped.

The Chairman called attention to the record of the daylight changes by Mr. J. D. Winnington which had been appearing in the Photographic News. He thought the record very interesting, but it should not be called a meteorological record.

He understood that the mode of ascertaining the varied degree of light was Roscoe’s method. It was to be regretted that no really good photometer existed: the best was that noting the action of light on sensitive paper.

The Chairman then announced that at the next meeting a paper would be read by Col. Stuart Wortley. He also invited members to resume the plan of bringing specimens of various kinds to the meetings, which at one time was a plan which gave great interest to their assemblies.

The proceedings then closed.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

The annual meeting of this Society was held in the rooms of the Society of Arts, John Street, Adelphi, on the evening of Thursday, the 18th inst., the President, Mr. C. W. A., in the chair. The minutes of a previous meeting having been read and confirmed, Messrs. J. Good, G. H. Howard, and F. Hollyer, were elected members of the Society.

The Secretary then read the Report for 1875.

"Your committee, in presenting their report for the year 1875, congratulate the members on the continuous prosperity of the South London Photographic Society which has now entered another session, evincing great vitality, and consequent realization of good results. As our Society is essentially a social one, its mission should correspondingly be an appeal to similar quiet pleasures; and hence your committee refer with the gratification to another phase in its history, the establishment of a popular meeting for the exhibition of lantern slides, produced by members and others, which holds out for the future both general and individual profit. The Annual Technical Exhibition Meeting has now assumed an important position in photographic circles, and has fully justified the intentions of its founder by the great interest and increased attendance which accompanies its yearly recurrence.

"In other ways the papers read and discussions arising the from have possessed much interest, and have in some instances formed new standpoints in the practice of photography. The following papers have been read during the session, viz.:—On the Nitre Sulphur Light,' by J. Spiller, F.G.S.; 'On Stereoscopic Transparencies,' by F. Howard; ‘On the Problem of Lighting and Exposure to Tinture,’ by J. C. Goughron; ‘On Photographic Stains,’ by E. Cocking; ‘Experience During the Last Season,’ by F. York; ‘History of Carbon Printing,’ by J. R. Sawyer; 'Arthur’s Formula,’ by W. Wilkinson; ‘A Novel System of Masking, and the Production of Brilliant Results from Weak Negatives,’ by W. Brooks; ‘Uranium and Its Uses,’ by J. Werge; ‘Negatives on a Transparent Film,’ by L. Warners (On Impurities in the Negative Silver Salt), by S. Fry; ‘A New Studio Window,’ by H. Venderewe; ‘A Simple Method of Printing Ornamental Borders on Carbon Prints,’ by E. Foxlee; ‘A New Way of Flushing Photographs,’ by D. D. Moore.

"Photographs, apparatus, and exhibition of various processes have been shown by the following gentlemen, viz.:—R. Sawyer (Carbon Printing); R. Kellett (Enamelled Process); L. Warners (Sensitive Negative Tissue), and S. Fry, J. Spiller, F. Howard, Fernley, F. York, Oakley, G. H. Simpson, G. Coughtron, W. Brooks, J. Werge, H. Venderewe, Clery, E. Foxlee, Murray, Howarth, J. Nesbit, Baynham Jones, A. B. Bridgman, and various others.

"A large accession of new members during the session has increased the power of the Society to carry on its work with a greater amount of prestige than it has hitherto been enabled to do.

"In conclusion, your committee feel that as long as the pleasure arising from social reunions continues amongst those who practise a common study (where art and science are united) so long will be the prosperity of the South London Photographic Society."

The Treasurer’s Report, being read, showed the income, with last year’s balance in hand, to amount to £44 10s. 1d., and the expenses to amount to £35 3s. 11d., leaving a balance in hand of £37 7s. 2d., and assets in the form of uncollected subscriptions to the amount of nearly £20.

The following gentlemen were then elected as officers of the Society for the coming year:

President—Mr. F. F. Statham, M.A., F.G.S.

Treasurer—Edgar Noel Clark.

Secretary—Edwin Cocking.

After some votes of thanks,

Mr. Dunmore read a paper on a new mode of finishing photographs (see p. 602), and showed a series of fine examples of the process.

After a vote of thanks, a conversational discussion arose, in which a variety of subjects—such as the use of vegetables, greaves, or other substances for the preparation of paper—were suggested by Mr. Dunmore as equally applicable to the preparation of plants, and for the production of margin less polished than the oval centre containing the portrait, and so by contrast giving an effect of higher finish.

Mr. Kennett then exhibited his improved tripod stand, in which the sliding legs for adjusting the stand were held by slits into which bands instead of screws. The stand received general commendation, and a vote of thanks was passed to Mr. Kennett.

The Chairman then called attention to the annual dinner to be held at Anderson’s Hotel, Fleet Street, on Saturday, the 19th instant, at half-past five; after which the proceedings terminated.

FRENCH PHOTOGRAPHIC SOCIETY.

A MEETING of this Society was held on the 5th ult., M. Balard, of the Institute, in the chair.

M. Farbe, of Toulouse, announced the formation in that city of a photographic society, and the publication of a Bulletin to contain its proceedings.

M. M. Lachenal, Faivar, et Cle, and M. Thier, called attention to the arrangements made for the convenience of the French photographers intending to exhibit at the International Exhibition of Philadelphia.

M. Belmonte hoped that the next exhibition of photographs there would be a competition for dry plate pictures.

The Society, sitting on the suggestion, decided that a medal of the value of five hundred francs should be given for the best dry plate picture, and the committee were instructed to draw up regulations necessary for the competition.

M. Liebert offered a prize of five hundred francs for a method to shorten the time of exposure.

M. cáchett presented the Society with a copy of "Betouché Photogaphique," of which he was the editor. Another work from the pen of M. Klaic, a photographer of Algiers, was presented, on a model of reflecting light upon the model by means of a coloured screen turning on a pivot.

M. Rodrigues, of the Portugese Geographical Institute, presented the Society with his collection of pictures exhibited at the Geographical Congress at Paris.

M. Miquosky, of Odessa, explained the method adopted in Russia for obtaining natural clouds in landscape pictures. One commenced by taking a cliché with a very short exposure, in this way a silhouette, or dark image, was obtained with the sky perfect. A second cliché, fully exposed, gave the details of the landscape. It was then a very simple matter to adapt the sky of the first negative to a print of the second. M. Migursky also called attention to a style of printing which might be the mirror of mystery. A carbon print was transferred to a mirror, which, instead of being silvered, was gilt; if the image was put on the reverse, it was only visible by transparency, so that it formed a sort of mystic mirror, showing the image of any person one desired to see on the observer looking in.

M. Batmen showed a little apparatus for closing bottles hermetically.

Among others, a communication on "Froxtilline for
Emulsions" was read from the Bulletin de la Societe de Toulouse (see p. 538).

M. Despiquis read a communication on photo-printing in glass ink.

M. Chardon exhibited a fine collection of carbon prints.

M. Van Tenner exhibited an apparatus for practising wet plate photography in the open air.

The Autotype Company submitted a fine collection of prints.

M. Lyon Vidal showed two photo-chromatic reproductions of paintings.

M. Stebbing exhibited a large number of pictures obtained by means of platinum salts, and explained how they were secured.

The proceedings then terminated.

PHOTOGRAPHERS' BENEVOLENT ASSOCIATION.

The ordinary monthly meeting of the Board of Management was held on Wednesday evening last, at 174, Fleet Street, Mr. W. S. Bird in the chair.

The minutes of previous meetings having been read and confirmed, Messrs. Evans, Digby, Loydond Boucher, Thomas, Harnack Dennis, and James were admitted members of the association.

The Secretary was instructed to write and thank the President and Council of the Parent Society for the use of the late Sir Robert and Mr. W. T. Wilkinson, who kindly undertook the musical portion of the programme; and that Mr. York would again exhibit the magic lantern, and the Secretary would do the lecturing.

A petition was presented for relief, which, after discussion, was voted ten shillings per week, for a period not exceeding ten weeks, and as the applicant was not a member, he was granted the privilege of advertising in the Employment Register issued by the Secretary. The fact of the applicant not being a member called forth a discussion as to when it would be desirable to announce that non-members would not be relieved, which, after a brief discussion, was adjourned.

W. T. WILKINSON.

Talk in the Studio.

Mr. Alderman Nottage.—Photography, the newest of the arts, the newest of the industries, and the most recent of the branches of commerce, definitely took a position amongst the most important of the representative industries of industry and commerce—the Corporation of London—on Wednesday, the 8th instant, when Mr. Alderman Nottage, of the Stereoscopic Company, gave his inaugural dinner, the Lord Mayor of London, the Sheriffs, and upwards of two hundred noble and distinguished guests being present. It would be out of place in our columns to enter into a detailed account of such a festive celebration; but we regard the occasion as noting a worthy association of success in the commercial development of the new art of civic honours, in which all our readers are interested, we put the event on record; simply adding that, for perfect taste, perfect organisation, profuse hospitality, and elegant comfort, we have rarely seen any public or private dinner so successful.

LAMBERT, FROU.—We are asked to call the attention of photographers interested in M. Lambert's processes to the circumstance that M. Lambert will be in Greenwich from January 3rd to January 12th. We learn from two or three correspondents in the North of England that M. Lambert has met with a warm welcome amongst many of the photographers. Thus it is seen that M. Lambert has secured exclusive licences for four towns, not to retain, but to diffuse, he is so delighted with the processes. The number of recent licensees appears to be very large.

PHOTOGRAPHIC CHRISTMAS CARDS.—Referring to the remarks on the use of Photographic Christmas Cards, Mr. W. Wright calls our attention to some pretty-designed medallion mounts for card pictures, the subject of the designs being well suited to Christmas associations. If those mounts were better known we think they would be much used with portraits as amongst the friendly souvenirs exchanged between friends at this festive period. Mr. John Terras also sends us some card photographs intended as Christmas souvenirs. Some of them are very pretty. Mr. Terras has not found them successful with the public. Possibly a variety of reasons may influence this matter, which we may deal with at another time.

THE LATE ECLIPSE.—Referring to some correspondence on the eclipse which took place a few months ago, and appeared in our page at the time it occurred, it follows:—"On my return from India I should like to say a few words about some letters which appeared in the English Mechanics during my absence. Mr. Proctor, and a writer signing himself Mr. Fellow of the Royal Astronomical Society, in these letters, gave an account of the results of the late Eclipse expedition. It would be better if these discussions were postponed until the results are published by the Royal Society, but if writers who have not heard anything beyond a few short telegrams, publish it upon the authority of a Fellow of the Society, it is not surprising that the value of photographs which have not seen, a few remarks of one who has seen them become necessary. If the telegrams written by me have given rise to the misunderstanding, I am sincerely sorry for it. I have had no personal interest either to gain my success or the failure of considerations. The Royal Society has done me the honour to entrust me with the task of carrying out a programme sanctioned in detail by the Eclipse committee. This I have done to the best of my ability, and in wording the telegrams in question I avoided carefully the expression of any opinion which might have been said to have led to the impression that I had failed to fulfill the obligations upon me. The impression has been propagated that the expedition has not obtained any results of great importance, it is the fault of those who, thinking they had an interest in exaggerating the importance of the results, have taken away from the meaning of the words which, in reality remained far below the truth. There cannot be the slightest doubt that the photographs obtained by the prismatic camera are full of interest and importance. They solve the whole puzzle in which part of the light which passes through the objective of the crown is situated. They open out almost entirely new field of inquiry, answering questions which could never have been answered by any other method, and suggesting new questions to be answered hereafter. I should have liked to postpone the question whether it is possible to photograph in all its details the spectrum of the corona in the time available during eclipses until Mr. Proctor's long-promised mathematical solution has appeared. As, however, we have had to wait for it already a considerable time, I venture to submit to your readers the following considerations.

The prismatic camera is a spectroscopic without collimator. It has given us photographs after one minute's exposure, and would have done so in less time under more favourable atmospheric conditions. If we add a collimator and telescope to this instrument, we shall have a spectroscopic with a collimator, which is actually was employed for the photographs of the spectrum. If the lens of the telescope is, regards diameter and focal length, like that of the camera; if, further, the focal length and diameter of the collimator lens is such that it would collect all the light which passes through the objective of the crown; if the slit plate was removed, the only variation in the intensity of the light would be caused by the absorption through the two additional lenses and by the deviation of the slit. The inclination of the slit for the absorption of the corona can be reduced to a minimum by suitably altering the aperture of the collimator lens, and by using a slit not too narrow. We should thus have an instrument capable of photographing the spectrum of the corona in one minute. This is not the place to discuss whether the corona was observed with a slit of the only the corona itself, to the instruments employed, or finally, to my own fault. I will, I believe, be found hereafter, that the experience gained by even these failures will prove useful on future occasions. In summing up the results of the expedition the paper of the coronas, published by Mr. H. N. Shorpe, ought not to be forgotten. The time observations were conducted with as much accuracy as the instruments permitted."

CHLORIDES OF GOLD AND POTASSIUM TONING BATH.—Discuss dentists' waste in the least quantity possible of aqua regia (one part nitric, two parts muriatic acid), add drop by drop, stirring meanwhile with a glass rod, a strong solution of caustic potassa until the solution is slightly turbid, then add a few drops of muriatic acid to clear it; add water until you have ten grains of gold to the ounce of solution. For toning,
THE PHOTOGRAPHIC NEWS. [DECEMBER 17, 1875.

use one grain of gold and five grains of acetate of soda to five sheets of albumen paper; neutralize with chalk. Mix about three hours before using.—Western Photographic News.

This process is used in America for painting in distemper. The following hints, given in the Scientific American, may be useful in background painting:—"To kalsomine a good-sized room with two coats, take ten pounds of whitewash dissolved in hot or boiling water; one-fourth of a pound of glue (which should have been put to soak in a pint of water the night before) may now be melted slowly on the back of the stove, stirring frequently. To colour a beautiful tint, get two ounces of ultramarine blue and one ounce of venetian red; mix separately with cold soft water, and strain through muslin into the boiler, each in a separate vessel. The whitewash may now be stirred well; if too thick, add more hot water, and strain through a flour sieve into a good sized pot. Add some of the blue and red, alternately, till you get the desired shade, which may be ascertained by putting a little of the mixture into a piece of paper, by the fire. When your colour is determined, pour in the glue; and after mixing well, apply the wash hot to the walls, brushing in any direction, as it mixes better than if put on too carefully. On white walls two coats are necessary; but after the room is once done, one coat is sufficient. Should the ceiling have to be done, put on the whitewash alone first, then reheat the wash and add the paints and glue, the latter to be light-coloured so that the walls will be to white. Common glue will answer for a painted wall. A paper border finishes off the room perfectly. Should the second coat not be put on till next day, heat the mixture, as the glue will not mix with the other ingredients unless pretty warm."

To Correspondents.

H. DONNING.—For a north light, the fabrics you forward are unnecessarily heavy and dark for curtains. Common calico, white or off-white, or the thin and cheapest of chintzes, or muslin, is more suitable. For the sides, we should prefer curtains with rings, sliding on a brass rod; and for the roof a series of blinds (say three), running on rollers placed at the ridge of the roof.

J. C. LUCAS.—Bites' black varnish will answer most purposes that you require. Brunswick black diluted with turpentine, or with coal tar naphtha, will answer. If applied somewhat thick, it will dry black. If you want it quite dull, dilute and grind up a little bone black with it.

JOHN PATRICK.—Our correspondent slightly mistakes the aim of the process. Whilst it is true that the process contains many steps, it makes it a tolerably complete manual of practice, it is intended chiefly to record the progress of the year, and represent the practice of the art in such degree as it has been modified by discovery or experience. We will report old processes in the Year-Book, unless some point of novelty be involved. Hence, unless some new or improved mode of photographing on wood have been announced during the year, none will appear in the Year-Book. The best method at the present time—provided the operator have any familiarity with the operations—is to produce a photolithographic transfer, and put the image in printing ink on the wood instead of upon stone.

C. A. B.—There are two or three ways of placing photographs in scrap books without cockling. One very good plan is to attach them only at the four corners, taking care to draw the print tight. Another plan is to use india-rubber cement for mounting. This answers well, but has a drawback: in the course of years, perhaps a dozen or twenty, the india-rubber perishes, and the prints become loose, and sometimes also discoloured with the change in the india-rubber. A third plan is to employ the preparation of glue in alcohol sold for the purpose. Marion and Co., of Soho Square, sell it, we believe. 2. We should keep a stock of both glue and India, using one for special purposes, and then using a mixture.

DUNCE.—Yes, your proportions will serve, and we have no doubt that the studio will give the year. You will find that the advantage to place the sitter slightly quartering towards the side-light, the canvas being placed in the corner. A reflecting screen in the unlighted side will be required.

P. R.—A number of processes can be worked on any kind of paper. You will find details in our forthcoming Year-Book. We have not space for giving complete instructions for a process in the column.

AN AMATEUR.—The value of uranium in the nitrate bath for wet plate is a disputed point. Many operators speak well of beryla. It is simply dissolved, added to the nitrate solution.

GALA.—The other will do no harm whatever. The only difference you will experience will be that the other will evaporate more quickly than the phlogonite.

JOHN THOMAS.—The quick and constant recurrence of pinholes that you describe is very tantalising, and, unfortunately, very difficult indeed to prescribe for. Recieving only general descriptions, and not knowing the minutest history of each case, we can only prescribe for general causes. As a rule, the cause of pinholes is the accumulation of iodide of silver in the bath, which supersaturates the solution and is precipitated on the plate, giving it the sandy appearance you describe by pinholes; and improving in pinholes in the negative. The various modes of getting rid of iodide we have often described both in the News and our Year-Book. Diluting and filtering out little carbonate of soda; adding a few drops of hydrochloric acid, and various other plans, all have their advantages. Boiling does not necessarily precipitate the iodide. One cause of the ready recurrence of pinholes is the use of a small quantity of solution. It is better to use a couple of gallons than a pint. Cold weather increases the tendency. Read what we have said in various Year-Books and News articles. The cards are pretty. Probably a variety of causes may prevent their sale.

W. L. T.—We have not much faith in the process.

W. D. B.—If you ask us whether oil colours or water colours are best for colouring photographs, that question needs no answer.

N. V.—This is equalises equally well for certain pictures. Oil colours are most desirable for large pictures, and water colours for small pictures. Obtain the manual of "Photographical Colouring as Applied to Photographs," price one shilling, of Newman, Soho Square, which will give you all the information you require.

METEROLOGICAL REPORT FOR NOVEMBER.

BY WILLIAM HENRY WILSON.

Observations taken at Braystones, near Whitehaven, 36 feet above sea level.

<table>
<thead>
<tr>
<th>Date</th>
<th>Temperature</th>
<th>Barometric</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 1</td>
<td>43°</td>
<td>36°</td>
<td>S.S.E. Heavy rain a.m. and p.m.</td>
</tr>
<tr>
<td>Nov. 2</td>
<td>40°</td>
<td>40°</td>
<td>S.E. Rain p.m.</td>
</tr>
<tr>
<td>Nov. 3</td>
<td>44°</td>
<td>44°</td>
<td>S.E. Snow a.m. and p.m.</td>
</tr>
<tr>
<td>Nov. 4</td>
<td>44°</td>
<td>44°</td>
<td>S.E. Rain a.m. and p.m.</td>
</tr>
<tr>
<td>Nov. 5</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Rain a.m.</td>
</tr>
<tr>
<td>Nov. 6</td>
<td>45°</td>
<td>45°</td>
<td>S.W. Windy p.m.</td>
</tr>
<tr>
<td>Nov. 7</td>
<td>45°</td>
<td>45°</td>
<td>S.W. Clear. Air very fine.</td>
</tr>
<tr>
<td>Nov. 8</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Windy p.m.</td>
</tr>
<tr>
<td>Nov. 9</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Windy p.m.</td>
</tr>
<tr>
<td>Nov. 10</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Windy p.m.</td>
</tr>
<tr>
<td>Nov. 11</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Clear. Ash from volcano.</td>
</tr>
<tr>
<td>Nov. 12</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Clear. Slight dew at night.</td>
</tr>
<tr>
<td>Nov. 13</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Cold. Occasional showers all day.</td>
</tr>
<tr>
<td>Nov. 14</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Rain p.m.</td>
</tr>
<tr>
<td>Nov. 15</td>
<td>44°</td>
<td>44°</td>
<td>S.W. Rain p.m., with strong wind.</td>
</tr>
<tr>
<td>Nov. 16</td>
<td>42°</td>
<td>41°</td>
<td>S.W. Rain a.m. and p.m.</td>
</tr>
<tr>
<td>Nov. 17</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Rain a.m. and p.m.</td>
</tr>
<tr>
<td>Nov. 18</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 19</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 20</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 21</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 22</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 23</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 24</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 25</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 26</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 27</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 28</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 29</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
<tr>
<td>Nov. 30</td>
<td>42°</td>
<td>42°</td>
<td>S.W. Fair, generally sunny</td>
</tr>
</tbody>
</table>

Summary.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Barometric</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>42°</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>42°</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>42°</td>
<td></td>
</tr>
</tbody>
</table>

Mean of all observations: 42°.4.

Number of days fair... 22.
Number of days cloudy... 0.
Number of days with more or less rain fell... 11.
Number of days fair, sunny... 26.
Number of days fair, rainy... 6.

Note.—From the foregoing table it may be observed that cold, frosty days have been unusual this year, and that we have had little severe frost, affording much skating amusement on the neighbourhood ponds. Having this day commenced a rapid thaw, those people having been in the old age Christmas spirit, "it will not bear a goose after," may expect a comparatively mild winter, and we shall have an opportunity of testing its accuracy.
Photography in and out of the studio—Professor Adams' experiments with selenium—Accidents and reductions.

Professor Adams' experiments with selenium.—The remarks of the President of the Photographic Society at the last meeting of the Society, to the effect that it was to be regretted that no really good photometer existed, led us to bring up once more the subject of selenium, especially as the paper recently communicated to the Royal Society by Professor Adams and Mr. F. S. H. turned so much notice of it by photographers. Last week we called attention to the circumstance that selenium could be made exceedingly sensitive to light, so far as its conductivity of electricity is concerned, by heating it for some time at a high temperature, and that even in its normal condition, as Professor Adams shows, it might be employed in the construction of a very ready measure of light.

Professor Adams has sought to discover what elements of light it is that render selenium so much better conductor in daylight than in darkness, and he has come to the conclusion that the action upon the selenium is due principally, if not entirely, to radiations belonging to the visible part of the spectrum. This entirely agrees with M. Siemen's results, which were mentioned last week, for that gentleman distinctly states that the dark bands do not occur in the influence selenium. Light rays of all kinds do so, however, particularly, Professor Adams tells us, a greenish yellow, a circumstance which will strike photographers with particular interest. The change exerted upon selenium by daylight is, as we have already pointed out, very marked, and we are not without some reason to state precisely to what degree. Professor Adams found that the needle of his galvanometer (which indicated the degree of conductivity of the selenium) was not affected at once, when he lit up a darkened apartment containing the selenium photometer with an ordinary Bunsen flame, which is non-luminous; but after several seconds the needle made a slight deflection, equal to ten divisions of the scale. On the flame being made luminous, however, there was a sudden deflection, which increased to 250 divisions of the scale in a few seconds. The light of an ordinary Bunsen could scarcely be measured, but it is estimated at 1-200th part of a candle, while the luminous Bunsen is set down as equal to ten candles. Therefore, a faint illumination equal to 1-200th of the light of an ordinary candle sufficed to affect the selenium visibly, such an illumination as photographers would not hesitate to use in their dark rooms. On a cloudy day we will examine the value to a photographer of such a delicate photometer, if one could be constructed out of selenium. For testing dark rooms when one has to work with the delicate films given by some dry plates, a photometer of this kind would be invaluable. Dark rooms, whether lighted by coloured glass, or through tissue paper, are well known to get less light-proof by degrees, if sunshine, or any strong light is admitted to act upon the screens, and a selenium photometer, therefore, would prove a capital tell-tale under the circumstances, if only it could be produced in a simple enough form. Even moonlight has an effect upon selenium, for Professor Adams says that "on throwing the moonlight on the selenium by means of a plane mirror, the needle was at once deflected, and divined by Professor Adams, who further states that this deflection was increased to forty divisions on placing the mirror outside the window, so as to send the moonlight perpendicularly through the window on the selenium, and this, too, with the window closed. No better proof could be afforded of the sensitiveness of selenium and of its suitability for making a photometer. The change in deflection (resistance and conductivity may be taken as opposite terms) produced by the moonlight is sometimes as much as one-fourth of the whole resistance. Thus, by way of example, it may be mentioned that the normal resistance exhibited by selenium on passing a current of electricity through it is put down at about 4,400 ohms, and this number is marked on the galvanometer when the selenium is in the dark; a luminous Bunsen burner (equal to ten candles) reduces the resistance (or increases the conductivity, which is the same thing) by rather less than 1,000 ohms, so that the needle of the galvanometer would at once point to 3,400 ohms on exposure of the selenium to the light of ten candles. We share the hope of the Presi dent of the Photographic Society that we may not long be without the possession of a delicate and handy photometer, and it seems to us very probable indeed that selenium will furnish us with what we want.

Accidents in reducing Residues.—The recent accidents in American studios connected with the evaporation of silver baths containing glycerine call to mind a lamentable occurrence that took place about ten years ago at Pesth, and which we are glad to hear has not since been repeated. In a room of the American Embassy, a forgotten, a travelling photographer, well known in the neighbourhood, called upon a chemist in Pesth with some photographic residues, from which he desired the silver to be extracted. The residues remained some time in the laboratory, and in the end were handed over to an assistant to be reduced. In order to remove the precipitate, which had been perfectly dried, but placed in a glass vessel which it was contained, the assistant began to scrape it with a pair of scissors, when a fearful explosion immediately took place, which was heard throughout the town and neighbourhood. The body of the chemist was found mangled and literally torn in two pieces; the assistant had been sent to the floor by the force of the explosion and killed on the spot; while a little boy, the chemist's son, who had been watching the operation, was found stunned and bleeding, but otherwise comparatively unharmed. He alone could give what meagre details were forthcoming, but that the mixture under manipulation was made up of photographer's residues there was no doubt. An inquiry into the matter was made by several Austrian scientific men, and the result of their deliberations we published in these columns at the time, and which, as to the effect of the explosion, and the sound of the description can be formed in photographic residues when an acid is present in combination, and that such a result only was possible when the residues contained large quantities of ammonia. It was therefore recommended that residues should be first treated with a small quantity of acid before being reduced. Only if there is a risk of forming nitroglycerine by the change, presence of it is suspected. In the residues, it would scarcely be advisable to employ nitric acid for the purpose.

The Promenade Portrait.—The novelty in size introduced during the year have not received so much attention as might have been anticipated. The Boudoir size introduced by Mr. Blanchard, had surely sufficient claims to novelty and fitness to have secured for it a cordial reception amongst portraitists, to whom any novelty which affords a stimulus to business should be welcome. The Promenade size, introduced in America, appears to have been pushed more, and is acquiring some acceptance on the Continent. In Berlin it seems to have been adopted, and we print an article on the subject in another page from the Mittheilungen. Like the boudoir portrait, the promenade portrait is a narrower picture than the cabinet or carte; so that in this respect the new fashion is the very opposite of the former. The promenade picture is, however, much smaller than the boudoir, being about a third of an inch higher than the cabinet, and about the same amount narrower. It is possible that this alteration in the proportions would be
pleasing to many, but it will be a question whether album manufacturers will deem the difference sufficient to warrant them in making books to take portraits so nearly of a size. There exists one serious drawback against the success of the promenade picture, we cannot help thinking: it is so very much like the present popular portrait sizes. The public may like to have a carte or cabinet taken, or something in a grander style, in which case they may now choose the boudoir format; but it is hardly likely they would choose a size so nearly allied to the cabinet. It is suggested that the broad cabinet, or slender promenade, should be delivered by the photographer according to the figure of the model; but in this case we must suppose the co-existence of drawing of a cabinet and promenade album, for if both pictures were made to fit into one and the same framework, there would be little good in having two different sized mounts. We do not, however, desire in any way to stand in the way of introducing novelties; on the contrary, we think that photographers do quite right in bringing before the public novelties of one kind or another. For the commercial aspect, such a step exercises the artist in the different branches of his calling. But we think that instead of merely altering in a slight degree the measurement of the photograph, more good would be done by introducing changes in the character of the portrait itself. The main thing with the professional portraitist is to captivate the good taste of his clients, and this is more likely to be the case if we do not do with one single photographer, and the privilege of the photographer to take what it will for the prints being the same as that fixed for Paris portraitists. He has already concluded several compacts under these conditions.

Since we are talking of M. Leon Vidal, let us mention that his Agenda Photographic, in which, as a matter of course, we do not find among the accounts of the work of this artist, is at the point of being finished in a manner that will enable it to be a very convenient one, will contain a mass of useful matter, and, it is hoped, will be published before the close of the present year.

By a curious coincidence, which, nevertheless, does not unfrequently happen when it is a question of satisfying a public want, M. Fabre, of Toulouse, has been seized with a similar idea, and announces also the publication of an Agenda Photographic, or Aide Memoire de Photographic, based upon the same sort of programme. We are satisfied that both of these little volumes, whose usefulness is incontestable, will have their due share of public support.

M. C. Fabre, of whom we are speaking, is the secretary of a non-professional society which has just been formed in Toulouse, and which is to be the successor of the one that was the cause of the well known A Bulletin or organ has been started, containing the proceedings of the society, and this, of which three numbers have been printed, is issued gratis to all members. No sooner has the society started than two series of medals are offered for the best tourist or travelling apparatus for working dry plates: one class of medals will be given for camera and its apparatus, and the other for lenses. The competition will take place in April next.

As to the Bulletin of this young society, it is not at all very rich in practical papers. The first numbers, which are in our hands, contain little else than the transactions of the society. There is, moreover, a translation of an article by M. Carey Lea, on emulsions, and a few gleanings from journals. Nevertheless, the first, of which the third impression, an article upon pinholes in the negative, the author, who has experimented with different means recom-
mended to prevent these defects, gives the preference to the addition of carbonate of silver to the sensitiser. He recommends the addition to the nitrate solution of five grammes of bicarbonate of soda for every hundred grammes of nitrate of silver that has been employed. The precipitate formed is allowed to fall, the clarified liquid is decanted off, filtered as usual, and filtered. As the solution is employed, it is poured back into the stock-bottle containing the carbonate of silver. In this way the author assures us that the pinholes are completely prevented, and the solution, always kept in a neutral condition, is freed from time to time of any organic matter it may contain. Before use, two cubic centimetres per thousand of nitric acid should be added. This trace of acid is sufficient to prevent the production of fogged images.

PROMENADE PICTURES.

Photographicke Novissim.

PROF. E. VOGEL.

PHOTOGRAPHY is governed by fashion. As the fashion of our garments changes, so also do our photographs. The changes, so far as style is concerned, are of a varied kind. In the first place, as regards the figure; the full-length portrait was followed soon after the introduction of the carte-de-visite by the bust and three-quarter portraits; then a change was made in the mode of lighting, and we had the Adam-Salomon and Rembrandt styles; and finally, in recent times by the bust and the views from the carte, the cabinet, and Victoria, the last-named being but very short-lived.

With the desire of again bringing forward something new, no less than three different forms of have been started simultaneously, the imperial and boudoir style, which are materially larger than the cabinet; and a third, the promenade picture, which is not as different in use to the cabinet. Our readers need, however, be in no way exercised in mind just at present about these novelties. It is very easy to invent a new format. Nothing but a pair of scissors is required for the purpose of cutting down a large picture to smaller dimensions, but it is another matter altogether to introduce the size successfully. This is difficult, and to do it something more than a pair of scissors is necessary. You require a public, in the first place, that is pleased with the new photograph, and gives orders for them; then properly cut and printed cards for mounting the pictures; and finally, suitable albums for their reception; new lenses are less required, probably, for the instruments in any good studio will no doubt be found most suitable for the new idea. Without such assistance, the whole cannot be attempted, and the humble photographer will therefore do well to let his bigger brethren undertake the experiments which will be necessary first of all before the three novelties we have mentioned can be properly brought before the public. In large studios the printing of a few hundred cards in the new styles, and the production of as many pictures of some attractive young actresses to serve as parade-pictures, would be an expense scarcely felt, and the novelties would be put in the reception-room to satisfy those asking for the very latest fashion in photographic portraits. Should the pictures find favour with the public, there would still be plenty of time for photographers in a smaller way of business to take up the matter.

In my opinion, the larger styles can count on very little sympathy; they will obviously be more expensive than cabinets, and that will be a grave objection during the present bad times. I do not, however, set myself up in any way as a prophet, for when I expressed my opinion ten years ago upon the subject of the cameo prints, which came to us as a novelty from England, and stated, as turned out to be the case, that the fashion would not last long, several gentlemen were much put out by my statement, maintaining that my remarks stood in the way of their business interests. I must guard myself, therefore, from such insinuations for the future, and will state merely that the promenade picture appears to me the likeliest to please, and may be found suitable in certain specific instances.

The promenade picture, in comparison with the cabinet picture, is narrower, and therefore notably higher. A cabinet measures 95 mm. by 135 mm.; a promenade picture measures 76 mm. by 152 mm. The card mount of the latter is 168 by 100 millimetres. The proportion of height to breadth is, therefore, in a promenade picture, as 1 to 2. At first the promenade portrait appears too high, while the cabinet seems too broad.

There are certainly many compositions in which the proportion of height to breadth, which make an exceptionally pleasing impression, not only in pictures, frames, but throughout art; in doorways, windows, facades, &c. This proportion is breadth to height, as height to the total of both. For instance, breadth = 3, height = 5, gives the proportion 3:5 = 5:8. This is not perfectly correct, for instead of 5, it should be 5.4, but these small variations are allowable. The fact is, the proportion 3:5 makes a very agreeable impression. A cabinet picture does not differ much from this proportion; it would conform better, however, if, instead of 95 mm. broad, it were but 95 mm. The new promenade picture, on the other hand, is too high. The best proportion, according to the golden mean, should be 78 mm. by 120 mm. and the height from the carte, the cabinet, and Victoria, the last-named being but very short-lived.

Unfortunately, but little attention has been given to the beauty standard, just as is the case in the cutting of our garments, and in the same way as it is impossible to argue down a new fashioned garment, no matter how foolish and ridiculous it may be, so we should be powerless to rob a picture of its popularity.

In every consolatory connection, the thought that painters, on their part, trouble themselves very little about the golden mean. Angeli, of Vienna, has produced a series of magnificent whole-figure portraits, in which height to breadth is in the proportion of 2 to 1, and many of his pictures, which are in Berlin, come into my mind when I criticise the new promenade picture.

The old cabinet picture has one fault: it is too broad for standing figures that are slim. One is compelled, for this reason, to fill up the spaces on either side with furniture or ornament of some kind. This defect is not to be found in the promenade picture; it is, therefore, especially suited for slim female figures without crinolines, but with trains, and better still for full-length portraits of gentlemen. On the other hand, however, there is much space over the head which is very inadequately filled in. This space, too, has a bad effect upon the figure.

The more room there is over the figure, the shorter the latter appears; while the more room there is beside the figure (as in the case of the cabinet picture), the slimmer does the model appear. When, therefore, a short, thickset personage is to be photographed, it will be best to change the cabinet format, while the new style may be employed to better advantage for slim figures which are not too tall. That promenade pictures are unsuitable for bust or three-quarter portraits, need scarcely be said.

In the few promenade pictures which have been placed before me as proofs, I have found one universal fault: the action of the foreground has been lost sight of. In all pictures one is compelled, by reason of the deficiency of height, to cut off the foreground close to the feet of the model. This, unfortunately, has also been done in the case of the promenade pictures, where such a step was quite unnecessary.

The more foreground is left, the farther the figure recedes into the picture, and the more artistic it looks to the spectator. An aspect is thereby obtained which the
ON THE MANIPULATION OF LARGE PLATES IN THE FIELD.

BY E. VILES.*

I must confess myself to be in a predicament, as I am asked to say something about the taking of the large direct photographs in the late exhibition, and really I have nothing to say. I do not like to begin thus; and yet I am afraid that the following particulars will be voted not a twice, but a many-times told tale.

With regard to the chemicals employed in producing the negatives, I have made no change from the various formulas I gave last year in the paper I read before you; but the increase of size from 13 by 11 introduced some modifications in the manipulations. And here I would wish to remark, with reference to the question of direct photographs versus enlargements, that when the size of the picture quite exceeds that of its negative, the dimensions of the latter are not much exceeded, and a better result can be secured by taking the negative direct than is possible by any enlarging process yet known; but when the size is beyond 24 by 18, then an enlargement becomes a necessity.

The difficulties attendant upon the taking large negatives by the wet collodion process are more in the bulk and weight of impediments required to be carried and moved about than in the manipulations themselves. When the knack has once been mastered, it is just as easy to coat a plate 20 by 16 as to coat one of a smaller size; and the same observation is equally true of the development and varnishing.

Last year I stated that I found an omnibus more convenient than a tent; but I discovered that a covered vehicle was not so well suited for these large plates. One great help to successful working is to have plenty of elbow-room. Some pride themselves upon being able to conduct their operations in the most limited space; but I believe it to be a mistake. The tent I used during last summer's campaign will be well known to you by the name of Smart's tent. It consists of a few light pieces of wood, which are quickly fitted together, and made rigid by sundry screws. When erected, it looks more like the stall of a peripatetic vendor of gingerbread than anything I can think of. Over this framework is thrown a covering of the twilled material generally used for dark tents, which is pinned down to the ground with iron skewers. From each upper corner of the tent hangs a cord, which is also secured to the ground with an iron pin. This prevents the tent from being blown over by the wind. My assistant puts this tent up and takes it down again in a very few minutes—say ten. This is done while I get the camera, &c., in order, or select a suitable point of view. When erected the tent forms a commodious and airy dark-chamber, 7 ft. high, 3 ft. deep from front to back, and 5 ft. 6 in. wide. A mahogany board, hinged in the middle for portability's sake, goes all along the tent, giving a surface to work on of 5 ft. 6 in. by 2 ft. Above is a shelf, also hinged, which gives ample room for all the bottles, &c. Such a tent is easily made, is roomy, cool, and comfortable, and packs up into two comparatively small, and by no means heavy, packages.

From the tent we work in to the camera we work with seems a natural transition. Mine, made specially with a view to portability and careful usage, weighs about half a hundredweight. To shift such an instrument as this from place to place in the ordinary way until the picture on the ground glass is suitable would be so laborious as to be a serious obstacle; but by the adoption of a simple expedient such fatigue and loss of time are quite done away with. There is an analogous difficulty in the use of a large telescope; and to obviate it a small telescope, called a finder, is fixed in the field of view; but it occupies the centre of the field of view in both instruments. Acting upon this idea I suggested, I took a 5 by 4 camera, and mounted it with a lens that embraced just the same amount of subject as the large one, the image on the ground glass of the small camera being a reduced facsimile of that on the large one. Thus provided, I could with materials, under a length of 1 and a half satisfied myself that I had fixed upon the very best point of view from which to take the picture.

This important matter decided, the tripod stand that carries the large camera is next fixed up, and the top accurately adjusted to a horizontal position by means of a spirit-level. A Stillman's camera resembles a closed book. In the lower part of it is cut a groove, into which a projection on the brass ring forming the tripod top accurately fits. The camera being lifted up is placed with great ease and certainty in the required position, and then clamped by means of the usual screw. Two pieces of brass are raised, the front and back of the camera fall like the covers of this book, and all is ready.

We come now to the preparation of the glass. In coating a plate the work of process lies in keeping the pool of collodion quite circular, and as nearly as may be in the centre of the plate. If this is done, all is easy enough; but if, from careless pouring, the fluid is allowed to run into an oval or any irregular shape, then an imperfectly coated plate or a waste of material is inevitable. I hold the plate by means of a globe pneumatic-plate-holder; and this is the handiest and most convenient to put the collodion into a suitable pourer that will contain just the quantity necessary to flow the plate properly, and no more. For the size 20 by 16 I find two ounces is just sufficient; and this is the quantity I always pour on the plate, thus preventing any mistake by taking too much or too little, which is almost sure to occur when working from a larger quantity. More can be rocked or held just as easily as one of half-plate size.

Development.—I prefer to develop by pouring on the developer in the usual way. I have tried the development—dishes recommended by Mr. England and others, but I found them messy and troublesome. There is really no more difficulty in applying a developer evenly to a large plate than there is in collodionising it. But as the weight of the sheet of glass is considerable, one's arm soon begins to cry out for rest; and so I avail myself of a little expedient devised by our friend Mr. B. J. Edwards, to which I gladly take this opportunity of calling attention. Take a good heavy pickle-jar, and into the neck of it insert a hollow india-rubber ball (those used in the game of golf); these balloons are just the thing. Land this pad, on which the plate is instantly moved into any and every position with the greatest ease. On taking the plate from the dark slide, place the centre of it on the ball; support the nearest left-hand corner with a pneumatic holder, and apply the developer with a clean and even sweep. Nothing could be easier, and, thanks to this simple but admirable contrivance contributes a large amount to the speed of work. I remember having seen it recommended that a duplicate negative of an away-from-home negative should always be

* Read before the Photographic Society of Great Britain.
taken; the extra trouble is comparatively nothing when the point of view is chosen, the object properly focused, and the camera position will help. Accidents will happen; and the larger the negative the more liable it is to fracture in the pressure frame. The more distant the view, and the more difficulty there is found in securing a satisfactory result, the more important it is to take a duplicate. Moreover, perfect as the first negative may be, the chances are that the second one will, in some respect or other, turn out to be superior.

It is an unfortunate fact that every photographer meets with failures. My special trouble this season was the splitting off of the film during the final drying. What more exasperating source of failure is there than this? A large negative of a distant object is successfully taken, and every operation successfully carried out up to placing in rack to get dry; then to come next morning and find the film hanging down in ribbons is, to say the least of it, very trying to the patience. Fortunately I was able to trace out the delinquent and convict him on the clearest evidence. The collodion was guilty. I was very sorry for it, because of the many good qualities this sample possessed; it flowed over the plate in the most agreeable manner; it gave in the bath a splendid creamy film, and it possessed that most essential quality of a negative, and under the developer, densified admirably. But this one fault ruined all; and, in spite of all his virtues, he had to go into banishment. What struck me as extraordinary was that, when employed upon small-sized plates, or even up to 13 by 11, it exhibited no tendency to this propensity. I thought at one time unequal drying was the cause; but it was not so. I tried the nitrate of albumen of different degrees of strength, and even supplemented that with a broad band of india-rubber varnish, but vainly; the film peeled off just the same; yet albumen proved to be the curative agent after all. After the final washing I applied the albumenising solution after the manner of collodion, worked it well over the plate, drained off the surplus, and put aside to dry. Negatives so treated did not split. Gum-water has been proposed for this purpose; but it is objectionable in many respects, as experience has proved. Gum is more hygroscopic than albumen; and plates that have been flowed with gum and then varnished are apt in time to crack all over the surface, more especially if they are exposed to fluctuations of temperature.

In conclusion, I wish to introduce to your notice a special form of spirit-level, which is particularly adapted for the purpose of levelling a camera; it is commercially known, I believe, as a plumbor's level. At the upper part of it a second much smaller level is accurately fixed at right angles to the ordinary one. Its use is to show not only when a thing is horizontal, but when it is vertical. Applying to the focusing-screen it shows at once whether the ground glass occupies a position at right angles with the horizon. I wish also to mention that these large plates were all sensitized in a dipping-bath made of mahogany, and lined with pure sheet india-rubber, as described in my former paper. The silver solution and the india-rubber remain mutually unaffected; and the lightness and inelasticity of the latter so insensibly render them deserving of more notice and wider adoption than they have yet obtained.

ON BLACKENED SILVER CHLORIDE, AND ON SILVER SUBCHLORIDE.

Mons. E. Von Bisria, in the Deutschen Chemischen Gesellschaft, says:—A long line of researches on the compounds of silver has finally led me to the conclusion that chloride of silver, when thoroughly blackened by light, cannot be considered as silver subchloride. On the other hand, I found that silver subchloride prepared by the action of hydrochloric acid on silver subnitrate, gave, on analysis, as the mean of fifteen very concordant determinations—

Found. Theory.
AgCl 50.22 78.95
Ag 19.78 20.05

Those numbers agree with the formula Ag,Cl₂.

DIAGNOSIS BY MEANS OF PHOTOGRAPHY.

BY M. LE COMTE LODOVICO DE COURTIEZ.*

Dr. Phipps was, I believe, the first to point out in the Moniteur de la Photographie, 1st June, 1876, and afterwards M. G. Tissandier, in his journal La Nature, related the circumstance, of an eruption of small-pox having been discovered by photography twenty-four hours before it was rendered visible to the eye.† The negative that was taken plainly showed a number of spots on the face, which were very similar to those seen upon a small-pox patient. A day afterwards, as we have said, the sitter was found by medical men to be suffering from small-pox.

Many journalists, little versed in the science of photographic optics, regard the circumstance mentioned as improbable; at the same time, there is little that is wonderful about it. In order that the small-pox spots should imprint themselves upon the plate, it was necessary that they should possess a tint different to that of other portions of the skin. It would be absurd to suppose that the particular emanations of the small-pox could have been transmitted to the sensitive film through the medium of the lens. It is a question of action. There are some tints so delicate, so slightly marked, especially when it is a question of minute spots, that they escape the most minute observation, and are lost in the surrounding tints. It is not said whether the spots in question were reproduced in the cliché in white or in black. In the first case they would have had a violet tint, and in the second a reddish colour, either of which would be perfectly lost in the half-tone of the skin.

But what our vision will not alone reveal, the eye, aided by a deep blue glass, will demonstrate with a clearness before which all doubts vanish.

We have already published in the Moniteur a note upon the employment of a monochrome glass extinguishing all other rays but the blue. Since then we have extended its employment by applying it to the most important photographic cases.

Thus, in writing with a yellowish body pigment upon blue paper (the yellow colour must not be transparent, otherwise green is produced), you may produce markings which are altogether invisible to the naked eye, if the two tints are of equal intensity. But looked at through a blue glass you can read as easily as if the markings had been traced in black ink upon white paper. Many a time has this plan been the means of detecting stains and spots upon an engraving which would never have been seen by looking at the print simply with the naked eye.

In cases of doubt, in diseases of the skin, examination by means of a blue glass is a certain means of discovering clearly all those signs and marks which are the precursors of maladies. Our observations in this direction lead us to think, therefore, that there is nothing at all improbable in the case cited, where the small-pox marks, although invisible at the time to the eye, were perfectly apparent on the negative film. The same thing happens very often in photography, for we know that there are many markings of a delicate nature brought out upon the sensitive film which are not appreciable to less finely constituted tests.

* Moniteur de la Photographie.
† This, no doubt, is the same instance as that alluded to by Dr. Vogel the Mittheilungen some years ago.—Ed. F.P.
The Photographic News.

Vol. XIX. No. 903.—DECEMBER 24, 1875.

CONTENTS.

Photography In and Out of the Studio .. 613
French Correspondence .. 613
Promenade in Northern France by Prof. H. H. Reser 613
On the Manipulation of Large Plates in the Field. By E. Viles 616
A Blackened Silver Chloride, and on Silver Sulphide 617
Diagnosis by Means of Photography. By M. Le Comte 617
Lodovico De Courten .. 617
Competitive Prices, and Business Management .. 618
Meteorological Report Showing the Daily Variations in the Quantity of Light Radiated from the Southern Sky of Blackpool, in Lancashire. By D. Winstanley, F. R. A. S. 618
Correspondence.—Mountain Fern and Fails Perspective 619
Proceedings of Societies.—South London Photographic Society—Edinburgh Photographic Society—Manchester Photographic Society—Photographic Section of the American Institute .. 619
Talk in the Studio ... 619
To Correspondents ... 624

COMPETITION, PRICES, AND BUSINESS MANAGEMENT.

There are few subjects more interesting to the professional photographer than the influence of competition on prices. Much bitterness has at times been evoked by unfair competition of some one who has opened a studio in a town or neighbourhood, where good or fairly moderate prices obtained, avowedly to push a "cheap trade." The aim of every professional photographer is, in one respect, unquestionably the same: that is, to secure the best possible income his business will yield, compatibly with certain conditions. The nature of these conditions will vary.

With one a conscientious maintenance of the dignity of his art and his position as an artist will stand scarcely second to pecuniary gain; whilst with another no consideration beyond honesty in pushing a trade will have any weight. The important question for every class of portraitists, which system pays best—a cheap pushing trade, with small profits and quick returns, or a business in which every picture, being the subject of personal care and skill, is charged at a rate which shall duly remunerate the artist? In the one case, no matter how low figures and high excellence are not compatible with each other; whilst without high excellence it is tolerably certain high prices cannot be maintained. Uniformity of prices, a thing which has at times been dreamed of, is clearly an impossibility, simply because uniformity of excellence is impossible. But whilst all cannot attain to the highest standard of excellence there is a price, and therefore the highest scale of prices, the truest wisdom will be manifested in a constant aim to secure excellence, and the steady maintenance of charges which will compensate for all the care bestowed. At the last Congress of the American United Association of Photographers this subject received considerable attention. We extract the following remarks in relation to it by Mr. Loomis, of Boston.

He said:—

I know it has been said, and truly, let us give as many as we can for the dollar, or as many as we can for five dollars. Let us popularise it. That is all right, so far as we can do so and maintain the accuracy and the worth of the art, as I so express it; but if we come down to auctioneers, every man bidding under every other man for the sake of the customer, and give him anything rather than something high, then is it, I think, that we are injuring our art. We have in this case two centipedes: the lady's face to be elevated, and there is nothing in the world that will give it more respect than making it worth something, and charging for it.

At the time down from five to four dollars, and from four, to three and from two to one, in order to get a number of customers rather than the value, has made a great mistake. They know it, and acknowledge it, but they have not got the fineness to stop it. This is not keeping your business up, but the argument to make quite as good work as you do, and therefore I do not ask quite as much." There is another who says: "I have got an attic; it is up seven flights of stairs; I pay only fifty or twenty-five dollars a year for it; it does not require as much expense, consequently I will not charge as much." Better say, if that man will distinguish himself in the attic he can make even cripples go up after his work.

People talk about getting into popular avenues and popular streets, and that there is no business there, but that they will be gentleman and ladies, that I thank heaven that we have been joined by them; that your work will make people step upwards, right truly too, if you make it worth going up for. If you are in the practice of under bidding your competitors, you are asking them to substitute for art photography the apology for photography, you must expect the consequences—not only bankruptcy as an artist, but being looked on as a jingle salesman.

It is easy to see the causes of failure, if you will only look at it right; and you will find in your own locality, that the painstaking, the persevering, high-toned man, the man who is keeping his practice, and knows his market, if you will look about you will find that the other places, seven, eight, if not nine-twelfths of them, have changed hands once or twice or ten or twenty or one or two tickets. I will give you one or two tickets. Perhaps it is a young lady or gentleman: "I will give you a ticket for one dozen photographs if you will sell them for one dollar each; I will give you one or two tickets. If you shall have your card photograph, for all you sell, at three dollars a dozen; I shall charge five to others," and he gives this to the person, and to the person, up to the customer, and the consequences. His next door-neighbour hears of it; he says he has agreed to give his five-dollar pictures for three dollars a dozen, what I formally charged five for; you shall have your card photographs, for all you sell, at three dollars a dozen; he shall charge five to others," and he gives this to the person, and to the person, up to the customer, and the consequences.

Some capital remarks on dealing with customers were made by Mr. Bogards, President of the Association. Referring to the dignity of the profession, he suggested that it would be conserved best by the photographer maintaining a patient self-respect. He said:—

Now, the dignity of the profession. There are many instances in which we hardly know what to do. We try to preserve our dignity: and our tempers both. When a lady comes to me, and to her she wants a picture, and that she has been to Fredericks' and Gurney's, and all of them have given her a crooked mouth, and she isn't going to have any more taken there, I feel it my duty to tell her I cannot take a picture without taking just as she is. I can't use of our artistic refinement, because you tell her I tell her my camera won't lie; if they did, I would throw them out of the window. I feel provoked when they come and ask such insanities.

Another lady came with her daughter most terribly cross-eyed, and she said if I would examine her daughter's eyes closely, I would see a slight cast in one eye. I saw it when the girl came up. I don't know why it was, but in the good old Daguerreotype times, I used to know, when a lady came upstairs, how she would trouble me in making her picture; and when the head came up, I was looking for good subjects to come up. I was always afraid it was a bad one. We did not retouch in those old times. There are some cases in which it is impossible for you to preserve your dignity. They will tell me they have visited several places, and the picture is just as the other. Perhaps the photographer has taken the wrong side of the lady's face. There are thousands of pictures that would be improved if only the other side of the face was taken, as it is the best side, of the face. That is the future of photography. The manipulating is of course difficult, but we have mastered that to a great extent, and we have now got to learn to study faces, and find out the best side. The best side of the face, the best view of the face. That is the practice of art photographers. Now, they have gained their reputation by knowing which was the other side of the face was too much made of, and by making the lady take her hair all down, so as to get the best side of the face, simply because it was much better than the other. They will do it when they find that they are going to get a better picture that way. Now, you must be out from the photographic business, in Boston, that I heard this anecdote about. I tell it because it will do you good and make you try to see your customers regardless of the trouble. A gentleman came in, with an eleven by fourteen group of five. He said it was one
of the most elegant groups that he ever saw—a group of five on an
eleven by fourteen plate. The customer says, "We are not quite
satisfied with this group; we wish you would take it over again."
"Certainly; come in, and all means of getting it over again,
and the customer went out with the view of bringing his family
again. This visiting photographer says, "Do you take as good a
picture as that over again without charge?" "Why," said he,
"that is the second one I have taken, and I am going to take
it over again; that will satisfy my customer, and he will come again."
That man has retired with 156,000 dollars. I would like to see
any other business that has ever been done in my book as
he has done it. He has done it by suitting his customers, regardless of trouble, expense, and
time. Oftentimes it is hard work. I have to bite my lips
many times to keep my temper down, but I will tell you, it pays.
Awhile ago an old gentleman came to New York with a
camera. They took the child to a photographer to have its picture
taken—a man whose name they had heard mentioned a great deal.
The child was wild and the gentleman said to me he had wanted a large picture of himself, saying, "I have been too busy
for a good many years to get good-looking, and I guess I had better
have it taken now," and he told me he would be very glad
with the result. I took the picture and showed them
my life-size seventeen by twenty crayons, and before I had completed his work got
from a bill of 1,000 dollars from him. That was by just keeping in good
humour, and the customer would not have got a cent. He gave me
his cheque for 1,000 dollars, and that was for taking the picture. Photographers
are fickle, but they are slow to change the average through the year, we
have been struck with them than with the older ones. If you
ucceed in getting it first, second or third time, you will make
it; and it pays to the babies. If you don't take the babies, you
don't get the mothers; and if you don't get the mothers, you
don't get the fathers. So you must make up your mind it pays to
the babies, and keep in good humour, and do it all the time.

METHOROGICAL REPORT SHOWING THE DAILY
VARIATIONS IN THE QUANTITY OF LIGHT RADIATED FROM THE SOUTHERN SKY
OF BLACKPOOL, IN LANCASHIRE.

BY D. WINTLESLEY, F.R.A.S.

The past week has been extremely dark, the daily average of
light being only 159 chemical units, or 123 units less
than the darkest week I have previously recorded, a circumstance
which shows the probable worrisomeness of those opinions
I had formed from mere casual observations.

I notice from your last week's issue that at a recent meet-
ing of the Photographic Society of Great Britain, Mr.
Glaisher, in alluding to my reports, objected, in the first
place, to their being called "meteorological," affirmed, in the
second, that they were obtained by Bozée's method,
and expressed regret, in the third, that no simple and
reliable photometer had thus far been devised.

Although the light, or rather the force, of certain por-
tions of the spectrum is that of which I make my measure-
ments, there can be no doubt that the sudden and violent
wave in its daily aggregate are, after all, effects of
which atmospheric obscuration is the cause. In the
majority of what are called "meteorological observations",
daily and even hourly occult estimates are made of the
quantity of visible obscuration in the atmosphere, and these
are placed on record along with the readings of the baro-
ometer and thermometer in the tabular form under the
head of "Meteorological Observations." I am at a loss to
see why my chemical and instrumental measurements of
atmospheric opacity should be given under any other
term than that applied to measurements of that same
opacity obtained by occult means, and without the manifest
advantages of instrumental aid. It is, however, a matter
of indifference to me what appellation my observations
may be described, and I am quite willing to abandon the
term "meteorological" when it has been shown that the
word is misapplied.

As for the method I employ being that of Roscoe, I pre-
sume, if this is so, his appliances and means will be found
sufficient to effect the measurements which I make. To
the best of my knowledge and belief this is not the case.
Roscoe's observations had for their object the momentary
measurement of the "intensity" of the sun's rays. The actual measurement of
"quantity." Surely a distinction should be made
between the one thing and the other. Is there no difference
between the speed at which a train at any given moment
may happen to be travelling, and the distance it may
traverse in a day? The former I should describe as the
"intensity" of its movement, the latter as the aggregate or
quantity of motion. For the simplicity of means, I will not
discuss the matter now. That can be best judged of
when my own have been described.

Correspondence.

MOUNTAIN FORM AND FALSE PERSPECTIVE.

Dear Sir,—When I sat down last week, full of amuse-
ment, to write you a dozen lines or so about the slips you
had just allowed your adjoiners to make, I did not expect
you to extenuate, far less homologate, the chief offence. Of
course, I know you will be fancying that I do not see the
subject from your point of view. I do see from your point
of view, but I see differently. Let us understand each other,
however.

You say that "false perspective" is "given by the mis-
use of lenses of short focus, by which a mole-hill in the
foreground is exaggerated to a towering mountain," &c. Now
I will assume that the mole-hill, as well as the mountain,
is in reasonable focus—for without assuming the focus to be
correct we cannot argue. Throw the subject out of focus,
and you will not even find bad perspective in it. In fact, it
has no perspective at all; "look and see." Therefore I
maintain that although the mole-heap look a veritable
Schichallion, and the mountain a midget, there is nothing
wrong with the perspective. Of course, it would look very
unpleasant—only unpleasant—not false. However, you talk
about the misuse of lenses of short focus. Give us an
instance. But, mark you, if you say that the mole-hill was
out of focus, I reiterate, if so, the law of perspective is out
of court.

Suppose an artist was painting a landscape containing
great distance, and continuing the subject to his very feet,
and had drawn the whole correctly, would you say the per-

* Mr. Glaisher's remarks had reference to the mode, or rather
the material, employed in measuring the light, the Editor having informed him
that so far he believed, as for slipper was employed in estimating the
light as in Roscoe's observations.—Ed.
spective was untrue or false? I say it would be nothing of the kind; but it would look unpleasant, and the foreground would look outrageously large, and the distant mountains molehills, if you will; but it would not be a false perspective. You would call this—What? Misuse of the artist’s eyesight? Undoubtedly; but there is something more; but not false perspective.

There is still another, and even more tantalising view of the subject, accepted, not only by the public, but also by writers, from Ruskin downward. It seems a general fancy that the sizes of mountains in photographs are smaller than they ought to be, although, in any moment (on the spot, of course), the truth or untruth of the idea could be tested by the holding out of a pencil or scrap of paper. Of course there is, at times, atmospheric illusion; but photography, or correct draughtsmanship, has nothing to do with that belonging, as it does, to colour. I fancy that part of the secret lies in most people being unable to realise the relative size of objects when diminished to a few feet or inches on canvas or paper. The law of diminution, here, seems even puzzling to our greatest art critic. In Vol. IV. of “Modern Painters,” when treating of Turnerian Topography, Ruskin expressed the idea that he passed the Swiss Fribern, and the next he Daguerreotypes them, both of which he engraves to illustrate the accepted orthodox ideas on this subject. In that, from the sketch, you have a wall sufficiently exaggerated in the outline, which appears in the other engraving all but straight; and after telling us that this exaggerated statement, with all its details properly preserved, would not make the more right, but the infinitely grander of the two, " he goes on to say, “the notables thing in the town of Fribern is, that all its walls have flexible spines, and creep up and down the precipices more in the manner of cats than walls so that the hasty sketch expressing this, has a certain veracity wanting altogether in the Daguerreotype.”

Now that this leads us to the diminution of mountains and form in photographs receives its support mainly from the almost habitual and wilful exaggeration of artists and art critics. I do not wish at present to say a word against such ideas of art, but will content myself with pointing out that this kind of " veracity " is a capital illustration of the parson’s text in Tennyson:

“That a lie which is half a truth is ever the blackest of lies, That a lie which is all a lie may be met and fought with outright; But a lie which is part of a truth is a harder matter to fight.”

Young, Esq.

Wemyssfield, Kirkcaldy.

[The subject is too wide, and involves too many side issues, to be discussed in a brief note to our correspondent’s letter. But briefly, and briefly, we will say that there are in false perspective which present a false idea of size and proportion to the eye and mind; second, that a photograph taken with a wide angle lens of short focus, say an eight-inch picture, with a lens of four or five inches focus (and we have seen much), presents to the eye such a false impression of size and proportion. We recently saw a photograph of a man who, the next day, was seen to exit from the river, of the Thames, with a lens of short focus. If we had not known the scene, we should have believed the Thames to have been miles instead of fathoms in width. This was something other than unpleasant—it was untrue. We are, of course, in all cases assuming good focus. We do not enter into discussion of the artist’s drawing foreground-images close up to him; but then the immensity of the effect is such that it would seriously limit the range of correct drawing. Neither can we enter into the vague impression of many persons as to the accuracy of correct drawing when deprived of the glamour of atmosphere, colour, and association. Without entering into the mathematical discussion, we may suggest that a camera picture presents a correct rendering of a view to the eye only when the eye occupies the same relation to the picture which the lens did to the plane of delineation, a condition rendered all but impossible, and certainly never adopted, when extremely short-focus lenses have been employed.—Ed.]

Proceedings of Societies.

SOUTH LONDON PHOTOGRAPHIC SOCIETY.

Annual Dinner.

The annual dinner of the above was held on Saturday at Anderton’s Hotel, when the chair was occupied by the president of the Society, the Rev. F. P. Statham, B.A., a large number of members and friends being present. After the customary toasting speeches, the Chairman gave “Prosperity to the South London Photographic Society.” In so doing, he observed that the Society, during the past year, had done good work in the cause of photography. In nine months seventeen papers had been read, all of which had led to most interesting discussions, while two or three served to indicate material progress in the future. The technical meeting had even been more successful than its predecessors, and promised to bring forth good fruit. He hoped the members—especially the younger members—would be encouraged to come forward with papers, and add to the usefulness of the Society. He did not think that any papers were uninteresting; indeed, he thought the hints, were often more valuable, for he might remind them that many important scientific discoveries had been initiated by hints thrown out in the course of conversation between scientific men. The Society had, he felt, during the last modified its relations, and had not only done good work, but it was winning in the greatest harmony with the Photographic Society of Great Britain, towards which it played a most useful part of educating, as it were, many who afterwards became useful members of the older Society. In conclusion, the Chairman proposed the toast with the name of Mr. E. Cocking, the new secretary.

Mr. E. Cocking, after referring to the many times he had had the honour of responding to the toast, said the Society was now in a more prosperous condition than it had been for some time past. It had not only gone on, but the work it had done was not so extended, nor so interesting, as it should have been; the institution of the technical exhibition had, however, done much to remove this, while an accession of new members had also given a fresh life which was most valuable. The meetings where the original material had been exhibited were of the most successful nature, and, indeed, it seemed to him that the promotion of practical knowledge and the encouragement of good feeling among photographers constituted the mission of the Society, and as long as these principles were maintained, so long would the Society exist. Mr. Cocking then referred to a feeling he had entertained that the time had come when he should resign the office of secretary. He should be very sorry to think that by continuing to hold the position he was depriving any one who had a desire to serve the Society in that capacity, and he had thought of removing from the post before the last annual meeting. However, when he came to think over the matter, and of the pleasure which he experienced in discharging his duties, he could not bring himself to part with the office. (Applause.) The Chairman then referred to the harmony and social feeling which had always existed in the Society, and trusted both would long continue.

The Chairman then gave the toast of “Photographic Art-Science.” In regard to its art aspect he could not but think that the discovery of photography had tended greatly to cement our home affections. There was scarcely a family that was not enabled by its means to retain a remembrance not only of those who were separated from them in distant parts of the world, but also of those who had been taken away by death. For this reason the humblest photographer who took to his task not to be despised, as he was the means of giving pleasure and comfort to thousands, though his work might not be of the very highest quality. It was also of great use in handing down a faithful record of the features of great men, and hence its value could not be too highly estimated. In respect to the promotion of photography to science, he did not hesitate to say there was not a science which did not owe something to photography, and what was most singular was, that for any benefit which the latter received from science, it rendered a thousandfold in return.

Mr. Valentine Blanchard, whose name was associated in the toast, said it gave him some feeling of sadness when he thought that the great man who had two or three years since responded to the toast was now no more. Reiflander, who, of all men, had laboured earnestly to elevate the art of photography in the eyes of
mankind, and in this respect stood bright as a beacon light before his brother, was gone, and there was no one left in England to fill the blank. When he looked at the possibilities of the art, he must confess that after twenty years' labour he found it more circumscribed than in his enthusiasm of twenty years since he had thought it to be. Simplicity, after all, was the best thing to aim at, though, perhaps, the hardest to attain. The Chairman, in his reference to the usefulness of photography in rendering the features of great men, had struck a key-note, and he (Mr. Blanchard) felt it so strongly that he could not help protesting against the corrupt practice of retouching. Each one owed it to the art to work earnestly according to his degree as a light to others, and to themselves be seen, some day, as one of the practices of what became of truth? (Hear, hear.) He would therefore say that while it was quite possible for the artist to supplement the occasional defects of a poor light or bad sitting, to go any further than this—to distort and vilify—no one had a right (applause).

The Chairman then gave the toast of "Amateur Photography," humorously alluding to the trials endured by sitters at the hands of their photographic friends in the early days of the art. In the South London Society there were many amateurs, and to them Mr. Archer replied, alluding in the course of his remarks to the fact that photography gave to wood engraving, especially in respect to illustrating periodicals. The Chairman then proposed the health of the "Press," which was acknowledged by Mr. G. Wharton Simpson, Mr. William Sawyer, Mr. John Proctor, and Mr. C. E. Pearce. The remaining toast was the health of the Chairman (proposed in kindy and appropriate terms by Mr. Werge), the Vice-President (by the Chairman, and acknowledged by Mr. G. Wharton Simpson and Mr. Spiller), and "Absent Friends."

The proceedings were enlivened by some excellent songs and recitations, and an exceedingly pleasant evening was spent.

EDINBURGH PHOTOGRAPHIC SOCIETY.

This society held its first popular meeting of the season in Queen Street, on the 10th inst. The exhibition consisted of a miscellaneous series of transparencies by members of the society, and a descriptive lecture by Dr. John Nicol. The lecturer, who appeared on the platform seven minutes past the time mentioned on the tickets, began by saying that he sympathized to a certain extent with the impatience of the audience which had been manifested during the last five minutes; he, however, thought he was entitled to a measure of sympathy in return. They would easily understand that it was extremely unpleasant, after such a long period, to be interrupted by those who thought the habit of coming in late, and that he had waited for seven minutes simply to give them an opportunity of taking their places; and he assured them that in future they would make a point of being in their seats by half-past seven, he would commence punctually at that hour. He then stated that the exhibition about to commence was in some respects different from that which generally formed the subject of the popular evening, in so far as that there was on this occasion no connected series of pictures, and consequently the committee had advised it as advisable to give members an opportunity of exhibiting their pictures, and for that purpose had invited those who had transparencies to send them in to him. Only seven, however, had responded to the invitation; but what was lacking in number of exhibitors had been made up by the number of buildings that had sent. And although the collection was necessarily a miscellaneous nature, he had no doubt that the exhibition would be satisfactory. The hall was then darkened, and a series of very fine post-mortem tracings, single, groups, some with large managed floral borders, and also a few of the city streets in all their wretchedness, and of the same practising trades after they had been trained at the ragged school, the work of Messrs. Ross and Pringle, were shown on the screen. These were followed by a number of geological views, pictures of Rushendale, photographed by Mr. Murray Garthohe, of Ravelston. These were followed by a series of house and cattle pictures, by Mr. Foster, of Coldstream, who, the lecturer said, fairly divided the honours with Mr. Ross in having attained the highest possible excellence in two such difficult, though very different branches of the photographic art. The cases of which there were a large number, were arranged so as to give an idea of the nature and succession of the work on a farm, and their exhibition received much well merited applause. From the works of Mr. McCallum, the lecturer passed to those of Mr. Matheson, who afforded another illustration of the frequently quoted observation that "the busiest man has most leisure." Mr. Matheson, he said, although at the head of a rather exciting business, nevertheless found time, not only to snatch an occasional hour to photograph, but also to fit himself into the life of his clients with a degree of speed and facility that is not often seen elsewhere. The Exhibition was filled by more modern structures, but also to go, camera in hand, to almost all parts of the country, and bring back pleasant memorials in the shape of excellent photographs. The collection included fine bits of both the old and new, rustic cottages, quaint corners in Currie, Skydaw, &c., and architectural views in Fife. The lecture then introduced a number of his own pictures, principally views in and about Yetholm and the capital and head quarters of the gypsett. He said that in common with most people he had long had a wish to visit Yetholm, but until this season had not had an opportunity of doing so. After describing the journey from Kelso to Yetholm, and the comfort of the inn kept by Mrs. McCallum, he showed a number of pictures illustrating the appearance of the village and the kind of house: which the tribe occupies: finishing with the Royal Palace, and a portrait of Queen Esther herself. The lecturer here gave a humorous description of his interview with the Queen, whom he described as a "lady of heart and mind," who would drink nothing stronger than tea, but had no objection to join him in a smoke, as did also the Prince Royal, who happened to be on a visit to Yetholm at the time. He described the Crown Jewels, consisting of a large number of rings, some of them of considerable value, which had been, in most cases, taken off the fingers of distinguished visitors, and presented to her; and also the "State Papers," which are a series of letters written to the Queen by a considerable number of earls, lords, ladies, and a host of people of lower importance. The portrait of the Queen, and a number of views of the palace were the works of the best photographer there, and were of excellent quality. The exhibition concluded with a number of recent pictures by Mr. Wilson, of Aberdeen, consisting mainly of instantaneous views on Highland lochs and the Thames.

The audience, as usual, was large, and the exhibition highly successful, both pictures and description, especially where interspersed with appropriate anecdotes, eliciting considerable applause.

MANCHESTER PHOTOGRAPHIC SOCIETY.

The ordinary monthly meeting of this Society was held at the Memorial Hall, on Thursday, the 10th inst. Mr. Alfred Brothers, P.R.A.S., Vice-President, in the chair.

The Chairman read the following letter from the Rev. Canon Beechey, M.A., Ex-President, and handed round a number of engravings, &c., and Canon Beechey's mountain camera fitted with the split sunshade:

"Highgate, Dec. 7th, 1876.

DeAR Mr. AdIN.—I have requested Mr. Taylor to send you for the meeting on Thursday—I. The negatives of wet-plate quality. 2. The fine split sunshade on my little mountain camera 3. Two negatives with paper attached which exemplified its working. I ask you to hold the one of the rectory up against a strong light, and see if you can detect the slightest trace of the sunshade, the trees and grass. The other had the sunshade on the whole of the field of view, and the hand had only thirty seconds. It may be interesting to the members if I add a few remarks on the method of using the sunshade, and also on a subject closely connected with it, viz., blue glass. It is not for the blue glass, incidentally, but for the blue filters, &c., that the sunshade is made.

"The fine little shutters of the sunshade are, as you see, quite independent of each other—each one may be of any height and any width from the lens; of course you would lower the one which would best shade a too-light object. In the case of a waterfall, like that in the Fairy Glen, Beltys-y-Coed, the centre shutter would be alone required, and you would lower it until the entire sheet of water and fall were shaded. The ordinary sunshade plate would not be too long an exposure for the green, dark, and gloomy rocks on either side of it: five seconds would be sufficient. Of course, the white cliffs, &c., could be shaded, &c., by opening the blue filter, &c., but you would not remove the sunshade from the centre, &c., but you would not remove the sunshade from the centre shutter. All the details of the shrubs and stones would be equally rendered. But, suppose the fall were the Swallow-fall—
THE PHOTOGRAPHIC NEWS.

December 24, 1875.

fall. Better, you would then probably put down two to the middle, so that the shade of the fall might almost be sufficient to lower those on either side of the centre, so as to shade the sky to the level of the top of the fall. You need not be very particular as to its altitude, but the better the better. The shutters on the outside would be up to allow of long exposure on the trees above the fall. All being arranged to your mind pull the little trigger and shut off the plate, screw the shutters tight in position, and strike a dark slide, exposed from three to ten seconds, or less, and then lift all the shade as usual by the milled head on the left hand. Continue the exposure of the picture five seconds or so, and shut and strike the trigger until.

It is rarely possible that any arrangement of the sunshade is necessary. But suppose you were taking Fingal's Cave, and wished to shade the sea and rocks so as to give the dark roof and long exposure, by moving the shutters a quarter turn you may quite conceal the lower half, while the upper is exposed; or, if a waterfall be oblique, the angle may easily be adapted to suit. You will also notice that the width of space shaded by a single shutter depends on the closeness of that shutter to the lens, so that very often one shutter may be made to cover as much as two only, of the shade will come lower down; but, as each shutter is longer than the outer diameter of the lens, even that is capable of much adjustment.

"Now, as to blurring, I have not discontinued the experiments referred to a year ago in the Journal. These experiments and the sunshade have almost made me almost consider what is commonly called 'blurring' is not caused by reflection from the back of the glass, but simply by over-exposure of a very bright object on the plate. Abruptly, a dark church will blur even if you do not take the plate. The ruined arch at the sky in the Castle Acre Ruin you will find blurred in the perfect negative, but quite free from it in the one where I have used, but not enough high enough to wish may almost prove this by the fact that you develop, the blur is very slight and does not appear at first. The arch or windows will come out beautifully sharp and clear, and if you could stop there, there would be no blurring. As, however, you proceed to force out the detail your arch blur just as much over-exposed plate would blur all over. The use of the sunshade here will be very evident.

"But let me tell you the somewhat singular result of my recent experiment with silvered back-plates. I wish I could send you a silvered plate before it is coated, that you might see what beautiful looking glass, the real silver deposit paper by this process makes. Well, I tried several times this experiment:—I prepared three plates at the same time, with the same emulsion and preservatives. A was backed with brilliant silver B was backed with non-soluto red ochre; C was left unbacked. These plates were exposed for the same time on a blurring object, viz., the dark north side of a church with the bright sky above and beneath it. The exposure was for one minute. The result was very remarkable. In A the ridge tiles were a very little blurred; in B and C they were not. But A was, at least, three times as dense a picture as was also longer than L or O. In C A all the detail was fully out, every stone in the dark wall was well defined, yet even the vane and flagstaff on the tower were as sharp as thread, though slightly fogged, simply showing over-exposure. I will try experiments yet to see if I can't, if I can't, I say that I can't say positively that non-soluto backing prevents blurring only by making a plate much less sensitive, so requiring much longer exposure. In a second experiment I gave the backed plate three times as long exposure as the silvered plate, and still the silvered plate was far more dense, sharp, and full of detail. I attribute this result to the direct perpendicular reflection of every bright point on the white surface of the film from the silvered back on to the back of the film. By this means the back of the film has the picture projected on it at the same times as the front; whilst from the non-soluto backing the front of the film is alone affected, every bright point on the film does not affect it. I believe that astronomical photographs, such as the transit of Venus, if taken on silvered plates would require only half the exposure that would be required by the same photometer. It is the same if the surface of the film which takes the impressions and with silvered backs both surfaces are impressed. It is quite possible that with very transparent films a reflexion might ensue, particularly near the extreme of the picture, but I have never been able to trace the least appearance of it.

"As your notice says you have no paper for the evening I send you this, if only to afford you a subject for discussion.—Your old friend,

JAMES YOUNG.

Mr. James Young exhibited half-dozen small lenses of different focoi, mounted for insertion between the lenses of a doubler for the purpose of altering its focus. Also, a small dropping tube, made by putting an ordinary vulcanized rubber estate on the end of a bit of glass tubing drawn out at the end.

Mr. Guizzon exhibited some half-dozen negatives on Liver-
ment he failed to get the intense blue. He showed some negatives that were some time since; but the exact time saved was not compensation enough for the extra time taken in developing. He stated that in the development of the Bromide of Silver, the AgNO₃ is added to the bromide solution, so the silver will be slightly in excess, which he determines by pouring a small portion of the emulsion into water, and washing it by shaking, then by adding some chloride of sodium to the water. It will readily be seen whether or not. Then after standing one hour, the iodized solution can be added, which takes up the free silver, giving a small quantity of the iodide of silver. In the emulsion he uses about one ounce in twenty ounces. This is the silver excess in the solution, so that by drying the washing and chloride again he found no indication of an excess of silver in the emulsion. This emulsion appears to develop more like the ordinary negative, giving a greyer negative than the bromide alone, having more the appearance of wet plates.

He always washes his plates before putting them in the preservative; he uses only tannin for such. These first experiments were quite satisfactory, but he would not promise that they will be so again, as he had been deceived so many times with tannin, and will not promise them good until he has tried several more experiments to see if they will continue to be as stated.

The President remarked that in this process the trouble would be to know when there is a sufficient amount of silver in the bath. The union of silver in this case is very slow; it goes on increasing, and grows thicker and thicker for some time. Now in making an emulsion in Mr. Chapman's way, after washing out there will be silver that has not combined with the bromide. Bromine is peculiar; as bromine is unites with all metals, and some of them so forcibly as to set them on fire; it takes to silver quite readily, and for that reason he would be rather suspicious that even if there was silver in the wash there would not be bromide enough to take it up. Mr. Chapman answered that if a drop of silver is put in at a time it is not possible, he never allows an exposure of more than six hours. A bromide solution with the bromide in excess will not keep; it will with the chloride, but not with the silver. He had some now five months old, which is very brilliant, and increases with age. It is important to have an emulsion that will keep, and if it changes it is a great change for the worse.

Dr. M. N. Miller stated that the plates prepared by the process of M. Carey Lea were good, but the negatives were thin, and he could not get them up to a decent printing negative. When made very sensitive they are thin. As to preservatives, there seemed to be a great variety of them. There is Mr. Chapman's original twenty grains to the ounce, and again the President's twelve grains. Now certainly here is a wide range. Is there not a point between these where the best results can be had? He did not succeed very well with the tannin.

Mr. Chapman said he could get more vigour in a strong tannin solution than with a weak one. With his bromide plates one will develop strong and vigorous, while the other will lack these qualities.

The President remarked that one great object with him was to prevent too great an intensity. Any one who is not practised in this respect will be apt to get into trouble. When he went to the country last summer he took plates with him prepared with tannin, as he was not sure that the plates prepared by the new method would keep, so he used tannin for preservation, and when he came to expose them, he found they were very insensitive. He had to expose them five minutes. They made good negatives, but took long exposure.

Mr. F. B. Well exhibited some fine specimens of stereoscopic pictures taken by the ordinary formula, one ounce of the protosulphate of iron, sixteen ounces of water, two ounces of No. 8 stearin said. The re-development is made with the iron after washing, flowing the silver on the plate. All the details were got with the cyanide of potassium. The groups were given about five seconds exposure. The strength of the collodion bath is fifty.

Mr. Herrstadt said he made some experiments with the pappyrxylon. The emulsion was prepared according to Mr. McOy's process. In one case he left the silver in excess for twenty-four hours, and then added a trace of the iodide, and with this he got a fine picture, but a little foggy, and in the experiment with Hanco's "Delicate Cream Cotton," and more chloride, there was no fog, and a better picture. He then added an iodide, which did not make as strong a picture as the others, but none worked so perfectly as the pappyrxylon. The imported emulsion does not work as well as it could be desired. In regard to developing, his brother says that he uses the developer as hot as he can bear his band in it, and he also puts the plate in hot water. The second plate is placed in hot water and then used. After some twenty plates have been used, the solution will become quite cool. The preservative was coffee with a little candy and gum arabic, as usually prepared.

Dr. Miller thought that at 212 degrees of heat there would be no ammonia left.

A member suggested that heating would act the same as stronger chemicals.

The meeting was then adjourned.

Talk in the Studio.

The Powder Carbon Process.—Mr. Werge has added to his little pamphlet on producing pictorial backgrounds, instructions for producing open pictures by the powder carbon process, which will be welcome to many. We shall refer to this little tractate again.

Lecture on Photography.—A lecture on the History and Practice of Photography was delivered at Guernsey on Tuesday week before the Working Man's Association, by Mr. T. Singleton. A crowd of listeners showed much interest, and the lecture was regarded as a decided success.

How many Sittings shall the Photographers give for Nothing?—The case recently tried in Brooklyn (U.S.) as to a photographer's claim for rejected photographs, had been decided in favour of the photographer. Seventeen sittings having been given, the lady and gentleman, being dissatisfied with all, declined either to sit again or pay for the trouble given. The photographer, Mr. F. E. Pearmain, sued for a summons at 12½ a sum not less than 25 sterling, for the trouble involved. The judge, having taken time for his decision, has now decided in favour of the photographer to the full amount. We shall shortly have some further remarks on this subject.

Foreword by Strickland.—Photographers have no need to use strychnine, and it does not come within the list of photographic poisons; but the knowledge of the proper remedy
at any moment be useful. A correspondent of the Scientific American says:—"I once happened to receive a dose of strychnine, in the year 1853; but as I knew the remedy, I was cured, being promptly attended to by Mr. Gregory Harrison, who applied the means discovered by Dr. Orson Calvert, in 1852. The remedy is: To contrast strychnine, and cause it to be brought away by vomiting (if it has not been taken more than thirty minutes), pour down the throat half a grain of nitrate of soda every twenty minutes until vomiting takes place. The patient will then sleep about forty hours, and awake all right. The sensations caused by strychnine are, first, slight pains in the back of the head, then extreme cold in the toes, travelling up to knees; then cold in the fingers, travelling to the bottom of the breast bone."

To BLEACH GLUE.—Soak in moderately strong acetic acid for two days, drain, place in a sieve, and wash well with cold water. Dry on a warm place.

J. P. is a little difficult to please. We could not tell that he did not wish the signature to his letter to be used; nor could we tell that he was making a suggestion without ascertaining what we had published. We should have pleasure in repeating or referring him to some item of the formularies by which the successful photographs produced. Of course we cannot always guarantee the workable quality of formularies sent to us by correspondents and correspondents.

Bob.—By careful study and long practice you may acquire the art of saving photographic papers. How to save photographic paper is the best written guide you can possess. But you must bear in mind that much practice, as well as natural ability, will be required. Such an art is not acquired in a day. Linseed oil, the purest and clearest of all the colours. But besides this, turpentine is sometimes used, and sometimes, indeed most commonly, a medium made by mixing linseed oil, turpentine, and camphor, will have their uses; but until you have acquired experience, confine yourself to linseed, driers, and turpentine, or at times, for glazing purposes, a little maoglue, or say Robertson’s medium. Turn success to your advantage.

B. L. E.—A good condensator for a solar camera may be of about nine inches diameter, and eighteen inches focus. Price will depend on manufacturer; but that is a point into which we cannot enter. A dealer will inform you. A French one may be obtained at a moderate price.

A PROFESSIONAL PHOTOGRAPHER takes exception to the remarks in our last, under the heading “In and Out of the Studio,” on the subject of “Success.” In some of the instances of success mentioned, the success has been in the trade associated with photography, rather than in photography itself. He contends that those engaged in the commerce of photography are no better skilled, no more observant, no more enterprising, than such people, such as Mr. Agnew, are artists. The distinction raised is, we fear, not one of any vital interest to our readers; but if it were more so, it would be very difficult in photography to maintain it. Probably every photographer who has a business of his own is trader as well as photographer. Certain it is that in photography, probably in every other business or industry, no fortunes are made without the judicious use of the trade elements. Most successful photographers generally employ a number of persons—operators, printers, clerks, frame-makers, colourists, &c.—and aim to make a trade profit out of every one of them. The man who has the most or the best or the labour of the most skilled photographic work would not realize a fortune. It is the happy union of many qualities of a business character, with the executive photographic ability, which secures success. Sometimes the skilled photographer is but the most powerful agent in leading to success, sometimes the business enterpriser; but it is difficult, if not impossible, to draw the line, and say who is trader and who is photographer, especially as in almost every case we know the trader began as photographer.

F. H. WILKINSON writes: "Your correspondent, Hangel Monday" advises you to beware of me, for I am a ‘sinner’; but does not state the nature of my sin; will she please do so, that I may, if necessary, repent? I presume Miss Monday thought it was all of me to do what I have done, and that I had better myself, viz., the breaking of the syphon of my porcelain washing trough. Perhaps your correspondent is a manufacturer of such articles; hence her anger. As Miss H. Monday is, no doubt, a woman ever vigilant to detect what did break my syphon, if it was not the expansion of the water inside the same as it turned into ice? (probably, Miss Monday has an old mislaid notion that it is the ice which bursts our water pipes) for broken my syphon is; and when I discovered the breakage, the syphon was filled with ice; and when the ice thawed, one-half of it tumbled into the sink. After all, perhaps, Miss Monday had no reason for calling me a sinner, as I did so for the same "reason" that she calls her cat "naughty pussy" when Miss M. drops a stitch of her knitting, though poor puss is fast asleep on the "couch.""

M. F.—Yes, you may get very good results in large portraiture, with a single lens, in a very light room. If you stop down the lens, so as to secure fine definition, you will, of course, make it slow. For open air experiment on a fine day your single lens will answer.

W. G. (Bristol)—Cyanoide of potassium will remove the stain; but it is the best first to apply a 5-grain solution of carbonate of potash. The material being grey will probably show a much more permanent stain; but without knowing what the original dye was, it is impossible to say certainly.

W. G.—A tarnished glass positive is difficult to deal with, but a weak solution of cyanide of copper will. Care must not be taken to use the cyanide too strong.

BAYNHAM JONES, Captain Waterhouse, P. Le Neve Foster, The town of W. Botham, Marshal Wane, R. W. Alridge.—Received, with thanks.

P. HUDSON—Thanks; duly received before.

Several correspondents in our next.
PHOTOGRAPHIC CHRISTMAS CARDS.

The remarks in our pages a few weeks ago on the possible use of photography for producing the cards so current at this season of the year as messengers of yule-tide greeting and new-year good wishes, have elicited communications from several correspondents, who send us examples of what has been already done in this direction. In each instance where the attempt has been made, commercially, to introduce photographic Christmas cards it seems to have been a failure. Mr. Were, who appears to have entered into the project with spirit and enterprise, and was so far successful that last year he sold three thousand copies, still finds the project pecuniary loss, and entertains no hope that it contains an undeveloped market. Both the photographs and the mounts were much admired, we are told, and the circulation, as we have seen, was not very bad; but they did not pay. The statistics with which Mr. Were favours us are interesting and instructive, and we will therefore make a few extracts from his letter. Speaking on the subject of price, he found that he had fixed it too low, and yet it is doubtful whether a higher price might not have been still more prohibitory. He says:

"To give them a chance of going, I determined to offer them that they might be retailed at sixpence, and I had to supply them to the wholesalers at thirty-six shillings per gross, and to the stationers and others at four shillings per dozen, giving at the same time, in accordance with trade usage, the cost of printing and oval wreath, the cost of getting up the negatives (I had thirteen varieties) the cost of the ornamental cards, ninepence per dozen; the cost of printing, mounting, and rolling; and the time and cost of introducing them, they decidedly did not pay, so I determined to have nothing more to do with photographic Christmas cards, though I disposed of nearly 3,000 last year."

The shop-windows devoted to such things last year, Mr. Were remarks, contained plenty of examples of his cards, and he adds that, this year, there are two kinds of photographic cards in the shop-windows, one of which consists of copies of pictures bearing on the birth and life of Christ, with suitable quotations from the Holy Scriptures. The other is a poor attempt to make a child do duty for the Infant Jesus. "I confess it is impossible," Mr. Were continues, "for photographs ever to become popular as Christmas cards; and the best coloured photograph cannot compare or compete with the charming little pictures now published either in design, colour, price, or fitness."

This experience is confirmed by one or two other correspondents who, on a less extensive scale, have made the attempt to incorporate photographs in place of the old Christmas cards. Mr. Were supplies two reasons for the failure—one, the necessary expense of the production; and another, the inferiority in fitness for the occasion. The gay festive character of the season seems, he thinks, to demand colour in place of sober monochrome, and there is, unquestionably, much in the argument. What the precise aesthetic basis may be which demand fulness of colour in connection with Christmas festivity it may not be easy to determine; but certain it is that an instinctive desire to contrast the sombreness of the season with gaiety, richness, and fulness of colour. All the decorations of every kind, for every purpose, used at Christmas-time, are full of colour, and the designer who should propose to decorate a room for a yule-tide festivity in delicate greys and whites, no matter how exquisitely perfect the taste of the ideas, would be liable to scorn. One of Mr. Whistler's 'symphonies in white,' or anything analogous, would not get a moment's attention amongst a heap of Christmas cards or even bonbon-boxes. The rainbow, confined to the sky in summer-time, is at Christmas cut up to ornament Christmas presents and give brilliancy to Christmas entertainments; and it must be admitted that a card photographed for the Christmas cards is held in estimation. The glowing colours and really artistic designs of the Christmas cards issued by Marcus Ward and others, are comparatively poor and gloomy.

But if photographers have at any time to enter successfully into this kind of competition, we think some modification of the subjects may probably be necessary. Amongst the examples sent us by various correspondents was a very little genre picture come with any essential fitness for the occasion. It is not our purpose here to indicate special designs which would be likely to catch the public taste; but we would suggest that the idea of greeting should in some way enter into the subject. One photographic design we have seen of a very simple kind, not without some fitness. It is simply a Christmas card, a gentleman and a lady's, grasping each other in loving clasp. They are beautifully modelled hands, and admirably photographed, mounted in an oval, with coloured wreath around, and words of greeting. The latter condition, the coloured, ornamental mount, is an important one, and Mr. Were's cards were admirably provided in this respect; but some of the examples sent to us are mounted in the ordinary way, with greeting words printed plainly in black on the bottom margin of the card.

One of the prettiest adaptations of photography to the purpose in question, has reached us from a friend outside photography, who has applied it to his own purpose. It consists of a card, with very elegant designs in gold and colours, with verses, motto, and greeting. In the centre is one of theavourite wreaths, with the name of the individual or family; and round it are the words of the design. The centre of this wreath, forming an oval aperture, contains a photographic group of four pretty children smiling their greetings. They are placed in the middle of the card, the faces of those who send are the card, and surely no Christmas present could be more welcome, none more fitting than the faces of those we love thus interwoven with the warm and tender greetings of which Christmas time is the happily chosen occasion! To facilitate the exchange of such cards, it would be wise for the portraitist to provide himself with suitable cards, and a good example or two on his table at the proper season would doubtless lead to a wide adoption of photographic portraits, as a pleasant adjunct to the gorgeously-coloured card, for exchange on Christmas and New Year festivals. Some others, with a similar fitness of the most simple kind, have reached us. Here is an example: a bonny boy, whom we at once recognise as the son of a friend, although we have never seen the lad, as he is dressed in his skates, in the midst of an effective snowy wintry landscape. He is well wrapped up, with scarf and glove, apparently going to school. On his slate we read the greeting he brings us, 'Merry Christmas!' There are people of many ages receiving the greeting he, with a pleasant roguish smile, threatens us with the snowball held up in his hand. This, with its coloured margin, is also a pleasant form of photographic Christmas card. The adoption of
such cards, which, really, are more suitable for photography would, in a commercial sense, be really beneficial to photographers, as giving a fresh impetus to portraiture generally at a period when the portraitist is rarely overburdened with commissions.

PHOTOGRAPHY IN AND OUT OF THE STUDIO.

THE FIRST EDITION OF SHAKESPEARE—PHOTOGRAPHY IN THE LAW COURTS—THE BREMENHAVEN EXPLOSION.

The First Edition of Shakespeare.—One of the best examples of a photographic connection with literary works is the reproduction, under the auspices of Mr. Halliwell Philips, of the original edition of Shakespeare. A copy of the original work, of which only two or three examples are known to be in existence, is valued at about 700l. or 800l., and it is even unlikely that an intending purchaser, willing to give this amount, could procure the object of his ambition. A photographic reproduction of the work, as Mr. Philips correctly points out, is for most purposes of research, quite equal to the original, and therefore all Shakespearian students will be in a position to acquire, at a comparatively small cost, the possession of a work which the majority of them would otherwise have had no chance of getting a peep at even. A comparison of the text in the first edition with those of to-day is at once rendered possible to scholars and playwrights innumerable, and these owe much to photography for placing within their reach such a rare and interesting production. The Doomsday Book, as our readers are aware, was one of the first works multiplied in this way by photography, but in this case the number of those interested was necessarily limited, while Mr. Philips is likely to have a very extensive circle of readers who will be tempted to peruse his book more than once; in fact, more than one edition, but this he will not do in any case until it is seen how the sale of the first reproduction progresses. There will necessarily be much work connected with the appearance of this first edition, because, as every photographer is aware, when the ground upon which the type is impressed in the original is not perfectly white, and there are spots or stains, these have to be carefully expunged from the plates before the printing off can be commenced. But once a good copy has been produced, the type of which is black and sharp, there will be no difficulty whatever in photographing the same once more any size that may seem desirable, and for this reason we hope that before long a handy volume copied from the original will be produced. If all runs well, we feel sure, find a ready sale with the general public.

Photography in the Law Courts.—Every day we hear more of photography being introduced into the Law Courts, for the camera can produce a facsimile which is admitted as evidence when other copies fail to be so regarded. A photograph of a document bears upon it the impress of truth—so much so, indeed, that in most cases it would have as much influence with a judge as jury as the original itself. Unfortunately, we regret to see that the facility with which photographic reproductions are obtained has given rise to a practice of secretly purloining for a time valuable documents for the purpose of getting them copied in this way. When it is known that one side possesses documents of importance in a case which are unlikely to be produced in court, efforts are not unfruitfully made by the other to get photographic copies taken of them. Mr. Sothorn, the comedian, only the other day, complained that certain letters had been taken out of his possession for a short time with this intention; and in the cause celebre of Sampson v. the Times some documents of considerable interest were proved to exist, it may be remembered, by the production of photographic copies which had supposed to have been destroyed altogether. In any case where the originals are not produced a photographic copy of the same is very powerful evidence, and will often serve to convince a jury. One of these days, perhaps, we shall have the camera in the hands of the officers of the court, and we shall have such things as certificated copies and certificated photographs of all sorts of places and objects put in as evidence. For while, in most instances, when it is simply a matter of reproducing black lines, or certain outlines, the utmost exactness may be placed upon photographs, there are instances, as every landscape photographer knows, when a good deal may be done to favour one side or another. If you wanted to prove, for instance, that a certain locality was so bare and lonely that the erection of a factory would be no disfigurement to the neighbourhood, you need merely choose a lens which will depict the barest outlines of the landscape, with no purpose for your picture, and which will diminish the effect of any foliage or undulations of country existing some little distance off. The result produced would be very different from one obtained by an artist in photography from the most picturesque point of view and with a lens adapted to give the most beautiful effects of the country in the neighbourhood. For if photography is ever to be used extensively in our law courts it would be well if official photographers were attached for the purpose of collecting and affording evidence on any points where their assistance might be of value.

The Bremerhaven Explosion.—The terrible explosion of dynamite or nitro-glycerine, at Bremerhaven, has called public attention once more to the transport and storage of dangerous materials. In the instant when reference is made to it is uncertain whether the explosion occurred from the clockwork apparatus inside the package acting prematurely, or from the material having become frozen or crystalline, in which condition a very slight concussion, such as the unloading of the case from the van, would suffice to set it off if it were nitro-glycerine. The new Explosive Act of 1875 provides against the transportation of dynamite and nitro-glycerine in any form, as nitro-glycerine and all other nitro-compounds, and if stricter regulations should result from this accident they will fall equally upon the photographic community as upon the engineer or miner who employs dynamite or nitro-glycerine for blasting purposes. Nitro-glycerine, in cold weather, is, however, much more dangerous than gun-cotton, for the latter is naturally not affected by fire; while this liquid explosive will, according to some chemists, solidify at 40° Fahrenheit, eight degrees, therefore, above the freezing point of water. The lamented death of Mr. Mawson, of Newcastle, whose collision is known all the world over, was due, as our readers may remember, to the accidental explosion of a package of this terrible agent, which had been transported in a frozen state, and had thawed on reaching Newcastle for destruction in a lonely neighbourhood. On this occasion the explosion was due simply to scraping the material with a shovel, and therefore, if the package of nitro-glycerine at Bremerhaven was in the same state (and the rigorous weather at the time would lead to this conclusion), it seems more than probable that the concussion on unloading the package on the quay was sufficient to detonate the explosion. The German Government has issued stringent instructions for the removal of all stores of nitro-glycerine and dynamite to places of safety; but we suppose that there are not sufficient quantities of gun-cotton to necessitate legislation on account of this compound also, or, what is more likely still, pyroxyline is considered by German authorities to be a much safer product.

CHEMICAL NOTES FOR YOUNG PHOTOGRAPHERS.*

GALLIC ACID (Acidum Gallicum).—Formula, C₇, H, O₄ + 2H₂O.

Preparation.—Mix finely-powdered nutgall with sufficient distilled water to form a thin paste, and expose the mixture to the air in a shallow glass or porcelain vessel, in a warm

Continued from page 440.
place, for a month, occasionally stirring it with a glass rod, and adding from time to time sufficient distilled water to preserve the semi-fluid consistency. Then submit the paste to expression, and, rejecting the expressed liquor, boil the residue in distilled water a few minutes, and filter while hot. Wash the residual solid with water. Add the liquid acids for the crystals to form, and dry them on bibulous paper.

Properties.—Gallic acid is in delicate, silky, acicular crystals, which, as ordinarily found, are slightly brownish, but when quite pure are colourless. It is insoluble, and of a sour, astringent taste. It is soluble in 100 parts of cold and three parts of boiling water. It is very soluble in alcohol, but slightly soluble in water. It is found to be soluble in glycerine, in the proportion of forty grains to the ounce, and that the solution may be diluted to any extent with water without affecting its transparency.

Photographic Uses.—Gallic acid is extensively used in photography in various processes, as the Tannin Process of Russell, Dry Process of Taupenot, &c., and in Positive Printing by Paper Emulsion.

Pyrogallic Acid.—Formula, $C_6H_4O_3$=126.

Preparation.—Gallic acid is introduced into a bronze boiler with twice or three times its weight of water; the temperature is raised to a point from 392° to 410° F., and maintained at that point for an hour, when the liquid is allowed to cool. The solution in the boiler is now heated with a little pure animal charcoal, filtered, evaporated sufficiently to dry the crystals to cryo-press, and then dried. The crystals are inky black, and found to be soluble in water, without affecting its transparency.

Properties.—Pyrogallic acid is in white, shining scales, inodorous, very bitter, soluble in three and a half pints of water, readily soluble by alcohol and ether. Though unalterable in the air when quite dry, it is rapidly changed in a watery solution by the absorption of oxygen. The alcoholic solution is unchanged.

Uses.—Pyrogallic acid is used extensively for the development of the latent image and for intensifying.

Fomica Acid.—Formula, $C_6H_4O_3$=44, sp. gr. 1.235.

—Its name is derived from fomica, an ant, an insect which stings with this acid.

Preparation.—Fomice acid can be obtained by distilling ants in water. It is an organic acid, however, which can be formed artificially by heating organic substances, such as sugar, starch, &c., with oxidising agents. It may be prepared as follows:—Equal weights of oxalic acid and glycerine, with one-eighth of water, are heated in a retort to 220° F. Efferescence ensues, and continues for some time, during which formic acid distils over. To obtain the remainder, add one-third of water and distil again; repeat the addition of water until about four parts have distilled over.

Properties.—Fomice acid is of a bluish clear fluid, of an extremely pungent odour; it fumes slightly.

Photographic Uses.—It is an excellent reducing agent, and when heated is used by many photographers in their developing solutions.

Chromic Acid (Acidum Chromium).—Formula, CrO_3.

Chromic acid is readily obtained by mixing 100 measures of a cold satuorted solution of chromate of potash with 150 measures of sulphuric acid, and allowing the mixture to cool. The sulphuric acid unites with the potassa, and sets free the chromic acid, which is deposited in crystals. The mother-liquor being poured off, these are placed on a tile to drain, covered with a glass bell-jar.

Properties.—Chromic acid is in the form of anhydrous, acicular crystals, brilliant, bluish-red colour, and an acid metallic taste, deliquescent, and very soluble in water.

METEOROLOGICAL REPORT SHOWING THE DAILY VARIATIONS IN THE QUANTITY OF LIGHT EMMITED FROM THE SOUTHERN SKY FROM OBSERVATIONS MADE AT BLACKPOOL

By D. WINSTANLEY, F.R.A.S.

During the past week the daily average of light has risen, being 385 units as compared with 159 units during the week preceding. Two days, Monday and Friday, have been extremely dark, the records showing 25 and 21 units respectively. Christmas Day was the brightest day of the week.

FOREIGN MISCELLANEA.

The Photographic Society of Toulouse, which has only been in existence a few months, shows plenty of activity. It has its own organ, the Bulletin de la Société Photographique de Toulouse, which we have already quoted in these columns, and now we hear that two series of medals are to be offered by the Society or the best apparatus and lens for dry plate work. One class of medals is to be awarded for the best cameras and stands, and the Society recommeds, although they do not specify it as a fixed condition, that the apparatus should be adapted for half-plate negatives; it must be exeedingly simple, light, and portable, and at the same time firm and solid. It should also be capable of being rapidly put in position. Constructors and designers of apparatus are to send in their work to Toulouse by the 30th of March next, addressed (carriage paid) to M. C. Fabre, secretary of the Society, S. Rue des Chemins, Toulouse. The second series of medals will be offered for lenses suitable for the above apparatus.

Paris photographers are making arrangements to send exhibits to the Philadelphia International Exhibition; among others, M. Lueber will be a large exhibitor.

M. Leon Vidal has received an honorable medal from the Belgian Photographic Society in testimony of his services in bringing the holo-chromatic process to a practical issue. The office of the Moniteur Universel in Paris is exploiting M. Vidal's printing process, and has fitted up, as is said, extensive machinery for working the same. We may, therefore, soon expect to see some commercial examaples of the much-talked of process.

Brussels has followed the example of London and Paris, and has just started a Benevolent Society, under the title of Societe de Secours Mutuelle Photographique Belge. Its aim is the same, yet well, as the Society in this country, namely, to give help to its members in case of sickness or accident, and to procure employment for those out of work. M. Delabarre is President, Dr. Van Monckhoven Vice-President, and M. Gerouet, of the well known Brussels firm, is Treasurer.

In the Bulletin Belge de la Photographie is a formula for preparing plain salted paper. A warm solution of the following is made up:

- Chloride of sodium 35 grammes
- Nelson's gelatine 35
- Orange juice 35
- Water 14 litres

Paper immersed in this solution, and afterwards dried, is sensitized on a silver bath in the ordinary way; it is very sensitive.
A method is also given of preparing dry plates without the use of collodion. A mixture is made of:—

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumen</td>
<td>125</td>
</tr>
<tr>
<td>Honey</td>
<td>110</td>
</tr>
<tr>
<td>Iodide of potassium</td>
<td>4</td>
</tr>
<tr>
<td>Bromide of potassium</td>
<td>1</td>
</tr>
<tr>
<td>Chloride of sodium</td>
<td>3</td>
</tr>
</tbody>
</table>

The mixture is beaten to a snow, and then allowed to stand for twenty to twenty-four hours. A plate coated with the composition, dried on a stove, and then allowed to cool, is sensitised in the ordinary fashion.

As we promised, one of the officers who accompanied M. Tissandier in his last unfortunate balloon voyage, when every passenger was more or less injured, turns out to be the Commodore, or rather Colonel, Lanneau, well known in photographic circles. We are glad to hear that his wound is not dangerous.

NOTES ON EMULSIONS.

As an amateur, writing to the Photographic Times on working emulsions, gives some interesting experience. He says:—

As an "amateur" I am not confined to any one way of working, as nothing is dependent on the result, except the satisfaction of having the result perfect, no matter what the means taken to get it. For that reason I have been accustomed to use the good Old Coffee Process, which I yet think is one of the best for dry plates. After drying the plates, I wash them in chloroform, and then make the emulsion by adding a little of the formula I have worked out to this. I have tried many, but failed to get what I wanted. About a year ago I met Mr. H. J. Newton in New York. He was kind enough to not only give me his formula, but to show me how to make an emulsion; since that time I have had no trouble. I have given up my habit— it now stands in my dark-room in its bottle, where it will continue to be useful to me. I have never tried to make emulsion do its work. I use two different formulas of Mr. Newton's, the one I had of him first, and his latest, which was published in last month's "Times." That being published, I will give the first one, which I have used with very great success.

PLAIN COLLODION.

Cotton, seven grains to the ounce; alcohol and ether, equal parts.

Take one ounce of collodion, and add ten grains of bromide of calcium; mix it well, then add fifteen grains of silver, dissolved in five drachms of alcohol.

Shake well, then add two grains of chlorid of cobalt, or chlorid of calcium, dissolved in a little alcohol. Shake at times, and in twelve hours it is ready for use.

Coat the plate, and as soon as set wash it in a dish of pure water, then put it in a dish containing the preserver.

The preserver may be made with lanadanum and tannin, or lanadanum and wax vomecia; I do not find much difference in them. After it has been in the preserver a short time, take it out, and drain it on a piece of blotting-paper; then put away to dry, resting the plate on a corner. There should be as little light in the room as possible. When the plate is perfectly dry it is bright and glossy on the surface, and thick enough to need no backing. I expose about three times as long as a wet plate, in some cases four or five times as long. There is no danger of over-exposure, only be sure and give time enough. A great advantage in dry-plate work is the fact that you can regulate the exposure.

To develop, I make two solutions, viz.:—

<table>
<thead>
<tr>
<th>Solution</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td></td>
</tr>
<tr>
<td>Pyro</td>
<td>4 grains</td>
</tr>
<tr>
<td>Water</td>
<td>1 ounce</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 2</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>3 ounce</td>
</tr>
<tr>
<td>Ammonia</td>
<td>5 to 10 grains</td>
</tr>
<tr>
<td>Bromide of ammonium</td>
<td></td>
</tr>
</tbody>
</table>

Wash the plate well under the tap. Then flow with pyro solution; keep it on a short time, and if your plate is right the detail will show; bring it well out with the pyro. Then add two drops of the ammonium solution. It will rapidly come up to the required strength. If not strong enough you can wash, and use the acid pyro solution that is used for wet-plate work; but by adding ammonium you will almost always get all that you want. Fix in hypo or in cyanide. There is one thing that workers in emulsions should bear in mind, that the development must not be forced to get good results. But I do know from a year's work, that an emulsion, carefully made by this or by the other formulas of Mr. Newton's, will work with more regularity, and is more to be depended on than wet plates. I have that some who have tried it complain of fogging. With this formula I never had a fog or a sign of one. I am aware that this same process has been given to the public before, but it may do some good to present it again.

DESPAQUIS ON PRINTING PROCESSES WITH FATTY INK.*

It is a very simple communication which I propose to make on the present occasion. My process is, as most of you know, the bichromated gelatine method of M. Poirotin, the improvements I have made bearing upon the two following points:

The film of bichromated gelatine, whether upon a glass plate, as in the Albert process, or upon a film of leather-collodion or paper—in one word, whether upon a translucid support, or even upon no support at all—is exposed in the ordinary manner under a cliche. This done, I again expose the film to light from the back in such a way that this second action of light works up to the last times of the surface before the front. After this the gelatine remains under the image no longer a film permeable to water; the two exposures having joined in their action, close like two links of a chain. You may judge when the second action has gone sufficiently far, by a fogging being produced over the image, which seems about to disappear altogether.

The film of gelatine is thus rendered inelastic throughout its thickness, and has become impermeable to water, except in a slight degree on its upper surface, where it is in a condition to absorb water sufficient to repel the ink, where the image is to remain white, or in half tone. No moisture can insinuate itself between the support and the image, to soften the gelatine not acted upon by light, and take away from the solidity of the printing block. Consequently the finest and purest prints can be obtained from it.

The other point is, that I do not moisten the block with a wet sponge and dry with a rag or tuft of wool; I moisten the surface with the aid of a hard, but porous stone roller, which may be covered with a supple stuff impregnated with water. The wetting of the plate is then conducted uniformly. If the gelatine swells a little, the water does not accumulate in the hollows which are to take the ink, an advantage which secures to the prints all their purity, whatever may be the number pulled off. My plan of moistening the block has also the advantage of rapidity.

My two improvements, consisting of imparting solidity to the film, and moistening the film in the most advantageous manner, permit me to do my printing by steam machinery, and in this way the production of pictures is made cheaper than has ever yet been known.

I also ask the Society for permission to communicate the details of a modification, which I have carried out in the preparation of my bitumen paper, called mica factice. This modification, I should say, was suggested to me by the communication made at the last meeting by M. Rodrigues, of Lisbon, and on seeing the productions which he exhibited to the Society. My modified paper allows me to obtain all the results secured by M. Rodrigues.

I prepared the paper just as I did five years ago; that is, I interpose between the gelatine and the bitumen a film of gum.

* Read before the French Photographic Society.
Only, in accordance with M. Rodrigues’ ideas, I add to the bitumen a fine powder, insoluble in the essence and in benzole, but soluble both in water and in the acids, destined to etch the metal or glass. I say glass advisedly, for I believe that with the aid of my intensifying process with caoutchouc, it is possible to obtain upon this substance blocks quite sheltered from oxidation, which will keep as well as wood blocks.

As soon as the print is obtained and washed in the essence, while the film is still soft, it is applied, with the bituminous side to a plate of metal or hard glass, slightly warmed. Above is placed a sheet of strong but unused paper moistened in water, and the whole is put under pressure of a suppler roller, made of gelatine and caoutchouc. The moisture of the paper penetrates the gelatine, reaches the gum, and at the end of a few minutes the whole may be lifted off, leaving the bitumen adhering to the plate. It is, nevertheless, better to dry the film in the first place, and then detach the paper and gelatine by a subsequent moistening operation.

In this way we imitate the conditions of M. Rodrigues; the grain is produced by the disappearance of the dissolved powder either by water or acid, and we have then a block capable of producing fine mechanical prints.

CORRESPONDENCE.

DISSOLVING VIEW APPARATUS.

Sir,—In answer to some correspondents, I add to my former communications on the lantern, a few remarks on the dissolving view apparatus.

The double lantern or dissolving view apparatus is not only required for showing a series of pictures artistically and without an hiatus, but is absolutely necessary for the production of dioramaic effects, these even sometimes requiring three lanterns. The simplest effect slide is that called the slip slide, which consists of a piece of glass set in a frame, over which one, and sometimes two, other pieces of glass are so arranged that the exhibitor with his hand can cause them to slide backwards or forwards over the first one. Parts of the picture being painted on each piece of glass in this way, phantasmagorical figures are produced, seemingly in motion. These slides can be shown by means of one lantern only. The next most simple effect slide is the lever slide; this consists of a circular glass set in a frame, on which is generally painted the principal part of the picture, over which another circular glass is set in a brass rim, having a handle, and is so arranged as to allow the handle or lever to be worked up and down to a certain extent. Various parts of the picture, as before, are painted on both glasses, and the painted side of all the effect slides are placed towards each other, but not allowed to touch. This description of slide can also be shown with single lantern.

Next follows the rackwork slide. These have either a single or double action, and are worked by a pinion, which is attached to a small crank rotated by hand. The single rackwork is applicable to such pictures as represent mills with moving sails, or water, &c. The double rackwork is used for horses and various other effects; these also can be shown with one lantern.

I will now give an instance in which two lanterns are required. The first picture represents Napoleon reviewing his troops on the Champ de Mars, Paris. This changes to the Emperor lonely and captive, standing on the shore of St. Helena. The transformation is effected by some parts of the picture being off the slide, and the figures of Napoleon exactly alike in colour, drawing, size, and position in each of the two pictures. The lanterns must be accurately arranged so that they may exactly overlap each other when shown on the screen. I need hardly say that before the exhibition commences the two lanterns must be brought into such a position relative to each other, and firmly fixed, that the two circles of light on the screen shall seem as if they were but one only, and a picture, when shown by either lantern, shall appear to be equally sharp in focus and of equal size. That this may be the case, it is necessary that all pictures intended to be shown at one time should be of the same diameter, and their frames of uniform dimensions, and, for the sake of portability and weight, these latter are never made to the full size the lanterns would admit; it is thus imperatively necessary that a carrier should be provided for each lantern having a circuit opening properly centred, and of somewhat smaller diameter than the pictures themselves. A proper proportion of one and will form a handle, and on its upper side should be inserted a pin or stop to prevent its being by any inadvertency thrust further across the lantern than the point at which it should rest.

Most objects apparently in motion should not be allowed to cease their action in sight of the spectators, otherwise the effect is entirely spoiled. This is particularly the case with chromotropes. It being at times quite impossible for an exhibitor to do all that is necessary single-handed, it becomes his best plan to procure, if possible, a volunteer assistant; and a rehearsal, for the purpose of his initiation, should be gone through if necessary, his duties being allotted to him. His particular attention should be directed to their performance methodically.

I intend to offer some further information on the subject of dioramaic effects by means of the magic lantern shortly.—I am, dear sir, yours truly,

5, Clarence Place, H'frocombe.

PHOTOGRAPHERS’ BENEVOLENT ASSOCIATION.

Dear Sir,—Will you kindly allow me to announce that the second annual general meeting and entertainment of this Association will take place at the Co-operative Hall, 15, Chapel Street, Oxford Street, W., on Monday, January 24th. The entertainment will be under the management of Mr. Coocking, Esq., and the lantern exhibition of F. York, Esq. All shortcomings in last year’s gathering were duly noted, and will be avoided this time.

Further particulars will be advertised next week. The admission will be by ticket only, one shilling, and may be had on application to yours respectfully,

T. W. WILKINSON.

Talk in the Studio.

SPRINT PHOTOGRAPHY.—At a recent meeting of the Berlin Photographic Society a communication from Dr. Stein was read in which he stated that he had recently met, at a spiritualistic congress, the notorious Parisian spirit photographers, Bugnet and Leymarie, and although he exposed them then and there, by taking similar photographs, he failed to convince the audience. The explanation is simple. Dr. Stein had a negative in his pocket, which he copied by the light of a candle, in the dark room, before developing the portrait of the gentleman who appeared with a female “spirit” at his side.

ENGLISH MECHANIC.

BLACK SPOTS ON PRINTS.—Mr. J. B. Battenfield, writing to our Philadelphia correspondent, says:—“Last winter I began to be troubled with minute black specks being deposited all over the albumenized surface of my paper while washing my prints before toning, and could not discover at the time the cause. I inquired from a number of photographers in regard to the trouble, and all seemed to agree that it was that paper; so I procured a sample of two or three different makes of paper, and still the same trouble. The paper appeared to be clear when printing, but after washing was full of those black specks, which, on rolling after being mounted, would have a metallic appearance. I began to get very much discouraged, having been troubled for about two months, and experimenting all the time to find the cause of the trouble (having made different silvering solutions, but still the same result), when at last I
thought I would silver a piece of paper and not print it but, after drying, place it in a porcelain dish, and, leaving plenty of light in my room, drew some water directly on it from the tap, and, by examining closely, I could see small particles depositing all over the surface, and which, on examination, proved to be iron oxide from iron pipe lying inside of the house. There was no wire of iron pipe by the frost over night, the moisture in the pipes freezing after the water was turned off. I caught and filtered some of the water, and was satisfied, from the deposit on the filter, that I had found the cause of my trouble, and have not had use for water from that source since, and have had no clear pictures as I ever had, and shall henceforth discard the use of iron pipes entirely."

To Prevent Glue from Cracking.—Glue frequently cracks because of the dryness of the air in rooms warmed by stoves. An easy remedy is the addition of a little chloride of calcium to glue to prevent this disagreeable property of cracking. Chloride of calcium is such a deliquescent salt that it attracts enough moisture to prevent the glue from cracking. Glue thus prepared will adhere to glass, metal, etc., and can be used for putting on labels without danger of their dropping off. —Scientific American.

To Fix Paper on Drawing Boards.—Take a sheet of drawing-paper and damp it on the back side with a wet sponge and clean water. While the paper is expanding, take a spoolful of wheat flour, mix with a little cold water, and make it a moderately thick paste; spread the paste round the edge of the drawing-paper, one inch wide, with a feather, then turn the drawing-paper over and press the edges down on the board. After a day, or after turning the wood, the paste is thin of an inch by two and a quarter inches wide; place them on the edge of the drawing-paper, and put a large book or heavy weight on each corner to make the paper adhere firmly to the board. In about an hour's time the paper will be straight and even, and quite ready for excising a drawing. When the drawing is finished, take a sharp knife and raise one corner of the paper; then take a scale, run it round the edges, and the paper will come off easily. Turn it over and take the dry paste off with a brush to be perfectly clean, and no paper will be wasted. —Scientific American.

Sensitivity of Aniline Colors.—The editor of the Rivista, Signor Borlino, announces that all the aniline colours are more or less sensitive to light. Bismark brown, spread on paper in admixture with size, albumen, starch, etc., and exposed under a negative, yielded a good picture, capable of being fixed with a solution of iron containing a little alcohol. This fact would make it appear that the use of aniline colours, as a means of colouring photographs, is not to be recommended.

To Correspondents.

The Year-Book for 1876 will be more fully illustrated by designs and diagrams than any other previously issued.

A. J. McC.—The preserve is poured on the plate just as the plate leaves the bath, without any washing; and the ordinary iron development is applied to the plate just as it is, without washing.

The plan is a very good one when all the chemicals are in good condition; but we have known it fail when the bath was an old one and especially if it is not washed, which acts on many samples of glycine. We believe on the pure glycine sold by Price and Co. nitric acid has no action.

A. S. (Dunson).—The details of the mode of reproducing negatives by the powder process appeared in our Year-Book for 1875, the present year.

A. W. E.—The process given by Mr. Hins are simply the details of printing transparencies from a negative, the existence of the negative being pre-supposed. There are modes of producing transparencies direct from the object, but none sufficiently simple and trustworthy for general use. The production of a negative is for every process a necessary preliminary to printing the transparency.

Thomas Day.—The use of old negative baths for printing purposes, and some photography in general, we scarcely think it good economy, unless cases be used to remove all traces of iodide of silver, it frequently gives poor weak prints, which refuse to tone. If you wish to use the bath as a printing bath, it will be necessary to dilute the solution with a small part of sodium chloride added, carrying with it the bulk of the iodide of silver.

Or the addition of a little carbonate of soda, throwing down a little silver as carbonate, will carry down a portion of the iodide of silver, Or diluting the solution with an equal bulk of distilled water, pouring the bath into the water, and filtering, will remove a great deal. The plan we have often described, but which you will find described succinctly in the Year-Book for 1876, of converting the whole of the silver into carbonate, and then converting the carbonate into nitrate, will be the most trouble, but it will be the most effective.

R. L.—You will be tolerably safe with any of them; but we should select No. 2. A good bellows camera will be quite sufficiently rigid to carry the portrait lens. A swing-backed camera is useful in portraits, but not absolutely necessary. For the studio the vertical movement would be sufficient.

R. N. D.—In dull foggy weather it is very difficult to get brilliant card pictures with lenses of long focus, because of the long space of foggy atmosphere between the film and subject. The picture is photographed as well as the objects. Hence it is more easy to obtain perfectly clear shadows in dull weather with lenses of long focus.

G. V. W.—The necessity of rinsing prints between toning and fixing, is because the mixture of the toning solution and the fixing bath causes a decomposition with liberation of sulphur from the hypo-sulphite. 2. A lens when used should have a camera in the focus, or converting the whole of the silver into carbonate, and then converting the carbonate into nitrate, will be the most trouble, but it will be the most effective.

JAMES WALLACE.—You may partially get rid of the iodide by hydrochloric acid or other substance which will produce a precipitate and take down with it part of the iodide. See answer to Mr. Dunson.

H. H.—Continental accounts of M. Leon Vitali's progress with photo-polychrome are very enthusiastic. We have, perhaps, insufficient data to form an opinion, but, on the data we possess, we are inclined to conclude that there is not much promise of its becoming commercially practicable at present. Examples are very scarce. We have had specimens promised for years which have not arrived.

ANNOXIOUS A. B. C.—The autotype process is the carbon process. You will get full information from the Company's Manual, to be sent at cost in Bennington Place. Mr. Solomon publishes a little work on autotyping.

A. D.—Mastic varnish is made by dissolving gum mastic in spirits of turpentine, about sixty grains of the gum resin to an ounce of the turpentine. 2. Gum dammar is made into varnish precisely the same way; but for photographic purposes, benzole is generally used instead of turpentine.

S. A.—The Autotype Company at Northampton Place is difficult, if not impossible, to get, and can only be made by a mastic varnish. The varnish is as good as the original. We fear we do not know an artist to undertake the task.

Several correspondents in our next.
INDEX.

A

Abney, Captain, dry-plate process for solar photography, 104
Abney, Capt., photographic operations in Egypt in connection with the late transit of Venus, 183, 189
Abney's modification of the strong alkaline developer, Captain, 114
Abney, Captain, on photographic irradiation, 365, 368
Abney, Capt., metallic mirrors for reversing negatives, 118
Abney, Capt., 407
Abney, Capt., graduation of tints on photographic papers, 301
Abney, Capt., on the ratio of the actinic power to the illuminating power of magneto-electric machines, 412
Acetic acid, 500
Acetic acid before tanning, bath of, 144
Acetic acid before toning, dilute, 308
Accelerator, diffused light as an, 79
Accelerator, methylated as an, 304, 378, 420
Accelerator, a new, 304
Accelerator, methyl alcohol in the developer as an, 252
Acknowledgment, a gratifying, W. Borey, 272
Acetin power to the illuminating power of magneto-electric machines, on the ratio of the, by Captain Abney, 422
A'dreamy picture," 24
Advances in photography, some recent, 190, 205
Ald, D., camera for landscape work, 154
"Alba" plates for photographs, "Nonpareil," or, 370
Albume, a process, the beer and, T. Clarke, 290
Aluminium-beer process, the, 150
Aluminum as a preliminary coat, A. Berland, by 104
Albumenising plates, 110
Albumen, a few notes about, 119
Albumen process, a dry, by Frank M. Pickrell, 111
Albumen v. gelatine, and fixing with sulpho-cyanate of ammonium, by G. Durand, 22
Albumen and beer process, and the recent transit of Venus, the, 78
Albume, dry egg, by Dr. J. Schaeutz, 274
Albumen and the nitrate bath, by G. Fry, 609
Albumen as a substrate, 465
Album, a wander, 43
Albumenised paper, defects in, by Dr. J. Schaeutz, 51
Albumenised paper, blistering of, 568
Albumeniser's lament, an, by W. T. Borey, 67
Alcohol, absolute, by John A. Speers, 9
Alcohol in photographic manipulations, methylated, 79
Alcohol from the silver bath, the elimination of ether and, by D. Winstanley, 418
Alcohol, and alcohol in wood-spirit, how to detect wood-spirit in, by M. A. Riche, G. Hardy, and M. Berthelot, 404
Alcohol, work, on the practice and principles of the great portrait painters, 2, 13
Alkaline developer, Captain Abney's modification of the strong, 114
Alloys, to extract silver from, 429
Almanack, the photographer's pocket, 36

B

Aluminin in the printing bath, nitrate of, 28
Alum for eliminating hypophosphite, 54
America, photography at the International Exhibition of 1876 in, 428
American, photo-mechanical printing in, 60
American International Exhibition of 1876, the, 545
Ammonio-silver carbonate, on, by Sergius Kern, 293
Ammonium as a fixing agent, advantages of a photo-cyanate of, by G. Hooper, 297
Amateur Photographic Association, 350
Aniline black marking ink, 420
Aniline colours, sensitiveness of, 680
A photographer's adventures in the south seas, 370, 477
Apparatus, second-hand, 454
Aron's oil, an improved form of, by L. Macdonald, 330
Arran and the Highlands of Scotland, a photographic trip to, by Reuben Mitchell, 440
Arsenic, detection of, 630
Artistic studies, photographic reproduction of, of the great portrait painters, 2, 13
Artistic finish to photographs, a new method of imparting, by Edward Dummer, 608
Art and nature, 581
Art Union of the Photographers' Benevolent Association, 107
Art in photography, and the late O. G. Rejlander, on, by J. R. Forster, 630
Art culture in photography, 230
Art critic, by W. Nellson, 123, 183, 187
Artificial photographic light, by Photo. Chemos, 355
Artificial light for photography, recent researches in, 457
Asphalte photo-discographic process, Fiehner's, 68
Asphalte and bitumen in photographs, 353
Astronomical photography, paper on, by O. D. Chapman, 456, 459
Assaulting a photographer, 294
Asher, Alex, a stimulus to advance true progress in art photography, 601
Atomics, weight of the relation between spectral lines and, 609
Atkins, Williams, keeping qualities of the pellicle suspension, 118
Autootype Company, the, 551
Autotype transfer, recent improvements in, by J. H. Sawyer, 321, 456
Autotype and chromotype, 324
Autotype works, 325
Autotypes of House of Commons, 668

B

Backgrounds, painting photographs, 181
Backgrounds to portraits, pictorial, 463
Backgrounds and their use, by L. W. Borey, 462
Backgrounds, and how to produce them, pictorial, 573
Backgrounds, best pictures with grey, by J. Unger, 573
Bardy, and M. Berthelot, M. A. Riche, G., how to detect wood-spirit in alcohol, and alcohol in wood-spirit, 408
Bardy, M. A. Riche et G., sulphur flame and other lights suitable for photography, 171
Barry, nitrate of, 69, 570
Barry in the silver bath, nitrate of, 570
Bath, W. E., old diamonds for modern setting, 430
Ballet at the Photographic Society, the, 94, 106
Bath, precipitating silver from old nitrate, 937
Bath, a good cheap, 129
Bath, the nitrate of silver, 46
Baths, doctoring, 269
Bath from ditch water, a silver, by F. J. K., 502
Bath, W. E., the last, 501
Batho, W. E., the Woodbury process, 214
Berthelot, M. M. A. Riche, G. Hardy, and M., how to detect wood-spirit in alcohol and alcohol in wood-spirit, 404
Beige de Photographic Association, 119
Belgian Subscriber, hints on enlarging, 143
Belgian Photographic Exhibition, 166, 479
Belles for a camera, how to make a, by B. L. P., 250
Beer and albumen process, the, by T. Clarke, 230
Beer process, and the recent transit of Venus, the albumen and, 78
Beourquet, E., action of differently refrangible rays on iodide and bromide of silver, 369
Bengal Photographic Exhibition, 418, 504
Bier, F., photo-mechanical printing, 426, 418, 430, 449
Bi-hydrate, poisoning by, 210
Biggs, J. H., photography and the magic lantern, 25
Blindness in photographs, asphalte and, 254
Bingley, Dr. C. W., developer for field use, 601
Bingley, Dr. C. W., how to lay water-colours on glass, 462
Blistering of albumenised paper, 563
Blistering in albumenised paper prints, by Selma Botone, 235
Botones, 538
Botones, 131, 573, 586
Blackburn, Henry, the art of popular illustration, 136, 145, 150
Bleached shade, 108
Bleaching bones and ivory with oil of turpentine, 500
Blankard, V., on a method of enlarging, 193
Blake, John M., spots on varnished lantern slides, 427
Blochoua, A. de, how to calculate the distance from the lens, and from the focusing glass to the model, 501
Bolinasetto, M. L., transfers for mechanical printing, 135
Borey, W. E., how to light the sitter, 141
Borland, A., albumen as a preliminary coat, 164
Bouder, Anatone, a satin varnish, 154
Botones, Selma, blisters in albumenised paper prints, 326
Botones, S., mount of iron as a developing agent, 269
Borders, etc., to carbon pictures, a simple method of printing ornamental, by B. W. Forley, 455
Boulenger portraits, 126, 142, 234
Boucher, M., 573
Bovey, W., a gratifying acknowledgment, 272
Bovey, W. T., a mould of silver for printing, 116
Bovey, W. T., reasonable thoughts shot at random, 176
INDEX.

Group pictures, partial reproductions of, by E. Riewel, 414
Gun-cotton, the properties of, 285, 310

H
Half-silvering, 583
Hall, Alfred, the printing department, 454
Here's new changing box, 384
" Harrow Bank," the, 210
Haug, Fritz, Wunder's colouring processes, 145
Haug, Fritz, how to unwash negatives, 93
Hearne, C. W., relating the silversing to the toning bath, 494
Hedge-fringe characteristics of, 564
Hermes: engraving stereotypes, 332
Hind, Thomas, transparency by the coffee process, 603
Hirsch, photographic landscape, 303
Hills and suggestions, by D. H. Cross, 149
Hinton, a, 101
Hippocrates of Chios, the, 267
Hooper, G., advantages of silvercyanide of ammonium on paper, 137
Hooper, G., advances in developing, 324
Hooper, George, origin, aim, and achievements of the Photographic Society, with suggestions as to its future development, 36, 50
Hooper, G., advantages of silvercyanide of ammonium on paper, 137
Horse, photographing, 274, 284
Howard, John, warming students, 110
Howard, C. W., stereotyping in transparency, 87
How many sildes shall the photographer give?, 494
Hornig, Dr., panoramic photography, 567
Hudon, F., some of the difficulties andpleasures of the camerist compared with portrait photography, 323, 323
Huguenot, the, 81
Huyscl, Professor J., an excellent lick-picture process, 566
Hughes, O., the hot water for carbonizing, and a ready means of obtaining it, 566
Hunter, A., the "dip," on the acid which photography has rendered obsolete, 184, 185
Hyalo-photography, Rossyay's experiments in, 463
Hydrograuproxy andits application to photography, by Joseph Lefebre, 215
Hydrotherapy and photography, by T. Simas, 249
Hyposulphite in the prints, 402
Hyposulphite wastes, a new and simple method of recovering silver from, by J. Chisholm, 270
Hyposulphite solution, saturated solution of, 382
Hyposulphite, subm for eliminating, 64
Hyposulphite, perfect washing and testing for, 46
Hypo, fixing silvercyanide of ammonium e, 23

I
Identifying by photography, 356
Illustrating power of magnetic electric machines, on the relative of the motional power to the, by Captain Abney, 422
Impressions, 415
Immense photographs, 48
Improvements in photography, selling and giving, 89
Imperial portraits, 177, 145
Ingenious rewards, for, 372
Inventions, ridiculed by, D. Winstanley, 381
India, the English eclipse expedition to, 819
Indian amateurs, 169
Indecent photographs, 327
Ink, salines black marking, 430
Ink, Desenooa, M., on printing processes with fatty, 628
Instruction at exhibitions, 849
Intensifier, potato permanganate as an, by W. H. Davies, 185
Intensity of negatives, reducing, 507
Intensity, softness and, 131
Intensifying gelatin negatives, 199
Intensifying the electrical photoelast, 114
Invisible, photographing the, 233
Iodides from salts, excess of, 132
Iodims and bromide of silver, action of differently refrangible rays on, by H. Busquet, 393
Iodides of silver, the effects of heat and immersion on, 8
Iridium, k., photographic prints in platinum, 68
Irradiation, etc., 337
Irradiation, photographing by Capt. Abney, R.E., 585, 585
" It is brightened," 585
Ivory miniatures, imitation, 222

J
Javelle water, 564
Japan, photography in slam and, 499
Jen, Dr., cementing, 312
Johnson's discoveries in the carbon process, Mr., 438

K
Kamphasen, Fry versus, 219
Kaleidoscopic, 512
Kennett's Mr., gelatin-gelatine plates, 597
Kern, Georg, on ammonio-silver carbamates, 299
Kever, W. H., making prints, 388
Knight, G., good prints from thin negatives, 128

L
Lambertite, etc., 613
Lambertite, the, by W. E. Balth, 561
Lambert's systems of enlargement and carbon printing, M., 306
Lantern apparatus, the, 310, 384, 384, 384, 388, 389, 391, 393, 394, 407, 418
Lamboe, M. d'Abbe, photoagricole notes, 157, 177
Leaves of sunflowers, 236
Lease stereography, 396
Landscape as compared with portrait photography, lens of the qualities and pleasures of, by F. Hudson, 522, 523
Landscape photography, notes on, by J. M. Turnbull, 240
Landscape photographs, proportions of, 188
Landscape work, cameras for, by D. Aird, 124
Landscape photography, by Thomas Ambes, 363
Landscape at the exhibition, 540
Landscape enlargements, 541
Lantern apparatus, 83
Lantern slides, colouring, 181
Lantern slides, varnished, by John M. Blake, 547
Lantern slides, making, by R. J. Chute, 461
Laurent, M., a simple method of photographic mechanical printing, 388, 387, 387, 461
Laurent-Morgan, note on development, 388
Large negatives, improved, by George Crotch, 191
Large plates in the field, on the manipulation of, by M. Hiles, 518
Latitude and longitude by photography, 119
Lea, Carey, a new method of emission work, 323, 184
Lens, and from the focusing glass to the model, how to calculate the distance from the, by A. de Blacheaux, 501
Lenses, temperature, 185
Lenses, equivalent focus of a portrait, 106
Lenses, a second power for, 81
Leipsig, Joseph, hyalography and its application to photography, 215
Leipsig, J. E., photo-electric engraving, 10, 16
Leitell, M., permanganate of potash to reduce the lassitude of negatives, 95
Leake, J. C., some remarks on enlargements, 110
Libyan desert, a photographer's experiences in, by Philip B, 131, 131, 356
Lines-light simplified, by A. Penne, 112
Little Photo, A., a suggestion, 103
Lieber, A., chromo-photography, or photograph in miniature, 88
Lithography into letterpress paper, conversion of, 106
Life-size portraiture, J
Lithodrumb printing without a press, 68
Lithodrumb process, an excellent, by Professor J. Hulsh, 588
Lithographer, the, 58
Likeness, a speaking, 480
Likeness, satisfaction in, 156
Likeness, to portrait copy, or a photographer's, 628
Liesegang, Dr., enlargements without apparatus, 608
Light by mixtures, on absorption of, 379
Light by mechanical force, by Thomas Sims, 349
Light, sulphur and nitrates, 396
Light, artificial photogenic, by Photo. Chemische, 312
Light, mechanical appliances for governing, by C. R. Myers, 371
Light for studios, north, 268
Light a mechanical force, by Thomas Sims, 349
Light, a mechanical force: Mr. W. Crooke's remarkable discovery, by W. T. Bovey, 225
Lights suitable for photography, sulphur flame and other, by M. M. A. Richo and C. Dardy, 171
Light the slitter, how to, by H. W. Bowey, 141
Lights in photography, the, 105, 199
Light as an accelerator, diffused, 70
INDEX.

INDEX.